izi’ ‘"‘/ E{iﬁ)

SOFTWARE DEVELOPHENT
USiNG PONERPLANT

. lNuuo[o

’%@m\
OO

CodeWarrior /'S
: INSI ’I']‘e"oEvek

Jan L Harringron

Software Development
using
PowerPlant ~

LIMITED WARRANTY AND DISCLAIMER OF LIABILITY

ACADEMIC PRESS, INC. (“AP”") AND ANYONE ELSE WHO HAS BEEN INVOLVED IN THE
CREATION OR PRODUCTION OF THE ACCOMPANYING CODE (“THE PRODUCT”)
CANNOT AND DO NOT WARRANT THE PERFORMANCE OR RESULTS THAT MAY BE
OBTAINED BY USING THE PRODUCT. THE PRODUCT IS SOLD “AS IS” WITHOUT
WARRANTY OF.ANY KIND (EXCEPT AS HEREAFTER DESCRIBED), EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY WARRANTY OF PERFORMANCE
OR ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY
PARTICULAR PURPOSE. AP WARRANTS ONLY THAT THE MAGNETIC DISC(S) ON
WHICH THE CODE IS RECORDED IS FREE FROM DEFECTS IN MATERIAL AND FAULTY
WORKMANSHIP UNDER THE NORMAL USE AND SERVICE FOR A PERIOD OF NINETY
(90) DAYS FROM THE DATE THE PRODUCT IS DELIVERED. THE PURCHASER’S SOLE
AND EXCLUSIVE REMEDY IN THE EVENT OF A DEFECT IS EXPRESSLY LIMITED TO
EITHER REPLACEMENT OF THE DISC(S) OR REFUND OF THE PURCHASE

PRICE, AT AP’S SOLE DISCRETION.

IN NO EVENT, WHETHER AS A RESULT OF BREACH OF CONTRACT, WARRANTY OR
TORT (INCLUDING NEGLIGENCE) WILL AP OR ANYONE WHO HAS BEEN INVOLVED IN
THE CREATION OR PRODUCTION OF THE PRODUCT BE LIABLE TO PURCHASER FOR
ANY DAMAGES, INCLUDING ANY LOST PROFITS, LOST SAVINGS OR OTHER
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY
TO USE PRODUCT OR ANY MODIFICATIONS THEREOF, OR DUE TO THE CONTENTS OF
THE CODE, EVEN IF AP HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES,
OR ANY CLAIM BY ANY OTHER PARTY.

Any request for replacement of a defective CD-ROM disc must be postage prepaid and must be
accompanied by the original defective disc, your mailing address and telephone number,

and proof of date of purchase and purchase price. Send such requests, stating the nature of
the problem, to Academic Press Customer Service, 6277 Sea Harbor Drive, Orlando,

FL 32887, 1-800-321-5068. APP shall have no obligation to refund the purchase price or to
replace a disc based on the claims of defects in the nature or operation of the Product.

Some states do not allow limitation on how long an implied warranty lasts, nor exclusions or
limitatiions of incidental or consequential damage, so the above limitations and exclusions may
not apply to you. This Warranty gives you specific legal rights, and you may also have other
rights which may vary from jurisdiction to jurisdiction.

THE RE-EXPORT OF UNITED STATES ORIGIN SOFTWARE IS SUBJECT TO THE UNITED
STATES LAWS UNDER THE EXPORT ADMINISTRATION ACT OF 1969 AS AMENDED. ANY
FURTHER SALE OF THE PRODUCT SHALL BE IN COMPLIANCE WITH THE UNITED
STATES DEPARTMENT OF COMMERCE ADMINISTRATION REGULATIONS. COMPLIANCE
WITH SUCH REGULATIONS IS YOUR RESPONSIBILITY AND NOT THE RESPONSIBILITY
OF AP.

Software Development
using
PowerPlant™

Jan L. Harrington

Py ~
P 3
OFFs80™

AP PROFESSIONAL

AP Professional is a division of Academic Press, Inc.

Boston San Diego New York
London Sydney Tokyo Toronto

4@
A

" AP PROFESSIONAL

An Imprint of ACADEMIC PRESS, INC.
A Division of HARCOURT BRACE & COMPANY

ORDERS (USA and Canada): 1-800-3131-APP or APP@ACAD.COM
AP Professional Orders: 6277 Sea Harbor Dr., Orlando, FL 32821-9816

Europe/Middle East/Africa: 0-11-44 (0) 181-300-3322
Orders: AP Professional 24-28 Oval Rd., London NW1 7DX

Japan/Korea: 03-3234-3911-5
Orders: Harcourt Brace Japan, Inc., Ichibancho Central Building 22-1, Ichibancho Chiyoda-Ku, Tokyo 102

Australia: 02-517-8999
Orders: Harcourt Brace & Co. Australia, Locked Bag 16, Marrickville, NSW 2204 Australia

Other International: (407) 345-3800
AP Professional Orders: 6277 Sea Harbor Dr., Orlando FL 32821-9816

Editorial: 1300 Boylston St., Chestnut Hill, MA 02167 (617)232-0500

Web: http://www.apnet.com/approfessional

This book is printed on acid-free paper.

Copyright © 1996 by Academic Press, Inc.

All rights reserved.

No part of this publication may be reproduced or

transmitted in any form or by any means, electronic

or mechanical, including photocopy, recording, or

any information storage and retrieval system, without

permission in writing from the publisher.

All brand names and product names mentioned in this book

are trademarks or registered trademarks of their respective companies.

United Kingdom Edition published by
ACADEMIC PRESS LIMITED
24-28 Oval Road, London NW1I 7DX

Library of Congress Cataloging-in-Publication Data
Harrington, Jan L.
CodeWarrior software development using PowerPlant / Jan
Harrington.
p. cm.
Includes index.
ISBN 0-12-326422-7
I. Computer software-—Development. 2. Macintosh (Computer)-
—Programming. 3. Object-oriented programming (Computer science)

4. PowerPlant. 5. CodeWarrior. I. Title.
QA76.76.D47H38 1996
005.26'2--dc20 96-13291

cip
Printed in the United States of America
96 97 98 99 IP 9 87 6 5 4 3 2 1

Contents

Preface Xi
The Sample Program Xii
What You Need to Know xiii

Acknowledgments xv

Chapter 1: Introducing PowerPlant 1
PowerPlant as an Application Framework 2
What You Need to Use PowerPlant 3
PowerPlant Class Types 3
The PowerPlant Class Hierarchy 5

Class Naming Conventions 7
The Application Classes 7

Creating the Application object 8

The Application and the Event Loop 9
Interclass Communication 11

vi Contents

Commanders 13
Broadcasters and Listeners 19
PowerPlant Objects 20
PowerPlant Object Classes 21
Registering PowerPlant Objects with URegistrar 21
Creating PowerPlant objects 23
Panes and Views 24
Exception Handling 27

Chapter 2: Penultimate Videos 29

The User’s View 29
Handling Inventory 30
Handling Customers 34
Handling Transactions 35

The Programmer’s View 37
The Merchandise_Item Hierarchy 37
The Item_copy Hierarchy 41
The Customer Class 43
The Binary Search Trees 43
The Date Class 46
Utility Functions 48

Chapter 3: PowerPlant Projects 49

The Starter Projects 49
The Starter Projects 50

The Starter Source Code File 51
Customizing the Application Class Header 52
Program Structure: To Subclass or Not to Subclass 53
Modifying Starter Application Functions 57

PowerPlant Starter Resource Files 57

Adding Support for Apple Events 59

Adding Support for ANSI Functions 60

The Penultimate Videos Projects 60

PowerPlant and Precompiled Headers 61

Chapter 4: PowerPlant Menus 67
Creating Menu Resources with a Standard Resource Editor 68

Contents

vii

Menu Resources for the Penultimate Videos Program 71
Constants for Menu Commands 71
Creating Menu Resources with Constructor 73
Creating a New Menu Resource 76
Adding a New Menu Item 77
Maintaining Menu Items 79
Creating the Menu Bar 79
Activating and Deactivating Menus 80
Trapping Menu Selections 82

Chapter 5: Panes and Views 85
Pane Geography 86
Declaring a Subclass for a Pane 87
Creating a Pane Resource for Drawing 88
Starting a Constructor Resource File 88
Creating a Resource 89
Customizing Resource Contents 90
Pane Binding 96
The Graph Subclass and Its Constructors 97
The CreateXStream Function and How PowerPlant Objects are Created 99
Drawingin a Pane 105
Coordinate Systems 106
Doing the Drawing 107
Playing a QuickTime Movie: Panes without PPobs 111
Custom Panes 114
Defining the Custom Pane 114
Creating the Pane Subclass 119
Programming for a Window with a Custom Pane 123

Chapter 6: Editing Text 127

The Note Class 128

PowerPlant Objects for Editing Text 129
Adding the Scroll Bar 129
Adding the LTextEdit Object 133

The LTextEdit Class 137
Text Access Functions 137
Flashing the Cursor: Periodic Events 140

viii

Contents

Making It Multistyled 141
Creating a Note Object 142
Completing the Note Object 144
Handling the Text Menus 146
UTextMenusBase and Its Subclasses 146
Text Menu Resources 147
Initializing the Text Menus 150
Enabling TExt Menus 150
Processing Text Menu Selections 153
Implementing Undo 153
The Action and Undoer Classes 153
Implementing the Undo and Redo 156

Chapter 7: Dialog Box and Control Resources 165
Creating Dialog Box Resources 167
Configuring the Window Type 168
User Data 171
Button Messages 171
Adding Display Text and Edit Fields 172
Objects of Class LCaption 172
Objects of Class LEditField 173
Adding Control Resources 175
Buttons 175
Popup Menus 177
Radio Buttons 179
Check Boxes 180
RidL Resources 182
Preparing Resource and Message Constants 183

Chapter 8: Programming for Dialog Boxes and Controls
Deciding Whether to Subclass 188
Displaying a Dialog Box 188
Enabling Undo 190
Adding Listeners for Other Controls 190
Positioning the Insertion Point 191
Trapping Button Actions 191
Removing a Dialog Box 192

187

Contents ix

Handling Edit Fields 193
Retrieving Data from Edit Fields 193
Putting Data in Edit Fields 193
Clearing Edit Fields 194

Working with Check Boxes 196

Working with Radio Buttons 196

Handling Popup Menus 197

Manipulating Display Text 199

A Complete Dialog Box Example 200

Responding to “Live” Controls 202

Chapter 9: List Boxes and Tables 209
List Boxes 209
List Box Resources 210
Building the Contents of a List Box 210
Finding the Selected List Item 214
Capturing a Double-Click in a List Box 214
Tables 216
Table Resources 217
Table Subclasses 220
Initializing Table Storage 221
Building the Contents of a Table 222
Drawing Table Cells 223
Finding the Selected Cell 226

Chapter 10: Strings, Lists, and Files 227

Strings 227
LString and LStr255 228
Subclassing LString: PString 230
Adding a Class for C Strings: CString 232
Using the String Classes 234

Lists 235
Creating and Maintaining a List 236
Using a List Iterator 238

Files 239

Contents

Chapter 11: Repeated Actions: Periodicals 245
The LPeriodical Class 246
Subclassing to Create a Periodical 247
Programming Support for a Periodical 248

Chapter 12: Printing 251
How PowerPlant Printing Works 252
A Program’s Printing Tasks 252
The Printing Process 252
LPrintout’s Limitations 253
Creating LPrintout Objects 253
Coding Simple Printing 257
Adding Support for the Printing Dialog Boxes 259

Appendix: Binary Search Trees 263
The Binary Tree Data Structure 264
Searching a Binary Tree 265
Inserting Nodes into a Binary Tree 266
Deleting Elements from a Binary Tree 269
Tree Traversals 272
The In-Order Traversal 272
The Pre-order Traversal 273
Object-Oriented Binary Trees 273
Tree Container Classes 277
Traversal Iterators 279

Glossary 285

Index 289

Preface

Back in 1984, when many of us began programming for the Macintosh, we learned
quickly that although the Macintosh user interface made life easy for the user, it
placed an enormous burden on the software developer. Writing applications for a
GUI environment is a lot tougher than writing simple text-based applications;
there’re no two ways about it.

If you happen to be working in C++, then the situation is a bit worse because the
Macintosh environment is steeped in its Pascal heritage. The Macintosh ToolBox
routines are Pascal functions and procedures and there’s nothing object-oriented
about them.

So, if you’re committed to writing an object-oriented C++ Macintosh application,
what do you do? You can start from scratch, writing all your own classes, a painstak-
ing, lengthy, and largely unnecessary process. Why unnecessary? Because Metro-
werks PowerPlant can do a lot of the work for you.

PowerPlant is a collection of C++ functions that provide an object-oriented
framework for a Macintosh application. PowerPlant functions take care of tasks such
as installing and updating the menu bar, managing the event loop, handling dialog

Preface

box actions, and printing. Using PowerPlant can significantly speed up development
time as well as give your application all the benefits of object-orientation.

In this book you will learn about the structure of PowerPlant—including how its
many classes are related—and how to use PowerPlant classes to implement many
common Macintosh application features. You will discover when you can create
objects directly from PowerPlant classes, and when you need to first create a custom
subclass. You will read about everything from menus, windows, and dialog boxes to
QuickTime movies. You will discover where direct ToolBox calls are essential and
where you can avoid them by taking advantage of the code provided by the Power-
Plant classes.

Most of all, you will learn how PowerPlant works. We’ll explore the sequences of
function calls that implement basic elements of the Macintosh user interface to give
you an in-depth understanding of the general principles behind the PowerPlant archi-
tecture.

What you won’t find in this book is an exhaustive discussion of every PowerPlant
class. There are two major reasons why this is the case. First, PowerPlant is huge
(more than 2,000 functions) and you’d need a wheelbarrow to carry around a tome
that attempted to cover all of them. Second, PowerPlant is always changing. As you
probably know, Metrowerks releases three versions of the CodeWarrior development
environment every year, and each of those releases includes changes to PowerPlant.
Some classes become obsolete, others are added, and still others are modified.

Therefore, I think the most important thing you can do is become familiar with
the general way in which PowerPlant works. Then you can explore classes on your
own and also feel comfortable when Metrowerks presents you with modifications to
the PowerPlant framework.

The Sample Program

When an author designs a programming book, he or she has a major choice to make
about the size of the sample programs used for examples. Most introductory books
tend to stick with relatively short programs, as I did in my first CodeWarrior book.
However, PowerPlant isn’t really intended for writing short programs that don’t do
much more than demonstrate a handful of techniques. It’s intended for writing large,
useful applications. In fact, it’s very difficult to see the way in which the elements of a
PowerPlant application work unless you are working with a large program.

Given that you need a large program to really understand the PowerPlant environ-
ment, this book is based on a single application rather than a collection of short ones.

Preface

The program that you will find on the CD-ROM that accompanies this book is
designed to manage a video rental store (Penultimate Videos). The application isn’t
complete—there are many things that need to be added to make it truly usable by a
retail outlet—nor is it guaranteed to be bug free. In addition, some of its features
have been added just for demonstration purposes and probably wouldn’t be part of a
real-world video store management application. Nonetheless, the program is, large
enough and practical enough to demonstrate many PowerPlant techniques and to
show you one way that an application of reasonable size can be put together.

What You Need to Know

Because PowerPlant is a complex programming environment, there are several areas
of knowledge you should have before you begin working with this book:

You should be fluent in object-oriented C++ programming, including an under-
standing of multiple inheritance, operator overloading, and the object-oriented
way of implementing data structures such as linked lists. The program used for
examples in this book also makes heavy use of binary trees, a data structure that
isn’t part of the PowerPlant environment. A discussion of binary tree algorithms
and iterators can be found in the Appendix if you aren’t familiar with them.

You should be familiar with the structure and use of the Macintosh ToolBox. Al-
though you can get a great deal from this book without an in-depth knowledge of
the ToolBox, keep in mind that PowerPlant hides many ToolBox operations from
the programmer. If you need to modify or debug PowerPlant behavior and you
aren’t familiar with the ToolBox, it may be difficult to understand what Power-
Plant is doing.

You should be familiar with the idea of resources and know how to use a resource
editor or compiler (for example, ResEdit, Rez, or Resourcer). The examples in
this book use ResEdit.

You should be comfortable with using the Metrowerks CodeWarrior Integrated
Development Environment (IDE), including the debugger. (Repeat after me:
“The debugger is my friend, the debugger is my friend....”) Penultimate Videos
was begun using CW?7 and completed with CW38. It therefore won’t work with
versions of the software prior to CW3.

Acknowledgments

As with any book, there is an entire cast of characters that makes the book possible.
I'd therefore like to thank the following people for the valuable work on this project:

» Mike Williams, Assistant Acquisitions Editor at AP Professional.
o Peter Sullivan, Production Editor at AP Professional.

* Owen Hartnett, Technical Editor, who really knows his C++!

e Dave Mark, Publisher Liason at Metrowerks.

* Greg Combs, Metrowerks burnmaster who made the CD-ROM.

JLH

®

Xv

CHAPTER

Introducing
PowerPlant

In this chapter you will read about the organization of the PowerPlant framework,
including such diverse topics as the files you need to work with it, the major types of
classes that are part of the framework (for example, commanders, broadcasters, and
listeners), and the functions the classes have in common. You will also learn about
application classes, which provide the foundation for a PowerPlant application, and a
special resource type called a PowerPlant object. In addition, this chapter looks at
some global PowerPlant features, including support for exception handling.

2 Chapter 1 ¢ Introducing PowerPlant

PowerPlant as an Application
Framework

PowerPlant is what is called an application framework. It provides a program structure
that supports the basic activities performed by most Macintosh applications. In this
case, that structure is object-oriented.

Using PowerPlant gives a programmer several advantages:

« It provides an object-oriented structure for a Macintosh program, which—given
its Pascal heritage—has no inherent object-oriented characteristics.
* It relieves the programmer from writing code for basic Macintosh program activ-
ities, such as managing the menu bar, the event loop, and a great deal of event
~ trapping.
* It speeds application development because a great deal of code is already written.

Although PowerPlant does provide support for basic Macintosh program actions,
that doesn’t mean that you never need to write direct ToolBox calls. As you will see
throughout this book, there are many things PowerPlant doesn’t do. For example,
the class LPrintout, which enormously simplifies printing a document, doesn’t
ensure that a line of text isn’t split horizontally between two pages. If you want to

adjust printed pages for complete lines of text, you will need to write the code your-
self.

NOTE

While on the topic of ToolBox calls, this is as good a place as any to mention that you
should place the unary scope resolution operator (::) in front of all ToolBox calls. This
will ensure that they aren’t confused with PowerPlant function calls.

PowerPlant is supplied as a collection of more than a hundred classes, just under
half of which participate in a single class hierarchy. Unlike many class libraries, which
are supplied to programmers only as object code, PowerPlant classes are provided as
source code. This means you can study, copy, and modify the classes in any way you
choose. Although you do need to compile the PowerPlant classes the first time you
attempt to run any given project, the extra compile time is well worth the benefit of
having access to that source code.

What You Need to Use PowerPlant 3

What You Need to Use
PowerPlant

PowerPlant is supplied with the CodeWarrior package of development tools. To use
its classes in a program, you need the following:

» The CodeWarrior Integrated Development Environment (IDE) for each platform
for which you will be developing code.

» The C++ compiler for each platform for which you will be developing code.

e The CodeWarrior debugger. As mentioned in the Preface, you’ll find CodeWar-
rior’s excellent debugger one of your best allies in a PowerPlant development
project.

* The source code for all PowerPlant classes.

* The application Constructor (a resource editor for special PowerPlant resources).

A standard resource editor or compiler, such as Resourcerer, ResEdit, or Rez.

The easiest way to get all these files is to use the CodeWarrior installer and check
all the appropriate parts (for example, Figure 1.1). Be sure to include the following
along with the IDE and debugger you see selected in Figure 1.1:

» Metrowerks C/C++ for Mac OS: If you don’t want all the C/C++ libraries (for
example, if you don’t want the ANSI libraries), be sure to select the specific com-
piler package you want rather than letting the installer copy them all.

e Metrowerks PowerPlant: Be sure to install all of PowerPlant, which includes
Constructor.

Finally, you probably want to install at least some of the PowerPlant documentation,
which is part of the CodeWarrior Documentation package.

PowerPlant Class Types

PowerPlant classes fall into one or more of four broad categories:

« Stand-alone classes: These classes don’t participate in the large PowerPlant class
hierarchy and can therefore usually be used in non-PowerPlant programs. Classes

4 Chapter 1 ¢ Introducing PowerPlant

Figure 1.1 Selecting parts of the CodeWarrior package to install
T e R e g i

CodelWarrior IDE @
+ B Metrowerks Debug @
’ Metrowerks Debug for Mac 08 |
O Metrowerks Debug for Be @t
[0 Metrowerks Debug for Win32/186 @i
[J Metrowerks Debug for Magic Cap @

Disk space available: 566,240K Approximate disk space needed: 112,288K

— Install Location -
| Barracuda 1 o | Quit
| =
on the disk “Barracuda 1 *

of this type include LFile (for handling basic File Manager file I/O) and LMenuBar
and LMenu, which handle the menu bar and menus.

« PowerPlant-only classes: These classes participate in the large class hierarchy
about which you will read in the next section of this chapter. Their use is restrict-
ed to PowerPlant programs.

» Mix-in classes: These classes are designed to be used as base classes to add func-
tionality to other objects. You would never create an object directly from these
classes. For example, the LBroadcaster class allows a class derived from it to
broadcast a message. However, the derived class must have some additional func-
tionality besides being able to send a message. LControl, a class that acts as a base
class for many specific control classes (e.g., buttons, check boxes, and radio but-
tons), has LBroadcaster as one of its base classes. In addition, LControl also inher-
its from LPane, a base:class that provides support for the drawing of most objects
that appear on the Macintosh screen. LControl can use what it inherits from
LPane to help it draw itself on the screen,; it can use what it inherits from LBroad-
caster to send a message whenever the user makes a change in the state of the con-
trol.

» Wrapper classes: These classes simplify access to many groups of ToolBox rou-
tines. For example, UPrintingMgr is a wrapper for ToolBox Manager functions,
and LFile is a wrapper for File Manager functions.

The PowerPlant Class Hierarchy 5

The PowerPlant Class
Hierarchy

In Figure 1.2 you can see the relationships between many of the most frequently used
PowerPlant classes. Each box represents one class. The names of the classes generally
suggest what the class is designed to support. For example, LDialogBox creates and
manages dialog boxes, LStdPopupMenu takes care of a popup menu, and LStdButton
supports standard push buttons.

The arrowheads in the diagram indicate the direction of inheritance. The different
patterns and shadings of the lines have no significance other than to make it easier to
follow the inheritance where the lines cross.

As you can see from the diagram, the PowerPlant classes aren’t in a straight-line
hierarchy. The structure of these classes uses a lot of multiple inheritance to ensure
that classes inherit only exactly what they need. A straight-line hierarchy would
mean that many classes would be expanded by functions and variables that would
never be used. Although the multiple inheritance, broad hierarchy is conceptually
more complex than a straight-line hierarchy, it does help keep individual classes as
small as possible.

There are also some classes that aren’t part of the hierarchy at all. For example, as
you read earlier LMenu (used to implement one menu) and LMenuBar (used to man-
age the menu bar) are stand-alone.

You will be introduced to most of the classes in Figure 1.2 throughout this book.
In some cases, you will be able to create objects from the classes without modifica-
tion. Alternatively, you may need to either define a subclass or create a “clone” of a
class, where you duplicate a PowerPlant class and make some custom modifications.

NOTE

As far as this writer knows, there is no official C++ term for “cloning” a class,
although the term is used in object-oriented systems analysis to describe one way of
reusing a class. Occasionally you may need to modify a PowerPlant class in such a way
that subclassing isn’t appropriate, but making a copy of the class and changing it
slightly is. When that latter behavior is required, this book will call it cloning (for want
of a better term).

I LModelDirector I ------ »l LModelProperty l I LMenu | [LMenuBar

LAction LStdPopupMenu

LGraphPortView

LAttachment

LListiterator

I LDynamicArray I I LiteratedList I

LOffscreenView LCGrowZone

il

juejdidamod Bunnpoaju] « | 133deyd

1]

LPicture LUndoer

i

LTabGroup

l LListener l l LModelObject l |LEventDispatcher| l LAttachable l :_H LB'“"‘““"J
T I
I
i | 1l :
T e S U A |
'r [—————- LCommander |[_ _ _ ______ I_l | LPane I :I I
|] I
| ! ==
} | P " M !
| ! L] X
. i T o B = BTN S
| I
T l
| I LDialogBox [I
B
: : [LPlaceholder LDefaultOutline : LstdControl
[
I : +—1 LScroller :
| ; o oot] | L5198 utton
Vo] : : LTable I
. LMovieController | LStdRadioButton
rLAppllcatlon l | LDocument J [|
J : I LString | LstdCheckBox
| -
I LDocApplication | r LSingleDoc J | - LTextEdit :
! |
! |
! |
! |
| .,
I
|
|
|
|
'—
|

_ 3| StDialogHandler ‘m,,jjjjjjj,l LPeriodical |

LRadioGroup

Figure 1.2 A portion of the PowerPlant class hierarchy

The Application Classes 7

CLAass NAMING CONVENTIONS

In Figure 1.2 almost all the classes are named beginning with “L.” This isn’t an acci-
dent. PowerSoft uses the following naming conventions for PowerPlant classes.

Class Name
Prefix Use Sample
L Precedes the name of PowerPlant library classes LMenu
U Precedes the name of PowerPlant utility classes UTextMenus
St Precedes the name of PowerPlant stack-based classes StDialog Handler

As you explore PowerPlant files, you may also encounter classes whose names begin
with C. These are subclasses created for use in the sample programs that accompany
PowerPlant. You might want to use the prefix for the classes you declare yourself.

NOTE

Although PowerPlant classes are named using the preceding conventions, there is no
hard and fast rule that says you must adhere to those conventions when naming your
own classes. In fact, the Penultimate Videos program doesn’t use PowerPlant rules for
naming classes; this made it easier for the author to distinguish classes written specifi-
cally for the program from PowerPlant classes. Nonetheless, how you name files is a per-
sonal (or team, if you’re working on a programming team) decision. Whatever you do,
try to be consistent so that when you return to the program after a long weekend, you’ll
be able to figure out why you did what you did.

The Application Classes

The foundation of a PowerPlant application is one application object, which is cre-
ated from a subclass of LApplication, LDocument, LSingleDoc, or LDocApplication.
These classes take care of general program management activities such as imple-
menting the event loop. They create a menu bar with ®, File, and Edit menus and
handle events associated with all options in the 8 menu and the Quit option in the
File menu.

The difference between the four application classes can be found in the way in
which they support documents: '

8 Chapter 1 ¢ Introducing PowerPlant

« LApplication, the most basic of the four, provides no document support.

+ LDocument is designed for programs that manipulate one or more document
files. It therefore supports actions on documents such as Save, Save As, Revert,
and Print.

+ LSingleDoc is similar to LDocument but aimed at programs that work with only
one document at a time.

» LDocApplication is designed for programs that display more than one window
for a single document file.

CREATING THE APPLICATION OBJECT

Just like any C++ program, a PowerPlant program must have a main function
which, at the very least, creates the application object. A PowerPlant main function
also usually performs some program setup operations. The code in Listing 1.1, the
main function for the Penultimate Videos program, is typical. It sets the PowerPlant
debugging options—you can remove that code when the program is ready to ship—
and initializes the heap and the ToolBox. Then, it creates the application object and
finishes by calling the object’s Run function. The remainder of the application’s
actions are initiated by that call.

Listing 1.1 The Penultimate Videos main function

//
// « Main Program
//

void main(void)
{
// Set Debugging options
#ifdef Debug_Throw
gDebugThrow = debugAction_Alert;
fendif

#ifdef Debug_Signal
gDebugSignal = debugAction_Alert; .

ffendif
InitializeHeap(4); This statement creates the
UQDGTobals::InitializeToolbox(&qd); application object, calling the

new LGrowZone(20000): / constructor
CPPVideoStoreApp theApp; This function call initiates
theApp.Run(); program actions

The Application Classes 9

THE APPLICATION AND THE EVENT LOOP

One of the most important actions performed by an application object is to manage a
program’s event loop, which is initiated in the object’s Run function. As you can see
in Listing 1.2, the function contains a whi1e that either calls a function named Pro-
cessNextEvent or signals an exception.

Listing 1.2 An application object’s Run function

void

LApplication::Run()

{

SwitchTarget(this);
::InitCursor();
UpdateMenus();

mState = programState_ProcessingEvents;

while (mState != programState_Quitting) {
try |{

}

ProcessNextEvent();

cateh(...) {

SignalPStr_("\pException caught in LApplication::Run");

ProcessNextEvent, which is found in Listing 1.3, takes care of setting the cur-
sor shape, and then calls the ToolBox routine WaitNextEvent to pull the next event
record that belongs to the application off the event queue. To handle an event, the
function first attempts to let PowerPlant’s attachment mechanism handle the event.

An attachment is a class that modifies the way in which another class behaves while
the program is running. You might, for example, use an attachment to draw a letter-
head on every piece of output your program prints. Rather than modifying the
classes that produce the output, you can “attach” some code that draws the letter-
head to the appropriate classes. PowerPlant provides attachment classes for actions
such as beeping the computer’s speaker in response to an event and supporting the
scrolling keys on the extended keyboard (page up, page down, and so on). Your pro-
gram can certainly use any of the attachments provided by PowerPlant, or you can
write your own attachments. You will find an example of using an attachment in

10

Chapter 1 ¢ Introducing PowerPlant

Listing 1.3 An application object’s ProcessNextEvent function

void LApplication::ProcessNextEvent()

{

EventRecord macEvent;

// When on duty (application is in the foreground), adjust the

// cursor shape before waiting for the next event. Except for the
// very first time, this is the same as adjusting the cursor

// after every event.

if (IsOnDuty()) {
// Calling OSEventAvail with a zero event mask will always
// pass back a null event. However, it fills the EventRecord
// with the information we need to set the cursor shape--
// the mouse location in global coordinates and the state
// of the modifier keys.

::0SEventAvail(0, &macEvent);
AdjustCursor(macEvent);

// Retrieve the next event. Context switch could happen here.

SetUpdateCommandStatus(false);

Boolean gotEvent = ::WaitNextEvent(everyEvent, &macEvent, mSleepTime,
mMouseRgnH) ;
// Let Attachments process the event. Continue with normal ‘&\\\\
// event dispatching unless suppressed by an Attachment. A call to the
ToolBox routine
if (LAttachable::ExecuteAttachments(msg_Event, &macEvent)) f{ WaitNextEvent

if (gotEvent) |{

DispatchEvent(macEvent): «—__ A call to the routine that identifies

| else { the event that has occurred
UseldleTime(macEvent);
}

| . A call to handle events that should occur when
the program receives a null event

// Repeaters get time after every event
LPeriodical::DevoteTimeToRepeaters(macEvent);

// Update status of menu items
if (IsOnDuty() && GetUpdateCommandStatus()) {
UpdateMenus();
}

Interclass Communication 1

Chapter 6, where attachments are used to implement the Undo operation in a text
edit window.

There are two classes that support the attachments mechanism: LAttachable, from
which classes that can accept attachments are derived, and LAttachment, which gen-
erates attachment objects. Notice in Listing 1.3 that once the application object has
grabbed an event from the event queue, it calls the LAttachable function Execute-
Attachments. This function returns true if the application object should handle the
event and false if the event was handled by an attachment and therefore requires no
action by the application object.

When a null event occurs, ProcessNextEvent calls its own function Useldle-
Time to give time to events that should be processed when the program isn’t doing
anything else. However, if anything other than a null event occurs (JotEvent is
true), ProcessNextEvent calls LEventDispatcher::DispatchEvent.

The class LEventDispatcher exists to dispatch events to the correct object. Because
LApplication is derived from LEventDispatcher, an application object created from
this class has access to the event dispatching functions. As you can see in Listing 1.4,
DispatchEvent identifies the event that has occurred and then branches to the
LEventDispatcher function that handles the specific event. Typically the event han-
dling functions process events that aren’t related to other program objects. For exam-
ple, LEventDispatcher takes care of mouse clicks in system windows and in the menu
bar. However, when an event should be handled by another program object, LEvent-
Dispatcher passes the event to the appropriate object. The mechanism for determin-
ing which object receives an event is part of the class LCommander, which is
discussed in the next section of this chapter.

Interclass Communication

Like objects in any other object-oriented program, those used in a PowerPlant pro-
gram send messages to communicate with one another. Objects that listen to mes-
sage and objects that send messages fall into three broad categories: commanders,
broadcasters, and listeners. In this section you will be introduced to these three cate-
gories of objects and learn how they relate to one another when handling events.

12 Chapter 1 ¢ Introducing PowerPlant

Listing 1.4 Dispatching an event

voidLEventDispatcher::DispatchEvent(const EventRecord&inMacEvent)
{
switch (inMacEvent.what)
{
case mouseDown:
AdjustCursor(inMacEvent);
EventMouseDown(inMacEvent);
break;

case mouselp:
EventMouseUp(inMacEvent);
break;

case keyDown:
EventKeyDown(inMacEvent);
break;

case autoKey:
EventAutoKey(inMacEvent);
break;

case keyUp:
EventKeyUp(inMacEvent);
break:

case diskEvt:
EventDisk(inMacEvent);
break;

case updateEvt:
EventUpdate(inMacEvent);
break;

case activateEvt:
EventActivate(inMacEvent);
break;

case osEvt:
Event0S(inMacEvent);
break;

case kHighLevelEvent:
EventHighlLevel(inMacEvent);
break;

default:
UseldleTime(inMacEvent);
break;

Interclass Communication 13

COMMANDERS

Classes that listen for and respond to messages generated by keystrokes and menu
choices are called commanders. At some point in their inheritance hierarchy, they are
derived from LCommander. When you use a class derived from LCommander, or
derive a class that includes LCommander in its inheritance hierarchy, you must over-
ride two member functions to customize the behavior of the derived class in
response to events:

e The FindCommandStatus function determines whether menu options should
be enabled or disabled. As you would expect, a program responds only to enabled
menu options.

e The ObeyCommand function identifies which command has been chosen by the
user—either with the mouse or a command-key equivalent—and takes action ap-
propriate to that command. If the action requires just a few lines of code, you can
include it as part of the ObeyCommand function. However, in most cases you will
want to call another function to handle the command.

If you look back at Figure 1.2, you’ll notice that there are a number of classes that
are ultimately derived from LCommander, including LApplication, LDocument,
LEditField (a text entry box in a window or dialog box), LTextEdit (an area for edit-
able text in a window based on the ToolBox’s TextEdit routines), LListBox (a scroll-
ing list of items), LTabGroup (a group of items that are reached successively by
pressing the Tab key), and LWindow (the base class for all windows). When you
derive a class from one of these classes, the derived class will have its own FindCom-
mandStatus and ObeyCommand functions. Those functions will contain code that
is applicable to the specific class. As a result, a program contains a group of Find-
CommandStatus and ObeyCommand functions, each of which handles a distinct
part of the program’s keystroke and menu events.

As an example, consider the dialog box in Figure 1.3, which is used to enter data
about a new movie title using the Penultimate Videos program. Each rectangular
data entry area is an object created from LEditField and is therefore a commander.
The dialog box itself (an object of class LDialogBox, which is derived from LWindow)
is also a commander. In addition, the application is a commander. Finally, there is a
commander that you can’t see in the window: an object of class LTabGroup. All of
the LEditField objects are part of a single tab group, which makes it possible for the
user to move the cursor from one field to another by pressing Tab.

14

Chapter 1 ¢ Introducing PowerPlant

Figure 1.3 A dialog box from a PowerPlant program

Movie Title: ||

Distributor: | —|
Director: | |
Producer: F I
Length: [] Classification: |_Adventure v|]
Stars: Rating: [_6__]

e A —
|

As well as the FindCommandStatus and ObeyCommand functions, commanders
have several functions that work together to handle keypress events:

¢ Hand1eKeyPress: A member function that is part of each commander class to
act directly on keypress events.

» EventKeyDown: The application object’s member function that traps keypress
events. It ultimately calls HandTeKeyPress to allow the object in which the
event occurred to take care of the keypress event. Because a keypress may be a
menu selection, the event may either be passed to a commander or to a menu ob-

ject.

» CouldBeKeyCommand: A member function of the menu bar that identifies
whether a keypress included the 3 key, called by EventKeyDown.

* FindKeyCommand: A member function of the member bar that identifies the
menu option that was selected by a 3 key equivalent, called by EventKeyDown
when CouldBeKeyCommand identifies a command instead of a regular keypress.

Interclass Communication 15

The Chain of Command

Commanders are arranged in a hierarchy (the chain of command) that determines the
order in which each commander is given the chance to decide whether it should han-
dle an event or pass it up the hierarchy. The hierarchy of objects for the dialog box in
Figure 1.3 appears in Figure 1.4, including the name of the class from which each
object is created. Some of the objects—those created from the classes LStdPopup-
Menu, LCaption, and LStdButton—aren’t in the chain of command because they
aren’t derived from LCommander. However, the LDialogBox, LTabGroup, and
LEditField objects are derived from LCommander and therefore are in the chain of
command. Those objects that are indented underneath other objects in Figure 1.4,
such as the LEditField objects that have been placed on the dialog box, are lower in
the hierarchy.

NOTE

The hierarchy in Figure 1.4 was taken from Constructor, a resource editor about which
you will read throughout this book.

A commander has one supercommander, the commander that is above it in the
chain of command. The only exception to this rule is the application object, which
has no supercommander. A commander can also have many subcommanders, com-
mander objects that are below it in chain of command.

When a keystroke or menu selection event occurs, the program first submits the
event to objects lowest on the chain of command. If an object can’t handle the event,
it passes it up to its supercommander. As an example, look at the ObeyCommand
function from the LTextEdit class in Listing 1.5. This function contains a switch
statement that implements standard text editing operations such as Cut, Copy, Paste,
and Clear. However, as you can see from the switch statement’s default option, if
the event isn’t one that LTextEdit handles, the event is passed to the base class (in this
case LCommander) ObeyCommand function (Listing 1.6), which in turn calls the
supercommander’s ObeyCommand function.

The Target

The current object that is available to listen for and handle a command is known as
the target. In Figure 1.3, for example, there are 25 objects created from the LEditField
class, all of which are subcommanders of the dialog box and on the same level of the
chain of command. However, only one of those 25 is active at any given time. This
object, which contains the flashing insertion point, is the current target. Although
the dialog box has many objects created from the same class, the program has no

Chapter 1 ¢ Introducing PowerPlant

Figure 1.4 The object hierarchy for the dialog box in Figure 1.3

Hierarchy for PPob 1000, “Mou
LDialogBox Enter New Movie o

=] LstdPopupMenu 1034

a LStdPopupMenu 1036
4 3 LTabGroup
LCaption 1001 Movie Title:
LCaption 1003 Distibutor:
LCaption 1005 Oivector:
LCaption 1007 Producer:
LCaption 1009 tength:
LCaption 1037 Stars:
LCaption 1033 Classification:
LStdButton 1031 OK
LStdButton 1032 Oone
LCaption 1035 Rsting:
LEditField 1002
LEditField 1004
LEditField 1006
LEditField 1008
LEditField 1010
LEditField 1011
LEditField 1012
LEditField 1013
LEditField 1014
LEditField 1015
LEditField 1016
LEditField 1017
LEditField 1018
LEditField 1019
LEditField 1020
LEditField 1021
LEditField 1022
LEditField 1023
LEditField 1024
LEditField 1025
LEditField 1026
LEditField 1027
LEditField 1028
LEditField 1029
LEditField 1030

@l [

EEEEEDE

&

Interclass Communication 17

Listing 1.5 The ObeyCommand function from the class LTextEdit

Boolean LTextEdit::0beyCommand(CommandT inCommand,void * ioParam)
{

BooleancmdHandled = true;

switch (inCommand) ({

case cmd_Cut:
::TECut(mTextEditH);
::ZeroScrap();
::TEToScrap();
AdjustimageToText();
UserChangedText();
break;

case cmd_Copy:
::TECopy (mTextEditH);
::ZeroScrap();
::TEToScrap();

break; These cases take care of events that
are appropriate for an object of the
case cmd_Paste: LTextEdit class to handle
::TEFromScrap();
::TEPaste(mTextEditH);

AdjustImageToText();
UserChangedText();
break;

case cmd_Clear:
::TEDelete(mTextEditH);
AdjustImageToText();
UserChangedText();
break;

case msg_TabSelect:
if (!IsEnabled())
cmdHandled = false;
break;
// else FALL THRU to SelectAl1() This function call passes the event
to the base class
case cmd_SelectAll:
SelectA11(); '
break;

default:
cmdHandled = LCommander::0beyCommand(inCommand, ioParam);
break;
}

return cmdHandled;

18

Chapter 1 ¢ Introducing PowerPlant

Listing 1.

6 LCommander’s Obey Command function

Boolean

LCommander: :0beyCommand(

Comm
void

Bool
if (

}
retu

a"dlil';g"r";’g"‘)”d' Event is passed up the chain of command here
eancmdHandled = false; /
mSuperCommander != nil) {

cmdHandled = mSuperCommander->ProcessCommand(inCommand, ioParam);

rn cmdHandled;

trouble deciding which LEditField object should receive an event: The event goes to
the current target.

