

. C++
Programming with

Code Warrior™
Beginning OOP for the

Macintosh® and Power Macintosh®

LIMITED WARRANTY AND DISCLAIMER OF LIABILITY

ACADEMIC PRESS, INC. ("AP") AND ANYONE ELSE WHO HAS BEEN INVOLVED IN THE
CREATION OR PRODUCTION OF THE ACCOMPANYING CODE ("THE PRODUCT") CAN
NOT AND DO NOT WARRANT THE PERFORMANCE OR RESULTS THAT MAY BE
OBTAINED BY USING THE PRODUCT. THE PRODUCT IS SOLD "AS IS" WITHOUT WAR
RANTY OF ANY KIND (EXCEPT AS HEREAFTER DESCRIBED), EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY WARRANTY OF PERFORMANCE OR
ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICU
LAR PURPOSE. AP WARRANTS ONLY THAT THE MAGNETIC CD-ROM(S) ON WHICH
THE CODE IS RECORDED IS FREE FROM DEFECTS IN MATERIAL AND FAULTY WORK
MANSHIP UNDER THE NORMAL USE AND SERVICE FOR A PERIOD OF NINETY (90)
DAYS FROM THE DATE THE PRODUCT IS DELIVERED. THE PURCHASER'S SOLE AND
EXCLUSIVE REMEDY IN THE EVENT OF A DEFECT IS EX PRESSLY LIMITED TO EITHER
REPLACEMENT OF THE DISKETTE(S) OR REFUND OF THE PURCHASE PRICE, AT AP' S
SOLE DISCRETION.

IN NO EVENT, WHETHER AS A RESULT OF BREACH OF CONTRACT, WARRANTY OR
TORT (INCLUDING NEGLIGENCE), WILL AP OR ANYONE WHO HAS BEEN INVOLVED
IN THE CREATION OR PRODUCTION OF THE PRODUCT BE LIABLE TO PURCHASER
FOR ANY DAMAGES, INCLUDING ANY LOST PROFITS, LOST SA VIN GS OR OTHER
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILI
TY TO USE THE PRODUCT OR ANY MODIFICATIONS THEREOF, OR DUE TO THE CON
TENTS OF THE CODE, EVEN IF AP HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY.

Any request for replacement of a defective CD-ROM must be postage prepaid and must be
accompanied by the original defective CD-ROM, your mailing address and telephone number,
and proof of date of purchase and purchase price. Send such requests, stating the nature of the
problem, to Academic Press Customer Service, 6277 Sea Harbor Drive, Orlando, FL 32887, 1-
800-321-5068. APP shall have no obligation to refund the purchase price or to replace a CD
ROM based on claims of defects in the nature or operation of the Product.

Some states do not allow limitation on how long an implied warranty lasts, nor exclusions or
limitations of incidental or consequential damage, so the above limitations and exclusions may
not apply to you. This Warranty gives you specific legal rights, and you may also have other
rights which vary from jurisdiction to jurisdiction.

THE RE-EXPORT OF UNITED STATES ORIGIN SOFTWARE JS SUBJECT TO THE UNITED
STATES LAWS UNDER THE EXPORT ADMINISTRATION ACT OF 1969 AS AMENDED.
ANY FURTHER SALE OF THE PRODUCT SHALL BE IN COMPLIANCE WITH THE UNITED
STATES DEPARTMENT OF COMMERCE ADMINISTRATION REGULATIONS. COMPLI
ANCE WITH SUCH REGULATIONS IS YOUR RESPONSIBILITY AND NOT THE RESPON
SIBILITY OF AP.

C++
Programming with

Code Warrior™
Beginning OOP for the

Macintosh® and Power Macintosh®

Jan L. Harrington

AP PROFESSIONAL

Boston San Diego New York
London Sydney Tokyo Toronto

This book is printed on acid-free paper. E)

Copyright© 1995 by Academic Press, Inc.
All rights reserved.
No part of this publication may be reproduced or
transmitted in any form or by any means, electronic
or mechanical, including photocopy, recording, or
any information storage and retrieval system, without
permission in writing from the publisher.

All brand names and product names mentioned in this book
are trademarks or registered trademarks of their respective companies.

AP PROFESSIONAL
1300 Boylston St., Chestnut Hill, MA 02167

An Imprint of ACADEMIC PRESS, INC.
A Division of HARCOURT BRACE & COMPANY

United Kingdom Edition published by
ACADEMIC PRESS LIMITED
24-28 Oval Road, London NWl 7DX

Harrington, Jan L.
C++ programming with Code Warrior: beginning OOP for the

Macintosh and the Power Macintosh I Jan L. Harrington.
p. cm.

Includes bibliographical references and index.
ISBN 0-12-326420-0 (acid-free paper)
1. Macintosh (Computer) --Programming. 2. C++ (Computer program

language) I. Title.
QA 76.8.M3H359 1995
005.265--dc20 95-20134

CIP

Printed in the United States of America
95 96 97 98 IP 9 8 7 6 5 4 3 2 I

Contents

Preface xv
How to Use This Book xvi

The Programming Challenges xvi
For Readers with Little or No Programming Background xvii
For Readers Who Are Fluent in a Language Other than C++ xix

What You Need to Know xxi
About the CD-ROM :xxii

Acknowledgments xxiii

Chapter 1: Some Basic Concepts 1
The Anatomy of a Program 1

Language Translation 3

Linking 4

Introducing Binary Numbers 5

Binary and Data Storage 7

v

vi

Organizing and Accessing Main Memory 7
Pointers 8
Variables and Data Storage 9

Storing Characters 9
Storing Numbers 11

Binary and Hexadecimal 11
How a Program Executes 13

Chapter 2: Introducing OOP 15
WhyOOP? 16
Classes 17

Classes and Objects 17
Member Functions 17
Communicating with Objects 18
Information Hiding 19
Function Overloading 19

Inheritance 20

Chapter 3: Using Code Warrior 23
Putting Together a C++ Program 23

The main Function and Function Structure 24
Function Prototypes and Header Files 24

The Code Warrior Environment 27
Creating Source Code Files 28

Color Text 29
Automatic Balancing 29
Font Preferences 30
Automatic Indenting 31
Editor Window Controls 31

Working with Projects 32
Project Templates . 33
Creating a New Project 35

Opening and Saving the Project File 35
Adding Files 36

Running a Program 37
Setting Project Preferences 38
Working with the SIOUX Window 39

Contents

Contents

Creating Your First Program 40
Dealing with Syntax Errors 42

Introducing the Debugger 44
Entering the Debugger 44
Stepping Through a Program 45
Viewing Variables 47
Exiting the Debugger 50

Chapter 4: Writing Classes 51
Variables 51

Declaring Integer Variables 53
Adding Comment Statements 53
Declaring Floating Point Variables 54
Declaring Character Variables 55
A First Look at Strings 5 5
Initializing and Assigning Values to Variables 5 6

Initializing Characters 57

Initializing Strings 58

Defining Your Own Variable Types 60
The Scope of Variables and Variable Storage Classes 60

Constants 61
Declaring Member Functions 63

Return Values 63
Formal Parameters 64

Class Declaration Syntax 64
Writing Simple Constructors 66
Writing Other Member Functions 67

Chapter 5: Simple Input and Output 69
Introducing Stream I/ 0 70
Console Output 70

Inserting Constants into a Stream 71
Inserting Variable Contents into a Stream 72
Adding New Lines 72

Console Input 73
String Input 74

vii

viii

The Ticket Printer Program 7 4

Declaring the Class 75

The Member Functions 76
The main Function 76

Creating Objects and Function Binding 77
Calling Member Functions 79
Performing the I/O 79

Programming Challenge Number 1 80
File Operations 80

File Output 82
Opening a File for Output 84
Writing Simple Values to the File 85

File Input 86
Opening a File for Input 86
Reading Simple Values from a File 86

Formatting Stream Output 87
Setting Precision, Width, and Fill 87

Setting Precision 88
Setting Width 89
Setting Fill 89

Setting the ios Flags 89
Programming Challenge Number 2 90

Chapter 6: Arithmetic Operations 93
The Arithmetic Operators 93

Addition, Subtraction, and Multiplication 94
Division 96

Integer versus Floating Point Division 96
Modulo Division 97

The Unary Sign Operators 98
The Increment and Decrement Operators 99

Preincrement and Predecrement 99
Postincrement and Postdecrement 100

Assignment Shorthand 100
Precedence 101
Typecasting 103

Default Typecasting 103
Explicit Typecasting 104

Contents

Contents

Math Library Functions 104
Exponentiation 105
Square Root 105
Absolute Value 106
Floating Point Modulo Division 106

The Calculator Program 107
Programming Challenge Number 3 111

Chapter 7: Making Choices 113
Formulating Logical Expressions 114

Formulating Simple Logical Expressions 114
Character Considerations 11;

The Unary Not Operator 116
Formulating Complex Logical Expressions 116
Precedence 118

Handling Not 119
Making Choices: if/else 119
Making Choices: switch 124

Programming Challenge Number 4 126
Making Choices: The ?: Operator 128
Verifying File Operations 129

Chapter 8: Repeating Actions 131
TheNumberFunProgram 131
Repeating Actions: while 133

Initializing the Control Condition 134
Nesting Loops 134
A voiding Infinite Loops 138
Quick Exits: Break 138
Using a while Loop 139

Repeating Actions: for 141
Programming Challenge Number 5 144

Chapter 9: Arrays 147
Declaring Arrays 148
Referencing Array Values 149
Assigning Values to Arrays 150

ix

x

Using One-Dimensional Arrays 151
Passing Data for an Array into a Function 151
Passing Arrays to Functions 154
Arrays of Objects 159

Using Two-Dimensional Arrays 162
Functions and Two-Dimensional Arrays 164
Processing Two-Dimensional Arrays 166

Programming Challenge Number 6 167

Chapter 10: Strings 169
Declaring Strings: A Review 169
Referencing Strings 170
String Manipulation 171

Copying Strings 172
Concatenating Strings 172
Comparing Strings 177

Strings as Function Parameters 179
Declaring String Parameters 180
Passing Strings into Functions 180
Returning Strings from Functions 181

Arrays of Strings 182
Declaring an Array of Strings 184
Manipulating an Array of Strings 185

Strings and Data Files 190
Writing Strings 190
Reading Strings 191

Programming Challenge Number 7 193

Chapter 11: Pointers 195
Pointer Variables 196

How Pointer Variables .. Point" 196
Declaring and Initializing Pointer Variables 196
Accessing Data Pointed to by Pointer Variables 199
Using Pointer Arithmetic 202

Pointer Arithmetic and String Functions 20;
Pointers and Parameter Passing 207
Dynamic Binding 211

Contents

Contents xi

Programming Challenge Number 8 216

Programming Challenge Number 9 217

References to 1/0 Streams 217

Chapter 12: Pulling It Together: The Checkbook Program 221
What the Program Can Do 221

The Classes 222

The Constructors 224

The this Pointer 226

The Account Class Constructors 226
The Trans Class Constructors 226

The Interactive Constructor 227
The Transaction Type Conversion Functions 229

The main Function 229

Loading Data 232
Creating a New Account 233
Entering Transactions 234
Reconciling a Checking Account 23 7

Finding and Viewing Transactions 240

Finding a Single Transaction 240
Viewing Multiple Transactions 242

Exiting the Program 244

Chapter 13: Operator Overloading 247
Declaring Overloaded Operators 248

The Nonoverloaded Member Functions 250
Overloading with Member Functions 252

Overloading with Friend Functions 254

Using Overloaded Operators 255

Fixing the Checkbook Program 258
Programming Challenge Number 10 261
Programming Challenge Number 11 262

Programming Challenge Number 12 263

Chapter 14: Data Structures: Arrays 265

Objects to Manage Arrays 266

xii

Sorting an Array: The Bubble Sort 271
A First Bubble Sort Example 271
Sorting Arrays of Pointers 275

Searching Arrays: The Binary Search 278
Setting Up the Sorted Arrays 279
Writing the Searches 280

Programming Challenge Number 13 284

Chapter 15: Data Structures: Linked Lists 285
How a Linked List Works 286
Linked List Classes 288

The Class Being Managed 288
The Linked List Manager Class 291

Inserting Elements 292
Accessing All Elements 295
Finding Elements 295
Linked Lists and Data Files 297

Writing the Data 297
Reading the Data 298

MakingitWork 299
The main Function 299

Programming Challenge Number 14 302
Modifying the Checkbook Program 303

The List Manager Class 303
Creating New Transactions 304
Accessing the List 306
Modifications to the Account Class 308
Finding the List Manager 308

Programming Challenge Number 15 310
Linked Lists Versus Arrays 311

Chapter 16: Inheritance 313
Where Inheritance Makes Sense 314
Examining a Base Class 316

Member Functions for Inheritance: Virtual Functions 317
Examining Derived Classes 318
Base Class Pointers 320

Contents

Contents xiii

Base Class Member Functions 321
The Interactive Constructor 323
The File Input Constructor 325

Derived Class Member Functions 326
The Interactive Constructors 326
The File Input Constructors 326
Displaying Data 329
Computing the Anticipated Commission 330
Writing the Data to a Text File 331

TheMainProgram 331

Chapter 17: Introducing the ToolBox 337
Macintosh Application Structure 338
ToolBox Calls 339

ToolBox Organization 339
ToolBox Data Structures 340
ToolBox Header Files 341

Sample ToolBox Calls 342
Getting Started: Initializing the Managers 342
Choosing Files: The Standard File Package 343

Choosing a File to Open 344
Choosing a File to Save 348

Displaying Alerts: Working with Resources 350
Creating the Resources 351
Writing the Alert Management Code 353

Where to Go from Here 354

Chapter 18: Glossary 357

Chapter 19: Index 365

Pref ace

So you've decided it's time you learned how to program! Programming is fun, chal
lenging, frustrating, infuriating, and satisfying-all at the same time. The fun and the
challenge come as you puzzle through the logic of a program to make it work exactly
the way you want; the frustration and fury come when a problem is seemingly
unsolvable. And the satisfaction? That comes when you solve that unsolvable prob
lem and end up with a working program. If you enjoy working through puzzles and
find satisfaction in the problem-solving process, you're really going to love program
ming.

This book is targeted primarily at two audiences. The first is readers who have lit
tle or no programming background. If you fall into that group, you'll spend a lot of
time with the first 12 chapters, which present programming concepts from the begin
ning. You'll move on to the more advanced material in Chapters 13 through 17 as you
develop your programming skills. However, if you are relatively fluent in a language
other than C+ +, you will be able to skim some of the first 12 chapters and then spend
more time with the advanced material in the later chapters.

Teaching Macintosh programming presents a bit of a dilemma. Because of the
Macintosh's user interface and the support for both the interface and the operating

xv

xvi Pref ace

system found in the computer's ROM, learning to program the Macintosh presents a
special challenge. You must first learn programming concepts. Once you understand
how programs are written, you can learn to work with the programs in the ROM's
ToolBox. All of this is just too much for one book. In fact, it generally takes two
good-sized volumes to teach someone who already knows how to program to work
with most of the features of the ToolBox.

This book has therefore been written to teach you programming concepts, using
object-oriented C++ from the ground up. You will learn how object-oriented pro
grams are constructed and how to write them in C++. To make it easy for you to get
started, you will be working with a text interface. In this way you can focus on the
concepts of the programming without worrying about the added complexities of the
ToolBox.

The C++ you will learn in this book is based on the emerging C++ standard as
described by the American National Standards Institute (ANSI). ANSI C++ can be
used with many C++ development environments. For the purposes of this book, you
will be using Metrowerks' s Code Warrior, an integrated software development envi
ronment that is the most widely used platform for PowerMac software development.
Code Warrior also creates programs for 680x0 Macintoshes. If you have a PowerMac,
the software will run in native PowerPC code; if you have a 680x0 Macintosh, it runs
in native 680x0 code.

How to Use This Book

The way in which you use this book depends on your programming background.
This section of the Preface contains some suggestions as to how you might use each
chapter. However, regardless of your background, you'll want to take advantage of
the "programming challenges" scattered throughout the book.

THE PROGRAMMING CHALLENGES

To help you develop your own programming skills, you'll find a number of "pro
gramming challenges" throughout this book. Each programming challenge asks you
to modify one of the sample programs, adding functionality that gives you practice
with the concepts taught in a given chapter. These challenges make it possible for
you to work with the Code Warrior software that comes on the CD-ROM that accom
panies this book.

How to Use This Book

FOR READERS WITH LITTLE OR No PROGRAMMING
BACKGROUND

xvii

If you have little or no programming background, you will probably use the chapters
in this book in the following way:

• Chapter 1: This chapter covers computing concepts that provide a foundation for
programming. You should read carefully before you proceed further into the
book. You should also pay attention to where specific ideas are discussed so that
you can refer back to it later as those ideas become important in your study of
c++.

• Chapter 2: This chapter introduces the concepts of object-oriented programming.
You should read and study it in depth.

• Chapter 3: This chapter provides an overview of the CodeWarriorprogramming
environment. If you are new to Code Warrior, you should work through the chap
ter carefully, performing the hands-on exercises in the chapter.

• Chapter 4: This chapter teaches you how to write the building blocks of an object
oriented program (a class). You will learn about variables and functions. The con
cepts in this chapter are fundamental to everything you will be doing in the rest
of the book. You should therefore make certain that you understand the material
in this chapter before moving on.

• Chapter 5: In this chapter you'll learn how to transfer data from the keyboard into
a program and from a program to the keyboard. You'll also learn how to write to
a file and read from a file. It's essential that you master keyboard input and screen
output before moving on. However, if file 1/0 seems a bit mysterious, you can
leave it for now and return to it when you're a bit more comfortable with C++.

• Chapter 6: In Chapter 6 you will be introduced to how computers perform arith
metic. This is another chapter you should study in depth.

• Chapter 7: This chapter introduces you to how computer programs tell the com
puter to make choices between alternative sets of actions. Like Chapter 6, the ma
terial in this chapter is fundamental to your programming skills. If you skipped
file I/ 0 in Chapter 5, you may also want to leave the last section of this chapter
for later.

• Chapter 8: This chapter introduces you to how computer programs tell the com
puter to repeat groups of actions. This material, as well as that in the preceding
two chapters, forms an essential foundation for any program. You should learn
the material in this chapter thoroughly.

xviii Pref ace

At this point you will have been introduced to the basic elements of C++ pro
gramming. Before moving on, you should work through the programming chal
lenges so that you begin to have some confidence in what you have learned so far. Use
the "blank" project provided on the CD-ROM to write programs of your own. (More
on this blank project later.) When you feel confident, move on to a study of Chapters
9 through 12:

• Chapter 9: In this chapter you will learn about a way to group data together and
handle the group as a unit. You should study the first section of the chapter (the
part that covers one-dimensional arrays) thoroughly. You can skip the last part of
the chapter (two-dimensional arrays) if you find it a bit daunting.

• Chapter 10: Chapter 10 focuses on character strings (more than one character
handled as a unit). Because much of what computers do today deals with charac
ter strings, you should study this chapter thoroughly. However, because C++
strings are implemented as arrays, you shouldn't move on to this chapter until
you are comfortable with one-dimensional arrays.

• Chapter 11: This chapter teaches you how to use C++ to access main memory di
rectly. You may need to read the chapter several times. However, perseverance
pays off. When you master Chapter 11, you'll have learned an essential part of
c++ programming.

• Chapter 12: Chapter 12 pulls together everything you've read about to this point.
It presents a long program that demonstrates all the concepts covered in the first
part of the book.

After reading through and understanding Chapter 12, you will have mastered the
basics of C++ programming. This is another point at which you will probably want
to stop and make certain that you are comfortable with everything you've learned. In
fact, you may want to spend some time practicing your programming before moving
on to the remainder of the book.

The remaining five chapters of the book cover more advanced material that can
make your programs more efficient:

• Chapter 13: In this chapter you'll learn how to give operators (for example, the
addition operator, +) more than one meaning. The material in this chapter is a bit
tricky, so you should work all three programming challenges at the end of the
chapter for practice. If you find this chapter a bit daunting, you can skip it. How
ever, the concepts developed in this chapter are used in sample programs in the
rest of the book.

• Chapter 14: Chapter 14 takes another look at arrays, to which you were first in
troduced in Chapter 9. In many ways, this material is easier than Chapter 13. If

How to Use This Book xix

you're comfortable with everything up through Chapter 12, this chapter won't be
difficult.

• Chapter 15: In this chapter you'll learn a technique for dealing with multiple ob
jects by chaining them together in a list. Although this is a different way oflook
ing at objects, it doesn't require any new language elements. However, you
should be familiar with Chapter 14 before you tackle Chapter 15.

• Chapter 16: This chapter presents the final piece of the object-oriented model (in
heritance). The topic isn't particularly difficult, but it does use concepts from
Chapters 14 and 15.

• Chapter 17: This final chapter provides an overview of Macintosh ToolBox pro
gramming. You should read through it to find out what ~omes next in your pro
gramming education. At the very end you'll find a bibliography of books that can
take you beyond what you've learned in this one.

FOR READERS WHO ARE FLUENT IN A LANGUAGE

OTHER THAN C++

If you are fluent in a language such as Pascal, Modula-2, C, structured BASIC, or
COBOL, you will probably use the chapters in this book in the following way:

• Chapter 1: Skim this chapter to be certain that you are familiar with the program
ming foundation material covered. Read in depth sections that are new to you.

• Chapter 2: This chapter introduces the concepts of object-oriented programming.
If you've never worked in an object-oriented environment before, you should
read and study the chapter in depth.

• Chapter 3: This chapter provides an overview of the Code Warrior programming
environment. If you are new to Code Warrior, you should work through the chap
ter, performing the hands-on exercises in the chapter.

• Chapter 4: This chapter introduces C++ variables and functions in the context of
classes. If you've never programmed in an object-oriented language, you should
pay special attention to the way in which classes are declared. You should also fo
cus on the C++ syntax for declaring variables (it's different from just about every
other language except C) and the syntax for function prototypes.

• Chapter 5: C++ supports several types of 1/0, the easiest of which to use is
stream I/ 0. Because stream 1/0 isn't widely used by other languages, you should
work through this chapter thoroughly, delving into both screen and keyboard
I/0, as well as file I/O.

xx Pref ace

• Chapter 6: This chapter covers C++ arithmetic. You can skim most of the mate
rial, but you should pay attention to the C++ arithmetic operators, some of
which are different from those found in other languages. Pay special attention to
the sections on the increment and decrement operators, typecasting, and math li
brary functions.

• Chapter 7: This chapter covers i f I e 1 s e and s w i t ch (case) constructs. You
should skim the chapter to discover the c++ syntax for these language elements.
You should also focus on the ? operator (a shorthand for i f I e 1 s e unique to C
and C++) and on verifying file operations.

• Chapter 8: This chapter covers iteration. You should skim it to discover the C++
syntax for w h i 1 e and for loops.

• Chapter 9: Chapter 9 covers both one- and two-dimensional arrays. If you are
comfortable with arrays, skim this chapter to discover the C++ syntax. If arrays
give you problems, you may want to read this chapter in more depth.

• Chapter 10: Chapter 10 deals with strings. Unless you are fluent in C, you should
pay special attention to this chapter. C++ handles strings differently from every
language except C, and insensitivity to these differences can have unwanted ef
fects on Macintosh main memory while your program is running.

• Chapter 11: This chapter covers pointers. You can't do anything sophisticated in
C++ without using pointers. If you're fluent in C, you can skim the first major
sections of this chapter ("Pointer Variables" and "Pointers and Parameter Pass
ing''). However, the rest of the chapter contains material unique to C++ and
should be read carefully. If you're experience is in a language other than C, you
should study this chapter carefully.

• Chapter 12: Chapter 12 provides a summary of the preceding 11 chapters. In it you
will find a long program that uses all the concepts discussed so far. Before pro
ceeding, skim the chapter and read through the source code, just to make sure
that you're comfortable with the structure of an object-oriented program and
with c++ syntax.

The remainder of the book covers more advanced material, some of which is
unique to C++ and some of which provides a new twist on old concepts:

• Chapter 13: This chapter presents a way to give operators (the assignment opera
tor, arithmetic operator, and so on) new meanings. Known as operator overload
ing, it's one of the trickiest parts of C++. You'll want to work through this
chapter carefully.

• Chapter 14: In this chapter you'll read about the "object-oriented" way of han
dling arrays. It's not difficult, but it is important nonetheless because it provides
an introduction to object-oriented data structures. Even if you've worked with

What You Need to Know xxi

data structures in another language, you'll want to pay special attention to this
chapter. The object-oriented way is considerably different from the way arrays
are handled in structured languages.

• Chapter 15: This chapter extends the coverage of object-oriented data structures
by looking at linked lists. Again, the material isn't particularly difficult but does
give you added insight into how object-oriented programs are constructed.

• Chapter 16: The final piece to the object-oriented model is inheritance, which is
covered in this chapter. You'll find that the toughest part of inheritance is recog
nizing when inheritance is appropriate and when it isn't. However, using inher
itance where applicable can greatly simplify your programming tasks and clarify
the organization of your program. You should therefore study this chapter in
some detail.

• Chapter 17: Chapter 17 provides a springboard for further study of Macintosh pro
gramming. It discusses the structure of Macintosh ToolBox programs and pre
sents some sample ToolBox access so that you can get a flavor for what is
involved in supporting the Macintosh user interface. The chapter concludes with
a bibliography to help you extend your Macintosh programming knowledge. You
should read through this chapter. Ideally, you'll be excited enough when you fin
ish to pick up one of those books that teaches ToolBox programming so that you
can write sophisticated, user-friendly Macintosh applications.

What You Need to Know

This book assumes that you have a good working knowledge of the Macintosh and its
operating system. You should be familiar with using the Macintosh user interface
(opening, closing, and copying files, working with windows, using menus, and so
on). You should also be comfortable with using a text editor (for example, Simple
Text or TeachText) or a word processor. In other words, you should consider youself
a knowledgeable user. However, you don't need to have any background in computer
programming.

xx ii Pref ace

About the CD·ROM

The CD-ROM that accompanies this book contains a fully functional copy of
CodeWarrior C++. That copy, however, is limited in a significant way: It will compile
and run only the projects that are on the CD-ROM. You will therefore find two types
of projects. The first type includes all the sample code from the book. You will be
using those projects and their source code files for the book's programming chal
lenges.

The second type of projects are two "blank" projects. In other words, empty files
have been added to the projects so that you can add your own code to those files. The
first blank project is for use in the exercises in Chapter 3. The second is for you to use
to create your own programs from scratch. Because each blank project has only two
source code files (one for the main program and one for class functions), they are
suitable only for very small programs that you can use to practice.

Acknowledgments

No book of this kind springs from just one person. It wouldn't have happened with
out the help of some very great folks at AP Professional and Metrowerks. I would
therefore like to take some space to thank them properly:

• Chuck Glaser, Executive Editor at AP Professional, who has seen this project all
the way through.

• David Hannon, Editorial Assistant at AP Professional, who keeps everything run
ning smoothly.

• Mike Williams, Production Editor at AP Professional, who shepherded the book
into print.

• Evelyn Pyle, the copyeditor.
• Jean Belanger, Greg Galanos, and the rest of the Metrowerks team.
• Carole McClendon, my agent, who knows how to find great people for me to

work with.

JLH

xxiii

Some Basic
Concepts

CHAPTER

Regardless of the language in which you are programming, there are some underly
ing concepts that are common to all types of programming. This chapter looks at a
variety of programming fundamentals, including a description of exactly what a pro
gram is, how it is prepared, the impact of the type of microprocessor on program
ming, storing and measuring things using the binary numbering system, some basic
operations on binary numbers, and how a computer organizes its main memory. If
these topics seem somewhat unrelated, don't worry-you'll use the knowledge you
gain here over and over again as you work through this book.

The Anatomy of a Program

A computer program is a series of detailed steps that a computer follows. In fact, a
computer without programs is nothing but an expensive paperweight; it can't do
anything unless a program gives it the proper instructions. These instructions are

1

2 Chapter 1 • Some Basic Concepts

drawn from the computer's instruction set, the native language that the microproces
sor can understand. Each type of microprocessor has its own instruction set. Of par
ticular concern to the Macintosh programmer is the fact that the instruction set for
680x0 (the microprocessor family found in Macintoshes other than the Power Macs)
is different from that of the PowerPC (found in Power Macs). This means that with
out special help, a program prepared for one type of microprocessor won't run on a
computer with a different type of microprocessor.

NOTE
A PowerMac is able to execute 680XO programs by emulating the 680x0 instruction set.
The 680x0 emulator, which is in the PowerMac's ROM, intercepts 680XO instructions,
translates them into the equivalent PowerPC instruction, and then passes them to the
PowerMac's CPU for execution. SoftPC and SoftWindows, which allow Windows and
MS-DOS programs to run on Macintoshes, work in the same wa~ by translating
instructions originally in the language of one of Intel's x86 CPU family into Macintosh
instructions (either 6BOXO or PowerPC, whichever is appropriate for the computer).

A microprocessor's instruction set is coded in binary (base 2) as a sequence of Os
and ls. Each instruction has its own code that the computer can understand without
any further translation. Programs in this form are said to be in machine language or
o"bject code. Unfortunately, it's difficult for humans to write programs using what
appear to us as meaningless sequences of binary digits.

People therefore write programs using languages that are more understandable.
The first step above machine language is assembly language, a type of programming
language in which each binary instruction code is replaced by a two- to five-letter
mnemonic code. For example, an instruction to move a piece of data from one place
to another might be represented by MOV. A good assembly language program runs
very fast and makes efficient use of main memory. However, to program in assembly
language you need to be familiar with the internals of a computer's CPU and the spe
cific actions of each instruction in the CPU's instruction set. In addition, an assembly
language program can be used only on the microprocessor for which it was written.
If you want to write programs for more than one type of CPU, you need to learn a
separate assembly language for each one.

Early in the history of computing, programmers realized that they needed pro
gramming languages that were less closely related to the type of CPU. The group of
languages that arose from that need were the high-level languages, languages that are
more English-like than assembly language and somewhat independent of the type of
computer for which a program is written. Among the first high-level languages were
FORTRAN (good for mathematical and scientific programming) and COBOL (used
primarily for business programming). Also in that category are BASIC (used

The Anatomy of a Program 3

primarily for amateur programming efforts but currently making a comeback in
business), Pascal (used for teaching programming and for a lot of Macintosh pro
gramming), and C and C++ (used widely for commercial software development).

LANGUAGE TRANSLATION

The problem with using assembly language or a high-level language is that a micro
processor can't understand the program unless it is first translated into machine lan
guage. The development of assembly language and high-level languages therefore
also required the development of programs that could perform the required transla
tions. Assembly language programs are translated by assemblers; high-level language
programs are translated by interpreters or compilers.

An interpreter, which translates a program line by line as the program is being
run, is usually found with the BASIC programming language. Most other high-level
languages (and some versions of BASIC) are translated by compilers, which perform
their translation before the program is run. Compiled programs run faster than inter
preted programs because the computer doesn't need to spend time performing lan
guage translation when the program is running.

Because a compiler generates machine language, it is specific to one microproces
sor. For example, it requires different compilers to generate both 680x0 and PowerPC
machine language. However, you do not necessarily need to have both types of com
puters to create both types of programs. Programming environments like Code War
rior provide cross-compilers that generate both 680x0 and PowerPC output on a single
Macintosh, regardless of the type of CPU on which the programming is performed.
In practical terms this means that you can write and test your Macintosh program on
one type of Macintosh and, when the program is complete, cross-compile it for the
other platform without needing access to another computer.

In most programming environments you use a text editor to write a program. The
file containing the program (the source code) is submitted to the assembler or com
piler for translation. The language translator scans the source file for errors in the
structure of the language statements (syntax errors) and reports the errors it finds.

A program can't be run until it assembles or compiles without error. However, it is
important to recognize that just because a program passes the language translator
without a problem, the program doesn't necessarily work properly. As you will dis
cover as you work through this book, the most significant program errors are logical
errors, errors in the way in which you have given the computer instructions.

4

LINKING

Chapter 1 • Some Basic Concepts

In almost every case, the object code produced by compiling a single source code file
isn't a program that can be run. Unless a program is very small, the source code is
usually stored in several files. In addition, the source code that you write isn't
enough; some parts are missing. These parts are found in libraries, collections of pre
written object code that you can use. Libraries contain a wealth of useful programs,
including code to perform I/ 0, perform mathematical functions (for example, taking
a square root), manipulate strings of text, and support the Macintosh user interface.
Throughout this book you will be introduced to the contents of a number of librar
ies, some of which are standard with virtually every C++ compiler and others that
are specific to Code Warrior.

The step that combines your object code modules with the libraries you have
used, producing an executable application, is known as linking. Although some pro
gram development environments require separate compilation and linking steps,
CodeWarrior automates the process for you. To manage the process, you create a
project that tells CodeWarrior which files should be linked together. As an example,
consider Figure 1.1. The names of the libraries used by the program appear in bold
face; the source code file names are in plain text. This particular project is used on a
PowerPC; the libraries used in a 680x0 project are somewhat different.

Figure 1.1 A CodeWarrior project window

Libraries
(in boldface)

Source code
(in plain text)

Checkbook PPC

9 fflo(s) 200IC 191(

When you give the command to run your program, Code Warrior compiles all
source code files in the project that have been modified since they were last com
piled. If the compilation is successful (no errors were detected), CodeWarrior then
links all files in the project.

Introducing Binary Numbers 5

Errors can occur during linking. If your program has made reference to code con
tained in a library and the library isn't part of the project, linking will be unsuccess
ful. Figuring out which library to add can sometimes be a bit tricky, because
occasionally the missing library isn't used by your program directly but by one of the
other libraries used by your program. This book will help you avoid such problems
by specifying exactly which libraries you will need to use.

Introducing Binary Numbers

Although you certainly don't have to be a math whiz to write great computer pro
grams, you can avoid some frustrating errors in your programs if you understand
something about the binary numbering system and how it's used by a computer.
Most of us were introduced to alternative base number systems in grade school.
However, like any other math concept, it's one of those things you forget quickly if
you don't use it every day. This section therefore presents a review of binary num
bers in light of their application to computer programming.

Binary, like the base 10 numbering system we use every day, is a place value sys
tem. Each position in a binary number presents the value of the digit occupying that
position multiplied by a power of 2. To make this a bit clearer, let's first look at the
base 10 number 256:

This equation works correctly when we realize that any number raised to the 0
power is 1 and that any number raised to the 1 power is the number itself.

A binary number, which uses only the digits 0 and 1 (each known as a bit), can be
written in the same way:

256 = (1 x 28) + (0 x 27) + (0 x 26) + (0 x 25) + (0 x 24) +
(0 x 23) + (0 x 22) + (0 x 21) + (0 x 2°i

The key to understanding the decimal equivalent of a binary number is knowing
powers of 2. Then just add up the value of those places that contain a 1. (Zero times
any number is zero.) In Table 1.1 you can see that the powers of 2 are generated by
simply multiplying the value of the preceding power by 2.

One of the most common things you will need to do with binary when you are
programming is figure out the maximum value that can be stored in a given number

6 Chapter 1 • Some Basic Concepts

Table 1.1 Some useful powers of 2

20 1 230 1,073,741,824
zt 2 231 2,147,483,648
22 4 232 4,294,967 ,296
23 8
z4 16
2s 32
z6 64
27 128
2s 256
z9 512
210 1,024
211 2,048
212 4,096
213 8,192
2 14 16,384
21s 32,768
216 65,536
217 131,072
21s 262,144
219 524,288
220 1,048,576

of bits. For example, assume that you need to know the maximum value that can be
stored in seven bits. That is equivalent to the following:

Adding up the place values gives you:

64 + 32 + 16 + 8 + 4 + 2 + 1 = 127

Notice that this value (127) is one less than the value of the next highest power of 2
(128, or 27). In every case, if n represents some number of bits (assuming the bits are

Binary and Data Storage 7

numbered beginning with 0), the maximum value that can be stored in those n bits is
zn+l -1.

Binary and Data Storage

A computer uses the binary numbering system for just about everything, including
organizing main memory; storing characters, and storing numbers. Understanding
how binary is used in each of these situations will help you become a successful pro
grammer.

ORGANIZING AND ACCESSING MAIN MEMORY

As you have read, a program must be in main memory before it can run. While it is
running, a program moves instructions and data between the CPU and main mem
ory. In addition, data are written from main memory to external devices (for exam
ple, disk drives, tape drives, and printers) and read from external devices into main
memory (for example, the keyboard, disk drives, and tape drives).

NOTE

The CPU may or may not play a direct role in II 0 operations. If you have a PowerMac,
a Mac Ilfx, or any other Macintosh equipped with a Direct Memory Access (DMA)
expansion board, your Macintosh can transfer data directly to and from memory. All
the CPU needs to do is to give the command to start the transfer. However, other Macin
toshes must transfer all data directly to the CPU, from where it is then transferred to
main memory.

A computer's main memory is organized into groups of eight bits, known as a
byte. The bits in a byte are numbered from right to left-beginning with 0-so that
each byte contains bits O through 7, as in Figure 1.2.

Figure 1.2 Numbering the bits in a byte

1 0 0 1 1 1 0 0
Bit number: 7 6 5 4 3 2 0

8 Chapter 1 • Some Basic Concepts

Because a computer's memory is made up of a large quantity of bytes, it's conve
nient to speak about thousands of bytes (kilobytes, or K), millions of bytes (megabytes,
or M, Mb, or meg), and billions of bytes <.gigabytes, or G or Gb). To be completely
accurate, a kilobyte is 210 (1024) bytes, a megabyte 220 (1,048,576) bytes, and a
gigabyte 230 (1,073,741,824) bytes. The next highest grouping, which is bound to con
front us sooner rather than later as storage capacities continue to grow, is 240

(1,099,511,627,776) bytes-a terabyte.
Each byte in main memory is numbered to identify it. This number, a byte's

address, is used by a program to reference the storage location and its contents. A
program can therefore use main memory to store temporary data that are used while
the program is running. However, this doesn't mean that you need to write main
memory addresses as part of a program. In fact, doing so wouldn't be very practical.

A Macintosh running System 7.x (or System 6.x with MultiFinder) can have many
programs in main memory at the same time. This means that when a program is run,
there is no guarantee that it is given access to the same range of main memory
addresses it used during a previous run. If the program references specific addresses,
they might well be in use by another program. Writing to those addresses would dis
rupt the other program. As a programmer, you therefore can't predict exactly what
addresses your program will use. In addition, it's difficult for a human programmer
to specify addresses in binary.

High-level programming languages handle the memory addressing problem by
using two related strategies. First, a programmer doesn't need to work with binary
addresses at all, but instead assigns a word to each storage location to be used. Such
labeled storage locations are called variables. When the program is assigned, the com
piler assigns a binary address to each variable.

The second part of the solution deals with which addresses the compiler uses.
Rather than using specific addresses, the compiler generates address that are relative
to the start of the program. In other words, a storage location is identified by the
number of bytes it is displaced from the beginning of the program. Then, when the
program is run, the CPU adds each relative address to the address where the pro
gram begins to generate each complete address as needed.

POINTERS

Although a programmer doesn't need to work with binary addresses directly, there
are circumstances under which it is useful to refer to the address where data are
stored. AC++ program does this with a pointer, the address at which some form of
data storage begins in main memory. There are two primary ways to get a pointer.
The first is to use one of the features of C++ that produce a pointer as a result. The

Binary and Data Storage 9

second is to ask C++ for the address assigned to a variable. In either case, the pointer
can be saved in a variable set aside for that purpose. Therefore even though your pro
gram is using main memory addresses, you never have to write the binary as part of
your program.

Pointers and the addresses of variables are essential tools for C++ programs. You
will therefore find a great deal about using them throughout this book, beginning
with the discussion of arrays in Chapter 11.

VARIABLES AND DATA STORAGE

When you use a variable to set aside storage space, you specify the type of data to be
stored in the variable. Some types of data, such as individual characters, take up one
byte. Other types of data, such as numbers, require more than one byte.

Storing Characters
A computer really doesn't understand characters (letters, numbers, punctuation
marks, and so on). In fact, because everything in a computer must be represented in
binary, the only way to represent characters is to give each character a code. The
most commonly used character coding scheme is the American Standard Code for Infor
mation Interchange, or more familiarly, ASCII (pronounced "ass-key").

The original ASCII coding scheme used seven bits for each character. Unfortu
nately that provides only 128 distinct codes (127 codes consisting of Os and ls and the
code 0000000). The Macintosh, with its special characters, such as 0 , n, and e, needs
many more codes. The Macintosh therefore uses an extended eight-bit ASCII that
provides 256 codes (255 codes consisting of Os and ls and the code 00000000).

The ASCII codes for the letters and numbers in a typical Macintosh font can be
found in Table 1.2. There are two important things to notice about these codes. First,
look at the digits O through 9: Their ASCII codes aren't the same as the values of the
digits. For example, if you translate the ASCII code for 1 (0011 0001) into decimal,
you get 31 rather than 1. If you attempt to use this in an arithmetic operation, you'll
get an inaccurate result because the computer will interpret the ASCII code as a
number. In other words, the computer doesn't "understand" the meaning of the digit
when it is stored as an ASCII code. This means that you shouldn't attempt to use a
digit stored in a character storage location in arithmetic operations. Although C++
will usually allow you to do so, the result will be wrong.

The second important feature of ASCII codes is the difference between upper- and
lowercase letters. When a computer compares characters, it does so by evaluating
the numeric equivalence of ASCII codes. This means that as far as a computer is

10 Chapter 1 • Some Basic Concepts

concerned, "a" isn't the same as "A," "b" isn't the same as "B," and so on. You often
will need to take this into account when evaluating the data manipulated by a
program.

Table 1.2 Sample ASCII codes

Character Code Character Code Character Code
0 00110000 A 0100 0001 a 0110 0001

1 00110001 B 0100 0010 b 0110 0010

2 00110010 c 0100 0011 c 0110 0011

3 00110011 D 0100 0100 d 0110 0100

4 00110100 E 0100 0101 e 0110 0101

5 00110101 F 0100 0110 f 0110 0110

6 0011 0110 G 0100 0111 g 0110 0111

7 00110111 H 01001000 h 0110 1000

8 00111000 I 0100 1001 i 01101001

9 00111001 J 0100 1010 j 01101010

K 0100 1011 k 01101011

L 0100 1100 1 01101100

M 0100 1101 m 0110 1101

N 0100 1110 n 0110 1110

0 0100 1111 0 0110 1111
p 0101 0000 p 0111 0000

Q 0101 0001 q 0111 0001

R 01010010 r 0111 0010

s 01010011 s 01110011

T 01010100 t 0111 0100

u 01010101 u 0111 0101

v 01010110 v 0111 0110

w 0101 0111 w 01110111

x 0101 1000 x 01111000
y 01011001 y 01111001

z 01011010 z 01111010

Binary and Hexadecimal 11

Storing Numbers
Numbers are stored in two different general formats: as floating point numbers and
as integers. Floating point numbers are decimal fractions, often multiplied by 10

raised to some power, such as 2.45689 x 1056• The Macintosh uses a special binary for
mat to store floating point numbers. The details of that format are generally not
important for high-level language programmers. Unless you are writing scientific or
high-resolution graphics applications, your programs are unlikely to deal with values
that are too large or too small for the Macintosh's floating point format.

Integers are whole numbers with nothing to the right of the decimal point. Inte
gers are stored in a special binary format known as 2's complement. The leftmost bit in
the storage location is set aside for the sign of the number (O = positive, 1 =negative).
The rest of the bits are used for the magnitude of the number. The possible values are
evenly divided between positive and negative numbers.

By default, the Macintosh uses two bytes (16 bits) for integers, providing a range
from -32,768 to 32,767, a total of 65,536 values. (Don't forget that O is a positive
value.) If a program stores a number in an integer storage location that is either too
small or too large, the computer won't warn you. Instead you'll get an incorrect
value.

If there is any chance that a value won't fit in an integer storage location, you can
use a long integer instead. Although a long integer consumes 32 bits of space, it also
expands the range of possible values to -2,147,483,648 to 2,147,483,647.

Binary and Hexadecimal

The amount of main memory in today's Macintoshes is measured in megabytes.
Each one of those bytes has its own identifying address. However, if we express those
addresses in binary, they will be very, very long and difficult to work with. The solu
tion is a shorthand for binary: hexadecimal (also known as hex), or base 16.

Writing hexadecimal presents a bit of a problem. Each place in a hexadecimal
number must be able to hold a single digit for the values O through 15. Unfortunately
our decimal numbering system has only 1 O digits, not 16. We therefore use the letters
A through F to represent the additional digits needed by hexadecimal (A = 10, B =
11, C = 12, D = 13, E = 14, F = 15). If you see a number with letters in it, it is almost
certainly hexadecimal.

The relationship between binary and hexadecimal appears when you take a look at
some powers of 16 and equivalent powers of 2. Notice in Table 1.3 that each power of
16 is equal to four powers of 2. This means that each hexadecimal digit can take the

12 Chapter 1 • Some Basic Concepts

place of four binary digits, making the hexadecimal representation of a number one
quarter of the size of the binary representation.

Table 1.3 Powers of 16 and equivalent powers of 2

Power of 16 Power of 2 Value

16° 20 1

161 24 16

162 2s 256

163 212 4,096

164 216 65,536

165 2zo 1,048,576

166 224 16,777,216

167 2zs 268,435,456

168 232 4.294,967 ,296

As an example, consider the binary number in Figure 1.3. To convert it to hexadec
imal, you divide the binary number into groups of four, beginning at the right edge of
the number. Then you substitute the equivalent hexadecimal digit for each group of
four binary digits. As you can see, the 28-digit binary number has turned into a
7-digit hexadecimal number, a value that is much easier to handle.

Figure 1.3 Using hexadecimal to Represent a binary number

I I I I I I

1110: 0011 :oooo :1111 :0101 :1010 :0100
E 1 3 1 0 1 F 1 5 1 A 1 4

If a hexadecimal number doesn't contain any letters, it might be difficult to know
whether you are dealing with base 10 or base 16. Most computer software and docu
mentation therefore use one of two techniques to identify hexadecimal values. The
first is to place a dollar sign in front of the hex value (for example, $E30F5A4). The
second is to precede the value with the characters Ox (for example, OxE30F5A4).

How a Program Executes 13

You will see this latter notation used in Code Warrior's debugger to indicate the loca
tion in main memory where some types of data are stored.

How a Program Executes

A computer is really a very single-minded piece of equipment. Unless it's given very
specific instructions, it can't do anything. Even when it is given instructions, it will
do exactly what it's told, even if what the program tells it to do isn't exactly what the
programmer had in mind.

When you double-dick on a program icon to launch the program, the Macintosh
copies the program into main memory, allocates space in main memory for the pro
gram's variables, and then begins execution with the first statement in the program.
The program executes program statements in order, one after the other, until it
encounters a statement that tells it to do otherwise.

There are three basic ways in which a program can change the order of program
statement execution:

• Tell the computer to repeat a series of actions for a specified number of times or
until some condition is met. This type of program logic is covered in depth in
Chapters.

• Tell the computer to go directly to another part of the program and begin execut
ing statements at that point. There are many circumstances under which this oc
curs. You will be introduced to them throughout this book.

• Tell the computer to choose between two or more sets of alternative actions,
based on some logical criteria. This type of program logic is covered in depth in
Chapter7.

The statements you use to give a computer these types of instructions make up the
structured portion of C++. The way in which you organize the data and the actions
the data know how to perform make up the object-oriented portion of C++. Because
you need to use the structured portion to make the object-oriented portion work,
you will be learning both types of programming throughout this book.

CHAPTER

Introducing OOP

The most difficult part of writing a program is developing the logic of the program.
(The syntax of a specific programming language is the easy part; you can always look
up syntax details in a manual if you forget.) The reason is that a program must give
rather specific instructions to a computer, such as "add these two numbers" or "ask
the user to enter a number." These instructions must be assembled in such a way that
the computer encounters them in the correct order to produce a working program.
There are several general ways to arrange the logical structure of a program; object
oriented programming (OOP) is a method that is currently very widely used.

c++ is a programming language that lets you write object-oriented programs.
This chapter looks at exactly what that means. You will be introduced to the basic
building blocks of an object-oriented program and how those elements work
together to produce a complete application. It will be your first look at putting
together the logic of a computer program.

15

16 Chapter 2 • Introducing OOP

WhyOOP?

In the past few years there has been a significant migration from older high-level pro
gramming languages, such as COBOL, Pascal, and C, to object-oriented languages.
Why has this occurred? Why should you bother to learn an object-oriented language
like C++ rather than Pascal or C?

There are several answers to both of these questions, which together have pro
vided compelling reasons for software developers to invest in object-oriented tech
nologies. Object-oriented programming brings the following advantages:

• Object-oriented programs are easier to write because the logic of the program is
encapsulated into small modules that interact with one another in a consistent
manner.

• Object-oriented programs are easier to modify because the structure of the pro
gram is easier to understand, even if a programmer hasn't looked at a program for
months.

• Object-oriented programs make it easier to use the same module of code in many
programs, saving programming time.

• Object-oriented programs simplify and bring consistency to the way in which
programmers interact with program elements, speeding program development
time.

As a beginning programmer, you will find learning object-oriented programming
no more difficult than learning to use one of the older high-level languages. At the
same time, it is also easier to learn object-oriented programming from the beginning,
rather than first learning other ways of structuring program logic and then having to
relearn the OOP. This is why you are reading about the concepts of object-oriented
programming first, rather than jumping right into writing code.

The type of program logic used by such languages as COBOL, Pascal, and C is
known as structured programming. One of the ironies of C++ is that although the
overall structure of the program is object-oriented, the details of program behavior
have to be written using structured programming logic. This means that you will be
learning structured programming techniques throughout this book, along with the
object-oriented concepts.

NOTE
The syntax of the structured programming elements of C++ is very similar to C syn
tax, and C++ programs can use many of the elements of a C environment. However,
C ++ is a distinct language from C rather than simply a superset of the older language.

Classes 17

Classes

The fundamental building block in an object-oriented program is a class. In this sec
tion you will learn about the purpose of classes and how they provide an overall
framework for program logic. Among the examples you'll see will be a first look at
the checkbook management program that we'll be developing throughout this book.

CLASSES AND OBJECTS

A class is a description of an entity that is used by a program. A class might represent
a customer, an order placed by a customer, a game that is being played, a dialog box,
or a menu. A class doesn't need to represent something that has a physical existence;
it represents anything in the programming environment that has properties that
describe it (data).

Once defined, a class provides a template from which a program can create objects,
which are instances of classes that a program manipulates. To make the relationship
between an object and a class a bit clearer, let's consider one of the classes used by
the checkbook program-Account. The Account class has variables to hold data
that describe a checking account, such as the account number, the bank name, and
the current balance. However, the class itself doesn't contain any data, but rather just
the declarations of variables that will hold data. When the program is run, each new
account is created by stamping out an Account object from the Account class and
filling in data for the variables. The program manipulates one Account object for
each account. Although there is only one Account class, there may be many
Account objects.

MEMBER FUNCTIONS

Along with variables that contain the data that describe an object, a class also has dec
larations of the operations that an object knows how to perform. For example, a
menu object knows how to draw itself when a user presses the mouse button with
the mouse pointer on the menu's title in the title bar. The menu object also knows
how to highlight menu options as the mouse pointer moves down the menu and how
to report which option is chosen back to the program using the menu. These opera
tions are sometimes called methods, but with C++ are more commonly known as
member functions.

18 Chapter 2 • Introducing OOP

AC++ .function is a self-contained block of program code. Member functions are
therefore functions that are declared as part of a class. In fact, a C++ program is
nothing more than a collection of functions, some of which are member functions
and others that aren't. Every C++ program must include a function named main.
The program begins execution with this function. However, the remaining functions
that make up a C++ program are under the control of the programmer.

The Account class's member functions include the following:

• A function to place data into variables when a new account is created (a construc
tor)

. • A function to read account data from a file into main memory

• A function to reconcile a checking account

• Functions to search the transactions (checks, deposits, and so on) made against an
account, using a check number or the transaction date and payee/ source

• A function to display an account's transactions

Some member functions are obvious to a programmer when the class is written ini
tially. It is not unusual, however, for member functions to be added to a class declara
tion as a program is under development, as the programmer discovers during
program development that additional member functions are required.

COMMUN/CA TING WITH OBJECTS

A function communicates with an object by passing the object a message. The mes
sage tells the object which member function it should execute and includes any data
the object needs. For example, if the checkbook program sends an Account object a
message to find a specific transaction, the program must also include data to identify
the transaction. If the transaction is a check, the program can supply a check num
ber; if the transaction is other than a check, such as a deposit, the program can
supply the date and source of the deposit.

When any function sends a message to a member function, we say that the func
tion calls the member function. A function can also call a function that isn't a mem
ber function. The function sending the message is the calling function. A calling
function can be another member function or a function that isn't part of a class.

Classes 19

INFORMATION HIDING

The details of how a member function does its job and the specific variables that
make up a class are usually hidden from functions that call the member function.
The calling function knows only the name of the object, the name of the member
function, and how data should be sent to the member function. The combination of
a function's name and data requirements are known as the function's signature.

The idea that all that is publicly known about a class is the way in which its mem
ber functions are called is known as information hiding, a principle that brings with it
one major benefit: As long as a member function's signature remains the same, a pro
grammer can change a class's variables and the details of how the function operates
without having to change any programs that use the function. This can greatly sim
plify program modification. It means that less code will need to be changed and that
there are fewer chances for errors caused by changes that weren't propagated
through an entire program.

FUNCTION OVERLOADING

To help simplify the interface that a class's member functions provide to a program
mer, object-oriented languages support function overloading, which allows two or
more member functions in the same class to have the same name, as long as they
have different signatures. This makes programming easier because functions that
perform the same action on different types of data can have the same name.

You might, for example, have member functions that are designed to search
through all objects of the same class. One f i n d function might search based on an
account number; the data used as input to the function would be the account num
ber for which you were searching. A second f i n d function might search on a cus
tomer's name; the data used as input to the function would therefore be the
customer's name. The two f i n d functions have different signatures because one
expects a number and the other, text. When the program is compiled, the compiler
identifies the correct member function by matching function signatures, not just
function names.

20 Chapter 2 • Introducing OOP

Inheritance

The classes in an object-oriented program don't necessarily exist as unrelated enti
ties. They can share variables and member functions in a hierarchical structure. To
get a feeling for how objects can be related, assume that you will be writing a pro
gram that stores and retrieves data about a variety of motor vehicles that are pur
chased by individuals. Such vehicles include motorcycles, cars, and small trucks. (The
program doesn't deal with trucks used in business.)

As you think about the variables that might be used to describe the three types of
motor vehicles, you realize that there are some pieces of data that apply to only one
type of vehicle. For example, a maximum payload describes only a truck, and side
cars are available only on motorcycles. On the other hand, the number of passengers
a vehicle can carry, the manufacturer of a vehicle, and the name of a vehicle are vari
ables that can be used to describe any of these vehicles.

Rather than create three classes--one for motorcycles, one for cars, and one for
trucks-that contain many duplicated variables, an object-oriented program can use
inheritance to share variables the classes have in common. To get a feeling for how
this works, take a look at Figure 2.1. Each rectangle represents a class. Next to each
class is a list of variables that describe objects created from that class.

Figure 2.1 A class hierarchy

Sidecar?

Motorcycle

Vehicle name
....-------. Manufacturer

#wheels

Motor Vehicle e:/.f~~~gers
Transmission type

'-----.---~ ~~n~:irlal
BodYcolor

I doors
....----~-~ I drive wheels

Car

Enclosed Vehicle
AC?
Airbags?
Antilock brakes?

'------.---~ ~~~

Trunk space

Truck
Maximum payload
Maximum tow weight

If you consider each class in isolation, no single class is complete. For example, the
Motor cy cl e class seems to have only one variable (Si de ca r?, which indicates

Inheritance 21

whether the motorcycle has a side car). However, the Mo to rcyc le class also has all
the variables that are defined for the Mot o r Ve h i c l e class, the class above in a hier
archy of classes. We say that the Motor c y cl e class inherits the variables from the
Motor Vehicle class. By the same token, the Enclosed Vehicle class inherits all
the variables of the Mot o r Ve h i c l e class; the Ca r and T r u c k classes each inherit all
the variables of the En c l o s e d Ve h i c l e class, which in turn also gives them all the
variables of the Mot o r Ve h i c l e class.

Each class that inherits from another class is known as a derived class; the class
from which it is derived is a base class. The Mot o r Ve h i cl e class is only a base class;
Mo to rcyc le, Car, and True k are only derived classes. However, Enclosed Veh i -
cl e is both a base class and a derived class, depending on whether you are viewing it
from the Mot o r Ve h i c l e class's perspective or from the Ca r and Tr u c k classes'
perspectives.

As well as inheriting variables, classes can inherit member functions. Often a base
class contains just a declaration of the message that needs to be sent to a member
function when the function is used. The program code that defines how the member
function operates appears in the derived classes. This feature of object-oriented pro
grams is known as polymorphism. It permits different classes to respond to the same
message in a way that is appropriate to the specific class.

NOTE
Polymorphism can be easy to confuse with overloading. Keep in mind that overloading
refers to member .functions in the same class with the same name but different signa
tures. Polymorphism refers to member .functions in different classes with the same sig
nature.

If the class hierarchy in Figure 2.1 were to be used as the basis for a program, it is
likely that objects would be created only from the Motorcycle, Car, and Truck
classes. Whether it is possible to create objects from the Motor Ve hi cl e class and
the Encl o s e d Ve h i cl e class depends on the way in which the classes are declared.

Inheritance brings several benefits to a programmer:

• It avoids duplicating variables between classes.
• It clarifies the logic of a program by formalizing the relationships between classes.
• Through polymorphism, it helps provide a consistent function interface to the

programmer.

The most difficult part of using inheritance is deciding under which circumstances
inheritance is appropriate. You will therefore learn a great deal more about it in
Chapter 16.

CHAPTER

Using CodeWarrior

Metrowerks's CodeWarrior provides an easy-to-use environment for developing
Macintosh applications. In this chapter you will be introduced to how you can use
that environment to create source code files and projects, run a program, and work
with a debugger to help you identify logical errors. To begin, you will get an over
view of some of the issues surrounding the structure of a C++ program.

Putting Together a C++
Program

Any C++ program is a collection of functions. Some of these functions you will
write yourself (both class member functions and program functions that aren't part
of a class). Others will have been written by the developer of your compiler and pro
vided in libraries, to which you were introduced in Chapter 1. Although you always

23

24 Chapter 3 • Using CodeWarrior

have great discretion in naming and choosing functions, there are rules that govern
the way in which you put together a program.

THE MAIN FUNCTION AND FUNCTION STRUCTURE

As you have just read, a C++ program is nothing more than a collection of functions.
That being the case, the computer needs to know exactly which function represents
the starting point of the program. To make it easy, every C++ program must contain
a function named main. Program execution always begins with this function.

Like any other C++ function, the main function begins with its function signa
ture; the body of the function is surrounded by braces:

void main ()
{

body of function goes here

The v o i d that precedes the function's name is the data type of the value returned by
the function. All C++ functions must have a return value. However, if the function
doesn't send anything back to the function that called it, the function can use v o i d
as a placeholder to indicate no value.

The parentheses following the name of the function are used to hold the data that
are sent into the function. These data are known as a function's formal parameters.
Because the ma i n program has no formal parameters, the parentheses have no con
tents.

NOTE
It is possible to have input data to a main function. However, in the Macintosh environ
ment that is very rare. Sending data to a program as it is launched is much more com
mon in command-line environments, such as the UNIX or MS-DOS operating systems.

FUNCTION PROTOTYPES AND HEADER FILES

For the C++ compiler to accept a function, it must first encounter a function proto
type. A function prototype contains just the function's signature; the body of the
function is defined elsewhere. Any time your program calls a function, the compiler

Putting Together a C++ Program 25

verifies that a prototype for that function exists. This is one way the compiler can
ensure that functions are being called correctly.

A prototype has the following general format:

return_da ta_ type funct i on_name (forma l_parameters):

If you look back at the skeleton for the main function in the previous section, you'll
notice that the prototype format is very similar to the first line of a function. The
only difference is that the prototype ends with a semicolon.

Assume, for example, that you want to write a function that sums several values
and then returns the sum to another function. A prototype for the function might be
written as:

float addThemUp (float []);

The fl oat that precedes the function name indicates that the function will be send
ing a floating point value (a value with digits to the right of the decimal point) back
to the calling function. The name of a function is completely arbitrary, but in most
cases it is chosen so that it conveys some information about what the function does.
In this particular example the formal parameter list contains a group of floating point
values. (The [] indicates an array, or list, of values; you will learn about arrays in
Chapter 10.)

Functions from the Macintosh, C, and C++ libraries must have prototypes, just
like any function you write yourself. Library function prototypes are found in header
files, files that typically contain only data definition statements (for example, class
declarations and function prototypes). To gain access to a header file, you use the
compiler directive i n cl u de to merge the contents of header file with your source code
file.

A compiler directive is a command to a compiler that is processed during compila
tion. It isn't executable code; it has no effect on your program once compilation is
finished. To differentiate them from C++ code, compiler directives begin with a
pound sign.

There are two syntax variations of the i n cl u de directive:

#include <header_file_name>

#include "header_file_name"

26 Chapter 3 • Using CodeWarrior

Which variation you use depends on where the header file is stored. Code Warrior,
like most C++ compilers, keeps track of the folders in which it expects to find header
files (the compiler's default access path). If the header file is in the default access path,
you can use the first syntax, surrounding the header file name with < and >. How
ever, if the header file is located elsewhere, you must put the file's path name in dou
ble quotes.

NOTE
The idea of a path name is foreign to most Macintosh users because the Macintosh
automatically searches all mounted disks to find an application that matches a file that
has been double-clicked. However, in programming you often need to spedJY the exact
sequence of folders in which a file is nested. The folders in a Macintosh path name are
separated by colons. For example, a file named sales.cpp stored in a folder named
Programl, which is nested in a folder named C++, which rests on the disk named
Development, has the path name Development:Programl:sales.cpp.

CodeWarrior's default access paths are set in the Access Paths preferences panel.
To get to it, click the Preferences button in the button bar or choose Preferences
from the bottom of the Edit menu. As you can see in Figure 3.1, the Preferences win
dow has a scrolling list of icon switches at the left, each of which displays a different
preferences panel. Scroll to the bottom of the list and click on the Access Paths icon.

Figure 3.1 Setting access paths

Apply to open project • . ' Additional Recess Paths:

D Treat #Include < .. .> as #Include • ... •.

~. ~1 User: « PROJECT FOLDER » ~
~

Linktr ·.I -l! • 111 ... '.·(i' ·"!"·: ., System: b-~~ ..
1d I

.m
PEF ~i!J! D i~

~~ I

..LI
(Rdd Default) (Rdd l [Change) (RemoL1e)

(Factory Settings} (Reuert Panel J (Cancel} ((OK ~

The CodeWarrior Environment 27

There are two access paths, one for system files and one for files you create your
self. By default, Code Warrior will search the folder in which your project file is con
tained for header files; it will also search the file in which the compiler is stored. If
you install Code Warrior using the Installer application and always store header files
you write yourself in the same folder as the program's project file, the compiler will
have no trouble locating your header files.

By convention, header file names are given an extension of .h. This makes it easy
to distinguish them from source code files. If, for example, you want to use the IIO
function to which you will be introduced in Chapter 5, you will need to include the
header file iostream.h:

#include <iostream.h>

Notice that there is no semicolon at the end of this statement .. Only C++ statements
require semicolons. Because compiler directives aren't part of the language, but
instead are instructions to the compiler, semicolons aren't needed.

How do you know which header files you need? The documentation of the C and
C++ libraries includes that information. Each function in the libraries is documented
with at least its prototype and the name of the header file in which that prototype
appears. In many cases, the documentation also includes an example of using the
library function.

The CodeWarrior Environment

CodeWarrior is often described as an "integrated" software development environ
ment because it provides a text editor for creating source code files, compilers, and a
debugger (a program that helps you find logic errors in your programs}, all accessible
from within the same application shell.

To launch the integrated development environment, double-click on the MW
CIC++ 68K icon (to generate code for 680x0 Macs) or MW CIC++ PPC icon (to
generate code for PowerMacs). Alternatively, you can double-click on any file that
was created with Code Warrior's text editor.

Once running, Code Warrior displays its button bar directly under the menu bar.
As you can see in Figure 3.2, placing the mouse pointer over a button in the button
bar displays the button's function below the bar. All of the functions in the button
bar are, of course, available from CodeWarrior's menus. However, three of the

28 Chapter 3 • Using CodeWarrior

buttons at the right edge of the bar are particularly useful when you are writing pro
grams. These buttons simplify checking the syntax of a program, creating an
executable application file, and running a program.

Figure 3.2 The CodeWarrior button bar

Compile

\
Make

"
Run

I
l@l •lsezlxJI al~ 1!3lfJl@IJP111Relm.ll©UlililltltH~ll~l •l &liail
Find •..

