

C Programming
Techniques for the

Macintosh®

j

HOWARD W SAMS &.. COMPANY
HAYDEN BOOKS

Related Titles

Macintosh® Revealed

Volume One:
Unlocking the Toolbox
Second ~dition
Stephen Chernicoff

Volume Two:
Programming with the
Toolbox
Second Edition
Stephen Chernicoff

Volume Three:
Mastering the Toolbox
Stephen Chernicoff

Volume Four:
Pro&p"amming the
Macmtosh® D (forthcoming)
Stephen Chernicoff and Geri
Younggren

Bow to Write Macintosh®
Software
Second Edition
Scott Knaster

MacAccess: Information in
Motion
Dean Gengle and Steven Smith

MPW and Assembly
Language Programming
Scott Kronick

The Macintosh® Advisor
(Updated for Multifinder)
Cynthia Harriman and Bencion Calica

Object-Oriented
Programming for the
Macintosh®
Kurt J. Schmucker

Programming the 68000
Edwin Rosenzweig and Harland
Harrison

The Waite Group's
Tricks of the
HyperTalk"' Masters
The Waite Group

The Waite GrouP-'s
HyperTalk '" Bitile
The Waite Group

IBM® PC and Macintosh®
Networkin1: Featuring TOPS
and Apple hare"'
Steve Michel

Macintosh® Hard Disk
Management
Bencion J. Calica and Charles Rubin

Artificial Intelligence
Pro&p"amming on the
Macmtosh®
Dan Shafer

Understanding HyperTalk"'
Dan Shafer

For the retailer nearest you, or to order directly from the publisher,
call 800-428-SAMS. In Indiana, Alaska, and Hawaii call 317-298-5699.

C Programming
Techniques for the

Macintosh®

Zigurd R. Mednieks
Terry M. Mednieks

HOWARD W. SAMS ~COMPANY
A Division of Macmlllan, Inc.

4300 West 62nd Street

Indianapolis, Indiana 46268 USA

©1986 by Zigurd Mednieks

FIRST EDITION
THIRD PRINTING -1989

All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without written permission from
the publisher. No patent liability is assumed with respect to the use of in
formation contained herein. While every precaution has been taken in the
preparation of this book, the publisher assumes no responsibility from er
rors or omissions. Neither is any liability assumed for damages resulting
from the use of the information contained herein.

International Standard Book Number: 0-672-22461-5
Library of Congress Catalog Card Number: 86-61450

Acquiring Editor: James S. Hill
Cover Art: Gregg Butler
Composition: MUSRU Corporation

Printed in the United States of America

Trademark Acknowledgments
All terms mentioned in this book that are known to be trademarks or ser
vice marks are listed below. Howard W. Sams & Co. cannot attest to the
accuracy of this information. Use of a term in this book should not be re
garded as affecting the validity of any trademark or service mark.

Apple][is a trademark of Apple Computer, Inc.
AppleTalk is a trademark of Apple Computer, Inc.
DEC is a trademark of Digital Equipment Corporation
IBM PC is a trademark of International Business Machines, Inc.
Lisa is a trademark of Apple Computer, Inc.
MacPaint and MacWrite are trademarks of Claris Corporation
PDP-10 and PDP-11 are trademarks of Digital Equipment Corporation
Unix is a trademark of AT&T and Bell Laboratories
VAX is a trademark of Digital Equipment Corporation

CoNrENTS v

Contents
Preface. xi

Part 1: Tutorial

C~apter 1: Beginnings. 1
Origins. 1
Implementations and implementation languages. 2
Capabilities. 3
Wherever C goes, there it is. 4
C and microcomputer software 4
Breaking down barriers 5
Where to go now. 6

Chapter 2: C and Other Languages. 9
Where you are going. 9
Where you are. 9
What you will need to get there 9
Familiar tools and new tools. 10
Abstraction. 10
The cost of the more-general approach. 11
Hiding data ... 11
Program structure. 13
Structuring data. 13
Number crunching 14
Extensibility. 14
Macros. 15
Why Macintosh programming really ought to be
done in C ... 16
Choosing your tools. 16

Chapter 3: Knowing C, Thinking C. 21
Ready?. 21
Which C .. 22
The preprocessor. 22
Simple preprocessor statements. 22
Preprocessor statements with parameters. 23

\ .. ~

VI C PROGRAMMING TECHNIQUES FOR THE MACTNTOSH

The opposite of a macro definition. 23
Including files. 23
Conditional compilation 23
Support for program generators 24
Preprocessor example. 24
The syntax of C- what the C parser sees. 25
Simple variables - storage classes and data types. 25
An example: simple declarations 27
Data structures and arrays 28
Unions. 29
Defined data types. 29
Enumerated constants 30
Aggregate declarations: an example 30
Pointer declarations 31
Opera tors. 31
Using unary operators: an example. 33
Binary operators 34
Control flow statements. 38
Procedures. 39
An example program 39
The meaning and use of style 41

Chapter 4: QuickDraw and Windows. 45
The obvious and subtle parts of QuickDraw 45
QuickDraw coordinates. 46
The GrafPort: an environment for drawing. 48
Bit maps .. 49
GrafPort regions: support for windows. 50
The Window Manager 51
The window record structure 51
Creating the desktop metaphor 52
Stepping through an update event. 53
Drawing from applications 53
The active window 54
What windows are not. 54

Chapter 5: Revolutionary Software, Classical
:rvficrocoinputerfiardware 57
The Macintosh and the Apple][. 58
You can count on Macintosh features 59
The major players on the Macintosh logic board. 59
The Motorola M68000. 59

CONTEN'I'S vn

The Synertek SY6522 Versatile Interface Controller 62
The Zilog Z8530 Serial Communications Controller 63
The Integrated Woz Machine 63
The NCR SCSI host adapter 63
How closed is it?. 64

Chapter 6: The Resource Compiler 67
A consistent way of initializing Macintosh data
structures . .. 67
Resources and Toolbox managers 68
Your own resources. 68
Example: designing a dialog. 69
Resource compiler syntax. 69
The header of a resource compiler input file 70
The general format of resource specifications 71
Window resources. 71
Dialogs and item lists. 71
Icon resources. 73
Cursors ... 74
Patterns .. 74
Strings ... 75
Menus ... 76
Control resources. 77
Finder resources. 78
Including resources from other files 79
Defining new kinds of resources 80
Resource editors. 81
Benefits ·. 82

Chapter 7: The Internal Structure of a Macintosh
Application 85
The evolution of an example. 85
Step 1: Getting started. 85
C code for the hello world program. 86
Resources for the hello world program. 87
The edit/compile/run cycle 88
Initializing Toolbox managers 88
Creating a window 89
The event loop. 90
Step 2: Building up 91
C code for the second version of our hello world
program .. 91

VIII C PROGRAMMING TECHNIQUES FOR THE MAONTOSH

Beefing up the event loop 93
It's event driven. 94
Step 3: Growth and movement. 94
Strengthening the framework. 98
Drawing the grow icon 99
Updating and activating 99
Responding to the mouse. 100
Support for activating, updating, growing, and
dragging. 100
What to do about invalid areas. 101
An invitation to tinker 101
Step 4: Menus and scroll bars 102
Setting up menus and scroll bars 110
Interacting with menus. 113
Interacting with controls. 114
Controls and activation 114
Use them! .. 115

Chapter 8: Exploring the Mandelbrot Set. 119
A shift in presentation 120
Stating the problem. 120
Goals and desired results. 121
Visual goals: Presentation 122
Enumerating the parameters. 122
Designing the data structures. 123
Solving the problem - computing the results. 124
Graphic display and graphics update 125
Creating a user interface 128
Designing with dialogs 128
Source listing. 130

Chapter 9: Extending Our Grasp. 161
Completing the application, . 161
Choices for filing. 162
Why two file systems? 162
Filing in the example program 162
Choices for cut and paste. 163
Choices for printing. 163
Printing in our application 163
The last listing 163

CONTENTS IX

Chapter 10: Debugging 199
How to prepare for debugging. 199
Two major Macintosh debuggers. 200
Basic concepts in debugging. 201
Deeps_ ... 202
The most common bugs. 204
Testing. 205

Part 2: Reference

QuickDraw 209
Event Manager 245
Window Manager. 249
Dialog Manager. 263
MellloryManager 273
Menu Manager 285
Control Manager 295
TextEdit. 305
Standard File Package 311
File Manager 315
Font Manager 343
Printing Manager 347
Resource Manager 355
Toolbox Utilities 367
Desk Manager. 375
Scrap Manager. 379
Segment Loader. 383

Pref ace

Do you need this book?
This book is designed to break down barriers for a new breed of

Macintosh user: the power user. Many power users reach a point at
which it is no longer satisfying to be an expert user. If you are familiar
with the Macintosh as a tool, and want to go beyond using the Macintosh
to programming the Macintosh, you have reached that critical threshold.

You maybe:

• A corporate MIS analyst considering using the Macintosh to pro
vide better integration and ease-of-use for your user community.
You need to provide your programmers with a detailed study of a
complete Macintosh application.

• A vertical-market developer. You need to contain development
costs. You need to know how to use the Macintosh Toolbox to give
your products the same level of sophistication that companies like
Lotus and Microsoft can provide in mass-market applications.

• A student in a course involving Macintosh programming. You need
a practical guide to programming, so that you can devote more at
tention to computer-science issues.

• A software developer considering developing versions of your soft
ware for the Macintosh. You have heard that the Macintosh is hard
to program. You need to know where the difficulties lie - and
where benefits like ease-of-use come from.

What this book will tell you
If you want to start programming your Macintosh, this book will

get you started faster and improve the chances that your first program
will work.

The Macintosh has earned a reputation as a challenging machine to
program. This is due, in part, to the Macintosh Toolbox. While it provides
powerful routines for creating user interfaces, it also requires the pro
grammer to be knowledgeable of and sensitive to the way Macintosh pro
grams are written. Where other machines are vehicles for programs of al-

XII C PROGRAMMJNG TECHNIQUES FOR 1HE MAONTOSH

most any kind, the Macintosh is a highly integrated hardware/software
system. If you are not programming for a living, and even if you are, you
cannot afford to spend time making uninformed design decisions and
painting yourself into corners. This book provides a clearly marked path
for new Macintosh programmers:

• You will find how to convert you knowledge of other computer lan
guages into expertise in C.

• You will be able to learn C quickly from this book if you already
know Pascal or another block-structured language.

• If you already know C, your knowledge of the features of C that are
commonly used in Macintosh programming will be strengthened.

• You will find out how the Macintosh graphics and windowing envi
ronment is put together.

• Your programs will not "sit on top of" the Macintosh Toolbox rou
tines. There is an interplay between your programs and the rest of
the Macintosh system. This book shows where your programs fit in
and what the Macintosh will take care of for your programs.

• No program is flawless, and Macintosh programs can be challeng
ing to debug as well as write. You will learn how to apply debug
ging tools in the Macintosh environment and what the commonest
bugs and their symptoms are.

This book first presents a tutorial guide to programming the
Macintosh. Beginning with the C language, continuing through the
Macintosh development environment, and culminating in a detailed
study of a complete Macintosh application, you will find all of the infor
mation a programmer with some experience with other computers needs
in order to program for the Macintosh.

The second part of the book contains reference material on the por
tion of the Macintosh Toolbox required for applications programming.
This reference section, which is written using C syntax, expands on the
reference material that comes with most C compilers. In addition to the
parameters and return values for the Toolbox routines, brief descriptions
of the actions and side effects of these routines are provided.

Together, the two parts of this book speed up learning and pro
gramming. By enabling Macintosh programmers to get to work sooner,
and by giving them reference material in a convenient format, the barri
ers to taking advantage of the Macintosh Toolbox are lowered.

Because of this focus on speeding up the learning process, it is im
possible for this book to cover all aspects of the C language and

PREFACE xm

Macintosh programming~

•

•

•

This is not an introductory programming book. If you have never
written a program before, this book should be read after, or in con
junction with an introductory C programming book.

This book does not cover Macintosh systems programming .
Networking, file system utilities, and device drivers are all outside
the scope of this book. The tutorial section does not cover the par
ticulars of this type of programming, and the reference section does
not document the low level routines used in Macintosh systems
programming.

This book is not a complete substitute for Inside Macintosh, Apple's
documentation of the Macintosh Toolbox. While it will be possible
to get along without for a while, Inside Macintosh will eventually
be the key to some mystifying problem or question.

Thanks!
This book's technical accuracy and readability rest heavily on the

contributions of the kind people who have given their time to review
parts of the manuscript: Steve Golson, Herb Philpott, Bill Harrington,
Charles von Rospach, Burt Sloan, Gill Pratt, Rachel Selig Greene, Clem
Wang, John Cabot, Monty Solomon, Andrew Levin, Brian Delacey and all
our colleagues at General Computer, Lotus Development and other com
panies who have provided feedback and a stimulating environment. We
are forever in debt to David Eyes of Apple Computer for getting us into
book writing and for his experienced hand in creating the framework of
this book. Without David we would not have known where to begin.

Updates in this printing
We have endeavored to improve this book for our readers, to whom

we are grateful. We have corrected the book where we have found errors,
and where errors have been pointed out to us. We have endeavored to
make the book more readable through editing and through better pro
duction standards.

The most significant update concerns the creation of resources.
Specifically, the discussions of the resource compiler ''RMaker'' are obso
leted by the fact that this program has been replaced by a new resource
compiler named Rez, with vastly different syntax than RMaker. This rais
es a problem since Rez is part of Apple's development environment,
which is too expensive for most students and hobbyists. We have kept
our chapter on RMaker to illustrate resources in general, and we have up
dated our example programs to use ResEdit, a more widely available re
source editor.

XIV C PROGRAMMING TECHNIQUl!SFOR 1llE MACNTOSH

This book was intended to be a cookbook. And while the author of a
book on Chinese cooking can't send you his dan-dan noodles so you can
figure out where yours went wrong, we can now send you the example
programs in this book, ready to run under the LightspeedC development
environment. An order form appears in the back of this book. We hope
that making our programs and code fragments completely compatible
with this widely used compiler further reduces frustration for first time
programmers.

Tutorial

1
Beginnings

• How C is related to other computer languages

• The origins of Unix and C

• The path C has traveled in Unix and other systems

• The path you will travel in the course of reading this book

The Macintosh is unlike any microcomputer that preceded it. C, on
the other hand, has a long history on more traditional computers. This
chapter traces the history of C up through the point where it has become
the most popular language for developing Macintosh software. If you
are choosing a language for your first major Macintosh program you may
want to know the reasons for C's popularity, and the facts behind its suit
ability for Macintosh programming.

Origins
Nearly every book that discusses C and/or Unix begins with a brief

history of these two intertwined pieces of software. This has led to a
large body of apocrypha that would have one believe, among other
things, that Unix was written as a prank to support a space-war game, or
that it was all part of AT&T's coherent plan to become a significant player
in the computer industry, or that Dennis Ritchie and Ken Thompson
were fed up with the size and complication of the Multics system and
wanted to show the world that something simpler would be better.

When Ken Thompson, one of the original principal authors of Unix,
spoke at MIT in the spring of 1985, his responses to questions from the at
tendees about the origins of Unix shed some light on the actual circum
stances and motivations that led to the creation of both Unix and C. Part
of what Thompson said could be expected: Unix wasn't part of a grand

2 CHAPTER 1 BEGINNINGS

design - neither AT&T's nor his own. Thompson and his colleague
Dennis Ritchie had been working on the Multics project. Multics began
as a huge project involving MIT, General Electric and Bell Laboratories.
Although flawed, Multics was far ahead of any other operating system of
its time and is still possibly the best software system for very large com
puters. So when Bell Labs withdrew from the Multics project, Ritchie
and Thompson found themselves back in the computing stone age,
where they had to submit ''batch jobs" on decks of punched cards and
wait a few hours or perhaps until the next day to see the results.

Thompson went on to describe how he and Ritchie tried to get their
own computer that they could use interactively whenever they wanted
to. Initially they wanted to buy a Digital Equipment Corporation PDP-
10, a fairly large machine. In the end they got a PDP-7, a smaller machine
- a "minicomputer." How different history might be had they succeed
ed in procuring the PDP-10, a machine with 36-bit words, 9-bit bytes, and
18-bit addressing yielding an address space of 256k 36-bit words! This
machine seems odd compared to the processors that are prevalent today.
Yet, at the time, there were no accepted byte-sizes, no expectations of a
large address space, and usually nothing that deserved to be called an
operating system available from the manufacturers of computers. Not
only did Unix spawn C, the prevalence of hierarchical file systems, com
mand processor "shells," and numerous other software design concepts,
it also helped solidify the 8-bit byte as the atomic unit of addressing.

Implementations and implementation languages
Unix was first written in assembly language. Even before C was

created, Unix had been ported across members of DEC's minicomputer
product line. Still written in assembly language, it arrived on the PDP-
11, DEC's last 16-bit computer. 8-bit bytes, general registers, and memo
ry-mapped I/0 are etched into the face of the Unix kernel code.
Although Unix grew up portable, it did pick up some of the design phi
losophy of DEC minicomputers. Partly because of Unix, almost every 16-
bit microprocessor is patterned after the PDP-11.

The first application of the Unix environment was the continued de
velopment of Unix. This development was greatly sped by "self-host
ing," in which Unix development was done on Unix systems. The impor
tance of self-hosted development cannot be overestimated. Systems
without strong self-hosted development environments usually die from
lack of applications software. With self-hosted development on Unix, the
community of co-workers that Unix supported became a community of
Unix developers - not just Unix users.

The appearance of C compilers on the Macintosh means that the
Macintosh is now "self-hosted" for developing Macintosh software. The
developer no longer needs two or more machines, and no longer needs
to wait for downloading to write Macintosh software. Self-hosted devel
opment also means that user-programmers can afford to use the same

CAPABILlTIES 3

tools professional developers use.
Unix development was self-hosted before C existed. The important

Unix concepts of a hierarchical file system, of devices as nodes in the file
system, of block and character devices, etc. were already implemented in
the assembly-language versions of Unix. These concepts, and the interac
tive nature of Unix, were attractive enough that the initial community of
Unix users began clamoring for a high level language - they wanted a
''FORTRAN."

So, here we have it straight from Ken Thompson's mouth: C began
as an effort to produce a dialect of FORTRAN for Unix. But one thing
saved us from having just that: the address space of the machine Unix
ran on allowed each program to occupy 64k bytes for both data and pro
gram instructions. There wasn't enough room to take into account all the
special cases and "features" that FORTRAN has. So Ritchie began prun
ing and simplifying, so that all the things he really needed in a language
could fit. The result is a spare language that relies on a. standard library
of routines where other languages would have things such as transcen
dental functions, heap management, and 1/0 built into the run-time en
vironment. With the rigid constraints the PDP-11 address space placed
on the size of the compiler, it is remarkable that C does not leave out any
significant feature in the areas of flow control, data abstraction, or data
structure definition. The completeness of C and its suitability for nearly
any programming task is illustrated by the fact that we are now in an era
where C and Pascal are by far the two dominant languages in which new
programs are written.

Capabilities
A complete set of capabilities is a key characteristic of C. Some

computer languages, such as Pascal and Basic, hide the way the variables
in a program are stored. C makes no attempt to enforce the abstraction of
the computer your program is running on. Practically, this means that
when you must reach right down to the hardware, to turn on a bit in a
peripheral controller, you have all the capabilities of Cat hand. You can
use bit fields, data structures, defined data-types, symbolic constants, etc.
to make the parts of your program that "touch" the hardware as read
able, maintainable, and easy to write as the rest of your program - even
while you are engaged in the down-and-dirty of bit twiddling. Of
course, for most programming tasks, you can remain completely oblivi
ous to where the compiler has set aside storage for your variables and
subroutines. Few other languages give both the ability to ignore the
hardware and hide it beneath abstractions and, alternatively, manipulate
hardware while retaining all the power of high level language: type
checking, data structuring, and readable notation.

The availability of C to its initial user community at Bell Labs
spurred the development of the full set of 300 or so Unix utility programs
such as cat, ed, sed, grep, awk, etc. To be applied to the task of develop-

4 CHAPTER 1 BEGINNINGS

ing Unix utility programs, Chad to generate fast code and carry no ex
cess baggage in its run-time environment. These programs could be in
voked quickly, run quickly, and not displace all the other programs run
ning concurrently in the Unix environment. The ultimate test of C as a
well-honed tool was the reimplementation of Unix itself in C. In tran
scribing Unix into C, C was proven as a system writing tool. C remains
the only alternative to assembly-language for writing programs for mi
cros - where performance, compactness, and access to hardware are
critical. Unix was transformed from a toy Multics into a versatile operat
ing system whose implementation one person could come to understand
in a couple of months time.

Wherever C goes, there it is
C and Unix became intertwined and thrive together to this day.

This is due in part to the popularity of Unix. Chas also become more
popular than any other "implementation" language for microprocessor
work - it is more popular than languages (such as PL/M) that were cre
ated for that purpose. C has become a lingua-franca among computer sci
ence students. When you work in C you are assured of a steady supply
of assistance from colleagues, of clever pieces of code to be gleaned from
computer magazines, of compilers, debuggers, subroutine libraries, etc.

The popularity of C and Unix is a genuine groundswell rather than
the result of a well executed marketing plan. Because AT&T was, at the
time, enjoined from competing in the computer business, Unix was either
given away to schools, or sold "as-is" for a fairly exorbitant price to en
sure that it would not compete against other operating systems. Even
though Unix was officially a non-product, both Unix and C were flattered
by imitation. C compilers were written for the Z80, the 6809, and other
microprocessors. Unix begat Uniflex, 05-9, and other operating systems
that touted their resemblance to Unix.

C and microcomputer software
Even MS-DOS is an imitation of Unix. It is not surprising that C is a

popular language for writing MS-DOS programs. C lets MS-DOS pro
grammers easily port Unix programs to MS-DOS machines. C also al
lows access to low..;level entities such as peripheral controller registers, so
that PC programmers can take advantage of PC-specific hardware capa
bilities without resorting to assembly language. Microsoft, the pubHsher
of MS-DOS, is strongly committed to C, and develops virtually all its
products in C.

The popularity of C among Macintosh programmers is something
of a puzzle, however. It caught Apple Computer's Developer Relations
department by surprise. According to a survey taken by Developer
Relations, about half the respondents are using C - a proportion that
was expected to be much lower. It is easy to see why C is so popular for
the IBM-PC: MS-DOS is overtly intended to be a scaled-down Unix. But

BREAKING OOWN BARRIERS 5

the Macintosh could not be further from the design philosophy of both
Unix and MS-DOS!

Partly, this popularity can be explained by availability. When the
Macintosh came on the market, the prevalent use of the 68000 was in
Unix supermicros. In its own way, the 68000 is also a descendant of the
PDP-11. Many C compilers had already been written and exhaustively
tested in the various Unix ports and derivatives running on 68000 based
machines, so C compilers for the Macintosh can be expected to produce
good code. C can also be more convenient for the developer who does
not want a Lisa solely for writing Macintosh programs in the Lisa Pascal
cross development environment. The Macintosh allows the choice of a
minimal language like C that has no built-in facilities for modular or ob
ject oriented programming, unlike the Lisa which pretty much required
the use of Clascal, an object-oriented Pascal

Partly, C on the Macintosh is a popular development environment
due to the use of the Macintosh in universities. Students at universities
where the use of a Macintosh is encouraged (or required) do not, in gen
eral, even have the choice of using the Lisa Pascal cross-development sys-

. tern. Because Unix is popular among universities, students are predis
posed to C. At Stanford, the University's long exposure to Unix manifest
ed itself in "SUMACC" - the Stanford Unix Macintosh C Compiler, a
Unix-to-Macintosh cross compiler for C.

Lastly, C is a wonderful and productive language with no artificial
constraints, no excess baggage, and all the significant features needed to
create readable, debuggable, and maintainable programs. C is an excel
lent choice on its own merits.

Breaking down barriers
So, if the 68000 is the modem equivalent of the PDP-11, and if C

works so well on the 68000, and if the Macintosh represents the next
wave in microcomputing, and if about half the professional developers of
Macintosh software have already decided that C is the best development
tool for their work, what problem remains? What obstacles lie between
the Macintosh and a large following of user-programmers?

In short, the answer is unfamiliarity. The engineer who used a
PDP-11 in his lab in college might find the 8088-based MS-DOS comput
ers more familiar. The Z80 microcomputer veteran will certainly find the
8088 instruction set and the notion of a ROM-BIOS more familiar than the
Macintosh's ''Toolbox." The Unix programmer will have to get used to an
environment that encourages a combination of big, heavily used, and
highly interactive applications the user might keep running for hours on
end and "desk accessories" that can be quickly invoked for short opera
tions, whereas the Unix environment he is familiar with is based almost
entirely on programs that start quickly, run for a short while, and then
give way to the next command the user types.

6 CHAPrER 1 BEGINNINGS

Where to go now
The rest of this book addresses the nature of the Macintosh - it

tells you why the Macintosh is the way it is, how to take advantage of it,
and how to carry any knowledge of C programming in other computing
environments over to the Macintosh environment. Overcoming this un
familiarity is important to creating software that doesn't chafe against
the interface style Macintosh users have come to expect from experience
with the Finder, MacWrite and MacPaint.

By the time you are done with this book you will know the mechan
ics of programming in C in the Macintosh environment. You will also
know how to make design decisions in harmony with the decisions made
by the designers of the Macintosh. As a result of knowing both these dis
ciplines, your programs will look just as beautiful and stylish as the pro
grams written by Microsoft or Lotus, and without significant extra work
on your part. Giving every program that you, the user-programmer,
write a professional level of polish is not practical in any other computer
system - not Unix, not MS-DOS, nor any other popular system.

Mastering the Macintosh means more than overcoming the differ
ences between Macintosh and the microcomputers that came before it. It
means becoming completely comfortable with the design decisions that
went into the Macintosh. It means being inside Macintosh.

POINTS TO CONSIDER 7

POINTS TO CONSIDER

1. The following computers are all very successful: Macintosh, IBM-PC,
Apple][, IBM 370, DEC VAX. Why are they successful?

2. In the above group of successful computers, only two occupy roughly
the same position in the market - which two? Why?

3. You may have, at some time, used a computer system that has fallen
into disuse and is now forgotten. Why did that product fail?

4. Users are demanding more and more ease-of-use and polish in the
programs they are willing to use. What does this mean to the small
software developer?

5. Of GEM, Microsoft Windows, and Topview, which do you think will
become the standard IBM-PC window system? What is the effect of
the lack of a standard user interface on MS-DOS and Unix software?

6. Unix gained popularity because it was given away to universities,
and Unix became a widely cited example in computer science courses.
With the University Consortium, Apple has established the
Macintosh as the leading microcomputer in many important universi
ties. As you read this book and as you learn more about the
Macintosh, keep asking yourself ''How can the Macintosh be used as
an example of good engineering?"

2
C and Other Languages

• How C is related to other computer languages

• How C is different

• How to transfer your experience in other languages to C

• Why everyone ends up putting features of the C language in their lan
guage

• Why Pascal has no advantage over C for Macintosh programming

Where you are going
If you are approaching this book knowing some other language

than C, you may be wondering just what C is, what C programmers think
it is, and where C fits in the spectrum of languages.

Where you are
We will take a broad approach to the question of the nature of C. C

is not very different from other block structured languages like Pascal,
Algol, SPL, Ratfor, PL/1, etc. If you know one of these languages step
ping into C should not be difficult. If you are an assembly-language pro
grammer, you can think of C as a convenient notation for structuring
data, calling functions, and specifying arithmetic operations and control
flow. Only if your experience in programming was acquired in an inter
pretive language like LOGO, APL, or Basic will you have to learn some
really new ways of working to use C effectively.

What you will need to get there
If you are a member of the group of people coming to C from an in

terpretive language environment, you may want to read a tutorial on C

10 CHAPTER 2 C AND 0rHER LANGUAGES

before going on. If you have experience in a compiled, block-structured
language already, you may want to have a C reference at hand. And if
you are a C programmer, you may want to brush up on function pointers,
pointers to pointers, and defined data types, because these are all heavily
used in Macintosh programming.

Familiar tools and new tools
Computer languages are like tools in a Toolbox. You may have al

ready chosen C as the tool you will be using to program the Macintosh. If
you are not an experienced C programmer, that decision was made with
out complete knowledge of what you are getting into. A computer lan
guage is just a tool and is inherently less important than the job itself.
You may be tempted to just get to work and use C syntax with the style
and conventions you used in Pascal or whatever language you are famil
iar with. Certainly no one cares whether you push or pull on the handle
of a wrench, whether you grip a screwdriver overhand or underhand.
But in programming, style is important if anyone other than yourself is
going to comprehend your programs. C is particularly susceptible to
quirky programming since there are no style rules built into the language.

The rest of this chapter compares the facilities other languages pro
vide for writing good programs with the facilities provided in C.

Abstraction
Abstraction is the ability to hide the details of an operation from the

programmer. Because of the abstraction built into Pascal, Pascal is widely
thought to be a superior language for the programmer who is not going
to make a career of programming. Standard Pascal, as it was conceived
by Niklaus Wirth, can be taught to a student as a set of rules. Students of
Pascal can become proficient without knowing what a register is, whether
structures are passed on the stack below a certain size and passed indi
rectly if they are larger than that size, how a data structure is laid out in
memory, etc. If you follow the rules of Pascal, your programs will work,
and you will not need to know how the machine is actually doing it.

For instance, if a Pascal programmer wants to write a procedure
with a side effect, he or she would declare a "VAR" parameter - a pa
rameter that is passed "by reference." So when an assignment is made to
that parameter in the routine, the variable "passed by reference" to the
routine will reflect the result of that assignment. In contrast, a C pro
grammer would have to be aware that in order to have a procedure mod
ify a variable local to its caller, the procedure will have to take a pointer
to that variable as a parameter, and all the modifications will have to go
through that pointer. This is one case where Pascal provides an abstrac
tion, and C provides a general mechanism for achieving the same result.

The following code fragments show the way a "VAR" parameter is
used in Pascal, and an equivalent procedure coded in C. This is an exam
ple of one instance of Pascal abstracting and C requiring the programmer

THE COST OFTIIE MORE-GENERAL APPROACH 11

to specify an action explicitly. Both routines do exactly the same thing.
First the Pascal version:

procedure Assign (VAR to : INTEGER; from : INTEGER);

{Assign the value of "from" to the variable "to."}

begin {Assign}

to :; from;

end {Assign}

And the C version of the same procedure:

/* Put the value of "from" into "to." */
assign(to, from)

int *to;
int from;

*to ; from;

In this case the C programmer has to know that in order to change
some non-local value whose location is not globally known, the proce
dure has to have a pointer to that location passed as a parameter. The
Pascal programmer can achieve the same effect knowing only the rule: If
you want to "permanently" change the value of a parameter, you have to
declare it "VAR."

The cost of the more-general approach
It is impossible to become an expert C programmer without know

ing that you cannot, in general, find the address of a register, that strings
are conventionally null terminated, that data structures are laid out in
the order they are defined, that odd addresses can only point to one-byte
objects on machines based on the 68000, etc. It is hard to write good C
programs without being an expert. Fortunately C, like Pascal, is a small,
simple language. It is not much more difficult to become an expert at C
than it is to become proficient in the rules of Pascal programming.

Some other languages, like Pascal, were designed to hide the details
of data storage and access; C was not. If you are familiar with a block
structured language that abstracts more than C does, you will find a C
reference manual that details the way data storage and scope is treated
handy.

Hiding data
If you are writing a large program and you want to avoid naming

conflicts, or if you are working with other programmers on a large

12 CHAPTER2 CANO 0nmR LANGUAGES

project, you will want to "hide'' data from code that should not be modi
fying that data.

C provides about the same facilities for hiding data as the typical as
sembler and some additional capability that lets you "hide'' variables in
side procedures. Like most assemblers, you can declare a data object "ex
ternal" - meaning it is defined in some other file. The linker resolves
references to external objects. You can also declare global variables "stat
ic," which means they will never be touched by code in another file. If a
local variable is declared static, it will not be allocated on the stack when
the procedure it is declared in is called. Instead, it will be allocated in the
global data area of the program, but only the code in the procedure it was
declared in will be able to access it. Static local variables retain their
value across invocations of that procedure, and they always occupy space
- even when the procedure they are declared in is not being executed.
Procedures can also be declared static - in which case they cannot be di
rectly called from outside the file they are defined in.

Normal local variables are allocated on the stack, and disappear
when the procedure they are declared in returns. These variables are
only directly accessible from code in the procedure they are declared in.

The following code fragment illustrates C's data-hiding capabilities:

static int this_file_only;
extern int somewhere_else;

/* Available only to this file */
/* Defined in some other file */

I* call a routine that accumulates values to accumulate two
* numbers, then call it with a value of 0 and put
* the return value in the variable 0 total"
*I

main()
I

int a_local, another_local, the_total;

a_local = 1;
accumulate(a_local);
another_local = 4;
accumulate(another_local);
the_total = accumulate(O};

/* A routine callable only from code in this file */
static

accumulate(value}
I

static int accumulator = O;

accumulator += value;
return accumulator;

PROGRAM STRUCTURE 13

C does not have the elaborate "scope rules" of Algol, where, in cer
tain cases, variables in a routine's caller are available, along with local
and global variables. But by using the static storage class and by dividing
large programs into separately compiled modules, you can do an effec
tive job of organizing your program's data, and hiding data from code
that has no business modifying it.

Program structure
C programs are generally organized "top-down," no matter what

order they are written or designed in. When you look at a C program list
ing you will generally see the "main" procedure near the top, the high
level procedures next, and the lowest level procedures either following
the higher level procedures they support or at the end of the listing. This
is exactly the opposite of the way most Pascal, Algol, and APL programs
are organized. In these languages, the lowest level procedures come first,
conventionally or compulsorily before the procedures that call them.

Languages that promote ''bottom-up" order in listings do so be
cause their development environments may provide an interpreter that
needs routines defined before they can be called, or because they have no
way of declaring return values other than in procedure definitions. In
some languages there may be no real need to order programs bottom-up
-it may just be customary.

C does not require any particular order. C compilers can determine
the data type of return values either from procedure definitions or from
declarations. Whether or not there is some intrinsic value to top-down
program organization, most C programmers expect programs to be orga
nized this way. If you want to take advantage of the advice of experi
enced C programmers it is a good idea to lay out your programs the way
they would.

In addition to this stylistic convention, you only need to follow com
mon sense and the requirements of the language in laying out your pro
grams. You have to define data structures, variables, and preprocessor
macros before you use them. Preprocessor macros are used throughout
the file, so they ought to come at the beginning (this is a flexible maxim,
and if common sense dictates defining a macro near the other entities it
refers to instead of at the top of the file, follow common sense). After the
preprocessor macros come the data structure definitions, the enumerated
constants, and the defined data types. They must precede the global
data declarations where their definitions are used. Following the global
data declarations, the procedures that make up the program are defined.

Structuring data
The data structuring capabilities of a computer language are a major

determining factor in the expressive power of that language. Roughly
speaking, there are low-powered languages like Basic and Fortran at one
end of this spectrum, C, Pascal, Algol, PL/1, and other block-structured

14 CHAPmR.2 C AND OTHER LANGUAGES

languages in the middle, and Lisp, Modula-2, Smalltalk, and the grand
daddy of modular languages, Simula, at the high end of the data structur
ing spectrum. Because C is found in the middle of this spectrum, as is
Pascal, C can replace Pascal as a programming tool without too much dis
ruption, kludging, or violation of language rules.

C data structures are bit-for-bit equivalent to Pascal records. The
differences amount to that C provides bit-fields and Pascal has a more
convenient way of expressing multiple interpretations of the structure of
the same piece of memory. That C and Pascal structure data in about the
same way is a fortunate circumstance: it means that all of the data struc
tures that the Macintosh Toolbox uses can be defined and accessed in C
without any tricks or hacks whatsoever. Because of this, it is possible to
write C programs for the Macintosh that are every bit as enmeshed in the
Macintosh environment as any Pascal or assembly language program.

The languages that fall below C and Pascal in data structuring capa
bility, such as Basic and Fortran, prevent programs written in those lan
guages from taking full advantage of the Toolbox software. Conversely,
languages that offer a great deal more data structuring power than C ei
ther make it difficult to do low-level ''bit-twiddling," or require a cum
bersome runtime environment, or have no way of specifying structured
data in a way that has a predictable layout in memory, or some combina
tion of these hindrances.

Number crunching
C is not the best language for number crunching. It isn't bad if all

you need are double-precision floating point numbers. But single preci
sion floating point is all but useless in C, because single precision floating
point numbers are converted to double precision before any operations
are performed on them. This means there is no performance gain to be
had by using single precision .floating point numbers, even when they are
sufficient for the application.

Some C compilers violate the C standard and provide completely
single-precision operations, or IEEE standard floating-point numbers, or
both. Adding floating point data types is a fairly innocuous way of fudg
ing the C standard because C programmers can define new data types
themselves. If you plan to use a lot of floating point arithmetic, you may
want to look for a C compiler that has additional floating point data
types.

The Macintosh Toolbox software provides fixed-point arithmetic,
but the cost of calling a routine to do a single fixed-point operation is
greater than the cost of executing the in-line code for double-precision
floating-point arithmetic.

Extensibility
C provides two forms of extensibility: New data types may be de

fined, as in Pascal, and new types of constants may be defined. C also

MACROS 15

has a macro-preprocessor which should not be used to extend the lan
guage. While it is true that you could make C look a lot like Pascal
through creative use of preprocessor macros, you should not expect any
one but yourself to be able to read such code!

Although C and Pascal have virtually identical capabilities for de
fining new data types, C programmers use that facility a great deal less
than Pascal programmers. While every pointer used by Toolbox software
has a defined data type associated with it, C programs seldom have data
types defined for pointers, since C notation for declaring pointers is so
simple and terse. In the examples in this book, we will use the defined
pointer types provided by the Toolbox because all of the Apple docu
mentation and other Pascal oriented documentation refers to those data
types. For pointers to objects of our own creation, we will follow the
usual practice of omitting to define new data types for pointers and struc
tures.

Macros
Unlike most other languages, C has a macro-expander associated

with it. The macro expander is a separate step in compilation, so you can
be sure that all macro expansion is done before any C expression parsing
has taken place. The C preprocessor is a "token-oriented" macro expand
er, which means that it operates on the same chunks of characters that the
C parser does.

C's token-oriented macro expander can be contrasted with the
string-oriented macro expander "m4" which comes standard with most
Unix systems. The m4 macro-expander can be used to glue tokens to
gether and pull them apart - something that can't (well, shouldn't) be
done with the C preprocessor.

The C preprocessor is used to associate names with constants, so
when you write:

fdefine FOO 5

bar = 3 + FOO;

The C compiler proper sees:

bar = 3 + 5;

The preprocessor has substituted the token "5" for the token FOO.
Most Macintosh C compilers use the preprocessor for Toolbox con

stants because most C programmers do not use enumerated constants,
and because preprocessor symbols can stand for all types of C tokens.
Also, some compilers do not have enumerated types.

16 CHAPTER2 C AND OTHER LANGUAGES

Why Macintosh programming really ought to be done in C
Because Apple had to extend Pascal to include features that are part

of standard C (most notably casting operations), the Pascal used to devel
op Macintosh applications has lost its advantage of hiding the facts of life
about data storage from the programmer. One consequence of these ex
tensions is that Inside Macintosh, Apple's reference manual for Macintosh
programmers,has to cover the non-standard extensions to Pascal and
their use in Macintosh programming, in addition to being a reference
document for the Macintosh Toolbox. Programmers that have learned
standard Pascal, or some other extended variant of Pascal will need to
learn the language features added to Macintosh Pascal. Also, most Pascal
manuals and tutorials do not cover these added features.

The result of these extensions is a Pascal that can do most - not all
- of the things C can do, without the advantage of hiding details of data
storage from the programmer. When you cast one type to another, you
have to be aware of how those data types are stored. So instead of keep
ing track of data storage as part of the rules of C, you have to keep track
of a set of violations to the rules of standard Pascal. On the Macintosh,
there is no substantial difference in the effort expended on the part of the
Pascal programmer compared with that expended by the C programmer.
Programmers might as well take advantage of the added features of C.
(Though, to be fair, the extensions in Macintosh Pascal are quite cleanly
designed, and do not detract from the readability of programs.)

Since Macintosh Pascal is not standard Pascal, the amount of help
available to the Pascal programmer from tutorials and other books on
Pascal is diminished. On the other hand, in a well designed C develop
ment system for the Macintosh, you will not have to learn new language
features.You will have to change the way you think about program de
sign, and you will find yourself using some features of C that are seldom
used in other environments. In Macintosh programming, the rules are
the same, but the style of the game is different.

Choosing your tools
LightspeedC was used for the examples contained in this book.

LightspeedC provides an integrated development environment that takes
advantage of the Macintosh user interface to make compiling, assem
bling, and linking, painless and easy. All of the phases of compiling a
program are rolled into one program - even the program editor is inte
grated into the LightspeedC environment. This degree of integration pro
vides two advantages: If a syntax error is discovered in your program,
the file in which the error occurred is placed right there in an editor win
dow, with cursor in the offending line of code, ready for you to fix. The
other advantage of LightspeedC is speed. LightspeedC is the fastest
available C compiler for the Macintosh. If used with a hard disk, it is
faster than compiling on all but the fastest mini and mainframe comput
ers.

CHOOSING YOUR TOOLS 17

LightspeedC is designed to conform to the way Apple's Macintosh
Programmer's Workbench (MPW) Pascal interfaces with the Toolbox.
Integers and other related data types in LightspeedC are the same size as
those in MPW Pascal, and calling sequences for Toolbox routines are the
same as well. No "glue'' or interface code separates your program from
the Toolbox, and no implicit data conversion is done in passing parame
ters to Toolbox routines. In terms of conforming to the Pascal Toolbox in
terface conventions, LightspeedC is superior to MPW C, which performs
potentially confusing data conversions when string and integer parame
ters are passed to Toolbox routines.

Compilers that insulate you from the Macintosh Toolbox or that at
tempt to maintain Unix programming idioms in the Macintosh milieu
make it much more difficult to tap the technical information available in
Apple's documentation, technical journals, and users' group newsletters.
Insulating you from the "native" Toolbox interface also takes code, which
increases the size of your applications without increasing their power.

If you are considering using a compiler not specifically mentioned
in this book, you should look for one that has the fewest embellishments
over and above the standard Macintosh Toolbox interface. New compil
ers are appearing all the time, and it is certain that some of the new com
pilers will be at least as good as LightspeedC. Selecting a compiler is a
difficult judgment to make. Contact your local user's group if you need
more technical information on which to base your decision.

18 CHAPTER2 CANO 0mER LANGUAGES

POINTS TO CONSIDER

1. Why did you choose C for programming the Macintosh?

2. What obstacles did you foresee in using C?

3. How does C differ from other languages you know? Is the difference
greater or smaller than you expected?

4. What other languages would you consider using? Why?

.·
.. ~·

•-' _.··

3
Knowing C, Thinking C

• Whether you can learn C in one chapter

• A description of the C language

• What is good C style

• How to read Pascal and think C

Ready?
To keep this chapter manageable, we do not attempt to do what oth

ers do in an entire book. You will need to ask yourself whether you can
learn Cina single chapter, or whether you should augment this chapter
with a C tutorial. If you are familiar with a block-structured language,
and if you have written enough code in that language to have faced the
following issues, you can probably pick up C from this description of the
language. Here are the issues you should have faced:

• Calling procedures written in other languages - the practical impli
cations of "call by value" and "call by reference."

• Defining data structures to match structured data from external sourc
es such as networks, data files produced by other systems, or data
structures used by library procedures written in languages other than
the one you use.

• The scope and visibility of local variables.

• The use of "bit-masks."

• Formatting your programs according to accepted practice.

22 CHAPI'ER.3 KNOWING c, THINKING c

If you are well-versed in these issues then you can probably go on
to pick up C from the rest of this chapter. If you feel you might be left
adrift by a description of the C language that omits extensive tutorial ex
amples and exercises, there are many books that teach C with plenty of
depth and tutorial assistance.

WhichC
This description of the C language is derived from the draft ANSI

standard for C. This is the subset of that standard that is compatible with
the current AT&T Unix C compiler. We will be presenting C in three
parts. First, the C preprocessor will be described: it is what gives C con
stants and macros. Then the C language proper will be described in
terms of its data types and operators.

The preprocessor
The C preprocessor is a language in itself. In some implementa

tions of C, the preprocessor is made available in stand-alone form so it
can be applied to files in languages other than C. In all implementations,
the preprocessor can be considered a separate "pass." The compiler only
sees code after the preprocessor has finished operating on it.

The language of the preprocessor enables you to specify that some
token in a program be replaced by some other token(s). One function of
the preprocessor is the creation of symbolic constants ("equates," in as
sembly language). Most symbolic constants in C programs are preproces
sor constants - these are replaced by numeric constants before the C
language parser sees them. In Pascal, symbolic constants are part of the
language itself. There is little practical difference between these two ap
proaches.

Preprocessor statements have two parts. The left side of a prepro
cessor statement specifies a token,or a macro with a list of parameters.
The right side specifies what will replace the left side. Preprocessor state
ments generally end at the end of the line. When more than one line is
required, a backslash placed at the end of the line indicates that the next
line is also part of the preprocessor statement.

Simple preprocessor statements
This is the syntax of preprocessor statements:

#define identifier [any-token ...]

The basic preprocessor statement associates identifier with one
or more tokens. Before the C parser sees the tokens that make up the C
program, the preprocessor will have replaced identifier with the to
kens to the right of it. If no tokens are given, then the identifier is re
moved from the program.

l'REPROCF.sSOR STATEMENTS WTIH PARAMETERS 23

A program with the following statement in it would have all in
stances of the token "FOO" replaced with the number "3:"

#define FOO 3

Preprocessor statements with parameters
In addition to an identifier that names a preprocessor macro, a

macro can have a list of parameters, enclosed in parentheses, following
the macro-name. If these parameters are used anywhere in the body of
the macro definition, they will be replaced by whatever tokens appear in
the parameter list when the macro is used.

#define identifier (identifier [, identifier ...]) [any-to
ken ...]

Macro parameters are like procedure parameters. When a macro is
used, the parameters of the definition are replaced by "actual parame
ters." A macro that looks like a procedure-call can replace procedure-calls
with in-line code, increasing the efficiency of critical sections of programs.

The opposite of a macro definition

#undef identifier

This preprocessor directive causes the preprocessor to forget about
identifier.

Including files

#inc1ude <name-of-file>
#inc1ude "name-of-file"

These two statements cause the contents of another file to be includ
ed into the the file being processed. The first form looks for files in a pre
determined list of directories, the second uses only files found in the local
directory.

Conditional compilation

#ifdef identifier
#ifndef identifier
#if constant-expression
#endif

24 CHAPTER 3 KNOWING C, THINKrNG C

These are the preprocessor's conditional statements. Lines between
an opening conditional statement and a closing #endif statement are
conditionally included in the file being processed. The first two forms of
preprocessor conditions test for the existence or non-existence of prepro
cessor macros. The identifier may be the name of a macro with no right
side - no tokens that would replace occurrences of the identifier in the
file. The third form of condition includes the entire constant expression
syntax of C. If the expression has a non-zero value, the condition is true.

This facility of the C preprocessor corresponds to the conditional as
sembly facility of most assemblers.

#e1se

This preprocessor statement divides conditionally included lines
into two groups: The lines before the .ftelse remain in the file being pro
cessed if the condition of the conditional inclusion statement is true. The
lines following the #else and before the #endif are included if the con
dition is not true.

Support for program generators
The #line statement is not properly part of the preprocessor. The

purpose of the Uine statement is to inform the compiler's error-notifica
tion system what line the real source code is on. Preprocessors like the C
preprocessor, m4, YACC, LEX, or any of the other macro processors and
program generators that are commonly used in conjunction with C often
change the number of lines the compiler sees after the source code has
been processed. These preprocessors insert Uine statements so that the
compiler does not report incorrect and confusing line numbers when
compiling preprocessed code.

#1ine integer [name-of-file]

Program-generating-programs insert Uine statements in their out
put - seldom would you have any reason to type in a line statement
yourself.

Preprocessor Example
The following code fragment is an example of conditional compila

tion:

#if DEBUG LEVEL > 3

/* Some highly detailed debugging code ••• */

#endif
#if DEBUG LEVEL > 2

THE SYNTAX OF C-WHATTIIE C PARSER SEES 25

/* Some less detailed debugging code ••• *I

ilendif

The syntax of C - what the C parser sees
The rest of this chapter describes the syntax that the C parser recog

nizes. Whether a particular compiler is implemented this way or not, you
can think of a C program as being free of preprocessor statements by the
time it reaches the C parser.

While reading this description of C, you may want to keep your
thumb on a page with a sample program on it, to see examples of the syn
tax being described. A small sample program appears at the end of this
chapter, and later chapters contain much larger examples illustrating
Macintosh programming.

Simple variables - storage classes and data types
A fundamental part of many computer languages is a facility for

setting aside space for variables. Using the following syntax you can set
aside space in units fundamental to C:

[storage-class] [data-type] identifier
[=initializer][, identifier[= initializer] ...];

Storage classes determine how a variable is stored. Data types tell
how the bits in a variable are used and the size of the variable. The iden
tifier gives the variable a name. The initializer determines the initial
value of the variable. Any number of variables of the same type and stor
age class can be declared, with storage set aside for them, in a single state
ment.

The following storage classes are available:

static

If this storage class is specified for a global variable (a variable de
clared outside any function or procedure), the variable is made unavail
able outside the file it is declared in. If the static storage class is specified
for a variable local to a procedure, then that variable will be allocated in
the global data area of the program and the variable will retain its value
across invocations of that procedure it is local to. Because the variable is
local to a procedure, no other procedure will be able to access it.
Procedures can be declared static as well, hiding them from other files.
The static storage class is used to make programs more modular and to
avoid naming conflicts among global variables.

26 CHAPTER3 KNOWING C, THINI<ING C

extern

The extern storage class tells the compiler that storage for this
variable has been allocated elsewhere but that its data type is the one
specified with the name of the variable. The extern storage class is used
when the compiler needs to know the size and/or type of a variable
whose storage has been set aside in some other module of the program.

auto

The auto storage class signifies that a variable is to be allocated
"automatically," on the stack, when a program block is entered, and de
allocated when the block is exited. This is the default storage class for
local variables.

register

The register storage class advises the C compiler to place vari
ables local to procedures in the registers of the processor. Using register
variables can greatly speed-up the execution of a program.

The following data types are predefined in C:

int

The int (integer) data type is the fundamental data type in C.
Integers are meant to reflect the architecture of the machine the compiled
program will run on. In the case of the Macintosh, integers are 16 bits
wide.

short

The short data type is never bigger than an integer, but it can be
smaller. The choice of size for a short is up to the compiler implemen
tor. On the Macintosh, short integers are not too useful- if you need an
8-bit quantity use a char because all compilers have an 8-bit char data
type. On machines where integers are 32 bits wide, the short data type
provides a way of working with 16 bit integers.

1ong

The long data type is 32 bits wide on the Macintosh. It is never
smaller than an int. On most 32 bit machines, it is the same size as an
int.

AN EXAMPLE: SIMPLE DEa.ARATIONS 27

char

The char data type is used to reflect the unit of storage used to hold
characters on a machine. On a Macintosh, and most other machines, it is
8 bits wide. Arithmetic operations can be performed on char variables in
the same way as on int, long and short variables.

unsigned int

Unsigned integers have no sign-bit, and so can hold numbers twice
the magnitude of signed integers.

unsigned short

Just like a short but no sign-bit.

unsigned 1ong

Just like a long but no sign-bit.

f1oat

The float data type may sound as though it is the fundamental
floating point type in C, but it is not. All float variables are converted to
double before being operated on. Unless you are storing floating point
numbers in arrays big enough to cause a space crunch, using the double
type will make your programs execute faster.

There are no standards specifying sizes, or even relative sizes for
floating point types in C. Some Macintosh C compilers use Apple's
Standard Apple Numerics Environment, a library that conforms to the
IEEE floating point standard, and some do not. Some compilers omit
floating point altogether. Some compilers allow the programmer to spec
ify that float types are not to be converted to double before arithmetic
operations.

doub1e

This is the real fundamental floating point type in C. On the
Macintosh, a double typically occupies 10 bytes.

An example: Simple declarations
The following declarations create simple variables:

/* Double-precision X and Y velocities are initialized
* to O
*/

28 CHAPTER 3 KNOWING C, 1HJNKING C

double x_velocity = o, y_velocity = O;

/* The local variable in this procedure retains its
* value across calls, and is zero before the first
* call to this routine.
*I

int running_ total (add_ in)
{

static subtotal = O;
I* Initially zero */

subtotal += add_in;
return subtotal;

Data structures and arrays
Data structures and arrays are the two means of aggregating vari

ables in C.
Arrays can have multiple subscripts, but they must be contiguous in

memory. Subscripts are always integers. Negative subscripts indicate a
negative offset from the beginning of an array. On a Macintosh, you can
use subscripts to access elements of one-dimensional arrays of 215 items
or less.

This is not to say that you cannot deal in tracts of memory larger
than this - you will just have to do the pointer arithmetic yourself.

Array declarations have a syntax that is a minor variation on that
used for simple variables:

[storage-class] [data-type]
identifier[(bounds]][[bounds] ...]

[=initializer][, identifier[= initializer] ...];

Array bounds can be expressed as any constant expression. C does
no bounds checking and bounds are optional for one dimensional arrays.
Omitting array bounds or ignoring preestablished bounds can be useful
for working with variable length arrays.

Data structures are a way of grouping declarations under a single
umbrella declaration. In Pascal, the equivalents of structures are called
records.

This is the syntax of C data structures:

struct [identifier] {declaration; [declaration; .••])
[identifier];

UNIONS 29

Data structures are like cookie cutters, and memory is like a sheet of
dough: if you leave off the last optional identifier you have made a cook
ie cutter, but no cookies. If you include the last identifier, you have made
a cookie cutter and one cookie. If you plan to use a data structure cookie
cutter elsewhere, you will have to name it by including the optional iden
tifier just after the struct keyword.

Named structure definitions can be used just like predefined data
types. Any place where the name of a data type is used, the keyword
struct can be used followed by the name of a previously defined struc
ture.

Unions
Unions are like structures except that unions do not lay items end to

end as structures do - unions lay the items they contain on top of each
other. So if you need a name for a piece of memory that could hold two
or more structures, indeed any number of types of variables, you would
declare a union containing members of all the types that could be put in
that space. The syntax of union declarations is almost identical to that of
structures:

union [identifier] {declaration; [declaration; ...] }
[identifier];

As with structures, the result of declaring a union is a "cookie cut
ter'' that cuts out pieces of memory that are the size of the largest element
in the union. If the union can hold the largest member of the union, it can
hold any member of the union.

Defined data types
C has a means of defining new data types. This mechanism is simi

lar in syntax and in usage to Pascal's defined data types. The greatest dif
ference is that defined data types are seldom used in C, though some
books that teach C strongly advocate their use.

Defined data types are widely used in the Toolbox interface. Even if
you have not used defined data types extensively in C programs you may
have written, you will need to be familiar with them for programming
the Macintosh.

This is the syntax of data type definition:

typedef abstract-declaration identifier;

An abstract declaration is a declaration without the name of the
variable. So instead of creating a variable of a given type and a given
name, an abstract declaration simply provides information about size and
type. Defined types use this information, because the newly defined type

30 CHAPTER3 KNOWING C, TmNICING C

inherits the characteristics, like size, structure element names, etc. from
the data types used in the abstract declaration. The name of the defined
data type is given as an identifier. That identifier can then be used like
any other data type name - anywhere when you can use "int," you can
use a defined data type.

Enumerated constants
Enumerated constants are the "other'' way of creating symbolic

constants in C. Enumerated constants are like Pascal sets. Not only do
you create symbolic constants when you with define enumerated con
stants, you can, at the same time, create a class of variables to hold those
constants.

Creating enumerated data types provides a means of enforcing the
correct use of enumerated constants only in situation where they ought to
be used. They will not properly "fit'' in variables of other types and a
good compiler will warn you of abuse of enumeration types and con
stants.

This is the syntax of enumerated constant declarations:

enum [identifier] { [identifier [=initializer]][,
[identifier [=initializer]] •.• };

The identifier that may appear just after the enum keyword names
an enumerated type for variables that can hold only the constants named
in the list between the braces. To declare a variable of a class defined in
an enum declaration, use the following syntax:

enum identifier [=initializer];

Aggregate declarations: an example
The following declaration creates an array of structures. The struc

ture is called ball and the array is called in_play.

I* At most three balls can be in play */
struct ball
{ int x _position;

int y_position;
double x_velocity;
double y_velocity;
int mass;

I in_play[3J;

OPERATORS 31

Pointer declarations
Pointers are variables that hold the addresses of other variables. In

C, pointer declarations are syntactically variations of the declarations of
the variables they can point to.

In pointer declarations, the identifier naming the pointer is preced
ed by an asterisk. Asterisk, when used as a unary operator, is the derefer
encing operator. Dereferencing is the action that takes place when a
pointer is followed to the object it points to - this is also called indirec
tion.

This is the syntax of pointer declarations:

data-type *identifier [=initializer];

This is the declaration for a pointer to an integer:

int *ptr_to_a_nurnber;

Operators
The C language has a rich enough set of operators to perform al

most any arithmetic or logical operation supported by hardware primi
tives in most computers.

Operators are evaluated in a predetermined order. Several opera
tors may be at the same level in this order, in which case they are evaluat
ed from left to right. Unary operators are an exception, evaluating right
to left.

The operators that operate first are responsible for delivering values
to operate on to other operators. These include subscripting, the dot op
erator between a structure-variable name and the name of an element in
that kind of structure, the "arrow" between a pointer to a structure and
the name of a structure element, the square braces around subscripts, the
parentheses around parameter lists in procedure calls, and the parenthe
ses used to group other operators. In the case of parentheses and the
square braces around subscripts, which can be nested, the order of evalu
ation is left-to right and inside-to-outside.

The reason operators which yield structure elements and array sub
scripts are evaluated first is that they work on names. They turn combi
nations of structure-variable names, array names, structure element
names, and array subscripts into operands for other operators.

The following table summarizes the operators that form the primary
expressions in C- expressions delivering values for other C operators to
work on. The following operators have the highest evaluation priority. If
they are not explicitly grouped using parentheses, they evaluate in left-to
right order.

32 CHAPTER3 KNOWING C, THINKING C

() Parentheses can be used to group operators and their operands so
that the default order of evaluation is overridden. Parentheses also
enclose the arguments of a procedure call.

The dot operator selects an element, named to the right of the dot,
from the structure-variable, named on the left of the dot.

-> The "arrow'' operator selects an element, named to the right of the
arrow, from the structure, whose location is specified to the left of
the arrow.

[J Square braces enclose expressions that yield array subscripts. Array
subscripts are always integers.

The rest of the operators in C fall into several groups. Order of eval
uation never crosses the borders of these groups. Therefore knowing
what these groups are makes it much easier to remember the order of
evaluation of all the operators in C.

Just as there is a group of operators that yield operands for the rest
of the operators in the language, there are groups of operators that: have
only one operand, perform multiplicative operations, perform additive
operations, perform bit-shift operations, perform relational and equality
comparison, perform bit-wise "and" and bit-wise "or" operations, per
form logical "and" and logical "or'' operations, perform the conditional
operation, perform assignment, and concatenate expressions.

Unary operators in Care evaluated right after the above group of
operators that operate on names to produce operands. Unary operators
are the common-sense next step in evaluating expressions: After an oper
and is arrived at, one or more unary operators may modify it before it is
combined with other operands.

Unary operators differ from most other C operators (except for as
signment operators) in that they are all evaluated from right to left (if not
explicitly grouped). Think of this as an order of evaluation where the op
erator closest to the operand operates first, and then the next closest, and
so on. There are no other rules for grouping in the use of unary opera
tors.

C has the following unary operators:

* Asterisk is the C indirection operator. Applied to a
pointer, the result is the value stored in the location
being pointed to.

& Ampersand is the C address operator. Any entity that
has storage associated with it, and is in the machine's
address space (not, for instance, in the 68000's regis
ters) can have the address operator applied to it, yield-

USING UNARY OPERATORS: AN EXAMPLE 33

ing a pointer to that entity.

sizeof Sizeof yields the size, in bytes, of its operand. This is
not to be confused with library functions that measure
the length of null-terminated strings. Sizeof gets its
information from the data type of its operand.

(type-name) A type-name enclosed in parentheses is the C cast op
erator. In C, casting not only changes the type of the
entity being cast, it may also convert the entity. It is
beyond the scope of this chapter to enumerate all of the
things that can happen when casting from any type to
any other type.

Unary minus yields the arithmetic negative of its oper
and.

Exclamation point yields the logical negative of its op
erand. In C, logical "true" is any non-zero value, in
cluding negative values, and "false" is represented
only by zero.

Tilde is the bit-wise negation operator. The result is a
value in which every corresponding bit in the operand
is inverted.

++ The increment operator can be placed before or after its
operand. Placed before an operand it yields a value
one unit greater than the operand. In addition to yield
ing this value, the operand is immediately updated to
have this new value as well. Placed after an operand,
the result is simply the value of the operand. After the
value is copied from the operand, the operand itself
gets a new value one unit greater than it had before.

The decrement operator operates similarly to the in
crement operator, except that it decrements where the
increment operator would increment.

Using unary operators: an example
The following code fragment assigns the complement of an array el

ement to test and bumps the pointer to point to the next element:

test = N*thing_ptr++;

34 CHAPTER3 KNOWING C, THINKING C

Even though the ++ operator is the leftmost unary operator, and so
evaluated first, it still "post-increments" the pointer. That is, it has no ef
fect until after the expression is evaluated.

Binary operators
Unlike the unary operators, which are all evaluated in right-to-left

order, binary operators have an inherent precedence in which some oper
ators will be evaluated before others, no matter what order they appear
in. Thus binary operators are not all part of the same group. This inher
ent order of evaluation is overridden, when necessary, by the use of pa
rentheses.

The binary operators are presented here from highest to lowest pre
cedence. The first operators presented are the first to be evaluated.
When several binary operators have the same precedence, they are eval
uated from left to right, just as they would be read aloud. Where it makes
sense to do so, precedence rules follow those typically used in mathemat
ics. The exception to left to right order is the order of evaluation for as
signment operators, which are evaluated right to left. So, when two or
more assignments take place in a single expression, the right side is eval
uated before the left side, just as in the case of a statement with a single
assignment operation.

The binary operators with the highest precedence are the multipli
cative operators that multiply, divide, and yield remainders. These oper
ators have the same precedence and are evaluated left to right:

* An asterisk used between two operands is the multiplication opera
tor. This is the same symbol as the indirection operator, but the syn
tax of the language prevents confusion - there is no situation in
which an asterisk meant to multiply two operands would be taken
for an indirection operator.

I Virgule (or slash) is the division operator. The result is the quotient,
and, in the case of integer operands, the remainder is unavailable.

% Percent-sign is the modulus operator, yielding the remainder of a
division operation rather than the quotient. The modulus operator
cannot be applied to floating point numbers.

Following the multiplicative operators, in precedence, are the addi
tive operators:

+ Plus-sign is the addition operator in C. It yields the sum of its two
operands.

BINARY OPERATORS 35

Minus-sign is the subtraction operator. It yields the difference of its
two operands.

C evaluates its arithmetic operators first among its binary operators.
Transcendental functions are usually available is the library(s) of func
tions that come with most C compilers. C does have a rich set of logical
and bit-wise logical operators, so that almost any operation a processor
can perform with a single instruction, such as shifting, masking, oring,
etc. can be specified directly in C. ·

The logical operators come after the arithmetic operators in prece
dence, and are divided into several groups, some containing only one op
erator. The logical operators with the highest precedence are the shift
operators. They are evaluated left to right:

>> This is the shift-right operator. The right operand is converted, if
need be, to an integer. The result is the value of the left operand
shifted right as many bits as is specified by the right operand.

<< This is the left-shift operator. It operates the same way as the right
shift operand, but shifts the left operand left.

Following the shift operators in precedence, are the relational opera
tors. The relational and equality operators are all ahead of the logical op
erators because relational results are often combined by logic.

The relational operators are evaluated left to right. The result you
get by concatenating relational operations is legal, but not very useful.
The result of a relational operation is one if the relation is true and zero if
it is not - not a useful result for use in other relational operations.

> This is the greater-than operator. It yields one if the left operand is
greater than the right operand, otherwise zero.

< This is the less-than operator. It yields one if the left operand is less
than the right operand, otherwise zero.

>== This is the greater-than-or-equal-to operator. It yields one if the left
operand is greater than or equal to the right operand, otherwise
zero.

<= This is the less-than-or-equal-to operator. It yields one if the left op
erand is less than or equal to the right operand, otherwise zero.

The equality operators follow the relational operators, in prece
dence, and they share the properties of the relational operators in the

36 CHAPTER3 KNOWING C, THINKING C

usefulness of cascading them:

- This is the C equality operator. It yields one if the operands are
equal, otherwise zero.

! = This is the C inequality operator. It yields one if the operands are
not equal, otherwise zero.

Following the equality operators are the bit-wise operators. These
come one to a group.

The bit-wise operator with the highest precedence is the bit-wise
"and" operator:

& When used as a binary operator, ampersand is the bit-wise "and"
operator. If the corresponding bit of both operands is one, then the
corresponding bit in the result is one, otherwise zero.

After the bit-wise "and" operator comes the bit-wise exclusive-or
operator:

A. Carat is the bit-wise exclusive-or operator. If the corresponding bit
of either operand, but not both, is one, then the corresponding bit in
the result is one, otherwise zero.

And after the bit-wise exclusive-or operator comes the bit-wise in
clusive-or operator:

The vertical bar is the bit-wise inclusive-or operator. If the corre
sponding bit of either operand is one, then the corresponding bit in
the result is one, otherwise zero.

The logical operators in C operate values where non-zero values
mean "true" and zero means "false." The logical operators, like the bit
wise logic operators, come in groups of one. The and operator is evaluat
ed before the or operator.

Unlike the relational and equality operators, it does make sense to
cascade logical operators. Cascaded "or" operators and cascaded "and"
operators are both evaluated left to right.

&& This is the logical "and" operator. If both operands are non-zero,
then the result is one, otherwise zero.

BINARY OPERATORS 37

Following the logical "and" operator, in precedence, is the logical
II or' operator:

I I This is the logical "or' operator. If either operand is non-zero, or if
both operands are non-zero, then the result is one, otherwise zero.

After the logical operators comes the conditional operator. The con
ditional operator is C's only ternary operator. The conditional operator
is documented here, among C's binary operators, because it has higher
precedence than some binary operators, namely the assignment operators
and the comma operator. Cascaded conditional operators are evaluated
right to left. Additionally, the conditional operator never produces an
lvalue.

? : This is the conditional operator. The three operands of the condi
tional operator are located (first) before the question mark, (sec
ond) between the question mark and the colon, and (third) after
the colon. If the value of the first operand is non-zero, the result is
the value of the second operand, otherwise it is the value of the
third operand.

The conditional operator may seem to be much like an "if state
ment," but an if statement does not produce a value as a result.

After the conditional operator come the assignment operators. In
addition to an operator that assigns the value of the right operand to the
left operand, C has assignment operators that perform the functions of
most of the binary operators (except for the Boolean logical operators).
In the combination assignment operators, the value of the left operand
and the right operand are used as operands of the binary operator that
the assignment is combined with. The result is then assigned to the left
operand. Cascaded assignment operators are evaluated right to left.

= This is the assignment operator. The left operand gets the value of
the right operand.

*= Multiplication and assignment.

/= Division and assignment.

%= Modulus and assignment.

+= Addition and assignment.

-= Subtraction and assignment.

38 CHAPmR3 KNOWING C, THINKING C

<<= Shift-left and assignment.

>>= Shift-right and assignment.

'= Bit-wise "and" and assignment.

""'= Bit-wise exclusive-or and assignment.

I= Bit-wise inclusive-or and assignment.

Strangely, perhaps, assignment operators do not have the lowest
precedence in C. That honor belongs to the comma operator:

The comma operator is a binary operator that yields the value of the
second operand as a result. This is not the same as the comma that
is part of a "for" statement.

Control flow statements
Control flow statements determine a program's path of execution.

C has five control-flow statements and two keywords that modify the be
havior of the control flow statements.

This is the syntax of C's control flow statements:

while (expression } statement

do statement while (expression);

for ([expression] ; [expression] ; [expression])
statement

switch (expression) statement

A statement may be an expression followed by a semicolon, a block
enclosed in braces, or a control flow statement.

In switch statements, statements within the statement may be la
beled with a case label:

case constant-expression:

The constant expression must have a unique value in the switch
statement it is part of. If the constant expression's value matches that of
the expression enclosed in parentheses at the top of the switch state
ment, then control will pass to the expression immediately after the case
label when the switch statement is reached.