In this particular dialog box, the LEditField objects have been placed in a tab
group (an object of class LTabGroup). The user can therefore switch the target in two
ways: by pressing Tab to move to the next LEditField object in the group, or by click-
ing in an object with the mouse pointer. Although in this case the target switching
behavior has been included in the PowerPlant code, there are circumstances under
which you might want to explicitly make a particular object the target. For example,
you might want to reset the contents of a dialog box without removing it from the
screen and therefore want to make sure that the first LEditField object is the target.
To do so, you use the SwitchTarget function. If you are working with a class you
have derived, you may need to write your own SwitchTarget function.

Going on and off Duty

Like any other Macintosh program, a PowerPlant application must exist in the Mac-
intosh Operating System’s cooperatively multitasked environment. When a user
switches from the PowerPlant application to another program, the PowerPlant appli-
cation must suspend itself until it is reactivated. Suspension means that the applica-
tion object goes “off duty”—it no longer responds to events.

In most cases, every commander in the chain of command is on duty when the
application is active. When the application is suspended, the application object goes
off duty. All other on duty commanders become “latent.” This means that they
would be on duty if their supercommander was on duty. On the other hand, if the
application has explicitly taken a commander off duty (and consequently, all its sub-
commanders), suspension leaves the commander and all its subcommanders off duty.

Upon becoming active again, the PowerPlant application places the application
object on duty. It then searches the chain of command for all latent commanders and

interclass Communication 19

places them on duty; any off-duty commanders are left in that state. The latent com-
mander at the bottom level of the chain of command becomes the current target.

BROADCASTERS AND LISTENERS

/In addition to commanders, there is another group of objects that responds to mes-
sages in the PowerPlant environment: listeners, which are at some point derived from
LListener. Listeners wait for messages sent by broadcasters, objects derived at least in
part from LBroadcaster. For example, in Figure 1.3, the dialog box is a listener; the
Done and OK buttons are broadcasters. The dialog box waits until it receives a mes-
sage from one of its buttons and then takes action based on the message.

The message sent by a broadcaster is known as its value message. Some value mes-
sages are arbitrary—you can set them as you like. Others have restrictions to which
you must adhere if your program is to execute properly. For example, the button that
closes a dialog box without processing the state of the dialog box’s contents (the Can-
cel button, or in Figure 1.3, the Done button) must have a value message of 4. This is
because the LDialogBox class has been written to expect this message as an instruc-
tion to close the dialog box. In addition, with the exception of the value message 4,
LDialogBox only listens for negative messages.

Each listener has a list of broadcasters to which it listens. For example, by default a
dialog box listens for its Cancel and OK buttons. If you want the dialog box to
respond to anything else, such as an additional button, your program must add that
button to the listener’s list of broadcasters, using the AddListener function.

NOTE

The AddListener function has been known to give programmers heartburn because
the broadcaster object calls it, saying to the listener “add me to your list of broadcast-
ers,” rather than the other way around.

If you look back at Figure 1.2 again, you’ll notice that LControl is a broadcaster
(because it inherits from LBroadcaster). LControl is the base class for classes that pro-
vide most of the Macintosh’s standard controls (push buttons, radio buttons, check
boxes, popup menus, and so on). In addition, the class LListBox is a broadcaster,
which provides support for responding to double-clicking in a list of items.

LWindow, the base class for PowerPlant windows, is not derived from LListener.
This means that if you want a window to respond to controls, you must explicitly
link the controls to the window, using the function UReanimator::LinkListen-
erToControls. However, LDialogBox is derived from LListener and is therefore
often the easiest class to use when you are creating windows that must contain

20

Chapter 1 ¢ Introducing PowerPlant

buttons, check boxes, popup menus, and so on. Alternatively, you can create a sub-
class that inherits from both LWindow and LListener.

PowerPlant Objects

You can certainly create an object from a PowerPlant class the old fashioned way—by
passing a constructor all the parameters it needs to define the object. In fact, lists,
strings, and other non-graphic objects are created in just that way. However, when
creating graphic objects (for example, windows and dialog boxes), it rather defeats
the purpose of working with an application framework to hard code all the details of
an object into a program or header file; you’re back at a very primitive level worrying
about such things as screen coordinates for windows and controls. Ideally, you
should be able to find some easy way to create graphic objects, without having to fid-
dle with such details.

The answer lies in PowerPlant objects, resources named PPob that can be used as the
basis for objects created from a number of PowerPlant classes. You create PowerPlant
objects with Constructor, an application that is part of the CodeWarrior package.
Constructor lets you draw windows, dialog boxes, and print formats and then saves
them as resources that a PowerPlant program can use.

NOTE

Although you can also edit PowerPlant object resources with Rez or Resourcer, PPob
resources are too complex for ResEdit to handle.

In most cases, you will find it easier to edit PowerPlant objects using Constructor
rather than any other resource editor or compiler, simply because Constructor lets
you draw the resources. It is therefore often convenient to keep at least two program-
specific resource files, one for PowerPlant objects and one for all other resources you
create for the program. You can then keep both resource files open at the same time.

NOTE
Constructor is quite easy to use. You will learn how to use it throughout this book as we
explore the various classes that go into a PowerPlant program.

PowerPlant Objects 21

POWERPLANT OBJECT CLASSES

Top-level PowerPlant objects come from one of five classes:

« LWindow: Provides support for windows created with calls to the ToolBox Win-
dow Manager. Most document windows come from this class.

 LDialogBox: Creates dialog boxes with support for default OK and cancel but-
tons. As you read earlier in this chapter, a dialog box is a listener that can respond
to messages broadcast by the controls it contains.

* LPrintout: Provides a layout for printing.

» LView: Provides a starting place for a chain of command of objects without asso-
ciating them with a window. You will learn more about views and how they re-
late to other objects throughout this book.

 LGrafPortView: Provides support for objects that work with externals such as
OpenDoc or applications that accept plug-ins (for example, HyperCard or Photo-
shop).

PowerPlant objects based on LWindow and LDialogBox have accompanying
WIND resources that are created automatically when you create the PPob resource.
If you decide to work with two program-specific resource files, you should leave the
WIND resources in the same file as the PPob resources. This will ensure that the
WIND resources are updated whenever the PPob resources are updated. You will
probably never need to deal with them directly.

REGISTERING POWERPLANT OBJECTS WITH
UREGISTRAR

Each PowerPlant class whose objects can be defined as PowerPlant objects has a four-
character ID string. For example, LDialog box is known as dlog, LEditField as edit,
and LStdPopupMenu as popm. When you derive PowerPlant classes whose objects
can be defined as PowerPlant objects, you give each its own ID. For example, the
class that Penultimate Videos uses to provide a printable, multistyled area for writing
a simple note has an ID of note. The only restriction on class IDs is that they must be
unique within the program.

One of the first actions a PowerPlant program takes is to figure out the classes
from which PowerPlant objects are going to be created using a stream of data from
an external source (usually a resource file). The program builds a table of class IDs
and the names of the functions used to create objects from that class. This action is
known as registering classes.

22

Chapter 1 ¢ introducing PowerPlant

Class registration is handled by the class URegistrar. When you are first working
developing a PowerPlant program, you can register all classes that will create Power-
Plant objects by calling the global function RegisterAl1PPClasses. This func-
tion (which can be found in the file PPobClasses.cp) contains multiple calls to
URegistrar::RegisterClass.If youaren’t using every class registered by Reg -
isterA11PPClasses, your program will end up a bit larger than it needs to be.
You may therefore want to replace the call to RegisterAT1PPClasses with indi-
vidual calls to RegisterClass just before shipping your program.

You must also register derived or cloned classes from which objects can be defined
as PowerPlant objects. Such classes are registered directly with calls to Register-
Class. As an example, take a look at Listing 1.7, the constructor for the Penultimate
Videos program’s application object. Notice that there are six classes (IDs of note,
grph, rtab, stab, SWin, and Ther) that have been created specifically for this program.
They are handled by direct calls to RegisterClass. The function requires two
parameters: the class ID and the name of the function used to create objects from an
input stream. You will learn more about these stream input constructors throughout
this book as we explore specific PowerPlant classes.

NOTE

The constructor in Listing 1.7 also performs some additional setup operations, includ-
ing initializing the Font, Size, and Style menus, initializing counters and a flag used by
program, and initializing QuickTime.

If a program attempts to create an object from a class that hasn’t been registered,
PowerPlant returns the following runtime error:

Signal raised

Condition: nil object created from tag
File: UReanimator.cp

Line #127

NOTE

The alert that presents the preceding message is generated by PowerPlant’s exception
handling mechanism, which is discussed at the end of this chapter.

Unfortunately, the message doesn’t tell you which class isn’t registered. You will need
to use the debugger to step through the portion of code in which the signal is raised.

PowerPlant Objects 23

Listing 1.7 The constructor for the Penultimate Videos application object

CPPVideoStoreApp: :CPPVideoStoreApp()
{
// Register functions to create core PowerPlant classes

RegisterA11PPClasses();

// Register classes unique to this program
// multistyled TextEdit note
URegistrar::RegisterClass('note’', Note::CreateNoteStream);
URegistrar::RegisterClass('grph',Graph::CreateGraphStream); // pane for a graph
URegistrar::RegisterClass('rtab’',ReceiptTable::CreateReceiptTableStream);
// table for rental receipt
URegistrar::RegisterClass ('stab',StatsTable::CreateStatsTableStream);
// table view for stats window
URegistrar::RegisterClass ('SWin',StatsWindow::CreateStatsWindowStream);
// statistics window
URegistrar::RegisterClass (‘Ther’,Ther::CreateTherStream):
// thermometer pane

UFontMenu::Initialize (TRUE); // set up the font menu

// zero indicates that there are no items that aren't sizes
USizeMenu::Initialize (0, TRUE);

UStyleMenu::Initialize (TRUE); // set up the style menu

strcpy (FileName, "Video Data"); // give a default file name

Movie_count = 0;
Other_count = 0;
Game_count = 0;
Cust_count = 0;
lastTitle_numb = 0;
lastCopy_numb = 0;

save_flag = TRUE;

UQuickTime::Initialize();

CREATING POWERPLANT OBJECTS

Some classes whose objects can be defined as PowerPlant objects have a function
named Create X (Xbeing the name of the type of object) that returns a pointer to the
new object. For example, LWindow has a function named CreateWindow Other
classes, such as LDialogBox, use a base class’s Create X function and typecast the
returned pointer to the correct class. You might, for example, use the following to
create a dialog box object from a PowerPlant object resource:

24

Chapter 1 ¢ Introducing PowerPlant

LDialogBox * theDialog;
theDialog = (LDialogBox *) LWindow::CreateWindow (DIALOG_BOX_RESOURCE_ID,
this);

Like other functions for creating objects from PowerPlant resources, CreateWin-
dow requires two parameters: the resource ID of the PowerPlant resource and a
pointer to the supercommander. In the preceding example, the dialog box is being
created in a member function of the application object, which becomes the super-
commander by specifying its address with this.

Inside a Create) function, an object is actually created by the UReanimator class.
The CreateX function calls UReanimator::ReadObject, which reads the data
describing the PowerPlant object from the resource file. The ReadObject function then
calls UReanimator::0bjectsFromStream (which calls URegistrar::Cre-
ateObject) to actually create the object and return a pointer to its main memory loca-
tion. You will see this process in more detail in Chapter 5.

Even when you write your own subclasses, you won’t need to write code to create
objects from PowerPlant resources. All you need is a a constructor that creates an
object from an input stream that can then call the appropriate base class constructor
to do the work.

PANES AND VIEWS

Many of the PowerPlant classes in Figure 1.2 are derived from LPane and LView.
These two classes, whose objects are typically defined as PowerPlant objects, under-
lie all drawing in a PowerPlant program.

A pane is an area in which a program can draw. A pane also can respond to clicks of
the mouse pointer. Panes include, for example, controls, scrollable areas, and areas
for entering text. You can place a pane in a window (even a non-PowerPlant window)
and you can place it in a view.

A view is a container for panes, a pane that can contain other panes. The panes that
are within a view ar¢ known as subpanes. A view that contains a pane is the pane’s
superview. For example, the dialog box in Figure 1.3 is a view. It contains subpanes for
display text (objects of class LCaption), panes for entering text (objects of class LEdit-
Field), and panes for displaying popup menus (objects of class LPopupMenu). The
dialog box is the superview for all the panes it contains.

As a second example, consider the window in Figure 1.5. This very simple win-
dow is actually a multistyled text editor. It lets the user enter and edit text, as well as
change font, style, and type size. The contents of the window can be printed and
saved in a text file. The resource that makes up the window contains three objects:

PowerPlant Objects 25

the window itself (an object of class LWindow), the scrollable area and the scroll bars
(an object of class LScroller, and the text entry area (an object of a class cloned from
LTextEdit). The window is a view that contains a second view (the scroller), which
contains a pane (the text entry area). In other words, views can contain other views
and panes; panes cannot contain views or other panes.

Figure 1.5 A window for entering and editing text
EB=——————— untitled note

B

el

NOTE
The relationship between panes and views can be a bit confusing. Although LView is
derived from LPane, a view is a container for panes, just the opposite of what you might
expect.

Basic Pane and View Functions
Classes that include LPane or LView in their inheritance hierarchy have the following
functions in common:

26

Chapter 1 ¢ Introducing PowerPlant

e DrawSelf: Uses QuickDraw routines to draw the contents of the pane.

e C1ickSelf: Handles activities that occur when the user clicks the mouse point-
er in the pane.

» ActivateSelf: Handles activities that occur when a pane becomes active. In
this context, a pane is active if it is in an active window (usually the foreground
window)

» DeactivateSelf: Handles activities that occur when a pane becomes deactive.
In many cases, a program will redraw the contents of the pane, perhaps making
its contents shaded rather than solid.

» EnableSel f: Handles activities that occur when a pane is enabled. (An enabled
pane will respond to clicks of the mouse.)

» DisableSelf: Handles activities that occur when a pane is disabled.

You may need to override any of the these functions when a derived class should
behave differently from the base class.

Pane Descriptors and Values

Panes have programmer-accessible data known as descriptors and values. A pane
descriptor is a Pascal string whose precise contents depends on the class with which
you are working. For example, the descriptor of an object of class LCaption is the dis-
play text itself. The descriptor of an object of class LEditField is the contents of the
edit field, while the descriptor of an object of class LListBox is the currently high-
lighted item in the list.

Instead of using a pane’s descriptor directly, you can retrieve its value, the integer
equivalent of the descriptor. If you know that a descriptor will contain an integer and
you need to handle that integer as a number rather than a string, requesting the value
rather than the descriptor can save you a conversion step. Your program will access
the descriptor, translate it to an integer, and return the integer to the program. Note
that the pane only maintains the descriptor; the value is generated from the descrip-
tor when needed.

A program accesses and modifies descriptors and values using the following four
functions:

» GetDescriptor: Returns the Pascal string descriptor.

* SetDescriptor: Takes a Pascal string and makes it an object’s descriptor.

« GetValue: Returns the integer equivalent of the descriptor.

» SetValue: Converts an integer to a Pascal string and makes the string an object’s
descriptor.

Exception Handling 27

You will be introduced to panes in much greater depth beginning in Chapter 5. In
addition, because panes are the basic display element for a PowerPlant program, we
will be talking about them throughout the book.

Exception Handling

As well as managing the event loop, PowerPlant also provides an exception handling
mechanism that now maps directly to the C++ try/catch/throw statements.
PowerPlant provides a group of macros that not only set up try and catch blocks,
but also provide signal and throw capabilities.

The exception macros are defined in UException.h. As you can see in Listing 1.8,
the macros that set up try and catch blocks do indeed map to the C++ exception
handling commands. These basic macros are accompanied by a set of macros that
throw errors under some common error conditions, a sampling of which appear in
Listing 1.9.

Listing 1.8 Exception handling macros

jidefine Try_ try

fidefine Catch_(err) catch(ExceptionCode err)
ftdefine EndCatch_

ftdefine Throw(err) throw (ExceptionCode)(err)

As an example of how you might use these exception handling macros, take a look
at Listing 1.10. This code is part of a function that creates a new object of class Film.
The code for creating the object is within a Try block. The Catch block below it
throws an exception if any error occurs. If you don’t want to use the generic Throw_
macro to trap any error, use one of the specific error macros found in UException.h.

NOTE

If you are using ANSI C++ stream I/0, then there will be some duplication between
console.stubs.c (the stream 1/ O support file) and UException.cp, causing the linker to
warn you that it has discovered a duplicate definition of abort.c. Although the warning
is harmless, if you find it annoying you can prevent it from occurring by removing UEx-
ception.c from any project that includes console.stubs.c to support ANSI stream 1/0.
(You will read more about adding ANSI stream 1/ 0O support in Chapter 3.)

28 Chapter 1 ¢ Introducing PowerPlant

Listing 1.9 Some useful Throw macros

ffdefine ThrowIfOSErr_(err) \
do { \
0SErr__theErr = err; \
if (__theErr != noErr) f{\
Throw_(__theErr); \
} \
} while (false)

f#define ThrowIfError_(err) \
do { \
ExceptionCode__theErr = err;\
if (__theErr '=10) { \
Throw_(__theErr); \
} \
} while (false)

ffdefine ThrowOSErr_(err)Throw_(err)
fidefine ThrowIfNil_(ptr) \
do { \
if ((ptr) == nil) Throw_(err_NilPointer);\
} while (false)

fidefine ThrowIfNULL_(ptr) \
do { \
if ((ptr) == nil) Throw_(err_NilPointer);\
} while (false)

fidefine ThrowlfResError_() ThrowIfOSErr_(ResError())
ftdefine ThrowIfMemError_() ThrowIfOSErr_(MemError())

Listing 1.10 Using exception handling macros

Try_
{
// Create new object and insert into binary tree
newMovie = new Film (Title_numb, iTitle, iDistributor, iDirector,
iProducer, iClass, ilen, numb_stars, istars, iRating, Items, ItemsByNumb);
Movie_count++; .
// move cursor back to first edit field
theFirstEditField->SwitchTarget (theFirstEditField);
save_flag = FALSE; // flip this flag whenever data are modified
}

Catch_ (inErr)
{

Throw_ (inErr);
} EndCatch_

CHAPTER

Penultimate
Videos

In this chapter you will see the Penultimate Videos application from two viewpoints:
the user’s and the programmer’s. The user’s view includes an overview of menu
options and the functions they provide. The programmer’s view includes a discus-
sion of the program’s underlying data classes and the data structures that manage
objects of those classes.

The User’'s View

The purpose of the Penultimate Videos application is to manage a video store’s
inventory as well as the rental and sales of items. The store’s inventory contains
video tapes, laser discs, and video game cartridges, all of which can be rented. Rental
copies that are no longer needed can be sold.

29

30 Chapter 2 ¢ Penultimate Videos

HANDLING INVENTORY

Inventory management functions are gathered together in the Inventory menu
(Figure 2.1). As you can see, this menu lets the user enter new inventory items as well
as copies of those items. It also supports modifying and deleting items and copies.

Figure 2.1 The Penultimate Videos Inventory menu

Inventory(-

New Movie 8M
Modify/Delete Movie

New Miscellaneous Video
Maodify/Delete Miscellaneous Video

New Uideo Copy
Modify/Delete Uideo Copy

New Game 806
Modify/Delete Game

New Game Copy

Delete Game Copy

Find Item 81
Inventory Graph 82
Inventory Stats 83

Entering new inventory items is handled through dialog boxes. For example, the
dialog box in Figure 2.2 is used to enter data about a new miscellaneous video. A sim-
ilar dialog box (Figure 2.3) is used to modify or delete items. The user reaches the dia-
log box in Figure 2.3 by double-clicking on a scrolling list of titles.

A video store doesn’t rent “titles,” it rents copies of those titles. Therefore, before
Penultimate Videos can rent something, a user must record the copies of an item that
the store has purchased. Each copy has an arbitrary unique inventory number that is
generated automatically by the program. To enter a copy of a video, the user high-
lights the title in a scrolling list of titles and then uses the radio buttons, check boxes,
and popup menu to enter data about the copy. For example, in Figure 2.4 the user is
recording a letterboxed laserdisc copy of Beauty and the Beast in CAV format. When
the user clicks the OK button, the program responds with the inventory number that
should be attached to the new copy (Figure 2.5).

The User’s View 31

Figure 2.2 Entering a new title
=== Fnter New Miscellaneous Uideo
Title: [

Distributor: L |

Producer: | |

Director: | J
Length:] Classification: |__Documentary v |

Figure 2.3 Modifying an item

Eemet e Modifﬂmelete Miscellaneous Video ==

Title: |Brief History of Time, A I

Distributor: [0/ |

Producer: David Hickman |

lErrol Morris I

Director:
Length: Classification: |_Nature v

To delete a copy of an item, the user simply enters the copy’s inventory number.
The number can be typed on a keyboard or scanned by a bar code reader. As long as
the input enters through the ADP port, the Macintosh doesn’t know the difference
between the two.

32

Chapter 2 ¢ Penultimate Videos

Figure 2.4 Entering a new video copy

Media:
QO Tape
@® Laserdisc

Format:

X LBH
& Dolby Surround Sound

Ee——="—nterlideo Copy=—————1

Highlight the movie title:

2001: A Space 0dyssey
35 Up

Aces: Iron Eagle 111
Adventures of Robin Hood
African Queen, The
Age of Innocence
firplane 11: The Sequel
Rirport

Aladdin

American Dream
Baraka

Beauty and the Beast

Bed and Breakfast

Figure 2.5 The inventory number for a new copy

Enter Dideo Copy

Media:

O Tape
@ Laserdisc

Give the new inventory item an inventory
number of 35.

Highlight the movie title:

2001: A Space 0dyssey

35 Up

Aces: Iron Eagle 111
Adventures of Robin Hood

Bed and Breakfast

The User’s View 33

The Find Item menu ultimately displays information about a merchandise item.
Choosing the menu item (or pressing the associated command-key equivalent) dis-
plays a scrolling list of all titles in inventory (Figure 2.6). The user then double-clicks
on the title to display an information window such as that in Figure 2.7. Notice that
the Title Information window also provides access to QuickTime. If there happens to
be a QuickTime clip available, the user can choose and play it by clicking the View
Movie Clip button.

Figure 2.6 A scrolling list of all titles in inventory

E@=—— lideosandGames =—————
Boogerman

Brief History of Time, A

Brother's Keeper

Bug!
Children, The

Close Encounters of the Third Kind
Coliege Football

Comix Zone

Damned in the USA

Day the Earth Stood Still, The
Daytona USA

Dead Again

Donkey Kong Country

Dr. Robotnik's Mean Bean Machine
E.T. the Extra-Terrestrial

Empire Strikes Back, The
FernGully: The Last Rainforest
Flintstone

NOTE

The Penultimate Videos program does not store the names of movie clip files. Clicking
the View Movie Clip button brings up a GetFile dialog box that the user can use to
select the clip.

The Inventory Graph menu item is a demonstration of drawing within the Power-
Plant framework. It displays a graph of the number of titles of each type (movie,

34 Chapter 2 ¢ Penultimate Videos

Figure 2.7 Displaying inventory information

EE==———= Title Information ==—+—-+

Title: Brief History of Time, A

Jill]

Type: Other
Total copies: 5 Copies in stock: 5

[view Movie Clip)

miscellaneous video, and game) currently carried by the video store. You will see this
graph and how it is constructed in Chapter 5.

HANDLING CUSTOMERS

The Customers menu (Figure 2.8) provides access to program functions dealing with
customer activities, including maintaining customer data, viewing items rented by a
customer, and writing a note to a customer using the text editing window you saw in
Chapter 1.

Figure 2.8 The Customers menu

New Customer %R
Modify/Delete Customer

View Current Rentals
Diew Overdue Rentals

Write note

Data about Penultimate Video customers are entered and maintained using a dia-
log box similar to those used for managing inventory items (Figure 2.9). Because the
user reaches the modify/delete dialog box by double-clicking on the customer’s
name in a scrolling list of names, this dialog box can also be used to find the customer
number should the customer’s membership card not be available when he or she is
trying to rent merchandise.

The User’s View 35

Figure 2.9 Modifying customer data

Customer #: 2

First/M.1.: [EESENE Last: [Joson

Street: |105 Main Street

City, State Zip: [Anytown, NY 10101 1
Phone: [555-3333]
Credit card #: (323232323232]

The View Current Rentals and View Overdue Rentals provide lists of inventory
numbers of the items currently rented by a customer or currently rented and over-
due. (Overdue is defined as having a date due prior to the current day.)

NOTE

As mentioned in the Preface, the Penultimate Videos program is a demonstration pro-
gram that isn’t intended to be equivalent to a commercial application that could actu-
ally be used to manage a video store. A more complete version of the program would
certainly include a way to enter an inventory number and view data about that copy,
such as its title and who, if anyone, has rented it.

HANDLING TRANSACTIONS

In its current state, the Penultimate Videos program handles two types of transac-
tions with its Transactions menu: renting and returning copies of merchandise items
(Figure 2.10). Renting is the more complex transaction because it involves printing a
receipt that the user can take with the rented items.

When renting an item, the program first displays a window for the receipt. This is
a screen image of what will be printed. The program then overlays the receipt with a
dialog box used to collect data for a rental (Figure 2.11). As data are entered for

36 Chapter 2 ¢ Penultimate Videos

Figure 2.10 The Transactions menu

Transactions

Rent Item $E
Return Item 3T

individual items, the items appear on the receipt. Both the customer number and the
inventory number can be scanned from a bar code or typed at the keyboard.

Figure 2.11 Renting an item

i—————————— Cystomer Receipt —————

21211996
Renter & P Penultimate Yideos
' V 89 Main Street
~Anytown, NY 10101
e Date Due

Customer #: [| Print Receipt
Inventory #: I:j

Rental period: D
Rental fee: (295]

| Done |

When the receipt is complete (all items recorded), the user clicks the Print Receipt
button to generate the receipt. The Print dialog box appears, letting the user choose
the number of copies to print (in this case, usually two, one for the customer and one
for the store).

Recording the return of an item is straightforward: The user opens the dialog box
for recording the inventory number of the returned item (Figure 2.12) and then

The Programmer’s View 37

either scans the item’s bar code or types the inventory number on the keyboard.
Assuming the store is using a bar-code system, recording returns will proceed very
quickly.

Figure 2.12 Recording the return of an item

Rental Return

Inventory number:

il

The Programmer’s View

At its heart, Penultimate Videos is a data management application. In addition to the
PowerPlant classes that manage the program’s user interface, the program requires a
group of classes to handle the data and the data structures in which they are stored.
As with most object-oriented programs, these classes that manage data are purposely
kept separate from the classes that manage the user interface.

The basic class hierarchies can be found in Figure 2.13. The hierarchy at the top of
the figure represents data about types of merchandise stocked by the store. This mid-
dle hierarchy represents data about copies of merchandise that are rented. Although
the Customer class interacts with the other classes, it isn’t part of any inheritance
hierarchy.

As you will see as you look at the classes throughout this section, the data modifi-
cation functions for each class are complete. Users can enter data for new objects,
modify object data (including the title), and delete objects. The classes also provide
functions for returning data that can be used in a variety of on-screen and printed dis-
plays. In addition, they maintain a collection of pointers used by binary trees and
linked lists.

THE MERCHANDISE _ITEM HIERARCHY

Data about merchandise items are stored in objects created from one of three classes:
Game, Film, and Other. (The Film class was originally called Movie, but using that

38

Chapter 2 ¢ Penultimate Videos

Figure 2.13 The Penultimate Videos data class hierarchies

Merchandise_Item

Video Game
Film Other
Item_copy
1 . |
Video_copy Game_copy
Customer

term conflicted with the QuickTime data structure by the same name!) The base
class for the entire hierarchy in which the preceding classes participate is
Merchandise_Item (Listing 2.1). This abstract base class stores data common to all
types of merchandise carried by the store, along with pointers for the data structures
in which objects of this class participate. These include two binary search trees (one
ordered by item name, the other by title number) and a linked list of objects for the
copies of this item in the store’s inventory. The linked list provides the only physical
relationship between the Merchandise_Item hierarchy and the Item_copy hierarchy,
although, as you will see, each Item_copy does contain the title number its
Merchandise_Item to provide a logical one-to-many relationship between titles and
copies of those titles.

The Game class (Listing 2.2) adds two item-specific variables to its base class. It is
derived directly from Merchandise_Item and is used to create objects. However,

The Programmer’s View 39

Listing 2.1 The Merchandise_Iltem class

class Merchandise_Item
{
protected:
int Title_numb, Copy_count, Item_type;
ANSIstring Title;
ANSIstring Distributor;
// binary search tree of titles by name
Merchandise_Item * LeftName, * RightName;
// binary search tree of titles by number
Merchandise_Item * LeftNumb, * RightNumb;
Item_copy * First, * Last;// linked list of items
public:
Merchandise_Item (int, ANSIstring, ANSIstring);
Merchandise_Item (ifstream &, int);
char * getTitle();
char * getDistributor();
void incCopy_count();
int getCopy_count(); // return number of copies
Merchandise_Item * getLeftName();
Merchandise_Item * getRightName();
Merchandise_Item * getLeftNumb();
Merchandise_Item * getRightNumb();
Item_copy * getFirst();
void setLeftName (Merchandise_Item *);
void setRightName (Merchandise_Item *);
void setLeftNumb (Merchandise_Item *);
void setRightNumb (Merchandise_Item *);
void Insert (Item_copy *);
Item_copy * getlast ();
int getltem_type ();
int getTitle_numb();
Item_copy * available (); // check to see if any copies are available
void setTitle (ANSIstring);
void setDistributor (ANSIstring);
virtual void write (ofstream &) = 0;

classes for movies and other videos can’t be derived direclty from Merchandise_Item
because the data to be stored about videos vary depending on whether the item is a
movie. A movie has stars and a rating, where other videos such as how-to films and
documentaries don’t. (You can argue the point if you wish, but the preceding repre-
sents the world as seen by Penultimate Videos.)

40 Chapter 2 ¢ Penultimate Videos

Listing 2.2 The Game class

class Game : public Merchandise_Item
{
private:
ANSIstring System;
rate_string Rating;
public:
Game (int, ANSIstring, ANSIstring, ANSIstring, rate_string, MerchTree *,
MerchNumbTree *);
Game (ifstream &, MerchTree *, MerchNumbTree *, int);
void write (ofstream &);
char * getSystem();
char * getRating();
void setSystem (ANSIstring);
void setRating (rate_string);

The class hierarchy therefore includes an abstract base class (Video) that is derived
from Merchandise_Item and adds variables for data common to all types of videos
(see Listing 2.3). The two classes from which objects are actually created (Film, in
Listing 2.4 and Other in Listing 2.5) are then derived from the Video class.

Listing 2.3 The Video class

class Video : public Merchandise_Item
{

protected:
ANSIstring Director;
ANSIstring Producer;
ANSIstring Classification;
int Length;
public:
Video (int, ANSIstring, ANSIstring, ANSIstring, ANSIstring, ANSIstring, int):
Video (ifstream &, int);
char * getDirector();
char * getProducer();
char * getClass();
int getlLength (); '
void setDirector (ANSIstring);
void setProducer (ANSIstring);
void setClass (ANSIstring);
void setlLength (int);
virtual void write (ofstream &) = 0;

The Programmer’s View

Listing 2.4 The Film class

class Film : public Video
{
private:
ANSIstring Stars[MAX_STARS]; // array of strings for stars
int numbStars;
rate_string Rating;
public:
Film (int, ANSIstring, ANSIstring, ANSIstring, ANSIstring, ANSIstring,
int, int, ANSIstring [], rate_string, MerchTree *, MerchNumbTree *);
Film (ifstream &, MerchTree *, MerchNumbTree *, int);
char * getRating();
ANSIstring * getStars (int &);
void setRating (rate_string);
void setStars (ANSIstring [], int);
void write (ofstream &);

Listing 2.5 The Other class

class Other : public Video
{
public:
Other (int, ANSIstring, ANSIstring, ANSIstring, ANSIstring, ANSIstring, int,
MerchTree *, MerchNumbTree *);
Other (ifstream &, MerchTree *, MerchNumbTree *, int);
void write (ofstream &);

THE ITEM_COPY HIERARCHY

The actual physical inventory that Penultimate Videos rents is described by objects in
the Item_copy hierarchy. The Item_copy class (Listing 2.6) is an abstract base class
that contains variables for data common to all types of merchandise item copies. It
also provides support for the data structures in which copies of merchandise partici-
pate (a binary search tree ordered by inventory number and the linked list of copies

of the same merchandise item).

Objects are actually created from the two derived classes Video_copy (Listing 2.7)
and Game_copy (Listing 2.8). The only difference between the two is the additional

variables found in Video_copy.

42 Chapter 2 ¢ Penultimate Videos

Listing 2.6 The item_copy class

class Item_copy
{
protected:
int Inventory_numb, Title_numb, Renter_numb;
int In_stock; // boolean
date * Date_due; // pointer to object of class date
Item_copy * Next, * Right, * Left;
public:
Item_copy (int, int);
Item_copy (ifstream &, CustNumbTree *);
date * Rent (Customer *, int); // returns the date due
void Return (CustNumbTree *);
int getStatus();
int getInventory_numb();
int getTitle_numb();
Item_copy * getNext();
void setNext (Item_copy *);
void setRight (Item_copy *);
void setlLeft (Item_copy *);
Item_copy * getRight ();
Item_copy * getlLeft ()
date * getDate_due();
virtual void write (ofstream &) = 0;

Listing 2.7 The Video_copy class

class Video_copy : public Item_copy
{
private:
ANSIstring Media, Format;
int Dolby, LBX; // these are booleans
public:
Video_copy (int, int, ANSIstring, ANSIstring, int, int, Merchandise_Item *,
CopyTree *);
Video_copy (ifstream &, Merchandise_Item *, CopyTree *, CustNumbTree *);
char * getMedia();
char * getFormat ();
int getDolby ();
int getlBX ();
void setMedia (ANSIstring);
void setFormat (ANSIstring);
void setDolby (int);
void setlLBX (int);
void write (ofstream &);

The Programmer’s View a3

Listing 2.8 The Game_copy class

class Game_copy : public Item_copy
{
public:
Game_copy (int, int, Merchandise_Item *, CopyTree *);
Game_copy (ifstream &, Merchandise_Item *, CopyTree *, CustNumbTree *);
void write (ofstream &);

THE CUSTOMER CLASS

The Customer class can be found in Listing 2.9. This class participates in two binary
search trees, one organized by customer name and the other by customer number. In
addition, the Customer class manages a linked list of items that the customer has
rented. This list, an object of the PowerPlant class LList, serves to illustrate the use of
the PowerPlant list class and a PowerPlant list iterator.

NOTE

The preceding class declarations can be found in video.h. The implementations of the
Merchandise_Item and Video classes are in base.cpp. The remaining classes in the hier-
archy are in movie.cpp (Film class), other.cpp (Other class), and game.cpp (Game
class). The implementation of the Item_Copy class is in itembase.cpp. The remaining
copy implementations (Video_copy and Game_copy) are in copies.cpp. Customer class
functions can be found in customers.cpp.

THE BINARY SEARCH TREES

The Penultimate Videos program manages most of its data using binary search trees.
All merchandise items, regardless of type, are stored in the same tree. The Mer-
chTree class (Listing 2.10) organizes the merchandise items by title. A similar class
(MerchNumbTree) organizes merchandise items by item number.

NOTE

If you are unfamiliar with binary search trees or with how binary search trees are
implemented in object-oriented C++, see the Appendix , which provides an explana-
tion of binary search tree algorithms and iterators.

The MerchTree class is accompanied by two iterators. The in-order traversal for
MerchTree (Merchltr in Listing 2.11) provides a listing in alphabetical order by title

44

Chapter 2 ¢ Penultimate Videos

Listing 2.9 The Customer class

class Customer

{

private:
int Renter_numb;
ANSIstring fname, 1name, street, CSZ, phone;
ANSIstring credit_card_numb;
Customer * RightName, * LeftName, * RightNumb, * LeftNumb;
LList * Items_rented; // list of items currently rented
public:
Customer (int, ANSIstring, ANSIstring, ANSIstring, ANSIstring, ANSIstring,
ANSIstring, CustTree *, CustNumbTree *);
Customer (ifstream &, CustTree *, CustNumbTree *);
int getRenter_numb();
void setRightName (Customer *);
void setlLeftName (Customer *);
void setRightNumb (Customer *);
void setLeftNumb (Customer *);
Customer * getRightName();
Customer * getlLeftName();
Customer * getRightNumb();
Customer * getlLeftNumb();
char * getlLongname(); // note: lname + fname
char * getDisplayName (); // Note 1name, fname
int getRenterNumb();
char * getFname();
char * getlLname();
char * getStreet();
char * getCSZ();
char * getPhone();
char * getCCN();
void setFname (ANSIstring):
void setLname (ANSIstring);
void setStreet (ANSIstring);
void setCSZ (ANSIstring);
void setPhone (ANSIstring);
void setCCN (ANSIstring);
void InsertRentedItem (Item_copy *);
void RemoveRentedItem (Item_copy *);
void BuildRentalslList (ListHandle, int, MerchNumbTree *, Item_copy *);
void write (ofstream &);

and is therefore used for searching by title and building scrolling lists of titles. How-
ever, if an in-order traversal is used to write data to a file, the next time the file is read
and the tree recreated, the tree will end up the equivalent of a linked list. On the
other hand, a pre-order traversal will result in a recreated tree that is structured

The Programmer’s View a5

Listing 2.10 The MerchTree class

class MerchTree

{

private:

Merchandise_Item * root;
int Item_count, lastTitle_numb;

public:

MerchTree (int, int); // base constructor

void Insert (Merchandise_Item *, ANSIstring, Boolean);

Merchandise_Item * find (ANSIstring); // find

// used just for games (based on title and system)

Game * find (ANSIstring, ANSIstring);

// Flag indicates whether copies should be deleted along with the title
Boolean Delete (Boolean, Merchandise_Item *, CopyTree *);

// for videos

void find (ANSIstring, Merchandise_Item * &, Merchandise_Item * &);

// for games

void find (ANSIstring, ANSIstring, Merchandise_Item * &, Merchandise_Item * &);
int getltem_count();

void setltem_count (int);

int getlastTitle_numb ();

int inclastTitle_numb ();

Merchandise_Item * getRoot();

exactly like the tree that was in memory the last time the program was run. (Assum-
ing a relatively random pattern of data entry, the alphabetical title tree will remain
more or less balanced without resorting to tree balancing algorithms.) MerchTree is
therefore also supported by a pre-order traversal iterator class (MerchltrPre in List-
ing 2.12). Because MerchNumbTree is used only for searching, and not for listings, it
has no iterators.

The remaining tree classes are very similar to the merchandise item tree. Item
copies of both types are organized into a single binary tree (CopyTree). This tree,
which is ordered by inventory number, is used only for searching and therefore has
no iterators.

Like merchandise items, the Customer class participates in two binary tree classes.
The CustTree class orders customers by last name and first name; CustNumbTree
orders customers by customer number. The Custltr class provides an in-order tra-
versal used for searching and listing by name. The CustltrPre class delivers a pre-
order traversal used to write customer data to a file.

46 Chapter 2 « Penultimate Videos

Listing 2.11 The Merchltr class

class Merchltr
{

private:
Merchandise_Item * stack[25], * root;
int stackPtr;
void push (Merchandise_Item *); // push onto stack
Merchandise_Item * pop (); // pop from stack
void golLeft (Merchandise_Item *);

public:
Merchltr ();
int Init (MerchTree *);
int operator++ (); // find node
int operator! (); // check for end of traversal
Merchandise_Item * operator() (); // return pointer to current object

Listing 2.12 The MerchlitrPre class

class MerchltrPre
{

private:
Merchandise_Item * stack[25], * root;
int stackPtr;
void push (Merchandise_Item *); // push onto stack
Merchandise_Item * pop (); // pop from stack
public:
MerchItrPre ();
int Init (MerchTree *);
int operator++ (); // find node
int operator! (); // check for end of traversal
Merchandise_Item * operator() (); // return pointer to current object

NOTE
The declarations of the tree classes can be found in tree.h. The implementations are in
tree.cpp.

THE DATE CLASS

Penultimate Videos, like many programs, makes extensive use of dates. It therefore
includes a date class that makes it easy for a programmer to handle dates. The class,

The Programmer’s View a7

which can be found in Listing 2.13, includes two constructors. The first accepts a date
entered as a C string; the second accepts a Macintosh DateTimeRec, the data struc-
ture that is returned by the ToolBox call GetTime.

Listing 2.13 The Date class

class date

{

friend date operator+ (int, date);
friend date operator+ (date, int);

typedef char date_string[11];

private:
int month, day, year;
void itoa (int, char *); // convert integer back to ASCII
public:
date (char *);
date (DateTimeRec); // constructor that works off the result of ::GetTime
int getMonth ();
int getDay ();
int getYear ();
char * showDate (date_string);
// overloaded operators
int operator== (date);
int operator!= (date);
int operator> (date);
int operator>= (date);
int operator< (date);
int operator<= (date);
void operator= (date *); // assignment--lets you copy one date to another

Dates are stored as three integers (month, day, and year). Overloaded operators
handle date comparisons, adding fixed values to dates, and assigning one date to
another. The Date class also includes a function that returns the date as a C string
(showDate). This function is used to display a date and when writing a date to a text
file. To support showDate, the Date class also includes its own function to convert
an integer back to ASCII (i toa).

Penultimate Videos stores the date on which a rented item is due in an object of
class Date. To compute the return date, a rented item—an object of class Video_copy
or class Game_copy, both of which are derived from Item_copy—retrieves the cur-
rent date with GetTime (see Listing 2.14). It then creates a Date object, initializing

48 Chapter 2 ¢ Penultimate Videos

the object with the DateTimeRec returned by the ToolBox call. Finally, it adds the
rental period, which is expressed as a whole number of days (an integer), to the cur-
rent date.