During the program development process, you will be using primarily the Run
command to compile, link, and execute programs. If you hold down the Option key
when you click the Run button, the program will run through the debugger, giving
you a chance to execute the program one line at a time, as well as to see the values
stored in objects and variables as the program is running.

The Compile command checks the syntax of the files in a project without linking
or running the program. This can be useful when you don't have enough source code
available to test a program but want to catch syntax errors as you work. The Make
command compiles and links, creating an executable application, but doesn't run the
program.

Creating Source Code Files

Code Warrior's text editor is very similar to such editors as TeachText or SimpleText.
You open file, save file, and enter and edit text just as you would with any other text
editor. However, the editor has some additional features that make it particularly
well suited to working with program source code. These features are configured
through two of Code Warrior's preferences panels.

Creating Source Code Files 29

COLOR TEXT

One of the nicest features of Code Warrior's text editor is its use of color. Keywords,
those words that form part of the C++ language and that can't be used for variable
names, appear in one color; comment statements appear in another. The rest of the
text is in a third color. Although this might seem to be trivial, it can help you avoid
some troublesome errors, particularly those that occur when you accidentally use a
keyword as a variable name (confuses the living daylights out of the compiler) or
when you accidentally include executable code in a comment (produces all sorts of
unexpected errors).

Text colors are set in the Editor preferences panel. By default, main text is black,
comments are red, and keywords are blue. To change these colors, double-click on
the color you want to change. A color wheel appears from which you can choose the
new color.

Figure 3.3 Setting Editor preferences

Rpply to Metrowerks defaults.

Proc.ssor

Color Info:------------~
181 Color SyntaH Main TeHt:

Comments:
Keywords:

Custom Keywords:

181 Balance While Typing 181 Dynamic Scroll

Flashing Delay: !DI
Remember:------------~

181 Font Preferences
181 Window Position Rnd Size
181 Selection Position

181 Saue RH Before "Update" 181 Projector Rware

(Factory Settings J [Reuer! Panel J (Cancel) t DK a

AUTOMATIC BALANCING

Throughout a C++ program, you will be grouping parts of your source code with
parentheses () and curly braces { } . Whenever you use an opening parenthesis, you
need to match it with a closing parenthesis somewhere in the program; the same it
true for braces. The Balance While Typing checkbox controls whether the editor
shows you the opening partner for each closing parenthesis or brace you type. The
Flashing Delay value determines how long the opening parenthesis or brace will flash

30 Chapter 3 • Using CodeWarrior

after you type the closing character. Because all parentheses and braces must be bal
anced (one close for every open), this feature can help you see the opening parenthe
sis or brace to which a closing parenthesis or brace applies.

FONT PREFERENCES

The font in which source code appears is controlled by the Font preferences dialog
box (Figure 3.4). It's generally easier to read source code when it appears in a mono
spaced font (a font in which all characters occupy the same width). On the Macintosh
this includes Monaco and Courier. Monaco is the easier of the two to read on the
screen and is therefore usually the font of choice for source code.

Figure 3.4 Setting Font preferences

Apply to Metrowerks defaults.

Font & Size Info:----------~

Font: I Monaco

Size: I 9

181 Auto Indent Tab Size: Iii!

• Proctssor . ' [Factory Settings I [Reuert Panel I [Cancel I n OK I

NOTE
Monaco is a TrueType font. However, if you have Font Substitution turned on in the
Page Setup dialog box when you print a source code file on a PostScript printer, the text
prints in a PostScript font rather than Monaco. To get around this, you can turn off
Font Substitution. Nonetheless, the TrueType version of Monaco that prints looks a bit
different from the bit-mapped version that appears on the screen.

Creating Source Code Files 31

AUTOMATIC INDENTING

Another one of the Code Warrior editor's useful features is automatic indentation. If
Auto Indent is turned on in the Font preferences panel, CodeWarrior "remembers"
the number of times you pressed Tab to indent a line. When you press Return to
move to the next line, the insertion point automatically appears at the starting indent
of the preceding line. You can backspace if necessary to move farther to the left.

Why is this so useful? As you will see throughout this book, one of the ways that
programmers make their source code easier to read is to use indentation to set off
blocks of code that are part of the same logical unit. Automatic indentation simply
means that you don't have to have press the Tab key so often.

Notice also in Figure 3.4 that the Font preferences panel can be used to set the
number of spaces that are to be inserted whenever you press Tab.

EDITOR WINDOW CONTROLS

The three pop-up menus in the lower-left corner of a CodeWarrior editor window
can at times make working with files easier. The rightmost of these three, which
appears in Figure 3.5, controls whether syntax coloring is active (the top option in
the menu) and the type of file. By default, CodeWarrior treats source code files as
Macintosh files. However, if you are importing a file from or exporting a file to either
an MS-DOS or a UNIX environment, use this pop-up menu to let Code Warrior know
how to treat end-of-line and end-of-file markers.

Figure 3.5 Controlling file type and syntax coloring

Im ticket.cpp
•include <iostream.h>
•include <string.h>
•include "ticket.h"

Ticket :: Ticket <>
{

strcpy Cevent...date, "08/05/96");
strcpy (event-ti tie, "Mac11orld Expo">;

void Ticket::print Cint ticket....numb)
~

cout << "**"
cout << " Event: " << evenLtitle << endl;
c << " Date: " << event-.date << endl << endl;
co v Syntax co lodng T i eke t number : " < < t i eke t...numb < < end I < < end I ;

co EOLN Filo:· F1:tr m~1 **"
"' Macintosh

DOS
UNIX

<< end I << end I;

<< endl << endl;

32 Chapter 3 • Using CodeWarrior

The middle pop-up (Figure 3.6) displays a list of all functions that are defined in
the source code file. To move quickly to a function, select its name from the pop-up.
(This comes in particularly handy for large source code files.)

Figure 3.6 Moving directly to a function definition

•include <iostream .h >
•include <string .h>
• include " ticket .h"

Ticket : :Ticket()
{

s trcpy (even t....da te , "08 /05 /95 ") ;
strcpy <event_ti tie, "Macworld Expo");

void Ticket : :print (int tick et...numb)
{

ticlcet.cpp

cout <<
cout <<
cout <<
cout <<
cout <<

"**"
Event: " << event_title << endl;

Date: " << event....date << endl << endl;
T i eke t number : " « t i eke t...numb « end I « end I ;

"**"

I.===' Ticket: :Ticket
11!.l•l--'Ticket :~int ~ l•

<< end I << end I;

<< end l << endl;

I
!Iii!·

+
+ 111

The leftmost pop-up (Figure 3.7) contains a list of header files used by the current
project. Many of the header files declare functions used by the C and C++ libraries;
others are specific to a given application program. You will be using and writing
header files throughout this book.

Working with Projects

A project file provides a way of telling the linker which files should be combined into
an executable application. The first step in creating a new program is therefore to
create a project file.

Working with Projects

Figure 3.7 Accessing header fi les

• include <iostream . h>
• include <string .h>
• include ':J..l"k"t h "

Touch
T~-----~

{ <defines>
<exception>
<fstream>
<ios>

v <iostream>
{ <fostream.h>

...date, "08/05/96") ;
_ti tie, "Macworld Expo") ;

t (int ticke t _numb)

ticlcet.cpp

<istream > **"
<ostream> Event : " < < event_t it I e < < end I ;
<streambuf> Date : " < < even t....da te < < end I < < end I ;

33

+

<< end I << end I;

<string .h > T i eke t number : " « t i eke t...numb « end I « end I ; ,,,,.,

~~:~~:.~, """"""""""""""""""""""""""'.,•**""""""""""""""""""****"*"*" « end I « end I; I
MacHeadersPPC ~----,r.-1========================r-.ii:::+'1
tick•t .h 12 1+111111m::i::::::mmmm:::::m:m:nrni:::mmm:::t:m: : ~::::m:m:mmmm:::m:mnm:rn:mmn:::::::mmmnm:::::n:mnHmHmmm::::: :H+mr+ Vi

PROJECT TEMPLATES

The easiest way to start a new project is to use one of the project templates supplied
with CodeWarrior. These templates already contain the libraries that need to be
linked into a program.

As you can see in Figure 3.8, there are three general types of projects. The first are
"Mac" projects, those that use ToolBox functions. The "PowerPlant" projects are for
use with Code Warrior's PowerPlant, an application framework that can simplify cre
ating Macintosh applications. (To use PowerPlant successfully, you need to first be
familiar with programming using the ToolBox.) The final group of projects includes
those that are written using the ANSI standard version of C or C++.

If you look carefully at the ANSI project template files, you'll notice that there is
just one template for PowerPC C programs (ANSI PPC C) and one for PowerPC C++
programs (ANSI PPC C++). If you are working on a Power Mac, you should use the
latter file whenever you are creating a new ANSI C++ project.

However, the situation for 68K Macintoshes is somewhat more complex. There
are four C project templates and four C++ project templates. The difference in these
projects resides in amount of storage you want allocated for integers and floating
point values. Those projects whose names include 2i use two-byte (16-bit) integers;
those whose names include 4i use four-byte (32-bit integers). As you read in
Chapter 1, the number of bytes allocated to integer storage directly affects the size of

· the value that can be stored in a given storage location. The 32-bit integers take up
more space in RAM, producing a larger program. You must therefore decide whether

34

Figure 3.8 Project stationery

20 items 747.1 MB in disk 269.7 MB a

~ Size

[) About Project Stationery

Qj Mao C app-681(

Qj Mao C app-PPC

Qj Mao C XCMD-68K

Qj Mac C++ app-68K

Qj Mao C++ app-PPC

Qj Mac C++ XCMD-68K

Qj PowerPlant 68K

Qj PowerPlant Pf'C

~ Cl Stationery Support Files
Qj *ANSI 68K (2i) C

Qj *ANSI 68K (2i) C++

Qj *ANS I 68K (2;/F /Bd) C

Qj *ANSI 68K (2i/F /Bd) C++

Qj *ANSI 68K (4i) C

Qj *ANSI 68K (4i) C++

Qj *ANSI 68K (4i/F) C

Qj *ANSI 68K (4i/F) C++

Qj *ANSI PPC C

Qj *ANSI PPC C++

Chapter 3 • Using CodeWarrior

it is more important to save memory or to have more space available for integer
storage.

NOTE

Using two-byte integers doesn't prevent you from obtaining a four-byte integer storage
location. You can always define a "long" integer to double the size of a regular integer.

The projects whose names include Sd indicate the number of bytes you want to
use for the Macintosh's medium-sized floating point storage. (There are three float
ing point formats.) If a program will be using extremely large or small numbers, the
extra space needed for the longer numbers is worth the trade-off in main memory
space.

Projects whose names include F produce programs that take advantage of a float
ing point unit (FPU), circuitry designed to speed operations on floating point num
bers. If you happen to be writing code on or for a 68000, 68020 or 68030 without an
external FPU installed or for a 68LC040 Mac, you should avoid these projects. (The
full 68040 and the PowerPC have their FPUs integrated into the CPU.)

Working with Projects 35

For the purposes of this book, two-byte integers and standard-sized floating point
numbers are sufficient for ANSI 68K projects. However, any of the ANSI C++ project
templates will work. If you want to take advantage of an FPU, be sure to pick one
with an Fin its name.

CREATING A NEW PROJECT

When you begin working on a new program, you will usually create a new project
for that program. Creating a new project means creating the project file, adding the
libraries needed for the program, and adding the source code files used by the pro
gram.

Opening and Saving the Project File
To set up a new project, double-click on the project template that represents the type
of project you want to create. Code Warrior asks you to name the project and then
opens and saves a copy of the project file. (If necessary, the Macintosh launches
CodeWarrior first.) To distinguish project files from other files that make up a pro
gram, project files are often named using the convention program_name :rt, as in
Checkbook :rt. (The :rt symbol is generated by pressing Option-p.)

NOTE

In most cases the easiest way to manage all the files used by a program is to put them
together in their own private folder. Should you choose to do so, you can either create
the folder before you create the project file or use the New Folder button in the Save File
dialog box that appears when you create the new project.

As you can see in Figure 3.9, the new project (in this case, an ANSI C++ PowerPC
project) contains all the libraries needed to run the project, as well as a file named
main.ANSI.cp. By convention, the file that contains a program's main function is
stored in a file whose name begins with main. The ANSI is to remind you of the type
of program; the cp represents the language, C++. (You will also see C++ source code
files using the file name extension cpp.)

To open any source code file in the project, double-click on the file's name in the
project window. The main.ANSI.cp file contains executable code (see Figure 3.10). If
you run it, you will see a Code Warrior SIOUX window containing the text Hello
World. Throughout the history of the C and C++ languages, this has traditionally
been the first program new programmers learn to write.

36 Chapter 3 • Using CodeWarrior

Figure 3.9 A project file created from a template

Figure 3.10 The default main.ANSl.cp file

•~ moln.HNSl.cp ~·
~include <iostream> <r
void main <void)
{

cout « "Hello i.lorld\n";

Line: 1 ~

Adding Files
AC++ program is generally stored in more than one file. There will be at least one
header file containing class definitions, a source code file containing the member
functions for the classes, and the file containing the ma i n function. Large programs
are often split into many files, including one header for each class, one source code
file for each class, and multiple files for functions used by the ma i n function. In addi
tion, if you are writing code for the Macintosh user interface, you may also have
resource files (files that contain definitions of portions of the Macintosh user inter
face). You certainly can't get away with havingjust the main.ANSI.cp file!

Only source code files are added to project files. Header and resource files are used
directly by source code files; they aren't compiled and linked separately. To add a
source code file, first create the file and save it to give it a name. Then, choose Add
Files from the Project menu. The Add Files dialog box (Figure 3 .11) appears.

Make the folder that contains the source code files you want to add the current
folder. Then double-click on each file you want to add; the files are moved from the

Running a Program 37

Figure 3.11 Adding files to a project

IGI Checkbook ..,. I
<11 Checkbook PPC.A = -- (Eject }

[Desktop }

n Add]J

IQj [Add all }
Select flies to add ••• ~ D.
account.cpp l.O.I J
maln.cpp -Fl (Remoue all]

I (Done l
l{jJ (Cancel l

-

Files that can be added
appear here.

Files that have been
selected to be added
appear here.

list at the top left of the dialog box to the list at the bottom left. When all files are in
the lower list, dick the Done button.

NOTE

If you want to add all the files in the current folder, click the Add all button to transfer
them directly to the list at the bottom left of the dialog box.

You can add files to a project at any time. This means that you don't have to be
able to create every source code file a program will use at the time you begin writing
the program.

Running a Program

When you are developing a program, you will run the program repeatedly to see if it
is working the way you intend. The easiest way to do this is to use CodeWarrior's
Run command. However, before you run a program for the first time, you need to
give Code Warrior some information about the nature of the application file you want
to pro<;iuce.

38 Chapter 3 • Using CodeWarrior

SETTING PROJECT PREFERENCES

The Project preferences panel (Figure 3.12) sets three very important characteristics
of the application file that is generated when you run a program.The first is the name
of the file. By default, Code Warrior names an application file Test, followed by exten
sions that indicate the platform and type of project. In most cases, you will want to
replace Test with a more meaningful application name. In Figure 3.12, for example,
the application file produced for the checkbook program will be named Checkbook
PPC.

Figure 3.12 The Project preferences panel

Rpply to open project .

• Project Type: Rpplication ...I
Rpplication Info:

Processor

n File Name I Checkbook PPC

Linker 'SIZE' Flags~ Creator CHBK

n Type RPPL

Preferred Heap Size (k) 384 PEF

a Minimum Heap Size (k) 384

Stack Size (k) 64

II ~ ~ (Factory Settings) (Reuert Panel) (Cancel) OK Access Paths +

The second and third important pieces of information are the file's type and cre
ator. Both are four-character strings that affect the behavior of the application file and
any document files it may create. Any file that can be launched from the Finder by
double-clicking on its icon must have a type of APPL. Code Warrior enters this as the
default file type; you shouldn't change it.

An application's creator string identifies the specific application. When a program
creates a document file, it can use a ToolBox routine to set the document file's

Running a Program 39

creator to match the application's creator. Then double-clicking on the document
file's icon opens the file using the correct application, launching the application if
necessary.

In Figure 3.12 the creator has been set to CHBK as an example. However, you can't
arbitrarily decide on a creator string; it might match the creator used by another
application. Creator strings must therefore be cleared with Apple Developer Ser
vices, which maintains a registry of all creator strings in use.

WORKING WITH THE SIOUX WINDOW

When you are ready to test an ANSI C++ application, choose Run from the Project
menu or click the Run button in the icon bar. Code Warrior compiles all source code
files that have been modified since the last time the program was run and links the
program. Then it draws a SIOUX window and places the two SIOUX menus in the
menu bar (Figure 3.13).

Figure 3.13 The SIOUX execution environment

~ 11.n :.m Edit •
r~New ...

Open ...
Close ...
Saue 3CS

Page Setup
Print ... 3CP

Quit 3€0

RNSI PPC C++ app.out
SIOUX state: application has terminated.

Hello World .Q
-0
111

The top line of the SIOUX window (the "SIOUX state" gives you information
about the application (whether it is running or terminated). The rest of the window
displays the output of the ANSI C++ program. When the program terminates

40 Chapter 3 • Using CodeWarrior

naturally, as it has in Figure 3.13, you are still within the SIOUX environment. To
return to the Code Warrior environment, choose Quit from the File menu or press
~-Q.

NOTE
One of the handiest things about the SIOUX window is that it scrolls. When a program
terminates, the SIOUX window contains a transcript of the entire program run's out
put. You can then scroll to look at the output, save the contents of the window as a text
file, or print the contents of the window.

Creating Your First Program

In this section you will get a chance to create a working program from scratch. The
program-Profiler-asks you for your name, favorite color, and age. It stores that
data in an object and then displays the contents of the object. Just for practice, you
will enter source code, add files to a project, and run the program. To get started,
locate the folder named Profiler (empty) on the CD-ROM that came with this book.
Copy that folder onto your hard disk. Then do the following:

1. If you are working on a PowerPC, double-click on the file Profiler PPC Jt. If you are
working on a 68K Macintosh, double-dick on the file Profiler 68K Jt.

2. Open the file profiler. h. This file will hold the class declaration for the program.
3. Enter the contents of Listing 3.1. Be sure to type all punctuation exactly as it ap

pears in the listing.

Listing 3.1 Header information to type into profiler.h

typedef char string50[51J;

class Profiler
{

I:

private:
string50 name, color;
int age;

public:
Profiler();
void init (string50, string50, int);
void display();

Creating Your First Program 41

4. Save the file.

5. Open the file profiler.cpp. This file will hold the class's member functions.

6. Enter the contents of Listing 3.2. Be sure to type all punctuation exactly as it ap
pears in the listing.

Listing 3.2 Source code to type into profiler.cpp

#include <string.h>
#include <iostream.h>
#include "profiler.h"

Profiler::Profiler() II use two colons for ::
I

II For"", type two double quotes right next to each other
strcpy (name,"");
strcpy (color,"");
age = O;

void Profiler::init (string50 iname, string50 icolor, int iage)
I

strcpy(name,inamel:
strcpy(color,icolor);
age= iage;

void Profiler::display ()
I

II Be sure to use double quotes
cout << "\nYour name is"<< name<<"."<< endl;
cout << "Your favorite color is " << color << endl;
cout << "You are " << age<< " years old.";

7. Open the file main.cpp. This file will hold the main function that controls the pro
gram's actions.

8. Enter the contents of Listing 3.3. Be sure to type all punctuation exactly as it ap
pears in the listing.

9. Run the program. Code Warrior will compile the two source code files and then
link the program.

42 Chapter 3 • Using CodeWarrior

Listing 3.3 Source code to type into main.cpp

#include <iostream.h>
#include <stdio.h>
#include "profiler.h"

void main Cl
{

Profiler you: II create Profiler object
string50 iname,icolor:
int iage;

cout << "\nWhat is your name? ":
gets Ci name>:
cout << "What is your favorite color? ":
gets (icolor);
cout << "How old are you? ":
cin » iage;
you.init (iname, icolor, iage);
you.display();

DEALING WITH SYNTAX ERRORS

If you have entered the program correctly, it will run and conduct a dialog with you
like that in Figure 3.14. However, if you've made a typing error, CodeWarrior will in
all likelihood report a syntax error.

Figure 3.14 The output of the Profiler program

Profiler.out
SIOUX state: application has terminated.

~hat is your name? Jennifer Lee ~
~hat is your favorite color? Azure blue
How old are you? 25

Your name is Jennifer Lee.
Your favorite color is Azure blue
You are 25 years old.

~
~

Syntax errors appear in the message window (Figure 3.15). The three types of
messages that can appear in the message window are represented by icons just under

Creating Your First Program 43

the window's title bar. The leftmost icon represents errors (usually syntax errors)
that prevent the program from compiling. The middle icon represents warnings,
errors that indicate problems that won't necessarily keep the program from running
but that might generate significant problems with the program. The rightmost icon
represents informational messages. By default, the compiler reports errors and warn
ings. You can, however, control which type of messages appear with the check boxes
to the left of each icon. If the box contains a check, messages appear; if the box has no
checks, no messages appear.

Figure 3.15 The message window

Messa_g_e Window

18J&o DIE!o
e Error : ';' expected

main .cpp I ine 19 t

In Figure 3.15 the compiler has detected one error. The error message contains a
statement of the error, the name of the file in which it was found, and the line on
which the error was detected.

It is important to realize that the line on which the error was detected may not be
the line that in fact contains the error. In this particular example, the error is in the
line above: It's missing a semicolon at the end. It isn't unusual to discover that a syn
tax error is caused by something preceding the line on which the error is detected. If
you can't find an error on the line reported in the message window, be sure to look
above.

To move quickly to the line on which an error was detected, double-dick on the
error message in the body of the message window. However, if you want to step
through the errors one by one, click on the up or down arrow at the right edge of the
region just under the title bar.

44 Chapter 3 • Using CodeWarrior

Introducing the Debugger

As you have read, debugger is a programming tool that helps you ferret out logical
errors in a program by letting you execute a program one line at a time, look at the
values in variables as the program is running, and even change memory locations
while the program is running. It is an invaluable tool is the program development
process.

A debugger is by its nature a powerful and somewhat complex program. In this
section you will be introduced to the basic features of the Code Warrior debugger.
You can use the skills you learn in this section throughout this book. As you gain pro
ficiency as a programmer, you will be able to tap some of the more advanced features
that are covered in the debugger's documentation.

NOTE
If you are using a Power Mac with RAMDoubler, then be sure that you have at least ver·
sion 1.5.2 of RAMDoubler. The Power Mac debugger is incompatible with earlier
versions.

ENTERING THE DEBUGGER

To run a program using the debugger, hold down the Option key and either click the
Run button in the button bar or choose Run with Debugger from the Project menu.
Code Warrior compiles and links the program and then launches the debugger. The
program is loaded in memory, but execution is halted before the program's first
statement.

In one corner of the screen, you will see debugger's control palette (Figure 3.16).
The second button from the left-Halt-is depressed, indicating that the program is
stopped. The Kill button aborts program execution at any point. The Go button exe
cutes the program without pausing until it reaches either the end of the program or a
place in the program that you have marked as a stopping point.

The three Step buttons let you run a program one line at a time. Click the Step
Over button to execute the next line of the program; if the program statement being
executed contains a function call, the debugger executes the function but doesn't
show you the statements in the function. In other words, you "step over" the func
tion. However, if you want to see that actions of a function, use the Step In button. It
"steps into" a function to show you how a function operates. On the other hand, if
you find yourself tracing through a function unnecessarily, you can use the Step Out
button to return to the part of the program that called the function.

Introducing the Debugger 45

Figure 3.16 The debugger's control palette

Kill Step Over

Go
Step In Step Out

The debugger screen also contains two windows. You won't be using the one with
the SYM extension. The other, which takes on the name of the program, contains a
listing of the source code in the bottom portion of the window (see Figure 3.17). An
arrow in the left margin of the source code listing indicates the next line to be exe
cuted.

The top left of the window maintains a scrolling list of all functions used by the
program. The top right of the window contains a list of the variables in the current
function, along with each variable's current contents. As you execute the program,
the display in the variables list is updated to reflect changing variable contents.

STEPPING THROUGH A PROGRAM

One of the most useful things you can do with a debugger is step through a program
one line at a time. This makes it very easy to see if you are giving the computer
instructions that you didn't intend. It can, for example, help you determine whether
you are repeating actions the wrong number of times or whether you are making the
wrong choice at a particular point in the program.

To see how this works, try doing the following to use the debugger with the Pro
filer program you created earlier in this chapter:

1. Open the Profiler project file.

2. Hold down the Option key and click on the Run button in the button bar.

3. Click the Step Over button five times. This will bring you to the first gets func
tion call. The debugger lets you know that the program is waiting for input by dis
playing the message in Figure 3.18.

4. If the SIOUX window is visible, type your name and press Enter. If you can't see
the SIOUX window, choose Run from the Control menu or press :J:€-R. This

46 Chapter 3 • Using CodeWarrior

Figure 3.17 The debugger's source code window

Profiler

GNEPeriOOicC .. {}
Clx5ECD0(6 .. .
EmToNatErd .. .
__start
main

v thi s
name

~ color
age

iage
~ icolor

#include <string . h>
#include <iostream.h>
#include "profi ler.h"

Profiler : :Profiler()
{

strcpy <name , "");
strcpy <co lor, '"' >;
age = O;

OxOOBFB802
"Jennifer Lee"

vo id Profiler :: init (s tring50 iname, string50 icolor, int
{

-!• }

strcpy<name, iname);
strcpy<color, icolor);
age = iage;

void Profiler: :display()
- . {

I
111111

cout « "\nYour name is " « name « " . " « end I; +
T [ill Li ne: 1 7 Source ..,. + :m:m::m:mi!Hmmmm!iimm:!im!]]j]jm + Iii

brings the SIOUX window to the front so you can type data to respond to the
gets.

NOTE

Developing software is a lot easier if you have a large amount of monitor real estate.
Using a debugger, for example, if much simpler if you can place the debugger and
SIOUX windows so they don't hide each other.

5. Continue to click the Step Over button and respond to the input prompts for your
favorite color and your age.

6. When the arrow in the left margin of the listing points to the you . i n i t function
call, click the Step In button. Notice that the source code changes to show you the
source code of the i n i t function.

Introducing the Debugger

Figure 3.18 Debugger status when waiting for keyboard input

Profiler

M /gca/ 1,.ariallles

Program wProfi ler» is executing.
Choose Stop from the Control menu
to stop it.

47

7. Use the Step Over button to step through the in it function. Notice that when
you come to the last line of the function, you are automatically returned to the
place in main. cpp where you clicked Step In.

8. Click the Go button to let the program run to completion.

If you click Step In on a line that contains a call to a library function, the debugger
will be unable to display source code for that function: Library functions exist only as
compiled binary code. You will therefore see a listing of the assembly language ver
sion of the function (Figure 3.19). In this particular example, the listing shows Pow
erPC assembly language. If you end up looking at an assembly language listing, use
the Step Out button to return you to your previous location.

VIEWING VARIABLES

As you step through a program, the list of variables at the top right of the window
change as the values in the variables change. You can use this feature to make sure
that a program is storing the values you intend.

48 Chapter 3 • Using CodeWarrior

Figure 3.19 The assembly language version of a function

GNEPeriOOicC .. 0
Qx56CD0(6 ...
EmToNatErd .. .
___start
main

- '

- '

0088813C:
00888140:
00888144:
00888148:
0088814C:
00888150:
00888154:
00888158:
0088815C:
00888160:
00888164:
00888168:
0088816C:
00888170:
00888174:
00888178:
0088817C:
00888180:

- i• 00888184: -! 00888188:

T 0

Profiler

l> this
iage

l> icolor
l> i name

mflr rO
stw r31,-4<SP)
stw r0,8(SP)
stwu SP,-64<SP)
mr r31,r3
stw r4, 92<SP)
stw r5,96<SP)
stw r6, 100<SP)
mr r3,r31
lwz r4,92<SP)
bl *+25496
nop
addi r3,r31,51
lwz r4,96<SP)
bl *+25480
nop
lwz r3, 100<SP)
stw r3, 102<r3 D
lwz rO, 72<SP)
addi SP,SP,64

Assembler +

iOxOOBFB802
!2s

i OxOOBFB7CF

$008914FC

; $008914FC

I

mm
+

The Code Warrior debugger makes a guess about the type of data you are storing
in a variable and uses that guess to format that display of a variable's contents. The
debugger's guess, however, isn't always what you want to see. To change the way a
variable's value is displayed, click on the value of the variable whose format you want
to change. Then choose the new display format from the bottom section of the Data
menu. As you can see in Figure 3.20, only those formats that are appropriate for a
given type of variable are available.

When the function you are viewing is a member function, the debugger's variable
list shows you the contents of the object on which the member function is operating.
The object first appears under the name th i s. The value for th i s that appears ini
tially is the main memory address where storage for the object's data begins. If you
look carefully at the top right of Figure 3.19, you'll notice that the value for this
begins with Ox, indicating that it is a hexadecimal main memory address. In Figure
3.20 the object named you is also represented by its main memory address.

Introducing the Debugger

Figure 3.20 Changing a variable's display format

Show Types

EHpand 3€;
Collapse Rll
New EHpression 3€N

Open Llariable Window
Open Rrray Window
Copy to EHpression 3€D
Uiew as... 3€Y
Uiew Memory as ...

iage
~ icolor

iname
~ you

Profiler

i 12108140

! "Jennifer Lee"
! OxOOBFB802

1---------------<i ostream. h>

Signed Decimal
Unsigned Decimal
HeHadecimal

./ Character
~c String u3€S
Pascal Strmg
Floating Point
Enumeration
FiHed
Fract

-0-00P
v3€F
v:3€E
v:3€ I
v3€R

T o Line: 15

stdio.h>
profi ler.h"

er you; II create Profiler object
50 iname, icolor;
ge;

< "\nWhat is your name? "
i name);
< "What is your favorite co I or? "
i color>;
< "How old are you? ";

iage;

Source T.

49

Iii

I
I
•

The right-facing arrows to the left of th i s and you indicate that there are vari
ables within each object that you can view. To see the contents of an object, click on
the arrow. (This works much like expanding a folder in a Finder window.) As you can
see in Figure 3.21, the object expands to show you all the variables that are part of the
object and those variables' current contents. Other variables that store multiple val
ues can also be expanded in the same way.

A common error that occurs in a C++ program is not allocating enough space for
the storage of strings of text. The computer doesn't warn you when you store too
many characters in a string. Instead the extra characters spill over into the main
memory allocated to other variables. Usually the only way to detect this type of error
is to use the debugger and watch the contents of variables. If you happen to see the
value in an unrelated variable change immediately after you have entered a string of
text, you should suspect that you don't have enough room for the text. The solution,

50 Chapter 3 • Using CodeWarrior

Figure 3.21 Viewing the variables that make up an object in main memory

§Im Profiler

GNEPeriOOic:C. . -0 v this
Ct<51'£D0(6 .. . name
EmToNetErd .. . ~ color
_start
main

age
iage

~ icolor

•include <string.h>
•include <iostream.h>
•include "profi ler .h"

Profiler : :Prof iler()
{

str~py <name,"");
strcpy <color,"">;
age = O;

void Profiler:: init <string50
{

strcpy<name, iname);
strcpy<color, icolor);
age = iage;

! OxOOBFB802
! "Jennifer Lee"

iname, string50 icolor, int

'._I',,.· ;oid Profiler: :display ()

cou t « " \nYour name i s " « name « " . " « end I ; +
L:ilrilL:li<111>;;.Li;.;.n.;.e:;.;.1;.;.7;....-'-....;;.so.;.;u;.;.r.;.ce;.... __ +.. :mrnmrnmrnmrnm:m:mrnH!i!iili!ii!ii!ii!ii!ii!i + Iii

of course, is to allocate more space for the text, something you will learn how to do
in Chapter 5.

EXITING THE DEBUGGER

Because the debugger is a separate application from the CodeWarrior compiler, you
must exit by choosing Quit from the File menu or by pressing ~-Q. If a program is
running when you quit, the debugger will ask whether you want to kill the program.
At that point you can confirm the "kill" or cancel your exit from the debugger.

CHAPTER

Writing Classes

Because classes provide the foundation for an object-oriented program, the first step
in learning to write C++ programs is to learn to write class declarations. In this
chapter you will therefore read about how classes are declared, including declara
tions for variables and member functions.

Variables

As you have read, variables are labels that are placed on storage locations so that it is
easy to reference those places in main memory. You also know that the amount of
storage set aside when you declare a variable depends on the type of data you will be
storing.

Before you can use a variable, either in a class or in a nonmember function, you
must declare it. The declaration includes a name for the variable and a data type, and

51

52 Chapter 4 • Writing Classes

may also include an initial value for the variable. The general format for a variable
declaration ends with a semicolon:

data_type var;able_name;

If you are declaring more than one variable of the same data type, you can place them
in the same declaration, separated by commas, as in:

data_type var;able_namel, var;able_name2, var;able_name3;

Variable names can include letters, numbers, underscores U, and a few special
characters, such as # or $. However, you cannot use characters that have meaning to
C++, including those in Table 4.1. In addition, variable names must not duplicate
C++ keywords. Identifying a variable name that matches a keyword is easy if you
have syntax color turned on in your source code window: The keyword appears in its
own color. (See Chapter 3 for details.)

Table 4.1 Characters that cannot be used in C++ variable names

%
+
I

&

< >

*
\
[

@

)

?
]

C++ is case sensitive; it recognizes the difference between upper- and lowercase
letters. For example, C++ sees sum and Sum as different variables. If you want to be
sure that you aren't duplicating a C++ keyword, put an uppercase character or an
underscore in a variable name. (All keywords are lowercase words.)

There is one other very important issue concerning the naming of variables. The
names you give variables should be meaningful. In other words, a variable's name
should remind you of what you are storing in the variable. When you look at variable
names such as customer#, retail_price, and invoiceTotal, you know
exactly what the variables store. However, variable names such as x5 or cba don't
give you any information. If you come back to a program without meaningful vari
able names after even a few days, you are going to have a hard time figuring out the
purpose of those variables.

Variables 53

DECLARING INTEGER VARIABLES

C++ supports two types of integer variables-i n t and l on g. On a microcomputer
an int sets aside a 16-bit storage location; long sets aside a 32-bit location. For
example, the following declaration declares three 16-bit integers:

int Counter. oldTotal. newTotal;

By the same token, the following declarations set aside storage space for four 32-bit
integers:

long Population, Sum;
long howMany, account#;

ADDING COMMENT STATEMENTS

As has been mentioned, using meaningful variable names helps document the logic
of a program. The most useful self-documentation tool, however, is comment state
ments. A comment is text that is included in a header or source code file to describe
how the code works or the purpose of parts of the code. Comment statements are
ignored when a file is compiled. Adding comments is vital to making code easy to
understand, even if a long time passes from when you originally wrote the program.

C++ supports two forms of comments, both of which appear in color (by default,
red) in a text file if syntax coloring is active. Anything on a single line that is preceded
by two slashes(//) is accepted as a comment. The// can appear at the beginning of
a line (the entire line is a comment) or following executable code. For example, in the
following statements the expression "I I Counts items as entered" is a comment:

int Counter; II Counts items as entered

You can create multiline comments in two ways. First, you can precede each line
in the comment with I I, as in:

II This is an example of a multiline comment
II using the C++ style. It is a very "safe"
II type of comment because there's no risk of
II confusing the comment with executable code.

54 Chapter 4 • Writing Classes

Alternatively, you can use the comment style that C++ has inherited from C. C-style
comments begin with the characters I*. The compiler assumes that everything fol
lowing those characters is a comment until it encounters the characters *I, as in the
following:

I* This is an example of a multiline comment using
the C style. It can be easier to use than C++ comments
for a long block of comments, but you run the risk
of not closing the comment block and accidentally
causing the compiler to skip some executable code. */

If syntax coloring is on, typing I* causes everything in the text file following the I*
to turn red (or whatever color is assigned to comments). When you type the* I, the
remainder of the file turns back to its original color. This can be an enormous help in
making sure that you always close C-style comments.

DECLARING FLOATING POINT VARIABLES

To set aside a standard-sized (single-precision) floating point storage area, use the
variable type fl oat, as in:

float average, balance;

If you need both a greater range of values and more places to the right of the decimal
point, use the medium-sized (double-precision) floating point format, as in:

double quotient, dividend, divisor;

If even double-precision doesn't give you enough range or precision, use the Macin
tosh's largest floating point format:

long double quotient, dividend, divisor;

Keep in mind, however, that there is a trade-off between the amount of memory used
and the size of the floating point storage locations you use. As your programs grow
larger, you may need to be concerned about the space consumed by do u bl e and
l on g d o u bl e variables.

Variables 55

DECLARING CHARACTER VARIABLES

A ch a r variable holds one ASCII code. Used by itself, a ch a r variable is handy for
things like holding the answer to a yes/ no question or for storing data that can be
coded, such as gender (m or f, perhaps). You can declare a character variable just like
an integer or floating point variable:

char yes_no: II store response to yes/no questions

A FIRST LOOK AT STRINGS

A string is a sequence of characters, such as a word or a sentence, handled as a unit.
Strings are used for names, addresses, phone numbers, descriptions of items, and so
on. Although much of today's data manipulation involves strings, C++ does not have
a string data type; string handling requires special techniques. Chapter 10 is devoted
to an in-depth discussion of strings. However, until we reach that point, you should
be able to at least handle simple string input and output so that you can include string
data in your classes.

You can think of a C++ string as a linear sequence of characters terminated by a
special character-a null, usually represented as '\O'. When you declare a string vari
able, you must tell the compiler how many bytes to set aside for the string, including
the terminating null. The general syntax is as follows:

char variable_name [length+l];

If you want to store an SO-character string, you could use a declaration like:

char inputText [81]:

Keep in mind that you must always declare a string to be one character longer than
the maximum number of characters you want to store to leave room for the termi
nating null.

There is one important thing to keep in mind about C++ strings. When you
declare the string, the number you place in brackets after the variable name simply
tells the compiler how much space to set aside for the string. However, there is no
automatic mechanism for alerting the program if a user enters more characters than
the string has been defined to hold. Storing too many characters in a string usually
results in the destruction of the contents of other variables (those whose storage

56 Chapter 4 • Writing Classes

location immediately follows the string). Because string overflow if a common source
of program errors, if you have variables whose contents mysteriously change, you
should use the debugger to watch what happens when you enter data into strings.

INITIALIZING AND ASSIGNING VALUES TO VARIABLES

When you declare a variable, the compiler sets aside storage space for that variable.
However, the compiler doesn't automatically assign a value to that storage space. In
fact, when a program is loaded into main memory to begin its run, variable storage
locations assume whatever value is currently in the location. This may be a value left
over from a previous program, a value that is totally unrelated to your program. To
ensure that your program doesn't accidentally pick up irrelevant data, you should
give every variable an initial value before you attempt to use that variable's contents
for output or in other data manipulation operations.

There are three ways to initialize variables:

• Initialize variables in the variable declaration statement. This is available only for
program variables; class variables cannot be initialized when they are declared.

• Perform input to give the variable a value. This is available for both program and
class variables.

• Assign an initial value to a variable as part of a function. This can be done any
where in a program. Class variables are typically initialized in the class's construc
tor, the function that is run automatically whenever an object is created from the
class.

For all types of variables except strings, you assign a value to a variable using the
assignment operator(=). For example, the following expression declares an integer
storage location and assigns an initial value of 0 to that location:

int sum = O;

It is tempting to read the assignment operator as "equals." However, its action isn't
precisely the same as evaluating an algebraic expression.

Keep in mind that a computer's main memory is nothing more than a collection of
electronic circuits. Each circuit can hold one voltage (either high or low). When you
give a group of circuits (for example, 16 circuits that have been set aside to store an
integer) a value, each circuit takes on a voltage. When you change the value, any of

Variables 57

the circuits may take on different values. Because a circuit can carry only one voltage
level at a time, the previous value held by the storage location is lost.

Assignment is therefore a replacement operation. It really says "take the value on
the right side of the assignment operator and place it in the storage location labeled
with the variable name that appears on the left side of the assignment operator."
(This will become extremely important when we look at arithmetic operations in
Chapter6.)

If you are initializing a numeric storage location, you can do so when the variable
is declared, as in the previous example. You can also do it as part of a function:

total = 0.0;

This is an executable assignment statement. In other words, each time the computer
encounters the statement, it places 0.0 in the storage location labeled tot a 1. (You
will read about simple input, which also can be used to initialize a variable, in Chap
ter 5.)

NOTE
C + + will not allow you to use a variable unless it has been declared. The statement
total= 0.0; will be allowed only if the initialization float total; precedes the assignment
statement somewhere in the program.

How do you decide whether to initialize a variable when it is declared or to use an
assignment statement in the body of the program? The answer lies in whether you
need to return the variable to its initial value during the program run. Initialization
that appears in a variable declaration occurs only once, when the program is first
loaded into main memory. However, an assignment statement can be executed as
many times as needed.

Assume, for example, that you have written a program that computes the total
sales for each of 12 salespeople. Each time the program begins summing sales, the
contents of the tot a 1 variable should be reset to 0. Otherwise, you won't get a cor
rect result for any of the salespeople after the first one; the total will continue to
accumulate. In this case, you should place the assignment statement in the body of
the program.

Initializing Characters
Although it's a good idea to avoid single-character variable names, there's nothing in
the C++ language to prevent you from doing so. There must therefore be some way

58 Chapter 4 • Writing Classes

for a c++ compiler to differentiate between character data and single-character vari
ables names. The answer is single quotes. Whenever the compiler sees a character
surrounded by single quotes, it assumes that you want character data. To initialize a
character storage location, you therefore surround the character with single quotes:

char yes_no = 'y';

As with numeric variables, character variables can be initialized when they are
declared or with an assignment statement within a function. They can also be initial
ized by performing keyboard input.

If you don't want to place a character in a ch a r variable but simply want to wipe
out any contents the storage location may have, you can assign a null:

char yes_no = · ';

The null is represented by two single quotes typed next to each other. (This is not a
double quote.)

Initializing Strings
Strings can be initialized when they are declared using the assignment operator.
However, once strings are declared, the assignment operator can't be used; you must
use a special string function from the ANSI C libraries.

There are several ways to initialize strings as part of the variable declaration, two
of which are commonly used. The first is to declare the string variable in the usual
way (with the number of characters following the variable name):

char sampleString[26J = "This is a test":

This sets aside 26 bytes for the string and assigns the string Th i s i s a t es t to the
first 15 positions. (Don't forget that although there are only 14 characters in the
string, the 15th position is used by the terminating null.)

Alternatively, you can leave out the number of characters, using only the square
brackets:

char sampleString[J "This is a test";

Variables 59

In this case, the compiler sets aside only 15 bytes for the string, just enough to hold
the value with which the variable was initialized.

Notice that in both of these examples, the string was surrounded by double
quotes. This is the signal to the C++ compiler that you want a string, not a character.
In fact, the following two statements request very different types of storage:

char oneChar = 'z';
char shortString[J = "z";

The variable named one Ch a r sets aside one byte of storage, which contains just a z.
However, the variable named short St r i n g sets aside two bytes of storage, one for
the z and the other for the terminating null, \ 0.

As you will see in Chapter 5, you can also initialize a string variable by accepting
input from the keyboard into that variable. However, what you can't do is assign a
value to a string using an assignment statement. The reason is that storing a string
isn't a simple replacement operation; it involves many bytes of storage and requires
adjusting the position of the terminating null. You must therefore use a function
from the standard C libraries: st rcpy (string copy).

To use a library function, you must be sure to include the associated header file in
your source code file anytime before you attempt to use the function for the first
time:

#include <string.h>

The function itself has the following general syntax:

strcpy (string_variable. string);

The st r i n g_ v a r i ab l e is the name of a string variable that has been previously
declared. The string is either a string constant (a string surrounded by double
quotes) or another string variable. For example, the following statements are needed
to give a string variable a value inside the body of a program:

#include <string.h>
char sampleString[26J;
strcpy (sampleString, "This is a test");

60 Chapter 4 •Writing Classes

DEFINING YOUR OWN VARIABLE TYPES

In addition to C++'s built-in variable types, you can use the typedef statement to
create your own data types. You can then use a custom data type to declare variables,
either in a class or in a program.

The typedef statement has the following general syntax:

typedef data_type new_type_name

One of the most useful uses of typedef is to simplify creating and using string vari
ables. For example, you might define a new type-st r i n g 8 0-to hold an SO-charac
ter string:

typedef char string80[81];

Then you use the new data type like any of the built-in variable types:

string80 name, street, city;

THE SCOPE OF VARIABLES AND VARIABLE STORAGE

CLASSES

C++ variables have a scope, the portion of the program in which the variables exist.
Variables can be
global, in which case they are accessible to the entire program, or they can be local, in
which case they are accessible only within the function in which they are defined.

Global variables are defined outside any function (even the main function).
Although they are conceptually easy to use and therefore very attractive to beginning
programmers, there are at least two good reasons to avoid them:

• Global variables exist the entire time the program is running. Thus they take up
space in main memory even if they are used for only a short time.

• As a program grows large, it is difficult to keep track of where global variables
have been declared. It therefore becomes difficult, for example, to make sure that
you don't attempt to use a variable name a second time or to remember the name
or data type of a variable.

Constants 61

By default, a local variable is created when you call the function in which it is
declared. When the function finishes, the space allocated for the variable is released.
In most cases, this provides for more efficient use of main memory during program
execution. In addition, it keeps variable declarations with the functions that use
them, making it easier to keep track of how variables are declared and how they are
used. You also can use the same local variable name in more than one function.

In some circumstances, you may not want a variable destroyed when the function
in which it was declared finishes. To make sure that a variable stays around, you can
change its storage class. A storage class is an expression of how you want a variable's
storage handled. There are three storage classes:

• auto: The storage space allocated to an automatic variable (the default) is re
leased when the function in which the variable was declared terminates.

• stat i c: The storage space allocated to a static variable is retained throughout
the program run.

• reg i st er: A register variable is stored in the CPU whenever possible. This sig
nificantly speeds up access to the contents of the variable. However, the amount
of storage space in the CPU is very limited. As a result, register variables may be
swapped from the CPU to main memory if the program needs the storage space
in the CPU so it can execute. Most C++ programs rarely use register variables.

To change a variable's storage class from auto to static, precede the variable
declaration with the word stat i c. For example, if you want a string to stay in main
memory throughout a program run, you might use the following declaration:

static char immorta1String[81];

Constants

A constant is a value that doesn't change during the run of a program. You have
already seen three types of constants: numeric constants (for example, the zeros used
to initialize integer and floating point variables), character constants (single charac
ters surrounded by single quotes), and string constants (groups of characters sur
rounded by double quotes). The constants you have seen are included in variable
declarations or as part of a source code file. However, there is a major drawback to
using many constants in this way: If the same constant appears throughout a

62 Chapter 4 • Writing Classes

program's source code, a change in that constant means that you will have to find
every occurrence of that constant and change it. You run a great risk of missing one
or more places the constant has been used.

The solution is to provide constants with meaningful names that you can use in
the same way you use variable names. Assuming that you place the definitions of
constants in a header file, changing the constants means simply changing the defini
tion in the header file and recompiling the program.

There are two ways to define a constant: one that. is a holdover from C and
another that is unique to C++. The C method of defining a constant uses an assem
bler directive, def i n e. For example, to values for true and false, you might use:

#define TRUE 1
#define FALSE 0

The directive is preceded by the pound sign, followed by the name of the constant
and the constant' s value. When the program is compiled, the compiler substitutes
the value of the constant into the program everywhere it sees the name of the con
stant. In effect, a C constant is a macro, a small snippet of code that is copied into
source code during compilation.

NOTE
By convention, the names given to constants are in uppercase letters. This makes them
easy to distinguish from variables and keywords.

The C++ constant style works more like a variable, setting aside a place in main
memory that is labeled with the name of the constant. The advantage to this
approach is that you can look at the value of the constant with a debugger. Defining a
C++ constant uses the keyword const and looks very much like an assignment
statement. To set up the true and false constants used in the previous example, a pro
gram would use the following:

const TRUE= 1;
const FALSE = O;

Because these are C++ declarations and not compiler directives, they end with a
semicolon.

By default, a constant declared with the cons t statement is an integer. If you
want to declare a constant of a different data type, you must include that data type in

Declaring Member Functions 63

the declaration. For example, the following declarations create floating point con
stants:

const float INTEREST_RATE = .0789;
const float ROYALTY_RATE = .15;

Some constant declarations, including the true and false constants used as exam
ples here, can be found in the library header files. It is therefore useful to open the
header files and look at the constants in them so that you don't inadvertently try to
redefine an existing constant, something that the compiler will detect as an error.

Declaring Member Functions

When you write a class declaration, you include prototypes for the class's member
functions. Before we can turn to writing classes, we first need to take an in-depth
look at function prototypes, including return values and formal parameters.

RETURN VALUES

As you read previously, a C++ function prototype has the following general syntax:

return_ va 7 ue_type funct i on_name (forma l_parameters);

The return_ va 7 ue_ type is the data type of the value sent back to the calling func
tion when the function finishes execution. For example, the following function
returns a floating point value:

float Add (float, float);

The return value is sent back with the return statement. For example, if a func
tion is declared to return an i n t value, the function might contain the following
statements:

int sum;
: some processing goes here
return sum;

64 Chapter 4 • Writing Classes

The return statement also causes the function to stop execution. This means
that there can be more than one re tu r n statement in a function. The first one the
computer encounters will send a value back to the calling function and terminate the
function.

FORMAL PARAMETERS

A function's formal parameter list includes the data types of the values that are sent
from the calling function into the function. For example, the following Sub t r act
function requires two floating point values:

float Subtract (float, float);

The preceding parameters are value parameters, values that are used only for input
into the function. If the values of the parameters are changed within the function,
the changes stay within the function. When the function terminates, the changes dis
appear. In other words, any changes made to value parameters are not sent back to
the calling function. This is also known as a pass by value.

The alternative to a value parameter is a reference parameter (a pass by reference). To
perform a pass by reference, you send a function the main memory address of a
parameter. The function then makes changes directly to main memory so that any
changes to the parameter are available to the calling function when the function ter
minates. This is the only way you can get a C++ function to "return" more than one
value. However, because reference parameters require the use of pointers, we will
defer discussion of them until Chapter 11.

Class Declaration Syntax

When you declare a class, you are defining a combination of variables for data storage
and member functions for data manipulation that the C++ compiler will view as a
unit. The declaration uses the general syntax in Figure 4.1.

As you look at this syntax, notice that the contents of the class are surrounded by
braces. Throughout C++, braces serve to group items. For a class, the closing brace
is followed by a semicolon. In fact, this is the only situation in which you will place a
semicolon outside a closing brace.

Class Declaration Syntax

Figure 4.1 General syntax for a class declaration

class class_name
I

} ;

private:
private members

public:
public members

65

A class· s private members are variables and functions that are accessible only to
functions within the class. In most cases, all variables are private. Because private
functions can be called only by other functions in the same class, private functions
are usually utility functions that are shared by other class functions.

A class's public members represent the class's interface to the outside world. Pub
lic members usually include the prototypes of functions that can be called by other
functions.

As an example, consider the class in Listing 4.1. The class is stored in a file named
Calculator.h. This class, which forms the basis of a program you will see in Chapter 6,

has one private variable: the result of an arithmetic operation. The class also has five
public member functions that perform the arithmetic operation suggested by each
function's name.

Listing 4.1 The Calculator class

class Calculator
{

} ;

private:
float result:

public:
Calculator ();
float Add (float, float);
float Subtract (float, float);
float Multiply (float, float);
float Divide (float, float);
float Exponentiate (float, float);

In addition to the member functions that perform the arithmetic, there is a mem
ber function that has the same name as the class (Ca l cul at or). This member func
tion also has no return data type. This is a constructor, a function that is run

66 Chapter 4 • Writing Classes

automatically whenever an object is created from the class. In most cases, construc
tors are used to initialize an object's private variables. This particular example has no
formal parameters, but many constructors do.

Writing Simple Constructors

As an introduction to writing member functions, let's look at the constructor for the
Cal cul at or class, which appears in Listing 4.2. First, the file containing the con
structor must include the header file in which the class declaration is stored. This
makes the class variables and function prototypes available to the constructor.

Listing 4.2 The constructor for the Calculator class

#include "Calculator.h"

Calculator::Calculator Cl II
{

result = 0:

tells the compiler which class

The function header contains the name of the function and its formal parameter
list. The function header also must let the compiler know the class to which the func
tion belongs. That is handled by placing the name of the class and the scope reso,ution
operator(::) before the name of the function.

NOTE

In member .functions other than constructors, the return value data type precedes the
name of the class.

The body of the function is surrounded by braces. (Because this isn't a class decla
ration, no semicolon follows the closing brace.) The function's executable statements
appear within those braces. In this example there is only one executable statement,
which assigns an initial value to an object's variable.

Writing Other Member Functions 67

NOTE

Don't forget that you can't initialize class variables when they are declared as part of
the class. Initialization must take place elsewhere using an assignment operation. This
usually occurs in a constructor.

Writing other Member
Functions

The structure of member functions that aren't constructors is slightly different from
that of constructors. As an example of a nonconstructor member function, look at
Listing 4.3. (For the purposes of this discussion, you can ignore the body of the func
tion.)

Listing 4.3 A member function that isn't a constructor

float Calculator::Add (float valuel. float value2J
{

result= valuel + value2;
return result;

Notice first that the return value's data type appears first in the function header,
just as it did in the prototype you saw earlier in this chapter. The return value data
type is followed by the name of the class to which the function belongs, the scope
resolution operator, and the name of the function.

The formal parameter list, however, looks a bit different than it did in the proto
type: It contains variable names to which the formal parameters will be assigned. In
other words, the first floating point value sent into the function will be stored under
the variable name v a l u e 1; the second floating point value will be stored under
val u e 2. The parameter list in a function declaration header therefore does double
duty: It matches the prototype to ensure that the function is being used properly and
also declares variables for incoming values. The variable names assigned to formal
parameters in the function declaration header can be used in the body of the func
tion without further declaration.

68 Chapter 4 • Writing Classes

Program functions (functions that aren't member functions) are declared just like
nonconstructor member functions. The only difference is the absence of a class name
and a scope resolution operator.

Simple Input
and Output

CHAPTER

One of the most important things a computer program needs to do is accept input
from the outside world (usually from the keyboard, mouse, or disk drive) and trans
mit output from within the program back to the outside world (usually to a moni
tor's screen or a printer). In this chapter you will learn how ANSI C++ supports
simple I/ 0. You will learn to accept input from the keyboard, display text on the
screen, and work with text files.

NOTE
Macintosh applications handle most of their 110 through the Macintosh's graphical
user inteiface. Support for that inteiface is contained the ROM-based ToolBox.
Although in Chapter 17 you will see an overview of how a program can call ToolBox
routines, you do need to know some simple 110 procedures so that you can learn other
programming concepts without getting bogged down by trying to deal with the com
plexities of the ToolBox.

69

70 Chapter 5 • Simple Input and Output

Introducing Stream 110

C++ views I/Oas a stream of characters, flowing from one location to another. Each
input or output stream is an object into which you can insert characters for output or
from which you can extract characters for input.

Whenever you run an ANSI C++ program, the computer creates three stream
objects for the program. These streams are directed toward the keyboard and a
default computer "terminal" known as the console. In the Code Warrior environment,
the console is a window that appears whenever you run a program that uses
Code Warrior's SIOUX library.

The console input stream, ci n, accepts data from the keyboard. The characters
you type are echoed to the console window; in other words, you can see what you
type. The console output stream, cout, displays characters in the console window.
The third console stream, console error (cerr), is used for dealing with errors that
occur when a program is running. Throughout this book we will be dealing prima
rily with c i n and co u t.

File I/ 0 is handled very much like console I/ 0. When you want to write to or
read from a file, you tell the program to create a stream object for the file. Then you
use that file stream object just as you would a console stream object, inserting char
acters for output and extracting characters for input.

Because I/ 0 streams are objects, they have member functions. As you will see in
Chapter 10, you will need to use some of these member functions when dealing with
character strings, which present special challenges for stream I/ 0.

The classes that support stream I/O and the prototypes for stream I/O member
functions are found in the header file iostream.h. You must include that header file in
any program that uses stream I/ 0. In addition, programs that use file streams must
also include fstream. h.

Console Output

To send characters to a console output stream, you insert data into the stream using
the stream insertion operator-<<. The values you insert can be the contents of vari
ables (either program variables or object variables) or constants (numbers, charac
ters, or strings). In general, you insert a value by using the name of the stream,
followed by the stream insertion operator, followed by the value. For example, the
following statement displays a string constant in the console window:

Console Output 71

cout << "This is a string constant";

There are two things to keep in mind when working with the console output
stream. First, co u t starts its display where the window's insertion point happens to
be. In other words, the display begins right after the last output, regardless of
whether that happens to be at the left edge of the console window. Later in this sec
tion you will see how to make sure that output starts on a new line.

Second, you can insert more than one value into the console output stream with
at a time. Just be sure to precede each value with the stream insertion operator. For
example, the following statement displays two string constants, one right after the
other:

cout << "This is string 1. " << "This is string 2.";

INSERTING CONSTANTS INTO A STREAM

The co u t stream can display numeric, character, or string constants. To display a
numeric constant, you follow a stream insertion operator by the digits you want to
output. For example, the following statement displays the number 16 on the screen:

cout « 16;

Character or string constants are inserted in a similar way, by placing the constant
after a stream insertion operator. There are two things to remember, however. First,
a character constant is surrounded by single quotes; it can include only one charac
ter. Second, a string constant is surrounded by double quotes; it can include many
characters. The following statement displays the characters You r grade was A:

cout <<"Your grade was"<< 'A';

Notice that there is a space after the s in was (before the closing double quote). This
space is necessary to produce normal English spacing. As you read earlier, the co u t
display begins right where the previous display finished, regardless of whether there
is a space after the last value.

72 Chapter 5 • Simple Input and Output

INSERTING VARIABLE CONTENTS INTO A STREAM

To insert the contents of a variable into a stream, you put the name of the variable in
the output statement following the stream insertion operator. For example, assume
that you have the following lines of c++ code:

int Valuel = 16;
float Value2 = 22.5;
cout << Valuel << " " << Value2;

The console window displays 16 2 2 . 5.
Notice in particular that the preceding cout statement includes a blank (" ")

between the two values. This is because co u t doesn't automatically follow a value
with a space. Therefore if you want to see spaces between values, you must be sure
to insert them explicitly.

ADDING NEW LINES

Because co u t always begins where it left off, it is often necessary to explicitly tell
co u t to begin a new line at the left edge of the console window. This helps you con
trol exactly where output appears.

There are two ways to request a new line. The first is something C++ inherited
from C-an escape character. Escape characters, single letters preceded by a backslash
(\),provide formatting information to an output stream. When the compiler sees the
\, it knows that what follows is a formatting character, not an output character. The
escape character for a new line is n. To use it, you precede it with a backslash and
include both characters in a string constant, as in the following:

cout << "\nThis appears starting on a new line";

NOTE
The use of \ to signal an escape character presents a bit of a problem: You can't simply
include a single\ in a character string; C++ will think that whatever follows is for for
matting, not for display. Therefore if you need to include \ in a string constant, you
must use two backslashes-\\. Only one\ will appear, however.

The second way to get a new line is to request it at the end of a co u t statement
using endl (end of line), which is inserted into the output stream like any other

Console Input 73

value. For example, the following statement displays a string constant followed by a
blank. line:

cout << "Sample string" << endl << endl;

Why only one blank line? There are two end 1 s. The reason is that the first end 1
moves the console window's insertion point to the left edge of the window on the
line below the string constant. At this point there's no blank. line. It's the second
end 1 that moves the insertion point down another line, leaving the line above with
out any visible characters. When output starts again, there will therefore be one
blank. line between Sa mp 1 e st r i n g and the following output.

Console Input

To accept data from the keyboard into variables, use the stream extraction operator
(>>) to extract values from a ci n stream. Assume, for example, that a program
includes the following statements:

int firstValue, secondValue;

cin >> firstValue >> secondValue;

The user types 15 6 2 3 2 and presses the Return key. The program places 156 in
fi rstVal ue and232in secondVal ue.

The preceding example illustrates two important characteristics of c i n. First, a
single c i n statement can handle more than one variable. In that case, the computer
recognizes the end of a value by a space. Second, the end of all input is indicated by
the Return key.

The c i n stream has one very annoying characteristic: If you press Return without
entering all the values that c i n expects, the program simply waits. It won't proceed
any further until you give it a value for each of the variables in the c i n statement.

74 Chapter 5 • Simple Input and Output

String Input

Strings present a problem for c i n. As you know, c i n detects the end of an input
value by looking for a space. However, strings are full of spaces that mark the end of
words. If you attempt to read a string using c i n, all you'll get is the first word. The
solution to the problem is to use a library function that accepts all input up to press
ing the Return key as one string. There are two library functions that perform string
input. The first (gets) is part of the C libraries; the second (get l i n e) is a c i n
member function.

To use gets, include the header file stdio. h at the beginning of your program. The
function itself takes one parameter: the name of a string variable. For example, the
following statement accepts one string into the string variable Text:

gets <Text):

When used to accept data from the keyboard, the get 1 i n e member function
requires two parameters: the string variable's name and the maximum number of
characters that can be accepted. If the Text variable is declared to hold 50 characters
(a length of 51 to include the terminating null), the get 1 i ne function is used in the
following manner:

cin.getline (Text. 50);

The preceding syntax is one of two ways to call a member function. Using this
method, you use the name of the object (ci n), followed by a period, followed by the
name of the member function and the parameters you are sending to the function.
You will learn more about the details of calling member functions in the next section.

The Ticket Printer Program

As an example of using console input and output, we'll be taking a look at a very sim
ple program for printing tickets to an event. The Ticket Printer program conducts a
dialog with the user, asking for the name and date of the event. It then asks the user
how many tickets should be printed. Figure 5 .1 contains a transcript of a sample run
of the program. Notice that the program pauses after each ticket so you can look at it.

The Ticket Printer Program 75

Figure 5.1 Output of the Ticket Printer program

Ticket printer.out
SIOUX state: appl icotion has terminated.

{r
Wlat is the name of the event? Mac::wot" Id Expo r-
Mhat Is the dale of the event? 01/04/96

How many tickets: do you U1Cnt to print? 2

........................... *************
Event: t1acwor Id Expo

Date; 01/04/95

Ticket number: 1

............................ ****"'"'***********•••••
Next? y ~

Event: t1ac<Dor Id Expo
Date: 01/04/96

Ticket number: 2
Next? y I=

t£: II.I

DECLARING THE CLASS

The Ticket Printer program uses one class-Ti ck et-that stores the data for the
ticket that is being printed. The complete header file (ticket.h) can be found in Listing
5.1. Notice that this class has two class variables: event date for the date of the
event and event ti t l e for the name of the event. Both variables are character
strings.

Listing 5.1 Header file for the Ticket Printer program

class Ticket
(

} ;

private:
char event_date(9J; II date of event
char event_title[51J; II title of event

public:
Ticket(); II constructor
void init (char[]. char []); II places data in class variables
void print (int); II displays one ticket

The class has three member functions. The constructor (Ti ck et) assigns a null to
each of the two strings. The i n i t function takes data collected by the program that

76 Chapter 5 • Simple Input and Output

works with a Ti ck et object and stores that data in the class variables. The third
function (print) displays one ticket on the console.

NOTE
There are other ways to handle dates in.stead of simply storing them as text. However,
at this point, when a date is simply for display, it is easiest to work with it as a string of
text. You'll be introduced to a more sophisticated and accurate way to deal with dates
in Chapter 13.

THE MEMBER FUNCTIONS

In Listing 5 .2 you will find the member functions for the Ticket Printer program.
(This code is stored in the file ticket.cpp.) The constructor, which you first saw in
Chapter 4, initializes the class variables by loading them with a null (two double
quotes types right next to each other).

The i n i t function takes data gathered by the ma i n function and stores it in an
object's variables. Look carefully at the i n i t function's header line and compare
that line to the function's prototype in Listing 5.1. In the prototype each parameter
appears as ch a r [] , indicating that the function should expect a string of characters
of an unknown length. In the function header the string of characters is given a vari
able name but still no length (for example, i event []). This is different from declar
ing a string variable within a function, where the name of the variable is followed by
the maximum number of characters you intend to store in that string. When the pro
gram is running, the computer will set aside storage for an incoming string parame
ter based on the size the string is given when it is declared, in this case, in the ma i n
function.

The final member function-pr i n t-displays a ticket. In this simple program the
ticket is created by using a sequence of co u t statements. Because the SIOUX console
window displays its output in a monospaced font (the Monaco font chosen in the
Font preferences panel), the characters line up in a reasonable fashion.

