

TM

Software Developtnent
• using

PowerP/ant TM

LIMITED WARRANTY AND DISCLAIMER OF LIABILITY

ACADEMIC PRESS, INC. ("AP") AND ANYONE ELSE WHO HAS BEEN INVOLVED IN THE
CREATION OR PRODUCTION OF THE ACCOMPANYING CODE ("THE PRODUCT")
CANNOT AND DO NOT WARRANT THE PERFORMANCE OR RESULTS THAT MAY BE
OBTAINED BY USING THE PRODUCT. THE PRODUCT IS SOLD "AS IS" WITHOUT
WARRANTY OFANY KIND (EXCEPT AS HEREAFTER DESCRIBED), EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY WARRANTY OF PERFORMANCE
OR ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY
PARTICULAR PURPOSE. AP WARRANTS ONLY THAT THE MAGNETIC DISC(S) ON
WHICH THE CODE IS RECORDED IS FREE FROM DEFECTS IN MATERIAL AND FAULTY
WORKMANSHIP UNDER THE NORMAL USE AND SERVICE FOR A PERIOD OF NINETY
(90) DAYS FROM THE DATE THE PRODUCT IS DELIVERED. THE PURCHASER'S SOLE
AND EXCLUSIVE REMEDY IN THE EVENT OF A DEFECT IS EXPRESSLY LIMITED TO
EITHER REPLACEMENT OF THE DISC(S) OR REFUND OF THE PURCHASE
PRICE, AT AP'S SOLE DISCRETION.

IN NO EVENT, WHETHER AS A RESULT OF BREACH OF CONTRACT, WARRANTY OR
TORT (INCLUDING NEGLIGENCE) WILL AP OR ANYONE WHO HAS BEEN INVOLVED IN
THE CREATION OR PRODUCTION OF THE PRODUCT BE LIABLE TO PURCHASER FOR
ANY DAMAGES, INCLUDING ANY LOST PROFITS, LOST SAVINGS OR OTHER
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY
TO USE PRODUCT OR ANY MODIFICATIONS THEREOF, OR DUE TO THE CONTENTS OF
THE CODE, EVEN IF AP HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES,
OR ANY CLAIM BY ANY OTHER PARTY.

Any request for replacement of a defective CD-ROM disc must be postage prepaid and must be
accompanied by the original defective disc, your mailing address and telephone number,
and proof of date of purchase and purchase price. Send such requests, stating the nature of
the problem, to Academic Press Customer Service, 6277 Sea Harbor Drive, Orlando,
FL 32887, 1-800-321-5068. APP shall have no obligation to refund the purchase price or to
replace a disc based on the claims of defects in the nature or operation of the Product.

Some states do not allow limitation on how long an implied warranty lasts, nor exclusions or
limitatiions of incidental or consequential damage, so the above limitations and exclusions may
not apply to you. This Warranty gives you specific legal rights, and you may also have other
rights which may vary from jurisdiction to jurisdiction.

THE RE-EXPORT OF UNITED STATES ORIGIN SOFTWARE IS SUBJECT TO THE UNITED
STATES LAWS UNDER THE EXPORT ADMINISTRATION ACT OF 1969 AS AMENDED. ANY
FURTHER SALE OF THE PRODUCT SHALL BE IN COMPLIANCE WITH THE UNITED
STATES DEPARTMENT OF COMMERCE ADMINISTRATION REGULATIONS. COMPLIANCE
WITH SUCH REGULATIONS IS YOUR RESPONSIBILITY AND NOT THE RESPONSIBILITY
OFAP.

TM

Software Develop111ent
• using

PowerP/ant™

Jan L. Harrington

• ~ ~
OF£55\0Z.

AP PROFESSIONAL

AP Professional is a division of Academic Press, Inc.

Boston San Diego New York
London Sydney Tokyo Toronto

Al
--~ 0tEss10~

AP PROFESSIONAL
An Imprint of ACADEMIC PRESS, INC.
A Division of HARCOURT BRACE & COMPANY

ORDERS (USA and Canada): 1-800-3131-APP or APP@ACAD.COM
AP Professional Orders: 6277 Sea Harbor Dr., Orlando, FL 32821-9816

Europe/Middle East/Africa: 0-11-44 (0) 181-300-3322
Orders: AP Professional 24-28 Oval Rd., London NWI 7DX

japan/Korea: 03-3234-3911-5
Orders: Harcourt Brace japan, Inc., lchibancho Central Building 22-1, lchibancho Chiyoda-Ku, Tokyo I 02

Australia: 02-517-8999
Orders: Harcourt Brace & Co. Australia, Locked Bag 16, Marrickville, NSW 2204 Australia

Other International: (407) 345-3800
AP Professionai Orders: 6277 Sea Harbor Dr., Orlando FL 32821-9816

Editorial: 1300 Boylston St., Chestnut Hill, MA 02167 (617)232-0500

Web: http://www.apnet.com/approfessional

This book is printed on acid-free paper. 8
Copyright© 1996 by Academic Press. Inc.
All rights reserved.
No part of this publication may be reproduced or
transmitted in any form or by any means, electronic
or mechanical, including photocopy, recording, or
any information storage and retrieval system, without
permission in writing from the publisher.
All brand names and product names mentioned in this book
are trademarks or registered trademarks of their respective companies.

United Kingdom Edition published by
ACADEMIC PRESS LIMITED
24-28 Oval Road, London NW I 7DX

Library of Congress Cataloging-in-Publication Data
Harrington, Jan L.

CodeWarrior software development using PowerPlant I Jan
Harrington.

p. cm.
Includes index.
ISBN 0-12-326422-7
I. Computer software--Development. 2. Macintosh (Computer)-

-Programming. 3. Object·oriented programming (Computer science)
4. PowerPlant. 5. CodeWarrior. I. Title.
QA76.76.D47H38 1996
005.26'2--dc20 96-13291

CIP
Printed in the United States of America
96 97 98 99 IP 9 8 7 6 S 4 3 2 I

Contents

Preface xi
The Sample Program xii
What You Need to Know xm

Acknowledgments xv

Chapter 1: Introducing PowerPlant 1

PowerPlant as an Application Framework 2

What You Need to Use PowerPlant 3
PowerPlant Class Types 3

The PowerPlant Class Hierarchy 5
Class Naming Conventions 7

The Application Classes 7
Creating the Application object 8
The Application and the Event Loop 9

Interclass Communication 11

v

vi Contents

Commanders 13
Broadcasters and Listeners 19

PowerPlant Objects 20

PowerPlant Object Classes 21
Registering PowerPlant Objects with URegistrar 21
Creating PowerPlant objects 23
Panes and Views 24

Exception Handling 27

Chapter 2: Penultimate Videos 29
The User's View 29

Handling Inventory 30
Handling Customers 34
Handling Transactions 35

The Programmer's View 37
The Merchandise_Item Hierarchy 37
The Item_copy Hierarchy 41
The Customer Class 43
The Binary Search Trees 43
The Date Class 46
Utility Functions 48

Chapter 3: PowerPlant Projects 49
The Starter Projects 49

The Starter Projects 50
The Starter Source Code File 51

Customizing the Application Class Header 52
Program Structure: To Subclass or Not to Subclass 53
Modifying Starter Application Functions 57

PowerPlant Starter Resource Files 57
Adding Support for Apple Events 59
Adding Support for ANSI Functions 60
The Penultimate Videos Projects 60
PowerPlant and Precompiled Headers 61

Chapter 4: PowerPlant Menus 67
Creating Menu Resources with a Standard Resource Editor 68

Contents vii

Menu Resources for the Penultimate Videos Program 71
Constants for Menu Commands 71

Creating Menu Resources with Constructor 73
Creating a New Menu Resource 76

Adding a New Menu Item 77
Maintaining Menu Items 79

Creating the Menu Bar 79
Activating and Deactivating Menus 80
Trapping Menu Selections 82

Chapter 5: Panes and Views 85

Pane Geography 86
Declaring a Subclass for a Pane 87
Creating a Pane Resource for Drawing 88

Starting a Constructor Resource File 88
Creating a Resource 89
Customizing Resource Contents 90
Pane Binding 96

The Graph Subclass and Its Constructors 97
The CreateXStream Function and How PowerPlant Objects are Created 99
Drawing in a Pane 105

Coordinate Systems 106
Doing the Drawing 107

Playing a QuickTime Movie: Panes without PPobs 111
Custom Panes 114

Defining the Custom Pane 114
Creating the Pane Subclass 119
Programming for a Window with a Custom Pane 123

Chapter 6: Editing Text 127
The Note Class 128
PowerPlant Objects for Editing Text 129

Adding the Scroll Bar 129
Adding the LTextEdit Object 133

The LTextEdit Class 137
Text Access Functions 137
Flashing the Cursor: Periodic Events 140

viii

Making It Multistyled 141
Creating a Note Object 142

Completing the Note Object 144
Handling the Text Menus 146

UTextMenusBase and Its Subclasses 146
Text Menu Resources 147
Initializing the Text Menus 150
Enabling TExt Menus 150
Processing Text Menu Selections 153

Implementing Undo 153

The Action and Undoer Classes 153
Implementing the Undo and Redo 156

Chapter 7: Dialog Box and Control Resources 165
Creating Dialog Box Resources 167

Configuring the Window Type 168
User Data 171

Button Messages 171

Adding Display Text and Edit Fields 172

Objects of Class LCaption 172

Objects of Class LEditField 173
Adding Control Resources 175

Buttons 175
Popup Menus 177
Radio Buttons 179
Check Boxes 180

RidL Resources 182
Preparing Resource and Message Constants 183

Chapter 8: Programming for Dialog Boxes and Controls 187
Deciding Whether to Subclass 188
Displaying a Dialog Box 188

Enabling Undo 190
Adding Listeners for Other Controls 190
Positioning the Insertion Point 191

Trapping Button Actions 191
Removing a Dialog Box 192

Contents

Contents ix

Handling Edit Fields 193
Retrieving Data from Edit Fields 193
Putting Data in Edit Fields 193
Clearing Edit Fields 194

Working with Check Boxes 196
Working with Radio Buttons 196
Handling Popup Menus 197
Manipulating Display Text 199
A Complete Dialog Box Example 200
Responding to "Live" Controls 202

Chapter 9: List Boxes and Tables 209
List Boxes 209

List Box Resources 210
Building the Contents of a List Box 210
Finding the Selected List Item 214
Capturing a Double-Click in a List Box 214

Tables 216
Table Resources 217
Table Subclasses 220
Initializing Table Storage 221
Building the Contents of a Table 222
Drawing Table Cells 223
Finding the Selected Cell 226

Chapter 10: Strings, Lists, and Files 227
Strings 227

LString and LStr25 5 228
Subclassing LString: PString 230
Adding a Class for C Strings: CString 232
Using the String Classes 234

Lists 235
Creating and Maintaining a List 236
Using a List Iterator 238

Files 239

x

Chapter 11: Repeated Actions: Periodicals 245
The LPeriodical Class 246
Subclassing to Create a Periodical 247
Programming Support for a Periodical 248

Chapter 12: Printing 251

How PowerPlant Printing Works 252
A Program's Printing Tasks 252
The Printing Process 252
LPrintout' s Limitations 253

Creating LPrintout Objects 253
Coding Simple Printing 257
Adding Support for the Printing Dialog Boxes 259

Appendix: Binary Search Trees 263
The Binary Tree Data Structure 264

Searching a Binary Tree 265
Inserting Nodes into a Binary Tree 266
Deleting Elements from a Binary Tree 269

Tree Traversals 272

The In-Order Traversal 272

The Pre-order Traversal 273
Object-Oriented Binary Trees 273

Tree Container Classes 277
Traversal Iterators 279

Glossary 285

Index 289

Contents

Pref ace

Back in 1984, when many of us began programming for the Macintosh, we learned
quickly that although the Macintosh user interface made life easy for the user, it
placed an enormous burden on the software developer. Writing applications for a
GUI environment is a lot tougher than writing simple text-based applications;
there' re no two ways about it.

If you happen to be working in C++, then the situation is a bit worse because the
Macintosh environment is steeped in its Pascal heritage. The Macintosh ToolBox
routines are Pascal functions and procedures and there's nothing object-oriented
about them.

So, if you're committed to writing an object-oriented C++ Macintosh application,
what do you do? You can start from scratch, writing all your own classes, a painstak
ing, lengthy, and largely unnecessary process. Why unnecessary? Because Metro
werks PowerPlant can do a lot of the work for you.

PowerPlant is a collection of C++ functions that provide an object-oriented
framework for a Macintosh application. PowerPlant functions take care of tasks such
as installing and updating the menu bar, managing the event loop, handling dialog

xi

xii Pref ace

box actions, and printing. Using PowerPlant can significantly speed up development
time as well as give your application all the benefits of object-orientation.

In this book you will learn about the structure of PowerPlant-including how its
many classes are related-and how to use PowerPlant classes to implement many
common Macintosh application features. You will discover when you can create
objects directly from PowerPlant classes, and when you need to first create a custom
subclass. You will read about everything from menus, windows, and dialog boxes to
QuickTime movies. You will discover where direct ToolBox calls are essential and
where you can avoid them by taking advantage of the code provided by the Power
Plant classes.

Most of all, you will learn how PowerPlant works. We'll explore the sequences of
function calls that implement basic elements of the Macintosh user interface to give
you an in-depth understanding of the general principles behind the PowerPlant archi
tecture.

What you won't find in this book is an exhaustive discussion of every PowerPlant
class. There are two major reasons why this is the case. First, PowerPlant is huge
(more than Z,000 functions) and you'd need a wheelbarrow to carry around a tome
that attempted to cover all of them. Second, PowerPlant is always changing. As you
probably know, Metrowerks releases three versions of the Code Warrior development
enviromiient every year, and each of those releases includes changes to PowerPlant.
Some classes become obsolete, others are added, and still others are modified.

Therefore, I think the most important thing you can do is become familiar with
the general way in which PowerPlant works. Then you can explore classes on your
own and also feel comfortable when Metrowerks presents you with modifications to
the PowerPlant framework.

The Sample Program

When an author designs a programming book, he or she has a major choice to make
about the size of the sample programs used for examples. Most introductory books
tend to stick with relatively short programs, as I did in my first Code Warrior book.
However, PowerPlant isn't really intended for writing short programs that don't do
much more than demonstrate a handful of techniques. It's intended for writing large,
useful applications. In fact, it's very difficult to see the way in which the elements of a
PowerPlant application work unless you are working with a large program.

Given that you need a large program to really understand the PowerPlant environ
ment, this book is based on a single application rather than a collection of short ones.

Pref ace xiii

The program that you will find on the CD-ROM that accompanies this book is
designed to manage a video rental store (Penultimate Videos). The application isn't
complete-there are many things that need to he added to make it truly usable by a
retail outlet-nor is it guaranteed to be hug free. In addition, some of its features
have been added just for demonstration purposes and probably wouldn't he part of a
real-world video store management application. Nonetheless, the program is. large
enough and practical enough to demonstrate many PowerPlant techniques and to
show you one way that an application of reasonable size can be put together.

What You Need to Know

Because PowerPlant is a complex programming environment, there are several areas
of knowledge you should have before you begin working with this book:

• You should be fluent in object-oriented C++ programming, including an under
standing of multiple inheritance, operator overloading, and the object-oriented
way of implementing data structures such as linked lists. The program used for
examples in this book also makes heavy use of binary trees, a data structure that
isn't part of the Power Plant environment. A discussion of binary tree algorithms
and iterators can be found in the Appendix if you aren't familiar with them.

• You should he familiar with the structure and use of the Macintosh ToolBox. Al
though you can get a great deal from this book without an in-depth knowledge of
the ToolBox, keep in mind that PowerPlant hides many ToolBox operations from
the programmer. If you need to modify or debug PowerPlant behavior and you
aren't familiar with the ToolBox, it may be difficult to understand what Power
Plant is doing.

• You should be familiar with the idea of resources and know how to use a resource
editor or compiler (for example, ResEdit, Rez, or Resourcer). The examples in
this book use ResEdit.

• You should be comfortable with using the Metrowerks Code Warrior Integrated
Development Environment (IDE), including the debugger. (Repeat after me:
"The debugger is my friend, the debugger is my friend ") Penultimate Videos
was begun using CW7 and completed with CWS. It therefore won't work with
versions of the software prior to CW8.

Acknowledgments

As with any book, there is an entire cast of characters that makes the book possible.
rd therefore like to thank the following people for the valuable work on this project:

• Mike Williams, Assistant Acquisitions Editor at AP Professional.
• Peter Sullivan, Production Editor at AP Professional.
• Owen Hartnett, Technical Editor, who really knows his C++!
• Dave Mark, Publisher Liason at Metrowerks.
• Greg Combs, Metrowerks bummaster who made the CD-ROM.

JLH

xv

Introducing
PowerPlant

CHAPTER

In this chapter you will read about the organization of the PowerPlant framework,
including such diverse topics as the files you need to work with it, the major types of
classes that are part of the framework (for example, commanders, broadcasters, and
listeners), and the functions the classes have in common. You will also learn about
application classes, which provide the foundation for a PowerPlant application, and a
special resource type called a PowerPlant object. In addition, this chapter looks at
some global PowerPlant features, including support for exception handling.

1

2 Chapter 1 • Introducing PowerPlant

PowerPlant as an Application
Framework

PowerPlant is what is called an application framework. It provides a program structure
that supports the basic activities performed by most Macintosh applications. In this
case, that structure is object-oriented.

Using PowerPlant gives a programmer several advantages:

• It provides an object-oriented structure for a Macintosh program, which-given
its Pascal heritage-has no inherent object-oriented characteristics.

• It relieves the programmer from writing code for basic Macintosh program activ
ities, such as managing the menu bar, the event loop, and a great deal of event
trapping.

• It speeds application development because a great deal of code is already written.

Although PowerPlant does provide support for basic Macintosh program actions,
that doesn't mean that you never need to write direct ToolBox calls. As you will see
throughout this book, there are many things PowerPlant doesn't do. For example,
the class LPrintout, which enormously simplifies printing a document, doesn't
ensure that a line of text isn't split horizontally between two pages. If you want to
adjust printed pages for complete lines of text, you will need to write the code your
self.

NOTE
While on the topic of ToolBox calls, this is as good a place as any to mention that you
should place the unary scope resolution operator(::) in front of all ToolBox calls. This
will ensure that they aren't confused with PowerPlant .function calls.

PowerPlant is supplied as a collection of more than a hundred classes, just under
half of which participate in a single class hierarchy. Unlike many class libraries, which
are supplied to programmers only as object code, PowerPlant classes are provided as
source code. This means you can study, copy, and modify the classes in any way you
choose. Although you do need to compile the PowerPlant classes the first time you
attempt to run any given project, the extra compile time is well worth the benefit of
having access to that source code.

What You Need to Use PowerPlant

What You Need to Use
PowerPlant

3

PowerPlant is supplied with the Code Warrior package of development tools. To use
its classes in a program, you need the following:

• The Code Warrior Integrated Development Environment (IDE) for each platform
for which you will be developing code.

• The C++ compiler for each platform for which you will be developing code.
• The Code Warrior debugger. As mentioned in the Preface, you'll find Code War

rior's excellent debugger one of your best allies in a PowerPlant development
project.

• The source code for all PowerPlant classes.
• The application Constructor (a resource editor for special PowerPlant resources).
• A standard resource editor or compiler, such as Resourcerer, ResEdit, or Rez.

The easiest way to get all these files is to use the Code Warrior installer and check
all the appropriate parts (for example, Figure 1.1). Be sure to include the following
along with the IDE and debugger you see selected in Figure 1.1:

• Metrowerks CIC++ for Mac OS: If you don't want all the CIC++ libraries (for
example, if you don't want the ANSI libraries), be sure to select the specific com
piler package you want rather than letting the installer copy them all.

• Metrowerks PowerPlant: Be sure to install all of PowerPlant, which includes
Constructor.

Finally, you probably want to install at least some of the PowerPlant documentation,
which is part of the Code Warrior Documentation package.

PowerPlant Class Types

PowerPlant classes fall into one or more of four broad categories:

• Stand-alone classes: These classes don't participate in the large PowerPlant class
hierarchy and can therefore usually be used in non-PowerPlant programs. Classes

4 Chapter 1 • Introducing PowerPlant

Figure 1.1 Selecting parts of the CodeWarrior package to install

cw Gold Installer

181 CodeWarrior I DE
El Metrowerks Debug

181 Metro.werks Debug for Mac OS
D 11-tetrnwerks Debug for Be
D t1etrowerks De.bug for Win32/H86
D Metrowerks Debug for Magic Cap

Read Me ..•

Disk space av ail ab le : 566 ,240K Approximate disk space needed : 112 ,28SK

lnstan Location ---------------.
(Quit) I Barracuda 1 ... I

Switch Disk t D Install ~
on the disk "'Barracuda 1 "

VO

of this type include LFile (for handling basic File Manager ftle 1/0) and LMenuBar
and LMenu, which handle the menu bar and menus.

• PowerPlant-only classes: These classes participate in the large class hierarchy
about which you will read in the next section of this chapter. Their use is restrict
ed to PowerPlant programs.

• Mix-in classes: These classes are designed to be used as base classes to add func
tionality to other objects. You would never create an object directly from these
classes. For example, the LBroadcaster class allows a class derived from it to
broadcast a message. However, the derived class must have some additional func
tionality besides being able to send a message. LControl, a class that acts as a base
class for many specific control classes (e.g., buttons, check boxes, and radio but
tons), has LBroadcaster as one of its base classes. In addition, LControl also inher
its from LPane, a base.class that provides support for the drawing of most objects
that appear on the Macintosh screen. LControl can use what it inherits from
LPane to help it draw itself on the screen; it can use what it inherits from LBroad
caster to send a message whenever the user makes a change in the state of the con
trol.

• Wrapper classes: These classes simplify access to many groups ofToolBox rou
tines. For example, UPrintingMgr is a wrapper for ToolBox Manager functions,
and LFile is a wrapper for File Manager functions.

The PowerPlant Class Hierarchy

The PowerPlant Class
Hierarchy

5

In Figure 1.2 you can see the relationships between many of the most frequently used
PowerPlant classes. Each box represents one class. The names of the classes generally
suggest what the class is designed to support. For example, LDialogBox creates and
manages dialog boxes, LStdPopupMenu takes care of a popup menu, and LStdButton
supports standard push buttons.

The arrowheads in the diagram indicate the direction of inheritance. The different
patterns and shadings of the lines have no significance other than to make it easier to
follow the inheritance where the lines cross.

As you can see from the diagram, the PowerPlant classes aren't in a straight-line
hierarchy. The structure of thi:se classes uses a lot of multiple inheritance to ensure
that classes inherit only exactly what they need. A straight-line hierarchy would
mean that many classes would be expanded by functions and variables that would
never be used. Although the multiple inheritance, broad hierarchy is conceptually
more complex than a straight-line hierarchy, it does help keep individual classes as
small as possible.

There are also some classes that aren't part of the hierarchy at all. For example, as
you read earlier LMenu (used to implement one menu) and LMenuBar (used to man
age the menu bar) are stand-alone.

You will be introduced to most of the classes in Figure 1.2 throughout this book.
In some cases, you will be able to create objects from the classes without modifica
tion. Alternatively, you may need to either define a subclass or create a "clone" of a
class, where you duplicate a PowerPlant class and make some custom modifications.

NOTE
As far as this writer knows, there is no official C++ term for "cloning" a class,
although the term is used in object-oriented systems analysis to describe one way of
reusing a class. Occasionally you may need to modify a PowerPlant class in such a way
that subclassing isn't appropriate, but making a copy of the class and changing it
slightly is. When that latter behavior is required, this book will call it cloning (for want
of a better term).

I LModelDirector I ["" ... ,., LModelProperty I I LMenu j

Llistener LModelObject LEventDispatcher

LView

LWindow

LPlaceholder

LScroller

r·····t·····~··· ···= ·=··= .. ·····i· ... :::_r .. ~ .. ~t~ .. ~ .. ~--~ i LCo~man;er 1=-------=I

I i I I -------- I I
I I i I
I I i I
I I i I
I I i
I I j I I
I L ... - .. -1 L.,,..

I I r----}1--jl~~===~
I I I

I I I
: I LDialogBox I I
I I I I
I [................. I I I
I ! I I I I

I

LTable

LApplication
LTargeter

LSingleDoc LTextEdit

LGraphPortView

I Llistlterator I LOffscreenView

LDynamicArray Llteratedlist LPicture

t- ..j - -LT~bGroup j
I

Llist

r-LMe-;;u8a; I
r rr=LBro~dca~te~ I
I I
I I I
I I I
I I I

LAttachable

LPane
I I

11ftJ J I
LCaption I

I
I

LEditField r-' ,, !:
LListBox r- ~

LDefaultOutline I I
LFocusBox I I

LMovieController I I
I

! I LString I !

LControl

LButton

LCicnButton

LStdControl

LStdB utton

LStdRadioButton

LStdCheckBox

LStdPopupMenu

I LAttachment I
l I LUndoer =1

I ~ ~ StDialogHandler I L .. '.::::::~1 LPeriodical ~ l

LRadioGroup

Figure 1.2 A portion of the PowerPlant class hierarchy

°'

n
~
Ill

'!
ID
•
3' ,... ..
0 a. c
I'\ ;·
m
'l
~
~
iii' ::s ,...

The Application Classes 7

CLASS NAMING CONVENTIONS

In Figure 1.2 almost all the classes are named beginning with "L." This isn't an acci
dent. PowerSoft uses the following naming conventions for PowerPlant classes.

Class Name
Prefix Use Sample

L
u
St

Precedes the name of PowerPlant library classes
Precedes the name of PowerPlant utility classes
Precedes the name of PowerPlant stack-based classes

LMenu
UTextMenus
StDialog Handler

As you explore PowerPlant files, you may also encounter classes whose names begin
with C. These are subclasses created for use in the sample programs that accompany
PowerPlant. You might want to use the prefix for the classes you declare yourself.

NOTE
Although PowerPlant classes are named using the preceding conventions, there is no
hard and fast rule that says you must adhere to those conventions when naming your
own classes. In fact, the Penultimate Videos program doesn't use PowerPlant rules for
naming classes; this made it easier for the author to distinguish classes written specifi
cally for the program from PowerPlant classes. Nonetheless, how you name files is a per
sonal (or team, if you're working on a programming team) decision. Whatever you do,
try to be consistent so that when you return to the program after a long weekend, you'll
be able to figure out why you did what you did.

The Application Classes

The foundation of a PowerPlant application is one application object, which is cre
ated from a subclass of LApplication, LDocument, LSingleDoc, or LDocApplication.
These classes take care of general program management activities such as imple
menting the event loop. They create a menu bar with S, File, and Edit menus and
handle events associated with all options in the S menu and the Quit option in the
File menu.

The difference between the four application classes can be found in the way in
which they support documents:

8 Chapter 1 • Introducing PowerPlant

• LApplication, the most basic of the four, provides no document support.
• LDocument is designed for programs that manipulate one or more document

files. It therefore supports actions on documents such as Save, Save As, Revert,
and Print.

• LSingleDoc is similar to LDocument but aimed at programs that work with only
one document at a time.

• LDocApplication is designed for programs that display more than one window
for a single document file.

CREATING THE APPL/CATION OBJECT

Just like any C++ program, a PowerPlant program must have a ma i n function
which, at the very least, creates the application object. A PowerPlant ma i n function
also usually performs some program setup operations. The code in Listing 1.1, the
ma i n function for the Penultimate Videos program, is typical. It sets the PowerPlant
debugging options-you can remove that code when the program is ready to ship
and initializes the heap and the ToolBox. Then, it creates the application object and
finishes by calling the object's Run function. The remainder of the application's
actions are initiated by that call.

Listing 1.1 The Penultimate Videos main function

II===~~===========================

II • Main Program
II ===

void main(void)
I

#ifdef Debug_Throw
II Set Debugging options

gDebugThrow = debugAction_Alert;
//endi f

#ifdef Debug_Signal
gDebugSignal = debugAction_Alert;,

//end if

Initial i zeHeap< 4 >; This ~ta~emen~ creates.the
UODGl oba ls: : r nit; al i zeToo l box c &qd >; apphcat1on object, calhng the
new LGrowZone(20000): '"'"'lu,, ~constructor

CPPVideoStoreApp theApp: ~ This function call initiates
theApp. Run<>; program actions

The Application Classes 9

THE APPL/CATION AND THE EVENT LOOP

One of the most important actions performed by an application object is to manage a
program's event loop, which is initiated in the object's Run function. As you can see
in Listing 1.2, the function contains a w h i l e that either calls a function named P r o -
cess Next Event or signals an exception.

Listing 1.2 An application object's Run function

void
LApplication::RunCl
{

SwitchTarget(thisl:
: : Ini tCursor(l:
UpdateMenus();

mState = programState_ProcessingEvents;

while CmState != programState_Quitting)
try I

ProcessNextEventCl:

catGh(... l I
SignalPStr_("\pException caught in LApplication::Run"l:

ProcessNextEvent, which is found in Listing 1.3, takes care of setting the cur
sor shape, and then calls the ToolBox routine Wa i t Next Event to pull the next event
record that belongs to the application off the event queue. To handle an event, the
function first attempts to let PowerPlant's attachment mechanism handle the event.

An attachment is a class that modifies the way in which another class behaves while
the program is running. You might, for example, use an attachment to draw a letter
head on every piece of output your program prints. Rather than modifying the
classes that produce the output, you can "attach" some code that draws the letter
head to the appropriate classes. PowerPlant provides attachment classes for actions
such as beeping the computer's speaker in response to an event and supporting the
scrolling keys on the extended keyboard (page up, page down, and so on). Your pro
gram can certainly use any of the attachments provided by PowerPlant, or you can
write your own attachments. You will find an example of using an attachment in

10 Chapter 1 • Introducing PowerPlant

Listing 1.3 An application object's ProcessNextEvent function

void LApplication: :ProcessNextEvent(l
I

EventRecord macEvent;

II When on duty (application is in the foreground), adjust the
II cursor shape before waiting for the next event. Except for the
II very first time. this is the same as adjusting the cursor
II after every event.

if (lsOnDuty()) I

II Calling OSEventAvail with a zero event mask will always
II pass back a null event. However, it fills the EventRecord
II with the information we need to set the cursor shape--
// the mouse location in global coordinates and the state
II of the modifier keys.

::OSEventAvail(O. &macEventl:
AdjustCursor(macEventl:

II Retrieve the next event. Context switch could happen here.

SetUpdateCommandStatus(falsel;
Boolean gotEvent = ::WaitNextEvent(everyEvent, &macEvent. mSleepTime.

mMouseRgnH);

II Let Attachments process the event. Continue with normal
II event dispatching unless suppressed by an Attachment.

if (LAttachable: :ExecuteAttachments(msg_Event, &macEvent)) I
if (gotEvent l I

A call to the
ToolBox routine
WaitNextEvent

Di spatchEvent(macEventl: ~ A call to the routine that identifies
else I the event that has occurred

UseldleTime(macEventl:

~ A call to handle events that should occur when
the program receives a null event

II Repeaters get time after every event
LPeri od i cal : : Devote Ti meToRepea te rs (ma cEvent l;

II Update status of menu items
if (!sOnDuty() && GetUpdateCommandStatus(ll I

UpdateMenus(l:

Interclass Communication 11

Chapter 6, where attachments are used to implement the Undo operation in a text
edit window.

There are two classes that support the attachments mechanism: LAttachable, from
which classes that can accept attachments are derived, and LAttachment, which gen
erates attachment objects. Notice in Listing 1.3 that once the application object has
grabbed an event from the event queue, it calls the LAttachable function Execute -
At tac hments. This function returns true if the application object should hamlle the
event and false if the event was handled by an attachment and therefore requires no
action by the application object.

When a null event occurs, ProcessNextEvent calls its own function Use Idle
Ti me to give time to events that should be processed when the program isn't doing
anything else. However, if anything other than a null event occurs (gotEvent is
true), ProcessNextEvent calls LEventDi spatcher:: Di spatchEvent.

The class LEventDispatcher exists to dispatch events to the correct object. Because
LApplication is derived from LEventDispatcher, an application object created from
this class has access to the event dispatching functions. As you can see in Listing 1.4,
Di spat ch Event identifies the event that has occurred and then branches to the
LEventDispatcher function that handles the specific event. Typically the event han
dling functions process events that aren't related to other program objects. For exam
ple, LEventDispatcher takes care of mouse clicks in system windows and in the menu
bar. However, when an event should be handled by another program object, LEvent
Dispatcher passes the event to the appropriate object. The mechanism for determin
ing which object receives an event is part of the class LCommander, which is
discussed in the next section of this chapter.

Interclass Communication

Like objects in any other object-oriented program, those used in a PowerPlant pro
gram send messages to communicate with one another. Objects that listen to mes
sage and objects that send messages fall into three broad categories: commanders,
broadcasters, and listeners. In this section you will be introduced to these three cate
gories of objects and learn how they relate to one another when handling events.

12 Chapter 1 •Introducing PowerPlant

Listing 1.4 Dispatching an event

voidLEventDispatcher: :DispatchEvent(const EventRecord&inMacEvent)
{

switch (inMacEvent.what)
{

case mouseDown:
AdjustCursor(inMacEvent);
EventMouseDown(inMacEvent);
break;

case mouseUp:
EventMouseUp(inMacEvent);
break;

case keyDown:
EventKeyDownCinMacEvent);
break;

case autoKey:
EventAutoKeyCinMacEvent);
break;

case keyUp:
EventKeyUpCinMacEvent);
break;

case diskEvt:
EventDisk(inMacEvent);
break;

case updateEvt:
EventUpdate(inMacEvent):
break:

case activateEvt:
EventActivate(inMacEvent);
break:

case osEvt:
EventOS(inMacEvent);
break:

case kHighLevelEvent:
EventHighlevel(inMacEvent);
break:

default:
UseldleTime(inMacEvent);
break:

Interclass Communication 13

COMMANDERS

Classes that listen for and respond to messages generated by keystrokes and menu
choices are called commanders. At some point in their inheritance hierarchy, they are
derived from LCommander. When you use a class derived from LCommander, or
derive a class that includes LCommander in its inheritance hierarchy, you must over
ride two member functions to customize the behavior of the derived class in
response to events:

• The Fi n d Comm and St at us function determines whether menu options should
be enabled or disabled. As you would expect, a program responds only to enabled
menu options.

• The ObeyCommand function identifies which command has been chosen by the
user--either with the mouse or a command-key equivalent-and takes action ap
propriate to that command. If the action requires just a few lines of code, you can
include it as part of the 0 bey Com man d function. However, in most cases you will
want to call another function to handle the command.

If you look back at Figure 1.2, you'll notice that there are a number of classes that
are ultimately derived from LCommander, including LApplication, LDocument,
LEditField (a text entry box in a window or dialog box), LTextEdit (an area for edit
able text in a window based on the ToolBox's TextEdit routines), LListBox (a scroll
ing list of items), LTabGroup (a group of items that are reached successively by
pressing the Tab key), and LWindow (the base class for all windows). When you
derive a class from one of these classes, the derived class will have its own Fi n d Com -
mandStatus and ObeyCommand functions. Those functions will contain code that
is applicable to the specific class. As a result, a program contains a group of Fi n d -
CommandStatus and ObeyCommand functions, each of which handles a distinct
part of the program's keystroke and menu events.

As an example, consider the dialog box in Figure 1.3, which is used to enter data
about a new movie title using the Penultimate Videos program. Each rettangular
data entry area is an object created from LEditField and is therefore a commander.
The dialog box itself (an object of class LDialogBox, which is derived from LWindow)
is also a commander. In addition, the application is a commander. Finally, there is a
commander that you can't see in the window: an object of class LTabGroup. All of
the LEditField objects are part of a single tab group, which makes it possible for the
user to move the cursor from one field to another by pressing Tab.

14 Chapter 1 • Introducing PowerPlant

Figure 1.3 A dialog box from a PowerPlant program

Enter New Mouie

Mouie Title:

Distributor:

Director:

Producer:

Length: Classification: Rduenture ... 1

Rating: G
Stars:

Done (OK D

As well as the Fi ndCommandStatus and Obey Command functions, commanders
have several functions that work together to handle keypress events:

• Hand l e Key Pres s: A member function that is part of each commander class to
act directly on keypress events.

• Event Key Down: The application object's member function that traps keypress
events. It ultimately calls Hand l eKeyP res s to allow the object in which the
event occurred to take care of the keypress event. Because a keypress may be a
menu selection, the event may either be passed to a commander or to a menu ob
ject.

• Coul dBeKeyCommand: A member function of the menu bar that identifies
whether a keypress included the~ key, called by EventKeyDown.

• Fi n d Key Co mm and: A member function of the member bar that identifies the
menu option that was selected by a~ key equivalent, called by EventKeyDown
when Coul dBeKeyCommand identifies a command instead of a regular keypress.

Interclass Communication 15

The Chain of Command
Commanders are arranged in a hierarchy (the chain of command) that determines the
order in which each commander is given the chance to decide whether it should han
dle an event or pass it up the hierarchy. The hierarchy of objects for the dialog box in
Figure 1.3 appears in Figure 1.4, including the name of the class from which each
object is created. Some of the objects-those created from the classes LStdPopup
Menu, LCaption, and LStdButton-aren't in the chain of command because they
aren't derived from LCommander. However, the LDialogBox, LTabGroup, and
LEditField objects are derived from LCommander and therefore are in the chain of
command. Those objects that are indented underneath other objects in Figure 1.4,

such as the LEditField objects that have been placed on the dialog box, are lower in
the hierarchy.

NOTE
The hierarchy in Figure 1.4 was taken from Constructor, a resource editor about which
you will read throughout this book.

A commander has one supercommander, the commander that is above it in the
chain of command. The only exception to this rule is the application object, which
has no supercommander. A commander can also have many subcommanders, com
mander objects that are below it in chain of command.

When a keystroke or menu selection event occurs, the program first submits the
event to objects lowest on the chain of command. If an object can't handle the event,
it passes it up to its supercommander. As an example, look at the ObeyCommand
function from the LTextEdit class in Listing 1.5. This function contains a switch
statement that implements standard text editing operations such as Cut, Copy, Paste,
and Clear. However, as you can see from the s w i t ch statement's def au l t option, if
the event isn't one that LTextEdit handles, the event is passed to the base class (in this
case LCommander) ObeyCommand function (Listing 1.6), which in turn calls the
supercommander's ObeyCommand function.

The Target
The current object that is available to listen for and handle a command is known as
the target. In Figure 1.3, for example, there are 25 objects created from the LEditField
class, all of which are subcommanders of the dialog box and on the same level of the
chain of command. However, only one of those 25 is active at any given time. This
object, which contains the flashing insertion point, is the current target. Although
the dialog box has many objects created from the same class, the program has no

16 Chapter 1 • Introducing PowerPlant

Figure 1.4 The object hierarchy for the dialog box in Figure 1.3

§II§ Hierarch_y for PPob t ooo, "Mou iSlm~
Lj LDialogBox En'Wr N~W' Hoyle ~

El LStdPopupMenu 1 034

El LStdPopupMenu 1 036

v 1it1 LTabGroup

:r: .. LCaption 1 001 Hoyle Tit~:

t: LCaption 1 003 D isir'ibutw-:

T: LCaption 1 005 Dil'"~tw-:

't:! LCaption 1 007 Producer:

fJ:' LCaption 1 009 L~f19ih:

LT: .. LCaption 1037 StGl's:

T: LCaption 1 033 Cl<tssific<ttion:

(!!) LStdButton 1 031 GK
(!!) LStdButton 1032 D~

l1;J LCaption 1 035 R<tting:

!jj] LEditField 1002

[jj] LEditField 1004

!jj] LEditField 1006

[jj] LEditField 1008

[ml LEditField 1010

!jj] LEditField 1011

[jj] LEditField 1012

!jj] LEditField 1013

[jj] LEditField 1014 • LEditField 1015

!jj] LEditField 1016

[jj] LEditField 1017 • LEditField 1018

[jj] LEditField 1019 • LEditField 1020

!jj] LEditField 1021

[jj] LEditField 1022

!jj] LEditField 1023

[jj] LEditField 1024 • LEditField 1025

Iii LEditField 1026

[jj] LEditField 1027 • LEditField 1028

[jj] LEditField 1029

[ml LEditField 1030 rzy
¢} 1¢ 'ii!ii

Interclass Communication

Listing 1.5 The ObeyCommand function from the class LTextEdit

Boolean LTextEdit::ObeyCommand(CommandT inCommand,void * ioParam)
I

BooleancmdHandled = true;
switch (inCommand) I

case cmd_Cut:
::TECut(mTextEditH);
: : ZeroScrap(l;
: :TEToScrap();
AdjustlmageToText();
UserChangedText();
break;

case cmd_Copy:
::TECopy(mTextEditH);
: :ZeroScrap();
: :TEToScrap();
break;

case cmd_Paste:
: :TEFromScrap();
::TEPaste(mTextEditHl;
AdjustlmageToText();
UserChangedText();
break;

case cmd_Clear:
: :TEDelete(mTextEditH);
AdjustlmageToText();
UserChangedText();
break;

case msg_TabSelect:
if (!lsEnabled())

cmdHandled =false;
break;

These cases take care of events that
are appropriate for an object of the
LTextEdit class to handle

II else FALL THRU to SelectAll() This function call passes the event
to the base class

case cmd_SelectAll:
SelectAll();
break;

default:
cmdHandled LCommander::Obe ommand(inCommand, ioParaml;
break;

return cmdHandled;

17

18 Chapter 1 • Introducing PowerPlant

Listing 1.6 LCommander's Obey Command function

Boolean
LCommander: :ObeyCommand(

CommandT inCommand, Event is passed up the chain of command here
void *ioParaml

BooleancmdHandled = false;
if (mSuperCommander != nil l /

cmdHandled = mSuperCommander->ProcessCommand(inCommand, ioParaml;

return cmdHandled;

trouble deciding which LEditField object should receive an event: The event goes to
the current target.

In this particular dialog box, the LEditField objects have been placed in a tab
group (an object of class LTabGroup). The user can therefore switch the target in two
ways: by pressing Tab to move to the next LEditField object in the group, or by click
ing in an object with the mouse pointer. Although in this case the target switching
behavior has been included in the PowerPlant code, there are circumstances under
which you might want to explicitly make a particular object the target. For example,
you might want to reset the contents of a dialog box without removing it from the
screen and therefore want to make sure that the first LEditField object is the target.
To do so, yon use the S w i t ch Ta r get function. If you are working with a class you
have derived, you may need to write your own S w i t ch Ta r get function.

Going on and off Duty
Like any other Macintosh program, a PowerPlant application must exist in the Mac
intosh Operating System's cooperatively multitasked environment. When a user
switches from the PowerPlant application to another program, the PowerPlant appli
cation must suspend itself until it is reactivated. Suspension means that the applica
tion object goes "off duty" -it no longer responds to events.

In most cases, every commander in the chain of command is on duty when the
application is active. When the application is suspended, the application object goes
off duty. All other on duty commanders become "latent." This means that they
would be on duty if their supercommander was on duty. On the other hand, if the
application has explicitly taken a commander off duty (and consequently, all its sub
commanders), suspension leaves the commander and all its subcommanders off duty.

Upon becoming active again, the PowerPlant application places the application
object on duty. It then searches the chain of command for all latent commanders and

Interclass Communication 19

places them on duty; any off-duty commanders are left in that state. The latent com
mander at the bottom level of the chain of command becomes the current target.

BROADCASTERS AND LISTENERS

/In addition to commanders, there is another group of objects that responds to mes
sages in the PowerPlant environment: listeners, which are at some point derived from

,LListener. Listeners wait for messages sent by broadcasters, objects derived at least in
part from LBroadcaster. For example, in Figure 1.3, the dialog box is a listener; the
Done and OK buttons are broadcasters. The dialog box waits until it receives a mes
sage from one of its buttons and then takes action based on the message.

The message sent by a broadcaster is known as its value message. Some value mes
sages are arbitrary-you can set them as you like. Others have restrictions to which
you must adhere if your program is to execute properly. For example, the button that
closes a dialog box without processing the state of the dialog box's contents (the Can
cel button, or in Figure 1.3, the Done button) must have a value message of 4. This is
because the LDialogBox class has been written to expect this message as an instruc
tion to close the dialog box. In addition, with the exception of the value message 4,

LDialogBox only listens for negative messages.
Each listener has a list of broadcasters to which it listens. For example, by default a

dialog box listens for its Cancel and OK buttons. If you want the dialog box to
respond to anything else, such as an additional button, your program must add that
button to the listener's list of broadcasters, using the Add Li st en er function.

NOTE
The Add L j s ten er function has been known to give programmers heartburn because
the broadcaster object calls it, saying to the listener "add me to your list of broadcast
ers," rather than the other way around.

If you look back at Figure 1.2 again, you'll notice that LControl is a broadcaster
(because it inherits from LBroadcaster). LControl is the base class for classes that pro
vide most of the Macintosh's standard controls (push buttons, radio buttons, check
boxes, popup menus, and so on). In addition, the class LListBox is a broadcaster,
which provides support for responding to double-clicking in a list of items.

LWindow, the base class for PowerPlant windows, is not derived from LListener.
This means that if you want a window to respond to controls, you must explicitly
link the controls to the window, using the function UR ea n i mat or : : Li n k Li st en -
er To Control s. However, LDialogBox is derived from LListener and is therefore
often the easiest class to use when you are creating windows that must contain

20 Chapter 1 • Introducing PowerPlant

buttons, check boxes, popup menus, and so on. Alternatively, you can create a sub
class that inherits from both LWindow and LListener.

PowerPlant Objects

You can certainly create an object from a PowerPlant class the old fashioned way-by
passing a constructor all the parameters it needs to define the object. In fact, lists,
strings, and other non-graphic objects are created in just that way. However, when
creating graphic objects (for example, windows and dialog boxes), it rather defeats
the purpose of working with an application framework to hard code all the details of
an object into a program or header file; you're back at a very primitive level worrying
about such things as screen coordinates for windows and controls. Ideally, you
should be able to find some easy way to create graphic objects, without having to fid
dle with such details.

The answer lies in PowerPlant objects, resources named PPob that can be used as the
basis for objects created from a number of PowerPlant classes. You create PowerPlant
objects with Constructor, an application that is part of the CodeWarrior package.
Constructor lets you draw windows, dialog boxes, and print formats and then saves
them as resources that a PowerPlant program can use.

NOTE
Although you can also edit PowerPlant object resources with Rez or Resourcer, PPob
resources are too complex for ResEdit to handle.

In most cases, you will find it easier to edit PowerPlant objects using Constructor
rather than any other resource editor or compiler, simply because Constructor lets
you draw the resources. It is therefore often convenient to keep at least two program
specific resource files, one for PowerPlant objects and one for all other resources you
create for the program. You can then keep both resource files open at the same time.

NOTE
Constructor is quite easy to use. You will learn how to use it throughout this book as we
explore the various classes that go into a PowerPlant program.

PowerPlant Objects 21

POWERPLANT OBJECT CLASSES

Top-level PowerPlant objects come from one of five classes:

• L Window: Provides support for windows created with calls to the ToolBox Win
dow Manager. Most document windows come from this class.

• LDialogBox: Creates dialog boxes with support for default OK and cancel but
tons. As you read earlier in this chapter, a dialog box is a listener that can respond
to messages broadcast by the controls it contains.

• LPrintout: Provides a layout for printing.
• LView: Provides a starting place for a chain of command of objects without asso

ciating them with a window. You will learn more about views and how they re
late to other objects throughout this book.

• LGrafPortView: Provides support for objects that work with externals such as
OpenDoc or applications that accept plug-ins (for example, HyperCard or Photo
shop).

PowerPlant objects based on LWindow and LDialogBox have accompanying
WIND resources that are created automatically when you create the PPob resource.
If you decide to work with two program-specific resource files, you should leave the
WIND resources in the same file as the PPob resources. This will ensure that the
WIND resources are updated whenever the PPob resources are updated. You will
probably never need to deal with them directly.

REGISTERING POWERPLANT OBJECTS WITH
UREGISTRAR

Each PowerPlant class whose objects can be defined as PowerPlant objects has a four
character ID string. For example, LDialog box is known as dlog, LEditField as edit,
and LStdPopupMenu as popm. When you derive PowerPlant classes whose objects
can be defined as PowerPlant objects, you give each its own ID. For example, the
class that Penultimate Videos uses to provide a printable, multistyled area for writing
a simple note has an ID of note. The only restriction on class IDs is that they must be
unique within the program.

One of the first actions a PowerPlant program takes is to figure out the classes
from which PowerPlant objects are going to be created using a stream of data from
an external source (usually a resource file). The program builds a table of class IDs
and the names of the functions used to create objects from that class. This action is
known as registering classes.

22 Chapter 1 • ~ntroducing PowerPlant

Class registration is handled by the class URegistrar. When you are first working
developing a PowerPlant program, you can register all classes that will create Power
Plant objects by calling the global function Reg i st er Al l PP Cl asses. This func
tion (which can be found in the file PPobClasses.cp) contains multiple calls to
U Registrar: : Regis te rC lass. If you aren't using every class registered by Reg -
i st e r A 11 PP C l a s s es, your program will end up a bit larger than it needs to be.
You may therefore want to replace the call to Reg i ste rA 11 P PC lass es with indi
vidual calls to Reg i st er Cl a s s just before shipping your program.

You must also register derived or cloned classes from which objects can be defined
as PowerPlant objects. Such classes are registered directly with calls to Reg i st e r -
Class. As an example, take a look at Listing 1.7, the constructor for the Penultimate
Videos program's application object. Notice that there are six classes (IDs of note,
grph, rtab, stab, SWin, and Ther) that have been created specifically for this program.
They are handled by direct calls to Reg i st er Cl ass. The function requires two
parameters: the class ID and the name of the function used to create objects from an
input stream. You will learn more about these stream input constructors throughout
this book as we explore specific PowerPlant classes.

NOTE
The constructor in Listing 1. 7 also performs some additional setup operations, includ
ing initializing the Font, Size, and Style menus, initializing counters and a flag used by
program, and initializing QuickTime.

If a program attempts to create an object from a class that hasn't been registered,
PowerPlant returns the following runtime error:

Signal raised
Condition: nil object created from tag
File: UReanimator.cp
Line /1127

NOTE
The alert that presents the preceding message is generated by PowerPlant's exception
handling mechanism, which is discussed at the end of this chapter.

Unfortunately, the message doesn't tell you which class isn't registered. You will need
to use the debugger to step through the portion of code in which the signal is raised.

PowerPlant Objects

Listing 1.7 The constructor for the Penultimate Videos application object

CPPVideoStoreApp::CPPVideoStoreApp(l
I

II Register functions to create core PowerPlant classes

RegisterAllPPClassesCl:

II Register classes unique to this program
II multistyled TextEdit note
URegistrar::RegisterClassC'note', Note::CreateNoteStreaml:
URegistrar::RegisterClass('grph' ,Graph::CreateGraphStreaml: II pane for a graph
URegistrar::RegisterClass('rtab' ,ReceiptTable::CreateReceiptTableStreaml;

11 table for rental receipt
URegistrar::RegisterClass ('stab' ,StatsTable: :CreateStatsTableStreamJ;

II table view for stats window
URegistrar::RegisterClass ('SWin' ,StatsWindow: :CreateStatsWindowStreamJ;

II statistics window
URegistrar: :RegisterClass ('Ther' ,Ther: :CreateTherStreamJ;

II thermometer pane

UFontMenu::Initialize CTRUEl; II set up the font menu
II zero indicates that there are no items that aren't sizes
USizeMenu::Initialize (0, TRUE);
UStyleMenu: :Initialize (TRUE); II set up the style menu

strcpy (FileName, "Video Data"); II give a default file name

Movie_count = 0:
Other_count = O;
Game_count = O;
Cust_count = O;
lastTitle_numb = O;
lastCopy_numb = O;

save_flag =TRUE;

UQuickTime::InitializeCl:

CREATING POWERPLANT OBJECTS

23

Some classes whose objects can be defined as PowerPlant objects have a function
named Create X (Xbeing the name of the type of object) that returns a pointer to the
new object. For example, LWindow has a function named CreateWi ndow. Other
classes, such as LDialogBox, use a base class's CreateX function and typecast the
returned pointer to the correct class. You might, for example, use the following to
create a dialog box object from a PowerPlant object resource:

24 Chapter 1 • Introducing PowerPlant

LDialogBox * theDialog;
theDialog = CLDialogBox *) LWindow::CreateWindow CDIALOG_BOX_RESOURCE_!O,

this);

Like other functions for creating objects from PowerPlant resources, Crea t e W i n -
d ow requires two parameters: the resource ID of the PowerPlant resource and a
pointer to the supercommander. In the preceding example, the dialog box is being
created in a member function of the application object, which becomes the super
commander by specifying its address with th i s.

Inside a Create X function, an object is actually created by the UReanimator class.
The Crea teX function calls U Rea n i ma tor: : ReadObj ect, which reads the data
describing the PowerPlant object from the resource file. The Re ad 0 b j e ct function then
calls UReanimator: :ObjectsFromStream (which calls URegistrar: :Cre
ate 0 b j e ct) to actually create the object and return a pointer to its main memory loca
tion. You will see this process in more detail in Chapter 5.

Even when you write your own subclasses, you won't need to write code to create
objects from PowerPlant resources. All you need is a a constructor that creates an
object from an input stream that can then call the appropriate base class constructor
to do the work.

PANES AND VIEWS

Many of the PowerPlant classes in Figure 1.2 are derived from LPane and LView.
These two classes, whose objects are typically defined as PowerPlant objects, under
lie all drawing in a PowerPlant program.

A pane is an area in which a program can draw. A pane also can respond to clicks of
the mouse pointer. Panes include, for example, controls, scrollable areas, and areas
for entering text. You can place a pane in a window (even a non-PowerPlant window)
and you can place it in a view.

A view is a container for panes, a pane that can contain other panes. The panes that
are within a view an: known as subpanes. A view that contains a pane is the pane's
superview. For example, the dialog box in Figure 1.3 is a view. It contains subpanes for
display text (objects of class LCaption), panes for entering text (objects of class LEdit
Field), and panes for displaying popup menus (objects of class LPopupMenu). The
dialog box is the superview for all the panes it contains.

As a second example, consider the window in Figure 1.5. This very simple win
dow is actually a multistyled text editor. It lets the user enter and edit text, as well as
change font, style, and type size. The contents of the window can be printed and
saved in a text file. The resource that makes up the window contains three objects:

PowerPlant Objects 25

the window itself (an object of class LWindow), the scrollable area and the scroll bars
(an object of class LScroller, and the text entry area (an object of a class cloned from
LTextEdit). The window is a view that contains a second view (the scroller), which
contains a pane (the text entry area). In other words, views can contain other views
and panes; panes cannot contain views or other panes.

Figure 1.5 A window for entering and editing text

untitled note

NOTE
The relationship between panes and views can be a bit confusing. Although LView is

derived from LPane, a view is a container for panes, just the opposite of what you might
expect.

Basic Pane and View Functions
Classes that include LPane or LView in their inheritance hierarchy have the following
functions in common:

26 Chapter 1 •Introducing PowerPlant

• DrawSe l f: Uses Quick.Draw routines to draw the contents of the pane.
• Cl i ck Se l f : Handles activities that occur when the user clicks the mouse point

er in the pane.
• Act i vat e Se l f: Handles activities that occur when a pane becomes active. In

this context, a pane is active if it is in an active window (usually the foreground
window)

• Dea ct iv a teSe l f: Handles activities that occur when a pane becomes deactive.
In many cases, a program will redraw the contents of the pane, perhaps making
its contents shaded rather than solid.