PROCEDURES 39

While statements and do while statements repeatedly return con
trol flow to the statement that is the body of the loop, until the expression
in parentheses has a value of zero.

For statements have three expressions, separated by semicolons, in
parentheses. The first expression is evaluated only once, before the first
time through the body of the loop. The second expression is evaluated be
fore each time through the loop, just as the expressions in while and do
while statements are; if it has the value zero, the loop body is not execut
ed and control is passed to the statement following the for statement. The
last expression in parentheses is evaluated after each time through the
body of the loop.

Two keywords are used to modify the behavior of control flow
statements. The continue keyword modifies the behavior of the loop
statement it is in. When a statement consisting of the continue keyword
is evaluated, control passes to the point just before the end of the loop
body, skipping over the rest of the statements in the loop body.

The break keyword modifies all of the control flow statements.
When a statement consisting of the break keyword is evaluated, control
passes to the statement following the control flow statement where the
break keyword is encountered.

Procedures
C programs consist of global declarations and procedure defini

tions. Procedures have a return type, local storage, and statements.
Procedures that return a value have return statements that contain an
expression that yields the return value.

This is the syntax of C procedure definitions:

[return-type] procedure-name
([parameter-name][, parameter-name] ...) statement

An example program

#include <quickdraw.h>

int a_global;

/* Include the macros and
* declarations associated with
* quickdraw
*/

I* A global variable */

/* With the following union, a 32 bit long can be treated as
* two 16 bit ints. The long and the structure containing
* the two integers would occupy the same storage in a
* variable of this type.
*/

typedef union
(struct

int a;

I* Make a defined type */
/*One member is a structure ••• */
/* With ints a and b as elements */

40 CliAPrER3

int b;
halves;

long longword;
split_long;

KNOWING C, THINKING C

/* The other member is a long */
/* call the type "split_long" */

/* The main routine */
main(argc, argv)

char *argv []; /* A vector of character ptrs */

int a_local; /* A local variable */

switch (argc)
{ case 1: /*In case argc is one ••• */

p_to_c(argv[O));
break;

/* Pass the first ptr in argv */

default: /* The default case */
a_global = do_default();

/* Process an element of argv */
p _to_ c (string)

char *string;

int 1, length= string[O];

if (string) /* If this pointer is not null */
{ /* In this example we convert a Pascal style string

* into a C style string with no length byte at the
* beginning and a null at the end.
*I

for (i = 1, i <= length; 1 < length; 1++)
string[! - 11 =string[!];

I* Do a few things that illustrate some arithmetic
* operators in c.
*/

do_ default()
{

I* a local variable */
long a_value = Oxd2d7;

a_value *= 17;

I* initialize to hex d2d7 */

I* Multiply it by 17 */

/* Here we cast a_value to the split_long type, take the
* high word and assign the value to a_value. We
* parenthesize the cast operation because unary
* operators have a lower precedence than the operations
* that pick out structure and union members.
*/

a value= ((split_long)a_value).halves.b;

THE MEANING AND USE OF STYLE 41

The meaning and use of style
The style conventions used in this book are the generally accepted

conventions used widely in Macintosh, Unix and MS-DOS programming.
No major changes in C style have to be made to accommodate the
Macintosh Toolbox interface.

In companies and school that use and teach C you will find both
stricter and more relaxed standards. In this book we strive for readability
without sacrificing performance. If you are considering writing pro
grams to sell to others, we encourage you to adhere to style conventions
at least as strictly as we do. Software publishers often review the soft
ware offered to them to assess the cost of maintaining it and fixing any
bugs that may turn up. The clarity of your code may make the difference
between selling and not selling your program.

42 CHAPTER3 KNOWING C, TH!NI<ING C

POINTS TO CONSIDER

1. Why do assignment operators have such low precedence? What
would happen if they were evaluated before arithmetic operators?

2. What is wrong with the following if statement:

if (value = INVALID)

report_ error () ;

3. Most compilers come with example programs. Compile a short exam
ple and disassemble the program. Match the lines of the source pro
gram up to the instructions in the disassembled object code.

4
QuickDraw and Windows

• The system of Grafl>ort environments used by QuickDraw to support
drawing in windows

• The coordinate system used by QuickDraw

• Grafl>ort regions, which are used to limit the area drawn in

• How the Window Manger, in concert with QuickDraw, manages
graphics updates

• How applications can use Grafl>ort regions to "clip "

This chapter covers the two parts of the Toolbox ROM most respon
sible for giving the Macintosh its unique character. Windowing and
event-driven programming are intertwined and form the foundation of
all Macintosh applications. The operating principals behind windowed,
event-driven applications presented here will prepare you to design and
program your own interactive applications.

This chapter brings together concepts from the Window Manager
and QuickDraw so that you understand the relationship between these
two distinct Toolbox managers. Only those aspects of QuickDraw and
the Window Manager that support windowing will be discussed here.
Both of these managers have features that are not part of the Macintosh's
windowing support. Inside Macintosh gives a thorough explanation of all
the features of both these Toolbox managers, and a summary of their fea
tures is found in the reference section of this book.

The obvious and subtle parts of QuickDraw
QuickDraw is the basis of all activity on the Macintosh screen. The

obvious part of this activity is QuickDraw painting bits on the screen in

46 OiAPTER4 QuICI<DRAW AND WINDOWS

response to requests that characters or lines or patterns be drawn.
QuickDraw also performs the graphics calculations that are the basis of
the Macintosh window system.

The Window Manager is the Toolbox manager that applications call
when they want to create windows, move windows, and change which
window is the active window. QuickDraw supports the Window
Manager by helping it maintain the illusion that the application has sev
eral small screens that can be moved around the Macintosh screen.

QuickDraw provides numerous drawing routines that draw lines,
fill areas, copy bits from one place to another (while stretching or shrink
ing the image painted in those bits), draw characters, scroll, etc.
QuickDraw also provides routines that perform calculations on points,
lines, rectangles, areas, etc. Using QuickDraw, an application can, for ex
ample, determine whether objects overlap, it can set up the Gra£Port so
that the overlapped region is clipped, and draw those objects so that one
appears to be "in front" of the other.

The Window Manager uses the calculation routines in QuickDraw
to create the desktop. Without QuickDraw, the Window Manager would
be a hopeless kludge, and without the Window Manager, QuickDraw
could not provide enough support for windowing. Working together,
these two Toolbox managers provide both high level support for win
dows, such as the code that automatically draws the frames of windows
as needed, and low level support for drawing in windows. The low level
support that an application uses to draw what it wants displayed in its
windows is the same as what the Window Manager uses to draw win
dow frames.

Starting with QuickDraw coordinates, we will see how windows
and the Window Manager are built on QuickDraw. Using this informa
tion, you will be better able to manage the contents of your applications'
windows.

QuickDraw coordinates
All the drawing and calculating on the Macintosh is done in a coor

dinate system that needs to be understood before QuickDraw can be used
effectively. Many of the errors encountered during the development of a
Macintosh program have to do with being one bit off of the desired place
when drawing, erasing or scrolling.

The QuickDraw coordinate system is the basis of the algorithms em
bodied in QuickDraw, and knowing the coordinate system and the con
ventions used in it lets you predict what QuickDraw will do. Otherwise
you may waste a lot of time in trial and error.

Drawing is done at a location, or between two locations, or in the
space enclosed by several locations connected together. Locations in
QuickDraw are positions on a lattice that runs between the pixels. Two
parts of a QuickDraw coordinate system are depicted below:

c,<o.o)

QuiacDRAw COORDINATES 47

. ..
• . " .• ! L. : . • ~J--'-+-+-+·~H

. ~ .. ~: .. r +-t.{i·+-· ++-+-+;-l

•. :'.:{:.:i:t-:··+-.. i-+-i-+-1-+-!H

!- -~· t-t-H-1-1-t-+-t-+-l-l

)
(512.342)

Keeping this lattice in mind helps to avoid confusion: If you picture
a lattice running between pixels, rather than pixels with row and column
addresses, there is no confusion over whether a rectangle includes or ex
cludes a pixel, because the rectangle runs between, and not on top of, the
pixels. Because the points on the lattice are infinitely small, the size of a
pixel and how much of its area is on one side or the other of a bounding
line never enters into QuickDraw calculations.

Depicted below is a QuickDraw rectangle. The coordinates of the
rectangle are (0,0) and (7,10). One of the two black pixels is inside, and
the other is outside. If the rectangle were filled with black, only the pixels
inside the rectangle's boundary would be black. Since the rectangle itself
is not a graphic, and it has no visible boundaries that occupy pixels them
selves, what is meant by "inside" is unambiguous.

The QuickDraw coordinate system is not just a mathematical basis
for thinking about QuickDraw: The fact that QuickDraw coordinates are

48 CHAPTER4 QuICKDRAW AND WINDOWS

integers and the lines in the QuickDraw lattice are infinitely thin means
that integer arithmetic yields the correct results. No rounding is required
to decide whether a pixel falls on one side of a line or the other. This
makes QuickDraw quick.

The Gra£Port: an environment for drawing
Macintosh windows are built on GrafPort environments.

GrafPort environments are individual, self-contained drawing environ
ments. The Macintosh screen is where Graf Port bit maps are almost al
ways located, but a GrafPort may be associated with bit maps any
where in memory. The Macintosh screen is distinguished only by the fact
that if drawing is done in a GrafPort that uses the Macintosh's screen
memory for its ''bit map," the drawing is rendered visible by the
Macintosh's video hardware.

Apart from a pointer to its bit map, a GrafPort holds all the other
information that pertains to painting bits in the GrafPort bit map. This
information ranges from the current typeface for the GrafPort to the
foreground and background colors for the GrafFort to a list of custom
ized routines for drawing in the Graf Port.

This is the data structure that holds GrafPort information:

typedef struct
{ int device;

BitMap portBits;
Rect portRect;
RgnHandle visRgn;
RgnHandle clipRgn;
Pattern bakPat;
Pattern fillPat;
Point pnLoc;
Point pnSize;
int pnMode;
Pattern pnPat;
int pnVis;
int txFont;
Style txFace;
int txMode;
int txSize;
int spExtra;
long fgColor;
long bkColor;
int colrBit;
int patStretch;
QDHandle picSave;
QDHandle rgnSave;
QDHandle polySave;
QDProcsPtr grafProcs;

GrafPort;

BITMAPS 49

While the GrafPort does hold all the information associated with
drawing in a bit map, the memory that is drawn in is pointed to by the
portBits part of the GrafPort, and is not part of the structure. The
GrafPort structure associated with the Macintosh screen could be any
where in memory, but the memory for the GrafPort bit map has to be
where the video hardware can access it.

GrafPort structures contain numerous fields for storing the state
of the GrafPort. The field that determines where the Graf Port is is the
portRect field. When a window is moved around the Macintosh screen,
all that happens to the GrafPort structure is that the portRect field is
changed. The portRect is defined in terms of the bit map.

Bit maps
Bit maps are a way of describing a piece of memory used for draw

ing in. This is the bit map data structure:

typedef struct
{ QDPtr baseAddr;

int rowBytes;
Rect bounds;

BitMap;

The baseAddr field of a bit map points to the first location of mem
ory to be drawn in. The rowBytes field holds information about how
many bytes wide the bit map is. The width of the bit map of the
Macintosh screen is 512 bits, or 64 bytes, a number constrained by the
hardware that displays the bit map on the video display. Memory set
aside for a bit map by an application can have any byte width that fits in
the amount of memory set aside an integral number of times. The
bounds rectangle is always anchored at the top left corner above the top
most, leftmost bit in the bit map. The bottom right corner can be any
where in the bit map. Typically the bounds rectangle encloses all of the
bits in the bit map.

The following diagram illustrates a Bi tMap with 64 bytes in each
row and 384 rows, the same dimensions as the Macintosh screen

50 CHAPTER4 QuICKDRAW AND WINDOWS

ByteO Byte 1
Byte63

1----1----lr·

1------· ;·---I

The baseAddr field of a Bi tMap structure hold the location of byte 0 of
the memory associated with the bit map. To allocate a bit map yourself,
you need to allocate both the BitMap structure that describes the bit map,
and the array of bytes to be drawn in.

Gra£Port regions: support for windows
GrafPort environments alone would let an application create rect

angles on the screen that would act something like windows. Several
GrafPort environments often share the bit map that is the Macintosh
screen. By moving the portRect of a GrafPort around, the location
where drawing takes place in that GrafPort changes. But there still is
quite a bit missing: There is no notion of one GrafPort being in front of
another, no way of telling the user which is the active GrafPort, and no
facility for keeping track of which parts of the screen need updating. To
provide complete windowing, the Window Manager uses regions to add
the ability to hide parts of windows behind other windows.

Regions are a QuickDraw structure that describe arbitrarily shaped
areas. You do not have to know how regions work in order to use them,
but their underlying structure is interesting: The documented part of re
gion structures consists of a word containing the size of the region data
structure and a boundary rectangle. If the region is more complex than a
rectangle, additional information following the first two fields of the re
gion structure describe the region. This information consists of lists of
coordinates of the apexes of the region: One vertical coordinate is fol
lowed by all of the horizontal coordinates that share that vertical coordi
nate.

Since C does not check for accesses beyond the ends of data struc
tures or arrays, variable size object are easy to manipulate in C programs.

THE WINDOW MANAGER 51

Regions can describe areas that are convex, concave, areas that have
holes in them, and even areas that are not contiguous. If you are interest
ed in studying how Macintosh regions are used by QuickDraw routines
that fill them in or perform calculations using them, the process underly
ing operations on regions is called "scan conversion."

The Window Manager
The Window Manager builds on QuickDraw's GrafPort structure.

This is the window structure:

typedef struct
{ GrafPort port;

int WindowKind;
BOOLEAN visible;
BOOLEAN hilited;
BOOLEAN goAwayFlag;
BOOLEAN spareFlag;
RgnHandle structRgn;
RgnHandle contRgn;
RgnHandle updateRgn;
Handle windowDefProc;
Handle dataHandle;
StringHandle titleHandle;
int titleWidth;
ControlHandle controlList;
WindowPeek nextWindow;
PicHandle windowPic;

WindowRecord;

The window record structure
The window record structure is the highest level of the three struc

tures we have covered in this chapter. The window record subsumes a
GrafPort, which, in turn, subsumes a BitMap, which, in turn points to
the actual bits in memory where drawing takes place. The following dia
gram shows the relationship of these objects in memory:

52 CHAPTER 4

The port field of
the window

QUICKDRAW AND WINDOWS

record contains a ..___,. ...
GrafPort

The portBits
field of the
GrafPort con
tains a BitMap

Creating the desktop metaphor

The baseAddr field
of the BitMap con
tains a pointer to
byte 0 of the array in
memory where
drawing takes place

The Window Manager manipulates GrafPort environments to cre
ate the impression of overlapping pieces of paper on a desktop. To do
this the Window Manager manipulates the visRgn field of the
Graf Port. Whenever the windows on the Macintosh screen are moved,
grown or shuffled, the Window Manager makes sure the visRgn is the
region of each of the windows the part that would be "visible" if win
dows are to behave like pieces of paper on a desktop. The visRgn is one
of two regions associated with each Graf Port.

The other region associated with the GrafPort is the clipRgn (clip
region). The purpose of the clip region is to limit the part of the
Graf Port where drawing takes place. The clip region is used like mask
ing tape, when an application finds that it is more convenient to issue
QuickDraw calls to draw an entire object and when it is appropriate for
only part of that object to appear on the screen. This usually happens
when objects are near the scroll bars of a window, as we shall see in the
example program.

The Window Manager maintains a region, the "update region," as
sociated with each window that describes the part of the window that
needs updating. Applications can use the Window Manager routines
InvalRgn and InvalRect to add areas to the update region. In this way
the update region collects all the areas that need updating because of
both Window Manager related activity and because of the application
changing its display.

STEPPING 1HROUGH AN UPDATE EVENT 53

When the update region is not empty, an update event is posted.
Handling an update event consists of three steps: 1) Calling
BeginUpdate; 2) Drawing (at least) the objects that fall inside the area
that needs updating; 3) Calling EndUpdate. Calling BeginUpdate caus
es the Window Manager to temporarily change the visRgn of the win
dow being updated to consist of the intersection of the update region and
the previous visRgn. This leaves the clipRgn free for the application to
use. Calling EndUpdate restores the visRgn to its previous value.

Update events are the most important part of creating interactive
Macintosh applications. Few computer systems tell applications running
on them which part of the screen needs updating. The Macintosh takes
care of this for applications. This is convenient for the user and it is also
one important mechanism behind the uniformity of Macintosh user inter
faces.

Stepping through an update event
The following diagrams show how regions are manipulated by the

application and by the window system while updating a window:

II vlsRgn D updateRgn • vlsRgn D updateRgn

II visRgn

Drawing from applications
If the Macintosh's Window Manager only lets areas that need up

dating be drawn in, how does an application draw on the screen?
Applications need to declare parts of the screen "invalid" before they can

54 CHAl'TER4 QuICKORAW AND WINDOWS

be drawn in. Regions can be declared valid as well. This gives applica
tions two options for updating the screen: 1) An application can declare a
region invalid, draw in it, and then declare it valid. 2) It can declare a re
gion invalid, update its internal representation of what is on the screen,
get an update event, and redraw the the invalid region then. The second
approach has the advantage that any other objects lying in the invalid re
gion would be updated as well.

The Active Window
Another important type of event is the "activate event." The activate

event means that the window the the event pertains to is now being acti
vated or deactivated (these events come in pairs). Activate events tell an
application absolutely nothing about updating. Although activation and
updating often happen together, separate events are used to signal activa
tion and updating. The active window is a way for the user to tell where
he is. Since one keyboard is used to enter information in possibly a large
number of windows, the active window, with the highlighted title-bar, is
the one that actually is receiving information.

What windows are not
By manipulating the visRgn and clipRgn fields of GrafFort

structures, the Window Manager gives life to the "desktop metaphor."
But it is also important to know what windows do not do, and why.

While QuickDraw and the Window Manager provide a lot of sup
port for applications, they stop short of providing virtual devices. The
virtual device approach to window systems is another widely used ap
proach. Virtual devices are pretty much what they sound like they might
be: Each window in a virtual device system behaves like a "real" device.
One window might behave like a vtlOO terminal, another might behave
like a Tektronix graphics scope. Window systems that use the virtual de
vice approach are common among Unix workstations. The purpose of
those window systems is to provide a windowed environment for appli
cations that were written with the assumption that they had the whole
terminal to themselves.

Since the Macintosh does not provide virtual devices, it is difficult
to port Unix and MS-DOS application to the Macintosh. Such "quick and
dirty" ports would look impoverished next to applications that take full
advantage of the mouse, menus, windows, dialogs and QuickDraw.
Because it isn't convenient to do a poor job of porting a program to the
Macintosh, Macintosh applications are among the most polished and easy
to use.

POINTS TO CONSIDER 55

POINTS TO CONSIDER

1. Unix programs that read characters from an input and write charac
ters to an output while performing some transform on them are called
"filters." Some kinds of programs, like compilers, sort programs and
search programs, fit the filter model well. How would you port a typ
ical Unix filter to the Macintosh? What would you use the display for?
How would you have the user specify input and output?

2. Some programs, like text processors, spreadsheets, and project man
agement programs do not fit the filter model well at all. Why is this
so? What does this mean to Unix? To the Macintosh?

3. What tasks is the Macintosh user interface style ill suited for? What, if
anything, can be done about it?

4. What is the difference between the Macintosh window environment
and a "virtual terminal" system? What are the advantages? The disad
vantages?

5. On paper, apply the FrameRect call to the rectangle depicted near
the beginning of this chapter. Where are the framing lines drawn?

6. Take a piece of graph paper and ·look at the descriptions of
QuickDraw routines in the reference section of this book. Walk
through the operation of some QuickDraw Toolbox traps by drawing
what they would draw on the graph paper.

._..
°!'.

5
Revolutionary Software,
Classical Microcomputer
Hardware

• The Macintosh runs some of the most advanced systems software in
existence

• Macintosh hardware is relatively simple

• An overview of the 68000 instruction set to help you use a debugger
or disassembler

• The Macintosh software developer can count on a large base of in
stalled machines that have capabilities that would cost hundreds of
dollars to add to computers that lacked them

• The Macintosh hardware is always hidden behind at least one layer of
Toolbox software

• Although the Macintosh is a closed box, the Macintosh is an expand
able system

• How Macintosh hardware affects the applications writer (you)

The Macintosh's system software has its roots in the Xerox Alto and
the Lisa computers' window-oriented user interfaces and simple, pared
down operating systems. Despite the fact that the Macintosh is a far less
expensive machine than its workstation predecessors, it is in many ways
more polished and sophisticated. The level of sophistication has to do
with the fact that the Macintosh was designed by experienced designers

58 CHAPTER 5 REVOLUTIONARY SOFIWARE, CLASSICAL MlCROCOMPUfER HARDWARE

working for a company that knew that to fall slightly short, as Apple did
with the Lisa, would be disastrous. The low cost of the Macintosh is due
to the simplicity of the Macintosh's hardware.

In this chapter we will look at the Macintosh's hardware. Although
it is always hidden beneath a layer of software, the Macintosh's hardware
has a strong influence on what a Macintosh is. It would be difficult to
move the Macintosh's software over to a machine that did not strongly re
semble the Macintosh.

The Macintosh and the Apple][
There are few computers that are as different as the Macintosh and

the Apple][. The Apple][is the traditional microcomputer. Inexpensive
to build, and hence inexpensive to buy, the Apple][is the mainstay of ed
ucational computing in elementary schools, is a workhorse in homes and
small businesses, and plays a key role in the hobbyist market - a market
it helped establish.

When the Apple][was introduced, software had little to do with its
attractiveness to hobbyists who bought it in order to write programs in
the Apple]['s 6502 assembly language. At a time when disk controllers
cost around a thousand dollars, condemning hobbyists to use cassette
tapes to store their work, the Apple][was a real disk-based computer that
almost any hobbyist could afford. The Apple][was also the first comput
er with affordable color graphics. Today, now that color and disk drives
are commonplace, the Apple]['s simplicity and low cost have made it the
standard for elementary schools and home and small business accounting
and word-processing. The Apple][has evolved from a machine bought
largely due to the value and merits of its hardware to a machine that is
bought mostly due to the power and simplicity of the huge library of ed
ucational and business software that runs on it.

In the case of the Macintosh, software has had everything to do with
the machine's success. The Macintosh has attracted two groups of buy
ers: The biggest group is novice computer user who never liked obscure
command languages and the lack of system-wide integration found in
most microcomputers. The Macintosh has also attracted a loyal following
among knowledgeable, experienced computer users and programmers
because Macintosh software is as sophisticated and powerful as that
found on workstation computers that cost many times the price of a
Macintosh.

The Macintosh had to be much more sophisticated than the Apple][
because hardware alone will no longer make a successful computer.
Computer engineering has progressed, and more significantly, the poten
tial computer buyer's expectations are much higher now than at the birth
of the microcomputer industry. People rightly expect a complete com
puter system when they buy a microcomputer. The Apple][had many
years to evolve into a comprehensive system - the Macintosh had to be
born as a system.

You CAN COUNT ON MACINTOSH FEATURES 59

Yet the Macintosh and the Apple][have a common heritage and
have similarities at the hardware level. Both machines are a carefully
chosen collection of parts that deliver features and performance that cost
a lot more in other computers. Just as the Apple][was has the least ex
pensive color graphics and disk interfaces available, the Macintosh is still
the only microcomputer that has an inexpensive network interface built
into every machine. At its introduction, the Macintosh was the only mi
crocomputer to have wholly abandoned the "character-only" display in
favor of a bit-map display. The Macintosh uses the same simple, inex
pensive floppy-disk interface used in the Apple][. In the Macintosh, this
interface is contained in two chips. Every Macintosh comes with a com
pletely indispensable mouse. All of the features of the Macintosh, includ
ing the power-supply and monitor electronics, are implemented entirely
on two fairly small printed circuit cards. The simplicity of the Macintosh
hardware means that it is unlikely that the Macintosh will be outmoded
anytime soon. Apple discovered that the Apple][is "forever," but the
Macintosh was designed that way.

You can count on Macintosh features
Software developers benefit from the Macintosh's built-in features.

Every music program for the Macintosh can count on the Macintosh's
sound-generating hardware. Every multi-user database can count on
every Macintosh to have the same network hardware built in. Despite
the fact that there are far fewer Macintoshes out in the world than there
are IBM-PC compatibles, the Macintosh software developer can count on
every Macintosh to have the same basic capabilities. For programs that
require sound, or a network, or a mouse, or high-speed serial ports, there
is a far greater base of Macintoshes capable of running those programs
than any other computer. The lack of graphics, sound, and networking
standards impede the development of networked applications for other
computers. No such obstacles exist for the Macintosh.

The major players on the Macintosh logic board
The logic board of the Macintosh has remarkably few parts on it.

Some of these parts perform numerous and/or powerful functions that
make the Macintosh hardware what it is. Understanding what these
parts do will enable you to know what the Macintosh is capable of.

The Motorola M68000
The Motorola 68000 processor is, of course, central to what a

Macintosh is. Unlike microprocessors with smaller address spaces,
Macintosh users almost never need to be aware of what kind of processor
is executing instructions in their computers. Although you may never
need to write any code in assembly language, chances are you will do
some debugging with only a disassembler available to tell you what code
is being executed. Therefore an overview of the 68000 instruction set will

60 CHAPTER 5 REvOLUTIONARY SoFIWARE, CLASSICAL M!CROCOMPUfER HARDWARE

arm you with the knowledge you need to keep track of where your pro
gram is when you trace its execution with a debugger. If you are com
pletely unfamiliar with assembly language conventions, you will want a
copy of M6800016/32-bit Microprocessor Programmer's Reference Manual, by
Motorola, Inc. (Prentice-Hall, publisher).

In the following table, the details of the instructions' operations are
left out. Most 68000 instructions do exactly what you would expect them
to do from reading the mnenomics. Instructions peculiar to the 68000 are
briefly explained. Only the basic operations are listed. Variations of
these operations, like immediate, byte, and longword variations are not
listed separately.

Move instructions
MOVE Move.
EXG Exchange the contents of two registers.
SWAP Swap words in a register.
LEA Load effective address (perform address arithmetic - load the

address, not the data at the address).
PEA Push effective address.

Logic instructions
AND And.
OR Or.
EOR Exclusive or.
NOT Not.
s cc Set byte according to condition code.
CLR Clear.

Bit manipulation instructions
BSET Test, then set a bit.
BCLR Test, then clear a bit.
BCHG Test, then complement a bit.
BTST Test a bit.
TAS Test a bit, while setting high order bit. Uninterruptable.

Shift instructions
LSL Logical shift left.
LSR Logical shift right.
ASR Arithmetic shift right.
ROL Rotate left.
ROR Rotate right.

Comparison instructions
TST Test.

CMP Compare.
CHI< Bounds-check. Causes a trap if it fails.

Arithmetic instructions
ADD Add.
SUB Subtract.
MUL Multiply.
DIV Divide.
NEG Negate.
EXT Sign-extend.

BCD arithmetic
ABCD Add BCD numbers.
SBCD Subtract BCD numbers.
NBCD Negate BCD numbers.

Control transfer instructions

THE MOTOROLA M68000 61

BRA Branch always (up to 64k displacement).
Bee Branch on condition code (up to 64k displacement).
BSR Branch to subroutine (up to 64k displacement).
JMP Jump.
JSR Jump to subroutine.
RTE Return from exception.
RTS Return from subroutine.
TRAP Initiate exception opportunity. Trap macros are not TRAP in

structions - they are unimplemented instructions.

Stack frame maintenance
LINK Push an address register on the stack; store the stack pointer's

value in the saved register; bump the stack pointer to allocate
space for local variables.

UNLK Undo a LINK instruction.

Processor control
STOP Load status register and stop until an interrupt, exception, or

reset occurs.
RESET Reset external devices.
NOP Sit one out.

Most of the instructions that move information around and perform
logic and arithmetic operations can operate on three different sizes of op
erands: 8-bit bytes, 16-bit words, and 32-bit "longwords." To specify the
size of the operands of an instruction, a suffix is appended to the instruc
tion: . b means byte operands, . w means word operands, and . 1 means

62 CHAPTER 5 REVOLUTIONARY SoFIWARE, CLA5.51CAL M!CROCOMPUfER HARDWARE

longwords. Word operands are the default, and the 68000 is at its most
efficient when dealing with 16-bit words.

The 68000 was designed from a pragmatic point-of-view. It pro
vides 32-bit capabilities in a comparatively simple design. It does not
provide the high degree of orthogonality found in the PDP-11 or the
National Semiconductor 32016. The 68000 cannot apply the same ad
dressing modes to every operand of every instruction. This means that in
order to write 68000 code, you will probably have to keep a reference
manual handy- not all the instruction variations apply to all the instruc
tions. If you are reading 68000 code, like the disassembled code of one of
your C programs, you may never notice the restrictions placed on 68000
instructions,because most instructions and their permitted addressing
modes do most of the things a C compiler, or an assembly language pro
grammer, would like done. In most practical situations, the 68000 per
forms at least as well as its more elegant competitors.

The other specialized parts in the Macintosh are less visible to the
programmer than the microprocessor. But these parts, and the functions
they perform, may inspire you to develop unusual applications based on
untapped abilities in the Macintosh.

The Synertek SY6522 Versatile Interface Adapter
The one small, inexpensive device performs an astounding range of

functions with the Macintosh. The VIA is responsible, in whole or in
part, for controlling sound generation and sound volume in two separate
modes, for controlling disk-drive motor speed, for generating interrupts
when keys are pressed or the mouse is moved, and providing an interface
to the real-time clock. A shift register on the VIA is used to serialize out
put to the keyboard and optional keypad and to parallelize input from
the keyboard and keypad.

The VIA is involved in so many functions because it can interrupt
the processor when interesting events in other parts of the Macintosh
have occurred. Interrupts are generated by the VIA when either of two
timers on the VIA time out, when the one-second clock ticks, when the
keyboard interface requires attention, and when the vertical blanking in
terval begins. The VIA also controls memory mapping in the Macintosh
that temporarily maps the ROM into low memory on power-up so that
the initialization code executes.

One Toolbox manager involved in the operation of the VIA is the
Task Manager, also known and the Vertical Retrace Manager because it
enables code to be run while the electron-gun that paints bits on the video
tube is returning to the top of the video tube. The vertical retrace interval
of the Macintosh display is useful for applications, such as games, that
move a lot of graphics around the screen and want that movement to ap
pear as smooth as possible. By updating the display during the vertical
retrace interval, half-updated objects will never be visible to the user.

THE ZlLOG Z8530 SERIAL COMMUNICATIONS CONTROLLER 63

The Zilog Z8530 Serial Communications Controller
The Zilog SCC controls the two serial ports on the Macintosh.

Together with the 26LS30 differential driver and 26LS32 receiver, it im
plements RS422 serial ports and the AppleTalk network ports. The SCC
connectors on the back of the Macintosh may be used as either serial
ports or network ports. Interrupts that signal mouse movement are gen
erated by the sec, but the mouse and keyboard input is handled primari
ly though the VIA, leaving the SCC to deal with modem, printer, terminal
line, and network connection options.

An interesting artifact in the SCC's control register addressing is
that word accesses to any of the SCC's registers shifts the system clock's
phase by 128 nanoseconds. This "phase-space" access is used at system
startup time to synchronize the RAM memory to the processor. Buggy
programs that spuriously access phase-space may cause the Macintosh's
memory to be clocked out-of-phase with the processor, causing "rain" on
the screen. "Rain" - random bits on the screen winking on and off -
looks like a hardware problem, and is in most instances the manifestation
of a hardware bug. But on the Macintosh rain is almost always a symp
tom of buggy code.

The Macintosh Toolbox includes a serial driver, a Printing Manager
that uses the serial driver to talk to serial printers, and an AppleTalk
Manager. All of these modules use the SCC.

The Integrated Woz Machine
The Integrated Woz Machine (IWM) is a single chip that imple

ments the same style of floppy disk interface found in the Apple][.
Because of the simplicity of the IWM disk interface, the disk-drive port of
the Macintosh can be used as a general purpose high-speed serial port.
The Apple Hard Disk 20 connects to the Macintosh through the floppy
disk port and uses it simply as a serial connection.

If you are interested in writing a program that uses the IWM port of
the Macintosh, some information on the timing and protocols used in the
IWM are contained in an Apple Technical Note about the Hard Disk 20.
Apple technical notes are available from the Developer Relations depart
ment of Apple, and can also be found through users groups.

The NCR SCSI host adapter
Although it doesn't look like much - you can't open the Macintosh

up and look at rows of connectors inside, the SCSI adapter found in the
Macintosh Plus does provide true, general purpose, expandability for the
Macintosh. The SCSI standard was designed to accommodate a wide va
riety of peripherals. SCSI addressing supports up to 232 separate disk
blocks or other addressable entities in peripherals. Integrated SCSI con
trollers in disks, tape drives, and other peripherals mean that the
Macintosh does not need an expansion bus in order to talk to these pe
ripherals. The SCSI interface allows up to eight peripherals to be connect-

64 OIAPTER 5 RE\IOLUITONARY SoFIWARE, CLASSICAL M!CROCOMPUI'ER HARDWARE

ed externally to the Macintosh Plus model.
The Macintosh Plus is the first inexpensive computer to utilize the

SCSI standard. As with the Appletalk network, the wide availability of
the SCSI interface will spur development of products that take advantage
of it.

How closed is it?
The Macintosh comes in a sealed box. But Macintosh system soft

ware always allowed for expansion. It is beyond the scope of this book to
discuss writing Macintosh system software, but it is important to note
that the Macintosh has software features, like loadable device drivers,
that support expansion.

POINTSTOCONSIDER 65

POINTS TO CONSIDER

1. What other computers have a user interface comparable to the
Macintosh? How much do they cost in a usable configuration?

2. Because the Macintosh provides a "free" network, network applica
tions are no longer limited to expensive workstation computers.
What kind of business applications could make good use of a net
work? What kind of educational applications could use a network?

3. What kind of peripheral device would be uniquely suited to the
Macintosh?

6
The Resource Compiler

• What a resource compiler is

• The reason for using resources

• The extent to which resources permeate Macintosh toolkit software

• A tutorial example of resource compiler use

• A reference that covers the syntax of current resource compilers

• When to use resource editors instead of the resource compiler

A consistent way of initializing Macintosh data structures
Resources are part of every well made Macintosh application. They

make life easier for the program developer, the program publisher, and
the user of the program. The user can change patterns, icons, and other
parameters stored in the resource fork to suit his taste if the ones used by
the developer do not suit him or her. The program publisher can trans
late a program's menu entries, window titles, and dialogs and other
strings into foreign languages without touching the source code or trou
bling the developer. The messages a program displays on the screen are
more closely related to documentation than to the code in a program, and
the resource compiler lets nonprogrammers, such as technical writers,
change these parts of a program and cooperate in the development of ap
plications. The way resources benefit the developer is quite down to
earth: A change in the resource fork of an application is much easier to
make than a change to the code itself. In many cases, the resource com
piler does not need to be used to modify a resource fork: Small changes to
a resource fork, or changes that need to be made by non-programmers,

68 CHAPTER 6 THE REsoURCE COMPILER

can be made through the use of a resource editor that interactively edits
items in the resource fork of Macintosh files.

Resources are data: A pattern - like the gray pattern the desktop is
usually covered by - is simply a data structure stuffed with the bits that
determine a pattern. Somehow, the bits that spell out a particular pattern
of bits on the screen must be put in the data structures that you have allo
cated space for in your program. A resource can be used to fill in that
data structure. Resources are stored in the resource fork of a Macintosh
file, read in by the Resource Manager, and are used by many of the most
important and visible parts of the Macintosh system.

Resources and Toolbox Managers
When a program creates a window on the screen, it passes the win

dow manager a pointer to a structure that has been filled with data de
scribing the new window. There are several ways for a program to fill in
that structure: The structure could be initialized global data; The struc
ture could be allocated at run-time and filled in, member by member, by
a subroutine in the program; Or, it could be filled in by reading a re
source from a file's resource fork into the space occupied by the data
structure. This last approach is aided by Toolbox routines geared toward
looking in the resource forks for resources to be used in initializing data
structures.

The Window Manager contains the GetNewWindow function which
takes as arguments the resource ID (a 16-bit number used to identify re
sources) of a window resource and a WindowPtr, a pointer to a window
data structure where the data from that window resource will be deposit
ed. In a single step, using GetNewWindow, your program has filled in all
the information about the window's size, location, type, and features, and
has informed the Window manager that a new window, with these at
tributes, is to be created.

Nearly every Toolbox manager has one or more routines that use
the Resource Manager to simplify initialization of data structures. Some
do so overtly, like the Window Manager, and some, like the font manag
er, use the resource manager internally and have their own way of identi
fying their resources and retrieving them from resource forks. The font
manager,for instance, imposes a special structure on the resource ID of a
font, encoding both the font number and the point-size of the font in the
resource ID.

Your Own Resources
You aren't limited to using the resource fork to store information in

formats that the various Toolbox managers already know about. You can
create your own resource types and you can build up composites of exist
ing resource types. The Macintosh system uses some resource types that
cannot be defined by resource compiler input. Even 68000 instructions
are a kind of resource. The output of any Macintosh compiler is a file

ExAMl>LE: DESIGNING A DIALOG 69

with a resource fork full of compiled code. The type for this resource is
"CODE."

Example: Designing a dialog
The Dialog Manager makes the most use of resources. A dialog

box, which is a kind of window, and which may have controls, editable
text, icons, static text, pictures, etc. in it can be described in its entirety in
the resource compiler input file. The following resource compiler input
describes a dialog box:

* A resource compiler template for a dialog box:
Type DLOG

,256
100 100 200 250
Visible 1 NoGoAway O
270

Type DITL
,270
2
Btnitem Enabled
60 10 80 70
Resume
StatText Disabled
A sample dialog box

Starting at the top of this resource compiler input, there is a com
ment line preceded by an asterisk. Asterisk is the resource compiler's
comment character. Then there is a Type keyword that begins the defini
tion of a resource of type DLOG - a dialog box. The ID number of this
dialog box is 256, it has the bounds 100 100 200 250, it is visible, its
procid is 1, its refCon is 0, and it has an item list with an ID of 270. The
item list describes two items that will appear inside this dialog box: A
button labeled "Resume" and a static, uneditable string reading "A sam
ple dialog box."

The ID numbers are the way your application accesses resources,
and the way resources are tied together in the resource compiler input
file. Except for fonts, which have their own conventions for numbering,
your own resources should have IDs that start somewhat above 0 - in
the examples here, we will generally start numbering our resources from
256. Resources of different types can reuse resource IDs. That is, the win
dow resource numbered 256 is not going to be confused with the dialog
numbered 256. Resource IDs are 16 bit number ad so have to be less than
65535.

Resource Compiler Syntax
The resource compiler compiles a language, like any computer Ian-

70 CHAPTER 6 THE REsOURCE COMPILER

guage. Like the best purpose-built languages, the resource compiler's
syntax is simple.

Lines with asterisks at the right margin are comments:

*This is a resource file comment line

Comments on the same line as other resource compiler directives
are preceded by two semicolons:

A resource compiler statement ;;another comment

Resource compiler lines that need to be folded in order to fit in your
editor's windows can use the resource compiler continuation characters
which are two plus signs:

This is a long resource compiler input, perhaps a long ++
string that would not fit within your editor's window

Ascii characters, particularly non-printing control characters may be
entered as 8-bit hexadecimal numbers preceded by a backslash:

\OA ; ; This is control-J

The header of a resource compiler input file
Resource compiler input files start with two lines that tell the re

source compiler what name and what file type it's output will have. The
first line specifies the output file. If the first line begins with an exclama
tion point, the output of the resource compiler is added to an existing file.
The second line specifies the type, typically APPL, for applications, and
the creator of the file. The "creator'' is not the resource compiler, but the
application that the output file is associated with.

Sample
APPLMANX

The above two lines begin a resource compiler input that would cre
ate a file called Sample that has the APPL type, and is identified as having
been created by MANX. The name of the compiler, in this case the Aztec
C compiler by Manx Software, is used as the creator of this file because
the primary use of the resource compiler is to add resources to a program
emitted by a C compiler.

There are more than 35 different predefined types of resources, and
future versions of the resource compiler may define more. Some 27 of
these resources types are significant in that extant versions of the resource
compiler provide a syntax for specifying the template information that

THEGENERALFORMATOFRESOURCESPECIFICATIONS 71

goes into these resources. The rest of the resources are simply read from
other files and included into the resource fork of the resource compiler's
output. For example, the CODE resource type is used to include a compil
er's output in the resource fork of your program. This is how the resourc
es you specify in resource compiler format are combined with the 68000
instructions emitted by the compiler to form the complete resource fork
of your program.

The general format of resource specifications
Predefined resources that can be described through resource com

piler input take on the following broad format:

TYPE [your-type =] type
[file-narne!resource-narne],ID [(attribute)]
data-for-this-resource

Characters in boldface (TYPE, ! , (,) , =, and ,) are literally
part of a resource specification, brackets mean that the enclosed part of a
resource specification is optional - brackets are not part of the resource
compiler syntax, and words in plain typeface describe what goes in those
positions in actual resource specifications. To see where these characters
are used in a resource definition match this general description up with
the actual specification for a dialog given above.

Window resources
The window manager is supported by a syntax that enables the cre

ation of data to fill in window structures. The order of the items in a win
dow resource specification roughly corresponds to the order of structure
members in a window structure. The keywords used in the window
manager specification, and in other resource specifications, roughly cor
respond to the names of the constants defined in the include files associ
ated with the manager that the resource supports.

The following is a window definition commented to explain the re
source compiler syntax specific to this type of resource:

Type WIND
,256
A Good Window Title

50 50 150 210

Visible NoGoAway
0

0

;;WIND specifies a resource for windows
;;no name, ID is 256
;;The title to appear in the
;;title bar
;;top, left, bottom, right
; ; coordinates
;;Is visible, no go away box
;;ProcID (The function that draws it)
;;RefCon (A slot for storing things)

Dialogs and item lists
Dialogs and alerts, being a specialized types of windows, have re-

72 CHAPTER 6 THE RESOURCE COMPILER

source compiler syntax similar to windows:

Type DLOG
, 256
100 100 200 250
Visible 1 NoGoAway 0
270

; ;A Dialog Box
;;ID 11256
;;The dialog's rectangle
;;It's visible, has Procid, no go away
;;ID of its item list

Dialogs have an item list, identified by resource ID. The item list
describes the features of the dialog box. There are nine types of items
that can be included in dialogs, including a user defined type of dialog
item. One feature of all dialog item specifications is the ability to deter
mine whether the item will be initially enabled or disabled. If an item is
disabled it will not respond to mouse clicks. This enabled or disabled
state applies only to the dialog manager and determines whether the dia
log manger notifies your application of mouse clicks in dialog items. It
does not affect the way those items are displayed. For instance, to give a
visual indication that a control is disabled, you would still have to call
Hil i teControl.

Type DITL
,270
5

StatText Disabled

20 40 35 180
A sample dialog box

Btnitem Enabled
50 10 70 70
Resume

ResCitem Enabled
70 10 120 26
257

Iconitem Disabled
40 150 72 182
257

Useritem Disabled
80 40 120 230

;;A dialog's item list
; ; ID #270
;;Five items in the list

;;Uneditable text, not mouse
; ; sensitive
;;The text's rectangle
;;The text

;;A button, mouse sensitive
;;The button's rectangle
;;The button's label

; ;A control item
;;The rectangle for this control
;;The resource ID of the control

;;An icon
;;A 32x32 rectangle
;;Resource ID of the icon

;;An application's own item
;;The rectangle it will be
; ;displayed in

In addition to the Stat Text type of dialog item, there is a similar
Edit Text item type that defines a possibly empty string of text that is
edited with TextEdit. In addition to Btnitem, Radio Item and Chkitem
types are available for defining check-boxes and radio buttons. In addi-

!CON REsOURCES 73

tion to the Iconitem type, a Pictitem can be specified for including
pictures.

Icon Resources
Icons are 32-pixel by 32-pixel entities supported by a couple of

QuickDraw calls that look for items in resource forks and draw them.
Icons are used where symbols in a typeface like the Cairo font are insuffi
cient and where QuickDraw pictures are overkill. Icons are defined in
the the Resource Compiler input file as 32 lines of two 4-digit hex num
bers.

Type ICON
,256

OFOF OFOF
OFOF OFOF
OFOF OFOF
OFOF OFOF
FOFO FOFO
FOFO FOFO
FOFO FOFO
FOFO FOFO
OFOF OFOF
OFOF OFOF
OFOF OFOF
OFOF OFOF
FOFO FOFO
FOFO FOFO
FOFO FOFO
FOFO FOFO
OFOF OFOF
OFOF OFOF
OFOF OFOF
OFOF OFOF
FOFO FOFO
FOFO FOFO
FOFO FOFO
FOFO FOFO
OFOF OFOF
OFOF OFOF
OFOF OFOF
OFOF OFOF
FOFO FOFO
FOFO FOFO
FOFO FOFO

;;An icon definition
;;Its resource ID
;;32 lines like this one
;;to enter each bit of the icon
;;in a compact but still fairly
; ; readable form.
;;
;;This icon looks like a checkerboard
;;with squares 4 pixels on a side.
ii
;;Since the Macintosh has a one-to-one
;;aspect ratio, you can design your
;;icon on graph paper before entering
;;it in hexadecimal.

Icons can also be defined in the resource compiler file in a list of
icons. The resource type of an item list is ICN#. The format of an icon list
is the same as that of an icon resource specification, except that a count of
icons in the list precedes the rest of the data in the specification, and after
that, instead of the data for one icon, there is the data for however many
there are in the list. Icon lists are used mostly to create desktop icons,

74 CHAPTER 6 THE RESOURCE COMPILER

which are actually icon lists of two icons.

Cursors
Cursors can be defined in the resource compiler file. A cursor con

sists of two 16-bit by 16-bit images and a "hot spot." The hot spot is the
point inside the cursor that is used in determining exactly where mouse
related events have occurred. Cursor resources consist of two lines of 64
hexadecimal digits that define the "data" and "mask" components of the
cursor and one line that specifies the location of the hot spot in two 4 digit
hexadecimal numbers.

The cursor data is an 16-bit by 16-bit image that defines the basic
shape of the cursor. The mask is another such image that describes how
that cursor gets displayed. For bits that are set to 1 in the cursor data,
they will be displayed as black if the corresponding mask bit is 1, or as
the inverse of the pixel under that bit if the mask bit is 0. For 0 bits in the
cursor data, if the mask is 1, then that bit will be displayed as white; if the
mask bit is 0, then that pixel will be transparent - it will always display
the pixel under that part of the cursor unchanged.

The last part of the description of a cursor is the specification of its
"hot spot" - the point relative to the upper left hand corner of the cursor
that is the actual pixel being pointed at by the cursor. For example, the
default arrow cursor has a hot spot of (O,O). The crosshairs style cursor
that the Control Panel desk accessory uses has its hot spot at (8,8), in the
center of the crosshairs.

There is no more convenient a way to specify a cursor than through
resources. If you use more than just the standard arrow cursor in your
applications, you will probably define the cursors in the resource fork.
The following example shows a cursor somewhat like the I-beam cursor
used in most text editing situations:

Type CURS
,256
OFF801C000800080008000800080008000800080008000800080008001COOFF8
0080008000800080008000800080008000800080008000800080008000800080
0008 0002

Patterns
Not surprisingly, patterns are 8-bit by 8-bit patterns. Patterns are

used to fill areas of the screen - they are backgrounds. The desktop is
generally filled with a fine checkerboard pattern that looks gray. The pat
terns your application uses to fill in areas of the screen around controls,
behind windows, and other areas on the screen are a large factor in deter
mining the look of application. If you use attractive, pleasing patterns,
you can create the illusion of texture and depth. Patterns are specified in
much the same way that icons and cursors are:

Type PAT

STRINGS 75

,256
FFOOFFOOFFOOFFOO ;; A pattern of horizontal lines

Patterns can also come in pattern lists, similar in form to icon lists.
In addition to the components of a pattern specification, a pattern list has
a length that is specified before the list of patterns:

Type PATii
,256
2 ; ; Two patterns in this list
FFOOFFOOFFOOFFOO ;; A pattern of horizontal lines
AAAAAAAAAAAAAAA ;; A pattern of vertical lines

Pattern lists are useful when you are using so many patterns that
you don't want to have to clutter the resource compiler file with lots of
separate pattern specifications.

Strings
String resources are important for two reasons: First, string resourc

es allow Macintosh applications to be translated into foreign languages
without recompiling the application's code. This means that the people
who are experts at translating documentation can translate the program
itself. It also means that since the program itself remains undisturbed,
there is less likelihood that something might be broken by the translation
process. This ease with which properly constructed Macintosh applica
tions can be translated significantly reduces the barriers to entering for
eign markets.

The use of string resources enables non-programmers, like technical
writers, to compose the messages the user sees. It is easy to see why writ
ers ought to be writing the English that goes into a product and program
mers ought to be writing the code.

String resources give you - for free - a valuable tool for reducing
the size of your programs. If you do not use all the strings in your pro
gram frequently, the seldom used ones can be brought in if and when
they are needed, and purged from memory if they are no longer required.
Many programmers have been forced to resort to this technique to fit a
big powerful program in a microcomputer's memory. The Macintosh
provides a uniform way of doing this as well as all the routines that per
form resource retrieval and memory management, giving every program
writer a solution to the space crunch.

String resources have an added attraction to C programmers: One of
the most common errors encountered by beginning Macintosh C pro
grammers - even those who are highly experienced Unix or MS-DOS C
programmers - is passing a null-terminated C-style string to a Toolbox
routine that is expecting a Pascal string with a length-byte at the begin
ning. By using string resources, you can keep your strings in a form that
the Toolbox will accept, thereby avoiding string conversion errors.

76 CHAPTER 6 THE RESOURCE COMPILER

String resources have a simple format: The string corresponding to
this resource is typed, on one line, right after the type and resource ID for
the string. If you are using a large number of strings, a string list can
lump a number of strings under the same resource ID.

Type STR
,256

This is a string in a resource

Type STRJI
,256

One string
Followed by another
Until you have run out
of things to\ODsay.

Menus

;; A string resource

;; A string

; ; A string list

; ; A list of strings

;; A carriage return: \OD

Menus are a close relation of string resources. Menus contain labels,
in English, that correspond to commands. Many of the reasons you
would want to change or translate string resources also apply to menus.

A menu specification consists of the type and resource ID followed
by a list of menu items. If you want to specify several menus at once, you
can omit the "Type MENU" line, skip a line between menu specifications
and just give the resource ID of the next menu. Special characteristics of
menu items, such as whether they are disabled and displayed "dimmed,"
can be specified in the resource compiler file using special characters.
They are the same special characters used in the AppendMenu routine:

! Makes the next character the "mark" character for the
current item.

< Set character style in combination with the following:
B-bold
u-underline
I -italic
0-outline
s-shadow

I Makes the next character a keyboard equivalent. It will
be displayed with a "cloverleaf' symbol next to it.

(Disables the menu item

The hyphen, when used in specifying a menu item, creates a hori
zontal line instead of a hyphen character. The hyphen, when used in

CONI'ROL RESOURCES 77

combination with the open-parenthesis creates a horizontal line that is
disabled, and so it is displayed dimmed. The effect is that a horizontal
dotted line that does not respond to the mouse is displayed in place of a
menu item. Such a line, which is usually left disabled throughout the
running of an application, separates items on the same menu, the way
the "undo" item is separated form the rest of the editing commands on
MacWrite's edit menu.

Type MENU
,256

\14

;; A menu resource

About that example •••
;; The menu title: the apple symbol
;; Program information, usually

, 257
File
Quit

,258
Edit
Undo /Z
(-

Cut/X
Copy/C
Paste/V

; ; The file menu
;; The label for the "quit" command

;; The edit menu
;; The label for the "undo" command
;; The "dotted line"
; ; The label for the "cut" command
;; The label for the "copy" command
;; The label for the "paste• command

Control Resources
Like menus, controls provide an obvious and rapid way for the user

to issue commands to an application. Controls, unlike menus, provide vi
sual and tactile feedback to the user. Macintosh controls are like physical
controls in this respect. The steering wheel in your car is a control that
you use to command the front wheels of your car to turn. When you look
at the wheel, or when you feel how far over your hands have moved with
the wheel, you can tell how far the front wheels have turned. When a
user moves his mouse over a control he can see the control changing, and
the act of moving the mouse gives a physical feedback as well.

There are four kinds of predefined controls, each referred to by a
different DefProc. The DefProc is a definition procedure that actually
draws the control. The following table shows the constants that refer to
the definition procedures and the kinds of controls that each draws:

DefProc
0
1
2
16

Control type
Simple button with title in the button
Check box, with tile next to it
Radio button, with title next to it
Scroll bar, same DefProc for vertical and horizontal

78 CHAPTER 6 THE REsoURCE CoMPILER

The most commonly used controls are scroll bars and buttons.
Buttons are usually part of a dialog or alert, but scroll bars are frequently
used in an applications windows to enable users to move and scroll over
a document and need to be defined separately from any dialog. Here is
the syntax of the specification of control resources:

Type CNTL
,256

ii A control resource
ii Resource ID is 256

vertical scroll bar
-1 241 157 257
Visible

ii The title, invisible for scroll bars
ii The bounds rectangle, window relative
;; The scroll bar is initially visible

16 ;; The DefProc
0 ii The RefCon
0 50 0 ii initial value, minimum, maximum

Finder Resources
Finder resources are the way the Finder finds the icons that repre

sent your application inside your application's resource fork. Three kinds
of resources are involved in providing the finder with icons. The first of
these is icon lists. Icon lists are used in place of simple icons, because the
finder needs two icon resources to make one desktop icon. The first icon
in the list describes the appearance of the icon, and the second icon de
scribes the "shadow'' of the icon - the filled in shape of the icon. These
pairs of icons are grouped in icon lists. The second type of resource used
to keep track of finder resources is the file reference. The file reference re
source matches icons up with file types. The third kind of resource used
is the bundle resource. Bundle resources do two things: they list icon and
file reference resources that make up the rest of the set of finder resources
for an application, and they are used to assign local IDs to finder resourc
es, so that the finder can change the resource IDs of finder resource to
keep them unique. The local IDs are used in the file reference resource to
refer to the icon lists because the finder will not change these resource
IDs.

Icon lists, which were covered in the part of this chapter that de
scribes icon resources, are to icon resources what string lists are to strings
and pattern lists to patterns. Here is the syntax of the file reference and
bundle resources:

Type FREF
,256
APPL 0

Type BNDL
,256
MYPG 0
2
ICNlt 1
0 256
FREF 1

;; A file reference resource
;; The ID is 256
ii Application files get the icon with local ID O

ii A bundle resource
;; The ID ls 256
;; The owner ls MYPG
;; There are two items in this bundle
;; There is one icon list in this bundle
;; Its resource ID of 256 is given a local ID of O
ii There is one file refernce in this bundle

INCLUDING RESOURCES FROM 01HER FILES 79

0 256 ;; Its resource ID of 256 ls given a local ID of O

The owner of a bundle is identified the same way an application is
identified. If the output of this resource compiler file is an application,
then the owner of the bundle will be identified with the same four letters
that are used in the heading of the resource compiler file to associate the
output with a particular application.

Including resources from other files
If you are using the resource compiler to create an application, you

will need the output of your compiler - the code resource - included in
the resource fork of the resource compiler's output. Fonts are typically
imported from other resource files as well because it would be more than
tedious to type in a font in hexadecimal for the resource compiler. Fonts
are typically created with font editors that deposit a resource file full of
the fonts as their output. Somehow you will need to merge these re
source files together into a finished application.

The resource specifications for code, driver, and font resources do
just that - they bring these resources in from other files. Their syntax
consists solely of the resource type line followed by the resource ID line.
But in addition to the resource ID, you will find on the same line the
name of the file the data is to be found in and the name of the resource.
In the case of fonts, a number of files can be specified for inclusion to
make up a single font.

Here is the syntax of font, code and driver resource specifications:

Type FONT
!Cambridge,30@0
Cambridge9,30@9
Cambridge12,30@12
Cambridge18,30@18
Cambridge24,30@24

Type CODE
MyProgram.code,O

Type DRVR
MyDrlver!MyDriver,256

ii Name only, no file, size is 0
ii Cambridge 9 point from file "Cambridge9"
ii 12 point from "Cambridge12"
ii 18 point from "Cambridge18"
ii 24 point from "Cambridge24"

ii A code resource
ii The code ls in the file "MyProgram.code"

;; A driver resource
;; The driver is called Mydriver and
ii is in the file "MyDriver"

The resource IDs for code resources are ignored, the resource com
piler generates resource IDs beginning at 0 for each segment of code in
cluded. Font resource IDs have two parts, one is the font number, and it
is put in the high byte of a font resource ID, and the other part is the point
size, which is put in the low byte of a font resource ID.

80 CHAPTER 6 THE REsoURCE COMPILER

Defining new kinds of resources
Resources fill in data structures, and it would be nice to be able to

fill in your own data structures with resources as well as the data struc
tures that are predefined by Toolbox software. The resource compiler
provides three resource types that have no predefined use. They exist for
you to use for your own purposes.

The most general of these free-form resource types is the general re
source. The general resource type is formed both the data that makes up
the resource and information about the kind of data. Data type informa
tion is specified by a period followed by a single letter. The following di
rectives can be used to tell the resource compiler what kinds of data make
up a general resource:

Directive
.P
.s
. I
.L
.H
.B

Data type
Pascal string(s), one to a line
Character string(s) without a length byte, one to a line
Integers (C type "int'')
Long integers (C type "long")
Any number of bytes of data entered in hexadecimal
Bytes from another file

This is example of the syntax of general resources:

Type GNRL
,256
.P

One Pascal style string
Another one
.s

A character string
One that is null terminated\00
.I
17
256
77
• L

68000
6610777
.H
FFOOFFOOFFOO
AAAA
AA
.B
ADataFile 128 1024

;; A general resource
; ; The ID is 256
;; Pascal strings follow •••
;; The length byte gets added
;; automatically
;; Character strings •••
;; A character string
;; AC style string
;; 16 bit integers follow •••

;; 32 bit integers follow •••

;; Hex data follows •••

;; Bytes form a file
;; The file id called "ADataFile"
;; The byte count is 128
;; The length is lk

Two less powerful free-form resources are also provided: The hexa
decimal type and the any bytes type. These two types do what two parts

REsoURCE EDITORS 81

of the general resource do. The hexadecimal type has a format identical
to the part of a general resource specification following a . H and an any
bytes resource is specified that same way the part of a general resource
following a . S is specified. Here is the syntax of these two resource type
specifications:

Type HEXA
,256
FFOOFFOO
AAAAAAAA

Type ANYB
WhereFrom,256
256 512

;; A hexadecimal resource
; ; The ID is 256
;; Some data in hexadecimal

;; An any bytes resource
;; The file is "WhereFrom," The ID is 256
;; 256 bytes extracted at an offset of 512

In addition to creating new resource formats and entering free for
mat resources, the resource compiler lets you define your own resource
types. Take another look at the general format for resource specifications
near the beginning of this chapter. On the first line of any resource speci
fication you can specify a new resource type that inherits the properties
of an existing resource type. This is most often used with the free format
resource types. Creating new resource formats usually means you have a
corresponding data structure to fill with resource data. Creating new re
sources types serves to associate a particular free-format resource with a
particular type of data structure.

Resource Editors
Resource editors are programs that create resources, like fonts and

icons, interactively. The most important resource editor is REdit, which
can edit a wide variety of resources. Specialized resource editors that edit
only fonts and icons also exist.

The most readily available example of resource editing is the desk
top pattern editor in the Control Panel desk accessory. If you don't have
a real resource editor handy, the Control Panel illustrates the general na
ture of resource editors: You manipulate a visual representation of a re
source, such as an enlarged version of a pattern, by pointing and clicking
with the mouse. When you are done, the resource fork of the file that you
have applied the resource editor to is modified to reflect the editing you
have done.

For some jobs, resource editors are the only reasonable tool to use: It
would be painfully laborious to create a font resource with the resource
compiler, but with a resource editor, the same task becomes much easier
and much less prone to error. Complex dialogs are best composed with a
resource editor, so you can see what the user will see without having to
compile and run your application (which may not be completely written
when you sit down to design the dialogs).

The disadvantage of resource editors is exactly their advantage: you

82 CHAPTER 6 THE REsoURCE COMPILER

have to interact with them. That is fine when you want instant feedback
about the look of a font or icon, but it is an inconvenience if all you want
to do is combine the code resources your compiler has created with a few
string resources. Even in an application that requires complex resources,
you will not be changing them every time you compile, so using the re
source editor to create the finished application file is not nearly as conve
nient as letting the resource compiler create the application without your
intervention. The solution to the dilemma of whether to use the powerful
resource editors, or the convenient compiler is to use both: A resource ed
itor can be used to modify resources when they need to change, and the
resource compiler simply combines the code resources with the dialogs,
fonts, patterns, and strings the you have composed interactively with a
resource editor.

Benefits
Using resources and the Resource Manager for initializing data

structures is convenient both in terms of the number of steps required to
program in that initialization and in terms of the time it takes to modify
resources. No recompilation of the program is required - only the re
source compiler needs to be run. Resources can reduce the cost of pro
ducing a foreign language version of a program. Resources let advanced
users modify your program without added effort to provide such facili
ties on your part. Due to the convenience of resources and due to a pro
gram-writer's responsibility to provide as much flexibility as possible, the
program-writer should use resources liberally.

POINTS TO CONSIDER 83

POINTS TO CONSIDER

1. How can resources be used to distribute the work of creating a pro
gram between engineering and non-engineering staff?

2. How can resources be used to enable a user of your programs to cus
tomize them in a meaningful way?

3. There are two major types of font design tools. What are they, and
why are they so different?

4. What kinds of configuration settings can you think of? What would be
· the best way to present them to the user? What would be the best way
to store them for future use? What settings should be stored in an
application's resource fork? In a document's resource fork?

7
The Internal Structure of a
Macintosh Application

• Place a window on the screen with "Hello World" in the title-bar

• Enable the user to move that window around the screen

• Enable the user to change the size of the window

• Create menus

• Respond to a user's menu selections

• Interacting with scroll bars and other controls

The evolution of an example
This chapter presents an example of a Macintosh application. This

application is evolved through four steps. By the end of this chapter, the
example program has successfully used the Toolbox to meet the stan
dards of the better commercial Macintosh programs.

Step 1: Getting started
The following program puts a window on the Macintosh's screen,

with ''Hello World" in the title bar. When you click on the mouse, the
program goes away and you are returned to the finder. Like a sumo
wrestling match, there are a lot of preliminaries for a short bit of action.
In a Unix environment, the program to display "Hello world" on your
terminal's screen could be much shorter. It might consist only of the
"main" procedure, with a call to print£, the Unix standard formatted
printing routine.

86 CHAPmR 7 THE INTERNAL STRUCTURE OFA MAClNTOSH .APPLICATION

The concepts embodied in the Unix system make it easy to construct
simple programs - but difficult to construct visually powerful applica
tions. In the Macintosh environment the opposite is true: Almost every
Macintosh applications has a powerful, easy to use, and pleasing to look
at visual interface because the Macintosh has all the parts of such an in
terface built right in. This is great for professional software developer.
They can spend their time on the guts of their programs and be sure that
the appearance their program will have can be just as polished and pro
fessional as those from the biggest software companies. By contrast, Unix
lacks all but the most rudimentary tools for creating visually appealing
programs.

The richness of the Macintosh user interface toolkit is, at least at first
glance, not so good for the person writing software for their own con
sumption. To get anything at all done, they have to achieve a fairly high
degree of polish in their programs. Achieving that level of polish takes
about two pages of code just to get things moving. Here are those pages
of code:

C code for the hello world program:

#include <Qu!ckdraw.h>
#include <W!ndowMgr.h>
#include <Contro!Mgr.h>
t!nclude <EventMgr.h>
#include <DeskMgr.h>
#include <MenuMgr.h>

W!ndowRecord w_record;
W!ndowPtr hello_w!ndow;

main()
I

!nit _process();
make_ window();
event_ loop() ;

/* storage for window info */
I* a pointer to that storage */

/* do all the initialization */

/* Do all the random initialization things
*/

!nit _process O
I

!nit _mgrs ();
FlushEvents(everyEvent, 01;

/* Do the right thing for most applications: Call the Toolbox
* initialization routines.
*/

!n!t_mgrs()
{

In!tGraf(&thePort);

InitFonts () ;
InitWindows () ;
InitCursor ();
OpenResFile("\pHelloworld.rsrc•);

RF.<ioURCF.S FOR nIE HELLO WORLD PROGRAM 87

event_ loop ()
{

EventRecord event;

do /* Nothing */ ;
while (!GetNextEvent(mDownMask,&event));
ExitToShell ();

/* Make a window */
make_ window()
I

hello_window = GetNewWindow(256, &w_record,
(WindowPtr)-11);

ShowWindow(hello_window);

Resources for the hello world program
There is an important and anomalous line in the program:

OpenResFile(•\pHelloworld.rsrc");

This line breaks one of the rules of good Macintosh programming: It
incorporates a string directly into the source of your program. It does so
in order to make it easier to run this program in the LightspeedC environ
ment. Because of this line you won't have to use the resource editor to
paste your program together. Instead, this line causes the resources, such
as the description of the window you are creating in the program, to be
read in from the file ''Helloworld.rsrc."

Let's step through what it takes to create this resource file. Using
ResEdit, the most widely used resource editor, we need to do two things.
(See the ResEdit documentation for detailed instructions on how to use
the program itself.) First, we make a new WIND resource, filling it with
the following information:

Window tltle:
HPllU 111111 ltl'

top 85 bottom 256

left 128 r1ght 384

proclD o refton o

181 Ulslble 181 goRweyfleg

This fills a window resource with the dimensions of the window,

88 CHAPTER 7 THE INTERNAL STRUCTIJRE OF A MACINTOSH Al'PuCA'l10N

which type of window frame we want to use (determined by the window
definition procID), whether the window is visible, and whether the go
away box is drawn in the window's title bar.

Then, using the Get Info command to bring up a window that con
tains general information about the resource, we change the resource
number to 256, the value we use in our program:

Type: WIND Size: 30

ID: l12s6 Owner type

Neme:

llttrlbutes:
O System Heep O Locted O Preload
O Purgeellle O Protected

We then save the results as ''Helloworld.rsrc," the name of the file
we open for searching for resources.

The edit/compile/run cycle
You can use this program to get used to your compiler's develop

ment cycle. All compilers come with example programs, and you might
find this program, or those examples, useful if you want to jump right in
and do some programming. The Macintosh is an immensely satisfying
machine when you run a program you have just compiled.

If you have already done that, or if you want to know about the
mechanisms behind this program before you experiment, we will pick it
apart and explain each piece in detail here. As you read the description
of the sample program that follows, go back every now and then and re
read the part of the example that is being described.

Initializing Toolbox managers
First, there is a fairly long list of "include" files. Since we call a

number of initialization routines, each from a different part of the
Toolbox, we need at least as many include files. We also use defined data
types from these include files.

A look at each of these initialization routines yields a rough idea of
what parts of the Toolbox are involved in putting a window on the
screen:

First there is a call that goes: InitGraf (&thePort). InitGraf is
in the QuickDraw part of the Toolbox. Ini tGraf initializes QuickDraw,
and thePort is a Toolbox global symbol that consists of enough storage
to hold Quickdraw's global variables. InitGraf is called once and only
once at the beginning of every Macintosh application. Everything that
touches that Macintosh screen, and that is just about everything, relies on
QuickDraw to draw on the screen, so before anything else can be accom-

CREATING A WINDOW 89

plished, QuickDraw has to be ready.
Next, there is a call to InitFonts, without any parameters. The

object of this program is to put the phrase ''Hello World!" in the title-bar
of a window. Putting any characters on the screen involves the Font
Manager part of the toolkit. Initializing the Font Manager by calling
Ini tFonts means that the font manager will be ready to go find the sys
tems font for use in the title-bar of our window.

Next, the window manager itself is initialized with a call to
InitWindows. This principally does two things: The GrafFort that the
Window Manager works in is created and the desktop is drawn. The
GrafPort is the data structure that holds information such as the part of
memory that is to be drawn in, the current font, information about the
"pen," etc. You can see just when in the course of an application this call
is made: When you start a program, one of the first things that happens is
the replacement of the Finder's desktop which displays disk and file
icons with an empty desktop with an empty menu-bar over it. This is the
result of calling InitWindows.

Lastly !nit Cursor is called. This is a call to the QuickDraw part of
the Toolbox. InitCursor makes sure that the cursor that appears on
your screen is the arrow pointing up and to the left, and that the cursor is
visible.