Listing 2.14 Computing the return date

DateTimeRec todayRec;
date * today;

::GetTime (&todayRec); // call ToolBox routine to get current date and time
today = new date (todayRec);
*Date_due = (*today) + rentalPeriod; // uses overloaded operators

UriLity FUNCTIONS

In addition to the classes about which you have been reading, Penultimate Videos
includes the following global utility functions:

» convertPascalStr: Converts a Stré3 into a C string.

e convertPascal255: Converts a Str255 into a C string.

e convertC2Pascal255: Converts a C string into a Str255.
e convertC2Pascal63: Converts a C string into a Stré63.

» itoaP: Converts an integer into a Str255.

The functions that convert between Str255 and a C string are not widely used. As you
will see in Chapter 10, Penultimate Videos provides Pascal and C string classes to
handle manipulation of 255-character strings. However, the remaining three func-
tions are used extensively.

NOTE

It’s very true that the Macintosh ToolBox contains NumToString and StringToNum
Sfunctions. However, those functions modify the source string, something which Penulti-
mate Videos needs to avoid in many cases, hence these specialized utility classes.

CHAPTER

PowerPlant
Projects

Like any other CodeWarrior project, a PowerPlant project usually begins its life as
Project Stationery. However, because PowerPlant programs require the source code
for the PowerPlant libraries as well as the source code you write, a starter Power-
Plant project contains much more than a standard C++ project.

In this chapter you will be introduced to the contents of PowerPlant starter
projects. You will learn what they contain, and perhaps more importantly, what they
are missing. You will also learn how to customize PowerPlant projects for your par-
ticular environment.

The Starter Projects

The Project Stationery folder contains stationery documents for both PowerPC and
69K PowerPlant projects. Because the libraries used by these projects are slightly

49

50 Chapter 3 « PowerPlant Projects

different, we’ll look first at the individual default projects, and then turn to the
libraries you’ll need to add to both.

THE STARTER PROJECTS

In Figure 3.1 you will find a project created from PowerPlant 68K Project Stationery.
Notice that the project contains three libraries, one starter source code file, and three
starter resource files. In addition, most (but not all) of the source code for the Power-
Plant libraries is included in the sections labeled Commanders, Features, Panes, File
& Stream, Apple Events, Lists, Support, and Utilities.

Figure 3.1 A 68K PowerPlant starter project

B sample =——————-p=
File Code Data i
< Application 0 0« = <]

<PP Starter Source>.cp 0 0i « B[]

<PP Starter Resource>.rsrc n/a n/a =
PP Action Strings.rsrc n/a n/a 3]
PP DebugAlerts.rsrec n/a n/a)
Commanders 0 0: e E
Features 0 0 e @
Panes 1) 0: o E
D File & Stream [1] 0 o [g
> Apple Events 0 0; « a

Lists 0 0« [
> Support 0 0 « &
B Utilities 0 N
¥ Libraries 0 0 &

Mac0S.lib 0 0 =

CPlusPlus.lib 0 0 I R

AEOb jectSupportLib._o 0 0 0y [
70 file(s) 0 0

A PPC starter project, created from the PPC Project Stationery, can be found in
Figure 3.2. Like the 68K starter project, it contains three libraries, a starter source
code file, and three resource files.

The Starter Source Code File 51

Figure 3.2 A PPC PowerPlant starter project

File Code Data
<7 Application 1} 0i ¢ [<
<PP Starter Source>.cp 0 oi « @[
<PP Starter Resource>.rsrc n/a n/a =
PP Action Strings.rsrc n/a n/a 03]
PP DebugAlerts.rsrc n/a n/a (3]
P Commanders [1] 0l v ©&
P Features 0 0 ¢ &
D Panes 0 0l « &
B File & Stream o 0y &
P Apple Events 0 0: » E]
b Lists (1] 0« &
D Support 0 0! ¢ @
Utilities 0 CHIENC
¥ Libraries 0 (1) E
InterfaceLib 0 0 3]
ObjectSupportLib 0 0 L]
M¥CRuntime Lib 0 I 184
70 file(s) oo &

The Starter Source Code File

Each PowerPlant starter project comes equipped with one source code file and an
associated header file. In Figure 3.1 and Figure 3.2, the source code file is named <PP
Starter Source>.cp; its header file is <PP Starter Header>.h.

The first thing you should do is copy these two files from the Stationery Support
Files folder into the folder that will be holding the source code for your program.
Then, rename them something meaningful. For example, the Penultimate Videos
program calls them PPVideoStoreApp.cpp and PPVideoStoreApp.h. Then, remove <PP
Starter Source.cp> from the project and add your renamed file.

The starter source code file contains a main function and member functions for
an application class. The program will actually run, but won’t do any useful work:
All it does is display the menu bar and trap for events related to active menu options,
such as anything in the # menu and the File menu’s Quit option. You therefore begin
the development of your PowerPlant program by customizing the starter source
code file.

52 Chapter 3 ¢ PowerPlant Projects

CUSTOMIZING THE APPLICATION CLASS HEADER

The class from which an application is created is always a derived class. The default
starter application class is derived from LApplication (Listing 3.1). It contains proto-
types for a constructor, a destructor, an ObeyCommand function, and a FindCom-
mandStatus function. The class also includes a StartUp function, which is
discussed later in this chapter.

Listing 3.1 The starter application class

/1

// <PP Starter Header>.h 1994-1995 Metrowerks Inc. A1l rights reserved.
//

fipragma once
#include <LApplication.h>
class CPPStarterApp : public LApplication {
public:
CPPStarterApp(); // constructor registers all PPobs
virtual ~CPPStarterApp();// stub destructor
// this overriding function performs application functions
virtual Boolean ObeyCommand(CommandT inCommand, void* ioParam);
// this overriding function returns the status of menu items
virtual void FindCommandStatus(CommandT inCommand,
Boolean &outEnabled, Boolean &outUsesMark,
Charl6 &outMark, Str255 outName);

protected:

virtual void StartUp(); // overriding startup functions
Vs .

If your program’s class will be a subclass of LApplication, all you need to do imme-
diately to the starter header file is change the name of the class from CPPStarterApp
to something meaningful. However, if you want to derive your application class from
LDocument, LDocApplication, or LSingleDoc, you need to do two things:

The Starter Source Code File 53

» Replace the name of the base class (LApplication) in the class header with the
name of the class from which your application class should be derived (LDocu-
ment, LDocApplication, or LSingleDoc).

* Replace the name of the base class header file (LApplication.h) with the name of
the header file for the appropriate base class (LDocument.h, LDocApplication.h,
or LSingleDoc.h).

Because the application class is a derived class, you can add attributes and func-
tions to it as needed. In fact, the Penultimate Videos application class (Listing 3.2)
contains a number of program-specific functions. It also includes declarations for the
container classes used to manage the program’s data structures, and variables that
might otherwise be considered “globals.”

PROGRAM STRUCTURE: TO SUBCLASS OR NOT TO
SuBcLASS

The structure of the Penultimate Videos program is in large measure determined by
all of those functions that have been added to the application class. They are the
result of the choice not to create subclasses unless absolutely necessary, but instead
to create objects directly from PowerPlant classes wherever possible. The alternative
is to always create subclasses, even if it is possible to use PowerPlant classes without
modification. (This is the strategy used by the sample PowerPlant applications that
accompany the PowerPlant class libraries.)

As you would expect, there are pros and cons to each strategy. If you always create
subclasses, you end up with a large number of short files. Shorter files are easier to
work with and can cut down on compile time when only a few have been modified
and need to be recompiled. In addition, creating subclasses makes it easier to reuse
code because the classes are stand-alone.

However, because there are so many files, it can be difficult to keep track of which
source files trap and handle which commands: Event dispatching and menu activa-
tion/deactivation is split among many ObeyCommand and FindCommandStatus
functions. Multiple files can also increase compile time when many files need to be
recompiled.

On the other hand, if you subclass only when absolutely necessary, you have fewer
source code files. It is much easier to keep track of where commands are handled,
which for some programmers makes the program logic clearer and therefore easier
to maintain. However, the application class becomes lengthy, including a long Obey -
Command function, and graphic elements, such as dialog boxes, are unavailable for
reuse.

54

Chapter 3 * PowerPlant Projects

Listing 3.2 The Penultimate Videos application class

//

// PPVideoStore.h ©1996 Black Gryphon Ltd.

/1

// PPVideoStore.cpp (press Command-Tab to open the associated source file)

/1

fipragma once

ffinclude <LApplication.h>
#include <Dialogs.h>

const

class

Str255 null = "\p":; // null string for cleaning out edit fields

LDialogBox;

struct SDialogResponse;

class
class
class
class
class
class
class
class
class
class
class

class
{

MerchTree;
MerchNumbTree;
CopyTree;
CustTree;
Film;

Other;

Game;
Video_copy:
Game_copy;
Customer;
CustNumbTree;

CPPVideoStoreApp : public LApplication

typedef char string[81];

public:

CPPVideoStoreApp();// constructor registers all PPobs

virtual ~CPPVideoStoreApp();// stub destructor

// this overriding function performs application functions
virtual Boolean ObeyCommand(CommandT inCommand, void* ioParam);
// this overriding function returns the status of menu items
virtual void FindCommandStatus(CommandT inCommand,

Boolean &outEnabled, Boolean &outUsesMark,
Charl6 &outMark, Str255 outName);

// This overridden function allows the quit action to save data

virtual void SendAEQuit();

Continued next page

The Starter Source Code File 55

Listing 3.2 (Continued) The Penultimate Videos application class

// begin functions added for this program
int Load ();

void
void
void
void
void
void
void
void
void
void
void
void
void
void

Unload ();

SaveAs();

New();

Open();

MakePathName (FSSpec, CString &); // construct full path name
SetUpNewMovie ();

SetUpNewCust ();

SetUpModCust(SDialogResponse *);

SetUpNewMisc ();

SetUpNewGame ();

[temList (int);

SetUpItemModify (SDialogResponse *);
DisplayStarModify (LDialogBox *, ResIDT, ANSIstring);
ModifyMovie (SDialogResponse *);

int LoadStarsArrayModify (LDialogBox *, ANSIstring [], ResIDT, int);

void
void
void
void
void
void
void
void

ModifyMisc (SDialogResponse *);
ModifyGame (SDialogResponse *);
Deleteltem (SDialogResponse *);
SetUpNewVideoCopy ();
SetUpNewGameCopy ()
ChooseCopy2Modify ();
SetUpCopyModify (SDialogResponse *);
ModifyVideoCopy (SDialogResponse *);

// note: game copies contain no modifiable data

void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void

DeleteCopy (SDialogResponse *);
SetUpFindItem ();
SetUpRent ();
SetUpReturn ();
ProcessNewMovie (SDialogResponse *);
ProcessNewCust (SDialogResponse *);
DisplayCustlList();
BuildCustlList (LListBox *);
ProcessModifyCust (SDialogResponse *);
ProcessDeleteCust (SDialogResponse *);
ViewCurrentCustlList ();
ViewOverdueCustlList();
ShowCurrentRentals (SDialogResponse *, int); // ALL or OVERDUE
ProcessNewMisc (SDialogResponse *);
ProcessNewGame (SDialogResponse *);
ProcessNewVideoCopy (SDialogResponse *);
ProcessNewGameCopy (SDialogResponse *);
DisplayTitlieInfo (SDialogResponse *);
ViewQuickTime(SDialogResponse *);
ProcessRent (SDialogResponse *);
PrintReceipt (SDialogResponse *);
CloseRentWindow (SDialogResponse *);
ProcessReturn (SDialogResponse *);
Continued next page

56 Chapter 3 < PowerPlant Projects

Listing 3.2 (Continued) The Penultimate Videos application class

void WriteNote ();
void DisplayGraph ();
void CloseDialogBox (SDialogResponse *);
// pass in number of objects handled & thermometer window
void ManageThermometer (int, LWindow *);
// end functions added for this program

protected:
virtual void StartUp(); // overriding startup function

// File management stuff
string FileName;
FSSpec FileSpec;

// Data structures

MerchTree * Items; // alphabetical 1ist of all titles
MerchNumbTree * ItemsByNumb; // titles by title number
CopyTree * Copies;

CustTree * Customers; // customers by name

CustNumbTree * CustByNumb; // customers by customer .number

// flags
Boolean save_flag; // used to determine whether to warn user about saving changes

// Pointers for new objects; used all over the place
Film * newMovie;

Other * newOther;

Game * newGame;

Video_copy * newVideo;

Game_copy * newGC;

Customer * newCust;

// "save" variables (used to hold values that can't be captured or passed
// in any other reasonable way)

Customer * currentCustomer;

LDialogBox * receiptDialog;

int row;

LListBox * receiptlList;

Which should you choose? In most cases, it’s a matter of personal preference.
However, if you are planning to create classes that you intend to reuse, then you
should subclass wherever possible. On the other hand, if reusability isn’t an issue—
for example, if the screen displays in your program are too program-specific to be
reused—then the choice can be based on whatever makes the program clearer to you
(and perhaps your programming team members) in the long run.

PowerPlant Starter Resource Files 57

MODIFYING STARTER APPLICATION FUNCTIONS

Regardless of the overall strategy you use in your PowerPlant program, you will
probably need to add code to the application object’s overriding member functions.
For example, the destructor in the starter source code file is empty. You should there-
fore add to it any code that should be executed before the application terminates.
The Penultimate Videos program, for example, uses the destructor to close Quick-
Time (Listing 3.3).

Listing 3.3 The Penultimate Videos application destructor function
e R
/1 « ~CPPVideoStoreApp

J e e
// Destructor

1/

CPPVideoStoreApp: :~CPPVideoStoreApp()

{
UQuick
}

Time::Finalize();

PowerPlant Starter Resource

As you saw in Figure 3.1 and Figure 3.2, a starter project comes with three resource
files. PP Action Strings.rsrc contains four STR# resources for undoing and redoing edit
and drag actions. PP DebugAlerts.rsrc contains two alerts that are used by the debug-
ger to display exception and signal information.

The third resource file—<PP Starter Resource>.rsrc—contains resources that are
used by the starter source code file (Figure 3.3). This is where you will find the
default menu bar (a combination of the MBAR, Mcmd, and MENU resources), along
with an ALRT for a default about box that you can customize, and some default icon
resources.

You may also have noticed that there is a PPob resource. (The WIND resource
accompanies the PPob resource.) Its name is “replace me,” and it is only intended as
a placeholder for other PowerPlant objects that you will be adding. If you are going

58

Chapter 3 ¢« PowerPlant Projects

Figure 3.3 Resources in the starter resource file

on
@

ics®

olot 1104
00101000
oltololo
o001l llIo
01000000

Memd

a=tie=]

1

W IND

<PP Starter Resource>.rsrc

olol 110l
00101001
otioiolo
00011110
01000000

aedt

o101 1101
00101001

01000000

DLGX

olo1 101
00101001
oliotolo
LILINNET
01000000

aete ALRT

PPob

o101 1101

01000000

CNST
an
&

ICN#®

MBAR

olottion
00101001
olio1010
ooolillo
01000000

Txtr

===

&

to keep two resource files (one for PowerPlant objects and one for all other
resources), then you can either ignore this PPob resource or delete it.

The <PP Starter Resource>.rsrc file is physically located in the Stationery Support
Files folder. Copy it from that folder into the folder containing your application and
rename it. (The Penultimate Videos resource file is called PPVideoStore.rsrc.) Then,
remove <PP Starter Resource>.rsrc from the project and add the newly renamed file.

NOTE

If you are using two separate resource files for application-specific resources, then you’ll

add the file for PowerPlant objects after you create the first PPob resource using Con-
structor.

Adding Support for Apple Events 59

Adding Support for Apple
Events

PowerPlant makes extensive use of Apple Events, even if you don’t specifically add
support for them to your program. For example, Apple Events are used to trigger a
startup event (and a subsequent call to an application object’s Startup function)
and to exit the program. In Listing 3.4, for example, you can see the StartUp func-
tion for the Penultimate Videos program. This function, which is supplied as part of
the application object starter file, is triggered by a startup event whenever the pro-
gram is launched. In this particular case, the program calls a function added to the
application object (Load) to read data from disk. If the user cancels the load and asks
to quit the program, the function calls SendAEQui t, an application object function
that uses an Apple Event to quit the program and return to the Finder. (This is the
same function that is called when the user chooses Quit from the File menu.)

Listing 3.4 The Penultimate Videos Startup function

void CPPVideoStoreApp::StartUp()
{
// Load initial data structures
int keep_going = Load();
if (lkeep_going)
SendAEQuit(); // quit program if no master file

However, a vital file is missing from the default projects to support Apple Events.
If you don’t add the missing piece, the Startup function won’t be called and
SendAEQuit won’t work. The missing file is a resource file: You should always add
PP AppleEvents.rsrc to your PowerPlant projects.

60 Chapter 3 < PowerPlant Projects

Adding Support for ANSI
Functions

It is theoretically possible to write a PowerPlant program without ever using an
ANSI C or C++ function. Practically, however, you will probably want access to at
least some of the standard libraries. For example, you might want the C math or
string functions or some C++ file stream I/0. In that case, you need to add some
libraries and perhaps a source file to your project. The needed files are summarized
in Table 3.1.

Table 3.1 Additional files needed for C and C++ library support

Project Type Support Provided File Name
68K ANSIC MathLIb68KFa(2a).Lib?
ANSIFa(2i)C.68K.Lib
ANSI C++ ANSIFa(2i)C++.68K.Lib
ANSI stream I/0 console.stubs.cP
PPC ANSIC MathLib
ANSI C.PPC.Lib
ANSI C++ ANSI C++.PPC.Lib

ANSI stream I/0 console.stubs.c

a. There are several groups of 68K ANSI libraries that vary based on the
amount of space to be allocated for number storage and the code model
(for example, near or far). The Penultimate Videos program uses a far code
model with 2-byte integers. Pick which group is appropriate to your pro-
gram. Just be sure that all 68K libraries come from the same model and that
the project Preferences are set for that model.

b. ANSI stream file I/O requires the ANSI C++ library as well as the con-
sole.stubs.c file.

The Penultimate Videos
Projects

The Penultimate Videos program uses all of the libraries and resources about which
you have been reading, although the specific libraries do differ between the PowerPC
and 68K platforms.

PowerPlant and Precompiled Headers 61

The complete PPC project appears in Figure 3.4. Notice that there are five
resource files (the three PowerPlant resource files [PP Action Strings.rsrc, PPDebugA-
lerts.rsrc, PP AppleEvents.rsrc], a file for PPob resources [PPob.rsrc], and a file for other
resources specific to the program [PP VideoStore.rsrc]). The libraries include the stan-
dard PPC libraries, the ANSI libraries, and the QuickTime library.

The 68K project can be found in Figure 3.5. This project includes the standard 68K
libraries and a set of ANSI libraries. Notice that there is no QuickTime library
because that library is required only for PowerPC programs.

PowerPlant and Precompiled
Headers

You can significantly speed up the compilation of a Macintosh program by using a file
containing precompiled headers as a prefix to your source. The precompiled headers
mean that CodeWarrior doesn’t need to translate header files into binary each time a
source code file is compiled; the translation has already been done.

By default, a PowerPlant project uses a precompiled header that contains most of
the PowerPlant and Macintosh OS headers, along with additional support for debug-
ging (PP_DebugHeadersPPC or PP_DebugHeaders68K, whichever is appropriate). The
default precompiled headers, along with the source code from which they are gener-
ated, are stored in the PP Precompiled Headers folder.

Sometime during the program development process you will want to create your
own precompiled header. At the very least, you will want to remove the debugging
headers before generating shipping code. In addition, because PP DebugHeaders
doesn’t include all PowerPlant classes and all Macintosh OS headers, you may want
to create your own precompiled header file during the program development pro-
cess.

The Penultimate Videos program, for example, uses QuickTime. None of the
QuickTime headers (PowerPlant or Macintosh OS) are included in the default
PP_DebugHeaders. Therefore, the program has its own precompiled header file.

To create a custom precompiled header file, do the following:

1. Open the project for which the precompiled header file will be generated.
2. If you are adding a PowerPlant header file, open PP_ClassHeaders.cp and add a
ffinc1ude for each additional header you want to include.

Chapter 3 < PowerPlant Projects

Figure 3.4 The PPC version of the Penultimate Videos project

e e " == _[ﬁa
File Code Data W
< Application 82K, 26K: + [|ir
base.cpp 1336 432 « B[|
console.stubs ¢ 60 56 ¢ [}
copies.cpp 2376 293 o &}
customer.cpp 2564 726 « [}
dates.cpp 2412 313 « [
game.cpp 1168 185 « [}
graph.cpp 1888 1348: « [3}
itembase.cpp 904 285; « [
LTextEditM.cp 6428 1742: < [1}
memorymonitor.cpp 1136 1194 o [}
movie.cpp 1904 186: « [}
note.cpp 3572; 1146; « (1
other.cpp 1144 129; « [3}
PPVideoStore.cpp 33836; 12813; « [}
receipttable.cpp 1228 697: < [1}
statstable.cpp 1824 764; o [}
statswindow .cpp 1368; 1178 o [g}
stringob jects.cpp 4252 1101 o [3}
Ther.cpp 888 576 o B
tree.cpp 9068 1008; < [B}
UTextMenus.cp 4192 841: o [}
utilities.cpp 844 396: o [1}
PPob.rsrc n/a n/a Y]
PPVideoStore.rsre n/a n/a 3}
PP Action Strings.rsrc nfa n/a 13]
PP DebugAlerts.rsrc n/a n/a 3]
PP AppleEvents.rsrc n/a n/a 3}
P Commanders 8K 2K e |
D Features 7K 1K o
D Panes 98K 29K + [|
D File & Stream 9K 1K o @
D “Apple Events 47K 8Ki ¢ 4
D Lists 6K 1K o [
P Support 31K 5K e [
D Utilities 19K 3K e &
¥ Libraries 118K 27K &
MathLib 0 0 3]
ANSI C.PPC.Lib 54456 13679 3]
ANSI C++_PPC._Lib 57564 11888 3]
InterfacelLib 0 0 3]
ObjectSupportLib 0 0 3}
MYCRuntime . Lib 9352 2472 (R
QuickTimeLib 0 0 B
100 file(s) 429K 108K

PowerPlant and Precompiled Headers

Figure 3.5 The 68K version of the Penultimate Videos project

video 7 68K W’@g

File Code Data 4 |

v Application 79K 18K: « [T [

PPVideoStore.cpp 348521 101371 « @[
base.cpp 2186 105: « [z}
console.stubs.c 186 17 «
copies.cpp 2250 203 o [o}
customer .cpp 2878 289; o &}
dates.cpp 1894 25: « [
game .cpp 1022 155: o [z}
itembase.cpp 1150 114: o [2]
LTextEditM.cp 5638 834 o 3}
movie.cpp 1574 164 o [g}
note.cpp 2936 893; o [&
graph.cpp 1448: 1200; o [z}
Index Accessterator .cpp 222 0 « [2}
stringobjects.cpp 3738 1i o 3}
other.cpp 916 164; « [g}
tree.cpp 8560 105: « [B)
UTextMenus.cp 3338 253 o [z}
memorymonitor.cpp 1182; 1154; o [3]
receipttable.cpp 948: .660; o [B}
statstable.cpp 1710 661: o [z}
statswindow .cpp 1328 1134 o [3)
Ther .cpp 868 431; o [z}
utilities.cpp 804 276 o [g
PP Action Strings.rsrc nfa n/a =
PPob.rsrec n/a nfa (3]
PP AppleEvents.rsrc n/a n/a =
PPYideoStore.rsrc n/a n/a 3]
PP DebugAlerts.rsrc n/a n/a 3]
p Commanders K101 e 3
D> Features TK 545 « 2}
P Panes 88K 14K o [
b File & Stream 7K 6527 e i)
> Apple Events 40K 3K e @]
D Lists 5K 444 ¢ [T
b Support 27K 1K o =
Utilities 18K 1K o &
FLibraries 149K 14K 2}
ANSIFa(2i)C++.68K Lib 38678: 4838 =
Mac0S.1ib 30728 0 D)
ANSIFa(2i)C. 68K Lib 36550: 8001 3]
MathLib68K Fa(2i).Lib 27378 2156]

CPlusPlus.lib 4802 282 Bl

AEObjectSupportlLib o 14776 0: B

101 file(s) 432K 56K 1B

64

Chapter 3 ¢ PowerPlant Projects

w

If you are adding support for additional Macintosh OS headers, open
PP_MacHeaders.c and uncomment the lines for the new headers. For example, the
following lines were uncommented in the Penultimate Videos precompiled head-
ers:

f#finclude <Movies.h>
#include <MoviesFormat.h>
f#include <QuickTimeComponents.h>

If necessary, save and close PP_ClassHeaders.cp and PP_MacHeaders.c.

. Open PP_DebugHeaders.cp.
. Choose Precompile from the Project menu. CodeWarrior will precompile all the

included headers. Even on a PowerMac, this will take some time. Eventually, a
Save File dialog box appears.

Enter a name for the new precompiled header file and save the file. Although you
can put it anywhere, the most convenient location is the PP Precompiled Headers
folder where the default precompiled header files can be found.

Open the Preferences dialog box and select the C/C++ Language panel.

Enter the name of new precompiled header file at the bottom of the dialog box as
the Prefix File (Figure 3.6).

NOTE
Precompiled header files are different for PPC and 68K projects. If you are going to be
generating both types of code, you must repeat the precompilation for each project, giv-
ing each precompiled header file a unique name. This is why the CD-ROM that accom-
panies book has two precompiled header files (PPVidSHeaders and PPVidSHeaders
(68K)).

NOTE

Changing a project’s Prefix File forces a recompilation of all source code in the program.
To avoid unnecessary long compiles, consider creating your custom precompiled header
file early in the development process.

NOTE

Depending on your CodeWarrior installation, you may need to enlarge your memory
allocation before you'can precompile headers.

PowerPlant and Precompiled Headers 65

Figure 3.6 Installing a custom precompiled header file

Apply to open project.

Source Model:

- Language Info:
[JActivate C++ Compiler [] ANSI Strict
[J]ARM conformance [J ANSI Keywords Only
X Enable C++ Exceptions []Expand Trigraphs
(] Don’t Inline
[] Enable RTTI O MPW Newlines

[J] Pool Strings [JMPL Pointer Type Rules
[] Don’t Reuse Strings [J Enums Always Int
X Require Function Prototypes

protin File IR
T [Factory Settings] [Rewvert Panet] [Cancel

CHAPTER

PowerPlant Menus

PowerPlant menus are managed by two classes: LMenuBar, which handles the menu
bar, and LMenu, which handles individual menus. If you begin a PowerPlant pro-
gram with the starter source file, then you will rarely have to deal with either
LMenuBar or LMenu objects directly. However, you will have to create menu
resources as well as to write code to activate menu items and to trap menu selec-
tions. In this chapter you will learn how to do those three things. (We’ll leave the spe-
cial cases of handling the Font, Size, and Style menus for later, when we talk about
windows for editing text.)

NOTE
Because LMenuBar and LMenu are stand-alone classes—not part of the PowerPlant
class hierarchy—they can be used in non-PowerPlant C++ programs.

67

68 Chapter 4 « PowerPlant Menus

Creating Menu Resources with
a Standard Resource Editor

Assuming that you have started your PowerPlant project from the starter files sup-
plied with project stationery, your resource file will contain the MBAR resource in
Figure 4.1, which corresponds to the MENU resources in Figure 4.2. (Both Figure 4.1
and Figure 4.2 are screen shots taken from ResEdit.)

Figure 4.1 The starter MBAR resource

=== MBAR ID = 128 from <PP Starter Resource>.rsrc

of menus 3
& menu
1) ®kkkxk /

Menu res |D

2) Kkrkk File menu
Menu res D |129

3) wHkxx Edit menu
Menu res ID |130 ‘?’/”—

4) KKKKK

2]

In a typical Macintosh program, these four resources would be enough to support
the menu bar and the menus. However, PowerPlant uses an additional resource—
Mcmd—to associate integers with each menu option. In Figure 4.3 you can see the
ResEdit version of the Mcmd resource for the default File menu. Notice that there is
one integer for each item in the File menu, including the separator lines. Items such
as the separator lines that should not respond to menu selections are given a menu
command value of zero. However, every other item is given a unique integer.

Some menus—for example, the % and Font menus—don’t have fixed menu items.
Such menus have synthetic commands and must be handled differently from most
other menus. If you look again at Figure 4.2, for example, you’ll notice that the &
menu contains only one command for the About box. The rest of the items are added

Creating Menu Resources with a Standard Resource Editor 69

Figure 4.2 The starter MENU resources
BB MENU “Apple Menu” 1D = 128 from <PP Starter Resource>.rsrc
Entire Menu: X Enabled

Title: O |
@® & (Apple menu)

About This App... 4]

Color

Title:
Item Text Default:

w Menu Background: D

Eﬂ%ﬁ MENU “File Menu” ID = 129 from <PP Starter Resource>.rsrc &

Entire Menu: X Enabled
New EN [
%0 | mue: © (I
tiose QO & (Apple menu)
Save
Save fis... Color
Reuert Title:

Page Setup...
Print...

Item Texnt Default:

Menu Background: D

== MENU “Edit Menu” 1D = 130 from <PP Starter Ilesource).rsrc@

Entire Menu: X Enabled

Undo FY3 121
Ttle: @
Cut ®H
Copy %C QO & (Apple menu)
Paste ®U
Clear Color

select ANl %A Title: ([
Item Text Default: -

5l Menu Background: L—_l

when the program is launched. For that reason, the menu’s Mcmd resource has only
one item (see Figure 4.4). A Font menu doesn’t need a Mcmd resource at all.

There are two important things to keep in mind when assigning menu command
numbers:

« The integer values assigned to menu options (with the exception of those such as
the separator lines) must be unique throughout the entire program.

* There is no data value in a Mcmd resource to associate it with the MENU resource
to which it applies. If you are creating Mcmd resources using a resource editor
other than Constructor, you must be careful to give a Mcmd resource the same

Chapter 4 « PowerPlant Menus

Figure 4.3 The Mcmd resource for the default File menu

Fﬁ% Mcmd “File” ID = 129 from <PP Starter Ressurced>.rsrc ===

Number of 12
Commands

1) %k
Consand
Number

2) wkkrx
Number

3) kmrxk
Nunber

4) Frkrk
Nunber

§) Hkkrk
Nunber

6) Hkkxk
Nunber

7) RmRRK
Number

8) Hkkkk
Number

G) kK
Number
10) **xkx
Number
11) *Kkkxk
Number
12) *%kkxk

Conmand
Number

resource ID as its MENU resource. This is the only way that PowerPlant has to
associate the two.

To customize the starter menu resources for your program, you can add to the
default resources using your favorite resource editor or compiler. There is just one

Creating Menu Resources with a Standard Resource Editor 71

Figure 4.4 The Mcmd resource for the € menu

EEZ Mcmd “Apple” 1D = 128 from <PP Starter Resource’ &

Number of 1
Commands

1) xxkkx
Number

2) ®rrkk

small detail to keep in mind: PowerPlant reserves resource IDs up to 999 for its own
use. To avoid conflicts, your resource IDs should therefore be greater than 999.

MENU RESOURCES FOR THE PENULTIMATE VIDEOS
PROGRAM

The Penultimate Videos program adds six menus to the default menu bar (Figure
4.5). The Inventory, Customers, and Transactions menus to which you were intro-
duced in Chapter 2 are standard application menus and have IDs greater than 999.
The Font, Size, and Style menus use the IDs they are typically given in Macintosh
programs. (The remaining five MENU resources are used for popup menus and
therefore aren’t related to the current discussion.) The Inventory, Customers, Trans-
actions, Size, and Style menus also have accompanying Mcmd resources. The Font
menu, whose contents are built based on the current fonts installed in the Fonts
folder, has no fixed menu items and therefore no Mcmd resource.

CONSTANTS FOR MENU COMMANDS

A PowerPlant program identifies menu commands by the integers assigned in Mcmd
resources. (The exception, of course, is menus with synthetic commands). To make
working with the commands easier, you should declare constants for them.

By convention, a menu command has a data type of MessageT, a 16-bit integer.
The constants for PowerPlant-supplied menus can be found in the file PP_Messages.h.
As you can see in Listing 4.1, the constants correspond directly to the Mcmd
resources. Menu command constants for the Penultimate Videos program (Listing
4.1) are stored in a file named MenuConstants.h.

72

Chapter 4 < PowerPlant Menus

Figure 4.5 MENU resources in the Penultimate Videos program

|

MENUs from PPUideoStore.rsrc ==—M1
ks

Size Name

47 “Apple”
148 “File”

87 “Edit”

20 “Font” Font, Size, and

86 “Size” Style menus haye

76 “Style” their typical res?u ce IDs
311 “Inventory”

146 “Customers”
78 “Transactions”

126 “"Movie type popup” Resources for

74 “Movie rating popup” pbopup menus
66 “Other video class. popup” g [Not part of
51 “Game system popup” J menu bar)

74 “Format popup”

| EIE

Notice that four items have been added to the default File menu, producing the
menu in Figure 4.6. These commands duplicate the standard Open, Save, SaveAs, and
Revert commands for the Note window. (The standard file management commands
manage the video store’s data.) Because these are custom menu items, they have
resource IDs greater than 1000.

NOTE

Penultimate Videos resource IDs are usually constructed from a four-digit integer. The
first two digits represent the resource number. For example, a MENU with ID 1000 is
menu 10 (not necessarily the 10th menu, however). The second two digits represent a
part of the resource. Therefore, a Mcmd containing 1010 is the 10th item in menu 10.
There are a few exceptions to this convention, such as the items added to the File menu,
which are associated with a default resource with a resource ID of less than 1000.

Creating Menu Resources with Constructor

73

Listing 4.1 Menu command constants for Penultimate Videos menus

// Ttems added
const MessageT
const MessageT
const MessageT
const MessageT

to File menu
cmd_open_note = 4001;
cmd_save_note = 4002;
cmd_save_note_as = 4003;

cmd_revert_note = 4004;

// Inventory menu

const
const
const
const
const
const
const
const
const
const
const
const

MessageT
MessageT
MessageT
MessageT
MessageT
MessageT
MessageT
MessageT
MessageT
MessageT
MessageT
MessageT

cmd_new_movie = 1001;
cmd_mod_movie = 1002;
cmd_new_misc = 1003;
cmd_mod_misc = 1004;
cmd_new_video_copy = 1006;
cmd_mod_video_copy = 1007;
cmd_new_game 1009;
cmd_mod_game = 1010;
cmd_new_game_copy = 1011;
cmd_mod_game_copy = 1012;
cmd_find_item = 1014;
cmd_graph = 1015;

[

I

// Customers menu

const MessageT
const MessageT
const MessageT
const MessageT
const MessageT

cmd_new_customer = 2001;
cmd_mod_customer = 2002;
cmd_view_current = 2005;
cmd_view_overdue = 2006;
cmd_write_note = 2008;

// Transactions menu

const MessageT cmd_rent = 3001;
const MessageT cmd_return = 3002;
const MessageT cmd_sell = 3004;

Creating Menu Resources with

Constructor

Unlike earlier versions of the program, Constructor 2.1 can be used to define MENU
and Mcmd resources. However, Constructor can’t handle the MBAR resource. This
means that even if you take advantage of Constructor’s ease of use for MENU and
Mcmd resources, you will still need to use a standard resource editor or compiler to

attach menus to the MBAR resource.

74

Chapter 4 + PowerPlant Menus

Figure 4.6 The Penultimate Videos File menu

| Fie | S

New $N
Open %®0
Close ®W
Save #8S
Save As... A
Revert
Open Note These are the extra items
Save Note . that have been added to the
Save Note fis ... default file menu
Revert Note
Page Setup...
Print... 8P
Print One
Quit 80
NOTE

Be sure you are using at least version 2.1.1 of Constructor. There are some bugs in ver-
sion 2.1 that can cause the program (and maybe your Mac) to crash. If you have version
2.1, you can find the update patches on major information services and on Metro-
werks’s WWW site (http:/ /www.metrowerks.com/).

If you are working with two resource files and decide to use Constructor for
MENU and Mcmd resources, you begin by launching constructor and opening the
starter resource file. As you can see in Figure 4.7, the interface provides information
similar to that of a traditional resource editor, include the resources by type, along
with their names and resource IDs.

To see the details of a MENU resource, double-click on the resource. Figure 4.8,
for example, contains the starter File menu. Notice that all menu options except Quit
are disabled.

The characteristics of each menu option are contained in a properties window. To
display it, double-click on the menu option. In Figure 4.9, for example, you can see
the properties for the starter File menu’s Quit option. The Mcmd number appears in
the box labeled Command Number. Notice that the check box directly below it deter-
mines the menu item’s initial state (enabled or disabled).

Creating Menu Resources with Constructor 75

Figure 4.7 The starter MENU resources, viewed with Constructor

PP Starter Resource>.rsrc

1p a ¥indows and Views
&, Menus
Apple Menu
File Menu

Bl edit Menu
:3 % Text Traits

Custom Pane Types

Figure 4.8 The starter File MENU resource
MENU 129, “File Menu” :

Save As...
Reyert

Page Setup...
Print...

Quit

76 Chapter 4 ¢ PowerPlant Menus
Figure 4.9 Menu item properties
E—— Menuitem“uit"=——————""F .
ont f — = f Check this box
0] togeta divider
—1 Ine rather than
Shorteut Key: 38 E] [Divider Line a regular menu
option
Mark Character : D [check Mark P
D Diamond Mark The number
goes into the
Command Number : O Text 0 Mcmd resource
E Enable Menu Item
Script System: E]
Submenu ID: D
~Menu lcon: ~Menu Style : ~y
toon : o] O gold
I:I Reduce icon to 16x16? [J undertine
[J use sicn? [ttatic
Note: This version of Constructor [outtine
does not display icons in the E] Shadow
menu. D Condensed
D Extended]
B4
& I
CREATING A NEW MENU RESOURCE

Most programs, including the Penultimate Videos program, need menus other than
those provided in the starter resource file. To add a new MENU resource, do the fol-
lowing:

A

. Press 38-K or choose New Resource from the Edit menu. The Create New Re-

source dialog box appears.

Choose MENU from the Resource Type popup (Figure 4.10).

Enter a name for the resource.

Enter the resource ID.

Click the Create button or press Enter. Constructor creates the resource and plac-
es it in the resource file’s window.

Creating Menu Resources with Constructor 77

Figure 4.10 Creating a new menu resource

— Create New Resource

What type of resource do you wish to create?
PPob : PowerPlant view
: @ MENU: Meny dezcription
Txtr: PowerPlant text traits
CPPb : PowerPlant custom pane type

View Type:

Resource Name - |40

Resource ID: I 1000

Create

NOTE
Although you can add the new menus using Constructor, don’t forget that you will need
to use one of the standard resource editors to attach those menus to a menu bar.

ADDING A NEW MENU ITEM

As you would expect, creating a new MENU resource generates an empty menu. To
customize the menu’s title and add items, you do the following:

1. Double-click on the MENU resource to open it. Notice that at this point the menu
has the default name of Menu (Figure 4.11).

Figure 4.11 A menu with its default menu name

MENU 1001, “Inventory”

Penu Text

2. Double-click on the menu title to display the menu title’s property dialog box.
3. Change the menu name, as in Figure 4.12, and close the window to save the
changes.

78

Chapter 4 + PowerPlant Menus

Figure 4.12 Changing a menu’s name

EE=——— Menu “Menu” =——T
it
I |~

Menu Title: (Inventory
|:| Apple Menu

Menu ID:
MDEF ID: [0 |

] B

NOTE

Constructor has one interface quirk: Many windows don’t have an “Apply” button. To
apply changes, you close the window with which you have been working. The drawback
to this is, of course, that the only way to cancel changes is to restore the window to its
original state before you close it.

4. Press 38-K or choose New Menu Item from the Edit menu. A new item appears in
the menu window (Figure 4.13)1

Figure 4.13 A new menu item

Aeny Te

Inventory

5. Double-click on the new item to open its properties window (for example, Figure
4.9) and configure the menu item as needed. Closing the properties window saves
the changes.

Creating the Menu Bar 79

MAINTAINING MENU ITEMS

One of the biggest advantages of using Constructor to create MENU resources is that
you don’t have to worry about Mcmd resources. This is particularly handy when you
rearrange or delete menu items because Constructor automatically adjusts the
Mcmd resource for you.

To rearrange menu items, open the MENU resource’s window. Then, drag menu
items to their new locations. To delete a menu item, select it to highlight it and press
Delete.

Creating the Menu Bar

An application object creates its menu bar by creating an object of class LMenuBar:
new LMenuBar (MBAR_Initial);

The constant MBAR_Initial contains the resource ID of the program’s MBAR
resource. This statement appears in the LApplication class constructor. If your appli-
cation object is derived from that class, you needn’t add code to create the menu bar
object.

The LMenuBar constructor calls its own routine Instal1Menu to add each menu
to the menu bar. As you can see in Listing 4.2, the call to InstallMenu takes a
pointer to a new LMenu object as its first parameter. The second parameter is a Bool-
ean that indicates whether the new menu should be placed at the end of the list of
menus in the menu bar.

Once the menus are installed, the LMenuBar constructor adds items to the &
menu. The process is the same as that used in a non-PowerPlant program: Get the
menu handle and then use the ToolBox routine AppendResMenu to add the menu
items.