• En ab l e Se l f: Handles activities that occur when a pane is enabled. (An enabled
pane will respond to clicks of the mouse.)

• Di s a bl e Se l f : Handles activities that occur when a pane is disabled.

You may need to override any of the these functions when a derived class should
behave differently from the base class.

Pane Descriptors and Values
Panes have programmer-accessible data known as descriptors and values. A pane
descriptor is a Pascal string whose precise contents depends on the class with which
you are working. For example, the descriptor of an object of class LCaption is the dis
play text itself. The descriptor of an object of class LEditField is the contents of the
edit field, while the descriptor of an object of class LListBox is the currently high
lighted item in the list.

Instead of using a pane's descriptor directly, you can retrieve its value, the integer
equivalent of the descriptor. If you know that a descriptor will contain an integer and
you need to handle that integer as a number rather than a string, requesting the value
rather than the descriptor can save you a conversion step. Your program will access
the descriptor, translate it to an integer, and return the integer to the program. Note
that the pane only maintains the descriptor; the value is generated from the descrip
tor when needed.

A program accesses and modifies descriptors and values using the following four
functions:

• Get Descriptor: Returns the Pascal string descriptor.
• Set Descriptor: Takes a Pascal string and makes it an object's descriptor.
• Get Value: Returns the integer equivalent of the descriptor.
• Set Va l u e: Converts an integer to a Pascal string and makes the string an object's

descriptor.

Exception Handling 27

You will be introduced to panes in much greater depth beginning in Chapter 5. In
addition, because panes are the basic display element for a PowerPlant program, we
will be talking about them throughout the book.

Exception Handling
'':>" : ~~~;:::<;:;:W.$.<:w.Y"A:>;>,~~'™~~~4~~®m.-:::::>::'i:m0'im:::i::%',:~»,~.,_~"fy;:i;-:;~0;:;;»>;,.'<@;;ffi:;;:~=::s.:r.:~::m;::::.-:::;;..~~~-· ----

As well as managing the event loop, PowerPlant also provides an exception handling
mechanism that now maps directly to the C + + t r y I ca t ch Ith row statements.
Power Plant provides a group of macros that not only set up t r y and catch blocks,
but also provide s i g n al and throw capabilities.

The exception macros are defined in UException.h. As you can see in Listing 1.8,

the macros that set up t r y and catch blocks do indeed map to the C ++ exception
handling commands. These basic macros are accompanied by a set of macros that
throw errors under some common error conditions, a sampling of which appear in
Listing 1.9.

Listing 1.8 Exception handling macros

#define Try_
#define Catch_(err)
#define EndCatch
#define Throw(errl

try
catchlExceptionCode err)

throw IExceptionCodel(err)

As an example of how you might use these exception handling macros, take a look
at Listing 1.10. This code is part of a function that creates a new object of class Film.
The code for creating the object is within a Try block. The Catch block below it
throws an exception if any error occurs. If you don't want to use the generic Th row_
macro to trap any error, use one of the specific error macros found in UException.h.

NOTE
If you are using ANSI C++ stream IIO, then there will be some duplication between
console.stubs.c (the stream I!O support file) and UException.cp, causing the linker to
warn you that it has discovered a duplicate definition of abort.c. Although the warning
is harmless, if you find it annoying you can prevent it from occurring by removing UEx
ception.c from any project that includes console.stubs.c to support ANSI stream IIO.
(You will read more about adding ANSI stream IIO support in Chapter 3.)

28 Chapter 1 • Introducing PowerPlant

Listing 1.9 Some useful Throw macros

#define ThrowlfOSErr_(errl \
do { \

OS Err _theErr = err; \
if (_theErr != noErrl I\

Throw_(_theErrl; \
} \

while (false)

#define ThrowlfError_(errl
do I

\
\
=err;\
\

ExceptionCode_theErr
if (_theErr != Ol {

Throw_(_theErrl;
}

while (false)

\
\

#define ThrowOSErr_(err)Throw_(err)
#define ThrowlfNil_Cptr) \

do I \
if ((ptrl ==nil) Throw_Cerr_NilPointerl;\

I while (false)

#define ThrowlfNULL_Cptrl \
do I \

if ((ptrl ==nil) Throw_Cerr_NilPointer);\
I while (false)

#define ThrowlfResError_() ThrowlfOSErr_(ResErrorCll
#define ThrowlfMemError_() ThrowlfOSErr_(MemError())

Listing 1.10 Using exception handling macros

Try_
{

II Create new object and insert into binary tree
newMovie = new Film (Title_numb, iTitle, iDistributor, iDirector,

iProducer, iClass, ilen, numb_stars, istars, iRating, Items, ItemsByNumb);
Movie_count++;

II move cursor back to first edit field
theFirstEditField->SwitchTarget (theFirstEditFieldl;
save_flag = FALSE; II flip this flag whenever data are modified

Catch CinErr)
{

Throw_ (inErrl;
EndCatch

Penultimate
Videos

CHAPTER

In this chapter you will see the Penultimate Videos application from two viewpoints:
the user's and the programmer's. The user's view includes an overview of menu
options and the functions they provide. The programmer's view includes a discus
sion of the program's underlying data classes and the data structures that manage
objects of those classes.

The User's View

The purpose of the Penultimate Videos application is to manage a video store's
inventory as well as the rental and sales of items. The store's inventory contains
video tapes, laser discs, and video game cartridges, all of which can be rented. Rental
copies that are no longer needed can be sold.

29

30 Chapter 2 • Penultimate Videos

HANDLING INVENTORY

Inventory management functions are gathered together in the Inventory menu
(Figure 2.1). As you can see, this menu lets the user enter new inventory items as well
as copies of those items. It also supports modifying and deleting items and copies.

Figure 2.1 The Penultimate Videos Inventory menu

lnuentory

New Mouie 3€M
Modify/Delete Mouie
New Miscellaneous IJideo
Modify/Delete Miscellaneous IJideo

New IJideo Copy
Modify/Delete IJideo Copy

New Game 3€G
Modify/Delete Game
New Game Copy
Delete Game Copy

Find Item 3€ 1
lnuentory Graph 3€2
I nuentol]I_ Stats 3€3

Entering new inventory items is handled through dialog boxes. For example, the
dialog box in Figure 2.2 is used to enter data about a new miscellaneous video. A sim
ilar dialog box (Figure 2.3) is used to modify or delete items. The user reaches the dia
log box in Figure 2.3 by double-clicking on a scrolling list of titles.

A video store doesn't rent "titles," it rents copies of those titles. Therefore, before
Penultimate Videos can rent something, a user must record the copies of an item that
the store has purchased. Each copy has an arbitrary unique inventory number that is
generated automatically by the program. To enter a copy of a video, the user high
lights the title in a scrolling list of titles and then uses the radio buttons, check boxes,
and popup menu to enter data about the copy. For example, in Figure 2.4 the user is
recording a letterboxed laserdisc copy of Beauty and the Beast in CAV format. When
the user clicks the OK button, the program responds with the inventory number that
should be attached to the new copy (Figure 2.5).

The User's View 31

Figure 2.2 Entering a new title

Enter New Miscellaneous Uideo

Title:

Distributor:

Producer:

Director:

Length: Classification: Documentary ,.. I

Done (OK J

Figure 2.3 Modifying an item

.. ---··· Modif /Delete .. Miscellaneous llideo -·----..................... -........................... ..

Title: jBrief History of Time, A

Distributor: ~n_la ____________________ ~

Producer: joavid Hickman

Director: j Erro 1 Morris

Length: Classification: Nature

(Cancel) (Delete) (Modify J

To delete a copy of an item, the user simply enters the copy's inventory number.
The number can be typed on a keyboard or scanned by a bar code reader. As long as
the input enters through the ADP port, the Macintosh doesn't know the difference
between the two.

32 Chapter 2 • Penultimate Videos

Figure 2.4 Entering a new video copy

Enter Uideo Cop

Media:
Highlight the mouie title:

OTope

® Loserdisc

2001: H Space Odyssey ~
35 Up I Rees: Iron Eagle 111 '11'1' :i'il Hduentures of Robin Hood imli'
Hfricon Queen, The ;!!!!'
Rge of Innocence i Hirplone 11: The Sequel
Airport
Hloddin
Hmericon Dream ~Jl!
Boroko '~li

lmZi I lll:;·. :~!!

CHU Format:

181 LOH

181 Dolby Surround Sound

Bed ond Breokfost ~

Done ([OK)J

Figure 2.5 The inventory number for a new copy

Media:

QTope

®Loserdisc

Enter Uideo Copy

Highlight the mouie title:

2001: H Space Odyssey
35 Up
Hces: Iron Eagle 111
Hduentures of Robin Hood

Formo Giue the new inuentory item on inuentory
number of 35.

181 LOH ([OK)J
181 Dolb

lbm-=-=-=-=-=-=~1~~.,~~,,amu1'fif'l,Yifii'ia11uPlff~niii"ieoi'iiii~a1~~il,F="-=-=-=-=•
Bed ond Breokfost

Done ([OK JJ

The User's View 33

The Find Item menu ultimately displays information about a merchandise item.
Choosing the menu item (or pressing the associated command-key equivalent) dis
plays a scrolling list of all titles in inventory (Figure 2.6). The user then double-dicks
on the title to display an information window such as that in Figure 2.7. Notice that
the Title Information window also provides access to QuickTime. If there happens to
be a QuickTime clip available, the user can choose and play it by clicking the View
Movie Clip button.

Figure 2.6 A scrolling list of all titles in inventory

~Ii---.. ·-·-··-·---·--··-··· .. ·- IJideos and<Garnes -

Brother's Keeper
Bug!
Children, The
Close Encounters of the Third Kind
College Football
ComiH Zone
Damned in the USR
Day the Earth Stood Still, The
Daytona USR
Dead Rgain
Donkey Kong Country
Dr. Robotnik's Mean Bean Machine
E.T. the EHtra-Terrestrial
Empire Strikes Back, The
FernGully: The Last Rainforest
Flintstone
Ghost

NOTE
The Penultimate Videos program does not store the names of movie clip files. Clicking
the View Movie Clip button brings up a GetFile dialog box that the user can use to
select the clip.

The Inventory Graph menu item is a demonstration of drawing within the Power
Plant framework. It displays a graph of the number of titles of each type (movie,

34 Chapter 2 •Penultimate Videos

Figure 2.7 Displaying inventory information

§ID Title Information

Title: Brief Histor!.t of Time, R

Type: Other

Total copies: 5 Copies in stock: 5

Uiew Mouie Clip Done

miscellaneous video, and game) currently carried by the video store. You will see this
graph and how it is constructed in Chapter 5.

HANDLING CUSTOMERS

The Customers menu (Figure 2.8) provides access to program functions dealing with
customer activities, including maintaining customer data, viewing items rented by a
customer, and writing a note to a customer using the text editing window you saw in
Chapter 1.

Figure 2.8 The Customers menu

Customers

New Customer SCA
Modify/Delete Customer

Uiew Current Rentals
Uiew Ouerdue Rentals

Write note

Data about Penultimate Video customers are entered and maintained using a dia
log box similar to those used for managing inventory items (Figure 2.9). Because the
user reaches the modify I delete dialog box by double-clicking on the customer's
name in a scrolling list of names, this dialog box can also be used to find the customer
number should the customer's membership card not be available when he or she is
trying to rent merchandise.

The User's View 35

Figure 2.9 Modifying customer data

Customer#: 2

First/M.I.: I Last: jJohnson

Street: I' 05 "'" ~

City, State Zip: I Any town, NY 10101

Phone: jsss-3333

Credit card #: j 3232 3232 3232

(Cancel (Delete) [Modify B

The View Current Rentals and View Overdue Rentals provide lists of inventory
numbers of the items currently rented by a customer or currently rented and over
due. (Overdue is defined as having a date due prior to the current day.)

NOTE
As mentioned in the Pref ace, the Penultimate Videos program is a demonstration pro
gram that isn't intended to be equivalent to a commerdal application that could actu
ally be used to manage a video store. A more complete version of the program would
certainly include a way to enter an inventory number and view data about that copy,
such as its title and who, if anyone, has rented it.

HANDLING TRANSACTIONS

In its current state, the Penultimate Videos program handles two types of transac
tions with its Transactions menu: renting and returning copies of merchandise items
(Figure 2.10). Renting is the more complex transaction because it involves printing a
receipt that the user can take with the rented items.

When renting an item, the program first displays a window for the receipt. This is
a screen image of what will be printed. The program then overlays the receipt with a
dialog box used to collect data for a rental (Figure 2.11). As data are entered for

36 Chapter 2 • Penultimate Videos

Figure 2.10 The Transactions menu

Return Item

individual items, the items appear on the receipt. Both the customer number and the
inventory number can be scanned from a bar code or typed at the keyboard.

Figure 2.11 Renting an item

21211996

Ren1er#:

Title

- [:ustomer.Receipf ------~~~------

I Penultirrate Vi(jeO~
·. ~ . .t.8~Main Street.

1f AnYtown, NY t010f ·

Date D11e

Customer#: _I __ ~

I nuentory #: _I --~
Rental period: ~
Rental fee: 12.95

(Done) ([OK)J

When the receipt is complete (all items recorded), the user clicks the Print Receipt
button to generate the receipt. The Print dialog box appears, letting the user choose
the number of copies to print (in this case, usually two, one for the customer and one
for the store).

Recording the return of an item is straightforward: The user opens the dialog box
for recording the inventory number of the returned item (Figure 2.12) and then

The Programmer's View 37

either scans the item's bar code or types the inventory number on the keyboard.
Assuming the store is using a bar-code system, recording returns will proceed very
quickly.

Figure 2.12 Recording the return of an item

Rental Return

lnuentory number: I I
Done [OK J

The Programmer's View

At its heart, Penultimate Videos is a data management application. In addition to the
PowerPlant classes that manage the program's user interface, the program requires a
group of classes to handle the data and the data structures in which they are stored.
As with most object-oriented programs, these classes that manage data are purposely
kept separate from the classes that manage the user interface.

The basic class hierarchies can be found in Figure 2.13. The hierarchy at the top of
the figure represents data about types of merchandise stocked by the store. This mid
dle hierarchy represents data about copies of merchandise that are rented. Although
the Customer class interacts with the other classes, it isn't part of any inheritance
hierarchy.

As you will see as you look at the classes throughout this section, the data modifi
cation functions for each class are complete. Users can enter data for new objects,
modify object data (including the title), and delete objects. The classes also provide
functions for returning data that can be used in a variety of on-screen and printed dis
plays. In addition, they maintain a collection of pointers used by binary trees and
linked lists.

THE MERCHANDISE_ITEM HIERARCHY

Data about merchandise items are stored in objects created from one of three classes:
Game, Film, and Other. (The Film class was originally called Movie, but using that

38 Chapter 2 • Penultimate Videos

Figure 2.13 The Penultimate Videos data class hierarchies

Merchandise_ltem

Video Game

Film Other

Item_ copy

Video_copy Game_ copy

Customer

term conflicted with the QuickTime data structure by the same name!) The base
class for the entire hierarchy in which the preceding classes participate is
Merchandise_Item (Listing 2.1). This abstract base class stores data common to all
types of merchandise carried by the store, along with pointers for the data structures
in which objects of this class participate. These include two binary search trees (one
ordered by item name, the other by title number) and a linked list of objects for the
copies of this item in the store's inventory. The linked list provides the only physical
relationship between the Merchandise_Item hierarchy and the Item_copy hierarchy,
although, as you will see, each Item_copy does contain the title number its
Merchandise_Item to provide a logical one-to-many relationship between titles and
copies of those titles.

The Game class (Listing 2.2) adds two item-specific variables to its base class. It is
derived directly from Merchandise_Item and is used to create objects. However,

The Programmer's View 39

Listing 2.1 The Merchandise_ltem class

class Merchandise_Item
I

l;

protected:
int Title_numb, Copy_count, Item_type;
ANSistring Title;
ANSistring Distributor;
II binary search tree of titles by name
Merchandise_Item * LeftName, * RightName;
II binary search tree of titles by number
Merchandise_Item * LeftNumb, * RightNumb;
Item_copy * First, * Last;// linked list of items

public: .
Merchandise_Item (int, ANSistring, ANSistring);
Merchandise_Item (ifstream &. int);
char* getTitle();
char* getDistributor();
void incCopy_count(l;
int getCopy_count(); // return number of copies
Merchandise_Item * getLeftName(l;
Merchandise_Item * getRightNameCl;
Merchandise_Item * getleftNumb();
Merchandise_Item * getRightNumb();
Item_copy * getFirst(l;
void setleftName CMerchandise_Item *l;
void setRightName (Merchandise_Item *);
void setLeftNumb (Merchandise_Item *);
void setRightNumb CMerchandise_Item *);
void Insert Cltem_copy *);
Item_copy * getlast ();
int getltem_type ();
int getTitle_numb(l;
Item_copy *available(); II check to see if any copies are available
void setTitle CANS!string);
void setDistributor CANSistring);
virtual void write (ofstream &l = O;

classes for movies and other videos can't be derived direclty from Merchandise_Item
because the data to be stored about videos vary depending on whether the item is a
movie. A movie has stars and a rating, where other videos such as how-to films and
documentaries don't. (You can argue the point if you wish, but the preceding repre
sents the world as seen by Penultimate Videos.)

40 Chapter 2 • Penultimate Videos

Listing 2.2 The Game class

class Game : public Merchandise_Item
{

private:
ANS!string System;
rate_string Rating;

public:
Game (int, ANS!string, ANS!string, ANS!string, rate_string, MerchTree *

MerchNumbTree *);

I;

Game (ifstream &. MerchTree *, MerchNumbTree *, int);
void write (ofstream &l;
char* getSystem();
char* getRating();
void setSystem (ANS!stringl;
void setRating (rate_stringl;

The class hierarchy therefore includes an abstract base class (Video) that is derived
from Merchandise_Item and adds variables for data common to all types of videos
(see Listing 2.3). The two classes from which objects are actually created (Film, in
Listing 2.4 and Other in Listing 2.5) are then derived from the Video class.

Listing 2.3 The Video class

class Video : public Merchandise Item
{

} ;

protected:
ANSistring Director;
ANS!string Producer;
ANS!string Classification;
int Length;

public:
Video (int. ANS!string, ANS!string, ANS!string. ANS!string. ANS!string. int);
Video (ifstream &. int);
char * getDi rector();
char* getProducer(l;
char* getClass();
int getlength ();
void setDirector (ANS!string);
void setProducer (ANS!string);
void setClass (ANS!stringl;
void setlength (int);
virtual void write (ofstream &l O;

The Programmer's View 41

Listing 2.4 The Film class

class Film : public Video
(

} ;

private:
ANSistring Stars[MAX_STARSJ; //array of strings for stars
int numbStars;
rate_string Rating;

public:
Film (int, ANSistring, ANSistring, ANSistring, ANSistring, ANSistring,

int, int, ANSistring [], rate_string, MerchTree *, MerchNumbTree *);
Film (ifstream &, MerchTree *, MerchNumbTree *, int);
char* getRating();
ANSistring * getStars (int &l;
void setRating (rate_string);
void setStars (ANS!string []. int);
void write (ofstream &l;

Listing 2.5 The Other class

class Other : public Video
(

} ;

public:
Other (int, ANS!string, ANS!string, ANS!string, ANS!string, ANSistring, int,

MerchTree *, MerchNumbTree *);
Other (ifstream &, MerchTree *, MerchNumbTree *, int);
void wrfte (ofstream &l;

THE ITEM_COPY HIERARCHY

The actual physical inventory that Penultimate Videos rents is described by objects in
the Item_copy hierarchy. The Item_copy class (Listing 2.6) is an abstract base class
that contains variables for data common to all types of merchandise item copies. It
also provides support for the data structures in which copies of merchandise partici
pate (a binary search tree ordered by inventory number and the linked list of copies
of the same merchandise item).

Objects are actually created from the two derived classes Video_copy (Listing 2.7)

and Game_copy (Listing 2.8). The only difference between the two is the additional
variables found in Video_copy.

42 Chapter 2 • Penultimate Videos

Listing 2.6 The ltem_copy class

class Item_copy
(

I:

protected:
int Inventory_numb, Title_numb, Renter_numb;
int ln_stock; II boolean
date* Date_due; II pointer to object of class date
Item_copy * Next, * Right. * Left;

public:
Item_copy (int. int);
Item_copy Cifstream &, CustNumbTree *);
date* Rent (Customer*. int); // returns the date due
void Return CCustNumbTree *):
int getStatus();
int getlnventory_numb();
int getTitle_numb();
Item_copy * getNextCl:
void setNext Citem_copy *);
void setRight Citem_copy *);
void setleft (!tem_copy *l:
Item_copy * getRight Cl:
Item_copy * getleft ();
date* getDate_due();
virtual void write Cofstream &l O;

Listing 2.7 The Video_copy class

class Video_copy : public Item_copy
I

private:
ANSistring Media, Format;
int Dolby, LBX: // these are qooleans

public:
Videci_copy (int. int, ANSistring, ANSistring, int, int, Merchandise_Item *

CopyTree *):

I:

Video_copy (ifstream &, Merchandise_Item *, CopyTree * CustNumbTree *):
char* getMedia();
char* getFormat Cl:
int getDolby Cl:
int getLBX ();
void setMedia CANSistring);
void setFormat (ANSistring);
void setDolby (int);
void setLBX (int);
void write Cofstream &l:

The Programmer's View 43

Listing 2.8 The Game_copy class

class Game_copy : public Item_copy
I

I;

public:
Game_copy (int, int. Merchandise_Item *, CopyTree *);
Game_copy (ifstream &. Merchandise_Item *, CopyTree * CustNumbTree *);
void write (ofstream &l;

THE CUSTOMER CLASS

The Customer class can be found in Listing 2.9. This class participates in two binary
search trees, one organized by customer name and the other by customer number. In
addition, the Customer class manages a linked list of items that the customer has
rented. This list, an object of the PowerPlant class LList, serves to illustrate the use of
the PowerPlant list class and a PowerPlant list iterator.

NOTE
The preceding class declarations can be found in video.h. The implementations of the
Merchandise_Item and Video classes are in base.cpp. The remaining classes in the hier
archy are in movie.cpp (Film class), other.cpp (Other class), and game.cpp (Game
class). The implementation of the Item_Copy class is in itembase.cpp. The remaining
copy implementations (Video_copy and Game_copy) are in copies.cpp. Customer class
.functions can be found in customers.cpp.

THE BINARY SEARCH TREES

The Penultimate Videos program manages most of its data using binary search trees.
All merchandise items, regardless of type, are stored in the same tree. The Mer
chTree class (Listing 2.10) organizes the merchandise items by title. A similar class
(MerchNumbTree) organizes merchandise items by item number.

NOTE
If you are unfamiliar with binary search trees or with how binary search trees are
implemented in object-oriented C++, see the Appendix, which provides an explana
tion of binary search tree algorithms and iterators.

The MerchTree class is accompanied by two iterators. The in-order traversal for
MerchTree (Merchltr in Listing 2.11) provides a listing in alphabetical order by title

44 Chapter 2 • Penultimate Videos

Listing 2.9 The Customer class

class Customer
{

l;

private:
int Renter_numb;
ANS!string fname. lname, street. CSZ, phone;
ANS!string credit_card_numb;
Customer * RightName, * LeftName. * RightNumb, * LeftNumb;
Llist * Items_rented; II list of items currently rented

public:
Customer (int, ANS!string, ANS!string, ANS!string, ANS!string, ANS!string,

ANS!string, CustTree *, CustNumbTree *l;
Customer (ifstream &, CustTree *, CustNumbTree *l;
int getRenter_numb(l;
void setRightName (Customer *l;
void setleftName (Customer *l;
void setRightNumb (Customer *l;
void setleftNumb (Customer *l;
Customer* getRightName(l;
Customer* getleftName(l;
Customer* getRightNumb(l;
Customer* getleftNumb(l;
char * getlongname(l; 11 note: l name + fname
char* getDisplayName (); II Note lname, fname
int getRenterNumb(l;
char* getFname(l;
char* getlname(l;
char* getStreet();
char* getCSZ(l;
char* getPhone();
char* getCCN(l;
void setFname (ANS!stringl;
void setlname (ANS!string);
void setStreet (ANS!string);
void setCSZ (ANS!stringl;
void setPhone (ANS!stringl;
void setCCN (ANS!string);
void InsertRentedltem (!tem_copy *l:
void RemoveRentedltem (!tem_copy *);
void BuildRentalslist (ListHandle, int, MerchNumbTree * ltem_copy *);
void write (ofstream &l~

and is therefore used for searching by title and building scrolling lists of titles. How
ever, if an in-order traversal is used to write data to a file, the next time the file is read
and the tree recreated, the tree will end up the equivalent of a linked list. On the
other hand, a pre-order traversal will result in a recreated tree that is structured

The Programmer's View 45

Listing 2.10 The MerchTree class

class MerchTree
I

I;

private:
Merchandise_Item * root;
int Item_count. lastTitle_numb;

public:
MerchTree (int. int); II base constructor
void Insert (Merchandise_ltem *. ANS!string, Boolean);
Merchandise_Item *find (ANS!string); II find
II used just for games (based on title and system)
Game* find (ANS!string, ANS!string);
II Flag indicates whether copies should be deleted along with the title
Boolean Delete (Boolean. Merchandise_Item *. CopyTree *l;
11 for videos
void find (ANS!string, Merchandise_Item * &. Merchandise_Item * &l;
II for games
void find (ANS!string, ANS!string, Merchandise_Item * &. Merchandise_Item * &l;
int getltem_count(l;
void setltem_count (int);
int getlastTitle_numb ();
int inclastTitle_numb ();
Merchandise_Item * getRoot();

exactly like the tree that was in memory the last time the program was run. (Assum
ing a relatively random pattern of data entry, the alphabetical title tree will remain
more or less balanced without resorting to tree balancing algorithms.) MerchTree is
therefore also supported by a pre-order traversal iterator class (MerchltrPre in List
ing 2.12). Because MerchNumbTree is used only for searching, and not for listings, it
has no iterators.

The remaining tree classes are very similar to the merchandise item tree. Item
copies of both types are organized into a single binary tree (CopyTree). This tree,
which is ordered by inventory number, is used only for searching and therefore has
no iterators.

Like merchandise items, the Customer class participates in two binary tree classes.
The CustTree class orders customers by last name and first name; CustNumbTree
orders customers by customer number. The Custltr class provides an in-order tra
versal used for searching and listing by name. The CustltrPre class delivers a pre
order traversal used to write customer data to a file.

46 Chapter 2 • Penultimate Videos

Listing 2.11 The Merchltr class

class Merchltr
I

l;

private:
Merchandise_ltem * stack[25]. * root;
int stackPtr;
void push (Merchandise_Item *); II push onto stack
Merchandise_ltem *pop (); II pop from stack
void goleft (Merchandise_ltem *);

public:
Merchltr ();
int !nit (MerchTree *);
int operator++(); II find node
int operator! (); 11 check for end of traversal
Merchandise_Item *operator() (); II return pointer to current object

Listing 2.12 The MerchltrPre class

class MerchltrPre
I

l;

private:
Merchandise_Item * stack[25], * root;
int stackPtr;
void push (Merchandise_Item *); II push onto stack
Merchandise_ltem *pop(); II pop from stack

public:
MerchltrPre ();
int !nit (MerchTree *);
int operator++(); II find node
int operator! (l; 11 check for end of traversal
Merchandise_Item *operator() (); II return pointer to current object

NOTE
The declarations of the tree classes can be found in tree.h. The implementations are in
tree.cpp.

THE DA TE CLASS

Penultimate Videos, like many programs, makes extensive use of dates. It therefore
includes a date class that makes it easy for a programmer to handle dates. The class,

The Programmer's View 47

which can be found in Listing 2.13, includes two constructors. The first accepts a date
entered as a C string; the second accepts a Macintosh Date Ti me Rec, the data struc
ture that is returned by the ToolBox call Get Ti me.

Listing 2.13 The Date class

class date
I

} ;

friend date operator+ (int, date);
friend date operator+ (date, int);

typedef char date_string[llJ:

private:
int month, day, year:
void itoa (int, char*); II convert integer back to ASCII

public:
date (char *);
date CDateTimeRec); II constructor that works off the result of ::GetTime
int getMonth ();
int getDay ();
int getYear Cl:
char* showDate Cdate_string);
II overloaded operators
int operator== (date);
int operator!= (date);
int operator> (date);
int operator>= (date);
int operator< (date);
int operator<= (date);
void operator= (date*); II assignment--lets you copy one date to another

Dates are stored as three integers (month, day, and year). Overloaded operators
handle date comparisons, adding fixed values to dates, and assigning one date to
another. The Date class also includes a function that returns the date as a C string
(s howDate). This function is used to display a date and when writing a date to a text
file. To support s how Date, the Date class also includes its own function to convert
an integer back to ASCII (i toa).

Penultimate Videos stores the date on which a rented item is due in an object of
class Date. To compute the return date, a rented item-an object of class Video_copy
or class Game_copy, both of which are derived from Item_copy-retrieves the cur
rent date with GetTi me (see Listing 2.14). It then creates a Date object, initializing

48 Chapter 2 • Penultimate Videos

the object with the Date Ti me Rec returned by the ToolBox call. Finally, it adds the
rental period, which is expressed as a whole number of days (an integer), to the cur
rent date.

Listing 2.14 Computing the return date

DateTimeRec todayRec:
date * today;

: :GetTime <&todayRecl: //call Tool Box routine to get current date and time
today= new date (todayRecl:
*Date_due = (*today) + rentalPeriod: // uses overloaded operators

UTILITY FUNCTIONS

In addition to the classes about which you have been reading, Penultimate Videos
includes the following global utility functions:

• convert Pascal St r: Converts a Str63 into a C string.
• convertPasca 1255: Converts a Str255 into a C string.
• convertC2Pasca 1255: Converts a C string into a Str255.
• con ve rtC2 Pascal 63: Converts a C string into a Str63.
• i toa P: Converts an integer into a Str255.

The functions that convert between Str255 and a C string are not widely used. As you
will see in Chapter 10, Penultimate Videos provides Pascal and C string classes to
handle manipulation of 255-character strings. However, the remaining three func
tions are used extensively.

NOTE
It's very true that the Macintosh ToolBox contains NumToString and StringToNum
.functions. However, those .functions modify the source string, something which Penulti
mate Videos needs to avoid in many cases, hence these specialized utility classes.

PowerPlant
Projects

CHAPTER

Like any other Code Warrior project, a PowerPlant project usually begins its life as
Project Stationery. However, because PowerPlant programs require the source code
for the PowerPlant libraries as well as the source code you write, a starter Power
Plant project contains much more than a standard C++ project.

In this chapter you will be introduced to the contents of PowerPlant starter
projects. You will learn what they contain, and perhaps more importantly, what they
are missing. You will also learn how to customize PowerPlant projects for your par
ticular environment.

The Starter Projects

The Project Stationery folder contains stationery documents for both PowerPC and
69K PowerPlant projects. Because the libraries used by these projects are slightly

49

52 Chapter 3 • PowerPlant Projects

CUSTOMIZING THE APPL/CATION CLASS HEADER

The class from which an application is created is always a derived class. The default
starter application class is derived from LApplication (Listing 3.1). It contains proto
types for a constructor, a destructor, an ObeyCommand function, and a Fi ndCom
m and St at us function. The class also includes a St a rt Up function, which is
discussed later in this chapter.

Listing 3.1 The starter application class

II===~============================

II <PP Starter Header>.h 1994-1995 Metrowerks Inc. All rights reserved.
II===

/tpragma once

/tinclude <LApplication.h>

class CPPStarterApp : public LApplication I
public:

virtual
CPPStarterApp(J: II constructor registers all PPobs

-CPPStarterApp(J;ll stub destructor

II this overriding function performs application functions

virtual Boolean ObeyCommand(CommandT inCommand. void* ioParamJ:

II this overriding function returns the status of menu items

virtual void FindCommandStatus(CommandT inCommand.
Boolean &outEnabled. Boolean &outUsesMark,
Char16 &outMark. Str255 outNameJ;

protected:

I:
virtual void StartUp(J; II overriding startup functions

If your program's class will be a subclass of LApplication, all you need to do imme
diately to the starter header file is change the name of the class from CPPStarterApp
to something meaningful. However, if you want to derive your application class from
LDocument, LDocApplication, or LSingleDoc, you need to do two things:

The Starter Source Code File 53

• Replace the name of the base class (LApplication) in the class header with the
name of the class from which your application class should be derived (LDocu
ment, LDocApplication, or LSingleDoc).

• Replace the name of the base class header file (LApplication.h) with the name of
the header file for the appropriate base class (LDocument.h, LDocApplication.h,
or LSingleDoc.h).

Because the application class is a derived class, you can add attributes and func
tions to it as needed. In fact, the Penultimate Videos application class (Listing 3.2)
contains a number of program-specific functions. It also includes declarations for the
container classes used to manage the program's data structures, and variables that
might otherwise be considered "globals."

PROGRAM STRUCTURE: To SUBCLASS OR Nor TO

SUBCLASS

The structure of the Penultimate Videos program is in large measure determined by
all of those functions that have been added to the application class. They are the
result of the choice not to create subclasses unless absolutely necessary, but instead
to create objects directly from PowerPlant classes wherever possible. The alternative
is to always create subclasses, even if it is possible to use PowerPlant classes without
modification. (This is the strategy used by the sample PowerPlant applications that
accompany the PowerPlant class libraries.)

As you would expect, there are pros and cons to each strategy. If you always create
subclasses, you end up with a large number of short files. Shorter files are easier to
work with and can cut down on compile time when only a few have been modified
and need to be recompiled. In addition, creating subclasses makes it easier to reuse
code because the classes are stand-alone.

However, because there are so many files, it can be difficult to keep track of which
source files trap and handle which commands: Event dispatching and menu activa
tion/ deactivation is split among many ObeyCommand and Fi ndCommandStatus
functions. Multiple files can also increase compile time when many files need to be
recompiled.

On the other hand, if you subclass only when absolutely necessary, you have fewer
source code files. It is much easier to keep track of where commands are handled,
which for some programmers makes the program logic clearer and therefore easier
to maintain. However, the application class becomes lengthy, including a long Obey
Command function, and graphic elements, such as dialog boxes, are unavailable for
reuse.

54 Chapter 3 • PowerPlant Projects

Listing 3.2 The Penultimate Videos application class

II =====~~===================~==~=~~====~==============================
II PPVideoStore.h ©1996 Black Gryphon Ltd.
II ================================~===================================~====
II PPVideoStore.cpp (press Command-Tab to open the associated source file)
II

/fpragma once

#include <LApplication.h>
#include <Dialogs.h>

canst Str255 null = "\p"; II null string for cleaning out edit fields

class LDialogBox;
struct SDialogResponse;

class MerchTree;
class MerchNumbTree;
class CopyTree;
class CustTree;
class Film;
class Other;
class Game;
class Video_copy;
class Game_copy;
class Customer;
class CustNumbTree;

class CPPVideoStoreApp : public LApplication
{

typedef char string[81];

public:
CPPVideoStoreApp(J;ll constructor registers all PPobs

virtual -CPPVideoStoreApp(J;ll stub destructor

II this overriding function performs application functions

virtual Boolean ObeyCommand(CommandT inCommand, void* ioParamJ;

II this overriding function returns the status of menu items

virtual void FindCommandStatus(CommandT inCommand,
Boolean &outEnabled, Boolean &outUsesMark,
Charl6 &outMark, Str255 outNamel;

II This overridden function allows the quit action to save data
virtual void SendAEOuit(J;

Continued next page

The Starter Source Code File

Listing 3.2 (Continued) The Penultimate Videos application class

II begin functions added for this program
int Load (l;
void Unload();
void SaveAs();
void New();
void Open(l;
void MakePathName (FSSpec. CString &l: II construct full path name
void SetUpNewMovie ():
void SetUpNewCust ();
void SetUpModCust(SDialogResponse *l:
void SetUpNewMisc ();
void SetUpNewGame ();
void ItemList (int);
void SetUpltemModify (SDialogResponse *);
void DisplayStarModify (LDialogBox *, ResIDT, ANSistring);
void ModifyMovie (SDialogResponse *);
int LoadStarsArrayModify (LDialogBox *, ANSistring [], ResIDT, int);
void ModifyMisc (SOialogResponse *);
void ModifyGame (SDialogResponse *);
void Deleteltem (SDialogResponse *);
void SetUpNewVideoCopy ();
void SetUpNewGameCopy ();
void ChooseCopy2Modify ();
void SetUpCopyModify (SDialogResponse *);
void ModifyVideoCopy CSDialogResponse *);
II note: game copies contain no modifiable data
void DeleteCopy CSDialogResponse *);
void SetUpFindltem ();
void SetUpRent ();
void SetUpReturn ();
void ProcessNewMovie (SDialogResponse *);
void ProcessNewCust (SDialogResponse *);
void DisplayCustList();
void BuildCustList (LListBox *);
void ProcessModifyCust (SDialogResponse *);
void ProcessDeleteCust (SDialogResponse *);
void ViewCurrentCustList ();
void ViewOverdueCustList();
void ShowCurrentRentals (SDialogResponse * int); II ALL or OVERDUE
void ProcessNewMisc (SDialogResponse *);
void ProcessNewGame (SDialogResponse *);
void ProcessNewVideoCopy (SDialogResponse *);

void ProcessNewGameCopy (SOialogResponse *l;
void DisplayTitlelnfo (SDialogResponse *l;
void ViewOuickTime(SOialogResponse *);
void ProcessRent <SDialogResponse *);
void PrintReceipt (SDialogResponse *);
void CloseRentWindow (SDialogResponse *);
void ProcessReturn (SDialogResponse *);

55

Continued next page

56 Chapter 3 • PowerPlant Projects

Listing 3.2 (Continued) The Penultimate Videos application class

l;

void WriteNote ();
void DisplayGraph Cl:
void CloseDialogBox CSDialogResponse *l:
II pass in number of objects handled & thermometer window
void ManageThermometer (int, LWindow *);

II end functions added for this program

protected:
virtual void StartUp(); II overriding startup function

II File management stuff
string FileN'ame;
FSSpec FileSpec;

II Data structures
MerchTree * Items; II alphabetical list of all titles
MerchNumbTree * ItemsByNumb: II titles by title number
CopyTree * Copies;
CustTree * Customers; II customers by name
CustNumbTree * CustByNumb; II customers by customer .number

II flags
Boolean save_flag; II used to determine whether to warn user about saving changes

II Pointers for new objects; used all over the place
Film * newMovie;
Other * newOther;
Game * newGame;
Video_copy * newVideo;
Game_copy * newGC;
Customer * newCust;

II "save" variables (used to hold values that can't be captured or passed
II in any other reasonable way)
Customer * currentCustomer:
LDialogBox * receiptDialog;
int row;
LListBox * receiptlist;

Which should you choose? In most cases, it's a matter of personal preference.
However, if you are planning to create classes that you intend to reuse, then you
should subclass wherever possible. On the other hand, if reusability isn't an issue
for example, if the screen displays in your program are too program-specific to be
reused-then the choice can be based on whatever makes the program clearer to you
(and perhaps your programming team members) in the long run.

PowerPlant Starter Resource Files 57

MODIFYING STARTER APPLICATION FUNCTIONS

Regardless of the overall strategy you use in your PowerPlant program, you will
probably need to add code to the application object's overriding member functions.
For example, the destructor in the starter source code file is empty. You should there
fore add to it any code that should be executed before the application terminates.
The Penultimate Videos program, for example, uses the destructor to close Quick
Time (Listing 3.3).

Listing 3.3 The Penultimate Videos application destructor function

II---
11 • -CPPVideoStoreApp
II---
11 Destructor
II

CPPVideoStoreApp::-CPPVideoStoreApp(l
I

UOuickTime: :Finalize();

PowerPlant Starter Resource
Files

As you saw in Figure 3.1 and Figure 3.2, a starter project comes with three resource
files. PP Action Strings. rsrc contains four STR# resources for undoing and redoing edit
and drag actions. PP DebugAlerts. rsrc contains two alerts that are used by the debug
ger to display exception and signal information.

The third resource file-<PP Starter Resource>.rsrc--contains resources that are
used by the starter source code file (Figure 3.3). This is where you will find the
default menu bar (a combination of the MBAR, Mcmd, and MENU resources), along
with an ALRT for a default about box that you can customize, and some default icon
resources.

You may also have noticed that there is a PPob resource. (The WIND resource
accompanies the PPob resource.) Its name is "replace me," and it is only intended as
a placeholder for other PowerPlant objects that you will be adding. If you are going

58 Chapter 3 • PowerPlant Projects

Figure 3.3 Resources in the starter resource file

<PP Starter Resource>.rsrc Im

D
0101 1101 0101 1101

tmJ
0101 I IOI

{}
00101001 00101001 00101001
0110 1010 0110 1010 0110 1010
0001 1110 00011110 0001 1110 .
01000000 01000000 01000000

actb aedt aete ALRT CNST

0101 1101 MCI •E'.l L:JD 0010 1001
0110 1010
0001 1110 ~···· ~···· ~-··· 01000000

DITL DLGX icl4 icl8 ICN#

OD llDD llDD w ~-··· ~-·· ~··· .
fos# ics4 ics8 ictb MBAR

01011101

~
0101 1101 0101 I IOI

0010 1001 0010 1001 0010 1001
0110 1010 0110 1010 01101010
0001 1110 0001 1110 0001 1110
01000000 01000000 -·--·· 01000000 -
Mcmd MENU PPob STR# Txtr

CJ
WIND -0-

~

to keep two resource files (one for PowerPlant objects and one for all other
resources), then you can either ignore this PPob resource or delete it.

The <PP Starter Resource>.rsrc file is physically located in the Stationery Support
Files folder. Copy it from that folder into the folder containing your application and
rename it. (The Penultimate Videos resource file is called PPVideoStore.rsrc.) Then,
remove <PP Starter Resource>.rsrc from the project and add the newly renamed file.

NOTE
If you are using two separate resource files for application-specific resources, then you'll
add the file for PowerPlant objects after you create the first PPob resource using Con
structor.

Adding Support for Apple Events

Adding Support for Apple
Events

59

PowerPlant makes extensive use of Apple Events, even if you don't spedfically add
support for them to your program. For example, Apple Events are used to trigger a
startup event (and a subsequent call to an application object's Sta rt up function)
and to exit the program. In Listing 3.4, for example, you can see the Sta rt Up func
tion for the Penultimate Videos program. This function, which is supplied as part of
the application object starter file, is triggered by a startup event whenever the pro
gram is launched. In this particular case, the program calls a function added to the
application object (Load) to read data from disk. If the user cancels the load and asks
to quit the program, the function calls Send A E Qui t, an application object function
that uses an Apple Event to quit the program and return to the Finder. (This is the
same function that is called when the user chooses Quit from the File menu.)

Listing 3.4 The Penultimate Videos Startup function

void CPPVideoStoreApp::StartUp()
I

II Load initial data structures
int keep_going =Load():
if (! keep_goi ng)

SendAEOuit(): II quit program if no master file

However, a vital file is missing from the default projects to support Apple Events.
If you don't add the missing piece, the Sta rt up function won't be called and
SendAEQu it won't work. The missing file is a resource file: You should always add
PP AppleEvents. rsrc to your Power Plant projects.

60 Chapter 3 • PowerPlant Projects

Adding Support for ANSI
Functions

It is theoretically possible to write a PowerPlant program without ever using an
ANSI C or C++ function. Practically, however, you will probably want access to at
least some of the standard libraries. For example, you might want the C math or
string functions or some C++ file stream 1/0. In that case, you need to add some
libraries and perhaps a source file to your project. The needed files are summarized
in Table 3.1.

Table 3.1 Additional files needed for C and C++ library support

Project Type
68K

PPC

Support Provided
ANSIC

ANSIC++
ANSI stream I/ 0
ANSIC

ANSIC++
ANSI stream I/ 0

File Name
MathLib68K.Fa(2a).Lib3

ANSIFa(2i)C.68K.Lib
ANSIFa(2i)C++.68K.Lib
console.stubs.ch
MathLib
ANSI C.PPC.Lib
ANSI C++.PPC.Lib
console.stubs. c

a. There are several groups of 68K ANSI libraries that vary based on the
amount of space to be allocated for number storage and the code model
(for example, near or far). The Penultimate Videos program uses a far code
model with 2-byte integers. Pick which group is appropriate to your pro
gram. just be sure that all 68K libraries come from the same model and that
the project Preferences are set for that model.

b. ANSI stream file I/O requires the ANSI C++ library as well as the con
sole.stubs.c file.

The Penultimate Videos
Projects

The Penultimate Videos program uses all of the libraries and resources about which
you have been reading, although the specific libraries do differ between the PowerPC
and 68K platforms.

PowerPlant and Precompiled Headers 61

The complete PPC project appears in Figure 3.4. Notice that there are five
resource files (the three PowerPlant resource files [PP Action Strings.rsrc, PPDebugA
lerts.rsrc, PP AppleEvents.rsrc], a file for PPob resources [PPob.rsrc], and a file for other
resources specific to the program [PP VideoStore.rsrc]). The libraries include the stan
dard PPC libraries, the ANSI libraries, and the QuickTime library.

The 68K project can be found in Figure 3.5. This project includes the standard 68K
libraries and a set of ANSI libraries. Notice that there is no QuickTime library
because that library is required only for PowerPC programs.

PowerPlant and Precompiled
Headers

You can significantly speed up the compilation of a Macintosh program by using a file
containing precompiled headers as a prefix to your source. The precompiled headers
mean that Code Warrior doesn't need to translate header files into binary each time a
source code file is compiled; the translation has already been done.

By default, a PowerPlant project uses a precompiled header that contains most of
the PowerPlant and Macintosh OS headers, along with additional support for debug
ging (PP _DebugHeadersPPC or PP _DebugHeaders68K, whichever is appropriate). The
default precompiled headers, along with the source code from which they are gener
ated, are stored in the PP Precompiled Headers folder.

Sometime during the program development process you will want to create your
own precompiled header. At the very least, you will want to remove the debugging
headers before generating shipping code. In addition, because PP DebugHeaders
doesn't include all PowerPlant classes and all Macintosh OS headers, you may want
to create your own precompiled header file during the program development pro
cess.

The Penultimate Videos program, for example, uses QuickTime. None of the
QuickTime headers (PowerPlant or Macintosh OS) are included in the default
PP _DebugHeaders. Therefore, the program has its own precompiled header file.

To create a custom precompiled header file, do the following:

1. Open the project for which the precompiled header file will be generated.
2. If you are adding a PowerPlant header file, open PP _ClassHeaders.cp and add a

if i n cl u de for each additional header you want to include.

62 Chapter 3 • PowerPlant Projects

Figure 3.4 The PPC version of the Penultimate Videos project

uideo 1f
File Code Data t4lf

V Application 82K! 26K! • 6 {j
base .cpp 1336 ! 432 ! • Ill P
console .stubs .c 60 j 56 j • Ill
copies.cpp 2376 ! 293 ! • ID
customer .cpp 256(726 j • ID
dates.cpp 2412 ! 313 i • Ill
game.opp 1168] 185j • ID
graph.cpp 1888! 1348! • ID
itembase .cpp 904 j 285 j • Ill
L TextEditM.cp 6428 i 1742 i • Ill
memorymonitor.cpp 1136] 1194] • Ill
movie.cpp 190(186 ! • ID
note .cpp 3572 j 1146 j • ID
other.cpp 1144 i 129 i • ID
PPVideoStore.cpp 33836 j 12813 j • ID
receipttab le .cpp 1 228 ! 6 97 i • Ill
statstable.cpp 1824 j 764 j • ID
statswindow .cpp 1368 i 1178 ! • Ill
stringobjects.cpp 4252 i 1101 i • [il
Ther .cpp 888 J 576 l • ID
tree .cpp 9068 j 1 009 j • ID
UTextMenus.cp 4192! 841 ! • [il
utilities.cpp 844 j 396 j • Ill
PPob.rsrc n/a ! n/a ! Ill
PPYideoStore .rsrc n I a j n I a j Ill
PP Action Strings.rsrc n/aj n/ai ID
PP DebugAlerts.rsrc n/a! n/a! [il
PP AppleEnnts.rsrc l n/aJ n/al ID