The initialization part of this program is now complete. The num
ber of initialization routines called in this minimal program is one of the
effects of the flexibility of the Macintosh toolkit. Since we put text on the
screen, but we don't change it once it gets there, we don't need to involve
TextEdit - the part of the Toolbox that provides a means of entering and
changing text on the screen. We also didn't use sound, memory manage
ment, dialog boxes or the printer, and so none of the parts of the system
or Toolbox that manage those facilities needed to be initialized. If we
didn't have such precise control over the parts of the Toolbox we initial
ize to prepare to use, every program would have to wait for Toolbox
managers to prepare themselves for nothing. That would waste time,
and, on the 128k Macintosh, it would be a significant waste of space taken
up by memory allocated to data structures that those unused Toolbox
managers require.

Creating a window
The first significant thing this sample program does is create a win

dow. This is done by creating a data structure for the information about
that window, with the initial information corning from the window re
source we have defined. The program then draws the window. Because
the Toolbox routines that manage windows are geared toward updating
their contents during the course of the interactive use of a program, there
is no "draw this window for the first time" routine. Instead we tell the
Toolbox to set aside all the information that would cause that window to
be drawn, and then we call the routines that update the screen on the

90 CHAPmlt 7 DIE INTERNAL STRUCTURE OF A MACJNTOSH Al'PuCATION

basis of this set-aside infonnation. It takes two calls to the Window
Manager part of the Toolbox to do this:

First, GetNewWindow is called with three parameters: a "window
ID," a pointer to memory where the window structure will be stored, and
a ''behind" parameter that points to the window that we want to put our
window behind. The window ID is the ID we gave to the window re
source defined in the RMaker file above. The second parameter is a
pointer to a window structure (of type WindowRecord). It points to the
window structure declared at the top of the program source. This is the
chunk of memory the window manager will use to store things about our
''Hello World" window. The last parameter is also a pointer to a window
structure. In this case, the value is -1,· which indicates that the window
we are creating should be placed in front of all the other windows on the
screen.

That -1 is used as an "invalid" pointer value probably rubs some ex
perienced C programmers the wrong way. Using-1 this way relies on the
binary representation of -1 being a 32 bit word with all the bits set to 1,
and on that memory location lying outside the address space of the 68000
processor. On many machines that Unix runs on -1 is a perfectly good
address and it is bad practice to use anything other than 0 as an invalid
pointer in the Unix environment. But since the Macintosh environment is
an indivisible whole that cannot be separated from the Macintosh hard
ware, it is permissible to take into account the characteristics of the 68000
processor and the Macintosh architecture in selecting special pointer val
ues that have meanings other than being the addresses of memory loca
tions.

The second call in the set of calls that that draws the "Hello World"
window is a call to the ShowWindow routine. This Window Manager rou
tine takes as a parameter a pointer to the window that is to be drawn.
The result of this call is that the frame of the window - the part the
Window Manager itself knows how to draw - is drawn on the screen.
An update event is also generated so that if the program itself had any
thing to draw in the window, an event directing it to do would be in the
event queue.

The event loop
At this point in the execution of this program the ''Hello World!"

window has appeared on the screen. The program then waits for a
mouse click and then exits. The loop that waits for the mouse button to
be pushed is the heart of the program: it is the event loop.

This program has a simple event loop. All we are looking for is the
event of the mouse button being pressed. We use the "event mask'' to tell
GetNextEvent that we are only interested in the mouse button being
pressed. The "event mask'' is a kind of "bit mask," so called because it is
figuratively placed over the bits that represent all of the various kinds of
events that could occur, revealing only those that the mask will allow

STEP 2: Bun.DING UP 91

through. The predefined event mask called mDownMask reveals only
mouse button presses. When GetNextEvent returns a value other than
0, an event has occurred. In this program the only event that can can be
reported is a mouse button press, so when GetNextEvent returns some
thing other than 0, we don't bother checking the data-structure that holds
information about the event - we can be sure the mouse button was
pressed and it is time to exit.

Your programs will call GetNextEvent frequently. To those of you
familiar with C programming in the Unix environment all this "polling,"
waiting for something to happen, may seem like a waste of processor re
sources. On the Macintosh, polling for events serves an important pur
pose: before your program is informed of the presence or absence of
events it is interested in, the Macintosh system software takes a look at
the events, if any, that have occurred. If the system software wants to
handle an event it does so before control is returned to your program.
Event polling serves to divide the processing resources of the Macintosh
between your program and the Macintosh system software (such as desk
accessories that need to be updated periodically).

Step 2: Building up
Now we are ready to build on this first program. If you had trouble

with your compiler's edit-compile-run cycle you should review your
compiler's documentation - we will be adding to this program and you
might want to see what happens each step of the way.

The first thing we will add is a proper event loop. The event we
will handle will be the mouse-down event. Now, instead of waiting for a
mouse button press, the program will exit when the mouse button is
pressed and then let go in the "go-away box" of the window.

This version of the program uses a resource file identical to the first
version.

C code for the second version of our hello world program:

#include <Quickd.raw.h>
#include <WindowMgr.h>
#include <ControlMgr.h>
#include <EventMgr.h>
#include <DeskMgr.h>
#include <MenuMgr.h>

WindowRecord w_record;
WindowPtr hello_window;

#define mk_long(x) (*((long *)&(x)))

main()
{

init_process(); /*do all the initialization*/
make_ window();

92 THE INTERNAL STRUCTURE OF A MACJNTOSH APPuCATION

event_ loop () ;

/* Do all the random initialization things
*/

in!t _process()
(

in!t _ mgrs () ;
FlushEvents(everyEvent, 0);

/* Do the right thing for most applications: Call the Toolbox
* initialization routines.
*/

in! t _mg rs ()
(

In!tGraf(&thePort);
In!tFonts () ;
In!tW!ndows ();
InitCursor ();
OpenResFile("\pHelloworld.rsrc");

/* Read window information from the resource branch into a window
* structure
*/

make_w!ndow()
(

hello_w!ndow = GetNewW!ndow(256, &w_record, -11);
ShowW!ndow(hello_window);

/* Get an event, switch on its type, and perform the appropriate
* action
*/

event_ loop ()
{

EventRecord event;

while {1)

{ GetNextEvent(everyEvent, &event);
sw!tch(event.what)
{ case nullEvent:

break;
case mouseDown:

do_mouse_down(&event);
case mouseUp:
case keyDown:
case keyUp:
case autoKey:
case updateEvt:
case d!skEvt:
case act!vateEvt:
case networkEvt:

case driverEvt:
case applEvt:
case app2Evt:
case app3Evt:
case app4Evt:
default:

break;

BEEFING UP TiiE EVENT LOOP 93

/* Find out where a mouse-down event has occurred and do what ought
* to be done for that location on the desktop
*/

do_mouse_down(eventp)
EventRecord *eventp;

WindowPtr windowp;

switch(FindWlndow(mk_long(eventp->where), &windowp))
I case inDesk:

case inMenuBar:
case inSysWindow:
case inContent:
case inDrag:
case inGrow:

break;
case inGoAway:

if (TrackGoAway(windowp,
mk_long(eventp->where)))

ExitToShell ();
break;

default:
break;

Beefing up the event loop
The most important changes here are the addition of a switch state

ment in the event loop, and another routine, consisting mostly of a switch
statement, that distinguishes between and handles the various kinds of
mouse-down events.

The switch statement in the event loop routine has labels for all
15 different kinds of events, even though we are only handling the
mouse-down event. The labels were included to elicit a feel for the num
ber of different events that can take place. In the do_mouse_down rou
tine, all the different kinds of mouse-down events also all have their la
bels included in the switch statement. This lets you see that while there
are only 15 distinct event types (four of which are reserved for your ap
plication to use) there is a rich set of mouse-down events, distinguished
by where on the Macintosh screen they occurred. The event mask has
also been changed to allow any event through. This is so the event queue

94 OIAPTER 7 THE lNTERNAL STRUCTIJRE OF A MAONTOSH APPUCATION

does not fill up with events that we have no interest in, instead we let
them fall though our switch statement.

It's event driven
If you have compiled this program, you can see how control is

passed back and forth between the Macintosh system and your program:
When you press the mouse button while the mouse cursor is in the go
away box, your program gets the mouse-down event, and finds out
(through the use of a Window Manager routine) that the mouse button
was pressed in the go-away box. Control is passed back to the Macintosh
Toolbox when the program calls TrackGoAWay and is retained by that
routine until the mouse button is released. The window's go-away box
reflects whether the cursor is still in the box through highlighting. If the
cursor remains in the go-away box, the box is highlighted. If the cursor is
moved out of the go-away box, the box is unhighlighted. The return
value of TrackGoAway reflects the final state of the mouse cursor: If it
was inside the go-away box when the button was lifted, a non-zero value
is returned indicating that the window should be disposed of. If the
mouse-button was lifted outside the go-away box, TrackGoAway returns
0, indicating that the user had second thoughts about extinguishing the
window.

This give-and-take between your application and the Macintosh
Toolbox software will be echoed throughout the evolution of this exam
ple program.

Step 3: Growth and movement
The next step in the evolution of this example program will bring us

two steps closer to presenting a complete set of controls over the size and
placement of windows that the user can manipulate. We will allow the
user to move the window and change its size.

#include <Quickdraw.h>
#include <WindowMgr.h>
tinclude <ControlMgr.h>
#include <EventMgr.h>
#include <DeskMgr.h>
#include <MenuMgr.h>
#include <ToolboxUtil.h>

GrafPtr w_port;
WindowRecord w_record;
Windowptr hello_window;
Rect drag_rect, grow_bounds;

fdefine mk _long (x) (* ((long *) & (x)) l

main()
{

init_process(); /*do all the initialization*/

make_window();
event_ loop() ;

/* Do all the right initialization things
*I

!nit _process()
I

!nit_ mgrs () ;
set_parameters();

STEP 3: Gimwrn AND MOVEMENT 95

/* Do the right thing for most applications: Call the Toolbox
* initialization routines.
*I

init_mgrs()
I

InitGraf(&thePort);
InitFonts ();
FlushEvents(everyEvent, 0);
InitWindows () ;
InitCursor () ;
OpenResFile("\pHelloworld.rsrc");

/* Set parameters based on screen size, etc. */
set_parameters()
I

drag_rect = thePort->portRect;
SetRect(&grow_bounds, 64, 64, thePort->portRect.right,

thePort->portRect.bottom);

/* Read window information from the resource branch into a window
* structure
*/

make_ window()
(

hello_window = GetNewW1ndow(256, &w_record, -11);

/* Get an event, switch on its type, and perform the appropriate
* action
*/

event_ loop O
(

EventRecord my_event;
Boolean valid;

while (1)

I SystemTask();
valid= GetNextEvent(everyEvent,&my_event);
if (!valid) continue;
switch(my_event.what)

96 CHAPTER 7 THE INTERNAL STRucnJRE OF A MACNTOSH APPUCATION

case nullEvent:
break;

case mouseDown:
do_mouse_down(&my_event};
break;

case mouseUp:
case keyDown:
case keyUp:
case autoKey:

break;
case updateEvt:

do_update(&my_event);
break;

case diskEvt:
break;

case activateEvt:
do_activate(&my_event);
break;

case networkEvt:
case driverEvt:
case applEvt:
case app2Evt:
case app3Evt:
case app4Evt:
default:

break;

/* Find out where a mouse-down event has occurred and do
* what ought to be done for that location
*I

do_mouse_down(event)
EventRecord *event;

WindowFtr mouse_window;
int place_type = FindWindow(mk_long(event->where),

&mouse_ window) ;

switch(place_type)
(case inDesk:

case inMenuBar:
case inSysWindow:

break;
case incontent:

if (mouse_window != FrontWindow())
SelectW!ndow(mouse_window);

break;
case inDrag:

DragWindow(mouse_window, mk_long(event->where),
&drag_ rect);

break;
case inGrow:

STEP 3: GROWIHAND MOVEMENT 97

grow_window(mouse_window, mk_long(event->where));
break;

case inGoAway:
if (TrackGoAway(mouse_window,

mk_long(event->where)))
ExitToShell ();

break;
default:

break;

/* Handle and update event - first determine if the event is
* in one of this application's windows, and if so, update
* that window.
*I

do_update(event)
EventRecord *event;

GrafPtr save_graf;
WindowPtr update_window;

update_window = (WindowPtr)event->message;
if (update_window = hello_window)
f GetPort(&save_graf);

SetPort(update_window);
BeginUpdate(update_window);
ClipRect{&update_window->portRect);
EraseRect(&update_window->portRect);
DrawGrowicon(update_window);
draw_content(update_window);
EndUpdate(update_window);
SetPort(save_graf);

/* Draw the grow icon for the window to indicate whether or
* not it is active
*I

do_activate(event)
EventRecord *event;

WindowPtr event window = (WindowPtr)event->message;

if(event_window == hello_window)
{ DrawGrowlcon(event_window);

if (event->modifiers & 1)
SetPort(event_window);

/* Call the window manager routines that cause a window to
* grow
*I

98 THE INTERNAL 5TROCTURE OF A MACINTOSH APPUCATION

grow_window(window, rnouse_point)
WindowPtr window;
Point rnouse_point;

long new_bounds;

inval bars(window);
new_~unds = GrowWindow(window, rnk_long(rnouse_point),

&grow_ bounds);
if (new_bounds =~ 0)

return;
SizeWindow(window, LoWord(new_bounds),

HiWord(new_bounds), TRUE);
inval_bars(window);

/* Invalidate the scroll bar and grow icon area of a
* standard window
*/

inval_bars(window)
WindowPtr window;

Rect temp_rect, port_rect;

port_rect = window->portRect;
SetRect(&temp_rect, port_rect.left,

port_rect.bottom - 16,
port_rect.right, port_rect.bottom);

InvalRect(&temp_rect);
SetRect(&temp_rect, port_rect.right - 16, port_rect.top,

port_rect.right, port_rect.bottom);
InvalRect(&temp_rect);

draw_content(window)
WindowPtr window;

Strengthening the framework
Our program has grown considerably. To support the added fea

tures of moving and changing the size of our window, we have had to
add to our framework. First, we added a routine called set _parame
ters. This new routine performs an important job: it insures that this
program will look nice and perform as the user expects even if the next
generation Macintosh has a much larger screen. Set _parameters sets
this program's parameters according to the values it finds in global vari
ables or through calls to Toolbox routines. So, if the screen of some fu
ture Macintosh has a thousand pixels in each direction, this program will
allow the window to be dragged all over that huge screen without recom
pilation or other modification.

ORAWINGmEGROWICON 99

This version of our example program does only two things in the
set_parameters routine: The rectangle in which the window can be
dragged is set to be the entire screen, and the limits to which the window
can grow or shrink is set to have a fairly arbitrary lower bound, and an
upper bound which allows our window to grow to the size of the screen.
The second operation is done with the QuickDraw routine SetRect, siin
ply because SetRect is more convenient than a series of C assignment
statements. Using Toolbox routines for even minor jobs like assigning
values to a Toolbox data-structure's elements is a gcxxl idea because other
Macintosh programmers will know iinmediately that you are assigning,
in this case, values to elements of a rectangle, where a series of assign
ment statements would be much more difficult to read and understand.

The event loop has also "grown-up" a bit. While event polling pro
vides a measure of resource-division, to more completely cooperate with
the Macintosh system the program needs to call SystemTask, a Desk
Manager routine that allows desk accessories, such as the alarm clock, to
get processor resources so that they can still operate even though their
windows are not active. The next version of this program will further ex
plore the use of the desk manager.

Drawing the grow icon
The following changes, to the event loop and to other parts of our

program, are in large measure a consequence of drawing the "grow
icon." The grow icon isn't really an icon at all- as far as the routines that
support Macintosh icons are concerned. The grow icon is part of the
Window Manager. The grow icon is also not really part of window frame
- unlike the window frame, the window manager doesn't draw it for
you automatically. Fortunately, there is a Toolbox routine that will draw
the grow icon for a given window. But you have to know when to call
this routine.

Knowing when to do this is not obvious, and when you find out, it
is still a bit tedious. You can make the best of this situation by learning a
bit about the window manager and how windows are activated. The ac
tive window is the one that interacts with the user. It ought to be obvious
to the user which window is active, so visual indications, such as the
presence of horizontal lines in the title bar and the presence of the over
lapping squares in the grow icon are provided to the user. Our example
program has to cooperate with the window manager to produce the right
effects in the grow icon. You will also learn a bit about "graphics up
date," an important part of every Macintosh program.

Updating and activating
In order to deal with activation and updating, our application needs

to grab the events that tell it what to do and when. The event loop of the
example now includes a call to do_ update every tiine an update event
occurs, and a call to do_activate every time an activate event occurs.

100 CHAPTER 7 THE INTERNAL STRUCTURE OF A MAONTOSH APPUCATION

These routines are defined in the example, and contain code that cooper
ates with the Macintosh system to correctly update the contents of the
window - in this case only the grow icon - and to correctly indicate
that the window is active.

Responding to the mouse
The switch statement in do mouse down has also been modified to

include calls to Toolbox routineS and routines within the example pro
gram to drag the window, to grow the window, and to "select" the win
dow, causing it to be activated.

Support for activating, updating, growing and dragging
Let's take a close look at the routines that support the example pro

gram's new abilities: The simplest of these is the call to DragWindow, a
Window Manager routine that moves the location of our window on the
screen. The interesting thing about DragWindow is the simplicity of the
operation of moving the window around: we don't need to know where it
is, and we don't need to know where it winds up. This is due to the use
of GrafPort environments. All of the drawing we do is within the
GrafPort of our window. As long as we remember to set the current
GrafPort for drawing to be the GrafPort associated with the window
we want to draw in, our program will draw in the right place.

Do_activate is called in response to activate events. There are
two kinds of activate events: ones that signify that a window has become
inactive, and others that signify that a window has become active.
Activate events, therefore, usually happen in pairs, one for the window
becoming active, and another for the window becoming inactive. If the
activate event has 1 in the zeroth bit of the modifiers field, that is, if the
modifiers field is odd, then it signals the activation of a window.
Because the Window Manager itself relies on the current GrafPort being
the GrafPort of the active window, when our window is activated,
SetPort is called with the GrafPort of the newly active window.

The maintenance of the GrafPort is demonstrated in the do up
date routine. First, the pointer to the current GrafPort is saved in
save graf, then the current GrafPort is set to be the GrafPort of the
window the program is updating. Then the program calls the Window
Manager routine BeginUpdate to inform the Window Manager that it is
updating this window. The port rectangle of our window is then erased.
Actually, only the "invalid" part of the window - the part of the win
dow that has changed on the screen will be erased on the screen, and the
other bits remain untouched. Then, the example program has a call to a
routine called draw_content. Right now this routine doesn't do any
thing, but it does mark the place where this example program will draw
the contents of its windows.

What causes update events in this version of our example? Growing
and shrinking the window. In the example program, the routine

WHAT TO 00 ABOUT INV AI.ID AREAS 101

grow_ window supports changing the size of the window by clicking in
the grow icon and then dragging the mouse. Because the grow icon is in
the content region of the window, our example program has to take care
of making sure that the grow icon disappears from its previous location
and is displayed in the new location. It does so through calls to
InvalRect. InvalRect is a Window Manager routine that adds the
rectangle that it takes as an argument to the "invalid region" associated
with the window. Adding the present location of the grow icon to the in
valid region will make sure the old grow icon is erased. After the win
dow is resized, the new location of the grow icon is added to the invalid
region, so the the new grow icon will be drawn.

The grow_ window routine is where our program grows its window.
First, as was just explained, the present grow icon is added to the invalid
part of the window. Then, a call to the Window Manager routine
GrowWindow is made. GrowWindow returns the new width and height as
the low and high order words of a 32 bit long-word. All GrowWindow
does is show an outline of the window on the screen that tracks the user's
mouse movements and, when the user releases the mouse button, in
forms the program where the window's bounds ought to be. The Toolbox
Utility routines LoWord and HiWord extract the width and height for use
in SizeWindow, which tells the Window Manager that the window has a
new width and height. You, of course, have the option to ignore what the
user did with the grow icon and size the window to some other dimen
sions. This might be done to prevent the window from covering up some
other part of the screen. In order to use the Toolbox Utility routines, we
had to add another include file at the top of the program: toolu til.h.

What to do about invalid areas
What actually happens to "invalid" parts of our window? Take a

look at do_ update: Invalid regions are erased as a result of a call to
EraseRect. Even if the program were to draw something in the invalid
parts of the window, those parts should be erased first. Otherwise the
program might be scribbling over leftover pieces of grow icon and other
detritus.

An invitation to tinker
Now that our program has grown to a substantial size, it can be

tinkered with to see why all the Toolbox calls are where they are. For ex
ample, you could take out one or the other - or both - of the calls to
InvalRect in the grow_ window routine and see how bits of the grow
icon are left in their old position, or how new grow icons sometimes fail
to appear. Growing the window will still work, but if the invalid region
is not kept up the user will not have a proper visual indication of the state
of the window. The next version of the example program, and the last
one presented in this chapter, will be much more complex, since it will
unleash the desk accessories. So if you want to tinker around and willful-

102 CHAPTER 7 THE INTERNAL STRUCIURE OF A MACINTOSH APPLICATION

ly break this program, do so at this stage. And if you have the slightest
inclination to tinker - do so! Playing with an example - commenting
out Toolbox calls and seeing what effect that has - is the fastest way to
connect, in your mind, parts of a program and their effect on interaction
with the user.

Step 4: Menus and scroll bars
The following version of our example program is the last version for

this chapter. While this framework will be used in the following two
chapters, this will be the last version that maintains a pristine emptiness
- doing nothing, but it does it with all the refinement a Macintosh appli
cation could ask for. If you need a break from all that nothing, start up a
desk accessory. If you want to see some different nothing, use the scroll
bars.

In this version of the example, the menu bar will have menus in it,
and the scroll bars will be placed in the presently empty spaces above
and to the left of the grow icon. This adds quite a bit of code, and the dis
cussion of this version will be divided into a discussion of menus and a
discussion of scroll bars and other controls.

Running this version of the program will provide the first example
of the "Hello World" window being deactivated. By starting up some
desk accessories you can see how the window manager brings windows
to the foreground when they become active, and how the example pro
gram behaves in the background when another window is active.

Here is the final version of the "Hello World!" program:

#include <Quickdraw.h>
#include <WindowMgr.h>
#include <ControlMgr.h>
#include <EventMgr.h>
#include <DeskMgr.h>
#include <MenuMgr.h>
#include <ToolboxUtll.h>

GrafPtr w_port;
WindowRecord w_record;
WindowFtr hello_window;
Rect drag_rect, grow_bounds;

struct long_halves
{ int high;

int low;
} ;

pascal void up_act!on(), down_action();

#define V_SCROLL 256 /* Resource ID of the vertical scroll bar */
#define H_SCROLL 257 /* Resource ID of the horizontal scroll bar */

#define UP 1

tdef ine DOWN 2

tdefine APPLE MENU 1
tdef ine FILE MENU 256
tdef ine EDIT MENU 257

STEP4: MENUS AND SCROLL BARS 103

tdefine DRVR Ox44525652L /* The string "DRVR" as a long */

#define mk_long(x) (*((long *)&(x)))

main()
I

init_process(); /*do all the initialization*/
make_ window();
event_ loop () ;

/* Do all the right initialization things
*/

init_process ()
I

init _ mgrs ();
set_parameters();
fill_ menus() ;

/* Do the right thing for most applications: Call the toolbox
* initialization routines.
*/

init_mgrs()
I

InitGraf(&thePort);
InitFonts ();
FlushEvents(everyEvent, 0);
InitWindows () ;
InitCursor () ;
InitMenus () ;
TEinit ();
OpenResFile{"\pHelloworld.rsrc•);

/~ Set parameters based on screen size, etc. */
set_parameters()
I

drag_rect = thePort->portRect;
SetRect(&grow_bounds, 64, 64, thePort->portRect.right,

thePort->portRect.bottom);

fill_ menus()
{

MenuHandle menu;

menu= GetMenu(APPLE_MENU);

104 CHAPraR. 7 THE INTERNAL STRUCTIJRE OF A MACINTOSH APPUCATION

Add.ResMenu(menu, DRVR);
InsertMenu(menu, 0);
InsertMenu(GetMenu(FILE_MENU), 0);
InsertMenu(GetMenu(EDIT_MENU), 0);
DrawMenuBar O ;

/* Read window information from the resource branch into a window
* structure. Get the scroll bars for this window and mark them to
• distinguish them from any other controls that might be in this
• window
•/

make_ window()
I

ControlHandle scroll_bar;

hello_window = GetNewWindow(256, &w_record, -11);
scroll_bar = GetNewControl(V_SCROLL, hello_window);
SetCRefCon(scroll_bar, (long)V_SCROLL);
scroll_bar = GetNewControl(H_SCROLL, hello_window);
SetCRefCon(scroll_bar, (long)H_SCROLL);

/* Get an event, switch on its type, and perform the appropriate
• action
•/

event_ loop()
(

EventRecord my_event;
Boolean valid;

while (1)
(SystemTask();

valid= GetNextEvent(everyEvent,&my_event);
if (!valid) continue;
switch(my_event.what)
(case nullEvent:

break;
case mouseDown:

do_mouse_down(&my_event);
break;

case mouseUp:
case keyDown:
case keyUp:
case autoKey:

break;
case updateEvt:

do_update(&my_event);
break;

case diskEvt:
break;

case activateEvt:
do_activate(&my_event);
break;

case networkEvt:
case driverEvt:
case applEvt:
case app2Evt:
case app3Evt:
case app4Evt:
default:

break;

STEP4: MENus AND SCROLL BARS 105

/* Find out where a mouse-down event has occured and do what ought to
* be done for that location
*/

do_mouse_down(event)
EventRecord *event;

WindowPtr mouse_window;
int place_type = FindWindow(mk_long(event->wherel, &mouse_window);

switch(place_type)
I case inDesk:

break;
case inMenuBar:

do_menu(MenuSelect(mk_long(event->where)));
break;

case inSysWindow:
SystemClick(event, mouse_window);
break; ·

case inContent:
if (mouse_window != FrontWindow())

SelectWindow(mouse_window);
else

do_controls(mouse_window, mk_long(event->where));
break;

case inDrag:
DragWindow(mouse_window, mk_long(event->where), &drag_rectl;
break;

case inGrow:
grow_window(mouse_window, mk_long(event->where));
break;

case inGoAway:
if (TrackGoAway(mouse_window, mk_long(event->where)))

ExltToShell ();
break;

default:
break;

/* Find which part of which control was used. Then find out how the
* value of that control has changed. Then call one of this

106 CHAPl'ER 7 THE JN'l'ERNAL STIUJCTURB OF A MACJNTOSH APPUCATION

* applications routines that performs the action that reflects the
* change in the control. In the case of the up and down buttons,
* TrackControl calls an action routine that should show some
* intermediate result, like srolling the screen
* one line in an editor.
*I

do_controls(window, where)
WindowPtr window;
long where;

int part_code, old_value, new_value;
ControlHandle control;

GlobalToLocal(&where);
part_code = FindControl(where, window, &control);
if (!part_code) return;
switch(part_code)
I case inUpButton:

TrackControl(control, where, up_action);
break;

case inDownButton:
TrackControl(control, where, down_action);
break;

case inPageUp:
case inPageDown:

page_movement(window, control, part_code);
break;

case inThumb:
old_value = GetCtlValue(control);
TrackControl(control, where, OL);
new_value = GetCtlValue(control);
thumb_movement(window, control, old_value, new_valueJ;

default:
break;

pascal void
up_action(control, part_code)

ControlHandle control;

WindowPtr window = (*control)->contrlOwner;
int old_value = GetCtlValue(control);

SetCtlValue(control, old_value - 1);
scroll_window(window, control, UP, 1);

pascal void
down_action(control, part_code)

Contro!Handle control;

WindowPtr window = (*control)->contrlOWner;
int old_value = GetCtlValue(control);

SetCtlValue(control, old_value + 1);
scroll_window(window, control, DOWN, 1);

page_movement(window, control, part_code)
WindowPtr window;
ControlHandle control;

int units= get_page_units(window, control);

STEP 4: MENus AND SCROLL BARS 107

int direction = part_code == inPageUp ? UP : DOWN;
int old_value = GetCtlValue(control);

if (direction == DOWN)
SetCtlValue(control, old_value + units);

else
SetCtlValue(control, old_value - units);

scroll_window(window, control, direction, units);

thwnb_movement(window, control, old_value, new_value)
WindowPtr window;
ControlHandle control;

int units = old value - new_value;
int direction = units < 0 ? DOWN : UP;

if (units)
(units = units < O ? - units : units;

scroll_window(window, control, direction, units);

get_page_units(window, control)
WindowPtr window;
ControlHandle control;

return 5;

scroll_window(window, control, direction, units)
WindowPtr window;
ControlHandle control;

/* Handle and update event - first determine if the event is in one of
* this application's windows, and if so, update that window.
*/

do_update(event)
EventRecord *event;

GrafPtr save_graf;
WindowPtr update_window;

108 OIAYrnR 7 THE INTERNAL STRUCTURE OF A MACINTOSH APPuCAllON

update_window = (WindowPtr)event->message;
if (update_window = hello_window)
(GetPort(&save_graf);

SetPort(update_window);
BeginUpdate(update_window);
EraseRect(&update_window->portRect);
DrawGrowicon(update_window);
DrawControls(update_window);
draw_content(update_window);
EndUpdate(update_window);
SetPort(save_graf);

/* If the modifiers are odd, then this is an activate event for the
* window pointed to in the message field of the event. If that is
* the case then the graf port is set to that window's graf port
*I

do_activate(event)
EventRecord *event;

WindowPtr event_window = (WindowPtr)event->message;
WindowPeek peek = (WindowPeek)event_window;
ControlHandle control = (ControlHandle)peek->controlList;
long label;

if(event_window == hello_window)
I if (event->modifiers & 1)

I SetPort(event_window);
Disableitem(GetMHandle(EDIT_MENU), 0);
while (control)
I label = GetCRefCon(control);

if (label == V_SCROLL I I label == H_SCROLL)
ShoWControl(control);

control = (*control)->nextControl;

else
I Enableitem(GetMHandle(EDIT_MENU), 0);

while {control)
I label = GetCRefCon(control);

if (label == V_SCROLL I I label == H_SCROLL)
HideControl(control);

control = (*control)->nextControl;

DrawGrowicon(event_window);

/* Call the window manager routines that cause a window to grow */
grow_wlndow(window, mouse_polnt)

WindowPtr window;

S'IBP 4: MENusAND SCROLL BARS 109

Point mouse_point;

long new_bounds;

inval_grow(window);
new_bounds = GrowWindow(window, mk_long(mouse_point),

&grow_bounds);
if (new_bounds == 0)

return;
SizeWindow(window, LoWord(new_bounds), HiWord(new_bounds), TRUE);
move_bars(window);
inval_grow(window);

I* Invalidate the grow icon area of a standard window */
inval_grow(window)

WindowPtr window;

Rect temp_rect, port_rect;

port_rect = window->portRect;
SetRect(&temp_rect, port_rect.right - 16, port_rect.bottom - 16,

port_rect.right, port_rect.bottom);
InvalRect(&temp_rect);

/* Go through the list of controls for this window, identify the
.* scroll bars, and change their position and size to conform to the
* window's new size
*/

move_bars(window)
WindowPtr window;

WindowPeek peek = (WindowPeek)window;
ControlHandle control = peek->controlList;
int new_top = window->portRect.top;
int new_left = window->portRect.left;
int new_bottom = window->portRect.bottom;
int new_right = window->portRect.right;
long label;

while (control)
I label= GetCRefCon(control);

if (label = V _SCROLL)
I HideControl(control);

MoveControl(control, new_right - 15, new_top - 1);
Sizecontrol(control, 16, new_bottom - new_top - 13);
ShowControl(control);

else if (label == H_SCROLL)
I HideControl(control);

MoveControl(control, new_left - 1, new_bottom - 15);
SizeControl(control, new_right - new_left - 13, 16);
Showcontrol(control);

110 CHAPTER 7 THE INTERNAL STRUCTURE OF A MACINTOSH APPUCATION

control = (*control)->nextControl;

do_menu(command)
long command;

int menu_id = HiWord(command);
int item= LoWord(command);
char item_name[32];

switch (menu_ id)
(case APPLE MENU:

Getite;(GetMHandle(menu_id), item, item_name);
OpenDeskAcc (item name);
break;

case FILE MENU:
ExitToShell ();
break;

case EDIT MENU:
SystemEdit(item - 1);
break;

HiliteMenu(O);

draw_content(window)
WindowPtr window;

Setting up menus and scroll bars
In the first three versions of this example program, the framework

of this program was built. Here that framework is used to support more
of the same sort of meshing with Toolbox routines.

To inplement further meshing with Toolbox managers, we need to
define more resources: the resource file ''Helloworld.rsrc" now includes
descriptions of three menus and two controls.

The boundaries of the scroll bars are carefully chosen to conform to
the areas above and to the left of the grow icon that were blank in the pre
vious version of the example. The range of values (0 - 50) that the scroll
bars display is arbitrarily chosen, and since our window doesn't display
anything, manipulating the scroll bars has no effect other than to move
the "thumb" in the scroll bar being used. Here is the way the definition
of the scroll bars are entered through ResEdit:

Dound1Rect

uelue

ulslble

meH

min

proclD

retcon

title

baund1Rect

uelue

Ulllble

meH

min

proclD

refCon

title

SE111NG UP MENUS AND SCROLL BARS 111

E:::J §!:J@D §:] mD
lo I
®True Qfelse

§
lo I

®True QFelse

!so I

B
lo I

The scroll bars are initialized when the ''Hello World" window is
created. Controls have a close relationship with windows: Windows
have a list of controls that are associated with that window and controls
each have a pointer that points to the window that owns that control
The scroll bar controls are created - and initialized with the data in the
resource fork- by a call to GetNewControl. Because controls cannot be
easily identified by looking at their control records, the scroll bars in the
example program have their resource IDs stashed away in the RefCon
field of their control records.

In order to initialize the menus, the routine fill_menus has been
added to the program and is called from init_process. fill_menus
gets menus that have been filled with the templates from the resource
fork by calling GetMenu and inserts the menus into the menu bar by call
ing InsertMenu. Here is the way the menus are entered through
Res Edit

menu ID I•
wldtll lo
llelgllt lo
proclO lo
eneblaflgs ISFFFFFFFF

title I• 0

The "Apple menu" is treated specially: Instead of consisting of
names of commands, the Apple menu consists of the names of desk ac
cessories. These are loaded into the menu by calling AddResMenu, a
Menu Manager routine that hunts down all the resources of a given type
- in this case the DRVR type - and adds them to the specified menu.

112 CHAPrER 7 THE INTERNAL STRUCTURE OF A MACINTOSH APPllCATION

The File menu contains just one command here, "Quit:"

menu ID l2s6

width I-•
height I-•
praclD lo
enebleflg1 I SFFFFFFFF
tltle I rne

menu Item lou1t

Icon# D
tey equlu

mart Cher B
style lsoo 0

The Edit menu contains the standard commands for editing, and it
will be used to pass those commands through to desk accessories that use
them:

menu ID Hm
width I-•
height I-•
praclD lo
enebleflgs ISFFFFFFFB
tltle I Edit

menu Item I undo

Icon# D
tey equlu D
mart Cher D
style lsoo
menultem

Icon# D
tey equlu D
mart Cher D
style lsoo
menu Item I cut

Icon# D
tey equlu D
mart Cher D
style jsoo

INTERACTING WITH MENUS 113

menu Item I copy

Icon# D
key equip D
mertc Cher D
style lsoo
menu Item tJ Icon#

key equip D
mertc Cher D
style lsoo

menu Item lc1eer

Icon# D
tey equlP D
mertc Cher D
style lsoo

IJ

Interacting with menus
The use of menus introduces yet another major category of interac

tion between Macintosh applications and the Toolbox. Like the switch
statement in the event loop and in do_ mouse_ down, do_ menu has a
switch statement that switches on the result of a call to a Toolbox routine.

In the case of menus, the Too1box routine MenuSelect is used to
track the user's mouse after a mouse-down event has occurred in the
menu bar. If a menu item was selected by the user having released the
mouse button over that menu item, then MenuSelect returns a menu id
and item number encoded in a longword. This result is passed to our ex
ample's routine do_ menu where a switch statement is used to dispatch
according to the menu where the selection occurred. If no menu item
was selected, or if an item from a desk accessory's menu was selected,
do_ menu will do nothing.

The action associated with the Apple menu is launching desk acces
sories. This takes two steps: In the first step the name of the desk accesso
ry is found through a calls to the Menu Manager routines GetMHandle
and Get!tem. The return value of GetMHandle is passed to Get!tem,
which deposits the name of the menu item-in this case the name of the
desk accessory we want to start - in a buffer. The second step is the ac
tual launch of the desk accessory through a call to OpenDeskAcc.

The file menu consists of only one item: "Quit." So the program
does no checking to see which item from the file menu was picked - it
knows right away that it is time to quit.

Our program does no editing, so the items on the ''Edit'' menu are
all disabled if the "Hello World" window is the active window. When

114 CHAPTER 7 THEINTERNALSTRUCTUREOFAMAClNTOSHAPPllCATION

our window in inactive - when a desk accessory's window is the active
window - the edit menu is enabled. This is done in do_ activate.

Interacting with controls
Controls are the most direct way to translate the user's desires in ac

tions. In combination with the mouse, the scroll bars solve one of the
thorniest problems facing user interface designers: How will the user
scroll and move the cursor? On the Macintosh the design issues are clear
cut, but your programs still have to interface to the scroll bars to benefit
from them. Using scroll bars is fairly complex because scroll bars have
three major components: The arrows at the end that are used for scrolling
up on "line" - whatever a line may mean to your program; The areas
above and below the "thumb" which are used for "paging" up and down
in screen-sized units; The "thumb" itself, which is used to move the win
dow over large expanses of the document being viewed.

Each of these components interacts with the application in a some
what different way. Because the up and down buttons (the arrows) need
to show intermediate results, the application passes a function pointer to
TrackControl, the Control Manager routine that is called when a
mouse down is detected in the up or down buttons. The page up and
down areas are easier: all we need to show are the results, which in the
case of our example is only the new location of the thumb. The thumb is
moved by the control manager, and the new value of the control is set for
us, so to interact with the thumb the program needs to store the value of
the control before the the thumb is moved so that the difference between
its old and new location can be reflected in the contents of the window.

Because our sample program has no content to display in the win
dow, the range of values that the scroll bar controls display and the num
ber of units in a "page" are chosen arbitrarily to demonstrate the use of
these controls.

When there is something to display, a program will have to set the
range of control values, and calculate the "page" size based on the size of
the window and the size of the document being viewed. In the example
program, we have put in a dummy scrolling routine to show what infor
mation is available for determining how much to scroll and in which di
rection and a dummy get _page_ uni ts routine that returns a value

Controls and activation
When a window is inactive, its title bar is plain white, its grow icon

is gone, and its scroll bars are hidden. To achieve this effect, the program
has to call HideControl when the window is deactivated and
ShowControl when it is activated. Because you may want to treat some
controls differently than others, the example program uses the RefCon
field of the control to label the scroll bars as such, and only the scroll bars
are hidden on deactivation.

USEmEM! 115

Use them!
Although controls are complex, and require a fair bit of cooperation

from your application to make them work, you should use them liberally.
They are the most intuitive form of user interface available. Nobody
needs a manual to operate a stereo - if the volume is set to 11, it is obvi
ously louder than 10. So it is with controls.

116 OIAPl'ER 7 THEINTBRNAL5TRUCTUREOFAMACINTOSH.APPuCA110N

POINTS TO CONSIDER

1. What, if anything, does Macintosh programming remind you of?

2. What problems did you run into in running your first Macintosh pro
gram? Why do you think those problems occurred?

3. What, thus far, has proved to be the most valuable tool in helping you
create Macintosh software?

8
Exploring the Mandelbrot Set

• What is the Mandelbrot Set

• Finding the complex numbers that form the set

• The design of a Macintosh application that explores the Mandelbrot
Set

• The implementation of such an application in C, using the framework
created in the previous chapter

• Using menus and controls to enable the user to manipulate an appli
cation

• What "graphics update" is and how to do it

• Scrolling a graphical document

Pictured below is a portion of the border of the Mandelbrot Set. The
border of the Mandelbrot Set is a fractal.
No matter how closely you look at the bor
der of a fractal, there is still more detail to
be seen. The border of the Mandelbrot Set,
and any fractal, is infinitely long. So if you
think fractals are interesting and beautiful,
there is an infinite amount of interest and

120 CHAPl'ER 8 ExPl.ORING mE MANDELBROT SET

beauty to be found along the edge of the Mandelbrot Set.
The example application presented in this chapter, built on the

foundation laid in the previous chapter, is a tool for exploring the neigh
borhood of the Mandelbrot Set.

Calculating and plotting the Mandelbrot Set is an attractive target
for an example Macintosh application. The math behind the Mandelbrot
Set is fairly easy and the code that does the calculations will not over
shadow the purpose of the example program. The huge number of calcu
lations involved in computing the boundaries of the Mandelbrot Set en
sure that this example will not be a "toy" program that tackles a problem
too small to be worth automating in the first place. Instead, a simple re
petitive task is being performed by the Macintosh to yield a visually in
teresting result. It would not be practical to explore the Mandelbrot Set
without a computer.

The scale of the problem affects the implementation: On a minicom
puter, you might Jet a long calculation run its course, even if it takes days
to complete. But the Macintosh is an interactive personal computer. You
don't want it to sit there, silent and unresponsive while it is grinding
through a lengthy calculation. At least, the desk accessories ought to re
main available. This means that long calculations, like spreadsheet up
dates, document repagination in word processors, and long scientific or
engineering calculations should be done piecemeal. In this chapter we
will examine this issue and the other issues involved in designing a
worthwhile, easy to use, and powerful Macintosh application.

A shift in presentation
In the previous chapter the example program was presented in stag

es. In this chapter, and in the next chapter, the example program will be
presented as a fait accompli because it would be too large to include pro
gram listings and commentary for each stage in the development of our
Mandelbrot Set exploration program. Instead, the program listing is pre
sented at the end of the chapter and it shows only the complete example
program. The stages of development that went into this example, and
that would go into programs you write, are discussed in each of the sec
tions of this chapter.

Each section will present excerpts from the code. These excerpts
will be discussed in detail, but will be presented only once - in their
final form. The stages of development each part of the program went
through will be part of the subject of the commentary for those excerpts.

Stating the problem
The Mandelbrot Set is a set of complex numbers. Since complex

numbers have two components, a natural way to plot a set of complex
numbers is a two-dimensional map. In this case, the numbers inside the
Mandelbrot Set will be mapped in black, and those outside the set in
white or some other pattern.

GOALS AND DESIRED RESULTS 121

Numbers that lie inside the Mandelbrot Set can be found by drop
ping them into the following equation in place of "c:"

The variable "z" starts at zero. Evaluating the right side of the
equation yields a new value for "z." By repeating the process of deter
mining the value of the equation, and using the value as the value of "z"
for the next calculation, two classes of numbers emerge: Numbers that
cause the calculation to run off to infinity, or "diverge," and those that
cause the result of the calculation to perpetually have a magnitude less
than two. In practice it takes about 700 iterations of this calculation to de
cide that the calculation will not run away to infinity and that the initial
value of"~' is therefore in the Mandelbrot Set.

In the case of the Mandelbrot Set, more information than the in-the
set-or-out, black-or-white information about complex numbers can be
presented. Numbers that lie outside the Mandelbrot Set can be assigned
a distance from the set. ''Distance," in this case, is determined by the
number of calculations required to decide that a number is outside the
Mandelbrot Set. If it takes a large number of calculations to make this de
termination, a number is near the set, if it takes one or a only a few calcu
lations, the number is far away.

Goals and desired results
Simply stated, the results we want are interesting pictures.

Exploring the Mandelbrot Set is like looking through a telescope at the
stars or though a microscope at things that are normally invisible.
Because there is little value in the naked data about which complex num
bers are in or out of the Mandelbrot Set, the way the data is presented is
important. In addition to providing a solution to the stated problem, the
goal of this program is to tum the Macintosh into an instrument for exploring
the Mandelbrot Set.

One notion behind this goal is that people do not use many general
purpose devices in day-to-day life. They use scissors to cut paper and
cloth, knives to cut food, and saws to cut wood. They use telescopes to
look at stars and microscopes to look at bugs. They do not expect to tum
their telescopes around and use them as microscopes. They do not even
expect their dishwashers to be their clothes-washers even though both
machines slosh hot water around in a big white box.

The universal problem faced by software designers is the problem
of transforming, temporarily, a general purpose computer into an instru
ment specific to an application. How can the Macintosh, which sloshes
code around in a small beige box be transformed into a sketch-pad, a
printed page, a drafting board, a ledger, or, in this case, a tool for looking
at a mathematical object?

122 CHAPrER 8 ExPl.ORING mE MANDELBROT SET

Visual Goals: Presentation
A broad hint at the solution is in the picture at the beginning of this

chapter. In that picture, numbers in the Mandelbrot Set are plotted as lit
tle black squares, numbers just outside the set are plotted as little white
squares, and numbers that are increasingly distant from the set are plot
ted in increasingly darker patterns. By juxtaposing white and black, the
border of the Mandelbrot Set is highlighted. The black regions that form
the body of the set itself are surrounded by a halo of white, which then
fades to a dark gray as points grow more distant from the set. Our choice
of visual representation was made in a way that combines accuracy - the
border of the set is sharply defined - with esthetics.

By creating a program that maps parts of the Mandelbrot Set in an
accurate and pleasing format, and that allows the user to steer around the
map in an intuitive manner we are temporarily transforming the
Macintosh into an instrument for inspecting the neighborhood of the
Mandelbrot Set. The example program presented in this chapter is an ex
ample of an implementation of a software instrument. Software instru
ments like this one have an advantage over physical instruments in that
they can be used to look at things like the Mandelbrot Set that don't exist
in the physical world.

Enumerating the parameters
Exploring the Mandelbrot Set means changing parameters: The

point in the upper left hand comer of the map could be moved to a new
location; The distance between points could be changed; The size of the
map could be changed; The portion of the map being viewed could be
changed.

The following parameters are used in the example program:

• The starting point. This is the point in the complex plane mapped in
the upper right-hand comer of the screen.

• The granularity. This is the distance, in both the real and imaginary
axes, between points being mapped.

• The scale factor for calculating the data. If we do not want to calculate
a result for every pixel, the scale factor specifies how many pixels to
skip in each direction.

• The scale factor for viewing the data. This allows map plotting to
occur at a larger (coarser) scale factor than the calculations.

• The X dimension. The number of columns in the map.

• The Y dimension. The number of slots for results in each column of
the map.

DEslGNING rnE DATA STRUCTURES 123

• The offset we begin drawing at. In case the user has shrunk a map
window, and then used the scroll bars to move around the map, the
point at which drawing begins is specified by an X and Y offset.

It is impossible to know all of the parameters of a problem when
you sit down to devise a solution. For example, our first Mandelbrot Set
exploration program started out with only one scale factor, used in both
viewing and in calculating. It was split in two because changing the scale
factor for caleulations means changing the size of the vectors holding the
results of the calculations, which makes it hard to go back to a larger scale
factor for viewing without throwing away hard won results.

Designing the data structures
On the screen, the Mandelbrot Set is represented by squares filled

with patterns. Because the window containing the plot of the Mandelbrot
Set will have to be redrawn after, for instance, a desk accessory is closed,
a representation of the plot must kept in memory so that the plot can be
recreated.

The on-screen map reflects the parameters the user has selected and
the results of the calculations that have been performed. The data struc
ture used to represent a map in the sample application has a "header"
portion used to hold the parameters of the map, and a "data" portion
used to hold the results of calculations. The size of the header is fixed,
and the size of the data can be inferred from the parameters in the header.

Here is the map data structure from the example program:

struct map
{ struct cx_num start_at;

double step;

) ;

int scale;
int view_scale;
int x_offset, y_offset;
int x_dim, y_dim;
int last_x, last_y;
Handle map_values[l];

/* A map structure */
/* Complex number at top left corner */
/* The granularity from point to point */
/* Scale at which we calculate the map */
/* Scale at which we draw the map */
/* The offset we begin drawing at */
/* The dimensions of the map */
/* Where we left off */
/* An array of column handles, allocated
* to the correct size
*/

The data portion of the structure is not laid out in the structure defi
nition. The structure member map_values just holds the first pointer in
the data section of a map. The storage needed to hold all the data for a
map is allocated when the dimensions of the map are changed and when
the map is first created. The data portion of a map is a vector of pointers,
x _dim long, that points to vectors y _dim long that store the results of the
computations.

124 CHAPI'ER 8 'ExPLORING nm MANDELBROT SET

map_handles

Solving the problem- computing the results
The guts of the Mandelbrot Set exploration program are the rou

tines that fill in the map. The primary goal of these routines is efficiency
(though utmost efficiency has been sacrificed for clarity in the example
sources and flexibility in the program).

The example program spends more than 90% of its time in the loop
that determines whether a point lies in the Mandelbrot Set. This loop
evaluates the expression z2+c up to several hundred times. z and c are
both complex numbers with real and imaginary parts. The result of the
expression is the new value of z, so the result has two parts as well.

There at least two alternative strategies for coding this computation
inC:

1. Write subroutines that do complex-number multiplication, addition,
and magnitude comparison. The structure of the computation is then
clean and easy to read:

struct cx_num z, c;
struct cx_num *cx_add(), *cx_square();
int cx_magnitude();

do
I z = *cx_add(cx_square(&z), c);
I while (cx_magnitude(z) < 2);

2. Code the complex number arithmetic "in-line" - right in the loop.

GRAPHIC DISPLAY AND GRAPHICS UPDATE 125

This approach has two advantages: First, there is no procedure call
overhead. Instead of three procedure calls per pass through the loop,
there are none. Second, intermediate results can be used. Finding the
magnitude of a complex number involves a square-root operation that
need not be performed for this application (since the formaula calls
for the square of the number). The intermediate result before the
square-root operation can be used in the comparison in the while
statement.

This is the approach taken in the example, and here is the routine
that determines whether a point lies inside or outside the Mandelbrot Set:

/* Check if a point is inside the Mandelbrot Set. If the magnitude
* of the complex number has not exceeded 2 in 700 iterations, it is
* most likely IN the mandelbrot set. Otherwise it lies outside and
* the number of iterations it took to determine this ls used to
* select a pattern for that point. We check for pending events every
* 128 iterations.
*/
char

calc_value(where)
register struct cx_num *where;

register double val_real, val_imag, sq_real, sq_imag;
register int count;
EventRecord dummy;

val_real = val_imag = 0.0;
for (count = O; count < 700; count++)
I sq_real = val_real * val_real;

sq_imag = val_imag * val_imag;
if ((sq_real + sq_imagl > 4.0) break;
if (!(count & Ox7Fl && EventAvall(everyEvent, &dummy))

return NO_VALUE;
val_imag = (val_real * val_imag * 2.0) + where->imag;
val_real = sq_real - sq_imag + where->real;

return which_pattern(count);

The solution used in our example program is really a compromise
between efficiency, readability, and flexibility. Including the complex
number calculations in-line makes the program acceptably efficient, but
greater efficiency could have been attained. Instead of using C's built-in
floating point numbers, we could have used fixed-point numbers and
done our own fiXed-point multiplication in-line (as well as the complex
number arithmetic).

Graphic display and graphics update
''Visual" applications all have to update the screen. On a character-

126 CHAPTER 8 ExPl.ORING TIIE MANDELBROT SET

only display, like a terminal, screen update means figuring out which
character positions need to be changed after the user has done something
like deleting a word in a paragraph. On the Macintosh, information in
the windows on the screen is not locked in to a grid of character positions
as it is on a terminal. Therefore, on the Macintosh, the pixels, not charac
ters, that need to be changed have to be kept track of. Keeping track of
pixels as opposed to character positions is called "graphics update" -
something that every Macintosh application must do.

The Window Manager keeps track of the parts of the screen that
need to be updated. Dragging and changing the size of windows can
cause parts of windows to require redrawing. The Window Manager
draws what it knows how to draw - window frames and the desktop.
The rest of the changed windows have to be updated by the application.
To make this easier for the application writer, the Window Manager has
collected all of the "dirty'' areas of the screen into the "invalid region."
Window Manager routines allow the application to use the invalid region
to draw only the parts of its windows that need updating. Calling these
routines causes a "clip region" to be set up. Clipping is like masking off
the parts of a car that don't need painting. In this case, the parts of the
screen that don't need updating are masked off and the application can
"paint'' the entire window without causing any unnecessary drawing on
the screen.

Our example program contains two sets of routines for plotting the
map of the Mandelbrot Set. One that plots the map in response to update
events and one that displays the results of the calculations for a point im
mediately after they are completed:

The following routines from the example program update a win
dow in response to update events:

draw_content(window)
WindowPtr window;

Rect clip_rect;
RgnHandle old_clip = NewRgn();

clip_rect = window->portRect;
clip_rect.right -= BAR_WIDTH;
clip_rect.bottom -= BAR_WIDTH;
GetClip(old_clip);
ClipRect(&clip_rect);
plot_map(window);
SetClip(old_clip);
DisposeRgn(old_clip);

plot_rnap(window)
WindowPtr window;

register map handle map= (map handle) ((WindowPeek)window)->refCon;
register int-scale_ratio = (*~p)->view_scale I (*rnap)->scale;

GRAPHIC DISPLAY ANDGRAPfilCSUPDATE 127

register int x, y;

for (x = O; x < (*map)->x dim; x += scale ratio)
I for (y = O; y < {*map)->y dim; y += s~ale ratio)

plot_one(map, x, y); - -

/* Plot one point in the map.
*I

plot_one(map, x, y)
map_handle map;
register int x, y;

register int fill_with = VALUE(map, x, y);
register int scale = {*map)->scale;
register int view_scale = (*map)->view_scale;
Rect to_ fill;

x -= (*map)->x_offset; y -= (*map)->y_offset;
x *= scale; y *= scale;
SetRect(&to fill, x, y, x +view scale, y +view scale);
switch(fill=with) - -
I case BLACK: FillRect(&to_fill, &black); break;

case WHITE: FillRect{&to_fill, &white); break;
case LIGHT_GRAY: FillRect(&to_fill, <Gray); break;
case GRAY: FillRect(&to_fill, &gray); break;
case DARK_GRAY: FillRect(&to_fill, &dkGray); break;
case NO VALUE:

break;

Draw_content is called by do_update while handling an update
event. Prior to calling draw_content, BeginUpdate is called to set up
the "vis-region'' of the Graf Port to contain the intersection of the update
region and the exposed part of the window. Draw_content further re
stricts the part of the screen to be drawn on by setting the "clip region."

The vis-region and the clip region are parts of the GrafPort. The
Window Manager uses the vis-region to make sure that drawing is con
fined to the visible parts of a window that need updating, preventing ap
plications from overwriting other windows and the borders of their own
windows. Applications use the clip region to make sure that their own
drawing is confined to the intersection of the vis-region and the clip re
gion. In the case of our example program, the clip region is used to pre
vent plot_ map from overwriting the scroll bars.

The Window Manager provides a way for applications to manipu
late the update region. Inva!Rgn and ValidRgn add and remove re
gions from the update region of a window.The following routine interacts
with the Window Manager and QuickDraw to display the results of a cal-

128 CHAPrER 8 ExPl.ORING mE MANDELBROT SET

culation immediately after it is completed:

paint_point(window, x, y)
WindowPtr window;

GrafPtr save_graf;
register map_handle map= (map_handle)GetWRefCon(window);
register int scale = (*map)->view_scale;
register int scale_ratio = scale I (*map)->scale;
register int inval_x = (x - (*map)->x_offset) I scale_ratio,

inval__y = (y - (*map)->y_offset) I scale_ratio;
Rect rect, content;

content = window->portRect;
content.bottom -= BAR_WIDTH; content.right -= BAR_WIDTH;
inval_x *= scale; inval__y *= scale;
SetRect(&rect, inval_x, inval_y, inval_x +scale, inval_y +scale);
if (SectRect(&rect, &content, &rect))
{ GetPort(&save_graf);

SetPort(window);
InvalRect(&rect);
plot_one(map, x, y);
ValidRect (&rect);
SetPort(save_graf);

Paint_point is called right after the pattern for a point has been
determined. Paint_point calls the Window Manager routine
InvalRect to put the rectangle that it wants to fill in in the update re
gion. Then the point is plotted. Then the call to ValidRect cancels the
update event caused by the call to InvalRect, so the plotting done by
paint _point does not cause the whole window to be replotted.

Creating a user interface
Now that we have designed the data structures, coded the calcula

tions that fill in those structures, and mapped the results, we need to pro
vide a set of controls to enable the user to operate the Mandelbrot Set
mapping instrument we have created.

Macintosh user interfaces are usually made up of menus and dia
logs. Simple operations are accessible from menus and take effect right
away: the "quit" menu item usually returns the user to the finder without
further prompting (unless a file may need to be saved). Other commands
require a dialog with the new to get information or at least confirm that
previously obtained information is still current.

Designing with dialogs
In our example program we provide the user with the ability to

move around the complex plane, and change the granularity of the map.
Position on the complex plane and granularity are changed through

DEslGNJNG wml DIALOGS 129

"modal" dialogs. Modal dialogs are the most common form of dialog.
Modal dialogs are called modal dialogs because program is in a mode in
which the user can do nothing but interact with the dialog.

The Macintosh user interface is for the most part modeless - the
user can do anything at any time. This contrasts with "menu driven"
software that insists on leading the user through a hierarchy of choices
that can become tiresome. Because modes are undesirable when over
used, modal dialogs should be used carefully. They should not, in gener
al, be nested as menus are in menu driven programs. The user should
not need to use modal dialogs often, because even selecting the menu
item that causes the dialog to appear can become tedious if that operation
needs to be performed often. In the case of the example program, the
modal dialog that changes position would be used only infrequently -
after enough of a map has been calculated and displayed for the user to
decide if the current place being mapped is interesting.

Modal dialogs are particularly easy on the implementor. One rou
tine, ModalDialog, conducts the dialog with the user and returns when
a potentially interesting result has been obtained. Modal dialogs "know"
how to operate buttons and editable text boxes, so no interaction with the
application is required while the dialog is under way. ModalDialog is
called repeatedly until the dialog is either canceled or completed.

The following routine gets a new granularity for the map from the
user through a modal dialog box that looks something like the control
panel of a coffee grinder, with buttons for the various granularities:

/* Ask the user for a new scale for the map */
get_new_resolution(mapl

map_ handle map;

DialogPtr dialog;
int scale = (*map)->view_scale;
int item;

dialog= GetNewDialog(RES_DIALOG, OL, -11);
dialog_radio(dialog, scale_to_button(scale));
while (1)

I ModalDialog(OL, &item);
switch (item)
{ case RES D CANCEL:

scale: (*map)->view_scale; /*Fall through ••• */
case RES_D _OK:

DisposDialog(dialog);
return scale;

case RES D COARSE:
scale = COARSE;
dialog_radio(dialog, item);
continue;

case RES D MEDIUM:
scale = MEDIUM;
dialog_radio(dialog, item);

130 CHAPTER 8 'ExPLORING THE MANDELBROT SET

continue;
case RES D FINE:

scale = FINE;
dialog_radio(dialog, item);
continue;

case RES D EXTRA FINE: - - -
scale = EXTRA_FINE;
dialog_radio(dialog, item);
continue;

default:
continue;

return (*map)->view_scale;

The default action (the one that is taken when the user presses "re
turn" on the keyboard) is to cancel the dialog. In some cases the default
action might be to complete the dialog. Typically, if the dialog changes a
parameter or performs some action that is difficult or inconvenient to
undo, the default action should be to cancel the dialog. In this case,
changing the granularity of the map can cause much more memory to be
used up, so we make sure the user wants to do this.

Dialogs are described in resource compiler format. The description
of dialogs is similar to that of windows. The resource compiler source for
all of the dialogs in our example is at the end of this chapter.