80

Chapter 4 ¢« PowerPlant Menus

Listing4.2 The LMenuBar constructor

LMenuBar: :LMenuBar(

{

ResIDT inMBARid)

StResourcetheMBAR('MBAR', inMBARid);
::HLockHi (theMBAR.mResourceH);

sMenuBar = this;

mMenulistHead = nil; . .
// Install each menu in the MBAR resource ;';'I;;algm::‘adls

Intl6 *menulDP (Intl6 *) *theMBAR.mResourceH; in the menu bar

Intl6 numMenus = *menulDP++;

for (Intl6 i = 1; i <= numMenus; ++i) { /

InstalIMenu(new LMenu(*menuIDP++), InstallMenu_AtEnd);
}

// Populate the Apple Menu
MenuHandlemacAppleMenuH = ::GetMenuHandle(MENU_Apple);
if (macAppleMenuH != nil) {

: :AppendResMenu(macAppleMenuH, 'DRVR');
}

::InvalMenuBar();

Activating and Deactivating
Menus

Although a MENU resource typically indicates that the menu it defines is enabled,
when you run a PowerPlant program for the first time, you will discover that the
menus you have added to the program are disabled. This is the result of the way Pow-
erPlant is structured to handle menu bar update events.

PowerPlant first disables all menu items, which in turn disables the menus. Then,
when a menu bar update event occurs, the program passes that event to the com-
mander that is lowest in the chain of command. (Remember that if there are multiple
objects at the same level in the chain of command, PowerPlant selects whichever
object is the current target.) PowerPlant then executes the FindCommandStatus
function for that commander to see which menu items should be enabled. Any menu
that has at least one enabled item will be enabled.

The FindCommandStatus function for the PowerPlant starter application
appears in Listing 4.3. Notice that the function is designed to handle one menu

Activating and Deactivating Menus 81

command at a time; the input parameter inCommand identifies which menu com-
mand the function call is to handle. The function returns three Booleans: outEna-
bled, which indicates whether the menu item should be enabled; outUsesMark,
which indicates whether the item uses a check mark when selected; and outMark,
which indicates whether the item actually has a check mark. (Check marks appear,
for example, in the Font menu to indicate the current font.)

Listing 4.3 A FindCommandStatus function

void
CPPStarterApp::FindCommandStatus(
CommandT inCommand,
Boolean &outEnabled,
Boolean &outUsesMark,
Charl6 &outMark,
Str255 outName)

switch (inCommand) {

// Return menu item status according to command messages.
// Any that you don't handle will be passed to LApplication

case cmd_New: // EXAMPLE
outEnabled = true; // enable the New command
break;

default:
LApplication::FindCommandStatus(inCommand, outEnabled,
outUsesMark, outMark, outName);
break;

By default, all three Booleans are false. To enable a menu item, you add a case for
it to the function’s switch and then change the value in the appropriate Boolean.
For example, in Listing 4.3, the function enables the New option in the File menu by
trapping for cmd_New and then setting outEnabled to true.

If the chosen command isn’t part of the FindCommandStatus function being exe-
cuted, the switch passes control to its default option, which calls the FindCom-
mandStatus function of the current class’s base class. As you can see in Listing 4.4, the
base class function (in this example, LApplication) handles events appropriate for the
base class (for example, the @ menu). However, if the event is one not handled by the
base class, then the base class function calls LCommander’s FindCommandStatus

82 Chapter 4 « PowerPlant Menus

function (Listing 4.5), which calls FindCommandStatus for the supercommander. In
this way, menu update events are passed up the chain of command.

Listing 4.4 LApplication’s FindCommandStatus function

void
LApplication::FindCommandStatus(
CommandT inCommand,
Boolean &outEnabled,
Boolean &outUsesMark,
Charlé &outMark,
Str255 outName)

switch (inCommand) {

case cmd_About:

case cmd_Quit:
outkEnabled = true;
break;

case cmd_Undo:
outkEnabled = false;
::GetIndString(outName, STRx_UndoEdit, str_CantRedoUndo);
break;

default:.
LCommander::FindCommandStatus(inCommand, outEnabled,
outUsesMark, outMark, outName);
break;

NOTE

For more extensive examples of the FindCommandStatus function, see PPVideo-
Store.cpp and note.cpp, as well as the source files for all PowerPlant classes derived
from LCommander.

Trapping Menu Selections

Once menu items are enabled, users can make choices from those menus. A Power-
Plant program traps those menu selections with an ObeyCommand function. When a

Trapping Menu Selections 83

Listing 4.5 LCommander’s FindCommandStatus function

void

LCommander::FindCommandStatus(
CommandTinCommand,
Boolean &outEnabled,
Boolean &outUsesMark,
Charlé &outMark,
Str255 outName)

if (mSuperCommander != nil) {

mSuperCommander->ProcessCommandStatus(inCommand, outEnabled,

outUsesMark, outMark, outName);

} else |
outEnabled = false;// Query has reached the top of a command
outUsesMark = false;// chain without any object dealing with

// it, so command is disabled and unmarked

menu selection event occurs, PowerPlant executes the ObeyCommand function of the
lowest object in the chain of command (the current target).

NOTE

The ObeyCommand function also traps other messages sent by objects, such as mes-
sages sent when a user clicks on a button in a dialog box or when a user double-clicks on
an item in a list. You will read more about handling these events later in this book.

Like FindCommandStatus, ObeyCommand contains a switch that identifies
which menu option has been chosen. If the command can’t be handled by the current
object, it is passed up the chain of command. For example, the ObeyCommand func-
tion for the starter application appears in Listing 4.6. If the command isn’t one
trapped by the function, the default option in the switch calls the ObeyCommand
function of the current object’s base class, which, as you saw in Chapter 1, ultimately
calls LCommander’s ObeyCommand function to pass the event up the chain of com-
mand.

You have two choices for handling ObeyCommand functions. If the action to be
performed is short—no more than a half-dozen or so lines of code—you may choose
to include that code directly in the ObeyCommand function’s switch. (This is the
choice made in Listing 4.6.) Alternatively, you may decide to call a function that per-
forms the required action. This latter solution helps keep ObeyCommand functions
to a reasonable length.

84 Chapter 4 * PowerPlant Menus

Listing 4.6 An ObeyCommand function

Boolean

CPPStarterApp: :0beyCommand(
CommandT inCommand,
void *joParam)

Boolean cmdHandled = true;
switch (inCommand) {

// Deal with command messages (defined in PP_Messages.h).
// Any that you don't handle will be passed to LApplication

case cmd_New:
// EXAMPLE, create a new window

LWindow *theWindow;
theWindow = LWindow::CreateWindow(window_Sample, this);
theWindow->Show();
break;

default:
cmdHandled = LApplication::0beyCommand(inCommand, ioParam):
break;

}

return cmdHandled;

NOTE

For more extensive examples of the ObeyCommand function, see PPVideoStore.cpp and

note.cpp, as well as the source files for all PowerPlant classes derived from LCom-
mander.

CHAPTER

Panes and Views

As you have read, a pane is where PowerPlant drawing takes place. Understanding
panes (and ultimately how they relate to views) is fundamental to understanding the
operation of a PowerPlant program. This chapter therefore provides a first look at
working directly with panes and views. Along the way, you will see your first Power-
Plant subclass. In addition, you will be introduced to using Constructor for creating
PowerPlant objects that contain simple panes for drawing, how PowerPlant objects
are created, and how to write functions for pane classes.

The major example that we’ll be using in this chapter is the Penultimate Videos
inventory graph window (Figure 5.1). This simple window is built from one LWin-
dow object that contains a single pane of a class that is a subclass of LPane. The
LWindow object is therefore a view that contains one pane.

As a second, smaller example, at the end of this chapter we’ll look at creating a
pane in which you can play a QuickTime movie. Not only will you learn to use Pow-
erPlant’s QuickTime classes, but you’ll see a method for creating a pane that doesn’t
involve a PowerPlant object.

85

86 Chapter 5 ¢ Panes and Views

Figure 5.1 The inventory graph

El=———=——— Inventory levels

Movies Misc. Videos Games

The final example looks at creating a custom pane—one which is derived from
LPane but adds attributes of its own—whose objects can be defined using Construc-
tor. The custom pane is a thermometer that will be displayed in a window to show
the progress of saving Penultimate Videos data to a text file.

Pane Geography

Every PowerPlant pane keeps information that identifies itself, indicates where it is
located, and records its size. These values are held in three variables:

» mPanelD: A 16-bit integer that should uniquely identify the pane. As you will see,
this pane ID acts as the pane’s resource ID and is most easily assigned when you
are using Constructor to create a pane object.

» mFrameSize: A data structure consisting of two 16-bit integers that records the
height and width of a pane’s frame, the rectangle that forms the border of the
pane.

« mFramelocation: A data structure consisting of two 32-bit integers that records
the coordinates of the pane’s frame’s top left corner.

Declaring a Subclass for a Pane 87

Declaring a Subclass for a
Pane

There are several reasons to subclass a PowerPlant class, one of the most common of
which is to provide a vehicle for overriding functions to customize class behavior.
The graph window, for example, requires a subclass of LPane so that it can override
the DrawSe1f function, which actually draws the contents of the pane. You will cre-
ate a subclass and override DrawSe1f whenever you need to draw directly in a pane.

For this particular example, the subclass is called Graph. As you can see in Listing
5.1, Graph is derived directly from LPane. The subclass must of course include its
own constructors and destructor. It also overrides the FinishCreateSelf function
(which does nothing in this class) and the DrawSelf function (which does all the
work).

Listing 5.1 The Graph class

// The Graph class

// A display window that uses QuickDraw routines to draw something
const NUMB_BARS = 3;

const MARGIN = 50;

const SPACE_BETWEEN = 20;

const TEXT_SIZE = 9;

f#finclude <LPane.h>

class Graph : public LPane
{
public:
static Graph * CreateGraphStream (LStream * inStream);
Graph();
Graph(LStream *inStream);
virtual ~Graph();

protected:
virtual void FinishCreateSelf();
virtual void DrawSelf();

88 Chapter 5 * Panes and Views

Creating a Pane Resource for
Drawing

The easiest way to declare the objects that underlie the graph window (an object of
class LWindow and an object of class Graph) is to use Constructor, which provides a
graphic environment in which you can “draw” panes and views. In this section we
will look at using Constructor to do just that.

STARTING A CONSTRUCTOR RESOURCE FILE

Assuming that you are going to work with two program-specific resource files (one
for PowerPlant resources and one for all other resources), you begin by launching
Constructor. Like many well-behaved Macintosh programs, it automatically creates a
new document for you (Figure 5.2).

Figure 5.2 A new Constructor file

untitied

The four icons in the body of the window represent the four major types of
resources that Constructor can manage for you:

* Windows and Views: PowerPlant objects created from LWindow, LView,
LPrintout, LDialogBox, or LGraphPortView. In addition, Window and View re-
sources can be used for subclasses that have one (and generally only one) of the
types in the preceding sentence in their inheritance hierarchy.

¢ Menus: MENU and Mcmd resources.

Creating a Pane Resource for Drawing 89

* Text Traits: Text characteristics (font, size, style, alignment, and so on) that you
can associate with objects that display text, including objects created from LCap-
tion, LEditField, and LTextEdit.

* Custom Types: Programmer-defined classes whose objects can be represented as
PowerPlant objects.

CREATING A RESOURCE

To create a new window or view resource, do the following:

1. Type 38-K or choose New Resource from the Edit menu. Constructor displays the
Create New Resource dialog box so you can choose the type of resource you need.

2. Enter a name for the resource, choose its type from the View Type popup menu,
and enter the resource ID. For this example, the new view is an LWIndow (Figure
5.3).

Figure 5.3 Creating a new View resource

Create New Resource

What type of resource do you wish to create?

Resource Type: {_ PPob: PowerPlant view V]

View Type:| LWindow hd I

Resource Name: [Graph l

Resource ID: [21 00) j

3. Click the Create button. Constructor adds the resource to its list (Figure 5.4).

NOTE

To change the name or resource ID of an existing resource, highlight the resource in the
Constructor window’s resource list and press 38-1. The resource’s properties box
appears, in which you can make the necessary changes.

90

Chapter 5 ¢ Panes and Views

Figure 5.4 A new resource in the resource list

untitied

7 0& ¥indows and YViews
| « @

Ll Menus

% Text Traits
m Custom Pane Types

CusToMIZING RESOURCE CONTENTS

To add to or modify the contents of a PowerPlant object, you first open the resource
window by double-clicking on its name or icon in the Constructor file window. As
you can see in Figure 5.5, the window is a standard document window with a title of
“untitled.” There are two major tasks that should be completed at this point: config-
uring the LWindow object, and adding the objects that the LWindow object will con-
tain.

Configuring the LWindow Object

Each object that makes up a PowerPlant object has its own set of properties. To
access those properties, double-click anywhere on the object. The properties for an
object of class LWindow (Figure 5.6) include the window title, its type, a WDEEF ID,
its PowerPlant class ID, and whether it has characteristics such as a zoom, close, or
size box.

Two of the properties in the Clicking/Drawing section are of particular interest.
The “Targetable” check box determines whether an object can become the target.
Even if the object’s class is derived from LCommander, the object won’t be able to
respond to commands if the Targetable box is unchecked. Items designed for display
only (for example, lines of text declared as LCaption objects) shouldn’t be targetable.
However, items with which the user should interact, such as LEditField or LStdBut-
ton objects, must be targetable. Windows must also be targetable if they are to
respond to events such as clicks in close boxes and window manipulation key presses.

Creating a Pane Resource for Drawing 91

Figure 5.5 A default LWindow object
EE PPob 2100, “Graph”

The Erase on Update box determines whether the contents of the object are com-
pletely erased and then redrawn whenever an update event occurs. Removing the
check from this box can result in some interesting ghosts appearing on the screen!

NOTE

Like many other Constructor windows, closing the LWindow Info window saves any
changes you’ve made. If you don’t want to save changes, restore the window to its origi-
nal state before closing,

Adding a Pane

The types of objects that can be added to a PowerPlant resource are collected in a
Tools palette (Figure 5.7). Notice that there are icons for all classes that represent vis-
ible, graphic objects that might appear in a window, dialog box, or printout.To add an
object of a given class to a view, drag it from the Tools palette into an open view win-
dow. For this particular example, you would drag an object of class LPane (the base
class for the Graph class).

92

Chapter 5 ¢ Panes and Views

Figure 5.6 LWindow object properties

S@=——— Info for LWindow “Inventory levels” E
~ Location : ~Clicking/Drawing: :‘;}-
E Targetable
[Get Select Click
Left: [] Hide On Suspend
|___| Delay Select
m Erase On Update
~ Window Type:
Window Kind:| Document window v]
Yindow Title: ﬁwentorg levels]
D Zoom Box WDEF ID: m Enabled
Close Box - lwi E Initially Visible
Class ID: |wind
Clsize Box o ion Lager:
X Titie Bar
[Resizable Auto Position: [Center on Parent Screen v |
~ Window Sizing: - User Data:
Width Height
Minimum Size: D D User Constant: D
Maximum Size: I:] E Yindow RefCon: [:]
Standard Size:[-1___|[-1___ |
<
<l B

NOTE

If the Tools palette was visible the last time you used Constructor, it will open automat-
ically whenever you open a view. However, if the Tools palette isn’t visible when a view
is open, choose Show Tool Palette from the Display menu to make it appear.

In this case, the new pane appears as a small square (Figure 5.8). However, the ini-
tial state and size of a given type of object depends on the class from which the object

has been created.

Notice in Figure 5.9 that the new pane has been given a resource ID of 0. You will
need to change this, along with any other properties of the pane that must be modi-
fied to fit your program’s needs. If resource IDs aren’t visible, display them by choos-
ing ShowPane IDs from the Display menu; if you no longer want to see the pane IDs,
choose Hide Pane IDs from the Display menu.

Creating a Pane Resource for Drawing 93

Figure 5.7 The Constructor Tools palette
=

L¥iew

LControl
LStdControl
LStdButton
LStdCheckBox
LStdRadioButton
LStdPopupMenu
LTextButton
LButton
LCicnButton
LToggleButton
LiconPane
LCapticn
LGroupBox
LEditField
LListBox
LScroller
LActiveScroller
LTable
LTableView
LHierarchyTable
LTextHierTable
LSmalliconTable
LTextEdit
LPicture

HECFGEEE R JoR FE[H

LOffscreenView
LPlaceHolder
LMailer
LBrowser

&) LFinder wY

[E R~ EREEEE00

e
o

LB

NOTE

One of the most frustrating deficiencies of Constructor 2.1 is that it doesn’t provide
tools for aligning objects within a view. However, you can nudge objects one pixel at a
time using the arrow keys. You can also force objects to align to a grid by choosing Snap
to Grid from the Arrange menu. The Arrange menw’s Edit Grid option lets you set the
number of pixels between grid points.

94

Chapter 5 ¢ Panes and Views

Figure 5.8 A new LPane object in a view

PPob 2100, “Graph”

untlle

The window’s
R ‘ resource ID

When an object is highlighted, you can use the mouse to drag it around a view
and use the object’s handles to resize it. In this case, the view’s single object should
fill the entire view (with the exception of the title bar).

Setting Basic Object Properties

There are some basic properties that must be set for every object you add to a view,
regardless of what else you do to the way in which the view appears. First, each new
object must be given its own unique resource ID. Duplicate resource IDs may cause a
running program to use the wrong object, producing bugs that may cause program
crashes because of memory allocation problems.

In addition, a pane that represents an object from a derived class won’t function
correctly unless the pane is somehow linked to its class. For the example we are fol-
lowing, this means that the pane that will display the graph must be identified as a
definition for the Graph class. To make this change, you must replace the LPane
object’s default four-character ID with the ID that has been chosen for the Graph
class. The choice of an ID for a subclass is arbitrary, but it must be unique within the
entire program. In other words, it must be different from the IDs used by all other
PowerPlant classes.

Creating a Pane Resource for Drawing 95

To set an object’s two basic properties, do the following:
1. Double-click on the object to display its properties window. The properties for an

object of class LPane (or a class derived from LPane) appear in Figure 5.9. As you
can see, the default resource ID is 0 and the default class ID is pane.

Figure 5.9 Configuration options for an object of class LPane

=== LPane from LWindow “untitled”
- Location: - Binding to Superview : -« J
Top (15 | —
O 1op
Left: Width: O vLett [right
[Bottom

.. Height: [75 e

Pane ID: D [Text i X Enabled
User Constant: E:] [Text constant X visible
Class ID:
@l I

B

2. Replace the default resource ID with the resource ID you’ve chosen for the ob-
ject. Note that in a properties window, the resource ID box is labeled “Pane ID.”
For this example, the ID is 2101.

NOTE

Because resource IDs are arbitrary, it helps to have some scheme for numbering
resources that makes sense to you. The Penultimate Videos program uses the first two
digits of the ID to represent the PowerPlant object (for example, the 21 in 2100). The
last two digits are a sequential number within the PowerPlant object. The graph view’s
single pane is therefore numbered 2101.

3. Replace the default class ID with the ID you’ve chosen for the subclass, which in
this case is grph.

4. Ifnecessary, use the Location boxes to set the size of the object. In this case, using
-1 for the top and left edges makes sure that the pane that will hold the graph is
anchored at the top left corner of the LWindow object. The height and width are
expressed in pixels.

96 Chapter 5 ¢« Panes and Views
5. The pane is also bound to its superview (the LWindow object) on all four corners.
This means that as the superview is resized, the pane is resized as well. You will
read more about binding in the next section of this chapter.
6. The completed properties window appears as in Figure 5.10. Close the properties
window to save the changes.
Figure 5.10 The completed properties for an object of class Graph
S=——————— Pane ID2101l =——————"H0
- Location: - Binding to Superview: - i}Q
X Top
Left: X Left X Right
E Bottom
..... Height: [251 |-
Pane ID: D Text ID E Enabled
User Constant: Cl D Text constant E Visible
Class ID: ~G—
=l IEE
At this point, the PowerPlant object is ready to use. Don’t forget, however, that
the program that uses this object must register the class from which the object is cre-
ated by calling URegistrar::RegisterClass:
URegistrar::RegisterClass('grph',Graph::CreateGraphStream);
The function call specifies the class’s ID, as well as the name of the function that
should be called to create an object of this class from an input stream. By convention,
such functions have the name Create XStream, where X is the name of the class.
PANE BINDING

Binding attaches one or more sides of a pane to its superview such that when the
superview is resized, the side of the pane remains the same distance from the side of
the superview. If a pane is bound on all four sides, then resizing the pane’s superview
stretches or shrinks the pane to fit within the superview’s new size. However, if a
pane is bound on only two sides, such as the top and left, then resizing the superview

The Graph Subclass and Its Constructors 97

keeps the pane in the same position relative to the superview’s top and left but allows
the pane’s right and bottom edges to move. The result is that the pane doesn’t
change size. By the same token, a pane that is not bound to its superview will remain
in the same location and stay the same size when the superview is resized.

The type of binding you use therefore depends on the type of pane you are creat-
ing and the way in which you want the pane to move or change size when the super-
view is resized:

* A control—such as a standard button, push button, or check box—is usually
bound to its superview on two sides (either top and left or bottom and right).

* A pane used for display (such as the Graph pane) or a pane used for entering the
contents of a document (such as a pane of class LTextEdit) is usually bound on all
four sides.

The Graph Subclass and Its
Constructors

At a minimum, a subclass needs to include its own constructors and, optionally, a
destructor. Most PowerPlant classes have at least two constructors, one that creates
an object using data supplied in the function’s parameter list and another that creates
an object using data from an input stream defined in a resource file. In Listing 5.2, for
example, you can see both types of constructors.

In the case of the Graph class, the default constructor, which could be used to
accept data in its parameter list, is empty. Because objects of the Graph class will
always be created as PowerPlant objects using data from a resource file, there is no
need to complete the first type of constructor.

The second constructor expects an object of class LStream as input. Its sole action
is to call the base class constructor. Although in some cases you may need to add
additional functionality to a stream input constructor, keep in mind that in this par-
ticular example the reason for creating the Graph class was to allow the program to
override the DrawSelf function. All other class actions are the same as the base class,
and therefore a call to the base class constructor will suffice.

98 Chapter 5 ¢ Panes and Views

Listing 5.2 Constructors and destructor for the Graph class

#include <LStream.h>
ffinclude <UTextTraits.h>
#include <UDrawingState.h>

#include "graph.h"
// converts an integer to a pascal string
extern void itoaP (int, Str255);

Graph * Graph::CreateGraphStream (LStream * inStream)
{ return (new Graph(inStream)); }

Graph::Graph()
{

// default constructor does nothing
}

Graph::Graph (LStream * inStream)

: LPane (inStream)
{

// call the base class constructor
}

Graph::~Graph()
{

// default destructor deletes object but does nothing else
}

void Graph::FinishCreateSelf()
{

// no work here either
}

NOTE
As with many PowerPlant classes, there are no actions that need to be taken when an

object of class Graph is destroyed. Therefore, although the member functions include a
destructor, the body of the destructor is empty.

The CreateXStream Function and How PowerPlant Objects Are Created

929

The CreateXStream Function
and How PowerPlant Objects
Are Created

In addition to one or more constructors and a destructor, a class whose objects are
defined as PowerPlant objects includes a function whose name takes the form Cre-
ateXStream, where X is the name of the class. This function initiates actions that

take care of reading the resource data and creating the object.

A CreateXStream function is usually very simple: It uses the new operator to
create an object of class X, returning a pointer to that object. Because you can’t call a
constructor directly (except when calling a base class constructor in a derived class’s
constructor, of course), this function provides the necessary mechanism for creating

an object whose characteristics are provided to the program as an input stream.

Where does the actual resource read occur? It is triggered by a series of functions
that are executed when the graph window is created. The process begins with a call
to the Penultimate Video’s DisplayGraph function, which can be found in Listing
5.3. Notice that the function contains only one line: a call to the CreateWindow

function.

Listing 5.3 Creating the graph window

// hhkkhkhkhkhkhkhkkhkkhkkhkkhkhkhkhhhkhkkhkhkhkkkkhkhhhxhkhkkkkkhkkhkkkhhkk

// « DisplayGraph

// dkhkhkkhkhkkhkhkhkkkhkhkhkrkhkhkhkhkhkkhkhkhhkkhkhkhkhkkhkhkkhhkkhkhkhkhkhkhkhkhhhkhkkhkhkhkkhkhkhkhkkhkkkhhkkkk
isplay a gra of items in inventory usi

// Displ h of it t to demonstrate using

// QuickDraw commands in a pane.

void CPPVideoStoreApp::DisplayGraph()
{

LWindow * theWindow = LWindow::CreateWindow (WINDOW_GRAPH, this);
}

CreateWindow takes two parameters: the resource ID of the window being cre-
ated, and a pointer to the object that should become the new window’s supercom-
mander. In many cases, new windows—whether they are document windows or
dialog boxes—use the object whose member function creates the window as their
supercommander. (In this example, an application object function is creating the

window.) Therefore, the second parameter is often this.

100 Chapter 5 ¢ Panes and Views

The sequence of actions initiated by the call to CreateWindow appears in Listing
5.4. As you can see, CreateWindow begins by setting the new object’s supercom-
mander. It then calls UReanimator: :ReadObjects (the second function in Listing
5.4), passing the resource ID and resource type as input parameters.

ReadObjects does the following:

* Creates an object of class StResource to store the resource identification data that
was passed in as function parameters. Notice that because this class’s name begins
with “St,” we know that it is a stack-based class that restores parameters when it
terminates.

* Moves the resource identification data upward in memory and places it in a non-
relocatable block of memory, in a locked relocatable block, or at the top of the
heap using the ToolBox routine HLockH1i. HLockHi finishes by locking the block
of memory now occupied by the resource.

* Creates an object of class LDataStream that will hold the resource read from the
file. The two input parameters are a pointer to the resource identification data’s
handle and the size of the block of memory occupied by that data.

¢ Calls the ReadData function of the LDataStream object to retrieve the resource
from the file. (This function is inherited from LStream and is implemented as an
inline function in LStream.h). As you can see in Listing 5.4, ReadData calls the
LDataStream function GetBytes, which actually performs the read.

Once the data describing the new object have been read from the file, Read0b-
jects creates the object with a call to the UReanimator function ObjectsFrom-
Stream (Listing 5.5), passing in the stream containing the data. The main structure
in ObjectsFromStreamis a do while loop that continues as long as the stream
contains tags that identify parts of a resource. The tags are recognized in a switch
using the enum values in Listing 5.6.

If the tag indicates that data about an object follows (tag of tag_ObjectData),
ObjectsFromStream extracts the object data from the stream, and then calls the
URegistrar function CreateObject (Listing 5.7). This function finds the class ID of
the object being created in the table of classes built when PowerPlant object classes
were registered at the beginning of the program. It then calls the CreateXStream
function for the class from which the object is being created, which finally gets
around to actually creating the object and drawing it on the screen.

If the tag indicates the beginning of a subpane (tag_BeginSub), ObjectsFrom-
Stream calls itself to create the subpane(s). Given the way PowerPlant objects are
stored in a resource file, the pane is created first, followed by all of its subpanes.

The order in which panes are created can sometimes be important. For example, if
you plan to store subpane IDs as part of an object, you can’t extract those IDs until
the subpanes have been created. The code to store the subpane IDs therefore can’t be

The CreateXStream Function and How PowerPlant Objects Are Created 101

Listing 5.4 Using a PowerPlant resource to generate a visible screen object

LWindow* LWindow::CreateWindow(ResIDT inWindowID,LCommander *inSuperCommander)
{
SetDefaultCommander(inSuperCommander);
LWindow *theWindow = (LWindow*) UReanimator::ReadObjects('PPob', inWindowID);
theWindow->FinishCreate();
if (theWindow->HasAttribute(windAttr_ShowNew))
theWindow->Show();
return theWindow;
}

void * UReanimator::ReadObjects(0SType inResType,ResIDT inResID)
{
StResource objectRes(inResType, inResID);
::HLockHi(objectRes.mResourceH);
LDataStream objectStream(*objectRes.mResourceH,
::GetHandleSize(objectRes.mResourceH));
Intl6 ppobVersion;
objectStream.ReadData(&ppobVersion, sizeof(Intl6));
SignalIf_(ppobVersion != 2);
void *theObject = ObjectsFromStream(&objectStream);
return theObject;
}

// This inline function is found in LStream.h
virtual Int32 ReadData(void *outBuffer, Int32 inByteCount)
{
GetBytes(outBuffer, inByteCount);
return inByteCount;

}

ExceptionCode LDataStream::GetBytes(void *outBuffer, Int32 &ioByteCount)
{
ExceptionCodeerr = noktrr;
// Upper bound is number of bytes from
) // marker to end
if (GetMarker() + ioByteCount > GetlLength()) f{
ioByteCount = Getlength() - GetMarker();
err = readErr;
}
::BlockMoveData((Int8*) mBuffer + GetMarker(), outBuffer, ioByteCount);
SetMarker(ioByteCount, streamFrom_Marker);
return err;

part of a constructor. However, you can put code that needs to execute after all panes
are created ina FinishCreateSelf function. If you look back at Listing 5.4, you’ll
notice that after calling ReadObjects, the CreateWindow function calls its own
FinishCreate function, which is actually inherited from the LView class. As you

102 Chapter 5 ¢ Panes and Views

Listing 5.5 UReanimator::ObjectsFromStream

void* UReanimator::0bjectsFromStream(LStream *inStream)
{

void *firstObject = nil;

ClassIDT aliasClassID = 'null‘;

// Save current defaults
LCommander *defaultCommander = LCommander::GetDefaultCommander();
LView *defaultView = LPane::GetDefaultView();
Boolean readingTags = true;

do {
void *currentObject = nil;// Object created by current tag
TagID theTag = tag_End;
// read the next tag to figure out what type of data follow
inStream->ReadData(&theTag, sizeof(TaglD));

switch (theTag) {
case tag_ObjectData: {
// Restore default Commander and View
LCommander::SetDefaultCommander(defaultCommander);
LPane::SetDefaultView(defaultView);

// Object data consists of a byte length, class ID,
// and then the data for the object. We use the

// byte length to manually set the stream marker

// after creating the object just in case the

// object constructor doesn't read all the data.

Int32 datalength;
inStream->ReadData(&datalength, sizeof(Int32));
Int32 dataStart = inStream->GetMarker();

ClassIDT classID;
inStream->ReadData(&classID, sizeof(ClassIDT)):

if (aliasClassID != 'null’) {
// The previous tag specified an Alias for
// the ID of this Class
classID = aliasClassID;
}

currentObject = URegistrar::CreateObject(classID, inStream);
inStream->SetMarker(dataStart + datalength, streamFrom_Start):

aliasClassID = 'null'; // Alias is no longer in effect
Continued next page

The CreateXStream Function and How PowerPlant Objects Are Created

103

Listing 5.5 UReanimator::ObjectsFromStream

if (currentObject == nil && classID != 'null’') {
SignalPStr_("\pnil object created from tag");

}

break;

case tag_BeginSubs:
currentObject = ObjectsFromStream(inStream);
break;

case tag_EndSubs:

case tag_End:
readingTags = false;
break;

case tag_UserObject: {

// The UserObject tag is only needed for the Constructor
// view editing program. It tells Constructor to treat
// the following object as if it were an object of the
/! specified superclass (which must be a PowerPlant

// class that Constructor knows about). We don't need

// this information here, so we just read and ignore

// the superclass ID.

ClassIDT superClassID;
inStream->ReadData(&superClassID, sizeof(ClassIDT));
break;

case tag_ClassAlias:

// The ClassAlias tag defines the ClassID the for
// the next object in the Stream. This allows you
// to define an object which belongs to a subclass
// of another class, but has the same data as that
// other class.

inStream->ReadData(&aliasClassID, sizeof(ClassIDT));
break;

default:
SignalPStr_("\pUnrecognized Tag");
readingTags = false;
break;

Continued next page

104 Chapter 5 ¢ Panes and Views

Listing 5.5 UReanimator::ObjectsFromStream
)

if (firstObject == nil) |
firstObject = currentObject;
}
} while (readingTags);

return firstObject;

Listing 5.6 An enum for resource tags

enum {

tag_ObjectData = 'objd',
tag_BeginSubs = 'begs',
tag_EndSubs = 'ends',
tag_Include = 'incl',
tag_UserObject = 'user',
tag_ClassAlias = 'dopl"',
tag_End = 'end.',

object_Null = ‘null’

Listing 5.7 URegistrar::CreateObject

void* URegistrar::CreateObject (ClassIDT inClassID, LStream *inStream)
{
void*theObject = nil;
Intl6é index = FetchClassIndex(inClassID);
if (index !'=0) {
theObject = (*(*sTableH)[index - 1].creatorFunc)(inStream);
}

return thelObject;

can see in Listing 5.8, FinishCreate sets up an iterator (an object of class LListIter-
ator) to handle the object’s linked list of subpanes. It then performs FinishCreate
for each subpane, and finally calls FinishCreateSelf for the object itself. By
default, LWindow inherits an empty FinishCreateSelf from LPane. However, if

Drawing in a Pane 105

you need to add something to that function, you should create a subclass for your
pane or view and override the default.

Listing 5.8 Functions to finish creating an object

void LView::FinishCreate()
{
LListIterator iterator(mSubPanes, iterate_FromStart);
LPane *theSub;
while (iterator.Next(&theSub)) {
theSub->FinishCreate();
}

if (mSuperView != nil) {
mSuperView->0OrientSubPane(this);
}
FinishCreateSelf();
}

voidLPane::FinishCreateSelf()
{

// default function is empty
}

When you draw in a window created as a WIND resource, you use a QuickDraw
coordinate system to indicate where elements of the window should appear. How-
ever, PowerPlant uses its own coordinate systems for panes and views. You therefore
need to understand something about coordinate systems before you can draw
directly in a pane. Once you know where you will put the contents of a pane, you can
start drawing using QuickDraw commands. In this section, you will first be intro-
duced to PowerPlant coordinates systems and then see how drawing in a pane takes
place.

106 Chapter 5 ¢ Panes and Views

COORDINATE SYSTEMS

The QuickDraw drawing coordinate system, limited as it is to 16-bit coordinate val-
ues, provides coordinates in the range —32,768 to 32,767. Calculations in the first
PowerPlant manual suggest that this holds about 100 pages of text.

The PowerPlant drawing area, however, uses 32-bit coordinate values in the range
0 to 2,147,483,647. According that same manual, going to 32 bits provides storage for
over 3.3 million pages of text. In addition to the PowerPlant coordinate system, each
view and grafport has its own coordinate system. To keep this all straight, Power-
Plant actually works with four separate coordinate systems, which are summarized
in Table 5.1. To make your life easier, PowerPlant also supplies several functions that
convert among these four coordinate systems (see Table 5.2).

Table 5.1 PowerPlant coordinate systems

Coordinate Size Top Left Use
System
Global 16-bit Top left corner of main Used primarily by QuickDraw.
screen Used in PowerPlant programs
only when ToolBox calls
require global coordinates.
Port 16-bit Top left corner of Normal QuickDraw coordi-
current grafport nate system used when not
working with PowerPlant
objects.
Image 32-bit Top left corner of image Coordinates used in drawing
spaces defined by classes

descended from LView. Coor-
dinates are typically mapped to
local coordinates for drawing.
Local 16- or 32-bit Maps top left corner of Used most frequently for draw-
image to top left corner ing in a PowerPlant pane or
of grafport view.

The way in which you use these coordinate systems depends to some extent on
whether what you are drawing fits within the QuickDraw coordinate system. If this
is the case, then image and local coordinates are the same. PowerPlant routines use
::Set0rigin to make the top left corner of the port the same as the top left corner

Drawing in a Pane 107

Table 5.2 Coordinate conversion functions

Function From To
GlobalToPortPoint Global Port
PortToGlobalPoint Port Global
PortTolocalPoint Port Local
LocalToPortPoint Local Port
LocalToImagePoint Local Image
ImageToLocalPoint Image Local

of the image. At that point, you can use QuickDraw routines for drawing, just as you
would if your program wasn’t using PowerPlant.

However, if your drawing is larger than the QuickDraw drawing space, then you
will have to map your coordinates into a QuickDraw space before you can draw any-
thing. The first step is to determine whether your image fits within the QuickDraw
space, using one of the following two functions, both of which are member functions
of LView:

¢ ImageRectIntersectsFrame: Takes the image coordinates of a rectangle as
input parameters and returns a Boolean that indicates whether any part of that
rectangle intersects the frame of the view calling the function.

e ImagePointIsInFrame: Takes image coordinates of a point as input parame-
ters, converts them to port coordinates, and returns a Boolean that indicates
whether the point falls within the frame of the pane or view calling the function.

If the call to ImageRectIntersectsFrame or ImagePointIsInFrame returns
FALSE, you will then need to convert the image coordinates to local coordinates,
using ImageTolLocalPoint, before you can draw.

DOING THE DRAWING

Often, as with the inventory graph that you saw in Figure 5.1, a drawing easily fits
within the QuickDraw drawing space. That being the case, a program can immedi-
ately begin drawing without any coordinate conversions. However, you still need to
figure out the local coordinates of the frame within which drawing will occur.

Listing 5.9 contains the DrawSe1f function from the Graph class. The bulk of the
function is taken up with QuickDraw calls that produce the graph (along with some
simple math that determines the intervals on the y-axis and the height of the bars).
Nonetheless, there are two PowerPlant tasks that must be performed before drawing
can begin:

108 Chapter 5 ¢ Panes and Views

Listing 5.9 The Graph class’s DrawSelf function

// dhkkhkkhkkhkhkhkhkhhkhkhkhhhhhkhkhkkhkhhkhkhkhkrhhhhkhkhkhhkhhkhhkhkhhhkhkkhkkhhkhkdkhkhkhkhkhk

// « DrawSelf

// khkkhkkhkhkhkhkhkhkhkhkhhkhkhhhkhkhhhhhkhhhhkhkhkhkrhhhkhhhhhkhkhkhhhkkhkhkhkhhhhhhhhhhk

// This is where all the work takes place

void Graph::DrawSelf()

{

extern int Movie_count, Other_count, Game_count; // gain access to the globals

StColorPenState theState; // used to save current pen state; restored on destruction
Rect frame; // "frame" is superview's local coordinates; used for all drawing

int xAxis, yAxis; // length of axes

int usableArea, barWidth, maxCount, intervalSize, barTop, barlLeft, axisPoint;

Rect bar;

Str255 axisLabel;

// get superview's local coordinates
CalclLocalFrameRect (frame);
::PenNormal();

::PenMode (patCopy);

// draw the graph axes

::MoveTo (frame.left + MARGIN, frame.top + MARGIN);
::LineTo (frame.left + MARGIN, frame.bottom - MARGIN);
::LineTo (frame.right - MARGIN, frame.bottom - MARGIN);

// figure out the sizes and positions of the three bars
xAxis = frame.right - frame.left - (MARGIN * 2);

yAxis = frame.bottom - frame.top - (MARGIN * 2);
usableArea = xAxis - (SPACE_BETWEEN * NUMB_BARS);
barWidth = usableArea / NUMB_BARS;

// figure out maximum of the three counts; this becomes number of intervals on y axis
maxCount = Movie_count;
if (Other_count > maxCount)
maxCount = Other_count;
if (Game_count > maxCount)
maxCount = Game_count;

// compute interval size
intervalSize = yAxis / maxCount;

// Label the y axis
::TextFont (geneva);
::TextSize (TEXT_SIZE);
::ForeColor (blueColor);

Continued next page

Drawing in a Pane 109

Listing 5.9 (Continued) The Graph class’s DrawSelf function

// Top

::MoveTo (frame.left + MARGIN - SPACE_BETWEEN, frame.top + MARGIN + TEXT_SIZE);
itoaP (maxCount, axislLabel);

::DrawString (axislLabel);

::ForeColor (blackColor);

::MoveTo (frame.left + MARGIN - 6, frame.top + MARGIN + (TEXT_SIZE/2));
::LineTo (frame.left + MARGIN + 6, frame.top + MARGIN + (TEXT_SIZE/2));

// Middle

::ForeColor (blueColor);

axisPoint = yAxis / 2; // find middle of y axis

::MoveTo (frame.left + MARGIN - SPACE_BETWEEN, frame.top + MARGIN + axisPoint +
(TEXT_SIZE/2));

itoaP (maxCount / 2, axislLabel);

::DrawString (axislLabel);

::ForeColor (blackColor);

::MoveTo (frame.left + MARGIN - 6, frame.top + MARGIN + axisPoint);

::LineTo (frame.left + MARGIN + 6, frame.top + MARGIN + axisPoint);

// Bottom

::ForeColor (blueColor);

::MoveTo (frame.left + MARGIN - SPACE_BETWEEN, frame.top + MARGIN + yAxis +
(TEXT_SIZE/2));

itoaP (0,axislabel);

::DrawString (axislLabel);

::ForeColor (blackColor)

::MoveTo (frame.left + MARGIN - 6, frame.top + MARGIN + yAxis);

::LineTo (frame.left + MARGIN, frame.top + MARGIN + yAxis);

// first bar

// Note: SetRect uses "left, top, right, bottom" -- go figure ...

barTop = (yAxis - (intervalSize * Movie_count)) + frame.top + MARGIN;

::SetRect (&bar, frame.left + MARGIN + SPACE_BETWEEN, barTop, frame.left + MARGIN +
SPACE_BETWEEN + barWidth, frame.bottom - MARGIN);

::ForeColor (redColor);

::PaintRect (&bar);

// second bar
barTop = (yAxis - (intervalSize * Other_count)) + frame.top + MARGIN:
barLeft = frame.left + MARGIN + (SPACE_BETWEEN * 2) + barWidth;
::SetRect (&bar, barleft, barTop, barLeft + barWidth, frame.bottom - MARGIN);
::ForeColor (blueColor);
::PaintRect (&bar);
Continued next page

110 Chapter 5 ¢ Panes and Views

Listing 5.9 (Continued) The Graph class’s DrawSelf function

width = ::TextWidth (otherLabel, 1, 12);

indent = (barWidth/2) - (width/2):

::MoveTo (frame.left + MARGIN + (SPACE_BETWEEN * 2) + barWidth + indent,
frame.bottom - 30);

::DrawString (otherlabel);

width = ::TextWidth (gamelabel, 1, 5);

indent = (barWidth/2) - (width/2);

::MoveTo (frame.left + MARGIN + (SPACE_BETWEEN * 3) + (barWidth * 2) + indent,
frame.bottom - 30);

::DrawString (gamelabel);

// third bar

barTop = (yAxis - (intervalSize * Game_count)) + frame.top + MARGIN;

barLeft = frame.left + MARGIN + (SPACE_BETWEEN * 3) + (barWidth * 2);
::SetRect (&bar, barLeft, barTop, barlLeft + barWidth, frame.bottom - MARGIN):
::ForeColor (yellowColor);

::PaintRect (&bar);

// Label x axis

Str255 movielabel "\pMovies";
Str255 otherlLabel "\pMisc. Videos";
Str255 gamelabel = "\pGames";

::ForeColor (blueColor);

int width = ::TextWidth (movielabel, 1, 6);

int indent = (barWidth/2) - (width/2);

::MoveTo (frame.left + MARGIN + SPACE_BETWEEN + indent, frame.bottom - 30);
::DrawString (movielabel);

int width = ::TextWidth (movielabel, 1, 6);

int indent = (barWidth/2) - (width/2);

::MoveTo (frame.left + MARGIN + SPACE_BETWEEN + indent, frame.bottom - 30):
::DrawString (movielabel);

width = ::TextWidth (otherLabel, 1, 12);

indent = (barWidth/2) - (width/2);

::MoveTo (frame.left + MARGIN + (SPACE_BETWEEN * 2) + barWidth + indent,
frame.bottom - 30);

::DrawString (otherlLabel);

width = ::TextWidth (gamelabel, 1, 5);

indent = (barWidth/2) - (width/2);

::MoveTo (frame.left + MARGIN + (SPACE_BETWEEN * 3) + (barWidth * 2) + indent,
frame.bottom - 30);

::DrawString (gamelabel);

Playing a QuickTime Movie: Panes without PPobs 111

» Graph::DrawSelf first saves the current state of the pen using one of Power-
Plant’s stack-based classes: StColorPenState. The constructor for this class pushes
the current pen state onto the stack. When the function terminates and the object
is destroyed, the destructor restores the pen state. Saving and restoring the pen
state makes sure that windows drawn after the graph window don’t appear in
strange colors.

e Graph::DrawSelf then gets the superview’s local coordinates with a call to
CalcLocalFrameRect. As you will remember, the Graph class is a pane whose
superview isa window. The callto CalclLocalFrameRect therefore returns the
coordinates of the window, with 0,0 at the top left corner, not including the title
bar. Since the Graph pane fills the entire area of its superview and since image and
local coordinates are the same in this case, finding the superview’s local coordi-
nates provides coordinates that can be used for drawing in the Graph pane.