MathLib ! o! Di Ill
ANSI C.PPC.Lib i 54456 i 13679 i ID
ANSI C++.PPC.Lib l 57564J 11888l Ill

~~~e;:.a;:~;:rtlib i ~I ~I ~ 
MYCRuntime .Lib l 9352 j 24 72 l Ill 1-=-1 
QuickTimeLib i 0 i O i JD 9 

100 fi1e(s) 429K t OSK IMJi 



PowerPlant and Precompiled Headers 63 

Figure 3.5 The 68K version of the Penultimate Videos project 

§B uideo 1f 68K 
File Code Data .. 

V Application 79K! 18K! • 13 {} 
PPVideoStore .cpp i 34852 \ 1 0137 \ • Ill 
base.cpp 1 21861 105 i • Ill 
console .stubs .c i 186 \ 1 7 i • Ill 
copies .cpp l 2250 l 203 ! • [il 
customer .cpp l 2878 l 289 i • [il 
dates.opp 1 18941 251 • [il 
game.opp l 1022 l 155 i • [il 
itembase.cpp i 11501 1141 • [il 
l TextEditM.cp i 5638 i 834 l • [il 
movie.cpp i 1574! 164\ • [il 
note .cpp ! 2936 ! 893 i • Ill 
graph.cpp i 1448 ! 12001 • [il 
Index Access lter ator .cpp i 222 i 0 i • [il 
stringob jects .cpp ! 3738 ! 1 ! • [il 
other.opp i 916l 164! • [il 
tree .cpp i 8560 i 1 05 i • [il 
UTextMenus.cp i 3338 i 253 ! • [il 
memory monitor .cpp l 1182 l 1154 ! • Ill 

::~:~~:!~:~:~;p I 1 ;~~ I ·~~~ i : ~ 
statswindow .cpp · 1328 i 1134 i • ID 
Ther.cpp 8681 431 l • ID 
utilities .cpp 804 i 276 i • [il 
PP Action Strings .nrc n I a ! n/ a 1 [il 
PPob.rsrc n/aj n/aj Ill 
PP App leEvents .rsrc n I al n I al Ill 
PPYideoStore .rsrc n I a i n I a i Ill 
PP DebugAlerts.rsrc , n/ai n/ai Ill 

ANSIFa(2i)C++ .68K.Lib j 38678 ! 4838 j [il 
MacOS. lib l 30728 l 0 l [il 
ANSIFa(2i)C.68K.Lib \ 36550 i 8001 i [il 
Mathlib68K Fa(2i).Lib l 27378 l 2156 l [il 
CPlusPlus. lib i 4802 i 282 i ID 
AEOb ·ectSu ortlib.o l 14776 l 0 i 

101 file(s) 432K 56K 



64 Chapter 3 • PowerPlant Projects 

3. If you are adding support for additional Macintosh OS headers, open 
PP _MacHeaders.c and uncomment the lines for the new headers. For example, the 
following lines were uncommented in the Penultimate Videos precompiled head
ers: 

#include <Movies.h> 
#include <MoviesFormat.h> 
#include <OuickTimeComponents.h> 

4. If necessary, save and close PP _ClassHeaders.cp and PP _MacHeaders.c. 
5. Open PP _DebugHeaders.cp. 
6. Choose Precompile from the Project menu. Code Warrior will precompile all the 

included headers. Even on a PowerMac, this will take some time. Eventually, a 
Save File dialog box appears. 

7. Enter a name for the new precompiled header file and save the file. Although you 
can put it anywhere, the most convenient location is the PP Precompiled Headers 
folder where the default precompiled header files can be found. 

8. Open the Preferences dialog box and select the CIC++ Language panel. 
9. Enter the name of new precompiled header file at the bottom of the dialog box as 

the Prefix File (Figure 3 .6). 

NOTE 
Precompiled header files are different for PPC and 68K projects. If you are going to be 
generating both types of code, you must repeat the precompilation for each project, giv
ing each precompiled header file a unique name. This is why the CD-ROM that accom
panies book has two precompiled header files (PPVidSHeaders and PPVidSHeaders 
(68K)). 

NOTE 
Changing a project's Prefix File forces a recompilation of all source code in the program. 
To avoid unnecessary long compiles, consider creating your custom precompiled header 
file early in the development process. 

NOTE 
Depending on your Code Warrior installation, you may need to enlarge your memory 
allocation before you 'can precompile headers. 



PowerPlant and Precompiled Headers 

Figure 3.6 Installing a custom precompiled header file 

Apply to open project. 

~ u 
Font 

• Target 

Ii 
Access Paths 

~ 
jti.I 
Extras 

Source Model: I Custom .,.. I 
Language Info:~~~~~~~~~~~~~~~-, 
O Actiuate C++ Compiler 
O ARM conformance 
[gJ Enable C++ EHceptions 
0 Don't lnline 

0 ANS I Strict 
O ANSI Keywords Only 
O EHpand Trigraphs 

O Enable RTTI O MPW Newlines 
O Pool Strings O MPW Pointer Type Rules 
O Don't Reuse Strings O Enums Always Int 
[gJ Require Function Prototypes 

( Reuert Panel ) ( Cancel ) E,...[ ;;;;;;;;;;;;O;;;;;;K m;;;;;;;,D 

65 



CHAPTER 

PowerPlant Menus 

PowerPlant menus are managed by two classes: LMenuBar, which handles the menu 
bar, and LMenu, which handles individual menus. If you begin a PowerPlant pro
gram with the starter source file, then you will rarely have to deal with either 
LMenuBar or LMenu objects directly. However, you will have to create menu 
resources as well as to write code to activate menu items and to trap menu selec
tions. In this chapter you will learn how to do those three things. (We'll leave the spe
cial cases of handling the Font, Size, and Style menus for later, when we talk about 
windows for editing text.) 

NOTE 
Because LMenuBar and LMenu are stand-alone classes-not part of the PowerPlant 
class hierarchy-they can be used in non-PowerPlant C++ programs. 

67 



68 Chapter 4 • PowerPlant Menus 

Creating Menu Resources with 
a Standard Resource Editor 

Assuming that you have started your PowerPlant project from the starter files sup
plied with project stationery, your resource file will contain the MBAR r~source in 
Figure 4.1, which corresponds to the MENU resources in Figure 4.2. (Both Figure 4.1 

and Figure 4.2 are screen shots taken from ResEdit.) 

Figure 4.1 The starter MBAR resource 

~Ii- ' MBRR 10 = t 2e frolll <PP starter Resource>.rsrc ~ 
# of menus 3 ~ 

1) ***** ~ 
tlmenu 

Menu ID 1-1 res 

2) ***** 
~ 

File menu 

Menu res ID I 129 I 
3) ***** Edit menu 

~ Menu res ID It 30 I 
4) ***** tzy • 

In a typical Macintosh program, these four resources would be enough to support 
the menu bar and the menus. However, PowerPlant uses an additional resource
Mcmd-to associate integers with each menu option. In Figure 4.3 you can see the 
ResEdit version of the Mcmd resource for the default File menu. Notice that there is 
one integer for each item in the File menu, including the separator lines. Items such 
as the separator lines that should not respond to menu selections are given a menu 
command value of zero. However, every other item is given a unique integer. 

Some menus-for example, the tl and Font menus-don't have fixed menu items. 
Such menus have synthetic commands and must be handled differently from most 
other menus. If you look again at Figure 4.2, for example, you'll notice that the S 
menu contains only one command for the About box. The rest of the items are added 



Creating Menu Resources with a Standard Resource Editor 

Figure 4.2 The starter MENU resources 

·:Ill;;;; MENU "Apple Menu" ID = 128 from <PP Starter Aesource>.rsrc ~ 

Cl 
About This App ••• 

N(~W 

Otll~IL •. 

S<WH 
SdlJH fl~ • ., 

P1"1.1P S<~1UJL .. 
Prtn t. .. 

Q 

E2 

Entire Menu: [81 Enabled 

Title: 0 r l 
@ s (Apple menu) 

Color 

Title:ll!!ll 

Item TeHt Defoult: Ill 
Menu Bockground: D 

0 s (Apple menu) 

[81 Enabled 

Color 

Title:. 

Item TeHt Defoult: l•I 
Menu Bockground: D 

l!fliiii!!!#i MENU "Edit Menu" ID = 130 from <PP Starter Aesource>.rsrc ~ 

lllDJ Entire Menu: [81 Enobled 
Undo 311Z i:fri 

....... .................................................... _._ .. , .. __ , 
Title: @Im I 

Cut 311H 
Copy 311C 0 s (Apple menu) 

Paste 311U 
Cleor Color 

Select All 311A Title: Ill 
Item TeHt Default: Ill 

0 Menu Background: D 

69 

when the program is launched. For that reason, the menu's Mcmd resource has only 
one item (see Figure 4.4). A Font menu doesn't need a Mcmd resource at all. 

There are two important things to keep in mind when assigning menu command 
numbers: 

• The integer values assigned to menu options (with the exception of those such as 
the separator lines) must be unique throughout the entire program. 

• There is no data value in a Mcmd resource to associate it with the MENU resource 
to which it applies. If you are creating Mcmd resources using a resource editor 
other than Constructor, you must be careful to give a Mcmd resource the same 



70 Chapter 4 • PowerPlant Menus 

Figure 4.3 The Mcmd resource for the default File menu 

d. "file" ID= 129 from <PP starter Resource>.rsrc 

Humber of 12 
Comoands 

1) ••••• 

Command 
Humber 

2) ***** 
Command 
Humber 

3) ***** 
Coomand 
Huober 

'I) ***** 

lo 

Command l'I 
Humber ~----~ 

5) ***** 
Command 
Humber 

6) ***** 
Command 
Humber 

7) ***** 

Is 

Command I 1 
Humber '---------' 

B) ***** 
Command 
Humber 

9) ••••• 

Command 
Humber 

10) ***** 
Command 
Humber 

11) ***** 
Command 
Humber 

12) ••••• 

Command 
Humber 

lo 

lo 

resource ID as its MENU resource. This is the only way that PowerPlant has to 
associate the two. 

To customize the starter menu resources for your program, you can add to the 
default resources using your favorite resource editor or compiler. There is just one 



Creating Menu Resources with a Standard Resource Editor 

Figure 4.4 The Mcmd resource for the s menu 

Mcmd "RP le" ID = 128 from <PP S.terter Resource> 

Humber of 
Commands 

1) ••••• 

Command 
Number 

2) ••••• 

.} 

71 

small detail to keep in mind: PowerPlant reserves resource IDs up to 999 for its own 
use. To avoid conflicts, your resource IDs should therefore be greater than 999. 

MENU RESOURCES FOR THE PENULTIMATE VIDEOS 

PROGRAM 

The Penultimate Videos program adds six menus to the default menu bar (Figure 
4.5). The Inventory, Customers, and Transactions menus to which you were intro
duced in Chapter 2 are standard application menus and have IDs greater than 999. 

The Font, Size, and Style menus use the IDs they are typically given in Macintosh 
programs. (The remaining five MENU resources are used for popup menus and 
therefore aren't related to the current discussion.) The Inventory, Customers, Trans
actions, Size, and Style menus also have accompanying Mcmd resources. The Font 
menu, whose contents are built based on the current fonts installed in the Fonts 
folder, has no fixed menu items and therefore no Mcmd resource. 

CONSTANTS FOR MENU COMMANDS 

A PowerPlant program identifies menu commands by the integers assigned in Mcmd 
resources. (The exception, of course, is menus with synthetic commands). To make 
working with the commands easier, you should declare constants for them. 

By convention, a menu command has a data type of MessageT, a 16-bit integer. 
The constants for PowerPlant-supplied menus can be found in the file PP _Messages.h. 
As you can see in Listing 4.1, the constants correspond directly to the Mcmd 
resources. Menu command constants for the Penultimate Videos program (Listing 
4.1) are stored in a file named MenuConstants.h. 



72 Chapter 4 • PowerPlant Menus 

Figure 4.5 MENU resources in the Penultimate Videos program 

128 
129 
130 
250 
251 
252 

1000 
2000 
3000 
4000 
5000 
6000 
7000 
8000 

MENUs from PPUideoStore.rsrc If 
Size 

47 
148 
87 
20 
86 
76 

311 
146 
78 

126 
74 
66 
51 
74 

Name 

"App 1 e" 
"Fi 1 e" 
"Edit" 

"Font" } 
"Size" 
"Style" 
"Inventory" 
"Customers" 

Font, Size, and 
Style menus ha e 
their typical res 

"Transect ions" 
"Movie type popup" 
"Movie rating po pup" 
"Other video class. popup" 
"Game system popup" 
"Format popup" 0 

\Vii 

esources for 
opup menus 
Not part of 
enu bar) 

Notice that four items have been added to the default File menu, producing the 
menu in Figure 4.6. These commands duplicate the standard Open, Save, SaveAs, and 
Revert commands for the Note window. (The standard file management commands 
manage the video store's data.) Because these are custom menu items, they have 
resource IDs greater than 1000. 

NOTE 
Penultimate Videos resource IDs are usually constructed from a four-digit integer. The 
first two digits represent the resource number. For example, a MENU with ID 1000 is 
menu 10 (not necessarily the 10th menu, however). The second two digits represent a 
part of the resource. Therefore, a Mcmd containing 1010 is the 10th item in menu 10. 
There are a few exceptions to this convention, such as the items added to the File menu, 
which are associated with a default resource with a resource ID of less than 1000. 



Creating Menu Resources with Constructor 

Listing 4.1 Menu command constants for Penultimate Videos menus 

II Items added to File menu 
const MessageT cmd_open_note = 4001; 
const MessageT cmd_save_note = 4002; 
const MessageT cmd_save_note_as = 4003; 
const MessageT cmd_revert_note = 4004; 

II Inventory menu 
const MessageT cmd new_movie = 1001; 
canst MessageT cmd_mod_movie = 1002; 
const MessageT cmd_new_misc = 1003; 
const MessageT cmd_mod_misc = 1004; 
canst MessageT cmd_new_video_copy = 1006; 
const MessageT cmd_mod_video_copy = 1007; 
const MessageT cmd_new_game = 1009; 
const MessageT cmd_mod_game = 1010; 
const MessageT cmd_new_game_copy = 1011; 
const MessageT cmd_mod_game_copy = 1012; 
const MessageT cmd_find_item = 1014; 
const MessageT cmd_graph = 1015; 

II Customers menu 
con st MessageT cmd new_customer 2001; 
con st MessageT cmd_mod customer 2002; 
con st MessageT cmd view current 2005; 
con st MessageT cmd view overdue 2006; 
con st MessageT cmd_write_note = 2008; 

II Transactions menu 
const MessageT cmd_rent = 3001: 
const MessageT cmd_return = 3002; 
const MessageT cmd_sell = 3004: 

Creating Menu Resources with 
Constructor 

73 

Unlike earlier versions of the program, Constructor 2.1 can be used to define MENU 
and Mcmd resources. However, Constructor can't handle the MBAR resource. This 
means that even if you take advantage of Constructor's ease of use for MENU and 
Mcmd resources, you will still need to use a standard resource editor or compiler to 
attach menus to the MBAR resou.rce. 



74 Chapter 4 • PowerPlant Menus 

Figure 4.6 The Penultimate Videos File menu 

New 
Open 
C:lose 
Saue 
Saue Rs ... 
Fleuert 

Open Note 
Saue Note 

l!CN 
aco 
acw 
acs 
l!CR 

Saue Note Rs ... 
Reuert Note 

Page Setup ... 
Print... l!CP 
Print One 

Quit l!CQ 

NOTE 

These are the extra items 
that have been added to the 
default file menu 

Be sure you are using at least version 2.1.1 of Constructor. There are some bugs in ver
sion 2.1 that can cause the program (and maybe your Mac) to crash. If you have version 
2.1, you can find the update patches on major information services and on Metro
werks's WWW site (http://www.metrowerks.com/). 

If you are working with two resource files and decide to use Constructor for 
MENU and Mcmd resources, you begin by launching constructor and opening the 
starter resource file. As you can see in Figure 4.7, the interface provides information 
similar to that of a traditional resource editor, include the resources by type, along 
with their names and resource IDs. 

To see the details of a MENU resource, double-dick on the resource. Figure 4.8, 

for example, contains the starter File menu. Notice that all menu options except Quit 
are disabled. 

The characteristics of each menu option are contained in a properties window. To 
display it, double-dick on the menu option. In Figure 4.9, for example, you can see 
the properties for the starter File menu's Quit option. The Mcmd number appears in 
the box labeled Command Number. Notice that the check box directly below it deter
mines the menu item's initial state (enabled or disabled). 



Creating Menu Resources with Constructor 

Figure 4.7 The starter MENU resources, viewed with Constructor 

~ " Yindovs and Yievs 1 item 

...... -Menus 3 items 

II Apple Menu 128 

II File Menu 129 

II Edit Menu 130 

~ -Text Traits 3 items 

" Custom Pane Tgpes 0 items 

.II¢ 

Figure 4.8 The starter File MENU resource 

New 
Open .•• 

Close 
Saue 
Save As ... 
Revert 

Page Setup •.• 
Print ... 

.......................... 2 

~o .......................... 3 

~LIJ ......................... 4 

98S ........................ s 
.. ........................ 6 

·························· 7 

. ......................... 8 

. ........................ 9 

Quit 38Q ....................... 10 
i__..;,_~~~~~~~~~~---

75 



76 Chapter 4 • PowerPlant Menus 

Figure 4.9 Menu item properties 

§Iii 

Menu Item Text : 

Shortcut Key : 

Mark Character: D D Check Mark 
D Diamond Mark 
~ 

Command Number: l~t-0--~I D Text ID 

[gl Enable Menu Item 

Script Sy stem : I 0 
::::::::===: 

Submenu ID: ~lo_~ 

I 
... Menu Icon : ·················--·-·······················-·-··········································· 

lconlD:lo I 
D Reduce icon to 1 6x 16? 

I D Use SICN? 

1 Note : This version of Constructor 
does not display icons in the 
menu. 

CREATING A NEW MENU RESOURCE 

The number 
goes into the 
Mcmd resource 

··· Menu Stiy le : -··············-·· 

0Bold 

D Underline 

D Italic 

D Outline 

D Shadow 

D Condensed 

D Extended 

Check this box 
to get a divider 
line rather than 
a regular menu 
option 

Most programs, including the Penultimate Videos program, need menus other than 
those provided in the starter resource file. To add a new MENU resource, do the fol
lowing: 

1. Press :FC-K or choose New Resource from the Edit menu. The Create New Re-
source dialog box appears. 

2. Choose MENU from the Resource Type popup (Figure 4.10). 
3. Enter a name for the resource. 
4. Enter the resource ID. 
5. Click the Create button or press Enter. Constructor creates the resource and plac

es it in the resource file's window. 



Creating Menu Resources with Constructor 77 

Figure 4.10 Creating a new menu resource 

Create New Resource 

\\'hat type of resource do you wish to create? 
PPob: PowerPlant view 

Resource Name : I 
Resource ID:rl1_o_OO~~~~~~~~~~ 

(Cancel) (Create D 

NOTE 
Although you can add the new menus using Constructor, don't forget that you will need 
to use one of the standard resource editors to attach those menus to a menu bar. 

ADDING A NEW MENU ITEM 

As you would expect, creating a new MENU resource generates an empty menu. To 
customize the menu's title and add items, you do the following: 

1. Double-dick on the MENU resource to open it. Notice that at this point the menu 
has the default name of Menu (Figure 4.11 ). 

Figure 4.11 A menu with its default menu name 

2. Double-dick on the menu title to display the menu title's property dialog box. 
3. Change the menu name, as in Figure 4.12, and close the window to save the 

changes. 



78 

Figure 4.12 Changing a menu's name 

Menu "Menu" 

Menu Title: 11 n1..1entory 

D Apple Menu 

Menu ID: 11000 

MDEF ID : l._o _ __. 

NOTE 

Chapter 4 • PowerPlant Menus 

Constructor has one interface quirk: Many windows don't have an ''Apply" button. To 
apply changes, you close the window with which you have been working. The drawback 
to this is, of course, that the only way to cancel changes is to restore the window to its 
original state before you close it. 

4. Press ~-Kor choose New Menu Item from the Edit menu. A new item appears in 
the menu window (Figure 4.13)1 

Figure 4.13 A new menu item 

5. Double-click on the new item to open its properties window (for example, Figure 
4.9) and configure the menu item as needed. Closing the properties window saves 
the changes. 



Creating the Menu Bar 79 

MAINTAIN/NG MENU ITEMS 

One of the biggest advantages of using Constructor to create MENU resources is that 
you don't have to worry about Mcmd resources. This is particularly handy when you 
rearrange or delete menu items because Constructor automatically adjusts the 
Mcmd resource for you. 

To rearrange menu items, open the MENU resource's window. Then, drag menu 
items to their new locations. To delete a menu item, select it to highlight it and press 
Delete. 

Creating the Menu Bar 

An application object creates its menu bar by creating an object of class LMenuBar: 

new LMenuBar (MBAR_lnitiall; 

The constant MBA R_ I n i ti a 1 contains the resource ID of the program's MBAR 
resource. This statement appears in the LApplication class constructor. If your appli
cation object is derived from that class, you needn't add code to create the menu bar 
object. 

The LMenuBar constructor calls its own routine I n st a 11 Menu to add each menu 
to the menu bar. As you can see in Listing 4.2, the call to Inst a 11 Menu takes a 
pointer to a new LMenu object as its first parameter. The second parameter is a Bool
ean that indicates whether the new menu should be placed at the end of the list of 
menus in the menu bar. 

Once the menus are installed, the LMenuBar constructor adds items to the Ii 
menu. The process is the same as that used in a non-PowerPlant program: Get the 
menu handle and then use the ToolBox routine AppendResMenu to add the menu 
items. 



80 Chapter 4 • PowerPlant Menus 

Listing 4.2 The LMenuBar constructor 

LMenuBar::LMenuBarC 
ResIDT inMBARidl 

StResourcetheMBAR('MBAR', inMBARid); 
::HLockHiCtheMBAR.mResourceHl; 

sMenuBar =this; 
mMenulistHead =nil: 

II Install each menu in the MBAR resource 
Intl6 *menuIDP = Clntl6 *) *theMBAR.mResourceH; 
Intl6 numMenus = *menu!DP++; 
for Clntl6 i = l; i <= numMenus; ++i) { 

InstallMenuCnew LMenuC*menuIDP++), InstallMenu_AtEndl; 

II Populate the Apple Menu 
MenuHandlemacAppleMenuH = ::GetMenuHandleCMENU_Applel; 
if (macAppleMenuH !=nil l { 

: : AppendResMenu C macApp l eMenuH, 'DRVR' l: 

::InvalMenuBar(); 

Activating and Deactivating 
Menus 

This call installs 
a single menu 
in the menu bar 

Although a MENU resource typically indicates that the menu it defines is enabled, 
when you run a PowerPlant program for the first time, you will discover that the 
menus you have added to the program are disabled. This is the result of the way Pow
erPlant is structured to handle menu bar update events. 

PowerPlant first disables all menu items, which in turn disables the menus. Then, 
when a menu bar update event occurs, the program passes that event to the com
mander that is lowest in the chain of command. (Remember that if there are multiple 
objects at the same level in the chain of command, PowerPlant selects whichever 
object is the current target.) PowerPlant then executes the Fi ndCommandStatus 
function for that commander to see which menu items should be enabled. Any menu 
that has at least one enabled item will be enabled. 

The Fi ndCommandStatus function for the PowerPlant starter application 
appears in Listing 4.3. Notice that the function is designed to handle one menu 



Activating and Deactivating Menus 81 

command at a time; the input parameter i nCommand identifies which menu com
mand the function call is to handle. The function returns three Booleans: out En a -
bled, which indicates whether the menu item should be enabled; outUsesMark, 
which indicates whether the item uses a check mark when selected; and out Ma r k, 
which indicates whether the item actually has a check mark. (Check marks appear, 
for example, in the Font menu to indicate the current font.) 

Listing 4.3 A FindCommandStatus function 

void 
CPPStarterApp::FindCommandStatus( 

CommandT inCommand, 
Boolean &outEnabled, 
Boolean &outUsesMark. 
Charl6 &outMark, 
Str255 outNamel 

switch (inCommand) 

II Return menu item status according to command messages. 
II Any that you don't handle will be passed to LApplication 

case cmd_New: II EXAMPLE 
outEnabled =true; II enable the New command 
break; 

default: 
LApplication::FindCommandStatus(inCommand, outEnabled, 

outUsesMark, outMark, outName); 
break: 

By default, all three Booleans are false. To enable a menu item, you add a case for 
it to the function's switch and then change the value in the appropriate Boolean. 
For example, in Listing 4.3, the function enables the New option in the File menu by 
trapping for cmd_New and then setting out Enabled tot rue. 

If the chosen command isn't part of the Fi n d Co mm and St at us function being exe
cuted, the s w i t c h passes control to its d e fa u l t option, which calls the Fi n d Com -
ma n d St a t u s function of the current class's base class. As you can see in Listing 4.4, the 
base class function (in this example, LApplication) handles events appropriate for the 
base class (for example, the tt menu). However, if the event is one not handled by the 
base class, then the base class function calls LCommander's Fi ndCommandStatus 



82 Chapter 4 • PowerPlant Menus 

function (Listing 4.5), which calls Fi n d Co mm a n d St at us for the supercommander. In 
this way, menu update events are passed up the chain of command. 

Listing 4.4 LApplication's FindCommandStatus function 

void 
LApplication::FindCommandStatus( 

CommandT inCommand. 
Boolean &outEnabled. 
Boal ean &outUsesMa rk. 
Charl6 &outMark. 
Str255 outNamel 

switch (inCommand) 

case cmd_About: 
case cmd_Quit: 

outEnabled true; 
break; 

case cmd_Undo: 
outEnabled = false; 
::GetlndString(outName, STRx_UndoEdit, str_CantRedoUndol; 
break; 

default: 
LCommander: :FindCommandStatus(inCommand, outEnabled, 

outUsesMark, outMark. outName); 
break; 

NOTE 
For more extensive examples of the FindCommandStatus .function, see PPVideo
Store.cpp and note.cpp, as well as the source files for all PowerPlant classes derived 
from LCommander. 

Trapping Menu Selections 

Once menu items are enabled, users can make choices from those menus. A Power
Plant program traps those menu selections with an ObeyCommand function. When a 



Trapping Menu Selections 

Listing 4.5 LCommander's FindCommandStatus function 

void 
LCommander::FindCommandStatus( 

CommandTinCommand, 
Boolean &outEnabl ed, 
Boolean &outUsesMark, 
Char16 &outMark, 
Str255 out Name l 

if (mSuperCommander != nil) { 
mSuperCommander->ProcessCommandStatus(inCommand, outEnabled, 

outUsesMark, outMark, outName); 
else I 

outEnabled false;// Query has reached the top of a command 
outUsesMark =false;// chain without any object dealing with 

II it, so command is disabled and unmarked 

83 

menu selection event occurs, PowerPlant executes the 0 bey Co mm and function of the 
lowest object in the chain of command (the current target). 

NOTE 
The ObeyCommand function also traps other messages sent by objects, such as mes
sages sent when a user clicks on a button in a dialog box or when a user double-clicks on 
an item in a list. You will read more about handling these events later in this book. 

Like Fi ndCommandStatus, ObeyCommand contains a switch that identifies 
which menu option has been chosen. If the command can't be handled by the current 
object, it is passed up the chain of command. For example, the ObeyCommand func
tion for the starter application appears in Listing 4.6. If the command isn't one 
trapped by the function, the def au 1 t option in the switch calls the Obey Command 
function of the current object's base class, which, as you saw in Chapter 1, ultimately 
calls LCommander's ObeyCommand function to pass the event up the chain of com
mand. 

You have two choices for handling Obey Command functions. If the action to be 
performed is short-no more than a half-dozen or so lines of code-you may choose 
to include that code directly in the 0 bey C om ma n d function's s w i t c h. (This is the 
choice made in Listing 4.6.) Alternatively, you may decide to call a function that per
forms the required action. This latter solution helps keep ObeyCommand functions 
to a reasonable length. 



84 Chapter 4 • PowerPlant Menus 

Listing 4.6 An ObeyCommand function 

Boolean 
CPPStarterApp: :ObeyCommand( 

CommandT inCommand, 
void *ioParam) 

Boolean cmdHandled = true; 

switch (inCommand) f 

II Deal with command messages (defined in PP_Messages.h). 
II Any that you don't handle will be passed to LApplication 

case cmd_New: 
II EXAMPLE, create a new window 

LWindow *theWindow; 
theWindow = LWindow::CreateWindow(window_Sample, this); 
theWindow->Show(J; 
break; 

default: 
cmdHandled = LApplication::ObeyCommand(inCommand, ioParaml; 
break; 

return cmdHandled: 

NOTE 
For more extensive examples of the ObeyCommand }Unction, see PPVideoStore.cpp and 
note.cpp, as well as the source files for all PowerPlant classes derived from LCom
mander. 



CHAPTER 

Panes and Views 

As you have read, a pane is where PowerPlant drawing takes place. Understanding 
panes (and ultimately how they relate to views) is fundamental to understanding the 
operation of a PowerPlant program. This chapter therefore provides a first look at 
working directly with panes and views. Along the way, you will see your first Power
Plant subclass. In addition, you will be introduced to using Constructor for creating 
PowerPlant objects that contain simple panes for drawing, how PowerPlant objects 
are created, and how to write functions for pane classes. 

The major example that we'll be using in this chapter is the Penultimate Videos 
inventory graph window (Figure 5.1). This simple window is built from one LWin
dow object that contains a single pane of a class that is a subclass of LPane. The 
LWindow object is therefore a view that contains one pane. 

As a second, smaller example, at the end of this chapter we'll look at creating a 
pane in which you can play a QuickTime movie. Not only will you learn to use Pow
erPlant's QuickTime classes, but you'll see a method for creating a pane that doesn't 
involve a PowerPlant object. 

85 



86 Chapter 5 • Panes and Views 

Figure 5.1 The inventory graph 

§II' lnuentor leuels 

34 

17 

0 

Movies Misc. Videos Games 

The final example looks at creating a custom pane-one which is derived from 
LPane but adds attributes of its own-whose objects can be defined using Construc
tor. The custom pane is a thermometer that will be displayed in a window to show 
the progress of saving Penultimate Videos data to a text file. 

Pane Geography 

Every PowerPlant pane keeps information that identifies itself, indicates where it is 
located, and records its size. These values are held in three variables: 

• m Pane ID: A 16-bit integer that should uniquely identify the pane. As you will see, 
this pane ID acts as the pane's resource ID and is most easily assigned when you 
are using Constructor to create a pane object. 

• m Fr a me Si z e: A data structure consisting of two 16-bit integers that records the 
height and width of a pane's frame, the rectangle that forms the border of the 
pane. 

• mF rame Loe at ion: A data structure consisting of two 32-bit integers that records 
the coordinates of the pane's frame's top left corner. 



Declaring a Subclass for a Pane 

Declaring a Subclass for a 
Pane 

87 

There are several reasons to subclass a PowerPlant class, one of the most common of 
which is to provide a vehicle for overriding functions to customize class behavior. 
The graph window, for example, requires a subclass of LPane so that it can override 
the Draw Se l f function, which actually draws the contents of the pane. You will cre
ate a subclass and override Draw Se l f whenever you need to draw directly in a pane. 

For this particular example, the subclass is called Graph. As you can see in Listing 
5.1, Graph is derived directly from LPane. The subclass must of course include its 
own constructors and destructor. It also overrides the F i n i s h C re a t e Se l f function 
(which does nothing in this class) and the DrawSel f function (which does all the 
work). 

Listing 5.1 The Graph class 

II The Graph ~lass 
II A display window that uses OuickDraw routines to draw something 
const NUMB_BARS = 3; 
const MARGIN = 50; 
const SPACE_BETWEEN = 20; 
const TEXT_SIZE = 9; 

#include <LPane.h> 

class Graph : public LPane 
{ 

I; 

public: 
static Graph* CreateGraphStream CLStream * inStream); 
Graph(); 
Graph(LStream *inStream); 
virtual -Graph(); 

protected: 
virtual void FinishCreateSelf(}; 
virtual void DrawSelf(}; 



88 Chapter 5 • Panes and Views 

Creating a Pane Resource for 
Drawing 

The easiest way to declare the objects that underlie the graph window (an object of 
class LWindow and an object of class Graph) is to use Constructor, which provides a 
graphic environment in which you can "draw" panes and views. In this section we 
will look at using Constructor to do just that. 

STARTING A CONSTRUCTOR RESOURCE FILE 

Assuming that you are going to work with two program-specific resource files (one 
for PowerPlant resources and one for all other resources), you begin by launching 
Constructor. Like many well-behaved Macintosh programs, it automatically creates a 
new document for you (Figure 5.2). 

Figure 5.2 A new Constructor file 

@IL Yindovs and Yievs 

- Menus 
... Text Traits 

ll. Custom Pane Types 

.ti¢ 

0 items 0 
0 items 

0 items 

O items {7 

The four icons in the body of the window represent the four major types of 
resources that Constructor can manage for you: 

• Windows and Views: PowerPlant objects created from LWindow, LView, 
LPrintout, LDialogBox, or LGraphPortView. In addition, Window and View re
sources can be used for subclasses that have one (and generally only one) of the 
types in the preceding sentence in their inheritance hierarchy. 

• Menus: MENU and Mcmd resources. 



Creating a Pane Resource for Drawing 89 

• Text Traits: Text characteristics (font, size, style, alignment, and so on) that you 
can associate with objects that display text, including objects created from LCap
tion, LEditField, and LTextEdit. 

• Custom Types: Programmer-defined classes whose objects can be represented as 
PowerPlant objects. 

CREA TING A RESOURCE 

To create a new window or view resource, do the following: 

1. Type :lt-K or choose New Resource from the Edit menu. Constructor displays the 
Create New Resource dialog box so you can choose the type ofresource you need. 

2. Enter a name for the resource, choose its type from the View Type popup menu, 
and enter the resource ID. For this example, the new view is an LWindow (Figure 
5.3). 

Figure 5.3 Creating a new View resource 

Create New .Resourc 

'w'hat type of resource do you wish to create? 

Resource Tgpe: I PPob: PowerPlant view ~I 

Yiev Tgpe: I L 'w'indow ~ I 

Resource Name : I Graph 
:=:==============:::::=: 

Resource ID: ~12_1_00 ___ ~-----~ 

( Cancel ) R Create D 

3. Click the Create button. Constructor adds the resource to its list (Figure 5.4). 

NOTE 
To change the name or resource ID of an existing resource, highlight the resource in the 
Constructor window's resource list and press :lt-I. The resource's properties box 
appears, in which you can make the necessary changes. 



90 Chapter 5 • Panes and Views 

Figure 5.4 A new resource in the resource list 

v •l!:IL YindoYs and YieYs 1 item 

• ... 2100 

~ Menus 0 items -Text Traits 0 items 

~ Custom Pane Types 0 items 

.P¢ 

CUSTOMIZING RESOURCE CONTENTS 

To add to or modify the contents of a PowerPlant object, you first open the resource 
window by double-clicking on its name or icon in the Constructor file window. As 
you can see in Figure 5.5, the window is a standard document window with a title of 
"untitled." There are two major tasks that should be completed at this point: config
uring the LWindow object, and adding the objects that the LWindow object will con
tain. 

Configuring the LWindow Object 
Each object that makes up a PowerPlant object has its own set of properties. To 
access those properties, double-click anywhere on the object. The properties for an 
object of class LWindow (Figure 5.6) include the window title, its type, a WDEF ID, 
its PowerPlant class ID, and whether it has characteristics such as a zoom, close, or 
size box. 

Two of the properties in the Clicking/Drawing section are of particular interest. 
The "Targetable" check box determines whether an object can become the target. 
Even if the object's class is derived from LCommander, the object won't be able to 
respond to commands if the Targetable box is unchecked. Items designed for display 
only (for example, lines of text declared as LCaption objects) shouldn't be targetable. 
However, items with which the user should interact, such as LEditField or LStdBut
ton objects, must be targetable. Windows must also be targetable if they are to 
respond to events such as clicks in close boxes and window manipulation key presses. 



Creating a Pane Resource for Drawing 91 

Figure 5.5 A default LWindow object 

The Erase on Update box determines whether the contents of the object are com
pletely erased and then redrawn whenever an update event occurs. Removing the 
check from this box can result in some interesting ghosts appearing on the screen! 

NOTE 
Like many other Constructor windows, closing the LWindow Info window saves any 
changes you've made. If you don't want to save changes, restore the window to its origi
nal state before closing. 

Adding a Pane 
The types of objects that can be added to a PowerPlant resource are collected in a 
Tools palette (Figure 5.7). Notice that there are icons for all classes that represent vis
ible, graphic objects that might appear in a window, dialog box, or printout. To add an 
object of a given class to a view, drag it from the Tools palette into an open view win
dow. For this particular example, you would drag an object of class LPane (the base 
class for the Graph class). 



92 Chapter 5 • Panes and Views 

Figure 5.6 LWindow object properties 

Info for LWindow "lnlJentotitleuels" 

r Location : I 
: r ............ Top:1.-1 ....... ~ .......... ... 

rClicking/DraYing: ----. ~ 

181 Targetable 

D Get Select Click 

D Hide On Suspend 

D Delay Select 

181 Erase On Update 

i Left: E=:=J Yidth: 384 

J ! ..... Height: l2so f ................... . 
! 

r-YindoY Type:---------------------, 

YindoY Kind: I Document window ... , 
YindoY Title: l._rn_v_en_t_or_,y.._l_ev_e_ls ______________ ~ 

Ozoom Box 

181 Close Box 

Osize Box 

181 Title Bar 

0Resizable 

YDEF ID: 14 181 Enabled 

Class ID: ;:lw=in=d===: 181 Initially Visible 
!:===::::::::'.---. 

YindoY Lay er : I Regular "" I 
Auto Position: ,...I _c_e_n-te-r-on-Pa-r-en_t_S_c_re_e_n---.,.-.1 

, .. Yindoy Sizing: ............................................................ . ... User Data : .............................................................. . 
l Yidth Height 

! Minimum Size: lo I lo 
. Maximum Size: l-1 I ~l-=1==:::::: 

User Constant : I 0 
~====:::::: 

YindoY RefCon: ._lo ___ __. 
Standard Size: l-1 I ._l-_1 _ __. 

~------------~ ~--------------' '{Y 

NOTE 
If the Tools palette was visible the last time you used Constructor, it will open automat
ically whenever you open a view. However, if the Tools palette isn't visible when a view 
is open, choose Show Tool Palette from the Display menu to make it appear. 

In this case, the new pane appears as a small square (Figure 5.8). However, the ini
tial state and size of a given type of object depends on the class from which the object 
has been created. 

Notice in Figure 5.9 that the new pane has been given a resource ID of 0. You will 
need to change this, along with any other properties of the pane that must be modi
fied to fit your program's needs. If resource IDs aren't visible, display them by choos
ing Show Pane IDs from the Display menu; if you no longer want to see the pane IDs, 
choose Hide Pane IDs from the Display menu. 



Creating a Pane Resource for Drawing 

Figure 5.7 The Constructor Tools palette 

II:;:::::::::::: Too]$ ~;;:;~!:::!::;Ii 
0 LPane jQI 
lfil L v;e"' I I 

II) LCo0trol 

liJ LStdContro 1 

CID LStdButton 

181 LStdCheckBox 

·@ LStdRadiOButton 

13 LStdPopupMenu 

:!!! LT extButton 

13 LButton 

13 LCicnButton 

13 LT C19gle8i.ltton 

• LloonPane 

[TI] LCaption 

LJ LGroupBox 

Iii! LEditField 

EIJ LListBox 

bJI LScro ller 

6JI LACtiveScroller 

lftl LTable 

i) LTableVit"W 

§] LlfierarchyTable 

~ LTextHierTable 

limJ LSmalllcon Table 

I LTextEdit 

~ LPicture 

~ LOffscr*nVie"W 

[i] LPlaceHolder 

la LMailer 

lml LBrowser 

PJ LFinder 'zy 

NOTE 

93 

One of the most frustrating deficiencies of Constructor 2.1 is that it doesn't provide 
tools for aligning objects within a view. However, you can nudge objects one pixel at a 
time using the arrow keys. You can also force objects to align to a grid by choosing Snap 
to Grid from the Arrange menu. The Arrange menu's Edit Grid option lets you set the 
number of pixels between grid points. 



94 

Figure 5.8 A new LPane object in a view 

•.................. .. 1'! 

ii ................ Iii 
The window's 
resource ID 

Chapter 5 • Panes and Views 

When an object is highlighted, you can use the mouse to drag it around a view 
and use the object's handles to resize it. In this case, the view's single object should 
fill the entire view (with the exception of the title bar). 

Setting Basic Object Properties 
There are some basic properties that must be set for every object you add to a view, 
regardless of what else you do to the way in which the view appears. First, each new 
object must be given its own unique resource ID. Duplicate resource IDs may cause a 
running program to use the wrong object, producing bugs that may cause program 
crashes because of memory allocation problems. 

In addition, a pane that represents an object from a derived class won't function 
correctly unless the pane is somehow linked to its class. For the example we are fol
lowing, this means that the pane that will display the graph must be identified as a 
definition for the Graph class. To make this change, you must replace the LPane 
object's default four-character ID with the ID that has been chosen for the Graph 
class. The choice of an ID for a subclass is arbitrary, but it must be unique within the 
entire program. In other words, it must be different from the IDs used by all other 
PowerPlant classes. 



Creating a Pane Resource for Drawing 95 

To set an object's two basic properties, do the following: 

1. Double-click on the object to display its properties window. The properties for an 
object of class LPane (or a class derived from LPane) appear in Figure ; .9. As you 
can see, the default resource ID is 0 and the default class ID is pane. 

Figure 5.9 Configuration options for an object of class LPane 

ill LPane from LlUirid(IW "untitled" ii=.= .. ------
.... ~~- I: [BindingtoSuperview: .. ·-······--· ~ 

L::'. ' on, =,. ~17~ _0~~=-
Pane ID: lo I 0 Tex1 ID 181 Enabled 

User Constant: I 0 I 0 Tex1 cons1an1 181 Yisib le 

Class ID: I pane 

<::il 

2. Replace the default resource ID with the resource ID you've chosen for the ob
ject. Note that in a properties window, the resource ID box is labeled "Pane ID." 
For this example, the ID is 2101. 

NOTE 
Because resource IDs are arbitrary, it helps to have some scheme for numbering 
resources that makes sense to you. The Penultimate Videos program uses the first two 
digits of the ID to represent the PowerPlant object (for example, the 21 in 2100). The 
last two digits are a sequential number within the PowerPlant object. The graph view's 
single pane is therefore numbered 2101. 

3. Replace the default class ID with the ID you've chosen for the subclass, which in 
this case is grph. 

4. If necessary, use the Location boxes to set the size of the object. In this case, using 
-1 for the top and left edges makes sure that the pane that will hold the graph is 
anchored at the top left comer of the L Window object. The height and width are 
expressed in pixels. 



96 Chapter 5 • Panes and Views 

5. The pane is also bound to its superview (the LWindow object) on all four comers. 
This means that as the superview is resized, the pane is resized as well. You will 
read more about binding in the next section of this chapter. 

6. The completed properties window appears as in Figure 5 .10. Close the properties 
window to save the changes. 

Figure 5.10 The completed properties for an object of class Graph 

LPane ID 2101 

···Locati~on: ............... ;:;·~··jllllil~~-:~:::=~ .. ····-···-·1 

Left : Yidth : 385 I 

_ ...................................... ~~-~~-~-~ .. =.J.:~ .. 1 ............. .!::::::::::::::::: .......... ....J 

· Binding to Superviev: ········-···--

(81 Top 

(81 Left (81 Right 

[81 Bottom 

Pane ID: !2101 ID Text ID [81 Enabled 

User Constant: :=lo======~I D Text constant [81 Visible 

Class ID: lgrph 

At this point, the PowerPlant object is ready to use. Don't forget, however, that 
the program that uses this object must register the class from which the object is cre
ated by calling URegi s tra r: : Regis terC lass: 

U Registrar: : Reg i st ere lass ( 'g rph' , Graph: : Crea t eG r a ph St ream) ; 

The function call specifies the class's ID, as well as the name of the function that 
should be called to create an object of this class from an input stream. By convention, 
such functions have the name C re ate XS t ream, where X is the name of the class. 

PANE BINDING 

Binding attaches one or more sides of a pane to its superview such that when the 
superview is resized, the side of the pane remains the same distance from the side of 
the superview. If a pane is bound on all four sides, then resizing the pane's superview 
stretches or shrinks the pane to fit within the superview's new size. However, if a 
pane is bound on only two sides, such as the top and left, then resizing the superview 



The Graph Subclass and Its Constructors 97 

keeps the pane in the same position relative to the superview's top and left but allows 
the pane's right and bottom edges to move. The result is that the pane doesn't 
change size. By the same token, a pane that is not bound to its superview will remain 
in the same location and stay the same size when the superview is resized. 

The type of binding you use therefore depends on the type of pane you are creat
ing and the way in which you want the pane to move or change size when the super
view is resized: 

• A control-such as a standard button, push button, or check box-is usually 
bound to its superview on two sides (either top and left or bottom and right). 

• A pane used for display (such as the Graph pane) or a pane used for entering the 
contents of a document (such as a pane of class L TextEdit) is usually bound on all 
four sides. 

The Graph Subclass and Its 
Constructors 

At a minimum, a subclass needs to include its own constructors and, optionally, a 
destructor. Most PowerPlant classes have at least two constructors, one that creates 
an object using data supplied in the function's parameter list and another that creates 
an object using data from an input stream defined in a resource file. In Listing 5.2, for 
example, you can see both types of constructors. 

In the case of the Graph class, the default constructor, which could be used to 
accept data in its parameter list, is empty. Because objects of the Graph class will 
always be created as PowerPlant objects using data from a resource file, there is no 
need to complete the first type of constructor. 

The second constructor expects an object of class LStream as input. Its sole action 
is to call the base class constructor. Although in some cases you may need to add 
additional functionality to a stream input constructor, keep in mind that in this par
ticular example the reason for creating the Graph class was to allow the program to 
override the DrawSelf function. All other class actions are the same as the base class, 
and therefore a call to the base class constructor will suffice. 



98 Chapter 5 • Panes and Views 

Listing 5.2 Constructors and destructor for the Graph class 

#include <LStream.h> 
#include <UTextTraits.h> 
#include <UDrawingState.h> 

#include "graph.h" 
II converts an integer to a pascal string 
extern void itoaP (int, Str255J; 

Graph* Graph::CreateGraphStream (LStream * inStreamJ 
I return <new Graph(inStreamJl: l 

Graph: :Graph( l 
{ 

II default constructor does nothing 

Graph: :Graph CLStream * inStreamJ 
: LPane (inStreamJ 

II call the base class constructor 

Graph: :-Graph() 
I 

II default destructor deletes object but does nothing else 

void Graph::FinishCreateSelf(J 
I 

II no work here either 

NOTE 
As with many PowerPlant classes, there are no actions that need to be taken when an 
object of class Graph is destroyed. Therefore, although the member fanctions include a 
destructor, the body of the destructor is empty. 



The CreateXStream Function and How PowerPlant Objects Are Created 99 

The CreateXStream Function 
and How PowerPlant Objects 
Are Created 

In addition to one or more constructors and a destructor, a class whose objects are 
defined as Power Plant objects includes a function whose name takes the form Cr e -
ate XS tr ea m, where X is the name of the class. This function initiates actions that 
take care of reading the resource data and creating the object. 

A CreateXStream function is usually very simple: It uses the new operator to 
create an object of class X, returning a pointer to that object. Because you can't call a 
constructor directly (except when calling a base class constructor in a derived class's 
constructor, of course), this function provides the necessary mechanism for creating 
an object whose characteristics are provided to the program as an input stream. 

Where does the actual resource read occur? It is triggered by a series of functions 
that are executed when the graph window is created. The process begins with a call 
to the Penultimate Video's Di spl ayGraph function, which can be found in Listing 
5.3. Notice that the function contains only one line: a call to the CreateWi ndow 
function. 

Listing 5.3 Creating the graph window 

II ******************************************************************* 
II • DisplayGraph 
II ******************************************************************* 
II Display a graph of items in inventory to demonstrate using 
II QuickDraw commands in a pane. 

void CPPVideoStoreApp::DisplayGraph() 
{ 

LWindow * theWindow = LWindow: :CreateWindow CWINDOW_GRAPH, this); 

Create W i n do w takes two parameters: the resource ID of the window being cre
ated, and a pointer to the object that should become the new window's supercom
mander. In many cases, new windows-whether they are document windows or 
dialog boxes-use the object whose member function creates the window as their 
supercommander. (In this example, an application object function is creating the 
window.) Therefore, the second parameter is often th i s. 



100 Chapter 5 • Panes and Views 

The sequence of actions initiated by the call to C re a t e W i n d ow appears in Listing 
5.4. As you can see, CreateWi ndow begins by setting the new object's supercom
mander. It then calls U Rea n i ma tor: : Rea dObj ects (the second function in Listing 
5 .4), passing the resource ID and resource type as input parameters. 

ReadObj ects does the following: 

• Creates an object of class StResource to store the resource identification data that 
was passed in as function parameters. Notice that because this class's name begins 
with "St," we know that it is a stack-based class that restores parameters when it 
terminates. 

• Moves the resource identification data upward in memory and places it in a non
relocatable block of memory, in a locked relocatable block, or at the top of the 
heap using the ToolBoxroutine H LockHi. H Lock Hi finishes by locking the block 
of memory now occupied by the resource. 

• Creates an object of class LDataStream that will hold the resource read from the 
file. The two input parameters are a pointer to the resource identification data's 
handle and the size of the block of memory occupied by that data. 

• Calls the ReadData function of the LDataStream object to retrieve the resource 
from the file. (This function is inherited from LStream and is implemented as an 
inline function in LStream.h). As you can see in Listing 5.4, ReadData calls the 
LDataStream function GetBytes, which actually performs the read. 

Once the data describing the new object have been read from the file, Re ad 0 b -
j e ct s creates the object with a call to the UReanimator function 0 b j e ct s From -
St ream (Listing 5 .5), passing in the stream containing the data. The main structure 
in Objects FromS t ream is a do while loop that continues as long as the stream 
contains tags that identify parts of a resource. The tags are recognized in a s w i t c h 
using the en um values in Listing 5.6. 

If the tag indicates that data about an object follows (tag of tag_Obj ectData), 
Objects FromSt ream extracts the object data from the stream, and then calls the 
URegistrar function Crea teObj ect (Listing 5.7). This function finds the class ID of 
the object being created in the table of classes built when PowerPlant object classes 
were registered at the beginning of the program. It then calls the Create XS t ream 
function for the class from which the object is being created, which finally gets 
around to actually creating the object and drawing it on the screen. 

If the tag indicates the beginning of a subpane (tag_Beg i nSub), Objects From
St ream calls itself to create the subpane(s). Given the way PowerPlant objects are 
stored in a resource file, the pane is created first, followed by all of its subpanes. 

The order in which panes are created can sometimes be important. For example, if 
you plan to store subpane IDs as part of an object, you can't extract those IDs until 
the subpanes have been created. The code to store the subpane IDs therefore can't be 



The CreateXStream Function and How PowerPlant Objects Are Created 101 

Listing 5.4 Using a PowerPlant resource to generate a visible screen object 

LWindow* LWindow::CreateWindow(ResIDT inWindowID,LCommander *inSuperCommanderl 
{ 

SetDefaultCommander(inSuperCommander); 
LWindow *theWindow = (LWindow*) UReanimator: :ReadObjects('PPob'. inWindowID); 
theWindow->FinishCreate(); 
if (theWindow->HasAttribute(windAttr_ShowNew)) 

theWindow->Show(); 
return theWindow; 

void* UReanimator::ReadObjects(OSType inResType,Res!DT inRes!D) 
I 

StResource objectRes(inResType. inRes!O); 
::HLockHi(objectRes.mResourceH); 
LDataStream objectStream(*objectRes.mResourceH, 

::GetHandleSize(objectRes.mResourceH)); 
Intl6 ppobVersion; 
objectStream.ReadData(&ppobVersion, sizeof(lntl6)); 
Signallf_(ppobVersion != 2); 
void *theObject = ObjectsFromStream(&objectStream); 
return theObject; 

II This inline function is found in LStream.h 
virtual Int32 ReadData(void *outBuffer, Int32 inByteCountl 

I 
GetBytes(outBuffer, inByteCount); 
return inByteCount; 

ExceptionCode LDataStream::GetBytes(void *outBuffer, Int32 &ioByteCount) 
{ 

ExceptionCodeerr = noErr; 
II Upper bound is number of bytes from 
II marker to end 

if (GetMarker() + ioByteCount > GetLength()) 
ioByteCount = Getlength() - GetMarker(); 
err= readErr; 

::BlockMoveData((lnt8*) mBuffer + GetMarker<l. outBuffer, ioByteCountl; 
SetMarker(ioByteCount, streamFrom_Marker); 
return err; 

part of a constructor. However, you can put code that needs to execute after all panes 
are created in a Fi n i s h C re a t e Se 1 f function. If you look back at Listing 5 .4, you'll 

' notice that after calling Re a d 0 b j e ct s, the C re a t e W i n d ow function calls its own 
Fi n i s h Create function, which is actually inherited from the LView class. As you 



102 Chapter 5 •Panes and Views 

Listing 5.5 UReanimator::ObjectsfromStream 

void* UReanimator::ObjectsFromStream(LStream *inStream) 
I 

void *fi rstObject = nil: 
Class IDT aliasClassID = 'null': 

II Save current defaults 
LCommander *defaultCommander = LCommander: :GetDefaultCommander(); 
LView *defaultView = LPane::GetDefaultView(J; 
Boolean readingTags =true; 

do 
void *currentObject =nil ;II Object created by current tag 
TagID theTag = tag_End; 
II read the next tag to figure out what type of data follow 
inStream->ReadData(&theTag, sizeof(TagIDJ); 

switch (theTag) I 
case tag_ObjectData: 

II Restore default Commander and View 
LCommander::SetDefaultCommander(defaultCommander); 
LPa-ne:: SetDefaul tView<defaul tVi ew); 

II Object data consists of a byte length, class ID, 
II and then the data for the object. We use the 
II byte length to manually set the stream marker 
II after creating the object just in case the 
II object constructor doesn't read all the data. 

Int32 datalength; 
inStream->ReadData(&dataLength, sizeof(!nt32)); 
Int32 dataStart = inStream->GetMarker(); 

Class!DT class!D; 
inStream->ReadData(&class!D, sizeof(Class!DTJ); 

if (aliasClassID !='null') I 
II The previous tag specified an Alias for 
II the ID of this Class 

class!D = aliasClass!D; 

currentObject = URegistrar::CreateObject(class!D, inStream); 
inStream->SetMarker(dataStart + datalength. streamFrom_Start); 

aliasClassID ='null'; II Alias is no longer in effect 
Continued next page 



The CreateXStream Function and How PowerPlant Objects Are Created 103 

Listing 5.5 UReanimator::ObjectsFromStream 

if CcurrentObject ==nil && class!O != 'null' l I 
SignalPStr_("\pnil object created from tag"); 

break; 

case tag_BeginSubs: 
currentObject ObjectsFromStreamCinStream); 
break; 

case tag_EndSubs: 
case tag_End: 

readingTags false; 
break; 

case tag_UserObject: 

II The UserObject tag is only needed for the Constructor 
II view editing program. It tells Constructor to treat 
II the following object as if it were an object of the 
II specified superclass (which must be a PowerPlant 
II class that Constructor knows about). We don't need 
II this information here, so we just read and ignore 
II the superclass ID. 

ClassIDT superClassID; 
inStream->ReadDataC&superClassID, sizeofCClassIDTll: 
break; 

case tag_ClassAlias: 

II The ClassAlias tag defines the ClassID the for 
II the next object in the Stream. This allows you 
II to define an object which belongs to a subclass 
II of another class, but has the same data as that 
II other class. 

inStream->ReadData(&aliasClassIO, sizeof(ClassIDTll: 
break; 

default: 
SignalPStr_("\pUnrecognized Tag"); 
readingTags = false; 
break; 

Continued next page 



104 Chapter 5 • Panes and Views 

Listing 5.5 UReanimator::ObjectsFromStream 

if (firstObject ==nil) I 
firstObject = currentObject: 

while (readingTags): 

return firstObject: 

Listing 5.6 An enum for resource tags 

enum I 

} : 

tag_ObjectData = 'objd'. 
tag_BeginSubs = 'begs', 
tag_EndSubs = 'ends', 
tag_lnclude ='incl', 
tag_UserObject = 'user', 
tag_ClassAlias = 'dopl ', 
tag_End = 'end.', 

object_Null ='null' 

Listing 5.7 URegistrar::CreateObject 

void* URegistrar::CreateObject (Class!DT inClassID, LStream *inStream) 
I 

voi d*theObj ect = nil : 
Intl6 index= FetchClasslndex(inClasslD); 
if (index != 0) I 

theObject = (*(*sTableH)[index - lJ.creatorFunc)(inStream): 

return theObject: 

can see in Listing 5.8, Finis hC reate sets up an iterator (an object of class LListlter
ator) to handle the object's linked list of subpanes. It then performs Finis hC reate 
for each subpane, and finally calls Fi n i sh Create Se 1 f for the object itself. By 
default, LWindow inherits an empty Fi n i sh C re ate Se 1 f from LPane. However, if 



Drawing in a Pane 105 

you need to add something to that function, you should create a subclass for your 
pane or view and override the default. 

Listing 5.8 Functions to finish creating an object 

void LView::FinishCreate(l 
{ 

Llistlterator iterator(mSubPanes, iterate_FromStart); 
LPane *theSub; 
while (iterator.Next(&theSub)) 

theSub->FinishCreate(); 

if (mSuperView !=nil) { 
mSuperView->OrientSubPane(this); 

FinishCreateSelf(); 

voidLPane::FinishCreateSelf() 
{ 

II default function is empty 

Drawing in a Pane 

When you draw in a window created as a WIND resource, you use a QuickDraw 
coordinate system to indicate where elements of the window should appear. How
ever, PowerPlant uses its own coordinate systems for panes and views. You therefore 
need to understand something about coordinate systems before you can draw 
directly in a pane. Once you know where you will put the contents of a pane, you can 
start drawing using QuickDraw commands. In this section, you will first be intro
duced to PowerPlant coordinates systems and then see how drawing in a pane takes 
place. 



106 Chapter 5 • Panes and Views 

COORDINATE SYSTEMS 

The QuickDraw drawing coordinate system, limited as it is to 16-bit coordinate val
ues, provides coordinates in the range -32,768 to 32,767. Calculations in the first 
PowerPlant manual suggest that this holds about 100 pages of text. 

The PowerPlant drawing area, however, uses 32-bit coordinate values in the range 
Oto 2,147,483,647. According that same manual, going to 32 bits provides storage for 
over 3.3 million pages of text. In addition to the PowerPlant coordinate system, each 
view and grafport has its own coordinate system. To keep this all straight, Power
Plant actually works with four separate coordinate systems, which are summarized 
in Table 5 .1. To make your life easier, PowerPlant also supplies several functions that 
convert among these four coordinate systems (see Table 5.2). 

Table 5.1 PowerPlant coordinate systems 

Coordinate 
System 

Global 

Port 

Image 

Local 

Size 

16-bit 

16-bit 

32-bit 

Top Left 

Top left corner of main 
screen 

Top left corner of 
current grafport 

Use 

Used primarily by QuickDraw. 
Used in PowerPlant programs 
only when ToolBox calls 
require global coordinates. 

Normal QuickDraw coordi
nate system used when not 
working with PowerPlant 
objects. 

Top left corner of image Coordinates used in drawing 
spaces defined by classes 
descended from LView. Coor
dinates are typically mapped to 
local coordinates for drawing. 

16- or 32-bit Maps top left corner of Used most frequently for draw
image to top left corner ing in a PowerPlant pane or 
of grafport view. 

The way in which you use these coordinate systems depends to some extent on 
whether what you are drawing fits within the QuickDraw coordinate system. If this 
is the case, then image and local coordinates are the same. PowerPlant routines use 
: : Set 0 r i g i n to make the top left corner of the port the same as the top left corner 



Drawing in a Pane 107 

Table 5.2 Coordinate conversion functions 

Function From To 
GlobalToPortPoint Global Port 
PortToGlobalPoint Port Global 
PortTolocalPoint Port Local 
LocalToPortPoint Local Port 
LocalTolmagePoint Local Image 
ImageTolocalPoint Image Local 

of the image. At that point, you can use QuickDraw routines for drawing, just as you 
would if your program wasn't using PowerPlant. 

However, if your drawing is larger than the QuickDraw drawing space, then you 
will have to map your coordinates into a QuickDraw space before you can draw any
thing. The first step is to determine whether your image fits within the QuickDraw 
space, using one of the following two functions, both of which are member functions 
of LView: 

• I mag e Rec t Intersects Fr a me: Takes the image coordinates of a rectangle as 
input parameters and returns a Boolean that indicates whether any part of that 
rectangle intersects the frame of the view calling the function. 

• I mag e Poi n t Is In Fr a me: Takes image coordinates of a point as input parame
ters, converts them to port coordinates, and returns a Boolean that indicates 
whether the point falls within the frame of the pane or view calling the function. 

If the call to ImageRectlntersectsFrame or ImagePointlsinFrame returns 
FALSE, you will then need to convert the image coordinates to local coordinates, 
using ImageToloca l Point, before you can draw. 

DOING THE DRAWING 

Often, as with the inventory graph that you saw in Figure 5.1, a drawing easily fits 
within the QuickDraw drawing space. That being the case, a program can immedi
ately begin drawing without any coordinate conversions. However, you still need to 
figure out the local coordinates of the frame within which drawing will occur. 

Listing 5 .9 contains the Draw Se l f function from the Graph class. The bulk of the 
function is taken up with QuickDraw calls that produce the graph (along with some 
simple math that determines the intervals on the y-axis and the height of the bars). 
Nonetheless, there are two PowerPlant tasks that must be performed before drawing 
can begin: 



108 Chapter 5 •Panes and Views 

Listing 5.9 The Graph class's DrawSelf function 

II ************************************************************** 
II • DrawSelf 
II ************************************************************** 
II This is where all the work takes place 

void Graph: :DrawSelf() 
{ 

extern int Movie_count, Other_count, Game_count; II gain access to the globals 

StColorPenState theState; II used to save current pen state; restored on destruction 
Rect frame; II "frame" is superview's local coordinates; used for all drawing 
int xAxis, yAxis; II length of axes 
int usableArea, barWidth, maxCount. intervalSize, barTop, barleft, axisPoint; 
Rect bar; 
Str255 axi slabel; 

II get superview's local coordinates 
CalcLocalFrameRect (frame); 
: : PenNormal (); 
::PenMode (patCopy); 

II draw the graph axes 
::MoveTo (frame. left+ MARGIN, frame.top+ MARGIN); 
::LineTo (frame. left+ MARGIN. frame.bottom - MARGIN); 
::LineTo (frame.right - MARGIN, frame.bottom - MARGIN); 

II figure out the sizes and positions of the three bars 
xAxis =frame.right - frame.left - (MARGIN* 2); 
yAxis =frame.bottom - frame.top - (MARGIN* 2); 
usableArea = xAxis - (SPACE_BETWEEN * NUMB_BARS); 
barWidth = usableArea I NUMB_BARS; 

II figure out maximum of the three counts; this becomes number of intervals on y axis 
maxCount = Movie_count; 
if (Qther_count > maxCountl 

maxCount = Other_count; 
if (Game_count > maxCountl 

maxCount = Game_count; 

II compute interval size 
intervalSize yAxis I maxCount; 

11 Label the y axis 
::TextFont (geneval; 
::TextSize (TEXT_SIZE); 
::ForeColor (blueColor); 

Continued next page 



Drawing in a Pane 

Listing 5.9 (Continued) The Graph class's DrawSelf function 

II Top 
::MoveTo (frame.left+ MARGIN - SPACE_BETWEEN, frame.top+ MARGIN+ TEXT_SIZE); 
itoaP (maxCount, axis Label); 
::Drawstring (axislabell; 
: :ForeColor (blackColor); 
::MoveTo (frame.left+ MARGIN 6, frame.top+ MARGIN+ (TEXT_SIZEl2l); 
: :LineTo (frame. left+ MARGIN+ 6, frame.top+ MARGIN+ (TEXT_SIZEl2)); 

II Middle 
::ForeColor (blueColor); 
axisPoint = yAxis I 2; II find middle of y axis 
::MoveTo (frame.left+ MARGIN - SPACE_BETWEEN, frame.top+ MARGIN+ axisPoint + 

(TEXT_SIZEl2)); 
itoaP (maxCount I 2, axis Label); 
: :Drawstring (axi slabel); 
: :ForeColor (blackColorl; 
::MoveTo (frame.left+ MARGIN 6, frame.top+ MARGIN+ axisPoint); 

::LineTo (frame.left+ MARGIN+ 6, frame.top+ MARGIN+ axisPoint); 

II Bottom 
: :ForeColor (blueColor); 
::MoveTo (frame.left+ MARGIN - SPACE_BETWEEN, frame.top+ MARGIN+ yAxis + 

(TEXT_SIZE/2)); 
itoaP (0,axislabel ); 
::Drawstring (axislabel); 
: :ForeColor (blackColor); 
::MoveTo (frame.left+ MARGIN - 6, frame.top+ MARGIN+ yAxis); 
: :LineTo (frame. left+ MARGIN, frame.top+ MARGIN+ yAxis); 

II first bar 
II Note: SetRect uses "left, top, right, bottom" -- go figure 
barTop = (yAxis - (intervalSize * Movie_count)) +frame.top+ MARGIN; 

109 

::SetRect (&bar, frame.left+ MARGIN+ SPACE_BETWEEN, barTop, frame.left+ MARGIN+ 
SPACE_BETWEEN + barWidth, frame.bottom - MARGIN); 

: :ForeColor (redColor); 
::PaintRect <&bar); 

II second bar 
barTop = (yAxis - (intervalSize * Other_count)) +frame.top+ MARGIN; 
barleft =frame. left+ MARGIN+ (SPACE_BETWEEN * 2) + barWidth; 
: :SetRect (&bar, barleft, barTop, barleft + barWidth, frame.bottom - MARGIN); 
: :ForeColor (blueColor); 
::PaintRect <&bar); 

Continued next page 



110 Chapter 5 • Panes and Views 

Listing 5.9 (Continued) The Graph class's DrawSelf function 

width = : :TextWidth (otherlabel, 1, 12): 
indent= (barWidthl2l - (widthl2l: 
::MoveTo (frame.left+ MARGIN+ (SPACE_BETWEEN * 2) + barWidth +indent, 

frame.bottom - 30); 
: :Drawstring (otherlabel l: 

width= ::TextWidth (gamelabel, 1, 5l: 
indent= (barWidthl2l - (widthl2l: 
::MoveTo (frame.left+ MARGIN+ (SPACE_BETWEEN * 3) + (barWidth * 2) +indent, 

frame.bottom - 30): 
: : DrawStri ng (game Label l: 

II third bar 
barTop = (yAxis - (interval Size* Game_countll +frame.top+ MARGIN; 
barleft =frame. left+ MARGIN+ (SPACE_BETWEEN * 3) + (barWidth * 2l: 
: :SetRect (&bar, barleft. barTop, barleft + barWidth, frame.bottom - MARGIN); 
: :ForeColor (yellowColorJ: 
::PaintRect (&bar); 

II Label x axis 
Str255 movielabel = "\pMovies": 
Str255 otherlabel = "\pMisc. Videos": 
Str255 gamelabel = "\pGames": 

::ForeColor (blueColorl: 

int width = : :TextWidth (movielabel. 1. 6): 
int indent= (barWidthl2l - (widthl2l: 
::MoveTo (frame.left+ MARGIN+ SPACE_BETWEEN +indent, frame.bottom - 30); 
: :Drawstring (movielabel l: 

int width = : :TextWidth (movielabel, 1, 6): 
int indent= (barWidthl2l - (widthl2l: 
::MoveTo (frame.left+ MARGIN+ SPACE_BETWEEN +indent, frame.bottom - 30); 
: :Drawstring (movielabel l: 

width = : :TextWidth (otherlabel. 1, 12): 
indent= (barWidthl2l - (widthl2); 
::MoveTo (frame.left+ MARGIN+ (SPACE_BETWEEN * 2l + barWidth +indent, 

frame.bottom - 30); 
: :Drawstring (otherlabel); 

width= ::TextWidth (gamelabel, 1, 5); 
indent= (barWidthl2l - (widthl2); 
::MoveTo (frame.left+ MARGIN+ (SPACE_BETWEEN * 3) + (barWidth * 2) +indent, 

frame.bottom - 30); 
: :Drawstring (gamelabel): 



Playing a Quicklime Movie: Panes without PPobs 111 

• Gr a p h : : Draw Se l f first saves the current state of the pen using one of Power
Plant' s stack-based classes: StColorPenState. The constructor for this class pushes 
the current pen state onto the stack. When the function terminates and the object 
is destroyed, the destructor restores the pen state. Saving and restoring the pen 
state makes sure that windows drawn after the graph window don't appear in 
strange colors. 

• Graph : : Draw Se l f then gets the superview' s local coordinates with a call to 
Cal c Loe al Frame Re ct. As you will remember, the Graph class is a pane whose 
superview is a window. The call to Ca l c Lo ca l Fr a me Rec t therefore returns the 
coordinates of the window, with 0,0 at the top left comer, not including the title 
bar. Since the Graph pane fills the entire area ofits superview and since image and 
local coordinates are the same in this case, finding the superview's local coordi
nates provides coordinates that can be used for drawing in the Graph pane. 

Once the frame coordinates are known, the function gets down to business by draw
ing the axes, doing the math necessary to determine the height of the bars, drawing 
the bars, and labeling the axes. Although you can't see the color in Figure 5.1, the 
bars will appear on your screen in red, blue, and yellow. The axes are black and the 
axis labels are blue. 

Playing a QuickTime Movie: 
Panes without PPobs 

A pane does not necessarily have to be defined as a PowerPlant object. There are 
some circumstances under which you might want to create a pane by filling the fields 
in the data structure that defines a pane and then passing that structure to the appro
priate constructor. As an example of why and how you might do this, we'll be taking 
a look at playing a QuickTime movie in a pane. 

The movie pane appears in a window that is a defined as a WIND resource (Figure 
5 .11 ). The pane will therefore be defined to fill the entire body of the window. 

PowerPlant provides two classes for interacting with QuickTime-UQuickTime 
and LMovieController-both of which can be found in UQuickTime.cpp. The UQuick
Time class supports the QuickTime environment, including initializing QuickTime 
and retrieving a movie from a file. LMovieController defines a QuickDraw movie 
controller and handles actually playing the movie. 



112 Chapter 5 •Panes and Views 

Figure 5.11 The WIND resource (ResEdit format) in which the pane for a 
Quicklime movie will appear 

§l@.li' ···· · WIND "Mouie Clip" ID= 1900 from PPUideoStore.rsrc 

bl• be LJ DD LJ D[!j CJ CJ 

Top: jl:I: I Height: ~ 

Left:~ Width: ~ 

Color: @ Default 
O Custom 

~ Initially uisible 

~Close boH 

Using these two classes, playing a QuickTime movie requires the following steps: 

• Initialize QuickTime. This is usually handled in the application object's construc
tor by calling U 0 u i ck Ti me: : In it i a 1 i z e. You only need to do it once at the 
beginning of the program rather than each time you want to play a movie. 

• Retrieve the movie from its file using UQu i c kTi me: : GetMov i e FromFi 1 e. The 
function displays a QuickTime Get File dialog box (Figure 5.12), retrieves these
lected movie, stores it in memory, and returns a movie identifier to the calling 
function. 

• Create a window object that will serve as the superview of the pane in which the 
movie will play. 

• Initialize the pane. 
• Create the movie controller by creating a new object of class LMovieController. 
• Display the window (for example, Figure 5.13). At this point, the PowerPlant ap

plication takes over and processes the events generated when the user plays the 
movie. 

• Close QuickTime. This can be done in the application object's SendAEQui t 
function or in the application object's destructor. 



Playing a Quicklime Movie: Panes without PPobs 

Figure 5.12 Retrieving a Quicklime movie from a file 

Preuiew 
la uideo store f (master) ,.. I CJ Hammer 

~! Quicklime Demo al Ejert 

Desktop 

( Cancel ) 

Cm ale ( Open ) 

t8J Show Preuiew 

Figure 5.13 The Quicklime movie in a pane in a window 

@Ii-"-: .... .:._.:: .. _:_ rfoick:Time Mouie clil> : .. : .. ::::.:.:::::.::: ... :.:.: .. :::. 

113 

The Penultimate Videos application sets up its QuickTime movie player in its 
Vi ewQu i c kT i me function (Listing 5.10). The code first uses GetMov i e From File 
to load the movie into memory and provide a movie identifier for the remaining 
QuickTime-related function calls to use. It then creates the window, passing the 
parameters directly to the LWindow constructor rather than using a PowerPlant 
object. Once the window object has been created, the function initializes an SPane
Info structure that contains all the data needed to define a pane. Notice that the fields 



114 Chapter 5 • Panes and Views 

in the structure correspond directly to the pane characteristics you specify when you 
define a pane as a PowerPlant resource. 

NOTE 
Documentation for the structures used by PowerPlant can be found in the PP Core Ref 
erence manual. See the "PowerPlant Reference Glossary and Notes" at the end of the 
book. 

The next step is to create an LMovieController object, passing the SPaneinfo 
structure and the movie identifier as parameters to the constructor. Then, the func
tion only needs to show the window. As mentioned earlier, PowerPlant responds to 
events generated by the movie controller and plays the movie. 

Custom Panes 

A custom pane is a derived class whose objects can be defined as PowerPlant objects. 
You might decide, for example, to create a custom control that is derived from LCon
trol or LStdControl. In the example we'll be considering, the custom pane is derived 
directly from LPane. 

Many Macintosh programs use thermometers to show the user the progress of an 
action that takes a bit of time. To demonstrate a custom pane, Penultimate Videos 
displays the little window in Figure 5.14. As you would expect, the thermometer 
begins with an empty box that is filled with a progressively longer bar as saving data 
proceeds. 

DEFINING THE CUSTOM PANE 

The easiest way to create a custom pane is to work with Constructor. Once you've 
decided on the custom pane's base class and know what attributes you want to add to 
your pane, you're ready to begin the following process: 

I. Highlight Custom Pane Types in the Constructor window and create a new item. 
A new untitled custom pane appears. 

2. Highlight the new custom pane and press ~-I to display its Info window (for ex
ample, Figure 5.15). Give the custom pane a resource ID and a name. Leave its re-



Custom Panes 

Listing 5.10 Setting up a QuickTime movie 

void CPPVideoStoreApp::ViewQuickTime (SDialogResponse * dialogResponse) 
I 

Movie theMovie = UOuickTime::GetMovieFromFile(l; 

if (theMovie ==nil) 
return; 

II Create a window by passing parameters directly to constructor rather than 
II as a PowerPlant object. 
II Parameters: (1) resource ID; (2) window attributes; (3) pointer to superview 
LWindow * theWindow = new LWindow (W!NDOW_MOVIE_CLIP,windAttr_Regular + 

windAttr_Enabled + windAttr_Targetable, this); 

II Initialize the structure that defines the pane 
SPanelnfo thePaneinfo: 
thePaneinfo.pane!D = CLIP_PANE; 
thePaneinfo.width = 280; 
thePaneinfo.height = 200; 
thePaneinfo. left = 10; 
thePaneinfo.top = 15; 
thePaneinfo.visibile =true; 
thePanelnfo.enabled = true: 
thePanelnfo.bindings. left = false; 
thePanelnfo.bindings.right = false; 
thePanelnfo.bindings.top = false; 
thePanelnfo.bindings.bottom = false; 
thePaneinfo.userCon = O; 
thePaneinfo.superView = theWindow; 

LMovieController * theMovieController new LMovieController (thePanelnfo, 
theMoviel; 

theWindow->Show(l; 

Figure 5.14 Showing the progress of saving data 

115 

source type as CPPb, which identifies it as a custom PowerPlant resource. Close 
the Info window to save the changes. 



116 

Figure 5.15 The custom pane Info window 

=Iii~ Jnfoi for tPPb 2000, ·"The mu • 

¢ 

Resource Type: [§.f.f.~::::::J 
Resource ID: 

Resource Name : 

Attributes:---------, 

0 Preloaded 

0 Protected 

0 Locked 

0 Purgeable 

0 Sy stem Heap 

0 

Chapter 5 • Panes and Views 

3. Double-click on the custom pane resource to open its window. You will see only 
the name of the class. A Tools palette displaying data types of attributes you can 
add to the class also appears (see Figure 5.16). 

Figure 5.16 The custom pane Tools palette 

fii;:;~; Tools :;:;; Ii 
lnt32 ~ 
Uint32 

lnt16 

Uint16 

lntB 

UintB 

Boolean 

Str255 

OSType 

RGBColor I·-::::-
0-

4. Double-click on the name of the class to display its properties window. As you can 
see in Figure 5.17, you use this window to set the class ID, to specify the size of 
the pane, and to indicate the ID of the base class from which it is derived (the su
perclass ID). 

5. If necessary, add attributes to the class. To do so, drag a data type from the Tools 
palette into the resource's window. In Figure 5.18, for example, you can see the 



Custom Panes 117 

Figure 5.17 A custom pane properties window 

Closs "Thermometer" 
r Class Information:--------------~ 

I Class Name : I 
i Class ID: ..... ,T-he_r_..., 

I Specify the four-character ID which will be 

I _ .;;~;;~~t=~~~=~:~,,, 
~.,',,,',,,_ Sup:::::l~::o~~i::::: I Specify the four-character ID of 

this pane's superclass. 

0 Subclass of LContro 1? 

L-···-········g···=~~--~~~::_-~~~-~e.'.'.:'..5..? ____ .................................................................................................... . {}-

name of the class and the two attributes that have been added to it. In this partic
ular example, the attributes contain the resource IDs of the first and last PICT re
sources used to display the thermometer. A thermometer is made up of a 
sequence of still images, just like any other animation (for example, Figure 5 .19). 

As you will see later in this section, the Ther class uses the first and last resource 
IDs when figuring out which PICT to display at any given time. 

Figure 5.18 The content of a custom pane 

~Ii CPPb 2000, "Thermometer" lij 
Class T~~~ ~ 

lnt16 firstPICT ID 

lnt16 L~stPICT ID 

izy 
¢J Jr!> ill 



118 Chapter 5 • Panes and Views 

Figure 5.19 PICT resources for a thermometer 
~Jill·::· .. ".. . .......... :::.c·::·::::::.c PICTs from PPDldeoStore.rsrc ··:: .. ·:·: .. · :.·: ... ·,~:.c ····· ·lif~ 

i 
i 

l 

R PtntJ6rm.le '!Ideas V 89 Main Street 
f:n',town,NV 10101 

1000 

2002 

2005 

2008 

. -------···-·~ ·1 ill 

..--~--~-.J ·-~-=========~ 
[_ i 

l...... ·············--·····-····· ......... ····-·-·····' 
2000 2001 

2003 2004 

············-·······± 

I 
......................................... i 

2006 2007 

6. Double-dick on an attribute to display the attribute's properties window (for ex
ample, Figure 5.20). Give the attribute a name and, optionally, a default value. If 
you want to prevent this attribute from showing up in the pane's properties win
dow, place a check in the Hide Value check box. 

7. Repeat Step 6 for each attribute you've added to the custom pane. 

At this point, you can use the custom pane in a view. The Penultimate Videos ther
mometer window (Figure 5.21), for example, is an object of class LWindow. It con
tains only one pane: an object of class Ther. To add a custom pane object to a view, 



Custom Panes 

Figure 5.20 Custom pane attribute properties 
~ 7::::··· .. .. ::::::... Intl I! "First PICT ID" . . . ·:::.::···.~ 