THE MAIN FUNCTION

Because the Ticket Printer program is very short and simple, the program that
manipulates the Ticket object requires no more than amain function (Listing 5.3).
Nonetheless, it contains many of the elements typical of C++ programs.

The Ticket Printer Program

Listing 5.2 Member functions for the Ticket Printer program

#include <iostream.h>
#include <string.h>
#include "ticket.h"

Ticket::Ticket ()
(

strcpy Cevent_date,""): //put null in the string variable
strcpy Cevent_title,""): // put null in the string variable

void Ticket::init (char ievent[J. char idate[J)
(

strcpy Cevent_title, ievent);
strcpy Cevent_date, idate):

void Ticket::print (int ticket_numb)
(

cout « endl;

77

cout << "**"
« endl « endl;

cout <<" Event: • << event_title << endl;
cout <<" Date: • << event_date << endl << endl;
cout << " Ticket number: " << ticket_numb << endl << endl:
cout << "**"

« endl « endl :

Creating Objects and Function Binding
Although the Ticket Printer program's header file contains a declaration of the
Ti ck et class, the presence of the class doesn't set aside memory for objects. Objects
must be declared in a function (either a member function or a program function).
There are two ways to create objects. The differences between them relate to when
the computer sets aside memory for the object and when the computer links, or
binds, member functions to objects.

Binding creates linkages between an object and the member functions of its class.
When the program is running, the computer uses the binding information to locate
the correct functions for the object. Binding can be performed when the program is
compiled (static binding) or while the program is running (dynamic binding).

Objects created for static binding are declared like variables, using the following
general syntax:

class_name variable_name

78 Chapter 5 • Simple Input and Output

Listing 5.3 The main function for the Ticket Printer program

#include <iostream.h>
#include <stdio.h>
#include "ticket.h"

void main ()
I

Ticket Tix; II object of class Ticket
inti; II index for "for" loop
int howMany; II number of tickets to print
char go_on;
char event[51J; II name of the event
char date[9]; II date of the event

cout « "\nWhat is the name of the event? "
gets (event);
cout « "\nWhat is the date of the event? "
gets (datel;
Tix.init (event, date);

cout << "\nHow many tickets do you want to print? ";
cin » howMany;
for Ci = l; i <= howMany; i++ l II print more than one ticket
I

Tix.print (il;
cout << "Next? "·
cin » go_on;

In the Ticket Printer program's main function, for example, an object to handle the
ticket is declared with:

Ticket Tix;

When the program is compiled, memory is set aside for an object declared for
static binding. Like any other variable, the object remains in memory as long as the
function in which it is declared is running.

NOTE

Creating objects for dynamic binding requires the use of pointers. We will therefore
defer a discussion of dynamic binding until Chapter 11.

The Ticket Printer Program 79

Calling Member Functions
The way in which you call a member function depends on whether the object has
been declared for use with static or dynamic binding. When you are using static bind
ing, a member function call looks like this:

object_name.function_name (parameter_list);

The Ticket Printer program's main function calls two functions directly: in it
and print:

Tix.init (event, date);
Tix.print (i);

However, main never calls the class's constructor. This is because constructors are
called automatically whenever an object is created. In this case, the constructor is
called when the program is loaded into main memory at the beginning of the pro
gram run, as the program is allocating data storage space.

Performing the 1/0
The I/ 0 performed by the Ticket Printer program appears in two places: the pr i n t
function for the ticket itself and the ma i n function for gathering data needed by the
Ti ck et object's member functions.

The reason for separating the I/ 0 in this way is to make the program more flexi
ble. You can modify the layout of the printed ticket without making any changes to
the main program; you can modify the main program's user interface without mak
ing any change to the class's member function that prints the ticket.

The program can create any number of tickets, up to the maximum value that can
be stored in an integer storage location. To repeat the call to the pr i n t function, the
program uses a for statement, one of several C++ statements that repeat a group of
actions. (You will be introduced to the details of this type of statement in Chapter 8.)

NOTE
If you look carefully at the for statement, you'll see a variable named "i." This single
letter variables appears to be a violation of the rule that you should always use mean
ingfUl variable names. However, most programmers recognize the single letters i, j, and
k for use in statements that repeat actions. This is the one case where it is therefore
acceptable to use single-letter variables.

80 Chapter 5 • Simple Input and Output

PROGRAMMING CHALLENGE NUMBER 1

At this point, the ticket shows only the name of the event, the date of the event, and
the ticket number. Your job is to modify the program so that it also includes the
ticket price. To add the ticket price, you will need to do the following:

• Add a fl o a t variable to the class definition in the header file for the ticket price.
• Modify ma i n so that it asks the user for the ticket price. (Hint: Don't forget to add

a fl oat variable to main to hold the user's input.)
• Modify the i n i t function's prototype so that it expects a fl oat parameter as

well as the two string parameters.
• Modify the i n i t function's header so that it includes the fl oat parameter and

gives the parameter a name.
• Modify the body of the i n i t function so that it includes a line that assigns the val

ue in the input parameter to the class variable.
• Modify the pr i n t function so that it includes printing a line for the ticket price.
• Modify ma i n so that the function call to pr i n t includes the new parameter.

Run the program to test your modifications. If you aren't satisfied with the appear
ance of the modified ticket, fix the co u t statements and try again. Keep fiddling with
the program until the ticket meets your criteria.

NOTE
If you are tired of responding to the "Next?" question after each ticket prints, remove
the cout statement that prints the prompt and the cin statement that follows. The tick
ets will then print without pausin&

File Operations

ANSI C++ can create two types of files: text files and binary files. A text file contains
readable characters. You can examine its contents with any text editor or word pro
cessor, including the Code Warrior editor. A binary file contains an unformatted
stream of bits. Although you can open the file with a text editor, its contents will be
unintelligible. For the purposes of learning throughout this book, we will be using
only text files so that it's easy to check the files for accuracy.

Text file input and output is very similar to console stream II 0. To write to or
read from a file, you create an object for a file stream and then use the stream

File Operations 81

insertion or extraction operator (as appropriate) to send values to the stream. The
file is closed when the function in which its object was created terminates; you can
also close a file explicitly.

Support for file IIO is part of a large C++ class hierarchy. All the classes in this
hierarchy are ultimately derived from the class i o s. Throughout this section you will
therefore see references to parts of the i o s class that are used by file stream II 0.
Prototypes for the file II 0 functions are found in fstream. h, which must be included
in any source file that uses file stream objects.

For your first experience with file II 0, you will be looking at a program that stores
precious metals prices. As you can see in Figure 5.2, the program displays yesterday's
prices (read from a text file) and asks you for today's prices. The current prices are
written back to the file just before the program terminates.

Figure 5.2 Output of the Metals Prices program

Metals prices.out
SIOUX state : application has terminated.

Yesterday's precious metals prices were:
Gold : 475.75
Si Iver : 18.88
Copper: 47

Today's gold pr ice : 460.21
Today's si Iver price: 17.75
Today's copper price: 48.80 +

Iii

The Metals Prices program uses one class-Metal s_pri ces-that stores the
prices for gold, silver, and copper. Notice in Listing 5.4 that the c)ass has three vari
ables, one for each price. The member functions include a constructor, a function to
read data from the file (read), a function to write data to the file (write), and a
function to change the data stored in an object created from the class (modify).

The remaining three functions-those whose names start with get-return the
value in one private class variable to a calling function. This is a frequently used
mechanism to give functions outside the class access to private class variable values.
If you look at the bottom of Listing 5.5 (the member functions for the Metals Prices
program, you will see that the body of each of the get functions includes nothing
more than a return statement.

The constructor (the function with the same name as the class) assigns Oto each of
the class variables. The modi f y function accepts three values from a calling function
and copies those values into the class's variables.

82 Chapter 5 • Simple Input and Output

Listing 5.4 The header file for the Metals Prices program

class Metals_prices
I

I:

private:
float gold, silver, copper;

public:
Metals_prices(J;
void read Cl;
void write ();
void modify (float. float. float);
float getGold(J;
float getSilver();
float getCopper(J;

The actions of the program are, of course, controlled by the program's ma i n func
tion (Listing 5.6). The program first calls the read function to load the object's data
from the file. It displays yesterday's prices, using the get functions to retrieve the
values the read function stored in the object.

Notice that the cout statements that display yesterday's prices include the get
function calls. The value returned by these functions (in each case, a floating point
value) is inserted directly into the output stream.

NOTE
A common error when placing a .function call in an output stream is to forget to include
the parentheses for the parameter list after the name of a member .function that has no
input parameters. If you leave the parentheses off, the compiler will think you are trying
to access a class variable and will produce an error message that indicates that the vari
able either doesn't exist or is inaccessible.

After displaying yesterday's prices, the program asks for today's prices, which are
collected in local variables. The program then modifies the prices stored in the object
with the modify function and completes its work by writing the new prices to the
file with the object's write function.

FILE OUTPUT

Writing to a file is very similar to using cout to display characters in a SIOUX con
sole window. However, the values must be formatted in such a way that they can be
read correctly the next time the file is used. In this section you will learn to create a

File Operations

Listing 5.5 Member functions for the metals_prices class

#include <fstream.h>
#include "metals_prices.h"

Metals_prices: :Metals_prices ()
I

gold = O;
silver O;
copper = O;

void Metals_prices::read ()
I

II create the input stream
ifstream pricesln ("prices");

II Actually should check to see if file exists
II before attempting to read from it. See
II Chapter 7 for details.

II read the data
pricesin >> gold >> silver>> copper;
II file is closed automatically when function terminates

void Metals_prices::write ()
I

II create the output stream
ofstream pricesOut ("prices");
II write to the output file
pricesOut << gold << " " << silver << " " << copper;

void Metals_prices::modify (float igold, float isilver, float icopper)
I

gold = igold;
silver isilver;
copper = icopper;

float Metals_prices::getGold()
I return gold; I

float Metals_prices: :getSilver()
{ return silver; I

float Metals_prices::getCopper<l
I return copper; I

83

84 Chapter 5 • Simple Input and Output

Listing 5.6 The main function for the Metals Prices program

#include <iostream.h>
#include "metals_prices.h"

void main ()
(

float igold, isilver, icopper;
Metals_prices prices; // create an object

prices.read();

cout << "Yesterday's precious metals prices were:" << endl;
cout <<" Gold: "<< prices.getGold() << endl;
cout <<" Silver: "<< prices.getSilver() << endl;
cout << " Copper: " << prices.getCopper() << endl;

cout << "Today's gold price: ";
cin » igold;
cout << "Today's silver price: "·
cin » isilver;
cout «"Today's copper price: ";
cin » icopper;

prices.modify(igold, isilver, icopper);
prices.write();

file output stream object and to use that object to send data to that file so that it can
be read.

Opening a File for Output

To open a file for output, you create a file output stream object, using the following
general syntax:

ofstream stream_name ("file_name");

The file name can be a string constant, surrounded by double quotes as it is in the
preceding syntax, or it can be a string variable name, in which the quotes aren't nec
essary.

For example, the Metals Prices program stores its data in a file named pr i c es.
The program therefore opens the file for output with:

File Operations 85

ofstream pricesOut ("prices");

When you create an of stream object, the computer first looks to see if a file
already exists. If it does, the computer opens the file. Writing to the file begins at the
beginning of the file, wiping out any contents the file might already have. If the file
doesn't exist, the computer creates an empty file.

Writing Simple Values to the File
When you write to a file, you must explicitly separate the values so that when the file
is read, the computer knows where one value stops and another begins. You do this
by placing a space after each numeric or character value. (Strings add considerable
complications to managing text files. Adding strings to files is therefore covered in
Chapter 10.)

For example, to write the three floating point values, the Metals Prices program
uses:

pricesOut << gold << " " << silver << " " << copper;

It isn't necessary to place a space after the last value.

If the gold price is 467.50, the silver price 12.00, and the copper price 46.86, the file
contains:

467.5 12 46.86

Notice that trailing zeros, even if you enter them from the keyboard, are not included
in the file.

NOTE

Most ANSI-compatible compilers automatically place a space after each numeric or
character value that is written to a file. The explicit spaces usually aren't needed unless
you are also storing strings in the file. Code Warrior acts consistently when it requires
you to explicitly insert the spaces regardless of the type of data you are writing; How
ever, if you switch to another compiler, watch your text files carefully to determine
whether explicitly adding a space after each value results in two spaces between values.
If that is the case, you will need to remove the explicit spaces to get a file that can be
read correctly.

86 Chapter 5 • Simple Input and Output

FILE INPUT

Reading numeric and character values from a text file is very similar to using c i n to
read values from the keyboard. First, you create an input file object. Then you use
the stream extraction operator to retrieve the values from the stream.

Opening a File for Input

To open a file for input, you create an object from the class i f stream, using the gen
eral syntax:

ifstream stream_name ("fUe_name");

The Metals Prices program, for example, creates its input file with:

ifstream pricesln ("prices");

NOTE

There is a very real possibility that an attempt to open a file for reading will fail (for
example, if the file doesn't exist). A good program always checks to see whether a file
has been opened successfully and takes appropriate action if a problem has occurred.
You will learn how to do this in Chapter 7.

Reading Simple Values from a File

To read numeric and character values from a file, you extract the values from the
input stream, placing them into variables just as you would with the c i n stream. For
example, the Metals Prices program reads its three values with:

pricesln >> gold >> silver >> copper;

When you are reading numeric and character values, the computer automatically
skips over the spaces that have been inserted to separate the values.

Formatting Stream Output 87

Formatting Stream Output

If you look back at Figure 5.2, you'll notice that the output isn't particularly well for
matted. The values don't look much like currency because some of the values don't
have two places to the right of the decimal point. What decimal points do appear
don't line up. The output should probably look more like Figure 5.3. Notice that the
values are now formatted to appear as currency and that the decimal points are in a
line.

Figure 5.3 The Metal Prices program, including formatted output

Metals prices.out

Yesterday's precious metals prices
were:

Gold: $*475.75
Si Iver: $**18.88
Copper: $**47.00

Today's gold price: 477. 12
Today's si Iver price: 17.80 +

Iii

There are two elements to creating the formatted output. The first is careful prep
aration of the string constants that appear in the co u t statements. The second is the
use of manipulators, i o s class member functions that set stream formatting charac
teristics.

In Listing 5.7 you will find the modified main function for the Metals Prices pro
gram that produced the output in Figure 5.3. Notice first that the labels for the prices
and the dollar signs that precede the numbers are part of the string constant that
begins the co u t statements. The colons that follow the name of the metals line up
simply because the strings have been created so that they contain the right number of
spaces for the desired effect. This works, by the way, only with a monospaced font.

The formatting of the numbers themselves is handled by the i o s manipulators.
Before using them, be sure to include iomanip.h in your program.

SETTING PRECISION, WIDTH, AND FILL

Three of the most commonly used stream manipulators set the precision of a num
ber (the number of digits to the right of the decimal point), the width of the field in

88 Chapter 5 • Simple Input and Output

Listing 5.7 The main function for the Metals Prices program, including
stream output formatting

#include <iostream.h>
#include <iomanip.h>
#include "metals_prices.h"

void main()
I

float igold, isilver, icopper;
Metals_prices prices: // create an object

prices.read();
cout << setiosflags (ios::fixed I ios::rightl << setprecision(2)

« setfill('*'l;
cout << "Yesterday's precious metals prices were:" << endl;
cout <<" Gold: $" << setw(7) << prices.getGold() << endl;
cout <<" Silver: $" << setw(7) << prices.getSilver() << endl;
cout << • Copper: $" << setw(7) << prices.getCopper() << endl;

cout << "Today's gold price: ";
cin » igold;
cout <<"Today's silver price: "·
cin » isilver;
cout << "Today's copper price: "·
cin » icopper;

prices.modify(igold, isilver, icopper);
prices .write();

which a number appears, and the character used to fill the width of the field if the
value is smaller than the field. Each of these is a function call that can be inserted
directly into an output stream.

Setting Precision

To set the precision of numeric values, insert the set pre c i s i on function into an
output stream. The function takes one parameter: the number of character that are
to appear to the right of the decimal point. For example, to format numbers for cur
rency, the Metals Prices program uses:

cout << setprecision(2);

Formatting Stream Output 89

The precision you set affects only the stream into which it is inserted. It stays in
effect until you insert a different value for precision into that stream.

Setting Width
To set the width of the field in which a value is displayed, insert the set w function
into an output stream. Like set pre c i s i on, set w takes only one parameter. In this
case, it is the width of the field. The output fields in the Metals Prices program are set
to seven spaces with:

cout « setw(7);

The set w function returns to the default (just enough space to display the entire
value) immediately after a value is displayed. You must therefore repeat it before
every value whose display field is to be set. In Listing 5.7, for example, it appears
three times, once for each metal price.

Setting Fill
By default, the computer fills the empty spaces in an output field with spaces. How
ever, you change that character with the set f i 11 function. For example, the Metals
Prices program fills the empty spaces with asterisks using:

cout << setfill('*');

Notice that the function's single parameter is the new fill character, surrounded by
single quotes.

Like set p rec i s i on, a fill character affects only the stream into which set f i 11
is inserted. It stays in effect until you specify another fill character for that stream.

SEmNG THE /OS FLAGS

The i o s flags set a variety of formatting characteristics. Some of the most com
monly used can be found in Table 5.1. If you want to use the formatting provided by
an i o s flag, you set the flag, giving the bit that represents the flag a value of 1.

To set the i o s flags, use the set i o sf 1 a gs functions. The flags you want to set
become the function's parameter. If you want to set more than one flag, you must
combine them with an operation known as a logical OR, which is represented by a

90

Table 5.1

Flag
left
right

Chapter 5 • Simple Input and Output

Some commonly used ios flags

Use

Left align the contents of the field

Right align the contents of the field

sh ow point Display a decimal point even if the value is an integer

uppercase Display characters in all uppercase

showpos Precede positive numbers with a+ sign
sci en ti f i c Use scientific (floating point) notation for numbers

fixed Use fixed-point notation for numbers

single bar (I). The logical OR operates on the bits in two values, one bit at a time. If
either bit is a 1, the bit in the result value is a 1; if both bits are O, the result is O.

The Metals Prices program sets the s how poi n t flag and the f i x e d flag. The
former ensures that the decimal point always appears; the latter requests the fixed
point notation. To set the flags, the program includes the following:

cout << setiosflags (ios::fixed I ios::right);

Notice that the name of each flag is preceded with i o s : : . This tells the compiler
that the flags are defined in the i o s class, not in the file stream class.

As with the other manipulators, the i o s flags affect only the stream into which
they are inserted. They remain in effect until you reset them with the reset i o s -
fl a gs function. For example,

cout « resetiosflags (ios::fixed I ios::right);

Each flag is cleared, or reset to 0.

PROGRAMMING CHALLENGE NUMBER 2

The ticket price that you added to the Ticket Printer program earlier hasn't been for
matted to appear like currency. To get some experience using i o s flags, do the fol
lowing to format the ticket price:

1. Set the precision to two places to the right of the decimal point.

Formatting Stream Output 91

2. Set the fixed and showpoi nt flags.
3. Add a dollar sign as a string constant.

In addition, set the uppercase flag so that only the name of the event appears in
all uppercase characters. As you do this, experiment to find out whether the upper -
ca s e flag affects string constants or only strings that are stored in variables.

Arithmetic
Operations

CHAPTER

just after World War II, when computers were first being viewed as practical
machines, most people thought that the only thing computers could do well was
handle high volumes of arithmetic computations. In fact, the first commercially sold
computer went to the U.S. Bureau of the Census.

We've come a long way from those vacuum tube-based early computers. However,
computers are still very good at performing arithmetic. They can rapidly and accu
rately perform computations that would be tedious to do by hand. In this chapter you
will learn how to instruct a c++ program to perform arithmetic. The operations you
learn here can be included in a class's member functions or in program functions.

The Arithmetic Operators

The C++ arithmetic operators are summarized in Table 6.1. The add, subtract, and
divide operators may look familiar; however, the actions or symbols used for the

93

94 Chapter 6 • Arithmetic Operations

other operators are probably new to you. In this section you will therefore learn the
function of each of the arithmetic operators.

Table 6.1 The C++ arithmetic operators

Symbol Action
+

*
I
%

+

Unary plus

Unary negation
Multiply (the asterisk; type Shift-8)

Divide

Modulo
Add

Subtract
++ Increment (post- or pre-)

Decrement (post- or pre-)

Arithmetic operations can be performed on the right side of an assignment opera
tor. In that case, the result of the operation is assigned to the variable on the left side
of the assignment operator. For example, the following statement takes the contents
of Va 1 u e 1, adds 5 to that value, and places the result of the addition back into
Va 1 u el, replacing the variable's original contents:

Value! = Valuel + 5;

Alternatively, an arithmetic operation can be placed in a stream output statement.
In that case, the result of the arithmetic is inserted into the stream. If, for example,
Va 1 u e 1 contains 5 and Va 1 u e 2 contains 2, the following statement would display
a 7.

cout << Value! + Value2;

ADDITION, SUBTRACTION, AND MULTIPLICATION

The addition, subtraction, and multiplication operators work in the same way as
they do in algebra. However, instead of an x, the multiplication operator is an

The Arithmetic Operators 95

asterisk (*, generated by pressing Shift-8). An x would appear to the compiler as a
variable name and therefore isn't very practical as an operator.

As with any other operators, you can combine more than one addition, subtrac
tion, or multiplication operator in a single expression. An expression can contain any
combination of variable names, constants, and operators. Any of the following are
therefore legal arithmetic expressions:

const CONSTANT = 63;

Valuel + Value2 + Value3
Valuel + 63
Valuel + CONSTANT
Valuel - 63 - Val ue2
Valuel - CONSTANT * Value2
Valuel - Value2 + Value3
Valuel * Value2 * Value3
Value+ Value2 * Value3 - Value4

Notice that the preceding examples aren't followed by semicolons. This is because
they aren't complete C++ statements. To make up a complete statement, the result
of an arithmetic expression must be assigned to a variable across an assignment oper
ator, used as a parameter in a function call, or placed in an output stream, as in the
following:

Cost = Price * Quantity;
Object.store_info (Price* Quantity);
cout << Price *Quantity;

When an arithmetic expression is used as a parameter in a function call or is
placed in an output stream, the result of the expression is used by the program but
isn't retained in main memory after that use. A program could, for example, first
compute the cost of a purchase, saving the cost in a variable, and then use that vari
able in a function call or output stream.

Cost = Price * Quantity;
Object.store_info (Cost);
cout « Cost;

96 Chapter 6 • Arithmetic Operations

Which should you do? Store a computation in a variable first and then use the con
tents of the variable in other statements? Or should you put the computation directly
into a function call or output stream? There is a trade-off between the two strategies.
Storing the result in a variable requires main memory space for the variable and time
to store the result. However, if the result of the computation needs to be used more
than once, the program will execute more quickly if the computation is performed
only once; it takes less time to retrieve a single value stored in main memory than to
retrieve all the values needed in a computation and perform the computation. There
fore, if you need the result of a computation only once, go ahead and put it directly
into a function call or output stream. However, if space in main memory isn't an
overriding concern and you need to use the result of a computation many times,
store the result in a variable that you can then reference.

DIVISION

C++ provides two operators that perform division: I and%. The divide operator(/)
performs either an integer or floating point division and returns the quotient. The
modulo operator(%) performs an integer division and returns the remainder.

Integer versus Floating Point Division
The result of a division varies depending on whether the numbers being divided are
integers or floating point values. Consider, for example, the following declarations:

int Integerl

float Floatl

5, Integer2

5.0, Float2

2 . .
2. 0;

The expression I n t e g er 1 I I n t e g er 2 produces a result of 2. Although internally
the computer has a result of 2.5, because the two values being divided are integers,
the result is truncated to an integer. (Truncating means that the fraction part of the
number-the digits to the right of the decimal point-is dropped.)

As you might expect, the expression Fl oatl I Fl oat2 produces 2.5. Because
both values being divided are floating point values, the result is returned as a floating
point value. However, what happens if you write an expression like Integer 1 I
Fl oat2 or Fl oatl I I nteger2? The computer performs a floating point division.
When values of different precisions (different number of digits to the right of the
decimal point) appear in the same arithmetic statement, the computer by default

The Arithmetic Operators 97

converts them all to match the value of the highest precision before performing the
arithmetic.

If you place an expression like Fl oat 1 I I n t e g er 2 in a co u t statement, you will
see a floating point value. However, if the result of the division is placed in a variable
across an assignment operator, what you get in the variable depends on the data type
of the variable. For example, the following performs a floating point division, but
truncates the result to 2 when assigning it to the integer variable I n t e g e r 1:

Integerl Fl oatl I Integer2;

By the same token, the following statement performs the integer division and then
assigns 2.0 to the floating point variable:

Floatl I ntegerl I I nteger2;

The data type changing that C++ performs when operations include more than one
type of data is known as typecasting and is discussed in more depth later in this chap
ter.

Modulo Division

Modulo division performs an integer division and returns as its result the remainder of
the division; the quotient is thrown away. For example:

5 % 2 returns 1

25 % 7 returns 4

18 % 5 returns 3

Modulo division will work only with integer values. For example, if you use the
following in a program, the compiler will report an error:

float Valuel, Value2;

Valuel = Valuel % Value2;

98 Chapter 6 • Arithmetic Operations

THE UNARY SIGN OPERA TORS

Some of the C++ arithmetic operators are unary operators. This means that they
operate on only one value at a time. Two of those operators-unary plus and nega
tion-are also used for addition and subtraction. The way in which the C++ com
piler interprets the operator depends on how it appears in an arithmetic statement.

The unary plus operator(+) preserves the sign of a value during an arithmetic
operation. For example, if Va l u e 1 contains 1 and Val u e 2 contains -2, the following
statements are true:

+Value2 + Valuel returns -1
Valuel - +Value2 returns 3
+Value2 - Valuel returns -3

How does the compiler know which of the plus signs represents a unary plus opera
tion and which represents an addition operation? The answer lies in where the plus
signs appear in the expression. When a plus sign begins an expression and is followed
by only one value (a constant or a variable), it is interpreted as a unary plus; when a
plus sign is surrounded by two values, it is interpreted as an addition.

In the case of the subtraction example, the compiler knows that - + must be a
minus operator and a unary plus because - + doesn't represent any other possibility.
However, what might the compiler make of the following?

Valuel + +Value2

Even if you intend a unary plus and an addition, the compiler can't distinguish the
two plus signs from the increment operator. (Keep in mind that with the exception of
string constants, spaces in source code are ignored.) The solution is to clarify the
expression by using parentheses:

Valuel + C+Value2)

The parentheses make it clear that you want the unary plus performed first, followed
by the addition. Parentheses are an important tool in determining the precedence of
operations, which will be discussed in depth shortly.

The unary negation operator changes the sign of a value. For example, assuming
once again that Va l u e 1 contains 1 and that Val u e 2 contains -2, the following state
ments are true:

The Arithmetic Operators

-Value2 + Valuel returns 3
-Valuel + Value2 returns -3
Valuel + -Value2 returns 3
-Value2 - Valuel returns 1
Valuel - C-Value2) returns 4

99

Notice that the last example required parentheses to distinguish the subtraction and
a unary negation from the decrement operator.

THE INCREMENT AND DECREMENT OPERA TORS

The increment and decrement operators (++ and - -) are shorthand for expressions
that add or subtract 1 from an integer or floating point variable. They are particularly
handy for counting things or for keeping track of where you are when you are pro
cessing a list of things. Although unary operators, they can be placed either before or
after a variable name. Their action depends on their position.

Preincrement and Predecrement
When the increment and decrement operators are placed in front of a variable name,
they are known as preincrement and predecrement. This means that the computer
increments or decrements the value in the variable before doing anything else in the
expression. As an example, consider the following expression:

Valuel = Valuel + (++Value2);

The computer first adds 1 to Va 1 u e 2 and then performs the addition. If Va 1 u e 1 con
tains 1 and Va 1 u e 2 contains 3, after the expression is evaluated V a 1 u e 1 contains 5

and Va 1 u e 2 contains 4. Notice that Va 1 u e 2 is modified by the increment operator
and retains the modified result. By the same token, the following expression first
subtracts 1 from Va 1 u e 2 and then performs the addition:

Value 1 = Valuel + C--Value2);

Given Val uel beginning with 1 and Val ue2 beginning with 3, Val uel ends up
with 3andVa1 ue2 with 2.

100 Chapter 6 • Arithmetic Operations

Postincrement and Postdecrement
When the increment and decrement operators are placed after a variable name, they
are known as postincrement and postdecrement. As you might expect, this means that
the computer increments or decrements the value in the variable after completing
the evaluation of the rest of the expression. The following expression performs the
addition and then increments the contents of Va 1 u e 2 by 1:

Valuel = Valuel + Value2++;

It is important to realize that the postincrement applies to Va 1 u e 2 only, not to the
result of the entire expression. In other words, the preceding example is equivalent to
the following statements:

Valuel
Value2

Valuel + Value2;
Value2 + l;

A postdecrement works in the same way. The following expression performs the
addition and then subtracts 1 from Va 1 u e 2:

Valuel = Valuel + (--Value2);

It is equivalent to the following two statements:

Valuel
Value2

Valuel + Value2;
Value2 l;

Assignment Shorthand

C++ provides a shorthand for assignment operations, such as

Valuel Valuel + arithmetic_expression;
Valuel Valuel arithmetic_expression;
Valuel Valuel * arithmetic_expression;
Valuel Valuel I arithmetic_expression;
Valuel Valuel % arithmetic_expression;

Precedence 101

The shorthand combines the assignment and arithmetic operator into one new oper
ator. The preceding statements can be rewritten in the following way:

Valuel += arithmetic _expression;
Valuel arithmetic _expression;
Valuel *= arithmetic _expression;
Valuel I= arithmetic_expression;
Valuel %= arithmetic _expression;

You can use one of these combined, shorthand operators whenever an assignment
statement takes the current value in a variable, uses that value in an arithmetic
expression, and places the result back in the variable's storage location.

Notice that these shorthand operators reverse the order of the operators from the
longer assignment statements you saw on the preceding page. A common error is
therefore to reverse the combined operator. For example, if you reverse +=, the com
piler sees the following statement:

Valuel =+ arithmetic_expression;

It thinks you want to perform a unary plus followed by an assignment. Although the
compiler will flag =*, =I, and =% as errors, =+ and = - will slip by because + and - are
valid unary operators.

Precedence

When an arithmetic expression contains more than one operator, the computer must
decide which operation to perform first. As an example, consider the following
expression:

15 + 2 I 10

There are two possible answers: 1.7 (15 + 2 = 17; 17 I 10 = 1.7) and 15.2 (2 I 10 = 0.2;
0.2 + 15 = 15.2), depending on whether the addition or division is performed first.
Unless the programmer tells the computer otherwise, computers use rules of prece
dence to decide the order of operations in an expression.

102 Chapter 6 • Arithmetic Operations

c++·s default rules of precedence for arithmetic operators can be found in
Table 6.2. When more than one operator of the same precedence occurs in the same
expression, the computer performs the operations from left to right. In the example
on the preceding page, the computer would return a result of 15.2, because the divi
sion operation takes precedence over the addition.

Table 6.2 Default rules of precedence for arithmetic operators

Evaluated first

Evaluated second

Evaluated third

++

*
+

I
unary + unary -
%

Often the default rules of precedence don't produce the result you want. For
example, what if you really do want the addition of 15 and 2 to occur before the divi
sion by 10? The solution is to use parentheses to defeat the default precedence. The
computer evaluates what is within parentheses first. In other words, parentheses
have even higher precedence than any of the arithmetic operators. To get the addi
tion and division to occur in the correct order, you could use:

05 + 2) I 10

More than one set of parentheses can occur in an expression. In that case, the
expression is evaluated from left to right. For example, to evaluate the following
expression the computer first adds 15 + 2, then subtracts 4 - 1, and finally multiplies
17 times 3, producing the final result of 51:

(15 + 2) * (4 - 1)

Parentheses can be nested. When that occurs, the inner set of parentheses is evalu
ated first. For example, in the following expression the computer first adds 12 plus 6

and then multiplies by 2, resulting in 36:

((12 + 6) * 2)

There is theoretically no limit to how deep parentheses can be nested. However,
every time you use an opening parenthesis, there must be a closing parenthesis to
match. The compiler will generate an error message if the parentheses in a statement

Typecasting 103

aren't balanced. As you may remember from Chapter 3, however, the CodeWarrior
editor helps you match opening and closing parentheses by showing you the opening
parenthesis that is associated with each closing parenthesis as you type.

Typecasting

In its most general sense the term typecasting refers to temporarily changing the data
type of a value during processing of the data. As you read earlier in the discussion of
division, some typecasting is done automatically by C++. In addition, you can explic
itly typecast a value.

DEFAULT TYPECASTING

Default typecasting occurs when C++ temporarily changes the data type of a value
for use in an expression. When you combine numeric values of differing precisions in
the same expression, the values will be typecast to match the value with the highest
precision. As examples, consider the following:

2.5 * 3 returns 7.5
5 I 2 returns 2
5 I 2.0 return 2.5

Note that if the values involved in the expression are stored in variables, the default
typecasting doesn't affect the stored values. It is performed temporarily, for use only
in the specific expression.

Default typecasting also occurs when you assign a value to a variable across an
assignment operator. If an expression produces an integer result, assigning that result
to a floating point variable typecasts the result into a floating point value. By the
same token, if an expression produces a floating point result, assigning that result to
an integer variable truncates the result to an integer.

Characters can also be involved in default typecasting. If you use a character vari
able in an expression that ordinarily requires an integer, the computer uses the char
acter's ASCII code as if it were an integer value. You will see an example of this in
Chapter7.

104 Chapter 6 • Arithmetic Operations

EXPLICIT TYPECASTING

In some cases, you may explicitly want to tell the computer to typecast a value. This
is used primarily when you want to force an arithmetic expression to be evaluated
with a specific precision. Explicit typecasting is also used occasionally when expres
sions include pointers.

To explicitly typecast a value, place the data type to which you want to cast the
value in parentheses in front of the value. For example,

FloatVariable = (float) 5 I (float) 2;

typecasts the integer values 5 and 2 to floating point before the division is performed.
Although the values involved are integer, the typecasting instructs the computer to
perform a floating point division, assigning 2.5 to the floating point variable rather
than the 2.0 that would have been generated by an integer division.

Math Library Functions

It may seem to you that C++ arithmetic operators are fairly basic. In fact, they don't
even cover the range of operations found on a $10 calculator. Does this mean that
C++ is relatively weak in terms of arithmetic power? Not at all. The missing opera
tions are provided through library functions.

Functions for traditional math operations (for example, exponentiation, square
root, and trigonometric functions) are part of the ANSI C math library. Prototypes
can be found in math.h.

Documentation for C library functions is contained in the C Library Reference file
on the Code Warrior CD-ROM. There you will find the prototypes for the functions
and, in some cases, short program examples of how to use the functions. To get you
started, however, the rest of this section looks at a few of the more commonly used
math library functions.

NOTE
The C libraries are quite extensive. To find out the extent of what is available, take
some time to browse through the documentation. That's really the only way you'll dis
cover all the things that a compiler has provided for you. The time spent scanning the
library documentation is well made up in savings of programming time.

Math Library Functions 105

EXPONENTIATION

Unlike many other programming languages, C++ has no operator for exponentia
tion (raising a number to a power). You must therefore use pow, a library function,
for that purpose. In the C library documentation you will find that the pow entry
begins with Listing 6.1. Notice that the Synopsis section tells you that the prototype
is in math.hand also shows you the function's prototype.

Listing 6.1 Documentation of the pow function

Purpose
Synopsis

Return value

Calculate xY.
#include <math.h>
double pow(double x, double y);
pow() returns xY. The pow() function assigns EDOM to errno if
x is 0.0 and y is less than or equal to zero or if x is less
than zero and y is not an integer.

This function is written to operate on double-precision floating point values. By
default, it also returns a double-precision floating point value. However, because
C++ performs automatic typecasting, the function will also accept integer and stan
dard format floating point values. In other words, when you see documentation of a
math library function, the data types indicate the maximum precision at which the
function will operate. You can always also give the function values of lower preci
sion.

For example, to cube a number, you could use the following statements:

int cube= 3;
float myValue, answer;
answer= pow (myValue, cube);

SQUARE ROOT

The square root function-sq rt-has the following prototype:

double sqrt (double x);

To get an accurate result from the function, make sure that your result variable is
either a fl oat or a do u b 1 e, although the number of which you are taking the

106 Chapter 6 • Arithmetic Operations

square root could be an i n t, fl oat, or do u b 1 e. For example, you could use the
function and assign its result to a variable:

double root;
int value = 279;
root= sqrt (value);

Or, as with any other function that returns a value, you could place it directly in an
output stream:

cout <<sqrt (value);

ABSOLUTE VALUE

The absolute value of a number is the positive value of a number. In other words,
positive values remain positive, and negative numbers are made positive. This opera
tion is used frequently in both financial and statistical calculations. The absolute
value function has the following prototype:

double fabs (double x);

If you include the following source code, the abs_ v a 1 u e variable will contain 12.53:

float abs_value, float_value = -12.53;
abs_value = fabs Cfloat_value);

FLOATING POINT MODULO DIVISION

Although there is no operator for floating point modulo division, you can perform
the operation with the fmod function:

double fmod (double x, double y);

The computer divides x by y and returns the remainder. For example, the following
statements produce a result of 1.:

The Calculator Program

double valuel = 11.0, value2 = 2.5 , result;

result= fmod (valuel. value2);

The Calculator Program

107

To see arithmetic operations in action, we will be looking at a simple program that
simulates the action of a calculator. A sample run of the program appears in Figure
6.1. The calculator processes a simple expression that consists of a value, an operator,
and a second value. Because the program uses c i n to accept the three parts of the
expression into individual variables, each value must be separated by a space.

Figure 6.1 Output of the Calculator program

Colculotor.out
SIOUX state : application has terminated .

Ar ithmetic expression: 5 . 5 + 2 ~

Answer: 7.5

Another? y

Arithmetic expression : 5.5 - 2

Answer : 3 .5

Another? y

Arithmetic expression: 5 . 5 * 2

Answer : 11

Another? y

Arithmetic expression : 5 . 5 I 2

Answer : 2.75

Another? y

Arithmetic expression : 5.5 A 2

Answer: 30 . 25

Another? n 'O
~

108 Chapter 6 • Arithmetic Operations

The program is based on the Cal cul at or class (Listing 6.2). The class stores one
value: the result of an arithmetic operation on two numbers. The member functions
perform the computations. Notice that all of the functions are defined to handle
floating point numbers and can therefore be used with either integers or floating
point values.

Listing 6.2 The header file for the Calculator program

class Calculator
I

private:
float result:

public:

I:

Calculator ();
float Add (float, float):
float Subtract (float, floatl:
float Multiply (float. float):
float Divide (float, floatl:
float Exponentiate (float, float);

The member functions can be found in Listing 6.3. The constructor simply initial
izes the res u l t variable to 0. Each of the remaining functions performs one calcula
tion, assigns a value to result, and then returns the contents of result to the
calling function. As mentioned earlier, these functions are limited to expressions that
contain only two values. (It's a very simple calculator.)

NOTE

This program could get away without having any private variables; the way the pro
gram is currently written, the contents of the result variable aren't u.sed. The member
functions could therefore simply place the computation in their return statements,
sending the result value directly back to the main function.

The ma i n function, which controls the program's actions, appears in Listing 6.4.
As you saw from the sample run of the program, the user is asked whether he or she
want to perform another calculation each time the program completes one calcula
tion. This action is controlled by the statement grouping that begins with wh i l e.
The boundaries of the grouping are indicated by the braces that are opened immedi
ately below the line containing while. Using wh i le is one way to get a computer to
repeat actions. You will learn the details of how this works in Chapter 8.

The Calculator Program 109

"'
Listing 6.3 Member functions for the Calculator program

#include <math.h> // location of prototype for "pow" function
#include "Calculator.h"

Calculator::Calculator ()
I

result = 0:

float Calculator::Add (float valuel, float value2)
I

result= valuel + value2:
return result:

float Calculator::Subtract (float valuel. float value2)
I

result = valuel - value2:
return result:

float Calculator::Multiply (float valuel, float value2)
I

result = valuel * value2:
return result:

float Calculator::Divide (float valuel, float value2l
I

result= valuel I value2:
return result:

float Calculator::Exponentiate (float valuel, float value2)
I

result= pow Cvaluel, value2): // computes valuel to the value2 power
return result:

Notice in Listing 6.4 that the arithmetic expression is read from the keyboard into
three separate variables. The operator, stored in the variable Operator, is a charac
ter that is then used in a s w i t ch statement to choose the correct member function
to call. A s wi t ch is one way to get a computer to make a choice among several alter
native actions and is discussed in detail in Chapter 8.

A call to a member function places the result of the expression into a variable
named answer. The program finishes by displaying the result and then asking the
user whether he or she wants to perform another computation.

110 Chapter 6 • Arithmetic Operations

Listing 6.4 The main function for the Calculator program

#include <iostream.h>
#include "Calculator.h"

void main()
(

Calculator Cale; II declare a Calculator object named "Cale;

II local variables
char Operator; II arithmetic operator used in an expression
char yes_no = 'Y';
float first_value, second_value; II values used in computation
float answer;

while (yes_no == 'Y' II yes_no == 'y') II a way to repeat actions
(

cout << "\nArithmetic expression:
cin >> first_value >>Operator>> second_value;

switch (Operator) II a way to make choices
(

case '+':
answer
break;

case

case

' - I •

answer
break;
'*'.

answer
break;

case 'I':

Cale.Add (first_value, second_value);

Cale.Subtract (first_value, second_value);

Cale.Multiply (first_value, second_value);

answer Cale.Divide (first_value. second_value);
break;

case lj\t.

answer Cale.Exponentiate (first_value, second_value);
break;

II Note: for the programming challenge, add code right here!

default:
cout << "\nUnidentified operator";

cout << "\nAnswer: " << answer << endl;
cout << "\nAnother? "·
cin » yes_no;

The Calculator Program 111

PROGRAMMING CHALLENGE NUMBER 3

Given what you now know about math library functions, you can add another capa
bility to the Calculator program: support for modulo division, using the percent sign
(%) as the operator. To add the modulo division, make the following changes:

• Modify main.cpp at the location noted in Listing 6.4, inserting the following state
ments:

case '%':
answer
break;

Cale.Mod (first_value. second_value);

• Add a function to the Ca l cul at or class in the Calculator. h file with the proto
type:

float Mod (float, float);

• Add the member function to the Calculator.cpp file, which contains the other
member function declarations.

Test your program to make sure it works. If the program compiles but doesn't exe
cute properly, don't be afraid to use the debugger to help you see where problems are
occurring.

CHAPTER

Making Choices

One of the most common things a program does is to choose between alternative
groups of actions, based on logical criteria. For example, if an employee has no over
time hours, a program could compute gross pay by multiplying the number of hours
worked by the employee's hourly wage. However, if the employee did work over
time, the gross-pay computation would also need to include time-and-a-half compu
tations for the overtime hours. This type of choice is typical of those programs make
all the time.

In this chapter you will learn how to create logical expressions that a computer
can evaluate. You will also learn how to place those expressions in statements that
control the actions performed by a program.

113

114 Chapter 7 • Making Choices

Formulating Logical
Expressions

A logical expression is an expression that produces a result of true or false. As far as
C++ is concerned, the result of evaluating a false expression is O; a true expression is
represented by some integer value greater than 0, usually 1.

FORMULA TING SIMPLE LOGICAL EXPRESSIONS

Logical expressions are constructed using logical operators. Those in Table 7.1 are
used to make comparisons between two numeric values or characters. If the expres
sion is true, the result of the expression is l; if the expression is false, the result is 0.

Notice in particular that the operator that checks to see whether two values are equal
is made up of two equal signs right next to each other. This distinguishes it from the
assignment operator, which is a single equal sign.

Table 7.1 Logical operators used to make comparisons

Operator Example Action

a == b Returns 1 if a is equal to b; returns O if they are not equal

> a > b Returns 1 if a is greater than b; returns o if a is less than or
equal to b

>= a >= b Returns 1 if a is greater than or equal to b; returns O if a is
less than b

< a < b Returns 1 if a is less than b; returns O if a is greater than or
equal to b

<= a <= b Returns 1 if a is less than or equal to b; returns O if a is
greater than b

!= a != b Returns 1 if a is not equal to b; returns O if a is equal to b

NOTE

Because strings vary in length, yov. can't use the logical operators to compare them; yov.
must use a stringfanction. Comparing strings is discussed in Chapter 10.

Formulating Logical Expressions 115

As an example, assume that val u e 1 is initialized to 5 and that v a l u e 2 is initial
ized to -10. In Table 7.2 you will find the result of evaluating a variety of expressions
using all of C++'s logical operators. Because val ue 1 and val ue2 are numeric, the
evaluation of the expressions are made using numerical order.

Table 7.2 Sample simple logical expressions (value1 = 5; value2 = -10)

Expression Result
valuel == value2 false
value2 == valuel false
valuel > value2 true
value2 > valuel false
valuel >= value2 true
value2 >= valuel false
valuel < value2 false
value2 < valuel true
valuel <= value2 false
value2 <= valuel true
valuel != value2 true
value2 != valuel true

Character Considerations
If the values used in a simple logical expression are characters, evaluation appears to
be based on alphabetical order. However, the computer is in fact basing its evaluation
of the ASCII code values of the characters. In other words, the computer is treating
the ASCII codes as if they were integers. The problem this presents is that A isn't
equal to a.

Assume, for example, that you've asked a program's user to respond to a question
with y for yes and n for no. If the user enters y but you test the response with an
expression such as yes_no == 'Y ', the result will be false, even though the user
responded yes.

There are two solutions to the problem. First, you could use two expressions:

yes_no ·y·

yes_no • y •

116 Chapter 7 • Making Choices

In fact, you will see how to do that in the next section. However, you can avoid the
need for two expressions by converting the user's input to uppercase before you eval
uate it in the logical expression. To do so, use the toupper function. (Its prototype
appears in ctype.h.) For example, the following expression evaluates to true, regard
less of whether the user entered y or Y:

toupper(yes_no) == ·y·

THE UNARY Nor OPERATOR

C++'s logical operators include one unary operator: !, read not. When placed in front
of an expression, ! inverts the result of the expression. In other words, it makes a true
expression false and a false expression true. For example, if v a 1 u e 1 contains O,

! v a 1 u e 1 is true. By the same token, if v a 1 u e 1 contains something greater than O,
! v a 1 u e 1 is false.

FORMULA TING COMPLEX LOGICAL EXPRESSIONS

A complex logical expression is formed by combining simple logical expressions
using the logical operators && (AND) and 11 (OR). If you are combining two simple
logical expressions with & & , the result will be true only if both simple expressions
are true. (You will find this summarized in Table 7.3.)

Table 7.3 Logical AND truth table

&&

Expression 1

Expression 2

true false

11: false

false

As a first example, consider the following expression:

5 > 6 && 1 > 2

Formulating Logical Expressions 117

The entire expression evaluates is false because although 5 > 6 is true, 1 > 2 is false.
By the same token, the following expression is true:

3 == 2+1 && 10 > 8

In this case, the computer performs the addition before evaluating the logical portion
of the expression.

If you are combining two simple expressions with I I , the result will be true if
either of the two simple expressions is true. The expression is false only if both sim
ple expressions are false. (For a summary of 11, see Table 7.3).

Table 7.4 Logical OR truth table

11 Expression 2

true false

Expression 1 I true 11::
true

false false

For example, the following expression is false:

1 > 2 11 5 > 5+ 1

But the next two expressions are true:

1>2115>1+1
2 > i I I 5 > 6

NOTE

The bit-wise AND operator(&) is easily confused with the logical AND(&&). By the
same token, the bit-wise OR operator (I) is easily confused with the logical OR (I IJ.
The bit-wise operators work on one bit at a time; the logical operators combine simple
logical expressions. For an example of the way in which the bit-wise operators can be
used, see Formatting Stream Output at the end of Chapter J.

118 Chapter 7 • Making Choices

PRECEDENCE

As it does with arithmetic operators, the computer applies rules of precedence to log
ical operators. By default, arithmetic operators have precedence over logical opera
tors. Within the logical operators, the unary not operator has the highest
precedence, followed by the inequality comparison operators (>, >=, <, <=), the
equality comparison operators(== and!=),&&, and finally 11 ·When two operators
of the same precedence appear in the same expression, evaluation proceeds from left
to right.

In the following expression, for example, the computer first evaluates each of the
three simple logical expressions:

1 > 2 && 1 > 6 I I 2 < 5

These evaluations produce the intermediate result:

false && false 11 true

The next step is to evaluate the &&, which reduces the expression to:

false 11 true

The final part of the process is to evaluate the 11 • Because one of values being joined
by the I I is true, the entire expression is true.

As you would expect, you can change the precedence of logical expressions by
using parentheses. To see how this works, first consider the evaluation of the follow
ing expression without parentheses:

2 > 1 && 1 > 6 && 1 > 5 I I 5 < 6
true && false && false I I true
false && false 11 true
false 11 true
true

To evaluate this expression, the computer first evaluates the simple logical expres
sions and then performs the && operations from left to right. The final step is to per
form the I I · As you saw, the result is true. However, look what happens if you use
parentheses to change the order of evaluations:

Making Choices: if/else

< 2 > 1 && 1 > 6) && < 1 > s 11 s < 6)
(true && false) && (false 11 true)
(true) && (true)
false

119

In this case, the first && and the I I are evaluated first, followed by the second &&.
The final result is false, the opposite of what it was when the expression was evalu
ated using the default precedence.

Handling Not
When you include the unary not in a logical expression and mix it up with a few
parentheses, the results are often not what you'd expect. Consider, for example, the
following two expressions:

!(1 > 2 && 3 > 2)
!(false && true)
!false
true

!(1 > 2) && !(2 > 3)
!false && !true
true && false
false

As you can see, the placement of the ! operator produces two different results. If it is
placed outside parentheses that contain the entire expression, its effect is to invert
the result of the expression, after the expression has been evaluated. However, when
applied to the individual components of the expression, the ! operator inverts the
result of the individual expressions, before the final logical operation is performed.

Making Choices: if/else

You use logical expressions in a program to instruct the computer to choose between
two or more sets of alternative actions. The most commonly used statement for
malting choices is i f I el s e. In its simplest form this statement has the following
general syntax:

120 Chapter 7 • Making Choices

if (logical expression)
statement to execute if expression is true

If the logical expression is true, the program executes the statement that follows. If
the logical expression is false, the program skips the statement that follows.

The statement that is to be executed if the logical expression following i f is true
may be a simple statement, such as:

if (1 < 2)

cout << "The expression was true";

It may also be a complex statement, in which case the statement must be grouped by
braces:

if (1 < 2)

I
cout << "Even though it's a silly expression";
cout << "it is still true and all these";
cout << "statements will be executed.";

You can provide an alternative set of actions to an i f by adding an e 1 s e, using the
following general syntax:

if (logical expression)
statement to execute if true

else
statement to execute if false

As with the simpler form of the statement, the statements that follow i f and e 1 s e
can be either single statements or compound statements grouped by braces.

Because the statements that follow i f and el s e can be any C++ statement, i f I
el s e statements can be nested within each other. To see how this works, we will be
looking at a simple program that accepts input data from the user and then decides
which of four people (if any) the data entered describes. A sample run of this pro
gram (called Who am Ir) can be found in Figure 7.1. Notice that the program asks the
person's age; whether the person likes broccoli, cats, and dogs; and whether the per
son owns a computer.

Making Choices: if/else 121

Figure 7.1 Output of the Who am I? program

Who am l?.out
SIOUX state : application has terminated .

Age: 27 ~ Likes broccoli ? N
Likes cats? N
Likes dogs? N
Owns a computer? N ~ This person is Jane .

~

The class on which this program is based-W ha-appears in Listing 7 .1. There is
one variable for each personal characteristic and two member functions, a construc
tor and a function to check a person's identity. Notice that in this class, the construc
tor has input parameters and that there is no separate member function to initialize
an object. Although you may often not know the contents of objects created for use
with static binding before a program begins, there is no reason that such objects can't
load data when they are created. You will see how this is handled by both the con
structor and the main function shortly.

Listing 7.1 The header file for the Who am I? program

cla ss Wh o
(

I;

priva t e :
i nt i d_nu mb. age ;
char like_brocco l i. li ke_c ats. l i ke_dogs . ow n_com puter ;

pub l ic:
Wh o (int, int , char, char , cha r , char);
in t check ld enti ty (int , cha r , char, char, cha r) ;

The member functions for the Who class can be found in Listing 7 .2. The construc
tor accepts input data just like any other function. It takes the values that are sup
plied through its parameters and uses them to initialize an object's variables.

The c h e c k I dent i t y function is little more than a lengthy i f statement. The
function compares the input data (all class variables except the ID number) and com
pares them to the object' s stored data. If every piece of data matches, the function
returns the object's ID number. (Keep in mind that because the simple logical expres
sions are joined with &&, every one of them must be true for the entire expression to
be true.) Otherwise, the function returns a 0.

122 Chapter 7 • Making Choices

Listing 7.2 Member functions for the Who am 17 program

#include "who.h"

Who::Who (int id, int iage, char ibroc, char icats, char idogs, char icomputel
I

id_numb = id;
age = iage;
like_broccoli = ibroc;
like_cats = icats;
like_dogs = idogs;
own_computer = icompute;

int Who::checkldentity (int iage, char ibroc, char icats, char idogs,
char icomputel

if (age== iage && like_broccoli ~ ibroc && like_cats
like_dogs ~ idogs && own_computer ~ icomputel

return id_numb;
return O;

icats &&

When looking at check Identity, keep in mind that a return statement not
only sends data back to the calling function, but also terminates execution of the
function. Therefore, there is no need for an el s e following the i f. If the logical
expression following i f is true, the program returns the ID number and terminates,
never reaching the second return statement. However, if the expression following
if is false, the program skips the first return statement and executes the second,
which sends a O back to the calling function. It is then up to the calling function to
interpret the result as either a valid object ID or a 0.

The main function for the Who class can be found in Listing 7.3. To make the pro
gram easier to read, the object IDs are first created as constants. Then the IDs are
used along with answers to the program's questions as input data in the statements
that create the objects. These data are passed directly into the constructor by placing
them in each object's parameter list.

After creating and initializing the objects, the program asks the user to enter data
describing a person. Then it enters an i f I e 1 s e statement that checks the data the
user entered against each object. In this statement each i f after the first is the state
ment that follows the el s e of the preceding i f. The order in which this nested i f I
e 1 s e statement is processed is as follows:

Making Choices: if/else

Listing 7.3 The main function for the Who am 17 program

#include <iostream.h>
#include "who.h"

const JOHN= 1;
const JANE = 2;
const MIKE = 3;
const MARY = 4;

void main Cl
{

II Declare and initialize objects
Who John (JOHN,21.'Y','Y','Y','Y');
Who Jane CJANE.27,'N','N','N','N');
Who Mike CMIKE,32, 'Y', 'Y', 'N', 'N');
Who Mary CMARY,42,'N','N','Y','Y');

II Local variables
int iage;
char ibroc, icats, idogs, icompute;

cout << "Age: ";
cin » iage;
cout <<"Likes broccoli? ";
cin » ibroc;
cout << "Likes cats? ";
cin » icats;
cout << "Likes dogs? "·
cin » idogs;
cout << "Owns a computer? ";
cin >> icompute;

if CJohn.checkidentity Ciage,ibroc,icats,idogs,icomputel ==JOHN)
cout << "This person is John.":

123

else if CJane.checkidentity (iage,ibroc,icats,idogs,icomputel ==JANE)
cout << "This person is Jane.":

else if CMike.checkidentity Ciage,ibroc,icats,idogs,icomputel ==MIKE)
cout <<"This person is Mike.":

else if CMary.checkidentity Ciage,ibroc,icats,idogs,icomputel ==MARY)
cout << "This person is Mary.":

else
cout << "I don't know this person.":

• If the person is John, display the phrase This person is john. Then skip to below the
last e 1 s e (the end of the program).

• Otherwise, if the person is Jane, display the phrase This person is]ane. Then skip
to below the last e 1 s e (the end of the program).

124 Chapter 7 • Making Choices

• Otherwise, if the person is Mike, display the phrase This person is Mike. Then skip
to below the last else (the end of the program).

• Otherwise, if the person is Mary, display the phrase This person is Mary. Then skip
to below the last el s e (the end of the program).

• Otherwise, display the phrase I don't know this person. End the program.

The most important thing to notice about this order of execution is that once the
computer finds a logical expression that is true, it skips the rest of the statement,
dropping to the next executable statement. In this particular example there are no
more executable statements, so the program simply terminates.

Making Choices: switch

There is theoretically no limit to how deep you can nest i f I el s e statements. How
ever, the deeper you nest them, the more difficult to understand and debug they
become. If you are testing for more than two or three possible values of the same
variable, you can use a s w i t ch statement to simplify the logic of the program.

A s w i t ch statement makes its choice based on the value in an integer variable. It
has the following general syntax:

switch (integer value or expression)
I

case valuel:
statement(sJ to execute
break;

case value2:
case value3:

statement(sJ to execute
break;

additional cases as needed

default:
statement(sJ to execute

There are several important things to notice about this construct:

Making Choices: switch 125

• The parentheses following the keyword s w i t ch must contain an integer variable
or an expression that generates an integer result. If you use a character variable,
it will work as well, because C++ can interpret the ASCII character code as an in
teger. However, floating point values and strings can't be used.

• The entire contents of the s w i t ch construct are surrounded by braces.
• Each value you want the s w i t ch to check is a constant that is preceded by case

and followed by a colon.
• The statements that are to be executed when the computer encounters the value

following case appear immediately after case. Any c++ statements are al
lowed.

• The last statement in a group of statements after a ca s e is usually b re a k, which
instructs the computer to skip the rest of the s w i t ch and continue processing
with the statement following the closing brace.

• The statements following def au l t are executed only if none of the case values
have been matched.

The computer processes a s w i t ch by scanning the case values from the top
down. Processing stops when the computer finds a match. If you have more than one
value that should trigger the same set of statements, you can place more than one
case in the s w i t ch. In the general syntax example on the previous page, for exam
ple, va 7 ue2and va 7 ue3will trigger the execution of the same set of statements.

As a first example of a switch, let's take another look at the switch construct
from the Calculator program you saw in Chapter 6. In Listing 7.4 you can see that the
switch is based on the value in Operator, a character variable. Notice that the
character constants have been placed in single quotes. Each ca s e is followed by a call
to the member function indicated by the character following case. This logic is
therefore simpler to understand than a series of nested i f I el s es would be.

As a second example, in Listing 7.5 you will find the nested i f I el s e statement
from the Who am I? program rewritten as a s w i t ch. Because s w i t ch operates on a
single integer value, there must first be some way to determine the ID number of the
correct person. In this case, the program resorts to a bit of a trick. A variable for the
ID number is set equal to the sum of the result of the ch e c k I dent i ty functions for
all four objects. Because the four objects are unique, no more than one of the func
tion calls will return a value other than 0. If the data match one of the objects, the
result of the addition will be that object's ID number; otherwise, the sum will be 0.

This works only because an unsuccessful check of an object has been programmed to
returnaO!

In this example, the constants following case are named constants rather than lit
erals, as they were in the Calculator program. The computer selects the correct case
based on the value in i d_n umb and then displays the associated message. Although

126 Chapter 7 • Making Choices

Listing 7.4 The switch statement from the Calculator program

switch (Operator)
I

case '+':

case

case

case

case

answer =Cale.Add (first_value, second_valuel;
break;

answer= Cale.Subtract (first_value, second_valuel;
break;
'*'.
answer= Cale.Multiply (first_value. second_valuel;
break;
, I, :
answer= Cale.Divide (first_value, second_value);
break;

answer= Cale.Exponentiate (first_value. second_valuel;
break;

default:
cout << "\nUnidentified operator";

this is certainly easier to understand than the nested i f I e 1 s e statement, the ability
to use a s w i t ch in this instance does rely on a programming trick.

PROGRAMMING CHALLENGE NUMBER 4

In this programming challenge you will get a chance to work with both i f I e 1 s e
and s w i t ch statements and be able to compare their use. You will be adding charac
teristics and objects to the Who am I? program and using both methods to test for
those characteristics .

First, add four objects to the main function and modify the program to handle
them:

• Give each object a four-character name.
• Assign each object an ID number (5, 6, 7, 8) and create a constant for the number.
• Create the objects, including data for the objects that are different from the other

existing objects. (Keep in mind that all you need is one unique value in each object
to keep them distinct; the age will do nicely.)

• Modify the existing ma i n function so that it tests all eight objects, expanding the
i f I e 1 s e statements as needed.

• Run the program several times to be sure it works.

Making Choices: switch 127

Listing 7.5 The if/else statement from the Who am 17 program rewritten as
a switch

int id_numb:

II Only one of these can be > O. Therefore, sum either is the ID number
II of the correct person or 0, if none match.

id_numb = John.checkidentity (iage,ibroc,icats,idogs,icomputel +
Jane.checkidentity Ciage,ibroc,icats,idogs,icomputel +
Mike.checkidentity Ciage,ibroc,icats,idogs,icomputel +
Mary.checkldentity Ciage,ibroc,icats,idogs,icomputel:

switch Cid_numbl
I

case JOHN:
cout «
break:

case JANE:
cout «
break;

case MIKE:
cout «
break;

case MARY:
cout «
break:

default:
"I don't

"This

"This

"This

"This

know

person is John.
person is Jane.
person is Mike.";

person is Mary.
this person

Now open the copy of the Who am I? program that is on your disk. Modify this
program so that it uses a s w i t ch rather than the nested i f I e 1 s e statements:

• Add the four new objects as you did to the first version of the program. (Cut and
paste will work well here.)

• Add the i d_n umb variable and compute its value.

• Replace the i f I e 1 s e statements with a s w i t ch. Use Listing 7.5 as your guide, if
you like.

• Run the program several times to be sure it works.

At this point, which program is easier to understand? Which one seems to have
the simpler logic? just to be sure, try adding four more objects to each version of the
program. Now which one is easier to understand?

128 Chapter 7 • Making Choices

Making Choices: The
Operator

7· ••

C++ has a hybrid operator(? : , the conditional operator), which can be used to return
one of two values based on a logical condition, in some cases eliminating the need for
an i f I e 1 s e statement. The conditional operator is used in the following way:

logical expression ? true value : false value

The logical expression can be any logical expression. If the expression is true, the
conditional operator returns the value following the question mark; if the expression
is false, it returns the value following the colon.

For example, assume that you want to use the larger of two values in an arithmetic
operation. You could include the following:

sum+= (value! > value2) ? value! : value2;

The computer first evaluates the logical expression and returns either v a 1 u e 1 or
v a 1 u e 2. That result is the value that is added to the existing value in sum to com
plete the arithmetic operation.

Without the conditional operator, the preceding would have required code some
thing like this:

if (value! > value2)
sum+= value!;

else
sum+= value2;

The use of the conditional operator has shortened the code considerably. However,
because the conditional operator buries the logical expression inside an arithmetic
statement, it may make the program more difficult to understand. You should there
fore use this operator judiciously.

NOTE
The conditional operator is one of those features that gives rise to contests in which C
and C++ programmers see who can write the most obfuscated code possible, using only

Verifying File Operations 129

one executable statement. Because you can place .function calls and logical operations
inside other statements, C++ logic can become very convoluted if you aren't careful.

Verifying File Operations

File operations don't always succeed. A program might, for example, attempt to
open a file that doesn't exist. If it then tries to read from the nonexistent file, the pro
gram will generate a run-time error and stop running. (In other words, it will
''bomb.") To avoid such problems, a program should check file operations to make
sure they occur successfully.

The key to checking file operations is knowing that if a file is opened successfully,
the name of the file stream contains the address in main memory where storage for
that stream begins. If the file can't be opened successfully, the name of the stream
contains O. You can therefore check for a successful file opening by determining
whether the stream name is zero or nonzero.

As an example, consider Listing 7.6, in which you will find a modified version of
the read function from the Metals Prices program you saw in Chapter 5. The expres
sion ! pr i c es I n evaluates as true when the contents of pr i c es I n is O, triggering
the error message telling the user that the file doesn't exist and giving the user the
choice whether to continue with the program.

Because the function gives the user the choice to end the program, the function
must return something to the calling function to indicate whether the program
should continue. This function therefore has been modified to return an integer,
either the constant TRUE (1) or FALSE (O). The calling program must then be modi
fied to accept a return value from the function and to act on that value:

file_result =prices.read();
if (!file_result)

return:

When fi l e_resul tis o (the read function returns the constant FALSE), the logi
cal expression following i f is true, and the ma i n function terminates, ending the
program.

Any time you open a file for reading or for writing, make it a habit to check for the
success of the file operation. This will prevent your program from crashing in unex
pected ways and annoying a user no end!