Source listing
Here is the complete source listing for our example program, the

Mandelbrot Set mapper:

#include <Quickdraw.h>
#include <WindowMgr.h>
#include <Contro!Mgr.h>
#include <EventMgr.h>
#include <DeskMgr.h>
#include <MenuMgr.h>
#include <ToolboxUtil.h>
#include <MemoryMgr.h>
#include <DialogMgr.h>

GrafPtr w_port;
WindowRecord w_record;
WindowFtr hello_window;
Rect drag_rect, grow_bounds;

struct ex num
double real;
double !mag;

);

/* A complex number */
I* The real part */
/* The imaginary part */

SoURCEUSI'ING 131

struct map I* A map structure */
{ struct ex_ num start _at;

double step;
int scale;
int view_scale;

/* Complex number at top left corner */
I* The granularity from point to point */
/* Scale at which we calculate the map */
I* Scale at which we draw the map */

int x_offset, y_offset;
int x_dim, y_dim;

I* The offset we begin drawing at */
I* The dimensions of the map */

};

int last_x, last_y;
Handle map_values[l];

/* Where we left off */
/* An array of column handles, allocated
* to the correct size
*/

/* Find the X'th handle, and the Y'th byte in the array refered to by
* that handle
*/

tdefine VALUE(MAP, X, YI (*(*MAP)->map_values[X]l [Y]

typedef struct map **map_handle;

pascal void SysBeep() = OxA9C8;

pascal void up_action(), down_action();
char calc_value(), which_pattern();
Size calc_map_size();
map_handle make_map();
Handle new_column();
WindowPtr make_window();
ControlHandle lookup_control();

#define V SCROLL 256
tdef ine H SCROLL 257

#define BAR_WIDTH 15

fdef ine NO VALUE 0
tdefine BLACK 1
tdef ine WHITE 2
#define LIGHT_GRAY 3
#define GRAY 4
tdefine DARK_GRAY 5

tdefine UP 1
#define DOWN 2

tdefine APPLE_MENU 1
#define FILE_MENU 256
#define EDIT_MENU 257
tdefine MAP_MENU 258

/* Resource ID of the vertical scroll bar */
/* Resource ID of the horizontal scroll bar */

/* The width of a scroll bar */

/* Haven't calculated the value */
/* Corresponds to the pattern black */
/* Corresponds to the pattern white */
/* Corresponds to the pattern ltGray */
/* Corresponds to the pattern gray */
/* Corresponds to the pattern dkGray •/

I* Scrolling up? */
/* Or down? *I

/* The menu marked by the Apple symbol */
/* The "File" menu */
/* the "Edit" menu */
/* Controls map paramters */

/* Items on the map menu */
tdef ine RESOLUTION 1
#define MAGNIFICATION 2

132 CHAPTER 8 ExPLORING 1lIE MANDELBROT SET

#define POSITIONING 3

#define RES DIALOG 256 /* Get a new resolution for the map */

I* Buttons in the new-resolution dialog */
#define RES D CANCEL 1
#define RES D OK 2

#define RES D COARSE 3
#define RES D MEDIUM 4
#define RES D FINE 5
#define RES D EXTRA FINE 6 - - -
#define POS DIALOG 257 /* Start a map at a new position */

I* Items in the positioning dialog */
#define POS D CANCEL 1
#define POS D OK 2
#define POS D BOX 3

/* Scale values stored in maps */
#define EXTRA FINE 1
#define FINE 2
#define MEDIUM 4
#define COARSE 8

I* Initial values */
#define !NIT REAL -0.745
#define !NIT IMAG 0.260
#define INIT STEP 0.00025
#define INIT SCALE MEDIUM

I* The initial starting point */
I* The initial starting point */
/* The initial step value */
/* The tnitial scale factor */

/* Operations the count routine supports */
#define SET 1
#define GET 2
#define ADD 3

#define DRVR Ox44525652L /* The string •DRVR• as a long */

#define mk _long (x) (* ((long *l & (x) l l

main()
{

init_process(); /*do all initialization*/
make_window(hello_window; (WindowPtr)&w_recordl;
event_ loop() ;

I* Do all the right initialization things
*I

ini t _process ()
{

init _ mgrs ();
set_parameters();

fill_ menus () ;

I* Do the right thing for most applications: Call the toolbox
* initialization routines.
*/

init_mgrs O
(

InitGraf(&thePort);
InitFonts () ;
InitWindows ();
FlushEvents(everyEvent, 0);
InitCursor () ;
InitMenus O;
TEinit ();
InitDialogs(OL);
MaxApplZone () ;
OpenResFile(•\pMandelbrot.rsrc");

/* Set parameters based on screen size, etc. */
set_parameters()
I

drag_rect = thePort->portRect;
SetRect(&grow_bounds, 64, 64, thePort->portRect.right,

thePort->portRect.bottom);

fill _menus O
(

MenuHandle menu;

menu = GetMenu (APPLE _MENU) ;
AddResMenu(menu, DRVR);
InsertMenu(menu, 0);
InsertMenu(GetMenu(FILE_MENU), 0);
InsertMenu(GetMenu(EDIT_MENU), 0);
InsertMenu (GetMenu (MAP_ MENU), 0);
DrawMenuBar () ;

SoURCE USTING 133

/* Read window information from the resource branch into a window
* structure. Get the scroll bars for this window and mark them to
* distinguish them from any other controls that might be in this window.
* The parameter points to an uninitialized window record
*I
WindowFtr

make_window(new_window)
WindowPtr new_window;

ControlHandle scroll_bar;
struct cx_num start_at;
map_handle new_map;

134 CHAPrER 8 ExPl.ORING rnE MANDELBROT SET

new_window = GetNewWindow(256, new_window, -lL);
scroll_bar = GetNewControl(V_SCROLL, new_window);
SetCRefCon(scroll_bar, (long)V_SCROLL);
scroll_bar = GetNewControl(H_SCROLL, new_window);
SetCRefCon(scroll_bar, (long)H_SCROLL);
move_bars(new_window);
start_at.real = INIT_REAL; start_at.imag = INIT_IMAG;
new_map = make_map(new_window, &start_at, INIT_STEP, INIT_SCALE);
SetWRefCon(new_window, (long)new_map);
init_bar(new_window, H_SCROLL, O, 0);
init_bar(new_window, V_SCROLL, O, 0);
fill_in_map(new_window);

/* Get an event, switch on its type, and perform the appropriate
* action
*/

event_ loop()
{

EventRecord my_event;
Boolean valid;

while (1)

{ SystemTask();
valid= GetNextEvent(everyEvent,&my_event);
if (!valid)
{ fill_in_map(hello_window);

continue;

switch(my_event.what)
{ case nul!Event:

break;
case mouseDown:

do_mouse_down(&my_event);
break;

case mouseUp:
case keyDown:
case keyUp:
case autoKey:

break;
case updateEvt:

do_update(&my_event);
break;

case diskEvt:
break;

case activateEvt:
do_activate(&my_event);
break;

case networkEvt:
case driverEvt:
case applEvt:
case app2Evt:
case app3Evt:
case app4Evt:

break;
default:

break;

SoURCE USTING 135

/* Find out where a mouse-down event has occured and do what ought to
* be done for that location
*/

do_mouse_down(event)
EventRecord *event;

WindowPtr mouse_window;
int place_type = FindWindow(mk_long(event->where), &mouse_window);

switch{place_type)
I case inDesk:

break;
case inMenuBar:

do_menu(MenuSelect(mk_long(event->where)));
break;

case inSysWindow:
SystemClick(event, mouse_window);
break;

case inContent:
if (mouse_window != FrontWindow())

SelectWindow(mouse_window);
else

do_controls(mouse_window, mk_long(event->where));
break;

case inDrag:
DragWindow(mouse_window, mk_long(event->where), &drag_rect);
break;

case inGrow:
grow_window(mouse_window, mk_long(event->where));
break;

case inGoAway:
if {TrackGoAway{mouse_window, mk_long(event->where)))

finish();
break;

default:
break;

/* Find which part of which control was used. Then find out how the value
* of that control has changed. Then call one of this applications routines
* that performs the action that reflects the change in the control. In the
* case of the up and down buttons, TrackControl calls an action routine
* that should show some intermediate result, like srolling the screen
* one line in an editor.
*/

do_ controls (window, when~)

136 CHAPrER 8 ExPl.ORING mE MANDELBROT SET

WindowPtr window;
long where;

int part_code, old_value, new_value;
ControlHandle control;

GlobalToLocal(&where);
part_code = FindControl(where, window, &control);
if (!part_code) return;
check _update();
(void)count(SET, 0);
switch(part_code)
{ case inUpButton:

TrackControl(control, where, up_action);
break;

case inDownButton:
TrackControl(control, where, down_action);
break;

case inPageUp:
case inPageDown:

page_movement(window, control, part_code);
break;

case inThumb:
old_value = GetCtlValue(control);
TrackControl(control, where, OL);
new_value = GetCtlValue(control);
thumb_movement(window, control, old_value, new_value);

default:
break;

check_ update ()
{

EventRecord dununy;

if (EventAvail(updateMask, &dununy))
do_update(&dununy);

pascal void
up_action(control, part_code)

ControlHandle control;

WindowFtr window= (*control)->contrlOWner;
int old_value = GetCtlValue(control);

SetCtlValue(control, old_value - 1);
scroll_window(window, control, UP, 1);
(void)count(ADD, 1);

pascal void
down_action(control, part_code)

ControlHandle control;

WindowPtr window = (*control)->contrlOwner;
int old_value = GetCtlValue(control);

SetCtlValue(control, old_value + 1);
scroll_window(window, control, DOWN, 1);
(void)count(ADD, 1);

page_movement(window, control, part_code)
WindowPtr window;
ControlHandle control;

int units= get_page_units(window, control);
int direction = part_code == inPageUp ? UP : DOWN;
int old_value = GetCtlValue(control);

if (direction == DOWN)
SetCtlValue(control, old_value +units);

else
SetCtlValue(control, old_value - units);

scroll_window(window, control, direction, units);

thumb_movement(window, control, old_value, new_value)
WindowPtr window;
ControlHandle control;

int units = old value - new_value;
int direction = units < O ? DOWN : UP;

if (units)
I units = units < O ? -units : units;

scroll_window(window, control, direction, units);

get_page_units(window, control)
WindowPtr window;
ControlHandle control;

return 5;

/* Set up the port rectangle and clipping for the window */
scroll_window(window, control, direction, units)

WindowPtr window;
ControlHandle control;

Rect content;
static RgnHandle save_clip = (RgnHandle)O;

content = window->portRect;

SoURCE USTING 137

138 OiAPrnR 8 ExPLoRING nm MANDELBROT SET

if (!save_clip) save_clip = NewRgn();
else SetEmptyRgn(save_clip);
content = window->portRect;
content.right -= BAR_WIDTH;
content.bottom -= BAR_WIDTH;
GetClip(save_clipl;
ClipRect(&content);
scroll_map(window, control, direction, units, &content);
SetClip(save_clip);

/* Scroll the contents of the window and keep track of the offset in
* the map structure
*/

scroll_map(window, control, direction, units, content)
WindowPtr window;
ControlHandle control;
Rect *content;

map_handle map= (map_handle)GetWRefCon(window);
int max= GetCtlMax(control);
long bar_id = GetCRefCon(control);
int sign = direction == UP ? 1 : -1;
int current, n_to_scroll;
int scale= (*map)->view_scale;
static RgnHandle to_update = (RgnHandle)O;

if (!to_update) to_update = NewRgn();
else SetEmptyRgn{to_update);
current = bar_id == V_SCROLL ? (*map)->y_offset (*map)->x_offset;
units *= sign;
units = (current - units) < 0 ? -current : units;
units = (current - units) > max ? max - current units;
n_to_scroll = units * scale;
if (bar_id == V_SCROLL)
{ ScrollRect(content, o, n_to_scroll, to_update);

OffsetRgn(to_update, O, scale* count(GET, 0) *sign);
(*map)->y_offset -= units;

else
{ ScrollRect{content, n_to_scroll, O, to_update);

OffsetRgn(to_update, scale* count(GET, 0) *sign, 0);
(*map)->x_offset -=units;

InvalRgn(to_update);

count(op, arg)
{

static int counter;

switch (op)
{ case SET: counter = arg; break;

case ADD: counter += arg; break;

SoURCE USTING 139

case GET: break;

return counter;

I* Handle and update event - first determine if the event is in one of
* this application's windows, and if so, update that window.
*I

do_update(event)
EventRecord *event;

GrafPtr save_graf;
WindowPtr update_window = (WindowPtr)event->message;

if (update_window == hello_window)
{ GetPort(&save_graf);

SetPort(update_window);
BeginUpdate(update_window);
EraseRect(&update_window->portRect);
DrawGrowicon(update_window);
Drawcontrols(update_window);
draw_content(update_window);
EndUpdate(update_window);
SetPort(save_graf);

I* If the modifiers are odd, then this is an activate event for the
* window pointed to in the message field of the event. If that is the case
*then the graf port is set to that window's graf port
*I

do_activate(eventl
EventRecord *event;

WindowPtr event window = (WindowPtr)event->message;
WindowPeek peek = (WindowPeek)event_window;
ControlHandle control = (ControlHandle)peek->controlList;
long label;

if(event_window == hello_window)
I if (event->modifiers & 1)

I SetPort(event_window);
Disableitem(GetMHandle(EDIT_MENU), 0);
while (control)

else

{ label= GetCRefCon(control);
if (label == V_SCROLL I I label == H_SCROLL)

ShowControl(control);
control = (*control)->nextControl;

Enableitem(GetMHandle(EDIT_MENU), 0);
while (control)
{ label= GetCRefCon(control);

140 OiAPTER 8 ExPl.ORING nm MANDELBROT SET

if (label == V_SCROLL I I label == H_SCROLL)
HideControl(control);

control = (*control)->nextControl;

DrawGrowicon(event_window);

/* Call the window manager routines that cause a window to grow */
grow_window(window, mouse_point)

WindowPtr window;
Point mouse_point;

long new_bounds;

inval_grow(window);
new_bounds = GrowWindow(window, mk_long(mouse_point), &grow_bounds);
if (new_bounds == 0)

return;
SizeWindow(window, LoWord(new_bounds), HiWord(new_bounds), TRUE);
move_bars(window);
inval_grow(window);
size_map(window);

/* Invalidate the grow icon area of a standard window */
inval_grow(window)

WindowPtr window;

Rect temp_rect, port_rect;

port_rect = window->portRect;
SetRect(&temp_rect, port_rect.right - 16, port_rect.bottom - 16,

port_rect.right, port_rect.bottom);
InvalRect(&temp_rect);

I* Go through the list of controls for this window, identify the
* scroll bars, and change their position and size to conform to the
* window's new size
*/

move_bars(window)
WindowPtr window;

WindowPeek peek = (WindowPeek)window;

ControlHandle control = peek->controlList;
int new_top = window->portRect.top;
int new_left = window->portRect.left;
int new_bottom = window->portRect.bottom;
int new_right = window->portRect.right;
long label;

while (control)
I label= GetCRefCon(control);

if (label == V_SCROLL)
{ HideControl (control);

SoURCEUSTJNG 141

MoveControl(control, new_tight - BAR_WIDTH, new_top - 1);
SizeControl(control, 16, new_bottom - new_top - 13);
ShowControl(control);

else if (label == H_SCROLL)
{ HideControl(control);

MoveControl(control, new_left - 1, new_bottom - BAR_WIDTH);
SizeControl(control, new_right - new_left - 13, 16);
ShoWControl(control);

control = (*control)->nextControl;

do_menu(conunand)
long conunand;

int menu_id = HiWord(conunand);
int item= LoWord(conunand);
char item_name[32];

switch(menu_id)
(case APPLE MENU:

Getitem(GetMHandle(menu_id), item, item_name);
OpenDeskAcc(item_name);
break;

case FILE MENU:
finish();
break;

case EDIT MENU:
SystemEdit(item - 1);
break;

case MAP MENU:
switch (item)
{ case RESOLUTION: do resolution(); break;

case MAGNIFICATION: do_magnification(); break;
case POSITIONING: do_positioning(); break;

HiliteMenu (0);

/* Is this window one of my windows? */
my_window(window)

WindowPtr window;

if (window == hello_wlndow)
return TRUE;

else
return FALSE;

142 CHAPTER 8 ExPl.ORING TIIE MANDELBROT SET

/* Find my front-most window */
WindowPtr

foremost_wlndow()
{

WindowPeek window= (WindowPeek)FrontWindow();

while (window)
(if (my_window{window)) return (WindowPtr)window;

else window = window->nextWindow;

finish();

draw_content(window)
WindowPtr window;

Rect clip_rect;
RgnHandle old_clip = NewRgn();

clip_rect = window->portRect;
clip_rect.right -= BAR_WIDTH;
clip_rect.bottom -= BAR_WIDTH;
GetClip(old_clip);
ClipRect(&clip_rect);
plot_rnap(window);
SetClip(old_clip);
DisposeRgn(old_clip);

I* Make a map and return a handle to it. It is sized to fit the values for
* enought points in the complex plane to fill the specified window at the
* specified scale
*/
rnap_handle

make_map(window, start_at, step, scale)
WindowPtr window;
struct cx_nurn *start_at;
double step;

Size size= calc_rnap_size(window, scale);
map_handle new_map = (map_handle)NewHandle(size);

(*new_rnap)->start_at = •start_at;
(*new_rnap)->step = step;
{*new_map)->scale = (*new_rnap)->view_scale = scale;
(*new_map)->last_x = (*new_rnap)->last_y = O;
(*new_map)->x_offset = (*new_mapl->y_offset = O;
set_dimensions(window, new_map);
make_colurnns(new_rnap);
return new_map;

Size
calc_map_size(window, scale)

WindowPtr window;

Size size= sizeof(struct map);

SoURCE USTING 143

long x_size = .window->portRect.right - window->portRect.left;

size+= (((x_size - BAR_WIDTHl I scale) + 1) * sizeof(Handle);
return size;

I* Set the dimensions of an existing map. The scale of the map must be set
* before calling set_d!mensions.
*/

set_d!mensions(window, map)
WindowPtr window;
map_ handle map;

int x_size = window->portRect.right - window->portRect.left;
int y_size = window->portRect.bottom - window->portRect.top;

(*map)->x_d!m = ((x_size - BAR_WIDTH) I (*map)->scale) + 1;
(*map)->y_d!m = ((y_size - BAR_WIDTH) I (*map)->scale) + 1;

make_ columns (map)
register map_handle map;

register Size column_size = (*map)->y_d!m;
register int i;

for (i = O; i < (*map)->x_d!m; i++)
(*map)->map_values(i] = new_column(column_size);

Handle
do_new_column(column_size, tries)

register Size column_size;

register Handle new= NewHandle(column_size);
register int i;

if (!new)
{ if (tries> 5) finish();

MoreMasters () ;
return new_column(column_size, tries+ 1);

for (i = O; i < column_size; i++)
(*new) [i] = NO_VALUE;

return new;

Handle
new_column(column_size)

144 CHAPTER 8 ExPl.ORING TIIE MANDELBROT SET

register Size column_size;

return do_new_column(column_size, 0);

size_map(window)
WindowPtr window;

map_handle map= (map_handle)GetWRefCon(window);
int x_size = window->portRect.right - window->portRect.left;
int y_size = window->portRect.bottom - window->portRect.top;
int new_x_dim, new_y_dim;

new x dim= ((x_size - BAR_WIDTH) I (*map)->scale) + 1 +
(*map)->x_offset;

new_y_dim = ((y_size - BAR_WIDTH) I (*map)->scale) + 1 +
(*map)->y_offset;

if (new_x_dim > (*map)->x_dim I I new_y_dim > (*map)->y_dim)
(grow_map(map, new_x_dim, new_y_dim);

(*map)->last_x = (*map)->last_y = O;

adjust_bars(window);

/* Grow the map, if needed */
grow_map(map, new_x_dim, new_y_dim)

register map_handle map;
register int new_x_dim, new_y_dim;

int x_diff = new_x_dim - (*map)->x_dim;
int y_diff = new_y_dim - (*map)->y_dim;
register Size old_size, new_size;
register int x, y, new_dim;

/* Add new columns, if needed */
if (x_diff > 0)
{ old_size = GetHandleSize((Handle)map);

new_size = old_size + (x_diff * sizeof(Handle));
SetHandleSize((Handle)map, new_size);
new_size = y_diff > O ? new_y_dim : (*map)->y_dim;
for (x = (*map)->x_dim; x < new_x_dim; x++)
{ (*map)->map_values[x) = new_column(new_size);

if (MemError()) finish();

/* Extend existing columns, if needed */
if (y_diff > 0)
{ new_size = new_y_dim;

for (x = O; x < (*map)->x_dim; x++)
{ SetHandleSize((*map)->map_values[xJ, new_size);

if (MemError()) finish();
for (y = (*map)->y_dim; y < new_y_dim; y++)

VALUE(map, x, y) = NO_VALUE;

I* Store the new dimensions in the map */
if (x_diff > 0) (*map)->x_dim = new x dim;
if (y_diff > 0) (*map)->y_dim = new_y_dim;

Sou'RCE USTING 145

/* After a window has been re-sized, some parts of the map may no longer
* be visible. If so, the scroll bars should be enabled and set to the
* correct range and starting value for the new window size.
*I

adjust_bars(window)
WindowPtr window;

map_handle map= (map_handle)GetWRefCon(window);
int scale= (*map)->scale;
int x_max = (*map)->x_dim - 1;
int y_max = (*map)->y_dim - 1;
int x_max_in_view = (window->portRect.right - BAR_WIDTH) I scale;
int y_max_in_view = (window->portRect.bottom - BAR_WIDTH) I scale;
int diff;

if (! (*map)->x_offset && (diff = x_max - x_max_in_view) <= 0)
turn_off_control(window, V_SCROLL);

else init_bar(window, V_SCROLL, (*map)->x_offset, diff);
if (! (*map)->y_offset && (diff = y_max - y_max_in_view) <= 0)

turn_off_control(window, H_SCROLL);
else init_bar(window, H_SCROLL, (*map)->y_offset, diff};

I* Initialize the range and value of a scroll bar */
init_bar(window, id, value, range)

WindowPtr window;

ControlHandle control= lookup_control(window, id);
map_handle map = (map_handle)GetWRefCon(window);

if (!range) switch_control(window, id, 255);
else
(SetCtlMin(control, 0);

SetCtlMax(control, range);
SetCtlValue(control, value);
switch_control(window, id, 0);
InvalRect(&(*control)->contrlRect);

/* Hilite a control in such a way as to show that it is inactive. Here
* we use "255" hiliting assuming we do not want to know about mouse
* clicks in the control.
*/

turn_off_control(window, id)
WindowPtr window;

switch_control(window, id, 255);

146 CHAPTER 8 Exi>LORING rnE MANDELBROT SET

/* Find a control and hilite it - if 254 or 255 are used as values
* of hiliting, the control is turned off.
*/

switch_control(window, id, hilite)
WindowPtr window;

ControlHandle control= lookup_control(window, id);

HiliteControl(control, hilite);

ControlHandle
lookup_control(window, id)

WindowPtr window;

ControlHandle control
long label;

while (control)

((WindowPeek)window)->controlList;

(label = GetCRefCon(control);
if (LoWord(label) == id) break;
control = (*control)->nextcontrol;

return control;

/* make the assumption that resolution changes by multiples of two */
do_ re sol utlon ()
{

WindowPtr window= foremost_window();
map_handle map= (map_handle)GetWRefCon(window);
int new_scale = get_new_resolution(map);
int old_scale = (*map)->scale;
int scale factor = old scale I new_scale;
int new_x_dim, new_y_dim;

if (new_scale < old_scale)
(new_x_dim = (*map)->x_dlm * scale_factor;

new_y_dim = (*map)->y_dlm * scale_factor;
grow_map(map, new_x_dim, new_y_diml;
(*map)->scale = new_scale;
spread_data(map, scale_factor);

)

if (((*map)->view_scale = new_scale) != old_scale);
{ InvalRect(&window->portRect);

(*map)->last_x = (*map)->last_y = O;
(*map)->x_offset *= scale_factor;
(*map)->y_offset *= scale_factor;
adjust_bars(window);

I* Ask the user for a new scale for the map */
get_new_resolution(map)

map_handle map;

DialogPtr dialog;
int scale = (*map)->view_scale;
int item;

dialog= GetNewDialog(RES_DIALOG, OL, -11);
dialog_radio(dialog, scale_to_button(scale));
while (1)
I ModalDialog(OL, &item);

switch (item)
{ case RES D CANCEL:

SoURCE USTING 147

scale= (*map)->view_scale; /*Fall through ..• */
case RES D OK:

DisposDialog(dialog);
return scale;

case RES D COARSE:
scale = COARSE;
dialog_radio(dialog, item);
continue;

case RES D MEDIUM:
scale = MEDIUM;
dialog_radio(dialog, item);
continue;

case RES D FINE:
scale = FINE;
dialog_radio(dialog, item);
continue;

case RES D EXTRA FINE: - - -
scale = EXTRA_FINE;
dialog_radio(dialog, item);
continue;

default:
continue;

return (*map)->view_scale;

scale_to_button(scale)
{

switch(scale)
{ case COARSE: return RES_D_COARSE;

case MEDIUM: return RES_D_MEDIUM;
case FINE: return RES_D_FINE;
case EXTRA FINE: return RES_D_EXTRA_FINE;

I* Given an item number for a radio button, turn that button on
* and the other buttons off. This assumes that all the radio buttons
* in the dialog are related.

148 OiAPI'ER 8 ExPLoRING nm MANDELBROT SET

*I
dialog_radio(dialog, item)

DialogPtr dialog;

int type, i;
ControlHandle button;
Rect box;
int n_items =**(int **) ((DialogPeek)dialog)->items + 2;

for(i = 1; i < n~items; i++)
I GetDitem(dialog, i, &type, (Handle *)&button, &box);

if (type== (ctrlitem I radCtrl))
SetCtlValue(button, i ==item? 1 : 0);

/* Take a map that has been increased in size by the specified scale
* factor and spread the existing data out over the map
*/

spread_data(map, scale_factor)
register map_handie map;
register int scale_factor;

register int x, y, xl, yl;
register Handle swap_temp;
int old x dim = (*map)->x_dim I scale_factor;
int old_y_dim = (*map)->y_dim I scale_factor;

/* First spread the data in the columns */
for (x = O; x < old_x_dim; x++)
{ for (y = old_y_dim - 1, yl = (*map)->y_dim - scale_factor; y > O;

y--, yl -= scale_factor)
VALUE(map, x, yl) = VALUE(map, x, y);
VALUE (map, x, y) = NO_ VALUE;

/* Then spread the columns by switching them with the new columns */
for (x = old_x_dim - 1, xl = (*map)->x_dim - scale_factor; x > O;

x--, xl -= scale_factor)
swap_temp = (*map)->map_values[xJ;
(*map)->map_values[x] = (*map)->map_values[xl];
(*map)->map_values[xl] = swap_temp;

do_magnification()
{

do_positioning()
{

DialogPtr pos_dialog;
int item, type, got_mouse = O;

Rect box;
GrafPtr save_graf;
Point mouse_point, new_mouse_point;

pos_dialog = GetNewDialog(POS_DIALOG, OL, -lL);
if (!pos_dialog) return;
GetDitem(pos_dialog, POS_D_BOX, &type, &item, &box);
GetPort(&save_graf);
SetPort(pos_dialog);
draw_pos_box(&box);
while (1)
(ModalDialog ((ProcPtr) OL, &item) ;

switch (item)
(case POS D BOX:

GetMouse(&mouse_point);
new_position(mk_long(mouse_point), 0);
while(StillDown())
(GetMouse(&new_mouse_point);

SoURCE USTING 149

if (mk_long(mouse_point) != mk_long(new_mouse_point))
(mouse_point = new_mouse_point;

new_position(mk_long(mouse_point), 0);

got_mouse = 1;
continue;

case POS D OK:
if (got_mouse)
(new _position (OL, 1);

break;

else continue;
case POS D CANCEL:

SetPort(save_graf);
DisposDialog(pos_dialog);
return;

default:
continue;

break;

SetPort(save_grafl;
DisposDialog(pos_dialog);
move_map(&box, mk_long(mouse_point));

/* Calculate the new origin of the map from the position of a point
* withing the box, and initialize the map.
*/

move_map(box, place)
Rect *box;
long place;

Point point;
int side = box->right - box->left; /* Assume it is square */

150 CHAPTER 8 Exi>LORING TIIE MANDELBROT SET

WindowPtr map_window = hello_window; /* For now only one window */
register map_handle map= (map_handle)GetWRefCon(map_window);
struct cx_num new_origin;
register int x, y;
Rect content;

point= *(Point *)&place;
point.h = (point.h - box->left) - side I 2;
point.v =side I 2 - (point.v - box->top);
new_origin.real = (double)point.h I (double) SO;
new_origin.imag = (double)point.v I (double)SO;
(*map)->start_at = new_origin;
(*map)->last_x = (*map)->last_y = O;
for (x = O; x < (*map)->x_dim; x++)
(for (y = O; y < (*map)->y_dim; y++)

VALUE(map, x, y) = NO_VALUE;

content = map_window->portRect;
content.bottom -= BAR_WIDTH;
content.right -= BAR_WIDTH;
InvalRect(&content);
EraseRect(&content);
ValidRect(&content);

draw_pos_box(box)
Rect *box;

int side = box->right - box->left;

FrameRect (box);

/* Assume it is square */

MoveTo(box->left + side I 2, box->top);
Line(O, side - 1);
MoveTo(box->left, box->top +side I 2);
Line(side - 1, 0);
MoveTo(box->left +side I 2 + 3, box->top +side I 2 + 12);
DrawText("(O,O)", O, 5);
draw_map_rects(box);

draw_map_rects(box)
Rect *box;

Rect rect;
double x, y;
int side = box->right - box->left;
WindowPtr window= FrontWindow();
map_ handle map;

I* Assume it is square */

for(; window; window= (WindowPtr) ((WindowPeek)window)->nextWindow)
{ if (my_window(window))

{ map= (map_handle)GetWRefCon(window);
x = (*map)->start_at.real;
y = (*map)->start_at.imag;

rect.top = (side I 2) - (int) (y * 50) + box->top;
rect.left = (side I 2) + (int) (x * 50) + box->left;
rect.bottom = rect.top +

SoURCE USTING 151

(int) ((*map)->step * (*map)->scale * (*map)->y_dim * 50);
rect.right = rect.left +

(int) ((*map)->step * (*map)->scale * (*map)->x_dim * 50);
FillRect(&rect, &gray);
FrameRect(&rect);

/* Mark the new position. The pen mode is patCopy after this routine
* is called. If "final" is non-zero, cur__position is used as a new
* origin for the map.
*/

new_position(where, final)
long where;

static int position_valid = O;
static long cur__position;

PenMode (patXor) ;
if (position_valid)

x_marks_new_spot(cur__position);
x_marks_new_spot(where);
cur__position = where;
position_valid = 1;
PenMode(patCopy);
if (final)

position_valid = O;

/* Draws an •+• at the specified spot in the current pen mode. So if the
* mode is patXor, this routine can be used to erase old spots.
*/

x_marks_new_spot(spot)
long spot;

Point point;

point= *(Point *)&spot;
MoveTo(point.h - 21 point.v);
Line(4, 0);
MoveTo(point.h, point.v - 2);
Line(O, 4);

/* Fill in the map. Real numbers go left to right, increasing.
* Imaginary numbers go top to bottom, decreasing. We calculate a value
* for a point if: 1) It has no value; 2) It would be visible at the
* current resolution OR we have already finished calculating all the
* visible points.
*/

152 CHAPTER 8 ExPl.ORING TiiE MANDELBROT SET

fill_in_map(window)
WindowPtr window;

register rnap_handle map= (map_handle)GetWRefCon(window);
register double step = (*rnap)->step;
register int x = (*map)->last_x;
register int y = (*map)->last_y;
register int scale = (*map)->scale;
register int scale_ratio = (*map)->view_scale / scale;
PicHandle pict;
struct cx_num where;

for (; x < (*map)->x_dim; x++)
(for (; y < (*map)->y_dim; y++)

{ if (VALUE (map, x, y) == NO_ VALUE &&
(scale_ratio == 1 I I

! (x % scale_ratio I I y % scale_ratio)))
where.real= (*map)->start_at.real + (x *step* scale);
where.imag = (*map)->start_at.imag - (y *step* scale);
((VALUE(rnap, x, y) = calc_value(&where)) != NO_VALUE);

paint_point(window, x, y);
(*mapl->last_x = x; (*map)->last_y = y;
return;

y = O; /* Start another column */

/* Check if a point is inside the Mandelbrot Set. If the magnitude
* of the complex number has not exceeded 2 in 700 iterations, it is
* most likely IN the rnandelbrot set. Otherwise it lies outside and
* the the number of iterations it took to determine this is used to
* select a pattern for that point. We check for pending events every
* 128 iterations.
*I
char

calc_value(where)
register struct cx_num *where;

register double val_real, val_imag, sq_real, sq_imag;
register int count;
EventRecord dummy;

val_real = val_imag = 0.0;
for (count = O; count < 700; count++)
{ sq_real = val_real • val_real;

sq_imag = val_imag * val_imag;
if ((sq_real + sq_imag) > 4.0) break;
if (!(count & Ox7F) && EventAvail(everyEvent, &dummy))

return NO_VALUE;
val_imag = (val_real * val_imag * 2.0) + where->imag;
val_real = sq_real - sq_imag + where->real;

SoURCE USTING 153

return wh!ch_pattern(count);

/* Select a pattern based on whether a point ls in the Mandlebrot Set, or
* if it lies outside, how soon was it determined to lie outside.
*I
char

wh!ch_pattern(count)
{

if (count >= 700) return BLACK;
else if (count > 60) return WHITE;
else if (count > 24) return LIGHT_GRAY;
else if (count > 15) return GRAY;
else return DARK_GRAY;

paint_point(w!ndow, x, y)
W!ndowPtr window;

GrafPtr save_graf;
register map_handle map= (map_handle)GetWRefCon(w!ndow);
register int scale = (*map)->view_scale;
register int scale_rat!o = scale I (*map)->scale;
register int inval_x = (X - (*map)->x_offset) I scale_ratio,

inval_y = (y - (*map)->y_offset) I scale_rat!o;
Rect rect, content;

content = window->portRect;
content.bottom -= BAR_WIDTH; content.right -= BAR_WIDTH;
!nval_x *= scale; inval_y *= scale;
SetRect(&rect, inval_x, inval_y, !nval_x +scale, inval_y +scale);
if (SectRect(&rect, &content, &rect))
{ GetPort(&save_graf);

SetPort(window);
InvalRect(&rect);
plot_one(map, x, yl;
Val!dRect(&rect);
SetPort(save_graf);

plot_map(w!ndow)
W!ndowPtr window;

register map handle map= (map handle) ((W!ndowPeek)w!ndow)->refCon;
register int-scale_ratio = (*~p)->view_scale I (*map)->scale;
register int x, y;

for (x = O; x < (*map)->x_d!m; x += scale_rat!o)
for (y = O; y < (*map)->y_dim; y += scale_ratio)

plot_one(map, x, y);

154 CiiAPrER 8 ExPl.ORING 'lHE MANDELBROT SET

/* Plot one point in the map.
*/

plot_one(map, x, y)
map_handle map;
register int x, y;

register int fill_with = VALUE(map, x, y);
register int scale = (*map)->scale;
register int view_scale = (*map)->view_scale;
Rect to_fill;

x -= (*map)->x_offset; y -= (*map)->y_offset;
x *= scale; y *= scale;
SetRect(&to_fill, x, y, x + view_scale, y + view_scale);
switch(fill_with)
(case BIACK: FillRect(&to_fill, &black); break;

case WHITE: FillRect(&to_fill, &white); break;
case LIGHT_GRAY: FillRect(&to_fill, <Gray); break;
case GRAY: FillRect(&to_fill, &gray); break;
case DARK_GRAY: FillRect(&to_fill, &dkGray); break;
case NO VALUE:

break;

/* Exit the program cleanly */
finish()
(

ExitToShell ();

SoURCE lJ511NG 155

The resources for the example program
In addition to the resources used in the example program of the pre

vious chapter, a menu and two dialog boxes have been added to support
operations that affect the map of the Mandelbrot set (e.g. map resolution).

The additional menu is described in the following screen-shots of
ResEdit dialogs:

menu ID B width I

height 1-1 I
proclD lo I
enebleflgs ISFFFFFFFF
tltle I Mep

menu Item I Resolution ...

Icon# D
key equiv D
mertt Cher D
style lsoo
menu Item l Megnlflcetlon ...

Icon# D
key equlu D
mertt Cher D
style lsuo
•••••
menu Item !Positioning •••

Icon• D
key equlu D
mertt Cher D
style lsoo 0

The diaJogs added to the skeletons application are described below.
First, the dialog itslef is described. It has an ID of 256, corresponding to
the constant defined in the file mandelbrot.h.

Window tltle:
No tltle

top I OD bottom 220

left 181 right 331

proclO 3

ltemslD 256

181 Ulslble

refCon o

0 goAweyfleg

The parts of this dialog are numbered from one to six, starting with
the default button which, in this case, is the "Cancel" button:

156 CHAPTER 8 Exl>tORING 1HE MANDELBROT SET

! ••

®Button
0Check bOH
0 Radio control
0 Static teHt
0 Editable tBHI

0 CNTL resource
O ICON resource
O PICT resource

ouserltem

TeHt

Ill

O Button
QCheck boH
® Radio control

0 Static teHt
0 Editable teHt

0 CNTL rasource
O ICON resource
O PICT rasource

QUserltem

TeHt I Coarse

0 Button
0Check bOH
® Radio control

O static teHt
O Editable teHt

0 CNTl rasource
O ICON resource
0 PICT resource

0 User Item

TeHt I Fine

Edit Item #I

®Enabled
ODIHbled

top 90

left 60

bottom 115

right 140

Edit Item #3

®Enabled
ODIHbled

... ~ left 10

bottom 25

right 140

I
Edit Item #5

®Enabled
0Dlsebled

... ~ left 10

bottom 65

right I 40

I

Edit Item #2

®Button ®Enabled
0Check bOH O Dlsebled
O Radio control

0 Static tBHt top 90
O Edlt11ble teHt

left
O CNTL resource

10

0 I CON resource bottom 115
0 PICT resource right 50
ouser Item

TBHt I OK

Edit Item #4

OButton ®Enabled
0Check bOH 0 Disabled
® Radio control

0 static IBHI ... ~ 0 Edlt11ble teHt
left 10

O CNTL resource
0 ICON resource bottom 45
0 PICT resource right 140
OUser Item

TBHt I Medium

I
Edit Item #6

0 Button ®Enabled
0Check bOH QOIHblad
® Radio control

0 static tBHt ... ~ 0 Editable IBHI
left 10

0 CNTL resource
0 ICON resource bottom 85
O PICT resource right I 40
0 User Item

TBHt I EHtr11 Fine

I

The position of the map on the page is also determined by a dialog
box, this one with the ID of 257:

Window title:
No title

top 30 bottom 240

left 120 right 392

proclD 3 refCon 0

Items ID 257

OUlslble D g0Rw11yfl11g

This dialog has two buttons and auser item. The user item is used to
contain a diagram of the coordinates of the map:

®Button
0Checlc bON
0 Radio control

0 Static teNt
O Editable teNt

0 CNTl resource
O ICON resource
O PICT resource

ouserltem

TBNt

Edit Item #1

® Enabled
0 Dlsebled

top 1-1_10 __ ~
left 210 ,___ __ __.
bottom 135

1------1
right ._2_67 __ _,

OButton
0Checlc bON
O Radio control

0 Static tBNt
O Editable teNt

O CNTl resource
O ICON resource
O PICT resource

®User Item

®Button
0Checlc bON
0 Radio control
O Static tBNt
O Editable teNt

0 CNTL resource
O ICON resource
O PICT resource

0 User Item

Edit Item #3

@Enabled
0 Dlsebled

top~ left 5

bottom 205

right 205

Extracting information from this listing

SoURCE USTING 157

Edit Item #2

®Enabled
0 DISllbled

top 1-7_5 ---l
left 210

1--------1
bottom 100

1--------1
right ._2_so __ _,

The example program above is hundreds of lines long. It would be
impractical to try to comprehend every comer of it without a machine
readable copy and the time to modify and play with it. The information
you can extract from this listing, and the one in the next chapter that lists
the final form of the example program, is code that is analogous to code
that you are trying to write. Not every type of graphics update situation
is covered here, but a representative one is. Similarly, you may find solu
tions to other problems in the example program's code that handles scroll
bars, mouse tracking, user items in dialogs, etc. While examples cannot
be comprehensive, you will need to refer to examples to give substance to
reference information, and to fill in the spaces between available refer
ence information.

Example code is, in general, the fastest way to learn how to work
within the framework of an unfamiliar system. But in order to keep from
picking up other people's bad habits, you should accompany you study
of examples with a good familiarity with the reference material available
to Macintosh programmers.

158 CHAPTER 8 Exi>LORING 1HE MANDELBROT SET

POINTS TO CONSIDER

1. What would you do to extend the usefulness of this program in ex
ploring the Mandelbrot set?

2. What would you do to make the user interface better?

3. What would you do to optimize redisplay? Where could you trade
space for ti.me?

9
Extending Our Grasp

• Creating files; writing into them and reading from them

• Why the Macintosh has two file systems

• How to print out plots on any printer attached to the Macintosh

Completing the application
With the ability to file, cut-and-paste, and print, the Mandelbrot

mapping program becomes a complete Macintosh application. By using
the framework of this example program, you can conveniently create
your own applications.

The source code of our Mandelbrot Set explorer has become large
compared to most example programs presented in books that describe
programming techniques. Often it is not possible to describe program
ming for a machine or system with a monolithic example. Unix programs
have a much more varied structure than Macintosh programs: Graphics
programs have fundamentally different structure than interactive editors,
which are in turn different from simple "filter'' programs. MS-DOS ap
plications are even more widely varied. User interface standards and
programming techniques are diverse, and this diversity is reflected in the
lack of user interface standards among Unix and MS-DOS programs.

We have already discussed the impact of the lack of a standard ap
plication structure on the user, but there is an effect on programmers as
well: On systems unlike the Macintosh, there is no comprehensive frame
work in which to present programming techniques. The example pro
gram presented here can be the foundation of almost any Macintosh ap
plication. The structure is equally applicable to business applications,
games, and scientific programming.

162 CHAPrER 9 Ex'rENDING OUR GRASP

Choices for filing
The Macintosh has two file systems: the Macintosh File System

(MFS) and the Hierarchical File System (HFS). This is deplorable, but not
a disaster. If your application is written correctly, it does not need to
know which kind of file system it is dealing with and it can use both at
the same time.

Another source of confusion in dealing with the Macintosh file sys
tem is the two sets of file system traps. There is one set of higher level
traps that perform simple file system operations like read, write, and
seek. Another set of lower-level functions replicates capabilities of the
higher level functions but with a different interface. The lower level func
tions accept their arguments in parameter blocks, which are data struc
tures that contain all of the items that are used as parameters and also
contain return values in all of the file system and device manager calls.
The advantage to using parameter block calls is that one parameter block
can be used in many calls and that the parameter block interface is more
efficient than the high-level interface because the high level interface is
translated into the parameter block interface.

In extending our application to save and restore Mandelbrot Set
plots in disk files, we keep the filing operations as simple as possible. We
use only the higher level file-system interactions supplied by Toolbox
routines, and we do not implement any filing operations that have to be
aware of directories.

Why two file systems?
The newer Hierarchical File System is an improvement on the origi

nal Macintosh File System in several ways. in MFS, each volume could
hold only a small number of files, and the organization of the volume into
folders was maintained and displayed by the Finder. So although folders
could be inside folders, and the Finder diplayed a desktop organized hi
erarchically, the hierarchy was visible only to the Finder. From an appli
cation's point of view, there was no hierarchy at all.

When a user opens a file on an MFS volume, he is presented with all
the files (or a selection of up to four file-types) on that volume. Now that
hard disks are a common Macintosh accessory, the number of files dis
played in a standard file dialog could become unwieldy. Even on disk
systems like the Hyperdrive that can divide a physical disk into several
volumes, the number of files in a volume could become unmanageable.

Filing in the example program
Sticking to the high-level file system calls may seem to be a simple

prescription for file system independence, but many existing programs
do not work correctly on HFS volumes. They may fail to find their docu
ments, or they may fail to find system resources. It is easy to get distract
ed by issues surrounding ancillary files and documents.

CHOICES FOR cur-AND-PASTE 163

Choices for cut-and-paste
The scrap manager is a way of keeping track of two kinds of stan

dard information, and application-specific information as well. An exam
ple of application specific scrap information is the information that
MacWrite deposits in the desk scrap when a passage is cut out of a
MacWrite document. This scrap information consists of the passage as a
standard "text" scrap and as a "mwrt" scrap usable only by MacWrite.

For the _example program, we use the standard "pict'' type of scrap.

Choices for printing
There are three primary choices for printing in Macintosh applica

tions:

1. Draft printing. Draft printing uses a "native" printing style available
on the printer being used. In MacWrite, draft printing provides a
quick way to print out drafts of a document without much regard for
the final appearance.

2. "Spool" printing. This kind of printing is not to be confused with the
usual meaning of spooling. Spool printing is not deferred, and your
application can not, in general, do anything else but print while spool
printing. This kind of printing called spool printing because informa
tion may be buffered on disk in the course of printing a document.

Spool printing is the most complicated form of printing. It involves
creating bit-images in gra£Ports that reflect the native resolution of the
printer being used. It may take several passes to fill a page.

3. Bit map printing. Bit map printing is a simplified version of spool
printing. Bit map printing lets an application copy a bit map onto a
printer. This kind of printing is well suited to printing Mandelbrot
Set plots.

Printing in our application
In our application we will implement bit map printing. Bit map

printing is the quickest and easiest printing method for graphics oriented
applications. Bit map printing would have been a bad choice for an ap
plication that uses text heavily because many printer drivers handle text
specially. Spool printing would be the best choice for text.

The last listing
This is the example program in its final form. It is now a complete

Macintosh application capable of all of the operations any commercial ap
plication can perform.

164 OiAPI'ER 9 Ex'rENDING OUR GRASP

#include <Quickdraw.h>
#include <WindowMgr.h>
#include <Contro!Mgr.h>
#include <EventMgr.h>
tinclude <DeskMgr.h>
#include <MenuMgr.h>
#include <ToolboxUtil.h>
#include <MemoryMgr.h>
#include <DialogMgr.h>
#include <FileMgr.h>
#include <StdFilePkg.h>
#include <PrintMgr.h>

struct ex num
(double real;

double imag;

I* A complex number */
/* The real part */
I* The imaginary part */

J;

struct map
{ int modified;

};

char save_file[32);
int save_volume;
struct cx_num start_at;
double step;
int scale;
int view_scale;
int x_offset, y_offset;
int x_dlm, y_dim;
int last_x, last_y;
Handle map_values[l);

I* A map structure */
I* Is this map modified */
/* The file to save this map in */
I* The volume refnum of the save file */
I* Complex number at top left corner */
I* The granularity from point to point */
I* Scale at which we calculate the map */
I* Scale at which we draw the map */
/* The offset we begin drawing at */
/* The dimensions of the map */
I* Where we left off */
I* An array of column handles, allocated

to the correct size */

I* Find the X'th handle, and the Y'th byte in the array refered to by
* that handle
*I

#define VALUE(MAP, x, Yl (*(*MAP)->map_values(XJ) [YJ

typedef struct map **map_ handle;

pascal void SysBeep() = OxA9C8; /* The beep trap */

pascal void up_action(), down_action();
char calc_value(), which_pattern();
Size calc_map_size();
map_ handle make_ map() , read_ in_ map() ;
Handle new_column();
WindowPtr make_window(), foremost_window();
ControlHandle lookup_control();

#define V SCROLL 256
tdefine H SCROLL 257

#define BAR_WIDTH 15

/* Resource ID of the vertical scroll bar */
/* Resource ID of the horizontal scroll bar */

/* The width of a scroll bar */

THE LAST USTING 165

/* Haven't calculated the value */ fdef ine NO VALUE 0
tdef ine BLACK 1
#define WHITE 2
tdefine LIGHT GRAY 3
#define GRAY 4
fdef ine DARK GRAY 5

/* Corresponds to the pattern black */
/* Corresponds to the pattern white */
/* Corresponds to the pattern ltGray */
/* Corresponds to the pattern gray */
/* Corresponds to the pattern dkGray */

tdefine UP 1
fdef ine DOWN 2

fdef ine APPLE MENU 1
tdefine FILE MENU 256
#define EDIT MENU 257
fdef ine MAP MENU 258

I* Scrolling up? */
/* Or down? */

I* The menu marked by the Apple symbol */
/* The "File" menu */
/* the "Edit" menu */
/* Controls map paramters */

/* Items on the file menu */
#define NEW 1
#define OPEN 2
tdef ine CLOSE 3
tdef ine SAVE 4
tdef ine SAVE AS 5
#define REVERT 6
tdef ine FILE LINE 1 7
tdef ine PRINT 8
tdef ine FILE LINE 2 9
#define QUIT 10

/* Items on the map menu */
#define RESOLUTION 1
tdef ine MAGNIFICATION 2
#define POSITIONING 3

#define RES_DIALOG 256 /* Get a new resolution for the map */

/* Buttons in the new-resolution dialog */
#define RES_D_CANCEL 1
#define RES_D_OK 2

#define RES_D_COARSE 3
#define RES_D_MEDIUM 4
#define RES_D_FINE 5
tdefine RES_D_EXTRA_FINE 6

tdefine POS_DIALOG 257 /* Start a map at a new position */

/* Items in the positioning dialog */
#define POS_D_CANCEL 1
#define POS_D_OK 2
fdefine POS_D_BOX 3

/* Scale values stored in maps */
tdefine EXTRA_FINE 1
fdefine FINE 2

166 CHAPTER 9 ExTENDING OUR GRASP

fdef ine MEDIUM 4
itdef ine COARSE B

/* Initial values */
#define INIT REAL -0.775
#define !NIT !MAG 0.260
#define !NIT STEP 0.001
#define !NIT SCALE MEDIUM

/* The initial starting point */
/* The initial starting point */
/* The initial step value */
/* The initial scale factor */

I* Operations the count routine supports */
#define SET 1
#define GET 2
#define ADD 3

itdefine DRVR Ox44525652L
#define STR Ox53545220L
#define MNAP Ox4d4e4150L
#define MANM Ox4d4e4150L

/* The string •DRVR" as a long */
/* The string "STR • as a long */

#define SAVE AS PROMPT 256 /* String resource for the prompt in the
* SFPutFile dialog
*/

#define SAVE CANCEL -1 /* Returned if save operation is cancelled */

#define SC CANCEL 1
#define SC YES 2
#define SC NO 3

tdefine mk _long (x) (* ((long *) & (x)))

The file 11mandelbrot.c"
#include •rnandelbrot.h"

GrafPtr w_port;
WindowRecord w_record;
WindowPtr hello_window;
Rect drag_rect, grow_bounds;
Point get_put = I 100, 100 };

int white_rnax = 700;
int lt_gray_rnax = 60;
int gray_rnax = 24;
int dk_gray_rnax = 15;

main()
I

/* Above this value, assign black */
/* Above this value, assign white */
/* Above this value, assign light gray */
/* Above this value, assign gray */
/* Below dk_gray_max, assign dark gray */

init_process(); /* do all the initialization */
rnake_window(hello_window = (WindowPtr)&w_record);
event_ loop();

/* Do all the right initialization things
*/

init _process()
(

init _ mgrs () ;
set_parameters();
fill_ menus() ;

I* Do the right thing for most applications: Call the toolbox
* initialization routines.
*/

init _ mgrs ()
{

InitGraf(&thePort);
InitFonts () ;
InitWindows () ;
FlushEvents(everyEvent, 0);
InitCursor O ;
InitMenus () ;
TEinit ();
InitDialogs(OL);
MaxApplZone () ;

/* Set parameters based on screen size, etc. */
set _parameters ()
{

drag_rect = thePort->portRect;
SetRect(&grow_bounds, 64, 64, thePort->portRect.right,

thePort->portRect.bottom);

fill_menus()
{

MenuHandle menu;

menu= GetMenu(APPLE_MENU);
AddResMenu(menu, DRVR);
InsertMenu(menu, 0);
InsertMenu(GetMenu(FILE_MENU), 0);
InsertMenu(GetMenu(EDIT_MENU), 0);
InsertMenu (GetMenu (MAP_ MENU) , O) ;
DrawMenuBar () ;

THE LASTUSTING 167

/* Read window information from the resource branch into a window
* structure. Get the scroll bars for this window and mark them to
* distinguish them from any other controls that might be in this window.
* The parameter points to an uninitialized window record
*I
WindowPtr

make_window(new_window)
WindowPtr new_window;

168 CHAPTER 9 EXTENDING OUR GRASP

ControlHandle scroll_bar;
struct cx_num start_at;
map_handle new_map;

new_window = GetNeWWindow(256, new_window, -11);
scroll_bar = GetNewControl (V _SCROLL, new _window·);
SetCRefCon(scroll_bar, (long)V_SCROLLJ;
scroll_bar = GetNewControl(H_SCROLL, new_window);
SetCRefCon(scroll_bar, (long)H_SCROLL);
move_bars(new_window);
start_at.real = INIT_REAL; start_at.imag = INIT_IMAG;
new_map = make_map(new_window, &start_at, INIT_STEP, INIT_SCALE);
SetWRefCon(new_window, (long)new_map);
init_bar(new_window, H_SCROLL, O, 0);
init_bar(new_window, V_SCROLL, o, 0);
fill_in_map(new_window);

/* Get an event, switch on its type, and perform the appropriate
* action
*/

event_ loop ()
(

EventRecord my_event;
Boolean valid;

while (1)
(SystemTask();

valid= GetNextEvent(everyEvent,&my_event);
if (!valid)
(fill_in_map(hello_window);

continue;

switch(my_event.what)
(case nul!Event:

break;
case mouseDown:

do_mouse_down(&my_event);
break;

case mouseUp:
case keyDown:
case keyUp:
case autoKey:

break;
case updateEvt:

do_update(&my_event);
break;

case diskEvt:
break;

case activateEvt:
do_activate(&my_event);
break;

case networkEvt:

case driverEvt:
case applEvt:
case app2Evt:
case app3Evt:
case app4Evt:

break;
default:

break;

THE LASl'USTING 169

/* Find out where a mouse-down event has occured and do what ought to
* be done for that location
*/

do_mouse_down(event)
EventRecord *event;

WindowPtr mouse_window;
int place_type = FindWindow(mk_long(event->where), &mouse_window);

switch(place_type)
I case inDesk:

break;
case inMenuBar:

do_menu(MenuSelect(mk_long(event->where)));
break;

case inSysWindow:
SystemClick(event, mouse_window);
break;

case inContent:
if (mouse_window != FrontWindow())

SelectWindow(mouse_window);
else

do_controls(mouse_window, mk_long(event->where));
break;

case inDrag:
DragWindow(mouse_window, mk_long(event->where), &drag_rect);
break;

case inGrow:
grow_window(mouse_window, mk_long(event->where));
break;

case inGoAway:
if (TrackGoAway(mouse_window, mk_long(event->where)))

do_close();
break;

default:
break;

/* Find which part of which control was used. Then find out how the value
* of that control has changed. Then call one of this applications routines
* that performs the action that reflects the change in the control. In the

170 CHAPTER 9 Ex'rENDING OUR GRASP

* case of the up and down buttons, TrackControl calls an action routine
* that should show some intermediate result, like srolling the screen
* one line in an editor.
*/

do_controls(window, where)
WindowPtr window;
long where;

int part_code, old_value, new_value;
ControlHandle control;

GlobalToLocal(&where);
part_code = FindControl(where, window, &control);
if (!part_code) return;
(void)count(SET, 0);
switch(part_code)
I case inUpButton:

TrackControl(control, where, up_action);
break;

case inDownButton:
TrackControl(control, where, down_action);
break;

case inPageUp:
case inPageDown:

page_movement(window, control, part_code);
break;

case inThumb:
old_value = GetCtlValue(control);
TrackControl(control, where, 01);
new_value = GetCtlValue(control);
thumb_movement(window, control, old_value, new_value);

default:
break;

pascal void
up_action(control, part_code)

ControlHandle control;

WindowPtr window = {*control)->contrlOwner;
int old_value = GetCtlValue(control);

SetCtlValue(control, old_value - 1);
if (GetCtlValue(control) == old_value) return;
scroll_window(window, control, UP, 1);
(void)count(ADD, 1);

pascal void
down_action(control, part_code)

ControlHandle control;

WindowPtr window = (*control)->contrlOwner;

int old_value = GetCtlValue(control);

SetCtlValue(control, old_value + 1);
if (GetCtlValue(control) == old_value) return;
scroll_window(window, control, DOwN, 1);
(void)count(ADD, 1);

page_movement(window, control, part_code)
WindowPtr window;
ControlHandle control;

int units= get_page_units(window, control);
int direction = part_code == inPageUp ? UP : DOWN;
int old_value = GetCtlValue(control);

if (direction == DOWN)
{ SetCtlValue(control, old_value +units);

units = GetCtlValue(control) - old_value;

else

I

SetCtlValue(control, old_value - units);
units = old_value - GetCtlValue(control);

l'HELASTUSTING 171

if (units) scroll_window(window, control, direction, units};

thumb_movement(window, control, old_value, new_value}
WindowPtr window;
ControlHandle control;

int units = old value - new_value;
int direction = units < O ? DOWN : UP;

if (units}
{ units = units < O ? -units : units;

scroll_window(window, control, direction, units};

get_page_units(window, control)
WindowPtr window;
ControlHandle control;

return 5;

/* Set up the port rectangle and clipping for the window */
scroll_window(window, control, direction, units)

WindowPtr window;
ControlHandle control;

Rect content;
static RgnHandle save_clip = (RgnHandle)O;

172 QfAPl1!R 9 Ex'rENDING OUR GRASP

content = window->portRect;
if (!save_clip) save_clip = NewRgn();
else SetEmptyRgn(save_clip);
content = window->portRect;
content.right -= BAR_WIDTH;
content.bottom -= BAR_WIDTH;
GetClip(save_clip);
ClipRect(&content);
scroll_map(window, control, direction, units, &content);
SetClip(save_clip);

/* Scroll the contents of the window and keep track of the offset in
* the map structure. Units are visual units.
*I

scroll_map(window, control, direction, units, content)
Windowptr window;
ControlHandle control;
Rect *content;

map_handle map= (map_handle)GetWRefCon(window);
int max = GetCtlMax(control);
long bar_id = GetCRefCon(control);
int sign = direction == UP ? 1 : -1;
int current, n_to_scroll;
int scale = (*map)->view_scale;
int scale_ratio = (*map)->view_scale I (*map)->scale;
static RgnHandle to_update = (RgnHandle)O;

if (!to_update) to_update = NewRgn();
else SetEmptyRgn(to_update);
current = bar_id == V_SCROLL ? (*map)->y_offset (*map)->x_offset;
units *= sign;
n_to_scroll = units * scale * scale_ratio;
if (bar_ id = V _SCROLL)
(ScrollRect(content, o, n_to_scroll, to_update);

else

OffsetRgn(to_update, O, scale* scale_ratio * count(GET, 0) *sign);
(*map)->y_offset -= units * scale_ratio;

I ScrollRect(content, n_to_scroll, o, to_update);
OffsetRgn(to_update, scale * scale_ratio * count(GET, 0) * sign, 0);
(*map)->x_offset -= units * scale_ratio;

InvalRgn(to_update);

count (op, arg)
I

static int counter;

switch (op)
{ case SET: counter = arg; break;

case ADD: counter += arg; break;
case GET: break;

return counter;

'fim LASTUSTING 173

/* Handle and update event - first determine if the event is in one of
* this application's windows, and if so, update that window.
*/

do_update(even~l

EventRecord *event;

GrafPtr save_graf;
WindowPtr update_window;

update_window = (WindowPtr)event->message;
I if (update_window == hello_window)

I GetPort{&save_graf);
SetPort{update_window);
BeginUpdate(update_window);
EraseRect(&update_window->portRect);
DrawGrowicon(update_window);
DraWControls(update_window);
draw_content(update_window);
EndUpdate(update_window);
SetPort(save_grafl;

/* If the modifiers are odd, then this is an activate event for the
* window pointed to in the message field of the event. If that is the case
* then the graf port is set to that window's graf port
*/

do_activate(event)
EventRecord *event;

WindowPtr event_window = {WindowPtr)event->message;
WindowPeek peek = (WindowPeek)event_window;
ControlHandle control = (ControlHandle)peek->controlList;
long label;

if(event_window ~ hello_window)
I if (event->modifiers & ll

I SetPort(event_window);
Disableitem(GetMHandle(EDIT_MENUl, 0);
while (control)
I label= GetCRefCon(control);

if (label == V_SCROLL I I label == H_SCROLL)
ShowControl(control);

control = (*control)->nextControl;

else

174 CHAPmR 9 ExTENDING OUR GRASP

Enableitem(GetMHandle(EDIT_MENU), 0);
while (control)
(label= GetCRefCon(control);

if (label == V_SCROLL I I label == H_SCROLL)
HideControl(control);

control = (*control)->nextControl;

DrawGrowicon(event_window);

I* Call the window manager routines that cause a window to grow */
grow_window(window, mouse_point)

WindowPtr window;
Point mouse_point;

long new_ bounds;

inval_grow(window);
new_bounds = GrowWindow(window, mk_long(mouse_point), &grow_bounds);
if (new_bounds == 0)

return;
SizeWindow(window, LoWord(new_bounds), HiWord(new_bounds), TRUE);
move_bars(windowl;
inval_grow(window);
size_map(window);

I* Invalidate the grow icon area of a standard window */
inval_grow(window)

WindowPtr window;

Rect temp_rect, port_rect;

port_ rect = window->portRect;
SetRect(&temp_rect, port_rect.right - 16, port_rect.bottom - 16,

port_rect.right, port_rect.bottom);
InvalRect(&temp_rect);

I* Go through the list of controls for this window, identify the
* scroll bars, and change their position and size to conform to the
* window's new size
*I

move_bars(window)
WindowPtr window;

WindowPeek peek = (WindowPeek)window;

ControlHandle control = peek->controlList;
int new_top = window->portRect.top;
int new_left = window->portRect.left;
int new_bottom = window->portRect.bottom;

int new_right ; window->portRect.right;
long label;

while (control)
{ label; GetCRefCon(control);

if (label ;; V_SCROLL)
(HideControl(control);

'THE LASr USTING 175

Movecontrol(control, new_right - BAR_WIDTH, new_top - 1);
SizeControl(control, 16, new_bottom - new_top - 13);
ShowControl(control);

else if (label ;; H_SCROLL)
(HideControlifcontroll;

Movecontroll(control, new_left - 1, new_bottom - BAR_i'IIDTH);
SizeControl(control, new_right - new_left - 13, 16);
Showcontrol(control);

control ; (*control)->nextControl;

do_menu(command)
long command;

int menu_id; HiWord(command);
int item; LoWord(command);
char item_name[32];

switch {menu_id)
! case APPLE MENU:

Getitem(GetMl!andle(menu_id), item, item_name);
OpenDeskAcc{item_name);
break;

case FILE MENU:
switch (item)
{ case NEW:

case OPEN:
case CLOSE:
case SAVE:
case SAVE AS:

do_ new () ; break;
do_open(); break;
do_close(); break;
(void)do_save(SAVE); break;
{void)do_save(SAVE_AS); break;

case REVERT: do_revert(); break;
case PRINT:
case QUIT:

break;
case EDIT MENU:

SystemEdit(item - 1);
break;

case MAP MENU:
switch (item)

do_print(); break;
do_quit(); break;

{ case RESOLUTION: do_resolution(); break;
case MAGNIFICATION: do_magnification(); break;
case POSITIONING: do_positioning(); break;

176 CHAPTER 9 Ex'rENDING 0uR GRASP

HiliteMenu(O);

/* Is this window one of my windows? */
my_window(window)

WindowPtr window;

if (window == hello_windowl
return TRUE;

else
return FALSE;

/* Find my front-most window */
WindowPtr

foremost_window()
{

WindowPeek window= {WindowPeek)FrontWindow();

while (window)
{ if (my_window(window)) return (WindowPtr)window;

else window = window->nextWindow;

return (WindowPtr)window;

draw_content(window)
WindowPtr window;

Rect clip_rect;
RgnHandle old_clip = NewRgn();

clip_rect = window->portRect;
clip_rect.right -= BAR_WIDTH;
clip_rect.bottom -= BAR_WIDTH;
GetClip(old_clip);
ClipRect(&clip_rect);
plot_map(window);
SetClip(old_clip);
DisposeRgn(old_clip);

/* Make a map and return a handle to it. It is sized to fit the values for
* enought points in the complex plane to fill the specified window at the
* specified scale
*I
map_handle

make_map(window, start_at, step, scale)
WindowPtr window;
struct cx_num •start_at;
double step;

Size size= calc_map_size(window, scale);

map_handle new_map = (map_handle)NewHandle(size);

(*new_map)->start_at = *start_at;
(*new_map)->step = step;
(*new_map)->scale = (*new_map)->view_scale = scale;
(*new_map)->last_x = (*new_map)->last_y = O;
(*new_map)->x_offset = (*new_map)->y_offset = O;
(*new_map)->save_file[O] = O;
set_dimensions(window, new_map);
make_columns(new_map);
return new_map;

Size
calc_map_size(window, scale)

WindowPtr window;

Size size= sizeof(struct map);

THELASTUSTING 177

long x_size = window->portRect.right - window->portRect.left;

size+= (((x_size - BAR_WIDTH) I scale) + 1) * sizeof(Handle);
return size;

/* Set the dimensions of an existing map. The scale of the map must be set
* before calling set_dimensions.
*/

set_dimensions(window, map)
WindowPtr window;
map_ handle map;

int x_size = window->portRect.right - window->portRect.left;
int y_size = window->portRect.bottom - window->portRect.top;

(*map)->x_dim = ((x_size - BAR_WIDTH) I (*map)->scale) + 1;
(*map)->y_dim = ((y_size - BAR_WIDTH) I (*map)->scale) + 1;

make_ columns (map)
register map_handle map;

register Size column_size = (*map)->y_dim;
register int i;

for (i = O; i < (*map)->x_dim; i++)
(*map)->map_values[i] = new_column(column_size);

Handle
do_new_column(column_size, tries)

register Size column_size;

register Handle new= NewHandle(column_size);
register int i;

178 CHAPTER 9 Ex'rENDING OUR GRASP

if (!new)
I if (tries> 5) finish();

MoreMasters () ;
return new_column(column_size, tries+ 1);

for (i = O; i < column_size; i++)
(*new) [i] = NO_VALUE;

return new;

Handle
new_column(column_size)

register Size column_size;

return do_new_column(column_size, 0);

size_map(window)
WindowPtr window;

map_handle map= (map_handle)GetWRefCon(window);
int x_size = window->portRect.right - window->portRect.left;
int y_size = window->portRect.bottom - window->portRect.top;
int new_x_dim, new_y_dim;

new x dim= ((x_size - BAR_WIDTH) I (*map)->scale) + 1 +
(*map)->x_offset;

new_y_dim = ((y_size - BAR_WIDTH) I (*map)->scale) + 1 +
(*map)->y_offset;

if (new_x_dim > (*map)->x_dim 11 new_y_dim > (*map)->y_dim)
{ grow_map(map, new_x_dim, new_y_dim);

{*map)->last_x = (*map)->last_y = O;

adjust_bars{window);

/* Grow the map, if needed */
grow_map{map, new_x_dim, new_y_dim)

register map_handle map;
register int new_x_dim, new_y_dim;

int x_diff = new_x_dim - (*map)->x_dim;
int y_diff = new_y_dim - {*map)->y_dim;
register Size old_size, new_size;
register int x, y, new_dim;

/* Add new columns, if needed */
if (x_diff > 0)
{ old_size = GetHandleSize((Handle)map);

new_size = old_size + (x_diff * sizeof(Handle));
SetHandleSize((Handle)map, new_size);
new_size = y_diff > 0 ? new_y_dim : (*map)->y_dim;
for (x = (*map)->x_dim; x < new_x_dim; x++)

(*map)->map_values[x] = new_colurnn(new_size);
if (MemError()) finish();

/* Extend existing columns, if needed */
if (y_diff > 0)
I new_size = new__y_dim;

for {x = O; x < (*map)->x_dim; x++)
I SetHandleSize((*map)->map_values[xJ, new_size);

if (MemError ()) finish () ;
for (y = (*map)->y_dim; y < new__y_dim; y++)

VALUE(map, x, y) = NO_VALUE;

/* Store the new dimensions in the map */
if (x_diff > 0) (*map)->x_dim = new_x_dim;
if (y_diff > 0) (*map)->y_dim = new__y_dim;

THE LAST USTING 179

/* After a window has been re-sized, some parts of the map may no longer
* be visible. If so, the scroll bars should be enabled and set to the
* correct range and starting value for the new window size.
*/

adjust_bars(window)
WindowPtr window;

map_handle map= (map_handle)GetWRefCon(window);
int scale_ratio = (*map)->view_scale I (*map)->scale;
int x_max = (*map)->x_dim - 1, y_max = (*map)->y_dim - 1;
int x_max in view = (window->portRect.right - BAR_WIDTH) I

(*map) ->scale;
int y_max_in_view = (window->portRect.bottom - BAR_WIDTH) I

(*map)->scale;
int diff;

/* If the scale has changed, the offset is bumped down to the next
* lower multiple of the new scale ratio.
*I

(*map)->x_offset -= (*map)->x_offset % scale_ratio;
(*map)->y_offset -= (*map)->y_offset % scale_ratio;
if (! (*map)->x_offset &&

(diff = ((*map)->x_dim - x_max_in_view) scale_ratio) - 1
<= 0)

turn_off_control(window, H_SCROLL);
else init_bar(window, H_SCROLL, (*map)->x_offset I scale_ratio, diff);
if (! (*map)->y_offset &&

(diff = ((*map)->y_dim - y_max_in_view) I scale_ratio) - 1
<= 0)

turn_off_control(window, V_SCROLL);
else init_bar(window, V_SCROLL, (*map)->y_offset I scale_ratio, diff);

/* Initialize the range and value of a scroll bar */
init_bar(window, id, value, range)

180 CHAPl'BR 9

WindowPtr window;

ControlHandle control= lookup_control(window, id);
map_handle map = (map_handle)GetWRefCon(window);

if (!range) switch_control(window, id, 255);
else
I Setct!Min(control, 0);

SetctlMax(control, range);
SetetlValue(control, value);
switch_control(window, id, 0);
InvalRect(&(*control)->contrlRect);

/* Hilite a control in such a way as to show that it is inactive. Here
* we use •255• hiliting assuming we do not want to know about mouse
* clicks in the control.
*I

turn_off_control(window, id)
WindowPtr window;

switch_control(window, id, 255);

/* Find a control and hilite it - if 254 or 255 are used as values
* of hiliting, the control is turned off.
*/

switch_control(window, id, hilite)
WindowPtr window;

ControlHandle control = lookup_control(window, id);

HiliteControl(control, hilite);

ControlHandle
lookup_control(window, id)

WindowPtr window;

ControlHandle control= ((WindowPeek)window)->controlList;
long label;

while (control)
I label = GetCRefCon(control);

if (LoWord(label) ~ id) break;
control = (*control)->nextControl;

return control;

/* make the assumption that resolution changes by multiples of two */
do _resolution()
{

WindowPtr window= foremost_window();
map_handle map= (map_handle)GetWRefCon(window);
int new_scale = get_new_resolution(map);
int old_scale = (*map)->scale;
int scale_factor = old_scale I new_scale;
int new_x_dim, new_y_dim;

if (new_scale < old_scale)
{ new_x_dim = (*map)->x_dim * scale_factor;

new_y_dim = (*map)->y_dim * scale_factor;
grow_rnap(map, new_x_dim, new_y_dim);
(*map)->scale = new_scale;
spread_data(map, scale_factor);

if (((*map)->view_scale = new_scale) != old_scale);
{ InvalRect(&window->portRect);

(*map)->last_x = (*map)->last_y = O;
(*map)->x_offset *= scale_factor;
(*map)->y_offset *= scale_factor;
adjust_bars(window);

/* Ask the user for a new scale for the map */
get_new_resolution(map)

map_handle map;

DialogPtr dialog;
int scale (*map)->view_scale;
int item;

dialog= GetNewDialog(RES_DIALOG, 01, -11);
dialog_radio(dialog, scale_to_button(scale));
while (1)
I ModalDialog(OL, &item);

switch (item)
{ case RES D CANCEL:

THE LAST LISTING 181

scale= (*map)->view_scale; /*Fall through •.. */
case RES D OK:

DisposDialog(dialog);
return scale;

case RES D COARSE:
scale = COARSE;
dialog_radio(dialog, item);
continue;

case RES D MEDIUM:
scale = MEDIUM;
dialog_radio(dialog, item);
continue;

case RES D FINE:
scale = FINE;
dialog_radio(dialog, item);
continue;

case RES D EXTRA FINE:

182 CHAPTER 9 EXTENDING OUR GRASP

scale = EXTRA_FINE;
dialog_radio(dialog, item);
continue;

default:
continue;

(*map)->modified = 1;
return (*map)->view_scale;

scale_to_button(scale)
{

switch (scale)
{ case COARSE: return RES_D_COARSE;

case MEDIUM: return RES_D_MEDIUM;
case FINE: return RES_D_FINE;
case EXTRA_FINE: return RES_D_EXTRA_FINE;

/* Given an item number for a radio button, turn that button on
* and the other buttons off. This assumes that all the radio buttons
* in the dialog are related.
*I

dialog_radio(dialog, item)
DialogPtr dialog;

int type, i;
ControlHandle button;
Rect box;
int n_items =**(int**) ((DialogPeek)dialog)->items + 2;

for(i = 1; i < n_items; i++)
{ GetDitem(dialog, i, &type, (Handle *)&button, &box);

if (type== (ctrl!tem I radCtrl))
SetCtlValue(button, i ==item? 1 : 0);

/* Take a map that has been increased in size by the specified scale
* factor and spread the existing data out over the map
*I

spread_data(map, scale_factor)
register map_handle map;
register int scale_factor;

register int x, y, xl, yl;
register Handle swap_temp;
int old x dim = (*map)->x_dim I scale_factor;
int old_y_dim = (*map)->y_dim I scale_factor;

/* First spread the data in the columns */
for (x = O; x < old_x_dim; x++)

THELASTUSTING 183

for {y; old_y_dim - 1, yl ; {*map)->y_dim - scale_factor; y > O;
y--, yl -; scale_factor)

VALUE{map, x, yl) ; VALUE(map, x, y);
VALUE{map, x, y) ; NO_VALUE;

/* Then spread the columns by switching them with the new columns */
for {x ; old_x_dim - 1, xl ; (*map)->x_dim - scale_factor; x > O;

x--, xl -; scale_factor)
swap_temp; {*map)->map_values[x];
{*map)->map_values[x] ; (*map)->map_values[xl];
{*map)->map_values[xl] ; swap_temp;

/* How do you think magnification should be controlled?
* Put you code here:
*/

do_magnification(l
I

return;

/* This routine get a new starting position for the map. */
do_positioning{)
{

DialogPtr pos_dialog;
int item, type, got_mouse ; O;
Handle box_item;
Rect box;
GrafPtr save_graf;
Point mouse_point, new_mouse_point;

pos_dialog ; GetNewDialog{POS_DIALOG, OL, -11);
if {!pos_dialog) return;
GetDitem{pos_dialog, POS_D_BOX, &type, &box_item, &box);
GetPort{&save_graf);
SetPort(pos_dialog);
draw_pos_box{&box);
while (1)
I ModalDialog ((ProcPtr) OL, &item);

switch (item)
I case POS D BOX:

GetMouse(&mouse_point);
new_position(mk_long(mouse_point), 0);
while(StillDown{))
{ GetMouse{&new_mouse_point);

if (mk_long(mouse_point) !; rnk_long(new_rnouse_point))
{ mouse_point ; new_!llouse_point;

new_position{rnk_long(mouse_point), 0);

got_mouse ; l;

184 CHAPTER 9 EXTENDING OUR GRASP

continue;
case POS D OK:

if (got_mouse)
I new_position(OL, 1);

break;

else continue;
case POS D CANCEL:

SetPort(save_graf);
DisposDialog(pos_dialog);
return;

default:
continue;

break;

SetPort(save_graf);
DisposDialog(pos_dialog);
move_map(&box, mk_long(mouse_point));

/* Calculate the new origin of the map from the position of a point
* withing the box, and initialize the map.
*I

move_map(box, place)
Rect *box;
long place;

Point point;
int side = box->right - box->left; /* Assume it is square */
WindowPtr window = hello_window; /* For now only one window */
register rnap_handle map= (map_handle)GetWRefCon(window);
struct cx_nurn new_origin;
register int x, y;
Rect content;

point= *(Point *)&place;
point.h = (point.h - box->left) - side I 2;
point.v =side I 2 - (point.v - box->top);
new_origin.real = (double)point.h I (double)SO;
new_origin.imag = (double)point.v I (double)SO;
(*rnap)->start_at = new_origin;
(*rnap)->last_x = (*map)->last_y = O;
(*map)->x_offset = (*map)->y_offset = O;
for (x = O; x < (*map)->x_dirn; x++)
I for (y = O; y < (*map)->y_dim; y++)