Once the frame coordinates are known, the function gets down to business by draw-
ing the axes, doing the math necessary to determine the height of the bars, drawing
the bars, and labeling the axes. Although you can’t see the color in Figure 5.1, the
bars will appear on your screen in red, blue, and yellow. The axes are black and the
axis labels are blue.

Playing a QuickTime Movie:
Panes without PPobs

A pane does not necessarily have to be defined as a PowerPlant object. There are
some circumstances under which you might want to create a pane by filling the fields
in the data structure that defines a pane and then passing that structure to the appro-
priate constructor. As an example of why and how you might do this, we’ll be taking
alook at playing a QuickTime movie in a pane.

The movie pane appears in a window that is a defined as a WIND resource (Figure
5.11). The pane will therefore be defined to fill the entire body of the window.

PowerPlant provides two classes for interacting with QuickTime—UQuickTime
and LMovieController—both of which can be found in UQuickTime.cpp. The UQuick-
Time class supports the QuickTime environment, including initializing QuickTime
and retrieving a movie from a file. LMovieController defines a QuickDraw movie
controller and handles actually playing the movie.

112 Chapter 5 ¢ Panes and Views

Figure 5.11 The WIND resource (ResEdit format) in which the pane for a
QuickTime movie will appear

WIND “Mowie Clip” 1D = 1900 from PPlideoStore.rsrc &=

IROC 00800

Color: @ Default
(O Custom

[Initially visible

X Close box

Left: Width:

Using these two classes, playing a QuickTime movie requires the following steps:

e Initialize QuickTime. This is usually handled in the application object’s construc-
tor by calling UQuickTime::Initialize. You only need to do it once at the
beginning of the program rather than each time you want to play a movie.

* Retrieve the movie from its file using UQuickTime: : GetMovieFromFile. The
function displays a QuickTime Get File dialog box (Figure 5.12), retrieves the se-
lected movie, stores it in memory, and returns a movie identifier to the calling
function.

 Create a window object that will serve as the superview of the pane in which the
movie will play.

e Initialize the pane.

* Create the movie controller by creating a new object of class LMovieController.

* Display the window (for example, Figure 5.13). At this point, the PowerPlant ap-
plication takes over and processes the events generated when the user plays the
movie.

* Close QuickTime. This can be done in the application object’s SendAEQuit
function or in the application object’s destructor.

Playing a QuickTime Movie: Panes without PPobs 113

X Show Preview

QuickTime
[MRI====10

The Penultimate Videos application sets up its QuickTime movie player in its
ViewQuickTime function (Listing 5.10). The code first uses GetMovieFromFile
to load the movie into memory and provide a movie identifier for the remaining
QuickTime-related function calls to use. It then creates the window, passing the
parameters directly to the LWindow constructor rather than using a PowerPlant
object. Once the window object has been created, the function initializes an SPane-
Info structure that contains all the data needed to define a pane. Notice that the fields

114

Chapter 5 ¢ Panes and Views

in the structure correspond directly to the pane characteristics you specify when you
define a pane as a PowerPlant resource.

NOTE
Documentation for the structures used by PowerPlant can be found in the PP Core Ref-

erence manual. See the “PowerPlant Reference Glossary and Notes” at the end of the
book.

The next step is to create an LMovieController object, passing the SPanelnfo
structure and the movie identifier as parameters to the constructor. Then, the func-
tion only needs to show the window. As mentioned earlier, PowerPlant responds to
events generated by the movie controller and plays the movie.

Custom Panes

A custom pane is a derived class whose objects can be defined as PowerPlant objects.
You might decide, for example, to create a custom control that is derived from LCon-
trol or LStdControl. In the example we’ll be considering, the custom pane is derived
directly from LPane.

Many Macintosh programs use thermometers to show the user the progress of an
action that takes a bit of time. To demonstrate a custom pane, Penultimate Videos
displays the little window in Figure 5.14. As you would expect, the thermometer
begins with an empty box that is filled with a progressively longer bar as saving data
proceeds.

DEFINING THE CUSTOM PANE

The easiest way to create a custom pane is to work with Constructor. Once you’ve
decided on the custom pane’s base class and know what attributes you want to add to
your pane, you’re ready to begin the following process:

1. Highlight Custom Pane Types in the Constructor window and create a new item.
A new untitled custom pane appears.

2. Highlight the new custom pane and press 3-I to display its Info window (for ex-
ample, Figure 5.15). Give the custom pane a resource ID and a name. Leave its re-

Custom Panes 115

Listing 5.10 Setting up a QuickTime movie

void CPPVideoStoreApp::ViewQuickTime (SDialogResponse * dialogResponse)
{

Movie theMovie = UQuickTime::GetMovieFromFile();
if (theMovie == nil)
return;

// Create a window by passing parameters directly to constructor rather than

// as a PowerPlant object.

// Parameters: (1) resource ID; (2) window attributes; (3) pointer to superview

LWindow * theWindow = new LWindow (WINDOW_MOVIE_CLIP,windAttr_Regular +
windAttr_Enabled + windAttr_Targetable, this);

// Initialize the structure that defines the pane
SPanelInfo thePanelnfo;

thePaneInfo.panelD = CLIP_PANE;
thePaneInfo.width = 280;
thePanelnfo.height = 200;
thePanelnfo.left = 10;
thePanelnfo.top = 15;
thePanelnfo.visibile = true;
thePanelnfo.enabled = true;

thePanelnfo.

thePanelnfo

thePanelnfo

bindings.left = false;

.bindings.right = false;
thePanelnfo.
thePanelnfo.

bindings.top = false;
bindings.bottom = false;

.userCon = 0;
thePanelnfo.

superView = theWindow;

LMovieController * theMovieController = new LMovieController (thePanelnfo,
theMovie);

theWindow->Show();

Figure 5.14 Showing the progress of saving data

== Saving Data ... Hang in There!

source type as CPPb, which identifies it as a custom PowerPlant resource. Close
the Info window to save the changes.

116 Chapter 5 ¢ Panes and Views

Figure 5.15 The custom pane Info window
=iz Info for CPPb 2000, “Thermc ;lﬁ_g

H H G
Resource Type: | i [
Resource ID:
Resource Name: |Thermometer
Attributes:
E] Preloaded [:I Purgeable
[Protected |:| System Heap
D Locked
5]
€l B

3. Double-click on the custom pane resource to open its window. You will see only
the name of the class. A Tools palette displaying data types of attributes you can
add to the class also appears (see Figure 5.16).

Figure 5.16 The custom pane Tools palette

Fii Tools i i)
Int32 it

Uintié
Int8
Uint8
Boolean
Str255
0SType
RGBColor]

4. Double-click on the name of the class to display its properties window. As you can
see in Figure 5.17, you use this window to set the class ID, to specify the size of
the pane, and to indicate the ID of the base class from which it is derived (the su-
perclass ID).

5. If necessary, add attributes to the class. To do so, drag a data type from the Tools
palette into the resource’s window. In Figure 5.18, for example, you can see the

Custom Panes 117

Figure 5.17 A custom pane properties window

fi=——— Class “Thermometer” :

-~ Class Information: =

Class Name : [IIEEGNNECS

Class ID:

Specify the four-character ID which will be
used by URegistrar and UReanimator to
identify this pane class. This code must be
unique and must not be all lower-case letters.

Default Width: |18:

i

Default Height:

~ Superclass Information:

Superclass ID: m Specify the four-character ID of
this pane’s superclass.

D Subclass of LControl?
D Can have subviews?

5
&l &

name of the class and the two attributes that have been added to it. In this partic-
ular example, the attributes contain the resource IDs of the first and last PICT re-
sources used to display the thermometer. A thermometer is made up of a
sequence of still images, just like any other animation (for example, Figure 5.19).
As you will see later in this section, the Ther class uses the first and last resource
IDs when figuring out which PICT to display at any given time.

Figure 5.18 The content of a custom pane

== CPPD 2000, “Thermometer” =j-|
Class Thermometer Et
Int16 FirstPICT D

Int16 Ltas?PICT D

B@

= |

118 Chapter 5 ¢ Panes and Views

Figure 5.19 PICT resources for a thermometer

== PICTs from PPlideoStore.rsrc =

Penulfimate Yideos

89Main Street > -
Vﬁmﬁo‘m,NY 10101

1000 2000 2001

2002 2003 2004

" 2005 2006 2007

2008 é’

6. Double-click on an attribute to display the attribute’s properties window (for ex-
ample, Figure 5.20). Give the attribute a name and, optionally, a default value. If
you want to prevent this attribute from showing up in the pane’s properties win-
dow, place a check in the Hide Value check box.

7. Repeat Step 6 for each attribute you’ve added to the custom pane.

At this point, you can use the custom pane in a view. The Penultimate Videos ther-
mometer window (Figure 5.21), for example, is an object of class LWindow. It con-
tains only one pane: an object of class Ther. To add a custom pane object to a view,

Custom Panes 119

Figure 5.20 Custom pane attribute properties

Default Value: [0 |

Note: String fields and RGB color cannot have a
default value.

[Hide value (Do not display in info box)
[use Text/Numeric Checkbox

you drag it onto the view, just as you would an object of any other class. As you can
see in Figure 5.22, the name of the custom pane type has been added to the bottom of
the Tools palette.

Figure 5.21 Using a custom pane

ZE== PPob 3300, “Save thermometer” Z=@EH

Assuming that the Hide Value check box is empty, the attributes that were added
to the custom pane when it was defined appear in the pane’s properties box (for
example, Figure 5.23). In the case of the thermometer window, this makes it easy to
attach the PICT resource IDs.

CREATING THE PANE SUBCLASS

A custom pane class needs a subclass to manage it. At the minimum, it will need con-
structors, a destructor, and a DrawSe1f function. As you can see in Listing 5.11, the
Ther class contains variables for the first and last PICT ID, along with a variable for
the current PICT ID (the PICT to be displayed at any given time). In addition to the
DrawSelf function, the class includes a function to determine which PICT resource
should be displayed, based on the percentage of objects written to the data file.

The implementation of the Ther class is relatively simple, primarily because it
inherits most of its behavior from LPane. In Listing 5.12, you can see that the stream
input constructor is a bit different from those you have seen previously. The first

120

Chapter 5 ¢ Panes and Views

Flgure 5.22 A custom pane at the bottom of the Tools palette

. L\lrew
EI LControl

[LstdControl

- LstdButton

_ LStdCheckBox
) LStdRadioButton
LsthopupMenu

; ,LTex‘(Button

] LButton

| LCionButton
vLToggIe}But’ton

b;f Lvlcohf’ane
,H Lcaptwn

LAothfeScroller

‘g;l@ LTableView
 [E] LHierarchyTable
l'l"oid&éffable
[LsmaniconTable
] LTextedit

; - LPletqre

m Llilac_::éﬂglder
[WMaiter
B3 1Browser
P rinder

_ Thermometer

[Loftscreenview

P

kel \

Here’s the custom pane

thing it does is to call LPane’s constructor. Doing so reads from the file the portion of
the resource that has been inherited from LPane. The constructor must then execute
code to explicitly read the custom attributes that were added to the derived class
using LStream::ReadData. The constructor passes ReadData a reference to
where the attribute’s value should be placed and the size of that value.

Custom Panes 121

Figure 5.23 A custom pane object’s properties

== Thermometer 10 3301 &

- Binding to Superview
o Top: ; O
H i op
ert:[33 | width: Oltent D rignt
Bott
£ Meight: [T Dl sottom

Pane ID: Otexto (X enabled
User Constant: D [Text constant X visible

Class 1b: Attributes added
FirstPICT D: 2001] g to those inherited from
Last PECT 1D - - the base class (LPane)
= e

Listing 5.11 The Ther class
f#include <LPane.h>

class Ther : public LPane
{
protected:
ResIDT FirstPictID;
ResIDT LastPictID;
ResIDT CurrentPictlID;

public:
enum { class_ID = 'Ther"' };

static Ther * CreateTherStream (LStream * inStream);
Ther ();
Ther (LStream * inStream);
~Ther ();

void DrawSelf();
void SetCurrentPict (float); // pass in percent complete

NOTE

The order in which the attributes were declared in Constructor determines the order in
which their values are written to a resource file. You must therefore be sure to read the
attributes in exactly the same order.

As you would expect, much of the work in this class takes place in its DrawSelf
function. To actually draw an image in the custom pane, the function does the fol-
lowing:

122

Chapter 5 ¢ Panes and Views

Listing 5.12 Member functions for the Ther class

Ther * Ther::CreateTherStream (LStream * inStream)
{

return new Ther (inStream);
}

Ther::Ther ()

{
FirstPictID = FIRST_PICT;
LastPictID = LAST_PICT;
CurrentPictID = FIRST_PICT;

}

Ther::Ther (LStream * inStream)
: LPane (inStream)
{
// Need to read the custom attributes

inStream->ReadData (&FirstPictID, sizeof (ResIDT));
inStream->ReadData (&LastPictID, sizeof (ResIDT));
CurrentPictID = FirstPictID;

}

Ther::~Ther()
{

// destructor does nothing right now
}

void Ther::DrawSelf ()

{
// First get a handle to the PICT to be drawn
PicHandle PictH = ::GetPicture (CurrentPictID);

Rect theFrame;
CalclLocalFrameRect (theFrame);

::DrawPicture (PictH, &theFrame);
}

void Ther::SetCurrentPict (float PercentComplete)
{

// The math below works because the PICT IDs are numerically sequentially

// and begin with a number that ends in zero (2000)

CurrentPictID = (PercentComplete * (LastPictID - FirstPictID)) + FirstPictID;

if (CurrentPictID > LastPictID)
CurrentPictID = LastPictlID;

Custom Panes 123

1.

2.

3.

Obtains a handle to the PICT resource to be displayed with the ToolBox routine
GetPicture.

Finds local coordinates of the pane’s frame using CalclLocalFrameRect, a func-
tion inherited from LPane.

Uses the ToolBox routine DrawPicture to draw the PICT image within the
pane’s frame.

The image that is displayed in a Ther pane is determined by the percentage of

objects that have been written to the data file. To set the ID of the current PICT
resource, the SetCurrentPict function takes the percent of objects written and
does a bit of math. When you examine the function, keep in mind that the math only
works if the PICT resources are numbered sequentially and if the first one in the
sequence ends with a zero.

PROGRAMMING FOR A WINDOW WITH A CUSTOM

PANE

The window containing the thermometer pane is a part of the Penultimate Videos
application object’s Un10ad function (Listing 5.13). The way in which the thermom-
eter window has been integrated into the data saving process is as follows:

1.

SIS

11

Compute the total number of objects to be written to the data file. This will be
used to compute the percentage of objects written.

Use LWindow: :CreateWindow to create a thermometer window object.
Display the window with the window object’s Show function.

Open the data file for writing.

Write object counts to the file.

Enter a loop to write customer data to the file. After writing a single customer,
compute the precentage of objects written to the file. Call the ManageThermom-
eter function (found at the end of Listing 5.13) to update the current PICT ID,
redraw the thermometer window, and make it the active window.

. Write an additional object count to the file.
. Enter a loop to write merchandise items and their copies to the file. After writing

data about a merchandise item and all its copies, compute the percentage of ob-
jects written to the file and call ManageThermometer.

. Close the data file.
10.

If necessary, set the file type and creator.
Close the thermometer window by deleting its object.

124 Chapter 5 ¢ Panes and Views

Listing 5.13 The Penultimate Videos application object’s Unload function

void CPPVideoStoreApp::Unload ()
{

float totalObjects Cust_count + Movie_count + Game_count + Other_count
+ Item_count;
int ObjectsWritten = 0;

float percentWritten;

// Create thermometer window
LWindow * theThermometerWindow = LWindow::CreateWindow (WINDOW_SAVE_THER, this);
theThermometerWindow->Show();

ofstream fout (FileName);

if (!fout.is_open())
{
// need an alert here
return;
}
fout << Items->getlastTitle_numb() << ' ' << Copies->getlastCopy_numb() << ' ';

// write the customer data
fout << Cust_count << ' ';
CustItrPre writer;
Customer * currentCust;
for (writer.Init (Customers); !writer; ++writer)
{
currentCust = writer();
currentCust->write (fout);
ObjectsWritten++;
percentWritten = (float) ObjectsWritten / totalObjects;
ManageThermometer (percentWritten, theThermometerWindow);
}

fout << Items->getltem_count() << ' ';

// traverse merchandise tree and write
MerchItrPre traversal;
for (traversal.Init (Items); !traversal; ++traversal)
{
Merchandise_Item * currentOne;
currentOne = traversal();
currentOne->write (fout);
ObjectsWritten += currentOne->getCopy_count() + 1;
percentWritten = (float) ObjectsWritten / totalObjects;
ManageThermometer (percentWritten, theThermometerWindow):
}
fout.close();
Continued next page

Custom Panes 125

Listing 5.13 (Continued) The Penultimate Videos application object’s Unload function

// if necessary, set file type and creator

}

FInfo fndrinfo;
::FSpGetFInfo (&FileSpec, &fndrinfo);

if (fndrinfo.fdType != MASTER_TYPE)

{
fndrinfo.fdType = MASTER_TYPE;
fndrinfo.fdCreator = CREATOR;
::FSpSetFInfo (&FileSpec, &fndrinfo);

}

save_flag = TRUE; // switch flag to indicate save has occurred

// remove thermometer window
delete theThermometerWindow;

void CPPVideoStoreApp::ManageThermometer (float percentComplete, LWindow * theWindow)

{

Ther * theThermometer = (Ther *) theWindow->FindPaneByID (THER_PANE);
theThermometer->SetCurrentPict (percentComplete);
theThermometer->DrawSelf();

theWindow->Activate();

CHAPTER

Editing Text

TextEdit, the group of ToolBox routines that handles editing text, has been a part of
the Macintosh since 1984, so it comes as no surprise that PowerPlant provides sup-
port for text manipulation. Its class LTextEdit provides a monostyled text edit record
that supports the basic text editing operations of cut, copy, paste, and clear.

In this chapter you will learn how to create windows with scroll bars for text edit-
ing. You will also learn how to modify the PowerPlant class LTextEdit so that it sup-
ports multistyled rather than monostyled text. In addition, you’ll be introduced to
managing the Font, Size, and Style menus. Finally, you’ll see how to implement
Undo actions in a text edit window.

The example we’ll be examining in this chapter is the Penultimate Video pro-
gram’s facility for writing a note to a customer. (Perhaps it’s a note to some customer
who hasn’t returned videos or who has returned videos that haven’t been rewound?)
The chapter therefore begins with a look at the Note class and then continues with
the underlying features of LTextEdit that make it work.

127

128

Chapter 6 ¢ Editing Text

NOTE

We will look at printing the contents of an LTextEdit object in Chapter 12, when we
discuss printing in general. File operations (opening and saving a note) are covered in
Chapter 10.

The Note Class

The window in which a note appears is a combination of three objects:

e The window (created directly from LWindow)

¢ The scroller (created directly from LScroller)

o The note (created from a class named Note that is derived from a clone of
LTextEdit—LTextEditM)

As you can see in Figure 6.1, the LWindow object is at the top of the view hierar-
chy. It has one subview, the LScroller object, which in turn contains the LTextEdit
object. The LScroller object is a subview of the LWindow object and the superview of
the LTextEdit object.

Figure 6.1 The hierarchy of elements in the note window

E[@= Hierarchy for PPob 1200, “Not Z[&E:
5 LWindow Note to Customer ¥
- R LScroner 1202

1 LTextEdit(note) 1201

it

&l =

Notice in Figure 6.1 that the Note object appears as if it were created directly from
LTextEdit, but that the class name is followed by “(note).” This indicates that the
pane was indeed created as an LTextEdit object, but that its class ID was changed
from the default text. This works because an LTextEditM object is virtually identical
to an LTextEdit object, containing all the same attributes. The difference lies in the
type of text edit record that is set up when an object is created from the class: LText-
Edit creates a monostyled text edit record; LTextEditM creates a multistyled one.

PowerPlant Objects for Editing Text 129

The declaration of the Note class can be found in Listing 6.1. Because this class
inherits from a cloned class—LTextEditM—that inherits from LCommander, Note is
a commander. It therefore has FindCommandStatus and ObeyCommand functions.
It also uses its FinishCreateSelf function to store some data about the object
and to name the window in which the note appears. In addition, the class adds func-
tions to its base class’s editing support to handle opening, saving, and printing the
note.

PowerPlant Objects for
Editing Text

The PowerPlant object that supports writing a note to a Penultimate Video customer
appears in Figure 6.2. Because the LScroller object covers the entire body of the win-
dow, all that appears of the LWindow object is its title bar. The default title (“Note to
Customer”) should never appear to the user because the Note class’s FinishCre-
ateSelf function sets the title of a new note window to “untitled note” plus a
sequence number (for example, “untitled note 1,” for the second unsaved note win-
dow).

ADDING THE SCROLL BAR

PowerPlant implements scrolling through the class LScroller. Assuming that you are
working with Constructor and taking advantage of the LScroller class, you will rarely
need to write code for scrolling.

NOTE

Scrolling lists of items on which a user can double-click are not defined using an LScrol-
ler object. If you need such a list, use an LListBox, which provides its own scroll bars
along with other functions that support double-clickable lists. LListBox and scrolling
lists are discussed in Chapter 9.

An LScroller object is a view that is designed to contain a pane or view whose con-
tents will be scrolled. In other words, just as in the note window, the scroller must be
the superview of the scrolled object.

The LScroller class handles the following scrolling tasks:

130 Chapter 6 ¢ Editing Text

Listing 6.1 The Note class

// hhhkhkkhkhkkhkkhkhkhkhkhkhhhkkhhhkhhhhhkhhhhhhkhhhkrhkdhhhhhhrhhkhhhkhhhkhdhkhkhrhkdhhhkrk

// Note.h

// KhkhkhkhkAh A ARk kAR Ak Ak khhkhhhkhhhkhhhkhkdhhkhk kb dkhkhA kA kA hhkhkkkhhhhkhhkhdhhhkhhhdrx
// This is a subclass of LTextEditM that allows the program to

// add its own code to handle the Font, Style, and Size menus

// and to manage the text in a TextEdit pane. In this program,

// the Note pane is used to write the customer a short note.

/1

#finclude "LTextEditM.h"
#include <LCommander.h>

class Note : public LTextEditM
{

public:
static Note * CreateNoteStream (LStream * inStream);
Note ();
~Note();

Note (LStream * inStream);

virtual Boolean ObeyCommand (CommandT inCommand, void * ioParam);

virtual void FindCommandStatus (CommandT inCommand,
Boolean &outEnabled, Boolean &outUsesMark,
Charl6 &outMark, Str255 outName);

void PrintNote ();

void NameNote (); // name the note window

void OpenNote (); // load note from file

void SaveNote (); // save note to file

void SaveAsNote (); // name and save note

void RevertNote ();

protected:
Intl6 mFontItemNumber; // item number of current font in Font menu
virtualvoid FinishCreateSelf();
LPrintout * thePrintout; // printer object created by constructor
FSSpecfileSpec; // file spec used by this note
LFile * theFile; // file object used by this note
Boolean mustSaveAs;
THPrint mPrintRecordH; // handle to print record

* Creates the scroll bar(s) when the scroller’s superview is created.

* Makes itself a listener to its controls (the scroll bar(s)) and then broadcasts a mes-
sage to its subview to trigger scrolling whenever the user drags a scroll bar thumb.

* Handles vertical or horizontal scrolling triggered by clicking the mouse pointer in
a scroll bar or by clicking and holding the mouse pointer in a scroll bar.

PowerPlant Objects for Editing Text 131

Figure 6.2 A PowerPlant object for editing text

PPob 1200, “Note window”

NOTE

LTextEdit is somewhat incomplete. One of the things it doesn’t do is autoscroll when
the user types below the visible area in a window. When you run the Penultimate Vid-
eos program, yow’ll discover that you can easily do “invisible” typing below the bottom
boundary of the note window, and that the only way to expose that hidden text is to use
the scroll bar.

 Redraws the scroll bars when the window containing the scroller is resized or
moved.

The actual scrolling of the image is performed by the scroller’s subview. LScroller
expects to find a function named Scrol1ImageBy as one of its subview’s member
functions. The LScroller object passes in the number of pixels by which the image
should be scrolled (horizontal and vertical values) and a Boolean that indicates
whether the scrolled view should be redrawn after scrolling. The subview takes care

132 Chapter 6 ¢ Editing Text

of the rest. As you can see in Listing 6.2, LTextEditM first calls the ToolBox routine
OffsetRect to change the ToolBox text edit record’s view rectangle. In then calls
LView’s Scrol1ImageBy function, which takes care of redrawing the window.

Listing 6.2 Scrolling text

void

LTextEditM::ScrollImageBy(
Int32 inLeftDelta,// Pixels to scroll horizontally
Int32 inTopDelta,// Pixels to scroll vertically
Boolean inRefresh)

0ffsetRect(&(**mTextEditH).viewRect, inlLeftDelta, inTopDelta);

LView::ScrollImageBy(inLeftDelta, inTopDelta, inRefresh);

To create the relationship between a scroller and the pane it will scroll using Con-
structor, first drag an LScroller into a view (in our example, an object of class LWin-
dow). Then resize it so that it covers the entire area to be scrolled. In this example,
the scroller covers all of the LWindow object except its title bar. Finally, you can drag
the pane to be scrolled on top of the scroller. If you look back at Figure 6.2, for exam-
ple, you will see that the LTextEdit object (pane ID 1201) covers most of the LScroller
object (pane ID 1202), with the exception of the area occupied by the scroll bar.

An LScroller object’s attributes, which are set in its properties window, can be
found in Figure 6.3. There are several of these attributes to which you should pay
attention when you define a scroller:

* Scrolling View ID: This attribute holds the resource ID between the scroller and
the subview whose contents it scrolls. This is the easiest way to set up the rela-
tionship between the two.

« Scroll bar indents: The indents indicate how much space should be left between
the scroll bars and the edges of the LScroller object. Typically, you’ll want to
leave 15 pixels at the bottom right to make room for a size box. To suppress a
scroll bar, use indents of -1. In Figure 6.3, for example, the scroller will have no
horizontal scroll bar because the left and right indents are -1.

« Binding: By default, a scroller is bound on all four sides to its superview. This en-
sures that the scroller will always fill the same relative position in its superview
and will therefore resize properly. In most cases, you won’t want to change the
binding.

PowerPlant Objects for Editing Text 133

Figure 6.3 LScroller object properties
‘ LScroller 1D 1202

r Location: Binding to Superview:

Top:
& Top
[Lett X right

[Bottom

il

Left:

Height:

Pane ID: O text 0 X Enabled
User Constant: lg_—_l [Text constant X visible

Class ID:
Scrolling Yiew ID: (1201 [Text D

- Horizontal Scroll Bar: ~ ;- Yertical Scroll Bar: -~

Left Indent: l:] Top Indent: D
Right Indent: I:I Bottom Indent: E

Note: Use -1 for left or top indent to disable the
corresponding scroll bar.

=l =

i

(@la

ADDING THE LTEXTEDIT OBJECT

To add an LTextEdit (or LTextEditM) object to a view, drag it into place as you would
any other object. Then, open its properties window (Figure 6.4). The attributes with
which you are often concerned include the following;:

* Location: These values determine the size and position of the pane. In this partic-
ular example, the pane is offset six pixels from the top left corner of the scroller
to provide a border between the text and the edges of the window. The width and
height measurements also leave the same six-pixel border between the bottom of
the window and the text, and between the scroll bar and the text.

+ Binding: As you know, the binding check boxes determine how the pane will be-
have when its superview is resized. Because we want a text editing area to resize
with the scroller (which resizes along with the window), the text edit pane is
bound on all four sides.

« Class ID: By default, an object of class LTextEdit has a class ID of text. However,
the object defined in this example is actually of class Note, which has been given
an ID of note. That ID must be attached to the object in the Class ID box so that

134

Chapter 6 ¢ Editing Text

Figure 6.4 LTextEdit object properties

LTextEdit 1D 1201 mwmﬁé
&

Location: Binding to Superview : ——— |
X Top
Left: X Left X Right
E Bottom

Pane ID: O Text o (X Enabled
User Constant: CI [J Text constant X visible

Class ID:

Image Size: ————— ~ Seroll Unit: ——— Scroll Position:

width: [0]| | Horizontal:[1____ || | Horizontal:[0____|
Height: D Vertical: I:] Vertical: D

E] Reconcile Overhang

Initial Text: Note :Specify the ID of a TEXT resource
I:] which contains the initial text for

Text Traits ID: [0 |[¥] this item.
Editing Behavior:
X Text is editable
m Text can be selected

E Word wrap

#8<]

&l =

PowerPlant will use the correct CreateXStream function when creating an ob-
ject from this resource.

* Initial Text: If you want the LTextEdit object to contain some text when it initial-
ly appears on the screen, you can store that text in a TEXT resource and connect
it to the LTextEdit object by entering its resource ID in the Initial Text box.

* Text Traits ID: A text trait is a type specification (font, size, style, alignment, and
so on) that you can create using Constructor. To attach a text trait to an LTextE-
dit object, enter its resource ID in the TextTraits ID box. You will read more
about text traits a bit later in this chapter.

* Editing Behavior: These check boxes govern editing and display characteristics of
the LTextEdit object. See the following section for details.

PowerPlant Objects for Editing Text 135

Editing Behavior Attributes
Constructor 2.1 provides check boxes for three text editing attributes, all of which are
selected by default:

* Text is editable: Removing the X from this check box makes the text in the pane
read-only.

¢ Text can be selected: Removing the X from this check box prevents the user from
select a range of text.

* Word wrap: Removing the X from this check box suppresses word wrap in the
pane. The user will need to enter a Return to indicate the end of a line.

Before proceeding, a word is in order about word wrap and LTextEdit. Word wrap
occurs when the cursor reaches the right edge of the LTextEdit pane. If a user resizes
the window, making it wider or narrower, LTextEdit readjusts the word wrap so that
no text is hidden horizontally. This is not the way word processors behave, where
word wrap depends on the margins you have set for a document rather than the visi-
ble area of the document window. As far as LTextEdit is concerned, however, its mar-
gins are the physical borders of its pane.

Constructor 1.0 provided four editing behavior attributes, collected in the enumer-
ated data type that you can see in Listing 6.3. However, by the time Constructor 2.0
appeared, the multistyled attribute was no longer available. As a matter of fact, the
attribute is still a part of an LTextEdit object, but simply isn’t accessible through Con-
structor.

As a result, you can’t use Constructor to create a multistyled text edit object. In
addition, LTextEdit has never provided any support for multistyled text. This is why
a cloned class named LTextEditM was created.

Listing 6.3 LTextEdit object text attributes

enum {
textAttr_MultiStyle= 0x8000,
textAttr_Editable= 0x4000,
textAttr_Selectable= 0x2000,
textAttr_WordWrap= 0x1000

If you want multistyled text, you have two alternatives. First, you could modify
LTextEdit so that it checked the multistyled attribute to determine which type of text
edit record was being created. You would then need to create a resource that

136

Chapter 6 ¢ Editing Text

describes a multistyled LTextEdit object manually using either Rez or Resourcerer.
(As mentioned earlier, ResEdit can’t handle the complexity of PowerPlant objects.)

Alternatively, you could create a clone of LTextEdit that handled a multistyled text
edit record. Objects for that cloned class could be created using Constructor. In that
case, you would use LTextEdit whenever you wanted monostyled text and the cloned
class whenever you wanted multistyled text. Because creating the clone class makes it
possible to continue to use Constructor to define objects, the Penultimate Videos
program contains the cloned class—LTextEditM—that is used as a base class for the
Note class.

Text Traits

As mentioned earlier, a text trait is a specification for the appearance of type. It can
affect many objects besides those created from LTextEdit, including buttons, popup
menus, display text (captions), and edit fields. If you are working with a monostyled
text edit record, then a text trait can also be used to specify the appearance of all text
in the text edit record. If you are working with a multistyled text edit record, then a
text trait can be used to set the default type style.

Text traits (resources of type Txtr) are most easily created with Constructor. As
you can see in Figure 6.5, once you've created the new resource, you can choose the
font, size, style, justification, and drawing mode. To set text color, click on the box to
the right of Color to display a color wheel. When the text trait is complete, it can
then be attached to any object that accepts a text trait by entering its ID in the
object’s properties window.

The text traits defined for the Penultimate Videos application appear in Figure 6.6.
The first four are provided in the PowerPlant starter resource file:

System Font: Usually Chicago 12, used most commonly for buttons, popup
menus, window titles, and so on.

App Font: Usually Geneva 12, used commonly as the default text font for objects
of the LEditField and LTextEdit classes.

* Geneva 9: Used where a smaller variable-spaced font is needed.

* Monaco 9: Used where a small monospaced font is needed.

The remaining two text traits are used by the Penultimate Videos program for
printed output (in particular, for the receipt a customer receives when he or she rents
something.)

You can change a object’s text trait on the fly with a call to SetTextTraitsID,
which is part of all classes that use text traits. The function’s single parameter is the
resource ID of the text trait you want to associate with the object.

The LTextEdit Class 137

Figure 6.5 Creating a text trait resource

EE==—— Tutr 130, “Geneva 9” =—-M

P
Font:[Geneva v] ~Style:
Size: (0 for defautty | []Bold
[:I Underline
- Justifieation: D Italic
O System default [:l Outline
@ Left flush [shadow
O Centered EI Condensed
O Right flush [] Extended
Mode: [srcOr v] color: I::]
&
=l BE

The LTextEdit Class

The declaration of the LTextEdit class can be found in Listing 6.4. Notice first that it
is derived from three classes: LView (which provides many of its display management
capabilities), LCommander (which manages its activities in the chain of command),
and LPeriodical (which handles repeated, automatic events). The class also provides a
way for an application program to modify and retrieve the text managed by the
object.

In this section you will first be introduced to the text access functions. You will
then read about LPeriodical, the base class that handles actions such as blinking the
cursor, and how classes derived from it act. Finally, you will see the very tiny code
change needed to mutate a monostyled text edit class into a multistyled text edit
class.

TEXT ACCESS FUNCTIONS

LTextEdit provides four public functions that give you access to the text being main-
tained by a TextEdit object. The following functions allow you to both change and
retrieve entire blocks of text:

138 Chapter 6 ¢ Editing Text

Figure 6.6 Text traits in the Penultimate Videos application

b & Yindows and Views 27 items
& Menus 0 items

A4 % Text Traits 6 items
@ System Font 128

@ app Font 129

@ Geneva 9 130

m Monaco 9 131

@ Times 12 1000

@ Times 12 bold 2000
{5, Custom Pane Types 0 items

e SetTextHand]e: Lets you change the entire contents of the block of text being
manipulated by passing the text edit record a handle to a replacement block of
text.

» SetTextPtr: Performs the same action as SetTextHandle, working from a
pointer to the new text rather than a handle.

» GetTextHand]1e: Retrieves the block of text currently manipulated by a text edit
object by returning a handle to the text.

» GetMacTEH: Retrieves the handle to the ToolBox text edit record.

The LTextEdit Class 139

Listing 6.4 The declaration of the LTextEdit class

class LTextEdit : public LView,
public LCommander,
public LPeriodical |

public:
enum { class_ID = "text' };
static LTextEdit* CreateTextEditStream(LStream *inStream);
LTextEdit();
LTextEdit(const SPanelnfo &inPanelnfo,
const SViewInfo &inViewInfo,
Uintle inTextAttributes,
ResIDT inTextTraitsID);
LTextEdit(LStream *inStream);
virtual ~LTextEdit();

virtual void SetTextHandle(Handle inTextH);

virtual void SetTextPtr(Ptr inTextP, Int32 inTextlLen);
virtual Handle GetTextHandle();

TEHandle GetMacTEH();

virtual void SetTextTraitsID(ResIDT inTextTraitsID);
Boolean HasAttribute(Uintl6 inAttribute);

virtual Boolean ObeyCommand(CommandT inCommand, void *ioParam);
virtual void FindCommandStatus(CommandT inCommand,
Boolean &outEnabled, Boolean &outUsesMark,
Charl6 &outMark, Str255 outName);
virtual void SpendTime(const EventRecord &inMacEvent);

virtual Boolean HandleKeyPress(const EventRecord& inKeyEvent);

virtual void ResizeFrameBy(Intl6 inWidthDelta, Intl6é inHeightDelta,
Boolean inRefresh);

virtual void MoveBy(Int32 inHorizDelta, Int32 inVertDelta,
Boolean inRefresh);

virtual void ScrollImageBy(Int32 inLeftDelta, Int32 inTopDelta,
Boolean inRefresh);

virtual BooleanFocusDraw();
virtual void SelectAll1();

virtual void UserChangedText();
virtual void AdjustImageToText();

virtual void SavePlace(LStream *outPlace);
virtual void RestorePlace(LStream *inPlace);
Continued next page

140 Chapter 6 ¢ Editing Text

Listing 6.4 (Continued) The declaration of the LTextEdit class

protected:
TEHandle mTextEditH;
ResIDT mTextTraitsID;
Uintlé mTextAttributes;

virtual void DrawSelf();
virtual void HideSelf();

virtual void ClickSelf(const SMouseDownEvent &inMouseDown);
virtual void AdjustCursorSelf(Point inPortPt,
const EventRecord &inMacEvent);

virtual void BeTarget();
virtual void DontBeTarget();

virtual void AlignTextEditRects();
virtual STextEditUndoHSaveStateForUndo();

private:
void InitTextEdit(ResIDT inTextTraitsID);

NOTE

LTextEdit uses the standard ToolBox functions to implement cut, copy, and paste. The
ObeyCommand function that provides those capabilities appears in Listing 1.5.

FLASHING THE CURSOR: PERIODIC EVENTS

A Macintosh program has a group of tasks that it performs periodically, either repeat-
edly during every pass through the event loop (repeaters) or whenever the program
isn’t doing anything else (idlers). This includes tasks such as blinking the straight-line
insertion point in any area in which a user can enter text for objects of the classes
LEditField and LTextEdit, and advancing the play of a Quicktime movie for objects of
the class LMovieController. The base class for repeated actions is the abstract base
class LPeriodical.

An application maintains one queue of objects that are repeaters and one queue of
objects that are idlers. Although a program may use many objects whose classes are
derived from LPeriodical, the LPeriodical variables that hold the pointers to the
beginning of the repeater and idler queues are static. This means that they are

The LTextEdit Class 141

“class” variables, that there is only one copy of those variables shared by all objects
ultimately derived from LPeriodical.