~~~!liliiiil .Q Field lbmt!': !"MIMI r-----

Default Yailue: ~lo _ _,
Note: String fields and RGB color cannot have a

default value.

0 Hide Value (Do not display tn info box)

D Use Text/Numeric Checkbox

119

you drag it onto the view, just as you would an object of any other class. As you can
see in Figure 5 .22, the name of the custom pane type has been added to the bottom of
the Tools palette.

Figure 5.21 Using a custom pane

Assuming that the Hide Value check box is empty, the attributes that were added
to the custom pane when it was defined appear in the pane's properties box (for
example, Figure 5.23). In the case of the thermometer window, this makes it easy to
attach the PICT resource IDs.

CREATING THE PANE SUBCLASS

A custom pane class needs a subclass to manage it. At the minimum, it will need con
structors, a destructor, and a Draw Se l f function. As you can see in Listing 5 .11, the
Ther class contains variables for the first and last PICT ID, along with a variable for
the current PICT ID (the PICT to be displayed at any given time). In addition to the
Draw Se l f function, the class includes a function to determine which PICT resource
should be displayed, based on the percentage of objects written to the data file.

The implementation of the Ther class is relatively simple, primarily because it
inherits most of its behavior from LPane. In Listing 5.12, you can see that the stream
input constructor is a bit different from those you have seen previously. The first

120 Chapter 5 • Panes and Views

Figure 5.22 A custom pane at the bottom of the Tools palette

.!fiilH1fril:l1l::; Tools!::::::;;::::: Iii

0LPan'
•!§). LView

ITJ LControl

Ii) LStdContro 1

8 i..StdButton

181 · LStdCheokBox

.® LStdRadioButton

. 8 lStdPopupMenu

]5! :LTextButton

13 LButton

8 LCicnButton

8 L ToggleButton

··• Llconpane n;:J LCaption

LJ · LGroUPBox

···(D. L~lfttfield
§) LListBox

bJ · LScroller

i;J LAoth-eScrolier

Htf LTable

ffi) l TableView

![] · LHierarchyTable

· §11 LTextHierTable

Jil LSmalllcon Tab le

I LText£dit

· •• ~ .LPicture
~ · LOffscreenView

. [i] .LPlaceHolder

·a· LMailer

II LBrowser

J> LFinder

thermometer

{}

Here's the custom pane

thing it does is to call LPane' s constructor. Doing so reads from the file the portion of
the resource that has been inherited from LPane. The constructor must then execute
code to explicitly read the custom attributes that were added to the derived class
using LSt ream: : ReadData. The constructor passes Read Data a reference to
where the attribute's value should be placed and the size of that value.

Custom Panes 121

Figure 5.23 A custom pane object's properties

Thermometer 103301.i

'.,.rLL~t:~::=:::::;·;:;;iiij:::::::::::::i l ·Binding~ ~y:] [ij ~· •• Vldtll: ~i OL•fl 0Rf9ht i
l L 11e~.~J.1~J::::::~ : ~.:::!

P•ne ID: :='330=1=::::' 0 T•xt ID 181 Enabled

User Constant: '"'-lo _ __.I 0 T•xt constant 181 Ylsil>l•

Class ID:~

-First PICT ID: :='200=1=:::: Lost PICT ID: l20oa
.....

Attributes added
to those inherited from
the base class (LPane)

Listing 5.11 The Ther class

#include <LPane.h>

class Ther : public LPane
{

l;

protected:
ResIDT FirstPictID;
ResIDT LastPictID;
ResIDT CurrentPictID;

public:
en um cl ass_ ID = 'Ther' l;

static Ther * CreateTherStream CLStream * inStream);
Ther ();
Ther CLStream * inStream);
-Ther ();

void DrawSe lf ();
void SetCurrentPict (float); // pass in percent complete

NOTE
The order in which the attributes were declared in Constructor determines the order in
which their values are written to a resource file. You must therefore be sure to read the
attributes in exactly the same order.

As you would expect, much of the work in this class takes place in its Dr a wS e 1 f
function. To actually draw an image in the custom pane, the function does the fol
lowing:

122 Chapter 5 • Panes and Views

Listing 5.12 Member functions for the Ther class

Ther * Ther: :CreateTherStream (LStream * inStreaml
I

return new Ther (inStreaml;

Ther: :Ther (l
I

FirstPictID = FIRST_PICT;
LastPictID = LAST_PICT;
CurrentPictID = FIRST_PICT;

Ther: :Ther (LStream * inStreaml
: LPane (inStreaml

I
II Need to read the custom attributes

inStream->ReadData C&FirstPictID, sizeof (ResIDTll;
inStream->ReadData C&LastPictID, sizeof (ResIDTll;
CurrentPictlD = FirstPictID;

Ther: :-Ther(l
I

II destructor does nothing right now

void Ther: :DrawSelf (l
I

II First get a handle to the PICT to be drawn
PicHandle PictH = ::GetPicture (CurrentPict!Dl;

Rect theFrame;
CalcLocalFrameRect (theFramel;

::DrawPicture (PictH. &theFramel;

void Ther: :SetCurrentPict (float PercentCompletel
I

II The math below works because the PICT IDs are numerically sequentially
II and begin with a number that ends in zero (2000)
CurrentPictID = <PercentComplete * (LastPictID - FirstPictIDll + FirstPictID;
if (CurrentPictID > LastPictIDl

CurrentPictID = LastPict!D;

Custom Panes 123

1. Obtains a handle to the PICT resource to be displayed with the ToolBox routine
Get Picture.

2. Finds local coordinates of the pane's frame using Cal cloca l FrameRect, a func
tion inherited from LPane.

3. Uses the ToolBox routine Draw Pi ct u re to draw the PICT image within the
pane's frame.

The image that is displayed in a Ther pane is determined by the percentage of
objects that have been written to the data file. To set the ID of the current PICT
resource, the Set Current Pi ct function takes the percent of objects written and
does a bit of math. When you examine the function, keep in mind that the math only
works if the PICT resources are numbered sequentially and if the first one in the
sequence ends with a zero.

PROGRAMMING FOR A WINDOW WITH A CUSTOM
PANE

The window containing the thermometer pane is a part of the Penultimate Videos
application object's Unload function (Listing 5.13). The way in which the thermom
eter window has been integrated into the data saving process is as follows:

1. Compute the total number of objects to be written to the data file. This will be
used to compute the percentage of objects written.

2. Use LWi ndow: : CreateWi ndow to create a thermometer window object.
3. Display the window with the window object's Show function.
4. Open the data file for writing.
5. Write object counts to the file.
6. Enter a loop to write customer data to the file. After writing a single customer,

compute the precentage ofobjects written to the file. Call the ManageThermom
eter function (found at the end of Listing 5.13) to update the current PICT ID,
redraw the thermometer window, and make it the active window.

7. Write an additional object count to the file.
8. Enter a loop to write merchandise items and their copies to the file. After writing

data about a merchandise item and all its copies, compute the percentage of ob
jects written to the file and call Manage Thermometer.

9. Close the data file.
10. If necessary, set the file type and creator.
11. Close the thermometer window by deleting its object.

124 Chapter 5 • Panes and Views

Listing 5.13 The Penultimate Videos application object's Unload function

void CPPVideoStoreApp::Unload Cl
I

float totalObjects = Cust_count + Movie_count + Game_count + Other_count
+ Item_count;

int ObjectsWritten = O;
float percentWritten;

II Create thermometer window
LWindow * theThermometerWindow = LWindow::CreateWindow CWINDOW_SAVE_THER, this);
theThermometerWindow->Show(J;

ofstream fout (FileNameJ;

if (!fout.is_open())
I

II need an alert here
return;

l
fout « Items->getlastTitle_numb() « ' ' « Copies->getlastCopy_numb(J « ' '·

II write the customer data
fout « Cust_count « ' '·
CustltrPre writer;
Customer * currentCust;
for (writer. !nit (Customers); !writer; ++writer)
I

currentCust =writer();
currentCust->write (fout);
ObjectsWritten++;
percentWritten = (float) ObjectsWritten I totalObjects;
ManageThermometer CpercentWritten, theThermometerWindowJ;

fout << Items->getltem_count(J << ' ';

II traverse merchandise tree and write
MerchltrPre traversal;
for (traversal .!nit (Items); !traversal; ++traversal J
I

Merchandise_Item * currentOne;
currentOne =traversal();
currentOne->write (foutl;
ObjectsWritten += currentOne->getCopy_count(J + l;
percentWritten = (float) ObjectsWritten I totalObjects;
ManageThermometer (percentWritten, theThermometerWindowl;

fout.close();
Continued next page

Custom Panes 125

Listing 5.13 (Continued) The Penultimate Videos application object's Unload function

II if necessary, set file type and creator
Flnfo fndrlnfo;

::FSpGetFinfo C&FileSpec. &fndrlnfo);

if (fndrlnfo.fdType != MASTER_TYPE)
{

fndrlnfo.fdType = MASTER_TYPE;
fndrlnfo.fdCreator =CREATOR;
: :FSpSetFinfo C&FileSpec, &fndrlnfol;

save_flag =TRUE; II switch flag to indicate save has occurred

II remove thermometer window
delete theThermometerWindow;

void CPPVideoStoreApp::ManageThermometer (float percentComplete, LWindow * theWindow)
{

Ther * theThermometer = (Ther *) theWindow->FindPaneByID <THER_PANE);
theThermometer->SetCurrentPict (percentCompletel;
theThermometer->DrawSelf();
theWindow->Activate();

CHAPTER

Editing Text

TextEdit, the group of ToolBox routines that handles editing text, has been a part of
the Macintosh since 1984, so it comes as no surprise that PowerPlant provides sup
port for text manipulation. Its class LTextEdit provides a monostyled text edit record
that supports the basic text editing operations of cut, copy, paste, and clear.

In this chapter you will learn how to create windows with scroll bars for text edit
ing. You will also learn how to modify the PowerPlant class LTextEdit so that it sup
ports multistyled rather than monostyled text. In addition, you'll be introduced to
managing the Font, Size, and Style menus. Finally, you'll see how to implement
Undo actions in a text edit window.

The example we'll be examining in this chapter is the Penultimate Video pro
gram's facility for writing a note to a customer. (Perhaps it's a note to some customer
who hasn't returned videos or who has returned videos that haven't been rewound?)
The chapter therefore begins with a look at the Note class and then continues with
the underlying features of LTextEdit that make it work.

127

128 Chapter 6 • Editing Text

NOTE
We will look at printing the contents of an LTextEdit object in Chapter 12, when we
discuss printing in general. File operations (opening and saving a note) are covered in
Chapter 10.

The Note Class

The window in which a note appears is a combination of three objects:

• The window (created directly from LWindow)
• The scroll er (created directly from LScroller)
• The note (created from a class named Note that is derived from a clone of

L TextEdit-LTextEditM)

As you can see in Figure 6.1, the LWindow object is at the top of the view hierar
chy. It has one subview, the LScroller object, which in turn contains the LTextEdit
object. The LScroller object is a subview of the LWindow object and the superview of
the LTextEdit object.

Figure 6.1 The hierarchy of elements in the note window

§Ii§ Hierarch.!J for PPob 1200, "Not l§Siij
~ LYindov Non> ro Custom«- -0

!-"'--
v bJl LScro Her 1202

I L TextEdit (note) 1201

-01
¢J I<> \l!i

Notice in Figure 6.1 that the Note object appears as if it were created directly from
LTextEdit, but that the class name is followed by "(note)." This indicates that the
pane was indeed created as an LTextEdit object, but that its class ID was changed
from the default text. This works because an LTextEditM object is virtually identical
to an LTextEdit object, containing all the same attributes. The difference lies in the
type of text edit record that is set up when an object is created from the class: LText
Edit creates a monostyled text edit record; LTextEditM creates a multistyled one.

PowerPlant Objects for Editing Text 129

The declaration of the Note class can be found in Listing 6.1. Because this class
inherits from a cloned class-LTextEditM-that inherits from LCommander, Note is
a commander. It therefore has Fi ndCommandStatus and ObeyCommand functions.
It also uses its Fi n i s h C re ate Se l f function to store some data about the object
and to name the window in which the note appears. In addition, the class adds func
tions to its base class's editing support to handle opening, saving, and printing the
note.

PowerPlant Objects for
Editing Text

The PowerPlant object that supports writing a note to a Penultimate Video customer
appears in Figure 6.2. Because the LScroller object covers the entire body of the win
dow, all that appears of the LWindow object is its title bar. The default title ("Note to
Customer") should never appear to the user because the Note class's Finis hC re -
ate Se l f function sets the title of a new note window to "untitled note" plus a
sequence number (for example, "untitled note 1," for the second unsaved note win
dow).

ADDING THE SCROLL BAR

PowerPlant implements scrolling through the class LScroller. Assuming that you are
working with Constructor and taking advantage of the LScroller class, you will rarely
need to write code for scrolling.

NOTE
Scrolling lists of items on which a user can double-click are not de.fined using an LScrol
ler object. If you need such a list, use an LListBox, which provides its own scroll bars
along with other functions that support double-clickable lists. LListBox and scrolling

lists are discussed in Chapter 9.

An LScroller object is a view that is designed to contain a pane or view whose con
tents will be scrolled. In other words, just as in the note window, the scroller must be
the superview of the scrolled object.

The LScroller class handles the following scrolling tasks:

130 Chapter 6 •Editing Text

Listing 6.1 The Note class

II ***
II
II
II
II
II
II
II

Note.h

This is a subclass of LTextEditM that allows the program to
add its own code to handle the Font. Style, and Size menus
and to manage the text in a TextEdit pane. In this program,
the Note pane is used to write the customer a short note.

#include "LTextEditM.h"
#include <LCommander.h>

class Note : public LTextEditM
{

} ;

public:
static Note* CreateNoteStream CLStream * inStream);

Note ();
-Note();
Note (LStream * inStream);

virtual Boolean ObeyCommand CCommandT inCommand, void * ioParam);
virtual void FindCommandStatus CCommandT inCommand,

Boolean &outEnabled, Boolean &outUsesMark,
Char16 &outMark, Str255 outName);

void PrintNote ();
void NameNote (); II name the note window
void OpenNote (); II load note from file
void SaveNote (); II save note to file
void SaveAsNote (); II name and save note
void RevertNote ();

protected:
lnt16 mFontltemNumber; II item number of current font in Font menu
virtualvoid FinishCreateSelf();
LPrintout * thePrintout; II printer object created by constructor
FSSpecfileSpec; II file spec used by this note
LFile * theFile; II file object used by this note
Boolean mustSaveAs;
THPrint mPrintRecordH; II handle to print record

• Creates the scroll bar(s) when the scroller's superview is created.
• Makes itself a listener to its controls (the scroll bar(s)) and then broadcasts a mes

sage to its subview to trigger scrolling whenever the user drags a scroll bar thumb.
• Handles vertical or horizontal scrolling triggered by clicking the mouse pointer in

a scroll bar or by clickipg and holding the mouse pointer in a scroll bar.

PowerPlant Objects for Editing Text 131

Figure 6.2 A PowerPlant object for editing text

NOTE
LTextEdit is somewhat incomplete. One of the things it doesn't do is autoscroll when
the user types below the visible area in a window. When you run the Penultimate Vid
eos program, you'll discover that you can easily do "invisible" typing below the bottom
boundary of the note window, and that the only way to expose that hidden text is to use
the scroll bar.

• Redraws the scroll bars when the window containing the scroller is resized or
moved.

The actual scrolling of the image is performed by the scroller's subview. LScroller
expects to find a function named Sc r o 11 Im age By as one of its subview' s member
functions. The LScroller object passes in the number of pixels by which the image
should be scrolled (horizontal and vertical values) and a Boolean that indicates
whether the scrolled view should be redrawn after scrolling. The subview takes care

132 Chapter 6 • Editing Text

of the rest. As you can see in Listing 6.2, LTextEditM first calls the ToolBox routine
Off setRect to change the ToolBox text edit record's view rectangle. In then calls
LView's Scro 11 I ma geBy function, which takes care of redrawing the window.

Listing 6.2 Scrolling text

void
LTextEditM: :Scroll ImageByC

Int32 inleftDelta,// Pixels to scroll horizontally
Int32 inTopDelta. // Pixels to scroll vertically
Boal ean i nRefresh l

OffsetRectC&C**mTextEditHJ.viewRect. inleftDelta, inTopDeltal;

LView: :Scroll ImageBy(inleftDelta. inTopDelta, inRefreshl;

To create the relationship between a scroller and the pane it will scroll using Con
stru.ctor, first drag an LScroller into a view (in our example, an object of class LWin
dow). Then resize it so that it covers the entire area to be scrolled. In this example,
the scroller covers all of the LWindow object except its title bar. Finally, you can drag
the pane to be scrolled on top of the scroller. If you look back at Figure 6.2, for exam
ple, you will see that the LTextEdit object (pane ID 1201) covers most of the LScroller
object (pane ID 1202), with the exception of the area occupied by the scroll bar.

An LScroller object's attributes, which are set in its properties window, can be
found in Figure 6.3. There are several of these attributes to which you should pay
attention when you define a scroller:

• Scrolling View ID: This attribute holds the resource ID between the scroller and
the subview whose contents it scrolls. This is the easiest way to set up the rela
tionship between the two.

• Scroll bar indents: The indents indicate how much space should be left between
the scroll bars and the edges of the LScroller object. Typically, you'll want to
leave 15 pixels at the bottom right to make room for a size box. To suppress a
scroll bar, use indents of-I. In Figure 6.3, for example, the scroller will have no
horizontal scroll bar because the left and right indents are -1.

• Binding: By default, a scroller is bound on all four sides to its superview. This en
sures that the scroller will always fill the same relative position in its superview
and will therefore resize properly. In most cases, you won't want to change the
binding.

PowerPlant Objects for Editing Text

Figure 6.3 LScroller object properties

§IW LScroller ID 1202

[gi Top

rlocati~on: Top: -

I Loft' -I """"' ~~~ [gi Left [gi Right

[gl Bottom
i Height: 324

Pane ID: 11202 I 0 Text ID [gl Enabled

User Constant: l;::o======:::, 0 Text constant [gl Visible

Class ID: l~sc_r_l ~

Scrolling View ID: 1~1_20_1 __ ~10 Text ID

... Horizontal Scroll Bar: ···

Left Indent : l-1
:::==:==::::::

Right Indent: l~--1 -~

... Vertical Scroll Bar:·······-·

Top Indent: ~lo __ ~
Bottom Indent: ~I 1_5 -~

Note: Use -1 for left or top indent to disable the
corresponding scro 11 bar.

ADDING THE l TEXTEDIT OBJECT

133

To add an LTextEdit (or LTextEditM) object to a view, drag it into place as you would
any other object. Then, open its properties window (Figure 6.4). The attributes with
which you are often concerned include the following:

• Location: These values determine the size and position of the pane. In this partic
ular example, the pane is offset six pixels from the top left comer of the scroller
to provide a border between the text and the edges of the window. The width and
height measurements also leave the same six-pixel border between the bottom of
the window and the text, and between the scroll bar and the text.

• Binding: As you know, the binding check boxes determine how the pane will be
have when its superview is resized. Because we want a text editing area to resize
with the scroller (which resizes along with the window), the text edit pane is
bound on all four sides.

• Class ID: By default, an object of class LTextEdit has a class ID of text. However,
the object defined in this example is actually of class Note, which has been given
an ID of note. That ID must be attached to the object in the Class ID box so that

134 Chapter 6 •Editing Text

Figure 6.4 LTextEdit object properties

§Ifill LTeHtEdit ID 1201

r
Binding to SupervieY :

~Top
~ Left ~ Right

I ~Bottom

Pane ID: 11201 ID Text ID ~Enabled
User Constant : ;:I o======~I 0 Text constant ~ Yisib le

Class ID : I note

[

Image Size: 3

Yi'idth: lo I
Height: lo I

.................•... " -······-·········-·--·············

!Scroll Unit:3

I Horizontal: l 1 I

l ~:~.~~.'. .. 0 .. ~L.

[

Scroll Position:~

Horizontal: lo I
Vertical: lo I

--· .. ···-·-··---···-·-·--··························-..
0 Reconcile Overhang

Initial Text: lo I Note :Specify the ID of a TEXT resource
which contains the initial text for
this item. Text Traits ID: ~lo __ ~I E)

Editing Behavior :

~Text is editable

~Text can be selected

~ Yi'ord wrap

Power Plant will use the correct C re ate XS t ream function when creating an ob
ject from this resource.

• Initial Text: If you want the L TextEdit object to contain some text when it initial
ly appears on the screen, you can store that text in a TEXT resource and connect
it to the L TextEdit object by entering its resource ID in the Initial Text box.

• Text Traits ID: A text trait is a type specification (font, size, style, alignment, and
so on) that you can create using Constructor. To attach a text trait to an LTextE
dit object, enter its resource ID in the TextTraits ID box. You will read more
about text traits a bit later in this chapter.

• Editing Behavior: These check boxes govern editing and display characteristics of
the L TextEdit object. S'ee the following section for details.

PowerPlant Objects for Editing Text 135

Editing Behavior Attributes
Constructor 2.1 provides check boxes for three text editing attributes, all of which are
selected by default:

• Text is editable: Removing the X from this check box makes the text in the pane
read-only.

• Text can be selected: Removing the X from this check box prevents the user from
select a range of text.

• Word wrap: Removing the X from this check box suppresses word wrap in the
pane. The user will need to enter a Return to indicate the end of a line.

Before proceeding, a word is in order about word wrap and LTextEdit. Word wrap
occurs when the cursor reaches the right edge of the LTextEdit pane. If a user resizes
the window, making it wider or narrower, LTextEdit readjusts the word wrap so that
no text is hidden horizontally. This is not the way word processors behave, where
word wrap depends on the margins you have set for a document rather than the visi
ble area of the document window. As far as LTextEdit is concerned, however, its mar
gins are the physical borders of its pane.

Constructor 1.0 provided four editing behavior attributes, collected in the enumer
ated data type that you can see in Listing 6.3. However, by the time Constructor 2.0
appeared, the multistyled attribute was no longer available. As a matter of fact, the
attribute is still a part of an LTextEdit object, but simply isn't accessible through Con
structor.

As a result, you can't use Constructor to create a multistyled text edit object. In
addition, LTextEdit has never provided any support for multistyled text. This is why
a cloned class named LTextEditM was created.

Listing 6.3 LTextEdit object text attributes

enum I

I;

textAttr_MultiStyle= Ox8000,
textAttr_Editable= Ox4000.
textAttr_Selectable= Ox2000,
textAttr_WordWrap= OxlOOO

If you want multistyled text, you have two alternatives. First, you could modify
LTextEdit so that it checked the multistyled attribute to determine which type of text
edit record was being created. You would then need to create a resource that

136 Chapter 6 • Editing Text

describes a multistyled LTextEdit object manually using either Rez or Resourcerer.
(As mentioned earlier, ResEdit can't handle the complexity of PowerPlant objects.)

Alternatively, you could create a clone of LTextEdit that handled a multistyled text
edit record. Objects for that cloned class could be created using Constructor. In that
case, you would use LTextEdit whenever you wanted monostyled text and the cloned
class whenever you wanted multistyled text. Because creating the clone class makes it
possible to continue to use Constructor to define objects, the Penultimate Videos
program contains the cloned class-LTextEditM-that is used as a base class for the
Note class.

Text Traits
As mentioned earlier, a text trait is a specification for the appearance of type. It can
affect many objects besides those created from LTextEdit, including buttons, popup
menus, display text (captions), and edit fields. If you are working with a monostyled
text edit record, then a text trait can also be used to specify the appearance of all text
in the text edit record. If you are working with a multistyled text edit record, then a
text trait can be used to set the default type style.

Text traits (resources of type Txtr) are most easily created with Constructor. As
you can see in Figure 6.5, once you've created the new resource, you can choose the
font, size, style, justification, and drawing mode. To set text color, click on the box to
the right of Color to display a color wheel. When the text trait is complete, it can
then be attached to any object that accepts a text trait by entering its ID in the
object's properties window.

The text traits defined for the Penultimate Videos application appear in Figure 6.6.

The first four are provided in the PowerPlant starter resource file:

• System Font: Usually Chicago 12, used most commonly for buttons, popup
menus, window titles, and so on.

• App Font: Usually Geneva 12, used commonly as the default text font for objects
of the LEditField and LTextEdit classes.

• Geneva 9: Used where a smaller variable-spaced font is needed.
• Monaco 9: Used where a small monospaced font is needed.

The remaining two text traits are used by the Penultimate Videos program for
printed output (in particular, for the receipt a customer receives when he or she rents
something.)

You can change a object's text trait on the fly with a call to SetTextTrai ts ID,
which is part of all classes that use text traits. The function's single parameter is the
resource ID of the text trait you want to associate with the object.

The LTextEdit Class 137

Figure 6.5 Creating a text trait resource

THtr 130, "Geneua 9"

Font: ._I _G_e_ne_v_a ____ •_.I l Sty le:

Size: I I (0 for default) D Bold

.. Justification : ·······-·····-··-··········]

0 System default I
@ Left flush j
Q Centered 1

0 Right flush

Mode : I srcOr

D Underline

D Italic

D Outline

D Shadow

D Condensed

D Extended

The L TextEdit Class

The declaration of the LTextEdit class can be found in Listing 6.4. Notice first that it
is derived from three classes: LView (which provides many of its display management
capabilities), LCommander (which manages its activities in the chain of command),
and LPeriodical (which handles repeated, automatic events). The class also provides a
way for an application program to modify and retrieve the text managed by the
object.

In this section you will first be introduced to the text access functions. You will
then read about LPeriodical, the base class that handles actions such as blinking the
cursor, and how classes derived from it act. Finally, you will see the very tiny code
change needed to mutate a monostyled text edit class into a multistyled text edit
class.

TEXT ACCESS FUNCTIONS

LTextEdit provides four public functions that give you access to the text being main
tained by a TextEdit object. The following functions allow you to both change and
retrieve entire blocks of text:

138 Chapter 6 • Editing Text

Figure 6.6 Text traits in the Penultimate Videos application

r;, Pi Yindovs and Yievs 27 items {} -Menus 0 items

v -Text Traits 6 items

""
System Font 128

""
App Font 129

""
Geneva 9 130

• Monaco 9 131

""
Times 12 1000

""
Times 12 bold 2000 .. Custom Pane Types 0 items

.P¢

• Set Text Hand l e: Lets you change the entire contents of the block of text being
manipulated by passing the text edit record a handle to a replacement block of
text.

• SetTextPtr: Performs the same action as SetTextHandl e, working from a
pointer to the new text rather than a handle.

• Get Text Hand l e: Retrieves the block of text currently manipulated by a text edit
object by returning a handle to the text.

• GetMa cTEH: Retrieves the handle to the ToolBox text edit record.

The LTextEdit Class

Listing 6.4 The declaration of the LTextEdit class

class LTextEdit : public LView,
public LCommander,
public LPeriodical

public:
enum class_ID ='text' };
static LTextEdit* CreateTextEditStream(LStream *inStream);
LTextEdit();
LTextEdit(const SPanelnfo &inPanelnfo.

const SViewlnfo &inViewlnfo,
Uint16 inTextAttributes,
ResIDT inTextTraitslD);

LTextEdit(LStream *inStream);
virtual -LTextEdit{);

virtual void SetTextHandle(Handle inTextH);
virtual void SetTextPtr(Ptr inTextP, Int32 inTextlen);
virtual Handle GetTextHandle();
TEHandle GetMacTEH{);

virtual void SetTextTraitslD(ResIDT inTextTraitslD);
Boolean HasAttribute(Uint16 inAttribute);

virtual Boolean ObeyCommand(CommandT inCommand, void *ioParam);
virtual void FindCommandStatus(CommandT inCommand,

Boolean &outEnabled, Boolean &outUsesMark.
Char16 &outMark. Str255 outName);

virtual void SpendTime(const EventRecord &inMacEvent);

virtual Boolean HandleKeyPress(const EventRecord& inKeyEvent);

virtual void ResizeFrameBy(lnt16 inWidthDelta. Int16 inHeightDelta,
Boolean inRefresh);

virtual void MoveBy(lnt32 inHorizDelta, Int32 inVertDelta,
Boolean inRefresh);

virtual void ScrolllmageBy(Int32 inLeftDelta, Int32 inTopDelta,
Boolean inRefresh);

virtual BooleanFocusDraw();
virtual void SelectAll();
virtual void UserChangedText();
virtual void AdjustlmageToText();

virtual void SavePlace(LStream *outPlace);
virtual void RestorePlace(LStream *inPlacel;

139

Continued next page

140 Chapter 6 • Editing Text

Listing 6.4 (Continued) The declaration of the LTextEdit class

I;

protected:
TEHandl e
Res IDT
Ui ntl6

virtual
virtual

virtual
virtual

virtual
virtual

virtual

virtual

private:

mTextEditH:
mTextTraitsID:
mTextAttributes:

void DrawSel f(l:
void HideSelf(l;

void ClickSelf(const SMouseDownEvent &inMouseDownl:
void AdjustCursorSelf(Point inPortPt,

canst EventRecord &inMacEventl:

void BeTarget(l:
void Dant Be Target (l:

void AlignTextEditRects(J;

STextEditUndoHSaveStateForUndo(J;

void InitTextEdit(ResIDT inTextTraits!Dl:

NOTE
LTextEdit uses the standard ToolBox .functions to implement cut, copy, and paste. The
ObeyCommand .function that provides those capabilities appears in Listing 1.5.

FLASHING THE CURSOR: PERIODIC EVENTS

A Macintosh program has a group of tasks that it performs periodically, either repeat
edly during every pass through the event loop (repeaters) or whenever the program
isn't doing anything else (idlers). This includes tasks such as blinking the straight-line
insertion point in any area in which a user can enter text for objects of the classes
LEditField and LTextEdit, and advancing the play of a Quicktime movie for objects of
the class LMovieController. The base class for repeated actions is the abstract base
class LPeriodical.

An application maintains one queue of objects that are repeaters and one queue of
objects that are idlers. Although a program may use many objects whose classes are
derived from LPeriodical, the LPeriodical variables that hold the pointers to the
beginning of the repeater and idler queues are st a ti c. This means that they are

The LTextEdit Class 141

"class" variables, that there is only one copy of those variables shared by all objects
ultimately derived from LPeriodical.

LPeriodical has two member functions that take care of the members of the
repeater and idler queues:

• Devote Ti me To Repeaters: This function is called within PowerPlant's main
event loop after every event. (See Chapter 1 for details.)

• Devote Ti me To I d l e rs: This function is called by the application's function
Use Id l e Ti me whenever an idle or mouse-moved event occurs.

In both cases, the application traverses the appropriate queue and calls the Spend -
Ti me function for each object in the queue.

Any class derived from LPeriodical, such as LTextEdit and LTextEditM, must over
ride LPeriodical's SpendTi me function. The overriding function should include the
action that the subclass should take whenever it receives a chance to perform its peri
odic action. For example, LTextEdit's SpendTi me function (Listing 6.5) uses the
ToolBox routine TE Id l e to flash the straight-line cursor in the text edit pane.

Listing 6.5 LTextEdit's SpendTime function

void LTextEdit::SpendTime (canst EventRecord& * inMacEvent */)
{

if (FocusDraw() & IsVisible() & HasAttribute(textAttr_Selectablell
::TE!dle(mTextEditH);

MAKING IT MULTISTYLED

The first difference between LTextEdit and LTextEditM is remarkably small. (The
second difference involves implementing Undo, which is discussed at the end of this
chapter.) Look first at the InitTextEdit function from LTextEdit (Listing 6.6).
Notice that the text edit record is created with a call to the ToolBox routine TE New.
The result of this call is a monostyled text edit record.

To make the switch to a multistyled text edit record, the I n i t Text Edi t function
from the LTextEditM class calls TEStyl eNew, as in Listing 6.7. The result of this
change is a text edit record that can handle multiple style characteristics. Note that
this particular function also doesn't use the PowerPlant object's text trait, but
instead lets the text default to the system's application font.

142 Chapter 6 • Editing Text

Listing 6.6 LTextEdit's lnitTextEdit function

void LTextEdit:: InitTextEdit(Res!OT inTextTraits!OJ
I

RectviewRect = {0, 0, 0, 01;
mTextEditH = ::TENew(&viewRect, &viewRect);

SetTextTraits!D(inTextTraits!O);

II If word wrap is on. then the Image width is always the
II same as the Frame width. which forces text to wrap to
II the Frame.

II If the Image width is zero (or negative), the user
II probably forgot to set it. To accommodate this error,
II we set the Image width to the Frame width. However, the
II Image will not change if the Frame resizes.

if ((mTextAttributes & textAttr_WordWrap) I I
(mlmageSize.width <= Oll f
mlmageSize.width = mFrameSize.width;

NOTE
The LTextEditM InitTextEdit function also initializes four variables that are used to
support Undo (containerWindow, cutUndoer, pasteUndoer, and clearUndoer). The use
of these variables will be discussed at the end of this chapter.

Creating a Note Object

Because most of the work of managing editing text is handled by the Note class, the
application object has very little to do when the user requests a note. As you can see
in Listing 6.8, the application object creates the note window and calls Setla tent -
Sub for the Note pane. The purpose of Set Latent Sub is to make the Note pane the
subcommander that will be on, duty when its commander is put on duty. The effect is
that the Note pane becomes the target when the window first appears; the straight
line cursor will then be flashing in the Note pane without requiring the user to click
in the pane to activate it.

Creating a Note Object

Listing 6.7 LTextEditM's lnitTextEdit function

void LTextEditM::InitTextEdit(ResIDT inTextTraitsIDl
I

RectviewRect =ID. 0, 0, 0}; ~
II create a multistyled text edit record ~
mTextEditH = ::TEStyleNew<&viewRect, &viewRectl;

II If word wrap is on, then the Image width is always the
II same as the Frame width, which forces text to wrap to
II the Frame.

II If the Image width is zero (or negative), the user
II probably forgot to set it. To accommodate this error,
II we set the Image width to the Frame width. However, the
II Image will not change if the Frame resizes.

if ((mTextAttributes & textAttr_WordWrapl 11
(mimageSize.width <= Oll I
mimageSize.width = mFrameSize.width:

II set supercommander
LScroller * theScroller = (LScroller *) LPane::GetSuperView();
containerWindow = (LWindow *l theScroller->GetSuperView(l;

II initialize undoer pointers
cutUndoer = O;
pasteUndoer = 0:
clearUndoer = 0:
typingUndoer = 0:

Listing 6.8 Creating a text editing window

void CPPVideoStoreApp::WriteNote()
I

143

Here's what makes
this one
multistyled

LWindow * theWindow = LWindow::CreateWindow (WINDOW_NOTE, this);

LTextEditM * theTE = (LTextEditM *) theWindow->FindPaneByID (NOTE_TEl;
theWindow->SetlatentSub (theTEl:
theWindow->Show:

144 Chapter 6 • Editing Text

COMPLETING THE NOTE OBJECT

Creating the note window also creates objects for all of the window's subpanes, in
particular the Note object. Notice in Listing 6.9 that the constructor first calls the
base class constructor. It finishes by setting a flag to indicate that the note hasn't been
named and that the next Save command should actually trigger Save As.

Listing 6.9 The Note class stream constructor

Note: :Note (LStream * inStreaml
: LTextEditM (inStream)

mustSaveAs = TRUE: // Must get file spec before saving

As part of the job of displaying the note window, there are some tasks that can
only be performed after the creation of the Note object has been completed. These
are handled in the Finis hC rea teSe l f function (Listing 6.10), which executes after
all subpanes of a pane have been created.

The Note class's Finis hC rea teSe l f function first calls its base class's Finish -
Create Se l f function. Then, it saves the handle to the text edit record. Finally, it
calls NameNote, a class-specific function (also in Listing 6.10) that takes care of giv
ing each unsaved note window a new name.

The first note window is named "untitled note." Then, if the user opens a second
unsaved note window, the program gives it the name of "untitled note 1," and so on.
The default title and the title to which numbers are added are stored in an STR#
resource (Figure 6.7). The NameNote function therefore first retrieves the default
window name from the resource. It then uses a function from the PowerPlant utility
class UWindows to determine if any other window has that name.

Assuming that the name is unique (in other words, this is the first note window to
be displayed), Name Note obtains a pointer to the window object by first finding the
Note object's superview (the LScroller object) and then finding the scroller's super
view. At that point, NameNote can call SetDescri pt or to change the window's
name.

However, if the note window isn't the first one on the screen, NameNote retrieves
the second string from the resource and begins adding sequence numbers to it. Each
time NameNote concatenates a number onto the string, it checks to determine
whether a window with the matching name exists. As soon as it finds a unique name,
the w h i l e loop stops so the window can be named.

Creating a Note Object

Listing 6.10 Finishing the creation of a Note object

void Note::FinishCreateSelf ()
I

L TextEd itM: : Finis hCreateSe lf () ;
mTextEditH = LTextEditM::GetMacTEH(); II get the handle of the text edit record
NameNote(); II set the note window's name

void Note::NameNote ()
I

Pstring name;
::GetlndString (name, STRx_UNTITLEO_NOTE, 1);

long num = O;
II need to make sure that no other window has the current name
while (UWindows: :FindNamedWindow (name) !=nil)
I

::GetlndString (name, STRx_UNTITLED_NOTE, 2);
num++;
Str15 numStr;
: :NumToString (num, numStr);
name += numSt r;

LScroller * theScroller = (LScroller *) LPane::GetSuperView();
LWindow * theWindow = (LWindow *) theScroller->GetSuperView();
theWindow->SetDescriptor <name);

Figure 6.7 The STR# resource used to set the note window title

§Im§ STR# "untitled note'' ID= t ooo from PPUideoStore.

NumStrings 2

11) *****
The string !untitled note

2) *****
The string !untitled note

3) *****

NOTE

145

The two strings in the STR# resource are identical, so it might seem that you would
need only one of them. However, if you decide to change either the default window name

146 Chapter 6 • Editing Text

(the first string) or the stub to which numbers are added (the second string), it's much
easier to change the resource than it is to change program code.

Handling the Text Menus

Most of the work performed by the Note class involves handling the three text
menus: Font, Size, and Style. The Font menu in particular presents a special chal
lenge because its menu items aren't fixed, but vary according to the configuration of
the computer on which the program is running. PowerPlant refers to such menu
items that can't be specified in a resource as synthetic commands.

Support for the text menus is provided through a PowerPlant class named UText
Menus, which appeared as a sample file with the original PowerPlant Cookbook
tutorials. You can use this file and the techniques demonstrated in the Penultimate
Videos program to implement text menus in most programs.