VALUE(map, x, y) = NO_VALUE;

content = window->portRect;
content.bottom -= BAR_WIDTH;
content.right -= BAR_WIDTH;
InvalRect(&content);
EraseRect(&content);
ValidRect(&content);

'fHELASTUSTING 185

adjust_bars(window);

/* A support routine for the positioning dialog. Here we draw our current
* position.
*/

draw_pos_box(box)
Rect *box;

int side = box->right - box->left; /* Assume it is square */

FrameRect (box) ;
MoveTo(box->left + side I 21 box->top);
Line(O, side - l);
MoveTo(box->left, box->top + side I 2);
Line(side - 1, 0);
MoveTo(box->left + side I 2 + 3, box->top + side I 2 + 12);
DrawText("(O,O)", o, 5);
draw_map_rects(box);

/* Draw a scaled-down box showing our current map's position in the larger
* scheme of things
*/

draw_map_rects(box)
Rect *box;

Rect rect;
double x, y;
int side = box->right - box->left;
WindowPtr window= FrontWindow();
map_ handle map;

/* Assume it is square */

for(; window; window= (WindowPtr) ((WindowPeek)window)->nextWindow)
if (my_window(window))
{ map= (map_handle)GetWRefCon(window);

x = (*map)->start_at.real;
y = (*map)->start_at.imag;
rect. top = (side I 2) - (int) (y * 50) + box->top;
rect.left = (side I 2) + (int) (x * 50) + box->left;
rect.bottom = rect.top +

(int) ((*map)->step * (*map)->scale * (*map)->y_dim * 50);
rect.right = rect.left +

(int) ((*map)->step * (*map)->scale * (*map)->x_dim * 50);
FillRect(&rect, gray);
FrameRect(&rect);

/* Mark the new position. The pen mode is patCopy after this routine
* is called. If "final" is non-zero, cur_position is used as a new
* origin for the map.
*I

186 CHAPTER 9 EXTENDING 0uR GRASP

new_position(where, final)
long where;

static int position_valid = O;
static long cur_position;

PenMode (patXor) ;
if (position_valid)

x_marks_new_spot(cur_position);
x_marks_new_spot(where);
cur_position = where;
pos~tion_valid = 1;
PenMode(patCopy);
if (final)

position_valid = O;

/* Draws an "+" at the specified spot in the current pen mode. So if the
* mode is patXor, this routine can be used to erase old spots.
*/

x_marks_new_spot(spot}
long spot;

Point point;

point= *(Point *)&spot;
MoveTo(point.h - 2, point.v};
Line(4, 0);
MoveTo(point.h, point.v - 2};
Line(O, 4);

/* Fill in the map. Real numbers go left to right, increasing.
* Imaginary numbers go top to bottom, decreasing. We calculate a value
* for a point if: 1) It has no value; 2) It would be visible at the
* current resolution OR we have already finished calculating all the
* visible points.
*I

fill_in_map(window}
WindowPtr window;

register map_handle map;
register double step;
register int x, y, scale, scale_ratio;
PicHandle pict;
struct cx_num where;

if (!window) return;
map= (map_handle)GetWRefCon(window};
step = (*map)->step;
x = (*map)->last_x; y = (*map)->last_y;
scale = (*map)->scale;
scale_ratio = (*map)->view_scale I scale;
for (; x < (*map)->x_dim; x++)

for (; y < (*map)->y_d!m; y++)
{ if (VALUE(map, x, y) == NO_VALUE &&

(scale_ratio == 1 11

'fHELASTUSTING 187

! (x % scale_ratio I I y % scale_ratio)))
where.real= (*map)->start_at.real + (x *step* scale);
where.imag = (*map)->start_at.imag - (y *step* scale);
if ((VALUE(map, x, y) = calc_value(&where)) != NO_VALUE)
{ paint__point(window, x, y);

(*map)->last_x = x; (*map)->last_y = y;
(*map)->modified;

else return;

y = O; /* Start another column */

I* Check if a point is inside the Mandelbrot Set. If the magnitude
* of the complex number has not exceeded 2 in "white_max" iterations,
* it is likely IN the mandelbrot set. Otherwise it lies outside and
* the the number of iterations it took to determine this is used to
* select a pattern for that point. We check for pending events every
* 128 iterations.
*I
char

calc_value(where)
register struct cx_num *where;

register double val_real, val_imag, sq_real, sq_imag;
register int count;
EventRecord dummy;

val_real = val_imag = O.O;
for (count = O; count <= white_max; count++)
(sq_real = val_real * val_real;

sq_imag = val_imag * val_imag;
if ((sq_real + sq_imag) > 4.0) break;
if (!(count & Ox7Fl && EventAvail(everyEvent, &dummy))

return NO_VALUE;
val_imag = (val_real * val_imag * 2.0) + where->imag;
val_real = sq_real - sq_imag + where->real;

return which__pattern(count);

/* Select a pattern based on whether a point is in the Mandlebrot Set, or
* if it lies outside, how soon was it determined to lie outside.
*I
char

which__pattern(count)
{

if (count > white_max) return BLACK;
else if (count > lt_gray_max) return WHITE;

188 CHAPTER 9 EXTENDING OUR GRASP

else if (count > gray_rnax) return LIGHT_GRAY;
else if (count > dk_gray_max) return GRAY;
else return DARK_GRAY;

paint_point(window, x, y)
WindowPtr window;

GrafPtr save_graf;
register map_handle map= (map_handle)GetWRefCon(window);
register int scale = (*rnap)->view_scale;
register int scale_ratio = scale I (*map)->scale;
register int inval_x = (x - (*map)->x_offset) I scale_ratio,

inval_y = (y - (*map)->y_offset) I scale_ratio;
Rect rect, content;

content = window->portRect;
content.bottom -= BAR_WIDTH; content.right -= BAR_WIDTH;
inval_x *= scale; inval_y *= scale;
SetRect(&rect, inval_x, inval_y, inval_x +scale, inval_y +scale);
if (SectRect(&rect, &content, &rect))
I GetPort(&save_graf);

SetPort(window);
InvalRect(&rect);
BeginUpdate(window);
plot_one(map, x, y);
EndUpdate(window);
SetPort(save_graf);

plot_map(window)
WindowPtr window;

register map_handle map= (map handle) ((WindowPeek)window)->refCon;
register int scale_ratio = (*map)->view_scale I (*map)->scale;
register int x, y;
for (x = O; x < (*rnap)->x_dim; x += scale_ratio)

for (y = O; y < (*map)->y_dim; y += scale_ratio)
plot_one(map, x, y);

/* Plot one point in the map. If clipping has not be set up for the
* map window, a rectangle may be provided to clip an individual point
* to.
*/

plot_one(map, x, y)
rnap_handle map;
register int x, y;

register int fill_with = VALUE(map, x, y);
register int scale = (*map)->scale;
register int view scale= (*map)->view_scale;

Rect to_fill;

x -= (*map)->x_offset; y -= (*map)->y_offset;
x *= scale; y *= scale;
SetRect(&to_fill, x, y, x + view_scale, y + view_scale);
switch(fill_with)
{ case BLACK: FillRect(&to_fill, black); break;

case WHITE: FillRect(&to_fill, white); break;
case 1IGHT_GRAY: FillRect(&to_fill, ltGray); break;
case GRAY: FillRect(&to_fill, gray); break;
case DARK_GRAY: FillRect(&to_fill, dkGray); break;
case NO VALUE:

break;

I* Exit the program cleanly */
finish()
{

ExitToShell ();

The file "file_menu.c"
Unclude "mandelbrot.h"

extern WindowPtr hello_window;
extern WindowRecord w_record;
extern Point get_put;

do_new()
{

if (hello_window) return;
make_window(hello_window = (WindowPtr)&w_record);

do_open()
{

register WindowPtr window= (WindowPtr)&w_record;
register map_handle map;
register OSErr error = noErr;
register ControlHandle scroll_bar;
int file_refnum;
SFReply reply;
SFType1ist types;

if (hello_window) return;
types [OJ = MANM;
SFGetFile(mk_long(get_put), 01, 01, 1, types, 01, &reply);
if (!reply.good) return;

THE LAST LISTING 189

if (error= FSOpen(reply.fName, reply.vRefNum, &file_refnum))
return;

if (!(map= read_in_map(file_refnum))) return;
if (error= FSClose(file_refnum)) return;

190 CHAPTER 9 EXTENDING OUR GRASP

(*map)->save_volume = reply.vRefNum;
SetWRefCon (window, (long) map);
ShowWindow(window);
move_bars(window);
adjust_bars(window);
InvalRect(&window->portRect);
hello_window = window;

I* Read in the map header structure first to determine how many columns
* of map data there are and how long those columns are.
*I
map_handle

read_in_map(file_refnum)
{

map_handle map= (map_handle)NewHandle((Size)sizeof(struct map));
Size size = sizeof(struct map);
register Handle column;
register int x;
OSErr error = noErr;

if (!map) return (map_handle)OL;
HLock (map);
error= FSRead(file_refnum, &size, *map);
HUnlock(map);
if (error) return (map_handle)OL;
SetHandleSize(map,

sizeof(struct map) + ((*map)->x_dim * sizeof(Handle)));
size = (*map)->y_dim;
for (x = O; x < (*map)->x_dim; x++)

column= NewHandle((Size) (*map)->y_dim);
if (!column) return (map_handle)OL;
HLock (column);
error= FSRead(file_refnum, &size, *column);
HUnlock (column);
(*map)->map_values[x] =column;

(*map)->last_x = (*map)->last_y = O;
(*map)->x_offset (*map)->y_offset O;
return map;

/* Close windows: If the window is a DA's, close the DA, otherwise
* check if the map has been saved, and close the map window.
*I

do_close ()
{

WindowPeek front window= (WindowPeek)FrontWindow();
map_handle map;

if (!front_window) return;
if (!my_window (front_window))
{ CloseDeskAcc(front_window->windowKind);

return;

map= (map_handle)GetWRefCon(front_window);
if ((*map)->modified)
I switch (save_ check())

I case SC_CANCEL: return;

THELASfUSTING 191

case SC YES: if (do_save(SAVE) == SAVE_CANCEL) return;
case SC NO:

HideWindow(front_window);
hello window = OL;
free_map(mapl;

break;

/* Loops through the columns of the map, disposing of the handles to the
* columns, then dispose of the map structure's handle.
*/

free_map(map)
register map_handle map;

register int x;

for (x = O; x < (*map)->x_dim; x++)
DisposHandle((*rnap)->rnap_values[x]);

DisposHandle(map);

save_ check ()

return CautionAlert(256, 01);

do_save(save_type)
{

WindowPtr window= foremost_window();
SFReply reply;
OSErr error;
map_handle map;
int file_refnum;
static char **prompt = OL;

if (!window) return SAVE_CANCEL;
map= (map_handle)GetWRefCon(window);
if (! (*map)->save_file[O] I I save_type == SAVE_AS)
{ if (!prompt) prompt= GetResource(STR_, SAVE_AS_PROMPT);

SFPutFile(mk_long(get_put), *prompt, (*map)->save_file, OL,
&reply);

if (!reply.good) return SAVE_CANCEL;
error= FSOpen(reply.fName, reply.vRefNum, &file_refnum);
if (error == fnfErr)
{ error= Create(reply.fName, reply.vRefNum, MNAP, MANM);

if (error) goto save_error;
error = FSOpen(reply.fName, reply.vRefNum, &file_refnum);
if (error) goto save_error;

192 CHAPTER 9 EXTENDING OUR GRASP

else

else if (error) goto save_error;
pstring_assign((*map)->save_file, reply.fName);
store_map(map, file_refnum);
if (error= FSClose(file_refnum)) goto save_error;

error= FSOpen((*map)->save_file, (*map)->save_volume,
&file_refnum);

if (error == fnfErr)
{ error= Create((*map)->save_file, (*map)->save_volume,

MNAP I MANM) ;
if (error) goto save_error;
error= FSOpen((*map)->save_file, (*map)->save_volume,

&file_refnum);
if (error) goto save_error;

else if (error) goto save_error;
store_map(map, file_refnum);
if (error= FSClose(file_refnum)) goto save_error;

return O;
save error:

(*map)->save_file[OJ = O;
SysBeep(lO);
return SAVE_CANCEL;

I* Copy the second pascal string argument into the first */
pstring assign(to, from)

cha°i '*to, *from;

char *end = from + *from + 1;

for (*to++ = *from++; from< end;)
*to++ = *from++;

/* Write the map structure and handles to columns in one write, and then
* loop through the columns, writing each out. Here the handles are locked
* because the FSWrite call expects a pointer.
*I

store_map(map, file_refnum)
register map_handle map;

long size= sizeof(struct map);
OSErr error = noErr;
register int x;

HLock(map);
if (error= FSWrite(file_refnum, &size, *map)) goto no_write;
HUnlock(map);
for (x = O, size = {*map)->y_dim; x < (*map)->x_dim; x++)
(HLock((*map)->map_values[x]);

'I'HELASTUSTING 193

error; FSWrite(file_refnum, &size, *((*map)->map_values[x]));
if (error) goto no_write;
HUnlock((*map)->map_values[x]);

(*map)->modified; O;
return;

no write:
SysBeep(S);
return;

do_print ()
{

WindowPtr window ; hello_window;
THPrint print_record;
TPPrPort port_ptr;

if (!window) return;
PrDrvrOpen () ;
PrintDefault(&print_record);
(void)PrValidate(&print_record);
PrCtlCall(iPrDevCtl, lPrReset, 01, 01);
port_ptr; PrOpenDoc(&print_record, 01, 01);
PrOpenPage(port_ptr, 01);
PrCtlCall(iPrBitsCtl, &window->portBits, &window->portRect,

lPaintBits);
PrClosePage(port_ptr);
PrCloseDoc(port_ptr);
PrDrvrClose () ;

do_revert ()
(

}

/* Quit, check if the map has been saved */
do_ quit()
(

int sc_reply;
WindowPtr map_window; foremost_window();
map _handle map;

if (!map_window) finish();
map; (map_handle) GetWRefCon(map_window);
if (! (*map)->modified) finish();
if ((sc_reply; save_check()) ;; SC_YES}
{ if (do_save(SAVE} ;; SAVE_CANCE1) return;
}

else if (sc_reply ;; SC_CANCE1) return;
else finish() ;

194 OIAPTER 9 EXTENDING OUR GRASP

Resources for the final version of the Mandelbrot program
In addition to the resources used in previous example programs in

this book, we have added items to the file menu that enable the user to
tell the program to save and read in files, and to print the contents of the
window the map is drawn in. Shown below are the resource definitions
for the new file menu:

menu ID 11256
width 1-1
height 1-t
proclD lo
enableFlgs lsrFFFFD7F

title I Fiie

•••••
menu Item I New

Icon# D
key equlu D
mark Char D
style lsoo
menu Item I open ...

Icon# D
key equlu D
mark Char D
style lsoo

•••••
menu Item lc1ose

Icon# D
key equlu D
mark Char D
style lsoo
menu Item lsaue

Icon# D
key equlu D
mark Char D
style lsoo
menu Item lsaue Rs ...

Icon# D
key equlu D
mark Char D
style lsoo

•••••
menu Item lneuert

Icon# D
key equlu D
mark Char D
style lsoo

THE LASTUSTING 195

menu Item

Icon# D
key equlu D
mark Char D
style jsoo
menu Item jPrint

Icon# D
key equlu D
mark Char D
style jsoo

menu Item

Icon# D
key equlu D
mark Char D
style lsoo
menu Item loun

Icon# D
key equlu D
mark Char D
style lsoo

196 CHAPTER 9 EXTENDING OUR GRASP

POINTS TO CONSIDER

1. Where did this program succeed in its design goal of creating a soft
ware "instrument" for inspecting the Mandelbrot set? Where did it
fail?

2. What would you add to the program? What would you do differently?

3. Identify the parts of the program that will have to change in order to
support multiple documents. Are there more or less than you expect
ed?

10
Debugging

• What you need to know about to debug

• What kind of debuggers are available

• How debuggers are used in general

• A list of Macintosh error numbers

• Which are the most common bugs in Macintosh programs

• How to create and execute a test plan

How to prepare for debugging
Debugging is the most intellectually demanding part of program

ming. It is also the most difficult to teach. Many software engineering cir
riculae leave out debugging, or slight it, in favor of techniques that help
to get programs working correctly in the first place. If you do not know it
already, you will soon realize that debugging skill is the most important
skill involved in getting programs done is a short amount of time.

While debugging is learned through experience, there are some
things you can do to prepare yourself for your first experiences debug
ging Macintosh programs. You ought to be familiar with the 68000 in
struction set. The chapter in this book on Macintosh hardware provides a
brief overview. You do not need to have written 68000 assembly lan
guage code in order to read it - keep a 68000 reference manual handy.
When you encounter an instruction you don't know about, look it up.
You should also familiarize yourself with your compiler's conventions for
global variable access, parameter passing, and register usage.

200 CHAPTER 10 DEBUGGING

Common conventions followed by Macintosh programming lan
guages and in assembly language programming are: The register "a7" is
used to point to the top of the stack. The stack grows from higher to
lower addresses. The global data area of your program is pointed to by
the aS register. The "LINK" instruction is used in conjunction with regis
ter a6 to build stack frames. Familiarity with these conventions will en
able you to find global variables, examine the stack, and better figure out
what piece of C source code corresponds to the machine code you are
tracing. Your compiler's manual should describe any other conventions
used in code generation by that compiler.

This chapter covers debugging on the Macintosh, and covers some
of the specific characteristics of Macintosh debugging. It also covers some
general principals of debugging and the tools you will have at hand. If
you do not already have a debugger, get one! It will be your most valu
able tool.

Two major Macintosh debuggers
There are two major Macintosh debuggers: MacDB, and TMON.

The most significant difference between the two of them is the number of
Macintoshes it takes to debug a program.

MacDB is split between two Macintoshes: One Macintosh runs the
program being debugged along with a debugging "nub" that can set
breakpoints and capture system errors and do some other low-level de
bugging chores. The user interface for MacDB runs on another
Macintosh. The two Macintoshes are connected via a cable between the
two machines' serial ports. By sending commands through this cable, the
debugger's user interface controls the nub in the machine running the
program being debugged.

The advantage of this approach is that the debugger is able to take
advantage of the Macintosh user interface. It could not do so on the
Macintosh being debugged. The debugger's nub also takes up little space
in the machine being debugged. The user interface of MacDB also can not
be damaged by an errant program, making it easier to use on some kinds
of bugs. The main disadvantage is that it takes two Macintoshes to debug.

MacDB is published by Apple Computer and is available at Apple
dealers.

TMON is a debugger that requires only one machine. It is installed
in the Macintosh's memory and remains there, inactive, until some event
occurs that causes it to wake up. Applications can be launched and termi
nated without disrupting TMON. The TMON user interface is not like
most Macintosh applications because the ROM toolkit can not be used by ·
two programs at once, and in the case of TMON it is already in use by the
program being debugged.

TMON has a pleasant enough user interface, though, and the fact
that it works with one Macintosh makes it convenient. For software-writ
ers with only one Macintosh, TMON is the only usable debugger.

BASIC CONCEPTS IN DEBUGGING 201

TMON can not be protected from damage if a buggy program over
writes the memory TMON occupies, but TMON can detect that such
damage has occurred. This means that bugs that cause TMON to be over
written are more difficult to find because the tools to examine the after
math of the program error might not be working. But these programs can
be traced to the point at which damage occurs.

TMON is available from ICOM Simulations Inc., 626 Wheeling
Road, Wheeling IL, 60090.

Some compilers may come with their own debuggers. Compiler
specific debuggers have some advantages in that they know how the cor
responding compiler passes arguments to subroutines.

Basic concepts in debugging
Tracing, breakpointing, dumping and disassembling are the funda

mental activities of debugging.
Disassembly is an integral part of almost all debugging activity. To

tell you what part of a program you are looking at, your debugger trans
lates the assembled program back into assembler mnemonics, substitut
ing, where it can, symbolic names for offsets, labels, and locations in glo
bal storage.

Tracing means following the program, instruction by instruction,
through execution. Tracing often leads you right to the bug. To use trac
ing effectively with C, you will need to get used to the kind of code your
compiler generates so that you can tell where you are in the source listing
as you trace. The 68000 has a processor mode that allows the debugger to
step a program one instruction at a time. This means that even ROM rou
tines can be traced.

Breakpointing involves replacing instructions in the program with
"breakpoints." The debugger does this for you, so all you see is the effect
of the program stopping and the debugger waking up to tell you where
the program has stopped. Breakpoints let you run a program at full speed
up to a section of the program that you suspect has a bug.

Tracing and breakpoints can be used in combination to zero in on a
bug. By setting breakpoints around where you think the buggy code is
executed, you can cut down on the amount of tracing you have to do to
find the bug.

Dumps of sections of memory can reveal invalid values. Three plac
es to look in the Macintosh when it is running a program that you are de
bugging are:

• The top of the stack. Register a 7 usually points to the top of the stack.
One way to see if the stack is being correctly maintained is to check to
see if a plausible address is at the top of the stack just before an RTS

instruction is executed.

202 CHAPTER 10 DEBUGGING

• The application's global variables. Register a5 usually points to an ap
plication's global variables.

• Low memory. This is where the Macintosh system puts its global vari
ables.

Deeps_
When a fundamental error has occurred and the processor can not

continue executing a program, the processor branches to an error han
dler. On the Macintosh, the error handler determines which error oc
curred, and displays the error number on the screen. This is the only
point where the usually user-friendly Macintosh reverts to displaying
numbers where an explanatory phrase would be much more helpful.
Errors that bring programs to a halt are called "DS" errors.

The following table lists the error code numbers are describes the
errors that cause them to be displayed:

Error
1

2

3

4

5

Explanation
Bus error. This should never happen on a Macintosh. The
Macintosh hardware is designed so that bus transactions always
appear to have succeeded, no matter what actually happened.

Address error. The processor tried to read an instruction or a 16-
bit word of data from an odd address. This can occur if a charac
ter-pointer is cast to an integer pointer while it has an odd value.

Illegal instruction. The processor tried to decode data as an in
struction. This usually results from the wrong data used as a re
turn address in a subroutine.

Divide by zero. One of the divide instructions was executed
with a divisor of 0.

Bounds-check failed. The CHK instruction found a register out of
bounds. C does no bounds-checking, so this error should be
rare.

6 Overflow trap. if the "V" bit in the status register is set and a
TRAPV instruction is executed, this trap occurs.

7 Privilege violation. The Macintosh always runs in "system
mode" in which all instructions are permitted. In order to gener
ate a privilege violation, the status register would have to be
modified to put the processor in "user mode." The status regis
ter can be set explicitly with a MOVE instruction, or as a side ef
fect of the RTE instruction. Invalid information on the stack

DEEPS_ 203

could cause the RTE instruction to put the wrong value in the
status register.

8 Trace exception. Another symptom of a status register being
loaded with invalid data. See the description of error 7.

9 Line 1010 exception. This means that the toolbox trap handler
has stopped functioning.

10 Line 1111 exception. This group of traps is often used to set
breakpoints. If an unexpected line 1111 trap occurs, it is equiva
lent to an illegal instruction. See error 3.

11 Miscellaneous exception. caused by all other 68000 exceptions.

12 Unimplemented trap. This error is reported when the trap dis
patcher can not find a toolbox trap. It may mean the dispatcher
is broken or that the equivalent of an illegal instruction error has
occurred. It may also mean that you have left a debugger trap
in a program you are not running under the debugger. See error
3.

13 Spurious interrupt. This error is reported when there is no inter
rupt handler for an interrupt. This usually means that the inter
rupt table has been overwritten.

14 1/0 system error. This occurs when an 1/0 queue element con
tains bad data.

15 Segment loader error. This means the segment loader attempted
to read in a segment and failed. The application file has become
unreachable. This can also be caused by an error in the resource
compiler file that puts an application's CODE resources together.

16 Floating point error.

17-24 Failed to load pack 0 to 7, respectively. This means that these
packages are not present in the system file being used.

25 Out of memory.

26 Failed loading segment 0. This means that the application file
was incorrectly made, or has been corrupted.

27 Bad file map. An inconsistency in a file operation was detected.
This may mean the volume being accesses has been corrupted.

204 CllAPmR 10 DEBUGGING

28 Stack overflow. The "stack sniffer'' has detected that the stack
has collided with a heap, usually the application heap.

32-53 Memory manager errors.

41 The Finder could not be found. It may have been removed, or
the volume it is on has been corrupted.

100 Failed to mount the startup volume. Another symptom of a cor
rupted file system.

The most common bugs
Programming the Macintosh in C yields a telltale set of bugs that

differ from those found in assembly language and Pascal programming.
The commonest kind of bug in C programs in general is the family of
bugs that arise from mismatched parameters. Mismatched parameters
occur when subroutines or toolbox traps are passed more or fewer pa
rameters than they require, or inappropriate parameters.

In Macintosh programming, mismatched parameter bugs are more
common, nastier and more varied in their manifestations, and more diffi
cult to track down than in other environments. They occur when pro
grammers forget how many parameters a routine takes, whether a de
fault value is -1 or 0, what size a parameter is, or that a parameter is a
"VAR" parameter and, in C, must be explicitly passed by reference. These
bugs are difficult to find because they often manifest themselves inside
the toolbox trap that was supplied with flawed information.

If a session with the debugger reveals that your program fails inside
a toolbox trap, a parameter mismatch should be your first suspicion.
Check the parameters being passed to the routine that fails. Also check
subroutine parameters being passed between routines in your own code.
Because the caller of a C routine manipulates the stack, C programs can
mask parameter mismatch across one or more calls. Pascal routines, and
the stack-based toolbox traps split stack manipulation between the caller
and the called routine, so a parameter mismatch is likely to cause imme
diate failure - typically an illegal instruction or address error upon re
turning when the rts instruction loads an invalid address into the pro
gram counter.

When you suspect a parameter mismatch, make sure all of the fol
lowing conditions hold true:

• The number of parameters is correct.

• The size of parameters is correct. A common error is to pass an integer
constant when a long constant is required.

'fEsTING 205

• The parameter is passed in the correct form. Pascal VAR parameters re
quire a pointer to a parameter value be passed. Make sure that you
have correctly read the description of the routine you are calling.

Testing
When you are happy with the way your program works, wait! Do

not go sell it or distribute it to people who will be relying on it. Test it. All
responsible software developers put their software through (at least) two
testing phases. These testing phases are typically called "alpha" and
"beta."

The purpose of testing is to find bugs. The hard part is getting the
bugs described clearly. Bug reports should contain a description of what
occurred, and information about the setting in which the behavior oc
curred. If possible, the person reporting a bug should describe not only
what happened, but how to make it happen again.

Alpha testing is the first testing phase. Alpha releases are usually
released to technically adept users who understand the purpose of the
application and who probably understand how some or all of the applica
tion was designed and implemented. Preparing an alpha release involves
preliminary testing on all of the configurations the software will run on,
and the preparation of the first draft of the application's documentation.

Alpha testing should tell you if you have made any fundamental er
rors, whether performance is adequate, and whether the documentation
correctly corresponds to the way the program works. Testing on a variety
of configurations is vital. You should plan on testing with a Macintosh
512k, and a Macintosh Plus, both with and without hard disks.

Alpha testing should proceed according to a test plan. A test plan is
a set of exercises designed to bring out any weak spots in a program:
How does it behave when it runs out of memory? How does it behave
when windows are shrunk or expanded to extremes? What if the pro
gram's current save-file is deleted through a desk accessory? Usually such
provocative use of a program will uncover many errors and their reme
dies will improve the robustness of the program in general.

If you are left with a sheaf of unresolved problems with your alpha
release, you may want to cancel the beta release and spend some time fix
ing the problems, so that the beta release does not have to be accompa
nied by work-around hints and a bug list. Do not try to fix the problems
with your alpha release while the beta release is being tested. If you find
you have time on your hands during the beta release, count yourself
among the fortunate!

Beta testing is the second phase of testing. Beta testing simulates the
conditions under which the software will be sold or distributed. In other
respects beta testing is like alpha testing - you are looking for bugs. The
number of beta testers should be greater than the number of alpha testers,
ideally including the alpha test group in its entirety. In addition, the beta
testers should include representatives of the target group of users. Beta

206 CHAPrnR 10 DEBUGGING

testing is probably the most nerve wracking experience you will go
through as a developer. The deadlines for publication are looming, and
you are dealing with a large group of testers, some of whom can not be
relied on to describe their problems in clear terms. In order to make beta
testing go more smoothly, use your cadre of alpha testers to help the less
computer-savvy beta testers characterize the problems they run into.

The most valuable kind of beta tester is the "power user." The
power user often is not a programmer at all. Instead, the power user
pushes applications like spreadsheets to their limits. Power users are
valuable because they often do things with an application that the design
er and author has no idea anyone would want to do.

Testing Macintosh software differs from testing other kinds of soft
ware because it is event driven. Event driven software can have an infi
nite variety of interactions with the user, so it is not always possible to
test every eventuality. Because of this difference, clear bug reporting is of
paramount importance. You will have to rely on your testing phases and
your careful selection of testers to exercise the software enough to find
the obscure bugs.

POINTS TO CONSIDER 207

POINTS TO CONSIDER

1. If the Macintosh reports that it attempted to execute an illegal instruc
tion, how could the flow of the program reach an illegal instruc
tion?

2. Two programs have the same parameter mismatch bug. One is writ
ten in Pascal, the other in C. Will the bug manifest itself differently?
Why?

3. Unlike most systems that run Unix, the Macintosh has one address
space. How does this make debugging more difficult? How does it
make it easier?

Reference

Quick Draw

QuickDraw is the basis of all activity on the Macintosh screen.
QuickDraw also performs calculations on the objects it can draw. By com
bining a set of data structures for representing graphics objects with rou
tines that can draw and perform calculations on those objects,
QuickDraw forms a comprehensive graphics environment. QuickDraw
can fill a region with a pattern, calculate whether a point lies in a region,
and represent that region in a data structure whether it has been drawn
on the screen or not. QuickDraw provides these tools in multiple coordi
nate systems, so that whole graphics environments can be moved around
the screen. QuickDraw provides all of the tools used by the Window
Manager, but QuickDraw is not a windowing system in and of itself. The
Window Manager uses QuickDraw calculations and tells QuickDraw
where clipping should occur, but the illusion of scraps of paper on a
desktop is created by the Window Manager, not by QuickDraw alone.

The most important QuickDraw data structure is the region.
Regions can represent objects of any shape. Since QuickDraw can per
form all of its fundamental calculations on regions - such as the calcula
tions that determine the overlap of graphics entities and clipping calcula
tions, QuickDraw has a qualitative advantage over most graphics envi
ronments that only deal in rectangles and not arbitrary shapes such as re
gions. This is one reason why the Macintosh user interface looks more so
phisticated than most other windowed user interfaces.

Constants

fdef ine srcCopy 0
tdefine srcOr 1
fdefine srcXor 2
fdefine srcBic 3
fdefine notSrcCopy 4
fdefine notSrcOr 5
fdefine notSrcXor 6

210 QuICKDRAW

#"define notSrcBic 7
:ff"def ine pat Copy 8
:ff"def ine pat Or 9
#"define patXor 10
#"define patBic 11
#"define notPatCopy 12
:ff"def ine notPatOr 13
#"define notPatXor 14
#"define notPatBic 15

#"define normalBit 0
:ff"def ine inverseBit 1
#"define blueBit 2
#"define greenBit 3
#"define redBit 4
#"define blackBit 5
#"define magentaBit 7
:ff"def ine yellowBit 6
:ff"def ine cyanBit 8

:ff"def ine whiteColor 30
#"define blackColor 33
:ff"def ine yellowColor 69
#"define magentaColor 137
#"define redColor 205
#"define cyanColor 273
#"define greenColor 341
:ff"def ine blueColor 409

#"define picLParen 0
#"define picRParen 1

#"define frameMode 0
:ff"def ine paintMode 1
#"define eraseMode 2
#"define invertMode 3
#"define fillMode 4

#define bold OxOl
#"define italic Ox02
#"define underline Ox04
#"define outline Ox08
#"define shadow OxlO
#define condense Ox20
#"define extend Ox40

Data Structures

typedef unsigned char Byte;

typedef char SignedByte;
typedef char * Ptr;
typedef char ** Handle;
typedef int (*ProcPtr) ();
typedef unsigned int Boolean;

typedef char QDByte, *QDPtr, **QDHandle;
typedef char Str255[256];
typedef unsigned char Pattern[8];
typedef int Bits16[16];

typedef unsigned int Style;

typedef struct
{ int ascent;

int descent;
int widMax;
int leading;

Fontinfo;

typedef struct
{ int v;

int h;
Point;

typedef struct
{ Point pnLoc;

Point pnSize;
int pnMode;
Pattern pnPat;

PenState;

typedef struct
{ int top;

int left;
int bottom;
int right;

Rect;

typedef struct
{ QDPtr baseAddr;

int rowBytes;
Rect bounds;

BitMap;

typedef struct
{ Bits16 data;

Bits16 mask;
Point hotspot;

Cursor;

DATAS'l'RUCTURFS 211

212 QuICKDRAW

typedef struct
{ int rgnSize;

Rect rgnBBox;
/* region definition data */

Region, *RgnPtr, **RgnHandle;

typedef struct
{ int picSize;

Rect picFrarne;
/* picture definition data */

Picture, *PicPtr, **PicHandle;

typedef struct
{ int polySize;

Rect polyBBox;
Point polyPoints[l];

Polygon Polygon, *PolyPtr, **PolyHandle;

typedef enum {frame, paint, erase, invert, fill} GrafVerb;

typedef struct
{ QDPtr textProc;

QDPtr lineProc;
QDPtr rectProc;
QDPtr rRectProc;
QDPtr arcProc;
QDPtr polyProc;
QDPtr rgnProc;
QDPtr bitsProc;
QDPtr commentProc;
QDPtr txMeasProc;
QDPtr getPicProc;
QDPtr putPicProc;

QDProcs, *QDProcsPtr;

typedef struct
{ int device;

BitMap portBits;
Rect portRect;
RgnHandle visRgn;
RgnHandle clipRgn;
Pattern bkPat;
Pattern fillPat;
Point pnLoc;
Point pnSize;
int pnMode;
Pattern pnPat;
int pnVis;
int txFont;
Style txFace;

int txMode;
int txSize;
int spExtra;
long fgColor;
long bkColor;
int colrBit;
int patStretch;
Handle picSave;
Handle rgnSave;
Handle polySave;
QDProcsPtr grafProcs;

GrafPort, *GrafPtr;

FUNCTIONS 213

The following global variables are used by QuickDraw. These are
not low-memory globals. Most compilers provide preallocated space for
these variables. This support parallels that of the Lisa Pascal development
system.

Graf Ptr thePort;
Pattern white;
Pattern black;
Pattern ltGray;
Pattern dkGray;
Cursor arrow;
BitMap screenBits;
long randSeed;

If your compiler does not predefine these variables, you will have to
do so yourself. If you define them, they must be in the above order so that
Quickdraw's initialization call works correctly.

Initial values of QuickDraw's Global Variables

'l'ype Variable
GrafPtr thePort
Pattern white
Pattern black
Pattern gray
Pattern ltGray
Pattern dkGray
Cursor arrow
BitMap screenbits
long randSeed

Functions

GrafPort Routines
pascal void InitGraf(globalPtr)

Ptr globalPtr;

Initial Value
NULL
all-white
all-black
50% gray
25% gray
75% gray
arrow cursor
Macintosh screen
1

214 QUICK.DRAW

InitGraf initializes the QuickDraw global variables. InitGraf
should be called one time only, at the beginning of your program.

The parameter globalPtr tells QuickDraw where these global
variables are stored. C programmers should use &thePort for this pa
rameter.

pascal void OpenPort(gp)
GrafPtr gp;

OpenPort sets up fields for a new grafrort gp. OpenPort allocates
space for gp's visRgn and clipRgn by calling NewRgn and initialize the
fields of the gra£Port. OpenPort makes gp the current port. OpenPort is
called by the Window Manager when a new window is created.

Initia1 Va1ues of a GrafPort

Type
int
BitMap
Re ct
RgnHandle

RgnHandle

Pattern
Pattern
Point
Point
int
Pattern
int
int
Style
int
int
int
long
long
int
int
Handle
Handle
Handle
QDProcsPtr

Fie1d
device
portBits
port Re ct
visRgn

clipRgn

bkPat
fillPat
pnLoc
pnSize
pnMode
pnPat
pnvis
txFont
txFace
txMode
txSize
spExtra
fgColor
bkColor
colrBit
patStretch
picSave
rgnSave
polySave
grafProcs

pascal void InitPort(gp)
Grafptr gp;

Initia1 va1ue
0
screenBits(from InitGraf)
screenBits.bounds
handle to rectangular region
equivalent to screenBits .bounds
handle to rectangular region
(-32767,-32767,32767,32767)
white
black
(0, 0)
(1, 1)
pat Copy
black
O (visible)
0 (system font)
plain
srcOr
0 (system font size)
0
blackColor
whiteColor
0
0
NULL
NULL
NULL
NULL

F'UNCITONS 215

InitPort sets the fields of gp's grafi>ort to the above initial values.
InitPort makes gp the current port. Note that gp must have already
been opened with OpenPort, as InitPort does not allocate space for
visRgn and clipRgn.

pascal void ClosePort(gp)
GrafPtr gp;

ClosePort frees the memory used by gp's visRgn and clipRgn.
The Window Manager calls ClosePort when it closes or disposes a
window.

pascal void SetPort(gp)
GrafPtr gp;

SetPort makes gp the current port. SetPort does this by setting
the global variable thePort equal to gp.

pascal void GetPort(gp)
GrafPtr *gp;

GetPort sets gp to the current port.

pascal void GrafDevice(device)
int device;

GrafDevice sets the current port's output device to device.
Device zero is the Macintosh screen.

pascal void SetPortBits(bm)
BitMap *bm;

SetPortBits sets the current port's portBits field to bitmap bm.
Drawing is done in the portBits bitmap. Be sure that bm is set up
correctly before calling SetPortBi ts. Drawing is not confined to the
screen. You can set up bitmaps to act as output buffers or as areas to
prepare images off-screen.

pascal void PortSize(width, height)
int width, height;

216 QuICKDRA.W

Port Size changes the size of the current grafrort's portRect. The
top left corner remains in the same location. The bottom right corner is
adjusted so that the rectangle is of the specified width and height.
Calling Port Size does not change what is already on the screen, but it
will affect future drawing. Normally, only the Window Manager calls
Port Size.

pascal void MovePortTo(leftGlobal, topGlobal)
int leftGlobal, topGlobal;

MovePortTo changes the current portRect's position with respect
to portBits. bounds. PortRect is adjusted so that its top left corner is
leftGlobal and topGlobal units from the top left corner of
portBits.bounds. MovePortTo does not affect anything currently on
the screen but it will affect future activity in the port. MovePortTo is nor
mally called only by the Window Manager.

pascal void SetOrigin(h,v)
int h, v;

Set Origin does a number of things. It sets the top left corner of the
current grafrort's portRect to (h, v), adjusts the bottom right corner of
portRect so that the height and width remain the same, and offsets the
coordinates of portBi ts. bounds and visRgn. The net result of all these
calculations is to change the local coordinate system of the current
grafPort. Note that the areas changed by SetOrigin were those which
are bound to the screen and not those bound to the coordinate system.

SetOrigin doesn't change the screen but it will affect any future
drawing.

pascal void SetClip(rgn)
RgnHandle rgn;

SetClip changes the clipRgn of the current grafrort to a region
just like the region with handle rgn. This is done by copying region rgn
to clipRgn. Since a copy is made, clipRgn can be changed without
changing rgn.

pascal void GetClip(rgn)
RgnHandle rgn;

FuNcnoNS 217

GetClip copies the current grafPort's clipRgn to the region rgn.
An actual copy is made: the returned region can be changed and it will
not affect clipRgn. Rgn must exist before calling GetClip.

pascal void ClipRect(r)
Rect *r;

ClipRect sets the current gra£Port's clipRgn to a rectangular re
gion equivalent to rectangle r.

pascal void BackPat(pat)
Pattern *Pat;

BackPat makes pat the background pattern of the current
gra£Port.

Cursor Handling
To keep track of calls to HideCursor and ShowCursor,

QuickDraw maintains a global variable known as the cursor level. The
cursor is visible when the cursor level is zero and invisible when the cur
sor level is below zero. The cursor level never goes above zero.

pascal void InitCursor ()

InitCursor gives you the predefined arrow cursor and sets the
cursor level to zero.

pascal void SetCursor(crsr)
Cursor *crsr;

SetCursor changes the current cursor to crsr. If the cursor is visi
ble, this change will occur immediately. If the cursor is hidden, you'll see
the new cursor when the cursor is uncovered.

pascal void HideCursor()

HideCursor makes the cursor invisible. The bits where the cursor
was are restored. HideCursor also decrements the cursor level. Calls to
HideCursor should be balanced with calls to ShowCursor.

218 QUio:DRAw

pascal void ShowCursor()

ShowCursor increments the cursor level if it's below zero and dis
plays the cursor when the cursor level becomes zero.

pascal void ObscureCursor()

ObscureCursor temporarily hides the cursor. The cursor will reap
pear the moment that the mouse is moved. ObscureCursor does not
change the cursor level.

Pen and Line Drawing
pascal void HidePen()

HidePen will decrement the pnVis field of the current grafPort.
Drawing does not occur on the screen when pnVis is negative.

HidePen is called by OpenRgn, OpenPicture and OpenPoly so
that regions, pictures and polygons can be defined without appearing on
screen.

Calls to HidePen should be balanced by calls to ShowPen.

pascal void ShowPen()

ShowPen increments the pnVis field of the current grafPort. When
pnVis is zero, on-screen drawing becomes visible. Unlike the cursor
level, the pnVis field can become greater than zero.

Be sure to balance ShowPen and HidePen calls. ShowPen is called
by CloseRgn, ClosePicture, and ClosePoly, thus balancing calls to
HidePen made by OpenRgn, OpenPicture and OpenPoly.

pascal void GetPen(pt)
Point *pt;

GetPen sets pt to the current location of the pen, using the local co
ordinate system of the current gra£Port.

pascal void GetPenState(pnState)
PenState *pnState;

GetPenState sets the fields of pnState to the location, size, mode
and pattern of the current grafPort's pen.

Fl.JNCTIONS 219

pascal void SetPenState(pnState)
PenState *pnState;

SetPenState sets the location, size, mode and pattern of the cur
rent gra£Port's pen to the values given in pnState.

pascal void PenSize(width, height)
int width, height;

PenSize sets the dimensions of the pen in the current gra£Port, giv
ing the graphics pen the specified width and height. The pen size can
be found in the gra£Port's pnSize field.

pascal void PenMode(mode)
int mode;

PenMode sets the current gra£Port's pen mode to mode. The pen
mode specifies the mode through which the pattern is transferred to the
bit map. Any pattern transfer mode can be used; if the pen mode is a
source transfer mode or a negative value, no drawing is done. The pen
mode can be found in the gra£Port's pnMode field.

pascal void PenPat(pat)
Pattern *pat;

PenPat sets the pattern (black, white, gray, dkGray, or ltGray)
used by the current gra£Port's pen to pat. The pen pattern can be found
in the gra£Port's pnPat field.

pascal void PenNormal()

PenNormal reinitializes the graphics pen with pnSize
pnMode = patCopy, and pnPat = black.

pascal void MoveTo(h, v)
int h, v;

(1,1),

MoveTo places the pen at location (h, v) . Hand v are in local coor
dinates. MoveTo is a non-drawing procedure.

pascal void Move(dh, dv)
int dh, dv;

220 QUICKDRAW

Move moves the pen from the current location to a location dh hori
zontal and dv vertical units away. Move is a non-drawing procedure.

pascal void LineTo{h,v)
int h, v;

LineTo draws a line from the current location to the point (h, v).
The pen remains at location (h, v).

pascal void Line{dh, dv)
int dh, dv;

Line draws a line from the current location to a location dh hori
zontal and dv vertical units away. The pen remains at the new location.

Text Drawing
pascal void TextFont{font)

int font;

TextFont sets the font of the current gra{Port to font number font.
You can find the current font at thePort->txFont.

pascal void TextFace{face)
Style face;

TextFace sets the style for the current gra{Port to face. Face can
be one (or the sum of more than one) of the predefined style constants:
bold,italic,underline,outline,shadow,condense,extend.

Some TextFace Examp1es

desired style
bold
bold & italic
current value & italic
current value & not italic
normal

pascal void TextMode(mode)
int mode;

TextFace parameter
bold
bold + italic
thePort->txFace + italic
thePort->txFace - italic
zero

FUNCTIONS 221

TextMode sets the current grafPort's text transfer mode to mode.
Mode should be one of the following source transfer modes: srcOr,
srcXor or srcBic.

pascal void TextSize(size)
int size;

TextSize sets the current grafPort's text size to size. Size is the
point size of the font.

For best results, use a size the Font Manager has available.
Otherwise an available size will be scaled. Even multiples of an available
size are the second best choice. If size is zero, the Font Manager uses an
available size which is closest to the system font size.

pascal void SpaceExtra(extra)
int extra;

SpaceExtra sets the current grafPort's spExtra field to extra.
Used primarily to implement right and left justified text, spExtra speci
fies the number of pixels that each space will be widened by when text is
drawn. Typically, this is the difference between the length of the text (in
pixels) and the space between the margins, divided by the number of
spaces in the text. By padding each space with this number of pixels, the
text will occupy all of the space between the margins.

pascal void DrawChar(ch)
char ch;

DrawChar draws the character ch using the current font, style, size
and source transfer mode. The left end of the character's base line is at the
current pen location. After drawing the character, the pen's horizontal co
ordinate will have increased by the character's width. The font's "miss
ing" symbol is drawn if the character is not available.

pascal void DrawString(s)
Str255 s;

Drawstring draws the string s by calling DrawChar for each char
acter in the string. The toolbox always expects pascal strings.

222 QuICI<DRAW

pascal void DrawText(textBuf, firstByte, byteCount)
Ptr textBuf;
int firstByte, byteCount;

DrawText draws characters from the buffer pointed to by textBuf.
ByteCount characters are drawn, starting with the character at offset
firstByte. The drawing starts to the right of the pen's location. The pen
ends up to the right of the last character drawn.

pascal int CharWidth(ch)
char ch;

CharWidth returns the width (in pixels) of ch if you were to draw
it in the current grafPort. The width calculation uses the current font, size,
and style as well as spExtra when ch is a space.

pascal int StringWidth(s)
Str255 s;

StringWidth calls CharWidth for each character in the string s,
and returns the total width of the string.

pascal int TextWidth(textBuf, firstByte, byteCount)
Ptr textBuf;
int firstByte, byteCount;

Text Width calls CharWidth for byteCount characters in the buff
er textBuf, starting with the character at offset firstByte. The total
width of the these characters is returned.

void GetFontinfo(info)
Fontinfo *info;

GetFontinfo places the current graWort's font information into
the fields of info. The font information is determined using the current
font, size and style. The font information includes: ascent, descent, width
of widest character, and leading (the distance between descent of a line
and ascent of the line below it).

Drawing in Color
pascal void ForeColor(color)

long color;

FuNcnONS 223

ForeColor sets the current gra£Port's foreground color to color.

pascal void BackColor(color)
long color;

BackColor sets the current gra£Port's background color to color.

pascal void ColorBit(whichBit)
int whichBit;

ColorBi t tells QuickDraw which bit plane to draw in. ColorBi t is
used to support color devices with up to 32 bits of color information per
pixel.

Calculations with Rectangles
pascal void SetRect(r, left, top, right, bottom)

Rect *r;
int left, top, right, bottom;

SetRect sets the coordinates of the rectangle r to (left, top,
right, bottom).

pascal void OffsetRect(r, dh, dv)
Rect *r;
int dh, dv;

OffsetRect changes the coordinates of rectangle r. The coordi
nates are changed dh units horizontally and dv units vertically.

pascal void InsetRect(r, dh, dv)
Rect *r;
int dh, dv;

InsetRect moves the sides of rectangle r inward by dh (or out
ward if dh is negative). The top and bottom of r move toward the center
by dv (or they'll move outward if dv is negative). If the value of dh or dv
causes the width or height of the rectangle to become less than one, then
r is set to the empty rectangle: (0, 0, 0, 0) .

224 QUICKDRAW

Results of InsetRect

InsetRect when dh & dv
are positive.

r (after)

.,,,,,,,,,.,,,,. ,,,,.,,,,,.,,,,,,

' ' ' ' dh 'r (before)1-, --,

InsetRect when dh & dv
are negative

pascal Boolean SectRect(srcRectA, srcRectB, dstRect)
Rect *srcRectA, *srcRectB, *dstRect;

SectRect makes dstRect the intersection of the two rectangles
srcRectA and srcRectB. If srcRectA and srcRectB do not intersect,
then dstRect becomes (0, 0, 0, 0) and SectRect is FALSE. If
srcRectA and srcRectB touch only along an edge or at a point, they are
not intersecting rectangles because lines and points are infinitely small on
the Macintosh.

pascal void UnionRect(srcRectA, srcRectB, dstRect)
Rect *srcRectA, *srcRectB, *dstRect;

UnionRect sets dstRect to the smallest rectangle which encloses
srcRectA and srcRectB.

Intersection and Union of Rectangles

pascal Boolean PtinRect(pt, r)
long pt;
Rect *r;

UnionRect

PtinRect returns TRUE if the pixel below and to the right of point
pt is inside rectangle r. If this pixel is not insider, PtinRect is FALSE.

pascal void Pt2Rect(ptA, ptB, dstRect)
long ptA, ptB;
Rect *dstRect;

FUNCTIONS 225

Pt2Rect sets dstRect to the smallest rectangle enclosing PtA and
PtB.

pascal void PtToAngle(r, pt, angle)
Rect *r;
long pt;
int *angle;

PtToAngle sets angle to the number of degrees (zero to 359) from
the center of the rectangle r to the line from the center through the point
pt. Quickdraw angles are not "true" angles, rather they are measured
relative to rectangles. The line straight up from the center is at zero de
grees, the line straight out to the right is at 90 degrees and so on. The
angle of a line that goes from the center through a corner of the rectangle
is always a multiple of 45 degrees.

Angles in QuickDraw

All QuickDraw angles are
measured relative to rectangles.

pascal Boolean EqualRect(rectA, rectB)
Rect *rectA, *rectB;

EqualRect is TRUE if rectA and rectB have the same coordinates,
FALSE if they do not.

pascal Boolean EmptyRect(r)
Rect *r;

226 QUICKDRAW

EmptyRect is TRUE if r is an empty rectangle and FALSE if it's not.
An empty rectangle is one where the right coordinate is less than or equal
to the left coordinate or the bottom coordinate is less than or equal to the
top coordinate.

Graphic Operations on Rectangles
pascal void FrameRect(r)

Rect *r;

FrameRect uses the current graphics pen to draw a hollow outline
just inside rectangle r. The location of the pen is not changed by
FrameRect.

If FrameRect is called while a region is open and being formed, the
outside outli~e of the rectangle is added to the region's boundary.

pascal void PaintRect(r)
Rect *r;

PaintRect fills the rectangle r with the current grafPort's pnPat,
using the current pnMode. The pen location does not change.

pascal void EraseRect(r)
Rect *r;

EraseRect fills the rectangle r with the background pattern using
pat Copy mode. The pen location does not change.

pascal void InvertRect(r)
Rect *r;

InvertRect toggles all the pixels inside rectangle r: all white pix
els become black and all black pixels become white. The pen location
does not change.

pascal void FillRect(r, pat)
Rect *r;
Pattern pat;

FillRect uses patCopy mode to fill rectangle r with pattern pat.
The pen location does not change.

Graphic Operations on Ovals
pascal void FrameOval(r)

Rect *r;

FuNCTIONS 227

FrarneOval uses the characteristics of the current graphics pen to
draw a hollow outline inside the oval that fits inside rectangle r. The pen
location does not change.

FrarneOval will add the outside outline of the oval to the boundary
of an open region.

Creating an Oval using a Rectangle

rectangle r

pascal void PaintOval(r)
Rect *r;

PaintOval fills the oval determined by rectangle r with the current
pnPat using the current pnMode. The pen location does not change.

pascal void EraseOval(r)
Rect *r;

EraseOval paints the oval determined by rectangle r with the
background pattern using the patCopy mode. The pen location does not
change.

pascal void InvertOval(r)
Rect *r;

InvertOval toggles all the pixels inside the oval determined by
rectangle r: all white pixels become black pixels and all black pixels be
come white pixels. The pen location does not change.

pascal void FillOval(r, pat)
Rect *r;
Pattern pat;

228 QuICKDRAW

Fil!Oval uses pat Copy mode to fill the oval determined by r with
pattern pat. The pen location does not change.

Graphic Operations on Rounded-Corner Rectangles
pascal void FrameRoundRect(r, ovalWidth, ovalHeight)

Rect *r;
int ovalWidth, ovalHeight;

FrameRoundRect uses the attributes of the current graphics pen to
draw a hollow outline just inside the rounded-corner rectangle deter
mined by r, ovalWidth and ovalHeight. FrameRoundRect does not
change the pen location.

For open regions, the outside outline of this rounded-corner rectan
gle is added to the region's boundary.

ovalHeight

r &I•
Fl
oval Width

Making a RoundRect using r,
ovalWidth and ovalHeight

pascal void PaintRoundRect(r, ovalWidth, ovalHeight)
Rect *r;
int ovalWidth, ovalHeight;

PaintRoundRect uses the mode and pattern of the current graph
ics pen to paint the rounded-corner rectangle determined by r,
oval Width and ovalHeight. The pen location does not change.

pascal void EraseRoundRect(r, ovalWidth, ovalHeight)
Rect *r;
int ovalWidth, ovalHeight;

EraseRoundRect uses patCopy mode to paint the rounded-corner
rectangle determined by r, ova!Width and ova!Height with the cur
rent grafrort' s background pattern. The pen location does not change.

FlJNCITONS 229

pascal void InvertRoundRect(r, ovalWidth, ovalHeight)
Rect *r;
int ovalWidth, ovalHeight;

InvertRoundRect toggles all the pixels inside the rounded-corner
rectangle determined by r, ovalWidth and ovalHeight. All black pix
els become white, all white pixels become black. The pen location does
not change.

pascal void FillRoundRect(r, ovalWidth, ovalHeight, pat)
Rect *r;
int ovalWidth, ovalHeight;
Pattern pat;

FillRoundRect paints the rounded-corner rectangle determined
by r, ovalWidth and ovalHeight with the pattern pat.
FillRoundRect uses pat Copy mode. The pen location does not change.

Graphic Operations on Arcs and Wedges
QuickDraw arcs and wedges are determined by three components:

a rectangle, a start angle, and an arc angle.

QuickDraw Wedges and Arcs

startAn le = O arcAngle = 45 startAngle = 45

r r

arcAngle = 90

An Arc determined by r,
startAngle, and arcAngle

A Wedge determined by r,
startAngle, and arcAngle

pascal void FrameArc(r, startAngle, arcAngle)
Rect *r;
int startAngle, arcAngle;

FrameArc will use the current graphics pen to draw a hollow out
line just inside of the arc determined by r, startAngle and arcAngle.
The pen location does not change.

For open regions, FrameArc is unlike any of the other frame proce
dures in that it does not add to the boundary of the region.

230 QuICKDRAW

pascal void PaintArc(r, startAngle, arcAngle)
Rect *r;
int startAngle, arcAngle;

PaintArc uses the current pnPat and pnMode to paint the wedge
determined by r, startAngle and arcAngle. The pen location does not
change.

pascal void EraseArc(r, startAngle, arcAngle)
Rect *r;
int startAngle, arcAngle;

EraseArc paints the wedge determined by r, startAngle and
arcAngle with the background pattern bkPat using patCopy mode.
The pen location does not change.

pascal void InvertArc(r, startAngle, arcAngle)
Rect *r;
int startAngle, arcAngle;

InvertArc toggles all of the pixels contained in the wedge deter
mined by r, startAngle and arcAngle. Each white pixel becomes
black, each pixel that was black becomes white. The pen location does not
change.

pascal void FillArc(r, startAngle, arcAngle, pat)
Rect *r;
int startAngle, arcAngle;
Pattern pat;

FillArc uses patCopy to paint the wedge determined by r,
startAngle and arcAngle with pattern pat. The pen location does not
change.

Calculations with Regions
pascal RgnHandle NewRgn()

NewRgn creates a new region. Heap space is allocated for the new
region. The region starts off as the empty region (O, O, O, O) . A handle to
the new region is returned.

NewRgn must be called for a region before the region can be used.

pascal void DisposeRgn(rgn)
RgnHandle rgn;

F'uNCTIONS 231

DisposeRgn frees the memory used by region rgn. When you no
longer need a region, call DisposeRgn to get rid of it.

pascal void CopyRgn(srcRgn, dstRgn)
RgnHandle srcRgn, dstRgn;

CopyRgn copies srcRgn to the region with handle dstRgn. DstRgn
must already have had space allocated for it before CopyRgn is called.

pascal void SetEmptyRgn(rgn)
RgnHandle rgn;

SetEmpt yRgn reinitializes rgn to the empty region (0, 0, 0, 0) .

pascal void SetRectRgn(rgn, left, top, right, bottom)
RgnHandle rgn;
int left, top, right, bottom;

SetRectRgn wipes out region rgn's current structure, and makes
rgntherectangularregion (left, top, right, bottom).lftherect
angle is an empty rectangle, rgn becomes the empty region (0, 0, 0, 0) .

pascal void RectRgn(rgn, r)
RgnHandle rgn;
Rect *r;

RectRgn wipes out rgn's current structure, and makes the region
the rectangular region specified by r. If r is an empty rectangle, rgn be
comes the empty region.

pascal void OpenRgn()

OpenRgn opens a QuickDraw region. QuickDraw begins saving in
formation about all lines and framed shapes drawn up until CloseRgn is
called. The information QuickDraw saved is then organized into a region.

OpenRgn calls HidePen, so no drawing appears on screen while a
region is being defined. You can get around that by calling ShowPen just
after OpenRgn (but be sure you make a balancing HidePen call).

232 QuICKDRAW

pascal void CloseRgn(dstRgn)
RgnHandle dstRgn;

CloseRgn stops the formation of a region. The collected informa
tion is organized into a region which is accessible using dstRgn.

CloseRgn calls ShowPen, balancing OpenRgn's HidePen call.

pascal void OffsetRgn(rgn, dh, dv)
RgnHandle rgn;
int dh, dv;

OffsetRgn moves region rgn dh units in the horizontal direction,
dv units vertically. This will not affect the screen but will affect future
drawing.

OffsetRgn is a very efficient method for translational movement of
regions: a region is stored relative to it's bounding rectangle, so only that
rectangle needs to be changed.

pascal void InsetRgn(rgn, dh, dv)
RgnHandle rgn;
int dh, dv;

InsetRgn moves the boundary of region rgn in or out, thus shrink
ing or expanding the region. The boundary is moved toward the center a
distance of dh units horizontally and dv units vertically. Negative values
of dh and dv cause movement away from the center.

pascal void SectRgn(srcRgnA, srcRgnB, dstRgn)
RgnHandle srcRgnA, srcRgnB, dstRgn;

SectRgn calculates the region that is the intersection of the two re
gions srcRgnA and srcRgnB. DstRgn tells QuickDraw where to store
the resulting intersection. SectRgn works if dstRgn is either srcRgnA or
srcRgnB.

pascal void UnionRgn(srcRgnA, srcRgnB, dstRgn)
RgnHandle srcRgnA, srcRgnB, dstRgn;

UnionRgn calculates the region which is the union of regions
srcRgnA and srcRgnB. DstRgn is the resulting region. DstRgn can be
equal to either srcRgnA or srcRgnB.

pascal void DiffRgn(srcRgnA, srcRgnB, dstRgn)
RgnHandle srcRgnA, srcRgnB, dstRgn;

F'uNCilONS 233

DiffRgn calculates a new region by subtracting srcRgnB from
srcRgnA. The resulting region is stored at dstRgn. DstRgn can be equal
to either srcRgnA or srcRgnB.

If srcRgnA is the empty region, dstRgn automatically becomes an
empty region.

pascal void XorRgn(srcRgnA, srcRgnB, dstRgn)
RgnHandle srcRgnA, srcRgnB, dstRgn;

XorRgn makes dstRgn the union of srcRgnA and srcRgnB minus
the intersection of srcRgnA and srcRgnB. DstRgn can be equal to either
srcRgnA or srcRgnB.

pascal Boolean PtinRgn(pt, rgn)
Point pt;
RgnHandle rgn;

PtinRgn is TRUE if the pixel below and to the right of point pt is in
the region rgn. PtinRgn is FALSE otherwise.

pascal Boolean RectinRgn(r, rgn)
Rect *r;
RgnHandle rgn;

Re ct InRgn is TRUE if the intersection of the rectangle r and the re
gion rgn contains at least one point. If the intersection is empty,
Rect InRgn is FALSE.

pascal Boolean EqualRgn(rgnA, rgnB)
RgnHandle rgnA, rgnB;

EqualRgn is TRUE if the two regions, rgnA and rgnB, are equal.
EqualRgn is FALSE otherwise. Two regions must have the same size,
shape and location to be considered equal.

pascal Boolean EmptyRgn(rgn)
RgnHandle rgn;

EmptyRgn returns TRUE when region rgn is the empty region.
EmptyRgn is FALSE if rgn is not empty.

234 Quier<DRAw

Graphic Operations on Regions
pascal void FrameRgn(rgn)

RgnHandle rgn;

FrameRgn uses characteristics of the current gra£Port's pen to draw
an outline just inside region rgn's boundary. The frame is as wide and as
tall as the pen, but it does not go outside of the region boundary.

pascal void PaintRgn(rgn)
RgnHandle rgn;

PaintRgn paints region rgn in the current grafPort using the cur
rent pnPat and pnMode.

pascal void EraseRgn(rgn)
RgnHandle rgn;

PaintRgn paints region rgn in the current grafPort using the cur
rent bkPat in patCopy mode.
pascal void InvertRgn(rgn)

RgnHandle rgn;

InvertRgn toggles all the pixels inside region rgn: all white pixels
become black, all black pixels become white.

pascal void FillRgn(rgn, pat)
RgnHandle rgn;
Pattern pat;

Fil!Rgn uses patCopy mode to fill the region rgn with pattern
pat.

Bit Transfer Operations
pascal void ScrollRect(r, dh, dv, updateRgn)

Rect *r;
int dh, dv;
RgnHandle updateRgn;

ScrollRect moves all the visible bits in rectangle r (the bits con
tained in r, visRgn, clipRgn, portRect and portBits. bounds) a dis
tance of dh units horizontally, dv units vertically. Bits scrolled outside of
the area are gone. Vacated areas are filled with pattern bkPat, and this
area becomes the updateRgn.

FUNCTIONS 235

pascal void CopyBits(srcBits, dstBits, srcRect, dstRect,
mode, maskRgn)

BitMap *srcBits, *dstBits;
Rect *srcRect, *dstRect;
int mode;
RgnHandle maskRgn;

CopyBits copies a bit image from from one bitMap (srcBits) to
another (dstBits) using the mode transfer mode. SrcRect specifies a
rectangle in srcBits that is to be copied. Use the srcBits .bounds co
ordinate system when specifying srcRect. DstRect is the rectangle in
dstBits where the bit image will be transferred. DstRect is in the
dstBits .bounds coordinate system. If srcRect and dstRect are not
the same size, the bit image will be scaled to fit dstRect.

MaskRgn is in the dstBits .bounds coordinate system. The bit
image is always clipped to the region given by maskRgn. If you don't
want to clip to a region use NULL for maskRgn.

Pictures
pascal PicHandle OpenPicture(picFrame)

Rect *picFrame;

OpenPicture creates a new picture with picFrame as the picture
frame. A handle to the picture is returned. The picture is now open. Until
the picture is closed, all drawing routines and picture comments become
part of the picture.

Drawing does not normally occur on screen when a picture is open
because OpenPicture calls HidePen. You can change this by calling
ShowPen just after the picture has been opened.

You may need to do some drawing that is not part of a picture
while a picture is being formed. Temporarily setting the grafPort's
picSave field to NULL will allow you to do this. QuickDraw uses the
gra£Port's picSave field while forming pictures. When PicSave is NULL
QuickDraw assumes it is not forming a picture. To resume making the
picture, restore picSave to its previous value.

pascal void ClosePicture()

ClosePicture closes the currently open QuickDraw picture.
ClosePicture calls ShowPen to balance OpenPicture's call to

HidePen.

236 QuICKDRAW

pascal void PicComment(kind, dataSize, dataHandle)
int kind, datasize;
Handle dataHandle;

P icComment is used to insert application specific data into a
QuickDraw picture. DataHandle is a handle to the data, dataSize is the
size (in bytes) of that data. Kind can be used by the application to keep
track of different types of picture comments.

pascal void DrawPicture(myPicture, dstRect)
PicHandle myPicture;
Rect *dstRect;

DrawPicture draws myPicture in the current gra£Port. The pic
ture frame is scaled to rectangle dstRect. Any picture comments in
myPicture are passed along to the comrnentProc procedure referenced
through the grafProcs field of the current gra£Port.

pascal void KillPicture(myPicture)
Pichandle myPicture;

KillPicture gets rid of myPicture. Any memory used by
myPicture is released. Call KillPicture when you'll never need
myPicture again.

Calculations with Polygons
pascal PolyHandle OpenPoly()

OpenPoly opens a new polygon and returns a handle to it.
OpenPoly calls HidePen so drawing will not appear on screen. While the
polygon is open, QuickDraw saves information about calls to line-draw-:
ing routines: endpoints of the lines are used to define the polygon. To
close the polygon, call ClosePoly.

You may need to' do draw lines that are not part of a polygon while
a polygon is being formed. Temporarily setting the gra£Port's polySave
field to NULL will allow you to do this. QuickDraw uses the gra£Port's
polySave field while forming polygons. When polySave is NULL
QuickDraw assumes it is not forming a polygon. To resume making the
polygon, restore polySave to its previous value.

FuNcnoNS 237

pascal void ClosePoly()

ClosePoly closes the open polygon. The bounding rectangle
polyBBox is computed. ClosePoly calls ShowPen to resume on-screen
drawing.

pascal void KillPoly(poly)
PolyHandle poly;

KillPoly gets rid of the polygon with handle poly. All memory
used for the polygon is released. Be sure you no longer need poly before
you kill it.

pascal void OffsetPoly(poly, dh, dv)
PolyHandle poly;
int dh, dv;

OffsetPoly translates polygon poly on the coordinate plane. It's
moved a distance of dh horizontal and dv vertical units.

OffsetPoly is an efficient method of moving the polygon - all
points are stored relative to the starting point, so only one change is
made.

Graphic Operations on Polygons
pascal void FramePoly(poly)

PolyHandle poly;

FramePoly uses the current grafPort's pen to draw an outline just
inside the polygon poly. Because the QuickDraw pen is to the right and
below the point, the outline will be outside of the polyBBox.

pascal void PaintPoly(poly)
PolyHandle poly;

PaintPoly fills polygon poly with the pnPat using the pnMode of
the current grafPort. The pen location does not change.

pascal void ErasePoly(poly)
PolyHandle poly;

ErasePoly fills polygon poly with the current grafPort's bkPat
and using pat Copy transfer mode. The pen location does not change.

238 QuICKORAW

pascal void InvertPoly(poly)
PolyHandle poly;

InvertPoly toggles all pixels in polygon poly: all white pixels be
come black and all black pixels become white. The pen location does not
change.

pascal void FillPoly(poly, pat)
PolyHandle poly;
Pattern pat;

FillPoly paints polygon poly with pattern pat using the
patCopy transfer mode. The pen location does not change.

Calculations with Points
pascal void AddPt(srcPt, dstPt)

Point srcPt, *dstPt;

AddPt adds the coordinates of srcPt and dstPt and stores the re
sult in dstPt.

pascal void SubPt(srcPt, dstPt)
Point srcPt, *dstPt;

SubPt subtracts the coordinates of srcPt from dstPt and stores
the result in dstPt.

pascal void SetPt(pt, h, v)
Point *pt;
int h, v;

SetPt sets point pt's horizontal coordinate to hand and its vertical
coordinate v.

pascal Boolean EqualPt (ptA, ptB)
Point ptA, ptB;

EqualPt is TRUE if point ptA has the same coordinates as point
ptB. EqualPt is FALSE when ptA has coordinates different than ptB.

pascal void LocalToGlobal (pt)
Point *pt;

FuNCTIONS 239

LocalToGlobal transforms point pt from the current grafPort's
coordinate system to the global coordinate system.

pascal void GlobalToLocal(pt)
Point *pt;

Global ToLocal transforms the point pt from the global coordi
nate system to the current grafPort's coordinate system.