130 Chapter 7 • Making Choices

Listing 7.6 Checking for the success of file operations

int Metals_prices::read ()
I

char yes_no;
II create the input stream
ifstream pricesln ("prices");

if (!pricesln)
{

else
I

l

cout << "The prices file can't be found. Continue?"
cin » yes_no;
if (toupper(yes_no) = 'N')

return FALSE;

II read the data
pricesln >> gold >> silver >> copper;
return TRUE;

II file is closed automatically when function terminates

Repeating Actions

CHAPTER

• •

The third thing that computers can do very well is repeat actions as many times as
needed. This is commonly known as iteration. It is also often called looping, and the
block of code that is a repeated, a loop.

Iteration makes it possible for a computer to do things such as adding a series of
values or displaying a menu many times so that the user can perform many actions
without quitting the program. In this chapter, you will learn how to tell a C++ pro
gram how to repeat a group of statements and how to control when the repetition
ends.

The Number Fun Program

As an example of the ways in which C++ programs can perform iteration, we'll be
looking at a program called Number Fun, which performs some interesting transfor
mations on integers. You can find a sample run of the program in Figure 8.1. At this

131

132 Chapter 8 • Repeating Actions

point, the program can generate a factorial, convert a number to what appears to be
binary (it's really a base 10 representation of the number's binary equivalent), and
compute a number's square root. (You'll get a chance to add more to this program in
a programming challenge later in the chapter.)

Figure 8.1 Output from the Number Fun program

Number fun.out

Enter the number you want to play with : 15

What would you I ike to do with your number?
1. Compute its factor ial
2 . Convert it to binary
3 . Compute its square root
9 . End

Which one? 1

15! = 2004310016

What would you I ike to do with your number?
1. Compute its factorial
2 . Convert it to binary
3 . Compute its square root
9 . End

Which one? 2

The binary representation of 15 is 1111

What would you I ike to do with your number?
1. Compute its factorial
2 . Conver t it to binary
3 . Compute its square root
9 . End

Which one? 3

The square root of 15 is 3 .87298

What would you I ike to do with your number?
1. Compute its factorial
2. Convert it to binary
3 . Compute its square root
9 . End

Which one? 9

Another number? n

Repeating Actions: while 133

The Number Fun program is based on a class named number. As you can see in
Listing 8.1, an object created from the class stores the number that the object will be
manipulating. The class includes a constructor, an initialization function to store a
value in the object's variable, and three functions that perform the number manipu
lations. As we look further into this program, you'll see that iteration plays a major
role in both the member functions and the ma i n function that drives the program.

Listing 8.1 The header file for the Number Fun program

class number
I

l;

private:
int theNumber;

public:
number();
void init (int);
long factorial();
long binary ();
float root ();

Repeating Actions: while

The most general way to perform iteration is to use a w hi l e statement. Although
there are other ways to repeat actions, you can write an entire program using no
other type of iteration. A w h i l e has the following general syntax:

while (control condition)
{

statement(s) to execute

A w hi l e instructs the computer to repeat actions as long as the condition inside the
parentheses (the control condition) following w hi l e are true. If more than one action
is to be repeated, the actions are grouped inside braces. The computer executes the
statements in the body, jumping from the bottom of the loop to the top with each
repeat.

When the control condition becomes false, the program skips the body of the
wh i le and continues execution with the statement below the closing brace. The

134 Chapter 8 • Repeating Actions

control condition can be any legal logical expression, including all the operators you
read about in Chapter 7.

There are three very important things to keep in mind about a w hi l e: the state of
the control condition when execution begins, nesting, and avoiding infinite loops.

INITIALIZING THE CONTROL CONDITION

The test of the control condition that controls a w hi l e occurs at the top of the loop.
If the condition is false the first time the computer encounters the w hi l e, the body
of the loop is never executed. Consider, for example, the following:

while (1 > 2)
I

cout << "This is a loop";
cout << "that will never execute.";
cout << " No one will see these lines.";

Because the control condition (1>2) is false, the three cout statements never appear
on the computer screen.

In most cases, the condition that controls a w hi l e includes a variable whose value
changes inside the body of the loop. This control variable must be initialized to pro
duce a true statement to ensure that the loop executes at least once. This is another
reason why you should always get into the practice of initializing variables.

NESTING LOOPS

The second important fact about w h i l e statements is that they can be nested, one
within the other. As an example, take a look at the main function for the Number
Fun program in Listing 8.2. The outer w hi l e is controlled by a character variable
(Yes_no). Notice that this variable is initialized to Y when it is declared, ensuring
that the outer loop will execute at least once. The inner wh i 1 e is controlled by the
c ho i c e variable. This variable gets its value from the s i mp l e Men u function (Listing
8.3).

Notice that the inner loop is completely contained within the outer loop. When a
program is compiled, the compiler matches closing braces with opening braces from
the inside out. In other words, as the compiler encounters opening braces, it keeps
track of them. When it encounters a closing brace, the compiler always pairs it with

Repeating Actions: while

Listing 8.2 The main function for the Number Fun program

#include <iostream.h>
#include <ctype.h>
#include "numbers.h"

int simpleMenu(); II function prototype

void main {)
(

number aNumber;
char yes_no = 'Y';
int funNumber. choice;

while <toupper(yes_nol == 'Y'l
(

cout <<"Enter the number you want to play with: "·
cin >> funNumber;

aNumber.init (funNumber);

II initialize the choice variable
choice= simpleMenu(l;
II use can exit without ever entering loop
while (choice != 9)
(

switch <choice)
(

I

case 1:
cout << "\n" << funNumber << "! " <<

aNumber.factorial();
break;

case 2:
cout << "\nThe binary representation of " <<

funNumber << • is • << aNumber.binary();
break;

case 3:
cout << "\nThe square root of " << funNumber <<

" is"<< aNumber.root{);
break;

default:
cout << "Unknown option.";

135

II grab another value for choice to evaluate at top of loop
choice= simpleMenu();

cout << "\nAnother number? ";
cin » yes_no;

136 Chapter 8 • Repeating Actions

Listing 8.3 The menu function for the Number Fun program

int simpleMenu()
{

int option;

cout <<"\n\nWhat would you like to do with your
cout « . 1. Compute its factorial" « endl;
cout « . 2 . Convert it to bi nary" « endl;
cout « . 3 . Compute its square root" « endl;
cout « " 9. End" « endl « endl ;
cout « "Which one? ".
cin » option;
return option;

number?" « endl;

the last encountered opening brace. You must therefore be certain that your loops
don't cross one another.

As an example of correct and incorrect nesting, take a look at Figure 8.2. The
braces represent the bodies of loops. On the left side of the illustration, you'll see
incorrect nesting. The writer of the program intended that the loops cross one
another. However, the compiler doesn't cross the loops but instead closes them,
based on the "last opened, first dosed" rule. On the right side of the illustration,
however, you'll see correct nesting. Each loop is completely contained within
another. Code Warrior's editor will help you with correct nesting by showing you the
opening brace that is associated with a closing brace as you type each closing brace.
(For details, see Chapter 3.)

The inner w hi l e in this program illustrates a common dilemma that occurs when
control loops: When should the program call s imp l eMenu to get a value for
ch o i c e? It is certainly possible to initialize ch o i c e when it is declared and to place
one call to s imp l eMenu right after the inner while.

However, what happens when the user chooses the End option? If you look at the
s w i t ch that forms the body of the inner w hi l e, you'll notice that there is no case
for the End option. Nonetheless, if the call to s i mp l e Menu is the statement immedi
ately following w hi l e, the s w i t ch will attempt to process the End option and will
up display the Unrecognized command error message. This isn't a good interface
for the user; the loop should end cleanly.

The solution is a structure that is commonly used for w hi l e loops. The first ele
ment is to obtain a value for the control variable before the loop begins. In Listing
8.2, for example, this means that there is a call to simpleMenu just before the
w hi l e. If the user doesn't pick the End option, the program enters the w hi l e with a
meaningful value in ch o i c e. The body of the loop then contains the s w i t ch logic

Repeating Actions: while 137

Figure 8.2 Nesting loops

What you want (wrong) What you get (wrong)

{ {

{

~{

}

'--} '-----}

} -}

What you want (right) What you get (right)

{ {

{ {

c }

} }

} }

to process the user's choice and to execute the correct member function. Finally, the
last action within the body of the loop is to call s i mp 1 eM en u again, giving the
w hi 1 e a new value to check at the top. Although this may appear to be an unneces
sary repetition of a function call, it nonetheless provides a clean, easily understood
logic and is therefore commonly used.

138 Chapter 8 • Repeating Actions

AVOIDING INFINITE LOOPS

An in.finite loop is a loop that never stops. It is one of the most common reasons a pro
gram hangs (runs continually without appearing to do anything). Although, as you
will discover in the next section, there are a few situations in which you purposely
write an infinite loop, in most cases, infinite loops are errors.

The most common cause of an infinite loop is forgetting to change the control
variable's value within the loop. For example, if there was no call to s i mp 1 e Menu
within the inner loop of the Number Fun program's inner wh i 1 e, the loop would
never ask the user to choose another option. It would simply keep repeating what
ever choice the user entered as a response to the call to s imp 1 eMenu that was made
before the loop began. You must therefore be especially careful to make sure that the
body of a loop contains statements that ultimately will cause the control condition to
become false, stopping the loop.

There are two signs that a program has entered an infinite loop. The first is that it
just sits there and does nothing. The second is that it repeats the same output, over
and over again, without stopping. If you are testing the program inside the Code War
rior environment, you can stop the program by typing :l=C-Option-Esc. This is known
as a force quit. It will stop almost any program, including the Finder.

When you press the force quit key combination, the Macintosh operating system
displays a dialog box asking you to confirm the force quit. Click the Force Quit but
ton. You will then be able to quit the application and return to the CodeWarrior
development environment.

Once you suspect that your program contains an infinite loop, the best solution is
to turn to the debugger. Step through the program at the point where the problem
appeared. You should then be able to see what code is being repeated. Watch the
value in your control variable; also evaluate the control condition in your head each
time the loop repeats. As you step through t~e loop, the reason the loop isn't stop
ping properly will become clear.

QUICK EXITS: BREAK

In the preceding section you read that there are occasionally circumstances under
which you need to purposefully write an infinite loop. This arises when there are so
many different conditions that should stop a loop that it isn't feasible to build them
all into one control condition. In that case, you set up an infinite loop and then use
the b re a k statement to exit the loop. The b re a k statement exits any statements that
happen to be grouped with braces, including the switch, statement blocks

Repeating Actions: while 139

following i f or e 1 s e, and the body of for loops, to which you will be introduced in
the next section.

As an example, consider the w hi 1 e loop in Listing 8.4. The control value is a con
stant that has been declared to be 1; because it never changes, the loop is infinite.
However, there are three places where the loop can exit, each depending on a differ
ent condition. Although in this relatively simple example it is possible to write the
control condition as a single logical expression, such an expression would be rela
tively complex.

Listing 8.4 Using break to exit a while

while (TRUE)
I

if(i)Q)

break;
else

i--;
if (i > MAX)

i - - ;
else

break;
sum += i;
if (sum >= SUPER_MAX)

break;
else

cout << "We're still going."

The drawback to using b re a k to exit a loop is that it buries the conditions for exit
ing the loop inside the loop. This means that the program is more difficult to under
stand and debug, because the control condition isn't readily apparent. You therefore
are faced with a trade-off: create a complex control condition and make it part of the
w hi 1 e where it is easy to find, or use b re a k to simplify the control condition but
make it more difficult to find. In general, you should opt to make your control condi
tion part of the w h i 1 e unless it is virtually impossible to do so.

USING A WHILE LOOP

There are many ways in which a program can use a whi 1 e loop. In Listing 8.5, for
example, you will find the member functions for the Number Fun program. A wh i 1 e
loop forms the basis of the bi n a r y function, which converts a base 10 number to

140 Chapter 8 • Repeating Actions

Listing 8.5 Member functions for the Number Fun program

#include <math.h>
#include "numbers.h"

number::number()
I theNumber = O;

void number::init (int iNumber)
I theNumber = iNumber; I

long number::factorial(}
I

long result = theNumber;

for (int i = theNumber-1; > 1; i-->
result*= i;

return result;

long number::binary()
I

int bit, placeValue = 1, numberTemp;
long binaryTemp = O;

numberTemp = theNumber;

while CnumberTemp>
I

bit= numberTemp % 2; II get the remainder Ca binary digit)
numberTemp I= 2; II divide by 2
II shove digits over and add the new digit
binaryTemp +=bit * placeValue;
placeValue *= 10;

return binaryTemp;

float number::root()
I return sqrtCtheNumber);

what appears to be its binary equivalent. As you study this function, keep in mind
that what it is really doing is showing the user a base 10 number that looks like a
binary number.

To convert from base 10 to base 2, you can repeatedly divide the base 10 number
by 2. The remainder of each division becomes a digit in the result, working from
right to left. For example, if the number you are trying to convert is 13, the math is
performed as in Table 8.1. Each time a division is performed, the new binary digit is

Repeating Actions: for 141

Table8.1 Converting from decimal to binary

Division Quotient Remainder Binary number
13/2 6 1 1
6/2 3 0 01
312 1 1 101
1/2 0 1 1101

multiplied by a power of 10 and added to the existing number, inserting it at the left
of the existing number.

If you look at the w hi 1 e loop in the bi n a r y function, you'll see that it uses
exactly the method described in the preceding paragraph. The loop continues as long
as the number being divided (numberTemp) is greater than o. Each repetition per
forms a modulo division by 2 to obtain the binary digit, divides the number by 2,
adds the binary digit to the binary number, and increases the value by which a binary
digit will be multiplied during the next repetition of the loop.

NOTE
The binary function returns a long integer. However, it doesn't take a very large input
number to cause even a long integer to overflow when you are converting to "binary."
How do you know if you've overflowed? The result will be negative and will probably
include digits other than O or 1.

Repeating Adions: for

In the examples of iteration you have seen to this point, the program hasn't needed
to keep track of the number of times that the loop was repeated. However, in some
circumstances you may want to count the iterations and use that count in the body of
the loop. One way to do that is with a w hi 1 e:

i = O;
wh i 1 e (i < MAX)
I

process data ;n some way
i++;

142 Chapter 8 • Repeating Adions

Alternatively, you can use a for statement, a type of loop that, when used appro
priately, can simplify writing a loop. The for statement has the following general
syntax:

for (init;al index value; control condition; index change)
I

body of loop

The parentheses following for contain three expressions. The first initializes an
index value. For example, if you are counting the number of times the loop repeats,
you might initialize the index variable to O, using something like i = 0. The second
expression is a control condition; the loop continues as long as the condition is true.
If you want the loop to repeat five times and the index variable is initialized to O, the
control condition would be i < 5.

The third expression tells the computer how to change the value of the index vari
able. In the example we've been using, the change is an increment and is written i ++.
The complete for statement is therefore written as:

for (i = 0; i < 5; i ++)
I

body of loop

NOTE
Index variables are just about the only variables to which programmers commonly give
single-letter names. By convention, index variables are named alphabetically, beginning
with i, j, and k.

Although you can't use a for for every loop, it can sometimes come in very handy.
As an example, consider again the member functions for the Number Fun program
in Listing 8.5. In particular, look at the factorial function. The formula for the
factorial of a number n is:

n * n-1 * n-2 ..• n * 2

Five factorial (written 5!), for example, is:

5 * 4 * 3 * 2 = 80

Repeating Actions: for 143

Because the formula requires a sequence of multiplications, starting at some
known value, and multiplying by values that decrease at a known interval, the facto
rial is an ideal use for a f o r statement:

long result = theNumber;

for (int i = theNumber-1;

result *= i;

> l; i--)

In this case, the res u 1 t variable is initialized to the value in the object' only vari
able. The for loop can then begin the multiplication with one less than the value in
that variable. The loop's index variable is therefore initialized to theN umber - 1.

Notice in this example that the index variable is declared within the for statement
by placing i n t as the variable's data type within the parentheses, just before the
index variable is used for the first time. Should you choose to do this, be sure to
declare the index variable only once in the program. If you need the same variable for
a loop later in the program, don't declare it again.

This loop continues as long as the index variable is greater than 1. To be com
pletely accurate, the formula for computing a factorial includes multiplying by 1.
However, since multiplying by 1 has no impact on the result of the computation,
there is no reason to perform the multiplication. The loop can therefore be written
to stop when i is equal to 1.

Each time the loop repeats, it should decrease the value of the index variable by 1.
The change to the index variable is therefore a decrement, written i - - .

The loop to compute the factorial could also have been written to compute from
low values to high:

long result= 2;

for (int i = 3; i <= theNumber; i++)

result*= i;

In this case, the first multiplication is 2 * 3. If the user is requesting 2!, then the loop
never executes, because the index value's initial value is greater than the contents of
theNumber. The result is nonetheless correct, because 2! is 2.

144 Chapter 8 • Repeating Adions

Programming Challenge
Number 5

For this programming challenge you will modify the Number Fun program so that it
can display successive powers of the number being manipulated. For example, if the
user wanted to play with the number 3 and asked for six powers, the output might
appear as in Figure 8.3.

Figure 8.3 Sample output for powers of a number

3 to the O power = 1
3 to the 1 power = 3
3 to the 2 power = 9
3 to the 3 power = 27
3 to the 4 power = 81
3 to the 5 power = 243

To add the ability to raise a number to a power, do the following:

• Add a member function to the number class to raise the Number to a power. Send
the power into the function as an input parameter. Return the the Number raised
to the power. (Hint: You'll be able to handle larger numbers if the return value is
a 1 ong rather than an int.)

• Add a menu option for raising a number to a power to the s imp 1 eMenu function.

• Create a program function (not a member function) named Exponents that will
handle raising the number to a power. This function is necessary because the
member function returns only one value at a time; you will need to call the mem
ber function several times (once for each power the user requests). The Expo
nents function should have the following prototype:

void Exponents (number);

The single input parameter is an object of class number. The function header
should therefore appear as:

void Exponents (number someNumber)

Programming Challenge Number 5 145

Use someNumber as the name of the object inside the Exponents function.
• Write the body of the Exponents function. Ask the user how many powers he

or she wants to see. Then write a for loop that calls the new member function
and prints out the result returned by the member function call. Use the for loop's
index variable as the input parameter to the member function. (Hint: If you want
to start producing powers at 0, as was done in Figure 8.3, don't forget to stop the
for loop at one less than the number of powers entered by the user.)

• Add a case to the switch in main. cpp to call Exponents.

Be sure to test your modified program to be certain that it works. As you test the
program, keep a sharp eye out for overflow of storage locations. Remember that
when an integer storage location overflows, its value becomes negative.

CHAPTER

Arrays

One of the biggest programming limitations you have encountered so far is that
when you create more than one object from the same class, each needs to have a dif
ferent name. If you think back to the Who am I? program, you'll realize that this cre
ated at least two problems. First, when the program needed to call the same member
function for each object, it required four different expressions to do so, one for each
object name. Second, adding more objects to the program was clumsy. Each would
have to have its own name, requiring even more distinct expressions for calling mem
ber functions.

The solution is to find some way to handle multiple objects from the same class as
parts of a group. Groups of objects or data values stored under the same name are
known as arrays. All objects or data values in an array are of the same type.

You have already been introduced to one type of array: a string, which is an array
of characters. In this chapter you will be introduced to arrays of data values and
arrays of objects. Because strings are handled somewhat differently from other
arrays, we will leave them until Chapter 10.

147

148 Chapter 9 • Arrays

Declaring Arrays

An array is a special type of variable that is declared much like a simple variable.
However, you must tell the compiler how many values you want the array to hold. In
general, an array is declared in the following manner:

data_type array_name [number of values J:

Notice that the number of values the array is to hold is placed in brackets following
the name of the array. As examples, consider these arrays:

int integerArray[lOJ:
long longArray[25J:
float floatArray[l5J;

The i n t e g er Arr a y sets aside space for 1 o integers. By the same token, l on g Arr a y
can hold 25 long integers, and fl oat Arr a y can hold 15 floating point values. Each
of the values in an array is known as an array element, or an element of an arra)L

Arrays can also hold objects. For example, when modifying the Who am I? pro
gram to handle many objects of class Who, the program could use the following dec
laration:

Who people[25J;

The program can now handle up to 25 people.

When you declare an array variable, the compiler sets aside enough storage in
main memory to hold the entire contents of the array. This brings up two important
points. First, space is allocated for an entire array, regardless of whether you fill that
space with data. Arrays that are too large waste main memory. However, if an array is
too small, the only solution is to modify the array declaration and recompile the
program.

The second major issue in declaring arrays is that the computer doesn't check to
make sure that you aren't trying to store more values in the array than the array was
declared to hold. If, for example, you've declared an array to hold 25 values and use a
program to store a 26th, the computer won't stop you from doing so. In fact, the
computer will store the value without a murmur. The effect, however, can be
disastrous.

Referencing Array Values 149

To see what can happen, take a look at Figure 9.1. The top portion of the illustra
tion represents a section of a computer's memory that has been set aside to hold two

arrays. The first array has space for nine integers, the second for six characters.
Everything is fine until the program places a 10th value into the integer array. As you
can see, the extra value overwrites the first value in the character array, in effect
changing the value in that array. You must therefore write your programs so that they
check to be sure that you don't overflow arrays.

Figure 9.1 The effect of overflowing array storage

int intArray[9]; char charArray[6];

10th element in intArray overwrites first element in char Array

\

NOTE
Because overflowing an array usually means that the value in some other variable
changes, the primary indication that you've overflowed is mysterious changes in the
contents of unrelated variables. The best way to catch this sort of problem is to use the
debugger to watch the changes in variable contents as you step through the program. If
a statement that modi.fies an array causes a change in another variable, then you've
probably identified an array overflow situation.

Referencing Array Values

Each value in an array is referenced by its position in the array, which is often called
an array index. For example, suppose that an array is declared as follows:

150

int numbers[lOJ;

In that case, the individual values in the array are as follows:

numbers[OJ
numbers[l]
numbers[2J
numbers[3J
numbers[4J
numbers[5J
numbers[6]
numbers[?]
numbers[8J
numbers[9J

Chapter 9 • Arrays

Each of these represents an individual variable. As you can see, although the array
has been declared to hold 10 values, the values are numbered from Oto 9. All C++
arrays begin counting places in the array with 0.

Assigning Values to Arrays

The name of an array represents the beginning address in main memory of a group
of storage locations, not the addresses of the individual storage locations that are part
of the group. For that reason, you can't simply assign values to the name of an array;
you must assign them to the individual variables that are part of the array.

Assume, for example, that you want to initialize each member of the numbers
array that you saw in the preceding section of this chapter. You could do so with the
following code:

for (int i = O;
numbers[i]

< 10; i++)
0;

The index variable of the for loop also serves as an index to the array. As the for
loop's index is incremented, the assignment statement affects a different member of
the array.

Using One-Dimensional Arrays 151

Be very careful not to assign a value to the name of an array. As mentioned earlier,
the name of an array contains the address in main memory of the beginning of the
array's storage location. Suppose that you do something like

numbers = O;

You'd be _telling the compiler to look for the contents of the array at main memory
address 0. This can be very dangerous. If you later attempt to store something in the
array, you run a significant risk of overwriting parts of the operating system or other
programs that happen to be running at the same time. The result will be a system
crash from which you can't recover without restarting the computer.

Using One-Dimensional Arrays

The arrays that you have seen to this point are one-dimensional, in that they are a sin
gle list of values. The easiest way to visualize such an array is to think of it as a list
whose contents are numbered beginning with 0. When you want to access a member
of the list, you reference it by its position in the list. Such lists can be made up of
numbers or characters. In this section you will therefore see examples of how both
types of arrays are used. In addition, you will see how you can manipulate multiple
objects of the same class using an array of objects.

PASSING DATA FOR AN ARRAY INTO A FUNCTION

As a first example of using an array, let's look at a program that collects the high tem
peratures on seven successive days and then returns the average weekly temperature
(see Figure 9.2). The program is based on the class temps, whose header file you can
find in Listing 9.1. In this case, the array to hold the seven temperatures is a class
variable. The class also keeps track of the last used array position in the l a s t Us e d
variable.

Notice that this header file defines a constant to use for the size of the array. This is
a good habit to get into. If you need to change the size of the array, all you need to do
is look at the top of the header file for the constant's definition. You won't need to
search through program files to look for every place the program references the max
imum size of the array.

152 Chapter 9 • Arrays

Figure 9.2 Output of the Temperatures program

Temperatures.out
SIOUX state : application has terminated .

High temperature •1: 45
High temperatur e • 2: 52
High temperature •3: 31
High temperature •4 : 47
High temperature •5 : 45
High temperature •o : 35
High temperature •7 : 39

The average weekly high temperature was 42 {).

Iii

Listing 9.1 The header file for the Temperatures program

canst NUM_TEMP S = 7;

cla ss t emp s
{

privat e :
int dailyTemp s [NUM_TEMP S] ;
int la s tU sed;

public:
temp s ();
void init (int) ;
int av e rage (); II average the wee kly temp s

I;

The temps class has three member functions. As you can see in Listing 9.2, the
constructor uses a for loop to initialize each position in the array to 0. It also initial
izes the l a st Used variable, which keeps track of the last used array index, to -1.

Why -1 instead of O? To answer that, take a look at the i n i t member function.
This function accepts one temperature from the calling function and inserts it into
the array. However, before the assignment is performed, l a st Used is incremented.
For example, when the first temperature is stored in the array, l a st Used is incre
mented from -1 to 0, which correctly places the first value in the first position in the
array. The l a st Used variable also correctly contains the index of the last used array
position. You could certainly start l as t Used at 0 and increment it after a value is
stored, but in that case the variable's value would be the next position to be filled
rather than the last position used.

Using One-Dimensional Arrays

Listing 9.2 Member functions for the Temperatures program

#include "temps.h"

temps::temps()
{

for (int i = O; i < NUM_TEMPS: i++)
dailyTemps[i] = O;

153

lastUsed = -1; // begins at -1 because of preincrement in init function

void temps::init (int temp)
{

dailyTemps[++lastUsedJ temp;

int temps::average ()
{

int sum= O;

for (int i = O; i < NUM_TEMPS; i++l
sum+= dailyTemps[i];

return sum I NUM_TEMPS;

NOTE

Does the preceding seem like a silly exercise in semantics? It's not. You always want to
make a program as clear as possible. If you come back to a program after having let it
sit for even a few days, you will .find it difficult to follow your own logic. This happens
to even the most experienced programmers. Anything you can do to make the program
self-documenting, including using clear, meaningful variable names and writing useful
comment statements, will help make the task of understanding what you've done much
easier.

The average member function sums each of the values in the array and then
returns the average by dividing the sum by the total number of temperatures. Notice
that the program uses a for loop to compute the sum, adding each element in the
array individually. (It helps to remember that although all the elements in an array
have the same name, they are really a group of individual variables into which values
must be stored one at a time and from which values must be retrieved one at a time.)

The ma i n function, which controls the Temperatures program, can be found in
Listing 9.3. The function first collects seven temperatures from the user with a for
loop. Each time the user enters a temperature, the program calls the i n i t member
function to store the new temperature in the next position in the array. Because the

154 Chapter 9 • Arrays

Listing 9.3 The main function for the Temperatures program

#include <iostream.h>
#include "temps.h"

void main ()
I

temps Weekly: // declare an object
int temp, stop:

for (int i = O; i < NUM_TEMPS; i++l
I

cout << "High temperature#" << i+l << •. "·
cin » temp;
Weekly.init(temp);

cout << "\nThe average weekly high temperature was•<< Weekly.average();

Week 1 y object is keeping track of how many temperatures have been entered at any
given time, the ma i n function doesn't have to. By the same token, the ma i n function
avoids overflowing the object's array by using a for loop that is stopped by the
NUM_ TEMPS constants.

Once the array is filled, the ma i n function can call the average function. In this
case, because the average is only for display purposes, there's no reason not to embed
the function call right in the co u t statement. Storing the average would only take
extra time and main memory.

PASSING ARRAYS TO FUNCTIONS

In the preceding example the ma i n function collected data for an object's array one
value at a time. However, doing so isn't always feasible. Occasionally you may need
to fill an array in one function and pass the entire array to another function for pro
cessing. The program we'll be using as an example in this section-a program that
scores responses to a series of questions to determine how much a person likes choc
olate (see Figure 9.3}-works in exactly that manner. It collects an entire array of data
and then sends the entire array to an object's member function.

The array in this case is an array of characters because the answers to the ques
tions posed by the program are either y for "yes" or n for "no." As you can see in List
ing 9.4, the class-qui Z--<ontains just one variable, the character array (answers).

Using One-Dimensional Arrays

Figure 9.3 Output of the Chocoholics program

Chocoholics.out
SIOUX state: application has terminated.

Do you spend more than 10~ of your grocery money on chocolate? y
When you go to the grocer y store, do you head for the candy aisle first? y
Do you eat more than 7 chocolate bars a week? y
Do you eat more than 14 chocolate bars a week? y
Do you eat more than 21 chocolate bars a week? n
Do you eat more than 28 chocolate bars a week? n
Do you think that white chocolate isn't really chocolate? n
Do thing that cherry f i I I ing pol lutes chocolate? y
Do you think that peanut butter pol lutes chocolate? y
Do you think that the only good nuts in a chocolate bar are no nuts? y

You're definitely a chocolate lover.

Listing 9.4 Header file for the Chocoholics program

can st NUM_OUE ST = 10;

cl ass quiz
{

private:

} ;

char an swer s [NUM_OUE STJ;
publi c:

qui Z();

voi d ini t (cha r []); II pas s in entire ar ray
i nt sc ore (); I I sco r e the qu iz

155

&.

-0 •

The qui z class has three member functions. The constructor (see Listing 9 .5) uses
a for loop to place a blank (two single quotes with a space between them) in each
array element. This is the same process used by the constructor for the Temperatures
program. However, the i n i t function for the Chocoholics program is different from
the Temperatures program because it expects an entire array of values rather than a
single value as an input parameter.

When you are specifying an array as a function parameter in a function prototype,
you need to tell the compiler that the parameter is indeed an array. To do so, use the
following general syntax:

array_da ta_ type [J

156 Chapter 9 • Arrays

Listing 9.5 Member functions for the Chocoholics program

#include <ctype.h>
#include "chocoholics.h"

quiz::quiz()
{

for (int i = O; < NUM_QUEST; i++l
answers[i] ' ': II blank for each character

void quiz::init <char newAnswers[Jl
{

for (int i = O; < NUM_OUEST; i++l
answers[iJ toupper(newAnswers[iJl:

int quiz::score Cl
{

int total_yes = 0:

for (int i = O; i < NUM_QUEST; i++)
if (answers[iJ == 'Y'l

total_yes++;
return total_yes:

Notice that all you need to do is include the type of data that will be included in the
array, along with opening and closing brackets ([]).

When you write the function declaration, you include the name by which the
array will be called within the function, as in:

char newAnswers[J

It isn't necessary to include the number of elements in the array. This is because the
computer automatically determines the number of elements in the parameter from
the size of the array that is passed into the function when the function is called.

To pass an array into a function, you simply place the name of the array in the
function call. For example, in Listing 9.6, the main function for the Chocoholics pro
gram, one call to the i n i t member function is placed with:

oneQuiz.init (newAnswers);

•
Using One-Dimensional Arrays

Listing 9.6 The main function for the Chocoholics program

#include <iostream.h>
#include "chocoholics.h"

void main ()
{

quiz oneQuiz; II declare an object
char newAnswers[NUM_OUESTJ;
int index = 0, result;

cout << "Do you spend more than 10% of your grocery money on chocolate? ";
cin >> newAnswers[index++J;

157

cout «"When you go to the grocery store, do you head for the candy aisle first?";
cin >> newAnswers[index++J;
cout << "Do you eat more than 7 chocolate bars a week? ";
cin >> newAnswers[index++J;
cout << "Do you eat more than 14 chocolate bars a week? "
cin >> newAnswers[index++J;
cout << "Do you eat more than 21 chocolate bars a week? "·
cin >> newAnswers[index++J;
cout << "Do you eat more than 28 chocolate bars a week? "·
cin >> newAnswers[index++J;
cout << "Do you think that white chocolate isn't really chocolate? "·
cin >> newAnswers[index++J;
cout << "Do thing that cherry filling pollutes chocolate? ";
cin >> newAnswers[index++J;
cout << "Do you think that peanut butter pollutes chocolate? ";
cin >> newAnswers[index++J;
cout << "Do you think that the only good nuts in a chocolate bar are no nuts? "·
cin >> newAnswers[indexJ;

oneQuiz.init (newAnswers);
result= oneQuiz.score();
switch <result)
{

case 0: case 1:
cout << "\nYou couldn't care less about chocolate.";
break;

case 2: case 3: case 4:
cout << "\nYou like chocolate, but you're not a fanatic.";
break;

case 5: case 6: case 7:
cout << "\nYou're definitely a chocolate lover.";
break;

case 8: case 9: case 10:
cout << "\nYou're a certified chocoholic!";
break;

default:
cout << "\nError in scoring routine.";

158 Chapter 9 • Arrays

Notice that no array indexes are included in the call; only the name of the array
appears. What you are doing when you pass an array in this way is passing the
address of the array's starting location in main memory. Arrays are therefore always
passed by reference. This way of passing parameters to functions is very different
from all the other parameter passing you have seen to this point.

When you use the name of a simple variable, such as an i n t or ch a r, to send a
parameter to a function, the computer makes a copy of the contents of the variable
and gives that copy to the function to manipulate. Because the function is working
on a copy, any modifications made to that copy don't affect the original variable in
main memory. This is the pass by value that you have been using to this point.

However, when you send a function the address of a variable rather than the vari
able's contents, you allow the function to modify main memory directly and thus
make it possible for the function to modify the original copy of the parameter. This is
a pass by reference. Because the name of an array is the address of the array's storage
location, the only way to send an array to a function is by reference.

To make this a bit clearer, assume that you are working with a 10-element integer
array named v a 1 u es. If you pass v a 1 u es to a function as a parameter, you are pass
ing the starting address of the array in main memory, making the entire array avail
able for direct modification by the function into which it is passed.

If you pass v a 1 u es [0] or v a 1 u es [4], however, you are passing individual vari
ables that are part of the array. Passing a specific array element, therefore, is a pass by
value, just like passing any other type of simple variable.

NOTE
When you pass work with the names of arrays, you are working with pointers. The
term "pointer" is simply another word for a main memory address. The idea is that a
pointer "points to" some location in memory. You will learn a great deal more about
using pointers in Chapter 11.

The Chocoholics program's third member function-score-evaluates the con
tents of a qui z object's array. Like the Temperatures program, it checks each ele
ment in the array individually, incrementing the counter each time it finds a Y. The
number of positive results is returned to the ma i n function, which then uses a
s w i t ch to determine how the results are to be reported back to the user.

NOTE
If the switch statement in Listing 9.6 looks a bit odd, keep in mind that the case state
ments can check only for equality with some value. If you want to match more than one
value with a given set of actions, you mu.st have one case for each value; you can't use
such operators as < or>. A C++ compiler doesn't care how you position source code in

Using One-Dimensional Arrays 159

a text file. The case statements don't need to be on separate lines. In Listing 9.6 several
were put on the same line simply to save space, just so the entire listing would fit on one
page!

ARRAYS OF OBJECTS

One of the problems that faces any object-oriented program is the need to find a
method for organizing multiple objects declared from the same class. There are
many techniques for doing so, including using an array of objects. In this section you
will be introduced to one way of handling arrays of objects. As an example, we will
be looking at a version of the Chocoholics program (Chocoholics 2 on the disk that
came with this book) that has been modified to process more than one survey at a
time.

All the modifications to the Chocoholics program have been made in the ma i n
function (Listing 9.7). Notice first that the declaration for an object now looks like an
array declaration:

quiz oneQuiz[NUM_SURVEYSl;

The one Qui z array has NU M_S U RV E Y S elements, each of which is an object created
from class qui z, each of which has an array as a variable.

Like elements in any other array, the elements in an array of objects are referenced
using their position in the array. Therefore, oneQui Z[O] is the first object of class
qui z, and o neQ u i z [N UM_SU RV EY S -1] is the last object. (Remember that the con
stant NU M_S UR VEYS refers to the total number of elements in the array, but because
we start numbering the elements with 0, the index of the last element is always one
less than the total number of elements.)

When you reference an object in an array of objects, you must always use the
object's array index. For example, when the revised Chocoholics program is ready to
send an array full of answers to an object, it uses:

oneQuiz[count++J.init (newAnswers);

where count is the array index. Keep in mind that the ++ following count is per
formed after the function call is complete (because it's a postincrement).

There is an important programming logic issue of which you should be aware
when looking at Listing 9.7: the difference in the use of the index variables for the
two arrays managed by this function. One array is the array of objects (oneQui z);

160 Chapter 9 • Arrays

Listing 9.7 The Chocoholics main function handling an array of objects

canst NUM_SURVEYS = 10;

void main<>
(

quiz oneOuiz[NUM_SURVEYSJ; II declare an array of objects
char newAnswers[NUM_QUESTJ;
char yes_no = 'Y': II variable to stop while loop
int index, result;
int count= O; II keeps track of the number of surveys entered

while (toupper(yes_no> == 'Y')
(

index O; II must reset answer array index for each new survey
cout << "\nSurvey #" << count+l << ":" << endl << endl;
cout << "Do you spend more than 10% of your grocery money on chocolate? ";
cin >> newAnswers[index++J;
cout << "When you go to the grocery store, do you head for the candy aisle first? "·
cin >> newAnswers[index++J;
cout << "Do you eat more than 7 chocolate bars a week? ";
cin >> newAnswers[index++J;
cout << "Do you eat more than 14 chocolate bars a week? "·
cin >> newAnswers[index++J;
cout << "Do you eat more than 21 chocolate bars a week? "·
cin >> newAnswers[index++J;
cout << "Do you eat more than 28 chocolate bars a week? "·
cin >> newAnswers[index++J;
cout <<"Do you think that white chocolate isn't really chocolate? "
cin >> newAnswers[index++J;
cout << "Do thing that cherry filling pollutes chocolate? ":
cin >> newAnswers[index++J;
cout <<"Do you think that peanut butter pollutes chocolate? ";
cin >> newAnswers[index++J;
cout << "Do you think that the only good nuts in a chocolate bar are no nuts? "·
cin >> newAnswers[indexJ;

oneQuiz[count++J.init (newAnswers); II identify object using array index

if (count< NUM_SURVEYS)
(

else
(

cout << "\nAnother survey? "·
cin » yes_no:

cout << "\nThe survey array is full. All surveys will be scored."<< endl;
yes_no = 'N': II do this to stop the while loop

Continued next page

,
Using One-Dimensional Arrays 161

Listing 9.7 (Continued) The Chocoholics main function handling an array of objects

for (int i = O; i <count; i++)
{

result= oneQuiz[iJ.score(); // reference individual object by array index

cout << "\nPerson #" << i+l << • ";
switch (resu 1t)
{

case 0:
case 1:

cout << "couldn't care less about chocolate.";
break;

case 2:
case 3:
case 4:

cout <<"likes chocolate. but isn't a fanatic.";
break;

case 5:
case 6:
case 7:

cout << "is definitely a chocolate lover.";
break;

case 8:
case 9:
case 10:

cout << "is a certified chocoholic!";
break;

default:
cout << "\nError in scoring routine.";

the other is the array used to collect the answers for a single survey (newAnswers).
The variable count keeps track of how many surveys the user enters. It is initialized
to o at the beginning of the program and is never reinitialized. This is correct because
the for loop that scores the survey data needs to know exactly how many were
entered so that it doesn't attempt to process objects for which there are no data.

However, the variable index keeps track of the answers for a single survey and
must be reset to O for each new survey. If it isn't, the second survey will attempt to fill
the newAnswers array beginning in position 10, one beyond the maximum size of
the array; the third survey would begin at position 20, and so on. The result would be
mangled memory and inaccessible data!

In this program, the newAnswers array is reloaded with data, from the begin
ning, for each object that is part of the oneQui z array. You must therefore reset its

162 Chapter 9 • Arrays

index for each reuse. The oneQui z array is also used twice. However, it is loaded
with data only once. The second use scores existing data; it doesn't replace that data
(as do the repeated uses of newAnswers). Therefore, the count variable must
remain intact so that the remainder of the program knows how many objects in
oneQu i z have been loaded with data. When the program needs to process the con
tents of oneQu i z, it uses a different index variable (the i in the for loop) that can be
initialized to O and run until it reaches co u n t.

Using Two-Dimensional
Arrays

Arrays are not limited to a single dimension. Programs occasionally use arrays that
can be thought of as a grid. These two-dimensional arrays are made up of columns and
rows. When you declare such an array, you must specify both the number of columns
and the number of rows:

data_type array_name [#rows][# columns];

For example, the following declares an array with five rows and four columns:

int integerGrid[5][4];

The array will hold 20 integers, each of which is referenced by giving the two
numbers that identify its cell in the grid. As far as the programmer is concerned, the
array indexes do define a grid (see Figure 9.4). However, when the array is stored in
main memory, the array elements are stored linearly, row by row.

NOTE
There is theoretically no limit to the number of dimensions you can give an array. For
example, a three-dimensional array might be visualized as a cube. However, when you
get beyond two dimensions, arrays are very difficult to conceptualize. In practice,
arrays of more than two dimensions are rarely used.

As an example of some of the special issues that arise when you are working with
two-dimensional arrays, let's look at a program that can be used to score a multiple-

Using Two-Dimensional Arrays

Figure 9.4 Viewing and storing a two-dimensional array

The Programmer's View

Storage in Main Memory

[O)[O] [0][1] [0)[2] [0](3]

(1][O] (1][1] [1)[2] [1)[3]

[2)[0] [2)[1] [2][2] [2][3]

[3][0] [3)[1] (3][2] [3][3]

(4][0] (4][1] [4)[2] [4)[3]

(O)[O] Memory address n
(0][1] Memory address n + 1

(0][2]

[0][3]
(1][0]

(1)[1]

[1)[2]
(1][3]

[2][0]
(2][1]

[2)[2]
[2][3]
[3](0]
[3][1]
[3)[2]

[3][3]

[4)[0]
[4)[1]
(4][2]

•
•
•
•
•
•
•

[4)[3] Memory address n + 19

163

choice exam that permits the student to choose more than one answer for each ques
tion. The Exam class, which forms the foundation for the program, can be found in
Listing 9.8. Notice first that the class has just one variable, an array to hold a stu
dent's answers to an exam. Each row in the array represents a separate question; a
student's answers to a question are stored in the columns across each row. The num
ber of questions in the exam and the maximum number of possible answers for a

164

Listing 9.8 Header file for the Exam Scoring program

const MAX_ANS = 3;
const MAX_OUEST = 10;

class Exam
{

private:
char answers[MAX_OUEST)[MAX_ANS];

public:
Exam(l;

Chapter 9 • Arrays

void init (char [J[MAX_ANSJl; //pass in student's asnwers
int score (char [J[MAX_ANSJl; // pass in the key

} ;

question have been declared as named constants. This makes it easy to change the
program by simply changing the constants. This is particularly important for this
program, in which, as you will see, the dimensions of the array are used repeatedly.

The Exam Scoring program has three member functions, which can all be found
in Listing 9 .9. The constructor uses nested for loops to initialize each element in the
answers array to an x. Although it may make more sense to initialize an array to
blanks, keep in mind that c i n won't accept a blank as a legal input character. There
fore, the program won't be able to use a blank as a placeholder for an answer a stu
dent left empty. The program arbitrarily uses x as that placeholder because it
represents a character that won't be used as a legal answer; no multiple-choice exam
that a teacher would write would ever have that many possible answers for one ques
tion.

The remaining two member functions both have two-dimensional arrays as input
parameters. As you can see in Listing 9.8 and Listing 9.9, the way in which the proto
type is written and the way in which the function header is written are different from
when you use a one-dimensional array as a parameter.

FUNCTIONS AND Two-DIMENSIONAL ARRAYS

When you pass a one-dimensional array to a function, the computer needs to know
only the data type of the array to figure out where one element ends and another
begins. For example, if the array is of type int, the computer knows that each ele
ment takes up 16 bits. However, when you are dealing with a two-dimensional array,
the computer needs to know not only where one element ends and another begins,
but also where each row ends and another begins. For this reason, you must specify

Using Two-Dimensional Arrays

Listing 9.9 Member functions for the Exam Scoring program

#include "exam.h"

Exam: : Exam()
{

for (int i = O; i < MAX_QUEST; i++)
for (int j = O; j < MAX_ANS; j++)

165

answers[i][j] = 'x'; II initialize each cell to the placeholder
x
l

void Exam::init (char student[J[MAX_ANS])
I

for (int i = O; i < MAX_OUEST; i++)
for (int j = O; j < MAX_ANS; j++)

answers[i][j] = student[i][j]; II copy from input array

int Exam::score (char key[][MAX_ANS])
I

int numb_right = 0;

II The logic here is a bit tricky, because we can't be sure that
II the student's three answers are in the same order as the
II key's three answers. Therefore, we have to check each student
II answer against all three answers in the key for each question.

for (int i = 0; i < MAX_QUEST; i++)
for (int j = O; j < MAX_ANS; j++)

for (int k = O; k < MAX_ANS; k++)
if (answers[i][j] != 'x' && answers[i][j]

numb_right++;
return numb_right;

key[i][k])

the number of columns in a two-dimensional array when it is used as a function
parameter; you can continue to let the computer figure out the number of rows.

A two-dimensional array that is used as a function prototype is therefore written
in the following way:

data_type [][number of columns]

For the Exam Scoring program, the arrays used for input to member functions
appear in the function prototypes as follows:

166 Chapter 9 • Arrays

char [J[MAX_ANSJ

By the same token, the function headers must also include the number of columns
in the array, although the number of rows can continue to be left out:

init (char student[J[MAX_ANSJ)
score (char key[J[MAX_ANSJ)

PROCESSING Two-DIMENSIONAL ARRAYS

Processing every element in a two-dimensional array requires nested loops (usually
for loops). As a first example, look at the Exam class's constructor in Listing 9.9. The
outer for loop (index variable i) controls movement from one row to the next; the
inner for loop (index variable j) controls movement from one column to the next.
As you study this function, keep in mind that the inner for loop is completed first. It
is repeated once for each repetition of the outer for loop. This means that in this
particular program the inner loop is executed 10 times and that the outer loop is exe
cuted only once.

The same logic appears in the i n i t function. The major difference is that instead
of assigning a constant to each element in the answers array, a value is copied from
the student array (the function's input parameter).

The logic in the score function, however, is a bit tricky. The function's input
parameter is an array that holds the correct answers to the exam. However, there is
no way to be certain that the student recorded his or her answers for a given question
in the same order that the answers for that question appear in the key. For example,
assume that a, d, and e are correct responses for question 2 (stored in row 1 in the
array, because array elements are numbered beginning with 0). The key array con
tains key [1] [0] = 'a', key [1] [1] = 'd ', and key [1] [2] = 'f '. The student,
however, recorded the answers in a different order, and therefore the answer array
contains a n s we r [1 J [0 J = • d ' , a n s we r [1][1 J = • f ', a n s we r [1][2 J = • a ' .

If the score function attempted to score the exam by looking only at matching
array elements between the two arrays, this student would score a o for question 2-

even though the student has identified all three responses correctly-because no two
of the array elements are equivalent. The score function therefore compares each
possible answer to a given question to each response the student made for that ques
tion. In the example we have been considering, this means that key [1] [0],
key[l][l], and key[l][2] are all compared to answer[l][OJ; key[l][OJ,
key[l][l], and key[1][2] are compared to answer[l][l]; and key[l][OJ,

Programming Challenge Number 6 167

key[l][l], and key[l][2] are compared to answer[l][2]. To do this the
score function uses a third for loop (index variable k) that cycles through the col
umns of a given row of the key array for each element in the answers array.

The main function, which uses the an object created from the Exam class, can be
found in Listing 9.10. As you can see, the program first gathers data for the exam key,
using nested for loops to fill the array elements in order. All student exams evalu
ated during the program run will be evaluated against this key.

The program then enters a w h i l e loop that lets the user key in the responses
made by one student, again using nested for loops to access every element in the
array. Once all responses have been entered, the program calls the i n i t member
function to transfer those responses to the Exam object. Then the main function
scores the exam and produces its output. The while loop finishes by giving the user
the chance to process another student's exam.

Programming Challenge
Number 6

One of the problems with the Exam Scoring program is that it handles only one stu
dent at a time. Once a student's exam score is displayed on the screen, the student's
answers are essentially lost. For this challenge, you will be modifying the program so
that it can handle and store many students' scores.

To make these changes, you should first modify the program so that it can handle
an array of Exam objects:

• Add to the Exam class an integer variable that stores a student's ID number.
• Change the declaration of the Exam object into an array declaration. For the pur

poses ofthis exercise, 10 exams should be enough.
• Modify the ma i n function so that it collects data for all the students and initializes

all the Exam objects before scoring any exams. (Hint: Use a w hi l e loop that asks
the user whether there are any more students after entering data for each exam.)
Don't forget to enter the student ID number.

• Modify the ma i n function so that it scores all the exams at once. (Hint: Use a for
loop for this.)

• Format your output so that it appears as a report showing the student's ID num
ber, the student's raw score, and the percentage of correct responses.

168 Chapter 9 • Arrays

Listing 9.10 Main function for the Exam Scoring program

#include <iostream.h>
#include <ctype.h>
#include <iomanip.h>
#include "exam.h"

void main()
{

Exam oneExam: II declare an exam object
char key[MAX_QUEST][MAX_ANS]: II array for the key
char student[MAX_QUESTJ[MAX_ANSJ; II array for student answers
char yes_no = 'Y':
int max_possible = 0, result:

II get data for the key
cout << "Enter the answer key ('x' if no answer):"<< endl << endl:
for (int i = 0: i < MAX_QUEST: i++)

for (int j = 0: j < MAX_ANS; j++)
I

cout << "Question " << i+l << " answer " << j+l << "· "·
cin >> key[i][j];
if (key[i][j] != 'x')

max_possible++;

while (toupper(yes_no) == 'Y')
{

cout << "\n\nEnter student answers: "<< endl << endl:
for (i = 0; i < MAX_QUEST: i++)

for (int j = 0: j < MAX_ANS; j++)
I

cout << "Question • << i+l << •
cin >> student[i][j]:

answer n << j+l <<

II initialize the object with student answers
oneExam.init (student);
II score the exam
result= oneExam.score(key);
II display raw results
cout << "\n\nThe student had " << result <<

• correct responses out of " << max_possible <<
II set formatting for percentage display
cout << setprecision(2) << setiosflags(ios::fixedl:
II compute and display percent correct answers
cout << "\nThe students grade is " <<

((float) resultlmax_possiblel * 100 « "%.":
cout << "\n\nAnother student? "
cin » yes_no:

" " .

. . "

CHAPTER

Strings

Strings-collections of characters that usually represent meaningful words-are
stored as arrays of characters, terminated by the ASCII code for null (usually written
'\O'). Because strings are in fsct arrays, they can't be handled by a program in the
same way as simple variable types, such as integers or floating point numbers. As you
will see in this chapter, a number of functions in the ANSI C string library make it
possible to perform operations on entire strings, to a large extent eliminating the
need to treat the characters in the string as individual array elements.

Declaring Strings: A Review

As you will remember, to declare a variable to hold a string, you declare an array of
characters. The maximum length of the array should be one character longer than

169

170 Chapter 10 • Strings

the maximum number of characters the string will hold so that there is a place for the
terminating null. For example, an SO-character string might be declared using:

char aString[81];

To simplify declaring strings, programmers often use the typedef statement to
create a data type for a string. Assume, for example, that your program will be using
80- and 50-character strings. You could then use:

typedef char string80[81];
typedef char string50[51J;

Once the new data types have been created, you declare variables from them wher
ever needed:

string80 title, publisher;
string50 city, author;

Referencing Strings

just like any other array, the name of a string represents a pointer to where the string
begins in main memory. This means that you can reference the characters in a string
like the individual elements in an array. For example, assume that you are working
with the string ti t l e that was declared previously. The variable t i t l e [0] stores a
single character, the first character in the string. By the same token, ti t l e [1] rep
resents the second character in the string and ti t l e [2] the third.

In contrast, the notation & ti t l e [0] is the same as ti t l e: It represents the
address of the starting position of the array. C++ interprets an ampersand(&:) in
front of a variable name as a request for the variable's starting address in main mem
ory rather than for the contents of the variable. Although you will be learning much
more about the & operator in Chapter 11, it is important to introduce it now because
it does give you access to parts of strings and will help you learn to manipulate
strings easily.

Assume, for example, that you are working with the string "My dog has fleas,"
which is stored in the string variable s i 11 y St r i n g. The contents of the string can
be seen in Figure 10.1. If you want to work with the address of the entire string, you

String Manipulation 171

can use either s i 11 y St r i n g or & s i 11 y St r i n g [0] . However, if you want to work
with just the characters "has fleas," you can use & s i l l y St r i n g [7] , because
s i l l y St r i n g [7 J contains the first character in the part of the string in which you
are interested. When you indicate the beginning of a string using the ampersand
operator to generate an address, the computer views the string as everything begin
ning with that address and continuing until it encounters a null. For example, using
&s i 11 ySt ring [11] references the string "fleas" and &s i 11 ySt ring [6 J refer
ences " has fleas," including the leading space that is in s i 11 y St r i n g [6] .

Figure 10.1 The contents of the sillyString variable

sillyString[OJ M
sillyString[l] y
sillyString[2] (a blank)
sillyString[3J d
sillyString[4J 0

sillyString[5J g
sil lyString[6J (a blank)
sillyString[7] h
sillyString[8J a
s.illyString[9J s
si l lyStri ng[lOJ (a blank)
sillyString[llJ f
si l lyStri ng[12J l
si l lyStri ng[13J e
si l lyStri ng[14J a
sillyString[15J s
si l lyStri ng[16J \0 (terminating null; stored as a single ASCII code)

String Manipulation

With the exception of 1/0 using ci n and cout, most string manipulation requires
the use of C library functions. The C library functions that support string manipula
tion support copying strings, comparing strings to determine their relative alphabeti
cal order, and combining strings (concatenation). Prototypes for all ANSI C string
functions are found in string.h.

172 Chapter 10 • Strings

COPYING STRINGS

As you saw earlier in this book, you assign a value to a string using the st re PY func
tion. The action of st re py is to transfer an entire string from one location to
another, including the terminating null. The source string can be a string constant
(characters inside double quotes) or another string variable. The destination must be
a string variable. For example, the following are all valid uses of st re py:

string25 string!, string2;
strepy (string!, "This is a test.");
strepy (string2, "This is another string.");
strepy (string!, string2);

If the preceding three strepy functions were executed, both stri ngl and
st r i n g 2 would contain "This is another string."

CONCA TENA TING STRINGS

Concatenation lets you combine two strings by pasting one string on the end of the
other. It is performed with the st re at function. To see how it works, consider the
following:

string50 string!, string2;
strepy Cstringl,"My dog");
strepy Cstring2,"has fleas");
streat (stringl,string2);

The st re at function call modifies the contents of st r i n g 1 so that it contains "My
doghas fleas." The lack of a space between "dog" and "fleas" isn't an error. Because
the st re at operation doesn't know anything about the meaning of words and that
normal English usage requires spaces between words, it simply pastes the two strings
together. To get normal spacing, you must explicitly add the space:

streat Cstringl, " ");
streat (stringl,string2);

To help you see how string concatenation can be used in a program, let's look at a
very simple program that plays tricks with a person's first name and last name. As

String Manipulation 173

you can see in Figure 10.2, the program asks for the first name and last name sepa
rately. It then combines them in Last, First order and finishes by reversing the order.

Figure 10.2 The output of the Name Reverse program

Name reuerse.out
SIOUX state: application has terminated .

First name: Jasmine ~ Last Name: Jones
The whole name is Jones, Jasmine ~ The reversed name is Jasmine Jones •

The program is based on the class Name in Listing 10.1. Notice that the class stores
the first name, the last name, and the concatenated name (in Last, First order.) There
are four member functions: the constructor, an initialization routine to store the first
name and last name in the object, a function that returns the contents of the who l e -
Name variable, and a function that reverses the contents of the who l eName variable.

Listing 10.1 The header file for the Name Reverse program

typedef char string25[26J:
typedef char string50[51J:

class Name
{

private:

I:

string25 First, Last:
string50 wholeName: // stored Last, First

public:
Name ();
void init (char [], char [Jl:
char* getWhole(l:
char* reverse();

As you can see, the return value data type for the get Who l e and reverse func
tions is ch a r *, a notation to which you have not been introduced. The way in which
strings are passed into and out of functions is slightly different from passing and
returning simple variable types such as integers and single characters. We will there
fore discuss this process in depth a bit later in this chapter.

174 Chapter 10 • Strings

The member functions themselves can be found in Listing 10.2. The constructor
uses strcpy to place a null (two double quotes right next to each other) in each
string variable. The i n i t function is very similar. However, instead of placing a null
in each string, it copies the contents of input variables into Fi rs t and Last. Then it
assembles the contents of whol eName. To do so, it first copies Last into whole
Name. The next step is to append (concatenate with strcat) a comma and a space.
Notice that like any other string constant, these are surrounded by double quotes.
The final step is to concatenate the contents of Fi rs t.

Listing 10.2 Member functions for the Name Reverse program

#include <string.h>
#include "reverse.h"

Name: :Name()
(

strcpy (First,"");
strcpy (Last."");
strcpy CwholeName,"");

void Name::init (char iFirst[], char iLast[J)
(

strcpy (First, iFirst);
strcpy (Last, iLast);
strcpy CwholeName, Last);
strcat CwholeName. ", ");
strcat <wholeName. First);

char* Name::getWhole()
return wholeName;

char* Name::reverse ()
(

static char reversed[SlJ; //must be static or it won't return
int pos = O;

while (wholeName[posJ != ' '>
pos++;

strcpy (reversed, &wholeName[pos+lJ);
strcat (reversed, " ");
strncat (reversed, wholeName, pos-1); //copy first name
return reversed;

String Manipulation 175

The logic of the reverse function is a bit more complicated. Remember that its
purpose is to take the contents of the who 1 e Na me variable and to reformat them so
that they appear as First Last. (Yes, of course you could use the Fi rs t and Last vari
ables to do this, but then there wouldn't be an opportunity to show you how to pull
strings apart before you put them back together again!) The strategy is to look at
each character in the string in turn until you find the space that precedes the first
name. Then you can use the characters from one beyond the space to the end of the
string as the first name.

""- The scan for the space is managed by the w hi 1 e loop in the reverse function.
This loop begins with the array index (pos) initialized to O. If the array element isn't
a blank, the computer enters the body of the w hi l e, a single statement that incre
ments po s. The loop stops when it encounters the blank. The value in po s is equal
to the position of the blank because the w hi 1 e stops before entering the body of the
loop.

Once the function has found the blank, it can copy the first name into a new string
variable (reversed). Notice that the function indicates the address of the beginning
of the source string (the first name) with &who 1eName[pos+1]. The pos+ 1 is one
array element-one character in the string-beyond where the blank was found. In
other words, it's the first character of the first name.

After copying the first name, the reverse function concatenates a blank onto
reversed. Then it uses a slightly different version of st re at-the st rncat func
tion-to copy the last name. The st r n cat function works exactly like st r cat
except that it copies up to a maximum number of characters. This function has the
following general syntax:

strncat (destination, source, max_characters)

It concatenates the specified number of characters unless it reaches the end of the
source string first. In the reverse function, concatenation should start with the
beginning of the last name (the beginning of the string) and stop at the character
before the comma.

Since the last character of the last name is two characters before the blank whose
array index is stored in po s, why is the maximum number of characters in reverse
pos-1 rather than pos-2? The answer lies in the difference between counting char
acters and counting array positions. You count array positions beginning with O;
however, you count characters beginning with 1. Therefore, the number of charac
ters you want copied is really pos - 2+ 1, or pos -1.

There is one more vitally important thing to notice about the reverse function.
The reversed variable has been declared as stat i c. As you may remember from

176 Chapter 10 • Strings

much earlier in this book, variables declared in functions are by default removed
from main memory when the function terminates. However, because arrays are
always passed by reference (changes are made to the original, not a copy), the
reverse function needs the reversed variable to remain in memory. If it doesn't,
there is no way to return the modified string to the calling function, because the orig
inal will disappear when the function ends. The solution is to declare the variable as
stat i c. Once declared, static variables are left in memory as long as the program is
running; they aren't destroyed when the function that created them terminates.

The ma i n function for the Name Reverse program (Listing 10.3) is relatively sim
ple. It collects the first name and last name data, uses them to initialize an object of
class Name, and then displays both the contents of the who 1 eName variable and the
result of the reverse function.

Listing 10.3 The main function for the Name Reverse program

#include <iostream.h>
#include <stdio.h> // for gets
#include <string.h>
#include "reverse.h"

void main ()
(

Name person: // delcare an object
string25 iFirst, ilast:

cout << "First name: ":
gets (iFirst);
cout << "Last Name: ":
gets (ilast>:

person.init (iFirst. ilast);
cout << "The whole name is " << person.getWhole() << endl;
cout << "The reversed name is • <<person.reverse();

NOTE
Don't worry that we haven't discussed passing strings into and returning strings from
.functions. We'll return to this program a bit later in the chapter to take care of that.

String Manipulation 177

COMPARING STRINGS

You can't compare strings by simply placing their variable names on the opposite
sides of comparison operators. As you might guess, doing so asks the computer to
base its decision on main memory addresses rather than on the contents of the
strings. The solution is a function known as st rcmp:

strcmp (first_string, second_string)

The st r cm p function returns one of three values, based on the result of its evalu
ation of the relative alphabetical order of two strings. If the two strings are identical
in every respect, including case, st rcmp returns a O. If the first string alphabetically
precedes the second, it returns a -1; if the first string follows the second alphabeti
cally, it returns a 1.

To experiment a bit with string comparisons, we'll be looking at a program that
stores a person's name in a class variable and then compares that name to a name
entered from the keyboard to see which of the two names comes first alphabetically.
A sample program run appears in Figure 10.3. The first name entered is stored in the
class; the second is the name that is compared to it.

Figure 10.3 Output of the Which is first? program

Which is first? .out
SIOUX state: application has terminated.

Enter the name to test: Barnes, Bi I ly ~ Enter a name to compare: Anderson, Sam
The name in the class comes alphabetically first . {} •

The Which is first? program is based on the class in Listing 10.4. The test Na me
class has only one class variable-name-which stores the name to be tested. The
three member functions are the constructor, an initialization function, and a func
tion to perform the comparison between two names. The constants declared at the
beginning of the header file are used by the ma i n function to interpret the results of
the testOne function

As you can see in Listing 10.5, the constructor and the i nit function both use
st r c p y to place a value in the name variable. The constructor copies a null, and the
i n i t function copies the contents of an input variable. The test 0 n e function

178 Chapter 10 • Strings

Listing 10.4 Header file for the Which is first? program

con st EOU = 0;
canst CLASS_FJRST = 1;
canst INPUT_FJRST = -1;

typedef char string50[51];

class testName
I

private:
string50 name;

public:
testName(); //constructor
void init Cstring50); //initialization routine
int testOne (string50); // function to compare the strimgs

I:

Listing 10.5 Member functions for the Which is first? program

#include <string.h>
#include "first.h"

testName::testName()
I strcpy <name."");

void testName::initCstring50 iName>
I strcpy <name, iName); I

int testName::testOne (string50 iName>
I

return (strcmp (name, iName));

contains the call to strcmp. Because the strcmp function call is placed in the
return statement, testOne sends the result of strcmp back to the calling
function.

In this case, the calling function is in the Which is first? program's ma i n function
(Listing 10.6). The main function's first task is to ask the user for the name that will
be stored in an object declared from the test Na me class. It then uses that data to ini
tialize the object. The next step is to ask the user for a second name and to perform
the comparison between the name stored in the class and the name just entered.
Once the comparison has been made, the ma i n function uses a nested i f statement
to evaluate the result and to display the appropriate message for the user.

Strings as Function Parameters

Listing 10.6 The main function for the Which is first? program

#include <iostream.h>
#include <stdio.h>
#include <ctype.h>
#include "first.h"

void main Cl
(

testName person;
string50 iName;
int result;

cout << "Enter the name to test: ";
gets CiNamel:
person.init CiNamel;

cout << "Enter a name to compare: ";
gets Ci Name l ;
result = person.testOne CiNamel:
if (result== EOUl

cout <<"The two names are the same.";
else if (result == CLASS_FIRSTl

cout << "The name in the class comes alphabetically first.";
else if (result == INPUT_FIRSTl

cout <<"The name you just input comes alphabetically first.";
else

cout <<"Something has gone wrong with the string comparison.";

NOTE

179

The nested if statement in the Which is jirstr program's main .function could have been
replaced with a switch-all decisions are based on the same integer variable. When you
have only two, three, or four alternatives, it's always a toss-up whether to use nested if
statements or a switch.

Strings as Function
Parameters

Much of today's data processing involves passing strings into and out of functions,
simply because so much of what we do with computers involves text. Unfortunately,

180 Chapter 10 • Strings

because C++ strings are arrays, using them as function parameters means that they
must be handled like other arrays. In this section we will review how arrays are
passed into functions and look at how arrays of characters (in other words, strings)
can be returned.