UTEXTMENUSBASE AND ITS SUBCLASSES

UTextMenusBase is a base class for UFontMenu, USizeMenu, and UStyleMenu. The
base class (Listing 6.11) provides static (therefore, class) variables for pointers to
Font, Size, and Style menu objects and menu handles. It also provides a variety of
functions for enabling and disabling menu items.

The subclasses (see Listing 6.12) have several functions in common:

• Initial i ze: Sets up the menu. This function is called once during a program,
usually in an application object's constructor.

• Di s ab l e Menu: Disables the entire menu.
• En ab l e Menu: Enables the entire menu.

UFontMenu and USizeMenu also have Adj us t Men u functions that change the
appearance of the menu while a program is running. In addition, both of these
classes have functions that return the font or font size chosen from the menu.

Handling the Text Menus 147

Listing 6.11 UTextMenusBase

classUTextMenusBase

protected:

l;

static void XAble(LMenu *inMenu, Boolean inEnable);
static void XAble(Res!DT inMenu!O, Boolean inEnable);
static void XAble(MenuHandle inMenuH. Boolean inEnable);

static void XAbleEveryltem(LMenu *inMenu, Boolean inEnable,
Boolean inUnmarkAll. Boolean inSetStyleNormal);

static void XAbleEveryltem(Res!DT inMenu!O, Boolean inEnable,
Boolean inUnmarkAll, Boolean inSetStyleNormal);

static void XAbleEveryltem(MenuHandle inMenuH, Boolean inEnable,
Boolean inUnmarkAll, Boolean inSetStyleNormal);

static LMenu *sFontMenu:
static MenuHandle sFontMenuH;
static LMenu *sSizeMenu:
static MenuHandle sSizeMenuH;
static LMenu *sStyleMenu;
static MenuHandle sStyleMenuH;

TEXT MENU RESOURCES

The resource for a Style menu (for example, Figure 6.8) is just like most other menus
you create for a program. Because it's a standard window, however, you can take
advantage of the menu command IDs that have already been established in
PP _Messages.h. (That is why the command IDs are less than 1000.)

A Size menu often has menu items that don't change, such as "Smaller" or
"Larger." However, the bulk of the contents of a Size menu is font sizes. If you decide
that the Size menu will only show those font sizes that are appropriate to the chosen
font, then you will want to be able to change the items in the menu. Although you
could certainly set up a Size menu with unchanging items and therefore with fixed
menu command IDs, it is more flexible to use synthetic command numbers for those
menu items that might change. In Figure 6.9, for example, all the font sizes have been
given an ID of -1. This will signal the program that the menu items aren't fixed and
that it must use identify a menu choice by the content of the menu item rather than
by a menu command ID.

A Font menu almost never has any fixed items. Its resource (for example, Figure
6.10) has only a title. Because there are no menu items, there are no menu command
IDs and therefore no Mcmd resource. As with the Size menu, a program will need to

148 Chapter 6 • Editing Text

Listing 6.12 The UTextMenusBase subclasses

classUFontMenu : public UTextMenusBase I

public:

I;

static void Initialize(Boolean inEnabled =true);
static void AdjustMenu(lnt16 inCurrentFont);
static void DisableMenu();
static void EnableMenu(J;
static void DisableEveryitem();
static void EnableEveryitem(J;
static Int16 GetFontNumber(Int16 inMenuiteml;
static Int16 GetFontitemNumber(Int16inFontNumber);

classUSizeMenu public UTextMenusBase I

public:
static void Initialize(Int16 inReserveditems, Boolean inEnabled =true);
static void AdjustMenu(lnt16 inMenuitem. Int16 inCurrentSize, Int16 inCurrentFont.

Boolean &outEnabled, Boolean &outUsesMark,Char16 &outMarkJ;
static void DisableMenu(J;
static void EnableMenu();
static void DisableEveryltem();
static void EnableEveryltem(J;
static Int16 GetFontSize(lnt16 inMenultemJ;

private:
static Int16 mReservedltems;

I;

constlnt16kDefaultReservedltems 5;

classUStyleMenu public UTextMenusBase I

public:

I;

static void Initialize(Boolean inEnabled
static void DisableMenu();
static void EnableMenu(J;

true);

use the menu item itself (in this case, either the name or number of a font) to identify
a menu choice.

Handling the Text Menus

Figure 6.8 A Style menu resource (Constructor format)

Plain TeHt 8€T 401

Bold 8€8 402

ltolic 8€1 403

1._;U;;;;n;;d;;;;e;;;;r;;;li;;;n;;;;e ______ .;,;8€;.;;U:..J 404

Figure 6.9 A Size menu resource (Constructor format)

6 point
8
9
to
12
14
18
24
36

................... -1

..................... -1

................... -1

........................ -1

........................ -1

................... -1

...................... -1

...................... -1

........................ -1

Figure 6.10 A Font menu resource (Constructor format)

149

150 (:hapter 6 • Editing Text

INITIALIZING THE TEXT MENUS

The first task that must occur if a program is to support Font, Size, and Style menus
is to initialize the menus. (The menu objects themselves are created when the pro
gram's LMenuBar object is created.) As mentioned earlier, typically this is handled in
the application object's constructor with calls to the three Initial i ze functions:

UFontMenu::lnitialize <TRUE); II set up the font menu
II zero indicates that there are no items that aren't sizes
USizeMenu::Initialize (0, TRUE);
UStyleMenu::Initialize (TRUE); II set up the style menu

The I n i ti a l i z e functions operate in the following general way:

• Forthe Font menu: Calls the ToolBox routine Append Res Menu to add the com
puter's fonts to the menu.

• For all three menus: Stores the menu's handle and a pointer to its object in the
appropriate class variable and enables or disables the menu (as appropriate).

ENABLING TEXT MENUS

When running the Penultimate Videos program, you may have noticed that the Font,
Style, and Size menus are active only when a note window is present on the screen.
This is because the Fi n d Co mm a n d St at us function that activates those menus
belongs to the Note class (Listing 6.13). Much of this code comes from the Menus
sample program that was part of the original PowerPlant Cookbook.

The bulk of this Fi ndCommandStatus function is broken into two parts. The
first detects a synthetic command by calling the LCommander routine I s Syn the t -
i c Co mm a n d. If the command is synthetic, it returns a Boolean indicating that fact
along with the menu ID and the menu item number. In that case, the function deter
mines whether the command comes from the Font or Size menu and then uses the
Adj ustMenu function from the appropriate text menu class to change the appear
ance of the menu. For example, USi zeMenu:: Adj ustMenu places a check mark
next to the selected size and displays that size using the outline text style. By the
same token, UFontMenu: :AdjustMenu places a check mark next to the chosen
font and removes checks from all other fonts in the menu.

If the chosen menu command isn't synthetic, then the command can be enabled
like any other menu command. Most menu commands don't use check marks. How
ever, the style commands (plain, bold, underline, and italic) may need check marks if

Handling the Text Menus

Listing 6.13 The Note class's FindCommandStatus function

void Note: :FindCommandStatus (CommandT inCommand, Boolean &outEnabled,
Boolean &outUsesMark, Char16 &outMark. Str255 outName)

Res IDT menu ID:
Int16 menultem, mode;
TextStyle TextStyleRec;

mode= doFont + doFace + doSize;

151

: :TEContinuousStyle(&mode, &TextStyleRec, mTextEditH); II get current style settings

outEnabled =true; II most of our commands are enabled if we're in
II the chain of command

outUsesMark =true; II most of our command use check marks

if ClsSyntheticCommand(inCommand, menuIO, menultem))
I

if (menuID == MENU_Font)
I ~

UFontMenu::AdjustMenu(mFontltemNumber);

else if (menuID == MENU_Size)
I

This function call detects
a synthetic command

USizeMenu::AdjustMenu(menultem, TextStyleRec.tsSize, TextStyleRec.tsFont,
outEnabled, outUsesMark. outMark);

else
LTextEditM::FindCommandStatus(inCommand, outEnabled, outUsesMark,

outMark. outNamel; Regular menu commands are

else switch (inCommand)
I

~ processed here

case cmd_Plain:
outMark = CTextStyleRec.tsFace
break;

normal) ? checkMark noMark;

II This is a common idiom for handling the Style menu. It
II relies on the fact that the command numbers that correspond
II to the text styles are sequential and in the same order as
II the constants that represent each bit in the style word.
II You can see the same idiom in the ObeyCommand() function.

case cmd_Bold:
case cmd_Italic:
case cmd_Underline:

/ Here's the tricky bit

outMark = TextStyleRec.tsFace &
(1 << (inCommand - cmd_Bold)) ? checkMark noMark;

break;
Continued next page

152 Chapter 6 • Editing Text

Listing 6.13 (Continued) The Note class's FindCommandStatus function

case cmd_FontMenu:
case cmd_SizeMenu:
case cmd_StyleMenu:
case cmd_open_note:
case cmd_save_note:
case cmd_save_note_as:
case cmd_revert_note:

outUsesMark =false;
break;

II enable printing options when this printable window is visible
case cmd_Print:
case cmd_PageSetup:

outEnabled = TRUE;
outUsesMark = FALSE;
break;

default:
II Be sure to call the base class's FindCommanStatus()
II member function to get its behavior

LTextEditM::FindCommandStatus(inCommand, outEnabled, outUsesMark,
outMark, outName);

break;

those styles are in use. The function can detect a plain type style by checking to see if
the ts Fa c e field of the style record is equal to the constant n o rm a l .

However, the function resorts to a bit of a trick-found in the Menus sample pro
gram mentioned earlier-to figure out whether a mark should be added or removed
from one of the other Style menu items. The trick, which appears as the body of the
case for bold, italic, and underline in Listing 6.13, depends on the positions of the bits
in the style word: Bit 0 represents bold, bit 1 represents italic, and bit 2 represents
underline. The command constants associated with the styles are in the same
numeric order: 402 for bold, 403 for italic, and 404 for underline. Therefore, when
the program subtracts cmd_Bo l d from the input menu command, the result is either
O, 1, or two, which then shifts the 1 into the correct position to identify the chosen
style. The statement then performs a logical AND with the style record's ts Face
field, which returns true if the bit is set and false if it isn't.

Notice that regardless of whether the command is synthetic or regular, the func
tion defaults to calling the base class's Fi ndCommandStatus function. This ensures

Implementing Undo 153

that the program will handle commands that aren't trapped directly by the Note
class.

PROCESSING TEXT MENU SELECTIONS

Processing of text menu selections happens in the Note class's ObeyCommand func
tion (Listing 6.14). Like the Fi ndCommandStatus function, it differentiates
between synthetic and regular commands and handles each type separately.

To change a font, the function retrieves the font number with. U Font -
Menu : : Get Font Number and then uses that value to set the font in the style record.
The style record is then available for use in the call to the ToolBox routine TESet
Styl e. Changing the font size is very similar: USi zeMenu:: GetFontSi ze inserts
the chosen size into the style record, which can then be used when calling TESet
Styl e.

When the command is regular rather than synthetic, processing the command is
straightforward: The s w i t ch traps the command and takes appropriate action. For
the Style menu in particular, this means setting the ts Face field of the style record
and then calling TESetStyl e.

Implementing Undo

One limitation of LTextEdit is that it doesn't support Undo, although PowerPlant
does provide classes for implementing Undo through attachments. To give you an
example of using attachments and of implementing Undo, we'll look at how LTExtE
ditM manages the task.

THE ACTION AND UNDOER CLASSES

Before a program can undo something, it needs to have a way of saving whatever the
user just did. PowerPlant calls anything that can be undone an action, and supports it
through the class LAction. Whenever a user does something that can be undone, a
program creates ari object from a class derived from LAction. (LAction is an abstract
base class.) That action is then "posted" to the commander of the object in which the
action occurred.

154 Chapter 6 • Editing Text

Listing 6.14 The Note class's ObeyCommand function

Boolean Note: :ObeyCommand <CommandT inCommand, void * ioParaml
I

ResIDT menuID:
Intl6 menu!tem;
Int32 newSize;
BooleancmdHandled = TRUE;
TextStyle TextStyleRec;

if <IsSyntheticCommand(inCommand. menuID, menu!temll
I

if (menuID == MENU_Fontl
I

II Set font of currently selected text

TextStyleRec.tsFont = UFontMenu::GetFontNumber(menuiteml;
::TESetStyle (doFont. &TextStyleRec, TRUE, mTextEditHl;
mFontitemNumber = menu!tem;

else if (menu ID
{

MENU Size)

II Set the font size for selected text. Since the Size menu
II can use the FindCommandStatus() mechanism
II to maintain the menu, we don't need to save
II the item number of the current size.

TextStyleRec.tsSize = USizeMenu::GetFontSize(menuiteml;
::TESetStyle (doSize, &TextStyleRec, TRUE, mTextEditHl;

else
II Be sure to call the base class's ObeyCommand(l
II member function to get its behavior.

cmdHandled = LTextEditM::ObeyCommand(inCommand, ioParam);

else switch (inCommandl
I

case cmd_Plain:
TextStyleRec.tsFace
::TESetStyle (doFace.
break; '

normal;
&TextStyleRec, TRUE, mTextEditH);

Continued next page

Implementing Undo 155

Listing 6.14 (Continued) The Note class's ObeyCommand function

II This is a common idiom for handling the Style menu. It
II relies on the fact that the command numbers that correspond
II to the text styles are sequential an in the same order as
II the constants that represent each bit in the style word.
II You can see the same idiom in the FindCommandStatus() function.

case cmd_Bold:
case cmd_Italic:
case cmd_Underline:

TextStyleRec.tsFace = 1 << (inCommand - cmd_Bold);
: :TESetStyle (doFace + doToggle, &TextStyleRec, TRUE, mTextEditH);
break;

case cmd_open_note:
OpenNote();
break;

case cmd_save_note:
if (mustSaveAs)

SaveAsNote();
else

SaveNote ();
break;

case cmd_save_note_as:
SaveAsNote ();
break;

case cmd_revert_note:
RevertNote(l;
break;

case cmd_Print:
PrintNote(l;
break;

case cmd_PageSetup:
::PrOpen(); II open printer driver
II Note: mPrintRecordH comes from the LPrintout object, a pointer
II to which is stored in the note object
::PrStlDialog (mPrintRecordH); II display the page setup dialog box
::PrClose(); II close the printer driver

default:
cmdHandled LTextEditM: :ObeyCommand (inCommand. ioParaml:
break;

return cmdHandled;

To help support Undo and Redo in text edit windows, PowerPlant provides the
LTETextAction class, which is derived from LAction. LTETextAction has four
derived classes of its own: LTEClearAction, LTECutAction, LTEPasteAction, and

156 Chapter 6 • Editing Text

LTETypingAction. A program can then use the action-specific classes to capture
actions for undoing.

NOTE
Although LTextEdit doesn't support undo, LEditField does. The code that has been
added to LTextEditM to support undo has therefore been modeled after Metrowerk's
strategy in implementing Undo for LEditField.

In addition to objects created from classes derived from LAction, a program must
create an object of class LUndoer, an attachment that takes care of triggering the
undo or redo of actions that have been posted to a commander and managing the
Undo menu item. The LUndoer object is added as an attachment to an object derived
from LCommander.

The LUndoer object uses several functions from LAction-derived classes to man
age undo and redo operations:

• Can Redo: Determines whether an action can be redone.
• Can Undo: Determines whether an action can be undone.
• Undo: Calls Undo Self to reverse the action.
• Redo: Calls Redo Se 1 f to redo the action.

NOTE
If you need to undo something other than a text edit action, you will need to create your
own subclass of LAction. Your derived class should include overriding Undo, UndoSelf,
Redo, and RedoSelf functions.

IMPLEMENTING THE UNDO AND REDO

Adding support for Undo and Redo to the note window requires code in several
places:

• The class must provide variables to hold pointers to the action objects and a
pointer to the window object. Although LTextEditM could retrieve a pointer to
the window object each time an action occurs, it is more efficient to obtain that
pointer once and store it in the L TextEditM object. If you'll look back at Listing
6.7, you'll see that the I ni tTextEdi t function finds the pane's immediate su
percommander (an object of class LScroller) and then the scroller's supercom-

Implementing Undo 157

mander (the window). Note that this function also initializes the action object
pointers to 0.

• An LUndoer object must be created and attached to the note window when the
window is created.

• Because cut, clear, and paste are implemented in LTextEditM's ObeyCommand
function, that function must create action objects and post actions to the win
dow's commander.

• Because keystrokes are handled by the Hand l e Key pres s function, undo typing
code must be added to that function.

Setting Up the LUndoer Attachment
The note window is created in the application object's W r i t e Note function (Listing
6.15). Once the window object has been created, the function creates an LUndoer
object. Then it calls the LCommander function AddAttachment to add the LUn
doer object to the window object's list of attachments. (Keep in mind that you can
add attachments only to objects whose classes are derived from LCommander.)

Listing 6.15 Adding an LUndoer object as an attachment to a window

void CPPVideoStoreApp::WriteNote()
(

LWindow * theWindow = LWindow::CreateWindow (WINDOW_NOTE, this);

II enable undo operations in this window
LUndoer *undoer = new LUndoer;
theWindow->AddAttachment(undoer. nil, TRUE);

LTextEditM * theTE = (LTextEditM *) theWindow->FindPaneByID (NOTE_TEl;
theWindow->SetlatentSub (theTEJ;
theWindow->Show;

If you were to run the program with just the LUndoer object attached to the win
dow object, you would discover that the Undo option in the Edit menu responds
properly to what the user has done. For example, when the user chooses Cut, the
menu option reads Undo Cut; when the user chooses undo, the menu option changes
to Redo Cut. The LUndoer object is managing the menu option, taking the strings
for the menu option from PP Action Strings.rsrc. However, no undoing or redoing
would occur, because actions for the undoer object to handle haven't been posted to
the window.

158 Chapter 6 • Editing Text

Handling the Action Objects for Copy. Clear.
and Paste
When support for Undo and Redo is part of a class, code in the class's Obey Command
function changes considerably. As you can see in Listing 6.16 (LTextEditM's Obey
Command function), the switch statement contains the same cases as that of LTex
tEdit (first seen in Listing 1.5), along with some new cases that interaction with
action objects. Of the four text editing operations-cut, copy, paste, and clear--only
copy contains any ToolBox calls. This is because copy is generally not an undoable
operation.

To handle Undo and Redo, each undoable/redoable action does the following:

• Creates a new action object to hold whatever the user has just done and store a
pointer to that object.

• Posts the action to the commander (in this example, the note window).

Posting the action using the Post Act i on function executes the action by running
all the attachments belonging to the commander receiving the post. In this particular
example, the single attachment is the undoer object, which calls the action object's
Redo function. This has the effect of performing the action for the first time. Because
LUndoer operates in this way, the ObeyCommand function doesn't need the code to
perform the undoable/ redoable text editing tasks; those tasks are handled by the
action object.

Notice that the ObeyCommand function in Listing 6.16 traps five action com
mands. The first four (cut, paste, clear, and typing) call the Use r Ch an g e d Text func
tion, which by default does nothing. However, you could override this function in a
derived class to make customized changes in the text edit record. The final action
command (cmd_ActionDeleted) handles the situation where the action object that
records typing has been deleted. Resetting the pointer to O (or nil) ensures that the
next keypress creates a new typing action object and therefore prevents the program
from attempting to access a nonexistent object.

Handling Undo Typing
Undoing and redoing typiog presents a special challenge because typing isn't a single
action like cutting, clearing, or pasting. Instead, it's a series of individual keypresses,
each of which can represent a character for display, cursor movement (for example,
the Home and End keys), or character removal (the Delete and Del keys). This means
that once an action object has been created for typing, the code that handles key
presses must add to or remove from the action object, storing keypresses until
another operation (a cut, clear, or paste) interrupts typing.

Implementing Undo

Listing 6.16 LTextEditM's ObeyCommand function

Boolean LTextEditM::ObeyCommand (CommandT inCommand, void* ioParam)
(

BooleancmdHandled =true;

switch (inCommand) I
case cmd_Cut:

cutUndoer =new LTECutAction (mTextEditH, containerWindow, this);
II Important note: posting the action performs the action!
PostAction (cutUndoer);
AdjustlmageToText();
UserChangedText();
break;

case cmd_Copy:
: :TECopy(mTextEditHJ;
: : ZeroScrap();
: :TEToScrap();
break;

case cmd_Paste:
pasteUndoer =new LTEPasteAction (mTextEditH, containerWindow, this);
PostAction (pasteUndoer);
AdjustlmageToText();
UserChangedText();
break;

case cmd_Clear:
clearUndoer =new LTEClearAction (mTextEditH, containerWindow, this);
PostAction (clearUndoer);
AdjustlmageToText();
UserChangedText{);
break;

case cmd_ActionCut:
case cmd_ActionPaste:
case cmd_ActionClear:
case cmd_ActionTyping:

UserChangedText();
break;

case msg_TabSelect:
if (!lsEnabled())

cmdHandled =false;
break;

case cmd_ActionDeleted:
if ((LTETypingAction *) ioParam

typingUndoer = O;
break;

typingUndoer)

159

Continued next page

160 Chapter 6 • Editing Text

Listing 6.16 (Continued) LTextEditM's ObeyCommand function

case cmd_SelectAll:
Se l ectA 11 (l ;
break;

default:
cmdHandled LCommander::ObeyCommand(inCommand, ioParam);
break;

return cmdHandled;

To support this requirement, LTETypingAction includes special functions to
modify an action object's contents:

• I npu tCha ra cte r: Handles a character for display.
• Backward Erase: Handles the use of the Delete key.
• Fo rewa rdErase: Handles the use of the Del key.

These functions are called from LTextEditM's Handl eKeyPress function (Listing
6.17). The general strategy is to check the content of the variable that points to the
typing action object (typi ngUndoer). If the variable contains O, then there is no
existing typing action object and a new one must be created. When a typing action
object exists, the keypress is sent to the appropriate LTETypingAction function,
which performs the action and then modifies the action object to include the effect of
the action.

Implementing Undo

Listing 6.17 LTextEditM's HandleKeyPress function

Boolean LTextEditM: :HandleKeyPress (canst EventRecord&inKeyEventl
{

Boolean keyHandled =true;
EKeyStatustheKeyStatus = keyStatus_Input;
Intl6 theKey = inKeyEvent.message & charCodeMask;

if (inKeyEvent.modifiers & cmdKey) {//Always pass up when the command
theKeyStatus keyStatus_PassUp;// key is down

else I

theKeyStatus UKeyFilters::PrintingCharField(inKeyEventl;

shortlineCount = (**mTextEditHJ.nlines;

switch (theKeyStatus) I

case keyStatus_Input:
FocusDraw(l;
if (typingUndoer ==OJ
{

typingUndoer =new LTETypingAction (mTextEditH. this. this);
PostAction (typingUndoer);

if (typingUndoer != OJ
typingUndoer->InputCharacter (theKeyl;

else
::TEKey (theKey, mTextEditH);

UserChangedText(l;
break;

case keyStatus_TEDelete:
FocusDraw();
if ((**mTextEditHl.selEnd >OJ

if (typingUndoer == Ol
{

typingUndoer =new LTETypingAction (mTextEditH. this, this);
PostAction (typingUndoerl;

if (typingUndoer !=OJ
typingUndoer->BackwardErase(l;

else
: :TEKey(theKey, mTextEditHl;

UserChangedText(l;
break;

161

Continued next page

162 Chapter 6 •Editing Text

Listing 6.17 {Continued) LTextEditM's HandleKeyPress function

case keyStatus_TECursor:
FocusDraw(l:
: :TEKey(theKey, mTextEditHl;
break:

case keyStatus_ExtraEdit:
switch (theKey)
I

case char_Home:
Focus Draw(l:
::TESetSelect (0,0,mTextEditHl:
break:

case char_End:
Focus Draw(l:
: :TESetSelect (max_lntl6, max_Intl6, mTextEditHl:
break:

case char_FwdDelete:
FocusDraw():
if ((**mTextEditH).selStart < (**mTextEditHl.telengthl
(

if (typingUndoer == 0)
(

typingUndoer =new LTETypingAction (mTextEditH, this, this);
PostAction (typingUndoer):

I
if (typingUndoer != Ol
typingUndoer->ForwardErase();

else
(

if ((**mTextEditH).selStart == (**mTextEditH).selEndl
::TESetSelect((**mTextEditH).selStart,
(**mTextEditHl.selStart + 1, mTextEditH);

: :TEDelete (mTextEditHl:
I
UserChangedText<l:
break;

default:
keyHandled LCommander::HandleKeyPress(inKeyEventl:

break;

case keyStatus_Reject:
II+++ Do something
SysBeep(l l:
break;

Continued next page

Implementing Undo

Listing 6.17 (Continued) LTextEditM's HandleKeyPress function

case keyStatus_PassUp:
if CtheKey == char_Return) I

FocusDraw();
: :TEKey(theKey, mTextEditH);
UserChangedText();

else I
keyHandled = LCommander::HandleKeyPressCinKeyEvent);

I
break;

if (lineCount != (**mTextEditH).nLines)
AdjustlmageToText();

return keyHandled;

163

Dialog Box and
Control Resources

CHAPTER

Dialog boxes are a staple of Macintosh programs. We use them to collect information
a program needs, such as the name of a file to open, properties to be applied to a
graphic object, or data that the program will manipulate in some way. In this chapter
you will be introduced to creating resources for dialog boxes. In most cases, dialog
boxes are populated with a variety of controls, such as buttons, popup menus, radio
buttons, and check boxes. This chapter therefore also provides a logical place to
introduce the way in which PowerPlant control resources are defined. (The code
needed to handle dialog boxes and their controls is discussed in Chapter 8.)

Dialog boxes (and the items you place on them) are most easily defined as Power
Plant objects using Constructor. As we look at the resources and code needed to sup
port dialog boxes, we will be using two examples. The first is the dialog box used to
modify data stored about a film (Figure 7.1). As you can see in Figure 7.2, the
resource contains objects of class LCaption, LEditField, LStdPopupMenu, and LStd
Button.

The second example we will be using is the dialog box used to enter data about a
video copy (Figure 7.3). The resource (seen in Figure 7.4) adds check boxes and radio

165

166 Chapter 7 • Dialog Box and Control Resources

Figure 7.1 The Modify/Delete Movie dialog box

""'"''""'""'"'""'=""""''""='="""'"'"""="""""'='"'""' Mo dif /Delete Mouie "'=""""'"="'="'""=""""""""'"""""""'""""'.

Mouie Title: ._ll3_1a_de_R_u_n_ne_r __________________ ~

Distributor: n/a

Director: I Ridley Scott

Producer: I Michae 1 Deeley

Length: Classification: Science Fiction ... ,

Rating: R
Stars:

Harrison Ford Rutger Hauer Sean Young Edward James Olmos

M. Emmet Walsh Dary 1 Hannah William Sanderson Brion James

Joseph Turkel Joanna Cassidy

Cancel (Delete) [(Modify J

Figure 7.2 The Constructor view of Figure 7.1

----~:. ;;;;c=-=--~~-"'~"i!.--s----;,-
. . 27ti$i f............... 27\:!iil

D1stnbu.~··· '···-··-·······---------------------'
Director~1®! C..... 2'l'J:@

Pro11uce~?il1\ c··-.. ·--·- 21il8:

~en~; I :mo: t1assiticat1~1 I Menu item ~I
Rati~' r-Mei~j ~ LS

;------Err-·---~:=~~F ~E~ :=
,__ ____ 212~ 2n4L----·-.2~----218i

Zfi.7 -·-~~--··························==~!9.1 ... ~~~
[oe1t~t~ "'<E- f" .. M·a·Ci~'J

LStdButton ················-····-···

Creating Dialog Box Resources 167

buttons to a popup menu and standard buttons. The scrolling list of titles is an object
of class LListBox and will be discussed in Chapter 9.

Figure 7.3 The Enter New Video Copy dialog box

Enter Uideo Cop

Media:

@Tape

0 Laserdisc

Format: UHS

0LBH

D Dolby Surround Sound

Highlight the mouie title:

11

35 Up
Rees: Iron Eagle 111
Rduentures of Robin Hood
Rfrican Queen, The
Rge of Innocence
Rirplane 11: The Sequel
Rirport
Rladdin
Rmerican Dream
Baraka
Beauty and the Beast
Bed and Breakfast

Done ([OK)J

Creating Dialog Box
Resources

The class LDialogBox is derived from LWindow and LListener and is therefore a
PowerPlant view. When you create a new LDialogBox resource, you therefore
choose a PowerPlant view as the resource type and LDialogBox as the view type (for
example, Figure 7.5). As with other resources, you also give it a name and a resource
ID. Constructor then creates an empty LDialogBox resource (Figure 7 .6).

To change the dialog box's attributes, double-click anywhere on the dialog box to
display its properties window. In Figure 7.7, for example, you can see the properties
window for the Modify /Delete Movie dialog box.

168 Chapter 7 • Dialog Box and Control Resources

Figure 7.4 The Constructor view of Figure 7.3

Enter Uideo Copy
-------------·-------~~---------,,,;t\QQQ:::::. : ,.= ::

B~~.i -~.= @9!

l®f~~'.t;
'CiI~~~~~~j

ldI~-~1

id ~i~~~ ~U.fr~U.~~ ~~-~~

~i.9@9hi••fh~••rii.~~.i.~ .. ~.i~.1~. = .. · ··~

LStdRadioButton

LStdCheckBox

Figure 7.5 Creating a new LDialogBox resource

··································· Create New Resource ···········-·---···--···-·····-

What type of resource do you wish to create?

Resource Type: I PPob : PowerPlant view ...,.. I :==::::::::::==::;------'
View Type: I LDia logBox ...,.. I

Resource Name: !New Dialog Box
:::::==================:

Resource ID: ._I 1_0_0_0 _________ _.

(Cancel) (Create)

CONFIGURING THE WINDOW TYPE

By default, Constructor creates a standard modal dialog box. However, you have
complete control over the appearance of the window. For example, the dialog boxes

Creating Dialog Box Resources 169

Figure 7.6 An empty LDialogBox resource

used as examples in this chapter are document windows with title bars that are non
modal and centered on the main screen.

To change the window type, choose the type from the Window Kind popup
menu. As you can see in Figure 7.8, although we are working with an object of class
LDialogBox, the dialog box can look like a standard document window as well as like
any of the classic dialog boxes.

Should you choose a window type that has a title bar, you can then enter the title
in the Window Title box, as was done in Figure 7.7. Use the check boxes at the left of
the Window Type area to set characteristics such as whether the window has a size
box, zoom box, or close box and whether the window is resizable.

The Auto Position popup menu (Figure 7.9) determines where the window will
appear on the screen when it is drawn by a program. By default, Auto Position is off.
However, the Modify /Delete Movie dialog box has been modified so that it is cen
tered on the main screen.

The third popup in the Window Type area-Window Layer in Figure 7.lo-deter
mines how the window behaves relative to other windows on the screen. As you can
see, PowerPlant supports not only modal and nonmodal windows, but also floating
palettes.

170 Chapter 7 •Dialog Box and Control Resources

Figure 7.7 The LDialogBox properties window

II·· LDialo Boll "Modif /Delete Mouie"

rlocation: ------------.

IL•Hd94 il·~,-:~ I
~ ·- Height: 1300 f-·--

181 Targetab le

D Get Select Click

D Hide On Suspend

D Delay Select

1.-.... ·--··-·-·-·----------·······-····-··--.. -
181 Erase On Update

Yindow Kind: f Document window ... 1
Vindow Title: !Modify /Delete Movie

Ozoom Box

Oc1ose Box

Osize Box

D Title Bar

0Resizable

VDEF ID: 14 181 Enabled

======= Class ID: ldlog 181 Initially Visible ===:::'.._-Vind ow Layer: I Regular "' I ====------Auto Position: l._c;;,;e;.;.;n•te;.;.r..;o.;,;n.;,M.;,;a.,in.;..S;;,;c;.;.r-.ee;.;.n;,,... ___ .,._,1

r Vindow Sizing: --·······-· .. ·· .. ··-·-.. ··--.. --
~ Vidth Height

I Hinimum Size: 164 1164

I Haximum Size: l-1 f ::l-=1 ===:
I Standard Size: l-1 f ~l-_1 -~

Default Button ID: f2731
::=====:::::

Cancel Button ID: 12732

- User Data : ... _ -.. - __ ... _ --·-

User Constant: lo
::::=:====:::::

Vindow RefCon: ._lo ___ __.

Orext

Orext

Figure 7.8 PowerPlant object window types

Document window

Movable modal
Moda 1 dialog (no border)
Modal dialog (shadow border)
Rounded window

Floating window
Floatin window (side bar)

II

Creating Dialog Box Resources

Figure 7.9 Setting a window's autoposition

-.in~•Off
·····-····························-·····-·····-·········-··-··············--· -...........

Alert Position on Main Screen
Stagger on Main Screen

Center on Parent Window
Alert Position on Parent Window
Stagger on Parent Window

Center on Parent Screen
Alert Position on Parent Screen
St~r on Parent Screen

Figure 7.10 Setting a window's layer

USER DATA

Floating
Re ular

lit

171

Like most PowerPlant objects, a window has two attributes that you can set and use
for your own purposes: User Constant and Window Ref Con. Both are long inte
gers and can be an alternative to using global variables for sharing values between
objects. You will see an example of how these are used when we look at the code that
supports the Modify /Delete Movie dialog box.

BUTTON MESSAGES

If you look back at Figure 5.6 (LWindow properties) and compare it to Figure 7.7,

you'll notice that most of dialog box's properties are inherited from LWindow. How
ever, at the bottom of Figure 7.7, there is space to record the resource IDs of the dia
log box's default button and Cancel button. This links the buttons to the dialog box
so that the dialog box will 'listen automatically to those buttons. You will leave these
boxes blank until you have added buttons to the dialog box object.

172 Chapter 7 • Dialog Box and Control Resources

Adding Display Text and Edit
Fields

Although most of what you place on a dialog box are controls, dialog boxes also often
contain two types of text: static text for display only (objects of class LCaption) and
editable text (objects of class LEditField). In this section we will look at configuring
both types of objects.

OBJECTS OF CLASS LCAPTION

The LCaption class provides display text. Although a program can change the text,
the user cannot. To add a caption, drag an object of LCaption from the Tools palette
onto a window and resize it as necessary. Then, double-dick on the object to display
its properties window.

As you can see in Figure 7.11, a caption is given its own unique ID, some initial
text, and a text traits ID to set the font characteristics in which its text will appear. If
you will be setting the text in the caption in a program, you can leave the Caption
Text field empty.

Figure 7.11 LCaption properties

=:Ii·: ~: :::: .. ~ .. : .. ~ ~.- L caption ID 2701 "Mouie Title:" ... : : -...... :.~::::: Ii.@)

rlocation: e;,,;,, .. s.p~;•J Q

I Top:[--~

II
Drop

Left: ~ Yidth: l79 D Left D Right
D Bottom

-Height: Lis W
Pane ID: !2101 ID Text ID D Enabled

User Constant: lo ID Text constant ~Visible

Class ID: I capt I
Caption Text: I Movie Title:

I
Text Traits ID: lo 18 -01

¢J 1¢ ii

Adding Display Text and Edit Fields 173

OBJECTS OF CLASS lEDITFIELD

The class LEditField is in many ways a smaller version of LTextEdit. although an
object of LEditField usually appears surrounded by a border and cannot be placed in
a Scroller. LEditField supports cut, copy, paste, and clear in the edit field. Unlike
LTextEdit, it provides support for undo operations. All you have to do is attach an
LUndoer to the dialog box containing the LEditField.

To add an edit field to a window, drag an object of LEditField from the Tools pal
ette onto the window. Resize and reposition it as you like. Then double-click on it to
open its properties window (for example, Figure 7.12).

Figure 7.12 LEditField properties

~If .. ·-- - - - .. ---· LEditfield ID 2702 Ii!
rlocation: Binding to Superview: - ~ u€ Topo [10 1-:::J

]I
Drop

Left: Yidth: [351 D Left D Right

Height: [1 a µ D Bottom

...

Pane ID: 12102 ID Text ID 181 Enabled

User Constant : I 0 ID Text constant 181 Visible

Class ID: I edit I
lnitia 1 Text : [J

Text Traits ID: 1130 IE1 Max. Characters: !so I
Keg Filter: I Printin~ Character "' I

D Has Yord Yrap D Outline Highlight

181 Has Box 0 In line Input

D Auto Scro 11 D Text Services

D Text Buffering -0
¢1 -"" - ~ ..• J¢ Ii

Use the properties window to give the object a unique resource ID, some initial
text (if any), and a text traits ID. Use the Max. Characters box to limit the total num
ber of characters that will be allowed in the field. (This can be particularly handy if
you will be capturing the data as a string and want to make sure that you don't

174 Chapter 7 •Dialog Box and Control Resources

overflow your string storage.) At runtime, the Mac's speaker will beep if the user
attempts to enter more than the maximum number of characters.

Additional error checking on the value entered in the edit field can be applied by
using a Key Filter (Figure 7.13). By default, no key filter is applied and anything the
user types is acceptable. However, you can restrict the value to an integer (handy for
fields such as the length of a movie), an alphanumeric, or any printing character.

Figure 7.13 Key filters

None
Integer
Al ha-numeric

The check boxes at the bottom of the properties window control a variety of edit
field characteristics, including the following:

• Has Word Wrap: When checked, performs word wrap ifthe text entered won't
fit on a single line.

• Has Box: When checked, displays a box around the edge of the field.
• Auto Scroll: When checked, automatically scrolls the text as the user types be

yond the bottom border of the box.
• Outline Highlight: When checked, draws an outline around selected text when

the window on which the edit field has been placed is inactive.
• Text Buffering and Inline Input: Provide support for non-Roman (particularly 2-

byte) character sets.

Adding a Tab Group
A tab group (an object of class LTabGroup) defines a group of panes between which
the user can move by pressing the Tab key. Each top-level view, such as a dialog box,
can have one tab group.

To create a tab group, first place all the edit fields on the window. Then, choose
Make Tab Group from the Arrange menu. PowerPlant places all panes (including
captions and buttons) in the tab group. Although the tab group actually contains
every pane in the window, only objects of LEditField and LTextEdit (the only objects
in which a straight-line cursor can appear) are affected when the user presses Tab.

Adding Control Resources 175

NOTE
If you modify a PowerPlant object, removing or adding LEditField and LTextEdit
objects, you should re-create the tab group by choose the Make Tab Group menu option
again.

To see the elements of a window that have been added to a tab group, display Con
structor's hierarchy window, as was done to generate Figure 1.4. Because a tab group
isn't a pane, you can't see in a Constructor resource window.

Edit Fields versus Tables
If you look back at Figure 7.2, you'll be able to count a lot of edit field objects (25 of
them, to be precise). Since PowerPlant provides a class called LTable, couldn't a table
with columns and rows be used to hold the names of up to 20 movie stars rather than
20 individual edit fields? Using a table would be a great idea, but PowerPlant tables
are for display only. In fact, they are much more closely related to list boxes than they
are to edit fields. To provide editable text, you must resort to objects of class LEdit
Field.

Adding Control Resources

In this section you will learn about four of the most commonly used types of controls
(buttons, popup menus, radio buttons, and check boxes). As you read, you will begin
to discover the consistent threads that run through all controls supported by Power
Plant.

BUTTONS

Buttons are typically created from the class LStdButton. Once you've dragged an
object onto a window, double-dick on the button to display its properties window
(for example, Figure 7.14). Give the button its unique resource ID and enter the but
ton title (the text that should appear inside the button).

You must also give the button a "Value Message," the value that will be sent to the
window that listens to the button whenever the user clicks the button. When work
ing with dialog boxes, there are two rules you must keep in mind about value mes
sages:

176 Chapter 7 • Dialog Box and Control Resources

Figure 7.14 LStdButton properties

LStdButton ID 2732 "Cancel"

Binding to Superviev : I Location: Top: 262

Left:~ Yidth: ~~~
~ight: 20

Drop

D Left D Right

D Bottom

Pane ID: 12732 ID Text ID ~Enabled
User Constant: ;::lo=======:I D Text constant ~ Visible

Class ID: """lpb_u_t ___,

Button Title: I Cancel

~=====;;--=-~~~~~~-----'

Yalue Message: 14 ID Text Message
~===-;--;=::::

Text Traits ID: lo I B Control Ref Con: ._lo ___ _.
Control Kind: lo I Should be 0.

• LDialogBox expects the Cancel button (regardless of what text appears in the but
ton) to have a value message of 4. In other words, when an object of class LDia
logBox receives a message of 4, it closes the dialog box without saving any
changes made.

• Other than the Cancel message of 4, LDialogBox responds only to negative value
messages. To make this easy to handle, you may want to give buttons in dialog
boxes value messages that are the negative of their resource IDs. For example, if
a button has a resource ID of 2733, give it a value message of -2733.

NOTE
When you are working with a dialog box, don't forget to go back to the dialog box's
properties window and enter the resource IDs of the Cancel and default buttons. Other
wise, the dialog box won't respond to them.

If the window in which you have placed a button is resizable, you will also need to
consider binding the button to its superview. If you want the button to stay in a fixed
position relative to one corner of the window, bind the button on either the top and
left or the bottom and right. If you want the button to stay in a fixed position relative
to one side of the window, bind it on just that side. However, don't bind the button

Adding Control Resources 177

on more than two adjacent sides. Doing so would force a change in the button's size
when the superview is resized, causing a distortion in the appearance of the button.

NOTE
By default, a dialog box only listens to two buttons. If your dialog box has more, as does
the Modi.fY/Delete Movie dialog box, you will need to explicitly tell the dialog box to
listen to the additional button(s). Adding listeners is discussed in Chapter 8, where we
will cover the code necessary to support dialog box interactions.

POPUPMENUS

A popup menu requires two resources: an object of class LStdPopupMenu that you
create using Constructor, and a MENU resource to contain the menu items. There's
no reason you can't use Constructor to create the MENU resource. However, popup
menus don't need accompanying Mcmd resources. You will therefore end up with an
unnecessary (but harmless) resource if you use Constructor.

To avoid the unnecessary Mcmd resource, the Penultimate Videos program uses
MENU resources created with ResEdit for its popup menu items. For example, in Fig
ure 7.15 you can see the resource used to supply the items for the movie type popup
in the Modify /Delete Movie dialog box. (This resource is also used in the Enter
Movie dialog box.)

Figure 7.15 A MENU resource for a popup menu {ResEdit format)

Rduenture
Children's
Comedy
Drama
Horror
Mystery
Romance
Science Fiction

pe popup" ID = 4000 from PPUideoStore.rsrc

Entire Menu:

Title:

0 .S (Rpple menu)

Color

nt1e=l•I
Item TeHt Default: l•I
Menu Background: D

178 Chapter 7 • Dialog Box and Control Resources

Once you have a resource containing menu items, you can add an object of LStd
PopupMenu to your window; which has the properties seen in Figure 7.16. If you do
nothing else with the object, be sure to enter the ID of the MENU resource in the
MENU ID box.

Figure 7.16 LStdPopupMenu properties

Binding to SuperYiev :

Drop

D Left D Right

Oeottom

Pane ID: l2n4 ID Text ID C8J Enabled

User Constant: !=lo======~I D Text constant C8J Visible

Class ID: lpopm

Popup Title:

Title Yidth: lo Text Traits ID: lo
:::::===:

Initial Menu Item: 11 MENU ID: 14000

Value Message:l o ___ _.I D Text Message

Title Style:

0Bold
Ounderline

D Italic

Ooutline

Oshadow

D Condensed

D Extended

Title Placement : 1

@ Left Flush I
Q Centered I
0 Right Flush !

i

Pop-up Variation: -,

D Fixed 'vlidth j
D Resource List I

OfType: I I
'

Attach MENU
resource ID
here

When it comes to popup titles, you have two choices. You can enter the title in the
LStdPopupMenu properties window and use the Title Style check boxes to set its
style and the Title Placement radio buttons to determine its alignment. Alternatively,
you can use an object of class LCaption as a title, leaving the Popup Title box empty.
The latter gives you a bit more flexibility because you can change the LCaption object
while the program is running.

Adding Control Resources 179

PowerPlant numbers the items in a popup menu beginning with 1, counting from
the top of the MENU resource's item list. To set a.default value for the popup, enter
the number of the default item in the Initial Menu Item box.

If your window is resizable, you should also pay attention to binding the popup
menu to its superview. In most cases, you will bind it either to the top left or bottom
right of the window.

RADIO BUTTONS

Dialog boxes often contain one or more groups of radio buttons that allow a user to
choose one option from a group of mutually exclusive options. The Enter Video
Copy dialog box in Figure 7.3, for example, uses radio buttons to allow the user to
select whether a copy is a tape or a laserdisc.

You add a radio button to a view by dragging an object of LStdRadioButton from
the Tools palette onto a window. Using its properties window (for example, Figure
7.17), you can set the following object characteristics:

Figure 7.17 LStdRadioButton properties

LStdRadioButtqnJ0.500'1 fJape" iii

[

Location: ··-·-·--·· .. -·-.. -· _ ... ____ .. _____ , [Binding to Superyie-w: --........ -0

:i~3J~:-
Pane ID: lsoo7 I 0 Text ID 181 Enabled

User Constant: IO I 0 Text constant 181 Yisib le

Class ID: l._rb_u_t ____.

Radio Title: 1-T-ap-e-------------~

Yalue Message: l._5_00_7 __ _.I 0 Text Message

Initial Yalue: ®On Text Traits ID: lo 18
0 Off Control Ref Con: :=lo==::::::,

Control Kind: 12 _ __.I Should be 2.

180 Chapter 7 • Dialog Box and Control Resources

• The unique resource ID.
• The button title, which always appears to the right of the button.
• A text traits ID for the button title.
• A value message that the button sends when it is clicked. This message is detected

and handled by the LStdRadioButton class.
• The button's initial value.

A special note should be made about a button's initial value. Only one radio but
ton in any group of radio buttons should be "on." It is therefore up to you to make
sure that you only give one radio button in any given group of radio buttons an initial
value of "on."

Grouping Radio Buttons
When a radio button is added to a view, it exists as a stand-alone object. However, we
need radio buttons to act as part of a group. You must therefore create an object of
class LRadioGroup for each separate group of radio buttons.

To define a radio group, select all the radio buttons that should be part of a single
group. Then, choose Make Radio Group from the Arrange menu or press :fg-G. Con
structor adds an object of class LRadioGroup to your view. Because an object of class
LRadioGroup isn't a pane, it won't show up on the view you are creating. However, if
you look at the view's object hierarchy (for example, Figure 7.18), you can see the
radio group object followed by a list of the resource IDs of the radio buttons that are
part of that group.

CHECK BOXES

A check box provides a simple way for users to enter binary data (yes/ no, on/ off, and
so on). As with any other control you've seen to this point, you add a check box to a
view by dragging an object of class LStdCheckBox onto a window. Then, you set the
properties found in Figure 7.19, which include the following:

• The check box's unique resource ID.
• The check box's title, which always appears to the right of the check box.
• A text traits ID for the check box's title.
• A unique value message that the check box sends back to the class LStdCheckBox

when the box is clicked.
• An initial value (either "on" or "off').

Adding Control Resources 181

Figure 7.18 A view hierarchy including a radio group

!§Ii~ HierarchJL for PPob · 5000, "Enier Uide1 §Ill~
~ LDialogBox E:niw" Video Copy iJ£

EIJ LlistBox 5001

~ LStdButton 5002 OK

~ LStdButton 5003 D~

f.'.ffi LCaption 5004 Highlight~ moYie title:

181 LStdCheckBox 5005 l8X

181 LStdCheckBox 5006 Do'/by Surroorid Soorid

@ LStdRadioButton 5007 Tope

@ LStdRadioButton 5008 lasW'disc

~ LStdPopupMenu 5010

ff:l LCaption 5011 Format:
ge LRadioGroup 5007, 5008 .,.-E-,__ ___ _,_ ___ _

IT;.] LCaption 5009 Media:

¢1

Figure 7.19 LStdCheckBox properties

F:lil- LStdCheckBOH ID 5005 "LBH" - _.

The radio group object
followed by the
resource IDs of its
member radio buttons

.... _

-~
.-Location: , ,... Binding to Superview: - ~
~ ... ,~

JI
Drop

Lett: Yidth : l i:.o DLeft D Right

Height:[16 µ D Bottom

Pane ID: 15005 ID Text ID 181 Enabled

User Constant: lo I D Text constant 181 Visible

Class ID : I cbox I
Checkbox Title: ILBX I
Yalue Message: 15005 I D Text Message

Initial Yalue: Q On Text Traits ID: lo 18
@)Off Control Ref Con: lo I

Control Kind: 11 I Should be 1 . -0
¢J I¢ l'i

182 Chapter 7 • Dialog Box and Control Resources

RidL Resources

Whenever you use Constructor to create a view that contains controls, Constructor
automatically adds the resource IDs of those controls to a RidL (Resource ID list)
resource. As you can see in Figure 7.20, the RidL resource for the New Video Copy
dialog box contains the resource IDs of the radio buttons, check boxes, popup
menus, and standard buttons that appear on the window.

Figure 7.20 The Ridl resource for the New Video Copy dialog box

~Ii~ Ridl "Enter IJideo Cop " ID = 5000 from PPob.rsrc

of 7
Resources

1) *****
Resource I 0 I 5002

2) *****
Resource I 0 I 5003

3) *****
Resource I 0 I 5005

4) *****
Resource I 0 I 5006

5) *****
Resource I 0 I 5007

6) *****
Resource I 0 I 5008

7) *****
Resource I 0 I 50 1 0 ~

iii

An RidL resource is used by the class LDialogBox to connect controls, which are
broadcasters, to the listener that will respond to them using the function U Re an i -
ma t o r : : L i n k L i s t e n e r To C on t r o l s. This function makes repeated calls to

Preparing Resource and Message Constants 183

Add Li st en er and can therefore simplify the task of getting a window to listen to
many controls. The function call has the following general format:

UReanimator::LinkListenerToControls (* listener_object,
* pane_containing_controls, resource_ID_of_Ridl);

An important note is warranted here with regard to when you need to add a lis
tener for a control. In many cases, you don't care about the value of a control at the
time the user changes that value. For example, in the Modify /Delete Movie dialog
box, the program doesn't need to respond to any of the popup menus right away; it
only needs to capture their values when the user uses the Modify button. Therefore,
the dialog box only needs to listen to its three buttons.

By the same token, the New Video Copy dialog box doesn't need to listen to its
radio buttons, check boxes, popup menu, or list of video titles. The current settings
in all of those subpanes can be captured when the user clicks the OK button.

However, if you want a control to have an immediate effect, then you must make
sure that some object listens to it. In Chapter 8, for example, we will look at a win
dow that contains check boxes to which a program respond as soon as a use changes
the state of a control. In addition, in Chapter 9, you will see that a dialog box must lis
ten to an LListBox if the program is to respond to a double-click in the list. In both
cases, the windows containing the controls must explicitly add them to their lists of
broadcasters.

Preparing Resource and
Message Constants

PowerPlant programs make extensive use of the resource IDs and value messages
that are part of the resources we have been discussing. It is ironic that an object-ori
ented environment that should be adhering to the ideas of data encapsulation is so
closely tied to global constants. Nonetheless, because the Macintosh is designed to
use resource IDs, we are stuck with needing to deal with a large number of con
stants. Typically, we make life much easier by collecting these constants into header
files so they can be easily found, and if necessary, modified.

Like many other PowerPlant programs of any appreciable size, the Penultimate
Videos program maintains a header file for resource IDs (ResourceConstants.h) and a
resource file for value messages (MenuCommands.h). In Listing 7.1, for example, you

184 Chapter 7 • Dialog Box and Control Resources

will find the resource constants for the two dialog boxes we have been using as exam
ples in this chapter. Notice that there is a constant for the dialog box resource and
every object on the dialog box from which the progr.am must retrieve a value. As far
as buttons are concerned, a program that uses a dialog box needs to be concerned
only with buttons other than the default and Cancel buttons. The Enter Video Copy
resource constants therefore don't need to include any buttons. However, the Mod
ify /Delete Movie dialog box has a third button-Delete-that the program will need
to manipulate directly. This button must therefore have a constant for the program
to use.

Listing 7.1 Sample resource constants for the Penultimate Videos program

canst ResIDT WINDDW_NEW_VCOPY = 5000;
II The following are constants for all the controls on the dialog box,
II everything from which the program must retrieve a value.

canst ResIDT VCOPY_LIST_BOX = 5001;
canst ResIDT VCOPY_RB_TAPE = 5007;
canst ResIDT VCOPY_RB_LD = 5008;
canst ResIDT VCOPY_FORMAT = 5010;
canst ResIDT VCOPY_CB_LBX = 5005;
canst ResIDT VCOPY_CB_DSS = 5006;

canst ResIDT WINDOW_MOD_MOVIE = 2700;
II The following are all the edit fields and popup menus on the dialog box.
II There are constants for every pane from which the program must retrieve a value.

canst ResIDT MOD_MOVIE_TITLE = 2702;
canst ResIDT MOD_MOVIE_DIST = 2704;
canst ResIDT MOD_MOVIE_D!RECT = 2706;
canst ResIDT MOD_MOVIE_PRODUCE = 2708;
canst ResIDT MOD_MOVIE_LENGTH = 2710;
canst ResIDT MOD_MOVIE_CLASS = 2734;
canst ResIDT MOD_MOVIE_RATING = 2736;
canst ResIDT MOD_MOVIE_STARl = 2711;
canst ResIDT MOD_MOVIE_STAR2 = 2712;
canst ResIDT MOD_MOVIE_STAR3 = 2713;
canst ResIDT MOD_MOVIE_STAR4 = 2714;
canst ResIDT MOD_MOVIE_STAR5 = 2715;
canst ResIDT MOD_MOVIE_STAR6 = 2716;
canst ResIDT MOD_MOVIE_STAR7 = 2717;
canst ResIDT MOD_MOVIE_STAR8 = 2718;
canst ResIDT MOD_MOVIE_STAR9 = 2719;
const ResIDT MOD_MOVIE_STARlO = 2720;
canst ResIDT MOD_MOVIE_STARll = 2721;
canst ResIDT MOD_MOVIE_STAR12 = 2722;
canst ResIDT MOD_MOVIE_STAR13 = 2723;
canst ResIDT MOD_MOVIE_STAR14 = 2724;

Continued next page

Preparing Resource and Message Constants 185

Listing 7.1 (Continued) Sample resource constants for the Penultimate Videos pro

const ResIDT MOD_MOVIE_STAR15 = 2725;
const ResIDT MOD_MOVIE_STAR16 = 2726;
const ResIDT MOD_MOVIE_STAR17 = 2727;
const ResIDT MOD_MOVIE_STAR18 = 2728;
const ResIDT MOD_MOVIE_STAR19 = 2729;
const ResIDT MOD_MOVIE_STAR20 = 2730;

II Only the Delete button appears hear because the dialog box handles
II the Cancel button and the default button automatically

const ResIDT MOD_MOVIE_DELETE = 2738;

Message constants should exist for every message a program will trap. For exam
ple, Listing 7.2 contains the message constants needed for the two sample dialog
boxes. Messages sent by radio buttons, check boxes, and the Cancel button are han
dled by LStdRadioButton, LStdCheck.Box, and LDialogBox, respectively. However,
the program must trap the default buttons and the Modify/Delete Movie's Delete
buttons. The program therefore needs constants for those messages.

Listing 7.2 Sample message constants for the Penultimate Videos program

const MessageT cmd_OK_new_video_copy = -5002;

const MessageT cmd_Modify_movie = -2731;
const MessageT cmd_Delete_movie = -2738;

NOTE
PowerPlant has constants for messages that its classes recognize (for example, the mes
sage of 4 for a Cancel button) stored in PP Messages.h.