Miscellaneous Utilities
pascal int Random()

Random returns an integerbetween -32768 and 32767. The integer
is from a uniform pseudo-random distribution. The seed for this function
is the global variable randSeed. RandSeed is initialized to 1 by
InitGraf.

pascal Boolean GetPixel(h, v)

int h, v;

GetPixel is TRUE when the pixel corresponding to the point (h, v)
is black, FALSE when the pixel is white. H and v should be in the current
grafPort's local coordinate system.

GetPixel doesn't check if the pixel actually belongs to the current
grafPort. You can do this yourself by calling:

PtinRgn(pt, thePort->visRgn)

pascal void StuffHex(thingPtr, s)
Ptr thingPtr;
Str255 s;

StuffHex allows you to stuff bytes into a data structure. The byte
sequence is given by s - a pascal string of hexadecimal digits. The bytes
are placed into the memory pointed to by thingPtr.

StuffHex stuffs with no questions asked. You have to make sure
the bit sequence is not longer than it should be.

pascal void ScalePt(pt, srcRect, dstRect)
Point *pt;
Rect *srcRect, *dstRect;

240 QtnCKDRA.W

ScalePt scales a width and height in rectangle srcRect to the
width and height it would be if srcRect were scaled to dstRect. The
width and height to be scaled are given by pt. The horizontal coordinate
contains the width and the vertical coordinate contains the height. Upon
return pt contains the scaled values. Pt will never be less than (1, 1) .

pascal void MapPt(pt, srcRect, dstRect)
Point *pt;
rect *srcRect, *dstRect;

MapPt maps point pt in rectangle srcRect to a point with the
same relative location in rectangle dstRect.

pascal void MapRect(r, srcRect, dstRect)
Rect *r, *srcRect, *dstRect;

MapRect maps rectangle r in rectangle srcRect to the rectangle in
dstRect that has the same relative location and dimensions. This is done
by calling MapPt for the top left and bottom right points in rectangle r.

pascal void MapRgn(rgn, srcRect, dstRect)
RgnHandle rgn;
Rect *srcRect, *dstRect;

MapRgn maps region rgn from a region in srcRect to the region it
would be if srcRect where scaled to dstRect. MapRgn accomplishes
this by calling MapPt for all the points in the region.

pascal void MapPoly(poly, srcRect, dstRect)
PolyHandle poly;
Rect *srcRect, *dstRect;

MapPoly maps polygon poly from a polygon in srcRect to the
polygon it would be if srcRect where scaled to dstRect. MapPoly ac7
complishes this by calling MapPt for all the points in the polygon.

Customizing QuickDraw Operations
Each gra£Port has a set of routines associated with it that

QuickDraw uses for the lowest level operations. These are the only
QuickDraw routines that actually modify the locations in a bitmap. By
changing these routines, QuickDraw can be customized for drawing on
external graphics devices such as the Imagewriter.

pascal void SetStdProcs(procs)
QDProcs *procs;

FuNCTIONS 241

SetStdProcs is used to change the low-level QuickDraw routines
of the current grafPort. Procs points to a structure of function pointers
for the low-level functions to be used.

pascal void StdText(byteCount, textBuf, numer, denom)
int byteCount;
Ptr textBuf;
Point numer, denom;

StdText implements text drawing. TextBuf points to the text to be
drawn. Bytecount is the number of bytes of text to be drawn. Numer
and denorn together specify scaling factors: (numer.h/denom.h) is the
horizontal scaling factor, (numer. v I denom. v) is the vertical scaling fac
tor.

pascal void StdLine(newPt)
Point newPt;

StdLine draws a line from the current pen location to newPt.

pascal void StdRect(verb, r)
GrafVerb verb;
Rect *r;

Std.Rect implements all drawing operations on rectangles. R is the
rectangle, verb specifies the operation (fill, invert, frame, etc.).

pascal void StdRRect(verb, r, ovalWidth, ovalHeight)
GrafVerb verb;
Rect *r;
int ovalWidth, ovalHeight;

StdRRect implements all drawing operations on rounded-comer
rectangles. R, ovalWidth and ovalHeight determine the rounded-cor
ner rectangle, verb tells which drawing method to use.

242 QuICKDRA.W

pascal void StdOval(verb, r)
GrafVerb verb;
Rect *r;

StdOval implements all drawing operations on ovals. R is the rect
angle that determines the oval, verb tells which drawing method to use.

pascal void StdArc(verb, r, startAngle, arcAngle)
GrafVerb verb;
Rect *r;
int startAngle, arcAngle;

StdArc implements all drawing operations on arcs and wedges. R,
startAngle and arcAngle determine the arc, verb tells which drawing
method to use.

pascal void StdPoly(verb, poly)
GrafVerb verb;
PolyHandle poly;

StdPoly implements all drawing operations on polygons. Poly is a
handle to the polygon, verb tells which drawing method to use.

pascal void StdRgn(verb, rgn)
GrafVerb verb;
RgnHandle rgn;

StdRgn implements all drawing operations on regions. Rgn is a
handle to the region, verb tells which drawing method to use.

pascal void StdBits(srcBits,srcRect,dstRect,rnode,rnaskRgn)
BitMap *srcBits;
Rect *srcRect,*dstRect;
int mode;
RgnHandle rnaskRgn;

StdBits implements bit transfer between the bitmaps. StdBi ts
scales the image if the source rectangle srcRect and the destination rect
angle dstRect have different dimensions. Mode specifies the transfer
mode, e.g. xor, or, and, etc. The bit transfer is clipped to MaskRgn.

F'uNCTIONS 243

pascal void StdConunent(kind, dataSize, dataHandle)
int kind, dataSize;
Handle dataHandle;

StdComment processes picture comments. Kind is the type of com
ment, dataSize is the number of bytes to insert, dataHandle holds the
data. StdComment ignores the picture comment.

pascal int StdTxMeas(byteCount, textAddr, numer, denom,
info)

int byteCount;
Ptr textAddr;
Point *numer, *denom;
Fontinfo *info;

StdTxMeas measures the text width as though the text (byteCount
characters starting with the first character pointed to by textAddr) had
been drawn using StdText.

pascal void StdGetPic(dataPtr, byteCount)
Ptr dataPtr;
int byteCount;

StdGetPic is used to access QuickDraw pictures. It retrieves
bytecount bytes from the current open picture and puts them in the lo
cation pointed to by dataPtr.

pascal void StdPutPic(dataPtr, byteCount)
Ptr dataPtr;
int byteCount;

StdPutPic stores the definition (byteCount bytes pointed to by
dataPtr) of the currently open picture.

Event Manager

The Event Manager drives every Macintosh application. Unlike
most systems in which programs read from input streams that might be
files or devices (such as a keyboard), Macintosh programs react to a
stream of events. These events may be caused by keystrokes, mouse but
ton clicks, ejected disks, the need to update a window, etc. So without ex
plicitly listening for input from all possible sources, Macintosh applica
tions get all of their input from one source: the event queue.

The event queue is managed and controlled by the Event Manager.
The Event Manger provides routines for getting events from the event
queue, classifying events, posting events, and removing events from con
sideration.

Constants

#define nullEvent 0
#define mouseDown 1
#define mouse Up 2
#define keyDown 3
#define key Up 4
#define autoKey 5
#define updateEvt 6
#define diskEvt 7
#define activateEvt 8
#define abortEvt 9
#define networkEvt 10
#define driverEvt 11
#define applEvt 12
#define app2Evt 13
#define app3Evt 14
#define app4Evt 15

#define charCodeMask OxOOFF
#define keyCodeMask OxFFOO

246 EVENT MANAGER

#define nullMask
#define mDownMask
#define mUpMask
#define keyDownMask
#define keyUpMask
#define autoKeyMask
#define updateMask
#define diskMask
#define activMask
#define abortMask
#define networkMask
#define driverMask
#define applMask
#define app2Mask
#define app3Mask
#define app4Mask

#define everyEvent

Data Structures

typedef struct
{ int what;

long message;
long when;
Point where;
int modifiers;

EventRecord;

OxOOOl
Ox0002
Ox0004
Ox0008
OxOOlO
Ox0020
Ox0040
Ox0080
OxOlOO
Ox0200
Ox0400
Ox0800
OxlOOO
Ox2000
Ox4000
Ox8000

OxFFFF

typedef long KeyMap[4];

Functions

Accessing Events
pascal Boolean GetNextEvent(eventMask, theEvent)

int eventMask;
EventRecord *theEvent;

GetNextEvent sets theEvent equal to the next available event of
the type (or types) specified by eventMask. GetNextEvent removes
theEvent from the event queue.

GetNextEvent calls SystemEvent (a Desk Manager function) so
that the system can intercept any events that the system (rather than your
application) should respond to. GetNextEvent returns TRUE if there is
an event for the application. If GetNextEvent is FALSE, there is no event
for your application and theEvent is a null event.

pascal Boolean EventAvail(eventMask, theEvent)
int eventMask;
EventRecord *theEvent;

FUNCITONS 247

EventAvail is the same as GetNextEvent with the exception that
theEvent is not removed from the event queue.

Posting and Removing Events
pascal OSErr PostEvent(eventCode, eventMsg)

int eventCode;
long eventMsg;

PostEvent posts an event with the what field set to eventCode
and the message field set to eventMsg. Typically, PostEvent is used to
post application-events.

pascal void FlushEvents(eventMask, stopMask)
int eventMask, stopMask;

FlushEvents removes events of the type(s) given by eventMask
from the event queue. FlushEvents stops removing events when it gets
to the first event of the type(s) specified by stopMask. If stopMask is
zero, all events are removed from the event queue.

Reading the Mouse
pascal void GetMouse(mouseLoc)

Point *mouseLoc;

GetMouse sets mouseLoc equal to the current mouse location.
MouseLoc will be in the current grafPort's local coordinate system.

pascal Boolean Button()

Button returns TRUE if the mouse button is currently down, FALSE
if the button is up.

pascal Boolean StillDown()

StillDown returns TRUE if the mouse button is down and there are
no mouse events in the event queue meaning that the button is still down
from the previous mouse-down event. StillDown returns FALSE if the
mouse button is up or the button is down because of a new mouse-down
event.

248 EVENT MANAGER

pascal Boolean WaitMouseUp()

Wai tMouseUp returns TRUE if the mouse button is still down from a
previous mouse-down event. If the mouse button is down because of a
new mouse-down event, WaitMouseUp will be FALSE and the mouse-up
event associated with the previous mouse-down event will be removed
from the event queue. WaitMouseUp returns FALSE if the mouse button
is currently up.

Reading the KeyBoard and KeyPad
pascal void GetKeys(theKeys)

KeyMap *theKeys;

GetKeys sets theKeys equal to the current state of the keyboard
and keypad (if there is a keypad). An element in the key map will be
TRUE if the corresponding key is down, FALSE otherwise.

Miscellaneous Utilities
pascal void SetEventMask(theMask)

int theMask;

SetEventMask sets the system event mask to theMask. The system
posts only those event types specified by theMask.

pascal long TickCount()

TickCount returns the number of ticks since the system was last
started up. Ticks are one sixtieth of a second.

pascal long GetDblTime()

GetDblTime returns the threshold time value that should exist be
tween a mouse-up and mouse-down event in order for two mouse clicks
to be considered a double-click. The time is measured in ticks.

pascal long GetCaretTime()

GetCaretTime returns the number of ticks between blinks of the
caret. The caret is used to mark the insertion point in editable text. If you
aren't using TextEdi t for editable text your application is responsible
for making the caret blink.

Window Manager

The Window Manager is responsible for creating the "desktop met
aphor." The Window Manager relies on QuickDraw to provide indepen
dent coordinate systems for each window, to clip to boundaries set up by
the Window Manager and to do all of the drawing. But without the
Window Manager's routines that draw window frames, keep track of
which parts of which windows need updating, and which is the active
window, Macintosh applications would have a tough time taking advan
tage of Quickdraw's abilities.

In addition to windowing functions built on top of Quickdraw's
grafrort and clipping abilities, the Window Manager provides routines
for creating windows based on templates in a resource file, deleting win
dows, moving, sizing, and titling windows.

Constants

fdefine documentProc 0
fdefine dBoxProc 1
fdefine dBoxZero 2
fdefine altDBoxProc 3
fdefine rDocProc 16

fdefine dialogKind 2
f define user Kind 8

fdefine inDesk 0
fdefine inMenuBar 1
fdefine inSysWindow 2
fdefine inContent 3
fdefine inDrag 4
fdefine inGrow 5
fdefine inGoAway 6

fdefine noConstraint 0

250 WINOOW MANAGER

#define hAxisOnly 1
#define vAxisOnly 2

#define wDraw 0
#define wHit 1
#define wCalcRgns 2
#define wNew 3
#define wDispose 4
#define wGrow 5
#define wDrawGicon 6

#define wNoHit 0
#define winContent 1
#define winDrag 2
#define winGrow 3
#define winGoAway 4

Data Structures

typedef struct
{ GrafPort port;

int WindowKind;
char visible;
char hilited;
char goAwayFlag;
char spareFlag;
RgnHandle strucRgn;
RgnHandle contRgn;
RgnHandle updateRgn;
Handle windowDefProc;
Handle dataHandle;
StringHandle titleHandle;
int titleWidth;
Handle controlList;
WindowPeek nextWindow;
PicHandle windowPic;
long refCon;

WindowRecord, *WindowPeek;

typedef GrafPtr WindowPtr;

Functions

Initialization and Allocation
pascal void InitWindows()

F'uNCTIONS 251

Ini tWindows must be called once before you use any other
Window Manager procedures, as this function initializes the Window
Manager. The Window Manager port is created and the desktop is drawn
with an empty menu bar.

pascal void GetWMgrPort(wPort)
GrafPtr *wPort;

GetWMgrPort sets wPort equal to the Window Manager port.

pascal WindowPtr NewWindow(wStorage, boundsRect, title,
visible, procID, behind, goAwayFlag, refCon)

Ptr wStorage;
Rect *boundsRect;
Str255 title;
Boolean visible, goAwayFlag;
int procID;
WindowPtr behind;
long refCon;

NewWindow creates a new window, adds it to the window list, and
returns a pointer to the new window. Space is allocated for the window's
structure and content regions. These regions and the window record
fields are initialized according to NewWindow parameters and the win
dow definition procedure.

WStorage is a pointer to a window record. If wStorage is NULL,
NewWindow will allocate the window record for you.

BoundsRect is the bounding rectangle of the window.
BoundsRect should be in global coordinates.

Title is the title of the window. It appears in the window accord
ing to the window definition procedure.

The window will be visible if visible is TRUE. The new window
will be drawn if it is visible.

ProcID is the ID of the window definition procedure. The procID
can be a predefined value (such as documentProc, dBoxProc,
dBoxZero, etc.) or you can supply an ID for your own custom routine.

The new window will be behind the window pointed to by behind.
If behind is -1, the new window will be in front of all existing windows.
If behind is NULL, the new window will be behind all existing windows.

252 WINOOW MANAGER

If goAwayFlag is TRUE, the window will have a go away region.
The window definition procedure is called on to draw the go away re
gion.

RefCon is available for use by the application. It is not used by
other ToolBox routines.

pascal WindowPtr GetNewWindow(windowID, wStorage, behind)
int windowID;
Ptr wStorage;
WindowPtr behind;

GetNewWindow uses resources to create a new window. The new
window is added to the window list and a pointer to the window record
is returned. WindowID is the resource ID of the new window's resource
template. The window structure is initialized using the information in the
window resource. Behind points to the window the new window should
be behind. If behind is -1, the new window will be the frontrnost win
dow. If wStorage is not NULL, GetNewWindow assumes it is a pointer to
a window record and uses that record. If wStorage is NULL,
GetNewWindow allocates a window record as a nonrelocatable object in
the heap.

pascal void CloseWindow(theWindow)
WindowPtr theWindow;

CloseWindow erases theWindow from the screen and removes it
from the window list. The memory used by all the data structures associ
ated with theWindow (such as the clipRgn and visRgn) will be freed.
CloseWindow will not release the memory used by the window record. If
the application allocated theWindow's window record, CloseWindow
rather than DisposeWindow should be used to get rid of this window.

pascal void DisposeWindow(theWindow)
WindowPtr theWindow;

DisposeWindow calls CloseWindow for theWindow then frees the
memory used for theWindow's window record. If the Window Manager
allocated theWindow's window record, DisposeWindow is the method
to use to get rid of theWindow.

Window Display
pascal void SetWTitle(theWindow, title)

WindowPtr theWindow;
Str255 title;

F'uNCITONS 253

SetWTitle sets the title of window theWindow to title.
TheWindow's frame will be redrawn if the title changed.

pascal void GetWTitle(theWindow, title)
WindowPtr theWindow;
Str255 title;

GetWTitle sets title to the title of window theWindow.

pascal void SelectWindow(theWindow)
WindowPtr theWindow;

SelectWindow makes theWindow the active window. This is done
by: unhighlighting the previously highlighted window, putting
theWindow in front of all other windows, highlighting theWindow, and
generating deactivate and activate events. Call SelectWindow when you
find out there was a mouse-down event in the content region of an inac
tive window.

pascal void HideWindow(theWindow)
WindowPtr theWindow;

HideWindow hides window theWindow by making it invisible. If
theWindow is the active window, then the next visible window behind
theWindow (if there is one) becomes the active window.

pascal void ShowWindow(theWindow)
WindowPtr theWindow;

ShowWindow makes window theWindow visible. If theWindow is
already visible, then ShowWindow has no effect. ShowWindow does not
change the window list. The front-to-back ordering stays the same.

If theWindow is the front-most window, it gets highlighted (if it's
not already highlighted) and an activate event is generated.

pascal void ShowHide(theWindow, showFlag)
WindowPtr theWindow;
Boolean showFlag;

254 WINDOW MANAGER

ShowHide changes the visibility of theWindow depending on
showFlag. If showFlag is TRUE, ShowHide makes theWindow visible if
it's not already visible. If showFlag is FALSE, ShowHide makes
theWindow visible if it's not already invisible. ShowHide does not
change the active window. None of the events associated with the activa
tion process occur when ShowHide is used.

pascal void HiliteWindow(theWindow, fHilite)
WindowPtr theWindow;
Boolean fHilite;

HiliteWindow changes the highlighting of theWindow depending
on the value of fHilite. If fHilite is TRUE, HiliteWindow highlights
theWindow if it's not already highlighted. If fHilite is FALSE,
HiliteWindow unhighlights theWindow if it's not already unhighlight
ed. Your application shouldn't ever have to call HiliteWindow, since
highlighting of active windows and unhighlighting of deactivated win
dows is taken care of in SelectWindow.

pascal void BringToFront(theWindow)
WindowPtr theWindow;

BringToFront puts theWindow in front of all other windows.
TheWindow is redrawn if necessary. Your application needn't ever call
BringToFront. BringToFront is called for you by SelectWindow. If
you decide to use BringToFront, your application must make sure that
windows are unhighlighted and highlighted as is appropriate.

pascal void SendBehind(theWindow, behindWindow)
WindowPtr theWindow, behindWindow;

SendBehind changes the front-to-back ordering of windows.
TheWindow is placed in back of behindWindow. Any necessary redraw
ing is done. If behindWindow is NULL, then theWindow goes behind all
windows on the window list. If theWindow is the active window, it gets
unhighlighted, the new active window (the next visible window on list)
gets highlighted and the appropriate activate events are generated.

SendBehind should not be used to deactivate a previously active
window, instead Select Window should be called.

If you want to move theWindow closer to the front (theWindow is
already somewhere in back of behindWindow) you'll need to include the
following just after calling SendBehind:

wPeek = *theWindow;
PaintOne(wPeek,wPeek->strucRgn);
CalcVis(wPeek);

FuNCllONS 255

This will ensure that theWindow appears as it should on the screen.

pascal WindowPtr FrontWindow()

FrontWindow will return a pointer to the first visible window in
the window list (a.k.a. the active window). If there is no such window, a
NULL value is returned.

pascal void DrawGrowicon(theWindow)
WindowPtr theWindow;

DrawGrowicon uses theWindow's window definition function to
draw theWindow's grow region. If theWindow is the active window, the
grow region will be drawn. If theWindow is not active, DrawGrowicon
draws whatever is appropriate to indicate that theWindow cannot be
sized at this time.

Mouse Location
pascal int FindWindow(thePt, whichWindow)

Point thePt;
WindowPtr *whichWindow;

FindWindow looks through the window list to determine which
window, if any, thePt is in. If thePt is inside a window, then
whichWindow will point to that window. If thePt is not in a window,
whichWindow will be NULL. The return value indicates which part of the
window contains thePt. It will be one of the predefined constants:
inDesk, inMenuBar, inSysWindow, inContent, inDrag, inGrow, or
inGoAway.

FindWindow should be called after a mouse-down event occurs.
FindWindow assumes thePt is in global coordinates.

pascal Boolean TrackGoAway(theWindow, thePt)
WindowPtr theWindow;
Point thePt;

TrackGoAway highlights and unhighlights theWindow's go-away
region while the mouse button is down. TrackGoAway returns TRUE if
the mouse up occurred inside the go-away region, otherwise,

256 WINDOW MANAGER

TrackGoAway returns FALSE.
TrackGoAway should be called when a mouse-down event occurs

in theWindow's go-away region with thePt set to the point (in global co
ordinates) where the mouse-down event occurred. TrackGoAway takes
control until the mouse button is released. The window definition func
tion is called upon to draw the go-away box.

Window Movement and Sizing
pascal void MoveWindow(theWindow, hGlobal, vGlobal, front)

WindowPtr theWindow;
int hGlobal, vGlobal;
Boolean front;

MoveWindow moves theWindow to the global coordinate
(vGlobal, hGlobal). The top left corner of theWindow's portRect is
moved to this point. The size, plane and local coordinate system of
theWindow remain the same. If front is TRUE, then MoveWindow will
make theWindow the active window (if it isn't already) by calling
Select Window.

pascal void DragWindow(theWindow, startPt, boundsRect)
WindowPtr theWindow;
Point startPt;
Rect *boundsRect;

DragWindow draws a gray outline of theWindow which follows the
movements of the mouae until the mouse button is released. If the button
is released at a point inside of boundsRect, then DragWindow will call
MoveWindow to move theWindow to that point. If the command key is
not being held down, theWindow will become the active window. If the
mouse button is released at a point outside the limit set by boundsRect,
then DragWindow does not move the window.

DragWindow should be called when a mouse-down event occurs in
side theWindow's drag region with startPt set to the point where the
mouse-down event occurred. Both startPt and boundsRect should be
in global coordinates.

pascal long GrowWindow(theWindow, startPt, sizeRect)
WindowPtr theWindow;
Point startPt;
Rect *sizeRect;

GrowWindow draws a "grow image" of theWindow. This grow
image follows the mouse until the mouse button is released. GrowWindow

fuNCTIONS 257

returns the new size of theWindow's portRect: the high-order word
contains the vertical dimensions, the low-order word contains the hori
zontal. GrowWindow returns zero if the size did not change.

GrowWindow should be called when a mouse-down event occurs in
theWindow's grow region with startPt set to the location of the mouse
down event. GrowWindow calls on the window definition function draw
the grow image. SizeRect limits the size of the Window's portRect.

Constraining Window Growth with SizeRect

SizeRect Coordinate
top
left
bottom
right

used to set
min. # of pixels in vertical direction
min. # of pixels in horizontal direction
max. # of pixels in vertical direction
max. # of pixels in horizontal direction

pascal void SizeWindow(theWindow, w, h, fUpdate)
WindowPtr theWindow;
int w, h;
Boolean fUpdate;

SizeWindow changes the size of theWindow's portRect to the
width and height given by w and h. SizeWindow then calls on the win
dow definition function to draw the frame for theWindow using the new
size. New areas of theWindow's content region are added to
theWindow's update region if £Update is TRUE. If £Update is FALSE,
your application should do the right thing.

SizeWindow does nothing if wand hare zero.

Update Region Maintenance
pascal void InvalRect(badRect)

Rect *badRect;

InvalRect adds badRect to the update region of the window
whose gra£Port is the current port. BadRect is in the window's content
region and should be specified in the local coordinate system.

pascal void InvalRgn(badRgn)
RgnHandle badRgn;

InvalRgn adds badRgn to the update region of the window whose
gra£Port is the current port.

258 WINDOW MANAGER

pascal void ValidRect(goodRect)
Rect *goodRect;

ValidRect removes goodRect from the current graff>ort's update
region. GoodRect should be in local coordinates.

pascal void ValidRgn(goodRgn)
RgnHandle goodRgn;

ValidRgn removes goodRgn from the current graff>ort's update re-
gion.

pascal void BeginUpdate(theWindow)
WindowPtr theWindow;

BeginUpdate should be called when you get an update event for
theWindow. BeginUpdate stores the current visRgn in the global vari
able SaveVisRgn. TheWindow's visRgn is replaced by a region that is
the intersection of the visRgn and the updateRgn. The updateRgn is
then set to the empty region. After BeginUpdate, the application should
draw theWindow's content region. Because of clipping done by the
Window Manager, only areas of theWindow requiring updating will then
be drawn. After drawing, call EndUpdate to restore theWindow's
visRgn.

pascal void EndUpdate(theWindow)
WindowPtr theWindow;

EndUpdate sets theWindow's visRgn to the value stored in the
global variable SaveVisRgn. Each call to BeginUpdate should be bal
anced by a call to EndUpdate. Because a variable is used to store the
visRgn, nesting BeginUpdate calls will not work.

Miscellaneous Utilities
pascal void SetWRefCon(theWindow, data)

WindowPtr theWindow;
long data;

SetWRefCon sets theWindow's refCon field equal to data.

pascal long GetWRefCon(theWindow)
WindowPtr theWindow;

GetWRefCon returns the value stored in theWindow's refCon field.

FuNCTIONS 259

pascal void SetWindowPic(theWindow, pie)
WindowPtr theWindow;
PicHandle pie;

SetWindowPic sets theWindow's windowPic field to pie. When
a window with a non-NULL windowPic field requires an update, the
Window Manager draws the windowP i c picture instead of generating an
update event for the window.

pascal PicHandle GetWindowPic(theWindow)
WindowPtr theWindow;

GetWindowPic returns a handle to the theWindow's windowPic
picture.

pascal long PinRect(theRect, thePt)
Rect *theRect;
Point thePt;

P inRect returns a point which is the projection of point thePt
onto rectangle theRect. If thePt is inside theRect, thePt is returned.
If thePt is outside theRect, the "pinned" point is returned. P inRect re
turns the point as a long: the high-order word is the vertical component,
the low-order word is the horizontal.

Some "pinned" points

• the point

T the pin

D the "pinned" point

...
: : : : : : : : : : : : : : :

... ! .. ••!• .. •!••n! ! ... •!••••!•H•!••••!•U•!u••!••H!•H•!····!
: . : : : : : : : : : : : : :
!••• •H!HU!H••!•U•!uu!••••!••••!nu! .. u!U••!n••!HH!u••!
: : : : : : : : : : : : : : : .. ,
: : : : : : : : : : : : : : :
i E E E E
: : : : : :
: : : 5 5
5 i 5 5 :
5 5 : 5 :
!n••!•u•!•u•1 1 ••••!un!
: : : : : : : : : : : : : : ..
::::::: ::::::: ..
: : : : : : : : : : : : : : .. , ,
: : : : : : : : : : : : : : ..

260 WINDOW MANAGER

pascal long DragGrayRgn(theRgn, startPt, limitRect,
slopRect, axis, actionProc)

RgnHandle theRgn;
Point startPt;
Rect *limitRect, *slopRect;
int axis;
ProcPtr actionProc;

DragGrayRgn draws a gray outline of region theRgn which fol
lows the mouse until the mouse button is released. If actionProc is not
NULL, DragGrayRgn repeatedly calls this routine while the mouse is still
down.

DragGrayRgn should be called when a mouse-down occurs inside a
drag-able region, with startPt set to the location of the mouse-down.
Movement can be constrained to a particular axis, or not at all by using
noConstraint, hAxisOnly, or vAxisOnly for axis. DragGrayRgn re
turns a long that tells how far vertically and horizontally you would have
to offset theRgn in order to move it to the place it was dragged to. The
high-order word is the vertical offset, the low-order word is the horizon
tal offset.

LimitRect and slopRect are used to limit the dragging area. The
gray outline will not move outside of rectangle limi tRect. Rectangle
slopRect allows the user a bit of sloppiness. If the mouse is let up while
inside slopRect but outside of limitRect, the point where the mouse
up occurred is pinned to the limitRect, and the appropriate offset is re
turned. If the mouse-up occurs outside slopRect, DragGrayRgn returns
Ox80008000.

StartPt, slopRect and limitRect should be in the current
gra£Port's local coordinate system.

Low-level Routines
The following are low level routines. They are not normally called

by applications.

pascal Boolean CheckUpdate(theEvent)
EventRecord *theEvent;

CheckUpdate is called by the Event Manager. It checks all the visi
ble windows on the window list (going from front to back) looking for
non-empty update regions. When it finds a non-empty update region, it
will look in the window record to see if this window has a picture handle.
If it does, the picture is drawn. If there is no picture handle, an update
event for this window is stored in theEvent and CheckUpdate returns
TRUE. If no update events are required, then CheckUpdate returns
FALSE.

pascal void ClipAbove(window)
WindowPeek window;

F'uNCTIONS 261

ClipAbove sets the clipRgn of the Window Manager port to the
intersection of the desktop with the Window Manager's current clipRgn
minus structure regions for all the windows in front of window.

pascal void SaveOld(window)
WindowPeek window;

SaveOld saves window's content and structure regions. Each
SaveOld call must be balanced by a call to DrawNew.

pascal void DrawNew(window, update)
WindowPeek window;
Boolean update;

DrawNew erases an area, the area being:
(oldStruct XOR newStruct) AND (oldContent XOR newContent)
where oldStruct and oldContent were both saved during SaveOld
and newStruct and newContent are window's current structure and
content regions. If update is TRUE then the area is added to window's up
date region.

Do not nest SaveOld and DrawNew calls.

pascal void PaintOne(window, clobberedRgn)
WindowPeek window;
RgnHandle clobberedRgn;

PaintOne paints window clipped to the region clobberedRgn and
all visible windows in front of window. PaintOne draws window's
frame, erases any unobscured content region, then adds this content re
gion to window's update region. If window is NULL, it is assumed to be
the desktop and gets painted with the desktop pattern.

pascal void PaintBehind(startWindow, clobberedRgn)
WindowPeek startWindow;
RgnHandle clobbered;

PaintBehind calls PaintOne for startWindow and all windows
behind start Window. ClobberedRgn is the clipping region for all draw
ing.

262 WINDOW MANAGER

pascal void CalcVis(window)
WindowPeek window;

CalcVis will determine the visRgn for window. VisRgn is
window's content region minus the structure regions of all windows in
front of window.

pascal void CalcVisBehind(startWindow, clobberedRgn)
WindowPeek startWindow;
RgnHandle clobbered;

CalcVisBehind determines the visRgns for start Window and all
windows behind startWindow. All visRgns calculated by
CalcVisBehind are clipped to clobberedRgn.

CalcVisBehind should be called after PaintBehind.

Dialog Manager

The Dialog Manager is a set of high-level tools for getting informa
tion from users. The Dialog Manager uses the Window Manager, the
Control Manger, and Text Edit to create and conduct dialogs. Dialogs
keep the application from having to deal with each keystroke and every
other eventuality in conducting a dialog with the user. Various levels of
control over dialogs are available, from "hands-off' operation to modes
in which each keystroke is checked by one of your application's routines.

Constants

#define btnCtrl OxOO
#define chkCtrl OxOl
#define radCtrl Ox02
#define resCtrl Ox03
#define stat Text Ox08
:ftdef ine edit Text OxlO
fdefine iconitem Ox20
#define picitem Ox40
#define user Item OxOO
#define itemDisable Ox80

#define OK 1
#define Cancel 2

#define stopicon 0
:ftdefine note Icon 1
:ftdefine cautionicon 2

#define volBits Ox3
#define alBit Ox4
#define OKDismissal Ox8

264 DIALOG MANAGER

Data Structures

typedef struct
{ WindowRecord window;

Handle items;
TEHandle textH;
int editField;
int editOpen;
int aDefitem;

DialogRecord, *DialogPeek;
typedef WindowPtr DialogPtr;

typedef struct
{ Rect boundsRect;

int procID;
char visible;
char fillerl;
char goAwayFlag;
char filler2;
long refCon;
int itemsID;
Str255 title;

DialogTemplate, *DialogTPtr, **DialogTHandle;

struct StageList
{ char bolditem;

char boxDrawn;
char sound;

} ;

typedef struct StageList StageList[4];

struct AlertTemplate
{ Rect boundsRect;

int itemsID;
StageList stages;

} ;

Functions

Initialization
pascal void InitDialogs(restartProc)

ProcPtr restartProc;

InitDialogs initializes the Dialog Manager. RestartProc is a
procedure capable of restarting the application if a system error occurs. If
restartProc is NULL, the application will not restart after a system
error.

F'uNCTIONS 265

Ini tDialogs should be called once after having initialized
QuickDraw, the Font Manager, the Window Manager, the Menu
Manager, TextEdit and the Control Manager. In addition to initializing
the Dialog Manager, InitDialogs installs the standard sound proce
dure and passes empty strings to ParamText (below).

pascal void ErrorSound(soundProc)
ProcPtr soundProc;

ErrorSound makes soundProc the sound procedure used by the
Dialog Manager for dialogs and alerts. If ErrorSound is not called, the
standard sound procedure is used. If soundProc is NULL, there is no
sound and no blinking on the menu bar.

pascal void SetDAFont(fontNum)
int fontNum;

SetDAFont sets the font that will be used for all dialogs and alerts
created after SetDAFont is called. FontNum specifies the font to be used.
If you don't call this procedure, the system font is used. SetDAFont can
not be used to change control titles - these are always in the system font.

Creating and Disposing of Dialogs
pascal DialogPtr NewDialog(dStorage, boundsRect, title,
visible, procID, behind, goAwayFlag, refCon, items)

Ptr dStorage;
Rect *boundsRect;
Str255 title;
Boolean visible, goAwayFlag;
int procID;
WindowPtr behind;
long refCon;
Handle items;

NewDialog creates a new dialog as described by the parameters.
NewDialog is a superset of NewWindow, much in the way the Dialog
Manager is a superset of the Window Manager. The first eight parameters
are passed on to NewWindow to create the dialog's window. Items is a
handle to the dialog's item list. NewDialog returns a pointer to the new
dialog.

266 DIALOG MANAGER

pascal DialogPtr GetNewDialog(dialogID, dStorage, behind)
int dialogID;
Ptr dStorage;
WindowPtr behind;

GetNewDialog uses resources to create a dialog. The Resource
Manager reads in the 'DLOG' resource with ID dialogID, then reads in
the dialog item list (' Dr TL') for the dialog (unless it's already in memo
ry). GetNewDialog then makes a copy of the item list for use by the
Dialog Manager. GetNewDialog returns a pointer to the new dialog.

pascal void CloseDialog(theDialog)
DialogPtr theDialog;

CloseDialog closes a dialog, removing its window from the screen
and the window list. Memory used by data structures of the dialog win
dow is released. Memory used by items in theDialog is also released.
The dialog record and the item list remain in memory.

pascal void DisposDialog(theDialog)
DialogPtr theDialog;

DisposDialog closes theDialog by calling CloseDialog and
then frees the memory used by theDialog's item list and dialog record.
DisposDialog should be used if the dialog record was allocated for you
by the Dialog Manager.

pascal void CouldDialog(dialogID)
int dialogID;

CouldDialog loads all the information used by the dialog with id
dialogID (the dialog's template, window definition function, item list
resource, and all it's items defined as resources) into memory, and makes
it unpurgeable. By storing these items in memory, the dialog can function
when the resource file is inaccessible, such as during disk swapping.

pascal void FreeDialog(dialogID)
int dialogID;

FreeDialog makes the information used by the dialog with id
dialogID purgeable, thereby undoing the effects of CouldDialog.
FreeDialog should be called when the resource file becomes accessible.

Handling Dialog Events
pascal void ModalDialog(filterProc, itemHit)

ProcPtr filterProc;
int *itemHit;

FuNCTIONS 267

ModalDialog handles all events which occur while a modal dialog
is the active window. When an event involving an enabled dialog item
occurs, the event is filtered and handled. Moda!Dialog then returns with
i temHi t equal to the number of that item.

While Moda!Dialog is in control, it polls for events, first calling
SystemTask (thus supporting desk accessories) then calling
GetNextEvent with a mask which excludes disk-inserted events. If the
event is a mouse-down event outside the dialog window's content region,
Moda!Dialog beeps and continues polling, otherwise the event is filtered
and handled. This continues until an enabled item is handled.

FilterProc allows you to filter events in various ways. When
filterProc is NULL the standard filter is used, which causes
Moda!Dialog to return 1 if the return or enter key has been hit. When
filterProc is not NULL, ModalDialog uses the procedure pointed to
by filterProc. FilterProc should be declared as follows:

pascal Boolean filterProc(theDialog, theEvent, itemHit)
DialogPtr theDialog;
EventRecord *theEvent;
int *itemHit;

pascal Boolean IsDialogEvent(theEvent)
EventRecord *theEvent;

IsDialogEvent tells whether or not theEvent should be handled
as part of a dialog. TheEvent should be handled as part of a dialog if it is
an update or activate event for a dialog window, a mouse-down event in
a dialog window's content region, or theEvent occurred when a dialog
window is active. If theEvent is determined to be a dialog event,
IsDialogEvent returns TRUE, otherwise IsDialogEvent returns
FALSE.

IsDialogEvent is used with modeless dialogs. If your application
includes any modeless dialogs, then call IsDialogEvent after calling
GetNextEvent. If theEvent is a dialog event, DialogSelect can be
called to handle it.

pascal Boolean DialogSelect(theEvent, theDialog, itemHit)
EventRecord *theEvent;
DialogPtr *theDialog;
int *itemHit;

268 DIALOG MANAGER

DialogSelect is used to handle events involving modeless dia
logs. If the routine IsDialogEvent returned TRUE, your program should
call DialogSelect to determine whether the event involved an active
part of the current modeless dialog. Upon return, dialogPtr is a pointer
to the dialog and itemHit is the item number of the item involved.

pascal void DlgCut(theDialog)
DialogPtr theDialog;

DlgCut handles the "cut'' editing command when a modeless dia
log is active. If theDialog has any editable text items, DlgCut calls
TECut with the currently selected editable text item.

pascal void DlgCopy(theDialog)
DialogPtr theDialog;

DlgCopy handles the "copy'' editing command for active modeless
dialogs. If theDialog has any editable text items, DlgCopy calls TECopy.

pascal void DlgPaste(theDialog)
DialogPtr theDialog;

DlgPaste handles the "paste" editing command for active mode
less dialogs. It checks if there are any editable text items in theDialog,
and if so, TEPaste is called.

pascal void DlgDelete(theDialog)
DialogPtr theDialog;

DlgDelete handles the "clear" editing command when a modeless
dialog is active. DlgDelete calls TEDelete if theDialog has any
edit Text items.

pascal void DrawDialog(theDialog)
DialogPtr theDialog;

DrawDialog draws theDialog's window. Normally, you won't
need to call DrawDialog as DialogSelect and ModalDialog take care
of updating the dialog. However, DrawDialog is useful to display dia
logs which don't require any response. An example of this is a window
which tells the user what is happening during a lengthy process, such as
printing.

Invoking Alerts
pascal int Alert(alertid, filterProc)

int alertID;
ProcPtr filterProc;

FuNCI10NS 269

Alert starts up the alert with ID alert ID. The stage of the alert is
checked. The current sound procedure is called to make whatever noise is
appropriate for the stage of the alert. If the alert box should be drawn for
this stage, then Alert calls NewDialog to draw the box and
ModalDialog {passing along filterProc) to take care of the process
ing. Alert's return value is -1 if the alert box has not been drawn. If the
alert has been drawn the return value is the number of the item hit.

pascal int StopAlert(alertID, filterProc)
int alertID;
ProcPtr filterProc;

StopAlert is the same as Alert except that it draws the stop icon
in the top left corner of the box, in the rectangle (10,20,42,52). The stop
icon is the icon with id stop Icon.

pascal int NoteAlert(alertID, filterProc)
int alertID;
ProcPtr filterProc;

NoteAlert is the same as Alert except that it draws the note icon
in the top left comer of the box, in the rectangle (10,20,42,52). The note
icon is the icon with id note Icon.

pascal int CautionAlert(alertID, filterProc)
int alertID;
ProcPtr filterProc;

CautionAlert is like Alert except that that it draws the caution
icon in the top left corner of the box, in the rectangle (10,20,42,52). The
caution icon is the icon with id cautionicon.

pascal void CouldAlert(alertID)
int alertID;

CouldAlert makes sure that all the data needed for the alert with
id alert ID is in memory and is unpurgeable. Call CouldAlert just be
fore situations where the alert could occur while the resource file is inac
cessible.

270 DIALOG MANAGER

pascal void FreeAlert(alertID)
int alertID;

FreeAlert makes the information used by the alert with id
alertID purgeable, thereby undoing the effects of CouldAlert.
FreeAlert should be called when the resource file becomes accessible .

Manipulating Items in Dialogs and Alerts
pascal void ParamText(paramO, paraml, param2, param3)

Str255 paramO, paraml, param2, param3;

ParamText substitutes the strings paramO, paraml, param2, and
param3 for the strings '"0 ', '"1 ', '"2 ', and '"3 '. All dialogs and
alerts that follow the call to ParamText will make the substitutions.
Empty strings should be used as parameters where no substitution is de
sired. InitDialogs initialization process includes a call to ParamText
using four empty strings as parameters.

pascal void GetDitem(theDialog, itemNo, type, item, box)
DialogPtr theDialog;
int itemNo, *type;
Handle *item;
Rect *box;

GetDitem gets information about the itemNo numbered item in
theDialog. Type is set to the item type, item becomes a handle to the
item, and box is set equal to the item's display rectangle.

pascal void SetDitem(theDialog, itemNo, type, item, box)
DialogPtr theDialog;
int itemNo, type;
Handle item;
Rect *box;

SetDitem sets theDialog's itemNo item to the given item. Type
tells what type of item it is. Item is a handle to the item, and box pro
vides the display rectangle for the item.

pascal void GetIText(item, text)
Handle item;
Str255 *text;

GetIText sets text equal to the text of item. Item should be a di
alog item of type stat Text or edit Text.

pascal void SetIText(item, text)
Handle item;
Str255 text;

F'uNCITONS 271

SetIText sets the text of stat Text or edit Text dialog item item
to the string text.

pascal void SelIText(theDialog, itemNo, strtSel, endSel)
DialogPtr theDialog;
int itemNo, strtSel, endSel;

Sel!Text sets the text selection range in theDialog's itemNo
item to the range given by strtSel and endSel. StrtSel is the charac
ter position of the first character in the selection range, endSel is the
character position of the first character just after (but not in) the selection
range. The selected range is highlighted. If strtSel = endSel, or the
item contains no text, the selection range is an insertion point and a blink
ing vertical bar is displayed.

Sell Text should be called for editable text items only.

pascal int GetAlrtStage()

GetAlrtStage returns the stage number of the last occurrence of
an alert. The stage is a number from zero to three.

pascal void ResetAlrtStage()

ResetAlrtStage sets the stage number of an alert to -1, so the
next occurrence of the alert will be as if it were the first.

Memory Manager

The Memory Manager allocates memory for Macintosh programs
and data. Many Macintosh data structures are held in blocks of relocat
able memory. These relocatable blocks are addressed through "handles."
Handles point to "master pointers" which in turn point to the relocatable
blocks of memory. When memory is compacted, only the master pointers
need to updated to reflect the new position of relocatable blocks. This
memory management scheme helps prevent available memory from be
coming fragmented into pieces too small to be useful.

The Memory Manager provides tools for allocating and freeing
memory, for changing the properties of memory (locking it in place for
instance), and for creating "heaps" from which memory is allocated.

Constants

idefine noErr 0
idefine memFullErr -108
fdefine nilHandleErr -109
idefine memWZErr -111
fdefine memPurErr -112
fdefine memLockedErr -117

fdef ine maxSize Ox800000

Data Structures

typedef long Size;
typedef int MemErr;
typedef struct Zone *THz;

typedef struct
{ Ptr bkLim;

Ptr purgePtr;
Ptr hFstFree;

274 MEMORY MANAGER

long zcbFree;
ProcPtr gzProc;
int moreMast;
int flags;
int cntRel;
int maxRel;
int cntNRel;
int maxNRel;
int cntEmpty;
int cntHandles;
long minCBFree;
ProcPtr purgeProc;
Ptr sparePtr;
Ptr allocPtr;
int heapData;

Zone;

Functions

Initialization and Allocation
pascal void InitApplZone()

Ini tApplZone initializes the application heap zone and makes it
the current zone. InitApplZone is called by the Segment Loader when
an application is started up. Your application needn't call this routine.

The initialized zone:
• has size of 64K.
• can be expanded by lK increments if necessary.
• has allocated space for 64 master pointers.
• can have additional master pointers, added 64 at a time.
•has empty pointer for grow zone function (gzProc).

MemError Codes

no Err no error

pascal void SetApplBase(startPtr)
Ptr startPtr;

SetApplBase sets the base of the application heap to the address
specified by startPtr.

The application heap zone starts immediately after the system zone.
Changing the starting address of the application heap zone changes the
size of the system zone. When startPtr contains an address larger than
the end of the system zone the result is a bigger system zone. The system
zone can only be made bigger, attempts to make it smaller will be ig
nored.

FuNCTIONS 275

The system calls SetApplBase before calling InitApplZone.

MemError Codes

noErr no error

pascal void InitZone(pGrowZone, cMoreMasters, limitPtr,
startPtr)

ProcPtr pGrowZone;
int cMoreMasters;
Ptr limitPtr, startPtr;

InitZone creates a new heap zone and makes this the current
zone. The new heap zone will be initialized with a header and trailer. The
first byte of the new zone is the address specified by startPtr.
Limi tPtr points to the first byte beyond the end of the zone. The param
eter pGrowZone is a pointer to the grow zone routine for the zone if there
is one, NULL otherwise. CMoreMasters tells how many master pointers
should be allocated whenever more master pointers are called for.
CMoreMasters master pointers are created when Initzone is called.

Overhead for the zone includes a 52 byte header, a 12 byte trailer, 8
bytes for the master pointer block and 4 bytes for each master pointer.
Usable space in the zone should never be zero. It can be calculated using:

(limitPtr - startPtr) - (52 + 12) - (8 + 4*cMoreMasters)
Usable space will decrease as more master pointers are allocated.

MemError Codes

noErr no error

pascal void SetApplLimit(zoneLimit)
Ptr zoneLimit;

SetApplLimi t sets a size limit for the application heap zone. This
limit is specified by zoneLimi t (a Ptr, not a byte count). The application
zone can grow up to the byte just before zoneLimi t, but no further. If it
happens that the zone is already beyond zoneLimit, then it will not
grow any larger.

MemError Codes

no Err no error

276 MEMORY MANAGER

pascal void MaxApplZone()

MaxApplZone grows the application heap zone to its maximum
size. The maximum size will reflect any size limitations you may have set
with SetApplLimit.

MemError Codes

noErr no error

pascal void MoreMasters()

MoreMasters allocates another block of master pointers in the cur
rent heap zone. MoreMasters should be called early in an application to
avoid heap fragmentation.

no Err
memFullErr

Heap Zone Access
pascal THz Getzone()

MemError Codes

no error
memory too full

Get Zone returns a pointer to the current heap zone.

noErr

pascal void SetZone(hz)
THz hz;

MemError Codes

no error

Set Zone makes the zone pointed to by hz the current heap zone.

MemError Codes

noErr no error

F'uNCI10NS 277

pascal THz ApplicZone()

ApplicZone returns a pointer to the original application heap zone.

MemError Codes

noErr no error

Allocating and Releasing Relocatable Blocks
pascal Handle NewHandle(logicalSize)

Size logicalSize;

NewHandle creates a relocatable block of logical Size bytes in the
current heap zone. A handle to the block is returned. The new block is
unlocked and unpurgeable.

If NewHandle can't create a block of logicalSize, then
NewHandle returns a NULL value. But before it will return NULL,
NewHandle will try every trick it knows: compacting the heap zone, in
creasing the zone's size, purging blocks, and calling the grow zone func
tion.

no Err
memFullErr

MemError Codes

no error
Not enough room in zone

pascal void DisposHandle(h)
Handle h;

DisposHandle frees the memory used by the relocatable block
with handle h. Other handles which access this block become invalid.

no Err
memWZErr

MemError Codes

no error
attempt to operate on a free block

pascal Size GetHandleSize(h)
Handle h;

GetHandleSize returns the number of bytes in the relocatable
block with handle h. GetHandleSize returns zero in the case of an error.

278 MEMORY MANAGER

no Err
nilHandleErr
memWZErr

MemError Codes

no error
empty master pointer
attempt to operate on a free block

pascal void SetHandleSize(h, newSize)
Handle h;
Size newSize;

SetHandleSize sets the logical size of the relocatable block with
handle h to the number of bytes given by newSize.

Growing a locked block is likely to fail, since a block above it may
be locked or nonrelocatable.

noErr
memFullErr
nilHandleErr
memWZErr

MemError Codes

no error
memory too full
empty master pointer
attempt to operate on a free block

pascal Thz HandleZone(h)
Handle h;

HandleZone returns a handle to whichever heap zone contains the
relocatable block with handle h. If h is empty, then the current zone is the
return value. If an error occurs, you should ignore HandleZone's return
value.

noErr
memWZErr

MemError Codes

no error
attempt to operate on a free block

pascal Handle RecoverHandle(p)
Ptr p;

RecoverHandle returns a handle to the relocatable block pointed
tobyp.

MemError Codes

noErr no error

pascal void ReallocHandle(h, logicalSize)
Handle h;
Size logicalSize;

FuNcnoNS 279

ReallocHandle allocates a relocatable block of logicalSize
bytes. Handle h's master pointer is updated to point to this newly allocat
ed block. ReallocHandle will work whether or not h is an empty han
dle. If h is not empty, the block associated with h will be released before
the new block is allocated.

noErr
memFullErr
memWZErr
memPurErr

MemError Codes

no error
memory too full
attempt to operate on a free block
locked block

Allocating and Releasing Nonrelocatable Blocks -
pascal Ptr NewPtr(logicalSize)

Size logicalSize;

NewPtr allocates a nonrelocatable block of logicalSize bytes
from the current heap zone. If a block is allocated, NewPtr returns a
pointer to the block, otherwise NewPtr returns NULL.

NewPtr will attempt the following before returning NULL: compact
ing the current zone, increasing the zone's size, purging blocks, and call
ing the grow zone function if there is one.

MemError Codes

noErr
memFullErr

pascal void DisposPtr(p)
Ptr p;

no error
memory too full

DisposPtr frees the memory used by the nonrelocatable block
pointed to by p. Other pointers to this block are invalid after DisposPtr.

noErr
memFullErr

MemError Codes

no error
memory too full

280 MEMORY MANAGER

pascal Size GetPtrSize(p)
Ptr p;

GetPtrSize returns the logical size (in bytes) of the nonrelocatable
block pointed to by p. GetPtrSize returns zero if an error occurs.

noErr
memWZErr

MemError Codes

no error
attempt to operate on a free block

pascal void SetPtrSize(p, newSize)
Ptr p;
Size newSize;

SetPtrSize sets the logical size of the nonrelocatable block point
ed to by p to newSi ze.

noErr
memFullErr
memWZErr

pascal THz PtrZone(p)
Ptr p;

MemError Codes

no error
memory too full
attempt to operate on a free block

PtrZone returns a pointer to the heap zone which contains the non
relocatable block pointed to by p. The return value is invalid in case of
error.

noErr
memWZErr

MemError Codes

no error
attempt to operate on a free block

Freeing Space on the Heap
pascal long FreeMem()

FreeMem returns the total number of free bytes in the current heap
zone. The number returned is usually greater than the amount of space
that can be allocated due to fragmentation of the zone.

MemError Codes

noErr no error

pascal Size MaxMem(grow)
Size *grow;

FuNcnoNS 281

MaxMem compacts the current heap zone, purges all purgeable
blocks, then returns the number of bytes contained in its largest contigu
ous area.

If the current heap is the original application heap zone, then grow
is set equal to the maximum number of bytes which the zone can grow.
For all heap zones other than the original application heap zone, grow is
set to zero.

MaxMem does not expand the zone, nor does it call the zone's grow
function.

pascal Size CompactMem(cbNeeded)
Size cbNeeded;

CompactMem moves all relocatable blocks (as best as possible) down
until a contiguous block of at least cbNeeded bytes is found or the whole
zone has been compacted. When done with compacting, CompactMem
will return the number of bytes available in the zone's largest contiguous
free block.

MemError Codes

no Err no error

pascal void ResrvMem(cbNeeded)
Size cbNeeded;

ResrvMem creates (but does not allocate) a block of cbNeeded bytes
as low as possible in the current heap zone. To create the block,
ResrvMem moves other blocks upward in memory, expands the zone, or
purges blocks from the zone.

A block created by ResrvMem will not interfere much with compac
tion, as it is low in the heap. ResrvMem is automatically called for nonre
locatable blocks by NewPtr.

noErr
memFullErr

MemError Codes

no error
memory too full

282 MEMORY MANAGER

pascal void PurgeMem(cbNeeded)
Size cbNeeded;

PurgeMem purges relocatable, unlocked, purgeable blocks from the
current heap zone until it frees a contiguous block of at least cbNeeded
bytes or the entire zone is purged.

no Err
memFullErr

MemError Codes

no error
memory too full

pascal void EmptyHandle(h)
Handle h;

EmptyHandle frees the memory used by the relocatable block with
handle h. The block's master pointer becomes NULL. If his an empty han
dle, EmptyHandle does nothing.

no Err
memWZErr
memPurErr

MemError Codes

no error
attempt to operate on a free block
locked block

Properties of Relocatable Blocks
pascal void HLock(h)

Handle h;

HLock locks handle h's relocatable block by setting the master
pointer's lock bit. Once locked, a block cannot be moved. HLock has no
effect if the block is already locked.

no Err
nilHandleErr
memWZErr

pascal void HUnlock(h)
Handle h;

MemError Codes

no error
empty master pointer
attempt to operate on a free block

HUnlock unlocks handle h's relocatable block by clearing the lock
bit in the master pointer. An unlocked block can be moved in its heap
zone if necessary. HUnlock has no effect if the block is already unlocked.

noErr
nilHandleErr
memWZErr

pascal void HPurge(h)
Handle h;

F'uNCITONS 283

MemError Codes

no error
empty master pointer
attempt to operate on a free block

HPurge marks the relocatable block with handle h as purgeable by
setting the purge bit in the master pointer. If this block is already purge
able, HPurge has no effect.

no Err
nilHandleErr
memWZErr

pascal void HNoPurge(h)
Handle h;

MemError Codes

no error
empty master pointer
attempt to operate on a free block

HNoPurge clears the purge bit in handle h's master pointer, indicat
ing that its block is not to be purged. If the block is already unpurgeable,
then HNoPurge has no effect.

no Err
nilHandleErr
memWZErr

Utility Routines

MemError Codes

no error
empty master pointer
attempt to operate on a free block

pascal void BlockMove(sourcePtr, destPtr, byteCount)
Ptr sourcePtr, destPtr;
Size byteCount;

BlockMove moves a block of byteCount contiguous bytes from the
address sourcePtr to address destPtr. BlockMove just moves the
block- it doesn't care where from or where to, and it doesn't update any
pointers.

MemError Codes

noErr no error

284 MEMORY MANAGER

pascal Ptr TopMem()

TopMem returns a pointer to the address which is one byte beyond
the last byte of RAM.

noErr

pascal void MoveHHi(h)
Handle h;

MemError Codes

no error

MoveHHi moves handle h's relocatable block toward the top of its
heap zone. Calling MoveHHi before locking a handle will help avoid frag
mentation.

noErr
nilHandleErr
memLockedErr

pascal OSErr MemError()

MemError Codes

no error
null master pointer
block is locked

MemError returns the result code due to the last Memory Manager
routine that was called.

Menu Manager

The Menu Manager controls the contents of the Macintosh's pull
down menus. Using Menu Manager routines, menus can be created, de
leted, and their contents changed. The Menu Manager can also process
keyboard equivalents of menu items. Menu items can be turned off if
they are inactive in certain contexts.

Constants

#define noMark
#define commandMark
#define checkMark
#define diamondMark
#define appleSymbol

#define mDrawMsg
#define mChooseMsg
#define mSizeMsg

#define textMenuProc

Data Structures

typedef struct
{ int menuid;

int menuWidth;
int menuHeight;
Handle menuProc;

0
17
18
19
20

0
1
2

0

unsigned long enableFlags;
Str255 menuoata;

Menuinfo, *MenuPtr, **MenuHandle;

286 MENu MANAGER

Functions

Initialization and Allocation
pascal void InitMenus()

Ini tMenus initializes the Menu Manager by allocating a relocatable
block on the heap (large enough for the largest menu list) and redrawing
the empty menu bar. Ini tWindows draws the menu bar the first time.
Call Ini tMenus only once. Other Menu Manager routines should be
used to change the menus.

pascal MenuHandle NewMenu(menuID, menuTitle)
int menuID;
Str255 menuTitle;

NewMenu creates an empty menu with the specified menuid and
menuTitle. NewMenu returns a handle to the new menu. The new menu
is set up to use the standard menu definition procedure. For applications,
menuID should be positive. Negative menu ids are for desk accessories.
No menu can use zero for a menu id.

Items can be added to the new menu using AppendMenu or
AddResMenu. Use InsertMenu to add the new menu to the menu list.
DrawMenuBar will draw the menu bar, including any recent changes.

pascal MenuHandle GetMenu(resourceID)
int resourceID;

GetMenu reads the 'MENU' resource with ID resourceID into
memory. If this menu has a non-standard definition procedure, the menu
definition procedure is read in and a handle to the procedure goes into
the menu record. GetMenu returns a handle to the new menu. The menu
has items but it is not on the menu list. It must be added the menubar and
the menubar must be redrawn.

Because the menu obtained by GetMenu is from a resource file,
memory used by the menu should be freed using ReleaseResource.

pascal void DisposeMenu(theMenu)
MenuHandle theMenu;

DisposeMenu releases memory used by theMenu, where theMenu
is a menu created by using NewMenu.

FuNcnoNS 287

Forming the Menus
pascal void AppendMenu(theMenu, data)

MenuHandle theMenu;
Str255 data;

AppendMenu adds an item (or items) to the end of theMenu.
TheMenu must exist before calling AppendMenu. The text for the menu
item(s) is given by string data. AppendMenu interprets the meta-charac
ters used by the Menu Manager.

character
; orReturn

<

I
(

Meta-characters in Menus

meaning
separates menu items
followed by an icon number, adds icon to item
marks item with character that follows !
followed by B,1,U,O, or S sets style as bold,italic,
underline, outline or shadow (only one per item)
sets key equivalent to character that follows I
disables item

Once an item is on the menu, it is there to stay. You cannot remove
items from the menu or change their order. TheMenu needn't be on the
menu list, AppendMenu works for any existing menu.

pascal void AddResMenu(theMenu, theType)
MenuHandle theMenu;
ResType theType;

AddResMenu gets almost all items of theType, and appends them
to theMenu. Items of theType are found by searching through all the
open resource files. Once found, they are added to theMenu as enabled
items, without any icons, marks, and in the normal style.

Resources with names that begin with . or % are not appended to
theMenu by AddResMenu. This allows you to have resources of theType
which will not appear on theMenu.

pascal void InsertResMenu(theMenu, theType, afteritem)
MenuHandle theMenu;
ResType theType;
int afteritem;

InsertResMenu does the same thing that AddResMenu does, but it
allows you to specify where in menu theMenu items of theType will
occur. InsertResMenu inserts the items after item number afteritem.
If afteritem is zero, new items are added before all existing items. If

288 MENu MANAGER

afteritem is greater than the last item number, new items are appended
totheMenu.

The order of the items added to a menu by InsertResMenu will be
the reverse of the order obtained using AddResMenu. Be sure the order
ing of menu items in your application is consistent with that of other ap
plications.

Forming the Menu Bar
pascal void InsertMenu(theMenu, beforeID)

MenuHandle theMenu;
int beforeID;

InsertMenu adds theMenu to the menu list, just before the menu
having menu id equal to before ID. TheMenu is added to the end of the
list if before ID is zero. If theMenu is already on the menu list, or if the
menu list is full, InsertMenu does nothing.

pascal void DrawMenuBar()

DrawMenuBar draws the menu bar, according to the current menu
list. DrawMenuBar should be called after any operation (or sequence of
operations) which effects the menu list, such as DeleteMenu,
InsertMenu, ClearMenu, and SetMenu.

pascal void DeleteMenu(menuID)
int menuID;

DeleteMenu removes the menu with ID menuID from the menu
list. The menu still exists, it's just not on the menu list anymore. If there is
no menu with ID menuID, DeleteMenu does nothing.

pascal void ClearMenuBar()

ClearMenuBar removes all menus from the current menu list.
ClearMenuBar just removes menus from the menu list. It doesn't free
any memory and the menus still exist.

pascal Handle GetNewMBar(menuBarID)
int menuBarID;

GetNewMBar uses the 'MBAR' resource with ID menuBarID to cre
ate. a new menu list. A handle to this new list is returned. GetNewMBar

F'uNCITONS 289

reads in the menu bar resource if its not already in memory, then it calls
GetMenu for each menu on the menu list.

The menu list created by GetNewMBar is not the current list. To
make it the current list, use SetMenuBar.

pascal Handle GetMenuBar()

GetMenuBar makes a copy of the current menu list, and returns a
handle to the copy.

pascal void SetMenuBar(menuList)
Handle menuList;

SetMenuBar makes menuList the current menu list.
Using GetMenuBar and SetMenuBar allows you to save the state

of the menu list, change the list as needed, and then restore the saved
state of the list at some later time.

Choosing from a Menu
pascal long MenuSelect(startPt)

Point startPt;

MenuSelect determines in which item of which menu the mouse
button was released. MenuSelect should be called when a mouse down
event occurs in the menubar. StartPt should be the location (in global
coordinates) where the mouse-down occurred. MenuSelect maintains
control until the mouse button is released. MenuSelect calls on the
menu definition procedure to draw the pulled down menus and do the
appropriate highlighting and menu flashing.

When the mouse button is released, MenuSelect returns a long in
teger whose high-order word contains the menu id of the selected item's
menu, and whose low-order word contains the item number. If no item
was selected, or the item was disabled, MenuSelect returns zero for the
menu id and the low-order word is undefined.

If a desk accessory menu item was selected, MenuSelect sends the
item number and menu id to the system, and returns zero as the menu id.

pascal long MenuKey(ch)
char ch;

MenuKey returns the menu id and item number of the menu item
whose key equivalent is ch. A long integer is returned by MenuKey: the

290 MENu MANAGER

high-order word contains the menu id, the low-order word contains the
item number.

MenuKey should be called if a key was pressed with the command
key held down. If there are no menu items with key equivalent ch,
MenuKey returns menu id zero. If there is a menu item with the given key
equivalent, the menu is highlighted on the menu bar.

pascal void HiliteMenu(menuID)
int menuID;

HiLi teMenu highlights the menu with ID menu ID. If menuID is
zero, the currently highlighted menu is unhighlighted.

Controlling Appearance of Items
pascal void Setitem(theMenu, item, itemString)

MenuHandle theMenu;
int item;
Str255 itemString;

Set Item changes the text of item number item in menu theMenu
to itemString. Setitem does not interpret meta-characters, so these
characters can appear in an item's text.

pascal void Getitem(theMenu, item, itemString)
MenuHandle theMenu;
int item;
Str255 itemString;

Get Item sets itemString equal to the text of item number i tern in
menu theMenu. Like Set Item, Get Item does not interpret meta-charac
ters. If these characters appear in the text of i tern, they'll appear in
itemString.

Use Getitem and Setitem for switching between menu items,
such as ''Undo" and ''Redo".

pascal void Disableitem(theMenu, item)
MenuHandle theMenu;
int item;

Disableitem disables item number item in menu theMenu. If
item is zero, theMenu is disabled. If theMenu is disabled, all items in it
are disabled. Be sure to call DrawMenuBar after disabling theMenu.

Disabled items appear dimmed on theMenu, they cannot be select
ed and are not highlighted when the cursor moves over them. Disabled

FuNCITONS 291

menus appear dimmed on the menu bar. When the cursor moves over the
disabled menu, the menu drops down and all items in the menu are
dimmed. Menus (or menu items) should be disabled when they are not
applicable, letting users know what they can and cannot do while using
the program.

pascal void Enableitem(theMenu, item)
MenuHandle theMenu;
int item;

Enableitem enables the item number item in menu theMenu.
Using i tern = 0 will enable theMenu.

Enabled items appear normal. They are highlighted as the cursor
moves over them, and they can be selected. Enabled menus should not be
dimmed in the menu bar, so call DrawMenuBar after enabling theMenu.

pascal void Checkitem(theMenu, item, checked)
MenuHandle theMenu;
int item;
Boolean checked;

Checkitem checks or unchecks item number i tern in menu
theMenu. If checked is TRUE, i tern is checked. A check mark will appear
to the left of the item (and it's icon, if any). If checked is FALSE, the
check mark, if there is one, is removed from item.

pascal void SetitemMark(theMenu, item, markChar)
MenuHandle theMenu;
int item;
char markChar;

SetitemMark marks item number item in menu theMenu with the
character indicated by markChar. MarkChar can be any character in the
system font, or one of the predefined "marking" characters (see constants
above). The mark will appear to the left of the item and its icon, if any.

pascal void GetitemMark(theMenu, item, markChar)
MenuHandle theMenu;
int item;
char *markChar;

GetitemMark sets markChar equal to the ASCII value of the char
acter that is marking item number i tern in menu theMenu. If the item is
not marked, then markChar is set to zero.

292 MENu MANAGER

pascal void Setitemicon(theMenu, item, icon)
MenuHandle theMenu;
int item, icon;

Seticonitem assigns an icon to item number item in menu
theMenu. The parameter icon is an integer from 1 to 255. This integer is
the icon number of the icon assigned to the item. The icon number is not
the same as the resource id of the icon. The Menu Manager adds 256 to
the icon number to get the resource id of the icon.

pascal void Getitemicon(theMenu, item, icon)
MenuHandle theMenu;
int item, *icon;

Getitemicon sets icon equal to the icon number of the icon as
signed to item number item in theMenu. If the item has no icon associat
ed with it, icon is set to zero. The icon number is 256 less than the re
source id of the icon.

pascal void SetitemStyle(theMenu, item, chStyle)
MenuHandle theMenu;
int item;
Style chStyle;

SetitemStyle sets the style of the item number item in menu
theMenu to the style specified by chStyle.

pascal void GetitemStyle(theMenu, item, chStyle)
MenuHandle theMenu;
int item;
Style *chStyle;

GetitemStyle sets chStyle to the style used by item number
i tern in menu theMenu.

Miscellaneous Utilities
pascal void SetMenuFlash(count)

int count;

SetMenuFlash sets the number of times a selected menu item will
flash equal to count. Count should be an integer between zero and three.
Values greater than three will be too slow. If count is zero, flashing is
disabled.

FuNCTIONS 293

SetMenuFlash is called by the control panel. Your application
should not call SetMenuFlash.

pascal void CalcMenuSize(theMenu)
MenuHandle theMenu;

CalcMenuSize calculates and stores the horizontal and vertical di
mensions of menu theMenu. CalcMenuSize is called automatically by
the Menu Manager after every call to AppendMenu, Set Item,
Setitemicon, and SetitemStyle.

pascal int CountMitems(theMenu)
MenuHandle theMenu;

CountMitems returns the number of items in menu theMenu.

pascal MenuHandle GetMHandle(menuID)
int menuID;

GetMHandle returns a handle to the menu having ID menuID, if
such a menu is on the menu list. If there is no such menu, GetMHandle
returns NULL.

pascal void FlashMenuBar(menuID)
int menuID;

FlashMenuBar inverts the menu bar title of the menu having ID
menuID. If there is no such menu on the menu list or if menuID is zero,
the entire menu bar is inverted.

Control Manager

The Control Manager provides a set of high-level tools such as but
tons and scroll bars, and a set of low-level interfaces for creating new
kinds of controls. Controls range in complexity from buttons that may be
"pressed" or "toggled" to more elaborate controls such as scroll bars.
Complex controls such as scroll bars are a composite of buttons and indi
cators, each of which is responsive to the mouse in different ways. The
Control Manager sorts out activity in these complex controls and calls on
your application's routines to react to the way such a control is used.

The Control Manager also defines a protocol that can be followed to
create new controls. By creating a control definition function that correct
ly follows the Control Manager's rules, you can add new controls to the
Control Manager repertoire.