DECLARING STRING PARAMETERS

Before you can pass a string into a function, you must declare the string as a function
parameter. In the function prototype the string can appear simply as an array of char
acters. For example, if you were to rewrite the reverse function so that the result
string was passed into the function, the prototype might appear as:

void reverse (char[]);

Notice that the function no longer has a return value. As you will see, this is because
modifications made to an array passed into a function are made to the original in
main memory, not to a copy. (Remember that all arrays are passed by reference.)
There is therefore no need to have a return value.

Similarly, the function header includes the array as a parameter, this time giving it
a variable name that will be used inside the function:

void Name::reverse (char result[]);

PASSING STRINGS INTO FUNCTIONS

You pass a string into a function just like you pass any other array: by using its name.
If you were calling the modified version of the reverse function used earlier, you
would do the following in the function placing the call:

char result[51J; II make sure you delcare the string
Name oneName; II make sure you have an object
oneName.reverse (result); II call the function

Don't forget that because you are passing an address in main memory rather than a
copy of the contents of the variable, any changes you make to the variable in the
called function will in fact be made to the original variable.

Strings as Function Parameters 181

RETURNING STRINGS FROM FUNCTIONS

There are two ways to modify strings inside a function and make the result of that
modification available to the calling function. One is to use the return statement to
send a string's address back; the other is to use pass by reference, as you have just
seen in the previous section.

When you want to return a string from a function using the return statement,
the return data type is the address of (a pointer to) the beginning of the string. To do
this, you use pointer notation. For example, ch a r * tells the computer to expect a
pointer to a character storage location. The asterisk means that the value is a main
memory address rather than a piece of data.

If you look at Listing 10.1, you'll see that the return type of the original reverse
function is ch a r *. The original version of the function itself, found in Listing 10.2,
declares the reversed string inside the function and then uses the following state
ment:

return reversed;

Because the return statement contains the name of the string, it sends the starting
address of the string back to the calling function rather than the contents of the
string. As you will remember, this string was declared as stat i c so that its contents
would remain intact in main memory after the reverse function ended.

NOTE
There's a bit of a chicken-and-the-egg problem when it comes to deciding whether to
present arrays and strings first or to present pointers first. You can't really talk about
arrays and strings without introducing some pointer concepts. By the same token, you
can't really explain the uses of pointers without array and string concepts. This book
gives you arrays and strings first, but it could just have easily been done the other way
around!

In Listing 10.3 the call to the reverse function has been placed in a co u t stream.
This means that the address returned by the function doesn't need to be stored any
where. It is passed directly to the output stream, which in turn displays the entire
string. (As you will see in Chapter 11, however, it is often necessary to save such
return addresses in variables.)

Should you choose to use pass by reference, as in the revised version of the
reverse function (Listing 10.7), you can operate on the input parameter string as if
it had been declared inside the function. However, you don't have to bother to return

182 Chapter 10 • Strings

Listing 10.7 A revised reverse function using pass by reference

void Name::reverse (char result[])
I

int pos = O;

while CwholeName[pos] != ' 'l
pos++;

strcpy (result, &wholeName[pos+l]l; //copy last name
strcat (result. • "l;
strncat (result. wholeName, pos-1); // append first name

the address of the string using the return statement, because you were operating on
the original storage location all the time.

Arrays of Strings

Arrays of strings are really two-dimensional arrays. However, with a little help from
a typedef statement, they can be almost as easy to handle as one-dimensional
arrays. To explore how you can handle an array of strings, we'll be looking at a pro
gram that tracks parents and their kids. (Such a program might form the basis of a
genealogy program. We'll be modifying it considerably throughout the rest of the
book to make it more efficient.)

The program also contains examples of reading strings from and writing strings to
a text file. For this reason, the program is considerably longer than any of those
you've seen so far. Don't let its length throw you; other than the interaction of
arrays, strings, and text files, there's nothing in it that we haven't discussed in depth.

NOTE
There's really no such thing as a short C++ program, at least not one that does any
thing meaningful.

The action of the Families program at this point (for example, Figure 10.4). is rela
tively simple. It reads family data from a file and then, assuming that the array that
holds family objects isn't full, asks the user whether he or she wants to enter another
family. Then the program displays all the family data it has in its array of objects and
writes all the data back to its file.

Arrays of Strings 183

Figure 10.4 Output of the Families program

Families.out
SIOUX state: application has terminated.

Do you want to add another family? y

Father : Paul
Mother : Penny
How many children do they have? 2
Ch i I d • 1 : Perry
Ch i I d •2 : Pame I a

Do you want to add another family? n

Make
Mary
Kids :

Max
Moe
Math i Ida

Next? y

Edward
Elaines
Kids :

Elizabeth
Edgar
Emile
Edward Jr.
Elise

Next? y

Steve
Sandy
Kids:

Sam
Sally

Next ? y

Tom
Ti Ide
Kids :

Terry
Tabatha
Tim

Next? y

Penny
Ti Ide
Kids :

Perry
Pamela

I

11

1

111

1ll ll~

~!Ill

111111

~
Iii

184 Chapter 10 • Strings

DECLARING AN ARRAY OF STRINGS

There are two ways to declare an array of strings: as a two-dimensional array and as a
one-dimensional array using a string data type created with the typedef statement.
The latter is by far the easier method and is the one used by the Families program.

The header file for the Families program can be found in Listing 10.8. The names
of a father and mother are declared as strings, using a st r i n g 2 5 data type that was
created with the typedef statement. The children of those parents are stored in an
array of strings. Notice that each element in this array has been declared as a
stri ng25. This means that the array has MAX_KIDS number of elements, each of
which is an array of 25 characters. When you declare an array of strings in this way,
you can deal with each string in the array as a unit, letting you work with a one
dimensional array rather than with a more complex two-dimensional array.

Listing 10.8 The header file for the Families program

typedef char string25[26J;
const MAX_KIDS = 10;

cl ass Families
{

I;

private:
string25 father. mother;
int numb_kids;
string25 children[MAX_KIDSJ; II array of strings

public:
Families();
void init Cstring25, string25, int, string25 []);
void display Cl; II display the address book
char* getFatherCl;
char* getMother();
int getnumbKids Cl;
char* getKidCintl;ll parameter is index to kid array

The two-dimensional array represented by the chi 1 d re n array could be defined
as either of the following:

char children [26J[MAX_KIDSJ;

char children [MAX_KIDSJ[26];

Arrays of Strings 185

In the first case, you get 26 rows, each of which is 10 columns across. The strings
therefore run vertically. In the second case, you get 10 rows, each of which is 26 col
umns across, which conceptually stores the strings horizontally. When you are work
ing with a two-dimensional array to handle strings, you have to pay special attention
to the direction in which the strings are running so you use indexes properly. How
ever, when you create a string data type with the typedef statement and then
declare a one-dimensional array using the new data type, you can avoid having to
worry about which index is which.

MANIPULATING AN ARRAY OF STRINGS

Most of the manipulation of the array of strings used by the Fam i 1 i es class takes
place in the program's member functions (Listing 10.9). As you study this listing,
keep in mind that when you reference an element in this array of objects, the name of
each element is a main memory address because each element is an array in itself.

For example, by including the following, the constructor is placing a null in the
i th element of the array:

strcpy (children[i],"");

By the same token, the i n i t function can place a value in an array element with:

strcpy Cchildren[i],ikids[i]);

In this case, i k i d s [i] is the i th element in an array of strings used as an input
parameter to the i n i t function.

If this seems a bit of a contradiction with what you've already learned, don't forget
that we're really working with a two-dimensional array in which the second dimen
sion is hidden by a programmer-defined data type:

char children [MAX_KIDS][26];

This is the same as:

typedef char string25[26];
string25 children [MAX_KIDS];

186 Chapter 10 • Strings

Listing 10.9 Member functions for the Families program

#include <string.h>
#include <iostream.h>
#include "families.h"

Families::Families Cl
I

strcpy (father,"");
strcpy (mother,"");
II handle each string in the array one at a time
for (int i = O; i < MAX_KIDS; i++l

strcpy Cchildren[i],""l:
numb_kids = O:

void Families::init Cstring25 ifather, string25 imother, int inumb_kids,
string25 ikids[Jl

strcpy Cfather,ifatherl:
strcpy Cmother,imotherl:
numb_kids = inumb_kids:
II handle each string in the array one at a time
for (int i = O; i < numb_kids: i++l

strcpy Cchildren[iJ,ikids[iJl:

void Families::display Cl
I

cout << "\n" <<father<< endl;
cout <<mother<< endl:
cout « "Kids: • « endl:
II because children[iJ is the starting address of a string,
II cout can handle it just like the name of any other string
for (int i = 0: i < numb_kids: i++l

cout <<" "<< children[i] << endl:

char* Families::getFatherCl
I return father; I

char* Families::getMotherCl
I return mother: I

int Families::getnumbKidsCl
I return numb_kids; I

II use the array index to make sure you get the right kid
char* Families::getKid(int index)

return children[index]; I

Arrays of Strings 187

Given that this is the case, the address of the beginning of the i th element could
also be written:

&children[i][OJ

The st r c p y function call is equivalent to:

strcpy (&children[iJ[OJ, &kids[i][OJ);

The main function for the Families program (Listing 10.10) also works with an
array of strings: the array that captures the names of children so the names can be
passed into the i n i t function (i k i d s). This array is exactly the same as the ch i 1 -
d ren array in the F ami 1 i es class.

As you look at the main function, notice that it performs array bounds checking. In
other words, it makes sure that the program doesn't overflow the array of Fam i 1 i es
objects or the array of strings that collects the names of the children. To makes sure
that the peop 1 e array doesn't overflow, the function lets users enter new families
only while the last array index used (stored in 1 a s t I n de x) is less than the number of
elements in the array (stored in NUM_FAM IL I ES).

To make sure that the k i d s array doesn't overflow, the function asks the user to
enter the number of children in the family. It keeps repeating the request for a value
until the user enters something between 0 and the maximum number of children
allowed (the constant MAX_K IDS). ·

It usually isn't a good idea to require users to indicate beforehand how many val
ues they want to enter into an array; they may not have counted the values. However,
in this case, it's reasonable to assume that the user knows before beginning data
entry how many children there are.

The alternative is to accept a child's name into a temporary variable. If the length
of the string is 0, the user has pressed Enter without typing anything. In that case, the
user is through. Otherwise, you copy the input string into some other variable (for
example, the k i d s array), where it won't be overwritten by the next gets statement.

The sequence of steps might appear as in Listing 10.11. Notice that to find the
number of characters in a string, you use the st r 1 en function, which returns an
integer. Keep in mind that this integer isn't the same as the last index used in the
array; it's the number of characters in the string, excluding the terminating null.

NOTE
If you look carefally at Listing 10.10, you'll notice that two statements have been com
mented out. They bear the note "kludge. " In computer slang, a kluge is an inelegant but

188 Chapter 10 • Strings

Listing 10.10 The main function for the Families program

#include <string.h>
#include <ctype.h>
#include <stdio.h>
#include <iostream.h>
#include <fstream.h>
#include "families.h"
int read (Families []); // prototypes for program functions
void write (int, Families []);
const NUM_FAMILIES = 10;
void main ()
I

II

II

Families people[NUM_FAMILIESJ; // up to 10 people for this example
char yes_no, dummy2[2J;
int lastlndex = -1; // last index used in array of objects
int i,j; //general purpose index variables
string25 ifather, imother, ikids[MAX_KIDSJ;
int inumb_kids = MAX_KIDS + l;
yes_no = 'Y' :
lastlndex =read (people); // read the data
while Clastlndex < NUM_FAMILIES && toupperCyes_no) 'Y')
I

cout << "\nDo you want to add another family? •.
cin » yes_no:
if CtoupperCyes_no) == 'Y')
I

getsCdummy2); //kludge
cout << "\n\nFather: ":
gets Ci father):
cout << "Mother: ·~
gets Cimother);
while Cinumb_kids > MAX_KIDS)
I

cout << "\nHow many children do they have? ":
cin >> inumb_kids;
if Cinumb_kids > MAX_KIDS)

cout << "\nThis program is limited to • << MAX_KIDS
<<"kids. Try again.•<< endl;

I
gets(dummy2); //kludge
for Ci = 0: i < inumb_kids; i++)
I

I

cout « "Child II" « i+l « ·· •:
gets Cikids[iJ);

people[++lastlndexJ.init Cifather.imother,inumb_kids,ikids);
inumb_kids = MAX_KIDS + l;

Continued next page

Arrays of Strings

Listing 10.10 (Continued) The main function for the Families program

for (i = O; i <= lastlndex; i++)
I

people[iJ.display();
if (i < lastlndexl
I

cout << "\nNext? ";
ci n » yes_no;
if (toupper(yes_nol 'N' l

break;

write (lastlndex, people); II write the data

Listing 10.1 ~ An alternative method for filling a string array

string25 name;
int i = -1

while (++i < MAX_KIDSl
I

cout << "Name: ";
gets (name)
if (strlen(namel > 0)

else
I

strcpy (kids[i], name);

i--; II otherwise. i won't reflect last index actually used
break; II get out of the loop

189

effective solution to a problem. On the author's computer (a PowerMac 8100/80), there
is a persistent problem when a sequence of gets statements follow a dn; the computer
somehow assumes that the user has pressed Enter and skips the first gets that follows a
dn. (The problem occurs if the program uses the dn member function getline as well.)
The solution is to insert a dummy gets that the computer can skip. The tech support
people at Metrowerks have been unable to reproduce the problem; according to their
reports, all code that exhibits the problem on the author's system works properly with
out the dummy gets. Therefore, try this code on your computer with the "kludge" state
ments commented out. If you seem to be skipping the first gets in each sequence (you'll
see two prompts to the user on the same line), remove the comment marks.

190 Chapter 10 • Strings

Strings and Data Files

Strings present a challenge for text files because the spaces between words in a string
will be interpreted by the stream extraction operator as delimiters between individ
ual values. If you attempt to read a string with the string extraction operator, you'll
read only the first word.

The solution to the problem comes in two parts. The first is to make sure that you
write a null (· \ 0 ·) at the end of each string. The second is to use a library function
g et l i n e-to read the entire string.

WRITING STRINGS

In Listing 10.12 you will find a program function that writes data from the people
array to a text file. The w r i t e function first opens an output file and then checks to
make sure that the file was opened successfully. Since the w r i t e function is the last
thing that happens in the program, the program simply exits with an error message
to the user and a return statement if the file can't be opened.

Listing 10.12 Writing Families data from a text file

void write (int lastlndex, Families people[])
{

int inumb_kids;

ofstream peopleOut ("people");
if (!peopleOut)
{

cout << "Problem opening output file.";
return;

I
peopleOut « lastlndex « ' ';
I I write to file
for (int i = O; i <= lastlndex; i++)
{

peopleOut << people[iJ.getFather() << '\O';
peopleOut << people[iJ.getMother() << '\O';
inumb_kids = people[iJ.getnumbKids();
peopleOut « inumb_kids « ' ';
for (int j = O; j < inumb_kids; j++)

peopleOut << people[i).getKid (j) << '\O';

Strings and Data Files 191

If the file is opened successfully, the function enters a w hi 1 e loop that writes each
object in the peop 1 e array, one at a time. Notice that for each string, the stream
insertion ends with a null (' \ 0 '). When the function is writing an integer, it
appends a blank (' '). With these terminators in place, the file has been written in a
format that will ensure that the program can read the data accurately.

READING STRINGS

To read a string, you must use the i f stream object's get 1 i n e member function.
The purpose of this function is to read a block of characters, ignoring embedded
blanks and other punctuation. There are many versions of the get 1 i n e function.

The version used when reading text from a file requires three input parameters:
the name of a string variable into which the data will be stored, the maximum num
ber of characters to read, and an optional terminating character. For example, the fol
lowing syntax tells the computer to read no more than 80 characters and to stop
when it reaches the first null, even if it has read fewer than 80 characters:

stream_name.getline Cstring,80, '\0');

If you have written strings with a terminating null, this will read in the strings up to
that null. If you leave off the third parameter (the terminating character), the func
tion call will read the total number of characters specified.

The other major thing to keep in mind is what needs to occur when you mix sim
ple variables (integers, floating point numbers, single characters) with strings. When
you are reading into a simple variable, the computer uses the blank after the value to
determine where the value ends. However, the computer doesn't read the blank. If a
string follows the simple value, you must step over the blank before reading the
string. If you don't, the blank will appear as the first character in the string. The easi
est way to do this is to set up a character variable (dummy in this case) and then use
the input stream member function get to read it:

stream_name.get (dummy);

As you can see, get grabs a single character and stores it in the variable in its param
eter list.

192

Listing 10.13 Reading Families data from a text file

int read (Families people[])
I

int lastlndex, inumb_kids;
char yes_no, dummy;
string25 ifather, imother, ikids[MAX_KIDSJ;

ifstream peopleln ("people"); II input file

if (!peoplelnl
I

Chapter 10 • Strings

cout << "Couldn't open input file. OK to continue? "
cin » yes_no:
if (toupper(yes_nol == 'N' l

return: II quit the program

else II read from file
I

peopleln >> lastlndex; II get last array-of-objects index
peopleln.get (dummy); II skip over whitespace
for (int i = O; i <= lastlndex; i++)
I

people In .getl ine (ifather ,80, '\O' l;
people!n.getline Cimother,80,'\0'l;
peopleln >> inumb_kids;
peopleln.get (dummy); II skip over whitespace
for (int j = O; j < inumb_kids; j++l

peopleln.getline (ikids[j].80, '\O' l;
people[i].init (ifather,imother,inumb_kids.ikidsl:

peopleln.closeCl;

return lastlndex;

NOTE
The process for reading and writing to a text file can be simplified enormously if it can
be done in a member function. However, to do this you need to pass the file stream itself
as a parameter to the member function. You'll therefore find out how to do this in the
next chapter, when you learn a great deal more about pointers.

Programming Challenge Number 7

Programming Challenge
Number 7

193

If the Families program were ever to be used as a genealogy program, it would need
to include birthdates for all people. For this challenge, you'll be adding dates stored
as strings. (You'll later replace the string storage with a more effective way of han
dling dates.) To add the dates, you'll have to do the following:

• Use the typedef statement to create a data type that holds a date (a nine-charac
ter string will do the trick).

• Add date variables to the class for the mother's birthdate and the father's birth
date.

• Add an array of dates for the children's birthdates.

• Modify constructors as necessary to include the added data.

• Modify all I/ 0 code to allow entry of dates (both from a file and interactively) and
output of dates (both in screen display and to a file). Keep in mind that once
you've modified the code for file 1/0, a data file that was written using the initial
format won't be any good. Be sure to delete that file before attempting to run
your modified code.

When you add the array of dates for the children's birthdates, you'll notice that
there is no way to automatically ensure that a child's name and birthdate are entered
in the same array element in both arrays. It will be up to your program to make sure
that if a child's name is in array element 2 of the name array, for example, that the
child's birthdate is also in array element 2 of the birthdate array.

To make the program even more complete, you may also want to include last
names. Consider carefully how you will include the last names. Should there be sepa
rate variables for the last names, or can you store both first and last names in the
same variable? If you choose to store them in one variable, what format should you
use? Make your choice and then implement it. (Keep in mind that it's unreasonable to
assume that every member of a family has the same last name.) As with the dates,
you'll need to modify all II 0 code as necessary to accommodate the added data.
Depending on how you choose to handle the last names, you may also need to mod
ify some of the constructors.

CHAPTER

Pointers

As you have been reading, a pointer is a main memory address. Pointers make it pos
sible to return multiple values from the same function. Pointers also let you use
dynamic binding, which supports the creation and destruction of objects while a pro
gram is running. In general, pointers give you significant control over what is going
on in main memory.

In this chapter you will learn about how pointers are used in a C++ program. You
will be introduced to pointer variables and how they can be used to manipulate
blocks of memory and how they can be passed into and out of functions. In addition,
you will learn about dynamic binding and how to pass references to I/ 0 streams into
and out of functions.

195

196 Chapter 11 • Pointers

Pointer Variables

A pointer variable is a variable that is declared to hold a pointer to some specific type
of data. The contents of a pointer variable might point to a simple variable type, such
as an integer or a floating point value, or it might point to an object. In this section
you will learn about what pointer variables contain and how to declare pointer vari
ables, initialize them, and gain access to the contents of memory locations pointed to
by pointer variables.

NOTE
Don't forget that the names of arrays are already pointer variables, in that they always
hold the starting address of the array in main memory. We therefore set up separate
pointer variables under very specific circumstances, one of which you will see shortly.

How POINTER VARIABLES 11POINT11

The contents of a pointer variable is an address in main memory. Other than that dis
tinction, it is pretty much like any other variable. To make this a bit clearer, let's take
a look at a simplified segment of main memory. In Figure 11.1 every value in main
memory takes up the same amount of space: one memory location. (In a real com
puter the amount of space taken by a value depends on the type of data. The starting
addresses of values therefore aren't equally spaced.)

The addresses in the simplified main memory segment run from 00512 to 00520.
Each address has been labeled with a variable name, which appears at the far right of
the illustration. Vari abl el, Vari abl e4, Vari abl e5, Vari abl e7, and
Va r i ab 1 e 9 are regular variables that hold data values. The remaining variables are
pointer variables. If you examine their contents, you'll notice that Va r i ab 1 e 2 and
Vari ab 1 e 6 both contain the address of Va r i ab 1 e 1. In other words, they "point to"
Va r i a b 1 e 1. By the same token, V a r i a b 1 e 3 points to Va r i a b 1 e 5 and Va r i a b 1 e 8
points to Vari ab 1 e9.

DECLARING AND INITIALIZING POINTER VARIABLES

To declare a variable that will hold a pointer, you use the * operator with the follow
ing general syntax:

data_type * variable_name;

Pointer Variables

Figure 11.1 Pointer variables and memory

c

[

[

Memory
Contents

109
512
516

90011
32181

512
987
520
52

Memory
Address

00512 Variable 1
00513 Variable2
00514 Variable3
0051 5 Variable4
00516 Variables
00517 Variable6
00518 Variable 7
00519 Variables
00520 Variable9

197

For example, to declare a variable that holds a pointer to an integer storage location,
you could use the statement:

int * integerPtr;

Note that if you are including many pointer variables in the same declaration state
ment, you must use the * operator before each variable name:

int * integerPtrl. * integerPtr2;

You can also mix regular variables and pointer variables in the same declaration state
ment:

int integerValue, * integerPtr;

As a first example of the use of pointers, we'll be looking at a modified version of
the Calculator program you first saw in Chapter 6. Rather than working directly with

198 Chapter 11 • Pointers

a floating point result value, this version of the program uses pointer variables, both
in its member functions and in its ma i n function.

The modified header file appears in Listing 11.1. There are two important things
to notice. First, the class variables now include a pointer to a floating point value
(res u 1 t Pt r). Second, the member functions now return pointers to floating point
values rather than to the pointers themselves.

Listing 11.1 Header file for the pointer-based version of the Calculator
program

class Calculator
I

I;

private:
float result, * resultPtr;

public:
Calculator ();
float* Add (float, float);
float* Subtract (float, float);
float *Multiply (float. float);
float * Divide (float, float);
float* Exponentiate (float, float);

Like any other variable, the contents of a newly declared pointer variable aren't
automatically initialized by the computer. You must explicitly place a main memory
address in the pointer. There are two major ways to do so. One is to assign the
pointer variable the result of a function that returns a pointer value. The other is to
obtain the address of a regular variable using the & operator:

pointer_variable = ®ular_variable;

For example, the constructor for the Ca 1 cu 1 a to r class initializes the res u 1 t Pt r
with:

resultPtr &result;

Pointer Variables 199

ACCESSING DATA POINTED TO BY POINTER VARIABLES

When you use the name of a pointer variable, you are working with a main memory
address, not the contents of that address. There must therefore be some way that you
can tell the computer that you want the contents of the location pointed to by a
pointer variable rather than the main memory address itself. To do this, you use the *
operator to dereference the pointer.

The notation *po ; n t er_ var ; ab 7 e asks for the contents of a pointer variable. As
an example, consider the following statements:

int number, * numberPtr;
numberPtr = &number;
number = 10;
*numberPtr = *numberPtr + 6:

What will be stored in number after the statements have been executed? The answer
is 16. The third statement initializes number to 10. The last statement adds 6 to it. In
other words, *number Pt r and number both access the contents of the same storage
location.

The member functions for the pointer-based version of the Calculator program
use exactly this technique. As you can see in Listing 11.2, each arithmetic statement is
of the form:

*resultPtr = ar;themt;c_operat;on;

Notice also in Listing 11.2 that each member function returns the contents of
res u l t Pt r without dereferencing. This is because the functions expect a pointer as
the return data type.

If a function has a pointer as a return data type, what does this mean for a calling
function? It means that the calling function must prepare a pointer variable to hold
the result. As you can see in Listing 11.3, the main function for the Calculator pro
gram declares a pointer variable-answer Pt r-that is initialized to point to the
address of a floating point variable (answer). The pointer variable can then be used
to hold the result of calls to a Cal cul at or object's member functions.

Once answerPtr contains an address, that address can be used to display the con
tents of that memory location. The co u t statement below the s w i t ch in Listing
11.3 includes *answerPt r to tell the computer to show the contents of the member
location, not the main memory address itself.

200 Chapter 11 •Pointers

Listing 11.2 Member functions for the pointer-based version of the
Calculator program

#include <math.h> // location of prototype for "pow• function
#include "Calculator.h"

Calculator::Calculator ()
I

resultPtr = &result:
*resultPtr = 0:

float* Calculator::Add (float valuel, float value2)
I

*resultPtr = valuel + value2;
return resultPtr;

float* Calculator::Subtract (float valuel, float value2)
I

*resultPtr = valuel - value2;
return resultPtr;

float* Calculator::Multiply (float valuel, float value2)
I

*resultPtr = valuel * value2:
return resultPtr;

float* Calculator::Divide (float valuel. float value2)
I

*resultPtr = valuel I value2:
return resultPtr;

float* Calculator::Exponentiate (float valuel, float value2)
I

*resultPtr =pow Cvaluel, value2l: //computes valuel to the value2 power
return resultPtr;

NOTE
There is no compelling reason one way or the other for choosing to use pointers or regu
lar variables for the Calculator program. Nonetheless, the program provides a good first
example of the way in which pointers work.

Pointer Variables

Listing 11.3 The main function for the pointer-based version of the
Calculator program

#include <iostream.h>
#include "Calculator.h"

void main Cl
I

Calculator Cale; II declare a Calculator object named "Cale;

char Operator; II arithmetic operator used in an expression
char yes_no = 'Y';
float first_value, second_value; II values used in computation
float answer, * answerPtr;

II initialize the pointer variable
answerPtr = &answer;

while (yes_no = 'Y' 11 yes_no = 'y' l
{

cout << "\nArithmetic expression: ";
cin >> first_value >> Operator >> second_value;
switch (Operator)
{

case '+':

case

answerPtr =Cale.Add Cfirst_value, second_valuel;
break; . -..

201

answerPtr Cale.Subtract (first_value, second_valuel;
break;

case'*':
answerPtr Cale.Multiply Cfirst_value, second_valuel;
break;

case 'I':

case

answerPtr Cale.Divide Cfirst_value, second_valuel;
break;
'A'•

answerPtr = Cale.Exponentiate
Cfirst_value, second_valuel;

break;
default:

cout << "\nUnidentified operator";

cout << "\nAnswer: • << *answerPtr << endl;
cout << "\nAnother? ";
cin » yes_no;

202 Chapter 11 • Pointers

USING POINTER ARITHMETIC

The use of pointers makes it easy to step through a block of memory, one element at
a time. In other words, if you have an array of floating point values, pointers can
make it easy to access all the elements of the array, in order. You can do this by
manipulating the contents of the pointer variable using pointer arithmetic.

Assume, for example, that you've declared an array (i ntArray) to hold up to
MAX_I NT values. The contents of the first value in the array is represented by
* i n tA r ray. If you want to access the second value, you could write:

*(++intArray)

The parentheses around the arithmetic operation tells the computer to first incre
ment the pointer and then dereference it. The parentheses are necessary because the
* operator has precedence over the preincrement operator.

When you increment or decrement a pointer, the computer takes into account the
type of data to which the pointer is pointing. For example, if the pointer variable has
been declared to point to 16-bit integer values, each time you increment the pointer
variable by one, the variable's contents are increased by two bytes. However, if the
pointer variable points to an object, incrementing the pointer variable by one adds
the number of bytes occupied by the entire object to the pointer.

There is one drawback. to using array names as pointer variables for pointer arith
metic. Once you've modified the pointer, you've lost the starting location of the
array. We therefore often create pointer variables for arrays so we can modify the
pointer variables and still retain the starting location of the array:

int * arrayPtr;
arrayPtr = intArray;

Notice that because the name of an array is an address, you can assign a value to the
pointer variable without using the & operator.

As a further example, let's look at a program that sums that values in an array of
up to 25 positive floating point values. The program lets you enter values until you
enter a negative value and then reports the sum (see Figure 11.2). (To keep it short,
this program doesn't include array bounds checking, so be careful when you run it!)

The Array Summing program is based on the f 1 o a tA r ray class in Listing 11.4. In
addition to the array, the only other variable is a count of the number of values in the
array.

Pointer Variables 203

Figure 11.2 Output of the Array Summing program

Sum Rrra_y_.out
SIOUX state : application has terminated.

Value •1: 50 .Q
Value •2: 60
Value •3 : 90
Value • 4: 100
Value •5 : 78
Value •6 : 15
Value •7 : 88
Value •8 : 90
Value •9 : 10
Value •10 : 25
Value •11: 88
Value •12: 167
Value •13 : 25
Value •14 : 30
Value •15 : 25
Value •16 : 109
Value •17 : 18
Value •18 : 15
Value •19 : -1
The sum of the values in the array is 1083. -0

~

Listing 11.4 The header file for the Array Summing program

clas s floatArray
{

} ;

private:
float numberArra y[25] ;
int count ;

public:
fl oatArray();
void in i t(float [], int) ;
double sum ();

Most of the work for the program takes place in the fl oat Ar ray class's member
functions (Listing 11.5). In particular, take a look at the sum function. The function
first declares a pointer variable (a r ray Pt r) that is then initialized to the starting
location of numberArray. The function can then manipulate the address of the
array in a r ray Pt r without worrying about disrupting the class variable.

To perform the sum, the program places the following expression in a for loop:

total += *(arrayPtr++);

204 Chapter 11 • Pointers

Listing 11.5 Member functions for the Array Summing program

#include "sum array.h"

floatArray::floatArray()
{

for (int i = 0; i < 25; i++)
numberArray[iJ = O;

count = O;

void floatArray::init (float iarray[J, int icount)
I

count = icount;
for (int i = O; i <= icount; i++)

numberArray[iJ = iarray[i];

double floatArray::sum ()
I

float * arrayPtr; II pointer to class array
double total;

II use pointer variable so you don't disrupt value in numberArray
arrayPtr = numberArray;

for (inti = O; i <=count; i++)
total += *CarrayPtr++);

return total;

The parentheses around the pointer variable name tell the computer that postincre
ment is to be applied to the pointer variable itself, not to the contents of the pointer
variable. (Don't forget that the * operator has higher precedence than any of the
arithmetic operators; if you were to omit the parentheses, the computer would first
dereference the pointer, perform the addition and assignment to total , and then
increment the dereferenced contents.)

Bach time the loop repeats, the computer dereferences the pointer and provides
the value stored at the pointer's current location. The value is added to the value cur
rently stored in tot a 1. The computer completes the execution of the statement by
incrementing the pointer variable, adding the number of bytes used by a floating
point number.

The main function, which manipulates a fl oatArray object, can be found in
Listing 11.6. All this function does is collect values for the array, initialize an object
with the i n i t member function, and then call the sum function by placing it in a
co u t statement.

Pointer Variables

Listing 11.6 The main function for the Array Summing program

#include <iostream.h>
#include "sum array.h"

void main ()
{

floatArray oneArray;
float iarray[25J, iNumb;
int icount = 0, sum:

cout << "Value#" << icount + 1 << "· ";
cin » iNumb;
while (iNumb > 0)
{

iarray[icount++J = iNumb:
cout << "Value#" << icount + 1 << "· •.
cin » iNumb:

icount--; //want icount to be last array index used
oneArray.init (iarray, icount);

cout <<"The sum of the values in the array is•<< oneArray.sum() <<

205

II n •

As you look at this code, notice that when the user enters a negative number, the
w h i 1 e loop that collects data for the array stops. However, because the array index is
increased with a postincrement, at the point the loop stops, the index's value will be
one too great. This is why the function decrements the i count variable immediately
after the input loop finishes.

Pointer Arithmetic and String Functions

The string functions to which you were introduced in Chapter 1 O are often imple
mented using a pointer arithmetic technique similar to that you just saw in the array
summing program. As a first example, consider the st r 1 en function in Listing 11.7.
To find the length, the function scans the string, counting characters as it goes, until
it reaches a null.

NOTE

This .function uses a pointer to a character storage location as an input parameter. For
the moment, don't worry about the nature of this parameter. We'll look at passing
pointers as parameters a bit later in this chapter.

206 Chapter 11 • Pointers

Listing 11.7 Using pointers to find the length of a string

int strlen (char * string)
{

int len = O;
while (*(string++) != '\0')

len++;
return l en;

Copying a string requires moving characters one at a time from the source string
to the destination string. As you can see in Listing 11.8, copying begins with the first
character of each string and ends when the computer encounters the null at the end
of the source string. Because the w h i l e loop stops before transferring the terminat
ing null, the function adds a null.

Listing 11.8 Using pointers to copy one string to another

char * strcpy (char * destination, char * source)
{

destPtr; // need to save address of destination
destPtr = destination;

while (*source != '\0')
*(destination++) *(source++);

*destination= '\O';
return destPtr;

Notice in Listing 11.8 that the function pays absolutely no attention to the size of
the destination string. It copies all the characters in the source string, without regard
to what it might be overwriting in memory. This means that if the destination string
has been declared to hold as many characters as the source string, copying will
almost certainly destroy something in main memory that you want to keep.

To concatenate one string onto another, copying of the source string onto the des
tination string must begin with the null at the end of the destination string. In Listing
11.9, for example, the st r cat function uses an empty w hi l e loop to scan the desti
nation string, stopping at the null. Because the postincrement moves the pointer one
byte beyond the null, the function then backs up the pointer so that the first charac
ter copied overwrites the null. At that point, the copying proceeds just as it did in the
st r c p y function.

Pointers and Parameter Passing

Listing 11.9 Using pointers to concatenate strings

char * strcat (char * destination, char * source)
{

destPtr; II need to save address of destination
destPtr =destination;

while (*(destination++) != '\0')
; II empty while to find end of destination string

destination--; II back up to null

while (*source != '\0')
(destination++) =(source++);

*destination= '\O';
return destPtr;

Pointers and Parameter
Passing

207

One of the most common uses of pointers in a C++ program is to "return" multiple
values from a function. To be completely accurate, you can't use the return mecha
nism for more than one value. However, if you manipulate data directly in memory
rather than working on a copy passed into a function, the modified data are available
to any function-including the calling function-that happens to have access to the
address where the data are located.

The trick is to use pass by reference, in which you send a function the address of a
variable rather than the contents of the variable. The function receiving the
addresses then can dereference the pointers to manipulate the data stored at those
addresses.

To prepare a function to accept addresses rather than values, you declare parame
ters as pointer variables rather than as regular variables. For example, if a function
should expect pointers to an integer value and a floating point value, the function's
prototype would be written:

void function_name (int* float*);

208 Chapter 11 • Pointers

The asterisk following the data type tells the computer to expect a pointer rather
than a data value. By the same token, the function's header must declare pointer vari
ables as follows:

void function_name (int* intPtr, float* floatPtr);

NOTE
By convention, pointer variables are often named with the characters "Ptr" at the end
of the name. There is no requirement that you do this, but doing so makes it easier to
recognize pointer variables.

There are two ways to send addresses into a function. The first is to send the con
tents of a pointer variable; the second is to send the address of a regular variable. If
you happen to have a pointer variable available, you can place it in a function's
parameter list to send its contents to the function:

int integerValue, * intPtr;
float floatValue, * floatPtr;
intPtr = &integerValue;
floatPtr = &floatValue;
function_name (intPtr, floatPtr);

Alternatively, if you don't really need to use pointer variables, you can use the & oper
ator with the name of a regular variable to send that variable's address, without ever
storing the address in a pointer variable:

function_name (&integerValue, &floatValue);

Which you choose depends simply on whether you have a need for the pointer vari
ables in the calling function. If you'll be using the pointer variables for other pur
poses, use them as function parameters. However, there's no point in creating the
pointer variables if you don't have any other use for them; simply pass the addresses
of regular variables.

As a first example of a function that returns multiple values, we'll be looking at a
program that collects the distance a runner has run each day during a seven-day
period. The program then finds the average distance run, the maximum distance,
and the minimum distance (see Figure 11.3).

The Running Analysis program is based on the week 1 y Runs class (Listing 11.10).

This class contains an array that holds seven floating point values, a constructor, an

Pointers and Parameter Passing

Figure 11.3 Output of the Running Analysis program

Running_. out
SIOUX state: application has terminated .

Day •1: 2.6
Day •2: 3. 1
Day •3: 2.5
Day •4: 3.3
Day •5: 7.2
Day •6: 5.0
Day •7: 2 .5
Last week I ran an average of 3.74 miles per day.
My maximum distance was 7.20 miles.
My minimum distance was 2.50 miles .

I
~
Iii

Listing 11.10 Header file for the Running Analysis program

can st NUM_ RUN S = 7;

cla ss weeklyRuns
{

I;

private:
float di stance[NUM_RUNSJ;

publi c :
weekl yRuns();
void init (float[]);
void analyze (float* float * float *);

209

initialization function, and a function to perform computations on the array. Notice
that the prototype for this function includes three pointers to floating point values:
one for the average, one for the minimum, and one for the maximum.

The member functions for the Running Analysis program can be found in Listing
11.11. Look first at the function header for the an a l y z e function. The parameter list
indicates that the function expects pointers. The variables declared in the parameter
list are therefore pointer variables.

To assign values to the pointer variables, the an a l y z e function uses the * opera
tor to dereference the pointer variables. Keep in mind that every time the function
dereferences a pointer, it is gaining access to the original data in main memory. For
this reason, the function doesn't contain a return statement. When the function
terminates, the modified values remain in memory, in the locations where the vari
ables were declared by the main function (Listing 11.12).

In this particular example, the main function has no need to use pointer variables.
It therefore declares three floating point variables, one for each of the values

210 Chapter 11 • Pointers

Listing 11.11 Member functions for the Running Analysis program

#include "running.h"

weeklyRuns::weeklyRuns Cl
(

for (int i = 0: i < NUM_RUNS: i++l
distance[i] = 0:

void weeklyRuns::init (float iArray[]l
(

for (int i = 0: i < NUM_RUNS: i++)
distance[i] = iArray[i]:

void weeklyRuns::analyze (float* average, float* minimum, float* maximum)
(

float sum= 0:

for (int i = 0: i < NUM_RUNS: i++)
sum+= distance[iJ:

*average = sum I NUM_RUNS:

*minimum= distance[OJ;
*maximum= distance[OJ;

for Ci = l; i < NUM_RUNS; i++)
(

if (distance[iJ < *minimum)
*minimum= distance[iJ:

if Cdistance[i] > *maximum)
*maximum= distance[iJ:

computed by the an a 1 y z e function. When the time comes to call an a 1 y z e, the
ma i n function passes the addresses of the variables by preceding their names with
the & operator. After the completion of the function call, the ma i n function can use
the contents of the modified regular variables directly.

Dynamic Binding

Listing 11.12 The main function for the Running Analysis program

#include <iostream.h>
#include <iomanip.h>
#include "running.h"

void main ()
{

float iArray[NUM_RUNSJ;
float average, minimum, maximum:
weeklyRuns myRuns:

for (int i = 0; i < NUM_RUNS; i++)
{

cout << "Day#" << i + 1 << "· "·
cin >> iArray[iJ:

myRuns.init (iArray);
myRuns.analyze (&average, &minimum, &maximum):

cout « set i os flags (i os: : fixed) « setprecision(2);
cout « "Last week I ran an average of . « average

« " miles per day." « endl:
cout « "My maximum distance was . « maximum « " miles."
cout « "My minimum distance was . « minimum « "miles."

Dynamic Binding

«
«

211

endl:
endl:

Dynamic binding, in which functions are linked to objects while a program is run
ning, makes it possible to create and destroy objects as needed, rather than needing
to create all objects when a program begins its runs. There are two big advantages to
dynamic binding. First, dynamic binding gives you better control over main memory
because you don't need to consume memory with objects that are no longer needed.
Second, you can collect the data needed to initialize an object and then pass that data
into the class's constructor, thus eliminating the need for a separate initialization
function.

To create an object for use with dynamic binding, first declare a variable that will
hold a pointer to the object. Then use the new operator to create the object, includ
ing parameters for the class's constructor:

objectPtr =new class_name (parameter list);

212 Chapter 11 • Pointers

The new operator creates an object from the named class, runs a constructor using
the values in the parameter list, and returns a pointer to the newly created object.

Once you've created an object for use with dynamic binding, you use the ->
(arrow) operator to call member functions using the following general syntax:

objectPtr->function_name (parameter list);

The arrow operator dereferences the object pointer and turns the call into the dot
notation (object_name. function_name)youhave been using to this point.

When you have finished with an object created for dynamic binding, you can
remove it from memory with the de 1 et e operator:

delete objectPtr;

NOTE

Using delete to remove an object automatically executes a special type of member fonc
tion known as a destructor. A destructor has no return value. Its name is a tilde (-)fol
lowed by the name of the class. The job of a destructor is typically to release any other
memory used by the object. For example, if the object has created other objects using
new, those objects probably should be removed with the delete operator in the destruc
tor. Because none of the classes you have seen allocate mem~ no destructors have been
required.

To show you how dynamic binding fits into a program, let's look at a revised ver
sion of the Families program you first saw in Chapter 10. The header file has been
modified somewhat (see Listing 11.13). For the purposes of this discussion, the most
important change is that the i n i t function is gone. Instead, the interactive construc
tor contains the parameter from the i n i t function. (The file input constructor and
the w r i t e function will be discussed in the next section, when we talk about passing
streams into functions.

The revised member functions can be found in Listing 11.14. Right now, look just
at the first function, the interactive constructor. Notice that it contains the code that
originally was part of the i n i t function.

The program's ma i n function (Listing 11.15) has been modified in several ways to
support dynamic binding:

Dynamic Binding

Listing 11.13 Revised header file for the Families program

typedef char string25[26J;
canst MAX_KIDS = 10;

class Families
I

} ;

private:
string25 father. mother;
int numb_kids;
string25 children[MAX_KIDSJ;

public:
II interactice constructor
Families(string25, string25, int, string25 []);
Families (ifstream &l; II file input constructor
void display (); II display the address book
void write (ofstream &l;

213

• The p e op l e array is now an array of pointers to Fam i l i es objects rather than
an array of the objects themselves.

Families* people[NUM_FAMILIESJ;

• The program collects that data for a Families object and then uses the new op
erator to create the object.

people[++lastlndex] =new Families
(ifather,imother,inumb_kids,ikids);

The program creates the object and executes the constructor whose function sig
nature matches the parameter list that follows the name of the class. The pointer
returned when the object is created is assigned to the people array.

• The call to the di s pl a y function uses dynamic b:Uding:

people[iJ->display();

214 Chapter 11 • Pointers

Listing 11.14 Member functions for the revised Families program

#include <string.h>
#include <iostream.h>
#include <fstream.h>
#include "families.h"

Families::Families Cstring25 ifather, string25 imother. int inumb_kids,
string25 ikids[])

strcpy {father,ifather);
strcpy Cmother,imother);
numb_kids = inumb_kids;
for {int i = O; i < numb_kids; i++)

strcpy Cchildren[i],ikids[i]);

Families::Families Cifstream & Input>
I

char dummy;

Input.getline Cfather,80,'\0'l;
Input.getline Cmother,80,'\0');
Input >> numb_kids;
Input.get {dummy); //skip over whitespace
for {int j = O; j < numb_kids; j++)

Input.getline Cchildren[j],80,'\0');

void Families::display Cl
I

cout << "\n" <<father<< endl;
cout <<mother<< endl;
cout <<"Kids: "<< endl;
for {int i = O; i < numb_kids; i++l

cout << • • << children[i] << endl;

void Families::write Cofstream & Output)
I

Output<< father<< '\O';
Output<< mother<< '\O';
Output « numb_kids « ' ';
for {int i = 0; i < numb_kids; i++)

Output << children[i] << '\O';

Dynamic Binding

Listing 11.15 The main function for revised Families program

#include <string.h>
#include <ctype.h>
#include <stdio.h>
#include <iostream.h>
#include <fstream.h>
#include "families.h"
int read (Families* []); II prototypes of program functions
void write (int, Families * []);
const NUM_FAMILIES = 10;
void main ()
{

215

Families* people[NUM_FAMILIESJ: //up to 10 people for this example
char yes_no, dummy2[2J:

II

II

int lastlndex = -1, i, j;
string25 ifather, imother, ikids[MAX_KIDSJ;
int inumb_kids = MAX_KIDS + l;
yes_no = 'Y' :
lastlndex =read (people);
while (lastlndex < NUM_FAMILIES && toupper(yes_no) 'Y'l
{

cout << "\nDo you want to add another family? "·
ci n » yes_no;
if Ctoupper(yes_nol == 'Y'l
I

gets(dummy2): //kludge
cout « "\n\nFather: •:
gets Cifatherl:
cout « "Mother: ":
gets (i mother):
while (lnumb_kids > MAX_KIDS)
{

cout << "\nHow many children do they have? "·
cin >> inumb_kids;
if (inumb_kids > MAX_KIDS)

cout << "\nThis program is limited to " <<MAX KIDS
<<•kids. Try again."<< endl;

I
gets(dummy2); //kludge
for (i = 0: i < inumb_kids; i++l
{

I

cout << "Child#" << i+l << "· "·
gets (ikids[iJ);

people[++lastlndexJ =new Families
(ifather,imother,inumb_kids,ikids);

inumb_kids = MAX_KIDS + 1;

Continued next page

216 Chapter 11 • Pointers

Listing 11.15 (Continued) The main function for revised Families program

for Ci = O; i <= lastlndex; i++)
{

people[iJ->display{);
if Ci < lastlndexl
{

cout << "\nNext? "
cin » yes_no;
if Ctoupper(yes_nol 'N'l

break;

write Clastlndex, people);

Programming Challenge
Number 8

To get some practice with pointer variables, dynamic binding, and pass by reference,
in this challenge you will be modifying the Exam Scoring program that you read
about in Chapter 9. Make the following changes to the program:

• Use dynamic binding to create the Exam object.
• Modify the score member function so that it accepts a pointer to an integer vari

able as an input parameter (along with the existing input parameters). Use pointer
notation to modify the contents of the integer variable directly in main memory.
After these modifications, the function's return data type should be void.

• In the ma i n function, use the pointer variable whenever you need to access a stu
dent's exam score (the program variable res u l t).

Programming Challenge Number 9

Programming Challenge
Number 9

217

In this challenge, you'll be modifying the Temperatures program from Chapter 9 so
that it can handle weekly temperatures for an entire year. You'll be declaring an array
of pointers to objects. The changes you need to make include the following:

• Add an integer variable to the temps class to hold a week number.
• Change all I/ 0 routines to include the new class variable.
• Create an array of pointers to temps objects in the main function.
• Use dynamic binding to create temps objects.
• Include in the ma i n function another loop that lets the user enter temperatures

for more than one week. In this case, you can ask the user the week for which he
or she is entering temperatures. (Hint: The user will enter weeks numbered from
1 to 52, but the indexes in your array of objects run from O to 51.)

• Modify display code so that the user can indicate the week for which he or she
wants to see the average temperature.

If you want to make this program useful for keeping track of temperatures in your
area, it should store its data in a text file. (You don't want to have to reenter an entire
year's temperatures each time you run the program.) You should therefore add a con
structor to read one temps object from a file and a member function to write one
object to a file. Add code to the main function to manage file 110. Be sure to use
dynamic binding throughout.

References to 1/0 Streams

One of the problems with the original version of the Families program is that to read
and write objects from the data file, the program must know the details of the inter
nals of the class, as well as the layout of the file. To make the program more flexible,
the details of the class and the file should be hidden from the main program. In other
words, reading and writing a text file should be handled by member functions.

The problem that reading and writing from a member function presents is that a
member function can handle only one object. If your program happens to be work
ing with an array of objects, you can't open the I/O stream in the member function.

218 Chapter 11 •Pointers

It needs to be opened in the main program and then passed into the member func
tion.

When you pass an II 0 stream into a member function, you pass a reference to the
stream-the address in main memory where the stream's storage begins. The proto
type for a function that has an II 0 stream as a parameter looks like the following:

void function_name (stream_class &);

For example, the constructor that reads a Fam i 1 i es object from a file is declared as:

Families (ifstream &);

Because this function is a constructor, it has no return data type.

NOTE
The Families class now has two constructors. As you read earlier in this book, this is an
example of function overloading, where two functions have the same name but different
signatures. In other words, although the function names may be the same, their param
eter lists are different, making it possible for the compiler to distinguish between them.
When you create a new object, the computer calls the correct constructor based on the
parameters you use. By the same token, if the compiler can't find a constructor with a
matching signature, it will report an error.

The member function that writes an object to a file is declared as:

void write (ofstream &);

All the function headers need to do is give the stream a name that can be used
inside the member function:

Families::Families (ifstream & Input)
void Families::write (ofstream & Output)

The functions, which appeared in Listing 11.14, can then access the streams to read
and write data. Notice that another benefit of reading and writing using member
functions is that you no longer need to call functions that return object data. All of
the get functions that were part of the first version of this program are no longer
necessary.

References to 1/0 Streams 219

Reading and writing files in member functions also has the benefit of shortening
code in the main program. Rather than reading the data from the text file and then
calling a function to initialize an object, the main program's read function (Listing
11.16) simply includes a new statement that creates an object and passes the name of
the input file stream into the constructor. Notice that to pass the address of the
stream, you simply place its name in the parameter list.

Listing 11.16 Revised function to read objects from a data file

int read (Families* people[])
f

int lastindex = -1, inumb_kids;
char yes_no, dummy;
string25 ifather, imother, ikids[MAX_KIDSJ;

ifstream peoplein ("people"); II input file

if (!peoplein)
f

cout << "Couldn't open input file. OK to continue? "·
ci n » yes_no;
if (toupper(yes_nol == 'N')

return; II quit the program

else II read from file
f

peoplein >> lastlndex; II get last array-of-objects index
peoplein.get (dummy); II skip over whitespace
for (int i = O; i <= lastindex; i++l
f

people[iJ =new Families Cpeopleinl;
I
peoplein.close();

return lastindex;

The write function (Listing 11.17) also is shorter than the same function in the
original version. Rather than including code that retrieves data values from an object
and writes those objects to the file, it uses dynamic binding to call the w r i t e mem
ber function:

people[iJ->write CpeopleOut);

220 Chapter 11 • Pointers

Listing 11.17 Revised function to write object to a data file

void write (int lastlndex, Families * people[])
{

int inumb_kids;

ofstream peopleOut ("people");
if (! peop 1 eOut)
{

cout << "Problem opening output file.":
return:

l
peopleOut « lastlndex « · ';
II write to file
for (int i = O; i <= lastlndex: i++)

people[iJ->writeCpeopleOut);

NOTE
Objects that can read and write themselves are known as "persistent" objects. Persis
tent objects form the basis of most of today's object-oriented database management sys
tems.

Pulling It Together:
The Checkbook
Program

CHAPTER

The programs you have seen to this point have been relatively short examples that
demonstrate one or more features of the C++ language. None of these program have
been designed to do real work. In this chapter we'll therefore take a look at a much
longer program that in a relatively simple way manages checking accounts. This pro
gram uses all of the concepts we've discussed to this point and provides a good exam
ple of how all of these elements come together into a useful program. Along the way,
you'll be introduced to a few issues that arise when you begin to work with more
than one class and to some further pointer concepts.

What the Program Can Do

The Checkbook program lets a user maintain up to 25 checking accounts, each of
which can hold up to 10,000 transactions. (These limits, however, can easily be
changed by changing the sizes of arrays.) Program actions are controlled by the

221

222 Chapter 12 •Pulling It Together: The Checkbook Program

menu function in Listing 12.1. As you can see, you can use this program to store data
about accounts and the transactions posted to them. You can also reconcile the
checking account, indicating which transactions have appeared on your statement.
The program then reports what the balance in your checkbook should be. The
rem~ining menu options let you find a single transaction (using the check number or
the payee and transaction date) and view a sequence of transactions based on the
transaction date.

Listing 12.1 The simpleMenu function

int simpleMenu ()
{

int menuchoice;
char dummy[2J; II for bug fix

cout << "\nPick an option:" << endl << endl;
cout <<" 1. Create a new acount" << endl;
cout << " 2. Enter a transaction" << endl;
cout << " 3. Reconcile an account" << endl;
cout <<" 4. Find a transaction"<< endl;
cout <<" 5. View transactions"<< endl;
cout <<" 9. Quit"<< endl << endl;
cout <<"Enter your choice: "·
cin >> menuchoice;

II gets (dummy); II kludge around cin bug
return menuchoice;

The Classes

Because the Checkbook program can handle more than one checking account, it
requires two classes: one for accounts and one for transactions (deposits, checks, ser
vice charges, and ATM withdrawals) posted against those accounts. Pointers to
objects created from the Trans class are stored in an array that is a variable belong
ing to the Account class. In this way, the program knows which transactions belong
to which account.

The Account class, in Listing 12.2, stores the account number, the name of the
bank, the current account balance, and an array of pointers to the account's transac
tions. In addition, it has two "housekeeping" variables: the last transaction number
used and the number of transactions in the transaction array. Because a programmer

The Classes 223

may eventually want to add a member function that deletes transactions, the number
of transactions in the transaction array may not always be the same as the highest
transaction number.

Listing 12.2 The Account class

class Account
I

I;

private:
string25 acc_numb;
string50 bank_name;
fl oat ba 1 ance;
Trans* transactions[MAX_TRANSJ;
int lastTrans_numb, Trans_count;

public:
II constructor for interactive input
Account Cstring25. string50, float);
Account (ifstream &l; // constructor for file input
int nextTrans_numb ();
void insertTrans (Trans*); II insert transaction into array
void Reconcile<>:
Trans *find (char*); II find by check/reference numb
II find check by date and Payee/Source
Trans *find (date_string, string80);
II list transactions in date range
void byDate (date_string, date_string);
void write (ofstream &l; //write to file
char* getAcc_numb ();
char* getBank_name();
II set balance when transaction is posted
void setBalance (int, float);

Why use an array of pointers to Trans objects rather than simply declare the
array to hold the objects themselves? To make better use of main memory. The
t rans act i on s array has been declared to hold 10,000 pointers, each of which takes
up 32 bits of memory. When the program is running, the array occupies 320,000 bits,
or 40,000 bytes Uust under 40K). However, a Trans object takes up 188 bytes. An
array to hold 10,000 of them would therefore consume 1,880,000 bytes Uust under
2Mb).

If an account has only a few transactions posted, there's no need to waste memory
by allocating nearly 2Mb for transactions. Instead the program allocates just enough
space for the pointers and then uses the new operator to create transactions as they
are needed, using only the amount of memory required for existing transactions.

224 Chapter 12 • Pulling It Together: The Checkbook Program

Like the Families program that you saw in Chapter 11, the Account class has two
constructors: one for interactive input and another for input from a text file. You'll be
introduced to the rest of the member functions shortly.

The Trans class (Listing 12.3) appears first in the header file. It holds a transaction
number, a check number (unused by noncheck transactions), the date of the transac
tion, the payee of a check or source of a deposit, a note about the transaction, the
amount of the transaction, a flag to indicate whether the transaction has cleared, the
type of transaction, and a pointer to the Account object to which the transaction
belongs.

The presence of a pointer to an Account object in the Trans class presents a bit
of a problem. Because Trans comes first in the header file, the compiler doesn't rec
ognize the Account class as a data type, because it hasn't been declared. However,
the Account class contains pointers to Trans objects. Therefore, placing the
Account class first in the header file only reverses the problem.

The solution is a forward declaration, a statement that identifies a class to the com
piler by name without defining the class:

class class_name;

The following statement therefore precedes the declaration of the Trans class in the
header file:

class Account;

Like the Account class, the Trans class has two constructors: one for interactive
input and another for input from a file. There are also two private member functions.
These are used by other Trans class member functions to translate between the text
of a transaction type and the number that is stored in an object. You will be intro
duced to the rest of the member functions as we explore the program further.

The Constructors

The constructors used by both the Account and Trans classes are similar in con
cept to those used by the Families program. One handles input from the user; the
other reads data from a text file. Both sets of constructors use a special pointer,
known as th i s, which we'll look at before examining the constructors in detail.

The Constructors 225

, Listing 12.3 The Trans class

typedef char string80[81J;
typedef char string50[51J;
typedef char string25[26J;
typedef char date_string[9J;

canst MAX_TRANS = 10000;
canst CHECK= 1;
canst DEPOSIT= 2;
canst ATM = 3;
canst SERVICE = 4;

class Account;

class Trans
I

I;

private:
int trans_numb; II arbitrary unique identifier for each transaction
char check_numb[6J; II used only for check transactions
date_string trans_date;
string80 PayeeSource, Note;
float amount;
int cleared; II Boolean set to true when check has cleared

II 1 =check, 2 =deposit, 3 =ATM withdrawl, 4 =service charge;
int trans_type;

Account * owner; II pointer to account that owns the transaction

II private functions not used outside class
II translate transaction type string into integer
int Text2Type (char*);
char* Type2Text (); II translate integer type into string

public:
II constructor for interactive input
Trans (Account *, char*, date_string, string80, string80,

float, char *);
II constructor to read from file
Trans (ifstream &, Account *);

void markCleared ();
void write (ofstream &l; II write to file
void displayTrans ();
char* getCheck_numb ();
char* getDate ();
char* getPS ();
int getCleared ();
int getType ();
float getAmount ();

226 Chapter 12 •Pulling It Together: The Checkbook Program

THE THIS POINTER

The th i s pointer is a pointer variable that contains a pointer to the current object. A
program doesn't need to declare th i s. It is declared, and initialized and its contents
kept current by the computer.

You can use the th i s pointer just like any other variable that points to an object.
For example, if you are writing a member function and need to call another member
function of the same class, you might write:

this->function_name (parameter list);

You can also pass th i s to a function as a parameter from within a member function:

function_name (this, other parameters);

THE ACCOUNT CLASS CONSTRUCTORS

As you can see in Listing 12.4, the interactive constructor for the Account class
accepts data from the calling function and initializes the class variables. The values
for the last transaction number and for the transaction count are set to O.

The constructor for file input reads class data from the file. However, doing so
isn't as straightforward as it was with the Families program. As transaction data are
read from the file, the Account class's constructor must create transaction objects,
storing pointers to the objects in the Account object's transactions array. The
parameters in the new statement are the file input stream and a pointer to the
Account object(the this pointer).

THE TRANS CLASS CONSTRUCTORS

The constructors for the Trans class and functions used by those constructors can
be found in Listing 12.5. The file input constructor takes the pointer to the Account
object to which the transaction belongs and assigns it to the owner variable. Then it
reads the rest of the data from the file.

The Constructors 227

Listing 12.4 Constructors for the Account class

II interactive constructor
Account::Account (string25 iAcc_numb, string50 iBank_name, float iBalance)
{

strcpy (acc_numb, iAcc_numb);
strcpy (bank_name, iBank_name):
balance = iBalance;
for (int i = 0: i < MAX_TRANS; i++)

transactions[i] = 0:
lastTrans_numb = O;
Trans_count = O;

II file input constructor
Account::Account (ifstream & fin)
{

Account * owner:
char dummy;

fin.getl ine (acc_numb,80, '\O'):
fin.getline (bank_name,80,'\0');
fin » balance;
fin >> lastTrans_numb;
fin >> Trans_count:
for (int i = 0: i < Trans_count: i++)

transactions[i] =new Trans (fin, this);
fin.get (dummy); II skip over blank between accounts

The Interactive Constructor
Because a transaction entered from the keyboard must be numbered and connected
to the account to which it belongs, the interactive constructor is a bit more involved
than the file input constructor. This constructor performs the following actions:

• Assigns the pointer to the Account object that owns the transaction to the own
e r variable.

• Calls the Account object's nextTrans_numb function to generate a number for
the transaction and to increment the Account object's 1 astTrans_numb vari
able.

• Copies input parameters into class variables.

• Converts the text version of the transaction type to an integer code using the
Text 2 Type function. (We will look at that function, along with the function that
converts from an integer code back to text, shortly.

228 Chapter 12 •Pulling It Together: The Checkbook Program

Listing 12.5 Constructors and functions used by the constructors for the
Transaction class

Trans::Trans (Account* whichAccount, char* icheck_numb,
date_string itrans_date. string80 iPayeeSource, string80 iNote,
float iAmount, char * iTypel

owner = whichAccount:
trans_numb = owner->nextTrans_numbCl:
strcpy Ccheck_numb, icheck_numbl:
strcpy (trans_date, itrans_datel:
strcpy CPayeeSource, iPayeeSourcel:
strcpy (Note, iNotel:
amount = iAmount:
trans_type = Text2Type CiTypel:
if (trans_type == SERVICE)

cleared = TRUE:
else

cleared = FALSE:
owner->insertTrans Cthisl:
owner->set8alance Ctrans_type, amount); // change balance as needed

Trans::Trans Cifstream & fin, Account* whichAccountl
I

I

char dummy:

owner = whichAccount:
fin >> trans_numb:
fin.get (dummy); // skip over blank before string
fin.getline Ccheck_numb,80,'\0'l:
fin.getline Ctrans_date,80,'\0'l:
fin.getline CPayeeSource,80,'\0'l:
fin.getline CNote,80,'\0'l:
fin » amount:
fin » c 1 ea red:
fin >> trans_type:

II insert into array and increment count: used by interactive constructor
void Account::insertTransCTrans * newTransl

I transactions[Trans_count++] = newTrans:

void Account::set8alance (int trans_type, float amount)
I

if Ctrans_type == DEPOSIT)
balance += amount:

else
balance -= amount:

int Account::nextTrans_numb Cl
I return ++lastTrans_numb:

The main Fundion 229

• Inserts a pointer to this Tr a n s object into the t r a n s a ct i on s array of the ac
count that owns it by calling the Account object's i nsertTrans function. No
tice in Listing 12.5 that the function's sole parameter is th i s, a pointer to the
Trans object.

• Modifies the account balance to reflect the current transaction by calling the Ac -
count object's set Ba 1 ance function.

The Transaction Type Conversion Functions
It's easier for a user to enter a type of transaction using a word (for example, check or
ATM) than to remember which of a group of numeric codes to use. However, a
Trans object takes up less space if it uses two bytes for an integer rather than eight
or nine bytes for a string. The Checkbook program therefore stores an integer and
converts to and from text for input and output.

The conversion functions, which are private to the Trans class because they
aren't used outside the class, can be found in Listing 12.6. Text2Type, which trans
lates from a string to an integer, uses the strcmp function and a set of nested if
statements to identify the transaction type. Type2Text, because its decisions are
based on an integer, can use a s w i t ch to decide which string to return to the calling
function.

The main Function

The Checkbook program is managed by the ma i n function in Listing 12.7. This func
tion declares an array to hold pointers for up to 25 accounts. just as with the trans -
act i on s array in the Account class, this array holds pointers rather than objects to
help conserve main memory.

The ma i n function's first task is to call a program function that loads data from a
text file into main memory. The function then enters a w h i l e loop that displays the
menu (using the s imp 1 eMenu function you saw in Listing 12.1). The loop collects a
menu choice and then enters a s w i t ch that chooses the program function that per
forms the selected action.

This is a typical structure for a long program: The ma i n function is little more
than a dispatcher. In fact, there is a school of thought that no function should be
much longer than one page of code. The idea is that shorter blocks of code are easier
to debug. Although the intent is laudable, it often isn't possible to keep your func
tions that short. Nonetheless, you should get into the habit of placing code that

230 Chapter 12 • Pulling It Together: The Checkbook Program

Listing 12.6 Transaction type conversion member functions

int Trans::Text2Type (char* iTypel
(

if (strcmpC"check",iTypel = 0)
return CHECK;

else if CstrcmpC"deposit",iTypel = Ol
return DEPOSIT;

else if CstrcmpC"ATM",iType) == Ol
return ATM;

else if CstrcmpC"service",iTypel = 0)
return SERVICE;

else return O; II type of transaction can't be identified

char* Trans::Type2Text Cl
(

static char type_string[8];
switch Ctrans_typel
(

case CHECK:
return strcpy(type_string,"check");
break;

case DEPOSIT:
return strcpy(type_string,"deposit");
break;

case ATM:
return strcpy(type_string,"ATM"l;
break;

case SERVICE:
return strcpy(type_string,"service"l:
break;

default:
return strcpy(type_string,""l;

performs a single task (for example, creating an account, creating a transaction, or
reconciling an account) in a separate function. Notice that prototypes for all the pro
gram functions appear at the top of Listing 12.7.