Programming for
Dialog Boxes and
Controls

CHAPTER

• •

In Chapter 7 you read about creating the resources necessary to support dialog boxes
and the items that appear on them. This chapter first extends that discussion by look
ing at the code needed to display dialog boxes, trap user actions with dialog box but
tons, and capture and modify dialog box item values. The initial discussion of
controls looks at situations where a program reads the values of controls (other than
buttons) after the user has finished working with the dialog box.

However, a window or dialog box can also respond immediately to changes made
in controls such as radio buttons and check boxes. For example, you might use a
check box to display or hide a pane. An example of this type of "live" control can be
found at the end of this chapter.

187

188 Chapter 8 • Programming for Dialog Boxes and Controls

Deciding Whether to Subclass
,,,,_,,,,_.__,..,~~,.:;~:::::~-™">."'$.>);.:™~~~a~=%$J.."-~~~~~,;.;..«>-~~~>P;-m..;i~:::::'%:~~~««::::~~~~~::::~::::::::::".:;.~-::i~~~

It is often possible to create objects directly from LDialogBox without creating a sub
class because many dialog boxes behave in a standard manner. Assuming that you
aren't planning to add any custom functionality to a dialog box, should you go ahead
and create a subclass anyway?

As you read earlier in this book, there are a number of issues involved with mak
ing that decision. When a listener such as LDialogBox is concerned, there is one
additional consideration: LDialogBox, like all listeners, has a function called Li s -
ten To Mes sage. This is where it traps messages from its broadcasters. As written,
the function handles a dialog box's Cancel and default buttons. (To be completed
accurately, LDialogBox traps the default button's message and then passes the mes
sage to its supercommander' s Process Co mm and function.)

If you create a subclass for a dialog box, you can override Li s ten To Mes s age so
that you can add code to it to handle messages from all the controls you place on the
dialog box. If you don't create a subclass, all the code to handle control messages is
usually part of the dialog box's supercommander (in its Li stenToMessage or
ObeyCommand function). In the case of the Penultimate Videos program, the appli
cation object is the supercommander of all dialog boxes because it is the commander
object that creates the dialog box objects. The result is a very large, but centrally
located, ObeyCommand function.

The bottom line? If your dialog box will include only standard behaviors, choose
whichever structure makes maintaining the program easier for you and the program
ming team with which you may be working.

Should you choose to subclass, there are some programming issues with which
you will need to contend, including the decision as to which base class functions to
override. The window that is used as a demonstration of "live" controls at the end of
this chapter is therefore implemented as a subclass. This provides an example of set
ting up a listener, linking it to its controls, and trapping user actions with those con
trols.

Displaying a Dialog Box

To display a dialog box, a program needs to create an object of class LDialogBox and
then call the object's Show function. In Listing 8.1, for example, you will find the
function that displays the New Video Copy dialog box. Most of the code in this

Displaying a Dialog Box 189

function builds the scrolling list of titles. In fact, displaying the dialog box on the
screen requires only two actions:

Listing 8.1 Displaying the New Video Copy dialog box

void CPPVideoStoreApp::SetUpNewVideoCopy()
{

LDialogBox * theDialog;
LListBox * thelist;
ListHandle thelistHandle; II handle to list of movies

theDialog = CLDialogBox *) LWindow: :CreateWindow CWINDOW_NEW_VCOPY, this);

II This code sets up the scrolling list of items.
II We'll discussion of it until Chapter 9.

thelist = (LListBox *) theOialog->FindPaneBy!O CVCOPY_LIST_BOXl;
theListHandle = thelist->GetMacListH(); II get the list box's list handle
::LAddColumn Cl. 0, theListHandle); II add a column to the empty list

Merchltr traversal;
int Type, row = O;
Merchandise_Item * currentOne;
char* Title;
StringPtr pascalString;
II a cell (;ow & column number) and a pointer to the variable
Cell theCel l. * theCell Ptr;

theCellPtr = &theCell;

for (traversal .Init Cltemsl; !traversal; ++traversal)
{

currentOne =traversal();
Type= currentOne->getltem_typeCl;
if (Type == FILM 11 Type == OTHER)
{

Title= currentOne->getTitle();
::LAddRow Cl. row. theListHandlel; II add a row to the list
II initialize the coordinates of the cell just added
::SetPt CtheCellPtr, 0, row++);
::LSetCell (Title, strlen(Titlel. theCell, theListHandlel; II add the data

thelist->SetValue (0); II make sure first item is highlighted
II End of list-building code

theDialog->ShowCI;

190 Chapter 8 • Programming for Dialog Boxes and Controls

• Call the CreateWi ndow function, typecasting the LWindowpointerretumed by
the function to an LDialogBox pointer:

theOialog = (LDialogBox *) LWindow::CreateWindow (W!NDOW_NEW_VCOPY, this);

• Call the Sh ow function:

theDialog->Show();

As you know, the CreateWi ndow function initiates a sequence of actions that cre
ates the dialog box object itself along with objects for all of its subpanes (the items
that appear on the dialog box).

ENABLING UNDO

If a dialog box contains edit fields and you want undo operations to work, you should
attach an LUndoer to the dialog box:

LUndoer * theUndoer = new LUndoer;
theDialog->AddAttachment(theUndoer, nil. TRUE);

One undoer object will take care of all the edit fields on any given dialog box.

ADDING LISTENERS FOR OTHER CONTROLS

By default, a dialog box listens only to its Cancel and default buttons. If a dialog box
contains anything else to which it should listen-such as another button or a double
click in a scrolling list-a program must explicitly add that object to the dialog box's
list of listeners. For example, the Modify /Delete Movie dialog box must add the
Delete button as a listener. Doing so requires two lines of code:

LStdButton * deleteButton = (LStdButton *)
theOialog->FindPaneBy!O (MQD_MOVIE_DELETE):

deleteButton->Addlistener (theDialog);

The Fi n d Pa n e By I D function, which you will use frequently, retrieves a pointer to a
subpane of a view. Its single parameter is the subpane's resource ID, which in the pre
ceding example is represented by the constant MOD_MOV I E_DE LETE. By default,
Fi n d Pane By I D returns a pointer to an object of class LPane because the function is

Trapping Button Actions 191

inherited from LPane. You must therefore typecast it to the specific class from which
the object whose pointer you want has been created.

Once a program has a pointer to the pane in question (in this example, a button),
that pane can add itself to a list of broadcasters to which another object listens. As
nonintuitive as it might seem, the Add Li st en er function is called by the broad
caster (the button) rather than the listener. (If it helps to keep this straight, you might
want to think of the Add Listener function as ''.Add to listener.")

POSITIONING THE INSERTION POINT

When a dialog box contains more than one edit field, as does the Modify /Delete
Movie dialog box, the straight-line insertion point ends up in the last edit field cre
ated. However, in most cases you want the cursor to appear in the top edit field on
the dialog box so the user can then tab "down" the dialog box as he or she works. In
other words, you want to make sure that the first edit field is the current target.

To explicitly switch the target, you need a pointer to the pane that should become
the target. Then you can use the Sw i t ch Ta r get function:

theEditField = (LEditField *) theDialog->FindPaneBy!D (MOD_MOVIE_TITLE);
firstEditField = theEditField;

II some other stuff goes on in here. perhaps

II do this before turning control over to the user
firstEditField->SwitchTarget (firstEditField);

The Swi tchTa rget function belongs to the LCommander class. The object that
calls the function must be a commander. The function's single parameter is a pointer
to the object that wants to become the target. By having the object that wants to
become the target pass itself into the function, the object says,"Make me the target."

Trapping Button Actions
.:<-:-."»X-»-..W.-:.:=:m~N--:«~~>-'»»-~X<_W_

A program traps actions in a dialog box in an ObeyCommand function. The class to
which that function belongs depends on the structure of the program. If the dialog
box is being created directly from LDialogBox, without a subclass, then actions in
that dialog box are trapped in the Obey Command function of the class that created

192 Chapter 8 • Programming for Dialog Boxes and Controls

the dialog box. In the Penultimate Videos program, for example, that class is the
application class (a subclass of LApplication). However, if the dialog box was created
from a subclass of LDialogBox, then the ObeyCommand function that traps dialog
box actions is typically part of the subclass.

In Listing 8.2 you will find the case from the Penultimate Video's ObeyCommand
function that traps the OK button on the New Video Copy dialog box. Notice that
the function that handles the action (Process NewV i deoCopy) has a single parame
ter: the structure i o Pa ram, which is typecast to a dialog response structure (SD i a -
log Response). This dialog response structure contains a pointer to the dialog box
with which the user most recently interacted. A PowerPlant program therefore usu
ally doesn't need to store dialog box pointers once a dialog box has been displayed.

Listing 8.2 Trapping the click of an OK button

case cmd_OK_new_video_copy:
ProcessNewVideoCopy ((SOialogResponse *) ioParam);
break;

NOTE
There is an informal naming scheme used in the functions that handle the Penultimate
Videos dialog boxes. Those function names that begin with "SetUp" display dialog
boxes; those that begin with "Process" trap dialog box actions and process the contents
of the dialog box in some way.

Removing a Dialog Box

When the user clicks a dialog box's Cancel button, LDialogBox takes care of remov
ing the dialog box from the screen. However, if the user clicks the default button or
interacts with any other controls that your program traps, it is up to you to remove
the dialog box. To do so, simply delete the dialog box object:

delete theDialog;

The dialog box will be removed from the screen and deleted from memory.

Handling Edit Fields 193

Handling Edit Fields

Once a program has trapped an action with a control, the program must process the
contents of the dialog box in some way. In this section we will look at retrieving the
contents of edit fields, as well as how to place data into edit fields.

RETRIEVING DATA FROM EDIT FIELDS

When a user activates the Modify button on the Modify /Delete Movie dialog box,
the program traps the button press and then calls the Modi f y Mo vi e function, which
retrieves data from the dialog box's edit fields and uses those values to change a Film
object in memory.

A portion of Modi fyMovi e can be found in Listing 8.3. As you can see, the first
step is to obtain a pointer to the edit field object with a call to Fi n d Pane By I D. Then,
you can use one of two functions to capture the contents of the edit field:

• Get De s c r i pt o r: Returns the contents of the edit field as a Pascal string.
• Get Va l u e: Returns the integer value of the contents of the edit field. Use this

function only when you know that the edit field contains an integer.

The running time of a movie is an integer. Therefore, the Penultimate Videos pro
gram can use Get Val u e only with the Length variable. The program must use Get -
De s c r i pt o r to retrieve the contents of the rest of the edit fields on the dialog box.

PUTTING DATA IN EDIT FIELDS

The Penultimate Videos program's Set Up It e mM o di f y function retrieves the mer
chandise item being modified and displays its data in a dialog box for the user to
change. When the item is a movie, the program uses the Modify /Delete Movie dia
log box.

In Listing 8.4, you can see that the process is the opposite of retrieving data. First,
you use Fi n d Pane By I D to get a pointer to the edit field object, and then you use one
of the following two functions to replace the object's contents:

• Set Des c r i pt or: Replaces an edit field's contents with a new Pascal string.
• Set Value: Replaces an edit field's contents with an integer. Use this function

only when you are dealing with an integer.

194 Chapter 8 • Programming for Dialog Boxes and Controls

Listing 8.3 Retrieving data from edit fields

II must first check to see if title has been modified.
II if so, must delete from title tree and reinsert

LEditField * theEditField = (LEditField *)
theDialog->FindPaneByID (MOD_MOVIE_TITLE);

theEditField->GetDescriptor(pascalValue);
convertPascal255 (pascalValue, ANSIValue);
currentTitle = theFilm->getTitle();
if (strcmp CANSIValue. currentTitlel != 0)
{

II FALSE in call to Delete prevents copies from being deleted
Items->Delete (FALSE. theFilm, Copies);
theFilm->setTitle (ANSIValue); II modify title
theFilm->setLeftName CO); II reset pointers for title tree
theFilm->setRightName CO);
Items->Insert CtheFilm, ANSIValue, FALSE); II reinsert

theEditField = CLEditField *) theDialog->FindPaneByID CMOD_MOVIE_DISTl;
theEditField->GetDescriptorCpascalValuel;
convertPascal255 CpascalValue, ANSIValue);
theFilm->setDistributor CANSIValue);
theEditField = CLEditField *) theDialog->FindPaneByID (MOD_MOVIE_DIRECTl;
theEditField->GetDescriptor(pascalValuel;
convertPascal255 CpascalValue, ANSIValue);
theFilm->setDirector (ANSIValuel;
theEditField = CLEditField *) theDialog->FindPaneByID (MOD_MOVIE_PRODUCE);
theEditField->GetDescriptorCpascalValuel;
convertPascal255 CpascalValue, ANSIValuel;
theFilm->setProducer CANSIValue);
theEditField = CLEditField *) theDialog->FindPaneByID CMOD_MOVIE_LENGTH);
intValue = theEditField->GetValue();
theFilm->setLength (intValue);

CLEARING EDIT FIELDS

When a user is entering new data using the Penultimate Videos program, he or she
will probably be entering more than one object's data at a time. It therefore makes
sense to leave the dialog box with which the user is working on the screen after pro
cessing one object's data. Rather than deleting the dialog box object and recreating it,
a program can simply clear the contents of edit fields.

The code fragment in Listing 8.5 is taken from the ProcessNewMovi e. To
retrieve data from an edit field and then reset the field for the next object, the code
does the following:

Handling Edit Fields

Listing 8.4 Placing data in edit fields

theDialog = (LDialogBox *) LWindow: :CreateWindow CWINDOW_MOD_MOVIE, this);
theEditField = CLEditField *) theDialog->FindPaneByID CMOD_MOVIE_TITLE);
firstEditField = theEditField;
theEditField->SetDescriptor (pascalString);
theEditField = (LEditField *) theDialog->FindPaneBylD (MOD_MOVIE_DIST);
pascalString = theMovie->getDistributor ();
theEditField->SetDescriptor (pascalString);
theEditField = (LEditField *) theDialog->FindPaneBy!D (MOD_MOVIE_DIRECT);
pascalString = theMovie->getDirector ();
theEditField->SetDescriptor (pascalString);
theEditField = (LEditField *) theDialog->FindPaneBy!D (MOD_MOVIE_PRODUCE);
pascalString = theMovie->getProducer ();
theEditField->SetDescriptor (pascalString);
theEditField = CLEditField *) theDialog->FindPaneBy!D (MOD_MOVIE_LENGTH);
int how_long = theMovie->getlength ();
theEditField->SetValue (how_long);

Listing 8.5 Clearing an edit field

195

LEditField * theFirstEditField = (LEditField *) theDialog->FindPaneByID (MOVIE_TITLEl;
theFirstEditField->GetDescriptor (pascalString);
convertPascal255 CpascalString, iTitle);
theFirstEditField->SetDescriptor (null);

II other stuff goes here

II Make the top edit field on the dialog box the target
theFirstEditField->SwitchTarget (theFirstEditField);

• Gets a pointer to the edit field object with Fi n d Pane By I D.
• Retrieves the contents of the edit field with Get Des c r i pt o r.
• Converts the contents to a C string so it can be processed.
• Sets the contents of the edit field to null with Set Des c r i pt or.

After the contents of all edit fields and controls on the dialog box have been handled,
the function makes the dialog box's top edit field the target. This leaves the dialog
box in the same state it was when it was first created.

196 Chapter 8 • Programming for Dialog Boxes and Controls

Working with Check Boxes

A check box represents a Boolean value (0 for checked, 1 for not checked). To cap
ture a check box setting, you therefore use the Get Va 1 u e function. As you can see in
Listing 8.6, the code first obtains a pointer to the check box object and then retrieves
its value. To set a check box's value, send a O for checked or a 1 for not checked to the
check box using its Set Va 1 ue function, as in Listing 8.7.

Listing 8.6 Reading a check box's setting

LStdCheckBox * theCheckBox = (LStdCheckBox *) theOialog->FindPaneBylO(VCOPY_CB_LBX);
iLBX = theCheckBox->GetValue();

theCheckBox = (LStdCheckBox *) theOialog->FindPaneByIO(VCOPY_CB_OSSl;
iOolby = theCheckBox->GetValue();

Listing 8.7 Changing a check box's setting

II set the check boxes
theCheckBox = (LStdCheckBox *) theOialog->FindPaneByIOCMOO_VC_CB_LBX);
theCheckBox->SetValue(saveVideoCopy->getLBX{));
theCheckBox = (LStdCheckBox *) theDialog->FindPaneBylO(MQO_VC_CB_OSS);
theCheckBox->SetValue(saveVideoCopy->getDolby());

NOTE
The LStdCheckBox class does have GetDescriptor and SetDescriptor functions. How
ever, in this case GetDescriptor returns the title of the check box (the text that appears
to the right of it) and SetDescriptor changes the title of the check box.

Working with Radio Buttons

Like a check box, a radio button returns its value (represented by the PowerPlant
constants Button_On and But ton_Off) through its Get Value function (for exam
ple, Listing 8.8). However, because there can be more than two buttons in a radio
group, you may need to check more than one button before you can determine

Handling Popup Menus 197

which one is highlighted. To set the value in a radio button, as in Listing 8.9, pass
either Button_On or Button_Off through the button's Set Va 1 ue function.

Listing 8.8 Reading radio button settings

LStdRadioButton * theRadioButton = (LStdRadioButton *)
theDialog->FindPaneBylO(VCOPY_RB_TAPE);

RadioButtonValue = theRadioButton->GetValue();
if (RadioButtonValue == Button_On)

strcpy (iMedia,"Tape");
else

strcpy (iMedia,"Laserdisc"I;

Listing 8.9 Changing radio button settings

II set the media radio buttons
property= saveVideoCopy->getMedia();
if (strcmp (property, "Tape") == 0)

theRadioButton (LStdRadioButton *) theDialog->FindPaneBylD(MOD_VC_RB_TAPE);
else

theRadioButton = (LStdRadioButton *) theDialog->FindPaneByID<MOD_VC_RB_LD);
theRadioButton->SetValue(Button_On);

NOTE
Like check boxes, radio buttons also have GetDescriptor and SetDescriptor functions
that affect the title of the button.

Handling Popup Menus

Dealing with popup menus is only slightly more involved than handling check boxes
or radio buttons. PowerPlant numbers the items in a popup menu's MENU resource
beginning with 1. A popup's Get Va 1 ue function returns the currently selected item.
Once you have that value, you can either process the value directly or look it up in a
table to retrieve the item text or a constant you've assigned to the item. In Listing
8.10, for example, popup menu items are stored in arrays that can be used as lookup
tables to retrieve the item text.

198 Chapter 8 • Programming for Dialog Boxes and Controls

Listing 8.10 Reading a popup menu choice

ANSI string classPopup [] = I "Adventure". "Children's". "Comedy". "Drama". "Horror".
"Mystery","Romance","Science Fiction"!:

ANSistring ratingPopup [] = l"G","PG","PG-13","R","NR-17","X","XXX"I;

LStdPopupMenu * thePopup = (LStdPopupMenu *) theDialog->FindPaneByID (MDD_MOVIE_CLASSl;
int menuChoice = thePopup->GetValue () - 1;
theFilm->setClass(classPopup[menuChoiceJl:

thePopup = (LStdPopupMenu *) theDialog->FindPaneByID (MOD_MDVIE_RATINGl:
menuChoice = thePopup->GetValue Cl - 1;
theFilm->setRating (ratingPopup[menuChoiceJl:

NOTE
It's probably not wise to use the position of a popup menu item in the popup as data
that represents that item. If you ever change the popup menu's assodated MENU
resource, the item's position in the popup will change, invalidating at least some of
your code.

To set a popup menu's value, you must pass the popup' s Set Va 1 u e function an
integer that corresponds to the item that should be selected. For example, in Listing
8.11 the Penultimate Videos program finds the stored value in a lookup table (an
array) and then uses that value to set the selected item in the popup menu.

Listing 8.11 Setting a popup menu choice

ANSistring classPopup [] = l"Adventure","Children's","Comedy","Drama","Horror","
Mystery","Romance","Science Fiction"!:

ANSistring ratingPopup [] = l"G","PG","PG-13","R","NR-17","X","XXX"I:

property= theMovie->getRating ();
for (i = O; i < 7; i++)

if (strcmp (property, ratingPopup[iJl ==OJ
break:

thePopup = (LStdPopupMenu *) theDialog->FindPaneByID (MOD_MOVIE_RATINGl;
thePopup->SetValue (i+ll:

property= theMovie->getClass ();
for Ci = 0: i < 8: i++l

if (strcmp (property,classPopup[i]l == Ol
break;

thePopup = (LStdPopupMenu *) theDialog->FindPaneByID (MOD_MOVIE_CLASSl:
thePopup->SetValue (i+ll:

Manipulating Display Text 199

Manipulating Display Text

The text you display in a view using an object of LCaption isn't necessarily fixed.
Although we often simply display the text without modification, it's also common to
change that text on the fly. For example, the Penultimate Videos program uses an
object of class LCaption to display the customer number on a rental receipt (Listing
8.12). The initial value of the caption contains the stub "Customer#:". All the pro
gram needs to do is concatenate the actual customer number on the end.

Listing 8.12 Manipulating a caption

itoaC (cust_numb, cust_numbStringl; //convert integer to C string
displayString = cust_numbString; // initialize pascal string object with integer
LPane * theCaption = (LPane *) receiptDialog->FindPaneByID (RECEIPT_CUST_NUMBl;
theCaption->GetDescriptor(currentStringl;
currentString += displayString; // concatenate renter number
theCaption->SetDescriptor (currentString);

To manipulate the caption, the program does the following:

• Converts the customer number (an integer) to a C string using one of the pro
gram's global utility functions (i to a C).

• Translates the C string to a Pascal string, which is required for setting the cap
tion's value.

• Obtains a pointer to the caption.
• Uses the Get De s c r i pt o r function to retrieve the caption's current text as a Pas

cal string.
• Concatenates the string version of the customer number onto the caption's cur

rent string.
• Replaces the caption's current text with the concatenated string using the Set -

Descriptor function.

200 Chapter 8 • Programming for Dialog Boxes and Controls

A Complete Dialog Box
Example

To help you put all the things you've read about so far in this chapter into context,
let's take a look at the complete code for creating and processing a dialog box that is
created directly from LDialogBox, without a subclass. The dialog box in question is
the one used to enter data about miscellaneous videos, which you first saw in Figure
2.2.

The dialog box is set up by the code in Listing 8.13. As with any other dialog box
that behaves in a standard manner, the process is fairly straightforward. First, the
program creates the dialog box object. Then, it attaches an undoer to support undo
in the dialog box's edit fields. Finally, it issues a call to Show to make sure the dialog
box appears on the screen.

Listing 8.13 Setting up a dialog box for entering data about a miscellaneous video

void CPPVideoStoreApp: :SetUpNewMisc(J
l

LDialogBox * theDialog;
theDialog = (LDialogBox *) LWindow::CreateWindow (WINDOW_NEW_MISC, this);

LUndoer * theUndoer = new LUndoer;
theDi al og->AddAttachment(theUndoer. nil. TRUE);

theDialog->Show();

When the user clicks the dialog box's OK button, the application object traps the
action and calls the function in Listing 8.14 to process the user's action. Although
there is a lot of code in Listing 8.14, you'll notice that the logic isn't complex: The
program retrieves the value from each edit field or control, one at a time. Once all
the data have been retrieved, the program creates a new Other video object, passing
the data collected from the dialog box to the object's constructor.

Because this is a data entry dialog box, the program leaves the dialog box on the
screen until the user closes it with the Done button (the "Cancel" button). There
fore, after retrieving the value of an edit field or control, the program clears out the
data entry areas. Each edit field receives a null; each control receives its original
default value. The final task is to inake the first edit field on the dialog box the target.
The dialog box will then look as it did when it first appeared on the screen.

A Complete Dialog Box Example

Listing 8.14 Processing values from the Enter Miscellaneous Video dialog box

void CPPVideoStoreApp: :ProcessNewMisc(SDialogResponse * dialogResponsel
I

ANSistring miscPopup[J = {"Documentary","Instructional","Nature"l;
LEditField * theEditField, * theFirstEditField;
Other * newOther;
int Title_numb, ilen;
ANSistring iTitle, iDistributor, iDirector. iProducer, iClass;
Str255 pascalString;

Title numb ltems·>inclastTitle_numb();

LDialogBox * theDialog = dialogResponse·>dialogBox;

theFirstEditField = (LEditField *) theDialog->FindPaneBy!D (M!SC_TITLE);
theFirstEditField->GetDescriptor (pascalString);
convertPascal255 (pascalString,iTitle);
theFirstEditField->SetDescriptor (null);

theEditField = (LEditField *) theDialog->FindPaneBy!D (MISC_DIST);
theEditField->GetDescriptor (pascalString);
convertPascal255 (pascalString,iDistributor);
theEditField->SetDescriptor (null);

theEditField = (LEditField *) theDialog->FindPaneBylD (MISC_PRODUCE);
theEditField->GetDescriptor (pascalString);
convertPascal255 (pascalString,iProducer);
theEditField->SetDescriptor (null);

theEditField = (LEditField *) theDialog·>FindPaneByID (MISC_DIRECTl:
theEditField->GetDescriptor (pascalString);
convertPascal255 (pascalString,iDirector);
theEditField->SetDescriptor (null);

theEditField = (LEditField *) theDialog->FindPaneByID (MISC_LENGTH);
ilen = theEditField->GetValue ();II grab a value and translate to an integer
theEditField->SetDescriptor (null);

II popup menu returns the integer position of the value chosen

201

LStdPopupMenu * thePopup = (LStdPopupMenu *) theDialog->FindPaneBy!D (MISC_CLASS);
int menuChoice = thePopup·>GetValue () · l;
strcpy (iClass, miscPopup[menuChoiceJ);
thePopup->SetValue (l);

Continued next page

202 Chapter 8 • Programming for Dialog Boxes and Controls

Listing 8.14 (Continued) Processing values from the Enter Miscellaneous Video dialog

Try_
{

newOther = new Other CTitle_numb, iTitle, !Distributor, !Director, !Producer.
iClass, ilen, Items, ItemsByNumb);

Other_count++;

Catch_ CinErr)
{

Throw_(inErr);
I EndCatch_

theFirstEditField->SwitchTarget CtheFirstEditField);
save_flag = FALSE;

Responding to ••Live" Controls

Throughout this chapter, you have been reading about the use of controls in situa
tions where the values of the controls aren't read until the user clicks a button to sig
nal that he or she has finished working with a dialog box. (A button is always a "live"
control.) However, there are situations in which you want to read the value in a con
trol as soon as the user makes a change in the control, and then take some action
based on the user's choice. When that is the case, you must make sure that the win
dow in which the controls appear listens for the controls.

As an example, we will be looking at the classes and code that support the Penulti
mate Videos inventory statistics window (Figure 8.1). The check boxes control the
display of data in the Total Items and Percent of Total columns. When the boxes are
checked, the data appear; when the boxes are not checked, the data disappear. The
window responds immediately to any changes the user makes in the check boxes.

NOTE
Yes, yes ... the percentages don't add up to quite 100 percent. That's because the arith
metic truncates the fractional portions of the percentages to two digits rather than
rounding them. (Even with rounding, it still might not come out to exactly 100 per
cent!)

The PowerPlant object that the Penultimate Videos program uses for the window
in Figure 8.1 appears in Figure 8.2. Most of the panes in the window are captions.

Responding to "Live" Controls

Figure 8.1 The Inventory Statistics window

Item Type

Movies
Other Videos
Games

lnuentor ··.Statistics

Total Items

31
17
34

[81 Show Total I terns

[81 Show Percentages

Percent
of Total

37.80
20.73
41.46

203

However, there are also the two check boxes and an object of the class LTable. (We
will be discussing tables in great depth in Chapter 9, and will therefore leave the dis
cussion of the implementation of this table and the subclass that supports it until
then.)

Figure 8.2 PowerPlant resource for the Inventory Statistics window

Object of class
LTable

Objects of class
LStdCheckBox

204 Chapter 8 • Programming for Dialog Boxes and Controls

To make the code a bit more interesting, the inventory statistics window isn't
based on LDialogBox, but on a subclass of LWindow., which means that it isn't auto
matically a listener. It must therefore be derived not only from LWindow, but LLis
tener as well.

The header file for the derived class-Stats Window-can be found in Listing 8.15.

This class has the requisite constructors (a default constructor and a stream input
constructor), destructor, and Create XS tr ea m function. In addition, it overrides
two LWindow functions-Obey Command and Finis hC reateSe l f-as well as one
LListener function (Li stenToMessage). The ObeyCommand function passes com
mands to LWindow. It is present to simplify later enhancements that might be made
to the class.

Listing 8.15 The StatsWindow class

#include <LWindow.h>
#include <LListener.h>

class StatsTable;

class StatsWindow : public LWindow, public Llistener
{

I;

public:
enum I class_ID = 'SWin' I;
static StatsWindow * CreateStatsWindowStream (LStream * inStreaml;
StatsWindow ();
StatsWindow <LStream * inStream);
-StatsWindow ();
virtual Boolean ObeyCommand (CommandT inCommand, void* ioParaml;
void ListenToMessage (MessageT inMessage, void* ioParam);

protected:
StatsTable * theTable; // pointer to table object
virtual void FinishCreateSelf();

Among other things, Fi n i s h Create Se l f (Listing 8.16) takes care of initializing
the table that displays the inventory statistics. Because this activity involves one of
the window's subpanes, it must wait until after the window has been completely cre
ated. For our current discussion, however, the important part of Fi n i s h C re ate -
Se l f is the function call that tells the window to listen for messages sent by the
check boxes:

UReanimator::LinklistenerToControls (this, this, WINDOW_STATSl:

Responding to "Live" Controls

Listing 8.16 The StatsWindow FinishCreateSelf function

void StatsWindow::FinishCreateSelf(l
I

UReanimator::LinklistenerToControls (this, this, WINDOW_STATSl;

theTable = (StatsTable *) FindPaneByID (STATS_TABLE);
II save pointer to table object

TableCellT theCell;

for (inti = l; i <= 3; i++)
for (int j = l; j <= 2; j++)
I

theCel l. row i;
theCell.col j;
theTable->SetTableCell (theCelll;

205

The t~ree parameters are a pointer to the listener, a pointer to the view that contains
all the control panes to be linked as broadcasters, and the resource ID of the RidL
resource that identifies the controls. In this particular example, the listener and the
view containing the controls are the same (the current object). Because Constructor
gives the RidL resource the same ID as the window (the view containing the con
trols), the program can use the constant that identifies the window as the third
parameter.

Once the controls have been linked to the listener, the listener must use its Li s -
ten To Mess age function to trap and act upon changes in the controls. The Inven
tory Statistics window responds to the messages sent by both check boxes. For
simplicity, their value messages were set equal to their resource IDs and assigned
constants in MenuCommands.h.

As you can see in Listing 8.17, a Lis tenToMes sage function contains a switch
that traps the messages to which the listener should respond. The StatsWindow
Li st en T oM es sage function does the following:

• Determines which check box broadcast the message.
• Obtains a pointer to the check box object.
• Retrieves the state of the check box before the user acted on it (0 = checked, 1 =

not checked).
• Based on the state in which the check box will be after the user's action is com

pletely processed, either clears or displays data in the table.

206 Chapter 8 • Programming for Dialog Boxes and Controls

Listing 8.17 The StatsWindow ListenToMessage function

void StatsWindow::ListenToMessage <MessageT inMessage, void* ioParaml
I

int currentState, i;
LStdCheckBox * theCheckBox;
Ta bl eCel lT theCel l;

switch (inMessage)
I

case cmd_stats_total_cb:
theCheckBox = (LStdCheckBox *) FindPaneBy!D (STATS_TOTAL_CB);
currentState = theCheckBox->GetValue();
theCel l. col 1:
for (i = 1: i <= 3: i++)
I

theCell .row= i;
if (!currentState)

theTable->ClearTableCell (theCell);
else

theTable->SetTableCel l (theCel l);

break:
case cmd_stats_percent_cb:

theCheckBox = (LStdCheckBox *) FindPaneByID (STATS_PERCENT_CBJ;
currentState = theCheckBox->GetValue();
theCe 11 . col 2:
for (i = l; i <= 3: i++)
I

theCe 11 . row = i ;
if (! currentState)

theTable->ClearTableCell (theCell);
else

theTabl e->SetTabl eCel l (theCel l);

break;

theTable->DrawSelf();
theTable->Refresh();

The function finishes with two function calls-DrawSe l f and Refresh-that make
sure that the table displays correctly.

Because most of the work of managing the Inventory Statistics window is handled
by the Stats Window class, the application object needs to do only the following:

Responding to "Live" Controls 207

• Activate the menu command that displays the Inventory Statistics window in its
Fi ndCommandStatus function.

• Trap the menu command and create an object of the class Stats Window in its
ObeyComma nd function:

case cmd_stats:
StatsWindow * theStatsWindow = (StatsWindow *l

LWindow::CreateWindow (W!NDOW_STATS, this):
break:

List Boxes and
Tables

CHAPTER

One of the fixtures of the Macintosh user interface is a scrolling list of items. A user
picks from that list either by double-clicking on an item in the list or by selecting an
item and then clicking a button. PowerPlant provides support for scrolling lists with
the class LListBox. In this chapter you will see how to create list boxes, using a com
bination of PowerPlant class features and calls to the ToolBox List Manager.

PowerPlant tables are closely related to scrolling lists, in that they are for display
only and can report back to the program the cell in the table that is currently
selected. This chapter therefore also looks at the PowerPlant class LTable, a simple
class that maintains a grid of columns and rows.

List Boxes

An object of class LListBox provides a simple way to support a list with scroll bars.
Although you can create a subclass of LListBox, if your list box will behave in a stan-

209

210 Chapter 9 • List Boxes and Tables

dard manner, you can create the object directly from LListBox without a subclass. As
an example, we will be looking at the listing of titles managed by the Penultimate
Videos program, which you first saw in Figure 2.6.

LIST Box RESOURCES

The easiest way to create a list box is to define the object using Constructor. What
ever you choose for the list box's superview, the superview must be derived from
LListener. (It it's not, it won't be able to respond to double-clicks in the list.) You can
derive a class from LWindow and LListener, or you can use an LDialogBox object.
The title list, for example, is based on a dialog box.

The resource that contains the list box of titles can be found in Figure 9.1. This
resource contains only two objects: the LDialogBox object that is the superview, and
the LListBox object. In this case, the scroll bars are part of the LListBox object rather
than an additional LScroller object.

As you can see in Figure 9 .2, a list box has some properties in common with any
other pane. In particular, it has a unique resource ID and a value message (in this
case, the "double click message"). Because the list box in this example has a dialog
box as its superview, the double click message is negative. (Remember that dialog
boxes only listen to negative messages.)

In addition, you can use the properties window to determine which, if any, scroll
bars appear in the list box. You can also set a text traits ID for the list box's items,
whether the list will have a grow box, and whether a selected item will retain a focus
box when the window is inactive.

BUILDING THE CONTENTS OF A LIST Box

An LListBox object is somewhat incomplete when it is created: It has no columns or
rows. You must add then using ToolBox List Manager calls before adding any items
to the list. Once you've added a column and rows, you can then place data in the list's
cells and display the list.

NOTE
Although there is technically nothing to prevent you from creating an LListBox with
more than one column, the class only supports single-column lists. If you need a multi
column list, you will need to use a table, which you can place in a scroller.

List Boxes 211

Figure 9.1 A resource containing an LlistBox object

The title list resource that we are using as an example can display games, other
videos, or movies. To initiate the building of the correct list, the Penultimate Videos
program first traps the user's menu selection in the application object's ObeyCom
m a n d function, a portion of which appears in Listing 9 .1. Each menu selection calls
the application object's I t ern Lis t function with the type of item the user wants to
modify as an input parameter.

The complete I t em Li st function can be found in Listing 9 .2 . To build the list it
does the following:

• Creates the dialog box (the Di al og).
• Retrieves a pointer to the LListBox object (t he Li st).

212 Chapter 9 • List Boxes and Tables

Figure 9.2 LlistBox properties

LlistBOH ID 3101

-----------, r Binding to Superviev:

L_ ____ _.::_-=3=1=9==---__J I 0Lofl 0~=m 0R•M

Pane ID: 13101 ID Text ID ~Enabled
User Constant: ~lo=======:I D Text constant ~Visible

Class ID: l~lb_ox __

Double Click Msg: 1-3101 ID Text Message

Text Traits ID: lo IE] LDEF ID: .-lo---.

¢

D Horizonta 1 Scrollbar

~Vertical Scrollbar

D Has Grov Box

D Has Focus Box

Listing 9.1 Trapping menu selections that produce the item list

II For modifying and deleting merchandise items
case cmd_mod_movie:

Itemlist CFILMl;
break;

case cmd_mod_misc:
Itemlist COTHER);
break;

case cmd_mod_game:
Itemlist CGAMEl;
break;

• Uses the type of merchandise input parameter to determine what the title of the
dialog box's window should be and sets the title by calling the dialog box's Set -
Des c r i pt o r function.

• Retrieves the handle to the list box's list of items (t h e L i s t H a n d l e) by calling
the list box's function GetMa c Lis tH.

• Adds one column to the list with the ToolBox function LAddCo l umn.

List Boxes

Listing 9.2 Setting up the list of titles

void CPPVideoStoreApp::ItemList (int item_typel
{

LDialogBox * theDialog;
LListBox * thelist;

theDialog = (LDialogBox *) LWindow::CreateWindow (WINDOW_MOD_LIST, this);
thelist = (LListBox *l theDialog->FindPaneByID (MOD_LIST_BOXl;

if (item_type == FILM)
theDialog->SetDescriptor ("\pChoose Movie to Modify/Delete");

else if (item_type == OTHER)
theDialog->SetDescriptor ("\pChoose Video to Modify/Delete");

else
theDialog->SetDescriptor ("\pChoose Game to Modify/Delete");

213

ListHandle theListHandle = theList->GetMacListH(l; //get the list box's list handle
::LAddColumn (1, 0, theListHandlel: //add a column to the empty list

Merchltr traversal;
int Type, row= 0:
Merchandise_Item * currentOne:
char * Title:
Cell theCell, * theCellPtr:

II a cell (row & column number) and a pointer to the variable
theCellPtr = &theCell:

for (traversal.Init (Items); !traversal; ++traversal)
{

currentOne =traversal();
Type= currentOne->getitem_type();
if (Type == item_typel
{

Title= currentOne->getTitle();
::LAddRow (1, row, theListHandlel; //add a row to the list
::SetPt (theCellPtr, 0, row++);

II initialize the coordinates of the cell just added
::LSetCell (Title, strlen(Titlel. theCell, theListHandlel:

II add the data

thelist->Addlistener (theDialogl:
II add listener so message will be sent on double-click

theDialog->SetUserCon (item_typel; // save type of item being modified
theDialog->Show<l:

214 Chapter 9 • List Boxes and Tables

• Creates an in-order iterator for the merchandise item tree that is organized alpha
betically by item title (traversal).

• Sets up a variable of type Cell (t he Ce l l) and a variable that contains a pointer to
the cell (the Ce 11 Pt r). The Cell data structure has two integer members:
Ce 11 . row, which contains the row number, and Ce 11 . col, which contains the
column number. Because you are working with the ToolBox List Manager, row
and column numbering begins with 0.

• Traverses the merchandise item tree. If an item is of the type that is to be dis
played in the list box, add a row to the list box with the ToolBox routine
LAdd Row. Initialize the cell pointer to the row just added using the ToolBox rou
tine Set Pt. Then, add the item title to the new cell with the ToolBox routine
LS et Ce 11.

• Adds the list box to the dialog box's list oflisteners using the Add Li s ten e r func
tion.

• Sets the dialog box's User Con variable to the type of item being displayed with
the dialog box's Set User Con function. The function that traps a double-click in
the list box will then be able to retrieve this value to determine which Modify di
alog box to display.

• Displays the dialog box by calling its Show function.

FINDING THE SELECTED LIST ITEM

As with other controls, a window can actively listen for changes in a list box or can
tap the value of the list box when the user signals that he or she is finished (for exam
ple, by clicking a button.) The New Video Copy dialog box works in exactly this way.
The user highlights the title of the item, makes changes in the other controls in the
dialog box, and clicks the OK button. The program must then figure out which item
in the list box has been highlighted.

To do so, a function must first obtain a pointer to the list box object. Then, it can
use the list box's Get Des c r i pt o r function, which returns the text of the first high
lighted item in the list:

LListBox * thelist = (LListBox *) theDialog->FindPaneByID
CVCOPY_LIST_BOXl:

theList->GetDescriptor <pascalStringl: //get first highlighted item

CAPTURING A DOUBLE-CL/CK IN A LIST Box

To actively listen for user actions in a list box, a program waits for a double-click.
When the user double-clicks in a scrolling list provided by an LListBox object, the

List Boxes 215

object broadcasts its double-dick message. If you have created a subclass for the win
dow in which the list box appears, the subclass will have a Li st en To Mes sage func
tion that will include the double-dick message. However, if you have not created a
subclass and the application object "owns" the window in which the list box appears,
as is the case in our example, then the application object's ObeyCommand function
can trap the double-dick.

To handle a selection in an LListBox object, a program needs to know the item on
which the user double-clicked. In Listing 9.3, for example, you will find a portion of
the function that processes a selection in the title list dialog box. [The remainder of
this long function (Set Up I temMod i fy) displays one of three Modify dialog boxes,
depending on the type of item identified by the dialog box's Use r Con attribute.]

Listing 9.3 Handling list box selections

LDialogBox * theDialog = dialogResponse->dialogBox;
int item_type = theDialog->GetUserCon(); // retrieve item type

LListBox * thelist = (LListBox *) theDialog->FindPaneBylD (MOD_LIST_BOX);
theList->GetDescriptor (pascalString); //get first highlighted item
convertPascal255 (pascalString, Title);

saveltem = Items->find (Title); //get and save pointer to item
delete theDialog;

To process the selection and obtain enough information to display the Modify dia
log box, the SetUp I temModi fy function does the following:

• Retrieves a pointer to the dialog box in which the double-click occurred (the Di -
al og).

• Retrieves the item type using the dialog box's Get Use r Con function.
• Obtains a pointer to the list box object (the List).
• Gets the text of the selected item with the list box's Get Des c r i pt or function.

The text is returned as a Pascal string.
• Converts the Pascal string to a C string using the program's global utility function

convertPasca 1255.

216 Chapter 9 • List Boxes and Tables

NOTE
The ToolBox does provide a Pascal-to-C conversion routine. However, it modifies the
source string, which isn't always desirable. Therefore, the Penultimate Videos program
provides its own conversion routines that leave the source string intact.

• Searches the merchandise item tree, which is organized alphabetically by item ti
tle to locate a pointer to the selected item.

• Removes the dialog box from the screen by deleting the dialog box object.

At this point, the Set Up It emMod i f y function has all the information it needs to
display the correct Modify dialog box and retrieve information about the object being
modified, using the procedures you saw in Chapter 8.

Tables

Probably the biggest limitation of LListBox is that it supports only single-column
lists. If you need a list with multiple columns, you will need to use a PowerPlant
table. The basic table class is LTable, which supports an unlimited number of equal
sized columns and rows. The columns and rows are numbered beginning with 1,
unlike the rows and columns in a list box, which are numbered beginning with 0.

NOTE
At the time this book was written, Metrowerks was working on a more flexible table
class-LTableView---that allows for columns of different widths in the same table.
With CW 8, it can be found in the In Progress folder. If LTable is too restrictive far your
needs, you may want to experiment with LTableView and the other table classes
Metrowerks has been building.

The example we will be using for this discussion is the receipt that is given to a
Penultimate Videos customer whenever he or she rents merchandise. As you can see
in Figure 9.3, titles and their due dates are added to the table at the bottom of the
receipt. Because table cells are the same width and the receipt window needs to have
enough room to display a long item title, the actual table extends past the right edge
of the window. As long as the contents of the second column (the column in which
the date due appears) don't extend past the right edge of the dialog box, the overly
wide table presents no problem.

Tables

Figure 9.3 The rental receipt window

cu$tom'e~;:neceipt

212711996

RenUlr#: 1

Dough, John

Jl? Penultirrate Videos

V 89 Main Street
Ariytown, NY 10101

Title Da1B Du r-------------------,----
I Brief HisUlcy of Time, A
I Aixplane II: The Sequel

I
I
I
I
I

The area indicated by the dashed-line box is the
table; it extends off the right side of the window.

/ Width of one column

I~----------------~

I

31211996
31211996

L-------------------~----

NOTE

217

As you will see in Chapter 11, we can take the panes in the receipt window and install
them in a printing view without modification, making it easy to print the receipt for the
user.

TABLE RESOURCES

As you might expect, the receipt window resource is defined as a PowerPlant object
using Constructor. In Figure 9.4, for example, you can see that the resource contains
some display text, the LTable object, and an LPicture object to contain the com
pany's logo. (We will talk about that logo shortly.)

218 Chapter 9 • List Boxes and Tables

Figure 9.4 A view containing an LTable object

····-········--···········-··-········-····-··-······-·-··--···---··-ij ..

You specify the characteristics of an LTable object in its properties window (Figure
9.5). The important values for configuring a table appear in the five boxes at the bot
tom of the window:

• Number of Rows: Enter the number of rows in the table.
• Number of Columns: Enter the number of columns in the table.
• Row Height: Enter the height, in pixels, of the table' s rows.
• Column Width: Enter the width, in pixels, of the table's columns.
• Cell Data Size: Enter the number of bytes of storage that should be set aside for

each cell in the table.

NOTE
If you leave the Cell Data Size set to the default of 0, PowerPlant won't allocate any
storage for cell data.