Constants

I* Control definition IDs *I
fdef ine pushButProc 0
#define checkBoxProc 1
#define radioButProc 2
#define useWFont 8
#define scrollBarProc 16

I* Part Codes: part code 128 is reserved
* for the Control Manager.
*/

#define inButton 10
#define inCheckBox 11
#define inUpButton 20
#define inDownButton 21
#define inPageUp 22
#define inPageDown 23
#define in Thumb 129

296 CONTROL MANAGER

/* Constraints for DragControl */

#define noConstraint 0
#define hAxisOnly 1
#define vAxisOnly 2

/* Messages to use when defining your own controls */

#define drawCntl 0
#define testCntl 1
#define calcCrgns 2
#define initCntl 3
#define dispCntl 4
#define posCntl 5
#define thumbCntl 6
#define dragCntl 7
#define autoTrack 8

Data Structures

typedef struct
{ ControlHandle nextControl;

WindowPtr contrlOwner;
Rect contrlRect;
char contrlVis;
char contrlHilite;
int contrlValue;
int contrlMin;
int contrlMax;
Handle contrlDefProc;
Handle contrlData;
ProcPtr contrlAction;
long contrlRfCon;
Str255 contrlTitle;

}ControlRecord, *ControlPtr, **ControlHandle;

Functions

Initialization and Allocation
pascal ControlHandle NewControl(theWindow, boundsRect,
title, visible, value, min, max, procID, refCon)

WindowPtr theWindow;
Rect *boundsRect;
Str255 title;
Boolean visible;
int value, min, max, procID;
long refCon;

NewControl creates a control which is added to the beginning of

FuNCTIONS 297

theWindow's control list. A handle to the new control is returned. The
values passed to NewControl are placed into the fields of the control
record. Highlighting is off, and there is no default action (contrlAction
is NULL).

The newly created control will be in theWindow, therefore any co
ordinates for the control should be in theWindow's local coordinate sys
tem. The rectangle that encloses the control is boundsRect. This rectan
gle also determines the control's size and location. For standard controls,
note the following:

• Simple buttons fit the rectangle exactly. A 20 point differ
ence between the top and bottom of the rectangle is needed so
that the tallest characters will fit inside the button.
• Check boxes and radio buttons need at least a 16 point top to
bottom difference.
• For a normal size scroll bar, a rectangle with a 16 pixel top to
bottom (or left to right) difference is needed. If the difference
is less than 16, the scroll bar will be scaled to fit the rectangle.
The control's title (if any) is the string title. If the title is too long

to fit in the control's rectangle, then it will be truncated. For simple but
tons, the title is centered and truncated on both ends. For check boxes and
radio buttons, the title is truncated on the right.

If visible is TRUE, NewControl draws the control immediately in
theWindow.

Value is the initial setting for the control. The parameters min and
max define the range of the control. If the control is a button type (or one
that doesn't have an initial value and for which a range is meaningless),
then it doesn't matter what values you use for value, min and max as
they are ignored. If the control is an on-or-off type (check box or radio
button), then min should be zero (meaning the control is off) and max
should be one (the control is on). The initial value must be either on or
off.

Procid is the resource id of the control definition function. ProcID
can be one of the predefined values (such as pushButProc or
radioButProc) or one you have defined.

The control's reference value is refCon. RefCon is a structure ele
ment reserved for your application. It is not used by other Toolbox rou
tines.

pascal ControlHandle GetNewControl(controlID, theWindow)
int controlID;
WindowPtr theWindow;

GetNewControl has the same end result as NewControl, but cre
ates the control using resources. GetNewControl calls on the Resource
Manager to get a ' CNTL' resource (the resource template for controls)
with ID control ID. If such a resource exists, GetNewControi reads it in

298 CONTROL MANAGER

and adds the control to the beginning of theWindow's control list. A han
dle to the newly created control is returned.

pascal void DisposeControl(theControl)
ControlHandle theControl;

DisposeControl removes theControl from the screen, and its
window's control list. Memory used by theControl, including any data
structures associated with theControl, is freed.

pascal void KillControls(theWindow)
WindowPtr theWindow;

KillControls calls DisposeControl for each control in
theWindow's control list.

Control Display
pascal void SetCTitle(theControl, title)

ControlHandle theControl;
Str255 title;

SetCTitle sets theControl's title to the string title.
TheControl is redrawn.

pascal void GetCTitle(theControl,title)
ControlHandle theControl;
Str255 *title;

GetCTitle gets theControl's title and returns it in the string
title.

pascal void HideControl(theControl)
ControlHandle theControl;

HideControl makes. a visible control invisible. The region
theControl occupies in its window will be filled with the window's
background pattern. The rectangle which encloses theControl is added
to the window's update region. If theControl is already invisible,
HideControl does nothing.

pascal void ShowControl(theControl)
ControlHandle theControl;

F'uNCTIONS 299

ShowControl makes an invisible control visible. ShowControl
draws theControl in its window, subject to the Window Manager's
clipping rules. ShowControl has no effect on controls which are already
visible.

pascal void DrawControls(theWindow)
WindowPtr theWindow;

DrawControls draws all the visible controls in theWindow. The
order in which they appear will be the reverse of the order they were cre
ated. The first control appears last (also foremost) in theWindow.
Window Manager routines do not generate calls to DrawControls. If
you get an update event for a window which has controls, your applica
tion should call DrawControls.

pascal void HiliteControl(theControl, hiliteState)
ControlHandle theControl;
int hiliteState;

HiliteControl changes the highlighting of theControl. The
value of hiliteState (zero to 255) determines the highlighting as fol
lows:

• Zero means no highlighting.
• HiliteState between 1 and 253 represents a part code in
dicating which part of the control is to be highlighted.
• HiliteState 254 or 255 means that the control is to be
made inactive and gets the 'inactive' highlighting scheme. If
hil i testate is 254, you will be able to detect mouse clicks
inside the control, ifhiliteState is 255, you won't be able
to.
HiliteControl generates a call to the control definition function,

redrawing theControl with the new hiliteState.

Mouse Location
pascal int TestControl(theControl,thePoint)

ControlHandle theControl;
Point thePoint;

TestControl determines which part of theControl contains
thePoint. ThePoint is expected to be in the local coordinates.
Normally, TestControl is called only by FindControl and

300 CONTROL MANAGER

TrackControl.
The results of TestControl are as follows:
• for visible and active controls, if thePoint is not in
theControl, zero is returned. If thePoint is inside
theControl, then the part code containing thePoint is re
turned.
• for inactive but visible controls, if theControl has
hili testate 254, Test Control returns 254. If the
hiliteState is 255, TestControl returns zero.
• for invisible controls, TestControl returns zero.

pascal int FindControl(thePoint, theWindow, whichControl)
Point thePoint;
WindowPtr theWindow;
ControlHandle *whichControl;

FindControl determines which (if any) of theWindow's controls
the thePoint is in.

Normally, FindControl is called after learning that the mouse but
ton was pressed in the content region of a window with controls.
TheWindow is the window where the mouse button was pressed,
thePoint is the location of the mouse-down event, expressed in
theWindow's local coordinate system.

If the mouse button was pressed in:
•a visible, active control, whichControl becomes a control
handle for that control FindControl returns the part code of
the part containing thePoint.
• a visible, inactive control with 254 highlighting,
whichControl is becomes a control handle for that control,
and 254 is the return value.
• an invisible control, an inactive control with 255 highlight
ing, or not in any control, whichControl is NULL and zero is
returned.
• an invisible window, or if thePoint is not actually in
theWindow, whichControl is NULL and zero is returned.

pascal int TrackControl(theControl, startPt, actionProc)
ControlHandle theControl;
Point startPt;
ProcPtr actionProc;

TrackControl tracks the movements of the mouse and takes all
the appropriate actions for theControl until the mouse button is re
leased.

FuNCTIONS 301

Call TrackControl after learning that the mouse button was
pressed in a visible, active control. StartPt is the location (in local coor
dinates) of the mouse-down event, and actionProc is a routine invoked
by TrackControl while the mouse button is down. If highlighting is
called for by the control definition function, TrackControl will do that.
It'll also undo the highlighting before returning.

If the mouse button is released with the mouse in the same part that
it was in when tracking began, then the part code for that part is returned
and the current value is stored in the control record. Your application
should take actions appropriate for the part and its new value. If the
mouse up occurs while the mouse is no longer in the same part, then a
zero is returned and the control's value remains the same. In this case,
your application should take no action as a result of tracking.

Suppose startPt is in an indicator, such as the thumb box in a
scroll bar. TrackControl drags a gray outline of the box as the mouse is
moved. When the mouse button is released,the box is repositioned using
the control definition function. The relative position of the thumb box is
used to calculate (and store) the new scroll bar setting. Your application is
responsible for doing the scrolling.

You can have TrackControl do more than just highlighting and
dragging by passing an actionProc. For example, if you wanted to
show the page number in the vertical scroll bar's thumb box, you can
supply an actionProc that will do this.

If actionProc is:
• NULL, no additional action occurs.
• a pointer to an action procedure, then you can have some ac
tion performed until the mouse button is released.
• -1, then TrackControl will look in theControl's control
record for the default action procedure. If the default action
procedure is a routine pointer, then TrackControl will call
that routine. If the default action procedure is -1 then
TrackControl will call the control definition function to take
action. If the default action is NULL, TrackControl does
nothing.

Control Movement and Sizing
pascal void MoveControl(theControl, h, v)

ControlHandle theControl;
int h, v;

MoveControl moves theControl to a new location inside
theControl's window. The new location is specified (in local coordi
nates) by hand v. These are the horizontal and vertical coordinates of the
top left corner of theControl's bounding rectangle. The bottom right
corner of the rectangle is calculated so that theControl is the same size

302 CONTROL MANAGER

as before. If theControl is visible, MoveControl hides it, then redraws
it at the new location.

pascal void DragControl(theControl, startPt, limitRect,
slopRect, axis)

ControlHandle theControl;
Point startPt;
Rect *limitRect, *slopRect;
int axis;

DragControl drags a gray outline of theControl by calling the
Window Manager's DragGrayRgn routine. The outline will follow the
movements of the mouse, using DragGrayRgn's rules. DragGrayRgn ex
pects startPt, limitRect, slopRect and axis to be as follows:

• StartPt is the point where the mouse button was originally
pressed, in the local coordinate system of theControl's win
dow.
• LimitRect bounds the area in which theControl's outline
can travel. This area should be the content region of
theControl's window, or some subset of that region.
• SlopRect allows the user a bit of sloppiness when dragging
theControl. As long as the mouse is in slopRect the outline
will follow the mouse, but theControl cannot move outside
the limitRect.
• Axis lets you constrain movement of theControl. If axis
is noConstraint, there is no constraint. If axis is
hAxisOnly, only horizontal movement occurs. If axis is
vAxisOnly, only vertical movement occurs.

pascal void SizeControl(theControl, w, h)
ControlHandle theControl;
int w,h;

SizeControl sets the size of theControl's enclosing rectangle to
width w and height h. The top left corner of theControl remains in the
same location. The bottom right comer is adjusted so that theControl is
the specified size. If theControl is visible, SizeControl hides it before
redrawing it in the new size.

Control Setting and Range
pascal void SetCtlValue(theControl, theValue)

ControlHandle theControl;
int theValue;

Fl.JNCITONS 303

SetCtl Value sets theControl's value to theValue and redraws
theControl. If theControl is a scroll bar, the thumb will be redrawn in
the correct position. For on-or-off type controls (check boxes and radio
buttons), a value of one will draw theControl in the on position, a value
of zero will draw it as being off.

If theValue is out of theControl's range, theControl is set to its
maximum or minimum value, whichever is closest to theValue.

pascal int GetCtlValue(theControl)
ControlHandle theControl;

GetCtl Value returns theControl's current setting.

pascal void SetCtlMin(theControl, minValue)
ControlHandle theControl;
int minValue;

SetCtlMin changes the minimum range setting of theControl to
minValue. If the current value of theControl is below minValue, the
value is set to minValue. SetCtlMin redraws theControl reflecting
the any new values.

pascal int GetCtlMin(theControl)
ControlHandle theControl;

GetCtlMin returns theControl's minimum range setting.

pascal void SetCtlMax(theControl, maxValue)
ControlHandle theControl;
int maxValue;

SetCtlMax sets theControl's the maximum value to maxValue.
If the current value of theControl is greater than maxValue, the value
is set to maxValue. SetCtlMax redraws theControl reflecting any new
values.

pascal int GetCtlMax(theControl)
ControlHandle theControl;

GetCtlMax returns the maximum range value of theControl.

304 CONTROL MANAGER

Miscellaneous Utilities
pascal void SetCRefCon(theControl, data)

ControlHandle theControl;
long data;

SetCRefCon sets theControl's reference value to data.

pascal long GetCRefCon(theControl)
ControlHandle theControl;

GetCRefCon returns theControl's reference value.

pascal void SetCtlAction(theControl, actionProc)
ControlHandle theControl;
ProcPtr actionProc;

SetCtlAction sets theControl's default action procedure to
actionProc.

pascal ProcPtr GetCtlAction(theControl)
ControlHandle theControl;

GetCtlAction returns a pointer to theControl's default action
procedure.

TextEdit

TextEdit provides a uniform way for users to enter text. Often
TextEdit is used indirectly, as part of a dialog that the Dialog Manager
conducts or as part of a Standard File Package dialog. Because all
Macintosh applications use TextEdit, editing capabilities for entering text
are uniform throughout all Macintosh applications.

Constants

#define teJustLeft 0
#define teJustCenter 1
#define teJustRight -1

Data Structures

typedef char Chars[32001], *CharsPtr, **CharsHandle;

typedef struct
{ Re ct destRect;

Re ct viewRect;
int lineHeight;
int firstBL;
int selStart;
int selEnd;
int just;
int length;
Handle hText;
int txFont;
int txFace;
int txMode;
int txSize;
GrafPtr inPort;
int crOnly;
int nLines;

306 TExrEDIT

int lineStarts[32001];
TERec, *TEPtr, **TEHandle;

Functions

Initialization
pascal void TEinit()

TEinit allocates a handle for the application's scrap. This serves to
initialize TextEdit. Call TEinit just once at the beginning of the program.

pascal TEHandle TENew(destRect, viewRect)
Rect *destRect, *viewRect;

TENew creates and initializes an edit record with the destination
rectangle equal to destRect and the view rectangle equal to viewRect.
A handle to the new edit record is returned.

The edit record created by TENew uses the environment of the cur
rent grafPort, so destRect and viewRect should be given in local coor
dinates. The edit record is initialized as left-justified and single-spaced
with insertion point at position zero. TENew also allocates a handle for the
edit record's text field.

TENew must be called once for each edit record.

Manipulating Edit Records
pascal void TESetText(text, length, hTE)

Ptr text;
long length;
TEHandle hTE;

TESetText changes the text in hTE's edit record to the text pointed
to by text. Text is length characters long. The selection range is an in
sertion point at the end of the text. Call TEUpdate to show that the text
has been changed.

pascal CharsHandle TEGetText(hTE)
TEHandle hTE;

TEGetText returns a handle to the text in hTE's edit record.

pascal void TEDispose(hTE)
TEHandle hTE;

FuNCTIONS 307

TEDispose frees the memory used for hTE: memory used by both
the text and the edit record. Call TEDispose when you are totally done
using an edit record.

Editing
pascal void TEKey(key, hTE)

char key;
TEHandle hTE;

TEKey replaces hTE's selection range with the character key. If the
selection range is just an insertion point, key is inserted. The insertion
point is positioned just after key.

pascal void TECut(hTE)
TEHandle hTE;

TECut cuts the selection range from hTE's text and puts it into the
scrap, completely replacing the scrap's contents. If the selection range is
an insertion point, the scrap will be emptied.

pascal void TECopy(hTE)
TEHandle hTE;

TECopy copies hTE's selection range into the scrap, completely re
placing the scrap's contents. When TECopy is called with an empty selec
tion range (an insertion point), the scrap becomes empty.

pascal void TEPaste(hTE)
TEHandle hTE;

TEPaste replaces hTE's selection range with a copy of the scrap,
and positions the insertion point just beyond the last character copied
from the scrap. For an empty scrap, TEPaste deletes the selection range.
For an empty selection range (insertion point), TEPaste inserts the scrap.

pascal void TEDelete(hTE)
TEHandle hTE;

TEDelete deletes hTE's selection range but does not place it in the
scrap. If the selection range is an insertion point, TEDelete does nothing.

308 TExrEorr

pascal void TEinsert(text, length, hTE)
Ptr text;
long length;
TEHandle hTE;

TEinsert inserts length characters pointed to by text into hTE's
text handle, placing the characters just before the selection range (or in
sertion point). TE Insert redraws the text.

Selection Range and Justification
pascal void TESetSelect(selStart, selEnd, hTE)

long selStart, selEnd;
TEHandle hTE;

TESetSelect sets hTE's selection range to the range given by
selStart and selEnd. To do this, TESetSelect unhighlights the cur
rent selection range (if any), then highlights the new selection range. If
selStart is equal to selEnd, the selection range is an insertion point.
For insertion points, the caret is displayed and there is no highlighting.

Legal values for selStart and selEnd are from zero to 65535. If
selEnd is beyond the last character, then the position of the last character
plus one is used for selEnd.

pascal void TESetJust(j, hTE)
int j;
TEHandle hTE;

TESetJust sets the justification for hTE to the justification specified
by j. J should be one of the following: teJustLeft, teJustCenter, or
teJustRight.

Call TEUpdate to show the new justification.

Mice and Carets
pascal void TEClick(pt, extend, hTE)

Point pt;
Boolean extend;
hTE TEHandle;

TEClick is used for setting the selection range through mouse
down events. TEClick should be called when a mouse down event oc
curs in hTE's view rectangle. Point pt is the location where the mouse
button was pressed, in local coordinates. If extend is TRUE, the current
selection range is extended. Extend should be TRUE if the shift key was
down when the mouse-down occurred.

FUNCTIONS 309

Once control is passed to TEClick, it takes care of highlighting the
selection range. The selection range expands or shrinks, according to the
movements of the mouse. TEClick also takes care of word selection
when a double click occurs.

pascal void TEidle(hTE)
TEHandle hTE;

TEidle checks to see if it is time for the blinking caret at hTE's in
sertion point to blink again. To maintain a constant blinking frequency,
your application should call TEidle often. TEidle cannot be called too
often. Blinking will not occur unless a minimum time period (which can
be adjusted using the control panel) has elapsed.

pascal void TEActivate(hTE)
TEHandle hTE;

TEActi vate highlights the selection range in hTE's view rectangle.
If the selection range is an insertion point, a blinking caret is displayed at
the insertion point. TEActi vate should be called whenever a text editing
window becomes active.

pascal void TEDeactivate(hTE)
TEHandle hTE;

TEDeactivate is the opposite of TEActivate: it unhighlights the
selection range in hTE's view rectangle, or removes the blinking caret if
the selection range is an insertion point. TEDeacti vate should be called
whenever a text editing window becomes inactive.

Text Display
pascal void TEUpdate(rUpdate, hTE)

Rect *rUpdate;
TEHandle hTE;

TEUpdate redraws hTE's text inside the rectangle rUpdate, where
rUpdate is in the grafport's local coordinates. Using hTE's viewRect for
rUpdate will cause hTE's entire view rectangle to be redrawn.

TEUpdate should be called whenever an update event occurs (after
BeginUpdate and before EndUpdate) or to show the results of another
TextEdit routine.

310 'I'ExTEDIT

pascal void TextBox(text, length, box, j)
Ptr text;
long length;
Rect *box;
int j;

TextBox draws the text pointed to by text, in the rectangle box.
Box is in local coordinates. The parameter length tells TextBox the
number of characters to draw and j specifies the justification. J should be
one of the following: teJustLeft, teJustCenter or teJustRight.
TextBox does not use any edit record, it is just used for drawing text.

Advanced Routines
pascal void TEScroll(dh, dv, hTE)

int dh, dv;
TEHandle hTE;

TEScroll scrolls the text in hTE's viewRect. The amount scrolled
is specified in pixels by dh and dv: positive dh moves the text to the right,
negative dh moves the text to the left; positive dv moves the text up, neg
ative dv moves the text down.

After calling TEScroll, call TEUpdate with hTE's viewRect to
show the results of scrolling.

pascal void TECalText(hTE)
TEHandle hTE;

TECalText recalculates the beginnings of all the lines of text in hTE
and updates hTE's lineStarts array.

TECalText should be called after any operation which changes the
number of characters per line, such as changing the destination rectangle
or the font.

Standard File Package

The Standard File Package provides a uniform way for users to se
lect files for opening and saving. The Standard File Package does not ac
tually open or write to the files, File Manager routines are used for those
functions.

Constants

#define putDlgID -3999
#define put Save 2
tdefine put Cancel 5
#define putEject 6
tdefine putName 7

fdef ine getDlgID -4000
tdefine get Cancel 3
tdefine getEject 5
tdefine getDrive 6
#define getNmList 7
fdef ine get Scroll 8

Data Structures

typedef struct
{ char good;

char copy;
OSType fType;
int vRefNum;
int version;
char fName[64];

SFReply;

typedef OSType SFTypeList[4];

312 STANDARD FILE PACKAGE

Functions

pascal void SFPutFile(where, prompt, origName, dlgHook,
reply)

Point where;
Str255 prompt, origName;
ProcPtr dlgHook;
SFReply *reply;

SFPutF i le uses a standard file dialog to get a file name from the
user. Typically, this file is used to save the current document. Where is
the position of the top left corner of the dialog. Prompt provides brief,
application specific instructions. If the document came from a file,
OrigName should be the name of that file. DlgHook lets you specify a
function to be called after each call to ModalDialog. Reply holds the in
formation returned from the dialog.

pascal void SFPPutFile(where, prompt, origName, dlgHook,
reply, dlgID, filterProc)

Point where;
Str255 prompt, origName;
ProcPtr dlgHook;
SFReply *reply;
int dlgID;
ProcPtr filterProc;

SFPPutFile works like SFPutFile except for two things: it allows
you to use the dialog with resource ID dlgID, and it allows you to speci
fy filterProc as a filter procedure for calls to ModalDialog.

pascal void SFGetFile(where, prompt, fileFilter, numTypes,
typeList, dlgHook, reply);

Point where;
Str255 prompt;
ProcPtr fileFilter, dlgHook;
int numTypes;
SFTypeList *typeList;
SFReply *reply;

SFGetFile uses a standard file dialog to display a list of files of the
types specified in typeList. TypeList is typically used in opening doc
uments. Where is the location of the upper left corner of the dialog on the
screen. Prompt gives brief instructions to the user. FileFilter allows
you to specify a function that can be used to further qualify files for dis
play. DlgHook is a procedure that is called after each call to
ModalDialog. Reply holds the information returned from the dialog.

F'uNCllONS 313

pascal void SFPGetFile (where, prompt, fileFilter, numTypes,
typeList, dlgHook, reply, dlgID, filterProc);

Point where;
Str255 prompt;
ProcPtr fileFilter, dlgHook, filterProc;
int numTypes, dlgID;
SFTypeList *typeList;
SFReply *reply;

SFPGetFile works like SFGetFile except for two things: it allows
you to use the dialog with resource ID dlgID, and it allows you to speci
fy filterProc as a filter procedure for calls to ModalDialog.

File Manager

The File Manager provides tools for opening, closing, creating, de
leting, reading, and writing files. The File Manager has two sets of rou
tines: one is a set of high-level routines that are easy to use and can han
dle the filing needs of most applications. The more complex "parameter
block" routines are so-named because they take a data structure, known
as a parameter block, as their argument. These low-level routines allow
more control over the file system, and in some cases, where several file
system routines must be called in sequence to find information about a
file, they can be more efficient.

Constants

#define fHasBundle Ox20
#define finvisible Ox40

#define fTrash -3
#define fDeskTop -2
#define fDisk 0

*define fsAtMark 0
#define fsFromStart 1
#define fsFromLEOF 2
#define fsFromMark 3

#define fsCurPerm 0
#define fsRdPerm 1
#define fsWrPerm 2
#define fsRdWrPerm 3

Data Structures

typedef long OSType;
typedef int OSErr;

316 FILE MANAGER

typedef struct
{ OSType fdType;

OSType fdCreator;
int fdFlags;
Point fdLocation;
int fdFldr;

Finfo;

struct ioParam
{ int ioRefNum;

SignedByte ioVersNum;
SignedByte ioPermssn;
Ptr ioMisc;
Ptr ioBuffer;
long ioReqCount;
long ioActCount;
int ioPosMode;
long ioPosOffset;

} ;

struct fileParam
{ int ioFRefNum;

SignedByte ioFVersNum;
SignedByte fillerl;

} ;

int ioFDirindex;
SignedByte ioFlAttrib;
SignedByte ioFlVersNum;
Finfo ioFlFndrinfo;
long ioFlNum;
int ioFlStBlk;
long ioFlLgLen;
long ioFlPyLen;
int ioFlRStBlk;
long ioFlRLgLen;
long ioFlRPyLen;
long ioFlCrDat;
long ioFlMdDat;

struct volumeParam
long filler2;
int ioVolindex;
long ioVCrDate;
long ioVLsBkUp;
int ioVAtrb;
int ioVNmFls;
int ioVDirSt;
int ioVBlLn;
int ioVNmAlBlks;
long ioVAlBlkSiz;

} ;

long ioVClpSiz;
int ioAlBlSt;
long ioVNxtFnum;
int ioVFrBlk;

struct drvQElRec
struct drvQElRec *drvLink;
int drvFlags;
int drvRefNum;
int drvFSID;
int drvBlkSize;

} ;

typedef union
int sndVal;
int asncConfig;
struct

Ptr asncBPtr;
int asncBLen;

asyncinBuff;
struct

unsigned char fXOn;
unsigned char fCTS;
char xon;
char xoff;
unsigned char errs;
unsigned char evts;
unsigned char finX;
unsigned char null;

asyncShk;
struct

Ptr fontRecPtr;
int fontCurDev;

fontMgr;
Ptr diskBuff;
long asyncNBytes;
struct
{ int asncsl;

int asncs2;
int asncs3;

asyncStatus;
struct

int dskTrackLock;
long dskinfoBits;
struct drvQElRec dskQElem;
int dskPrime;
int dskErrCnt;

diskStat;
OpParamType, *OpParamPtr;

DATA STRUCTURES 317

318 FILE MANAGER

struct cntrlParam
{ int csRefNum;

} ;

int csCode;
OpParamType csParam;

typedef struct
{ struct ParamBlkRec *ioLink;

int ioType;
int ioTrap;
Ptr ioCmd.Addr;
ProcPtr ioCompletion;
int ioResult;
char *ioNamePtr;
int ioVRefNum;
union

struct ioParam iop;
struct fileParam fp;
struct volumeParam vp;
struct cntrlParam cp;

u;
ParamBlkRec, *ParmBlkPtr;

Functions: High-level

Specifying Volumes and files for High-level Routines
To specify a volume for the high-level File Manager routines, you

can use the volume name, the volume reference number or the drive
number of its drive. The File Manager will try the following methods (in
the given order) until it has determined a volume:

• Use the volume name given by volName. If volName is a
zero-length string, return an error. If volName is NULL or an
improper volume name, try the next method.
•Use the volume reference number vRefNum or the volume's
drive number drvNum, whichever the routine calls for. If this
number is zero, try the next method.
• Use the default volume.

You may use whichever method you like.
To specify a closed file, you must specify the volume (as described

above) and the file name fileName. FileName can be the file name or
the volume name followed by the file name. To specify an open file, the
access path reference number refNum is used.

FuNCITONS: HIGH-LEVEL 319

Accessing Volumes
pascal OSErr GetVInfo(drvNum, volName, vRefNum, freeBytes)

int drvNum, *vRefNum;
Str255 volName;
long *freeBytes;

GetVInfo gets volume information for the volume in drive number
drvNum. Upon return, volName is the volume name, vRefNum is the vol
ume reference number and freeBytes is the number of bytes available
on the volume.

no Err
nsvErr
paramErr

Result Codes

no error
no such volume error
bad drive number

pascal OSErr GetVol(volName, vRefNum)
Str255 volName;
int *vRefNum;

GetVol sets volNarne to the name of the default volume and sets
vRefNum to its volume reference number.

noErr
nsvErr

Result Codes

no error
no such volume error

pascal OSErr SetVol(volName, vRefNum)
Str255 volName;
int vRefNum;

SetVol makes the volume specified by volName or vRefNum the
default volume. The volume must be mounted before it can become the
default volume.

noErr
bdNamErr
nsvErr
paramErr

Resul.t Codes

no error
bad volume name
no such volume error
no default volume

320 FILE MANAGER

pascal OSErr FlushVol(volName, vRefNurn)
str255 volName;
int vRefNurn;

FlushVol writes the descriptive information and volume buffer
contents for the volume specified by volName or vRefNum.

noErr
bdNarnErr
extFSErr
ioErr
nsDrvErr
nsvErr
pararnErr

Resu1t Codes

no error
bad volume name
external file system
disk 1/0 error
no such drive error
no such volume error
no default volume

pascal OSErr UnrnountVol(volName, vRefNurn)
Str255 volName;
int vRefNurn;

Unmount Vol unmounts the volume given by volName or vRefNum.
UnmountVol calls Flush Vol for the volume, closes all the volume's open
files, and releases any memory used by the volume.

You shouldn't allow the startup volume to be unmounted.

noErr
bdNarnErr
extFSErr
ioErr
nsDrvErr
nsvErr
pararnErr

Resu1t Codes

no error
bad volume name
external file system
disk 1/0 error
no such drive error
no such volume error
no default volume

pascal OSErr Eject(volName, vRefNurn)
Str255 volNarne;
int vRefNurn;

Eject ejects the volume specified by volName or vRefNum. Eject
calls FlushVol to flush the volume, then takes the volume off-line and
ejects it.

noErr
bdNamErr
extFSErr
ioErr
nsDrvErr
nsvErr
paramErr

Changing File Contents

FuNCITONS: HIGH-LEVEL 321

Resu1t Codes

no error
bad volume name
external file system
disk 1/0 error
no such drive error
no such volume error
no default volume

pascal OSErr Create(fileName, vRefNum, creator, fileType)
Str255 fileName;
int vRefNum;
OSType creator, fileType;

Create creates a new (unlocked and empty) file on the volume
with volume reference number vRefNum. The new file's name, type and
creator are given by fileName, fileType and creator. The file modifi
cation and creation dates are set to the date on the system clock.

noErr
bdNamErr
dupFNErr
dirFulErr
extFSErr
ioErr
nsvErr
vLckdErr
wPrErr

Resu1t Codes

no error
bad volume name
duplicate file name error
directory full error
external file system
disk 1/0 error
no such volume error
software volume lock
hardware volume lock

pascal OSErr FSOpen(fileName, vRefNum, refNum)
Str255 fileName;
int vRefNum, *refNum;

FSOpen opens the file with name fileName on the volume with
volume reference number vRefNum. An access path with the same
read/write permission as the file is created for the file. RefNum is set to
the file access path reference number.

322 FILE MANAGER

noErr
bdNamErr
extFSErr
fnfErr
ioErr
nsvErr
opWrErr
tmfoErr

Resu1t Codes

no error
bad volume name
external file system
file not found error
disk 1/0 error
no such volume error
file already open for writing
too many files open error

pascal OSErr FSRead(refNum, count, buffPtr)
int refNum;
long *count;
Ptr buffPtr;

F SRead reads data from the open file with access path reference
number refNum. Starting at the current position of the file marker,
FSRead reads count bytes. The data read in is placed in the buffer point
ed to by buffPtr. If the logical end-of-file is encountered before count
bytes have been read in, the mark is moved to the end-of-file, count is set
to the number of bytes actually read in and an end-of-file error is re
turned.

noErr
eofErr
extFSErr
fnfErr
ioErr
paramErr
rfNumErr

Resu1t Codes

no error
end-of-file error
external file system
file not found error
disk 1/0 error
negative count
bad reference number

pascal OSErr FSWrite(refNum, count, buffPtr)
int refNum;
long *count;
Ptr buffPtr;

FSWrite writes count bytes from the location pointed to by
buffPtr to the open file with access path reference number refNum.
Writing begins at the file marker. Count is set equal to the number of
bytes actually written to the file.

F'uNCTIONS: HIGH-LEVEL 323

Resu1t Codes

noErr no error
dskFulErr disk full error
fLckdErr file locked error
fnOpnErr file not open error
ioErr disk 1/0 error
paramErr negative count
rfNumErr bad reference number
vLckdErr software volume lock
wPrErr hardware volume lock
wrpermErr write permission error

pascal OSErr GetFPos(refNum, filePos)
int refNum;
long *filePos;

GetFPos gets the position of the file marker for the file with access
path reference number refNum and sets filePos to this number.

noErr
extFSErr
fnOpnErr
ioErr
rfNumErr

Resu1t Codes

no error
external file system error
file not open error
disk 1/0 error
bad reference number

pascal OSErr SetFPos(refNum, posMode, posOff)
int refNum, posMode;
long posOff;

SetFPos sets the position of the file marker for the file with access
path reference number refNum. The placement of the marker is deter
mined by posMode and posOff. PosMode is a position in the file, and
posOff is an offset from that position.

Positioning the Fi1e Marker

posMode va1ues
fsAtMark
fsFromStart
fsFromLEOF
fsFromMark

fi1e marker position
remains the same, posOff is ignored
posOff bytes from start of file
posOff bytes from logical end-of-file
posOff bytes from current position

324 FILE MANAGER

noErr
eofErr
extFSErr
fnOpnErr
ioErr
posErr
rfNumErr

Resu1t Codes

no error
end-of-file error
external file system error
file not open error
disk 1/0 error
position is before start of file
bad reference number

pascal OSErr GetEOF(refNum, logEOF)
int refNum;
long *logEOF;

GetEOF gets the logical end-of-file for the file with access path refer
ence number refNum and sets logEOF equal to this number.

noErr
extFSErr
fnOpnErr
ioErr
rfNumErr

Resu1t Codes

no error
external file system error
file not open error
disk 1/0 error
bad reference number

pascal OSErr SetEOF(refNum, logEOF)
int refNum;
long logEOF;

SetEOF sets the logical end-of-file file for the file with access path
reference number refNum. The logical end-of-file is set to logEOF. If
logEOF is beyond the physical end-of-file, another block on the volume is
allocated for the file. If there is not enough room to set the specified logi
cal end-of-file, a disk full error is returned and no change is made. If
logEof is zero, all space used by the file is released.

noErr
dskFulErr
extFSErr
fLckdErr
fnOpnErr
ioErr
rfNumErr
vLckdErr
wPrErr
wrpermErr

Resu1t Codes

no error
disk full error
external file system error
file locked error
file not open error
disk 1/0 error
bad reference number
software volume lock
hardware volume lock
write permission error

FuNcnoNs: HIGH-LEVEL 325

pascal OSErr Allocate(refNum, count)
int refNum;
long *count;

Allocate adds count bytes to the file with access path reference
number refNum. If count is not a multiple of the block allocation size, it
is rounded up to the next multiple, and this number of bytes is added to
the file. If there are not enough bytes available on the volume, then what
ever space is available is allocated for the file and Allocate returns a
disk full error. Count is set to the number of bytes actually allocated. The
physical end-of-file is set one byte beyond the last byte allocated.

no Err
dskFulErr
fLckdErr
fnOpnErr
ioErr
rfNumErr
vLckdErr
wPrErr
wrpermErr

Resu1t Codes

no error
disk full error
file locked error
file not open error
disk 1/0 error
bad reference number
software volume lock
hardware volume lock
write permission error

pascal OSErr FSClose(refNum)
int refNum;

FSClose closes the file with access path reference number refNum.
The file access path is removed, the volume buffer contents are written to
the volume, and the file directory information is updated.

Note that not all information stored on the volume is correct until
FlushVol is called for the volume.

no Err
extFSErr
fnfErr
fnOpnErr
ioErr
nsvErr
rfNumErr

Resu1t Codes

no error
external file system
file not found error
file not open error
disk 1/0 error
no such volume error
bad reference number

326 FILE MANAGER

Changing Information About Files
pascal OSErr GetFinfo(fileName, vRefNum, fndrinfo)

Str255 fileName;
int refNum;
Finfo *fndrinfo;

GetFinfo gets the Finder information for the file with name
fileName and volume reference number vRefNum. The information is
returned in fndrinfo.

noErr
bdNamErr
extFSErr
fnfErr
ioErr
nsvErr
paramErr

Resu1t Codes

no error
bad file name
external file system
file not found error
disk 1/0 error
no such volume error
no default volume

pascal OSErr SetFinfo(fileName, vRefNum, fndrinfo)
Str255 fileName;
int refNum;
Finfo *fndrinfo;

SetFinfo changes the Finder information about the file with name
fileName on the volume with volume reference number vRefNum. The
Finder information is set to that given by fndrinfo.

noErr
extFSErr
fLckdErr
fnfErr
ioErr
nsvErr
vLckedErr
wPrErr

Resu1t Codes

no error
external file system
file locked error
file not found error
disk 1/0 error
no such volume error
software volume lock
hardware volume lock

pascal OSErr SetFLock(fileName, vRefNum)
Str255 fileName;
int vRefNum;

SetFLock locks the file with name fileName on volume with ref
erence number vRefNum. Locking will not affect existing access paths.

noErr
extFSErr
fnfErr
ioErr
nsvErr
vLckedErr
wPrErr

FuNCTIONS: HIGH-LEVEL 327

Resu1t Codes

no error
external file system
file not found error
disk 1/0 error
no such volume error
software volume lock
hardware volume lock

pascal OSErr RstFLock(fileName, vRefNum)
Str255 fileName;
int vRefNum;

RstFLock unlocks the file with name fileName on the volume
with volume reference number vRefNum. Existing file access paths are
not affected.

noErr
extFSErr
fnfErr
ioErr
nsvErr
vLckedErr
wPrErr

Resu1t Codes

no error
external file system
file not found error
disk 1/0 error
no such volume error
software volume lock
hardware volume lock

pascal OSErr Rename(oldName, vRefNum, newName)
Str255 oldName, newName;
int vRefNum;

Rename changes the names of files or volumes. If old.Name is a file
name, then the file name is set to newName (currently used access paths
are unaffected by the change). If old.Name is a volume name and
vRefNum is its volume reference number, the volume name is set to
newName.

328 FILE MANAGER

noErr
bdNamErr
dirFulErr
dupFNErr
extFSErr
fLckedErr
fnfErr
fsRnErr
ioErr
nsvErr
paramErr
vLckedErr
wPrErr

Resu1t Codes

no error
bad name error
directory full error
duplicate file name error
external file system
file locked error
file not found error
file system renaming error
disk 1/0 error
no such volume error
no default volume
software volume lock
hardware volume lock

pascal OSErr FSDelete(fileName, vRefNum)
Str255 fileName;
int vRefNum;

FSDelete removes the file named fileName from the volume with
volume reference number vRefNum. FSDelete removes both the re
source and data forks of the file.

noErr
bdNamErr
extFSErr
fBsyErr
fLckedErr
fnfErr
ioErr
nsvErr
vLckedErr
wPrErr

Resu1t Codes

no error
bad name error
external file system
file busy error
file locked error
file not found error
disk 1/0 error
no such volume error
software volume lock
hardware volume lock

Functions: Low-Level

Most of the low-level File Manager routines can be executed syn
chronously or asynchronously. Synchronous means the application can
not continue until the routine has completed. To execute a routine syn
chronously, the parameter async should be FALSE. Asynchronous means
the application can continue without waiting for completion of the rou
tine. In this case, the file request is placed on the file 1/0 queue and con-

F'uNCTIONS: LoW-LEVEL 329

trol is returned to the application. You may use the parameter block's
ioCompletion field to specify a routine to be executed upon completion
of the I/0 routine. The parameter async should be TRUE if you want the
routine to be executed asynchronously.

Specifying Volumes and Files for Low-Level Routines
There are a number of ways to specify a volume for the low-level

File Manager routines. You can use the volume name, the volume refer
ence number or the drive number of its drive. The File Manager will try
the following methods (in the given order) until it has determined the
volume:

•Use the volume name given by ioNamePtr. If ioNamePtr is
NULL or points to an improper volume name, try the next
method.
• Use the number ioVRefNum. If ioVRefNum is negative, it is
a volume reference number. If it's positive, ioVRefNum is a
drive number. If this ioVRefNum is zero, try the next method.
• Use the default volume.

You may use whichever method you like.
To specify a closed file, you must specify the both volume and the

file name. IoNamePtr is a pointer to the file name. The file name can in
clude the volume name, but this is not necessary. If the file name does
not include the volume name, ioVRefNum is used (as listed above) to de
termine the volume. Open files are specified by the file access path refer
ence number ioRefNum.

Initialization
pascal void FinitQueue()

FinitQueue removes all but the present File Manager call from the
I/Oqueue.

Accessing Volumes
pascal OSErr PBMountVol(paramBlock)

ParmBlkPtr paramBlock;

PBMountVol mounts the volume in the drive numbered
ioVRefNum, and ioVRefNum is set to the volume reference number. If no
other volumes have been mounted, this volume becomes the default vol
ume. PBMountVol is always synchronous.

330 FILE MANAGER

noErr
bdMDBErr
extFSErr
ioErr
memFullErr
noMacDskErr
nsDrvErr
paramErr
volOnLinErr

Resu1t Codes

no error
bad master directory block
external file system
disk I/O error
memory full error
not a Macintosh disk error
no such drive error
bad drive number
volume already on-line

pascal OSErr PBGetVInfo(paramBlock, async)
ParmBlkPtr paramBlock;
Boolean async;

PBGetVInfo gets information about a specific volume. The File
Manager determines the volume in question by checking ioVolindex as
follows:

• when ioVolindex is positive, it is used to determine the
volume. For example, use three for ioVolindex to get infor
mation about the volume that was mounted third.
• when ioVolindex is negative, ioNamePtr or ioVRefNum
are used to determine the volume.
• when ioVolindex is zero, ioVRefNum is used to determine
the volume. When this happens, ioVRefNum is set to the vol
ume reference number and ioNamePtr returns the volume's
name.

noErr
nsvErr
paramErr

Resu1t Codes

no error
no such volume error
no default volume

pascal OSErr PBGetVol(paramBlock, async)
ParmBlkPtr paramBlock;
Boolean async;

PBGetVol returns the default volume's reference number in
ioVRefNum and its name in ioNamePtr.

noErr
nsvErr

Resu1t Codes

no error
no such volume error

pascal OSErr PBSetVol(paramBlock, async)
ParmBlkPtr paramBlock;
Boolean async;

F'uNCTIONS: Low-LEVEL 331

PBSetVol makes the volume specified by ioNamePtr or
ioVRefNum the default volume. The volume must be mounted before it
can become the default volume.

no Err
bdNamErr
nsvErr
paramErr

Resu1t Codes

no error
bad volume name
no such volume error
no default error

OSErr PBFlushVol(paramBlock, async)
ParmBlkPtr paramBlock;
Boolean async;

PBFlushVol flushes the volume given by ioNamePtr or
ioVRefNum. Flushing a volume consists writing the following items to
the volume: descriptive information, volume buffer contents, all the
volume's access path buffers, and the modification date (which is the cur
rent time).

noErr
bdNamErr
extFSErr
ioErr
nsDrvErr
nsvErr
paramErr

Resu1t Codes

no error
bad volume name
external file system
disk 1/0 error
no such drive error
no such volume error
no default volume

pascal OSErr PBUnmountVol(paramBlock)
ParmBlkPtr paramBlock;

PBUnmountVol unmounts the volume given by ioNamePtr or
ioVRefNum. To unmount a volume, the File Manager flushes the volume,
closes all open files on the volume, and releases all memory used for the
volume. PBUnmountVol is always synchronous.

Your application should not allow the startup volume to be un
mounted.

332 FILE MANAGER

noErr
bdNamErr
extFSErr
ioErr
nsDrvErr
nsvErr
paramErr

Result Codes

no error
bad volume name
external file system
disk 1/0 error
no such drive error
no such volume error
no default volume

pascal OSErr PBOffLine(paramBlock)
ParmBlkPtr paramBlock;

PBOffLine takes the volume specified by ioNamePtr or
ioVRefNum and places it off-line. Taking a volume off-line means flush
ing the volume and releasing most of the memory used by the volume -
94 bytes of descriptive information remain in memory.

noErr
bdNamErr
extFSErr
ioErr
nsDrvErr
nsvErr
paramErr

Result Codes

no error
bad volume name
external file system
disk 1/0 error
no such drive error
no such volume error
no default volume

pascal OSErr PBEject(paramBlock)
ParmBlkPtr paramBlock;

PBEject ejects the volume specified by ioNamePtr or ioVRefNum
after taking it off-line by calling PBOffLine.

noErr
bdNamErr
extFSErr
ioErr
nsDrvErr
nsvErr
paramErr

Result Codes

no error
bad volume name
external file system
disk 1/0 error
no such drive error
no such volume error
no default volume

F'uNCTIONS: LoW-LEVEL 333

Changing File Contents
pascal OSErr PBCreate(paramBlock, async)

ParmBlkPtr paramBlock;
Boolean async;

PBCreate creates a new unlocked and empty file on the volume
specified by ioVRefNum. The name of the new file is given by
ioNamePtr, its version number is given by ioVersNum. The file's cre
ation and modification dates are set to the current time as given by the
system clock.

After creating the file, your application should call PBSetFinfo to
provide the Finder information for the file.

no Err
bdNamErr
dupFNErr
dirFulErr
extFSErr
ioErr
nsvErr
vLckdErr
wPrErr

Result Codes

no error
bad volume name
duplicate file name
directory full error
external file system
disk 1/0 error
no such volume error
software volume lock
hardware volume lock

pascal OSErr PBOpen(paramBlock, async)
ParmBlkPtr paramBlock;
Boolean async;

PBOpen opens the file with name ioNamePtr and version number
ioVersNum on volume ioVRefNum. The resulting access path reference
number is returned by ioRefNum.

no Err
bdNamErr
extFSErr
fnfErr
ioErr
memFullErr
nsvErr
opWrErr
trnfoErr

Result Codes

no error
bad volume name
external file system
file not found error
disk 1/0 error
memory full error
no such volume error
file already opened for writing
too many files open

334 FILE MANAGER

pascal OSErr PBOpenRF(paramBlock, async)
ParmBlkPtr paramBlock;
Boolean async;

PBOpenRF is identical to the PBOpen call, except that the resource
fork is opened.

noErr
bdNamErr
extFSErr
fnfErr
ioErr
mernFullErr
nsvErr
opWrErr
permErr
tmfoErr

Resu1t Codes

no error
bad volume name
external file system
file not found error
disk 1/0 error
memory full error
no such volume error
file already opened for writing
no permission to read file
too many files open

pascal OSErr PBRead(paramBlock, async)
ParmBlkPtr paramBlock;
Boolean async;

PBRead reads ioReqCount bytes from the file with access path
ioRefNum to the buffer pointed to by ioBuffer. If you try to read be
yond the end-of-file, the file marker is moved to the end-of-file and you'll
get an end-of-file error result code. After reading is completed,
ioActCount is set to the number of bytes actually read in and
ioPosOffset gives the file marker position.

noErr
eofErr
extFSErr
fnOpnErr
ioErr
paramErr
rfNumErr

Resu1t Codes

no error
end-of-file error
external file system
file not open error
disk 1/0 error
negativeioReqCount
bad reference number

FlJNCTIONS: Low-LEVEL 335

pascal OSErr PBWrite(paramBlock, async)
ParmBlkPtr paramBlock;
Boolean async;

PBWrite writes ioReqCount bytes from the buffer pointed to by
ioBuffer to the file with access path reference number ioRefNum.
IoPosMode and ioPosOffset together indicate the position in the file
where the data is to be written. After writing, ioActCount is set to the
number of bytes actually written, ioPosOffset gives the position of the
mark.

Dete:cmining where writing begins

ioPosMode writing begins
fsAtMark at file marker, ioPosOffset is ignored
fsFromStart ioPosOffset bytes from start of file
fsFromLEOF ioPosOffset bytes from logical end-of-file
fsFromMark ioPosOffset bytes from marker

noErr
dskFulErr
fLckdErr
fnOpnErr
ioErr
paramErr
posErr
rfNumErr
vLckedErr
wPrErr
wrpermErr

Resu1t Codes

no error
disk full error
file locked error
file not open error
disk 1/0 error
negativeioReqCount
position beyond end-of-file
bad reference number
software volume lock
hardware volume lock
no permission to write

pascal OSErr PBGetFPos(paramBlock, async)
ParmBlkPtr paramBlock;
Boolean async;

PBGetFPos sets ioPosOffset to the position of the file marker for
the file with access path reference number ioRefNum. IoReqCount,
ioActCount, and ioPosMode are set to zero.

no Err
extFSErr
fnOpnErr
ioErr
rfNumErr

Resu1t Codes

no error
external file system
file not open error
disk 1/0 error
bad reference number

336 FILE MANAGER

pascal OSErr PBSetFPos(paramBlock, async)
ParmBlkPtr paramBlock;
Boolean async;

PBSetFPos sets the position of the file marker for the file with ac
cess path reference number ioRefNum. IoPosMode and ioPosOffset
together determine the positioning of the file marker. An error will result
if you try to set the mark beyond the logical end-of-file.

Positioning the File Marker

ioPosMode
fsAtMark
fsFromStart
fsFromLEOF
fsFromMark

noErr
eofErr
extFSErr
fnOpnErr
ioErr
posErr
rfNumErr

file marker position
remains the same, ioPosOffset is ignored
ioPosOffset bytes from start of file
ioPosOffset bytes from logical end-of-file
ioPosOffset bytes from marker

Result Codes

no error
end-of-file error
external file system
file not open error
disk 1/0 error
position error (before start)
bad reference number

pascal OSErr PBGetEOF(paramBlock, async)
ParmBlkPtr paramBlock;
Boolean async;

PBGetEOF gets the logical end-of-file for the file indicated by
ioRefNum, and returns this value in ioMisc.

noErr
extFSErr
fnOpnErr
ioErr
rfNumErr

Result Codes

no error
external file system
file not open error
disk 1/0 error
bad reference number

pascal OSErr PBSetEOF(paramBlock, async)
ParmBlkPtr paramBlock;
Boolean async;

FuNCTIONS: LoW-LEVEL 337

PBSetEOF uses the value in ioMisc to set the logical end-of-file for
the open file with access path reference number ioRefNum. If the logical
end-of-file is beyond the physical end-of-file, the next free block is added
to the file, and the physical end-of-file is set to the byte just after this
block. If there in not enough room on the volume, no change is made and
an error is returned. Using ioMisc = 0 frees all the space on the volume
used by the file.

noErr
dskFulErr
extFSErr
fLckdErr
fnOpnErr
ioErr
rfNumErr
vLckdErr
wPrErr
wrpermErr

Resu1t Codes

no error
disk full error
external file system
file locked error
file not open error
disk 1/0 error
bad reference number
software volume lock
hardware volume lock
write permission error

pascal OSErr PBAllocate(pararnBlock, async)
ParmBlkPtr pararnBlock;
Boolean async;

PBAllocate adds ioReqCount bytes to the file with access path
reference number ioRefNum. If ioReqCount is not a multiple of the
block allocation size, the next highest multiple (to ioReqCount) of the
block allocation size is added to the file. If there are not enough bytes
available on the volume, then whatever space is available is allocated to
the file and PBAllocate returns a disk full error. IoActCount returns
the number of bytes actually allocated. The physical end-of-file is set one
byte beyond the last byte allocated.

noErr
dskFulErr
fLckdErr
fnOpnErr
ioErr
rfNumErr
vLckdErr
wPrErr
wrpermErr

Resu1t Codes

no error
disk full error
file locked error
file not open error
disk 1/0 error
bad reference number
software volume lock
hardware volume lock
write permission error

338 FILE MANAGER

pascal OSErr PBFlushFile(paramBlock, async)
ParmBlkPtr paramBlock;
Boolean async;

PBFlushFile writes the contents of the access path ioRefNum's
buffer to the proper volume and updates the file directory. Although the
file is flushed, not all information on the volume is correct until the vol
ume is flushed.

noErr
extFSErr
fnfErr
fnOpnErr
ioErr
nsvErr
rfNumErr

Resu1t Codes

no error
external file system error
file not found error
file not open error
disk I/0 error
no such volume error
bad reference number

pascal OSErr PBClose(paramBlock, async)
ParmBlkPtr paramBlock;
Boolean async;

PBClose writes the contents of access path ioRefNum's buffer to its
associated file and frees the memory used by the access path. Note that
not all information on the volume is correct until the volume is flushed.

noErr
extFSErr
fnfErr
fnOpnErr
ioErr
nsvErr
rfNumErr

Resu1t Codes

no error
external file system error
file not found error
file not open error
disk 1/0 error
no such volume error
bad reference number

Changing Information About Files
pascal OSErr PBGetFinfo(pararnBlock, async)

ParmBlkPtr paramBlock;
Boolean async;

PBGetFinfo gets Finder information for a file. The File Manager
uses ioFDirindex to determine the file. If ioFDirindex is positive, the
File Manager returns information about the file with ioFDirindex se
quence number on volume ioVRefNum. For non-positive ioFDirindex,

F'uNCTIONS: LoW-LEVEL 339

the File Manager returns information about the file on volume
ioFVRefNum with file name and version number specified by
ioNamePtr and ioFVersNum. IoNamePtr returns the file's name (unless
ioNamePtr is NULL) and ioFRefNum is set to the reference number of the
first-found access path for the file.

noErr
bdNamErr
extFSErr
fnfErr
ioErr
nsvErr
paramErr

Result Codes

no error
bad name error
external file system error
file not found error
disk 1/0 error
no such volume error
no default volume

pascal OSErr PBSetFinfo(paramBlock, async)
ParmBlkPtr paramBlock;
Boolean async;

PBSetFinfo sets the Finder information for the file with name
ioNamePtr and version number ioVersNum on volume ioVRefNum.
The Finder information includes the file's type, creator, and modification
date, among other things.

noErr
bdNamErr
extFSErr
fLckdErr
fnfErr
ioErr
nsvErr
vLckdErr
wPrErr

Result Codes

no error
bad name error
external file system error
file locked error
file not found error
disk 1/0 error
no such volume error
software volume lock
hardware volume lock

pascal OSErr PBSetFLock(paramBlock, async)
ParmBlkPtr paramBlock;
Boolean async;

PBSetFLock locks the file on volume ioVRefNum with file name
and version number given by ioNamePtr and ioVersNum. The lock does
not affect the existing access paths.

340 FILE MANAGER

noErr
extFSErr
fnfErr
ioErr
nsvErr
vLckdErr
wPrErr

Result Codes

no error
external file system error
file not found error
disk 1/0 error
no such volume error
software volume lock
hardware volume lock

pascal OSErr PBRstFLock(paramBlock, async)
ParmBlkPtr paramBlock;
Boolean async;

PBRstFLock unlocks the file on volume ioVRefNum with file name
and version number given by ioNamePtr and ioVersNurn. Unlocking
will not affect access paths already in use.

noErr
extFSErr
fnfErr
ioErr
nsvErr
vLckdErr
wPrErr

Result Codes

no error
external file system error
file not found error
disk 1/0 error
no such volume error
software volume lock
hardware volume lock

pascal OSErr PBSetFVers(paramBlock, async)
ParmBlkPtr paramBlock;
Boolean async;

PBSetFVers changes the version number for a file on the volume
with volume reference number ioVRefNurn. The file's name and current
version number are given by ioNamePtr and ioVersNurn. The new ver
sion number is given by ioMisc. This change does not affect any access
paths currently in use for the file.

The Resource Manager and Segment Loader will not operate on a
file unless its version number is zero.

noErr
bdNamErr
dupFNErr
extFSErr
fLckdErr
fnfErr
ioErr
nsvErr
paramErr
vLckdErr
wPrErr

FuNcnoNs: Low-LEVEL 341

Resu1t Codes

no error
bad name error
duplicate file error
external file system error
file locked error
file not found error
disk 1/0 error
no such volume error
no default volume
software volume lock
hardware volume lock

pascal OSErr PBRename(pararnBlock, async)
ParmBlkPtr pararnBlock;
Boolean async;

PBRename changes the name of a file or a volume. If ioNamePtr
points to a file name and ioVersNum is it's version number, then
PBRename changes the file name to the name pointed to by ioMisc. If
ioNamePtr points to the name of a volume or ioVRefNum is the refer
ence number of a volume, the volume's name is changed to the name
pointed to by ioMisc. Renaming will not affect existing access paths.

Resu1t Codes

noErr no error
bdNamErr bad name error
dirFulErr directory full error
dupFNErr duplicate file name error
extFSErr external file system
fLckedErr file locked error
fnfErr file not found error
fsRnErr file system renaming error
ioErr disk 1/0 error
nsvErr no such volume error
paramErr no default volume
vLckedErr software volume lock
wPrErr hardware volume lock

342 Fn.E MANAGER

pascal OSErr PBDelete(paramBlock, async)
ParmBlkPtr paramBlock;
Boolean async;

PBDelete removes the file with name given by ioNamePtr and
version number ioVersNum from the ioVRefNum volume. PBDelete re
moves both forks of the file.

noErr
bdNamErr
extFSErr
fBsyErr
fLckedErr
fnfErr
ioErr
nsvErr
vLckedErr
wPrErr

Resu1t Codes

no error
bad name error
external file system
file busy error
file locked error
file not found error
disk 1/0 error
no such volume error
software volume lock
hardware volume lock

Font Manager

The Font Manager provides tools for getting information about
typefaces and managing font resources. The Font Manager is seldom
called directly - other Toolbox Managers use fonts and provide interface
routines for selecting fonts.

Constants

I* Font Numbers *I
fdef ine systemFont 0
f define applFont 1
fdefine newYork 2
fdef ine geneva 3
fdefine monaco 4
fdef ine venice 5
fdefine london 6
fdefine a thens 7
fdef ine sanFran 8
fdefine toronto 9

I* Font Types */
fdefine propFont Ox9000
fdef ine fixedFont OxBOOO
fdefine fontWid OxACBO

Data Structures

typedef struct
{ int family;

int size;
char face;
char needBits;
int device;
Point numer;

344 FONT MANAGER

Point denom;
FMinput;

typedef struct
{ int errNum;

Handle fontHandle;
Byte bold;
Byte italic;
Byte ulOffset;
Byte ulShadow;
Byte ulThick;
Byte shadow;
SignedByte extra;
Byte ascent;
Byte descent;
Byte wid.Max;
SignedByte leading;
Byte unused;
Point numer;
Point denom;

FMOutput, *FMOutPtr;

typedef struct
{ int font Type;

int firstChar;
int lastChar;
int wid.Max;
int kernMax;
int nDescent;
int fRectMax;
int chHeight;
int owTLoc;
int ascent;
int descent;
int leading;
int rowWords;

FontRec;

Functions

Initializing the Font Manager
pascal void InitFonts()

Ini tFonts gets the Font Manager ready for use. It also reads the
system font into memory if it's not already there. You must call
Ini tFonts once before calling any Toolbox routine that uses the Font
Manager.

Getting Font Information
pascal void GetFontName(fontNum, theName)

int f ontNum;
Str255 theName;

FuNCTIONS 345

GetFontName sets theName equal to the name of the font with font
number fontNum. TheName will be an empty string if there is no font
having the given font number.

pascal void GetFNum(fontName, theNum)
Str255 fontName;
int *theNum;

GetFNum sets theNum equal to the font number of the font with
name fontName. If there is no font with the given font name, theNum is
set to zero.

pascal Boolean RealFont(fontNum, size)
int fontNum, size;

RealFont returns TRUE if the font with font number fontNum is
available in the font size size. RealFont returns FALSE otherwise.
RealFont looks through all open resource files.

Keeping Fonts in Memory
pascal void SetFontLock(lockFlag)

Boolean lockFlag;

SetFontLock makes the most current font either purgeable or un
purgeable. If lockFlag is TRUE, the font is made unpurgeable. If
lockFlag is FALSE, the font is made purgeable.

Advanced Routine
pascal FMOutPtr SwapFont(inRec)

FMinput *inRec;

SwapFont returns information about a version of a font which is
specified by inRec. The information is returned via a Font Manager out
put record, which is pointed to by SwapFont's return value. The informa
tion SwapFont makes available is used by QuickDraw routines.

Printing Manager

The Printing Manager enables applications to use QuickDraw for
plotting output on a printer. The Printing Manager defines the interface
to all printing devices. The interface consists of functions that start and
end printing jobs and tell the printer that a page is beginning or has
ended. The bulk of the Macintosh printing interface is actually
QuickDraw. Once a printing job is begun, QuickDraw can be used for
printing in much the same way it is used to draw on the screen.

Constants

idefine IMemFullErr -108
idefine noErr 0

idefine bDraftLoop 0
idefine bSpoolLoop 1
idefine bUserlLoop 2
idefine bUser2Loop 3

idefine iPrBitsCtl 4

idefine lScreenBits 0
idefine lPaintBits 1
idefine iPrIOCtl 5
idefine iPrEvtCtl 6
idefine iPrEvtAll Ox0002fffd
idefine iPrEvtTop OxOOOlfffd
idefine iPrDevCtl 7
idefine lPrReset OxOOOlOOOO
idefine lPrPageEnd Ox00020000
idefine lprLineFeed Ox00030000
idefine iFMgrCtl 8

idefine iPFMaxPgs 128
:itdefine iPrPgFract 120

348 PRINTING MANAGER

#define iPrAbort 128
#define iPrRelease 2
#define lPfType 'PFIL'
#define !Pf Sig 'PSYS'

#define sPrDrvr ".Print"
#define iPrDrvrRef -3
#define !Print Type 'PREC'
#define iPrintDef 0
#define iPrintLst 1
#define iPrintDrvr 2
#define iMyPrDrvr OxeOOO
#define iPStrRFil OxeOOO
#define iPStrPFil OxeOOl
#define iPrStlDlg OxeOOO
#define PrJobDlg OxeOOl

#define feedCut 0
#define feedFanFold 1
#define feedMechCut 2
#define feedOther 3

#define scan TB 0
#define scanBT 1
#define scanLR 2
#define scanRL 3

Data Structures

typedef char TStr80[81]
typedef TsStr80 *TPstr80;
typedef Rect TPRect;

typedef struct
{ GrafPort gPort;

QDProcs gProcs;
TPrPort, *TPPrPort;

typedef union
{ GrafPtr pGPort;

TPPrPort pPrPort;
TPPort;

typedef struct
{ int iDev;

int iVRes;
int iHRes;
Rect rPage;

Tprinfo;

typedef unsigned char TFeed;
typedef int TWord;

typedef struct
{ TWord wDev;

int iPageV;
int iPageH;
SignedByte bPort;
TFeed feed;

TPrStl;

typedef struct
{ int iFstPage;

int iLstPage;
int iCopies;
SignedByte bJDocLoop;
char fFromUsr;
ProcPtr pidleProc;
TPStr80 pFileName;
int iFileVol;
SignedByte bFileVers;
SignedByte bJobX;

TPrJob;

typedef unsigned char TScan;

typedef struct
{ int iRowBytes;

int iBandV;
int iBandH;
int iDevBytes;
int iBands;
SignedByte bPatScale;
SignedByte bUlThick;
SignedByte bUlOffset;
SignedByte bUlShadow;
TScan scan;
SignedByte bXInf oX;

TPrXInfo;

typedef struct
{ int iPrVersion;

TPrinfo prinfo;
Rect rPaper;
TPrStl prStl;
TPrinfo prinfoPT;
TPrXinfo prXInfo;
TPrJob prJob;
int printX[19];

TPrint, *TPPrint, **THPrint;

DATASTRUCTURES 349

350 PRINTING MANAGER

typedef struct
{ int iTotPages;

int iCurPage;
int iTotCopies;
int iCurCopy;
int iTotBands;
int iCurBand;
char fPgDirty;
char fimaging;
THPrint hPrint;
TPPrPort pPrPort;
PicHandle hPic;

TPrStatus;

Functions

Initialization and Termination
pascal void PrOpen()

PrOpen readies the Printing Manager by opening the Printer Driver
and the printer resource file. If PrOpen cannot open both of these,
PrOpen opens neither and PrError returns an error code.

pascal void PrClose()

PrClose shuts down the Printing Manager. The printer resource
file is closed. Memory used by printer resource file and the Printing
Manager is released. PrClose does not close the Printer Driver,
PrDrvrClose can be called to do that.

Print Records and Dialogs
pascal void PrintDefault(hPrint)

THPrint hPrint;

PrintDefault puts the default print settings into the appropriate
fields of hPrint's print record. PrintDefault obtains the default val
ues from the printer resource file.

pascal Boolean PrValidate(hPrint)
THPrint hPrint;

PrValidate makes sure that the fields of hPrint's print record are
compatible with the current version of the Printing Manager and the in
stalled printer. If the print record is not valid, it is adjusted according to
the default values in the printer resource file and PrValidate returns

F'uNcnONS 351

TRUE. If PrValidate makes no adjustments, it returns FALSE.
PrValidate also makes whatever changes are needed so that

hPrint's print record has the current style and job settings. These chang
es do not affect PrValidate's return value.

pascal Boolean PrStlDialog(hPrint)
THPrint hPrint;

PrStlDialog activates the style dialog. HPrint's contents are used
as the initial settings for the dialog items. If the user cancels the dialog,
the print record remains as it was and PrStlDialog returns FALSE. If
the user clicks the OK button, hPrint's print record is changed to reflect
the user's style selections, and PrStlDialog returns TRUE.

If the print style is stored with the document, the document should
be updated when PrStlDialog returns TRUE.

pascal Boolean PrJobDialog(hPrint)
THPrint hPrint;

PrJobDialog activates the print job dialog. The printer resource
file gives the initial settings for the dialog items. If the user cancels the di
alog, the print record remains as it was and PrJobDialog returns FALSE.
If the user clicks the OK button, hPrint's print record and the printer re
source file are changed to reflect the user's selections, PrValidate is
called, and PrJobDialog returns TRUE.

pascal void PrJobMerge(hPrintSrc, hPrintDst)
THPrint hPrintSrc, hPrintDst;

PrJobMerge copies print job information from the prJob field of
hPrintSrc to the prJob field ofhPrintDst. Other fields in hPrintDst,
such as printer information and paper rectangle, are updated using infor
mation in prJob.

Draft Printing and Spooling
pascal TPPrPort PrOpenDoc(hPrint, pPrPort, pIOBuf)

THPrint hPrint;
TPPrPort pPrPort;
Ptr pIOBuf;

PrOpenDoc initializes a printing port and returns a pointer to the
port. The printing port becomes the current port.

352 PRINTING MANAGER

Hprint is a handle to the print record associated with this port. The
bJDocLoop field in the print record indicates whether this is to be draft
printing or spooling. If spooling is called for, the spool file's name, ver
sion, and volume reference number are obtained from hPrint's job sub
record.

PPrPort is a pointer to the printing port. If pPrPort is NULL,
PrOpenDoc allocates a printing port. PIOBuf is a pointer to the i/o buff
er. When pIOBuf is NULL, the volume buffer is used as the i/o buffer.

Each PrOpenDoc call must be balanced by a call to PrCloseDoc.

pascal void PrOpenPage(pPrPort, pPageFrame)
TPPrPort pPrPort;
TPRect pPageFrame;

PrOpenPage starts a new page in pPrPort's print document. The
printing port is reinitialized.

For spool printing, pPageFrarne points to the rectangle used as
QuickDraw's picture frame for the page. When the page is actually being
printed, the rectangle is scaled to match the page rectangle given in the
printer information subrecord. If you don't want scaling to occur, use
pPageFrarne = NULL, and QuickDraw will use the page rectangle for
the picture frame.

Each PrOpenPage call should be balanced with a call to
PrClosePage.

pascal void PrClosePage(pPrPort)
TPPrPort pPrPort;

PrClosePage closes the open printing page in printing port
pPrPort. For spool printing, the QuickDraw picture of the page is
closed. For draft printing, a form feed is printed and the user is alerted if
a new page needs to be inserted.

pascal void PrCloseDoc(pPrPort)
TPPrPort pPrPort;

PrCloseDoc finishes printing (or spooling) the document using
pPrPort. For draft printing, a form feed is printed and the printer is
reset. For spooling, the spool file is closed if everything went okay. If
spooling was unsuccessful the spool file is deleted.

If PrOpenDoc allocated pPrPort, PrCloseDoc will dispose of the
printing port.

F'uNCTIONS 353

Spool Printing
pascal void PrPicFile(hPrint, pPrPort, pIOBuf, pDevBuf,
prStatus)

THPrint hPrint;
TPPrPort pPrPort;
Ptr pIOBuf, pDevBuf;
TPrStatus *prStatus;

PrPicFile prints a spooled document. PrPicFile should be
called after PrCloseDoc to print the spooled document.

HPrint is the printing record of the spooled document. For spool
files, the file's name, volume reference number, and version number are
obtained in hPrint's job subrecord.