NOTE

If a program is very long, you will probably want to separate }Unctions into th.eir own
files. (It cuts down on the amount of scrolling you Jaave to do.) When you do so, don't
forget to add each file's name to the project file so t1aat the compiler knows to link all the
}Unctions.

The main Fundion 231

Listing 12.7 The main function for the checkbook program

II function prototypes
int simpleMenu (); II display the simple text menu
int Load (Account * []); II load data from file; return number of accounts
void Unload !Account * [], intl;. II write data to file
int newAccount (Account* [], int); II create a new account
void enterTrans (Account * [], int); II enter a transaction
void reconcileAccount (Account*[], int); II reconcile an account
void findTrans (Account* [], int); II find a transaction
void viewTrans (Account* [], int); II look at transactions
Account* findAccount (Account* [], int); II find an account

void main Cl
I

int option = 0, acct_index;
Account* Accounts[25J; II array to handle up to 25 accounts

acct_index =Load (Accounts); II read data from file into array
if (acct_index == -1)

return; II no file; user asked to quit; exit program

while (option != 9)
I

option= simpleMenu();
switch (option)
I

case 1:
acct_index newAccount (Accounts, acct_indexl;
break;

case 2:
enterTrans (Accounts, acct_index);
break;

case 3:
reconcileAccount (Accounts, acct_index);
break;

case 4:
findTrans (Accounts, acct_indexl;
break;

case 5:
viewTrans (Accounts, acct_indexl;
break;

case 9:
Unload (Accounts, acct_indexl;
break;

default:
cout << "\nYou've entered an unavailable option."<< endl;
break;

232 Chapter 12 •Pulling It Together: The Checkbook Program

Loading Data

To load data from the text file, the main function calls the program function Load
(Listing 12.8), which first opens an input file. If the file was opened successfully, the
function reads the number of accounts from the beginning of the file, skips over the
blank between the number of accounts and. the first account data, and then enters a
for loop to read the accounts.

Listing 12.8 Loading stored data from the file

int Load (Account * Accounts[])
{

int acct_index;
char dummy, yes_no:

ifstream Checksln ("Checkbook");
if CCheckslnl II load if file was opened successfully
{

else
{

Checksln >> acct_index; II read number of accounts
Checksln.getCl: II skip over blank
for (int i = O; i < acct_index; i++l

Accounts[i] =new Account CCheckslnl:
return acct_index:

cout << "Checkbook file couldn't be opened. OK to proceed? Cylnl ":
cin » yes_no;
if (toupper(yes_nol == 'N'l

return -1; II quit the program
else

return O;

The content of this loop is a single new statement that creates an Account object,
assigning the pointer to the new object to the Accounts array. Once the loop termi
nates, the function returns the number of accounts. Keep in mind that because the
account pointers are stored in an array, there is no need to explicitly pass that array
back to the calling function; arrays are always passed by reference.

If something goes wrong and the Lo ad function can't open the input file, the user
has a choice of continuing with the program or exiting. (Continuing means that the

Creating a New Account 233

user will be working with no existing accounts.) When the user chooses to quit the
program, the main function in Listing 12.7 identifies the -1 and issues a return. (A
return from a ma i n function exits the program.)

Creating a New Account

Creating a new account is a combination of a program function and the interactive
Account class constructor you saw earlier. The new Account function (Listing 12.9)
collects the data for the account (Figure 12.1) and then uses the new operator to cre
ate the new account, passing the data collected into the interactive constructor.

Listing 12.9 Creating a new account

int newAccount (Account* Accounts[], int acct_index)
I

string25 iacc_numb;
string50 ibank_name;
float ibalance;

cout << "\nBank name: ";
gets (ibank_name);
cout << "\nAccount number: "·
gets (iacc_numb);
cout << "\nCurrent account balance: ";
cin >> ibalance;
Accounts[acct_index++] =new Account Ciacc_numb, ibank_name, ibalance);
return acct_index;

As the new account is created, the function also increments the acct_ i n de x
variable, which keeps track of how many accounts are in existence. This value is
passed back to the ma i n function so that it is always up to date for use by other pro
gram functions.

234 Chapter 12 •Pulling It Together: The Checkbook Program

Figure 12.1 The user's view: creating a new ac.:ount

Checkbook PPC.out
SIOUX state: handling input.

Pick an option:

1. Create a new acount
2. Enter a transaction
3. Reconcile an account
4. Find a transaction
5 . View transactions
9. Quit

Enter your choice : 1

Bank name : Hammersmith's

Account number: 16-12345

Current account balance: 1200.65

Pick an option :

1. Create a new acount
2 . Enter a transaction
3 . Reconcile an account
4 . Find a transaction
5 . View transactions
9. Quit

Enter your choice:

Entering Transactions

From the user's point of view, entering a new transaction requires identifying the
checking account with the bank name and account number and then entering trans
action data (see Figure 12.2). Underneath what the user sees is a group of program
and member functions.

The process is controlled by the enterTrans function (Listing 12.10). Because
the program handles more than one account, the function's first job is to verify that
the account is on file. Finding an account is performed by the f i n d Account func
tion in Listing 12.11. This function is used throughout the program to locate an
account, either to verify that the account exists or to provide access to the transac
tions that are part of an account. Because the possibility exists that two banks could
have the same account numbers, the f i n d Account function bases its search on both

Entering Transactions

Figure 12.2 The user's view: entering a transaction

Checkbook PPC.out
SIOUX state : hand I ing input .

Bank name : New Bank

Account number : 123-456

Check or other reference • : ggg

Transaaction type <check , deposit, ATM, service>: check

Transaction date: 06-15-96
Payee or source :
Johnson's Motors

Transaction note <up to 80 characters>:
Replacement muffler

Amount of the transaction : 325. 15

+

llllli

llllil
• Iii

235

the bank name and the account number. (If you're convinced that no two banks
would ever have duplicate account numbers, you could get by without the bank
name.)

To perform its search, the fi ndAccount function enters a for loop that checks
each account, one by one, to see whether the bank name and account number match.
The st rcmp operations are based on data returned by two utility functions that
retrieve private data from an Account object (Listing 12.12).

The search technique used by f i n d Account is known as a sequential search
because it begins at the first item to be searched and looks through all items, in order.
As the number of items to be searched becomes large, it is a very inefficient search
method. However, because there will never be more than 25 accounts, it is adequate
for use in this program.

The f i n d Account function returns a pointer to the Account object as soon as it
finds a match. However, if the for loop finishes, the function wasn't able to locate a
matching account. The function therefore returns a O, telling the calling function
that the search was unsuccessful.

Once the existence of the checking account has been verified, all the e n t e r T r a n s
function needs to do is to collect the transaction information and then use the new
operator to create the Trans object. The pointer to the Account object that was
located earlier is passed into the Trans object's constructor along with the rest of
the transaction data.

236 Chapter 12 •Pulling It Together: The Checkbook Program

Listing 12.10 Entering a transaction

void enterTrans (Account* Accounts[], int acct_index)
{

Account * whichAccount;
Trans * newTrans;
char i check_numb[6J. iType[BJ;
date_string itrans_date;
string80 iPayeeSource. iNote ;
fl oat i Amount;

whichAccount = findA cco unt (Accounts, acct_indexl;
if (whichAccount ==OJ
{

cout << "\nThat account isn't in the database." << endl;
return;

cout « "\nCheck or other reference #: ";
cin.getline (icheck_numb,6);
cout << "\nTransaaction type (c heck , deposit, ATM. service): "
gets (i Type l;
cout << "\nTransaction date : "
cin.getline (itrans_date.10);
cout << "\ Payee or so urce : " << endl;
cin.getline (iPayeeSource.80);
cout << "\nTransaction note (up to 80 characters):"<< endl;
cin.getline (iNote,80);
cout << "\ nAmount of the transaction: "
cin » iAmount;
newTrans =new Trans (whichAccount, icheck_numb, itrans_date,

i Payee Source. i Note. i Amount, i Type);

Listing 12.11 Finding an account

Account* findAccount (Account* Accounts[]. int acct_indexl
{

string25 iacc_numb;
string50 ibank_name;
cout « "\nBank name: "
gets (ibank_name);
cout << "\nAccount number: •
gets (iacc_numbl;
for (int i = O; i < acct_index; i++)

if ((strcmp (ibank_name,Accounts[iJ->getBank_name()) == Ol &&
(strcmp(iacc_numb,Accounts[iJ -> getAcc_numb()) == 0))

return Accounts[i];
return O;

Reconciling a Checking Account

Listing 12.12 Utility functions to retrieve account data

char* Account::getAcc_numb ()
I return acc_numb; I

char* Account::getBank_name ()
I return bank_name; I

Reconciling a Checking
Account

237

The process of reconciling a checking account involves letting the user indicate
which transactions have appeared on an account statement, calculating the amount
of uncleared withdrawals and deposits, and then letting the user know what the bal
ance in the checkbook should be. The program function that controls reconciliation
(Listing 12.13) first locates the account. If the account exists, it then calls the
Account object's Reconci 1 e member function.

Listing 12.13 Reconciling an account

void reconcileAccount (Account* Accounts[], int acct_index)
I

Account * whichAccount;

whichAccount = findAccount (Accounts, acct_index);
if CwhichAccount == 0)
I

cout << "\nThat account isn't in the database.• << endl;
return;

whichAccount->Reconcile();

The Reconci 1 e member function (Listing 12.14) has several tasks:

• Examine all the transactions for this account, showing the user each transaction
that hasn't been marked as cleared. Ask the user whether the transaction has

238 Chapter 12 •Pulling It Together: The Checkbook Program

Listing 12.14 Member function to reconcile a checking account

void Account::Reconcile ()
I

char yes_no;
float statementBalance, outstandingDebits = 0, outstandingCredits = O;

II first let user mark transactions on statement
for (int i = O; i < Trans_count; i++)

if Ctransactions[iJ->getCleared() ~FALSE)
I

I

transactions[iJ->displayTrans();
cout << "\nPart of this statement? (yin) ";
ci n » yes_no;
if (yes_no == 'Y' I I yes_no == 'y')

transactions[iJ->markCleared();

II sum outstanding debits and credits
for Ci = O; i < Trans_count; i++)

if Ctransactions[i]->getCleared() ==FALSE)
if Ctransactions[iJ->getType() !=DEPOSIT)

outstandingDebits += transactions[iJ->getAmount();
else

outstandingCredits += transactions[i]->getAmount();
II ask for statement balance
cout << "\nStatement balance: ";
cin >> statementBalance;
cout << "\nCheckbook balance should be: • <<

statementBalance + outstandingCredits - outstandingDebits
<< endl << endl;

void Trans::markCleared ()
I cleared = TRUE; I

cleared. If it has, call the Trans class member function ma r k C 1 eared, which ap
pears at the bottom of Listing 12.14.

• Add up outstanding debits (checks, ATM withdrawals, service charges) and cred
its (deposits).

• Ask the user for the statement balance.
• Compute the correct checking account balance by adding the statement balance

to uncleared credits and subtracting uncleared debits. Show the user what the
checking account balance should be.

From the user's point of view, the process appears like the example in Figure 12.3.
Unless the account has a large number of transactions, verifying which transactions
have cleared takes only a minute or two. However, it is true that as the number of

Reconciling a Checking Account

Figure 12.3 The user's view: reconciling an account

Checkbook PPC.out
SIOUX state : handling input .

Bank name: New Bank

Account number: 123-456

Type: check Number : 1001 Date : 1-19-95
Payee/Source : me
Amount : 50 .00 Cleared? N

Part of this statement? (y/n) y

Type : check Number : 1002 Date: 1-20-95
Payee/Source: me
Amount: 75.00 Cleared? N

Part of this statement? (y/n) y

Type : deposit Number: 1004 Date: 1-25-95
Payee/Source : Mother
Amount : 25.00 Cleared? N

Part of this statement? <y/n) y

Type : deposit Number : 1010 Date: 1-30-95
Payee/Source : Father
Amount : 35 .00 Cleared? N

Part of this statement? <y/n) y

Type: check Number: 999 Date: 06-15-96
Payee/Source: Johnson's Motors
Amount: 325. 15 Cleared? N

Part of this statement? <y/n) n

Statement balance : 506. 15

Checkbook balance should be: 181 .00

•

I
I
I

• Iii

239

transactions increases, the amount of time needed to find uncleared transactions will
go up as well.

240 Chapter 12 •Pulling It Together: The Checkbook Program

Finding and Viewing
Transactions

The Checkbook program has two ways to look at existing transactions. One is to
locate a single transaction, based on either a check number or a combination of the
date and payee or source of the transaction. The second is to view all transactions
with a range of dates.

FINDING A SINGLE TRANSACTION

The Checkbook program uses the f i nd Trans function (Listing 12.15) to locate one
specific transaction. This function first asks the user for account information. If the
account is present, the function then asks for data to identify the transaction.

If the transaction is a check and the user knows the check number, the easiest way
to find the transaction is to enter the check number, as in Figure 12.4. Because the
check number is stored as a string, f i n d Trans can check the length of the input
string to determine whether a check number has been entered. If the length is
greater than 0, something was typed as a check number.

If the user enters a check number, f i n d Trans calls a member function of the
Account class (see the first function in Listing 12.16). This find function has one
input parameter: a character string containing the check number. The function per
forms a sequential search on the transact i on s array. When a match is found, the
function returns a pointer to the transaction. However, if the function's for loop ter
minates, the search was unsuccessful and the function returns a O.

If the transaction is something other than a check or the user doesn't know the
check number, he or she can press Enter to the request for the check number; the
length of the input string will be O. In that case, the f i n d Trans function asks for the
source or payee of the item and the transaction date (see Figure 12.5).

The fi ndTrans function then uses the second find function in Listing 12.16.
This function also performs a sequential search, comparing both the transaction date
and the contents of the Payee IS our c e variable in each transaction to the function's
input parameters. Like the f i n d function that is based on the check number, this
function returns a pointer to the transaction as soon as a match is found. If no match
is found, it returns O.

Finding and Viewing Transadions

Listing 12.15 Finding a transaction

void findTrans (Account* Accounts[], int acct_indexl
I

Account * whichAccount;
Trans * whichTrans;
char icheck_numb[6];
date_string idate;
string80 iPayeeSource;

whichAccount = findAccount (Accounts, acct_indexl;
if (whichAccount == Ol
I

cout << "\nThat account isn't in the database." << endl;
return;

cout << "\nCheck or other reference #: "
gets (icheck_numbl;
if Cstrlen(icheck_numbl == Ol
I

else

cout << "Transaction date: "·
gets (idatel;
cout << "Payee or Source: ";
gets (iPayeeSourcel;
whichTrans = whichAccount->find (idate, iPayeeSourcel;

whichTrans = whichAccount->find (icheck_numbl;
if (whichTrans ==OJ
I

241

cout << "\nThat transaction isn't a part of this account." << endl;
return;

whichTrans->displayTrans ();

NOTE

The two ''find" functions are another example of function overloading. Because they
have different parameter lists, the compiler has no difficulty in telling them apart. In
fact, it sees them as two entirely different functions. The benefit of using overloading in
this case is that the programmer has to know only one function name-find-to locate
transactions, regardless of what input data the programmer has available.

Regardless of which f i n d function is used to locate a transaction, the f i n d Trans
function uses the di s p 1 a y Trans member function (Listing 12.17) to display data on

242 Chapter 12 •Pulling It Together: The Checkbook Program

Figure 12.4 The user's view: finding a transaction using a check number

Checkbook PPC.out
S IOUX state: hondl ing input.

Bonk name: New Bonk

Account number: 123-456

Check or other reference •: 1001

Type : check Number: 1001 Dote: 1-19-95
Payee/Source: me
Amount : 50.00 Cleared? N

Listing 12.16 Member functions to find transactions

Trans * Account: :find (char * icheck_numb)
I

for (int i = 0: i < Trans_count: i++)
if (strcmp(transactions[iJ->getCheck_numb(),icheck_numbl 0)

return transactions[iJ:
return O;

Trans* Account::find (date_string idate. string80 iPSl
I

for (int i = 0: i < Trans_c ount: i++)
if (strcmp(transactions[iJ -> getDate(),idate) O &&

strcmp(transactions[iJ->getPS(l,iPSl == Ol
return transactions[i];

return 0:

the screen. The body of the function consists of a series of cout statements that dis
play all transaction information.

VIEWING MULTIPLE TRANSACTIONS

Viewing transactions dated within a given range is handled by the program function
vi ewTrans (Listing 12.18) and the Account class member function byOate (List
ing 12.19). Like several of the other functions you have seen, vi ewT rans begins by
searching for the account. If the search for the account is successful, the function col
lects a starting and ending date, and then calls by D a t e.

Finding and Viewing Transactions

Figure 12.5 The user's view: finding a transaction using payee/source
and date

Checkbook PPC.out
SIOUX state : hand! ing input .

Bank name : New Bank

Account number : 123-456

Check or other reference • :
Transaction date: 1-19-25
Payee or Source: me

Type : check Number: 1001 Date: 1-19-95
Payee/Source: me
Amount : 50.00 Cleared? N

+

I
mm

Listing 12.17 Displaying transaction information

void Tra ns ::di spl ayTr ans ()
{

char Type[SJ;

strcpy (Typ e, Type 2Te xt());

243

cout << "\ nType: • << Type << • Number: • << check_numb << • Date: • <<
tran s_dat e << endl ;

cout « "P aye e/So ur ce : • « Payee Sour ce « endl ;
cout << setprec i s ion(2) << setiosflag s (io s ::fi xed);
cout << "Amount: • << amount << • Cl eared? •
if (c leared == TRUE)

cout << "Y " << endl ;
el se

cout << "N" << endl ;
co ut << endl ; II extra bl ank line

The by 0 ate function conducts a sequential search on the t r a n sac ti on s array.
In this case, the function looks for transaction dates within the range indicated by the
function's input parameters. There is one very important limitation to this function.
Because dates are stored as strings, the format in which the dates are stored has a
major impact on whether the search is accurate. If the dates are stored in MM-DD-YY
format, the date range will be accurate only within the same month in the same year.
If you want all date ranges to work correctly, you must store dates as YY-MM-DD.

244

"'
Chapter 12 • Pulling It Together: The Checkbook Program

Listing 12.18 Viewing transactions

void viewTrans (Account* Accounts[], int acct_index)
I

Account * whichAccount:
date_string startDate. endDate, transDate:
int howMany;

whichAccount = findAccount (Accounts. acct_index>:
if CwhichAccount == 0)
I

cout << "\nThat account isn't in the database.•<< endl;
return:

cout << "Starting date: ":
gets CstartDate>:
cout << "Ending date: ":
gets C endDate):

whichAccount->byDate CstartDate, endDate);

Listing 12.19 Member function to view transactions in a date range

void Account::byDate Cdate_string start. date_string end)
I

for (int i = O; i < Trans_count; i++)

NOTE

if CstrcmpCtransactions[iJ->getDate(). start)>= O &&
strcmp Ctransactions[iJ->getDateC>.end) <= 0)

transactions[iJ->displayTrans();

The YY-MM-DD format isn't very natural for people in the U S. We're much more
familiar with the MM-DD-YY format. In Chapter 13 you'll be introduced to a date class
that can handle dates accurately in that format.

Exiting the Program

When the user decides to quit the Check.book program, the program calls the
Un l o ad function to write account and transaction data back to the text file. The

Exiting the Program 245

process begins by opening the output file stream. The function then writes the num
ber of accounts to the file. The data are then written by calling the Account class's
w r i t e function once for each account.

Listing 12.20 Storing data in a text file

void Unload (Account* Accounts[], int acct_index>
f

ofstream ChecksOut ("Checkbook"): // opens file for text output
ChecksOut << acct_index << ' ': //save number of accounts
for (int i = 0: i < acct_index: i++)

Accounts[iJ·>write (ChecksOutl:

The Account class's w r i t e function (Listing 12.21) accepts the file output stream
as an input parameter and then writes the account information to the file. Transac
tion information immediately follows each account's data. To write the transaction
data, the Acco u n t class's w r i t e function calls the T r a n s class's w r i t e function
(Listing 12.22)

Listing 12.21 Writing Account data

void Account::write (ofstream & fout)
f

fout << acc_numb << '\O':
fout << bank_name << '\0':
fout « balance « ' ':
fout << lastTrans_numb << ' '
fout « Trans_count « • •:
for (int i = O: i < Trans_count: i++)

transactions[iJ·>write(fout):

There is one final important thing to keep in mind about the Checkbook program.
To read and write the text file that stores the program's data, the program must
know exactly how the data are formatted in the file. If you need to change the struc
ture of the program's classes, you will also have to change all the code that manipu
lates the file. Your existing data file will then be unusable. The structure of the data
handled by a program of this type therefore isn't very flexible.

246 Chapter 12 •Pulling It Together: The Checkbook Program

Listing 12.22 Writing Trans class data

void Trans::write (ofstream & foutl
I

fout « trans_numb «
fout « check_numb « • \0.;
fout « trans_date « • \0.;
fout « PayeeSou rce « • \0.;
fout « Note « • \0';
fout « amount « ' '. .
fout « cl eared « . . .
fout « trans_type « . ' . .

Operator
Overloading

CHAPTER

Overloading is a way of giving multiple meanings to the same operation. So far, you
have seen that you can overload member functions by giving two functions in the
same class the same name but different signatures. Because the compiler uses the
entire signature to identify a function, the two functions appear as distinct, separate
functions.

As well as overloading functions, a C++ program can overload operators. In other
words, operators such as the comparison operators (for example, ==, <, or >) and
the arithmetic operators (for example, + or -) can be given additional meanings so
that they behave in different ways, depending on the objects with which they are
used.

Why would you bother to do this? Because it can make programming with objects
much more intuitive. Assume, for example, that you have a class named date and
that you've declared two objects from that class, date 1 and date 2. It makes sense to
a programmer to be able to write expressions such as:

datel == date2
date > date2

247

248 Chapter 13 •Operator Overloading

Perhaps you want to add 30 days to a date so you can quickly print the due date of an
invoice. It makes sense to a programmer to write:

datel + 30

If you've implemented your dates as strings, none of these expressions are permissi
ble. However, operator overloading makes them possible.

In this chapter you will be introduced to the concepts behind operator overloading
and to the date class we have just been using as an example. Then, once you under
stand how the date class works, you'll see how it can be used to solve the transac
tion date problem that exists in the Checkbook program.

Declaring Overloaded
Operators

Operator overloading is more restrictive than anything we have discussed so far. This
characteristic also makes it a bit trickier to work with than other aspects of C++.
Nonetheless, if you pay attention to all the rules, you can simplify many of the pro
grams you write.

Overloaded operators are implemented as functions whose name is the keyword
operator followed by the operator itself. For example, if you want to overload the
assignment operator, the function's name is operator=; a function to overload the
equality operator is named operator==.

Functions that overload operators can be implemented as member functions or as
friend functions. A friend function is a function that is given access to all private ele
ments of a class in which it isn't a member function. Although you can declare friend
functions in many circumstances, using them violates the object-oriented principle
of information hiding. For that reason, many programmers prefer to use them only
when absolutely necessary. Operator overloading is one of those situations.

When a function that overloads an operator is declared as a member function, it
can have only one input parameter. For example, if you are declaring a member func
tion that checks to see whether two dates are equal, the function prototype might
appear as:

int operator>= (date);

Declaring Overloaded Operators 249

The function that accompanies this prototype is triggered by the syntax:

datel >= date2

The object date 1 is the object that executes the function; date 2 is the input param
eter to the function.

This illustrates the major limitation to declaring overloaded operators as member
functions: They aren't commutative. In other words, the object on the left of the
operator is always the object that runs the overloaded operator function. The object
or value on the right of the operator is always the input parameter.

However, if you implement an overloaded operator as a friend function, it can
have two input parameters. Assume that you want to overload the addition operator
to add an integer to a date. You could declare two friend functions:

friend date operator+ (date. int);
friend date operator+ (int, date);

To indicate that a function is a friend to a class, just place the word fr i end in front
of the function's prototype within the class declaration.

The first of the preceding friend functions is triggered by the syntax:

datel + 14

The second is triggered by:

14 + datel

In this case, we are combining function overloading with operator overloading to
make it appear to the programmer as if the addition operation works in both ways.

The header file for the date class can be found in Listing 13.1. The three parts of a
date (month, day, and year) are stored as individual integers. The class also includes a
private function that converts those integers back into a string (i to a), a constructor,
three get functions, and a function that reassembles the date into a string for output
(showDate).

The date class has two friend functions to overload the addition operator. The
class also overloads all the relationship operators and the assignment operator as
member functions. Before looking at the overloaded operators in depth, however,
let's examine the constructor and the sh ow Date function.

250 Chapter 13 • Operator Overloading

Listing 13.1 Header file for the date class

class date
{

I;

friend date operator+ (int, date);
friend date operator+ (date. int);

private:
int month, day, year;
void itoa (int, char*); II convert two-digit integer back to ASCII

public:
date (char *);
int getMonth ();
int getDay ();
int getYear ();
char* showDate (char*);

II overloaded operators
int operator== (date);
int operator!= (date);
int operator> (date);
int operator>= (date);
int operator< (date);
int operator<= (date);
II assignment--lets you copy one date to another
void operator= (date);

THE NONOVERLOADED MEMBER FUNCTIONS

Whenever a program creates a date object, the constructor takes a date in string
form and converts it into three integers. To see how this is done, take a look at List
ing 13.2, which contains all the date class member functions that don't overload
operators.

The date class's constructor copies characters, two at a time, from the input
string into a temporary string. Then it uses a C library function-at o i (ASCII to
integer)-to convert the string into an integer and assign it to the correct class vari
able. The at o i function, whose prototype appears in std l i b . h, takes only one
parameter: the string to be converted. Conversion is successful only if the characters
in the string make up an integer. For example, if the string contains a letter, you
won't get a legal integer back from the function call.

Because dates will be output as strings, the date class must also contain a func
tion that converts the three integers back into a single string. This conversion is per
formed by the showDate function, which must take each integer and transform it
back into a string.

Declaring Overloaded Operators

Listing 13.2 Nonoperator member functions

#include <string.h>
#include <stdlib.h>
#include "date.h"

date::date (char* stringDate)
(

char Tstring[3];

strncpy (Tstring, stringDate, 2); II get month
month= atoi (Tstring); II convert to integer
strncpy (Tstring, &string0ate[3], 2); II get day
day = atoi (Tst ring); I I convert to integer
strncpy (Tstring, &stringDate[6], 2);
year= atoi (Tstring); II convert to ingeter

void date::itoa (int integer, char* string)
(

char numbers[]= ('0','1','2'.'3','4'.'5','6','7','8','9'1;
int digit, i;

digit = integer I 10;
string[OJ = numbers[digit];
digit = integer % 10;
string[l] = numbers[digit];

int date::getMonth()
(return month;)

int date::getDay()
(return day;

int date::getYear()
(return year;

char* date::showDate (char* stringDate)
(

char Tstring[3];

itoa (month, Tstring);
strcpy (stringDate, Tstring);
strcat (stringDate. "I");
itoa (day,Tstring);
strcat (stringDate.Tstring);
strcat (stringDate."I");
itoa (year,Tstring);
strcat (stringDate,Tstring);
return stringDate;

251

252 Chapter 13 •Operator Overloading

The conversion is performed by the i to a (integer to ASCII) function. As you can
see in Listing 13.2, it first divides a two-digit number by 10 to isolate the lefthand
digit and then looks up that digit in an array of characters. (The n urn be rs array is an
array of individual characters, not a string; it has no terminating null.) To isolate the
righthand digit, it performs a modulo division by 10 on the integer and looks up the
value in the numbers array. The last step is to append a null to the string.

NOTE
Some implementations of C and C++ do supply an itoa function as part of stdlib.h.
However, the function is not part of the ANSI standard and therefore isn't available
with CodeWarrior.

The s h owD ate function calls i to a for each part of the date. As the converted
strings are returned, it copies them onto the end of the string that is returned to the
calling function.

Although strings are always passed by reference, sh ow Date explicitly returns the
address of the string. This makes it possible to place a call to showDate in other
statements-especially stream output statements-that require a pointer to a string
to act on the contents of a string.

Overloading with Member
Functions

Writing functions to overload operators isn't terribly different from writing other
types of functions. As you can see in Listing 13.3, the body of the member functions
that overload operators perform the actions that the operators represent. For exam
ple, the overloaded == operator function compares each part of the date stored in the
current object against each part of the date stored in the object that arrives as an
input parameter.

The inequality operators(> and so on) are a bit more complicated because there is
no simple logical expression that can determine the relationship between two dates.
Instead, each of the inequality functions first looks at the year. If the years are differ
ent, the function can make its decision based on the year alone. However, if the years
are the same, the function needs to look at the month. If the months are different,
the day is irrelevant. However, if the months are the same, the function also consid
ers the month.

Overloading with Member Fundions

Listing 13.3 Operators overloaded as member functions

int date::operator== (date inDate)
I

if (month== inDate.getMonth() && day== inDate.getDayC)
&& year== inDate.getYear())

return TRUE;
return FALSE;

int date::operator!= (date inDate)
I

if (month== inDate.getMonth() && day== inDate.getDay()
&& year== inDate.getYear())

return FALSE;
return TRUE;

int date::operator> (date inDate)
I

if (year > inDate.getYear())
return TRUE;

if (year== inDate.getYear())
I

if (month> inDate.getMonth())
return TRUE;

if (month== inDate.getMonth() && day> inDate.getDay())
return TRUE;

return FALSE;

int date::operator>= (date inDate)
I

if (*this > inDate)
return TRUE;

if (*this == inDate)
return TRUE;

return FALSE;

int date::operator<= (date inDate)
I

if (*this < inDate)
return TRUE;

if (*this == inDate)
return TRUE;

return FALSE;

253

Continued next page

254 Chapter 13 • Operator Overloading

Listing 13.3 {Continued) Operators overloaded as member functions

int date: :operator< (date inDate)
{

if (year< inDate.getYear())
return TRUE;

if (year== inDate.getYear())
{

if (month< inDate.getMonth())
return TRUE;

if (month== inDate.getMonth() && day< inDate.getDay())
return TRUE;

return FALSE;

void date::operator= (date inDate) //copy
I

month= inDate.getMonth();
day= inDate.getDay();
year= inDate.getYear();

NOTE
Because the equality and inequality operators always compare two dates, there is no
reason to implement them as friend .functions: There will always be date objects on both
sides of the operator. However, there would be no harm in using a friend .function rather
than a member .function.

The overloaded assignment operator is relatively simple. It takes each value from
the input date object and copies it into the corresponding variables in the current
object. In this case, you shouldn't attempt to implement the function as a friend
function, because assignment always requires that the destination be on the lefthand
side of the operator. In other words, assignment isn't commutative.

Overloading with Friend
Functions

When you overload operators using friend functions, the friend functions aren't part
of the class. The functions in Listing 13.4, for example, although physically in the

Using Overloaded Operators 255

same file as the date class's member functions, don't include the name of a class and
the scope resolution operator. In other words, these are program functions much like
any other function that isn't a part of a class.

The two functions that overload the addition operator are identical, with the
exception of their input parameters. As you can see from the listing, adding dates is a
bit more complicated than adding other quantities, because the "carrying" from days
to months to years is based on the varying number of days in a month.

An overloaded addition operator function therefore first adds the number of days
that come in as an input parameter to the days in the current date object. Then,
based on the current month, the function decides whether to adjust the value in the
day and month. Finally, the function examines the month and decides whether to
adjust the month and increment the year.

The functions return an entire date object. In this case, the object returned is the
same object that arrives in the functions as an input parameter. This is because the
functions actually modify the input object.

Using Overloaded Operators

Using overloaded operators is relatively straightforward if you are using static bind
ing and a little more involved when you have declared objects for use with dynamic
binding. To show you how this works, consider the demonstration main function in
Listing 13 .5.

This function really doesn't do any useful work; its only purpose is to test the
member functions in the date class. As you can see in Figure 13 .1, the program first
asks for two dates and then reports on their relationship (greater than, less than, or
equal to each other). Next, the program copies the first date into the second and
reports the results. It finishes by adding 30 to the first date and showing the user the
modified date.

The function in Listing 13.5 creates date objects for use with dynamic binding.
However, the overloaded operators need date objects rather than pointers to date
objects. This means that the function must dereference the pointers when they are
used with the overloaded operators. The only case in which the pointers aren't deref
erenced is when the function calls sh ow Date, which, of course, is a regular member
function and not an overloaded operator.

256 Chapter 13 • Operator Overloading

Listing 13.4 Operators overloaded as friend functions

date operator+ (int days2add, date inOate) I
inOate.day += days2add;
if CinOate.month == 2 && inDate.day > 28)
I

inOate.day -= 28;
inOate.month++;

else if ((inOate.month == 4 I I inOate.month == 6 I I inDate.month == 9
I I inOate.month == 11) && inDate.day > 30)

inDate.day -= 30;
inOate.month++;

else if (inOate.day > 31)
I

I

inOate.day -= 31;
inDate.month++;

if CinOate.month > 12)
I

inOate.month--;
inOate.year++;

return inOate; I

date operator+ (date inDate, int days2add)
inDate.day += days2add;
if CinOate.month == 2 && inDate.day > 28)
I

inOate.day -= 28;
inOate.month++;

else if CCinDate.month == 4 I I inDate.month == 6 II inOate.month == 9
II inOate.month == 11) && inOate.day > 30)

inOate.day -= 30;
inDate.month++;

else if CinOate.day > 31)
I

I

inOate.day -= 31;
inOate.month++;

if CinOate.month > 12)
I

inDate.month--;
inOate.year++;

return inDate; I

Using Overloaded Operators

Listing 13.5 Sample main function to test the date class

#include <iostream. h>
#include <s tdio.h >
#include "date.h"

void main()
I

date* datel. * date2;
char dat eString [9J;

cout « "En ter a date (MM/00/YY): "
gets (dateString);
datel =n ew date (dateString);
cout « "Enter a second date (MM/00/YY): "
gets (dateString);
date2 =new date (dateStringl;

if (*datel == *date2l
cout « "The dates are equal.";

else if (*datel > *date2l
cout << "The first date is greater than the second.";

else if (*date2 > *datell
cout << "The second date i s greater than the first.";

*date2 = *datel;
cout << "\ nS eco nd date is now" << date2->showOate(dateString);
*datel = *datel + 30;

257

cout << "\nThirty day s further on is·<< datel- >s howDate(dateString);

Figure 13.1 Output of the dates program

dates.out
SIOUX state: application has terminated .

Enter a date <MM/00/YY): 10/15/96 ~ Enter a second date <MM/00/YY): 06/12/95
The first date is greater than the second .
Second date is now 10/15/96
Thirty days further on is 11/14/96 -0 •

258 Chapter 13 • Operator Overloading

Fixing the Checkbook
Program

The operator overloading in the date class can be used to fix the problem with trans
action dates that arose in the Checkbook program. To make the change, we need to
first replace the string version of the transaction date with a pointer to a date object.
As you can see in Listing 13 .6, the return type of the get Date function has also been
changed. It now returns a pointer to a date object.

Listing 13.6 The Trans class modified to use a date object

class Trans
(

I;

private:
int trans_numb; II arbitrary unique identifier for each transaction
char check_numb[6]; II used only for check transactions
date * trans_date; II pointer to date objec
string80 PayeeSource, Note;
fl oat amount;
int cleared; II Boolean set to true when check has cleared
II 1 =check, 2 =deposit, 3 =ATM withdrawl, 4 =service charge;
int trans_type:
Account* owner; II pointer to account that owns the transaction

II private functions not used outside class
II translate transaction type string into integer
int Text2Type (char*);
char* Type2Text Cl: II translate integer type into string

public:
Trans (Account*, char*. date_string. string80, string80,

float, char*); II constructor for interactive input
Trans Cifstream &. Account*); II constructor to read from file
void markCleared ();
void write Cofstream &l; II write to file
void displayTrans ();
char* getCheck_numb ();
date* getDate ();
char* getPS ();
int getCleared ();
int getType ();
float getAmount ();

Fixing the Checkbook Program 259

Both constructors for the Trans class must also change. Rather than simply copy
ing a string date into a variable, they must create a date object, passing the date
string that comes into each function as a parameter to the date object's constructor
(see Listing 13.7).

Listing 13.7 Modified constructors for the Trans class

Trans::Trans (Account* whichAccount, char* icheck_numb,
date_string itrans_date, string80 iPayeeSource, string80 iNote,
float iAmount, char * iType)

owner = whichAccount:
trans_numb = owner->nextTrans_numb();
strcpy (check_numb, icheck_numb>:
trans_date =new date (itrans_date): // create the date object
strcpy CPayeeSource, iPayeeSource>:
strcpy (Note, iNotel:
amount = iAmount:
trans_type = Text2Type CiType):
if Ctrans_type ==SERVICE)

cleared = TRUE:
else

cleared = FALSE:
owner->insertlrans (this):
owner->setBalance (trans_type, amount>: //change balance as needed

Trans::Trans (ifstream & fin, Account* whichAccount)
I

char dummy;
date_string Tdate:

owner = whichAccount:
fin >> trans_numb:
fin.get (dummy); //skip over blank before string
fin.getline Ccheck_numb,80, '\0');
fin.getl ine CTdate,80, '\O'):
trans_date =new date CTdate); // create a date object
fin.getline CPayeeSource,80,'\0');
fin.getline (Note.BO, '\0'):
fin » amount:
fin » cleared:
fin >> trans_type;

When you write the file, you don't want to write the pointer to a date object; you
want to write the date itself. Why? Because when you quit the program, the contents

260 Chapter 13 •Operator Overloading

of the memory it used are lost. The next time you come back to the program, it is
extremely unlikely that the contents of memory the last time you used the program
are still intact. You may have shut down the computer or loaded some other program
in the interim. Even if you quit the program and run it again immediately, there's no
guarantee that it will load in exactly the same place twice. The solution is therefore
to write the date as a text string and convert it back to a date object when you read
the file, just as the file input constructor in Listing 13. 7 does. The Tr a n s class's mod
ified write function (Listing 13.8) therefore includes a call to the date class's show
D ate function, which reassembles the date into a string.

Listing 13.8 Modified write function for the Trans class

void Trans: :write (ofstream & fout)
I

date_string Tdate:

fout « trans_numb « . ..
fout « check_numb « . \0.:
fout « trans_date·>showDate (Tdatel
fout « PayeeSource « . \0.:
fout « Note « • \O':
fout « amount « ' '.

' fout « cleared «
fout « trans_type « . .

« . \0.: II write text of date

There are two other places in the Checkbook program where the switch to date
objects occur: the routines that look for transactions by date. Using the overloaded
comparison operators, these functions now work properly for dates stored in MM/
DD/YY format. The functions affected are Account class's find function (the one
that finds by date and payee/ source) and by Date function, both of which appear in
Listing 13.9).

Programming Challenge Number 10 261

Listing 13.9 Modified Account class functions using overloaded date class
operators

Trans* Account::find Cdate_string idate, string80 iPSl
{

date cDate Cidatel; // create and initialize a date object
date tDate Cidatel;
for (int i = O; i < Trans_count; i++)
{

tDate = *Ctransactions[i]->getDateCll;
if CtDate == cDate && strcmpCtransactions[i]->getPSCl,iPSl == Ol

return transactions[i];

return O;

void Account::byDate Cdate_string start, date_string end)
I

date sDate (start), eDate Cendl.tDate (start); // two date objects
for Cint i = O; i < Trans_count; i++l
{

tDate = *Ctransactions[iJ->getDate());
if CtDate >= sDate && tDate <= eDatel

transactions[iJ->displayTrans();

Programming Challenge
Number10

The date class has access to overloaded assignment and addition operators, support
ing statements in the format:

datel = datel + 30;

However, this doesn't mean that you can use the += operator. To begin this chal
lenge, overload the += operator. (Hint: Make it a friend function and take advantage
of the existing overloaded assignment and addition operators.)

Another limitation to the overloaded addition operator is that it doesn't take leap
years into account. Add code to each of the overloaded addition operator functions
that will identify and handle leap years. (Hint: Leap years are divisible by 4.)

262 Chapter 13 •Operator Overloading

A final limitation to the overloaded addition operator is that it will work with an
integer constant but not a value stored in a variable. To complete this challenge, add
overloaded functions that let the user use both variables and constants. (Hint: You'll
end up with four overloaded friend functions for the addition operator.) Add code to
the ma i n function to test your new overloading.

Programming Challenge
Number11

As written, the date class's constructor will work properly only if each month and
day are entered as two digits. If a user enters something like 1/1/96, the conversion
to integers will fail. Your job in this challenge is to fix the constructor so that it
accepts either one or two characters for month and day.

Rather than using st r n c PY to get fixed-size chunks of the input string, consider
scanning the string one character at a time with a for loop. You can detect the end of
a number by encountering a'/' or'-' (the characters typically used to separate the
parts of a date).

The date class also has a problem with the year. Right now, it handles only two
digit years, but once years beginning with 2000 come into the picture, comparisons
based on just two digits for the year won't work properly. If you've done the scanning
technique properly, your code should work for four-digit years as well.

When you allow for a one digit month and day and a four-digit year, the i to a
function won't work properly. Consider carefully how you should modify that func
tion so that it will work for an integer of any length. (The best strategy is based on
the idea of repeatedly dividing by 10 and perfoming a modulo division by 10 on a
number to isolate each digit in the integer.) Make those modifications and then test
your modifications by running the ma i n function that tests the date class.

Programming Challenge Number 12

Programming Challenge
Number12

263

In Chapter 10 you added birthdates to the Families program as strings. As you now
know, storing dates as strings isn't particularly efficient when it comes to working
with those dates. For this challenge, you'll be replacing the string dates with objects
of the date class and adding functions to use those dates.

The modifications you should make include:

• Replace all string dates with pointers to objects of the date class.
• Pass the birthdate into a constructor as a string. Use that parameter as input to the

date class constructor. (If you completed Programming Challenge Number 11,
use your modified date class; it's more flexible than the original.)

• Add to the main program a function that searches for all people who have birth
dates before a date the user enters. To do this, you'll need a date object into
which the main program can store the user's comparison date. Then retrieve all
birthdates (parents and kids}-one by one-and use the overloaded operators to
make the requested comparison.

Consider carefully how you're going retrieve the dates for comparison. There is
usually more than one date in each f ami 1 i es object; you'll need to get father,
mother, and all the kids!

CHAPTER

Data Structures:
Arrays

A data structure is a program structure that organizes data. The simplest data struc
ture is an array, which organizes multiple items of the same type. Object-oriented
programs, which often make use of arrays of objects, have special ways of managing
such arrays. This chapter therefore begins by looking at special objects that exist only
to manage arrays of other objects. You won't be learning any new language elements
but will be seeing new ways to use what you already know.

One of the drawbacks to the way in which we have been handling arrays of objects
is that the function that manipulates the array must know a great deal about the
objects handled by the array. The functions using the array must know exactly what
data to collect when a new object is created; they must know how many objects are
in the array when they attempt to add a new object or access all the objects. If the
structure of the objects in the array changes, the functions using the array must also
change. In the first part of this chapter, you'll look at the object-oriented way of man
aging an array object to get around this problem.

Another drawback to the way we've been handling arrays is that the elements are
always added to the bottom of an array. There hasn't been any way to change the
order of those elements. However, many times you want to see array items in date,

265

266 Chapter 14 •Data Structures: Arrays

value, or alphabetical order. In other words, you need to sort the array. The second
part of this chapter therefore looks at one technique for changing the order of ele
ments in an array so that you can produce output in any order you desire.

Once you have a sorted array, you also have access to a variety of techniques for
quickly searching an array. At the very end of this chapter you'll be introduced to a
binary search, one of the fastest and most efficient ways to search an ordered array.

Objects to Manage Arrays

Object-oriented programs avoid much of the impact of changes in objects by hiding
the internal structure of an object from the functions that use the object. Requiring a
function to manipulate an array of objects therefore violates this principle and makes
maintaining a program more difficult.

The solution is to create a special object whose sole job is to manage an array of
another type of object. To show you how objects that manage arrays of objects work,
we'll be modifying the Families program once again, this time introducing a new
a r ray Mgr class that takes care of the array of families that was previously managed
by the program's main function.

The array Mgr class (Listing 14.1) has two class variables: an integer to keep track
of how many families are in the array and the array of Fam i l i es objects. In addition
to the constructor, the class has four member functions. The i n s er t function col
lects data for a new Families object, creates the object, and inserts it into the array.
The read function handles reading data from a file; the w r i t e function does just the
opposite. The l i st function displays all the data in the array.

Listing 14.1 The arrayMgr class

class arrayMgr
I

} ;

private:
int numb_families;
Families * familyArray[MAX_FAMILIESJ;

public:
arrayMgr();
int insert(); // create new object and insert into array
int read();
void write ();
void list();

Objects to Manage Arrays 267

Much of the code in the member functions formerly appeared in the main func
tion. If you look at Listing 14.2, you'll see that the i n s er t function takes care of
determining whether there is enough space in the array to insert another family, col
lecting all the data for a new Fam i l i es object, creating the object, and adding it to
the a r ray Mg r object's array. The i n s er t function returns TRUE if the function was
able to insert a new family or FALSE if it was not.

The a r ray Mg r class's read and w r i t e functions look almost identical to the
program functions by the same name. (In fact, the changes to the program were
made by simply copying the contents of the program functions into the member
functions.) Both functions open a file and then perform the needed 1/0 operations.
Keep in mind, however, that in this case, the main function doesn't need to know
anything about how these operations are taking place, because they're hidden within
the member functions of the a r ray Mgr object.

Listing all the objects in the array (Listing 14.4) also looks much like it did when
the listing was handled by the main function. The only difference is that in this case
the access to the contents of the array is handled by the a r ray Mg r object.

So what does this all mean for the main function and its program functions? As
you can see in Listing 14.5, it doesn't leave much for the main function to do. It first
creates one object from the a r ray Mgr class. (Because the program manipulates just
one array, it needs only one array manager object.)

If reading the file fails, the read function returns FALSE and the program ends.
However, if reading is successful, the main function enters awhile loop for entering
new families. The insert function returns TRUE when it was able to successfully
add a new family. In that case, the loop continues. However, if the array is full or the
user decided not to enter any more data, the loop stops and the program then exe
cutes the l i st function. The program finishes by calling the w r i t e function to
store the data in the text file.

Notice throughout that the ma i n function has no idea how many Fam i l i es
objects are in the array of objects. It also has no idea of what data are needed to cre
ate a new Fam i l i es object or to display a Fam i l i es object. You can change the size
of the array or the elements of a Fam i l i es object, without ever needing to modify
the ma i n function. You can also reuse the a r ray Mg r and Fam i l i es classes in many
programs, none of which need to be concerned with the details of the classes. This is
therefore a good example of the object-oriented principle of information hiding.

268 Chapter 14 •Data Structures: Arrays

Listing 14.2 Constructor and insert member functions for the arrayMgr class

arrayMgr::arrayMgr()
{

numb_families = -1: // empty array
for (int i = O; i < MAX_FAMILIES; i++)

familyArray[iJ = 0: II initialze pointers to O

int arrayMgr::insert ()
{

char yes_no, dummy2[2];
string25 ifather, imother, ikids[MAX_KIDSJ;
int inumb_kids = MAX_KIDS + l;

if Cnumb_families + 1 >= MAX_FAMILIES>
(

cout << "\nThe families array is full";
return FALSE;

cout << "\nDo you want to add another family? ";
cin » yes_no;
if Ctoupper(yes_nol == 'N')

return FALSE;
gets(dummy2); //kludge
cout << "\n\nFather: ";
gets (ifather);
cout << "Mother: ";
gets (i mother);
while (inumb_kids > MAX_KIDS)
(

I

cout << "\nHow many children do they have? •·
cin >> inumb_kids:
if (inumb_kids > MAX_KIDS>

cout << "\nThis program is limited to • << MAX_KIDS
<<•kids. Try again."<< endl;

gets(dummy2); //kludge
for (int i = 0: i < inumb_kids: i++)
(

I

cout << "Child#" << i+l << "· ":
gets Cikids[iJ):

familyArray[++numb_familiesJ =new Families (ifather, imother,
inumb_kids. ikids);

return TRUE:

Objeds to Manage Arrays

Listing 14.3 The arrayMgr member functions to read from and write to
a text file

int arrayMgr::read Cl
{

char yes_no, dummy:

ifstream peopleln ("people"): // input file
if C!peoplelnl
{

cout << "Couldn't open input file. OK to continue? ":
cin » yes_no:
if Ctoupper(yes_nol ~ 'N'l

return FALSE: // quit the program

else II read from file
{

I

peopleln >> numb_families: //get last array-of-objects index
peopleln.get (dummy>: // skip over whitespace
for (int i = 0: i <= numb_families: i++l
{

familyArray[i] =new Families Cpeopleln):
I
peopleln.closeCl:

return TRUE:

void arrayMgr::write()
{

ofstream peopleOut ("people"):
if C!peopleOutl
{

cout <<"Problem opening output file.·:
return:

I
peop 1 eOut « numb_famil i es « ' ' :
II write to file
for (int i = O: i <= numb_families: i++l

familyArray[iJ->writeCpeopleOutl:

NOTE

269

If the Families program's main fanction is only what you see in Listing 14.5, why does
it need to have the fstream.h header file included? Because some of the member fanc
tions in families. h, which contains both the Families and the array Mgr classes, use file
stream objects as parameters. The main fanction therefore won't compile unless it
knows about file stream objects, which are declared in fstream.h.

270 Chapter 14 • Data Structures: Arrays

Listing 14.4 The arrayMgr member function that lists the contents
of its array

void arrayMgr::list()
{

char yes_no;

for (int i = O; i <= numb_families; i++)
{

familyArray[i]->display();
if Ci < numb_families)
{

cout << "\nNext? ";
cin » yes_no;
if CtoupperCyes_no) 'N')

break;

Listing 14.5 Modified main function for the Families program

#include <fstream.h>
#include "families.h"

void main ()
{

arrayMgr familyGroup; // create an array manager object
int response;

response= familyGroup.read ();
if (response == FALSE)

return; // exit program

response = TRUE;
while (response ==TRUE)

response= familyGroup.insertCl; // add new ones

familyGroup.list ();
familyGroup.write ();

Sorting an Array: The Bubble Sort

Sorting an Array: The Bubble
Sort

271

The many techniques for sorting arrays vary widely in efficiency (how quickly they
work) and simplicity (the complexity of the logic). To introduce you to the idea of
sorting, we're going to be looking at a logically simple sort technique that is efficient
if an array is mostly in order (only a few elements are out of order) but whose effi
ciency degrades for large arrays that are in relatively random order. This sorting
method is known as a bubble sort.

The bubble sort works by comparing successive pairs of values in an array. If the
values are in the wrong order, the program swaps them. Each pass through the array
moves the largest value that is out of order toward the bottom of the array. The sort
makes repeated passes through the array until it scans the array without needing to
swap any elements.

To see exactly how this works, take a look at Figure 14.1. For this example, we will
be sorting an array of five integers. The original array appears at the top left of the
figure. The first comparison is between the numbers in element 0 and element 1.
Because these values are out of order, the program swaps them. The second compar
ison is between elements 1 and 2. Because these are in the correct order, the program
doesn't move them. However, when the program compares elements 2 and 3, it must
make a swap. The same occurs for elements 3 and 4. Notice that the effect of this first
pass is to move the 16, the highest value in the array, to the very bottom.

For the second pass, the program begins by again comparing elements O and 1.
During this second pass, elements 1 and 2, as well as elements 2 and 3, are out of
order. Only two swaps are made, placing the last three elements in order.

The third pass requires only one swap. At the end of this pass, the entire array is in
order, but the computer doesn't know it. It must make one final pass-a scan of the
array without any swaps-to detect that the sort is complete.

A FIRST BUBBLE SORT EXAMPLE

As a very simple first example of a bubble sort, let's look at a program that accepts an
array of 10 integers, sorts them in ascending numeric order, and then displays the
sorted array. The program is based on the i n t e g er s class in Listing 14.6, which has
only one class variable (the array of integers) and three member functions in addition
to the constructor, each of which does exactly what its name suggests (loads the
array, sorts the array, and displays the array).

272 Chapter 14 • Data Structures: Arrays

Figure 14.1 Performing a bubble sort

Pass #1

12J- s s s s
s 12]- 12 12 12

16 16 16J- 3 3
3 3 3 16 J 10

10 10 10 10 - 16

Four swaps

Pass #2

SJ - S S S S
12 12]- 3 3 3
3 3 12J--10 10

10 10 10 12J-- 12
16 16 16 16 16

Two swaps

Pass #3

SJ- 3 3 3 3
3 SJ S S S

10 10 -- 10 J--10 10
12 126 1126 1126]-- 1126
16 1

One swap

Pass #4
3J - 3 3 3 3
5 SJ S S S

10 10 --10 J-10 10
12 12 12 12 J -- 12
16 16 16 16 16

No swaps-all done

The member functions for the Bubble Sort program can be found in Listing 14.7.

To see how you can implement a bubble sort, let's look at the sort function. The
first thing a bubble sort must do is set up a variable to keep track of whether any ele
ments have been swapped during a pass through the array. In this example, that vari
able is called fl i p_fl ag. It is initialized to TRUE so that the while loop that
controls passes through the array will be executed at least once.

After initializing fl i p _fl a g, the sort enters the w h i l e loop. The program
immediately sets fl i p _fl a g to FALSE. (In other words, the program makes the
assumption that no swaps will be made.) Then the program enters a for loop that
makes one pass through the array.

When setting up this loop, you must pay attention to the loop's terminating condi
tion. Because the comparison is made between the element at the current loop index
and the element below (loop index + 1), you want to stop the loop one value less
than the highest array element's index. This will prevent you from looking at an ele
ment beyond the end of the array. In the program we are examining, the constant
AR RAY _SI Z E is the total number of elements in the array. The highest array index is

Sorting an Array: The Bubble Sort

Figure 14.2 Output of the Bubble Sort program

Bubble sort.out
SIOUX state: application has terminated.

Ualue •1: 10
Ualue •2: 80
Ualue •3: 5
Ualue •4: 62
Ualue •5: 15
Ualue •6: 91
Ualue •7: 25
Ualue •8: 18
Ualue •9: 30
Ualue •10: 4

The sorted array is:

Ualue •1: 4
Ualue •2: 5
Ualue •3: 10
Ualue •4: 15
Ualue •5: 18
Ualue •6: 25
Ualue •7: 30
Ualue •8: 62
Ualue •9: 80
Ualue •10: 91 ~

Iii

Listing 14.6 Header file for the Bubble Sort program

const ARRAY_SIZE = 10;

class integers
{

I;

private:
int integerArray[ARRAY_SIZE];

public:
integers ();
void load ();
void sort();
void display ();

273

ARRAY _SIZE - 1. The loop should continue as long as the loop's index is less than
this value. You could also write the terminating condition as i <=ARRAY _SIZE - 2.

Inside the f o r loop, the sort compares the current array element (i n t e g e r s [i])
with the following array element (i n t e g er s [i + 1]). If the current element is larger
than the following element, the program must swap the position of the elements in
the array.

274 Chapter 14 • Data Structures: Arrays

Listing 14.7 Member functions for the Bubble Sort program

#include <iostream.h>
#include "bubble sort.h"

integers::integers ()
{

for (int i = O; i < ARRAY_SIZE; i++l
integerArray[iJ = 0:

void integers::load ()
{

for (int i = O; i < ARRAY_SIZE; i++)
{

cout << "Value#" << i + 1 << "
cin >> integerArray[i);

void integers::sort()
{

int flip_flag =TRUE;
int temp. i;

while (flip_flag)
{

flip_flag =FALSE;
for (i = O; i < ARRAY_SIZE - l; i++)
I

if (integerArray[iJ > integerArray[i+l])
{

temp= integerArray[iJ;
integerArray[iJ = integerArray[i+l];
integerArray[i+lJ = temp;
flip_flag =TRUE;

void integers::display ()
I

cout << "\nThe sorted array is:"<< endl << endl;
for (int i = O; i < ARRAY_SIZE; i++)

cout << "Value#" << i + 1 << ": • << integerArray[iJ << endl;

Sorting an Array: The Bubble Sort 275

To effect the swap, the program must store one of the two values in a temporary
variable. If it doesn't, moving one value on top of the other destroys the original
value. The swap therefore moves one value into temp, replaces that value with the
other value, and copies the saved value in temp to its new location. Although this
particular sort saves the current element in the temporary variable, it makes no dif
ference which one you save. just be sure that you replace the saved variable first. In
other words, if you save the current element, move the current element + 1 into the
current element. Then replace the current element + 1 with the contents of the tem
porary variable.

After making a swap, the sort sets fl i p_fl ag to TRUE. This assignment occurs
every time a swap is made during a single pass, regardless of the number of swaps.
Therefore, if even a single swap is made, the sort function will know that it has to
make at least one more pass through the array.

When the sort function makes a pass through the array without making any
swaps, fl i p_fl ag retains its value of FALSE. The while loop then stops and the
sort is finished.

just to be complete, you can find the ma i n function for the bubble sort demon
stration program in Listing 14.8. All this function needs to do is call the load, sort,
and di s pl ay member functions, one after the other.

Listing 14.8 Main function for the Bubble Sort program

#include "bubble sort.h"

void main ()
I

integers mylnts; // declare object

mylnts.load Cl;
mylnts.sort ();
mylnts.display ();

SORTING ARRAYS OF POINTERS

In the bubble sort example we just examined, the sort function swapped data values.
However, when the items you want to sort are objects, moving entire objects in main
memory can have undesirable consequences. First, it slows down a program because
the swap involves many values. Second, it tends to fragment memory as you move
objects around, leading to possible memory problems. It is therefore more efficient

276 Chapter 14 •Data Structures: Arrays

and reliable to sort an array of pointers to objects, rather than to sort the objects
themselves.

When you sort an array of pointers, the comparisons between items is made using
data from the objects. However, when you decide to move something, you move just
the pointers to the objects, not the objects themselves. Then, when you want to
access the objects in order, you access them via their ordered pointers.

NOTE
It may help to think of an array of pointers as something akin to the index in a book. A
book's index is ordered by topic and includes pointers (page numbers) to the text in the
body of the book. You look up a topic in the index and then follow the pointer to where
the data can be found. You use an array of pointers in the same way: by following the
pointer in the array to the object it represents.

As an example of how you can sort an array of pointers, we'll be adding sorted
output capabilities to the Families program. Before displaying the families stored by
the program, the user will have the choice of listing them alphabetically by the
father's name or the mother's name.

The modified l i st function can be found in Listing 14.9. Notice first that the
list function declares a temporary variable (temp) to store a pointer to a Fami -
lies object. (Keep in mind that we will be swapping pointers, not objects.) Before
entering the sort, the function also asks the user to choose between mother and
father ordering. The sort then enters the w hi l e loop, which controls passes through
the array.

There are two major differences between this sort and the sort of the integer array
you saw earlier. The first is in the comparison made within the for loop to deter
mine whether a swap of array elements is needed. Notice that the comparison is
made on values retrieved from Families objects, not from values stored in the
array. (Comparing pointers wouldn't be particularly meaningful.) In addition,
because the data being matched are strings, the comparison uses the strcmp func
tion.

NOTE
If you wanted to sort in chronological order, you might use o'bjects of the date class pre
sented in Chapter 13. Th.en you could make comparisons using the overloaded operators
that are part of that class's member .functions.

The second major difference between this sort and the sort of the integer array is
simply that when the program decides that a swap is required, it manipulates the

Sorting an Array: The Bubble Sort

Listing 14.9 The modified listing routine for the Families program

void arrayMgr::list()
(

char yes_no;
Families * temp;
int flip_flag =TRUE, i;

cout << "Alphabetical by father or mother Cmlfl? ";
cin » yes_no;

while (flip_flag ==TRUE)
(

flip_flag =FALSE;
II note: numb_families is last index used in array
II Therefore don't need to subtract 1 to avoid overflowing array

for Ci = O; i < numb_families; i++)
(

if CCtoupperCyes_no> == 'M' &&
strcmp CfamilyArray[iJ->getMotherCl.

familyArray[i+lJ->getMother()) > Ol
11 Ctoupper(yes_no) = 'F' &&
strcmp (familyArray[iJ->getFather(),

familyArray[i+l]->getFatherCll > 0))

temp= familyArray[i];
familyArray[i] = familyArray[i+l];
familyArray[i+l] =temp:
flip_flag =TRUE;

for Ci = O; i <= numb_families: i++)
(

familyArray[iJ->display();
if Ci < numb_familiesl
(

cout << "\nNext? ";
cin » yes_no;
if CtoupperCyes_no) 'N'l

break;

277

pointers in the array. The objects whose data were used in the comparison aren't
touched.

278 Chapter 14 • Data Structures: Arrays

NOTE
Because an array of pointers provides an index to a group of objects .floating around in
main memory, you could keep more than one array of pointers to the same group of
objects. Each array could be sorted in a different order. This approach makes it easier
and faster to output the array elements in the desired order. However, you must modiJY
all arrays of pointers each time you add an object. The trade-off is between fast output
speed and fast creation of new objects.

Searching Arrays: The Binary
Search

Arrays are a "random access" data structure, meaning that you can access the ele
ments in any order you want, just by supplying an element's index. However, up to
this point we really haven't been taking advantage of that fact. We've been searching
arrays sequentially (first element, to next element, to next element, and so on).

A sequential search is easy to implement but rather inefficient. For example,
assume that you have an array of 1000 elements. In the worst case-where the ele
ment you want isn't in the array-you'll have to look at all 1000 elements to find out
that your search is unsuccessful. On average, you'll have to look at 500 elements for a
successful search.

A number of search techniques are much more efficient than a sequential search. If
your array is ordered by the value on which you want to search, you can use a binary
search. A binary search is one of the most efficient search techniques available for an
array. If you have that same array of 1000 elements, an unsuccessful binary search
will have to look at 12 elements at most. A successful search will need to consult only
five or six elements.

Seem impossible? Not when you consider how the binary search works. The basic
principle is to look at the middle element in the array. If the element you're seeking
precedes the middle element, you know that you can eliminate the bottom half and
concentrate on just the top half. By the same token, if the element you're seeking fol
lows the middle element, you can eliminate the top half of the array from your
search. Each time a binary search checks the middle of a range of array elements to
see whether it has found the correct element, it eliminates half the remaining ele
ments from the search.

To explore how a binary search works, we're going to make one final set of modi
fications to the Families program. These modifications will make it possible to

Searching Arrays: The Binary Search 279

quickly search for one family, based on either the father's name or the mother's
name.

SETTING UP THE SORTED ARRAYS

To support binary searching by either the father's name or the mother's name, this
final version of the Families program contains two arrays of pointers to Fam i l i es
objects. As you can see in the modified a r ray Mg r class, which appears in Listing
14.10, the original f ami l yArray has been replaced by by Father and byMother.

Listing 14.10 The modified arrayMgr class

class arrayMgr
I

I:

private:
int numb_families:
Families* byFather[MAX_FAMILIESJ;
Families * byMother[MAX_FAMILIES];
void sortFather ();
void sortMother ();

public:
arrayMgr();
int insert(); II create new object and insert into array
int read < l :
void write ();
void list();
void search (); II find one family
Families* searchFather (string25);
Families * searchMother (string25):

Every time a new Families object is created, the a rrayMgr object will sort both
arrays to keep them in order. The objects themselves are scattered throughout main
memory. The arrays of pointers are therefore acting as indexes to those arrays, each
ordering the points differently.

The a r ray Mg r class also has five new functions. The sort functions (sort Fa -
ther and sortMother) are private functions because they are never going to be
used outside the class. The three search functions (search, searchFather, and
searchMother) are public. Although currently searchFather and search
M other are used only by the sea r ch function, they are public so that they are acces
sible should someone want to use them when adding features to the program.

280 Chapter 14 •Data Structures: Arrays

To maintain the sorted arrays, some changes need to be made to the a r ray Mgr
class's insert function. As you can see in Listing 14.11, the single line that stored a
pointer in the original fa mi 1 y Array has been replaced. When the Fam i 1 i es
object is created, its pointer is stored directly in the by Fa t her array. That pointer is
then copied into the by Mother array.

Listing 14.11 Maintaining the sorted arrays

Original code from the insert function:

familyArray[++numb_familiesJ =new Families (ifather, imother,
inumb_kids, ikidsl:

Replacement code to support sorted arrays:

byFather[++numb_familiesJ =new Families (ifather, imother,
inumb_kids, ikidsl:

byMother[numb_familiesJ = byFather[numb_familiesJ:
sortFather ();
sortMother ():

New elements are always added to the bottom of the array. This means that they
probably aren't in their correct places. The function therefore calls so rt Father to
sort the by Father array and sortMother to sort the byMother array.