LPeriodical has two member functions that take care of the members of the
repeater and idler queues:

e DevoteTimeToRepeaters: This function is called within PowerPlant’s main
event loop after every event. (See Chapter 1 for details.)

» DevoteTimeTolId1ers: This function is called by the application’s function
UseldleTime whenever an idle or mouse-moved event occurs.

In both cases, the application traverses the appropriate queue and calls the Spend-
Time function for each object in the queue.

Any class derived from LPeriodical, such as LTextEdit and LTextEditM, must over-
ride LPeriodical’s SpendTime function. The overriding function should include the
action that the subclass should take whenever it receives a chance to perform its peri-
odic action. For example, LTextEdit’s SpendTime function (Listing 6.5) uses the
ToolBox routine TEId1e to flash the straight-line cursor in the text edit pane.

Listing 6.5 LTextEdit's SpendTime function

void LTextEdit::SpendTime (const EventRecord& * inMacEvent */)
{
if (FocusDraw() & IsVisible() & HasAttribute(textAttr_Selectable)) {
::TEIdTe(mTextEditH);
}

MAKING IT MULTISTYLED

The first difference between LTextEdit and LTextEditM is remarkably small. (The
second difference involves implementing Undo, which is discussed at the end of this
chapter.) Look first at the InitTextEdit function from LTextEdit (Listing 6.6).
Notice that the text edit record is created with a call to the ToolBox routine TENew.
The result of this call is a monostyled text edit record.

To make the switch to a multistyled text edit record, the InitTextEdit function
from the LTextEditM class calls TEStyleNew, as in Listing 6.7. The result of this
change is a text edit record that can handle multiple style characteristics. Note that
this particular function also doesn’t use the PowerPlant object’s text trait, but
instead lets the text default to the system’s application font.

142 Chapter 6 ¢ Editing Text

Listing 6.6 LTextEdit's InitTextEdit function

void LTextEdit::InitTextEdit(ResIDT inTextTraitsID)
{

RectviewRect = {0, 0, 0, O};
mTextEditH = ::TENew(&viewRect, &viewRect);

SetTextTraitsID(inTextTraitsID);

// 1f word wrap is on, then the Image width is always the
// same as the Frame width, which forces text to wrap to
// the Frame.

// If the Image width is zero (or negative), the user

// probably forgot to set it. To accommodate this error,
// we set the Image width to the Frame width. However, the
// Image will not change if the Frame resizes.

if ((mTextAttributes & textAttr_WordWrap) ||
(mImageSize.width <= 0)) {
mimageSize.width = mFrameSize.width;

NOTE

The LTextEditM InitTextEdit function also initializes four variables that are used to
support Undo (containerWindow, cutUndoer, pasteUndoer, and clearUndoer). The use
of these variables will be discussed at the end of this chapter.

Creating a Note Object

Because most of the work of managing editing text is handled by the Note class, the
application object has very little to do when the user requests a note. As you can see
in Listing 6.8, the application object creates the note window and calls SetlLatent-
Sub for the Note pane. The purpose of SetLatentSub is to make the Note pane the
subcommander that will be on,duty when its commander is put on duty. The effect is
that the Note pane becomes the target when the window first appears; the straight-
line cursor will then be flashing in the Note pane without requiring the user to click
in the pane to activate it.

Creating a Note Object 143

Listing 6.7 LTextEditM’s InitTextEdit function

void LTextEditM::InitTextEdit(ResIDT inTextTraitsID)

{

Here’s what makes

RectviewRect = {0, 0, 0, 0}; this one
// create a multistyled text edit record ‘2,//////' multistvled
mTextEditH = ::TEStyleNew(&viewRect, &viewRect); ty

// If word wrap is on, then the Image width is always the
// same as the Frame width, which forces text to wrap to
// the Frame.

// 1If the Image width is zero (or negative), the user

// probably forgot to set it. To accommodate this error,
// we set the Image width to the Frame width. However, the
// Image will not change if the Frame resizes.

if ((mTextAttributes & textAttr_WordWrap) ||
(mImageSize.width <= 0)) {
mIimageSize.width = mFrameSize.width;

}

// set supercommander
LScroller * theScroller = (LScroller *) LPane::GetSuperView();
containerWindow = (LWindow *) theScroller->GetSuperView();

// initialize undoer pointers
cutUndoer = 0;

pasteUndoer = 0;

clearUndoer = 0;
typingUndoer = 0;

Listing 6.8 Creating a text editing window

void CPPVideoStoreApp::WriteNote()

{

LWindow * theWindow = LWindow::CreateWindow (WINDOW_NOTE, this);

LTextEditM * theTE = (LTextEditM *) theWindow->FindPaneByID (NOTE_TE);
theWindow->SetLatentSub (theTE);
theWindow->Show;

144 Chapter 6 ¢ Editing Text

COMPLETING THE NOTE OBJECT

Creating the note window also creates objects for all of the window’s subpanes, in
particular the Note object. Notice in Listing 6.9 that the constructor first calls the
base class constructor. It finishes by setting a flag to indicate that the note hasn’t been
named and that the next Save command should actually trigger Save As.

Listing 6.9 The Note class stream constructor

Note::Note (LStream * inStream)

: LTextEditM (inStream)
{

mustSaveAs = TRUE; // Must get file spec before saving
}

As part of the job of displaying the note window, there are some tasks that can
only be performed after the creation of the Note object has been completed. These
are handled in the FinishCreateSel f function (Listing 6.10), which executes after
all subpanes of a pane have been created.

The Note class’s FinishCreateSelf function first calls its base class’s Finish-
CreateSelf function. Then, it saves the handle to the text edit record. Finally, it
calls NameNote, a class-specific function (also in Listing 6.10) that takes care of giv-
ing each unsaved note window a new name.

The first note window is named “untitled note.” Then, if the user opens a second
unsaved note window, the program gives it the name of “untitled note 1,” and so on.
The default title and the title to which numbers are added are stored in an STR#
resource (Figure 6.7). The NameNote function therefore first retrieves the default
window name from the resource. It then uses a function from the PowerPlant utility
class UWindows to determine if any other window has that name.

Assuming that the name is unique (in other words, this is the first note window to
be displayed), NameNote obtains a pointer to the window object by first finding the
Note object’s superview (the LScroller object) and then finding the scroller’s super-
view. At that point, NameNote can call SetDescriptor to change the window’s
name.

However, if the note window isn’t the first one on the screen, NameNote retrieves
the second string from the resource and begins adding sequence numbers to it. Each
time NameNote concatenates a number onto the string, it checks to determine
whether a window with the matching name exists. As soon as it finds a unique name,
the whi1e loop stops so the window can be named.

Creating a Note Object 145

Listing 6.10 Finishing the creation of a Note object

void Note::FinishCreateSelf ()
{

LTextEditM::FinishCreateSelf();
mTextEditH = LTextEditM::GetMacTEH(); // get the handle of the text edit record
NameNote(); // set the note window's name

}

void Note::NameNote ()
{
Pstring name;
::GetIndString (name, STRx_UNTITLED_NOTE, 1);

long num = 0;
// need to make sure that no other window has the current name
while (UWindows::FindNamedWindow (name) != nil)
{

::GetIndString (name, STRx_UNTITLED_NOTE, 2);

num++;

Strl5 numStr;

::NumToString (num, numStr);

name += numStr;
}
LScroller * theScroller = (LScroller *) LPane::GetSuperView();
LWindow * theWindow = (LWindow *) theScroller->GetSuperView();
theWindow->SetDescriptor (name);

Figure 6.7 The STR# resource used to set the note window title

E@E STR¥ “untitied note” 1D = 1000 from PPUideoStore.,

NumStrings 2

The string 'untitled note I

2) Fkkkk

The string [ahtit|ed note J
3) *kkkK

NOTE

The two strings in the STR# resource are identical, so it might seem that you would
need only one of them. However, if you decide to change either the default window name

146 Chapter 6 ¢ Editing Text

(the first string) or the stub to which numbers are added (the second string), it’s much
easier to change the resource than it is to change program code.

Handling the Text Menus

Most of the work performed by the Note class involves handling the three text
menus: Font, Size, and Style. The Font menu in particular presents a special chal-
lenge because its menu items aren’t fixed, but vary according to the configuration of
the computer on which the program is running. PowerPlant refers to such menu
items that can’t be specified in a resource as synthetic commands.

Support for the text menus is provided through a PowerPlant class named UText-
Menus, which appeared as a sample file with the original PowerPlant Cookbook
tutorials. You can use this file and the techniques demonstrated in the Penultimate
Videos program to implement text menus in most programs.

UTEXTMENUSBASE AND ITS SUBCLASSES

UTextMenusBase is a base class for UFontMenu, USizeMenu, and UStyleMenu. The
base class (Listing 6.11) provides static (therefore, class) variables for pointers to
Font, Size, and Style menu objects and menu handles. It also provides a variety of
functions for enabling and disabling menu items.

The subclasses (see Listing 6.12) have several functions in common:

e Initialize: Sets up the menu. This function is called once during a program,
usually in an application object’s constructor.

» DisableMenu: Disables the entire menu.

» EnableMenu: Enables the entire menu.

UFontMenu and USizeMenu also have AdjustMenu functions that change the
appearance of the menu while a program is running. In addition, both of these
classes have functions that return the font or font size chosen from the menu.

Handling the Text Menus 147

Listing 6.11 UTextMenusBase

classUTextMenusBase |

protected:
static void XAble(LMenu *inMenu, Boolean inEnable);
static void XAble(ResIDT inMenulD, Boolean inEnable);
static void XAble(MenuHandle inMenuH, Boolean inEnable);
static void XAbleEveryItem(LMenu *inMenu, Boolean inEnable,
Boolean inUnmarkAll, Boolean inSetStyleNormal);
static void XAbleEveryItem(ResIDT inMenulD, Boolean inEnable,
Boolean inUnmarkAl1l, Boolean inSetStyleNormal);
static void XAbleEveryltem(MenuHandle inMenuH, Boolean inEnable,
Boolean inUnmarkAll, Boolean inSetStyleNormal);
static LMenu *sFontMenu;
static MenuHandle sFontMenuH;
static LMenu *sSizeMenu;
static MenuHandle sSizeMenuH;
static LMenu *sStyleMenu;
static MenuHandle sStyleMenuH;
s
TEXT MENU RESOURCES

The resource for a Style menu (for example, Figure 6.8) is just like most other menus
you create for a program. Because it’s a standard window, however, you can take
advantage of the menu command IDs that have already been established in
PP_Messages.h. (That is why the command IDs are less than 1000.)

A Size menu often has menu items that don’t change, such as “Smaller” or
“Larger.” However, the bulk of the contents of a Size menu is font sizes. If you decide
that the Size menu will only show those font sizes that are appropriate to the chosen
font, then you will want to be able to change the items in the menu. Although you
could certainly set up a Size menu with unchanging items and therefore with fixed
menu command IDs, it is more flexible to use synthetic command numbers for those
menu items that might change. In Figure 6.9, for example, all the font sizes have been
given an ID of -1. This will signal the program that the menu items aren’t fixed and
that it must use identify a menu choice by the content of the menu item rather than
by a menu command ID.

A Font menu almost never has any fixed items. Its resource (for example, Figure
6.10) has only a title. Because there are no menu items, there are no menu command
IDs and therefore no Mcmd resource. As with the Size menu, a program will need to

148 Chapter 6 ¢ Editing Text

Listing 6.12 The UTextMenusBase subclasses

classUFontMenu : public UTextMenusBase {

public:
static void Initialize(Boolean inEnabled = true);
static void AdjustMenu(Intl6 inCurrentFont);
static void DisableMenu();
static void EnableMenu();
static void DisableEveryltem();
static void EnableEveryltem();
static Intlé GetFontNumber(Intl6 inMenultem);
static Intl6 GetFontItemNumber(IntléinFontNumber);
Vs

classUSizeMenu : public UTextMenusBase {

public:
static void Initialize(Intl6 inReservedltems, Boolean inEnabled = true);
static void AdjustMenu(Intl6 inMenultem, Intl6 inCurrentSize, Intl6é inCurrentFont,
Boolean &outEnabled, Boolean &outUsesMark,Charl6 &outMark);
static void DisableMenu();
static void EnableMenu();
static void DisableEveryltem();
static void EnableEveryltem();
static Intl6é GetFontSize(Intl6 inMenultem);

private:
static Intl6 mReservedItems;
i

constIntl6kDefaultReservedIitems = 5;

classUStyleMenu : public UTextMenusBase |{

public:
static void Initialize(Boolean inEnabled = true);
static void DisableMenu();
static void EnableMenu();

|

use the menu item itself (in this case, either the name or number of a font) to identify
a menu choice.

Handling the Text Menus 149

Figure 6.8 A Style menu resource (Constructor format)
E MENU 252, “Style’ =]

figlic
Underline

Figure 6.9 A Size menu resource (Constructor format)

Figure 6.10 A Font menu resource (Constructor format)
MENU 250, “Font”

150 Chapter 6 ¢ Editing Text

INITIALIZING THE TEXT MIEENUS

The first task that must occur if a program is to support Font, Size, and Style menus
is to initialize the menus. (The menu objects themselves are created when the pro-
gram’s LMenuBar object is created.) As mentioned earlier, typically this is handled in
the application object’s constructor with calls to the three Initialize functions:

UFontMenu::Initialize (TRUE); // set up the font menu

// zero indicates that there are no items that aren't sizes
USizeMenu::Initialize (0, TRUE);

UStyleMenu::Initialize (TRUE); // set up the style menu

The Initialize functions operate in the following general way:

* For the Font menu: Calls the ToolBox routine AppendResMenu to add the com-
puter’s fonts to the menu.

« For all three menus: Stores the menu’s handle and a pointer to its object in the
appropriate class variable and enables or disables the menu (as appropriate).

ENABLING TEXT MENUS

When running the Penultimate Videos program, you may have noticed that the Font,
Style, and Size menus are active only when a note window is present on the screen.
This is because the FindCommandStatus function that activates those menus
belongs to the Note class (Listing 6.13). Much of this code comes from the Menus
sample program that was part of the original PowerPlant Cookbook.

The bulk of this FindCommandStatus function is broken into two parts. The
first detects a synthetic command by calling the LCommander routine IsSynthet -
icCommand. If the command is synthetic, it returns a Boolean indicating that fact
along with the menu ID and the menu item number. In that case, the function deter-
mines whether the command comes from the Font or Size menu and then uses the
AdjustMenu function from the appropriate text menu class to change the appear-
ance of the menu. For example, USizeMenu: :AdjustMenu places a check mark
next to the selected size and displays that size using the outline text style. By the
same token, UFontMenu: :AdjustMenu places a check mark next to the chosen
font and removes checks from all other fonts in the menu.

If the chosen menu command isn’t synthetic, then the command can be enabled
like any other menu command. Most menu commands don’t use check marks. How-
ever, the style commands (plain, bold, underline, and italic) may need check marks if

Handling the Text Menus 151

Listing 6.13 The Note class's FindCommandStatus function

void Note::FindCommandStatus (CommandT inCommand, Boolean &outEnabled,
Boolean &outUsesMark, Charl6 &outMark, Str255 outName)
{
ResIDT menulD;
Intl6 menultem, mode;
TextStyle TextStyleRec;

mode = doFont + doFace + doSize;
::TEContinuousStyle(&mode, &TextStyleRec, mTextEditH); // get current style settings

outEnabled = true; // most of our commands are enabled if we're in
// the chain of command
outUsesMark = true; // most of our command use check marks

if (IsSyntheticCommand(inCommand, menulD, menultem))
{
if (menulD == MENU_Font)

{ ' This function call detects
UFontMenu: :AdjustMenu(mFontItemNumber); a synthetic command
!

else if (menulD == MENU_Size)
{ R
USizeMenu: :AdjustMenu(menultem, TextStyleRec.tsSize, TextStyleRec.tsFont,
outEnabled, outUsesMark, outMark);
}
else
LTextEditM::FindCommandStatus(inCommand, outEnabled, outUsesMark,

outMark, outName); Regular menu commands are

rocessed here
else switch (inCommand) ‘2,//// P
{
case cmd_Plain:
outMark = (TextStyleRec.tsFace == normal) ? checkMark : noMark;
break;

// This is a common idiom for handling the Style menu. It

// relies on the fact that the command numbers that correspond
// to the text styles are sequential and in the same order as
// the constants that represent each bit in the style word.

// You can see the same idiom in the ObeyCommand() function.

case cmd_Bold:

case cmd_Italic:

case cmd_Underline: ‘g////
outMark = TextStyleRec.tsFace &

(1 << (inCommand - cmd_Bold)) ? checkMark : noMark;
break;

Here's the tricky bit

Continued next page

152 Chapter 6 e Editing Text

Listing 6.13 (Continued) The Note class's FindCommandStatus function

case cmd_FontMenu:

case cmd_SizeMenu:

case cmd_StyleMenu:

case cmd_open_note:

case cmd_save_note:

case cmd_save_note_as:

case cmd_revert_note:
outUsesMark = false;
break;

// enable printing options when this printable window is visible
case cmd_Print:
case cmd_PageSetup:
outEnabled = TRUE;
outUsesMark = FALSE;
break;

default:
// Be sure to call the base class's FindCommanStatus()
// member function to get its behavior

LTextEditM::FindCommandStatus(inCommand, outEnabled, outUsesMark,
outMark, outName);
break;

those styles are in use. The function can detect a plain type style by checking to see if
the tsFace field of the style record is equal to the constant normal.

However, the function resorts to a bit of a trick—found in the Menus sample pro-
gram mentioned earlier—to figure out whether a mark should be added or removed
from one of the other Style menu items. The trick, which appears as the body of the
case for bold, italic, and underline in Listing 6.13, depends on the positions of the bits
in the style word: Bit 0 represents bold, bit 1 represents italic, and bit 2 represents
underline. The command constants associated with the styles are in the same
numeric order: 402 for bold, 403 for italic, and 404 for underline. Therefore, when
the program subtracts cmd_Bo1d from the input menu command, the result is either
0, 1, or two, which then shifts the 1 into the correct position to identify the chosen
style. The statement then performs a logical AND with the style record’s tsFace
field, which returns true if the bit is set and false if it isn’t.

Notice that regardless of whether the command is synthetic or regular, the func-
tion defaults to calling the base class’s FindCommandStatus function. This ensures

Implementing Undo 153

that the program will handle commands that aren’t trapped directly by the Note
class.

PROCESSING TEXT MIENU SELECTIONS

Processing of text menu selections happens in the Note class’s ObeyCommand func-
tion (Listing 6.14). Like the FindCommandStatus function, it differentiates
between synthetic and regular commands and handles each type separately.

To change a font, the function retrieves the font number with UFont-
Menu::GetFontNumber and then uses that value to set the font in the style record.
The style record is then available for use in the call to the ToolBox routine TESet -
Style. Changing the font size is very similar: USizeMenu: :GetFontSize inserts
the chosen size into the style record, which can then be used when calling TESet -
Style.

When the command is regular rather than synthetic, processing the command is
straightforward: The switch traps the command and takes appropriate action. For
the Style menu in particular, this means setting the tsFace field of the style record
and then calling TESetStyTe.

Iimplementing Undo

One limitation of LTextEdit is that it doesn’t support Undo, although PowerPlant
does provide classes for implementing Undo through attachments. To give you an
example of using attachments and of implementing Undo, we’ll look at how LTExtE-
ditM manages the task.

THE AcCTION AND UNDOER CLASSES

Before a program can undo something, it needs to have a way of saving whatever the
user just did. PowerPlant calls anything that can be undone an action, and supports it
through the class LAction. Whenever a user does something that can be undone, a
program creates an object from a class derived from LAction. (LAction is an abstract
base class.) That action is then “posted” to the commander of the object in which the
action occurred.

154 Chapter 6 ¢ Editing Text

Listing 6.14 The Note class’s ObeyCommand function

Boolean Note::0beyCommand (CommandT inCommand, void * ioParam)
{

ResIDT menulD;

Intl6 menultem;

Int32 newSize;

BooleancmdHandled = TRUE;

TextStyle TextStyleRec;

if (IsSyntheticCommand(inCommand, menulID, menultem))
{
if (menuID == MENU_Font)
{
// Set font of currently selected text

TextStyleRec.tsFont = UFontMenu::GetFontNumber(menultem);
::TESetStyle (doFont, &TextStyleRec, TRUE, mTextEditH);
mFontItemNumber = menultem;

}
else if (menulD == MENU_Size)

// Set the font size for selected text. Since the Size menu
// can use the FindCommandStatus() mechanism

// to maintain the menu, we don't need to save

// the item number of the current size.

TextStyleRec.tsSize = USizeMenu::GetFontSize(menultem);
::TESetStyle (doSize, &TextStyleRec, TRUE, mTextEditH);
}
else
// Be sure to call the base class's ObeyCommand()
// member function to get its behavior.

cmdHandled = LTextEditM::0beyCommand(inCommand, ioParam);
}
else switch (inCommand)
{
case cmd_Plain:
TextStyleRec.tsFace = normal;
::TESetStyle (doFape, &TextStyleRec, TRUE, mTextEditH);
break;

Continued next page

Implementing Undo 155

Listing 6.14 (Continued) The Note class’s ObeyCommand function

// This is a common idiom for handling the Style menu. It
// relies on the fact that the command numbers that correspond
// to the text styles are sequential an in the same order as
// the constants that represent each bit in the style word.
// You can see the same idiom in the FindCommandStatus() function.

case cmd_Bold:

case cmd_Italic:

case cmd_Underline:
TextStyleRec.tsFace = 1 << (inCommand - cmd_Bold);
::TESetStyle (doFace + doToggle, &TextStyleRec, TRUE, mTextEditH);
break;

case cmd_open_note:
OpenNote();
break;

case cmd_save_note:
if (mustSaveAs)

SaveAsNote();
else
SaveNote ();

break;

case cmd_save_note_as:
SaveAsNote ();
break;

case cmd_revert_note:
RevertNote();
break;

case cmd_Print:
PrintNote();
break;

case cmd_PageSetup:
::PrOpen(); // open printer driver
// Note: mPrintRecordH comes from the LPrintout object, a pointer
// to which is stored in the note object
::PrStiDialog (mPrintRecordH); // display the page setup dialog box
::PrClose(); // close the printer driver

default:
cmdHandled = LTextEditM::0beyCommand (inCommand, ioParam);
break;

}
return cmdHandled;

To help support Undo and Redo in text edit windows, PowerPlant provides the
LTETextAction class, which is derived from LAction. LTETextAction has four
derived classes of its own: LTEClearAction, LTECutAction, LTEPasteAction, and

156

Chapter 6 ¢ Editing Text

LTETypingAction. A program can then use the action-specific classes to capture
actions for undoing.

NOTE

Although LTextEdit doesn’t support undo, LEditField does. The code that has been
added to LTextEditM to support undo has therefore been modeled after Metrowerk’s
strategy in implementing Undo for LEditField.

In addition to objects created from classes derived from LAction, a program must
create an object of class LUndoer, an attachment that takes care of triggering the
undo or redo of actions that have been posted to a commander and managing the
Undo menu item. The LUndoer object is added as an attachment to an object derived
from LCommander.

The LUndoer object uses several functions from LAction-derived classes to man-
age undo and redo operations:

CanRedo: Determines whether an action can be redone.
CanUndo: Determines whether an action can be undone.
Undo: Calls UndoSe1f to reverse the action.

Redo: Calls RedoSe1f to redo the action.

NOTE

If you need to undo something other than a text edit action, you will need to create your
own subclass of LAction. Your derived class should include overriding Undo, UndoSelf,
Redo, and RedoSelf functions.

IMPLEMENTING THE UNDO AND REDO

Adding support for Undo and Redo to the note window requires code in several
places:

The class must provide variables to hold pointers to the action objects and a
pointer to the window object. Although LTextEditM could retrieve a pointer to
the window object each time an action occurs, it is more efficient to obtain that
pointer once and store it in the LTextEditM object. If you’ll look back at Listing
6.7, you'll see that the InitTextEdit function finds the pane’s immediate su-
percommander (an object of class LScroller) and then the scroller’s supercom-

Implementing Undo 157

mander (the window). Note that this function also initializes the action object
pointers to 0.

¢ An LUndoer object must be created and attached to the note window when the
window is created.

 Because cut, clear, and paste are implemented in LTextEditM’s ObeyCommand
function, that function must create action objects and post actions to the win-
dow’s commander.

¢ Because keystrokes are handled by the Hand1eKeypress function, undo typing
code must be added to that function.

Setting Up the LUndoer Attachment

The note window is created in the application object’s WriteNote function (Listing
6.15). Once the window object has been created, the function creates an LUndoer
object. Then it calls the LCommander function AddAttachment to add the LUn-
doer object to the window object’s list of attachments. (Keep in mind that you can
add attachments only to objects whose classes are derived from LCommander.)

Listing 6.15 Adding an LUndoer object as an attachment to a window

void CPPVideoStoreApp::WriteNote()

{

LWindow * theWindow = LWindow::CreateWindow (WINDOW_NOTE, this);

// enable undo operations in this window
LUndoer *undoer = new LUndoer;
theWindow->AddAttachment (undoer, nil, TRUE);

LTextEditM * theTE = (LTextEditM *) theWindow->FindPaneByID (NOTE_TE);
theWindow->SetlLatentSub (theTE);
theWindow->Show;

If you were to run the program with just the LUndoer object attached to the win-
dow object, you would discover that the Undo option in the Edit menu responds
properly to what the user has done. For example, when the user chooses Cut, the
menu option reads Undo Cut; when the user chooses undo, the menu option changes
to Redo Cut. The LUndoer object is managing the menu option, taking the strings
for the menu option from PP Action Strings.rsrc. However, no undoing or redoing
would occur, because actions for the undoer object to handle haven’t been posted to
the window.

158

Chapter 6 ¢ Editing Text

Handling the Action Objects for Copy, Clear,
and Paste
When support for Undo and Redo is part of a class, code in the class’s ObeyCommand
function changes considerably. As you can see in Listing 6.16 (LTextEditM’s Obey -
Command function), the switch statement contains the same cases as that of LTex-
tEdit (first seen in Listing 1.5), along with some new cases that interaction with
action objects. Of the four text editing operations—cut, copy, paste, and clear—only
copy contains any ToolBox calls. This is because copy is generally not an undoable
operation.

To handle Undo and Redo, each undoable/redoable action does the following:

* Creates a new action object to hold whatever the user has just done and store a
pointer to that object.
* Posts the action to the commander (in this example, the note window).

Posting the action using the PostAction function executes the action by running
all the attachments belonging to the commander receiving the post. In this particular
example, the single attachment is the undoer object, which calls the action object’s
Redo function. This has the effect of performing the action for the first time. Because
LUndoer operates in this way, the ObeyCommand function doesn’t need the code to
perform the undoable/redoable text editing tasks; those tasks are handled by the
action object.

Notice that the ObeyCommand function in Listing 6.16 traps five action com-
mands. The first four (cut, paste, clear, and typing) call the UserChangedText func-
tion, which by default does nothing. However, you could override this function in a
derived class to make customized changes in the text edit record. The final action
command (cmd_ActionDeleted) handles the situation where the action object that
records typing has been deleted. Resetting the pointer to 0 (or nil) ensures that the
next keypress creates a new typing action object and therefore prevents the program
from attempting to access a nonexistent object.

Handling Undo Typing

Undoing and redoing typing presents a special challenge because typing isn’t a single
action like cutting, clearing, or pasting. Instead, it’s a series of individual keypresses,
each of which can represent a character for display, cursor movement (for example,
the Home and End keys), or character removal (the Delete and Del keys). This means
that once an action object has been created for typing, the code that handles key-
presses must add to or remove from the action object, storing keypresses until
another operation (a cut, clear, or paste) interrupts typing.

Iimplementing Undo 159

Listing 6.16 LTextEditM’s ObeyCommand function

Boolean LTextEditM::0beyCommand (CommandT inCommand, void * ioParam)
{

Boolean cmdHandled = true;

switch (inCommand) {
case cmd_Cut:

cutUndoer = new LTECutAction (mTextEditH, containerWindow, this);
// Important note: posting the action performs the action!
PostAction (cutUndoer);
AdjustImageToText();
UserChangedText();
break;

case cmd_Copy:
::TECopy(mTextEditH);
::ZeroScrap();
::TEToScrap();
break;

case cmd_Paste:
pasteUndoer = new LTEPasteAction (mTextEditH, containerWindow, this);
PostAction (pasteUndoer);
AdjustImageToText();
UserChangedText();
break;
case cmd_Clear:
clearUndoer = new LTEClearAction (mTextEditH, containerWindow, this);
PostAction (clearUndoer);
AdjustImageToText();
UserChangedText();
break;

case cmd_ActionCut:

case cmd_ActionPaste:

case cmd_ActionClear:

case cmd_ActionTyping:
UserChangedText();
break;

case msg_TabSelect:
if (!IskEnabled()) f
cmdHandled = false;
break;
}
case cmd_ActionDeleted:
if ((LTETypingAction *) ioParam == typingUndoer)
typingUndoer = 0;
break;
Continued next page

160 Chapter 6 ¢ Editing Text

Listing 6.16 (Continued) LTextEditM’s ObeyCommand function

case cmd_SelectAll:
SelectAl1();
break;

default:
cmdHandled = LCommander::0beyCommand(inCommand, ioParam);
break;
}

return cmdHandled;

To support this requirement, LTETypingAction includes special functions to
modify an action object’s contents:

e InputCharacter: Handles a character for display.
» BackwardErase: Handles the use of the Delete key.
e ForewardErase: Handles the use of the Del key.

These functions are called from LTextEditM’s Hand1eKeyPress function (Listing
6.17). The general strategy is to check the content of the variable that points to the
typing action object (typingUndoer). If the variable contains 0, then there is no
existing typing action object and a new one must be created. When a typing action
object exists, the keypress is sent to the appropriate LTETypingAction function,
which performs the action and then modifies the action object to include the effect of
the action.

implementing Undo 161

Listing 6.17 LTextEditM’s HandleKeyPress function

Boolean LTextEditM::HandleKeyPress (const EventRecord&inKeyEvent)
{

Boolean keyHandled = true;
EKeyStatustheKeyStatus = keyStatus_Input;
Intl6 theKey = inKeyEvent.message & charCodeMask;

if (inKeyEvent.modifiers & cmdKey) (// Always pass up when the command
theKeyStatus = keyStatus_PassUp;// key is down
} else |

theKeyStatus = UKeyFilters::PrintingCharField(inKeyEvent);
}

shortlineCount = (**mTextEditH).nlines;
switch (theKeyStatus) |

case keyStatus_Input:
FocusDraw();
if (typingUndoer == 0)
{
typingUndoer = new LTETypingAction (mTextEditH, this, this);
PostAction (typingUndoer);
}

if (typingUndoer != 0)
typingUndoer->InputCharacter (theKey):
else
::TEKey (theKey, mTextEditH);

UserChangedText();
break;

case keyStatus_TEDelete:
FocusDraw();
if ((**mTextEditH).selEnd > 0)
if (typingUndoer == 0)
{
typingUndoer = new LTETypingAction (mTextEditH, this, this);
PostAction (typingUndoer);
}

if (typingUndoer != 0)
typingUndoer->BackwardErase();
else
::TEKey(theKey, mTextEditH);

UserChangedText();
break;

Continued next page

162 Chapter 6 ¢ Editing Text

Listing 6.17 (Continued) LTextEditM’s HandleKeyPress function

case keyStatus_TECursor:
FocusDraw();
::TEKey(theKey, mTextEditH);
break;

case keyStatus_Extrakdit:
switch (theKey)
{
case char_Home:
FocusDraw();
::TESetSelect (0,0,mTextEditH);
break;

case char_End:
FocusDraw();
::TESetSelect (max_Intl6, max_Intl6, mTextEditH);
break;

case char_FwdDelete:
FocusDraw();
if ((**mTextEditH).selStart < (**mTextEditH).telength)
{
if (typingUndoer == 0)
{
typingUndoer = new LTETypingAction (mTextEditH, this, this);
PostAction (typingUndoer);
}
if (typingUndoer != 0)
typingUndoer->ForwardErase();
else

{
if ((**mTextEditH).selStart == (**mTextEditH).selEnd)
::TESetSelect((**mTextEditH).selStart,
(**mTextEditH).selStart + 1, mTextEditH);

::TEDelete (mTextEditH);

}

UserChangedText();

break;

)

default:
keyHandled = LCommander::HandleKeyPress(inKeyEvent);
}
break;

case keyStatus_Reject:
// +++ Do something
SysBeep(1);
break;
Continued next page

Implementing Undo 163

Listing 6.17 (Continued) LTextEditM’s HandleKeyPress function

case keyStatus_PassUp:
if (theKey == char_Return) |{
FocusDraw():
::TEKey(theKey, mTextEditH);
UserChangedText();
} else |
keyHandled = LCommander::HandleKeyPress(inKeyEvent);
}
break;
}

if (lineCount != (**mTextEditH).nlLines) {
AdjustImageToText();
}

return keyHandled;

CHAPTER

Dialog Box and
Control Resources

Dialog boxes are a staple of Macintosh programs. We use them to collect information
a program needs, such as the name of a file to open, properties to be applied to a
graphic object, or data that the program will manipulate in some way. In this chapter
you will be introduced to creating resources for dialog boxes. In most cases, dialog
boxes are populated with a variety of controls, such as buttons, popup menus, radio
buttons, and check boxes. This chapter therefore also provides a logical place to
introduce the way in which PowerPlant control resources are defined. (The code
needed to handle dialog boxes and their controls is discussed in Chapter 8.)

Dialog boxes (and the items you place on them) are most easily defined as Power-
Plant objects using Constructor. As we look at the resources and code needed to sup-
port dialog boxes, we will be using two examples. The first is the dialog box used to
modify data stored about a film (Figure 7.1). As you can see in Figure 7.2, the
resource contains objects of class LCaption, LEditField, LStdPopupMenu, and LStd-
Button.

The second example we will be using is the dialog box used to enter data about a
video copy (Figure 7.3). The resource (seen in Figure 7.4) adds check boxes and radio

165

166 Chapter 7 « Dialog Box and Control Resources

Figure 7.1 The Modify/Delete Movie dialog box

Modifg/ﬂelele Movie

Movie Title: [Blade Runner

Director: [Ridley Scott

|
Distributor: [*/2 |
|
|

Producer: |Michael Deeley

Length: Classification: |_Science Fiction v |
Stars: Rating:

Harrison Ford Rutger Hauer Sean Young Edward James Olmos
M. Emmet Walsh Daryl Hannah William Sanderson Brion James
Joseph Turkel Joanna Cassidy

(eans)

Figure 7.2 The Constructor view of Figure 7.1

Creating Dialog Box Resources

167

buttons to a popup menu and standard buttons. The scrolling list of titles is an object
of class LListBox and will be discussed in Chapter 9.

Figure 7.3 The Enter New Video Copy dialog box

Enter Uideo Copy

Media:
@® Tape
O Laserdisc

Format: [UHS 7]

[LBH
[] Dolby Surround Sound

Highlight the movie title:

2001: A Space 0dyssey
35Up

Aces: Iron Eagle 111
Adventures of Robin Hood
African Queen, The

Age of Innocence
Airplane 11: The Sequel
Rirport

Aladdin

American Dream

Baraka

Beauty and the Beast
Bed and Breakfast

Creating Dialog Box

The class LDialogBox is derived from LWindow and LListener and is therefore a
PowerPlant view. When you create a new LDialogBox resource, you therefore
choose a PowerPlant view as the resource type and LDialogBox as the view type (for
example, Figure 7.5). As with other resources, you also give it a name and a resource
ID. Constructor then creates an empty LDialogBox resource (Figure 7.6).

To change the dialog box’s attributes, double-click anywhere on the dialog box to
display its properties window. In Figure 7.7, for example, you can see the properties
window for the Modify/Delete Movie dialog box.

168 Chapter 7 ¢ Dialog Box and Control Resources

Figure 7.4 The Constructor view of Figure 7.3

Enter Uideo Copy

Highlight the movie title: 5064

\\ LStdRadioButton

Form$0ii] Menu item3010

] Delby Surround Souidde

\ LStdCheckBox

[Doirdes [ol¥®8

‘What type of resource do you wish to create?

Resource Type: I PPob : PowerPlant view w. I

View Type: [LDialogBox - |

Resource Name : INew Dialog Box]

Resource ID: [1000 |

CONFIGURING THE WINDOW TYPE

By default, Constructor creates a standard modal dialog box. However, you have
complete control over the appearance of the window. For example, the dialog boxes

Creating Dialog Box Resources 169

Figure 7.6 An empty LDialogBox resource
| PPob 1000, “New Dialog Box”

used as examples in this chapter are document windows with title bars that are non-
modal and centered on the main screen.

To change the window type, choose the type from the Window Kind popup
menu. As you can see in Figure 7.8, although we are working with an object of class
LDialogBox, the dialog box can look like a standard document window as well as like
any of the classic dialog boxes.

Should you choose a window type that has a title bar, you can then enter the title
in the Window Title box, as was done in Figure 7.7. Use the check boxes at the left of
the Window Type area to set characteristics such as whether the window has a size
box, zoom box, or close box and whether the window is resizable.

The Auto Position popup menu (Figure 7.9) determines where the window will
appear on the screen when it is drawn by a program. By default, Auto Position is off.
However, the Modify/Delete Movie dialog box has been modified so that it is cen-
tered on the main screen.

The third popup in the Window Type area —Window Layer in Figure 7.10—deter-
mines how the window behaves relative to other windows on the screen. As you can
see, PowerPlant supports not only modal and nonmodal windows, but also floating
palettes.

170 Chapter 7 « Dialog Box and Control Resources

Figure 7.7 The LDialogBox properties window

|§f§% LDialogBox “Modify/Delete Movie” %@3

ki

~ Location: ~ Clicking/Drawing: =
e Top : | E Targetable

[] Get Select Click
D Hide On Suspend

Delay Select
. Height : -« ~~~~~~~~~ [Jpelay Selec

E Erase On Update

Yidth:

~ Window Type:

Yindow Kind:| Document window i |

Window Title : [Modify /Delete Movie

[Jzeom Box ¥DEF ID: X] Enabled

[Jclese Box Class ID: Initially Visible

Llsize Box o ion Layer: [Regar ¥)

[ritte Bar

D Resizable Auto Position:| Center on Main Screen -]
- Window Sizing: ~User Data:

width Height
Minimum Size:

User Constant: D
¥Yindow RefCon: |'6:_|

Maximum Size:

Standard Size:

Default Button ID: [Text
Cancel Button ID: D Text
<l |2

I
il

&5

E

Figure 7.8 PowerPlant object window types

Document window

Movable modal

Modal dialog (no border)
Modal dialog (shadow border)
Rounded window

Floating window
Floating window (side bar)

Creating Dialog Box Resources 171

Figure 7.9 Setting a window'’s autoposition
off

Alert Position on Main Screen
Stagger on Main Screen

Center on Parent Window
Alert Position on Parent Window
Stagger on Parent Window

Center on Parent Screen
Alert Position on Parent Screen
Stagger on Parent Screen

Figure 7.10 Setting a window’s layer

Yindow Layer:

USER DATA

Like most PowerPlant objects, a window has two attributes that you can set and use
for your own purposes: User Constant and Window RefCon. Both are long inte-
gers and can be an alternative to using global variables for sharing values between
objects. You will see an example of how these are used when we look at the code that
supports the Modify/Delete Movie dialog box.

BUTTON MESSAGES

If you look back at Figure 5.6 (LWindow properties) and compare it to Figure 7.7,
you’ll notice that most of dialog box’s properties are inherited from LWindow. How-
ever, at the bottom of Figure 7.7, there is space to record the resource IDs of the dia-
log box’s default button and Cancel button. This links the buttons to the dialog box
so that the dialog box will listen automatically to those buttons. You will leave these
boxes blank until you have added buttons to the dialog box object.

172 Chapter 7 « Dialog Box and Control Resources

Adding Display Text and Edit
Fields

Although most of what you place on a dialog box are controls, dialog boxes also often
contain two types of text: static text for display only (objects of class LCaption) and
editable text (objects of class LEditField). In this section we will look at configuring
both types of objects.

OBJECTS OF CLASS LCAPTION

The LCaption class provides display text. Although a program can change the text,
the user cannot. To add a caption, drag an object of LCaption from the Tools palette
onto a window and resize it as necessary. Then, double-click on the object to display
its properties window.

As you can see in Figure 7.11, a caption is given its own unique ID, some initial
text, and a text traits ID to set the font characteristics in which its text will appear. If
you will be setting the text in the caption in a program, you can leave the Caption
Text field empty.

Figure 7.11 LCaption properties

JE——— LCaption 1D 2701 “Movie Title:” =———P=
Location: Binding to Superview: — {“}
Top
! 0 Top
Left: [Lert [right
|:| Bottom
‘ ~ Height:

Pane ID: (2701 [Text D [J Enabled
User Constant: D [] Text constant X visible
Class ID:

Caption Text: [Movie Title:

Text Traits D: [0 |[7]
&l &

®|4]

Adding Display Text and Edit Fields 173

OBJECTS OF CLASS LEDITFIELD

The class LEditField is in many ways a smaller version of LTextEdit. although an
object of LEditField usually appears surrounded by a border and cannot be placed in
a Scroller. LEditField supports cut, copy, paste, and clear in the edit field. Unlike
LTextEdit, it provides support for undo operations. All you have to do is attach an
LUndoer to the dialog box containing the LEditField.