PPrPort points to the printing grafPort. If pPrPort is NULL,

PrPicFile allocates a printing port on the heap. Use pIOBuf to specify
an i/o buffer for reading the spool file. If pIOBuf is NULL, the volume
buffer is used. PDevBuf points to a device-dependent buffer. If pDevBuf
is NULL, PrPicFile will allocate a buffer. PrPicFile updates
prStatus as PrPicFile prints the file.

Handling Errors
pascal int PrError()

PrError returns the error code resulting from the last call to a
Printing Manager function. PrError should be called after each Printing
Manager call.

pascal void PrSetError(iErr)
int iErr;

PrSetError sets the global variable PrintErr to iErr. PrintErr
is used by the Printing Manager. Setting PrintErr to iPrAbort will
cancel a print job already in progress.

Low-Level Driver Access
pascal void PrDrvrOpen()

PrDrvrOpen opens the Printer Driver and reads it into memory if
it's not already there.

pascal void PrDrvrClose()

PrDrvrClose closes the Printer Driver, and releases any memory it
occupied.

354 PRINTING MANAGER

pascal void PrCtlCall(iWhichCtl, lparml, lparm2, lparm3)
int iWhichCtl;
long lparml, lparm2, lparm3;

PrCtlCall calls the current Printer Driver's control routine.
IWhichCtl can be one of the following operations: bit map printing, text
streaming, or printer control.

Use iWhichCtl = iPrBitsCtl for bit map printing. For bit map
printing, lParrnl is a pointer to the QuickDraw bitmap to be printed and
1Parrn2 is a pointer to the rectangle to be printed. LParrn2 should be in
the printing grafrort's coordinates. LParm3 determines the type of print
ing: square dots or the printer's default. Use the constant lPaintBits to
indicate square dots (maybe slower, but truer to the screen) or the con
stant lScreenBits to indicate the printer's native dots (faster but maybe
distorted). Always use lPaintBits on the LaserWriter.

For text streaming, use iWhichCtl = iPrIOCtl. Text streaming
sends a stream of text directly to the printer- without using QuickDraw.
LParrnl points to the start of the text to print and the low-order word of
1Parrn2 contains the number of characters to print. The high-order word
of 1Parrn2 must be zero. LParrn3 should be zero. The text can contain
control or escape sequences for setting the printing style. Consult your
printer manual for details.

Use iWhichCtl = iPrDevCtl for printer control operations.
LParrnl specifies the operation. LParrn2 and 1Parrn3 should always be
zero. The following operations can be preformed: reset the printer, car
riage return and page advance, and end of page. To reset the printer the
high-order word of lParrnl should be OxOO 01. Set the low-order word to
the number of copies to print. For carriage return and page advance, the
high-order word of lParrnl should be Ox0003 and the low-order word
should be the number of dots to advance the page. Set the low-order
word to OxFFFF to indicate a standard 1/6 inch page advance. To indi
cate the end of a page, set the high-order word of lParml to Ox0002.

pascal Handle PrDrvrDCE()

PrDrvrDCE returns a handle to the Printer Driver's DCE (device
control entry).

pascal int PrDrvrVers()

PrDrvrVers returns the version number of the Printer Driver in the
system resource file.

Resource Manager

The Resource Manager organizes Macintosh resource files. The
Resource Manager is seldom called directly, but every Macintosh Toolbox
Manager that reads resource information (such as typefaces, icons, text,
dialog templates, window templates, control definitions, drivers, desk ac
cessories, etc.) uses the Resource Manager to retrieve that information
from the open resource files. Even an application's code is a resource.

The Resource Manager is really a simple database tool. Resources
may be found by name or by numeric ID. You might be tempted to use
the Resource Manager as a simple database tool in your own applica
tions, but you should avoid doing this. The Resource Manager is too slow
for most general purpose database uses.

Constants

I* Resource Attributes */
:/f:define resSysRef Ox80
:/f:define resSysHeap Ox40
Jl:define resPurgeable Ox20
:/f:define resLocked OxlO
:/f:define resProtected Ox08
:/f:define resPreload Ox04
#define res Changed Ox02
#define resUser OxOl

/* Resource File Attributes */
:/f:define mapReadOnly 128
:/f:define mapCompact 64
#define mapChanged 32

/* ResError Result Code Constants */
#define noErr 0
#define resNotFound -192
:/f:define resFnotFound -193

356 REsoURCE MANAGER

#define addResFailed -194
#define addRefFailed -195
#define rmvResFailed -196
#define rmvRefFailed -197

#define mapReadOnly Ox80
#define mapCompact Ox40
#define mapChanged Ox20

Functions

Initializing the Resource Manager
pascal int InitResources()

Ini tResources initializes the Resource Manager, opens the sys
tem resource file, and reads in the file's resource map. The return value is
the file's reference number. Ini tResources is called by the system at
startup. Your application should not call Ini tResources.

pascal void RsrcZoneinit()

RsrcZoneini t initializes the resource map read in from the system
resource file. RsrcZoneinit is called by the system (not your applica
tion) when your application starts up. All open resource files, except for
the system resource file, are closed. RsrcZoneinit goes through the re
source map giving NULL values to handles that point to the application
heap (these are easy to find - they all have zero resSysHeap attribute),
since the previous application heap is no longer valid.

Opening and Closing Resource Files
pascal void CreateResFile(fileName)

Str255 fileName;

CreateResFile creates a resource file with name fileName on the
default volume. CreateResFile creates a file with both the resource and
data fork. If a file with the given name already exists, a resource fork is
created for the file. If the existing file already had a resource fork,
CreateResFile does nothing and a duplicate file name error is returned
by ResError.

CreateResFile only creates the file. Your application must open
the resource file before using it.

pascal int OpenResFile(fileName)
Str255 fileName;

FuNcnONS 357

OpenResFile opens the resource file with name fileName. The re
source map is read in from the file. All resources having a set
resP re Load attribute are also read in. The file becomes the current re
source file and a file reference number is returned.

If the file was already open, the file reference number is returned,
but the file does not become the current resource file. If the file cannot be
opened, ResError returns an Operating System result code and
OpenResFile returns -1. OpenResFile assumes the file to be opened is
on the default volume.

When an application is running, at least two resource files are open:
the system resource file and the application's resource file. The system re
source file has reference number zero. To find out the reference number
of the application resource file, call CurResFile after the application
starts up and before any other resource files are opened.

ResError Codes

no Err no error

pascal void CloseResFile(refNum)
int refNum;

CloseResFile closes the resource file with reference number
refNum. The following events happen when CloseResFile is called:
UpdateResFile is called, ReleaseResource is called for each resource
in the file, the memory used by the resource map is released, and the re
source file is closed.

If refNum is zero (the system resource file), all open resource files
are closed before this one. If refNum is not a reference number for a re
source file, then nothing happens and ResError returns an error code.

All open resource files (except the system resource file) are closed
when the application is terminated.

ResError Codes

noErr
resFnotFound

Checking for Errors
pascal int ResError()

no error
can't find resource file

ResError returns the error code resulting from the last Resource
Manager routine.

358 REsoURCE MANAGER

ResError Codes

noErr
resNotFound
resFnotFound
addResFailed
addRefFailed
rmvResFailed
rmvRefFailed

no error
can't find resource
can't find resource file
couldn't add resource
couldn't add reference
couldn't remove resource
couldn't remove reference

Setting the Current Resource File
pascal int CurResFile()

CurResFile returns the current resource file's reference number.
To get the reference number for the application, call CurResFile when
the application is started.

When the system resource file is the current resource file,
CurResFile returns the actual reference number of the system resource
file. Your application can use this number or zero when referring to the
system resource file.

pascal int HomeResFile(theResource)
Handle theResource;

HomeResFile returns the file reference number of the resource file
containing theResource. If an error occurs, for example theResource
is not a handle to a resource, HomeResF ile returns -1.

ResError Codes

noErr
resNotFound

no error
resource not found

pascal void UseResFile(refNum)
int refNurn;

UseResFile makes the resource file with reference number
refNum the current resource file. If refNum is zero the system resource
file becomes the current resource file.

ResError Codes

noErr
resFnotFound

no error
resource file not found

FuNCTIONS 359

pascal int CountTypes()

CountTypes looks in all the open resource files and returns the
total number of resource types that are found.

pascal void GetindType(theType, index)
ResType *theType;
int index;

GetindType sets theType equal to the resource type referenced by
index. Index should be a number from one to the number returned by
CountTypes. If index is not in that range, theType is set to four NULL
characters.

Getting and Disposing of Resources
pascal void SetResLoad(load)

Boolean load;

SetResLoad sets the global variable ResLoad to load. When
ResLoad is TRUE, the routines that return handles to resources automati
cally read the resource into memory. When ResLoad is FALSE, these rou
tines do not read in the resource and they return a NULL.

TRUE is ResLoad's normal state. If you set ResLoad to FALSE you
should restore it to the normal state as soon as possible. Other Toolbox
routines rely on the Resource Manager to load resources.

pascal int CountResources(theType)
ResType theType;

CountResources looks through all open resource files and returns
the total number of resources of type the Type that are found.

pascal Handle GetindResource(theType, index)
ResType theType;
int index;

GetindResource returns a handle to the indexth resource of type
theType. Index should be a number from one to the value returned by
CountResources (theType). If index is not in this range, NULL is re
turned.

If the requested resource cannot be found, NULL is returned. If
ResLoad is TRUE, GetindResource reads the resource into memory. If
Res load is FALSE, an empty handle is returned.

360 REsoURCE MANAGER

pascal Handle GetResource(theType, theID)
ResType theType;
int theID;

GetResource returns the handle to the resource of type theType
having resource ID theID. GetResource reads the resource into memo
ry, unless ResLoad is FALSE.

GetResource searches for the resource starting in the current re
source file then through all resource files opened before the current re
source file. If the resource is not found, NULL is returned.

ResError Codes

noErr
resNotFound

no error
resource not found

pascal Handle GetNamedResource(theType, name)
ResType theType;
Str255 name;

GetNamedResource returns a handle to the resource of type
theType having the resource name name. GetNamedResource is the
same as GetResource, except it uses a name rather than an id number.

noErr
resNotFound

ResError Codes

no error
resource not found

pascal void LoadResource(theResource)
Handle theResource;

LoadResource reads theResource into memory, if necessary. If
theResource is already in memory, LoadResource does nothing.

no Err
resNotFound

ResError Codes

no error
resource not found

pascal void ReleaseResource(theResource)
Handle theResource;

ReleaseResource frees the memory occupied by theResource's
data and the handle to the resource in the resource map becomes NULL.
TheResource can no longer be used as a resource handle. If the resource

FuNCITONS 361

needs to be read in again, a new handle will be allocated.
ReleaseResource should only be called when your application is

completely through with a resource.

noErr
resNotFound

ResError Codes

no error
resource not found

pascal void DetachResource(theResource)
Handle theResource;

DetachResource removes theResource from the resource map.
This has the effect of making the resource manager forget about this re
source.

Getting Resource Information
pascal int UniqueID(theType)

ResType theType;

UniqueID returns a unique ID number for a resource of type
theType. Unique Id looks through all open resource files, and returns an
ID that is not used by any existing resource of type theType. The ID will
be greater than zero, but it may be in the system resource range (zero to
127). If the ID returned is not greater than 127, UniqueID should be
called again.

pascal void GetResinfo(theResource, theID, theType, name)
Handle theResource;
int *theID;
ResType *theType;
Str255 name;

GetResinfo returns information about resource theResource.
Name is set to the resource's name, theType is set to the resource type
and the ID is set to the resource's id. If theResource is not a handle to a
resource, GetResinfo does nothing.

noErr
resNotFound

ResError Codes

no error
resource not found

362 REsoURCE MANAGER

pascal int GetResAttrs(theResource)
Handle theResource;

GetResAttrs returns the attributes of resource theResource. If
theResource is not a handle to a resource, GetResAttrs will do noth
ing.

ResError Codes

noErr
resNotFound

no error
resource not found

pascal long SizeResource(theResource)
Handle theResource;

SizeResource returns the size (in bytes) of resource
theResource's data. If theResource is not a handle to a resource, -1 is
returned.

ResError Codes

noErr
resNotFound

Modifying resources

no error
resource not found

pascal void SetResinfo(theResource, theID, name)
Handle theResource;
int theID;
Str255 name;

SetResinfo changes theResource's name and ID number to the
those given by name and the ID.

SetResinfo makes the changes to the resource map only. To make
the changes permanent, call ChangedResource after calling
SetResinfo. These changes can become permanent if
ChangedResource is called for any resource which is in the same re
source file as theResource, since ChangedResource causes the entire
resource map to be written out when the file is updated. If you do not
want these changes to become permanent, you must restore the original
values before the resource file is updated.

SetResinfo does nothing if: theResource is not a handle to a re
source, theResource is protected, the resource map will become too
large to fit into memory, or there is not enough disk space to store the
modified resource file. In any of these cases, ResError returns an appro
priate error code.

pascal void SetResAttrs(theResource, attrs)
Handle theResource;
int attrs;

fUNCITONS 363

SetResAttrs sets theResource's attributes (in the resource map)
to the attributes in attrs. If theResource is not a handle to a resource,
SetResAttrs does nothing.

Do not use SetResAttrs for setting the res Changed attribute. The
res Changed attribute must only be changed by ChangedResource. The
only attribute to become effective immediately is resProtected. All
others become effective next time the resource is read in.

You should follow SetResAttrs with a call to ChangedResource
if you want the changes to be permanent. Calling ChangedResource will
cause the entire resource map to be written out when the resource file is
updated.

noErr
resNotFound

ResError Codes

no error
resource not found

pascal void ChangedResource(theResource)
Handle theResource;

ChangedResource checks if there is enough space on the disk to
hold the modified resource file. If there is, ChangedResource sets
theResource's resChanged attribute in the resource map. If there isn't
the enough disk space, the resChanged bit is cleared.

If the resChanged attribute of a resource is TRUE, the Resource
Manager writes the resource data to the resource file when
Wri teResource is called or when the resource file is updated. The entire
resource map is written when theResource's resource file is updated.

ChangedResource does nothing when theResource is not a han
dle to a resource or when there is not enough space on the disk for the
modified resource file. When this happens ResError returns an error
code.

When changing resource data for purgeable resources, you must be
certain that the resource won't be purged while you are changing it. To
do this, make the resource unpurgeable (using Memory Manager's
HNoPurge routine) while you are operating on it, write it out once it's
been changed, then reset it as purgeable (using Memory Manager's
HPurge routine).

no Err
resNotFound

ResError Codes

no error
resource not found

364 REsoURCB MANAGER

pascal void AddResource(theData, theType, theID, name)
Handle theData;
ResType theType;
int theID;
Str255 name;

AddResource adds a resource to the current resource file. The file's
resChanged attribute becomes TRUE. TheData is a handle to resource
data in memory. If theData is an empty handle, zero-length data will be
written out for the resource. The type, ID and name of the resource are
given by theType, theID and name. Your application is responsible for
providing the resource with a unique ID (see UniqueID), as
AddResource does not check for this.

AddResource does nothing when theData is a NULL handle or a
handle to a resource. When this happens, ResError indicates that add
ing the resource failed. If there's not enough room for the resource,
AddResource does nothing. This can happen if the resource map gets too
big to fit in memory or there isn't enough disk space. If this is the case,
ResError returns an Operating System result code.

ResError Codes

no Err
addResFailed

no error
resource was not added

pascal void RmveResource(theResource)
Handle theResource;

RmveResource removes resource theResource from the current
resource file. TheResource's resource reference is removed from the re
source map and it's resource data is removed from the resource file when
the file is updated.

RmveResource does nothing when theResource is not a handle
to a resource in the current resource file or the resProtected attribute is
set for theResource.

After successfully removing the resource, call the Memory Manager
function DisposHandle to free the memory occupied by the resource
data.

ResError Codes

noErr
rrnvResFailed

no error
resource was not removed

pascal void UpdateResFile(refNum)
int refNum;

F'uNCTIONS 365

UpdateResFile updates a resource file according to the state of the
file's resource map. RefNum is the reference number for the resource file.

UpdateResFile does the following:
• The data in the file is made current. Here, resource data is
added, changed, or removed from the file according to the re
source map. WriteResource is called for each resource
whose resChanged attribute is set. If a resource's data is larg
er than before, the data is written at the end of the file.
• Next the file is compacted: vacancies left by moved or re
moved resources are closed up.
• If you've added, removed or called ChangedResource suc
cessfully, the entire resource map is written out to the resource
file in its current form.
UpdateResFile is useful if you want to update a file without clos

ing it. The application needn't call UpdateResFile before closing a file
as UpdateResFile is called by CloseResFile.

ResError Codes

noErr
resFnotFound

no error
can't find the resource file

pascal void WriteResource(theResource)
Handle theResource;

WriteResource writes out the resource data for resource
theResource if it's resChanged attribute is set. After writing out the
data, the resChanged attribute is cleared. If the resource has been
purged, zero-length data is written out. If the resProtected attribute
has been set, or if theResource is not a handle to a resource,
Wri teResource does nothing.

Wri teResource does not check if there is enough space on the disk
for the the resource, but ChangedResource does. Be sure that
ChangedResource was successful before calling WriteResource.

ResError Codes

no Err
resNotFound

no error
can't fmd the resource

pascal void SetResPurge(install)
Boolean install;

SetResPurge can cause the Memory Manager to check with the
Resource Manager before it purges a handle's data. The Resource
Manager determines whether or not the handle in question belongs to a

366 RF.soURCE MANAGER

resource in the application heap. If it does, WriteResource is called if
the resChanged attribute is set. This occurs if install is TRUE.
SetResPurge (FALSE) restores the normal state where the Memory
Manager will purge without consulting the Resource Manager.

Advanced Routines
pascal int GetResFileAttrs(refNum)

int refNum;

GetResFileAttrs returns the attributes of the resource file with
reference number refNum.

ResError Codes

noErr
resFnotFound

no error
can't find the resource file

pascal void SetResFileAttrs(refNum, attrs)
int refNum, attrs;

SetResFileAttrs sets the file attributes of the resource file with
reference number refNum to attrs. You should not change the attributes
of the system resource file.

ResError Codes

noErr
resFnotFound

no error
can't find the resource file

Toolbox Utilities

The Toolbox Utilities provide a grab bag of routines: Fixed point
arithmetic, which is considerably faster than floating point. String manip
ulation. Bit-image compression. Bit manipulation. Longword manipula
tion. Graphics utilities.

Some of the Toolbox Utilities routines, like the bit manipulation
routines, are redundant with respect to capabilities C provides. Others,
such as the graphics routines, might be better classified among
QuickDraw routines.

Data Structures

typedef long Fixed;

typedef struct
{ long hiLong;

long loLong;
Int64Bit;

typedef Str255
typedef Str255

typedef struct
typedef struct

typedef struct
typedef struct

Functions

*StringPtr;
**StringHandle;

Cursor *CursPtr;
Cursor **CursHandle;

Pattern *PatPtr;
Pattern **PatHandle;

Fixed-Point Arithmetic
pascal Fixed FixRatio(numer, denom)

int numer, denom;

368 TootBox UTIUTIEs

FixRatio does fixed point division. The value returned by
FixRatio is the fixed point value of numer/denom. When denom is zero,
F ixRatio returns Ox7FFFFFFF with the sign bit of numer.

pascal Fixed FixMul(a, b)
Fixed a, b;

F ixMul does fixed point multiplication. The return value of F ixMul
is the fixed point value of a*b, computed MOD 65536 and truncated.

pascal int FixRound(x)
Fixed x;

FixRound rounds the positive fixed point number x to the nearest
integer and returns that integer. If x is halfway between two integers,
F ixRound will round up.

The rounded values of negative fixed point numbers are equal to :
-FixRound (-x).

String Manipulation
pascal StringHandle NewString(theString)

Str255 theString;

NewString allocates space for theString in the heap and returns
a handle to the space. NewString does not actually put theString in
the heap, it just allocates space.

pascal void SetString(h, theString)
StringHandle h;
Str255 theString;

Set String makes the handle ha handle to the String.

pascal StringHandle GetString(stringID)
int stringID;

Get String returns a handle to the 'STR ' resource having re
source ID stringID. If the string is not already in memory, GetString
calls on the Resource Manager to read it in. An empty handle is returned
if the string cannot be read.

F'uNCTIONS 369

pascal void GetindString(theString, strListID, index)
Str255 theString;
int strListID, index;

GetindString sets theString equal to the indexth string in the
string list with ID strListID. If the slring list is not in memory,
GetindString calls on the Resource Manager to read it in. Index must
be a number from one to the number of strings in the string list. If index
is out of range, or if the string list cannot be read in, theString becomes
an empty string.

Byte Manipulation
pascal long Munger(h, offset, ptrl, lenl, ptr2, len2)

Handle h;
Ptr ptrl, ptr2;
long offset, lenl, len2;

Munger does search and replacement (munging) of byte patterns in
a handle. Handle his the destination handle. Offset is number of the
byte in handle h where searching begins. Ptrl points to the pattern to
search for, known as the target. The target's length, in bytes, is given by
lenl. Ptr2 points to the replacement pattern which is len2 bytes in
length. The value returned by Munger is the offset of the byte (in the des
tination handle) one byte beyond where the replacement occurred. If the
target was not found, Munger returns a negative value.

Munger considers it a match if all the bytes from offset to the end
of the destination match the beginning of the target.

Sending NULL pointers or zero length patterns to Munger will cause
the following:

• If the target pointer (ptrl) is NULL and lenl is positive,
lenl bytes at offset in the destination are replaced.
• If the target pointer (ptrl) is NULL and lenl is negative, all
bytes in the destination beyond offset are replaced.
• If lenl is zero, the replacement is inserted at offset.
• If the replacement pointer (ptr2) is NULL, no replacement
occurs, and Munger returns the byte where the target is found.
•If len2 is zero, the target deleted.

pascal void PackBits(srcPtr,dstPtr, srcBytes)
Ptr *srcPtr, *dstPtr;
int srcBytes;

PackBits compacts data. It does this for srcBytes bytes of data
starting at the location pointed to by srcPtr and places the compacted
data at the location pointed to by dstPtr. SrcPtr is incremented by

370 TooLBoX U111.ITIES

srcBytes and dstPtr is incremented by the number of bytes in the
compacted area.

Bytes are compacted whenever there are three or more contiguous
equal bytes. This condition occurs .frequently in QuickDraw images. To
compact bit images, call PackBits once for each row in the image. In the
worst case, the length of the compacted bytes is one byte longer than the
original length. To undo the packing, call UnPackBits.

pascal void UnPackBits(srcPtr,dstPtr, dstBytes)
Ptr *srcPtr, *dstPtr;
int dstBytes;

UnpackBits expands the data that was compacted by PackBits.
The compacted data pointed to by srcPtr gets unpacked to the
dstBytes number of bytes pointed to by dstPtr. After expanding the
data, dstPtr is incremented by dstBytes and srcPtr is incremented
by the number of bytes in the expanded area.

Bit Manipulation
pascal Boolean BitTst(bytePtr, bitNum)

Ptr bytePtr;
long bitNum;

BitTst tests whether a given bit is set (1) or clear (0). If the bit is
set, BitTst is TRUE. If the bit is clear, BitTst is FALSE. The bit tested is
the bit which is offset bi tNum bits from high-order bit of the byte pointed
to by bytePtr.

pascal void BitSet(bytePtr, bitNum)
Ptr bytePtr;
long bitNum;

BitSet sets the bit which is offset bitNum bits from high-order bit
of the byte pointed to by bytePtr.

pascal void BitClr(bytePtr, bitNum)
Ptr bytePtr;
long bitNum;

BitClr clears the bit which is offset bitNum bits from high-order
bit of the byte pointed to by bytePtr.

Logical Operations
pascal long BitAnd(valuel, value2)

long valuel, value2;

BitAndreturns (valuel & value2).

pascal long BitOr(valuel, value2)
long valuel, value2;

BitOrretums (valuel I value2).

pascal long BitXor(valuel, value2)
long valuel, value2;

BitXor returns (valuel " value2).

pascal long BitNot(value)
long value;

BitNot returns (-value).

pascal long BitShift(value, count)
long value;
int count;

F'uNCTIONS 371

BitShift shifts the bits in value. If count is positive, BitShift
returns (value << count). If count is negative, value is treated as
unsigned and (value >> count) is returned.

Other Operations on Long Integers
pascal int HiWord(x)

long x;

HiWord returns the high-order word of x.

pascal int LoWord(x)
long x;

LoWord returns the low-order word of x.

372 TootBox UTII.JTIES

pascal void LongMul(a, b, dest)
long a, b;
rnt64Bit *dest;

LongMul sets de st equal to a *b.

Graphics Utilities
pascal Handle Getrcon(iconrD)

int iconrD;

Get I con returns a handle to the ' I CON ' resource with ID icon ID.
If the icon is not in memory, Geticon calls on the Resource Manager to
read it in. If the icon cannot be read in, an empty handle is returned.

pascal void Ploticon(theRect, thereon)
Rect *theRect;
Handle thereon;

Ploticon draws thereon in theRect. Since drawing is done in
the current grafrort, theRect should be in local coordinates. Drawing is
done via CopyBits using srcCopy mode.

pascal PatHandle GetPattern(patrD)
int patro;

GetPattern returns a handle to the 'PAT ' (pattern) resource
with ID patID. If the pattern is not already in memory, GetPattern
calls on the Resource Manager to read it in. If the pattern cannot be read
in, an empty handle is returned.

pascal void GetrndPattern(thePattern, patListID, index)
Pattern *thePattern;
int patListrD, index;

GetindPattern sets thePattern equal to the indexth pattern in
the 'PAT#' (pattern list) resource with ID patListID. Index must be a
number from one to the number of patterns in the pattern list. If the pat
tern list is not in memory, then GetindPattern calls on the Resource
Manager to read it in.

pascal CursHandle GetCursor(cursorID)
int cursorID;

FlJNCTIONS 373

GetCursor returns a handle to the 'CURS' (cursor) resource with
ID cursorID. If the cursor is not already in memory,GetCursorcallson
the Resource Manager to read it in. If the specified cursor cannot be read
in, an empty handle is returned.

The system resource file has the following cursors:
fdefine iBeamCursor 1
fdefine crossCursor 2
fdefine plusCursor 3
fdefine watchCursor 4

pascal void ShieldCursor(shieldRect, offsetPt)
Rect *shieldRect;
Point offsetPt;

ShieldCursor hides the cursor if it is over rectangle shield.Re ct.
The rectangle can be specified in either global or local coordinates. If
using global coordinates, offsetPt should be (0, 0). For local coordi
nates, offsetPt should be the top left comer of the gra£Port's boundary
rectangle.

ShieldCursor decrements the cursor level. It must be balanced by
a call to ShowCursor when you no longer wish to have this "shielding"
effect.

pascal PicHandle GetPicture(pictureID)
int pictureID;

GetPicture returns a handle to the 'PICT' (picture) resource with
ID pictureID. If the picture is not already in memory,
GetResource ('PICT', pictureID) is called to read it in. If the pic
ture cannot be read in, GetP i ct ure returns an empty handle.

Miscellaneous Utilities
pascal long DeltaPoint(ptA, ptB)

Point ptA, ptB;

DeltaPoint subtracts ptA from ptB. It returns a long integer
whose high-order word is the difference of the vertical coordinates and
whose low-order word is the difference of the horizontal coordinates.

374 TooLBox Um.nms

pascal Fixed SlopeFromAngle(angle)
int angle;

SlopeFromAngle returns the slope (slope is dh/dv) of the line
which is at the given angle with the y-axis. Angles are measured with
zero degrees at 12 o'clock. Positive degrees are measured clockwise, neg
ative degrees are measured counterclockwise. Angles are treated MOD
180.

pascal int AngleFromSlope(slope)
Fixed slope;

AngleFromSlope returns the angle between the y-axis and the line
having the given slope. As in SlopeFromAngle, angles are measured
with zero degrees at 12 o'clock. Positive degrees are measured clockwise,
negative degrees are measured counterclockwise. Angles are treated MOD
180.

Desk Manager

The Desk Manager opens and closes desk accessories. It also routes
menu commands, editing commands, and events to open desk accesso
ries. The Desk Manager also provides a routine through which desk ac
cessories may be allotted time for periodic actions.

Constants

0 fdef ine undoCmd
fdef ine cutCmd 2
fdef ine copyCmd 3
#define pasteCmd 4
fdef ine clearCmd 5

Functions

Opening and Closing Desk Accessories
pascal int OpenDeskAcc(theAcc)

Str255 theAcc;

OpenDeskAcc opens the desk accessory whose resource name is
specified by theAcc. If theAcc has a window, this window becomes the
active window and the display changes accordingly. The Resource
Manager is used to read in the desk accessory from the resource file.

If the desk accessory is successfully opened, the return value is the
driver reference number. Your application will not need this number, so
it can be ignored.

If theAcc cannot be opened the return value is undefined. When
this happens, the user already knows that the desk accessory cannot be
opened and therefore won't be displayed. Again, your application can ig
nore the return value.

376 DESK MANAGER

Before calling OpenDeskAcc, save the current grafPort using
GetPort. Upon return from OpenDeskAcc restore the grafPort with
SetPort.

pascal void CloseDeskAcc(refNum)
int refNum;

CloseDeskAcc closes the desk accessory driver reference number
refNum. This routine should be used when a system window is active
and the user selects close from the file menu. The driver reference num
ber can be found in the windowKind field of the desk accessory's active
window.

If the user clicks a desk accessory's goAway box, the Desk Manager
automatically calls CloseDeskAcc. Calling CloseDeskAcc is not neces
sary when an application is terminated. When the application heap is re
leased, the desk accessories (which are in the application heap) are also
released.

Handling Events in Desk Accessories
pascal void SystemClick(theEvent, theWindow)

EventRecord *theEvent;
WindowPtr theWindow;

SystemClick should be called after determining that a mouse
down event occurred inside a system window. TheWindow is the win
dow where theEvent occurred. SystemClick first determines which
part of the desk accessory the mouse button was pressed in. If theEvent
occurred:

• in the content region of an active window, theEvent is
passed to the desk accessory which responds appropriately.
• in the content region of an inactive window, theWindow is
made the active window.
• in the drag region, the Window Manager function
DragWindow is called. DragWindow will drag a gray outline of
theWindow across the screen, and then move theWindow
when the user is done dragging. If theWindow is inactive,
DragWindow will make it the active window.
• in the goAway region, the Window Manager function
TrackGoAway is called. TrackGoAway tracks the mouse until
the mouse button is released (TrackGoAway takes care of
highlighting). If the button is released in the goAway region,
the desk accessory will close itself. If the mouse button is re
leased outside this region, nothing happens.

pascal Boolean SystemEdit(editCmd)
int editCmd;

FuNcnONS 377

SystemEdit should be called after determining that the user has
selected one of the five standard editing commands from the edit menu.
The parameter editCmd indicates which editing command was chosen. If
the edit commands are in the standard arrangement (in ascending order
with a gray line between Undo and Cut), then editCmd = menu!tem -
1.

SystemEdit returns TRUE if a desk accessory handled the editing.
This happens when the active window is owned by a desk accessory.
When SystemEdi t returns FALSE, it is the application's responsibility to
handle the editing.

Performing Periodic Actions
pascal void SystemTask()

SystemTask allows each open desk accessories to perform whatev
er predefined periodic action it may have. SystemTask alerts the desk
accessory that the action needs to be performed if some specified amount
of time has occurred since it was last done.

SystemTask should be called at least every sixtieth of a second
(one tick in the Macintosh's time unit). Calling SystemTask once each
time through the event loop will usually meet this specification. If you do
a lot of processing in the event loop, you should call SystemTask more
often.

An example of a desk accessory which has a periodic action is the
alarm clock: the displayed time needs to be changed every second.

Advanced Routines
pascal Boolean SystemEvent(theEvent)

EventRecord *theEvent;

SystemEvent is called by the Toolbox Event Manager routine
GetNextEvent whenever it gets an event. SystemEvent determines
whether the system should intercept and handle the event, or whether
theEvent should be passed on to the application. When theEvent is an
event that should be handled by the system, whatever needs to be done
to handle theEvent is done and SystemEvent returns TRUE. If
theEvent is an event which should be a handled by the application,
SystemEvent returns FALSE.

SystemEvent will immediately return FALSE for null, abort and
mouse-down events. Why FALSE for a mouse-down event? Well, in order
for SystemEvent to check if it should handle the mouse-down, it would

378 DEsK MANAGER

first have to find out if the event occurred in a system window. This pro
cess will be repeated when FindWindow is called. So rather than doing
the same calcuiation twice, it is done once- by FindWindow.

If theEvent is a mouse-up or keyboard event, SysternEvent
checks if the active window is a desk accessory window capable of han
dling such an event. If it is, theEvent is passed along to the desk acces
sory and SystemEvent returns TRUE. If it isn't, SystemEvent returns
FALSE and your application should handle theEvent.

If theEvent is an activate or update event, SystemEvent checks if
it occurred in a desk accessory's window. If it did and the desk accessory
can handle this event (desk accessories should be set up to do this), the
desk accessory is given theEvent and SystemEvent is TRUE. If respon
sibility to deal with theEvent can't be given to the desk accessory,
SysternEvent is FALSE.

If theEvent is a disk-inserted event, SystemEvent calls the File
Manager routine MountVol. Some low-level processing takes place here,
but SystemEvent returns FALSE, allowing your application the opportu
nity to take further action with the event.

pascal void SystemMenu(rnenuResult)
long rnenuResult;

SystemMenu is called by the Menu Manager functions MenuSelect
and MenuKey when an item from a desk accessory's menu has been cho
sen. SystemMenu directs the desk accessory to do the action appropriate
for the menu selection. MenuResul t has the menu ID as its high-order
word and the menu item number as its low-order word. This is the same
format used in the return value of MenuSelect and MenuKey.

Scrap Manager

The Scrap Manager controls access to the desk scrap. The desk scrap
is where "cut" or "copied" information can be held until it is pasted. The
desk scrap is so called because it persists across invocations of Macintosh
applications. The desk scrap enables the user to paste material from your
application into whatever application is run next.

Constants

#define noTypeErr -102

Data Structures

typedef struct
{ long scrapSize;

Handle scrapHandle;
int scrapCount;
int scrapState;
StringPtr scrapName;

ScrapStuff, *PScrapStuff;

Functions

Getting Scrap Information
pascal PScrapStuff InfoScrap()

InfoScrap returns a ScrapStuff pointer with information about the
desk scrap.

380 5cRAP MANAGER

field name
scrapSize
scrapHandle

scrapCount

scrapState
scrapNarne

Desk Scrap Information

information
size (in bytes) of the desk scrap
if the scrap is in memory, this is a handle to it
if the scrap is on disk, scrapHandle is empty
a value that changes each time ZeroScrap is
called (see ZeroScrap for details and use)
> 0 if desk scrap is in memory, 0 if it's on disk
the scrap file's name (usually DeskScrap)

Keeping Scrap on the Disk
pascal long UnloadScrap()

UnloadScrap writes the desk scrap to the scrap file, if necessary. If
the desk scrap is already written out to the scrap file, UnloadScrap does
nothing. If there are no errors, UnloadScrap returns zero. If an error did
occur, UnloadScrap returns an Operating System error code.

pascal long LoadScrap()

LoadScrap reads the scrap file into the desk scrap, if necessary. If
the scrap is already in memory, LoadScrap does nothing. If there are no
errors, LoadScrap returns zero. If an error did occur, LoadScrap returns
an Operating System error code.

Reading from the Scrap
pascal long GetScrap(hDest, theType, offset)

Handle hDest;
ResType theType;
long *offset;

Get Scrap gets data of theType from the desk scrap and copies it
into memory. HDest, a previously allocated handle, becomes a handle to
the data. Offset returns the location the data was copied from. The loca
tion is given as the number of bytes offset from the start of the desk scrap.

If no errors occur, Get Scrap returns the number of bytes copied. If
errors did occur, GetScrap returns an Operating System error or
noTypeErr. NoTypeErr occurs when there is no data of theType in the
desk scrap.

If hDest is NULL, the data will not be read in - this lets you spy on
the desk scrap. You can find out if you have data of theType before you
allocate a handle for it, or you may just want to find out the size of the
data for theType. To determine the preferred data type of the application
that wrote the scrap, call Get Scrap with different types: the type return-

F'uNCITONS 381

ing offset equal to zero is the preferred type. Offset zero indicates this
was the first scrap written out.

Writing to the Scrap
pascal long ZeroScrap()

ZeroScrap clears the desk scrap. The desk scrap must be cleared
before it can accept any new scrap from the application or from a desk ac
cessory. An Operating System error code is returned if there is an error,
otherwise ZeroScrap returns zero.

ZeroScrap also changes PScrapStuff->scrapCount. By watch
ing for changes to the scrapCount field, your application can monitor
changes to the desk scrap.

pascal long PutScrap(length, theType, source)
long length;
ResType theType;
Ptr source;

PutScrap writes the data pointed to by source to the desk scrap.
Length specifies the number of bytes to be written and theType is the
data type. If there are no errors, PutScrap returns zero. If errors occur,
an Operating System error code is returned.

You must clear the desk scrap (by calling ZeroScrap) before your
first call to Put Scrap.

Segment Loader

The principal job of the Segment Loader is to load the segments of
an application on demand. If an application is divided into segments
when it is created, the Segment Loader will provide a transparent "over
lay" mechanism that can leave unused parts of an application on disk
until they are used.

The Segment Loader section of the Toolbox also contains some utili
ty routines that help applications which can handle multiple documents
at one time. These routines return information about the documents that
were selected when the application was launched. These routines provide
roughly the same functionality as the the "argv" argument vector that is
conventionally an argument of the "main" routine in a C program.

Constants

#define appOpen 0
#define appPrint 1

Data Structures

typedef struct
{ int vRefNum;

OSType fType;
int versNum;
Str255 fName;

AppFile;

384 SEGMENT LoADER

Functions

pascal void UnloadSeg(routineAddr)
Ptr routineAddr;

UnloadSeg makes the segment containing the routine pointed to by
routineAddr relocatable and purgeable. Your application is responsible
for unloading segments. The Segment Loader will load segments as nec
essary.

pascal void CountAppFiles(message, count)
int *message, *count;

CountAppFiles gets information from the Finder for the applica
tion. Count is set to the number of documents selected when your appli
cation was started, and message will tell you whether the selected docu
ments are to be opened (message = appOpen) or printed (message =
appPrint).

pascal void GetAppFiles(index, theFile)
int index;
AppFile *theFile;

GetAppFiles gets information about a document that was selected
when your application started up. Use index to specify which document
you want information about, where index is between 1 and the count re
turned by CountAppFiles. The information is returned in theFile: it
includes the volume reference number, file type, version number and file
name.

pascal void ClrAppFiles(index)
int index;

ClrAppFiles indicates to the Finder that your application has pro
cessed the file indicated by index.

Call ClrAppFiles after opening or printing the selected document.
This insures correct results from CountAppFiles and GetAppFiles.

FUNCTIONS 385

pascal void GetAppParms(apName, apRefNum, apParam)
Str255 apName;
int *apRefNum;
Handle *apParam;

GetAppParms gets information about the current application.
ApName is the application's name and apRefNum is the reference number
of the application's resource file. ApParam is a handle to the Finder infor
mation (but you may find that using GetAppFiles is an easier way to ac
cess the Finder information).

pascal void ExitToShell()

Exit ToShell releases the application heap, then starts up the
Finder. Use Exit ToShell to exit from your program.

Index

#define, 22-23
#else,24
#endif, 23-24
#if,23-24
#ifdef, 23-24
#ifndef, 23-24
#include, 23

files, sample code, 130, 164
#line,24
#undef,23

Abstraction, C, 3, 10-11
Activate events, 54
AddPt,238
AddResMenu, 111, 287
AddResource, 364
Address error, 202
Address operator(&), 32
Alert,269
Algol,9, 13
Allocate, 325
Alpha testing, 205
Ampersand, 32

double, (&&), logical and, 36
single, (&),bitwise and, 36

AngleFromSlope, 374
ANYB (resource type), 81
APL,9,13
AppendMenu, 287
AppendMenu, 76
APPL (resource type), 70
Apple][, 58-59
AppleTalk, 63
Applications, example program, 86-115

controls, 114-115
event loop, 90-91, 93-94

initiating Toolbox managers 88-89
Macintosh d. UNIX, 85-86
menus and scrollbars, 102-113
mouse events, 93-94, 100
program listings

event-driven, 91-94
menus and scroll bars, 102-110
moving or changing window 94-98
simple version, 86-87 '

windows
creating, 89-90
invalid areas, 100-101
moving/changing size, 94-101
Toolbox, 89-90

ApplicZone, 277
Arrays,28
Arrow operator(->), 32
Artithmetic, 14, 124-125

operators, 34-35
Assembly language, 4,9

M68000 instruction set, 59-62 200-201
Assignment operators, 37-38 '
Asterisk operator(•), 32

multiplication, 34
auto storage class, 26
Aztec C (Manx), 70

BackColor, 223
BackPat, 217
BASIC,3
BeginUpdate, 53, 258
Beta testing, 205-206
Bit twiddling, 3, 14, 36-38

operators, 36
BitAnd,371

388 C PROGRAMMING TECHNIQUES FOR 1llE MACINTOSH

BitClr,370
Bitmaps

printing, 163
QuickDraw, 48, 49-50

BitNot,371
BitOr,371
BitSet, 370
BitShift, 371
BitTst,370
BitXor, 371
Block-structured languages, 9,10,11, 13-14

BlockMove, 283
BNDL (resource type), 78
Bounds check error, 202
Braces,square,32
break,39
Breakpointing, 201
BringToFront, 254
Bus error, 202
Button,247
Buttons, 77

c,
abstraction, 10-11
advantages over Pascal, 16
and FORTRAN, 3
capabilities, 3
cf. other languages, 3-4, 9

Pascal, 9-11
for new users, 9-10
history, 1-3,
obstacles, 5
offspring/influence, 2-4
on Macintosh, 4-5
pointers in, 10, 15
popularity, 2
sparsity, 3
strings, and Toolbox, 75

CalcMenuSize, 293
Cale Vis, 262
CalcVisBehind, 262
Caret("), exclusive or, 36
case construction, 38
CautionAlert, 269
ChangedResource, 363
char data type, 27
CharWidth, 222
Check box, 77
Checkltem, 291
CheckUpdate, 260
ClearMenuBar, 288
Clip region, 52-54, 126-127
Clip Above, 261

ClipRect, 217
CloseDeskAcc, 376
CloseDialog, 266
ClosePicture, 235
ClosePoly, 237
ClosePort, 215
CloseResFile, 357
CloseRgn, 232
CloseWindow,252
ClrAppFiles, 384
CNTL (resource type), 78
CODE (resource type), 69, 79-80

compiled code as resource, 69
ColorBit, 223
Command processor, 2
Communications controller, Z8530, 63
CompactMem, 281
Conditional compilation, 23-24
Conditional operators, 37
Constants, enumerated, 30
continue, 39
Control flow, 38-39
Control Manager, 295
Control panel, 74
Controls, 77-78

as resource, 77, 110-111
hiding, 114
sample code, 102-110

highlighting, 139-140, 146
Mandelbrot set, 135-137, 170-171

windows, 114
Coordinates, QuickDraw, 46-48
CopyBits, 235
CopyRgn, 231
CouldAlert, 269
CouldDialog, 266
CountAppFiles, 384
CountMitems, 293
CountResources, 359
CountTypes, 359
Create,321
CreateResFile, 356
CurResFile, 358
Cursor

as resource, 74
initialization, 89

Data
external cf. static, 12
hiding, 11-12
structures, 13-14, 28-29

Mandelbrot set sample program,
123-124

types,25

defined, 26-27
Debugging, 199-206

and M68000, 199-200
and testing, 205-206
basic concept, 201-202
common bugs, 204-205
error numbers, listed, 202-204
software (debuggers), 200-201

DEC, PDP series, 2, 62
Declarations, 25

aggregate, 30
array,28
pointer, 30-31
sample code, Mandelbrot set, 130-132,

163-166
Decrement operator(--), 33
DeleteMenu, 288
DeltaPoint, 373
Desk accessories, allowing for, 113

sample code, Mandelbrot set, 190
Desk Manager, 99, 375
DetachResource, 361
Devices

asnodes,3
virtual, 54

Dialog box as resource, 69, 71-73
Dialog Manager, 69, 263
DialogSelect, 267
DiffRgn, 232
Disableltem, 290
Disk drives, 58

interface/controller, 58, 59
DisposDialog, 266
DisposeControl, 298
DisposeMenu, 286
DisposeRgn, 231
DisposeWindow, 252
DisposHandle, 277
DisposPtr, 279
DITL (resource type), 72
Divide by zero error, 202
DlgCopy, 268
DlgCut,268
DlgDelete, 268
DlgPaste, 268
DLOG (resource type)69, 72
do statement, 38
Dot operator(.), 32
double data type, 27
DragControl, 302
DragGrayRgn, 260
DragWindow, 256
DrawChar, 221
DrawControls, 299

DrawDialog, 268
DrawGrowlcon, 255
DrawMenuBar, 288
DrawNew, 261
Draw Picture, 236
DrawString, 221
DrawText, 222
Drivers as resources, 79
DRVR (resource type), 79, 111
Dumps, memory, 201-202

EditText item, 72
Eject, 320
Empty Handle, 282
Empty Rect, 225
EmptyRgn, 233
Enableltem, 291
EndUpdate, 53, 258
Equality operator(==), 36
EqualPt, 238
EqualRect, 225
EqualRgn, 233
EraseArc, 230
EraseOval, 227
ErasePoly, 237
EraseRect, 101, 226
EraseRgn, 234
EraseRoundRect, 228
Error numbers, listed, 202-204
Erroi:Sound, 265
Event Manager, 245
Event(s)

-driven programs, 45

INDEX 389

loops, sample code, 92-93
Mandelbrot set, 134-135, 168-169

mouse
event masks, 90
sample code, 93-94, 100
sample code, Mandelbrot set, 135, 169
window-related, 100

EventAvail, 247
Exception errors, 203
Exclamation point operator(!), 33
ExitToShell, 385
Expandability, Macintosh, 63, 64
Extensibility

c, 14-15
Pascal, 14-15

extern storage class, 26
External data, 12

File Manager, 315
Files

#include, preprocessor, 23

390 C PROGRAMMJNG TEcHNIQUESFOR mE MACINTOSH

corrupted, 204
errors,204
hierarchical

Macintosh, 162
Unix ,2

resource, 68
sample code, Mandelbrot set, 189-193
structure, 162

FillArc, 230
FillOval, 227
FillPoly, 238
FillRect, 226
FillRgn, 234
FillRoundRect, 229
FindControl, 300
Finder

error,204
resources, 78-79

FindWindow, 255
FlnitQueue, 329
FixMul,368
FixRatio, 367
FixRound, 368
FlashMenuBar, 293
float data type, 27
Floating-point error, 203
Flow, program, 38-39
FlushEvents, 247
Flush Vol, 320
Folders, 162
FONT (resource type), 79
FontManager,68,343
Fonts,69

creating/ importing, 79
initialization, 89

for statement, 39
ForeColor, 222
FORTRAN, 3, 13,14
Fractals. See Sample programs,
Mandelbrot set
FrameArc, 229
FrameOval, 227
FramePoly, 237
FrameRect, 226
FrameRgn, 234
FrameRoundRect, 228
FreeAlert, 270
FreeDialog, 266
FreeMem,280
FREF (resource type), 78
FrontWindow, 255
FSClose, 325
FSDelete, 328
FSOpen,321

FSRead,322
FSWrite, 322

GetAlrtStage, 271
GetAppFiles, 384
GetAppParms, 385
GetCaretTime, 248
GetClip, 216
GetCRefCon, 304
GetCTitle, 298
GetCtlAction, 304
GetCtlMax, 303
GetCtlMin, 303
GetCtlValue, 303
GetCursor, 373
GetDblTime, 248
GetDitem, 270
GetEOF,324
GetFinfo, 326
GetFNum, 345
GetFontlnfo, 222
GetFontName, 345
GetFPos, 323
GetHandleSize, 277
Getlcon, 372
GetlndPattern, 372
GetlndResource, 359
GetlndString, 369
GetlndType, 359
Getltem, 113, 290
Getltemlcon, 292
GetltemMark, 291
GetltemStyle, 292
GetIText, 270
GetKeys, 248
GetMenu, 111, 286
GetMenuBar, 289
GetMHandle, 113, 293
GetMouse, 247
GetNamedResource, 360
GetNewControl, 111, 297
GetNewDialog, 266
GetNewMBar, 288
GetNewWindow, 68, 90, 252
GetNextEvent, 90, 246
GetPattern, 372
GetPen,218
GetPenState, 218
GetPicture, 373
GetPixel, 239
GetPort, 215
GetPttSize, 280
GetResAttrs, 362
GetResFileAttrs, 366

GetReslnfo, 361
GetResource, 360
GetScrap, 380
GetString, 368
GetVInfo, 319
GetVol, 319
GetWindowPic, 259
GetWMgrPort, 251
GetWRefCon, 258
GetWTitle, 253
GetZone, 276
GlobalToLocal, 239
GNRL (resource type), 80
Go-away box, 91
GrafDevice, 215
GrafPorts, 100

pointers, 48
QuickDraw, 48-49

structure, 48
GrowWindow, 101, 256

HandleZone, 278
HEXA (resource type), 80-81
HideControl, 298
HideCursor, 217
HidePen, 218
HideWindow, 253
Hiding data, 11-12
Hierarchical file structure

Macintosh, 162
UNIX,2

HiliteControl, 72, 299
HiliteMenu, 290
HiliteWindow, 254
HiWord, 101, 371
HLock,282
HNoPurge, 282
HomeResFile, 358
Hot spot, cursor, 74
HPurge,283
HUnlock, 282

1/0 error, 203
IBMPC,4,59
ICN# (resource type), 73
Icons as resource, 73-74
illegal instruction error, 202
Increment operator(++), 33
InfoScrap, 379
InitApplZone, 274
InitCursor, 217
InitCursor, 89
InitDialogs, 264
InitFonts, 344

lnitFonts, 89
lnitGraf, 213
InitGraf, 88

INDEX 391

Initialization, sample code, 86-87
Mandelbrot set, 132-133, 166-167

lnitMenus, 286
InitResources, 356
InitWindows, 251
InitWindows, 89
InitZone, 275
InsertMenu, 111, 288
InsertResMenu, 287
InsetRect, 223
InsetRgn, 232
int data type, 26
Integrated Woz Machine, 63
InvalRect, 257
InvalRgn, 257
InvertArc, 230
InvertOval, 227
InvertPoly, 238
InvertRect, 226
InvertRgn, 234
InvertRoundRect, 229
IsDialogEvent, 267

Keyboard, 62
KillControls, 298
KillPicture, 236
KillPoly, 237

Line 1010 and 1111 errors, 202
Line,220
LineTo,220
Lisa,57
Lisp, 13
LoadResource, 360
LoadScrap, 380
LocalToGlobal, 239
Logical operators, 34-35
LOG0,9
long data type, 26, 27, 32
LongMul, 372
LoWord, 100, 371

Macintosh
appeal, xi
cf. Unix, 53-55
File System (MFS), 161-162;

see also Files
see also Toolbox

Macintosh, hardware overview, 56-65
cf. Apple][, 58
expandability, 64

392 C PROGRAMMING TECHNIQUES FOR mE MACINTOSH

Integrated Woz Machine, 63
M68000, 59-62

instruction set, 56-62
NCR SCSI Host Adapter, 63
standard, advantages, 59
Synertex SY6522 versitile

interface adapter, 62
Zilog Z8530 serial communication

controller, 63
Macro preprocessor, 15, 22-24
Mandelbrot set, 118-120, 122
Mandelbrot set. See Sample programs,
Mandelbrot set
MapPoly, 240
MapPt,240
MapRect, 240
MapRgn,240
MaxApplZone, 276
MaxMem,281
MemError, 284
Memory errors, 200
Memory Manager, 273
MenuKey, 289
Menus

as resource, 76
sample code, 109, 141

MenuSelect, 113, 289
Microsoft, xi
ModalDialog, 267
Modula-2, 13
Modular languages, 13
MoreMasters, 276
Mouse events, 91-93, 100

window related, 99
Move,219
MoveControl, 301
MoveHHi, 284
MovePortTo, 216
MoveTo,219
MoveWindow, 256
MS-DOS,4,5,7
Multics, 1-2, 3
Munger,369

NCR SCSI Host Adapter, 63
Negation, bitwise, 32
NewControl, 296
NewDialog, 265
New Handle, 277
NewMenu, 286
NewPtr,279
NewRgn,230
NewString, 368
NewWindow, 251

NoteAlert, 269

ObscureCursor, 218
OffsetPoly, 237
OffsetRect, 223
OffsetRgn, 232
OpenDeskAcc, 113,375
OpenPicture, 235
OpenPoly, 236
OpenPort, 214
OpenResFile, 356
OpenRgn, 231
Operators,30-37

arithmetic, 33-34
assignment, 36-37
binary, 33-35
bitwise, 35
conditional, 36
equality, 34
logical, 35
precedence of, 30
primary expression operators, 31
relational, 34-35
unary, 32-35

Orthogonality, 61
Out of memory error, 200

PackBits, 369
PaintArc, 230
PaintBehind, 261
PaintOne, 261
PaintOval, 227
PaintPoly, 237
PaintRect, 226
PaintRgn, 234
PaintRoundRect, 228
Parameters, mismatched, 203
ParamText, 270
Parentheses, 31
Parser cf. preprocessor, 22
Pascal

cf. C, xii, 3,4, 5,9,10, 13-14
Macintosh extensions, 15-16
programstructure,9, 13
strings, and Toolbox, 76
typecasting, 15
VAR parameters, 10-11

PAT and PAT# (resource types), 74
Pattern as resource, 74
PBAllocate, 337
PBClose, 338
PBCreate, 333
PBDelete, 342
PBEject, 332

PBFlushFile, 338
PBFlushVol, 331
PBGetEOF, 336
PBGetFlnfo, 338
PBGetFPos, 335
PBGetVInfo, 330
PBGetVol, 330
PBMountVol, 329
PBOffline, 332
PBOpen,333
PBOpenRF, 334
PBRead,334
PBRename, 341
PBRstFLock, 340
PBSetEOF, 336
PBSetFlnfo, 339
PBSetFLock, 339
PBSetFPos,336
PBSetFVers, 340
PBSetVol, 331
PBUnmountVol, 331
PBWrite, 335
PenMode, 219
PenNormal, 219
PenPat,219
PenSize, 219
Peripherals, 63
Phase-space access, 62
PicComment, 236
PinRect, 259
PL/l, 7
Plotlcon, 372
Pointers, 9-10, 14

declarations, 30
Polling, 90
Porting from Unix and MS-DOS, 54
PortSize, 215
PostEvent, 247
P!Close, 350
PiCloseDoc, 352
PiClosePage, 352
PiCtlCall, 354
PrDrviClose, 353
PrDrvrDCE, 354
PrDrvrOpen, 353
PrDrvrVers, 354
Preprocessor,22-24
PrError, 353
PrintDefaults, 350
Printing Manager, 161, 347
Printing, 161
Privilege violation, 200
PrJobDialog, 351
PrJobMerge, 351

Program generators, 24
Program structure, 13
PtOpen,350
PtOpenDoc, 351
PtOpenPage, 352
PrPicFile, 353
PJ.SetError, 353
PrStlDialog, 351
PrValidate, 350
Pt2Rect, 225
PtlnRect, 224
PtlnRgn, 233
PtrZone, 280
PtToAngle, 225
PurgeMem, 282
PutScrap, 381

Quickdraw, 45-48
bitmaps,49
coordinates, 46
graf ports, 48-51

structure, 48
initialization, 88
regions, 50-51

Radio buttons, 77, 126
Rain,62
Random,239
Ratfor, 7
RealFont, 345
ReallocHandle, 279
RecoverHandle, 278
RectlnRgn, 233
RectRgn, 231
Regions, QuickDraw, 50-51
Register storage class, 25
Relational operators, 34-35
ReleaseResource, 360
Rename,327
ResError, 357
ResetAlrtStage, 271

INDEX 393

Resource compiler (RMaker), 66-83
controls, 77
cursors, 74
dialog box and item list, 71-72
Finder, 78
format of specs, 69-70
header, 70
icons, 73
importing from other files, 79
menus, 78
patterns, 74
sample code, 128-157
strings, 75

394 C PROGRAMMING TECHNIQUES FOR 1liE MACINTOSH

and translatability, 75
windows, 71

Resource Editor, 81
Resource Manager, 355
Resources

advantages, 66, 82
altering, fc. code, 67
and other Toolbox managers, 68
programmer-defined, 68, 80

ResrvMem, 281
Ritchie, Dennis, 1-3
RMaker, See Resource Compiler (RMaker)

RmveResource, 364
RsrcZonelnit, 356
RstFLock, 327

Sample programs, Mandelbrot set, 117-157
computing results, 122-123
data structures, 121
fractals, definition, 118-119
graphic display /update, 123-125
parameters, 120
program goals, 119
source code, listing, 128-157, 161-195

calculations and plotting, 151-154,
186-189

controls, tracking 135-138, 169-172
declarations/includes, 131-132,

163-166
dialogs, 146-151, 180-185
eventloop, 134,168
file operations, 189-193
initialization, 132-133, 166-167
menus, 141, 175
mouse-down events, 134-135
printing, 193
windows, 138-141, 172-176

SaveOld, 261
ScalePt, 239
Scan conversion, 50
Scrap Manager, 379
ScrollRect, 234
SCSl,63
SectRect, 224
SectRgn, 232
Segment Loader, 383
SelectWindow, 253
Self-hosted development, 2
SellText, 271
SendBehind, 254
SetApplBase, 274
SetApplLimit, 275
SetClip, 216

SetCRefCon, 304
SetCTitle, 298
SetCtlAction, 304
SetCtIMax, 303
SetCtlMin, 303
SetCtlValue, 302
SetCursor, 217
SetDAFont, 265
SetDitem, 270
SetEmptyRgn, 231
SetEOF,324
SetEventMask, 248
SetFinfo, 326
SetFLock, 326
SetFontLock, 345
SetFPos, 323
SetHandleSize, 278
Setitem, 290
Setltemlcon, 292
SetitemMark, 291
SetltemStyle, 292
SetIText, 271
SetMenuBar, 289
SetMenuFlash, 292
SetOrigin, 216
SetPenState, 219
SetPort, 215
SetPortBits, 215
SetPt,238
SetPtrSize, 280
SetRect, 98, 223
SetRectRgn, 231
SetResAttrs, 363
SetResFileAttrs, 366
SetReslnfo, 362
SetResLoad, 359
SetResPurge, 365
SetStdProcs, 241
SetString, 368
SetVol,319
SetWindowPic, 259
SetWRefCon, 258
SetWTitle, 253
SetZone, 276
SFGetFile, 312
SFPGetFile, 313
SFPPutFile, 312
SFPutFile, 312
Shells, 2
ShielCursor, 373
Shift-left and shift-right operators, 37
short data type, 26
ShowControl, 299
ShowCursor, 218

Show Hide, 253
ShowPen, 218
ShowWindow, 90, 253
Simula, 13
SizeControl, 302
sizeof operator, 32
SizeResource, 362
SizeWindow, 257
SlopeFromAngle, 374
SmallTalk, 13
SpaceExtra, 221
SPL,9
Spool printing, 163
Spurious interrupt, 203
Stack overflow, 203
Standard File Package, 311
static storage class, 11-12, 25
StdArc,242
StdBits, 242
StdComment, 243
StdGetPic, 243
StdLine, 241
StdOval, 242
StdPoly, 242
StdPutPic, 243
StdRect, 241
StdRgn,242
StdRRect, 241
StdText, 241
StdTxMeas, 243
StillDown, 247
Stop Alert, 269
Storage classes, 25-26
STR and STR# resource types, 75
StringWidth, 222
Structures,27-28

arrayof,28
arrow operator, 31
dot operator, 31

StuffHex, 239
Style, programming, 39-40
SubPt,238
Subscripting, 28
SUMACC,5
SwapFont, 345
switch statement, 37
Syntertek SY6522 VIA, 62
SystemClick, 376
SystemEdit, 377
SystemEvent, 377
SystemMenu, 378
SystemTask, 98, 377

Task Manager, 62

TEActivate, 309
TECalText, 310
TEClick, 308
TECopy,307
TECut,307
TEDeactivate, 309
TEDelete, 307
TEDispose, 306
TEGetText, 306
TEidle,309
TEinit,306
TEinsert, 308
TEKey,307
TENEw,306
TEPaste, 307
TEPaste, 307
TEScroll, 310
TESetJust, 308
TESetSelect, 308
TESetText, 306
TestControl, 299
TEUpdate, 309
TextBox, 310
TextEdit, 305
TextFace, 220
TextFont, 220
TextMode, 220
TextSize, 221
TextWidth, 222
Thompson, Ken, 1-3
TickCount, 248
Tilde(-), bitwise negation, 32
TMON,200
TopMem,284
Trace exception, 203
Tracing, 201
TrackControl, 300
TrackGoAway, 93, 255
Translatability, 74-75

Uniflex,4
union,28
UnionRect, 224
UnionRgn, 232
UniqueID, 361
Unix

cf. Macintosh, 5, 85-86
and porting, 55
program structure, 53

history, 1-3
offspring, influence, 2, 4
popularity, 3-4
utilities, 3

UnloadScrap, 380

INDEX 395

396 C PROGRAMMING TEaiNIQUES FOR m:E MACJNTOSH

UnloadSeg, 384
UnmountVol, 320
UnPackBits, 370
unsigned int data type, 26
unsigned long data type, 27
unsigned short data type, 26
Update events, 52-53
UpdateResFile, 364
UseResFile, 358

ValidRect, 258
ValidRgn, 258
Variables, simple 25-27
Vertical Retrace Manager, 62
Virgule,33
Virtual devices, 53-54
Visible region, 51-52, 127

WaitMouseUp, 248
while statement, 37
WIND resource, 71
Window Manager, 249
Windows

activating/updating, 99-100
go-away box, 87, 91, 93
sample code, 87, 92, 95-97, 103, 107-109

Mandelbrot set, 126, 138-141, 172-175
WriteResource, 365

Xerox Alto, 57
XorRgn,233

ZeroScrap, 381
Zilog Z8530 serial

communications controller, 62

Macintosh® Revealed,
.Jume One: Unlocking the
roolbox, Second Edition

Stephen Chernicoff

1tosh Revealed, Volume One
! most successful Macintosh
ical programming book com
. ally published. Now, in addi
:o covering the 128K and
Macintosh, the second edition

mtrates on the Macintosh Plus
ts expanded memory manage
, 1/0 routines, graphics and
iandling, and serial communi-
1s.
edition has been completely
ed with all the latest Mac fea
including the new keyboard

ts, character codes for expand-
1serWriter ,TM font families and
s, ROM resources, and graphic
.rces. Together with Volume
the nearly 500 ROM routines

make up the Macintosh Tool-
1re described.
:s covered include:
II the Tools You Need
utting the Tools to Work
hanks for the Memory
ny Port in a Storm
uick on the Draw
1mmoning Your Resources
etting Loaded
pstanding Characters
ppendices: Toolbox Summary,
esource Formats, Macintosh
lemory Layouts, Key Codes
1d Character Codes, Error
odes, Summaries of Assembly
anguage Variables, and Trap
lacros and Trap Words.
Pages, 'i3/4 x 9 V4 , Softbound
: 0-672-48400-5
48400, $26.95

Macintosh® Hard Disk
Management

Charles A Rubin and Bencion J Calica

This is the ideal companion book
for all Macintosh owners who have
a hard disk or are considering the
purchase of one .
Readers will discover how the disk
works, as well as pick up impor
tant information on how to recover
files , rebuild the desktop, replace
files, and install fonts and desk
accessories.
Topics covered include:
• Hardware
• The System Folder Files
• The Finder
• Fonts, DAs, and the Font/DA

Mover
• Organizing Hard Disk Files
• Sharing Files with a Hard Disk
• Using File or Disk Copying

Programs
• Printing from a Hard Disk
• Backing Up a Hard Disk
• Disk Optimizing Utilities
• Font and Disk Accessory

Extenders
• Fkeys, !nits, and Chooser

Resources
• Finder Alternatives
• Preventive Measures
• Troubleshooting and Repairs
• Appendices: Glossary of Terms,

List of Products
300 Pages, 'l3f4 x 9 V4 , Softbound
ISBN: 0-672-48403-X
No. 48403, $19.95

Macintosh® Revealed,
Volume Three: Mastering the

Toolbox
Stephen Chernicoff

A continuation of the "Macintosh
Revealed" series, this third volume
focuses on the User Interface Tool
box and how these unique routines
can enhance programming.
This Toolbox provides programmers
with a uniform set of procedures
for manipulating graphic images,
text, overlapping windows, pull
down menus, and many other
Macintosh features. Through fully
worked program examples, the
book explores secrets of the Tool
box in great detail and includes
such topics as printing and sound
generation, the List Manager, the
customized Toolbox, desk accesso
ries and Switcher.
Topics covered include:
• Unlocking the Secrets
• Rolling Your Own
• In the Driver's Seat
• Looking Good on Paper
• Sound and Fury
• Accessories after the Fact
• Making a List, Checking It

Twice
• Odds and Ends
• Appendices: Toolbox Summary,

Resource Formats, Error Codes,
Trap Macros and Trap Words,
Assembly Language Variables,
Program Listings

600 Pages, 'i3f4 x 91/4, Softbound
ISBN: 0-672-48402-1
No. 48402, $26.95

Visit your local book retailer or call
800-428-SAMS.

How to Write Macintosh®
Software, Second Edition

Seo/I Knaster

Written for professional developers
and serious hobbyists, this is the
best source of information on the
intricacies of the Macintosh operat
ing system, and in particular the
Memory Manager.
This new edition explains how ap
plications programs on the Macin-

! tosh work, how to create and
debug professional-quality programs,
and how to use C to program the
Macintosh. Many new topics, in
cluding Macintosh II , Macintosh SE,
MultiFinder, Macintosh Program
mer's Workshop, and the 68020
and 68030 microprocessors, are in
cluded as well as revised and up
dated information on all its
previous topics. Its in-depth discus
sion of high-quality debugging
makes it the preferred reference for
programmers and software applica
tions developers.
Topics covered include:
• Getting Started
• Adding Features
• Writing a Program
• Using C
• Loops
• Functions, Subroutines, and

Subprograms
• Using Macintosh Features
600 Pages, 7314 x 9 V4, Softbound
ISBN: 0-672-48429-3
No. 48429, $28.95

C Programming Techniques for the Macintosh
Companion Diskette

Eager to try it yourself, but not interested in typing? Do it the easy way
by ordering the companion diskette for C Programming Techniques for the
Macintosh. The companion diskette contains all source files, UghtspeedC
project files, and resource files for the Mandelbrot sample programs.

To get the companion disk, complete the order form and send it with
payment to:

SHIP TO: (Please Print)

Mursu Corporation
P.O. Box 1894

Cambridge, MA 02238

Name ~--------------------~
Company ~--------------------~

Address ~--------------------~ City __________ State ____ Zip ____ _

Please send __ diskettes @ $ 50 each.
Enclosed is my check or money order for$ ____ _

HOWARD W. SAMS ~COMPANY

c Programming
Techniques for the

Macintosli
If you're ready to step up from being a Macintosh user to being a Macintosh pro
grammer, C Programming Techniques for the Macintosh will get you off to a fast
start and improve your chances for success.

With its highly integrated hardware/software system, the Macintosh is a challeng
ing machine to program. Why waste valuable time getting tangled up in unin
formed design decisions? Save your time and temper. Follow this clearly marked
path for new Macintosh programmers:

• Learn to convert your knowledge of other computer languages to C
• If you already know a block-structured language, learn C quickly

from this book
• Find out how the Macintosh graphics and windowing environment

is put together
• Create an interplay between your programs and the rest of the

Macintosh system
• Learn how to use a debugger in the Macintosh environment, and know

the more common bugs and their symptoms

You'll find all the information you need to program swiftly and successfully in
C Programming Techniques for the Macintosh.

Zigurd Mednieks is a consulting engineer at Iris Associates, a software develop
ment firm specializing in groupware applications. He was involved in developing a
distributed project management, allocation, and calendaring application for net
works of Macintoshes at MURSU Corporation, and has worked on driver software
for the GCC Hyperdrive. Zigurd received his. undergraduate education at MIT.

Terry M. Mednieks is a senior software engineer at Lotus Development Corpora
tion, working on 1-2-3 Macintosh. Previously she was Layered Engineering Fellow at
Layered, Inc., and she also worked on neural networks, pattern recognition, and
orbital analysis for Science Applications International Corporation. Terry received
her B.A. in mathematics from the University of Rochester.

$22.95 US/22461

#f
HOWARD W. SAMS &_COMPANY
A Division of Macmillan. Inc.

4300 West 62nd Street

Indianapolis. Indiana 46268 USA

ISBN 0-672-22461-5

I
90000

9 780672 224614