Tables 219

Figure 9.5 LTable properties

Location: ,

Top:lffi!iil--, l
'"" ~ y; ... BDj Drop

0 Left 0 Right

0 Bottom ~ight:~ i
~~~~~~~~~~-' 

Pane ID: I 1104 I 0 Text ID 181 Enabled 
======= 

User Constant: lo I 0 Text constant 181 Visible 

Class ID :I._ rt-'-"ab:........._, 

[J~~j: _____ :_j [~:;J: _____ _l] 
0 Reconcile Overhang 

Number of Roys : j 15 
======:::::::: 

Number of Columns: 12 
~=====! 

Roy Height: I 14 
=======! 

Column Yidth: 1375 :::=====:::::::: 
Cell Data Size: lso 

Adding the Logo (LPicture Objects) 

[

Scroll Position:~ 

Horizontal : I 0 I 
Vertical: lo I 

··············································-··-······--······· 

You must enter 
data for these 
values for the 
table to work 
properly 

Although it may seem out of sequence, this is as good a spot as any to take a quick 
aside to look at adding a graphic to a window for display purposes. The Penultimate 
Videos logo, which appears in the upper right corner of the receipt, is stored as a 
PICT resource (Figure 9.6). The receipt window can therefore use an object of class 
LPicture to display it. 

To set up an LPicture object, drag the object onto a window from Constructor's 
Tools palette. Position and resize the object as necessary. Then, double-click to open 
its properties window (Figure 9.7). Give the object its own unique resource ID and 
enter the resource ID of the PICT resource in the PICT resource ID box at the very 
bottom of the window. Assuming that the PICT resource is linked to the LPicture 
object in this way, the program will retrieve and display the graphic whenever the 
window is created. 



220 Chapter 9 • List Boxes and Tables 

Figure 9.6 A PICT resource that can be attached to an LPicture object 

I!:) Penutirrate \ildeM rv· 89Ma.in Street 
tti~own, NV 10J o 1 

1000 

Figure 9.7 LPicture properties 

=::lil:::::'"':=:::::_. :::::~:::~:=:::=:::::::::c':::_ .. =:: LPicture ID 1706 --~'.::'.:::··"- ._::=""':::::::::~:::~:::· · -':-"~: ·
0

"'": . rm~ 

r- Location : , r- Binding to Superviev : - ;!£ 
Top : [--~ ! Drop 

Left: ~ Yidth : [198 J.' D Left D Right ~ ~-~- l D Bottom 
L Height : [a9 _J---J I 

Pane ID : I 1706 I D Tex t ID 1:8] Enabled 

User Constant : ::10=======1 D Tex t constant l:8J Visible 

Class ID: ~lp_ict_~ 

dth : I 0 I ' Horizontal : I 0 I Horizontal : ~Io====~ 
[ '~•• S;•••3 r Scroll Unit : 3 ,- Scroll Position:-

1ght: I~- I I Vertical : lo I Vertical : ~lo __ ~ 

D Reconcile Overhang 

PICT Resource ID : I 1 000 

¢ff 

TABLE SUBCLASSES 

Unlike a list box, where you have a choice whether to create a subclass, you must cre
ate a subclass whenever you want to use a table. LTable contains two functions-



Tables 221 

Draw Se 1 f and Dr a wee 11-that are specific to a given table. In many cases Draw -
Se 1 f's default behavior will be acceptable. However, the LTable Drawee 11 function 
displays the cell column and row numbers. You must therefore override this function 
to display whatever data you want to appear in a table cell. 

The class that supports the table on the receipt window can be found in Listing 
9 .4. It contains constructors, a destructor, a ere ate XS tr ea m function, and the two 

overridden functions: Dr a wee 11 and Draw Se 1 f. The remainder of the class's 
behavior and attributes can be inherited directly from LTable. 

Listing 9.4 The ReceiptTable class 

#include <LTable.h> 

class ReceiptTable : public LTable 
{ 

} ; 

public: 
enum { class_ID= 'rtab' }; 
static ReceiptTable * CreateReceiptTableStream(LStream *inStreamJ; 
ReceiptTable(l; 
ReceiptTable(LStream *inStreamJ; 
virtual -ReceiptTable(J; 
virtual void DrawSelf (); 

protected: 
virtual void DrawCell (const TableCellT &inCelll; 

INITIALIZING TABLE STORAGE 

The LTable class creates an object of class LDynamicArray to hold a table's data. 
However, although the storage is created for you, LTable doesn't initialize that stor
age. This means that unless you explicitly take care of clearing out the cells in a table, 
any empty cells may display garbage. 

The easiest place to intialize table storage is in a table class's stream input con
structor. As an example, take a look at the ReceipTable class's constructor in Listing 
9.5. The function first obtains a pointer to a null string. It then calls the LDynamic 
Array function Geteount to retrieve the number of cells in the table. (Yes, you do 
know how many cells there are in the table because you created the resource for it. 
However, this strategy is more flexible than using a constant because you can modify 
the table resource at any time without having to modify your code.) The constructor 
finishes by calling Set I temA t to place the null string in each table cell. 



222 Chapter 9 • List Boxes and Tables 

Listing 9.5 Initializing table storage 

ReceiptTable::ReceiptTable( 
LStream * inStream) 

: LTable(inStream) 

II null out the table storage array 
PString nullString = "": 

unsigned char* theString = nullString.getmString(); 
int numbltems = mCellData->GetCount(); 
for (int i = l; i <= numbltems; i++) 

mCellData->SetltemAt (i, theString); 

NOTE 
As you will see in Chapter 10, LDynamicArray has many .functions in common with 
LList. This is because LList is derived.from LDynamicArray. 

BUILDING THE CONTENTS OF A TABLE 

Unlike a list box, where you must build the contents of the list using ToolBox calls, a 
class.derived from LTable takes care of adding columns and rows itself. LTable also 
makes it possible to place data in a cell and retrieve data from a cell without issuing a 
ToolBox call. 

NOTE 
From the "Guaranteed to make you nuts" department: A scrolling list based on an 
LListBox object numbers its rows beginning with o. However, columns and rows in an 
object derived from LTable are numbered starting with 1. In particular, the coordinates 
of the cell in the upper-left corner of a table are 1,1, not o.o. 

Whenever the user enters a rental, the Penultimate Videos program adds a row to 
the table on the receipt window and then redraws the table. The code to manage 
adding data to a table cell can be found in Listing 9.6. This code uses a variable 
named the Ce 11 , which is of type Tab l eC e 11 T. Like the cell structure used with the 
list box, it has two components, col and row. 

To place data in the storage allocated for a table cell, first obtain a pointer to the 
table object. (Fi n d Pa n e By ID will do the trick.) Then, initialize a Ta bl e Ce l lT 
structure with the column and row into which you want to place the data. Finally, 
use the table's Set Ce 11 Data function to pass the cell and the data to the table stor
age. Note that the data for the table cell must be stored as a Pascal string. 



Tables 223 

Listing 9.6 Setting table data 

II put item into receipt table array 
int Title_numb = whichltem->getTitle_numb(l: 
Merchandise_ltem * whichTitle = ItemsByNumb->find (Title_numbl: 
PString itemTitle = whichTitle->getTitle(l; 
PString dueDate = whenDue->showDate(Tdatel: 
theCell.col = 1: 
theTable->SetCellData (theCell. itemTitlel; 
theCell.col = 2: 
theTable->SetCellData (theCell. dueDatel: 
theCell .row++; 

II draw the table 
theTable->DrawSelf(); 
theTable->Refresh(l; II make sure everything shows up 

It is important to realize that the Set Ce l l Data function merely places data into 
the data structure set aside to hold the contents of the table: It doesn't display the 
table. To make changes appear, you will need to call the table's DrawSe l f function 
and then, depending on how windows are layered on the screen, perhaps the 
Refresh function. Refresh is inherited from LPane. Its purpose is to generate an 
update event, which forces the entire pane to be redrawn. 

DRAWING TABLE CELLS 

A table class's DrawSe l f function should determine which cells need to be updated 
and then draw those cells by calling Draw Ce 11 . In Listing 9. 7 you will find the 
receipt table's Draw Se l f function, which is largely unmodified from that found in 
LTable. To determine which cells need updating, the function does the following: 

• Obtains the handle of the current update region, expressed in local coordinates, 
by calling Get Lo ca l Update R g n. This function is inherited from L View. 

• Retrieves an update rectangle in local coordinates from the r g n Box variable that 
is the bounds of the update structure. 

• Uses the ToolBox routine Di s pose Rg n to get rid of the update region. 
• Finds the cell at the top of the update rectangle. Doing so requires two steps. First, 

the function translates the local coordinates to image coordinates using Lo ca l -



224 Chapter 9 • List Boxes and Tables 

Listing 9.7 The ReceiptTable class's DrawSelf function 

void ReceiptTable: :DrawSelf() 
I 

II Determine cells that need updating. Rather than checking 
II on a cell by cell basis, we just see which cells intersect 
II the bounding box of the update region. This is relatively 
II fast, but may result in unnecessary cell updates for 
II non-rectangular update regions. 

RgnHandle localUpdateRgnH = GetlocalUpdateRgn(): 
Rect updateRect = (**localUpdateRgnH).rgnBBox: 
::DisposeRgn(localUpdateRgnH); 

II Find cell at top left of update rect 
SPoint32 topleftUpdate: 
TableCellT topleftCell: 
LocalToimagePoint(topleft(updateRectJ, topLeftUpdate): 
FetchCel lHitBy(topleftUpdate. topleftCel l): 
if (topleftCell.row < 1) II Lower bound is cell (1,1) 

topLeftCel l. row = 1: 
if ( topleftCe 11. col < 1) 

topLeftCe 11. col 1: 

II Find cell at bottom right of update rect 
SPoint32 botRightUpdate: 
TableCellT botRightCell: 
LocalToimagePoint(botRight(updateRect), botRightUpdate); 
FetchCellHitBy(botRightUpdate. botRightCelll: 

II Upper bound is cell (mRows,mCols) 
if ( botRi ghtCel 1. row > mRows) 

botRightCell.row = mRows: 
if (botRightCell.col > mCols) 

botRightCell .col = mCols; 

II Draw each cell within the update rect 
Ta bl eCel l T eel 1; 
for (cell.row= topleftCell .row; cell.row<= botRightCell.row; cell.row++) I 

for ( c e 11. co 1 = top Left Ce l l. co 1 ; c el 1. col < = bot R i g ht Ce 11 . co 1 : c e 11. co 1 ++ ) 
DrawCel l (eel l l; 

To Image Point. Then, it calls Fetch Ce 11 Hit By, an LTable function that re
turns the cell that contains a given image coordinate. 

• Makes sure that the cell returned by Fetch Ce 11 Hi t By is within the table by ad
justing the cell so that it is no less than 1,1. 



Tables 225 

• Finds the cell at the bottom right of the update region, using the same procedure 
as that used to find the cell at the top left corner. 

• Makes sure that the bottom right cell is within the table by checking it against 
mCo 1 sand mRows, LTable variables that store the number of columns and rows, 
respectively. 

• Performs a for loop that draws the cells in the update region. The body of the 
loop is a call to Drawee 11. 

Given a reference to a cell, the D rawCe 11 function (see Listing 9.8) takes care of 

Listing 9.8 The ReceiptTable class's DrawCell function 

void ReceiptTable::DrawCell Cconst TableCellT &inCelll 
I 

PString displayValue; 
Rect cellFrame; 
if (FetchLocalCellFrame(inCell, cellFramell I 

::TextFont(timesl; 
: : TextSi ze( 12 l; 
::TextStyle(plainl; 
: :MoveTo(cellFrame. left+ 4, cell Frame.bottom - 4); 
GetCellData (inCell. displayValuel; 
::DrawString(displayValue); 

making the contents of a cell appear. The function does its drawing only if the cell's 
image coordinates are within the view's frame by calling Fetch Loe al Ce 11 Frame. 
This LTable function converts the cell to local coordinates and returns a Boolean 
indicating whether the cell is within the view. 

Assuming the cell lies within the view's frame, then DrawCel 1 can proceed with 
its drawing. As you can see in Listing 9.8, the function first sets the display text char
acteristics and moves the pen to the location where drawing should begin (four pixels 
offset from the bottom left corner of the cell). Then, it calls the LTable function 
Get Ce 11 Data to retrieve the data stored in the cell. Finally, it draws the text. 

NOTE 
If you are interested in a table class that is designed to show icons rather than text, 
experiment with the SmalUconTable class, found in CW S's In Progress folder. 



226 Chapter 9 • List Boxes and Tables 

FINDING THE SELECTED CELL 

In the example you have just seen, a table is being used to simplify formatting a dis
play. However, in some cases you can also use a table in place of a list box. In other 
words, a user can highlight a table cell by clicking on it, and a program can identify 
the highlighted cell. 

When you want to find the selected cell after a user signals you by clicking a but
ton, use the LTable function Get Se l ectedCe 11: 

TableCellT theCell; 
theTable->GetSelectedCel l CtheCel l); 

The function call returns the cell number in the the Ce 11 variable. You can then use 
that cell to retrieve its contents. 



Strings, Lists, and 
Files 

CHAPTER 

PowerPlant includes a collection of classes for nongraphic objects such as strings, 
lists, and files. Although the user never sees objects created from these classes, they 
provide considerable support for program actions. For example, PowerPlant itself 
makes extensive use of linked lists to keep track of attachments and subpanes. In this 
chapter we will look at these important support classes, focusing on how you can 
take advantage of them in your own programs. 

Strings 

Strings can be the bane of a Macintosh C++ programmer. Because of the Macin
tosh's Pascal heritage, many of the ToolBox routines require Pascal, not C, strings. 
To make matters worse, even if you store everything as a Pascal string, you're still 
faced with needing to call functions for even the simplest string manipulation. The 
traditional solution has been to create a string class that overloads assignment, con-

227 



228 Chapter 10 • Strings, Lists, and Files 

catenation, and comparison operators. PowerPlant includes a class (LString) that 
does just that for Pascal strings. As you will see shortly, the Penultimate Videos pro
gram has extended that idea by creating a companion class for C strings. 

LSTRING AND LSTR255 

The base class for PowerPlant Pascal strings is LString. An abstract base class, it sup
ports a string of any length. The functions and operators it provides are summarized 
in Table 10.1. The string comparison operators (==, <, >, <=, >=, and !=) are 
declared as global functions. 

Table 10.1 LString capabilities 

Function/Operator 
Length 
ConstStringPtr 
StringPtr 
Int32 
double t 
FourCharCode 

[ J 

+= 

+ 

Assign 

Append 

Purpose 

Returns number of characters in the string 

Return a pointer to the Pascal string being managed 

Converts string to a long integer 

Converts string to a floating point number 

Converts a string to a four character code, such as a type 
or creator string 

Returns the character at the position within the brackets 

Assigns one string to another. Overloaded to support sev
eral types of input. 

Concatenates something onto an LString object. 

Concatenates either two LString objects, an LString object 
and a Pascal string, or an LString object and a char. Over
loaded to work with the LString on either side of the oper
ator. 

Assigns a value to an LString object. Overloaded to sup
port input in the forms supported by the = operator. The 
= operator functions call As s i g n. 
Concatenates something with an LString object. Over
loaded to support input in the forms supported by the += 
and + operators. The + = and + operator functions call 
Append. 



Strings 

Table 10.1 (Continued) 

Function/Operator 
Compare To 

Find 

ReverseFind 

BeginsWith 

EndsWith 
FindWithin 

229 

LString capabilities 

Purpose 

Performs a comparison between an LString object and 
another LString object, a Pascal string, or a character. 
Called by the comparison operator functions. 

Searches for a substring within an LString object, begin
ning at the character position specified in the function call 
and searching toward the end of the string. Overloaded to 
support input from an LString object, a Pascal string, or a 
character. 

Searches for a substring within an LString object, begin
ning at the character position specified in the function call 
and searching toward the beginning of the string. 

Checks to see if an LString object begins with a given 
string. 

Check to see if an LString object ends with a given string. 

Similar to Find, but always starts its search with the first 
character in the string. 

ReverseFi ndWi thin Similar to ReverseFind, but always starts its search with 
the last character in the string. 

( ) 

Insert 

Remove 

Replace 

Returns a substring starting at a specified position in the 
LString object and containing a specified number of char
acters. 

Inserts a substring into an LString object beginning at a 
specified position. 

Removes a substring from an LString object beginning at a 
specified position and with a specified length. 

Replaces a substring of an LString object with another 
string. 

LString is an abstract base class. You therefore have two choices if you want to use 
it. First, you can create a subclass, which PowerPlant has already done with LStr255. 
Alternatively, you can use PowerPlant's string template class (TString). 

NOTE 
LString, LStr255, and TString can all be found in LString.h and LString.cp. 



230 Chapter 10 • Strings, Lists, and Files 

LStr255 is a subclass of LString that handles a Pascal string of up to 255 characters. 
It therefore comes in handy for a number of ToolBox calls, particularly because you 
can use an LStr255 object anywhere a function requires a parameter of Str255. Using 
a string object also makes string handling easier because you can, in most cases, write 
simpler code that avoids explicit function calls. In particular, you can perform string 
assignment, concatenation, and comparison using the typical operators. 

There is one limitation to the overloaded string operators of which you should be 
aware. While most of the overloading allows you to place the string object on either 
side of most operators, the [ ] operator only returns a character at a given position in 
the string; it cannot be used on the left side of an assignment operator to change a 
character. For example, the following code is valid: 

LStr255 myString; 
char oneletter; 

myString = "Sample String"; 
oneletter = myString[6]; 

However, the code below won't work because the compiler expects a pointer (the 
location where the character is stored) but instead receives an integer: 

LStr255 myString; 
myString[7J = • z'; 

SUBCLASS/NG LSTRING: PSTRING 

The Penultimate Video's class PString is a subclass of LString that is very similar to 
LStr255. However, it has a couple of additions to ease conversions between C and 
Pascal strings, and in particular, the Penultimate Videos class CString. As you can see 
in Table 10.1, the class contains constructors that transform a variety of types of 
input (Pascal strings, PString objects, C strings, integers, floating point numbers, and 
characters) into a PString. The remainder of its functions, including the overloaded 
operators for assignment, concatenation, and comparison, are either global or inher
ited from LString. 

The class also contains a variable called m St r i n g, which acts as storage for the 
string being managed by an object of this class. LString does not provide any string 
storage; you must make it part of a derived class. 

The first addition to the PString class is another constructor, which takes a CString 
object and converts it to a PString. This constructor is particularly important for Pen
ultimate Videos because it stores its data as C strings. 



Strings 231 

Listing 10.1 The PString class 

class PString : public LString 
( 

public: 
II constructors : unfortunately, they aren't inherited 
PString (); 
PString (canst PString& inOriginal l: 
PString (canst LString& inOriginal l; 
PString (ConstStringPtr inStringPtr); 
PString (Uchar inCharl: 
PString (canst char* inCString); 
PString (canst void* inPtr, Uint8 inlengthl: 
PString (Handle inHandle); 
PString (ResIDT inResID, Int16 inindexl: 
PString (Int32 inNumber): 
PString (double_t inNumber, Int8 inStyle, Int16 inDigits): 
PString (FourCharCode inCode); 

PString & operator= Cconst LString& inStringJ II All this is based on LStr255 
{ 

LStri ng:: operator=( i nStri ng l: 
return *this; 

PString & operator= (ConstStfingPtrinStringPtrl 
{ 

LString: :operator=(inStringPtr); 
return *this: 

PString & operator= (Uchar inChar) 
{ 

LString::operator=(inChar); 
return *this; 

PString & operator= (canst char* inCString) 
{ 

LString: :operator=(inCString): 
return *this: 

PString & operator= (lnt32 inNumberl 
( 

LString: :operator=(inNumber): 
return *this; 

Continued next page 



232 Chapter 10 • Strings, Lists, and Files 

Listing 10.1 The PString class 

} ; 

PString & operator= (FourCharCode inCode) 
{ 

LString::operator=(inCode); 
return *this; 

II Constructor added to handle CString objects 
PString (CString); II source is a CString object 
II Function added to return string pointer; alternative is to assign 
II the pointer to mStringPtr and use the LString operator StringPtr. 
unsigned char* getmString(); 

protected: 
Str255 mString; 

The second addition is a function called get m St r i n g, which returns a pointer to 
the Pascal string being handled by a PString object. The CString class needs this so 
that it can accept a PString object as input and translate the contents into CString for
mat. There are actually two ways to provide this pointer. LString contains a variable 
called mStri ngPtr, which is returned by the ConstStri ngPtr and Stri ngPtr 
functions. The derived class can assign the address of its string storage (in the case of 
the PString class, mStri ng) to mStri ngPtr in its constructors. Alternatively, a 
derived class can add a simple function that returns a pointer to mStri ng, without 
involving m St r i n g Pt r at all. 

ADDING A CLASS FOR C STRINGS: CSTRING 

Because Penultimate Videos makes such extensive use of C strings, the program can 
be simplified considerably if it has a class for a C string that interacts seamlessly with 
a PowerPlant class for Pascal strings. The CString class (Listing 10.2), is a complete C 
string class that includes a large number of overloaded operators that work with the 
CString object on either side of the operator. The overloading supports CString 
objects, PString objects, and standard C strings (ch a r *). 

A CString object can be used anywhere a function expects a ch a r * parameter. 
This capability is provided by the overloaded operator char*, whose implementa
tion simply returns the address of the CString variable c St r i n g, a 25 5-character C 
string. 



Strings 233 

Listing 10.2 The CString class 

class CString 
( 

II operators overloaded as friend functions 

II equal to 
friend int operator== CCString, char *); 
friend int operator== Cchar *, CString); 
friend int operator== CCString, PString); 
friend int operator== CPString, CString); 

II not equal to 
friend int operator!= CCString, char *); 
friend int operator!= (char * CString); 
friend int operator!= CCString, PStri ng): 
friend int operator!= CPString, CString); 

II greater than 
friend int operator> CCString, char*); 
friend int operator> (char*, CString); 
friend int operator> CCString, PString); 
friend int operator> CPString, CString); 

II greater than or equal to 
friend int operator>= CCString, char*); 
friend int operator>= (char*, CStringl; 
friend int operator>= CCString, PString); 
friend int operator>= CPString, CString); 

II less than 
friend int operator< CCString, char*); 
friend int operator< (char*, CString); 
friend int operator< CCString, PString); 
friend int operator< CPString, CString); 

II less than or equal to 
friend int operator<= CCString, char*); 
friend int operator<= (char*, CString); 
friend int operator<= CCString, PString); 
friend int operator<= CPString, CString); 

private: 
char cString[256]: II 255 character C string 

public: 
CString (); II create and initialize to null 
CString CCString &l: 
CString Cchar *); 
CString CPString); 
char* getcString (); II return pointer to the string itself 
int len (); II get length of string 

Continued next page 



234 Chapter 10 • Strings, Lists, and Files 

Listing 10.2 (Continued) The CString class 

I: 

II overloaded operators 

II assignment 
void operator= CCString *); II assignment between two C string objects 
void operator= (char*); II assignment from a literal 
void operator= CPString *); II assignment and conversion from PString 

II relationship 
int operator== (CString); 
int operator> CCString); 
int operator>= CCString); 
int operator< CCString); 
int operator<= CCString); 
int operator!= CCString); 

II concatenation 
void operator+= (CString); 
void operator+= (char*); 
void operator+= CPString); 

II cbaracter access 
char operator[] (int); II program sends in array index; use on right side of= 

II type conversion (lets you use CString in place of char *) 
operator char*(); 

The CString class suffers from the same limitation as PString: The [ ] operator can 
be used only to retrieve a character from a given position in the string. It can't be 
used as the target of an assignment. 

NOTE 
PString and CString can be found in the files stringobjects.h and stringobjects.cpp. 

USING THE STRING CLASSES 

Using the PString and CString classes can greatly simplify string handling in a pro
gram where you are mixing the two types of strings. As an example, look at the block 
of code that appears in Listing 10.3, which has been taken from the Penultimate 
Video application object's Dis pl ayTi t le Info function. 

The program first declares an object of class PString. It then identifies the dialog 
box that triggered the function call and retrieves a pointer to the dialog box's list box. 



Lists 235 

Listing 10.3 Using PString and CString objects 

II Declare a PString object 
PString pascalString; 

LDialogBox * theDialog = dialogResponse->dialogBox; 
LListBox * thelist = CLListBox *) theDialog->FindPaneBylD CTITLE_LIST_BOX); 

II Use the PString object to receive the highlighted item 
theList->GetDescriptor CpascalStringl; II get first highlighted item 

II Copy the PString object to a CString object. making the conversion from 
II a Pascal string to a C string 
CString cTitle = pascalString; 

II Use the CString object in place of a C string 
Parent= Items->find CcTitlel; II find item with that title 

Then it calls Get De s c r i pt o r to retrieve the text of the highlighted item in the list 
box. However, unlike the examples you saw in Chapter 8, in this case the parameter 
in which the descriptor is to be returned is a PString object rather than a variable of 
type Str255. (Remember, you can use a Power Plant Pascal string object anywhere a 
function requires a Pascal string of the same length.) 

Because the purpose of the Di s p 1 a y T i t 1 e I n f o function is to display a collec
tion of information about the selected merchandise item, the function must retrieve 
a pointer to the selected item. The Penultimate Videos program stores all its data as 
C strings. Therefore, the PString object that contains the descriptor from the list box 
must be converted to a CString before it can be used in a search of the binary tree of 
titles. To make the conversion, all the program needs to do is create a CString object 
and assign the contents of the PString object to it. The CString object can then be 
used in the f i n d function in place of a C string. 

Lists 

As you read earlier, PowerPlant makes extensive use of linked lists to relate objects 
within the PowerPlant environment. The same classes that PowerPlant uses for its 
own internal purposes are available to help you manage objects within your own pro
gram. 

The list class hierarchy begins with the class LlteratedList, an abstract base class 
that provides support for connecting iterators to and removing iterators from a list. 



236 Chapter 10 • Strings, Lists, and Files 

It does not provide storage for or access to the members of a list. That must be pro
vided by another class-LDynamicArray. The single derived class provided by Power
Plant-the one used for many of PowerPlant's internal data structures-is LList. 

CREATING AND MAINTAINING A LIST 

LList stores items of any type. As you might expect, typically those items are point~rs 
to objects. Once you've created the LList object, the class provides the following iter
ations with the list: 

• Retrieval of the number of items in the list using the Get Count function. 
• Retrieval of an item at a specified position (index) in the list using the Fetch -

I t e mA t function. The items in a list are numbered beginning with 1. 
• Insertion of one or more items at a specified index in the list using the I n -

s er tI t ems At function. 
• Removal of one or more items at a specified index in the list using the Re -

moveitemsAt function. 

You may also find some of the Fetch I n de x 0 f function-which is inherited from 
LDynamicArray-to be useful. It returns the position in the list of an item. In other 
words, Fetch I n de x 0 f performs a search of the list using a pointer to the item you 
want to find. 

The Penultimate Videos program uses an object of class LList to connect rented 
merchandise items to the customer who rented them. To support the list, the Cus
tomer class contains a pointer to an LList object (Items_rented). The list object is 
created in the class's constructors with the following statement: 

Items_rented =new Llist(); 

This particular constructor sets up a list of unknown length and unknown item size. 
Alternatively, you can pass a constructor the size of the item and the number of 
spaces to allocate for the list. In both cases, you have defined an empty list. However, 
if the items for the list happen to be available, you can pass yet a third constructor the 
size of the items and a handle to where they are stored, generating a list that is 
already populated. 

Whenever a Penultimate Videos customer rents an item, a pointer to that item is 
inserted into the linked list of rentals for that customer (see Listing 10.4). In the Rent 
function, the program retrieves a pointer to the customer renting the item and then 
calls the customer object's InsertRenteditem function to actually perform the 



Lists 237 

insertion. As you can see in Listing 10.4,lnsertRentedltem contains just a call to 
the LList function Insert I terns At. 

Listing 10.4 Functions to insert an object into an Llist object 

date * Item_copy: :Rent <Customer * theRenter, int rental Period) 
{ 

DateTimeRec todayRec; 
date * today; 

::GetTime C&todayRecl; II call ToolBox routine to get current date and time 
today= new date <todayRec); 
*Date_due =(*today)+ rentalPeriod; II uses overloaded operators 
Renter_numb = theRenter->getRenter_numb(); 

II put item into customer's Llist of rented items 
theRenter->InsertRentedltem (this); 

In_stock = FALSE; 
return Date_due; 

void Customer::InsertRentedltem (!tem_copy * rentedltem) 
{ 

Items_rented->InsertltemsAt (1, array!ndex_Last, &rentedltem); 

To insert an item, you must specify three things: 

• The number of items to be inserted (in this case, just one). 
• The list position after which the new item(s) are to be inserted. In this example, 

the function call uses a constant that indicates that the item is to be placed at the 
end of the list. 

• The address of the item being inserted. Notice in Listing 10.4, for example, that 
the item being inserted is a pointer stored in the variable rented I tern. The func
tion call therefore includes the address of the pointer variable rather than its con
tents. 

Removing an item from a list means you must find the item first and find its posi
tion in the list. We will leave finding the item for a moment, because it provides a 
good place to provide an example of using a list iterator. Therefore, assuming that 
you do know an item's list index, you can remove it with 

thelist->RemoveltemsAt (1, index); 



238 Chapter 10 • Strings, Lists, and Files 

The first parameter specifies the number of items to remove. The second is the start
ing index in the list. 

USING A LIST /TERA TOR 

You might want to use a list iterator for several reasons. The most obvious is to 
traverse the list to access each member. However, you might also want to traverse the 
list to search it based on some value other than a pointer to the item (the only type of 
search supported by LList through its inherited Fetch I n de x 0 f function) or to find 
the location for inserting an item when you are keeping the list in some order. 

Basic list iteration is provided by the class LListlterator. It supports iteration from 
the first or last item in the list, as well as from a specified index position. The four 
functions you are most likely to use are these: 

• Current: Returns the current item. 
• Next: Moves to the next item in the list. 
• Pre vi o us: Moves to the previous item in the list. 
• ResetTo: Changes the current index to a specified position. 

The first three functions, which actually access items in the list, each return a Bool
ean that indicates whether the access was successful. For example, if Next or Pr i or 
returns false, you have reached the end of the list. 

The beauty of an LListlterator object is that it can keep track of its position in the 
list even if the list changes. In other words, if you insert items into or remove items 
from a list while an iterator is attached to the list, the iterator remains valid. In fact, if 
the associated list object has been deleted, the iterator will gracefully handle the situ
ation. 

The problem with an LListlterator object is that it can't tell you where it is: It can 
return the current object, but can't return that object's index. If you happen to be 
keeping the list in some order or need to search by something other than a pointer to 
the object, then you desperately need to be able to know that index. Admittedly, 
given that an iterator adjusts to changes in a list, the possibility exists that an index 
returned during a list traversal could be invalid when you try to use it. However, if 
you can be certain that the list won't change in the interval between finding the item 
and using the index of that item, then it would be extremely useful to have an iterator 
that returned the index. 

To solve the problem, the Penultimate Videos program uses a subclass of LListlt
erator (IndexAccesslterator in Listing 10.5). This class adds a single function to LList
Iterator that simply returns the value in the iterator object's mCu rr Index variable. 



Files 239 

This iterator can then be used in any situation in which there is no chance that the 
list will change before the retrieved index is used. 

Listing 10.5 The lndexAccesslterator class 

class IndexAccesslterator : public Llistlterator 
{ 

I; 

friend class Llteratedlist; 

public: 
IndexAccesslterator (Llteratedlist &inlist, ArraylndexT inPositionl; 
-IndexAccesslterator(); 

getCurrentlndex(); 

To see a list iterator in action, take a look at Listing 10.6, the function that removes 
an item from a customer's linked list of rented items. Although a pointer to the item 
is available, for demonstration purposes the search uses the item's inventory number. 
The function first creates an iterator object from the IndexAccesslterator class. It 
then gets the first item in the list. If the list is empty, the variable sea rch_res ult 
will contain false; otherwise, search_resul t is true and list Item contains a 
pointer to the first item in the list. 

The function continues to iterate through the list by placing a call to the Next 
function in a w hi l e. The loop will stop as soon as the function encounters an item 
with the correct inventory number or there are no more items in the list. At that 
point, the function can remove the item from the linked list by placing a call to the 
get Cur rentl ndex function in the call to Remove I terns At. 

Files 

PowerPlant provides the class named LFile that acts as a wrapper for File Manager 
calls. You can use it to manage the entire data and/ or resource fork of a file. 
Although LFile includes code for opening both the data and resource forks, it only 
includes code for reading and writing the data fork; you will need to add your own 
code for handling the resource fork. 



240 Chapter 10 •Strings, Lists, and Files 

Listing 10.6 Using a list iterator 

void Customer::RemoveRentedltem Cltem_copy * rentedlteml 
{ 

Item_copy * listltem; 
Boolean search_result; 

II create list iterator 
IndexAccesslterator * Rllist =new IndexAccessiterator (*ltems_rented, ll; 

search_result = Rllist->Current C&listlteml; II get first item 

while Crentedltem->getlnventory_numb(l != listltem->getlnventory_numb(l 
&& search_resultl 

search_result = Rllist->Next C&listltem); II get next item in list 

if (!search_resultl 
{ 

else 

II alert goes here 

II remove item found 
Items_rented->RemoveltemsAt (1, Rllist->getCurrentlndex()); 

To demonstrate how an LFile object can simplify file handling, we'll be looking at 
code that opens and saves the contents of a Note object. In Listing 10.7, for example, 
you will find code that opens a file containing a note and places the text that has been 
read from the note into a Note object. 

The OpenNote function first uses the standard GetFile dialog box to obtain a 
FileSpec for the file to be opened. In particular, notice that the call to the ToolBox 
routine St and a rd Get Fi 1 e is bracketed by calls to two UDesktop routines: De a c -
ti vat e and Act i vat e. You should use these functions whenever your program will 
be displaying a modal dialog box, such as the GetFile dialog box. De act i vat e makes 
the front window inactive and lets the modal dialog box take over event trapping. 
You should therefore call it just before displaying a modal dialog box. Activate 
makes the front window active again and should be called immediately after a modal 
dialog box has been closed. 

Although there are several ways to initialize an LFile object, probably the easiest is 
to use a FileSpec. As you can see in Listing 10.7, the Open Note function retrieves the 
FileSpec from the data structure returned when the GetFile dialog box is closed. It 
then uses that FileSpec as input to a constructor when creating a new LFile object. 
Creating the object opens the file. If no file matches the file specified by the FileSpec, 



Files 

Listing 10.7 Opening a note 

void Note::OpenNote () 
{ 

StandardFileReply replyStruct; 
SFTypelist typelist; 
short numTypes = l; 
Str63 fileName; 

typelist[OJ = 'TEXT': // read just text files 

UDesktop::Deactivate( ); 
: :StandardGetFile (nil. numTypes, typelist. &replyStruct); 
UDesktop: :Activate(); 

if (!replyStruct.sfGood) return: // user cancelled 

fileSpec = replyStruct.sfFile: 

Try_ 
I 

theFile =new LFile (fileSpec); 
theFile->OpenDataFork (fsRdWrPerm); 
Handle tempTextH = theFile->ReadDataFork(); 
SetTextHandle (tempTextH); 
::DisposeHandle CtempTextHl: 

LScroller * theScroller = (LScroller *) LPane::GetSuperViewCl: 
LWindow * theWindow = (LWindow *) theScroller->GetSuperView(): 
theWindow->SetDescriptorCreplyStruct.sfFile.name); 

Catch_ (inErr) 
I 

Throw_CinErr); 
EndCatch 

241 

no file will be opened. As you will see shortly, when you want a new file, you must 
create it explicitly. 

Once the file has been opened, OpenNote opens the file's data fork for both read
ing and writing with the LFile function 0 pen Data Fork. Then, the function can use 
the function Re ad Data Fork to load the entire contents of the data fork into mem
ory, returning a handle to where the data are located. 



242 Chapter 10 • Strings, Lists, and Files 

NOTE 
LFile contains a function related to OpenDataFork-OpenResourceFork-to open the 
resource fork of a file. However, there is no file analogous to ReadDataFork for the 
resource fork. As mentioned earlier, you will need to code resource fork reads yourself 
using File Manager calls. 

The next step is to insert the text into the text edit record being managed by a 
Note object. To do so, Open Note calls the LTextEdit function SetTextHandl e, 
which modifies the Note object so that it uses the handle to the text loaded from the 
file to locate a note's contents. Finally, the function disposes of the handle it created 
when loading data and sets the note window's title to the name of the file from which 
data were just loaded. 

Saving something in a file's data fork is almost precisely the opposite of reading 
the data fork. As you can see in Listing 10.8, there are two functions that handle sav
ing a note. Save Note takes care of writing to the file; Save As Note handles naming 
a new file. 

Because saving a file always involves doing a Save As at least once, let's look first at 
the Sa v e As function. To save a file under a new name, the function does the follow
ing: 

• Deactivates the front window. 
• Displays the standard PutFile dialog box to obtain a FileSpec. 
• Reactivates the front window. 
• Sets the name of the note window to the file name chosen by the user. 
• Assuming the user wants to create a new file (rather than replace an existing file 

of the same name), creates the file with the LFile function Crea teNewDa ta -
Fi l e. Notice that this function requires the creator string, the file type string, and 
a constant for the script system that should be used to display the file name. The 
0 in Listing 10.8 indicates a Roman script. 

• Calls the Save Note function to write the data to the file. 

NOTE 
Constants for script systems can be found in Script.h. 

The Sa v e Note function begins by deleting an existing LFile object, which closes 
the file. Then it creates a new object using the stored FileSpec and opens the file's 
data fork. To prepare for writing, Sa v e Note gets the handle to the text to be written 
and locks that handle. Finally, it can use the LFile function W r i t e Data Fork to write 
the entire note to the file at once. Notice that Save Note passes Wri teDa ta Fork a 
pointer to the text along with the number of bytes to be written. 



Files 

Listing 10.8 Saving a note 

void Note::SaveNote () 
I 

delete theFile; // remove existing file object 
theFile =new LFile (fileSpec); //create new object 
theFile->OpenOataFork (fsRdWrPerm); 

Handle tempTextH = GetTextHandle (); 
StHandlelocker theLock(tempTextH); 
theFile->WriteDataFork (*tempTextH, GetHandleSize (tempTextH)); 

void Note::SaveAsNote () 
{ 

StandardFileReply replyStruct; 
LStr255 prompt= "Save note as:"; 
LStr255 fileName; 

UDesktop: :Deactivate(); 
::StandardPutFile (prompt, fileName. &replyStruct); 
UDesktop::Activate(); 

if (!replyStruct.sfGood) return; //user cancelled 

fileSpec = replyStruct.sfFile; 

LScroller * theScroller = (LScroller *) LPane::GetSuperView(l; 
LWindow * theWindow = (LWindow *) theScroller->GetSuperView(); 
theWindow->SetDescriptor(replyStruct.sfFile.name); 

if (!replyStruct.sfReplacing) 
theFile->CreateNewDataFile ('VidS', 'TEXT', 0); 

SaveNote(); 

mustSaveAs = FALSE; 

NOTE 

243 

In the CW8 InProgress folder, you will find a class called LStreamable. When complete, 
this class will act as a mix-in base class for any class whose data values you want to 
store in a file. Using overloaded operators inherited from LStream, you will be able to 
use the stream insertion and extraction operators to read from and write to a file. 
Doing so will be much like using ANSI stream I I 0, although somewhat simpler because 
you won't need to worry about things such as placing nulls at the end of C strings and 
skipping over blanks that follow numbers and precede strings. Keep an eye out for when 
this class graduates from "in progress" to becoming a useful part of PowerPlant. 



CHAPTER 

Repeated Actions: 
Periodicals 

In Chapter 6, where we looked at editing text, you were introduced to the idea of a 
periodical, a class whose objects receive attention at regular intervals, either after 
every event (repeaters) or after every idle event (idlers). The most widely visible use of 
a periodical in a Macintosh program, of course, is the flashing straight-line insertion 
point. However, that isn't the only instance in which an object needs to receive atten
tion regularly. 

In this chapter we'll take a more in-depth look at periodicals so you can set up 
your own periodicals as needed. The example we'll be using is the Penultimate Vid
eos memory monitor window (Figure 11.1), which displays the amount of memory 
available to the program at any given time. Once the window has been opened, the 
program updates it whenever the amount of free memory changes. 

NOTE 
Although you probably wouldn't make this type of information available to users of a 
real-world video store management program, the window nonetheless serves as a good 
example of a periodical. Because Penultimate Videos is totally memory-based-its data 

245 



246 Chapter 11 • Repeated Adions: Periodicals 

Figure 11.1 The memory monitor window 

Amount of free memory: 

1734112 

are all stored in main memory-it also comes in handy when working on the program 
as a warning when memory shortages are likely to occur. 

The LPeriodical Class 

LPeriodical is a mix-in class: You add it to a derived class to provide additional func
tionality to whatever the derived class is inheriting from other its other base class( es). 
If the class that should receive regular attention is a pane, then it will inherit from at 
least the pane class and LPeriodical; if the class is a window, then it will inherit from 
at least LWindow and LPeriodical. 

The LPeriodical class maintains two linked lists (objects of class LList): one of 
repeaters and one of idlers. The class stores pointers to the list objects. Because these 
pointers are stored in stat i c variables, a program maintains only one copy of those 
variables, which is shared by all objects that are derived from LPeriodical. 

To request that a program give time to a periodical, the program must insert the 
periodical into one or both of the periodical lists, using the following functions: 

• St a rt I d 1 i n g: Inserts a periodical into the idlers list. 
• St a rt Rep ea t i n g: Inserts a periodical into the repeaters list. 

To stop giving time to a periodical, a program removes them from the appropriate 
list using the following functions: 

• St o p I d 1 i n g: Removes a periodical from the idlers list. 
• Stop Repeat i n g: Removes a periodical from the repeaters list. 

As you may remember from Chapter 1, where we looked at PowerPlant' s event 
trapping mechanism, an application object's ProcessNextEvent function (Listing 



Subclassing to Create a Periodical 247 

1.3) contains two functions that traverse the periodical lists and handle all periodicals 
on those lists: Use Id l e Ti me takes care of idle events, including a call to the LPeriod
ical function Dev o t e T i me To I d l e r s, which takes care of objects in the idler list; 
Dev o t e T i me To Rep ea t e r s is an LPeriodical function that handles the repeater list. 

Both DevoteTimeToidlers and DevoteTimeToRepeaters traverse the 
appropriate list and execute each object's SpendTi me function, a pure virtual func
tion that you must override in a subclass. SpendTi me should perform whatever 
actions need to occur each time the object gets a chance to execute. 

Subclassing to Create a 
Periodical 

As you have read, a subclass that inherits from LPeriodical must also inherit from at 
least one other class. The memory monitor window class, for example, inherits from 
both LPeriodical and LWindow (see Listing 11.1). The class includes a F i n i s h C re -
ate Self function(overridingthe LPane function) and a SpendTi me function (over
riding the LPeriodical function). The Fi ndCommandStatus function takes care of 
deactivating the Memory Monitor menu item when a window is open on the screen 
so that no more than one memory monitor window appears at any given time. 

Listing 11.1 The MemoryMonitor class 

class MemoryMonitor : public LWindow, public LPeriodical 
l 

I: 

public: 
static MemoryMonitor * CreateMemoryMonitorStream <LStream * inStream); 
MemoryMonitor(J; 
MemoryMonitor (LStream * inStreaml: 
-MemoryMonitor(J; 
void FindCommandStatus<CommandTinCommand, Boolean &outEnabled. 

Boolean &outUsesMark,Charl6 &outMark,Str255 outName) 

void FinishCreateSelf(); 
void SpendTime (canst EventRecord & inMacEvent); 

private: 
LPane * FreeMemCaption; 
long previousFree; 



248 Chapter 11 • Repeated Actions: Periodicals 

The class's Fr e eM emC apt i on variable holds a pointer to the LCaption object that 
displays the number of bytes of free memory; the pre vi o us Free variable holds the 
previous reading of the amount of free memory for determining whether the win
dow needs to be updated. 

Several important things need to happen in a periodical's member functions. As 
you can see in Listing 11.2, the Fi n i sh Create Se 1 f function inserts an object into 
both the idler and repeater lists. The destructor removes the object from the lists, a 
step that is essential to ensuring that the program doesn't attempt to access a non
existent object. 

Of course, most of the work occurs in the Spend Ti me function, which begins by 
calling the ToolBox routine FreeMem to retrieve the number of bytes of memory 
available to the program. The function could then immediately update the caption 
that displays the free memory. However, doing so causes the display to flicker. 
Spend Ti me therefore checks to see if the amount of free memory has changed since 
the last time the function was executed and updates the caption only if a change has 
occurred. 

Programming Support for a 
Periodical 

The Penultimate Videos application object activates the Memory Monitor menu item 
in its application object's Fi ndCommandStatus function. It then traps selection of 
that menu item in its ObeyCommand function, which simply creates the memory 
monitor window: 

LWindow * theMonitorWindow = 

LWindow: :CreateWindow CWINDOW_MEMORY_MONITOR, this); 

Because the memory monitor object's Fini shCreateSel f function takes care of 
installing the object into the periodical lists, there is nothing else the application 
object needs to do. 



Programming Support for a Periodical 

Listing 11.2 The MemoryMonitor class's member functions 

MemoryMonitor * MemoryMonitor::CreateMemoryMonitorStream CLStream * inStream) 
{ 

return (new MemoryMonitor (inStream)); 

MemoryMonitor::MemoryMonitor() 
I II empty 
} 

MemoryMonitor::MemoryMonitor CLStream * inStream) 
: LWindow (inStream) 

previousFree = O; 

II Destructor 
MemoryMonitor::-MemoryMonitor() 
{ 

II Remove object from lists of idlers and repeaters 
StopRepeating(); 
Stopldling(); 

II FinishCreateSelf 
void MemoryMonitor::FinishCreateSelf(} 
{ 

II Save pointer to caption that displays amount of free memory 
FreeMemCaption = (LPane *) FindPaneByID (FREE_MEMORY); 
II Add object to lists of idlers and repeaters 
StartRepeating(); 
Startldl ing(); 

II FindCommandStatus: used to deactivate menu option while window is on screen 
void MemoryMonitor::FindCommandStatusCCommandT inCommand, Boolean &outEnabled, 

Boolean &outUsesMark, Char16 &outMark,Str255 outName) 

switch (inCommand) 
{ 

case cmd_memory_monitor: 
outEnabled = false; 
outUsesMark = false; 
break; 

default: 
LWindow::FindCommandStatus (inCommand. outEnabled, outUsesMark. 

outMark. outName); 
break; 

249 

Continued next page 



250 Chapter 11 • Repeated Actions: Periodicals 

Listing 11.2 (Continued) The MemoryMonitor class's member functions 

II SpendTime 
void MemoryMonitor: :SpendTime (canst EventRecord & inMacEvent) 
{ 

#pragma unused (inMacEvent) II suppress error messages 

long bytesFree = ::FreeMem (); 
II update only if memory has changed to avoid flicker 
if (previousFree != bytesFree) 
{ 

PString stringBytes = bytesFree: 
previousFree = bytesFree; 
FreeMemCaption->SetDescriptor (stringBytes); 
FreeMemCaption->Refresh(); 



CHAPTER 

Printing 

Printing from a Macintosh application, while relatively simple for the user, has 
always been a challenge from the programmer's point of view. Fortunately, one of the 
things that PowerPlant does well is to simplify programming for printing. For exam
ple, PowerPlant takes care of figuring out how to break up a document into pages. 

In this chapter we will be looking at the way in which PowerPlant implements 
printing and in particular at the classes LPrintout, LPlaceholder, and UPrintingMgr. 
You will see how to create LPrintout objects that contain LPlaceholder objects, how 
to implement the printing process, and how to add support for the Page Setup and 
Print dialog boxes. 

251 



252 Chapter 12 •Printing 

How PowerPlant Printing 
Works 

Like many parts of PowerPlant, printing functions are managed by a sequence of 
interlinked functions that belong to more than one class. In this particular case, what 
the programmer needs to do and what PowerPlant does are very far removed from 
each other. To help you understand what is happened, we'll first look at what a pro
gram needs to do to implement printing. Then we'll explore what PowerPlant does 
when a program initiates printing. 

A PROGRAM'S PRINTING TASKS 

To print the contents of a PowerPlant window, a program does the following: 

• Creates an object of class LPrintout. The printout object contains views created 
from LPlaceholder. 

• Installs views from the window whose contents are being printed into the place
holders on the printout. 

• Tells the printout to print itself. 
• Deletes the LPrintout object to return the views from the placeholders to their 

original locations. 

Before telling the printout to print itself, a program may also display the Print job 
dialog box. 

THE PRINTING PROCESS 

Before beginning to print, the LPrintout class takes care of dividing the panes or 
views being printed into pages. The portion of a pane or view being printed that will 
fit on one page is called a panel. In this case, the boundaries of the placeholder into 
which a view is installed become the view's frame for the time the view resides in the 
placeholder. A panel is therefore the amount of a view that will fit into the place
holder' s frame. 

The printing process is actually handled by both LPrintout and either LPane or 
LView (depending on whether you are printing a pane or a view). When a program 
calls the LPrintout function Do P r i n t Job, the call initiates the following sequence of 
actions: 



Creating LPrintout Objects 253 

• Do Pr i n t Job obtains the print job information (the range of panels to be printed 
and the number of copies to print). It then calls Pr i n t Panel Range, another 
LPrintout function. 

• Pr i n t Panel Range opens the print manager using the UPrintingMgr function 
0 p e n P r i n t e r. It then calls LP r i n t o u t : : P r i n t Cop i es 0 f P a g es. 

• Pri ntCopi es Of Pages contains a loop that repeatedly calls LPri nt-
o u t : : Pr i n t Panel to print the required number of copies of each panel. 

• LP r i n t o u t : : P r i n t P a n e l calls either LP a n e : : P r i n t Pa n e l or 
l View: : Pri ntPane l (depending on whether you're printing a pane or view) 
for each pane and subpane in the LPrintout object panel. 

• LP an e : : Pr i n t Panel or L Vi ew: : Pr i n t Panel takes care of supplying local 
frame coordinates and then calls Pr i n t Panel Se l f, which by default simply 
calls Draw Self. 

LPRINTOUT'S LIMITATIONS 

In most cases, you won't need to subclass LPrintout. Its default behavior can handle 
most printing situations. However, although LPrintout does handle the pagination of 
multiple-page documents, there are a couple of things that, as a generalized printing 
engine, it simply can't do. In particular, it can't determine whether the place at which 
a page breaks is actually appropriate. For example, if you are printing text, LPrintout 
has no way to know if a panel boundary cuts through the middle of a line of text. In 
addition, LPrintout doesn't handle nonplaceholder views or panes well. For example, 
you might want to add a letterhead, graphics, or display text to a printout that 
doesn't appear on the screen view. However, you usually can't add those elements 
directly to the LPrintout object and expect them to print properly on a multipage 
document. 

If you need to determine panel boundaries yourself or want to add items other 
than placeholders to printed output, you will need to create a subclass for the view 
being printed and override the LPane or LView function Pr i n t Panel Se l f. Unfor
tunately, there's nothing simple about figuring out where panels should break. Doing 
so is very program-dependent and therefore beyond the scope of this book. 

Creating LPrintout Objects 

The first step in printing is to use Constructor to create an LPrintout object that con
tains a placeholder for the data to be printed. The simplest LPrintout object used by 



254 Chapter 12 •Printing 

Penultimate Videos, for example, handles printing a note. As you can see in Figure 
12.1, the object contains only one pane: the LPlaceholder object with the resource ID 
1502. In contrast, the LPrintout object for handling a printed customer receipt (Fig
ure 12.2) contains several placeholders, as well as objects of class LPicture and 
LCaption. 

Figure 12.1 

: .· ·: :• 

!If J! 
:::::· '.'.: -:::::-

The LPrintout object for printing a note 

. . : . . . 
··.·· .: : 

.·: :· ··.···: :· 

: : . : : 

·'·'·. '·'· 

.·.;·::-::'.::: 
·- .. ... . . 

,.:.: .• ! :_,: 

.. '.. ::·:: :'.'.. ::=:::: ::-:::::-:: '.. 

;.:: :::.::<.::::~: .:·.: :: :: : ·:. :; :. 

·· .· ··· ii f ···.·.· .. -.···· ... 
. --

. :'.'~: .. ~:<-~:-::'.:: :'.'~: <: .. ; : .. 
::;·: .; .:·:; :. -~--- .<. ·.·; .. ·.·. . -~· ... 

.. .. .. .. .. .. .. .. .. . ... :: :: : ::- :;~_::..-::_~ 

•,·. ! 

: .·· ... ,. .... 

·.,·· ; ·_;·;, '. 

: .. : 

.. ·.· .... • 

'.: -:: ; .. :; :. -:: ~ : : :'. ;. 
'.· .. : .: .. · .. ·. 

;:, : : . ~ .. ;.: ~ 

::'.': ,: ; -:'.-:'.: 

:::._::!•:.:· 
. • • ! • • 



Creating LPrintout Objects 

Figure 12.2 The LPrintout object for printing a customer receipt 

<:. :; '.: <:· .: '." ·: '.: ' :· .. ; . 
. .• •• : jie~ll_•n.~d' ; ;!:~~ 

. . ' .. ' . . : .. :.:..-.: .:..:. : 

. •,··,·· .; . . ... _, 

NOTE 

... 
.· . : ~-' 

· .. · .: .. ·.· . : .. :· ;. 

. . . . ....... " .·· .· 

. · .. ·'·' . '·' . . :. ·,·· :. 

................ 

• ~ I .· .. 

. . ·· :··. 

. •· .. .. .... .. ·;·:: ::· :· ·· 

: ·;i~ 
.. · ... , .. 

c: 
' .. · .. ·I·· 

,, ., 
" 
·l:· · · , . 
·c: 
,l!. 

. ... · .. ·i·· 
. , . . . . . . (-

.• .. ·j·· 

·· .... ·.:.I· 

255 

Although printing typically doesn't work well when you place objects other than place
holders on an LPrintout object, you can often get away with it if a printout will never be 
more than one page in size. This happens to be the case for the receipt, which means 
that the receipt can contain the Penultimate Videos logo and some display text without 
requiring overriding of the LPane function PrintPanelSelf. 

To create an LPrintout object, open Constructor and create a new view of type 
LPrintout. Then, drag LPlaceholder objects onto the view; resize, number, and move 
them as needed. 

As you can see in Figure 12.3, an LPrintout object has very few properties with 
which you need to be concerned. By default, the size is set to letter-sized paper in a 
portrait orientation. However, during the printing process, LPrintout adjusts the size 



256 Chapter 12 •Printing 

based on the paper size and oriented specified by the user through the Page Setup 
dialog box. 

Figure 12.3 LPrintout properties 

fi§lil LPrintout from PPob 1500, "Printed note" • · · Ill.] 
{r 

Yidth:l-1 181 Enabled r-
.. ·• 

Height: 1792 I 181 Active 

User Constant: lo I 
Class ID: lprnt I 

Page Numbering : @ Across Then Down 

Q Down Then Across ~ 
¢] J¢ ~ 

The Page Numbering property refers to the order in which panels are numbered 
and printed. Assume, for example, that you are printing a large poster containing the 
image in Figure 12.4. The poster is far too large to fit on one piece of paper. It there
fore has been broken up into 18 panels, represented by the heavy lines in Figure 12.4. 

These panes can be printed across, moving from left to right beginning in the top 
row, or down, moving from top to bottom beginning with the leftmost column. Use 
the Page Numbering radio buttons to select the correct panel printing order for your 
output. 

LPlaceholder's properties (Figure 12.5) are primarily inherited from LView. How
ever, the alignment properties at the bottom of the properties window are particu
larly important. They determine how a portion of a view or pane that is smaller than 
the panel in which it is installed will be aligned with the panel's frame. The align
ment possibilities affect the printed output in the following way: 

• No alignment: The pane or view is resized to fit the panel's frame. 
• Horizontal alignment but no vertical alignment: The pane or view is sized verti

cally to fit the panel's height, hut the chosen horizontal alignment is used for plac
ing the pane or view within the panel's width. 

• Vertical alignment but no horizontal alignment: The pane or view is sized hori
zontally to fit the panel's width, but the chosen vertical alignment is used for plac
ing pane or view within the panel's height. 

• Both horizontal and vertical alignment: The pane or view is not resized, but 
placed using the horizontal and vertical specifications. 



Coding Simple Printing 

Figure 12.4 Panel "numbering" 

Number 
down? 

Number 
across? 

Coding Simple Printing 

257 

If you want to print without showing the Print job dialog box, coding the printing is 
straightforward. In Listing 12.1, for example, you can see how the Penultimate Vid
eos application object prints a customer receipt in its Print Receipt function. The 
code uses the same general steps outlined earlier in this chapter. 

Pri ntRecei pt first creates an object of class LPrintout (thePri ntout). Next, 
the function calls Fi n d Pane By I D to first get a pointer to one of the LPlaceholder 
objects on the printer. It then calls Fi n d Pane By ID again to get a pointer to the pane 
that is to be installed in the placeholder. 

To install the pane into the placeholder, P r i n t Rec e i pt calls the LPlaceholder 
function I n st a l l 0 cc up ant, passing in the pointer to the pane being installed and a 
constant that indicates the alignment to be used. (Alignment constants, such as the 
a t None used by Penultimate Videos, can be found in Icons. h.) This process-getting 
the pointers and installing the pane-is repeated for each placeholder on the Pr i n t -
out. 



258 Chapter 12 •Printing 

Figure 12.5 LPlaceholder properties 

Drop 
D Left D Right 

Osottom 
476 

Pane ID: I 1502 ID Text ID 181 Enabled 

User Constant: ::I o========:I D Text constant 181 Yisib le 

Class ID: Ip lac 
~-~ 

[ 

Image Size: 3 ;- Scroll Unit: 3 [Scroll Position:~ 
Width: lo I I Horizontal: I 1 I Horizontal: lo I 

---·~~:.~.~.~.'. ... ~°. ............. _ ........ L l_._~e~~~~~!~-··-··- ..... !.. .. ....... ~ .. ~.~t~°.~.'. .. ~---- I 
D Reconcile Overhang 

i @ None @ None 