As you can see in Listing 14.12, both sort routines use a bubble sort, just like the
sort to which you were introduced earlier in this chapter, although the comparison
logic is a bit simpler because each sort function works with only a single array and a
single sort order. In this case, a bubble sort is as efficient as just about any other sort
method. This is because the array is completely in order except for the new element
added at the bottom.

WRITING THE SEARCHES

The binary search functions can be found in Listing 14.13. As you can see, each
search needs three variables to keep track of where it is.

• top: The lowest array index in the portion of the array being searched. It is ini
tialized to one less than the lowest index in the array (in this case, -1).

• bottom: The highest array index in the portion of the array being searched. It is
initialized to one higher than the highest index in the array (in this case, the value

Searching Arrays: The Binary Search

Listing 14.12 Sorting the arrays

void arrayMgr::sortMother ()
{

int flip_flag =TRUE;
Families* temp;

while (flip_flag ==TRUE)
{

flip_flag =FALSE;
II note: numb families is last index used in array
for (int i = O; i < numb_families: i++)
{

II make comparison based on mother
if (strcmp(byMother[iJ->getMother(l,

byMother[i+lJ->getMother(l) > Ol

II swap elements just in the byMother array
temp= byMother[iJ;
byMother[iJ = byMother[i+lJ:
byMother[i+lJ = temp;
flip_flag =TRUE;

void arrayMgr::sortFather ()
{

int flip_flag =TRUE;
Families* temp;

while (flip_flag ==TRUE)
{

flip_flag =FALSE;
II note: numb families is last index used in array
for (int i = O; i < numb_families; i++l
{

II make comparison based on father
if (strcmp(byFather[i]->getFather(l,

byFather[i+lJ->getFather()) > Ol

II swap elements just in the byFather array
temp= byFather[iJ;
byFather[iJ = byFather[i+lJ;
byFather[i+lJ = temp;
flip_flag =TRUE;

281

282 Chapter 14 • Data Structures: Arrays

Listing 14.13 The binary search functions

Families* arrayMgr::searchFather (string25 ifather)
I

int top, bottom, mid, test:

top= -1; II top is one less than lowest array index
bottom= numb_families; II bottom is one greater than highest array index

mid= (top+ bottom) I 2; II find middle of range

II search fails when top crosses middle
while (top < mid)
I

test= strcmp (ifather, byFather[mid]->getFather());
if (test== 0) II correct one found

return byFather[mid];
if (test < 0) II search value is above middle

bottom= mid; II move up bottom
else II search value is below middle

top= mid; II move down top
mid= (top+ bottom) I 2; II compute new middle

return O; II wasn't found

Families* arrayMgr::searchMother (string25 imotherl
I

int top, bottom, mid, test;

top= -1; II top is one less than lowest array index
bottom= numb_families: II bottom is one greater than highest array index

mid= (top+ bottom) I 2; II find middle of range

II search fails when top crosses middle
while (top< mid)
I

test= strcmp (imother, byMother[mid]->getMother());
if (test== 0) II correct one found

return byMother[mid];
if <test < 0) II search value is above middle

bottom= mid; II move up bottom
else II search value is below middle

top= mid; II move down top
mid= (top+ bottom) I 2; II compute new middle

return O; II wasn't found

Searching Arrays: The Binary Search

in numb_fami lies).

• mi d: The array index of the elementthat is in the middle of the array being
searched. Its value is computed with:

mid = (top + bottom) I 2;

283

The search is controlled by a w hi l e loop that stops when an unsuccessful search
is detected. There are two methods for identifying an unsuccessful search. If top
becomes greater than or equal to mid, the search has failed. By the same token, if
bot tom becomes less than or equal to mid, the search has failed. In this case, we are
using the first method.

Inside the w h i l e, the search function first compares the name for which the user
is searching with the name in the mi d element of the portion of the array being
searched. The result is stored in the variable test. Although you could get away
without this variable by placing the call to st r cm p in the i f statements, the code is
cleaner (and shorter) if the result of the st rcmp is stored.

If the two names match (test == 0), the search is successful and the function
returns a pointer to the Families object that is at the mid position in the array.
However, if the correct element hasn't been found, the search must decide whether
to eliminate the top or bottom half of the current range of elements.

If the search value came alphabetically prior to the name at the mi d position in the
array (test < 0), the search value can't be in the bottom half of the array. The func
tion therefore moves bot tom up to equal mid. However, if the search value was
alphabetically greater than the value at element mid (test > 0), the search value
can't be in the top half of the current range of elements. The function therefore
moves top down to equal mid. In either case, after moving either top or bottom,
the function computes a new mi d for the modified range of elements. The search can
then check the middle element in the new range, repeating this process until either
the correct element is found or top crosses mi d and the search is unsuccessful.

The binary search functions are used by the a r ray Mgr class's sea r ch member
function. As you can see in Listing 14.14, this function asks the user whether the
search should be by father's name or mother's name. The function then collects the
name that the user wants to find and, based on which name should be searched, calls
either the search Father or the sea rchMothe r function. If the search is unsuc
cessful (the return value is 0), the user sees an error message indicating that the name
for which he or she was looking isn't present. If the search is successful, the sea r ch
function displays the data in the Families object.

284 Chapter 14 • Data Structures: Arrays

Listing 14.14 Using the binary search functions

void arrayMgr::search ()
(

char which, dummy[2];
Families *found;
string25 iname;

cout << "\nSearch by father or mother Cm/fl? ";
cin » which;

II gets (dummy); // my favorite kludge
cout << "\nName: "·
gets Ci name I;

if CtoupperCwhichl = 'F')
found= searchFather Cinamel;

else
found= searchMother (inamel;

if (found == 01
cout << "\nThat family isn't here.";

else
found->display();

Programming Challenge
Number 13

In this programming challenge, your job is to add a member function to the
a r ray Mg r class to delete a family from the array of Fam i 1 i es objects. The easiest
way to do this is to first find the object you want to delete, using the existing search
functions developed for the last version of the Families program in this chapter. Once
you have found the object to remove, move each pointer below the deleted object up
one position in the array. After you've finished moving the contents of the array,
don't forget to decrement the count of the number of items in the array.

CHAPTER

Data Structures:
Linked Lists

In addition to arrays, object-oriented programs also work with other types of data
structures. In this chapter we'll be looking at linked lists, where multiple objects are
chained together using pointers from one to the other. Linked lists provide one alter
native to arrays to handling multiple objects. Like Chapter 14, this chapter doesn't
introduce any new language elements but instead discusses some new ways to use
things you already know.

To begin, we'll be looking at a demonstration program that will show you the
basics of inserting objects into a linked list and accessing those objects once they are
part of the list. Then we'll look at how a linked list can be implemented in the Check
book program to manage the transactions that are related to a checking account.

285

286 Chapter 15 • Data Structures: Linked Lists

How a Linked List Works

A linked list is a chain of objects connected by pointers that indicate the object that
comes next in the list. The list is managed by a special object designed just for that
purpose, very much like the array manager object to which you were introduced in
Chapter 14.

The figures in Figure 15 .1 represent objects in a linked list. The list manager object
is the largest figure. It points to the first object in the list, which in turn points to the
next object, which points to the next object, and so on. The last object in the list
points nowhere (usually a pointer with a value of 0).

Figure 15.1 A linked list

List manager object

First object in list

Last object in list
(points to nothing)

Because a linked list is made up of pointers from one object to the next, you access
objects by following the chain. The list manager object begins the access by giving a
program the pointer to the first object in the list. Then the program accesses each
object in order, using the pointer stored in the object to find the next object. In its
simplest form, a linked list gives you access from the first object to the next object to
the next object, and so on, all the way to the end of the list.

How a Linked List Works 287

If you want to be able to go backward in the list (from the last object, to the previ
ous object, and so on), you must include additional pointers. The list manager object
must include a pointer to the last object in the list. Then each object must include a
pointer to the object that precedes it in the list. It's up to the programmer to deter
mine whether access to previous objects is necessary.

To add an object to a linked list, you must move some pointers. Assume, for exam
ple, that you want to insert a new element between the second and third elements in
Figure 15.1. You will need to move two pointers. As you can see in Figure 15.2, you
must change the second object so that it points to the new object. The new object
must then be initialized to point to the object that was previously third. (It will now
be fourth.)

Figure 15.2 Inserting an object into a linked list

Object to insert

1
Place to insert

Although the preceding illustrations show the objects in the linked list as being
next to one another, in actuality the objects in a linked list can be scattered anywhere
in memory. The structure of the list is maintained just by the pointers between the
objects.

288 Chapter 15 • Data Strudures: Linked Lists

Linked List Classes

A linked list manager class takes care of inserting elements into the list, deleting ele
ments from a list, and providing access to the members of the list. To explore how a
linked list works, we'll be looking at a sample program that handles a list of objects
that store and retrieve people's birthdates. First, we'll look at the class being man
aged by. the list, with special attention to the class features that are designed for its
participation in the list. Then we'll look at the list manager class in detail.

THE CLASS BEING MANAGED

The class whose objects are part of the list-birthday (in Listing 15.1)- stores a
person's first and last names, the person's birthdate using the d a t e class that was
introduced in Chapter 13, and a pointer to the next birthday object in the list. The
most important thing you need to keep in mind when writing classes whose objects
are going to be part of a linked list is that you have to plan for linked list membership
by including the required pointer variables. In this case, we're providing for "next"
access only. (If we wanted "previous" access as well, we'd need a second pointer vari
able.)

Listing 15.1 Header file for the linked list demo program

class birthday
{

l;

private:
string25 first, last;
date * b_day;
birthday* next;

public:
birthday (string25, string25, date_string);
birthday (ifstream &l;
void display ();
birthday* getNext();
char* getLastCl:
char* getFirst();
void setNextPtr (birthday*);
date getDate();
void write Cofstream &l;

Linked List Classes 289

NOTE
The date class used in the linked list demonstration program has been modified to
include the changes suggested by the programming challenges in Chapter 13. The class
can handle days and months of one or two digits; it can also handle two- or four-digit
years. The integer-to-ASCII conversion routine is also written so that it will handle an
integer of any size. If you attempted the programming challenges, you might want to
take a look at the date.cpp file in the linked list demo program folder to see one way of
implementing those features.

The bi rt h day class's member functions include the following:

• Two constructors (one for interactive input and one for input from a file)
• A display function to show all data in an object (dis pl ay)
• A function to return the pointer to the next object in the linked list (getNext)
• Functions to return pointers to the first name and last name class variables (get -

First and getlast)
• A function to setthe value in the pointer to the next object (setNextPtr)
• A function to return the birthdate (get Date)
• A function to write an object's data to a text file (write)

The member functions for the birthday class can be found in Listing 15.2. As
you can see, there is nothing unusual or complicated in these functions. (This pro
gram exists only to demonstrate the management of a linked list, so the object being
managed really doesn't need to do very much.) Pay special attention, however, to the
get Next and set Next Pt r functions. These two functions are essential to making
the linked list work.

The get Next function returns the contents of the next class variable. To move
from one element in the list to another, the list manager object can ask the current
object to retrieve the contents of its pointer. For example, if a pointer to the current
object in the list is named cur rent, a program can travel to the next object in the list
with:

current= curent->getNext();

The set Next Pt r function inserts a value into the next variable. If a pointer to a
new object is stored in newObject, you can make the current object point to the
new object with:

current->setNextPtr(newObject);

290 Chapter 15 • Data Strudures: Linked Lists

Listing 15.2 Member functions for the birthday class

#include <iostream.h>
#include <fstream.h>
#include <string.h>
#include <stdio.h>
#include "date.h"
#include "linked list.h"

birthday::birthday Cstring25 ifirst, string25 ilast, date_string idate)
{

strcpy (first, ifirst);
strcpy (last, ilast);
b_day =new date Cidate);
next = O;

birthday::birthday (ifstream & fin)
{

date_string idate;

fin.getl ine (fi rst,80, '\O');
fin.getline Clast,80, '\O');
fin.getline Cidate,80, '\O');
b_day =new date (idate);
next = O;

void birthday::display()
{

date_string sDate;

cout << "\n" <<first<<" "<<last<< endl;
cout « "Birthday: " « b_day->showDateCsDate);

birthday* birthday: :getNext()
{ return next; }

char* birthday::getlast()
return last; }

char* birthday: :getFirst()
return first; }

void birthday::setNextPtr (birthday* newNext)
{ next = newNext; }

date birthday: :getDate()
{ return *b_day; }

Continued on next page

Linked List Classes

Listing 15.2 (Continued) Member functions for the birthday class

void birthday::write Cofstream & foutl
{

date_string sDate:

fout <<first<< '\O':
fout <<last<< '\O':
fout << b_day->showDateCsDatel << '\O':

291

By the same token, you can make the new object point to the current object with:

newObject->setNextPtrCcurrent);

THE LINKED LIST MANAGER CLASS

An object-oriented linked list is managed by a special object designed for that task. In
Listing 15.3, for example, you can see the class declaration and constructor for the
linked list manager that handles the list of birthday objects. This class
(linked List) has just two class variables: a pointer to the first object in the list it
manages and a count of the number of items in the list.

The l inked Li st class has the following member functions:

• A constructor that simply initializes both class variables to 0

• A function to load data from disk and recreate the linked list in main memory
(1 oad)

• A function to write the entire list to disk (u n l o ad)

• A function to insert new objects into the list (i n s e rt)

• Two functions to search the list: one by a person• s name, the other by birthdate

• A function to list all the objects in the list (l i s t)

In the following sections of this chapter we'll be looking at exactly how the
l i n k e d Li st class manages the list using these functions.

292 Chapter 15 • Data Strudures: Linked Lists

Listing 15.3 A linked list manager class

class linkedlist
(

I:

private:
birthday * firstPerson:
int numb_people:

public:
linkedlist ();
int load ();
void unload ();
void insert (birthday*);
birthday* find Cstring25, string25l: II find by name
int find Cdate_string, birthday * []); II find by date
void list(); II list all

II constructor for the list manager object
linkedlist::linkedlistCl
(

firstPerson = 0:
numb_people = 0:

Inserting Elements

As you saw at the beginning of this chapter, inserting an object into a linked list
means first finding the place in the list where the new object should go and then
moving pointers to connect the new object. You have several choices as to where a
new object is inserted. You might, for example, decide that all new objects go at the
end of the list or that new objects always go at the beginning of the list. However, you
might also decide to keep the list in some sorted order (chronological, alphabetical,
or numerical).

For this particular example, we're going to be keeping the list in alphabetical order
by the person's last name. This means that whenever we want to insert a new object
into the list, we need to scan the existing list to find the correct place for the new
object. Once the place is found, we can move pointers to connect the new object.

The 1 i n k ed Li st class's i n s er t member function in Listing 15.4 begins by look
ing to see whether the list is empty (the fi rstPerson variable contains 0). If so,
there's no need to do anything else but make the new object the first element in the
list by placing the new object's pointer in f i rs t Person.

Inserting Elements

Listing 15.4 Inserting an element into a linked list

void linkedlist::insert(birthday * newB_day)
I

char * newlast. * currentlast;
birthday* previous, *current;
int count = O;

if C fi rstPerson
I

0) II simply insert first one

firstPerson = newB_day;
numb_people = l;
return;

newlast = newB_day->getlast();
int first= TRUE;
current= firstPerson;
currentlast = current->getlast();
while Cstrcmp Cnewlast. currentlast) > 0 && count++ < numb_people)
I

I

first= FALSE; II not first in last
previous= current; II save where we were
current= current->getNext(); II move to next person
if (current != 0)

currentlast = current->getlast();

II set previous transaction to point to new transaction except when
II new transaction is first in the list
if (!first)

previous->setNextPtr CnewB_day);
else

firstPerson = newB_day; II new one is first in list
II set new person to point to following person

newB_day->setNextPtr (current);
numb_people++;

293

However, if there is at least one element in the list, the function must search for
the correct insertion location. To begin the search, the function initializes the cur -
rent pointer to the first object in the list and retrieves the last name for the new
object and the current object. Then it enters a wh i 1 e loop that compares the two last
names. If the new last name alphabetically precedes the current last name, the new
object precedes the current object in the list. In that case, the wh i 1 e loop stops and
list insertion occurs.

Notice that the function maintains a variable called f i rs t that signals when a
new object should be first in the list. If the new object should precede the object that
is currently first (in other words, the function never enters the w hi 1 e loop), f i rs t

294 Chapter 15 • Data Structures: Linked Lists

retains its initial value of TRUE; it is set to FALSE inside the whi 1 e. As you will see
shortly, this signals the function to move pointers in a special way.

If the new object isn't first in the list, the function enters the w hi 1 e loop. The
body of the loop sets f i rs t to FALSE and then saves the pointer to the current
object in a variable named pre vi o us. This is essential because when we break the
links in the list to insert the new object, we must set the pointer in the previous
object to point to the new object. In other words, the new object will follow the "pre
vious" object; the "current" object will follow the new object.

After saving the previous pointer, the i n s er t function moves to the next object in
the list by retrieving the current object's pointer to the next object. If the address just
retrieved isn't O (in other words, we're not at the end of the list), the function gets the
last name of the person in the next object, preparing it to be evaluated at the top of
the loop.

Notice that this wh i 1 e loop also counts the number of objects in the list as they're
being accessed, stopping the loop when all objects in the list have been examined. If
you don't do this and the new object should go at the end of the list, two nasty things
will probably happen. First, you'll enter an infinite loop because the condition in the
w hi 1 e will always be true. Second, your program will eventually crash, bomb box
and all, because the get Next and get Last functions will be accessing memory that
doesn't belong to objects. You'll be reaching beyond the end of the list.

NOTE
One of the most common causes of crashes in Macintosh programs is pointers that don't
point to valid data. If your program is crashing, look for uninitialized pointer variables
(for example, you forget to issue a new statement) or pointer variables that are pointing
to nonexistent data.

To perform the list insertion, the i n s er t function looks at the f i rs t variable. If
the new object isn't first, the previous object, whose address is stored in previous,
is set to point to the new object. However, if the new object is first, the f i rs t Per -
son variable in the 1 i n k ed Li st class object is set to point to the new object. In
either case, the new object is set to point to the current object (address in current).
The final step is to increment the count of the number of objects in the list.

Accessing All Elements 295

Accessing All Elements

Once your linked list has been created, you can use it to visit all objects that are part
of the list. To do so, you begin at the first element, whose pointer can be found in the
list manager object. Then you repeatedly call get Next to gain access to the pointers
of successive elements.

To see how this works, consider the l i st function in Listing 15 .5. The function
begins by initializing the c u r rent variable to f i rs t Pe r s on and then enters a f o r
loop. The loop displays the data from the current object by calling the bi rt h day
class's dis pl ay member function and then moves to the next object. The loop
counts objects as it goes, stopping when all objects in the list have been displayed.

Listing 15.5 Navigating the linked list

void linkedlist::list ()
(

birthday * current;

current= firstPerson;
for (int i = O; i < numb_people; i++)
(

NOTE

current->display();
cout « end l ;
current= current->getNext();

Keep in mind when looking at the preceding .function that all access to a linked list is
sequential. In other words, you must always start at the first object in the list, move to
the next, to the next, and so on. It's the only way you can access the list's elements.

Finding Elements

The procedure you have just seen for traversing all the elements in a linked list forms
the basis for all search routines written for linked lists. In Listing 15.6, for example,

296 Chapter 15 • Data Structures: Linked Lists

Listing 15.6 Searching a linked list

birthday* linkedlist::find (string25 ifirst, string25 ilastl
I

birthday * current;
char* currentFirst, * currentlast;
int count = O;

current= firstPerson; II start at beginning
currentFirst = current->getFirst();
currentlast = current->getlast(l;
while ((strcmp <currentFirst,ifirst) != 0 I I

strcmp (currentlast,ilast) != Ol && count++< numb_peoplel

current= current->getNext();
currentFirst = current->getFirst();
currentlast = current->getlast();

return current; II will be 0 if not found

int linkedlist::find (date_string idate, birthday* found[])
I

birthday* current;
date searchDate (idatel. currentDate Cidate);

current= firstPerson;
currentDate = current->getDateCl;
II Need an index variable just for the found array.
II The number of matches found will certainly be less than the
II the number of elements in the array.
intj=-1;
for (int i = O; i < numb_people; i++)
I

if CcurrentDate == searchDatel
found[++j] = current; II save the object found

current= current->getNext();
currentDate = current->getDate();

return j; II return last index used in found array

you will find two f i n d member functions that search for items in the linked list of
birthday objects.

The first f i n d function searches for someone who matches a specific first and last
name. The assumption is that no two people in the list have exactly the same name.
Therefore, the function stops when it either finds a match or reaches the end of the
list. As you can see in Listing 15.6, the function begins at the first object in the list and

Linked Lists and Data Files 297

then enters a w hi 1 e loop that compares the values in its f i rs t and 1 as t variables
with the function's two input parameters. As soon as a match is found, the function
returns a pointer to the current object. If no match exists, current will be o (the
next pointer in the last object is O). The program function calling this f i n d function
can then use a result of 0 to determine that the search was unsuccessful.

What can you do if you want a search that returns more than one value? The sec
ond f i n d function does exactly that. The calling function passes in the birthdate for
which the function should search and the address of an array to hold the pointers of
all matches that are found. The function uses the return statement to send back the
number of matches.

Because there may be more than one matching object, the second find function
uses a for loop that accesses every object in the linked list. If a match is found, a
pointer to the current object is placed in the result array (called found in this case).
The index to that array represents a count of the number of found items and is
returned to the calling function just before the f i n d function terminates. There is
no need to worry about "returning" the found array. Because it is an array, it is
passed by reference; any changes made to the array in the f i n d function are made to
the original in main memory and are therefore accessible to the calling function.

Linked Lists and Data Files

A linked list is a data structure that exists in main memory. Although you can store
the list's data in a file, you can't store the pointers. Why? Because each time you run
the program, the list probably ends up in a different location in memory. The point
ers that were valid the last time you ran the program aren't valid now. This means
that you need to traverse the list when you write data, but you should store only the
data, not the pointers. When you read the data in from a file, you must recreate the
list.

WRITING THE DATA

Listing 15. 7 contains the 1 i n k e d Li s t class's u n 1 o a d function. This function opens
the data file, stores the number of items in the linked list, and then enters a for loop
that traverses the entire list, beginning with the first element. The body of the for
loop writes a bi rt h day object's data by calling the object's w r i t e function. (If you
look back at Listing 15.2, you'll notice that this function writes a first name, last

298 Chapter 15 • Data Structures: Linked Lists

Listing 15.7 Writing linked list objects

void linkedlist::unload(l
I

birthday * current;

ofstream peopleOut ("Friends&Family");
if (!peopleOutl
I

cout << "Couldn't open output file.";
return;

l
peopleOut « numb_people « ' ':
current= firstPerson;
for (int i = 0: i < numb_people; i++l
I

current->write (peopleOutl;
current= current->getNext();

name, and birthdate, but doesn't write the contents of the next variable.) The loop
then moves to the next item in the list, using the get Next function.

READING THE DATA

Listing 15 .8 contains the 1 i n k e d Li st class's 1 o a d function. Like other functions
you have seen that read data from a text file, it opens the file and begins by reading
the number of items in the file. It then enters a for loop that reads object data from
the file, one object at a time. The body of the loop creates a new birthday object
and then calls the i n s er t function to place it in the list. As you begin to work with
linked lists, keep in mind that when you read data that are part of data structures
from files, you must recreate the data structure as you read the data.

NOTE

The load .function uses a temporary count variable rather than reading the number of
objects from the file into the numb _people. If you look back at the insert .function, you'll
see that the insert .function counts objects as they are added to the list. Attempting to
use numb_people to control the for loop doing the reading therefore wouldn't work.

Making It Work

Listing 15.8 Reading linked list objects

int 1 inkedlist: :load()
{

char yes_no, dummy;
birthday * newB_day;
int count;

ifstream peopleln ("Friends&Family");
if (!peopleln)
{

}

cout << "Couldn't open input file. Continue? "·
cin » yes_no;
if (toupper(yes_no) == 'N')

return FALSE; II couldn't read--quit
else

return TRUE; II couldn't read but OK

peopleln >> count;
peopleln.get (dummy); II skip over blank
for (int i = O; i < count; i++)
{

newB_day =new birthday Cpeopleln);
II using the insert function recreates the list
insert CnewB_day);

peopleln.close();
retu~n TRUE;

Making It Work

299

Now that we've looked at the member functions used by an object that manages a
linked list of other objects, let's look at a program that uses the list manager class. In
Listing 15.9 you can find a program that uses a linked list of birthday objects. From
the user's point of view, the program does three things: adds new people, finds peo
ple, and lists people. The program also reads and writes a text file.

THE MAIN FUNCTION

The ma i n function is relatively simple. The important thing to notice is that it
declares a pointer variable to hold a 1 i nkedl i st object and then uses the new

300 Chapter 15 • Data Structures: Linked Lists

Listing 15.9 Main program for the linked list demo program

void newPerson (linkedlist *l;
void findPeople (linkedlist *l:
int menu ();
void main Cl
I

linkedlist * mylist: // create one linked list object
int option = O;
mylist =new linkedlist(l;
int result= mylist->load(l;
if (result == FALSE)

return;

while (option != 9)
I

option= menu();
switch (option l
I

case 1:
newPerson(myListl;
break:

case 2:
findPeopleCmyListl;
break;

case 3:
mylist->list();
break;

case 9:
mylist->unload ();
break:

default:
cout << "\nUnavailable option"<< endl << endl;

int menu()
I

int choice;

cout « "\n\nChoose an option:" << endl
cout << " 1. Add a new person"<< endl;
cout « " 2. Find people"<< endl;
cout « . 3. See all people" << endl;
cout « . 9. Quit" « endl « endl:
cout « "Choice: .. .
cin » choice;
return choice:

« endl ;

Continued on next page

Making It Work 301

Listing 15.9 (Continued) Main program for the linked list demo program

void newPersonClinkedList * myList)
I

birthday * newB_day;
string25 ifirst, ilast:
date_string idate:
char dummy[2]:

II gets (dummy); II my favorite kludge
cout << "\nFirst name: ":
gets C ifi rst >:
cout << "Last name: ":
gets C il as t > :
cout << "Birthdate: "·
gets C idate>:
newB_day =new birthday Cifirst, ilast, idate>:
myList->insert CnewB_dayl:

void findPeople ClinkedList * myList)
I

string25 ifirst. ilast:
date_string idate:
birthday * found[MAX_FOUNDJ, * onePerson:
int numb_found;
char dummy[2];

II getsCdummy); II my favorite kludge
cout << "\nWhat birthdate? ":
gets (idate):
if Cstrlen Cidate) > OJ
I

else
I

numb_found = myList->find Cidate. found);
if Cnumb_found >= OJ

for (int i = O: i <= numb_found: i++l
I

found[i]->display(J;
cout « endl:

cout << "Flrst name: ":
gets Cifirst);
cout << "Last name: ":
gets C il ast l:
onePerson = myList->find Cifirst, ilast);
if ConePerson == OJ

cout <<"No one was found.":
else

onePerson->display();

•

302 Chapter 15 • Data Structures: Linked Lists

statement to create the object. Why use dynamic binding in this case? Because the
program function that adds items to the list modifies the l i n k e d Li st object. If you
use a pointer to the object as a parameter to the program function, you pass the
l i n k e d Li s t object by reference; you don't need to return the modified object,
because all changes are made to the original in main memory. In this case, it is much
easier just to use a pointer than to worry about returning the object.

The newPerson program function collects data for a new birthday object, cre
ates the object with the new operator, and uses the pointer returned by new to insert
the object into the linked list. It's a toss-up whether this function is really necessary.
The program could have placed the code to collect the data for the new object and to
create the object in a l i n k e d Li st member function. That function could then have
called insert. Either organization will work. (You'll see an example of the alterna
tive organization when we look at a linked list for the Checkbook program.)

On the other hand, the f i n d Pe op l e function is necessary: The l i n k e d Li s t
cl.ass has two f i n d functions, and the program needs to determine which one the
user wants to use. It does this by asking the user for a birthdate to match. If the user
presses Enter without typing anything, the length of the i date variable is O, and the
function knows that the user isn't interested in matching by date. It can then go on to
ask for a first name and last name to match.

The way in which the f i n d Pe op l e function displays the results of a search is, of
course, determined by which search is being performed. In the case of a search by
date, the output code uses the number of matches returned by the f i n d member
function to control a for loop that displays data for each of the retrieved objects.
However, a search by first and last names produces only one result, a pointer to
which is returned by the function call. The display therefore needs only to check to
see whether the search was successful.

Programming Challenge
Number14

Removing an item from a linked list is almost the opposite of inserting a new item.
First, you find the object you want to delete. Then you set the previous object (the
one preceding the object to be deleted) to point to the next object (the object follow
ing the object to be deleted). Because there are no longer any pointers to the object
being removed, it is no longer part of the list.

Modifying the Checkbook Program 303

For this programming challenge, add a member function to the linked list demon
stration program's 1 inked List class to remove an item from the list. Once the
object is deleted, remove it from memory with the de 1 et e command:

delete objectPtr;

Here objectPtr is a pointer variable containing the address of the object being
removed from memory.

Provide a menu option to let the user delete items. Use one or both of the existing
find functions to locate the object. Then remove it from the list. Use the program's
1 i st capabilities to verify that your function works. (Hint: Don't forget to decre
ment the numb_peop 1 e variable each time you delete an object!)

Modifying the Checkbook
Program

Rather than allocating an array of 10,000 pointers for transactions in the Checkbook
program, why not use a linked list of transaction objects? If you do so, the program
allocates both objects and pointers to those objects as needed. This makes more effi
cient use of memory than even an array of pointers to dynamically created objects.

Much of what has been implemented in the Checkbook program is identical to
what you just saw in the linked list demonstration program. We therefore won't
examine every facet of the Checkbook program's linked list implementation, but
instead will focus on what makes the Checkbook program unique so that you can see
another example of a how linked list is coded.

THE LIST MANAGER CLASS

The linked list for the Checkbook program is somewhat different from that in the
linked list demonstration program, because the Checkbook program needs one
linked list for each checking account. In the demonstration program, the
1 i n k ed Li st object was handled by the main program. However, in the Checkbook
program the 1 i n k ed Li st object is handled by an Account object. (As you will see

304 Chapter 15 • Data Structures: Linked Lists

shortly, the Account class must therefore contain a pointer to its linked list manager
object.)

The l inked List class for the Checkbook program, in Listing 15.10, contains
class variables for a pointer to the first transaction in the list, a pointer to the
Account object that owns the list, and a count of the number of transactions in the
list. The member functions include a function to collect data for a new transaction
(newTrans). The remaining member functions are similar to those found in the
linked list demonstration program.

Listing 15.10 A linked list class for the Checkbook program

class linkedlist
(

l;

private:
Trans * firstTrans;
Account * owner;
int transCount;

public:
linkedlist (Account*, int):
void newTrans ();
II insert into list: used by newTrans and file constructor
void insert (Trans *):
Trans * find (char*); // find by check/reference numb
II find by date and Payee/Source

Trans* find Cdate_string, string80l;
II list transactions in date range
void byDate Cdate_string, date_string);
Trans* next (Trans *); // pass in last one processed
int gettransCount ();

linkedlist::linkedlist <Account* iowner, int icountl
(

firstTrans = 0:
owner = iowner:
transCount = icount;

CREATING NEW TRANSACTIONS

For the Checkbook program, all processing needed to create a new transaction is
handled by the linkedlist object. The newTrans member function (Listing
15.11) collects the data needed for a new transaction and then creates the Trans

Modifying the Checkbook Program

Listing 15.11 Creating new transactions for a linked list

void linkedlist::newTrans() //for interactive use
{

char icheck_numb[6J. iType[8J;
date_string itrans_date;
string80 iPayeeSource, iNote;
fl oat i Amount;
Trans * newTrans;

cout << "\nCheck or other reference f: ";
cin.getline (icheck_numb,6l;
cout << "\nTransaction type (check, deposit, ATM, service): "·
gets (iTypel;
cout << "\nTransaction date: ";
cin.getline (itrans_date,80);
cout <<"\Payee or source:"<< endl;
cin.getline (iPayeeSource,80);

305

cout << "\nTransaction note Cup to 80 characters):" << endl;
cin.getline CiNote,80);
cout << "\nAmount of the transaction: "·
ci n » i Amount;
newTrans = new Trans <owner, icheck_numb, itrans __ date, iPayeeSource,

i Note. i Amount. i Type l ;
insert (newTransl;
transCount++;

object. Once it has a pointer to the new transaction, the function calls insert to
make the new object a part of the list.

NOTE

The newTrans object knows the account to which this new transaction belongs because
the linked.List object stores a pointer to the account that owns it in its "owner" vari
able.

The Checkbook program maintains transactions in reverse chronological order.
This means that the latest date comes first. As you can see in Listing 15.12, the deci
sion of where to insert a new object is made by comparing the date in the new object
with the date in each object in the list. When the date in the new object is greater
than the date in the current object, the function knows to insert the new object prior
to the current object. Other than the change in the ordering of the objects, the list
insertion process is the same as that used in the linked list demonstration program.

306 Chapter 15 •Data Structures: Linked Lists

Listing 15.12 Inserting into the linked list of transactions

void linkedlist::insert (Trans* newTrans)
I

Trans * current, * previous;
date * newDate, * currentDate;
int count = O;

II order is in descending chronological. order (latest date first)
if (firstTrans ==OJ

else
I

firstTrans = newTrans; II simply insert first one

newDate = newTrans->getDate();
int first= TRUE:
current= firstTrans: II start at first transaction
currentDate = current->getDate();
while (*newDate < *currentDate && count++ < transCountl
I

I

first = FALSE;
previous= current: II need to save where we were
current= current->getNext(); II move to next transaction
if (current !=0)

currentDate = current->getDate(l;

II set previous transaction to point to new transaction except when
II new transaction is first in the list
if (!first)

previous->setNextPtr (newTransl;
else

firstTrans = newTrans; II new transaction is first in list
II set new transaction to point to following transaction
newTrans->setNextPtr (current);

ACCESSING THE LIST

In Listing 15.13 you will find the Account class member functions that search for
transactions. These functions look very much the originals in which the transactions
were stored in an array. The major difference is that rather than moving to the next
element in an array of transactions, the functions use a get Next function to step
through the linked list.

These functions use a slightly different method of controlling the loop that steps
through the list. Rather than checking a count of the number of objects that have
been processed, the loops look for an object pointer of o. This is based on the knowl
edge that the pointer to the next object in the last object in the list is O. Which is

Modifying the Checkbook Program

Listing 15.13 Accessing data in the linked list of transactions

Trans* linkedlist::find (char* icheck_numb) //find by check number
{

Trans * current;
current= firstTrans;
while (current != 0)
{

if (strcmpCcurrent->getCheck_numb(),icheck_numb) 0)
return current;

current= current->getNext();

return O;

Trans* linkedlist::find (date_string idate. string80 iPS)
{

Trans * current;
date cDate (idate), iDate Cidate);

current= firstTrans;
while (current != 0)
{

cDate = *current->getDate();
if (cDate == iDate && strcmp Ccurrent->getPS(),iPS) 0)

return current;
current= current->getNext();

return O;

void linkedList::byOate Cdate_string start. date_string end)
{

date sDate (start), eDate (end), tDate (start);
Trans * current;

current= firstTrans;
tDate = *current->getDateC>:
while (tOate > eOate && current != Q) // find first one
{

current= current->getNext();
if (current != 0)

tDate = *current->getDate();

while (tOate >= sDate && current != 0) // now display
{

current->displayTrans();
current= current->getNext();
if (current != 0)

tDate = *current->getDate();

307

308 Chapter 15 • Data Strudures: Linked Lists

better: counting the objects or looking for a pointer of O? It doesn't matter. Counting
objects will work as long as you faithfully increment the object counter whenever a
new object is created. Looking for a pointer of 0 will work as long as you make sure
that the next pointer is always initialized to o whenever an object is created.

MODIFICATIONS TO THE ACCOUNT CLASS

The Account class needs to be modified slightly to deal with a linked list of transac
tions rather than an array of transactions. The class declaration (top of Listing 15.14)
must include a variable (trans Li st) that points to the 1 i n k e d Li st object that
manages the account's transactions. In addition, the declaration must provide a
member function to return a pointer to that list manager object (get Li st).

The bulk of the other changes come in the class's two constructors (also found in
Listing 15.14). The interactive constructor creates a 1 inked List object for a new
Account object. The file input constructor must create the list manager object, read
transaction data from the file---creating Trans objects as it goes-and also insert
each Tr a n s object into the linked list.

FINDING THE LIST MANAGER

When the Account class used an array of transactions, all a program needed to do to
gain access to those transactions was to find the account in which the transactions
were stored. However, now that there's a list manager object between an account
and its transactions, access to the transactions requires finding the 1 i n k e d Li s t
object.

To see how this works, take a look at the modified program function to enter a
new transaction (Listing 15.15). This function collects the bank name and account
number and uses them to find the account, just like it did in previous versions of this
program. However, once the function has a pointer to an account, it must use the
Account class's get Li s t function to retrieve the pointer to the account's
1 i n k e d Li st object. Once the program function has a pointer to the list manager
object, it can use that pointer to call the member function that creates a new transac
tion. All of the program functions that work with transactions directly must use this
two-step process to access the linked list: Find the account and then find the
account's linked list manager.

Modifying the Checkbook Program

Listing 15.14 Modifications to the Account class

class Account
{

private:
string25 acc_numb;
string50 bank_name;
float balance;
linkedlist * translist; II list manager object
int lastTrans_numb;

public:

309

Account Cstring25, string50, float); II interactive constructor
Account Cifstream &>; II constructor for file input

I;

int nextTrans_numb ();
void Reconcile();
void write Cofstream &l; II write to file
char* getAcc_numb ();
char* getBank_name();
void setBalance (int, float); II change balance
linkedlist * getlist (); II return pointer to transaction list

II interactive constructor
Account::Account Cstring25 iAcc_numb, string50 iBank_name, float iBalance)
{

strcpy Cacc_numb, iAcc_numb);
strcpy Cbank_name. iBank_namel;
balance = iBalance;
translist =new linkedlist (this, 0); II create list manager object
lastTrans_numb = 0;

II file input constructor
Account::Account Cifstream & fin)
{

Account * owner;
Trans * newTrans;
char dummy;
int transCount;
fin.getline Cacc_numb,80,'\0');
fin.getline Cbank_name,80, '\0');
fin » balance;
fin >> lastTrans_numb;
fin >> transCount;
translist =new linkedlist (this, transCount); II create list manager
for (int i = O; i < transCount; i++)
I

newTrans =new Trans (fin); II create transaction object
translist->insertCnewTrans); II insert it into linked list

fin.get (dummy); II skip over blank between accounts

310 Chapter 15 • Data Structures: Linked Lists

Listing 15.15 Program function to enter a new transaction

void enterTrans (arrayMgr accountArray)
I

Account * whichAccount;
linkedlist * whichlist;

whichAccount = accountArray.findAccount();
if (whichAccount == 0)
I

cout << "\nThat account isn't in the database." << endl;
return;

whichlist = whichAccount->getlist();
whichList->newTrans ();

Programming Challenge
Number 15

It's not uncommon to have linked lists where new objects are always inserted either
at the beginning of the list or at the end of the list. For this challenge, you'll be modi
fying the Checkbook program to explore both types of ordering. Start with a fresh
copy of the folder Checkbook (Chapter 15) each time. Be sure to delete the Checkbook
data file as well. When you reorder the linked lists, the data in the file won't work
properly.

First, modify the Checkbook program so that new transactions are always inserted
first. Use the View Transactions menu selection to help you look at your data so that
you know your modifications are working properly.

Second, modify a new copy of the Checkbook program so that new transactions
are always inserted last. As you get ready to do this, consider whether there is a
change you could make to the 1 i n k ed Li st class that would make it possible to find
the last element in the list without traversing the entire list. (If you make this change,
you'll also have to make some modifications to the insert function.) Once again, be
sure to check your code to make sure it works.

Linked Lists Versus Arrays 311

Linked Lists Versus Arrays

Given that you can choose between arrays and linked lists to manage a group of
objects of the same class, which should you use? Because there are advantages and
disadvantages to each, there is no straightforward answer.

Arrays are random access data structures. You can access any element by simply
supplying its array index; you don't need to start at the beginning of the array. An
array can therefore be used for fast search techniques like the binary search you saw
in Chapter 14. However, the number of elements you can place in array is limited by
the size declared in the program. If you need to expand an array, you must modify
the program's source code and recompile it. In addition, an array always takes up as
much space as is declared for the array, regardless of whether you place data in every
array element. An array therefore isn't terribly efficient in its use of memory.

On the other hand, the number of elements you can add to a linked list is limited
only by available main memory. You don't need to allocate a large array and tie up
memory before you need it. The major drawback to a linked list is that it is a sequen
tial data structure; you can access its elements only in order, beginning with the first
one and moving to the next. Fast search techniques, such as the binary search, can't
be used and therefore, as the linked list gets large, searching may be slow.

CHAPTER

Inheritance

The one remaining major feature of object-oriented C++ that we haven't explored to
this point is inheritance. As you will remember from Chapter 2, inheritance is a
mechanism through which classes can use variables and member functions declared
in other classes, providing a way to avoid duplication when a program uses several
similar, but not quite identical, classes.

In this chapter you will learn more about situations in which inheritance is appro
priate. You will also learn how to implement an inheritance hierarchy and how to use
something called polymorphism to get objects in the same hierarchy to respond differ
ently to the same message.

313

314 Chapter 16 •Inheritance

Where Inheritance Makes
Sense

Inheritance can save you a lot of work: It often means that you can avoid duplicating
variables and member functions. It can also make programming easier because
related classes can be handled in the same way. However, there are some very specific
circumstances under which inheritance is applicable.

To help you understand when inheritance can be used, let's take a look at some of
the classes that might be used in a program that manages realty listings. (This pro
gram will be used as an example throughout this chapter.) The company that uses
this program handles homes, farms, and businesses. All of these might be classified as
pieces of property, but the data that describe them are somewhat different. For exam
ple, when listing a home, the program should store information about the number of
bedrooms and bathrooms; when listing a farm, the program should include the num
ber of acres that can be planted. However, all pieces of property have an owner and
an asking price.

When you have a situation in which classes share some but not all variables, then
the use of inheritance may be helpful. The iron test of whether you are looking at
inheritance, however, is the relationship between the classes. If you look at Figure
16.1, for example, you can see that the words we use to talk about the relationship
between a generic class that describes a piece of property and specific types of prop
erties are "is a." In other words, a house "is a" piece of property, just like a farm "is a"
piece of property and an office "is a" piece of property. Houses, farms, and offices are
more specific instances of the generic class property. When you can express the rela
tionship between two classes using "is a" -when one class is a more specific instance
of another-then you are looking at inheritance.

If you look again at Figure 16.1, you'll notice that you read the "is a" relationship
up the diagram. However, the inheritance of variables and member functions travels
down the hierarchy. In this case, the property class is a base class, a class from which
other classes inherit. The classes for homes, farms, and offices are derived classes
because their declarations are derived from the declaration of another class. The
derived classes share all the variables and many of the member functions of their base
class.

There are other types of relationships between classes that occur within an object
oriented program. For example, if the Realty Listings program were to include a class
for the owner of properties that were listed, you might say that an owner "owns" a
piece of property (see Figure 16.2). Although the property class will need to contain

Where Inheritance Makes Sense 315

Figure 16.1 Inheritance in the Realty Listings program

Inheritance goes down
the hierarchy.

Property

Is a -c- - - - - Is a

E ~
Read the "Is a•

relationship up the
hierarchy.

I
I

I
I

I
I

I
I

I

Is a ,'

~

Figure 16.2 A relationship between classes that doesn't constitute
inheritance

Owner

Owns

Property

..

Relationship can't be
expressed with n Is a ":

no inheritance .

at least an owner's name, inheritance isn't applicable here, because a piece of prop
erty isn't a more specific example of an owner.

316 Chapter 16 •Inheritance

Examining a Base Class

The Realty Listings program contains four classes: the base class property and
three derived classes (residential, ag ri cul tu ra l, and commercial). The dec
laration of the base class (Listing 16.l} initially looks very much like any other class.
There are, however, some important differences.

Listing 16.1 Base class for the Realty Listings program

typedef char string80[81J:
typedef char string25[26J:

const MAX_PROPERTIES = 25;
const float HOUSE_COM = .0625:
const float FARM_COM = .03;
const float BUS_COM = .075:

class property
{

I:

protected:
int property!O;
double asking_price:
string80 owner_name:
string25 owner_phone, type;
char* switchBoolean(intl: //change TRUE/FALSE to a string

public:
property (string25);
property (ifstream &, string25l;
void setPrice (double): // change asking price
int get IO ():
char* getType ();
double getPrice ();
virtual void display () = 0: // display all data
virtual float computeCommission () = 0: // compute commission
virtual void write (ofstream &l = 0; II write to text file

First, notice that the class variables are p rote ct e d, not p r i v a t e. When a base
class's variables are pr i vat e, derived classes can't access them, effectively prevent
ing the derived classes from inheriting (sharing) the base class variables. However, if
you make the base class variables protected, all classes in the inheritance hierarchy
can access the base class variables, but classes outside the hierarchy can't. In other
words, p rote ct e d variables are essentially private to classes not part of the
hierarchy.

Examining a Base Class

MEMBER FUNCTIONS FOR INHERITANCE: VIRTUAL

FUNCTIONS

317

A derived class inherits many of its base class's member functions. However, con
structors, overloaded operators, and friend functions aren't inherited. In Listing 16.1
the setP rice, get ID, getType, and get Price functions are inherited directly by
derived classes, which can call the base class functions by simply using their names.
This means that you don't need to duplicate the functions in the derived classes.
Their source code needs to appear only once, as part of the base class.

However, because the derived classes are going to add their own variables, there
are some base class functions whose source code can't be inherited. These include
the display function (displays data about a property), computCommi s s ion (com
pute how much commission a property will generate for the realty firm, different for
each derived class because the commission rates vary), and w r i t e (writes data to a
text file). Nonetheless, the same three functions should be part of each derived class.

When you have a situation in which the same function should appear in classes
derived from the same base class but the function bodies are different, you are look
ing at polymorphism. Polymorphism means that classes derived from the same base
contain functions with the same signature, although the classes act differently when
the functions are called.

NOTE

Don't get polymorphism confused with function overloading. Function overloading
occurs when one class has multiple functions with the same name, each with a different
signature. Polymorphism occurs when different classes derived from the same base class
each have a function with the same signature.

Polymorphism is implemented using virtual functions. A virtual function
declared by placing the keyword vi rt u a l in front of the function prototype-is a
function that can be redefined in a derived class. If a derived class contains source
code for a virtual function, calling the function uses the derived class's function.
However, if the derived class doesn't redefine the function, calling the function uses
the base class's implementation.

A base class doesn't need to provide an implementation of a virtual function. In
the case of the Realty Listings program, for example, there's no way to provide an
implementation of the virtual functions that can be used by any of the derived
classes. (Writing a function that would never be used is a waste of code.) The base
class therefore contains only a prototype for the virtual functions.

318 Chapter 16 • Inheritance

To indicate that a virtual function will have no body and that it will definitely be
redefined in derived classes, follow its prototype with = 0. A function of this type is
known as a pure function. In turn, any base class that contains at least one pure func
tion is an abstract base class, a class from which no objects can be created. An abstract
base class therefore functions as a generic starting point for an inheritance hierarchy.
(It has another important use to which you will be introduced shortly.)

NOTE

If you forget the =O at the end of a pure function, your program will compile, but will
generate a linker error that begins with "_vt_".

Once a virtual function has been declared as virtual, it remains virtual all the way
down the inheritance hierarchy. However, the keyword vi rt u a l isn't necessary any
where except in the base class where the function first becomes virtual.

Examining Derived Classes

Derived classes also look very much like classes that aren't part of an inheritance
hierarchy. Listing 16.2, for example, contains the three classes derived from the
property class. There is one additional element that you haven't seen before: the
indication of the base class from which a class is derived.

To indicate the base class, you follow the name of the derived class with a colon,
the type of inheritance, and the name of the base class:

class class_name : type_of_inheritance base_class_name

There are two types of inheritance, pub l i c and pr i vat e, although pr i vat e inher
itance is rarely used. When inheritance is p r i v a t e, all of the base class's elements
(variables and functions) are private to the derived class. In other words, the
derived class won't be able to access anything in the base class, a situation that, in
most cases, defeats the purposes of inheritance. Under pub l i c inheritance, the
derived class inherits the base class's protected elements as protected and pub-
1 i c members as public. Private elements, if there are any, remain private.

Unfortunately, pr i vat e inheritance is the default. Although you will use pub l i c
inheritance in virtually every case, if you happen to leave off the pub l i c keyword,

Examining Derived Classes

Listing 16.2 Derived classes for the Realty Listings program

class residential : public property
I

I:

private:
int numb_bedrooms, fireplace, family_room:
float sq_ft, numb_bathrooms;

public:
residential Cstring25);
residential (ifstream &, string25);
void display ();
float computeCommission Cl:
void write Cofstream &l:

class commercial public property
I

I:

private:
int numb_offices, numb_floors, elevator;
fl oat sq_ ft;

public:
commercial Cstring25l:
commercial Cifstream &, string25);
void display ();
float computeCommission Cl:
void write Cofstream &l;

class agricultural public property
I

I:

private:
float acreage, house_sq_ft, barn_sq_ft:
int house, barn;

public:
agricultural Cstring25);
agricultural Cifstream &, string25l;
void display Cl:
float computeCommission Cl:
void write Cofstream &l:

319

you'll discover that your derived classes won't be able to access anything from their
base classes.

As you look at Listing 16.2, notice that the classes don't contain the variables that
are part of the base class. Nonetheless, when a program creates objects from one of
these derived classes, those objects will include the base class variables. In addition,
the derived classes don't include the nonvirtual functions that are part of the base
class. When functions are bound to objects created from the derived classes, the

320 Chapter 16 • Inheritance

nonvirtual member functions of the base class are bound along with any functions
defined in the derived classes.

Base Class Pointers

One of the most useful features of inheritance is the ability to use a pointer to a base
class object to reference any object of any class derived from that base class. Con
sider, for example, the problem facing the Realty Listings program. Because the
objects that represent the listings are from three different classes, there is no immedi
ately obvious way to reference them together, to place them in the same array or
linked list. If you must keep groups of listings objects in different data structures,
searching through those listings will be very cumbersome.

However, because the three listings classes are all derived from the same base
class, you can declare data structures that hold pointers to objects created from the
base class rather than any of the individual derived classes. This does not mean that
you will ever create objects from the base class. Instead, it means that when you
assign a pointer to an object from a derived class to the base class data structure, the
computer will typecast the derived class object's pointer to a base class pointer. The
beauty of this is that you can handle objects from different but related classes
together.

The Realty Listings program does exactly that with its array that manages objects
of listings. As you can see in Listing 16.3, the declaration of the a r ray Mgr class, the
l i s ted array is declared to hold pointers to property objects. Although no object
is ever created from the property class-it can't be, as property is an abstract
base class-the l i st e d array can hold pointers to homes, farms, and businesses.

In addition, notice that the arrayMgr class's member functions (Listing 16.4)
work on base class pointers. For example, the i n s er t function, which places a new
piece of property into the array, expects a pointer to a property object. This means
that it will accept a pointer from any object created from any class derived from
property. The first find function returns a pointer to a pointer object, which
will be a pointer to an object from one of the three derived classes. The second f i n d
function also returns pointers to any of the three derived classes through an array
declared to hold property class pointers.

Although the array deals with all three derived classes in the same way when
inserting them into the array or searching for a property, the structures of the three
classes are still different. This means that when the program creates an object for a
new piece of property, it must create an object of one specific type. To see the

Base Class Member Functions

Listing 16.3 Array manager class from the Realty Listings program

cl ass arrayMgr
I

private:
int numb_properties:
property* listed[MAX_PROPERTIES];

public:
arrayMgr ();
int load (); II read from file
void insert (property*);
property* find (int); II find by property ID

321

int find (property*[], string25l; II find by type of property
void unload(); II write entire array to file

} ;

implications of this issue, look at the l o ad function in Listing 16.4, the function that
controls reading data from the text file. Notice that the function reads the type of
object from the data file first. It then uses that value to decide what type of object to
create with the new operator.

On the other hand, the u n l o ad function, which controls writing data to the text
file, doesn't need to be concerned explicitly with the type of object. The computer
knows the type of object to which a given pointer in the array is pointing. When the
l o a d function calls a derived object's w r i t e function, it calls the w r i t e function
from the correct class.

Base Class Member Functions

Two types of member functions are defined in base classes. The first is member func
tions that can be used by most or all of the functions derived from the base class. The
second is member functions that can't be inherited but that can be called by derived
classes. Constructors fall into the latter classification.

In Listing 16.5 you will find the member functions for the property class. The
first two functions are constructors: one for interactive input and the other for file
input. The third function is a private function that converts the integer used to store
yes/no values into a string. The fourth is a function that sets a new asking price, and
the final three are functions that return private data to a calling function. Because the
constructors are somewhat different from ones you have seen before, we'll look at
them in a bit more depth.

322 Chapter 16 • Inheritance

Listing 16.4 Array manager member functions

arrayMgr: :arrayMgr()
{

numb_properties = O;
for (int i = O; i < MAX_PROPERTIES; i++)

listed[iJ = O;

int arrayMgr::load ()
{

char yes_no, dummy;
string25 itype;
int count;
ifstream fin ("Properties");
if (!fin)
{

cout << "\nCouldn't open input file. Continue? "
cin » yes_no;
if (toupper(yes_nol == 'N'l

return FALSE;
else

return TRUE;

fin » count;
fin.get (dummy); II skip over blank
for (int i = O; i < count; i++)
{

fin.getl ine (itype,80, '\O' l;
if (strcmp (itype,"house") == 0)

listed[i] =new residential (fin, itypel:
else if (strcmp (itype,"farm"l ==OJ

listed[i] new agricultural (fin, itype);
else

listed[iJ new commercial (fin, itype);
insert (listed[iJl:

fin.close();
return TRUE;

void arrayMgr::insert (property* newPlacel
{ listed[numb_properties++J = newPlace:

property* arrayMgr::find (int propIOl
{

for (int i = O; i < numb_properties; i++)
if (listed[iJ->getID(l == propIDl

return listed[i];
return O;

Continued on next page

Base Class Member Functions

Listing 16.4 (Continued) Array manager member functions

int arrayMgr::find (property* found[], string25 itype>
{

int j = 0;

for (int i = 0; i < numb_properties; i++)
if CstrcmpClisted[iJ->getType(),itype> == 0)

found[j++J = listed[iJ;
return j;

void arrayMgr::unload Cl
{

ofstream fout ("Properties");
if (!fout)
{

cout << "\nCouldn't open output file.";
return;

fout « numb_propert i es « ' ';
for (int i = O; i < numb_properties; i++)

listed[iJ->write(fout);

THE INTERACTIVE CONSTRUCTOR

323

In most of the programs you have seen to this point that use dynamic binding, data
are collected by a program function and then passed into a constructor. However, in
this case the data are collected by the constructor. The advantage to this strategy is
that data can be input directly into class variables. Doing so significantly reduces the
volume of the data that must be passed from one function to another and thus sim
plifies function signatures.

The drawback to doing this is that the user interface-the code that collects the
data-is part of the class. This means that if you move the program from one com
puting platform to another (for example, from the Macintosh to Windows), you must
modify the class when you make the change. However, if all the user interface code is
part of the main program, classes can be transported without significant modifica
tion.

NOTE
This doesn't mean that user interface code should never be a part of classes. In fact,
when you get into ToolBox programming and in particular begin to use Metrowerks's
application framework (PowerPlant), you'll see that elements of the Macintosh user

324

Listing 16.5 Base class member functions

property::property Cstring25 itype)
I

char dummy[2J;

strcpy (type. itype);
cout « "\nProperty ID: ·;
cin >> propertylD;
cout <<"Asking price: ";
cin >> asking_price:

II gets (dummy); II kludge
cout << "Owner's name: ";
cin.getline Cowner_name.80);
cout << "Owner's phone: ";
cin.getline Cowner_phone.80):

Chapter 16 • Inheritance

property::property (ifstream & fin, string25 itype)
I

char dummy;

strcpy (type, itype);
fin >> propertyID >> asking_price;
fin.get (dummy);
fin.getline Cowner_name,80. '\O');
fin.getline Cowner_phone,80,'\0'):

II Private function to translate integer storage into strings for
II output.
char* property::switchBoolean (int Boolean)
I

static char yes[]= "Yes", no[] ="No":
if (Boolean == TRUE)

return yes;
return no;

void property::setPrice (double newPrice)
I asking_price = newPrice; I

int property::getID ()
I return propertyID:

char* property::getType Cl
return type; I

double property::getPrice ()
I return asking_price: I

Base Class Member Functions 325

interface, such as windows and menus, are represented as objects. However, the classes
that support the interface are generally separate from classes that manipulate data.
Whether you code your user interface inside classes or leave it in the main program is
up to you, based on your judgment on how likely you think it is that you'll be modifying
that interface code in the future.

The property class's interactive constructor has only one input parameter: the
type of property. As you saw in Listing 16.4, the array manager object needs to know
the type of property so that it can create the correct type of derived class object. The
type of property therefore becomes the only variable that it is essential to collect
before creating an object and calling a constructor.

Notice that this constructor collects data for the variables that are declared in the
base class. Each of the derived classes can then call this constructor, sharing this code,
which is common to all three of them. The major benefit here is the avoidance of
unnecessarily duplicated code.

NOTE

Although you normally cannot explicitly call a constructor, a derived class constructor
can call its base class's constructor. You will see how to do so shortly.

THE FILE INPUT CONSTRUCTOR

As you would expect, the file input constructor requires a file input stream as an
input parameter. It also, however, accepts the type of property, which is read from
the input file by the array manager object.

Why is this read by the array manager and not by the derived class's constructor?
Because the array manager must know which type of object to create when it issues a
new statement. Since the type of object has already been read, it can simply be passed
into the constructor.

As you look at this constructor, keep in mind that the order in which the values are
read must match the derived class's w r i t e functions exactly. The constructors and
the w r i t e functions were therefore coded at the same time, ensuring the correct
ordering of data values.

326 Chapter 16 • Inheritance

Derived Class Member
Functions

The member functions for the three derived classes look very similar to one another.
Nonetheless, they have been tailored to the specific variables used by each derived
class. In this section we'll look at each type of member function and examine how
they differ among the three classes.

THE INTERACTIVE CONSTRUCTORS

The interactive constructors for the derived classes can be found in Listing 16.6. The
first thing you should notice is that the function headers are somewhat different from
what you have seen before: Each header is followed by a colon and a call of the base
class constructor. This is the only way in which you can explicitly call a constructor.

The call to the base class constructor occurs immediately after the computer
enters the function'. Once execution of the base class constructor is complete, the
computer executes the body of the derived class constructor.

The body of all three functions is completely different. The data that are collected
by each derived class constructor reflect the specific variables that a derived class has
added to the variables inherited from the base class.

Consider what would be needed in the main program (or the array manager
object, should you choose to put it there) if the 1/0 to collect input data weren't part
of the constructors. Regardless of where the rest of the data are collected, the main
program needs to know which type of object the user wants to create. If the rest of
the I/ 0 is in the constructor, once the main program knows the type of object, it can
use the correct class name with the new operator. However, if the 1/0 isn't in the
constructor, the main program must contain all of the code found in the three con
structors, one set of I/ 0 statements for each type of object. As you can see, there is a
significant trade-off between the simplicity of placing the I/ 0 inside the constructors
and the cross-platform flexibility you gain by keeping the user interface out of data
classes.

THE FILE INPUT CONSTRUCTORS

Like the interactive constructors, the function headers for the file input constructors
(Listing 16.7) contain calls to the base class constructor. The base class constructor

Derived Class Member Functions 327

Listing 16.6 Interactive constructors for the derived classes

residential: :residential (string25 itypel
: property (itype) II call base class constructor

char yes_no;

cout << "Square footage: ";
cin » sq_ft;
cout << "Number of bedrooms: "·
cin >> numb_bedrooms;
cout << "Number of bathrooms: ";
cin >> numb_bathrooms;
cout << "Does it have a fireplace? "·
cin » yes_no;

II store Booleans as integers
if (toupper(yes_no) == 'Y')

fireplace= TRUE;
else

fireplace= FALSE;

cout << "Does it have a family room? "·
cin » yes_no;
if (toupper(yes_no) == 'Y')

family_room =TRUE;
else

family_room = FALSE;

commercial::commercial (string25 itype)
: property (itype)

char yes_no;

cout << "Square footage: ";
cin » sq_ft;
cout << "Number of offices: "
cin >> numb_offices;
cout << "Number of floors: "·
cin >> numb_floors;
cout << "Elevator? "·
cin » yes_no;

II store Booleans as integers
if (toupper(yes_no) == 'Y' >

elevator= TRUE;
else

elevator= FALSE;

Continued on next page

328 Chapter 16 •Inheritance

Listing 16.6 (Continued) Interactive constructors for the derived classes

agricultural: :agricultural (string25 itype>
: property Citype)

char yes_no:

cout <<"Arable acreage: ":
cin » acreage;
cout << "Is there a house? ":
cin » yes_no:
if Ctoupper(yes_no) == 'Y')
I

else
I

house = TRUE:
cout << "Square footage of house: ":
cin >> house_sq_ft;

house = FALSE:
house_sq_ft = 0;

cout <<~rs there a barn? ":
cin » yes_no:
if (toupper(yes_no) == 'Y')
I

else
I

barn = TRUE;
cout << "Square footage of barn: "·
cin >> barn_sq_ft;

barn = FALSE:
barn_sq_ft = O;

initializes the type variable and reads data that are common to all three derived
classes. When execution of the base class constructor has finished, the computer exe
cutes the constructor specific to the derived class.

Data for all three derived classes are intermixed in the text file used by the Realty
Listings program. As long as all objects for a given class are written and read consis
tently, this mingling of data layouts presents no problems. However, it will not work
if the computer is unable to correctly identify the type of object that it will be reading
from the file.

Derived Class Member Functions

Listing 16.7 File input constructors for the derived classes

residential::residential Cifstream & fin, string25 itype)
: property (fin, itype)

char dummy;
fin >> sq_ft >> numb_bedrooms >> numb_bathrooms >> fireplace

» fami ly_room;
fin.get (dummy);

commercial::commercial (ifstream & fin, string25 itype)
: property (fin, itype)

char dummy;
fin >> sq_ft >> numb_offices >> numb_floors >> elevator;
fin.get (dummy);

agricultural::agricultural Cifstream & fin, string25 itypel
: property (fin, itype)

char dummy;
fin >> acreage >> house >> house_sq_ft >> barn >> barn_sq_ft;
fin.get (dummy);

DISPLAYING DATA

329

The di s p 1 ay function is a pure virtual function that has no body in the base class.
Separate implementations of that function therefore appear in each of the derived
classes (Listing 16.8).

As an alternative, the program could make di s pl a y a nonpure virtual function in
the base class by not following the prototype with= 0. In that case, the base class
would contain an implementation of the function containing code that was common
to all three derived classes. The derived classes could call the base class function
using the scope resolution operator to tell the compiler where to find the function:

property::display();

This is a good strategy when the derived classes share some of the function code but
not all, much like what happens with the constructors. However, in this case the code
is similar, but not identical, for each derived class. It therefore isn't feasible to

330 Chapter 16 • Inheritance

Listing 16.8 Displaying data for the derived classes

void residential::display()
(

cout << "\nProperty #" << property!D <<" (Housel:"<< endl;
cout << • • << sq_ft << " square feet" << endl;
cout <<" •<<"Asking$"<< asking_price << endl;
cout << " • << "Current owner: " << owner_name << " ("

<< owner_phone << ")" << endl;
cout << • • << "Bedrooms: " << numb_bedrooms << " Bathrooms: "

<< numb_bathrooms << endl;
cout << " " << "Fireplace: " << switchBoolean(fireplace)

<<" Family room: "<< switchBoolean(family_roomJ << endl:

void commercial::display Cl
(

cout << "\nProperty #" << property!D << • (Office):"<< endl;
cout << " " << sq_ft << " square feet" << endl;
cout << " " << "Asking $" << asking_price << endl;
cout << " " << "Current owner: " << owner_name << • ("

<< owner_phone << ")" << endl;
cout << " " << "Number of offices: " << numb_offices << " on "

<< numb_floors << "floors" << endl;
cout <<" "<<"Elevator: "<< switchBoolean (elevator)<< endl;

void agricultural::display ()
(

cout << "\nProperty #" << property!D <<" (Farm):"<< endl;
cout << " • << "Asking $" << asking_price << endl;
cout << • " << "Current owner: " <<owner name << " ("

<< owner_phone << ")" << endl;
cout << " • << "Total arable acreage: " << acreage;
cout << " " << "House? " << switchBoolean (house) << " ("

<< house_sq_ft <<"square feet)"<< endl;
cout << " " << "Barn? " << switchBoolean (barn) << " ("

<< barn_sq_ft <<"square feet)"<< endl;

separate some of the code into a base class function that is called at the beginning of
the derived class function.