To add an edit field to a window, drag an object of LEditField from the Tools pal-
ette onto the window. Resize and reposition it as you like. Then double-click on it to
open its properties window (for example, Figure 7.12).

Figure 7.12 LEditField properties

Ef=—————"=— LEditField ID 2702
Location: Binding to Superview : ——— i.}-
Otep
Left: [109 | O Lert O right
D Bottom
Pane ID: [2702 [Text I Xl Enabled
User Constant: Cl [] Text constant X visibte
Class ID:
Initial Text:
Text Traits ID: =] Max. Characters:
Key Filter:| Printing Character 'I
D Has ¥Word ¥rap D Outline Highlight
[X] Has Box] nline input
D Auto Scroll D Text Services
[J rext Buffering E}—
=l B

Use the properties window to give the object a unique resource ID, some initial
text (if any), and a text traits ID. Use the Max. Characters box to limit the total num-
ber of characters that will be allowed in the field. (This can be particularly handy if
you will be capturing the data as a string and want to make sure that you don’t

174

Chapter 7 ¢ Dialog Box and Control Resources

overflow your string storage.) At runtime, the Mac’s speaker will beep if the user
attempts to enter more than the maximum number of characters.

Additional error checking on the value entered in the edit field can be applied by
using a Key Filter (Figure 7.13). By default, no key filter is applied and anything the
user types is acceptable. However, you can restrict the value to an integer (handy for
fields such as the length of a movie), an alphanumeric, or any printing character.

Figure 7.13 Key filters

None

Integer
Alpha-numeric
Key Filter: & Frinting Character

The check boxes at the bottom of the properties window control a variety of edit
field characteristics, including the following:

* Has Word Wrap: When checked, performs word wrap if the text entered won’t
fit on a single line.

* Has Box: When checked, displays a box around the edge of the field.

* Auto Scroll: When checked, automatically scrolls the text as the user types be-
yond the bottom border of the box.

¢ Outline Highlight: When checked, draws an outline around selected text when
the window on which the edit field has been placed is inactive.

* Text Buffering and Inline Input: Provide support for non-Roman (particularly 2-
byte) character sets.

Adding a Tab Group

A tab group (an object of class LTabGroup) defines a group of panes between which
the user can move by pressing the Tab key. Each top-level view, such as a dialog box,
can have one tab group.

To create a tab group, first place all the edit fields on the window. Then, choose
Make Tab Group from the Arrange menu. PowerPlant places all panes (including
captions and buttons) in the tab group. Although the tab group actually contains
every pane in the window, only objects of LEditField and LTextEdit (the only objects
in which a straight-line cursor can appear) are affected when the user presses Tab.

Adding Control Resources 175

NOTE

If you modify a PowerPlant object, removing or adding LEditField and LTextEdit
objects, you should re-create the tab group by choose the Make Tab Group menu option
again.

To see the elements of a window that have been added to a tab group, display Con-
structor’s hierarchy window, as was done to generate Figure 1.4. Because a tab group
isn’t a pane, you can’t see in a Constructor resource window.

Edit Fields versus Tables

If you look back at Figure 7.2, you’ll be able to count a lot of edit field objects (25 of
them, to be precise). Since PowerPlant provides a class called LTable, couldn’t a table
with columns and rows be used to hold the names of up to 20 movie stars rather than
20 individual edit fields? Using a table would be a great idea, but PowerPlant tables
are for display only. In fact, they are much more closely related to list boxes than they
are to edit fields. To provide editable text, you must resort to objects of class LEdit-
Field.

Adding Control Resources

In this section you will learn about four of the most commonly used types of controls
(buttons, popup menus, radio buttons, and check boxes). As you read, you will begin
to discover the consistent threads that run through all controls supported by Power-
Plant.

BUTTONS

Buttons are typically created from the class LStdButton. Once you've dragged an
object onto a window, double-click on the button to display its properties window
(for example, Figure 7.14). Give the button its unique resource ID and enter the but-
ton title (the text that should appear inside the button).

You must also give the button a “Value Message,” the value that will be sent to the
window that listens to the button whenever the user clicks the button. When work-
ing with dialog boxes, there are two rules you must keep in mind about value mes-

sages:

176

Chapter 7 ¢ Dialog Box and Control Resources

Figure 7.14 LStdButton properties

=—————""| stdButton ID 27?32 “Cancel” e

Location: Binding to Superview: ,{},
Top:
O Top
Left:[g8 | width: [64 |i | [JLeft [right
[Bottom
Height:

Pane ID: (2732 [Text 0 X Enabled
User Constant: I:] [Text constant [visible

Class ID:

Button Title: |Cancel

Yalue Message: I:l |:| Text Message
Text Traits ID: [0 |[¥] ControlRefCon:[0__ |
Control Kind: [0 | Should be 0.
] il

[l

&

 LDialogBox expects the Cancel button (regardless of what text appears in the but-
ton) to have a value message of 4. In other words, when an object of class LDia-
logBox receives a message of 4, it closes the dialog box without saving any
changes made.

¢ Other than the Cancel message of 4, LDialogBox responds only to negative value
messages. To make this easy to handle, you may want to give buttons in dialog
boxes value messages that are the negative of their resource IDs. For example, if
a button has a resource ID of 2733, give it a value message of —2733.

NOTE

When you are working with a dialog box, don’t forget to go back to the dialog box’s
properties window and enter the resource IDs of the Cancel and default buttons. Other-
wise, the dialog box won’t respond to them.

If the window in which you have placed a button is resizable, you will also need to
consider binding the button to its superview. If you want the button to stay in a fixed
position relative to one corner of the window, bind the button on either the top and
left or the bottom and right. If you want the button to stay in a fixed position relative
to one side of the window, bind it on just that side. However, don’t bind the button

Adding Control Resources 177

on more than two adjacent sides. Doing so would force a change in the button’s size
when the superview is resized, causing a distortion in the appearance of the button.

NOTE

By default, a dialog box only listens to two buttons. If your dialog box has more, as does
the Modify/Delete Movie dialog box, you will need to explicitly tell the dialog box to
listen to the additional button(s). Adding listeners is discussed in Chapter 8, where we
will cover the code necessary to support dialog box interactions.

Popur MENUS

A popup menu requires two resources: an object of class LStdPopupMenu that you
create using Constructor, and a MENU resource to contain the menu items. There’s
no reason you can’t use Constructor to create the MENU resource. However, popup
menus don’t need accompanying Mcmd resources. You will therefore end up with an
unnecessary (but harmless) resource if you use Constructor.

To avoid the unnecessary Mcmd resource, the Penultimate Videos program uses
MENU resources created with ResEdit for its popup menu items. For example, in Fig-
ure 7.15 you can see the resource used to supply the items for the movie type popup
in the Modify/Delete Movie dialog box. (This resource is also used in the Enter
Movie dialog box.)

Figure 7.15 A MENU resource for a popup menu (ResEdit format)

EFEZ= MENU “Movie type popup” 1D = 4000 from PPDideoStore.rsrc ==

m Entire Menu:] Enabled
Adventure ki3
Children's Titte: © (TN
Comedy
Drama O & (Apple menu)
Horror
Muystery Color

Romance Title: E

Science Fiction

Menu Background: D

<l

178

Chapter 7 ¢« Dialog Box and Control Resources

Once you have a resource containing menu items, you can add an object of LStd-
PopupMenu to your window, which has the properties seen in Figure 7.16. If you do
nothing else with the object, be sure to enter the ID of the MENU resource in the
MENU ID box.

Figure 7.16 LStdPopupMenu properties

Ef=————— |StdPopupMenu ID 2734 =77
Location: Binding to Superview : —— 3}.
Top:
O 7op
Left: 319 | O Lett O right
[Bottom
Height:

Pane ID: 2734 O Text ip [X] Enabled
User Constant: E:I] Text constant X visible

Class ID: Attach MENU

resource ID
here

e

Popup Title:

Title Width: [0 | Text Traits D: [0 | L1
Initial Menu tem: 1| MENU 1D : [4000
Yalue Message: ICI D Text Message

~ Title Style: — Title Placement: ; Pop-up Variation: ——

[Bold (@ Left Flush i | [Fixed width ’

[] undertine (O Centered [Resource List

I:] Italic O Right Flush Of Type: I:I

[outtine

I:I Shadow

D Condensed

D Extended :!?}—
<@ =

When it comes to popup titles, you have two choices. You can enter the title in the
LStdPopupMenu properties window and use the Title Style check boxes to set its
style and the Title Placement radio buttons to determine its alignment. Alternatively,
you can use an object of class LCaption as a title, leaving the Popup Title box empty.
The latter gives you a bit more flexibility because you can change the LCaption object
while the program is running.

Adding Control Resources 179

PowerPlant numbers the items in a popup menu beginning with 1, counting from
the top of the MENU resource’s item list. To set a.default value for the popup, enter
the number of the default item in the Initial Menu Item box.

If your window is resizable, you should also pay attention to binding the popup
menu to its superview. In most cases, you will bind it either to the top left or bottom
right of the window.

RADIO BUTTONS

Dialog boxes often contain one or more groups of radio buttons that allow a user to
choose one option from a group of mutually exclusive options. The Enter Video
Copy dialog box in Figure 7.3, for example, uses radio buttons to allow the user to
select whether a copy is a tape or a laserdisc.

You add a radio button to a view by dragging an object of LStdRadioButton from
the Tools palette onto a window. Using its properties window (for example, Figure
7.17), you can set the following object characteristics:

Figure 7.17 LStdRadioButton properties

SE=———— | StdRadioButton 1D 5007 “Tape” =——=piz|
-Location: Binding to Superview: ﬁ
Otop
O Lett [right
D Bottom

Pane ID: |S007 D Text ID E Enabled
User Constant: D [J Text constant X visible
Class ID:

Radio Title: |Tape

VYalue Message: |S007 |:| Text Message

Initial Value: @ On Text Traits D:[0____|[7]

O OffA Control Ref Con: D
Control Kind: Should be 2.

<ol : I

| EIIN

180

Chapter 7 Dialog Box and Control Resources

The unique resource ID.

The button title, which always appears to the right of the button.

A text traits ID for the button title.

A value message that the button sends when it is clicked. This message is detected
and handled by the LStdRadioButton class.

The button’s initial value.

A special note should be made about a button’s initial value. Only one radio but-
ton in any group of radio buttons should be “on.” It is therefore up to you to make
sure that you only give one radio button in any given group of radio buttons an initial
value of “on.”

Grouping Radio Buttons

When a radio button is added to a view, it exists as a stand-alone object. However, we
need radio buttons to act as part of a group. You must therefore create an object of
class LRadioGroup for each separate group of radio buttons.

To define a radio group, select all the radio buttons that should be part of a single
group. Then, choose Make Radio Group from the Arrange menu or press #-G. Con-
structor adds an object of class LRadioGroup to your view. Because an object of class
LRadioGroup isn’t a pane, it won’t show up on the view you are creating. However, if
you look at the view’s object hierarchy (for example, Figure 7.18), you can see the
radio group object followed by a list of the resource IDs of the radio buttons that are
part of that group.

CHECK BOXES

A check box provides a simple way for users to enter binary data (yes/no, on/ off, and
so on). As with any other control you’ve seen to this point, you add a check box to a
view by dragging an object of class LStdCheckBox onto a window. Then, you set the
properties found in Figure 7.19, which include the following:

The check box’s unique resource ID.

The check box’s title, which always appears to the right of the check box.

A text traits ID for the check box’s title.

A unique value message that the check box sends back to the class LStdCheckBox
when the box is clicked.

An initial value (either “on” or “off”).

Adding Control Resources 181

Figure 7.18 A view hierarchy including a radio group

Hierarchy for PPob 5000, “Enter Vide(@
LDialogBox Enter Video Copy

LListBox 5001

G LStdButton 5002 6K

LStdButton 5003 Done
LCaption 5004 Highlight the movie title:
LStdCheckBox S005 LGX
LStdCheckBox 5006 Oolby Suriound Sound
LStdRadioButton S007 Tape
LStdRadioButton 5008 (aserdisc
LStdPopupMenu 5010 The radio group object
LCaption 5011 Format: followed by the

88 LRadioGroup 5067, 5068 resource IDs of its
T Lcaption 5009 Media: member radio buttons

I

HeeoxRXE

=

;

|G

Gl o

Figure 7.19 LStdCheckBox properties

= LStdCheckBox 1D 5005 “LBH” =

Location: Binding to Superview: :&
Top:
i D Top
Left: [14 | Width: [Left [right
| D Bottom

Pane ID: O Text © X Enabled
User Constant: E:] [Text constant X visible
Class ID:

Checkbox Title: [LBX

Yalue Message : EI Text Message
Initial Value: (O 0On Text Traits D: [0 |[x]
@ off Control Ref Con: D
Control Kind:[1___ |Shouldbe 1.

=l =

&

182 Chapter 7 « Dialog Box and Control Resources

RidL Resources

Whenever you use Constructor to create a view that contains controls, Constructor
automatically adds the resource IDs of those controls to a RidL (Resource ID list)
resource. As you can see in Figure 7.20, the RidL resource for the New Video Copy
dialog box contains the resource IDs of the radio buttons, check boxes, popup
menus, and standard buttons that appear on the window.

Figure 7.20 The RidL resource for the New Video Copy dialog box

=E= RidL “Enter Dideo Copy” ID = 5000 from PPob.rsrc ==
=

® of 7
Resources

1) %k

Resource 1D [5002 AJ

2) Kkkokk

Resource |0 [5003]

3} Aokok kK

Resource 1D [5005

4) Hkkdk

|| |

Resource 1D [5006

5} Aok Kk

Resource |D ISUU?

6) *rkkk

Resource D [5008 |

7)) RERkk

Resource 1D ISDIU l

An RidL resource is used by the class LDialogBox to connect controls, which are
broadcasters, to the listener that will respond to them using the function UReani -
mator::LinkListenerToControls. This function makes repeated calls to

Preparing Resource and Message Constants 183

AddListener and can therefore simplify the task of getting a window to listen to
many controls. The function call has the following general format:

UReanimator::LinkListenerToControls (* Jistener_object,
* pane_containing_controls, resource_ID_of_RidlL);

An important note is warranted here with regard to when you need to add a lis-
tener for a control. In many cases, you don’t care about the value of a control at the
time the user changes that value. For example, in the Modify/Delete Movie dialog
box, the program doesn’t need to respond to any of the popup menus right away; it
only needs to capture their values when the user uses the Modify button. Therefore,
the dialog box only needs to listen to its three buttons.

By the same token, the New Video Copy dialog box doesn’t need to listen to its
radio buttons, check boxes, popup menu, or list of video titles. The current settings
in all of those subpanes can be captured when the user clicks the OK button.

However, if you want a control to have an immediate effect, then you must make
sure that some object listens to it. In Chapter 8, for example, we will look at a win-
dow that contains check boxes to which a program respond as soon as a use changes
the state of a control. In addition, in Chapter 9, you will see that a dialog box must lis-
ten to an LListBox if the program is to respond to a double-click in the list. In both
cases, the windows containing the controls must explicitly add them to their lists of
broadcasters.

Preparing Resource and
Message Constants

PowerPlant programs make extensive use of the resource IDs and value messages
that are part of the resources we have been discussing. It is ironic that an object-ori-
ented environment that should be adhering to the ideas of data encapsulation is so
closely tied to global constants. Nonetheless, because the Macintosh is designed to
use resource IDs, we are stuck with needing to deal with a large number of con-
stants. Typically, we make life much easier by collecting these constants into header
files so they can be easily found, and if necessary, modified.

Like many other PowerPlant programs of any appreciable size, the Penultimate
Videos program maintains a header file for resource IDs (ResourceConstants.h) and a
resource file for value messages (MenuCommands.h). In Listing 7.1, for example, you

184

Chapter 7 « Dialog Box and Control Resources

Listing 7.1

will find the resource constants for the two dialog boxes we have been using as exam-
ples in this chapter. Notice that there is a constant for the dialog box resource and
every object on the dialog box from which the program must retrieve a value. As far
as buttons are concerned, a program that uses a dialog box needs to be concerned
only with buttons other than the default and Cancel buttons. The Enter Video Copy
resource constants therefore don’t need to include any buttons. However, the Mod-
ify/Delete Movie dialog box has a third button—Delete—that the program will need
to manipulate directly. This button must therefore have a constant for the program

to use.

Sample resource constants for the Penultimate Videos program

const ResIDT WINDOW_NEW_VCOPY = 5000;

// The following are constants for all the controls on the dialog box,
// everything from which the program must retrieve a value.

const
const
const
const
const
const

ResIDT
ResIDT
ResIDT
ResIDT
ResIDT
ResIDT

VCOPY_LIST_BOX = 5001;
VCOPY_RB_TAPE = 5007;
VCOPY_RB_LD = 5008;
VCOPY_FORMAT = 5010;

VCOPY_CB_LBX
VCOPY_CB_DSS

5005;
5006;

const ResIDT WINDOW_MOD_MOVIE = 2700;
// The following are all the edit fields and popup menus on the dialog box.

// There are constants for every pane from which the program must retrieve a value.
MOD_MOVIE_TITLE = 2702;
MOD_MOVIE_DIST = 2704;
MOD_MOVIE_DIRECT = 2706;

const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const

ResIDT
ResIDT
ResIDT
ResIDT
ResIDT
ResIDT
ResIDT
ResIDT
ResIDT
ResIDT
ResIDT
ResIDT
ResIDT
ResIDT
ResIDT
ResIDT
ResIDT
ResIDT
ResIDT
ResIDT
ResIDT

MOD_MOVIE_PRODUCE = 2708;

MOD_MOVIE_LENGTH = 2710;
MOD_MOVIE_CLASS = 2734;
MOD_MOVIE_RATING = 2736;

MOD_MOVIE_STAR1
MOD_MOVIE_STAR2
MOD_MOVIE_STAR3
MOD_MOVIE_STAR4
MOD_MOVIE_STARS
MOD_MOVIE_STAR6
MOD_MOVIE_STAR7
MOD_MOVIE_STAR8
MOD_MOVIE_STAR9
MOD_MOVIE_STARILO
MOD_MOVIE_STARI11
MOD_MOVIE_STAR12
MOD_MOVIE_STAR13
MOD_MOVIE_STAR14

[| A /A A
nmnon

2711;
2712;
2713;
2714;
2715;
2716;
2717;
2718;
2719;
2720;
2721;
2722;
2723;
2724;

Continued next page

Preparing Resource and Message Constants 185

Listing 7.1 (Continued) Sample resource constants for the Penultimate Videos pro-

const ResIDT MOD_MOVIE_STAR15 = 2725;
const ResIDT MOD_MOVIE_STAR16 = 2726;
const ResIDT MOD_MOVIE_STAR17 = 2727;

const ResIDT MOD_MOVIE_STAR18 = 2728;

const ResIDT MOD_MOVIE_STAR19 = 2729;

const ResIDT MOD_MOVIE_STAR20 = 2730;
// Only the Delete button appears hear because the dialog box handles
// the Cancel button and the default button automatically

const ResIDT MOD_MOVIE_DELETE = 2738;

Message constants should exist for every message a program will trap. For exam-
ple, Listing 7.2 contains the message constants needed for the two sample dialog
boxes. Messages sent by radio buttons, check boxes, and the Cancel button are han-
dled by LStdRadioButton, LStdCheckBox, and LDialogBox, respectively. However,
the program must trap the default buttons and the Modify/Delete Movie’s Delete
buttons. The program therefore needs constants for those messages.

Listing 7.2 Sample message constants for the Penultimate Videos program

const MessageT cmd_OK_new_video_copy = -5002;

const MessageT cmd_Modify_movie = -2731;
const MessageT cmd_Delete_movie = -2738;

NOTE
PowerPlant has constants for messages that its classes recognize (for example, the mes-
sage of 4 for a Cancel button) stored in PP Messages.h.

CHAPTER

Programming for
Dialog Boxes and
Controls

In Chapter 7 you read about creating the resources necessary to support dialog boxes
and the items that appear on them. This chapter first extends that discussion by look-
ing at the code needed to display dialog boxes, trap user actions with dialog box but-
tons, and capture and modify dialog box item values. The initial discussion of
controls looks at situations where a program reads the values of controls (other than
buttons) after the user has finished working with the dialog box.

However, a window or dialog box can also respond immediately to changes made
in controls such as radio buttons and check boxes. For example, you might use a
check box to display or hide a pane. An example of this type of “live” control can be
found at the end of this chapter.

187

188 Chapter 8 * Programming for Dialog Boxes and Controls

Deciding Whether to Subclass

It is often possible to create objects directly from LDialogBox without creating a sub-
class because many dialog boxes behave in a standard manner. Assuming that you
aren’t planning to add any custom functionality to a dialog box, should you go ahead
and create a subclass anyway?

As you read earlier in this book, there are a number of issues involved with mak-
ing that decision. When a listener such as LDialogBox is concerned, there is one
additional consideration: LDialogBox, like all listeners, has a function called Lis-
tenToMessage. This is where it traps messages from its broadcasters. As written,
the function handles a dialog box’s Cancel and default buttons. (To be completed
accurately, LDialogBox traps the default button’s message and then passes the mes-
sage to its supercommander’s ProcessCommand function.)

If you create a subclass for a dialog box, you can override ListenToMessage so
that you can add code to it to handle messages from all the controls you place on the
dialog box. If you don’t create a subclass, all the code to handle control messages is
usually part of the dialog box’s supercommander (in its ListenToMessage or
ObeyCommand function). In the case of the Penultimate Videos program, the appli-
cation object is the supercommander of all dialog boxes because it is the commander
object that creates the dialog box objects. The result is a very large, but centrally
located, ObeyCommand function.

The bottom line? If your dialog box will include only standard behaviors, choose
whichever structure makes maintaining the program easier for you and the program-
ming team with which you may be working.

Should you choose to subclass, there are some programming issues with which
you will need to contend, including the decision as to which base class functions to
override. The window that is used as a demonstration of “live” controls at the end of
this chapter is therefore implemented as a subclass. This provides an example of set-
ting up a listener, linking it to its controls, and trapping user actions with those con-
trols.

Displaying a Dialog Box

To display a dialog box, a program needs to create an object of class LDialogBox and
then call the object’s Show function. In Listing 8.1, for example, you will find the
function that displays the New Video Copy dialog box. Most of the code in this

Displaying a Dialog Box 189

function builds the scrolling list of titles. In fact, displaying the dialog box on the
screen requires only two actions:

Listing 8.1 Displaying the New Video Copy dialog box

void CPPVideoStoreApp::SetUpNewVideoCopy()
{

LDialogBox * theDialog;
LListBox * thelist;
ListHandle theListHandle; // handle to 1ist of movies

theDialog = (LDialogBox *) LWindow::CreateWindow (WINDOW_NEW_VCOPY, this);

// This code sets up the scrolling list of items.
// We'll discussion of it until Chapter 9.

thelist = (LListBox *) theDialog->FindPaneByID (VCOPY_LIST_BOX);
thelistHandle = thelList->GetMacListH(); // get the 1ist box's 1ist handle
::LAddColumn (1, 0, thelistHandle); // add a column to the empty list

MerchItr traversal;

int Type, row = 0;

Merchandise_Item * currentOne;

char * Title;

StringPtr pascalString;

// a cell (row & column number) and a pointer to the variable
Cell theCell, * theCellPtr;

theCel1Ptr = &theCell;

for (traversal.Init (Items); !traversal; ++traversal)
{
currentOne = traversal();
Type = currentOne->getltem_type();
if (Type == FILM || Type == OTHER)
{
Title = currentOne->getTitle();
::LAddRow (1, row, thelListHandle); // add a row to the 1list
// initialize the coordinates of the cell just added
::SetPt (theCellPtr, 0, rowt++);
::LSetCell (Title, strien(Title), theCell, thelListHandle); // add the data
}
}
thelist->SetValue (0); // make sure first item is highlighted
// End of list-building code

theDialog->Show();

190 Chapter 8 * Programming for Dialog Boxes and Controls

e Call the CreateWindow function, typecasting the LWindow pointer returned by
the function to an LDialogBox pointer:

theDialog = (LDialogBox *) LWindow::CreateWindow (WINDOW_NEW_VCOPY, this);

e Call the Show function:

theDialog->Show();

As you know, the CreateWindow function initiates a sequence of actions that cre-
ates the dialog box object itself along with objects for all of its subpanes (the items
that appear on the dialog box).

ENABLING UNDO

If a dialog box contains edit fields and you want undo operations to work, you should
attach an LUndoer to the dialog box:

LUndoer * theUndoer = new LUndoer;
theDialog->AddAttachment (theUndoer, nil, TRUE);

One undoer object will take care of all the edit fields on any given dialog box.

ADDING LISTENERS FOR OTHER CONTROLS

By default, a dialog box listens only to its Cancel and default buttons. If a dialog box
contains anything else to which it should listen—such as another button or a double-
click in a scrolling list—a program must explicitly add that object to the dialog box’s
list of listeners. For example, the Modify/Delete Movie dialog box must add the
Delete button as a listener. Doing so requires two lines of code:

LStdButton * deleteButton = (LStdButton *)
theDialog->FindPaneByID (MOD_MOVIE_DELETE);
deleteButton->AddListener (theDialog);

The FindPaneByID function, which you will use frequently, retrieves a pointer to a
subpane of a view. Its single parameter is the subpane’s resource ID, which in the pre-
ceding example is represented by the constant MOD_MOVIE_DELETE. By default,
FindPaneByID returns a pointer to an object of class LPane because the function is

Trapping Button Actions 191

inherited from LPane. You must therefore typecast it to the specific class from which
the object whose pointer you want has been created.

Once a program has a pointer to the pane in question (in this example, a button),
that pane can add itself to a list of broadcasters to which another object listens. As
nonintuitive as it might seem, the AddListener function is called by the broad-
caster (the button) rather than the listener. (If it helps to keep this straight, you might
want to think of the AddListener function as “Add to listener.”)

POSITIONING THE INSERTION POINT

When a dialog box contains more than one edit field, as does the Modify/Delete
Movie dialog box, the straight-line insertion point ends up in the last edit field cre-
ated. However, in most cases you want the cursor to appear in the top edit field on
the dialog box so the user can then tab “down” the dialog box as he or she works. In
other words, you want to make sure that the first edit field is the current target.

To explicitly switch the target, you need a pointer to the pane that should become
the target. Then you can use the SwitchTarget function:

theEditField = (LEditField *) theDialog->FindPaneByID (MOD_MOVIE_TITLE);
firstEditField = thetditField;

// some other stuff goes on in here, perhaps

// do this before turning control over to the user
firstEditField->SwitchTarget (firstEditField);

The SwitchTarget function belongs to the LCommander class. The object that
calls the function must be a commander. The function’s single parameter is a pointer
to the object that wants to become the target. By having the object that wants to
become the target pass itself into the function, the object says,“Make me the target.”

Trapping Button Actions

A program traps actions in a dialog box in an ObeyCommand function. The class to
which that function belongs depends on the structure of the program. If the dialog
box is being created directly from LDialogBox, without a subclass, then actions in
that dialog box are trapped in the ObeyCommand function of the class that created

192

Chapter 8 ¢ Programming for Dialog Boxes and Controls

the dialog box. In the Penultimate Videos program, for example, that class is the
application class (a subclass of LApplication). However, if the dialog box was created
from a subclass of LDialogBox, then the ObeyCommand function that traps dialog
box actions is typically part of the subclass.

In Listing 8.2 you will find the case from the Penultimate Video’s ObeyCommand
function that traps the OK button on the New Video Copy dialog box. Notice that
the function that handles the action (ProcessNewVideoCopy) has a single parame-
ter: the structure ioParam, which is typecast to a dialog response structure (SDia-
1ogResponse). This dialog response structure contains a pointer to the dialog box
with which the user most recently interacted. A PowerPlant program therefore usu-
ally doesn’t need to store dialog box pointers once a dialog box has been displayed.

Listing 8.2 Trapping the click of an OK button

case cmd_OK_new_video_copy:

ProcessNewVideoCopy ((SDialogResponse *) ioParam);
break;

NOTE

There is an informal naming scheme used in the functions that handle the Penultimate
Videos dialog boxes. Those function names that begin with “SetUp” display dialog
boxes; those that begin with “Process” trap dialog box actions and process the contents
of the dialog box in some way.

Removing a Dialog Box

When the user clicks a dialog box’s Cancel button, LDialogBox takes care of remov-
ing the dialog box from the screen. However, if the user clicks the default button or
interacts with any other controls that your program traps, it is up to you to remove
the dialog box. To do so, simply delete the dialog box object:

delete theDialog;

The dialog box will be removed from the screen and deleted from memory.

Handling Edit Fields 193

Handling Edit Fields

Once a program has trapped an action with a control, the program must process the
contents of the dialog box in some way. In this section we will look at retrieving the
contents of edit fields, as well as how to place data into edit fields.

RETRIEVING DATA FROM EDIT FIELDS

When a user activates the Modify button on the Modify/Delete Movie dialog box,
the program traps the button press and then calls the Modi f yMov i e function, which
retrieves data from the dialog box’s edit fields and uses those values to change a Film
object in memory.

A portion of ModifyMovie can be found in Listing 8.3. As you can see, the first
step is to obtain a pointer to the edit field object with a callto FindPaneByID. Then,
you can use one of two functions to capture the contents of the edit field:

e GetDescriptor: Returns the contents of the edit field as a Pascal string.
» GetValue: Returns the integer value of the contents of the edit field. Use this
function only when you know that the edit field contains an integer.

The running time of a movie is an integer. Therefore, the Penultimate Videos pro-
gram can use GetValue only with the Length variable. The program must use Get -
Descriptor to retrieve the contents of the rest of the edit fields on the dialog box.

PUTTING DATA IN EDIT FIELDS

The Penultimate Videos program’s SetUpItemModify function retrieves the mer-
chandise item being modified and displays its data in a dialog box for the user to
change. When the item is a movie, the program uses the Modify/Delete Movie dia-
log box.

In Listing 8.4, you can see that the process is the opposite of retrieving data. First,
you use FindPaneByID to get a pointer to the edit field object, and then you use one
of the following two functions to replace the object’s contents:

» SetDescriptor: Replaces an edit field’s contents with a new Pascal string.
 SetValue: Replaces an edit field’s contents with an integer. Use this function
only when you are dealing with an integer.

194 Chapter 8 * Programming for Dialog Boxes and Controls

Listing 8.3 Retrieving data from edit fields

// must first check to see if title has been modified.
// if so, must delete from title tree and reinsert
LEditField * theEditField = (LEditField *)
theDialog->FindPaneByID (MOD_MOVIE_TITLE);
theEditField->GetDescriptor(pascalValue);
convertPascal255 (pascalValue, ANSIValue);
currentTitle = theFilm->getTitle();
if (strcmp (ANSIValue, currentTitle) != 0)
{
// FALSE in call to Delete prevents copies from being deleted
Items->Delete (FALSE, theFilm, Copies);
theFilm->setTitle (ANSIValue); // modify title
theFilm->setLeftName (0); // reset pointers for title tree
theFilm->setRightName (0);
Items->Insert (theFilm, ANSIValue, FALSE); // reinsert
}

theEditField = (LEditField *) theDialog->FindPaneByID (MOD_MOVIE_DIST);
theEditField->GetDescriptor(pascalValue);

convertPascal255 (pascalValue, ANSIValue);

theFilm->setDistributor (ANSIValue);

theEditField = (LEditField *) theDialog->FindPaneByID (MOD_MOVIE_DIRECT);
theEditField->GetDescriptor(pascalValue);

convertPascal255 (pascalValue, ANSIValue);

theFilm->setDirector (ANSIValue);

theEditField = (LEditField *) theDialog->FindPaneByID (MOD_MOVIE_PRODUCE);
thekditField->GetDescriptor(pascalValue);

convertPascal255 (pascalValue, ANSIValue);

theFilm->setProducer (ANSIValue);

theEditField = (LEditField *) theDialog->FindPaneByID (MOD_MOVIE_LENGTH);
intValue = theEditField->GetValue();

theFilm->setlLength (intValue);

CLEARING EDIT FIELDS

When a user is entering new data using the Penultimate Videos program, he or she
will probably be entering more than one object’s data at a time. It therefore makes
sense to leave the dialog box with which the user is working on the screen after pro-
cessing one object’s data. Rather than deleting the dialog box object and recreating it,
a program can simply clear the contents of edit fields.

The code fragment in Listing 8.5 is taken from the ProcessNewMovie. To
retrieve data from an edit field and then reset the field for the next object, the code
does the following:

Handling Edit Fields 195

Listing 8.4 Placing data in edit fields

theDialog = (LDialogBox *) LWindow::CreateWindow (WINDOW_MOD_MOVIE, this):
theEditField = (LEditField *) theDialog->FindPaneByID (MOD_MOVIE_TITLE);
firstEditField = theEditField;

thekditField->SetDescriptor (pascalString);

theEditField = (LEditField *) theDialog->FindPaneByID (MOD_MOVIE_DIST);
pascalString = theMovie->getDistributor ();

thetditField->SetDescriptor (pascalString);

theEditField = (LEditField *) theDialog->FindPaneByID (MOD_MOVIE_DIRECT);
pascalString = theMovie->getDirector ();

thekditField->SetDescriptor (pascalString);

thekditField = (LEditField *) theDialog->FindPaneByID (MOD_MOVIE_PRODUCE);
pascalString = theMovie->getProducer ();

thebditField->SetDescriptor (pascalString);

thekditField = (LEditField *) theDialog->FindPaneByID (MOD_MOVIE_LENGTH);
int how_long = theMovie->getlLength ();

thekditField->SetValue (how_long);

I

Listing 8.5 Clearing an edit field

LEditField * theFirstEditField = (LEditField *) theDialog->FindPaneByID (MOVIE_TITLE);
theFirstEditField->GetDescriptor (pascalString);

convertPascal255 (pascalString, iTitle);

theFirstEditField->SetDescriptor (null);

// other stuff goes here

// Make the top edit field on the dialog box the target
theFirstEditField->SwitchTarget (theFirstEditField);

* Gets a pointer to the edit field object with FindPaneByID.
Retrieves the contents of the edit field with GetDescriptor.
Converts the contents to a C string so it can be processed.

Sets the contents of the edit field to null with SetDescriptor.

After the contents of all edit fields and controls on the dialog box have been handled,
the function makes the dialog box’s top edit field the target. This leaves the dialog
box in the same state it was when it was first created.

196 Chapter 8 * Programming for Dialog Boxes and Controls

Working with Check Boxes

A check box represents a Boolean value (0 for checked, 1 for not checked). To cap-
ture a check box setting, you therefore use the GetValue function. As you can see in
Listing 8.6, the code first obtains a pointer to the check box object and then retrieves
its value. To set a check box’s value, send a 0 for checked or a 1 for not checked to the
check box using its SetValue function, as in Listing 8.7.

Listing 8.6 Reading a check box's setting

LStdCheckBox * theCheckBox = (LStdCheckBox *) theDialog->FindPaneByID(VCOPY_CB_LBX);
iLBX = theCheckBox->GetValue();

theCheckBox = (LStdCheckBox *) theDialog->FindPaneByID(VCOPY_CB_DSS);
iDolby = theCheckBox->GetValue();

Listing 8.7 Changing a check box’s setting

// set the check boxes

theCheckBox = (LStdCheckBox *) theDialog->FindPaneByID(MOD_VC_CB_LBX);
theCheckBox->SetValue(saveVideoCopy->getLBX());

theCheckBox = (LStdCheckBox *) theDialog->FindPaneByID(MOD_VC_CB_DSS);
theCheckBox->SetValue(saveVideoCopy->getDolby());

NOTE

The LStdCheckBox class does have GetDescriptor and SetDescriptor functions. How-
ever, in this case GetDescriptor returns the title of the check box (the text that appears
to the right of it) and SetDescriptor changes the title of the check box.

Working with Radio Buttons

Like a check box, a radio button returns its value (represented by the PowerPlant
constants Button_0On and Button_0f f) through its GetValue function (for exam-
ple, Listing 8.8). However, because there can be more than two buttons in a radio
group, you may need to check more than one button before you can determine

Handling Popup Menus 197

which one is highlighted. To set the value in a radio button, as in Listing 8.9, pass
either Button_On or Button_Off through the button’s SetValue function.

Listing 8.8 Reading radio button settings

LStdRadioButton * theRadioButton = (LStdRadioButton *)
theDialog->FindPaneByID(VCOPY_RB_TAPE);
RadioButtonValue = theRadioButton->GetValue();
if (RadioButtonValue == Button_0On)
strcpy (iMedia,"Tape");
else
strcpy (iMedia,"Laserdisc");

Listing 8.9 Changing radio button settings

// set the media radio buttons
property = saveVideoCopy->getMedia();
if (strcmp (property, "Tape") == 0)

theRadioButton = (LStdRadioButton *) theDialog->FindPaneByID(MOD_VC_RB_TAPE);
else -

theRadioButton = (LStdRadioButton *) theDialog->FindPaneByID(MOD_VC_RB_LD);
theRadioButton->SetValue(Button_0On);

NOTE
Like check boxes, radio buttons also have GetDescriptor and SetDescriptor functions
that affect the title of the button.

Handling Popup Nenus

Dealing with popup menus is only slightly more involved than handling check boxes
or radio buttons. PowerPlant numbers the items in a popup menu’s MENU resource
beginning with 1. A popup’s GetValue function returns the currently selected item.
Once you have that value, you can either process the value directly or look it up in a
table to retrieve the item text or a constant you've assigned to the item. In Listing
8.10, for example, popup menu items are stored in arrays that can be used as lookup
tables to retrieve the item text.

198 Chapter 8 ¢ Programming for Dialog Boxes and Controls

Listing 8.10 Reading a popup menu choice

ANSIstring classPopup [] = {"Adventure", "Children's", "Comedy", "Drama", "Horror",
"Mystery","Romance","Science Fiction"};
ANSIstring ratingPopup [] = {"G","PG","PG-13","R","NR-17","X","XXX"};

LStdPopupMenu * thePopup = (LStdPopupMenu *) theDialog->FindPaneByID (MOD_MOVIE_CLASS):
int menuChoice = thePopup->GetValue () - 1;
theFilm->setClass(classPopup[menuChoicel);

thePopup = (LStdPopupMenu *) theDialog->FindPaneByID (MOD_MOVIE_RATING);
menuChoice = thePopup->GetValue () - 1;
theFilm->setRating (ratingPopup[menuChoicel);

NOTE

It’s probably not wise to use the position of a popup menu item in the popup as data
that represents that item. If you ever change the popup menu’s associated MENU
resource, the item’s position in the popup will change, invalidating at least some of
your code.

To set a popup menu’s value, you must pass the popup’s SetValue function an
integer that corresponds to the item that should be selected. For example, in Listing
8.11 the Penultimate Videos program finds the stored value in a lookup table (an
array) and then uses that value to set the selected item in the popup menu.

Listing 8.11 Setting a popup menu choice

ANSIstring classPopup [] = {"Adventure","Children's","Comedy","Drama", "Horror","
Mystery","Romance","Science Fiction"};
ANSIString rat.ingpopup [] = ‘"G“,"PG","PG'13","R","NR'17","X","XXX"I:

property = theMovie->getRating ();
for (i =0; i < 7; i++)
if (strcmp (property, ratingPopuplil) == 0)
break;
thePopup = (LStdPopupMenu *) theDialog->FindPaneByID (MOD_MOVIE_RATING);
thePopup->SetValue (i+1);

property = theMovie->getClass ();
for (i =0; i < 8; i++)
if (strcmp (property,classPopuplil) == 0)
break;
thePopup = (LStdPopupMenu *) theDialog->FindPaneByID (MOD_MOVIE_CLASS);
thePopup->SetValue (i+1);

Manipulating Display Text 199

Manipulating Display Text

The text you display in a view using an object of LCaption isn’t necessarily fixed.
Although we often simply display the text without modification, it’s also common to
change that text on the fly. For example, the Penultimate Videos program uses an
object of class LCaption to display the customer number on a rental receipt (Listing
8.12). The initial value of the caption contains the stub “Customer #:”. All the pro-
gram needs to do is concatenate the actual customer number on the end.

Listing 8.12 Manipulating a caption

itoaC (cust_numb, cust_numbString); // convert integer to C string

displayString = cust_numbString; // initialize pascal string object with integer
LPane * theCaption = (LPane *) receiptDialog->FindPaneByID (RECEIPT_CUST_NUMB);
theCaption->GetDescriptor(currentString);

currentString += displayString; // concatenate renter number
theCaption->SetDescriptor (currentString);

To manipulate the caption, the program does the following:

« Converts the customer number (an integer) to a C string using one of the pro-
gram’s global utility functions (itoaC).

* Translates the C string to a Pascal string, which is required for setting the cap-
tion’s value.

* Obtains a pointer to the caption.

» Uses the GetDescriptor function to retrieve the caption’s current text as a Pas-
cal string.

« Concatenates the string version of the customer number onto the caption’s cur-
rent string.

* Replaces the caption’s current text with the concatenated string using the Set -
Descriptor function.