! Horizontal Alignment: J [Vertical Alignment: J 
~~3L __ J:~---
Once all the panes have been transferred to the printout object, Pri ntRecei pt 

calls Do P r i n t J ob. As you read earlier, Do P r i n t J o b initiates a series of actions that 
perform the actual printing. 

When printing is completed, the panes that were transferred to the printout 
object need to be returned to their original location. This activity is performed by 
LPrintout's destructor. A program should therefore delete the printout object. 



Adding Support for the Printing Dialog Boxes 

Listing 12.1 Printing without the Print Job dialog box 

void CPPVideoStoreApp::PrintReceipt CSDialogResponse * dialogResponse) 
I 

II create prinoutout object from resource 
LPrintout * thePrintout = LPrintout::CreatePrintout (WINDOW_RECEIPT_PRINTOUT); 

II get panes in dialog box and install in placeholders 
LPlaceHolder * thePlace = (LPlaceHolder *) 

thePrintout->FindPaneByID (RECEIPT_PRINTOUT_DATEl; 
LView * theView = (LView *) receiptDialog->FindPaneByID CRECEIPT_OATE); 
thePlace->InstallOccupant (theView, atNone); 

259 

thePlace = (LPlaceHolder *) thePrintout->FindPaneByID (RECEIPT_PRINTOUT_CUST_NUMB); 
theView = (LView *) receiptDialog->FindPaneByID CRECEIPT_CUST_NUMB); 
thePlace->InstallOccupant (theView. atNone); 

thePlace = (LPlaceHolder *) thePrintout->FindPaneByID CRECEIPT_PRINTOUT_NAME); 
theView = (LView *) receiptDialog->FindPaneByID CRECEIPT_NAME); 
thePlace->InstallOccupant (theView, atNonel; 

thePlace = (LPlaceHolder *) thePrintout->FindPaneByIO (RECEIPT_PRINTOUT_LISTl; 
theView = (LView *) receiptOialog->FindPaneByID (RECEIPT_TABLE); 
thePlace->InstallOccupant (theView, atNone); 

II now. print it; Print Job dialog box doesn't appear 
thePrintout->DoPrintJob(); 

II to get the scrolling view back to its window. you must delete the 
II printout to trigger its destructor 
delete thePrintout; 

II close other dialog boxes 
CloseRentWindows (dialogResponse); 

Adding Support for the 
Printing Dialog Boxes 

Although there are some situations in which it is acceptable to print without display
ing the Print Job dialog box and without giving the user access to the Page Setup dia
log box, in most cases you will want to give users the flexibility those dialog boxes 
provide. Because both dialog boxes modify a print record, code that supports them 
must allocate a print record and store a handle to that record. 



260 Chapter 12 • Printing 

As an example of supporting the printing dialog boxes, the Note class turns on the 
Page Setup menu option whenever at least one note window is open; printing a note 
displays the Print Job dialog box. To provide access to the print record needed to sup
port both dialog boxes, the Note class includes a variable of type THPri nt (mPri nt
RecordH). 

Support for Page Setup is usually placed in the ObeyCommand function of a print
able object. In our example, it appears in the Note class. However, if every window 
opened by an application is printable, you may want to place the Page Setup code in 
the application object's ObeyCommand function. 

In Listing 12.2 you will find the Page Setup code from the Note class. The Power
Plant class that forms the basis of this code is UPrintingMgr. The UPrintingMgr class 
acts as a wrapper for many Printing Manager functions, including such things as cre
ating a new print record, obtaining a handle to the class's print record, and opening 
and closing a printer driver. 

Listing 12.2 Handling the Page Setup dialog box 

case cmd_PageSetup: 
UDesktop::Deactivate(); 

II check for existing print record 
if CmPrintRecordH ~nil) 

mPrintRecordH = UPrintingMgr::GetDefaultPrintRecord(); 

II display the page setup dialog box 
UPrintingMgr::AskPageSetupCmPrintRecordH); 

UDesktop::Activate(); 
break; 

As you can see in Listing 12.2, to provide the Page Setup dialog box, you call the 
UPrintingMgr function As k Pa g e Setup, passing it a handle to the print record that 
should be modified. If a print record hasn't been allocated, the call to As k -
Page Setup will cause a program crash. Therefore, the code first checks for a valid 
print record handle and if necessary calls Get Def a u 1 t Pr i n t Record to obtain the 
class's default print record handle. Notice also that because the Page Setup dialog box 
is modal, the code deactivates the front window with U Des kt op : : De act i vat e 
before displaying the dialog box. Once the dialog box has been dismissed, it makes 
the front window active again with UDes kt op: : Activate. 

As you have read, LPrintout checks a printable class's print record to determine 
the number of copies and page range to print. To give the user the opportunity to 



Adding Support for the Printing Dialog Boxes 261 

change these values, a Macintosh application displays the Page Job dialog box. A 
Power Plant program can do so with the UPrintingMgr function As k Pr i n t Job. 

The code used by the Note class to print itself appears in Listing 12.3. Notice that 
this function first creates an LPrintout object. It then determines whether a print 
record exists. If there is no print record, it creates one by calling U P r i n ti n g -
Mgr:: CreatePri ntRecord, which returns a handle to the newly created data 
structure. Then, it attaches the new print record to the LPrintout object by calling 
LPrintout::SetPrintRecord. 

Listing 12.3 Printing with the Print Job dialog box 

void Note::PrintNote() 
I 

II Create the LPrintout object 
LPrintout * thePrintout LPrintout::CreatePrintout (WINDOW_NOTE_PRINTOUT); 

II Create print record if necessary 
if (mPrintRecordH ==nil) 

mPrintRecordH = UPrintingMgr::CreatePrintRecord(); 

II Switch the print record 
thePrintout->SetPrintRecord CmPrintRecordH): 

II Create a pointer to the placeholder 
LPlaceHolder * thePlace = (LPlaceHolder *) 

thePrintout->FindPaneByID CRETURN_PLACEHOLDERl; 
II Find ID of the pane that scrolls inside the scroller 
LView * theView = (LView *) LTextEditM: :FindPaneByID CNOTE_TE); 
II Install pane into place holder in printout object 
thePlace->InstallOccupant CtheView. atNone); 

II display Job dialog box 
UDesktop::Deactivate(); 
Boolean Printit = UPrintingMgr::AskPrintJob (mPrintRecordHl; 
UDesktop::Activate(); 

if (!Printlt) 
return; II user cancelled; get out of here 

II now, print it 
thePrintout->DoPrintJob(); 

II to get the scrolling view back to its window, you must delete the 
II printout to trigger its destructor 
delete thePrintout; 



262 Chapter 12 • Printing 

Pri ntNote installs the Note object into the LPrintout object's placeholder. At 
that point, the function deactivates the front window, displays the Print Job dialog 
box, and then reactivates the front window. At that point, the note is ready to be 
printed with DoPri ntJob. The final step is to return the Note to its original super
view by deleting the LPrintout object. 



Binary Search 
Trees 

Appendix 

A binary search tree is a data structure that organizes elements in key order to provide 
fast searches based on that key. Although binary search trees are classic data struc
tures that have been used for many years, the influence of object-oriented program
ming has introduced new ways of handling these structures. 

In this appendix you will first be introduced to the binary tree data structure along 
with algorithms for inserting, searching for, and deleting items. You will also be 
introduced to tree traversal algorithms. If you are familiar with classic binary trees, 
you can skip this first material. The second major portion of this chapter looks at the 
classes and techniques used to implement binary trees in an object-oriented pro
gram. These latter techniques are used to provide the underlying data management 
for the Penultimate Videos sample program. 

263 



264 Appendix • Binary Search Trees 

The Binary Tree Data 
Structure 

A binary tree is made up of a collection of nodes, each of which is usually contains a 
pointer to an object. It is theoretically possible to store an entire object as a node in a 
tree. However, more commonly binary trees are viewed like indexes to a book: A 
book's index contains an ordered list of topics and pointers (page numbers) to where 
the topic can be found. Using pointers to objects means that the same object can 
appear in many trees, yet only be stored in memory once. If we extend the example 
of book indexes, a book can contain an index by topic, another by illustration, and 
yet another by authors of works cited in the book. In all three cases, the book uses 
page numbers as pointers to avoid repeating any information in the text. 

A binary tree gets its name from its structure. As you can see in Figure App.I, each 
node points to at most two nodes below it (its left child and right child). Each node 
also has at most one node above it (its parent). 

Figure App.1 A binary search tree 
/ Rootnode 

.-----------. 
Henry 

Left child 

~ .------....._ _ ___, / Right child 

Bobby Mary 

Anne David Terry 

Cathy Edward Veronica 

Leaf nodes Vernon 



The Binary Tree Data Structure 265 

The node at the top of the tree is called the root. This is the first node that is placed 
in the tree and provides the single entry point to the entire tree. It is the only node 
that doesn't have a parent. Any node that has no children is called a leaf. 

The tree in Figure App.1 uses a person's first name as the key by which the nodes 
are ordered. In an actual tree, the keys aren't part of the nodes, but have been 
included in the illustration to make it possible to identify the way in which the nodes 
are ordered. 

If you look at any given node, you will notice that the key of its right child is 
greater than the key of the node; the key of its left child is less than the key of the 
node. This very simple organizing principle enables very fast searching of the tree. 

SEARCHING A BINARY TREE 

The most common reason for using a binary tree is for fast searching. If the 1 O nodes 
of the tree in Figure App.1 were stored in a linked list ordered by name, a program 
would need to access every node to find Veronica, the alphabetically last node in the 
list. However, when searching the binary tree, a program only needs to access four 
nodes to find Veronica. By the same token, an unsuccessful search of a linked list (a 
search. where the key for which the program is looking isn't present in the list) 
requires searching every element in the list. In contrast, an unsuccessful search of a 
binary tree will require searching only one node at each level in the tree. This means 
that in the worst case of an unsuccessful search of the tree in Figure App.1, a program 
will at most need to consult only five nodes, whereas if the objects were stored in a 
linked list, the program would need to consult 10 nodes. 

The process for searching a binary tree can be summarized as follows: 

1. Find the root node and make it the current node. 
2. Compare the search key with the key of the current node. 
3. If the search key and the current node's key match, the search has been successful. 
4. If the search key is less than the current node's key, retrieve the current node's 

left child. If the current node has no left child, the search is unsuccessful. Other
wise, make the left child the current node and continue with Step 2. 

5. If the search key is greater than the current node's key, retrieve the current node's 
right child. If the current node has no right child, the search is unsuccessful. Oth
erwise, make the right child the current node and continue with Step 2. 

As an example, assume that we are searching for Veronica in Figure App.1. The 
search then proceeds in this way: 



266 Appendix • Binary Search Trees 

1. Find Henry and make Henry the current node. 
2. Compare Henry to Veronica. 
3. Veronica is greater than Henry. Therefore, retrieve the right child (Mary) and 

make it the current node. 
4. Compare Mary to Veronica. 
5. Veronica is greater than Mary. Therefore, retrieve the right child (Terry) and 

make it the current node. 
6. Compare Terry to Veronica. 
7. Veronica is greater than Terry. Therefore, retrieve the right child (Veronica) and 

make it the current node. 
8. Compare Veronica to Veronica. 
9. The search key matches the key of the current node. Therefore, the correct node 

has been found and the search ends successfully. 

An example of a function to search a binary tree appears in Listing App. I. This 
particular function works on a binary tree made up of pointers to Merchandise_Item 
objects and is organized by item number. To support the tree, the Merchandise_ltem 
class includes pointers for an object's left and right children (the variables LeftNumb 
and Ri ghtNumb). The class also includes functions to set the pointers (set Left -
Numb and setRi ghtNumb) and retrieve the pointers (getLeftNumb and get Left
N umb). As you read through this code, compare it to the general algorithm described 
earlier. 

INSERTING NODES INTO A BINARY TREE 

To inert a node into a binary tree, a program searches the tree until it finds an unused 
child pointer that will place the new node in the correct sequence in the tree. The 
general algorithm is as follows: 

1. If the tree is empty, insert the new node as the root node. 
2. Otherwise, find the root node and make it the current node. 
3. Compare the key of the new node with the current node. 
4. If the key of the new node is less than the key of the current node, retrieve the 

current node's left child. If there is no left child, insert the new node as the current 
node's left child. Otherwise, make the left child the current node. Continue with 
Step 3. 

5. If the key of the new node is greater than or equal to the key of the current node, 
retrieve the current node's right child. If there is no right child, insert the new 



The Binary Tree Data Structure 

Listing App.1 Searching a binary tree 

Merchandise_Item * MerchTree::find (ANS!string iTitle) 
{ 

Merchandise_ltem * current; 

if (root) II make sure there is at least one node 
{ 

current= root; 
while (current) II as long as there's a pointer 
{ 

if (strcmp (current->getTitle(), iTitlel == 0) 
return current; II send back pointer to merchandise item object 

II if less, go down right side 
if (strcmp (current->getTitle(l, iTitlel < 0) 

current= current->getRightName(); 
II if greater, go down left side 
else 

current= current->getleftName(); 

return 0; I I not found 

267 

node as the current node's right child. Otherwise, make the right child the current 
node. Continue with Step 3. 

As an example, assume that we want to insert a new node with a key of Tammy 
into the binary tree in Figure App.1. A program performing the insertion would pro
ceed in this way: 

1. Determine that the tree is not empty because a root node exists. 
2. Make Henry the current node. 
3. Compare Tammy to Henry. 
4. Because Tammy is greaterthan the current node, retrieve the current node's right 

child (Mary). 
5. Because a right child exists, make it the current node. 
6. Compare Tammy to Mary. 
7. Because Tammy is greater than the current node, retrieve the current node's right 

child (Terry). 
8. Because a right child exists, make it the current node. 
9. Compare Tammy to Terry. 

10. Because Tammy is less than the current node, retrieve the current node's left 
child. 



268 Appendix • Binary Search Trees 

11. Because no left child exists, insert the new node as the left child of the current 
node. 

A function to insert an object into the tree that orders objects of classes derived 
from Merchandise_Item by item number appears in Listing App.2. 

Listing App.2 Inserting a node into a binary tree 

void MerchTree::Insert (Merchandise_Item * newltem, ANS!string iTitle. Boolean 
fi 1 e_fl ag l 
I 

Merchandise_Item * current, * child; 

if (root) // if root node exists 
I 

current = root; 
while (current) II keep going while there's a pointer 
{ 

else 

if (strcmp(current->getTitle(), iTitlel < 0) 
I 

II go down right side 
child= current->getRightName(); 

else 
I 

if (!child)// if no right child, insert 
I 

current->setRightName (newltem); 
break; 

II go down left side 
child= current->getleftName(J; 
if (!child) II if no left child. insert 
{ 

current->setleftName (newltem); 
break; 

current child; 

root = newitem; 
i f < ! f i l e_ fl a g l 

Item_count++; 



The Binary Tree Data Structure 269 

DELETING ELEMENTS FROM A BINARY TREE 

Unlike searching and inserting, both of which are relatively simple, deleting nodes 
from a binary tree is somewhat challenging. A program can't just remove the node; if 
a node isn't a leaf, the space left by the node must be filled with something. 

The general algorithm is as follows: 

1. Find the node to be deleted, using the search technique discussed earlier in this 
appendix. 

2. If the node is a leaf, set the pointer ofits parent to zero. This deletes the node from 
the tree, without removing the object from memory. 

3. If the node is not a leaf, determine whether the node has children. 
4. Determine whether the node is the left or right child of its parent. 
5. If the node has a left child but no right child, make the node's left child the child 

of the node's parent. 
6. If the node has a right child but no left child, make the node's right child the child 

of the node's parent. 
7. If the node has both a right child and a left child, find the lowest right node in the 

node's left child tree. Replace the node to be deleted with the lowest right node 
in the left child tree. 

The trickiest part of the delete algorithm occurs when the node to be deleted has 
both right and left children. To see what must happen, assume that you want to 
delete Bobby from the tree in Figure App. I. The program first finds Bobby and iden
tifies the node as the left child of its parent. Then the program finds the lowest right 
node in the left child tree. In this case, the left subtree consists of only one node, 
Anne. (If Anne had a right child, that program would use that child rather than 
Anne.) To finish the delete, the program makes Anne the left subchild of Bobby's par
ent (Henry). 

An implementation of the delete algorithm for the MerchTree class can be found 
in Listing App.3. Notice that this function uses a find function that returns two val
ues: a pointer to the node to be deleted and a pointer to its parent. 

NOTE 
If the value of a node's key value changes, a program must delete the node from the tree 
and reinsert it using the new key. Otherwise, the tree will no longer be in the correct 
order. Because the Penultimate Videos program maintains a tree by item title and by 
customer name (first and last), this procedure must be used whenever a user modifies 
the title/ name data of either type of object. 



270 Appendix • Binary Search Trees 

Listing App.3 Deleting a node from a binary tree 

Boolean MerchTree: :Delete (Boolean deleteCopies, Merchandise Item * forDeletion, 
CopyTree * Copies) 
( 

Merchandise_Item * theltem, * parent, * rightChild, * leftChild, * parentRightChild; 
char * iTitle, * iSystem; 

iTitle = forDeletion->getTitle(); 
if (forDeletion->getltem_type(l ==GAME) 
( 

Game * theGame = (Game *) forDeletion; 
iSystem = theGame->getSystem(); 
find (iTitle, iSystem, theltem, parent); 

else 
find (iTitle, theltem, parent); 

if (theltem == Ol 
return FALSE; II item not found 

if (deleteCopies) II remove all copies from copy tree 
{ 

Item_copy * currentCopy, * oldCopy; 
int copy_numb; 
currentCopy = forDeletion->getFirst(); 
while (currentCopyl 
{ 

copy_numb = currentCopy->getlnventory_numb(); 
Copies->Delete Ccopy_numbl; 
oldCopy = currentCopy; 
delete currentCopy; II remove copy from memory 
currentCopy = oldCopy->getNext(l; 

rightChild = theltem->getRightName(); 
leftChild = theltem->getleftName(); 
parentRightChild = parent->getRightName(); 

II used to figure out which side of parent node is on 

if (rightChild == 0 && leftChild == 0) II node to be deleted is a leaf 
( 

if (parentRightChild == thelteml 
parent->setRightName (0); 

else 
parent->setLeftName (0); 

Continued next page 



The Binary Tree Data Structure 

Listing App.3 (Continued) Deleting a node from a binary tree 

else if (rightChild == Ol II node to be deleted has left child but no right 
I 

if (parentRightChild == theltem) 
parent->setRightName CleftChildl; 

else 
parent->setLeftName (leftChildl; 

else if (leftChild == Ol II node to be deleted has right child but no left 
I 

if (parentRightChild == theltem) 
parent->setRightName (rightChildl; 

else 
parent->setleftName (rightChildl; 

else II node to be deleted has both right and left children 
I 

Merchandise_Item * current = theltem; 
Merchandise_Item * stack[20J; 
int stackPtr = -1; 

current= current->getleftName(); II get left child 
while (current) II slide right while right child 
I 

stack[++stackPtr] = current; 
current= current->getRightName (); 

II replace node to be deleted with node at top of stack 
stack[stackPtrJ->setRightName (rightChild); 
stack[stackPtrJ->setLeftName CleftChildl; 
if (parentRightChild == thelteml 

parent->setRightName Cstack[stackPtrJl; 
else 

parent->setLeftName (stack[stackPtr]l; 
stack[stackPtr - lJ->setRightName (0): 

II parent of rightmost child no longer has child 

Item_count--: 
return TRUE: 

271 



272 Appendix • Binary Search Trees 

Tree Traversals 

The primary reason for creating a binary search tree is to facilitate fast data retrieval. 
However, there are also times when you need to retrieve the data stored in the tree in 
order. This is known as traversing the tree. There are three general traversals: 

• In-order traversal: Nodes appear in whatever ordering is used to construct the 
tree. In the example in X, an in-order traversal would produce a listing in alpha
betical order. To implement an in-order traversal, a program processes a node's 
left subtree, the node itself, and then the node's right subtree. 

• Pre-order traversal: A pre-order traversal processes the node first, followed by its 
right subtree and then its left subtree. 

• Post-order traversal: A post-order traversal processes a node's right subtree, its 
left subtree, and finally the node itself. 

The Penultimate Videos program uses in-order traversals to populate scrolling 
lists. However, it uses a pre-order traversal when writing data to a file. The in-order 
traversal would produce an alphabetical list in a file. When the file was read back into 
memory; the resulting tree would be no better than a linked list. (If you don't believe 
this, create an alphabetical list of a half dozen names and insert them, in order, into a 
binary tree.) 

THE IN-ORDER TRAVERSAL 

To perform an in-order traversal, a program needs to keep track of the nodes it visits 
as it travels down a right or left subtree. Therefore, in-order traversal algorithms typ

ically use a stack to store nodes as the program visits them. The basic process is as 
follows: 

1. Find the root node and make it the current node. 
2. Push the current node onto the stack. 
3. Make the current node's left child the current node. 
4. Repeat steps 2 and 3 until you encounter a node without a left child. This slides 

all the way down the left subtree. 
5. Process the node on the top of the stack. 
6. Pop the top node from the stack and make it the current node. If the stack is emp

ty (no node left to pop), stop the traversal. 
7. Retrieve the current node's right child and make it the current node. Go to step 3. 



Object-Oriented Binary Trees 273 

8. If there is no right child, the current node becomes the node at the top of the 
stack. 

9. Go back to step 5. 

To see how this works, trace through Figure App.2, which graphically illustrates 
the process for the sample tree in Figure App.1. 

THE PRE-ORDER TRAVERSAL 

As you read earlier, a pre-order traversal processes the node first, followed by its right 
subtree and its left subtree. Like the in-order traversal, the pre-order traversal uses a 
stack to contain nodes to be processed. The algorithm-which is considerably sim
pler than that for the in-order traversal--can be generalized as follows: 

1. Push the root node on the stack. 
2. Process the node on the top of the stack. 
3. Pop the node from the top of the stack, making it the current node. If there is no 

-node to pop (the stack is empty), the traversal is complete. 
4. If the current node has a left child, push that left child onto the stack. 
5. If the current node has a right child, push that right child onto the stack. 
6. Go back to step 2. 

To see a pre-order traversal in action, trace through Figure App.3, which graphi
cally illustrates the process for the tree in Figure App.1. 

Object-Oriented Binary Trees 

The object-oriented way of handling data structures is considerably different from 
that used in traditional structured programs. In this section you will learn how 
object-oriented trees are managed and how tree traversals are performed. To under
stand how tree traversals work, you should be very comfortable with operator over
loading. 



274 Appendix • Binary Search Trees 

Figure App.2 An in-order tree traversal 

1. current = Henry 11. Push David 

David 

2. Push Henry 

~ 
Henry 

Stack 

12. current = David 

Stack 
3. current = Bobby 

13. Push Cathy 
Cathy 

4. Push Bobby David 

Bobby 
Henry 

Henry Stack 

Stack 14. Process Cathy 

5. current =Anne 15. Pop Cathy 
current= David 

David 
6. Push Anne 

Anne 
Henry 

Bobby Stack 
Henry 

16. Process David 

Stack 

7. Process Anne 17. Pop David 

~ current= David 

8. Pop Anne 
current = Bobby 

Bobby Stack 
Henry 

Stack 18. Push Edward 

9. Process Bobby Edward 
Henry 

10. Pop Bobby 

~ current = Bobby Stack 

Stack 

Continued next l!a~ 



Object-Oriented Binary Trees 275 

Figure App.2 (Continued) An in-order tree traversal 

19. Process Edward 29. Push Veronica 

20. Pop Edward 
current = Henry 

21. Process Henry 

22. Pop Henry 
current = Henry 

23. Push Mary 

24. Process Mary 

25. Pop Mary 
current = Mary 

26. Push Terry 

27. Process Terry 

28. Pop Terry 
current = Terry 

~ 
Stack 

_J 
Stack 

Mary 

Stack 

Stack 

Terry 

Stack 

_J 
Stack 

30. 

31. 

32. 

33. 

34. 

Push Vernon 

Process Vernon 

Pop Vernon 
current = Veronica 

Process Veronica 

Pop Veronica 
current=? 

Veronica 

Stack 

Vernon 
Veronica 

Stack 

Veronica 

Stack 

Stack 

Traversal stops because there's no 
node to pop to make current 



276 Appendix • Binary Search Trees 

Figure App.3 A pre-order tree traversal 

1. Push Henry 

~ 
9. Process Terry 

10. Pop Terry 

~ Stack 
2. Process Henry 

Stack 

11. Push Veronica 

3. Pop Henry 

_J 
Veronica 

Bobby 

Stack 

Stack 12. Process Veronica 

4. Push Bobby 

~ 
13. Pop Veronica 

~ 
Stack Stack 

5. Push Mary 
14. Push Vernon 

Mary 

Bobby Vernon 
Bobby 

Stack 

6. Process Mary 15. Process Vernon 
Stack 

7. Pop Mary 

~ 16. Pop Vernon 

~ Stack 

8. Push Terry Stack 

Terry 
17. Process Bobby 

Bobby 

Stack 
18. Pop Bobby 

_J 
Stack 

Continued next page 



Object-Oriented Binary Trees 277 

Figure App.3 (Continued) A pre-order tree traversal 

19. Push Anne 

~ 
24. Push Edward Edward 

Cathy 

Anne 

Stack Stack 

25. Process Edward 
20. Push David 

David 26. Pop Edward 

Anne Cathy 

Stack 
Anne 

Stack 
21. Process David 27. ProcessCathy 

28. Pop Cathy 

22. Pop David 

~ 
Anne 

Stack 

29. Process Anne 
Stack 

30. Pop Anne 

23. Push Cathy 

Cathy 
Stack 

Anne 

Stack 
Traversal stops because next attempt 
to pop fails (no nodes left on stack) 

TREE CONTAINER CLASSES 

Object-oriented programs use container classes to manage data structures. A con
tainer class is a class designed specifically to "contain" access to a data structure. The 
code that you have seen in this appendix for inserting, deleting, and modifying ele
ments in a binary tree has all come from a container class. 

A container class usually doesn't contain the actual data that make up the data 
structure. Instead, it contains just enough information to access the data structure. 
For example, a container class that manages a linked list would contain a pointer to 
the first element in the list; a container class that manages a tree would contain a 
pointer to the root node of the tree. The pointers that link elements in the data struc-



278 Appendix • Binary Search Trees 

ture (pointers to the "next" element in a list or to the left and right children in a 
binary tree) are part of the objects whose pointers make up the data structure. 

The container class for a binary tree actually needs no other variables beyond the 
address of the root node. However, as you can see in Listing App.4 (the MerchTree 
class, which organizes items alphabetically by title), the container class also holds a 
count of the items in the tree and the last item number used. Until the program 
deletes a merchandise item, the count of items and the last item number used will 
remain the same. However, even when items are deleted, the item numbers continue 
to increment as new items are added; item numbers for deleted items are not reused. 

Listing App.4 A container class for a binary tree 

class MerchTree 
I 

private: 
Merchandise_Item * root; 
int Item_count, lastTitle_numb: 

public: 
MerchTree {int, int); II base constructor 
void Insert CMerchandise_Item *, ANSistring, Boolean>: 
Merchandise_Item *find CANSistring); II find 
Game* find (ANSistring, ANSistring); II used just for games (based on title and 

system) 
II Flag indicates whether copies should be deleted along with the title 
Boolean Delete (Boolean, Merchandise_Item *, CopyTree *); 
void find CANSistring, Merchandise_Item * &, Merchandise_Item * &>: II for videos 
void find CANSistring, ANSistring, Merchandise_Item * &, Merchandise_Item * &>: 

II for games 

} ; 

int getltem_count(); 
void setltem_count (int); 
int getlastTitle_numb (); 
int inclastTitle_numb (); 
Merchandise_Item * getRoot(); 

The container class contains all functions needed to maintain the tree, including 
inserting new items, deleting items, and searching for items. It also provides func
tions that return container class values. However, notice that the container class does 
not perform tree traversals. That is left to a special type of class known as an intera
tor. 



Object-Oriented Binary Trees 279 

TRAVERSAL ITERATORS 

An iterator is a class that performs a traversal of the objects organized by a data struc
ture. In the case of a linked list, an iterator provides access in first/ next or last/ prior 
order. A binary tree iterator is written to handle one of the three traversal orders 
(pre-order, post-order, or in-order). Whenever a program needs to traverse a binary 
tree, it creates an iterator object to manage the process. 

To understand how an iterator works, let's first look at some code that uses one. 
In Listing App.5, for example, the Penultimate Videos application object is perform
ing an in-order traversal of the merchandise item tree (an object of class MerchTree 
named Items) to display titles in a list box object. 

Listing App.5 Using an iterator object 

Merchltr traversal; 
int Type, row = O; 
Merchandise_Item * currentOne; 
char* Title; 
Cell theCell, * theCellPtr; 

II a cell (row & column number) and a pointer to the variable 
theCellPtr = &theCell; 

for (traversal. !nit (Items); !traversal; ++traversal) 
I 

currentOne =traversal(); 
Type= currentOne->getltem_type(); 
if (Type== item_type) 
I 

Title= currentOne->getTitle(); 
: :LAddRow (1, row, thelistHandle); II add a row to the list 
: :SetPt (theCellPtr. 0, row++); 

II initialize the coordinates of the cell just added 
::LSetCell <Title, strlen<Title), theCell, theListHandle); II add the data 

The program first creates an iterator object (tr avers a l , from the class Mer ch -
It r). Then it uses a for loop to perform the traversal. The first portion of the for 
initializes the iterator with the root node of the tree being traversed and slides all the 
way left to find the first node that should be processed. The termination condition 
( ! t r a v e r s a l ) stops the process when an attempt to pop a node off the iterator's 



280 Appendix • Binary Search Trees 

stack fails. The increment (++traversal) moves to the "next" node in the tree. 
Meanwhile, in the body of the loop, t ravers a 1 ( ) returns a pointer to a node for 
processing. 

An In-Order Traversal Iterator 
The iterator class that performs an in-order traversal (Listing App.6) maintains a 
stack, a stack pointer, and private functions to push items onto and pop items off the 
stack and to slide left until a node without a left child is found. The public functions 
include the function that initializes the iterator and the overloaded operators that are 
used by a program performing a traversal. 

Listing App.6 An iterator class for an in-order traversal 

class Merchitr 
{ 

I: 

private: 
Merchandise_Item * stack[25]. * root: 
int stackPtr; 
void push (Merchandise_Item *);II push onto stack 
Merchandise_Item *pop (); II pop from stack 
void goleft (Merchandise_Item *); 

public: 
Merchitr (); 
int Init (MerchTree *); 
int operator++(); II find node 
int operator! (); 11 check for end of traversal 
Merchandise_Item *operator() (); II return pointer to current object 

The member functions for the Merchitr class can be found in Listing App.7. First 
take a look at the I n i t function. Notice that it retrieves the root of the tree being 
traversed and then calls the go Left function, which pushes nodes onto the stack 
until it reaches a node that has no left child. 

The go Left function works in conjunction with the overloaded++ operator to 
provide the traversal. To see how this happens, take a look at the function for++. It 
first pops the top node off the stack. Then it checks to see if the node just popped has 
a right child. If it does, then the function uses go Left to slide all the way down the 
right child's left subtree. 



Object-Oriented Binary Trees 

Listing App.7 An iterator class's member functions for an in-order traversal 

int Merchltr: :!nit (MerchTree *tree) 
{ 

stackPtr = -1; II set stack as empty 
root= tree->getRoot(); II initialize current node to root 
goleft (root); II go down left side of tree 
return stackPtr >= 0; II is stack empty? 

int Merchltr::operator++ () 
I 

Merchandise_Item * parent, * child; 

if (stackPtr >= 0) 
I 

parent= pop(); 
child= parent->getRightName(); 
if <child) 

goleft (child); 

return stackPtr >= O; 

Merchandise_Item * Merchltr::operator() () 
I return stack[stackPtr]; I II current node is top of stack 

void Merchltr: :~oleft (Merchandise_ltem * Item) 
{ 

while (Item) 
I 

push (Item); 
Item= Item->getleftName(); 

int Merchltr: :operator! () 
I return stackPtr >= O; I II check for end of traversal 

void Merchltr: :push (Merchandise_Item * Item) 
I stack[++stackPtr] = Item; I 

Merchandise_Item * Merchltr::pop () 
I return stack[stackPtr--J; I 

281 

Notice that a pop occurs only in the ++ function. When the program asks for a 
node to process, the ( ) function sends back the contents of the top of the stack, 
without removing it from the stack. 



282 Appendix • Binary Search Trees 

A Pre-order Traversal Iterator 
A class to perform a pre-order traversal is very similar to the class to perform an in
order traversal. In fact, as you can see in Listing App.8, the only difference between 
the MerchltrPre class and the Merchltr class is the absence of a go Left function, 
which the pre-order traversal doesn't need. 

Listing App.8 An iterator class that performs a pre-order traversal 

class MerchitrPre 
{ 

I; 

private: 
Merchandise_Item * stack[25], * root; 
int stackPtr; 
void push CMerchandise_Item *l; II push onto stack 
Merchandise_Item *pop Cl: II pop from stack 

public: 
MerchitrPre Cl; 
int !nit CMerchTree *l; 
int operator++ Cl; II find node 
int operator! (); II check for end of traversal 
Merchandise_Item *operator() (); II return pointer to current object 

The differences between the two iterators becomes clearer when you look at the 
member functions (Listing App.9). Notice first that the I n i t function simply pushes 
the root node onto the stack to start the traversal, rather than pushing all nodes that 
are in the left subtree as is done with an in-order traversal. 

To move to the "next" node, the ++ function pops the top node from the stack, 
just like the in-order traversal. However, after this point the process changes. The 
function looks to see if the node just popped has a left child. If so, it pushes the node 
on the stack. It then repeats the procedure for a right child. 

NOTE 
The beauty of iterators is that the programmer who uses one doesn't need to be con
cerned about the internal workings of a traversal. If you look at the code in the Penulti
mate Videos program-in particular, if you compare the code in the application class's 
Unload function to the code in any function that builds a list of titles-you'll notice 
that both in-order and pre-order iterators are used in exactly the same way. The only 
difference is the class from which the iterator object is created. 



Object-Oriented Binary Trees 

Listing App.9 An iterator class's member functions for a pre-order traversal 

MerchltrPre: :MerchltrPre() 
I 

stackPtr = O; 
root = O; 

int MerchltrPre::Init <MerchTree *tree) 
I 

stackPtr = -1; 
root= tree->getRoot(); 
if (root) 

push (root); II place root on stack to get traversal started 
return stackPtr >= O; II is stack empty? 

int MerchltrPre::operator++ () 
{ 

Merchandise_Item * parent, * child; 

if (stackPtr >= 0) 
{ 

parent= pop(); II remove current node from stack 
child= parent->getleftName(); 
if (child) 

push (child); II push left child, if any 
child= parent->getRightName(); 
if (child) 

push (child); II push right child, if any 

return stackPtr >= O; 

Merchandise_Item * MerchitrPre::operator() () 
I return stack[stackPtrJ; I II returns note at top of stack for processing 

int MerchltrPre::operator! () 
I return stackPtr >= 0; I II check for empty stack and end of traversal 

void MerchitrPre: :push (Merchandise_Item * Item) 
{ stack[++stackPtrJ = Item; I 

Merchandise_Item * MerchltrPre::pop () 
I return stack[stackPtr--J; I 

283 



Glossary 

Action: Something that can be undone. 

Active: A property of a pane; any pane in an active window. 

Application framework: A shell program that provides basic program services and is 
customized and expanded by a programmer. 

Attachment: A class that modifies the behavior of another class while a program is 
running. 

Broadcaster: An object that sends a message that another object (a listener) must act 
upon. 

Chain of command: The ordering of commanders that determines the order in 
which events are passed to commanders for handling. 

Commander: A class that listens and responds to messages generated by keystrokes 
and menu choices. 

Container class: A class that manages a data structure, such as a tree, list, or array. 

285 



286 Glossary 

Enabled: A property of a pane that means that a pane can respond to mouse clicks. 

Frame: The rectangle that forms the border of an object. 

Idler: An object that receives attention after every idle event. 

Iterator: A class that manages the traversal of objects in a data structure such as a 
linked list or binary tree. 

Listener: An object that listens for a message sent by another object (a broacaster). 

Node: An element in a binary tree. 

Pane: An area in which a program can draw. A pane also can respond to clicks of the 
mouse pointer. 

Pane descriptor: A Pascal string describing some major property of a pane, such as 
its contents. 

Pane value: The integer equivalent of the pane descriptor. 

Panel: The portion of a pane or view being printed that will fit on one page. 

Periodical: A class whose objects receive attention at regular intervals, either after 
every event (repeaters) or after every idle event (idlers). 

PowerPlant object: A resource that can be used as the basis of an object created from 
a PowerPlant class. 

PPob: A PowerPlant object resource. 

Registering classes: The action that occurs when a PowerPlant program builds a 
table of class IDs and names of constructors to use when creating objects from exter
nal data sources (usually resource files). 

Repeater: An object that receives attention after every event. 

Root node: The single node at the top of a binary search tree. 

Subcommander: Objects below a commander in the chain of command. 

Subpane: A pane that is contained within a view. 

Supercommander: An object above a commander in the chain of command. 

Superview: The view containing a specific pane. 

Synthetic commands: Items for menus such as the S or Font menu where the menu 
items can't be specified before the program is run. 

Target: The single object that is available to listen for and handle a command. 



Glossary 

Traverse (a binary tree): Access the nodes in a tree in some known order. 

Value message: The message sent by a broadcaster. 

View: A container for panes. 

287 



Index 

289 



290 

<PP Starter Header>.h 51 
<PP Starter Resource>.rsrc 57 
<PP Starter Source>.cp 51 

A 
Activate 240, 260 
AddAttachment 157, 190 
Add Listener 183, 191, 214 
AdjustMenu 146, 150 
ANSI support 60 
Apple Events 59 
Application classes 7-8 
Application frameworks 2 
Application objects 8 

event loop 9-11 
As kPageSetup 260 
As kPri ntJob 261 
Attachment 

definition 9 
Attachments 153-160 

B 
BackwardErase 160 
Binary search trees see Trees 
Binding 96-97 
Broadcasters 19-20, 191, 205 
Buttons 17 5-177 

messages 171 
trapping actions in 191-192 

c 
Calclocal FrameRect 111, 123 
CanRedo 156 
CanUndo 156 
Chain of command 15 
Check boxes 

putting values in 196 
reading values from 196, 202-207 
resources for 180 

Classes 
application 7-8, 52-57 
commanders 13-19 
for PowerPlant objects 21 
hierarchy of 5 
naming conventions 7 
registering 21-22 

Index 

subclasses 53, 87, 97-98, 119-123, 
188,220-221 

types of3-4 
Commanders 13-19 
Constructor 20 

adding panes 91-94 
creating menus with 73-79 
creating new file 88 
creating new resource 89 
custom panes 114-123 
dialog boxes 167-171 
resource properties 90-96 
resource types 88 
RidL resources 182 
tab groups 174-175 
tables 218 
text traits 136 

Container classes 277-278 
Controls see Specific types of controls 
Coordinate systems 106-107 
Coul dBeKeyCommand 14 
CPPb 115 
CreateNewData File 242 
CreateObject 24 
CreateObject 100 
Crea tePr int Re co rd 261 
CreateWi ndow 23, 99-105, 123, 190 
Creating 

files 240 
lists 236-238 
printout objects 253-256 

Current 238 
Custom panes 114-123 



Index 

D 
Deactivate 240, 260 
DevoteTimeToldlers 141,247 
DevoteTimeToRepeaters 141,247 
Dialog boxes 

displaying 188-190 
example of 200 
removing 192 
resources for 167-171 

Di sabl eMenu 146 
Di spatchEvent 11 
Display text 

reading values from 199 
resources for 172 
setting text 199 

DoPri ntJob 252-253, 258 
DrawCell 221,223,225 
Drawing 

coordinate systems 106-107 
with QuickDraw 107-111 

DrawSelf 87, 107-111, 119, 121-123, 
206,221,223,253 

E 
Edit fields 

clearing 194-195 
putting data in 193 
resources for 173-17 5 
retrieving data from 193 

Enabl eMenu 146 
Event loop 9-11 
EventKeyDown 14 
ExecuteAttachments 11 

F 
FetchCel 1 Hi tBy 224 
FetchlndexOf 236 
FetchltemAt 236 
Fetch Local Cel 1Frame225 

291 

Files 
creating 240 

FindCommandStatus 13, 52, 53, 80-82, 
150, 152, 153,247 

Fi ndKeyCommand 14 
Fi ndPaneByID 190, 191, 214, 215, 222, 

257 
Fini shCreate 101-104 
Fini shCreateSelf 87, 101-104, 129, 

144,204,247 
Font menu 146-153 
Forewa rd Erase 160 
Frame 86 

G 
GetBytes 100 
GetCount 221, 236 
GetDefaul tPri ntRecord 260 
GetDescriptor 193, 196, 199,214 
GetDescriptor 197 
GetFontNumber 153 
GetFontSi ze 153 
Getloca 1 UpdateRgn 223 
GetMacL i stH 212 
GetMacTEH 138 
GetMovi eFromFil e 112 
GetSelectedCell 226 
GetTextHandl e 138 
GetUserCon 215 
GetVal ue 193, 196, 197 
Global coordinates 106-107 
Gl oba 1 ToPortPoi nt 107 

H 
Handl eKeyPress 14 

I 
Idlers 140-141, 245-248 
Image coordinates 106-107 
ImagePointlslnFrame 107 



292 

ImageRect Intersects Frame 107 
ImageTolocalPoint 107 
Initial i ze 112 
I ni tTextEdit 141, 156 
InputCharacter 160 
Insertion point 191 
InsertitemsAt 236 
Instal1Menu79 
Inst a 11 Occupant 257 
IsSyntheti cCommand 150 
Iterators 238-239, 279-283 

L 
LAction 153-160 
LApplication 7-8, 13, 52 
LBroadcaster 4, 19-20 
LCaption 172, 178, 199 
LCommander 13, 191 
LControl 4, 19 
LDataStream 100 
LDialogBox 5, 19, 21, 167-171, 176, 191, 

200 
LDocApplication 7-8, 52 
LDocument 7-8, 13, 52 
LDynamicArray 221, 236 
LEditField 13, 15, 18, 173-175 
LEventDispatcher 11 
LFile 4, 239-243 
LGrafPortView 21 
LinklistenerToControls 19, 182,204 
List boxes 

adding columns to 211-214 
adding rows to 211-214 
double-dicks in 214-216 
finding selected item 214 
resources for 210 

List iterators 238-239 
Listeners 19-20, 190-191, 205 
ListenToMessage 188,204,205,215 
Lists 

creating 236-238 
inserting items in 236 
iterators 238-239 
removing items from 236 
retrieving items from 236 

LlteratedList 235 
LList 235-239 
LListBox 13, 209-216 
LListener 19-20, 204 
LListlterator 238 
LMenu 4, 5 
LMenuBar 4, 5, 79 

Index 

LMovieController 111, 112, 114, 140 
Local coordinates 106-107 
Loe al To Image Point 107, 223 
LocalToPortPoint 107 
LPane 4, 87, 95, 114, 120 
LPeriodical 140-141, 246-247 
LPicture 219 
LPlaceholder 252-262 
LPrintout21,252-262 
LRadioGroup 180 
LScroller 129-132 
LSingleDoc 7-8, 52 
LStdButton 5, 175-177 
LStdCheckBox 180, 196, 202-207 
LStdPopupMenu 5, 177-179, 197-198 
LStdRadioButton 179-180, 196-197 
LStr255 228-232 
LString 228-232 
LTabGroup 13, 18, 174-175 
LTable 175, 216-226 
LTEClearAction 155-160 
LTECutAction 155-160 
LTEPasteAction 155-160 
LTETextAction 155-160 
LTextEdit 13, 15, 128-146, 193-195 
LUndoer 153-160, 190 
LView 21 



Index 

LWindow 13, 19, 20, 21, 23, 90-91, 171, 
204 

M 
MBAR resource 68, 73, 79 
MBAR_Initi al 79 
Mcmdresource 68, 69-70, 71, 73-79 
Menu bar79 
MENU resource 68, 73-79 

adding menu item 77-78 
creating new 76-77 
maintaining 79 

Menus 
activating 80-82 
constants for 71-72 
deactivating 80-82 
popup 177-179, 197-198 
trapping selections in 82-83 

Messages 
default dialog box button 171 

Messages, value 19 
MessageT 71 
mFrameLocation 86 
mFrameSize 86 
mPanelD 86 

N 
Next 238 

0 
ObeyCommand 15, 52, 53 
ObeyCommand 13, 82-84, 158, 188, 191, 

204,211,215,248,260 
Objects 

application 8 
on and off duty 18-19 
PowerPlant 20-27 
printout 253-256 
subclasses 220-221 

Objects FromSt ream 24, 100 

On and off duty objects 18-19 
OpenDataFork 241 
OpenPri nter 253 
OpenResourceFork 242 

p 
Page Setup dialog box 259-262 
Panels 252 
Panes 24-27 

adding to resources 91-94 
attributes of 86, 94-96 
binding 96-97 
coordinate systems 106-107 
creating resources for 88-97 
custom 114-123 
drawing in 105, 107-111 
frame 86 
non-PowerPlant objects 111-114 
properties of 94-96 
resource IDs 94, 95 
subclasses for 87, 97-98, 119-123 

Periodicals 140-141, 245-248 
PICT resources 117, 119 
Popupmenus 

putting values into 197-198 
reading values from 197-198 
resources for 177-179 

Port coordinates 106-107 
PortToGl oba l Point 107 
Po rtT o Loe al Point 107 
PostActi on 158 
Power Plant 

application framework 2 
installing 3 

PowerPlant objects 20-27 
class ID 21 
creating 23-24, 99-105 
registering 21-22 

PP Action Strings.rsrc 57, 157 
PP DebugAlerts.rsrc 57 

293 



294 

PP _Messages.h 71 
Precompiled headers 61-64 
Previous 238 
Print Job dialog box 259-262 
Pri ntCopi es Of Pages 253 
Printing 

creating objects for 253-256 
installing placeholder occupants 257 
Page Setup dialog box 259-262 
Print job dialog box 259-262 
steps in 252-253 
tasks for 252 

Pri ntpanel 253 
Pri ntPanel Range 253 
P r i n t Pa n e 1 Se 1 f 25 3 
ProcessCommand 188 
Projects 

starter 49-50 

Q 
QuickTime 

R 

classes for 111 
closing 112 
initializing 112 
playing a movie 112 

Radio buttons 
putting values in 196-197 
reading values from 196-197 
resources for 179-180 

ReadData 100, 120 
ReadDataFork 241 
ReadObj ect 24 
ReadObj ects 100 
Redo 153-160 
Redo 156, 158 
Redo Self 156 
Refresh 206 
Regi sterA 11 PPCl asses 22 

Reg i s t e r C 1 a s s 22, 96 
Remove ItemsAt 236 
Repeaters 140-141, 245-248 
ResetTo 238 
Resource IDs 95 
Resources 57-58 

constants for 183-184 
PICT 219 
RidL 182-183 

Index 

Resources see alsoSpecifi.c types of resources 
Resources see Constructor 
RidL resources 182-183 
Run 9 

s 
Scroll ImageBy 131, 132 
Scrolling 129-132 
Scrolling lists 

adding columns to 211-214 
adding rows to 211-214 
double-clicks in 214-216 
finding selected item 214 
resources for 210 

SendAEQui t 59 
Set C e 11 D a t a 222 
SetDescriptor 193, 196, 197, 199,212 
SetDescriptor 144 
SetitemAt 221 
SetLatentSub 142 
Set Print Re co rd 261 
SetTextHandl e 138, 242 
SetTextPtr 138 
SetTextTra its ID 136 
SetUserCon 214 
SetVal ue 193, 196, 197, 198 
Show 190, 214 
Size menu 146-153 
Source code 

starter 51 
subclassing 53 



Index 

SpendTime 141,247,248 
Sta rtidl i ng 246 
Sta rtRepeat i ng 246 
Startup 52 
Startup 59 
StColorPenState 111 
Stopidl ing 246 
StopRepeati ng 246 
Stream 1/0 60 
StResource 100 
Strings 227-235 
Style menu 146-153 
Subclasses 53, 87, 97-98, 119-123, 188 
Subcommanders 15, 18 
Supercommanders 15 
Swi tchTa rget 18, 191 
Synthetic commands 68 

T 
Tab groups 174-175 
Tables 

drawing cells 223-225 
finding selected cell 226 
initializing storage for 221 
placing data in 222-223 
resources for 217-218 
subclasses for 220-221 

Target 
allowing objects to become 90 
definition 15-18 
switching 18, 191 

Text editing see LTextEdit 128 
Text menus 146-153 
Text traits 136 
Thermometers 114-123 
Trees 

container classes for 277-278 
deleting items from 269-271 
in-order traversal 272-273, 280 
inserting items into 266-268 

u 

iterators for 279-283 
pre-order traversal 273, 282 
searching 265-266 
structure of 264-265 

UDesktop 240, 260 
UFontMenu 146 
Undo 153-160, 190 
Undo 156 
UndoSelf 156 
UPrintingMgr 4, 253, 260-261 
UQuickTime 111 
UQuickTime.cpp 111 
UReanimator 19, 24 
URegistrar 22, 100 
Useldl eTi me 141, 247 
UserChangedText 158 
UserCon 171, 214 
USizeMenu 146 
UStyleMenu 146 
UTextMenusBase 146 

v 
Value message 19 
Views 24-27 

w 
Window RefCon 171 
WriteData Fork 242 

295 



WARRANTY DISCLAIMER 

METROWERKS AND METROWERKS' LICENSOR(S), AND THEIR 
DIRECTORS, OFFICERS, EMPLOYEES OR AGENTS (COLLECTIVELY 
METROWERKS) MAKE NO WARRANTIES, EXPRESS OR IMPLIED, 
INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF 
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, 
REGARDING THE SOFTWARE. METROWERKS DOES NOT WARRANT, 
GUARANTEE OR MAKE ANY REPRESENTATIONS REGARDING THE 
USE OR THE RESULTS OF THE USE OF THE SOFTWARE IN TERMS 
OF ITS CORRECTNESS, ACCURACY, RELIABILITY, CURRENTNESS OR 
OTHERWISE. THE ENTIRE RISK AS TO THE RESULTS AND PERFOR
MANCE OF THE SOFTWARE IS ASSUMED BY YOU. THE EXCLUSION 
OF IMPLIED WARRANTIES IS NOT PERMITTED BY SOME JURISDIC
TIONS. THE ABOVE EXCLUSION MAY NOT APPLY TO YOU. 

IN NO EVENT WILL METROWERKS AND METROWERKS' 
LICENSOR(S), AND THEIR DIRECTORS, OFFICERS, EMPLOYEES OR 
AGENTS (COLLECTIVELY METROWERKS) BE LIABLE TO YOU FOR 
ANY CONSEQUENTIAL, INCIDENTAL OR INDIRECT DAMAGES 
(INCLUDING DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSI
NESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, AND THE 
LIKE) ARISING OUT OF THE USE OR INABILITY TO USE THE SOFT
WARE EVEN IF METROWERKS HAS BEEN ADVISED OF THE POSSI
BILITY OF SUCH DAMAGES. BECAUSE SOME JURISDICTIONS DO 
NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR 
CONSEQUENTIAL OR INCIDENTAL DAMAGES, THE ABOVE LIMITA
TIONS MAY NOT APPLY TO YOU. Metrowerks liability to you for actual 
damages from any cause whatsoever, and regardless of the form of the 
action (whether in contract, tort (including negligence), product liability or 
otherwise), will be limited so as not to exceed the cost of the replacement of 
the media on which the software is distributed. 



SOFTWARE LICENSE 

PLEASE READ TIDS LICENSE CAREFULLY BEFORE USING THE 
SOFTWARE. BY USING THE SOFTWARE, YOU ARE AGREEING TO 
BE BOUND BY THE TERMS OF THIS LICENSE. IF YOU DO NOT 
AGREE TO THE TERMS OF THIS LICENSE, PROMPTLY RETURN 
THE UNUSED SOFTWARE TO THE PLACE WHERE YOU OBTAINED 
IT AND YOUR MONEY WILL BE REFUNDED. 

1. License. The application, demonstration, system and other software 
accompanying this License, whether on disk, in read only memory, or on 
any other media (the "Software") the related documentation and fonts are 
licensed to you by Metrowerks. You own the disk on which the Software 
and fonts are recorded but Metrowerks and/or Metrowerks' Licensor retain 
title to the Software, related documentation and fonts. This License allows 
you to use the Software and fonts on a single Apple computer and make one 
copy of the Software and fonts in machine-readable form for backup pur
poses only. You must reproduce on such copy the Metrowerks copyright 
notice and any other proprietary legends that were on the original copy of 
the Software and fonts. You may also transfer all your license rights in the 
Software and fonts, the backup copy of the Software and fonts, the related 
documentation and a copy of this License to another party, provided the 
other party reads and agrees to accept the terms and conditions of this 
License. 

2. Restrictions. The Software contains copyrighted material, trade secrets 
and other proprietary material. In order to protect them, and except as 
permitted by applicable legislation, you may not decompile, reverse 
engineer, disassemble or otherwise reduce the Software to a human-per
ceivable form. You may not modify, network, rent, lease, loan, distribute or 
create derivative works based upon the Software in whole or in part. You 
may not electronically transmit the Software from one computer to anoth-



er or over a network. 

3. Termination. This License is effective until terminated. You may 
terminate this License at any time by destroying the Software, related 
documentation and fonts and all copies thereof. This License will termi
nate immediately without notice from Metrowerks if you fail to comply with 
any provision of this License. Upon termination you must destroy the 
Software, related documentation and fonts and all copies thereof. 

4. Export Law Assurances. You agree and certify that neither the Software 
nor any other technical data received from Metrowerks, nor the direct 
product thereof, will be exported outside the United States except as 
authorized and as permitted by the laws and regulations of the United 
States. If the Software has been rightfully obtained by you outside of the 
United States, you agree that you will not re-export the Software nor any 
other technical data received from Metrowerks, nor the direct product 
thereof, except as permitted by the laws and regulations of the United 
States and the laws and regulations of the jurisdiction in which you 
obtained the Software. 

5. Government End Users. If you are acquiring the Software and fonts on 
behalf of any unit or agency of the United States Government, the following 
provisions apply. The Government agrees: (i) if the Software and fonts are 
supplied to the Department of Defense (DoD), the Software and fonts are 
classified as "Comm.ercial Computer Software" and the Government is 
acquiring only "restricted rights" in the Software, its documentation and 
fonts as that term is defined in Clause 252.227-7013(c)(l) of the DFARS; and 
(ii) if the Software and fonts are supplied to any unit or agency of the 
United States Government other than DoD, the Government's rights in the 
Software, its documentation and fonts will be as defined in Clause 52.227-
19(c)(2) of the FAR or, in the case of NASA, in Clause 18-52.227-SG(d) of the 
NASA Supplement to the FAR. 

6. Limited Warranty on Media. Metrowerks warrants the diskettes and/or 
compact disc on which the Software and fonts are recorded to be free from 
defects in materials and workmanship under normal use for a period of 
ninety (90) days from the date of purchase as evidenced by a copy of the 
receipt. Metrowerks' entire liability and your exclusive remedy will be 
replacement of the diskettes and/or compact disc not meeting Metrowerks' 
limited warranty and which is returned to Metrowerks or a Metrowerks 
authorized representative with a copy of the receipt. Metrowerks will have 
no responsibility to replace a disk/disc damaged by accident,abuse or 
misapplication. ANY IMPLIED WARRANTIES ON THE DISKETTES 



AND/OR COMPACT DISC, INCLUDING THE IMPLIED WARRANTIES OF 
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE 
LIMITED IN DURATION TO NINETY (90) DAYS FROM THE 
DATE OF DELIVERY. THIS WARRANTY GIVES YOU SPECIFIC LEGAL 
RIGHTS, AND YOU MAY ALSO HAVE OTHER RIGHTS WHICH VARY BY 
JURISDICTION. 

7. Disclaimer of Warranty on Apple Software. You expressly acknowledge 
and agree that use of the Software and fonts is at your sole risk. Except as 
is stated above, the Software, related documentation and fonts are provid
ed "AS IS" and without warranty of any kind and Metrowerks and 
Metrowerks' Licensor(s) (for the purposes of provisions 7 and 8, 
Metrowerks and Metrowerks' Licensor(s) shall be collectively referred to as 
"Metrowerks") EXPRESSLY DISCLAIM ALL OTHER WARRANTIES, 
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE 
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 
PARTICULAR PURPOSE. ACADEMIC PRESS DOES NOT WARRANT THAT 
THE FUNCTIONS CONTAINED IN THE SOFTWARE WILL MEET YOUR 
REQUIREMENTS, OR THAT THE OPERATION OF THE SOFTWARE WILL 
BE UNINTERRUPTED OR ERROR-FREE, OR THAT DEFECTS IN THE 
SOFTWARE AND THE FONTS WILL BE CORRECTED. FURTHERMORE, 
ACADEMIC PRESS DOES NOT WARRANT OR MAKE ANY REPRESENTA
TIONS REGARDING THE USE OR THE RESULTS OF THE USE OF THE 
SOFTWARE AND FONTS OR RELATED DOCUMENTATION IN TERMS OF 
THEIR CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE. NO 
ORAL OR WRITTEN INFORMATION OR ADVICE GIVEN BY ACADEMIC 
PRESS OR AN ACADEMIC PRESS AUTHORIZED REPRESENTATIVE 
SHALL CREATE A WARRANTY OR IN ANY WAY INCREASE THE SCOPE OF 
THIS WARRANTY. SHOULD THE SOFTWARE PROVE DEFECTIVE, YOU 
(AND NOT ACADEMIC PRESS OR AN ACADEMIC PRESS AUTHORIZED 
REPRESENTATIVE) ASSUME THE ENTIRE COST OF ALL NECESSARY 
SERVICING, REPAIR OR CORRECTION. SOME JURISDICTIONS DO NOT 
ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE 
EXCLUSION MAY NOT APPLY TO YOU. 

8. Limitation of Liability. UNDER NO CIRCUMSTANCES INCLUDING NEG
LIGENCE, SHALL ACADEMIC PRESS BE LIABLE FOR ANY INCIDENTAL, 
SPECIAL OR CONSEQUENTIAL DAMAGES THAT RESULT FROM THE 
USE OR INABILITY TO USE THE SOFTWARE OR RELATED DOCUMEN
TATION, EVEN IF ACADEMIC PRESS OR AN ACADEMIC PRESS AUTHO
RIZED REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF 
SUCH DAMAGES. SOME JURISDICTIONS DO NOT ALLOW THE LIMITA
TION OR EXCLUSION OF LIABILITY FOR INCIDENTAL OR CONSE-



QUENTIAL DAMAGES SO THE ABOVE LIMITATION OR EXCLUSION MAY 
NOT APPLY TO YOU. 

In no event shall Metrowerks' total liability to you for all damages, losses, 
and causes of action (whether in contract, tort (including negligence) or 
otherwise) exceed that portion of the amount paid by you which is fairly 
attributable to the Software and fonts. 

9. Controlling Law and Severability. This License shall be governed by and 
construed in accordance with the laws of the United States and the State of 
California, as applied to agreements entered into and to be performed 
entirely within California between California residents. If for any reason 
a court of competent jurisdiction finds any provision of this License, or 
portion thereof, to be unenforceable, that provision of the License shall be 
enforced to the maximum extent permissible so as to effect the intent of the 
parties, and the remainder of this License shall continue in full force and 
effect. 

10. Complete Agreement. This License constitutes the entire agreement 
between the parties with respect to the use of the Software, the related 
documentation and fonts, and supersedes all prior or contemporaneous 
understandings or agreements, written or oral, regarding such subject 
matter. No amendment to or modification of this License will be binding 
unless in writing and signed by a duly authorized representative of 
Metrowerks. 



Become a CodeWarrior now! 

Order the commercial version of 
Metrowerks CodeWarrior! 

Metrowerks CodeWarrior delivers three times a 
year. When you buy CodeWarrior and register 
with Metrowerks, you will receive free updates 
throughout the year. 

CodeWarrior Gold 
(For Power & 68K Macintosh, 
Win32/x86, MagicCap, Be, Java) 

Discover Programming for Macintosh 
(For 68K Macintosh development) 

Discover Programming with Java 
(For Java development) 

$399 

$79 

$99 

Metrowerks CodeWarrior. 
The world's best-selling 

Macintosh development tools. 

Metrowerks is continually adding new features and products. 
Check our website for the latest products, prices and Geekware. 



- Metrowerks CodeWarrior 

~ Order Form 
metrowerks 

Gold @US$399 ea. X _ = __ 

Discover Programming for Macintosh 
@US$79ea. X_= __ 

Discover Programming with Java 
@US$99ea. X_= __ 

Subtotal 
Plus sales tax & shipping 

Method of Payment 
OVISA 
0 Mastercard 

Credtt Card Number 

(as may apply) 
Total 

Exp. Date IM/Yl 

DJDJ 
1111111111111111111 

First & Last name 

Street 

City/State/Prov. 

Em ail address 

Phone number 

Signature 

Fax to: (512) 873-4901 or call (800) 377-5416 

or Mail to: Metrowerks Corp 
Dept 334 
P.O. Box 9700 
Austin, TX 78766-9700 

For Sales info: 
WWW: http://www.metrowerks.com 
Voice: (512) 873-4700 
Fax: (512) 873-4901 
Email: sales@metrowerks.com 

Zip/Postal Code 

Date Ordered 

Prices and product availability may change without notice - check our website for the 
latest information. 



About the CD·ROM 

The CD-ROM that accompanies this book contains the source code, supporting files, 
and project files for the Penultimate Videos program in a folder named Penultimate 
Videos. To compile and run the program, first make sure that you have PowerPlant 
installed. (See the last parflgrapli'."of'~t'his section if. you don't own CodeWarrior 
already.) Also be sure that you have QuickTime in your Extensions folder and, if you 
are working on a PowerMac, the QuickTime PowerPlug. The PowerPlug is required 
to run QuickTime from native PowerPC code. 

Copy the Penultimate Videos folder to your hard disk. Then, move the files 
PP_ VidSHeaders and PP_ VidSHeaders ( 68K) from the Penultimate Videos folder to the 
Precompiled Headers folder (inside the PowerPlant Folder, which is inside the 
MacOS Support folder, which is inside the Metrowerks Code Warrior folder). At this 
point, you can open the appropriate project file ( 68K or PPC) and go. 

NOTE 
If you have a lot of fonts, the Penultimate Videos program may take a while to launch 
because it must build a font menu. 

If you don't yet have your own copy of the Code Warrior development software, 
install Code Warrior Lite that comes on the CD-ROM. This version of CodeWarrior 
will allow you to run and view the sample programs. However, the text editor's Save 
option has been disabled so that you won't be able to save any changes made to 
source code files. 





9 780123 264220 

ISBN D-12-326422-7 