COMPUTING THE ANTICIPATED COMMISSION

The computeCommi ss ion function is also a pure virtual function in the base class.
A complete implementation therefore appears in all three derived classes (Listing

The Main Program 331

16.9). The individual functions are necessary only because the commission rate is dif
ferent for each type of derived object.

Listing 16.9 Computing the anticipated commission for the derived classes

float residential ::computeCommission ()
{ return asking_price * HOUSE_COM;

float commercial ::computeCommission ()
I return asking_price * BUS_COM; }

float agricultural ::computeCommission ()
I return asking_price * FARM_COM; }

WRITING THE DATA TO A TEXT FILE

Writing data to a text file (Listing 16.10) presents the same choices as does displaying
data: You could code three separate functions or place the common code in a base
class function that the derived class functions could call. In this case, there is much
more common code than found in the d i s pl a y function. However, the duplication
is minimal, and it is logically simpler to place all the output code in one function.

The Main Program

Because so much of the work in the Realty Listings program is done in the member
functions, the main program is relatively simple. As you can see in Listing 16.11, the
main function declares a pointer variable to hold a pointer to an array Mgr object
and then creates the object and calls the array manager's load function to read the
data stored in the text file. The rest of the ma i n function is s w i t ch logic that calls
program functions based on the user's menu choice.

The program functions called by the main function can be found in Listing 16.12.
Look first at the newProperty function. As mentioned earlier, this function needs
to collect at least one piece of data about a piece of property-its type-so that it
knows which type of object to create. However, once the program knows the type, it
can use the new operator to create the function and turn the rest of the data collec
tion over to the object's constructor. After the constructor initializes the object, the
new P rope rt y function inserts it into the a r ray Mg r object's array.

332 Chapter 16 •Inheritance

Listing 16.10 Writing data to a text file for the derived classes

void residential::write (ofstream & foutl
I

fout <<type<< '\O';
fout « propertyID « ' ';
fout « asking_price « ' ';
fout << owner_name << '\O';
fout << owner_phone << '\O';
fout « sq_ft « ' '·
fout << numb_bedrooms << ' ';
fout « numb_bathrooms « ' '·
fout « fireplace « ' '·
fout << family_room <<

void commercial::write Cofstream & foutl
I

fout <<type<< '\O';
fout « propertyID « ' '·
fout « asking_price « ' '·
fout << owner_name << '\O';
fout << owner_phone << '\O';
fout « sq_ft « ' '·
fout « numb_offi ces « ' ' ;
fout « numb_ floors « ' '·
fout « elevator « ' '·

void agricultural ::write (ofstream & foutl
{

fout <<type<< '\O';
fout « propertyID « ' ';
fout « asking_price « ' '·
fout << owner_name << '\O';
fout << owner_phone << '\O';
fout « acreage « ' ' ·
fout « house « ' '·
fout « house_sq_ft « ' '·
fout « barn « ' ' ·
fout << barn_sq_ft << ' '·

The remaining program functions (other than the one that manages the menu) all
require searching the array manager's array of properties to find one or more of
them. The check Comm i s s i on function asks the user for the property ID number
and then uses the array manager f i n d function that expects an integer as an input
parameter. (The searches in this program are sequential just to keep the code as short

· The Main Program

Listing 16.11 The main function for the Realty Listings program

#include <iostream.h>
#include <string.h>
#include <stdio.h>
#include <iomanip.h>
#include "realty.h"

int menu();
void newProperty CarrayMgr *);
void findProperty CarrayMgr *);
void checkCommission CarrayMgr *);
void setPrice (arrayMgr *);

void main ()
I

arrayMgr * listings;
int result, option = 0:

listings= new arrayMgr ();

result= listings->load(); II read text file
if (result == FALSE)

return: II exit program

while (option != 9)
I

option= menu ();
switch (option>
I

case 1:
newProperty (listings);
break:

case 2:
findProperty (listings);
break;

case 3:
checkCommission (listings);
break:

case 4:
setPrice (listings);
break;

case 9:
listings->unload (); II write to text file
break:

default:
cout <<"You've entered an unavailable option.":

333

334 Chapter 16 •Inheritance

Listing 16.12 Program functions for the Realty Listings program

int menu()
I

char dummy[2];
int choice;
cout << "\n\nPick an option:"<< endl;
cout << • 1. Add a new property"<< endl;
cout << • 2. Find properties"<< endl;
cout <<" 3. Check commissions"<< endl;
cout << • 4. Change aksing price"<< endl;
cout « • 9. Quit" « endl « endl;
cout «"Choice:";
cin » choice;

II gets (dummy); II kludge
return choice;

void newProperty (arrayMgr * listings)
I

string25 itype;
property* newParcel;
cout << "\nWhat type of property (house, farm, business): ";
cin.getline (itype,80);
if (strcmp(itype,"house") == Ol

newParcel =new residential (itype);
else if (strcmp (itype,"farm") == Ol

newParcel =new agricultural (itypel;
else

newParcel =new commercial (itypel;
1 istings->insert (newParcel);

void checkCommission (arrayMgr * listings)
I

property * whichPlace;
int ID;

cout « "\nProperty ID/I: "·
cin » ID;
whichPlace = listings->find (ID);
if (whichPlace == Ol
I

cout << "That property isn't listed.";
return;

cout << setprecision (2) << setiosflags (ios::fixedl;
cout << "\nThe projected commission is $"

<< whichPlace->computeCommission();

Continued next page

The Main Program 335

Listing 16.12 (Continued) Program functions for the Realty Listings program

void findProperty CarrayMgr *listings)
I

int ID, how_many;
string25 itype:
property * whichPlace, * found[MAX_PROPERTIES];

cout << "Which type of property (house, farm, business)? ":
gets Ci type> ;

if CstrlenCitype> > 0)
I

how_many = listings->find (found, itype);
if Chow_many > 0)

for (int i = O; i < how_many; i++)
found[iJ->display();

return;

cout << "Property ID#: ":
cin » ID:
whichPlace = listings->find CID>:
if CwhichPlace == 0)
I

cout <<"That property isn't listed.";
return;

I
whichPlace->displayC>:

void setPrice CarrayMgr * listings)
I

int ID:
float newPrice;
property * whichPlace;

cout << "\nProperty ID#: ";
cin » ID;
whichPlace = listings->find CID);
if CwhichPlace == O>
(

cout << "\nThat property isn't listed.";
return:

cout << "\nThe current asking price is$"<< whichPlace->getPrice();
cout << "\nNew asking price: ";
cin » newPrice;
whichPlace->setPrice(newPrice);

336 Chapter 16 •Inheritance

as possible). Using the base class pointer returned by find, it places the base class
function get Pr i c e in a co u t statement to call the function, computes the antici
pated commission, and displays the result.

The set Pr i c e program function lets the user change the asking price of a prop
erty. The function must first find the property (in this case, also by property ID). It
then uses the base class pointer to call the base class function s et P r i c e.

NOTE
There's a program function named setPri.ce and a base class function named SetPri.ce.
Doesn't the compiler get confused? No, it doesn't get confused at all. A function's signa
tllre includes the class (if any) to which it belongs, along with its parameter list. Even if
these two functions had the same parameter list, the fact that one belongs to a class and
one doesn't is enough to make them distinct.

The f i n d Property program function uses both the array manager's f i n d func
tions. The second find, which expects a property type as an input parameter,
returns multiple values in an array whose address is passed into the function. Notice
that this array (f o u n d) has been declared to hold base class pointers. Like the other
data structures used by this program, it therefore can hold pointers to objects created
from any or all of the three classes derived from property.

Introducing the
Tool Box

CHAPTER

As you read in the Preface, writing a Macintosh application involves both knowing
the language in which you are writing the program and being able to implement the
Macintosh user interface. Fortunately for Macintosh programmers, the elements of
the Macintosh user interface, along with many other aspects of the Macintosh envi
ronment, are supported by a large group of functions that make up the Macintosh
ToolBox, much of which is stored in the Macintosh ROM.

NOTE
One of the things that has prevented Macintosh clones from being developed indepen
dently of Apple is the complexity of the ToolBox ROM. Without the ROMs to support
ToolBox calls, it is virtually impossible to run existing Macintosh software (both the
operating system and application software). Only now that Apple is licensing the Tool
Box have clones become feasible.

The Macintosh ToolBox is a powerful, complex set of functions. Although it is
beyond the scope of this book to teach you ToolBox programming, this chapter will
give you a flavor of what is involved in adding the Macintosh user interface to your

337

338 Chapter 17 •Introducing the ToolBox

program. You will see some sample ToolBox routines and be introduced to the way
in which programs that use the ToolBox are structured. Finally, you'll find some sug
gestions of where you can go to extend your programming knowledge once you're
comfortable with the C++ concepts covered in this book.

Macintosh Application
Structure

A Macintosh program is event-driven. An event is anything that occurs in the Macin
tosh environment, such as moving the mouse pointer, pressing a key on the key
board, making a choice from the menu bar, or inserting a floppy disk. An event
driven program, therefore, is one that bases its actions on the types of events that
occur.

Events are initially trapped by the Macintosh operating system. If the event is
something that the operating system should handle (for example, making a choice
from a Finder menu), the operating system takes care of the event without involving
any programs. However, if the event relates to a program that is running, the operat
ing system places the event in a waiting list known as the event queue.

Each Macintosh program contains in its ma i n function a loop that calls a ToolBox
routine named wa i tNextEvent. Whenever an event for the program is in the event
queue, w a i t Next Event returns information about the event. The program figures
out the type of event that has occurred and then uses s w i t ch logic to branch to a
part of the program that handles that specific event.

The programs we have written throughout this book are event-driven only in a
very simplistic manner. The single event that these programs trap is entering a choice
from a text-based menu. Once the menu is displayed on the screen, the program uses
c i n to wait until the user enters a choice. After the choice has been entered, how
ever, our programs have used s w i t ch logic to call functions that process each menu
choice individually. This is exactly the structure an event-driven program uses to
identify and respond to events.

ToolBox Calls 339

ToolBox Calls

The Macintosh ToolBox debuted with the first Macintosh in 1984. At that time there
were two languages you could use to program the Mac: Pascal and assembly lan
guage. Even today the ToolBox distinctly reflects its Pascal roots.

The ToolBox routines are both Pascal functions (routines that return a value in a
manner similar to the C++ return statement) and procedures (routines that either
don't return any values or return values through a pass by reference). C++ program
mers can handle all routines as functions. However, you must still deal with some of
the subtle differences between the languages, including the way in which strings are
stored.

Documentation for the ToolBox is contained in a set of books known collectively
as Inside Macintosh, published by Addison-Wesley. The books are available through
major bookstores and APDA, an Apple subsidiary that sells materials of interest to
software developers:

NOTE
To reach APDA, write to:

APDA
Apple Computer Inc.
P.O. Box319

Buffalo, NY 14207-0319

Or call (800) 282-2732 and ask for a catalog.

TOOLBOX ORGANIZATION

The Macintosh ToolBox isn't just an amorphous collection of functions. The func
tions are grouped into managers, functions that support a specific aspect of the Mac
intosh environment. Among the many managers provided by the ToolBox are the
following:

• Control Manager: routines to handle controls, such as buttons, scroll bars, and
sliders, that appear in windows

• Dialog Manager: routines to handle dialogs and alerts
• Event Manager: routines to handle event trapping
• Font Manager: routines to handle font type and style

340 Chapter 17 •Introducing the ToolBox

• File Manager: routines to handle care of working with files
• Menu Manager: routines to provide support for menus
• Printing Manager: routines to handle printing
• QuickDraw: graphics drawing routines
• Sound Manager: routines to support the recording and playback of sound
• TextEdit: routines to perform basic text editing functions, such as cut, copy, and

paste
• Window Manager: routines to support windows

One of the benefits of the concept of managers is that new ones can be added to
the ToolBox whenever needed. New managers appear with new releases of the Mac
intosh operating system and are available on disk to Macintoshes that were produced
before the managers were created. (New managers are incorporated into the ROMs
of new Macintosh models, but Apple has a history of not updating the ROMs on
older machines: thus the technique of using disk-based ToolBox routines to expand
the ToolBox for older Macintoshes.)

TOOLBOX DATA STRUCTURES

The ToolBox is not object-oriented. Classes for portions of the Macintosh user inter
face, such as windows and menus, are the responsibility of the programmer. This
means that although you may be writing an object-oriented program, you nonethe
less must deal with the non-object-oriented data structures used by many of the
ToolBox routines.

The primary type of data structure used by ToolBox routines is a Pascal record
(known as a structure in C and C++). A structure is somewhat like a class without
member functions and without restrictions on variable access. In other words, it's a
way of grouping variables of different types under a single name.

To reference the elements of a structure, you can use dot notation, the same nota
tion you have been using to access variables and functions of objects that are created
for use with static binding. For example, assume that you have the following
structure:

struct Account
I

I;

int ID_numb:
fl oat Amt_Owed:
date * Date_Due:

ToolBox Calls

A program would declare a variable that holds the structure with:

Account myAccount;

Then the variables would be referenced with:

myAccount.ID_numb

myAccount.Amt_Owed

*(myAccount.Date_Due)

341

The ToolBox makes extensive use of structures to represent many items within
the Macintosh environment, including windows, menus, and files. Even if you are
writing an object-oriented program, you must work with non-object-oriented struc
tures, because they are the format in which ToolBox routines return much of their
information.

NOTE

The ToolBox routines also rely on a large number of data types created with the Pascal
equivalent of the typedef statement.

TOOLBOX HEADER FILES

Code Warrior supports the ToolBox routines by providing C-style prototypes for each
of the ToolBox routines. These prototypes can be found in the Universal Headers
folder. However, if you set up Code Warrior properly, you never need worry about
including the correct ToolBox header file.

The ToolBox headers have been precompiled. You can therefore make them avail
able automatically to all programs you write by including the name of the precom
piled header file as a prefix to your project. To do so, go to the Preferences window
and click on the Languages icon. Make sure that MacHeadersPPC (if you're working
on a Power Mac) or MacHeaders68K (if you're working on a 68K Mac) appears in the
Prefix File box, as in Figure 17.1. (This is the default setup for CodeWarrior, so in
most cases you shouldn't have to do anything.)

342 Chapter 17 •Introducing the ToolBox

Figure 17.1 Using precompiled headers

Rpply to open project.

Source Model: I Rpple C++ ..-1 D
Editor

Language Info:~~~~~~~~~~~~~~---.

~
IE
Font

a
. .

Warnings

181 Rctiuate C++ Compiler
D RRM conformance
D Direct Destruction
D Don't I nline

D Pool Strings
D Don't Reuse Strings

0 RNSI Strict
0 RNS I Keywords Only
D EHpand Trigraphs

D MPW Newlines
D MPW Pointer Type Rules
D Enums Rlways Int

181 Require Function Prototypes

PrefiH File I
L...-P-~_ce_ss_or___._+.., (Factory Settings) (Reuert Panel) (Cancel) K OK D

Sample ToolBox Calls

To give you an idea of what is involved in using ToolBox routines, we'll be adding
some simple ToolBox calls to the Realty Listings program that you read about in
Chapter 16. First, we'll add support for the Open File and Save File dialog boxes so
that users can choose the files in which data should be stored. Then we'll add to the
program some alerts that tell users when a search for property is unsuccessful.

GETTING STARTED: INITIALIZING THE MANAGERS

The first thing any Macintosh program that uses the ToolBox must do is initialize the
managers. In most cases, you simply initialize all of them so you don't need to worry
about exactly which ones your program will be using. A program function to do the
initialization appears in Listing 17 .1. The first manager initialized is QuickDraw
(I n i t Graf). This routine takes one parameter, which is a global variable that is part

Sample ToolBox Calls

Listing 17.1 Initializing the ToolBox managers

void startToolBox Cl
I

II qd.thePort is a global Mac variable initialized by InitGraf
InitGraf C&qd.thePort);
InitFonts Cl;
InitWindows ();
InitMenus Cl;
TEinit ():
InitDialogs (nil l:
InitCursor ():

343

of a structure named q d. Because this structure is declared in the MacHeaders file,
you needn't define it yourself. The only other initialization routine that requires a
parameter is the one that initializes the dialog manager. In this case, you pass it the
constant n i 1 , which has been predefined to represent a null.

CHOOSING FILES: THE STANDARD FILE PACKAGE

Along with the large groups of routines clustered in managers, the ToolBox also has
smaller groups of specialized routines known as packages. One of the oldest packages
is the Standard File Package, which takes care of the Open File and Save File dialog
boxes.

NOTE
Users call these dialog boxes Open File and Save File, but the ToolBox documentation
has always referred to them as Get File and Pu.t File.

NOTE
Although the Standard File Package has been part of the ToolBox since 1984, it has been
significantly revised over the years. If you aren't running System 7, the Standard File
Package calls that have been added to the realty program won't worlel

344 Chapter 17 •Introducing the ToolBox

Choosing a File to Open
To display the Get File dialog box, a program uses the stand a rd Get Fi 1 e function:

void StandardGetFile (FileFilerProcPtr fileFilter,
short numTypes, SFTypelist typelist,
StandardFileReply *replyPtr);

Although the data types in this parameter list look very strange, keep in mind that
these are structures and user-defined data types that have been declared in the Mac
Headers file.

The first parameter-f i 1 e Fi 1 t er-is a pointer to code that can be used to filter
the types of files that appear in the dialog box. In most cases, you can just pass n i 1 .
The second parameter-numTypes-is the number of types of files that you will
allow to appear. To allow all types, as we will do in this case, you can pass -1.

The type List is an array of four character file types. The number of types in the
list is contained in the n um Types parameter. If you are allowing all types of files, the
computer ignores the type Li st .

The final parameter is a pointer to a structure in which the Macintosh will return
information about the user's interaction with the Get File dialog box. The structure
has the following elements:

struct StandardFileReply
{

} ;

Boolean
Boolean
OS Type
FSSpec
ScriptCode
short
Boolean
Boolean
long
short

sfGood;
sfReplacing;
sfType;
sfFile;
sfScript;
sfFlags;
sflsFol der;
sflsVol ume;
sfReservedl;
sfReserved2;

For our simple example, two of the elements of the structure are of particular impor
tance. The first is the Booleans fGood. This tells a program whether the user chose
the Open button (either by clicking on it or by pressing Enter) or the Cancel button.
If sf Good is TRUE, the user chose Open; it it's FALSE, the user chose Cancel.

Sample ToolBox Calls 345

The second important element is sf Fi 1 e. This structure, embedded within the
St and a rd Fi 1 e Rep 1 y structure, contains the name of the chosen file. When you
are working with File Manager routines, you can pass the entire F SS p e c structure as
a parameter. However, to use stream I/ 0, we need to extract the file name from the
structure so that it can be used when creating a file stream object.

The FSSpec structure has the following elements:

struct FSSpec
I

I:

int
long
Str63

vRefNum;
par ID;
name;

If we have declared a Standard Fil eRep 1 y structure using the name rep 1 y
St ruct, we can access the name with:

replyStruct.sfFile.name

The problem that the preceding presents is that the name of the file isn't stored as
a C++ string; it's stored as a Pascal string. Pascal strings begin with a length byte and
have no terminating null. In this case, the data type St r 6 3 indicates a 64-byte string
(63 characters plus the leading length byte). As it stands, the file name can't be used
as a parameter when creating an I/ 0 stream object. It must first be translated into a
c++ string.

The Realty Listings program does the conversion with a short function of its own.
As you can see in Listing 17.2, the function accepts two parameters: the Pascal string
and a pointer to where the C++ string will be stored. The function retrieves the
length of the Pascal string by copying the contents of the first byte into an integer
variable. It then uses that to determine how many characters to copy, one at a time,
from the Pascal string to the C++ string. The final step is to explicitly add the termi
nating null to the C++ string.

With the string conversion routine in place, the Realty Listings program is ready
.to use a Get File dialog box. The code modifications occur in the a r r ayM gr class,
which is responsible for loading data from the text file. The new version of the l o ad
member function can be found in Listing 17.3.

The first addition to this function is the variables needed for the call to St an -
da rdGetFi 1 e. These include the rep 1 ySt ruct, a typel i st (although unused, it

346 Chapter 17 • Introducing the ToolBox

Listing 17.2 Converting a Pascal string to a C++ string

void convertPascalStr CStr63 Pascalstring, char * Cstring)
I

int 1 ength;

length= Pascalstring[O]; II get length byte
for (int i = O; i < length; i++)

Cstring[i] = Pascalstring[i+l];
Cstring[i] = '\0'; II don't forget the terminating null

must be present), and numTypes. The function must also include a string variable to
hold the file name after it has been converted from the Pascal format (fi 1 eName).

Once the variables have been declared, the function calls the ToolBox routine:

StandardGetFile (nil, numTypes, typelist, &replyStruct);

The next step is to figure out which button the user chose to dismiss the dialog box.
The following logic checks the sf Good element:

if (!replyStruct.sfGood)

As you will remember from earlier discussion, if the value is FALSE, the user chose
Cancel. In that case, the 1 o ad function returns without any further processing.

Whens fGood is TRUE, the 1 oad function must then convert the Pascal file name
into a C++ string by calling the function you saw in Listing 17.2:

convertPascalStr CreplyStruct.sfFile.name, fileName);

At that point, 1 oad can pass fi 1 eName when creating the i fstream object. The
rest of the function remains unchanged from what you saw in Chapter 16.

With this code in place, the first thing the user sees when the program runs is the
dialog box in Figure 17 .2. If the user clicks the Cancel button, the program proceeds
without opening a file, allowing the user to enter completely new data. If the user
chooses a file, the program attempts to open it.

Sample ToolBox Calls

Listing 17.3 The arrayMgr class's load function, using the Get File
dialog box

int arrayMgr::load ()
I

char yes_no, dummy;
string25 itype;
int count;

II Data structures and variables for call to StandardGetFile

StandardFileReply replyStruct;
SFTypelist typelist; II we're going to allow all file types
short numTypes = -1; II allow all types of files
char fileName[64];

StandardGetFile (nil. numTypes. typelist, &replyStruct);
if (!replyStruct.sfGood)

return TRUE; II user cancelled but continue anyway

convertPascalStr (replyStruct.sfFile.name, fileName);
ifstream fin (fileName);
if (!fin)
I

cout << "\nCouldn't open input file. Continue? ";
cin » yes_no;
if (toupper(yes_no) == 'N')

return FALSE;
else

return TRUE;

fin » count;
fin.get (dummy); II skip over blank
for (int i = O; i < count; i++)
I

fin.getline (itype,80,'\0'); I
if (strcmp (itype,"house") = 0)

listed[i] =new residential (fin, itype);
else if Cstrcmp (itype,"farm") == 0)

listed[i] =new agricultural (fin, itype);
else

listed[i] =new commercial (fin, itype);
insert (listed[i]);

I
fin.close();
return TRUE;

347

348 Chapter 17 •Introducing the ToolBox

Figure 17.2 The Get File dialog box produced by the code in Listing 17.3

lei Realty (Chapter 17) ~I

• agricultural.cpp
• arrayMgr.cpp
• commercial.cpp
• main.cpp

• property.cpp
~ Realty listings
ID Realty listings.Hdbg
•Realty listings.HSYM

Choosing a File to Save

+

CJ Hammer

Eject

Desktop

(Cancel)

([Open D

Producing a Put File dialog box is even easier than generating a Get File dialog box.
The St and a rd Put Fi 1 e dialog box has the following prototype:

void StandardPutFile (Str255 prompt, Str255 defaultName,
StandardFileReply *replyPtr);

The prompt parameter is the text that appears above the box where the user enters a
file name. As you might guess, defaul tName is the file name that appears high
lighted in that box. Both of these parameters are Pascal strings (one length byte fol
lowed by up to 255 characters.)

In Listing 17 .4 you will find. the a r ray Mgr class's modified l o ad function. Notice
first that the two string parameters are initialized as Pascal strings by placing the
escape sequence \ p at the beginning of each string. The \ p isn't compiled as part of
the string but instead is interpreted as requiring a length byte at the beginning of the
string rather than a terminating null.

The l o ad function calls St a n d a rd P u t Fi l e, producing a dialog box like that in
Figure 17.3. The function then checks to see whether the user has clicked the Save or
Cancel buttons (recorded in sf Good) and bases its decision whether to write the file
on the user's choice. If the user has clicked Save, the function converts the name of
the file to a C++ string, creates an of stream object, and then writes to the file.

Sample ToolBox Calls 349

Listing 17.4 The arrayMgr class unload function, using a Put File dialog box

void arrayMgr::unload ()
(

II \p tells the compiler to make a Pascal string
Str255 prompt= "\pSave file as:";
Str255 default_name = "\pProperties";
II create a standard reply structure
StandardFileReply replyStruct;
char fileName[64J;

StandardPutFile (prompt, default_name, &replyStruct);
if (!replyStruct.sfGood)

return; II user cancelled; don't save

convertPascalStr (replyStruct.sfFile.name, fileName);
ofstream fout (fileNamel;
if (! fout)
I

cout << "\nCouldn't open output file.";
return;

fout « numb_properties « ' ';
for (int i = O; i < numb_properties; i++)

listed[iJ->write(fout);

Figure 17.3 The Put File dialog box produced by the code in Listing 17.4

lei Realty (Chapter 17) """I
II agricultural.cpp
II arrayMgr.cpp
II commercial.cpp
II main.cpp
II Properties
II property.cpp
~Realty listings
Iii Realty listings.Hdbg

Saue file as:

I·

c:iHammer

Eject

Desktop

New LJ)

(Cancel)

([Saue D

350 Chapter 17 •Introducing the ToolBox

DISPLAYING ALERTS: WORKING WITH RESOURCES

Alerts are the windows that appear to give you a warning that something you might
not want is about to happen or that something unexpected has occurred. For exam
ple, in most Macintosh programs an alert appears when you attempt to close a docu
ment that has unsaved changes. The Realty Listings program can use alerts to inform
a user that a search for properties has been unsuccessful.

The modified Realty Listings program uses two alerts. The first (Figure 17.4)
appears whenever a search by property ID is unsuccessful. The second (Figure 17.S)
appears whenever a search by property type is unsuccessful. Notice that both alerts
have a caution icon, some text that indicates the nature of the problem, and a button
to dismiss the alert.

Figure 17.4 An alert that indicates that a search by property ID has been
unsuccessful

~ That property isn't listed.

[(OK))

Figure 17.5 An alert that indicates that a search by property type has been
unsuccessful

A\. We haue no properties of
~that type.

I~(!!!!!!OK~))

The only action a user can take with an alert is to click a button. Because an alert
is relatively simple-it has no editable text fields, no scrolling lists, no check.boxes, no
radio buttons--the ToolBox routine to create and manage an alert is also relatively
simple. However, before a program can display an alert, it needs to know what text
and what buttons should appear in the alert window.

Sample ToolBox Calls 351

Creating the Resources

The data that a program uses to construct an alert are known as resources. Resources
contain information such as the initial size of a window, its initial place on the screen,
and its contents (for example, buttons, editable text boxes, scrolling lists of items,
pop-up menus, radio buttons, and check.boxes). An alert is described by two types of
resources: one that describes that boundaries of the alert window and one that
describes its contents. Although there are several ways to create resources, many pro
grammers use a program called ResEdit, a freeware utility from Apple that is shipped
with most Macintosh development software (including Code Warrior).

While resources are under development, they are typically stored in a separate file
with a .rsrc extension. lf you add such a file to your CodeWarrior project, the C++
compiler will automatically use the resources in that file when compiling your pro
gram.

ResEdit lets you creates resources by drawing the look of a window, menu, or
other element of the Macintosh user interface. To implement its alerts, the Realty
Listings program needs two types of resources: ALRT for the alert windows and
DlTL for the lists of items that are in the alert windows. Because there are two differ
ent alert windows, the program needs to ALRT resources and a DITL resource for
each.

Resources of a given type are numbered. In Figure 17.6, for example, you can see
that the two ALRTs are numbered 128 and 129. (You can also give resources names to
make them easier to work with, but internally the Macintosh uses the numbers.)

Figure 17.6 ALRT resources for the Realty Listings program

~§ RLRTs from real~ n .rsrc §!ilj
.!Q. Size Name

126 12 .Q
129 12

tzy ..

352 Chapter 17 • Introducing the ToolBox

To create an ALRT resource, you tell ResEdit that you want to create a new
resource and then choose the type. ResEdit displays a dialog box that lets you draw
the size and shape of the alert window; you can also set the alert's initial position on
the screen by dragging it into position. In Figure 17.7 you can see the alert as it would
appear on the Macintosh's start-up monitor (in this case, a 14" monitor). Because the
alert in Figure 17.7 has a list of items, those items also appear, letting you see what
your alert looks like.

Figure 17.7 Drawing an alert

RLRT ID = 128 from re alt n .rsrc

Left: I 110

Height: ._I e_o _ _.

Width: 1262

Color: @ Default

0 Custom

DITL ID: l._1_2_0_~

A DITL resource contains all the items that appear on the alert. (You're right; the
caution icon isn't there. You'll see where it comes from in a bit.) As you can see in
Figure 17.8, you choose the types of possible items from a list and then drag them
into the window you created for the ALRT resource.

When you've finished creating the resources, ResEdit gathers all resources of a sin
gle type under one icon. For example, in Figure 17.9 you can see that there are two
types of resources in this file. Double-clicking on any single type of resource brings
up the list of individual resources that you saw in Figure 17 .6. This gives you easy
access to your resources while your program is under development.

Sample ToolBox Calls

8 Button
..

That property isn't listed.
181 Check Box

® Radio Button
OK ~ Control

!....---~---~--~------1 ····:r·;·····5t~t;·~ .. r~·~·t·····
"iif'Ed'i·i·r~·~·i·········
..
& Icon

I.. Picture

III User Item

Figure 17.9 Completed resources for the Realty Listings program

~Iii~ re alt fl' .rsrc ~Iii
-0

ALRT DITL

NOTE

353

If you want to learn more about ResEdit, pick up a copy of ResEdit Complete, by
Peter Alley and Carolyn Strange (Addison-Wesley, 1991).

Writing the Alert Management Code
Once the resource file has been saved and added to the Realty Listings project, we
can add code to the program that uses those resources. To make it easy to reference

354 Chapter 17 • Introducing the ToolBox

the two alerts, the program first defines macros that assign names to the resource
IDs:

#define NotOne 128
#define NotAny 129

The Not 0 n e alert will be used whenever a search for a property ID fails; the Not Any
alert will be used whenever a search for a type of property fails.

There are three functions that produce alerts, one for each type of icon that might
appear at the left of the alert window:

int StopAlert (int alertID. ModalFilerPtr filerProc);
int NoteAlert (int alertID, ModalFilerPtr filerProc);
int CautionAlert (int alertID, ModalFilerPtr filerProc);

The al er t I D parameter is the number by which the alert' s resource is known. The
second parameter is a pointer to a procedure that can filter events generated by
working with the alert. In most cases, you can just pass n i l for this parameter. The
alert's return value is an integer that corresponds to the number of the button click
by the user (relevant when there is more than one button in the window).

To call an alert, you simply call the function that corresponds to the type of icon
you want to see:

itemHit = CautionAlert (NotOne, nil);

The Macintosh takes care of displaying the alert, accepting user input (a click on a
button), and returning the button chosen to the program. As you can see in Listing
17.5 (the Realty Listing program's find function), the primary change this makes to
the code is to replace the error message formerly generated with co u t with a call to
Caution Ale rt. Because there is only one button in the alert, the program doesn't
need to use the i temHi t return value.

Where to Go from Here

Now that you know the basics, where can you go to learn more about programming
the Macintosh? First, if you're going to be working with the ToolBox, you should

Where to Go from Here

Listing 17.5 Modified find function that displays alerts for unsuccessful
searches

void findProperty (arrayMgr *listings)
{

int ID, how_many;
string25 itype;
property* whichPlace, * found[MAX_PROPERTIES];
int itemHit; // for alert

cout << "Which type of property (house, farm, business)? ";
gets Ci type l;
if (strlenCitypel > Ol
{

how_many = listings->find (found, itypel;
if Chow_many > 0)

else

for (int i = O; i < how_many; i++l
found[i]->display();

itemHit = CautionAlert CNotAny, nil); //display an alert
return;

cout << "Property ID#: ";
cin » ID;
whichPlace = listings->find CID>:
if (whichPlace ~ 0)
{

itemHit = CautionAlert CNotOne, nil); //display an alert
return;

I
whichPlace->display();

355

consider purchasing Inside Macintosh (at least those volumes that contain documenta
tion of the ToolBox calls you'll be using).

Tutorial material can be found in several books, including the following:

• May ,John, and Judy Whittle. Programming Primer for the Macintosh. AP Profession
al, 1995.

• Mark, Dave, and Cartwright Reed. Macintosh C Programming Primer. Volume 1,
second edition. Addison-Wesley, 1992.

• Mark, Dave. Macintosh C Programming. Volume II. Addison-Wesley, 1990.

Glossary

Abstract base class: A base class from which no objects are created.

Address: A number given to identify a byte in main memory.

American Standard Code for Information Interchange: The binary code used to
represent characters in most microcomputers.

Array: A group of objects or data values stored under the same name and referenced
by their position in the group.

Array bounds checking: Checking the limits of an array to make sure that the array
doesn't overflow.

Array element: One member of an array.

Array index: A number that represents the position of an element in an array.

ASCII: The abbreviation for American Standard Code for Information Interchange.

Assembly language: A programming language in which a two- to five-letter mnemon-
ic code is substituted for a binary instruction code.

357

358 Glossary

Assignment operator: The operator used to assign a value to a variable(=).

Base class: A class from which other classes are derived in an inheritance hierarchy.

Binary: Base 2; the system used to represent everything in a computer, including pro-
gram instructions and data.

Binary file: A file that contains an unformatted stream of bits that are not understand-
able by most humans.

Binding: Creating a link between an object and the member functions of its class.

Bit: One binary digit (O or 1).

Bubble sort: A sorting method that works by comparing successive pairs of values in
an array and swapping those pairs that aren't in the correct order.

Byte: Eight bits.

Call (a function): To issue a command to execute a function.

Calling function: A function that places a call to another function.

Class: Used by an object-oriented program, a description of an entity containing vari
ables used to store data that describe objects created from the class and declara
tions of the member functions that objects of the class know how to perform.

Clear (a bit): To set the bit's value to 0.

Comment statement: Text added to a source code file to document parts of the code.

Compiler directive: A command that a compiler executes during compilation.

Concatenation: Combining two strings to form a larger string by pasting one onto the
end of the other.

Conditional operator: An operator used to return one of two values based on a logical
condition, as in a < b ? a : b, which returns a if a < b is true and b if a < b is false.

Console: The default computer "terminal," or window, used by ANSI C++ for stream
output.

Constant: A value that doesn't change during the run of a program.

Constructor: A member function that runs automatically when an object is created.

Control condition: A logical expression used to determine when a loop should stop
iterating.

Glossary 359

Control variable: A variable whose value changes inside a loop to control when the
loop will stop iterating.

Cross-compiler: A compiler that generates machine language for a CPU other than
the one on which the program is being written.

Data structure: A program structure that organizes data.

Debugger: A program used to help find logic errors in programs.

Dereference (a pointer): To precede a pointer variable name with an* to obtain the
contents of the location pointed to by the pointer variable.

Derived class: A class that is created from another class in an inheritance hierarchy.

Destructor: A member function that is executed automatically when an object is re-
moved from main memory.

Dynamic binding: Binding functions to objects while a program is running.

Element (of an array): One member of an array.

Escape character: A character preceded by \ and used to format an output stream.

Event: Anything that occurs in the Macintosh environment, such as moving the
mouse pointer, pressing a key on the keyboard, making a choice from the menu
bar, or inserting a floppy disk.

Event queue: A waiting list of events that a program must handle.

Event-driven: A program that bases its actions on the type of events that occur.

Floating point unit (FPU): Circuitry designed to speed operations on floating point
numbers.

Force quit: The key combination Command-Option-Esc, which forces an executing
program to terminate.

Forward declaration: A statement that identifies a class to the compiler by name
without defining the class.

Formal parameters: Data passed into a function through the function's signature.

Friend function: A function that has access to all the private elements of a class in
which the friend isn't a member function.

Function overloading: Defining two or more functions in the same class with the
same name but different signatures.

360 Glossary

Function prototype: A statement of a function's signature used to verify that function
calls are made correctly.

Function: A self-contained block of code that returns at most one value.

G or Gb: Abbreviations for gigabyte.

Gigabyte: Approximately one billion bytes; exactly 1,073,741,824 bytes.

Header file: A file that contains data definition statements, including constants, class
es, and function prototypes.

Hexadecimal: Base 16.

High-level language: An English-like programming language that is relatively porta
ble among types of comptuers.

Infinite loop: A loop that never stops.

Information hiding: Keeping class variables and the details of member function exe
cution private to a class, hidden from functions that use the class.

Inheritance: A hierarchical relationship between classes in which classes lower in a hi
erarchy inherit, or share, the variables and member functions of classes above
them in the hierarchy.

Instruction set: The instructions that a computer knows how to execute without
translation.

Iteration: Repeating groups of statements in a computer program.

K: An abbreviation for kilobyte.

Kilobyte: Approximately 1,000 bytes; exactly 1,024 bytes.

Library: A collection of precompiled programs that can be called from an application
program.

Linked list: A chain of objects connected by pointers that indicate the object that
comes next in the list

Linking: Combining the parts of an application into a runable program.

Local variable: A variable declared in a function that is accessible only within that
function.

Logical expression: An expression that produces a result of true or false.

Logical operators: Operators used to formulate logical expressions.

Glossary 361

Logicial OR: An operation that works on two bits. If either bit is 1, the result is 1; if
both bits are O, the result is O.

Loop: A block of code that is repeated in a program.

Looping: Repeating actions in a program.

Mb or Meg: Abbreviations for megabyte.

Machine language: A computer language made up of the binary codes in a computer's
instruction set.

Macro: A small block of code that is copied into source code wherever its name ap
pears during compilation.

Manager: A group ofToolBox routines that supports one specific aspect of the Mac
intosh envrionment.

Manipulator: A function of the ios class, used to format a input or output stream.

Mb: An abbreviation for megabyte.

Megabyte: Approximately one million bytes; exactly 1,048,576 bytes.

Member function: A function that is part of a class.

Message: A command sent to an object to execute one of the object's member func
tions.

Method: A member function.

Modulo division: An integer division operation that returns the remainder of the di
vision.

Object: An instance of a class.

Object code: A program made up of the binary codes that form a computer's instruc
tion set.

One-dimensional array: An array made up of a single list of values.

Package: A small, specialized group of ToolBox routines.

Pass by reference: Passing a parameter by sending its address to a function. Changes
to the parameter are made directly in main memory so that changes are available
to the calling function.

Pass by value: Passing a value into a function as an input value only. Changes made
to the parameter in the function aren't returned to the calling function.

362 Glossary

Persistent object: An object that can read itself from and write itself to a file.

Pointer: The address at which some form of data storage begins in main memory.

Pointer arithmetic: An operation that modifies the contents of a pointer variable.

Pointer variable: A variable that is declared to hold a pointer to some specific type of
data.

Polymorphism: The ability of different classes to respond differently to the same mes
sage.

Postdecrement: To decrease the value in a variable by 1 after evaluating the rest of
the expression.

Postincrement: To increment the value in a variable by 1 after completing evaluation
of the rest of the expression.

Precedence of operations: The order in which arithmetic and logical operations are
performed within an expression.

Predecrement: To decrease the value in a variable by 1 before performing other oper
ations in an expression.

Preincrement: To increase the value in a variable by 1 before performing other oper
ations in an expression.

Project: A Code Warrior file that specifies all the object code files that should be linked
to make an executable application.

Pure function: In a base class, a function that has only a prototype but no implemen
tation; a function whose prototype is followed by =O.

Reference parameter: A parameter passed by sending its address to a function.
Changes to the parameter are made directly in main memory so that changes are
available to the calling function.

Resource file: A file that contains definitions of portions of the Macintosh user inter
face

Resources: Data used to construct aspects of the Macintosh user interface, such as the
contents of windows and menus.

Scope (of a variable): The portion of a program in which a variable exists.

Scope resolution operator: Two colons(::) used with a class name to indicate the class
to which a function belongs.

Glossary 363

Sequential search: A search of a group of items that begins at the first item and looks
through all items, in order.

Set (a bit): To give a bit the value of 1.

Signature (of a function): A function's name and input parameters.

Source code: The text of a program, created using a text editor and containing state
ments in either assembly language or a high-level language.

Static binding: Binding functions to objects during program compilation.

Storage class (of a variable): An expression of how the variable should be stored in
main memory (auto= destroyed when function ends; static= always resident;
register = stored in CPU register).

Stream extraction operator: An operator (> >) used to accept input from the key
board.

Stream insertion operator: The operator used to insert values into an output stream
(<<).

String: A collection of characters (a word or sentence) handled as a unit.

Structure: AC and C++ data structure in which variables of different data types are
grouped together under the same name.

Structured programming: Program logic derived from three simple structures: se
quence, selection, and iteration.

Syntax eITor: An e1Tor detected by an assembler or compiler indicating a mistake in
constructing language statements.

Terabyte: Approximately one trillion bytes {1,099,511,627,776 bytes)

Text file: A file containing readable characters that can be viewed with any word pro
cessor or text editor.

Trucate: To drop the fractional portion of a number.

Two-dimensional array: An array that stores data in a grid made up of columns and
rows.

2's complement: The binary format used for storing integers.

Unary operator: An operator that operates on only one value at a time.

Value parameter: A value passed into a function as an input value only. Changes
made to the parameter in the function aren't returned to the calling function.

364 Glossary

Variable: A label for a main memory storage location used by a program.

Virtual function: A function that can be redefined in a derived class through polymor
phism.

Index

365

366

Symbols
! 116
- 94-96, 98-99
- - 99-100
!= 114
% 97
& 198, 218
&& 116-117
* 94-96, 196, 199, 206
+ 94-96, 98-99
++ 99-100

'87
I 96-97
/* 53-54
I I 53-54
< 114
« 70-73
<= 114
= 56-57
== 114
-> 212
> 114
>= 114
» 73
? : 128-129
[] 148
\0 55, 169
\n 72

I l 64
11 116-117

A
Absolute value 106
Abstract base classes 318
Access paths 26
Addition 94-96
Address (in main memory) 8
Alerts 350-354
American Standard Code for Information

Interchange 9-10
AND operator 116-117
Arithmetic operators 93-100, 100-101
Array index 149
Arrays

accessing 166-167

Index

as function parameters 154-159, 164-166
assigning values to 150-151
of base class pointers 320
declaring 148-149, 162
definition of 147
initializing 150-154
looping through 150
of objects 159-162
objects to manage 266-267
one-dimensional 151-162
overflowing 148
of pointers 223
referencing values in 149
searching 278-283
sorting 271-278
of strings 182-189
two-dimensional 162-167
versus linked lists 311

ASCII 9-10
Assemblers 3
Assembly language 2
Assignment 150-151
Assignment operator 56-57, 94, 100-101
auto 61
Automatic balancing 29
Automatic indentation 31

B
Balancing (in source code files) 29
Base 16 11-13
Base2 5-7
Base class pointers 320

Index

Base classes
abstract 318
constructors 323-325
declaring 316-318
definition of 21, 314
member functions 321-325
pointers to objects of320-321

Binary 2, 5-7, 11-13
Binary files see Stream I/ 0
Binary search 278-283
Binding 77-78, 211-213
Braces 64
break 138
Bubble sort 271-278
Bytes 7

c
Calling (a function) 18
Calling member functions 79
case 124-126
Caution A 1 ert 354
cerr 70
char 55
Character data 9-10, 115
Character variables 55, 57
Choosing alternative actions 119-124, 124-

126, 128-129
ci n 70, 73
Classes

base 314, 316-318
declaring 64-66

definition of 17
derived 314, 318-320
relationship to objects 17

Classes see also Base classes
Classes see also Derived classes
Code Warrior

adding files to a project 36-37
button bar 27-28

creating projects 33-35
debugger 44-50
editor 28-32
launching 27
message window 42-43
opening source code files 35
running a program 37-40
SIOUX window 39-40
syntax errors 42-43

Color text 29, 31
Commands

Compi 1e28
Make 28
Run 28, 37-40

Comment statements 53-54
Compile command 28
Compiler directives 25-27
Compilers 3
Concatenation 172-176
Conditional operator 128-129
Console 70
Console error stream 70
Console input stream 70
Console output stream 70
const 61-63
Constants 61-63, 71
Constructors 66-67, 323-325, 326-328

definition of 18
Control conditions 133-134
Control variables 134
Converting to upper case 116
cout 70, 71-73, 94
CPU7-8
Cross-compilers 3
ctype. h 116

D
Data structures 265
Data structures see Arrays

367

368

Data structures see Linked lists
Debugger

definition of 44
44

entering 44-45
exiting 50
and RAM Doubler 44
single-step program execution 45-47
viewing variable contents 47-49

define 61-63
delete 212
Derived classes 318-320

constructors 326-328
definition of21, 314
member functions 329-331

Division 96-97
modulo 106

double 54
Dynamic binding 77-78, 211-213

E
Editor 28-32
endl 73
Equality operator 114
Escape characters 72

Event queue 338
Event-driven 338
Events 338
Exponentiation 105

F
fabs 106
Files see Stream I/ 0
Fill characters 89
fl oat 54
Floating point division 96-97
Floating point variables 54
fmod 106
Fonts (for text editor) 30

for 141-143, 150
Force quit 138
Formal parameters see Parameters 24
Forward declarations

Classes
forward declarations 224

friend 249
Friend functions 248, 254
fstream.h 70, 81
Functions

Index

arrays as parameters 154-159, 164-166
binding 77-78

G

calling 18
defintion of 17-18
finding in source code files 32
friend 248
main24
math 104-106
overloading 19
parameters 64
prototypes 24-27
pure 318
retum63-64
returning multiple values from 207-210
signatures 19
strings as parameters 179-182
virtual 317-318

get line 74
gets 74
Gigabytes 8

Greater than operator 114
Greater than or equal to operator 114

H
Header files 24-27, 70, 341

used by current project 32
Hexadecimal 11-13

Index

High-level language 2

I
I/O see Stream I/O
if/else 119-124
i fstream 86
include 25-27
Indentation (in text editor) 31
Infinite loops 138
Information hiding 19
Inheritance

definition of 2~21, 313
identifying uses of314-315
"is a" relationship 314
polymorphism 317
types of 318

Input/Output see Stream I/0
Inside Macintosh 339
Instruction set 2
int 53
Integer division 96-97
Integer variables 53
Interpreters 3
i oma n i p. h 87
i OS 81, 87
i os flags 89-90
i os t ream. h 70
"is a" relationship 314
Iterating

nesting 134-137
Iteration

control conditions 133-134
definition of 131
exiting loops 138
for 141-143
inifinite loops 138
while 133-141

K
Kilobytes 8

L
Less than operator 114
Less than or equal to operator 114
Libraries 4-5

Library functions 104-106
Linked lists

accessing elements 295
inserting elements into 292-294
objects to manage 288-291
operation of 286-287
reading from a file 298
searching 295-297
traversing 295
versus arrays 311
writing to a file 297-298

Linking4-5
Logical expressions

definition of 114
formulating 114-119
with character data 115

Logical operators
precedence 118-119

long 53

long double 54
Looping

M

control conditions 133-134
definition of 131
exiting loops 138
for 141-143
infinite loops 138
nesting 134-13 7
while 133-141

Machine language 2
main 24

369

370

Main memory 7-8
Make command 28
Manipulators 87
Math functions 104-106
math. h 104
Megabytes 8
Member functions

base class 321-325
binding 77-78
calling 18, 79
constructors 66-67
declaring 63-64
definition of 17-18
derived classes 329-331
overloaded operators 252-254
overloading 19, 247
parameters 64
pure 318
return values 63-64
returning private data 81
signatures 19
virtual 317-318
writing 67-68

Message window 42-43
Messages 18
Methods see Member functions
Minus operator 98-99
Modulo division 97, 106
Multiplication 94-96

N
Nestingloopsl34-137
new 211
Not equal operator 114
NoteA l ert 354
Null 55, 169
Numbering systems 5-7
Numeric data 11, 96-97

0
Object code 2
Object-oriented programming

advantages of 16
characterstics of 17-21

Objects
array managers 266-267
arrays of 159-162
creating 77-78
definition of 17
dynamic binding 211-213
list managers 288-291
persistent 220
relationship to classes 17

ofs t ream 84
Open File dialog box 343-348
operator 248
Operator overloading

declaring 248-252
friend functions 254
member functions 252-254
using255

Operators
AND 116-117
arithmetic 93-100, 100-101
assignment 100-101
conditional 128-129
decrement 99-100
equality 114
greater than 114
greater than or equal to 114
increment 99-100
less than 114
less than or equal to 114
logical 114-116
not equal 114
OR 116-117
postdecrement 100
postincrement 100

Index

Index

precedence of98, 101-103
predecrement 99
preincrement 99
sign change 98-99
stream extraction 73
stream insertion 70-73
unary98-99
unary not 116, 119
using overloaded 25 5

OR operator 116-117
Overloading

p

definition of 19
member functions 247
operators 248-252
operators as friend functions 254
operators as member functions 252-254

Parameters
arrays as 154-159, 164-166
definition of 24
1/0 streams 217-220
pointers as 207-210
strings as 179-182

Pascal strings 345
Pass by reference 64, 180, 207-210
Pass by value 64
Persistent objects 220
Plus operator 98-99
Pointers

accessing data via 199-200
action of 196
arithmetic with 202-206
arrays of223, 275-276
arrays of base class 320
as function parameters 207-210
base class 320-321
declaring 196-198
definition of 8-9, 195

dynamic binding 211-213
initializing 196-198
to 1/0 streams 217-220
sorting arrays of 275-276
this 226
using to access data 199-200
variables for 196

Polymorphism 21, 317
Postdecrement operator 100
Postincrement operator 100
pow 105
Precedence 118-119
Precedence of operations 98, 101-103
Precision 88
Precompiled headers 341
Predecrement operator 99
Preferences

access paths 26
automatic balancing 29
automatic indentation 31
color text 29, 31
fonts 30
project 38-39

Preincrement operator 99
private 65, 318
Program libraries 4-5
Projects 4-5

adding files 36-37
creating new 33-35
opening source code files 35
preferences 38-39

protected 316
Prototypes 24-27
public 65, 318
Pure functions 318

R
Raising to a power 105
RAM7-8

371

372

RAM Doubler 44

Reference parameters 64
register 61

Repeating actions
control conditions 133-134
exiting loops 138
for 141-143

inifinite loops 138

nesting 134-137
while 133-141

ResEdit 351-353

resetiosflags 90
Resource files 351
Resources

creating 351-353
definition of 351
files for 351

return 63-64, 181
Run 28, 37-40

Running a program 37-40

s
Save File dialog box 343-348
Scope (of variables) 60-61
Searching 295-297

Selection 119-124, 124-126, 128-129
set fi 11 89

set i os flags 89-90

s et p rec i s i on 88
setw 89
SIOUX window 39-40, 70
SIOUX window see also Stream I/O
Sorting 271-278
Source code

definition 3
sqrt 105

Square root 105

Standard File Package 343-348
StandardGetFile 345

Standard Put File 348

static61

Static binding 77-78
stdio.h74
StopA l ert 354

Storage classes 61
strcat 172-176, 206
strcmp 177-179

strcpy 59, 172, 206

Stream extraction operator 73
Stream I/O

adding new lines 72-73
as function parameters 217-220
binary files

definition of 80
definition 70
formatting 87-90
header files 70
ios 81

keyboard 73, 74, 79
screen 71-73, 79, 88, 89
text files

definition of 80
opening for input 86
opening for output 84
reading from 86, 298
reading strings 191-192

verifying operations of 129
writing strings 190
writing to 85, 297-298

variables 72
Stream insertion operator 70-73
string. h 59

Strings
arrays of 182-189

as function parameters 179-182

comparing 177-179
concatenating 172-176

copying 59, 172
declaring 55-56, 169-170

Index

Index

definition of 5 5
initializing 58-59
keyboard input for 74
Pascal 345
passing into functions 180
reading from a text file 191-192
referencing 170-171
returning from functions 181-182
terminating null 5 5
writing to a text file 190

strl en 205
strncat 175
Structured programming 16
Subtraction 94-96
switch 124-126
Syntax errors 42-43

definition 3

T
Terabytes 8
Text files see Stream 1/0
this 226
ToolBox

data structures for 340-341
header files for 341
initializing 342-343
opening files 343-348
organization of 339-340
saving files 343-348

toupper 116
2's complement 11
Typecasting 103-104
typedef 60, 170

u
Unary minus operator 98-99
Unary not operator 116, 119
Unary plus operator 98-99

v
Value parameters 64
Variables

changing types of 103-104
character 9-10, 55, 57
constant 61--63
control 134
declaring 51-56
defining types 60
definition of 8, 51
displaying the contents of72
floating point 54
initializing 56-59
inserting into a stream 72
integer 53
names 52
numeric 11
pointer 196-206
private 81
scope of 60--61
storage classes 61, 316
string 55-56, 58-59

Virtual functions 317-318

w
wai tNextEvent 338
while 133-141
Width89

373

WARRANTY DISCLAIMER

METROWERKS AND METROWERKS' LICENSOR(S), AND THEIR
DIRECTORS, OFFICERS, EMPLOYEES OR AGENTS (COLLECTIVELY
METROWERKS) MAKE NO WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
REGARDING THE SOFTWARE. METROWERKS DOES NOT WARRANT,
GUARANTEE OR MAKE ANY REPRESENTATIONS REGARDING THE
USE OR THE RESULTS OF THE USE OF THE SOFTWARE IN TERMS
OF ITS CORRECTNESS, ACCURACY, RELIABILITY, CURRENTNESS OR
OTHERWISE. THE ENTIRE RISKAS TO THE RESULTS AND PERFOR
MANCE OF THE SOFTWARE IS ASSUMED BY YOU. THE EXCLUSION
OF IMPLIED WARRANTIES IS NOT PERMITTED BY SOME JURISDIC
TIONS. THE ABOVE EXCLUSION MAY NOT APPLY TO YOU.

IN NO EVENT WILL METROWERKS AND METROWERKS'
LICENSOR(S), AND THEIR DIRECTORS, OFFICERS, EMPLOYEES OR
AGENTS (COLLECTIVELY METROWERKS) BE LIABLE TO YOU FOR
ANY CONSEQUENTIAL, INCIDENTAL OR INDIRECT DAMAGES
(INCLUDING DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSI
NESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, AND THE
LIKE) ARISING OUT OF THE USE OR INABILITY TO USE THE SOFT
WARE EVEN IF METROWERKS HAS BEEN ADVISED OF THE POSSI
BILITY OF SUCH DAMAGES. BECAUSE SOME JURISDICTIONS DO
NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR
CONSEQUENTIAL OR INCIDENTAL DAMAGES, THE ABOVE LIMITA
TIONS MAY NOT APPLY TO YOU. Metrowerks liability to you for actual
damages from any cause whatsoever, and regardless of the form of the
action (whether in contract, tort (including negligence), product liability or
otherwise), will be limited so as not to exceed the cost of the replacement of
the media on which the software is distributed.

SOFTWARE LICENSE

PLEASE READ TIDS LICENSE CAREFULLY BEFORE USING THE
SOFTWARE. BY USING THE SOFTWARE, YOU ARE AGREEING TO
BE BOUND BY THE TERMS OF THIS LICENSE. IF YOU DO NOT
AGREE TO THE TERMS OF TIDS LICENSE, PROMPTLY RETURN
THE lUNUSED SOFTWARE TO THE PLACE WHERE YOU OBTAINED
IT AND YOUR MONEY WILL BE REFUNDED.

1. License. The application, demonstration, system and other software
accompanying this License, whether on disk, in read only memory, or on
any other media (the "Software") the related documentation and fonts are
licensed to you by Metrowerks. You own the disk on which the Software
and fonts are recorded but Metrowerks and/or Metrowerks' Licensor retain
title to the Software, related documentation and fonts. This License allows
you to use the Software and fonts on a single Apple computer and make one
copy of the Software and fonts in machine-readable form for backup pur
poses only. You must reproduce on such copy the Metrowerks copyright
notice and any other proprietary legends that were on the original copy of
the Software and fonts. You may also transfer all your license rights in the
Software and fonts, the backup copy of the Software and fonts, the related
documentation and a copy of this License to another party, provided the
other party reads and agrees to accept the terms and conditions of this
License.

2. Restrictions. The Software contains copyrighted material, trade secrets
and other proprietary material. In order to protect them, and except as
permitted by applicable legislation, you may not decompile, reverse
engineer, disassemble or otherwise reduce the Software to a human-per
ceivable form. You may not modify, network, rent, lease, loan, distribute or
create derivative works based upon the Software in whole or in part. You
may not electronically transmit the Software from one computer to anoth-

er or over a network.

3. Termination. This License is effective until terminated. You may
terminate this License at any time by destroying the Software, related
documentation and fonts and all copies thereof. This License will termi
nate immediately without notice from Metrowerks if you fail to comply with
any provision of this License. Upon termination you must destroy the
Software, related documentation and fonts and all copies thereof.

4. Export Law Assurances. You agree and certify that neither the Software
nor any other technical data received from Metrowerks, nor the direct
product thereof, will be exported outside the United States except as
authorized and as permitted by the laws and regulations of the United
States. If the Software has been rightfully obtained by you outside of the
United States, you agree that you will not re-export the Software nor any
other technical data received from Metrowerks, nor the direct product
thereof, except as permitted by the laws and regulations of the United
States and the laws and regulations of the jurisdiction in which you
obtained the Software.

5. Government End Users. If you are acquiring the Software and fonts on
behalf of any unit or agency of the United States Government, the following
provisions apply. The Government agrees: (i) if the Software and fonts are
supplied to the Department of Defense (DoD), the Software and fonts are
classified as "Commercial Computer Software" and the Government is
acquiring only "restricted rights" in the Software, its documentation and
fonts as that term is defined in Clause 252.227-7013(c)(l) of the DFARS; and
(ii) if the Software and fonts are supplied to any unit or agency of the
United States Government other than DoD, the Government's rights in the
Software, its documentation and fonts will be as defined in Clause 52.227-
19(c)(2) of the FAR or, in the case of NASA, in Clause 18-52.227-SG(d) of the
NASA Supplement to the FAR.

6. Limited Warranty on Media. Metrowerks warrants the diskettes and/or
compact disc on which the Software and fonts are recorded to be free from
defects in materials and workmanship under normal use for a period of
ninety (90) days from the date of purchase as evidenced by a copy of the
receipt. Metrowerks' entire liability and your exclusive remedy will be
replacement of the diskettes and/or compact disc not meeting Metrowerks'
limited warranty and which is returned to Metrowerks or a Metrowerks
authorized representative with a copy of the receipt. Metrowerks will have
no responsibility to replace a disk/disc damaged by accident,abuse or
misapplication. ANY IMPLIED WARRANTIES ON THE DISKETTES

AND/OR COMPACT DISC, INCLUDING THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY (90) DAYS FROM THE
DATE OF DELIVERY. THIS WARRANTY GIVES YOU SPECIFIC LEGAL
RIGHTS, AND YOU MAY ALSO HAVE OTHER RIGHTS WHICH VARY BY
JURISDICTION.

7. Disclaimer of Warranty on Apple Software. You expressly acknowledge
and agree that use of the Software and fonts is at your sole risk. Except as
is stated above, the Software, related documentation and fonts are provid
ed "AS IS" and without warranty of any kind and Metrowerks and
Metrowerks' Licensor(s) (for the purposes of provisions 7 and 8,
Metrowerks and Metrowerks' Licensor(s) shall be collectively referred to as
"Metrowerks") EXPRESSLY DISCLAIM ALL OTHER WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. ACADEMIC PRESS DOES NOT WARRANT THAT
THE FUNCTIONS CONTAINED IN THE SOFTWARE WILL MEET YOUR
REQUIREMENTS, OR THAT THE OPERATION OF THE SOFTWARE WILL
BE UNINTERRUPTED OR ERROR-FREE, OR THAT DEFECTS IN THE
SOFTWARE AND THE FONTS WILL BE CORRECTED. FURTHERMORE,
ACADEMIC PRESS DOES NOT WARRANT OR MAKE ANY REPRESENTA·
TIONS REGARDING THE USE OR THE RESULTS OF THE USE OF THE
SOFTWARE AND FONTS OR RELATED DOCUMENTATION IN TERMS OF
THEIR CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE. NO
ORAL OR WRITTEN INFORMATION OR ADVICE GIVEN BY ACADEMIC
PRESS OR AN ACADEMIC PRESS AUTHORIZED REPRESENTATIVE
SHALL CREATE A WARRANTY OR IN ANY WAY INCREASE THE SCOPE OF
THIS WARRANTY .. SHOULD THE SOFTWARE PROVE DEFECTIVE, YOU
(AND NOT ACADEMIC PRESS OR AN ACADEMIC PRESS AUTHORIZED
REPRESENTATIVE) ASSUME THE ENTIRE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION. SOME JURISDICTIONS DO NOT
ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE
EXCLUSION MAY NOT APPLY TO YOU.

8. Limitation of Liability. UNDER NO CIRCUMSTANCES INCLUDING NEG
LIGENCE, SHALL ACADEMIC PRESS BE LIABLE FOR ANY INCIDENTAL,
SPECIAL OR CONSEQUENTIAL DAMAGES THAT RESULT FROM THE
USE OR INABILITY TO USE THE SOFTWARE OR RELATED DOCUMEN
TATION, EVEN IF ACADEMIC PRESS OR AN ACADEMIC PRESS AUTHO
RIZED REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES. SOME JURISDICTIONS DO NOT ALLOW THE LIMITA
TION OR EXCLUSION OF LIABILITY FOR INCIDENTAL OR CONSE-

QUENTIAL DAMAGES SO THE ABOVE LIMITATION OR EXCLUSION MAY
NOT APPLY TO YOU.

In no event shall Metrowerks' total liability to you for all damages, losses,
and causes of action (whether in contract, tort (including negligence) or
otherwise) exceed that portion of the amount paid by you which is fairly
attributable to the Software and fonts.

9. Controlling Law and Severability. This License shall be governed by and
construed in accordance with the laws of the United States and the State of
California, as applied to agreements entered into and to be performed
entirely within California between California residents. If for any reason
a court of competent jurisdiction finds any provision of this License, or
portion thereof, to be unenforceable, that provision of the License shall be
enforced to the maximum extent permissible so as to effect the intent of the
parties, and the remainder of this License shall continue in full force and
effect.

10. Complete Agreement. This License constitutes the entire agreement
between the parties with respect to the use of the Software, the related
documentation and fonts, and supersedes all prior or contemporaneous
understandings or agreements, written or oral, regarding such subject
matter. No amendment to or modification of this License will be binding
unless in writing and signed by a duly authorized representative of
Metrowerks.

Become a CodeWarrior No\N!

To order the full version of
Metrowerks CodeWarrior, fill
out and fax this order form.

Fax: (419) 281-6883
Voice: (800) 377-5416 (USA only)

(419) 281-1802 (outside USA)

For sales and site licensing
information:

Voice: (512) 305-0400
Fax: (512) 305-0440
Internet: sales@metrowerks.com

Please print clearly

Name

Company or educational institution

Address

Address

City State/Province ZIP/Postal code

Telephone number Fax number

E-mail address

Code Warrior
Qty Cost each Total

CodeWarrior Gold $399.00

CodeWarrlor Bronze $99.00

CodeWarrior Academic $99.00

Academic Lab Pack 10 $650.00

Academic Lab Pack 25 $1450.00

CodeWarrlor Magic/MPW $299.00

Total

Applicable tax(es), shipping & handling

Total payment

D VISA D Master Card D American Express

I
Credit card number Expiry date

(MM/YY)

Cardholder's signature

About the CD-ROM

The CD-ROM that accompanies this book contains a fully-functional copy of
CodeWarrior™ C++. It is, however, limited in a significant way: It will only compile
and run the projects that are on the CD-ROM. You will therefore find two types of pro
jects. The first type includes all the sample code from the book. You will be using those
projects and their source code files for the book's programming challenges.

The. second type of project are two "blank" projects. In other words, empty files have
been added to the projects so that you can add your own code to those files. The first
blank project is for use in the exercises in Chapter 3. The second is for you to use to cre
ate your own programs from scratch. Because each blank project only has two source
code files (one for the main program and one for the class functions), they are only suit
able for very small programs that you can use to practice.

WARNING:
Seal may not be broken prior to purchase.

If the seal on this pouch is broken,
product cannot be returned. Please

read the softwue licensing agreement before
opening.