200

Chapter 8 « Programming for Dialog Boxes and Controls

A

Complete Dialog Box

Listi

To help you put all the things you’ve read about so far in this chapter into context,
let’s take a look at the complete code for creating and processing a dialog box that is
created directly from LDialogBox, without a subclass. The dialog box in question is
the one used to enter data about miscellaneous videos, which you first saw in Figure
2.2,

The dialog box is set up by the code in Listing 8.13. As with any other dialog box
that behaves in a standard manner, the process is fairly straightforward. First, the
program creates the dialog box object. Then, it attaches an undoer to support undo
in the dialog box’s edit fields. Finally, it issues a call to Show to make sure the dialog
box appears on the screen.

ng 8.13 Setting up a dialog box for entering data about a miscellaneous video

void CPPVideoStoreApp::SetUpNewMisc()

{

LDialogBox * theDialog;
theDialog = (LDialogBox *) LWindow::CreateWindow (WINDOW_NEW_MISC, this);

LUndoer * theUndoer = new LUndoer;
theDialog->AddAttachment(theUndoer, nil, TRUE);

theDialog->Show();

When the user dicks the dialog box’s OK button, the application object traps the
action and calls the function in Listing 8.14 to process the user’s action. Although
there is a lot of code in Listing 8.14, you’ll notice that the logic isn’t complex: The
program retrieves the value from each edit field or control, one at a time. Once all
the data have been retrieved, the program creates a new Other video object, passing
the data collected from the dialog box to the object’s constructor.

Because this is a data entry dialog box, the program leaves the dialog box on the
screen until the user closes it with the Done button (the “Cancel” button). There-
fore, after retrieving the value of an edit field or control, the program clears out the
data entry areas. Each edit field receives a null; each control receives its original
default value. The final task is to make the first edit field on the dialog box the target.
The dialog box will then look as it did when it first appeared on the screen.

A Complete Dialog Box Example 201

Listing 8.14 Processing values from the Enter Miscellaneous Video dialog box

void CPPVideoStoreApp::ProcessNewMisc(SDialogResponse * dialogResponse)
{

ANSIstring miscPopup[] = {"Documentary",“Instructional","Nature"};
LEditField * theEditField, * theFirstEditField;

Other * newOther;

int Title_numb, ilen;

ANSIstring iTitle, iDistributor, iDirector, iProducer, iClass;
Str255 pascalString;

Title_numb = Items->inclastTitle_numb();
LDialogBox * theDialog = dialogResponse->dialogBox;

theFirstEditField = (LEditField *) theDialog->FindPaneByID (MISC_TITLE);
theFirstEditField->GetDescriptor (pascalString):

convertPascal2bs5 (pascalString,iTitle);

theFirstEditField->SetDescriptor (null);

theEditField = (LEditField *) theDialog->FindPaneByID (MISC_DIST);
theEditField->GetDescriptor (pascalString):;

convertPascal255 (pascalString,iDistributor);
theEditField->SetDescriptor (null);

theEditField = (LEditField *) theDialog->FindPaneByID (MISC_PRODUCE);
theEditField->GetDescriptor (pascalString);

convertPascal255 (pascalString,iProducer);
theEditField->SetDescriptor (null);

theEditField = (LEditField *) theDialog->FindPaneByID (MISC_DIRECT):
theEditField->GetDescriptor (pascalString);

convertPascal255 (pascalString,iDirector);
thekditField->SetDescriptor (null);

theEditField = (LEditField *) theDialog->FindPaneByID (MISC_LENGTH);
ilen = theEditField->GetValue ();// grab a value and translate to an integer
theEditField->SetDescriptor (null);

// popup menu returns the integer position of the value chosen

LStdPopupMenu * thePopup = (LStdPopupMenu *) theDialog->FindPaneByID (MISC_CLASS);
int menuChoice = thePopup->GetValue () - 1;

strcpy (iClass, miscPopuplmenuChoice]);

thePopup->SetValue (1);

Continued next page

202

Chapter 8 ¢ Programming for Dialog Boxes and Controls

Listing 8.14 (Continued) Processing values from the Enter Miscellaneous Video dialog

Try_
{

newOther = new Other (Title_numb, iTitle, iDistributor, iDirector, iProducer,

iClass, ilLen, Items, ItemsByNumb);

Other_count++;

}

Catch_ (inkrr)

{

Throw_(inkrr);
} EndCatch_

theFirstEditField->SwitchTarget (theFirstEditField);
save_flag = FALSE;

Responding to “Live” Controls

Throughout this chapter, you have been reading about the use of controls in situa-
tions where the values of the controls aren’t read until the user clicks a button to sig-
nal that he or she has finished working with a dialog box. (A button is always a “live”
control.) However, there are situations in which you want to read the value in a con-
trol as soon as the user makes a change in the control, and then take some action
based on the user’s choice. When that is the case, you must make sure that the win-
dow in which the controls appear listens for the controls.

As an example, we will be looking at the classes and code that support the Penulti-
mate Videos inventory statistics window (Figure 8.1). The check boxes control the
display of data in the Total Items and Percent of Total columns. When the boxes are
checked, the data appear; when the boxes are not checked, the data disappear. The
window responds immediately to any changes the user makes in the check boxes.

NOTE

Yes, yes ... the percentages don’t add up to quite 100 percent. That’s because the arith-
metic truncates the fractional portions of the percentages to two digits rather than
rounding them. (Even with rounding, it still might not come out to exactly 100 per-
cent!)

The PowerPlant object that the Penultimate Videos program uses for the window
in Figure 8.1 appears in Figure 8.2. Most of the panes in the window are captions.

Responding to “Live” Controls 203

Figure 8.1 The Inventory Statistics window

&=—— Inventory Statistics =——1

Percent
Item Type Total Items of Total
N
Other Videos 24 a1 :46
Games

X Show Total Items

X Show Percentages

However, there are also the two check boxes and an object of the class LTable. (We
will be discussing tables in great depth in Chapter 9, and will therefore leave the dis-
cussion of the implementation of this table and the subclass that supports it until
then.)

Figure 8.2 PowerPlant resource for the Inventory Statistics window

E|

Object of class
- LTable

| Objects of class
LStdCheckBox

204

Chapter 8 * Programming for Dialog Boxes and Controls

To make the code a bit more interesting, the inventory statistics window isn’t
based on LDialogBox, but on a subclass of LWindow., which means that it isn’t auto-
matically a listener. It must therefore be derived not only from LWindow, but LLis-
tener as well.

The header file for the derived class—StatsWindow—can be found in Listing 8.15.
This class has the requisite constructors (a default constructor and a stream input
constructor), destructor, and CreateXStream function. In addition, it overrides
two LWindow functions—ObeyCommand and FinishCreateSelf—as well as one
LListener function (ListenToMessage). The ObeyCommand function passes com-
mands to LWindow. It is present to simplify later enhancements that might be made
to the class.

Listing 8.15 The StatsWindow class

#include <LWIndow.h>
f#finclude <LListener.h>

class StatsTable;

class StatsWindow : public LWindow, public LListener

{

public:

enum { class_ID = 'SWin' };

static StatsWindow * CreateStatsWindowStream (LStream * inStream);
StatsWindow ();

StatsWindow (LStream * inStream);

~StatsWindow ();

virtual Boolean ObeyCommand (CommandT inCommand, void * ioParam);
void ListenToMessage (MessageT inMessage, void * ioParam);

protected:

StatsTable * theTable; // pointer to table object
virtual void FinishCreateSelf();

Among other things, FinishCreateSelf (Listing 8.16) takes care of initializing
the table that displays the inventory statistics. Because this activity involves one of
the window’s subpanes, it must wait until after the window has been completely cre-
ated. For our current discussion, however, the important part of FinishCreate-
Self is the function call that tells the window to listen for messages sent by the
check boxes:

UReanimator::LinkListenerToControls (this, this, WINDOW_STATS);

Responding to “Live” Controls 205

Listing 8.16 The StatsWindow FinishCreateSelf function

void StatsWindow::FinishCreateSelf()

{

UReanimator::LinkListenerToControls (this, this, WINDOW_STATS);

theTable = (StatsTable *) FindPaneByID (STATS_TABLE);
// save pointer to table object

TableCellT theCell;

for (int i =1; 1 <= 3; i++)
for (int j =1; j <= 2; j++)

{

theCell.row i;
theCell.col Js
theTable->SetTableCell (theCell);

The three parameters are a pointer to the listener, a pointer to the view that contains
all the control panes to be linked as broadcasters, and the resource ID of the RidL
resource that identifies the controls. In this particular example, the listener and the
view containing the controls are the same (the current object). Because Constructor
gives the RidL resource the same ID as the window (the view containing the con-
trols), the program can use the constant that identifies the window as the third
parameter.

Once the controls have been linked to the listener, the listener must use its Lis-
tenToMessage function to trap and act upon changes in the controls. The Inven-
tory Statistics window responds to the messages sent by both check boxes. For
simplicity, their value messages were set equal to their resource IDs and assigned
constants in MenuCommands.h.

As you can see in Listing 8.17, a ListenToMessage function contains a switch
that traps the messages to which the listener should respond. The StatsWindow
ListenToMessage function does the following:

Determines which check box broadcast the message.

Obtains a pointer to the check box object.

Retrieves the state of the check box before the user acted on it (0 = checked, 1 =
not checked).

Based on the state in which the check box will be after the user’s action is com-
pletely processed, either clears or displays data in the table.

206 Chapter 8 * Programming for Dialog Boxes and Controls

Listing 8.17 The StatsWindow ListenToMessage function

void StatsWindow::ListenToMessage (MessageT inMessage, void * ioParam)
{

int currentState, i;

LStdCheckBox * theCheckBox;

TableCellT theCell;

switch (inMessage)
{
case cmd_stats_total_cb:

theCheckBox = (LStdCheckBox *) FindPaneByID (STATS_TOTAL_CB);
currentState = theCheckBox->GetValue();
theCell.col = 1;
for (i =1; i <= 3; i++)
{

theCell.row = i;
if (l!currentState)
theTable->ClearTableCell (theCell);
else
theTable->SetTableCell (theCell);
}
break;
case cmd_stats_percent_cb:
theCheckBox = (LStdCheckBox *) FindPaneByID (STATS_PERCENT_CB);
currentState = theCheckBox->GetValue();
theCell.col = 2;
for (i =1; i <= 3; i++)
{
theCell.row = i;
if (lcurrentState)
theTable->ClearTableCell (theCell);
else
theTable->SetTableCell (theCell);
}
break;
)
theTable->DrawSelf();
theTable->Refresh();

The function finishes with two function calls—DrawSe1f and Refresh—that make
sure that the table displays correctly.

Because most of the work of managing the Inventory Statistics window is handled
by the StatsWindow class, the application object needs to do only the following:

Responding to “Live” Controls 207

* Activate the menu command that displays the Inventory Statistics window in its
FindCommandStatus function.

« Trap the menu command and create an object of the class StatsWindow in its
ObeyCommand function:

case cmd_stats:
StatsWindow * theStatsWindow = (StatsWindow *)
LWindow: :CreateWindow (WINDOW_STATS, this):
break:

CHAPTER

List Boxes and
Tables

One of the fixtures of the Macintosh user interface is a scrolling list of items. A user
picks from that list either by double-clicking on an item in the list or by selecting an
item and then clicking a button. PowerPlant provides support for scrolling lists with
the class LListBox. In this chapter you will see how to create list boxes, using a com-
bination of PowerPlant class features and calls to the ToolBox List Manager.

PowerPlant tables are closely related to scrolling lists, in that they are for display
only and can report back to the program the cell in the table that is currently
selected. This chapter therefore also looks at the PowerPlant class LTable, a simple
class that maintains a grid of columns and rows.

List Boxes

An object of class LListBox provides a simple way to support a list with scroll bars.
Although you can create a subclass of LListBox, if your list box will behave in a stan-

209

210 Chapter 9 ¢ List Boxes and Tables

dard manner, you can create the object directly from LListBox without a subclass. As
an example, we will be looking at the listing of titles managed by the Penultimate
Videos program, which you first saw in Figure 2.6.

LisT BOX RESOURCES

The easiest way to create a list box is to define the object using Constructor. What-
ever you choose for the list box’s superview, the superview must be derived from
LListener. (It it’s not, it won’t be able to respond to double-clicks in the list.) You can
derive a class from LWindow and LListener, or you can use an LDialogBox object.
The title list, for example, is based on a dialog box.

The resource that contains the list box of titles can be found in Figure 9.1. This
resource contains only two objects: the LDialogBox object that is the superview, and
the LListBox object. In this case, the scroll bars are part of the LListBox object rather
than an additional LScroller object.

As you can see in Figure 9.2, a list box has some properties in common with any
other pane. In particular, it has a unique resource ID and a value message (in this
case, the “double click message”). Because the list box in this example has a dialog
box as its superview, the double click message is negative. (Remember that dialog
boxes only listen to negative messages.)

In addition, you can use the properties window to determine which, if any, scroll
bars appear in the list box. You can also set a text traits ID for the list box’s items,
whether the list will have a grow box, and whether a selected item will retain a focus
box when the window is inactive.

BuILDING THE CONTENTS OF A LIST Box

An LListBox object is somewhat incomplete when it is created: It has no columns or
rows. You must add then using ToolBox List Manager calls before adding any items
to the list. Once you’ve added a column and rows, you can then place data in the list’s
cells and display the list.

NOTE

Although there is technically nothing to prevent you from creating an LListBox with
more than one column, the class only supports single-column lists. If you need a multi-
column list, you will need to use a table, which you can place in a scroller.

List Boxes 211

Figure 9.1 A resource containing an LListBox object

lideos and Bémés

The title list resource that we are using as an example can display games, other
videos, or movies. To initiate the building of the correct list, the Penultimate Videos
program first traps the user’s menu selection in the application object’s ObeyCom-
mand function, a portion of which appears in Listing 9.1. Each menu selection calls
the application object’s ItemList function with the type of item the user wants to
modify as an input parameter.

The complete ItemlList function can be found in Listing 9.2. To build the list it
does the following:

« Creates the dialog box (theDialog).
* Retrieves a pointer to the LListBox object (thelList).

212 Chapter 9 ¢ List Boxes and Tables

Figure 9.2 LListBox properties

" eI
ki

Location: ~Binding to Superview:

Top: i
X Top
X Left X right

E Bottom

Left: Yidth:

Height:

Pane 1D: [3101 | [Text X Enabled
User Constant: D [] Text constant X visible

Class ID:
Double Click Msg: |:] Text Message
Text Traits D:[0____|[¥] LDEF:[0__ |

D Horizontal Scrollbar D Has Grow Box
IX VYertical Scrollbar I:l Has Focus Box

&l

Listing 9.1 Trapping menu selections that produce the item list

// For modifying and deleting merchandise items
case cmd_mod_movie:
ItemList (FILM);
break;
case cmd_mod_misc:
ItemList (OTHER);
break;
case cmd_mod_game:
ItemList (GAME);
break;

« Uses the type of merchandise input parameter to determine what the title of the
dialog box’s window should be and sets the title by calling the dialog box’s Set -
Descriptor function.

* Retrieves the handle to the list box’s list of items (theListHand1e) by calling
the list box’s function GetMacListH.

* Adds one column to the list with the ToolBox function LAddCoTumn.

List Boxes 213

Listing 9.2 Setting up the list of titles

void CPPVideoStoreApp::ItemList (int item_type)
{

LDialogBox * theDialog;
LListBox * thelList;

theDialog = (LDialogBox *) LWindow::CreateWindow (WINDOW_MOD_LIST, this);
thelist = (LListBox *) theDialog->FindPaneByID (MOD_LIST_BOX);

if (item_type == FILM)

theDialog->SetDescriptor ("\pChoose Movie to Modify/Delete");
else if (item_type == QTHER)

theDialog->SetDescriptor ("\pChoose Video to Modify/Delete");
else

theDialog->SetDescriptor ("\pChoose Game to Modify/Delete");

ListHandle theListHandle = thelist->GetMacListH(); // get the list box's 1ist handle
::LAddColumn (1, 0, thelistHandle); // add a column to the empty 1ist

MerchItr traversal;
int Type, row = 0;
Merchandise_Item * currentOne;
char * Title;
Cell theCell, * theCellPtr;
// a cell (row & column number) and a pointer to the variable
theCellPtr = &theCell;

for (traversal.Init (Items); !traversal; ++traversal)
{
currentOne = traversal();
Type = currentOne->getItem_type();
if (Type == item_type)
{
Title = currentOne->getTitle();
::LAddRow (1, row, theListHandle); // add a row to the list
::SetPt (theCellPtr, 0, row++);
// initialize the coordinates of the cell just added
::LSetCell (Title, strlen(Title), theCell, thelistHandle);
// add the data
}
)
theList->AddListener (theDialog);
// add listener so message will be sent on double-click
theDialog->SetUserCon (item_type); // save type of item being modified
theDialog->Show();

214

Chapter 9 ¢ List Boxes and Tables

« Creates an in-order iterator for the merchandise item tree that is organized alpha-

betically by item title (traversal).

* Sets up a variable of type Cell (theCe 1) and a variable that contains a pointer to

the cell (theCel1Ptr). The Cell data structure has two integer members:
Cel1.row, which contains the row number, and Ce11. col, which contains the
column number. Because you are working with the ToolBox List Manager, row
and column numbering begins with 0.

» Traverses the merchandise item tree. If an item is of the type that is to be dis-

played in the list box, add a row to the list box with the ToolBox routine
LAddRow. Initialize the cell pointer to the row just added using the ToolBox rou-
tine SetPt. Then, add the item title to the new cell with the ToolBox routine
LSetCell.

* Adds the list box to the dialog box’s list of listeners using the AddListener func-

tion.

* Sets the dialog box’s UserCon variable to the type of item being displayed with

the dialog box’s SetUserCon function. The function that traps a double-click in
the list box will then be able to retrieve this value to determine which Modify di-
alog box to display.

« Displays the dialog box by calling its Show function.

FINDING THE SELECTED LIST ITEM

As with other controls, a window can actively listen for changes in a list box or can
tap the value of the list box when the user signals that he or she is finished (for exam-
ple, by clicking a button.) The New Video Copy dialog box works in exactly this way.
The user highlights the title of the item, makes changes in the other controls in the
dialog box, and dicks the OK button. The program must then figure out which item
in the list box has been highlighted.

To do so, a function must first obtain a pointer to the list box object. Then, it can

use the list box’s GetDescriptor function, which returns the text of the first high-
lighted item in the list:

LListBox * thelist = (LListBox *) theDialog->FindPaneByID
(VCOPY_LIST_BOX):
thelist->GetDescriptor (pascalString); // get first highlighted item

CAPTURING A DOUBLE-CLICK IN A LIST Box

To actively listen for user actions in a list box, a program waits for a double-click.
When the user double-clicks in a scrolling list provided by an LListBox object, the

List Boxes 215

object broadcasts its double-click message. If you have created a subclass for the win-
dow in which the list box appears, the subclass will have a ListenToMessage func-
tion that will include the double-click message. However, if you have not created a
subclass and the application object “owns” the window in which the list box appears,
as is the case in our example, then the application object’s ObeyCommand function
can trap the double-click.

To handle a selection in an LListBox object, a program needs to know the item on
which the user double-clicked. In Listing 9.3, for example, you will find a portion of
the function that processes a selection in the title list dialog box. [The remainder of
this long function (SetUpItemModify) displays one of three Modify dialog boxes,
depending on the type of item identified by the dialog box’s UserCon attribute.]

Listing 9.3 Handling list box selections

LDialogBox * theDialog = dialogResponse->dialogBox;
int item_type = theDialog->GetUserCon(); // retrieve item type

LListBox * thelist = (LListBox *) theDialog->FindPaneByID (MOD_LIST_BOX);
thelist->GetDescriptor (pascalString); // get first highlighted item
convertPascal255 (pascalString, Title);

saveltem = Items->find (Title); // get and save pointer to item
delete theDialog;

To process the selection and obtain enough information to display the Modify dia-
log box, the SetUpItemModi fy function does the following:

* Retrieves a pointer to the dialog box in which the double-click occurred (theD1 -
alogq).

* Retrieves the item type using the dialog box’s GetUserCon function.

* Obtains a pointer to the list box object (thelList).

 Gets the text of the selected item with the list box’s GetDescriptor function.
The text is returned as a Pascal string.

« Converts the Pascal string to a C string using the program’s global utility function
convertPascal2b5.

216

Chapter 9 ¢ List Boxes and Tables

NOTE

The ToolBox does provide a Pascal-to-C conversion routine. However, it modifies the
source string, which isn’t always desirable. Therefore, the Penultimate Videos program
provides its own conversion routines that leave the source string intact.

* Searches the merchandise item tree, which is organized alphabetically by item ti-
tle to locate a pointer to the selected item.
» Removes the dialog box from the screen by deleting the dialog box object.

At this point, the SetUpItemModi fy function has all the information it needs to
display the correct Modify dialog box and retrieve information about the object being
modified, using the procedures you saw in Chapter 8.

Tables

Probably the biggest limitation of LListBox is that it supports only single-column
lists. If you need a list with multiple columns, you will need to use a PowerPlant
table. The basic table class is LTable, which supports an unlimited number of equal-
sized columns and rows. The columns and rows are numbered beginning with 1,
unlike the rows and columns in a list box, which are numbered beginning with 0.

NOTE

At the time this book was written, Metrowerks was working on a more flexible table
class—LTableView—that allows for columns of different widths in the same table.
With CW 8, it can be found in the In Progress folder. If LTable is too restrictive for your
needs, you may want to experiment with LTableView and the other table classes
Metrowerks has been building.

The example we will be using for this discussion is the receipt that is given to a
Penultimate Videos customer whenever he or she rents merchandise. As you can see
in Figure 9.3, titles and their due dates are added to the table at the bottom of the
receipt. Because table cells are the same width and the receipt window needs to have
enough room to display a long item title, the actual table extends past the right edge
of the window. As long as the contents of the second column (the column in which
the date due appears) don’t extend past the right edge of the dialog box, the overly
wide table presents no problem.

Tables 217
Figure 9.3 The rental receipt window
El=————————— Customer Receipt
212711996
) Penultimate Yideos
Renter #: 1 Pv 89 Main Street
Dough, John Anytown, NY 10101
e ___ Date Due __
| Brief History of Time, A | 31211996
| Adrplane I1: The Sequel | 321199
I I
| The area indicated by the dashed-line box is the |
| table; it extends off the right side of the window. |
I Width of one column I
| / |
| =——— = - = - = - - — = — = |
| |
L e e e e e e e — e —— — 1 e e - — 4
NOTE

As you will see in Chapter 11, we can take the panes in the receipt window and install
them in a printing view without modification, making it easy to print the receipt for the

user.

TABLE RESOURCES

As you might expect, the receipt window resource is defined as a PowerPlant object
using Constructor. In Figure 9.4, for example, you can see that the resource contains
some display text, the LTable object, and an LPicture object to contain the com-

pany’s logo. (We will talk about that logo shortly.)

218

Chapter 9 ¢ List Boxes and Tables

Figure 9.4 A view containing an LTable object

PPob 1700, “Receipt”

Customer Receipt

Ty
2 B

You specify the characteristics of an LTable object in its properties window (Figure
9.5). The important values for configuring a table appear in the five boxes at the bot-
tom of the window:

¢ Number of Rows: Enter the number of rows in the table.

¢ Number of Columns: Enter the number of columns in the table.

Row Height: Enter the height, in pixels, of the table’s rows.

e Column Width: Enter the width, in pixels, of the table’s columns.

Cell Data Size: Enter the number of bytes of storage that should be set aside for
each cell in the table.

NOTE
If you leave the Cell Data Size set to the default of 0, PowerPlant won’t allocate any
storage for cell data.

Tables

219

Figure 9.5 LTable properties

Ee—— ITabe D 7 ==——— &
Location: Binding to Superview: i}»-
O 7op
Left: [Jett [right
El Bottom

Pane ID: 1704 [Text I X Enabled
User Constant: IE:, [[] Text constant X visible
Class ID:

Image Size:

Scroll Position:

Width: [:' Horizontal: D Horizontal: I:l
Height: D Vertical: [:] Vertical: D

[:] Reconcile Overhang

~Scroll Unit:

Number of Rows:[15 | You must enter
Number of Columns: ‘Z:I data for these
] values for the
Row Height:[14 | table to work
Column Width: properly
Cell Datg Size: —{-3;
Gl || @

Adding the Logo (LPicture Objects)

Although it may seem out of sequence, this is as good a spot as any to take a quick
aside to look at adding a graphic to a window for display purposes. The Penultimate
Videos logo, which appears in the upper right corner of the receipt, is stored as a
PICT resource (Figure 9.6). The receipt window can therefore use an object of class
LPicture to display it.

To set up an LPicture object, drag the object onto a window from Constructor’s
Tools palette. Position and resize the object as necessary. Then, double-click to open
its properties window (Figure 9.7). Give the object its own unique resource ID and
enter the resource ID of the PICT resource in the PICT resource ID box at the very
bottom of the window. Assuming that the PICT resource is linked to the LPicture

object in this way, the program will retrieve and display the graphic whenever the
window is created.

220 Chapter 9 e List Boxes and Tables

Figure 9.6 A PICT resource that can be attached to an LPicture object

[TE

EE@=——— PICTs from PPUideoStore.rsrc =——Mi:|
aiy

P Pendtinate Vides
89 Main Street
Anvtown, NY 10101

B[]

Figure 9.7 LPicture properties

Location: Binding to Superview: — l}_.
Top:
O Top
Left: [Lett [J Right
D Bottom
L Height:

Pane ID: [1706 [Text D [X] Enabled
User Constant: [:] [] Text constant X visible
Class ID:

r~ Scroll Unit: Scroll Position:

Width: E] Horizontal: D Horizontal: D
Height : D Vertical: D Vertical: [L—_—I

D Reconcile Overhang

PICT Resource ID:
= [

Image Size:

<o

TABLE SUBCLASSES

Unlike a list box, where you have a choice whether to create a subclass, you must cre-
ate a subclass whenever you want to use a table. LTable contains two functions—

Tables

221

DrawSelf and DrawCel1—that are specific to a given table. In many cases Draw-
Self’s default behavior will be acceptable. However, the LTable DrawCe11 function
displays the cell column and row numbers. You must therefore override this function
to display whatever data you want to appear in a table cell.

The class that supports the table on the receipt window can be found in Listing
9.4. It contains constructors, a destructor, a CreateXStream function, and the two
overridden functions: DrawCell and DrawSelf. The remainder of the class’s
behavior and attributes can be inherited directly from LTable.

Listing 9.4 The ReceiptTable class

f#finclude <LTable.h>

class ReceiptTable : public LTable

{

public:

enum { class_ID = ‘'rtab' };

static ReceiptTable * CreateReceiptTableStream(LStream *inStream);
ReceiptTable();

ReceiptTable(LStream *inStream);

virtual ~ReceiptTablie();

virtual void DrawSelf ();

protected:

virtual void DrawCell (const TableCellT &inCell);

INITIALIZING TABLE STORAGE

The LTable class creates an object of class LDynamicArray to hold a table’s data.
However, although the storage is created for you, LTable doesn’t initialize that stor-
age. This means that unless you explicitly take care of clearing out the cells in a table,
any empty cells may display garbage.

The easiest place to intialize table storage is in a table class’s stream input con-
structor. As an example, take a look at the ReceipTable class’s constructor in Listing
9.5. The function first obtains a pointer to a null string. It then calls the LDynamic
Array function GetCount to retrieve the number of cells in the table. (Yes, you do
know how many cells there are in the table because you created the resource for it.
However, this strategy is more flexible than using a constant because you can modify
the table resource at any time without having to modify your code.) The constructor
finishes by calling Set ItemAt to place the null string in each table cell.

222 Chapter 9 e List Boxes and Tables

Listing 9.5 Initializing table storage

ReceiptTable: :ReceiptTable(
LStream * inStream)
: LTable(inStream)

// null out the table storage array

PString null1String = "";

unsigned char * theString = nullString.getmString();

int numbItems = mCellData->GetCount();

for (int i = 1; i <= numbltems; i++)
mCellData->SetItemAt (i, theString);

NOTE
As you will see in Chapter 10, LDynamicArray has many functions in common with
LList. This is because LList is derived from LDynamicArray.

BUILDING THE CONTENTS OF A TABLE

Unlike a list box, where you must build the contents of the list using ToolBox calls, a
class derived from LTable takes care of adding columns and rows itself. LTable also
makes it possible to place data in a cell and retrieve data from a cell without issuing a
ToolBox call.

NOTE

From the “Guaranteed to make you nuts” department: A scrolling list based on an
LListBox object numbers its rows beginning with 0. However, columns and rows in an
object derived from LTable are numbered starting with 1. In particular, the coordinates
of the cell in the upper-left corner of a table are 1,1, not 0.0.

Whenever the user enters a rental, the Penultimate Videos program adds a row to
the table on the receipt window and then redraws the table. The code to manage
adding data to a table cell can be found in Listing 9.6. This code uses a variable
named theCel1, whichis of type TabTeCel1T. Like the cell structure used with the
list box, it has two components, co1 and row.

To place data in the storage allocated for a table cell, first obtain a pointer to the
table object. (FindPaneByID will do the trick.) Then, initialize a TableCel1T
structure with the column and row into which you want to place the data. Finally,
use the table’s SetCel1Data function to pass the cell and the data to the table stor-
age. Note that the data for the table cell must be stored as a Pascal string.

Tables 223

Listing 9.6 Setting table data

// put item into receipt table array

int Title_numb = whichltem->getTitle_numb();

Merchandise_Item * whichTitle = ItemsByNumb->find (Title_numb);
PString itemTitle = whichTitle->getTitle();

PString dueDate = whenDue->showDate(Tdate);

theCell.col = 1;

theTable->SetCellData (theCell, itemTitle);

theCell.col = 2;

theTable->SetCellData (theCell, dueDate);

theCell.row++;

// draw the table
theTable->DrawSelf();
theTable->Refresh(); // make sure everything shows up

It is important to realize that the SetCel1Data function merely places data into
the data structure set aside to hold the contents of the table: It doesn’t display the
table. To make changes appear, you will need to call the table’s DrawSe1f function
and then, depending on how windows are layered on the screen, perhaps the
Refresh function. Refresh is inherited from LPane. Its purpose is to generate an
update event, which forces the entire pane to be redrawn.

DRAWING TABLE CELLS

A table class’s DrawSe1f function should determine which cells need to be updated
and then draw those cells by calling DrawCell. In Listing 9.7 you will find the
receipt table’s DrawSe1f function, which is largely unmodified from that found in
LTable. To determine which cells need updating, the function does the following:

* Obtains the handle of the current update region, expressed in local coordinates,
by calling GetLocalUpdateRgn. This function is inherited from LView.

* Retrieves an update rectangle in local coordinates from the rgnBox variable that
is the bounds of the update structure.

« Uses the ToolBox routine DisposeRgn to get rid of the update region.

« Finds the cell at the top of the update rectangle. Doing so requires two steps. First,
the function translates the local coordinates to image coordinates using Local -

224 Chapter 9 ¢ List Boxes and Tables

Listing 9.7 The ReceiptTable class’s DrawSelf function

void ReceiptTable::DrawSelf()

{
// Determine cells that need updating. Rather than checking
// on a cell by cell basis, we just see which cells intersect
// the bounding box of the update region. This is relatively
// fast, but may result in unnecessary cell updates for
// non-rectangular update regions.

RgnHandle localUpdateRgnH = GetlocalUpdateRgn();
Rect updateRect = (**1ocalUpdateRgnH).rgnBBox;
::DisposeRgn(localUpdateRgnH);

// Find cell at top left of update rect

SPoint32 topLeftUpdate;
TableCellT topLeftCell;
LocalToImagePoint(toplLeft(updateRect), toplLeftUpdate);
FetchCelTHitBy(topLeftUpdate, toplLeftCell);
if (topLeftCell.row < 1) // Lower bound is cell (1,1)

topLeftCell.row 1;
if (topLeftCell.col < 1)

topLeftCell.col 1;

[

// Find cell at bottom right of update rect
SPoint32 botRightUpdate;
TableCellT botRightCell;
LocalTolmagePoint(botRight(updateRect), botRightUpdate);
FetchCellHitBy(botRightUpdate, botRightCell);
// Upper bound is cell (mRows,mCols)
if (botRightCell.row > mRows)
botRightCell.row = mRows;
if (botRightCell.col > mCols)
botRightCell.col = mCols;

// Draw each cell within the update rect
TableCellT cell;
for (cell.row = topLeftCell.row; cell.row <= botRightCell.row; cell.row++) |{
for (cell.col = toplLeftCell.col; cell.col <= botRightCell.col; cell.col++) |
DrawCell(cell);
}

ToImagePoint. Then, it calls FetchCel1Hi tBy, an LTable function that re-
turns the cell that contains a given image coordinate.

* Makes sure that the cell returned by FetchCe11H1 tBy is within the table by ad-
justing the cell so that it is no less than 1,1.

Tables 225

* Finds the cell at the bottom right of the update region, using the same procedure
as that used to find the cell at the top left corner.

* Makes sure that the bottom right cell is within the table by checking it against
mCoTs and mRows, LTable variables that store the number of columns and rows,
respectively.

* Performs a for loop that draws the cells in the update region. The body of the
loop is a call to DrawCel1.

Given a reference to a cell, the DrawCel1 function (see Listing 9.8) takes care of

Listing 9.8 The ReceiptTable class’s DrawCell function

void ReceiptTable::DrawCell (const TableCellT &inCell)
{
PString displayValue;
Rect cellFrame;
if (FetchLocalCellFrame(inCell, cellFrame)) ¢{
::TextFont(times);
::TextSize(12);
::TextStyle(plain);
::MoveTo(cellFrame.left + 4, cellFrame.bottom - 4);
GetCellData (inCell, displayValue);
::DrawString(displayValue);

making the contents of a cell appear. The function does its drawing only if the cell’s
image coordinates are within the view’s frame by calling FetchLocalCel1Frame.
This LTable function converts the cell to local coordinates and returns a Boolean
indicating whether the cell is within the view.

Assuming the cell lies within the view’s frame, then DrawCe11 can proceed with
its drawing. As you can see in Listing 9.8, the function first sets the display text char-
acteristics and moves the pen to the location where drawing should begin (four pixels
offset from the bottom left corner of the cell). Then, it calls the LTable function
GetCel1Data to retrieve the data stored in the cell. Finally, it draws the text.

NOTE
If you are interested in a table class that is designed to show icons rather than text,
experiment with the SmalllconTable class, found in CW 8’s In Progress folder.

226 Chapter 9 ¢ List Boxes and Tables

FINDING THE SELECTED CELL

In the example you have just seen, a table is being used to simplify formatting a dis-
play. However, in some cases you can also use a table in place of a list box. In other
words, a user can highlight a table cell by clicking on it, and a program can identify
the highlighted cell.

When you want to find the selected cell after a user signals you by clicking a but-
ton, use the LTable function GetSelectedCell:

TableCellT theCell;
theTable->GetSelectedCell (theCell);

The function call returns the cell number in the theCel1 variable. You can then use
that cell to retrieve its contents.

CHAPTER

Strings, Lists, and
Files

PowerPlant includes a collection of classes for nongraphic objects such as strings,
lists, and files. Although the user never sees objects created from these classes, they
provide considerable support for program actions. For example, PowerPlant itself
makes extensive use of linked lists to keep track of attachments and subpanes. In this
chapter we will look at these important support classes, focusing on how you can
take advantage of them in your own programs.

Strings

Strings can be the bane of a Macintosh C++ programmer. Because of the Macin-
tosh’s Pascal heritage, many of the ToolBox routines require Pascal, not C, strings.
To make matters worse, even if you store everything as a Pascal string, you’re still
faced with needing to call functions for even the simplest string manipulation. The
traditional solution has been to create a string class that overloads assignment, con-

227

228 Chapter 10 ¢ Strings, Lists, and Files
catenation, and comparison operators. PowerPlant includes a class (LString) that
does just that for Pascal strings. As you will see shortly, the Penultimate Videos pro-
gram has extended that idea by creating a companion class for C strings.

LSTRING AND LSTR255

The base class for PowerPlant Pascal strings is LString. An abstract base class, it sup-
ports a string of any length. The functions and operators it provides are summarized
in Table 10.1. The string comparison operators (==, <, >, <=, >=, and !=) are
declared as global functions.

Table 10.1 LString capabilities

Function/Operator
Length

ConstStringPtr
StringPtr

Int32
double_t
FourCharCode

Assign

Append

Purpose
Returns number of characters in the string
Return a pointer to the Pascal string being managed

Converts string to a long integer
Converts string to a floating point number

Converts a string to a four character code, such as a type
or creator string

Returns the character at the position within the brackets

Assigns one string to another. Overloaded to support sev-
eral types of input.

Concatenates something onto an LString object.

Concatenates either two LString objects, an LString object
and a Pascal string, or an LString object and a char. Over-
loaded to work with the LString on either side of the oper-
ator.

Assigns a value to an LString object. Overloaded to sup-
port input in the forms supported by the = operator. The
= operator functions call Assign.

Concatenates something with an LString object. Over-
loaded to support input in the forms supported by the +=
and + operators. The += and + operator functions call
Append.

Strings

229

Table 10.1 (Continued) LString capabilities

Function/Operator
CompareTo

Find

ReversefFind

BeginsWith

EndsWith
FindWithin

ReverseFindWithin

()

Insert
Remove

Replace

Purpose

Performs a comparison between an LString object and
another LString object, a Pascal string, or a character.
Called by the comparison operator functions.

Searches for a substring within an LString object, begin-
ning at the character position specified in the function call
and searching toward the end of the string. Overloaded to
support input from an LString object, a Pascal string, or a
character.

Searches for a substring within an LString object, begin-
ning at the character position specified in the function call
and searching toward the beginning of the string.

Checks to see if an LString object begins with a given
string.

Check to see if an LString object ends with a given string.
Similar to Find, but always starts its search with the first
character in the string.

Similar to ReverseFind, but always starts its search with
the last character in the string.

Returns a substring starting at a specified position in the
LString object and containing a specified number of char-
acters.

Inserts a substring into an LString object beginning at a
specified position.

Removes a substring from an LString object beginning at a
specified position and with a specified length.

Replaces a substring of an LString object with another
string.

LString is an abstract base class. You therefore have two choices if you want to use
it. First, you can create a subclass, which PowerPlant has already done with LStr255.
Alternatively, you can use PowerPlant’s string template class (TString).

NOTE

LString, LStr255, and TString can all be found in LString.h and LString.cp.

230

Chapter 10 ¢ Strings, Lists, and Files

LStr255 is a subclass of LString that handles a Pascal string of up to 255 characters.
It therefore comes in handy for a number of ToolBox calls, particularly because you
can use an LStr255 object anywhere a function requires a parameter of Str255. Using
a string object also makes string handling easier because you can, in most cases, write
simpler code that avoids explicit function calls. In particular, you can perform string
assignment, concatenation, and comparison using the typical operators.

There is one limitation to the overloaded string operators of which you should be
aware. While most of the overloading allows you to place the string object on either
side of most operators, the [] operator only returns a character at a given position in
the string; it cannot be used on the left side of an assignment operator to change a
character. For example, the following code is valid:

LStr255 myString;
char oneletter;

myString = “Sample String”;
onelLetter = myString(6];

However, the code below won’t work because the compiler expects a pointer (the
location where the character is stored) but instead receives an integer:

LStr255 myString;
myString[7] = ‘z";

SUBCLASSING LSTRING: PSTRING

The Penultimate Video’s class PString is a subclass of LString that is very similar to
LStr255. However, it has a couple of additions to ease conversions between C and
Pascal strings, and in particular, the Penultimate Videos class CString. As you can see
in Table 10.1, the class contains constructors that transform a variety of types of
input (Pascal strings, PString objects, C strings, integers, floating point numbers, and
characters) into a PString. The remainder of its functions, including the overloaded
operators for assignment, concatenation, and comparison, are either global or inher-
ited from LString.

The class also contains a variable called mString, which acts as storage for the
string being managed by an object of this class. LString does not provide any string
storage; you must make it part of a derived class.

The first addition to the PString class is another constructor, which takes a CString
object and converts it to a PString. This constructor is particularly important for Pen-
ultimate Videos because it stores its data as C strings.

Strings 231

Listing 10.1 The PString class

class PString : public LString
{

public:
// constructors : unfortunately, they aren't inherited
PString ();
PString (const PString& inOriginal);
PString (const LString& inOriginal);
PString (ConstStringPtr inStringPtr);
PString (Uchar inChar);
PString (const char * inCString);
PString (const void * inPtr, Uint8 inlLength);
PString (Handle inHandle);
PString (ResIDT inResID, Intl6 inlIndex);
PString (Int32 inNumber);
PString (double_t inNumber, Int8 inStyle, Intl6 inDigits);
PString (FourCharCode inCode);

PString & operator= (const LString& inString) // A1l this is based on LStr255
{
LString::operator=(inString);
return *this;
}

PString & operator= (ConstStFingPtrinStringPtr)
{
LString::operator=(inStringPtr);
return *this;
}

PString & operator= (Uchar inChar)
{
LString::operator=(inChar);
return *this;
}

PString & operator= (const char* inCString)
{
LString::operator=(inCString);
return *this;
}
PString & operator= (Int32 inNumber)
{
LString: :operator=(inNumber);
return *this;

Continued next page

232 Chapter 10 e Strings, Lists, and Files

Listing 10.1 The PString class

PString & operator= (FourCharCode inCode)
{

LString::operator=(inCode);
return *this;
}

// Constructor added to handle CString objects

PString (CString); // source is a CString object

// Function added to return string pointer; alternative is to assign
// the pointer to mStringPtr and use the LString operator StringPtr.
unsigned char * getmString();

protected:
Str255 mString;

The second addition is a function called getmString, which returns a pointer to
the Pascal string being handled by a PString object. The CString class needs this so
that it can accept a PString object as input and translate the contents into CString for-
mat. There are actually two ways to provide this pointer. LString contains a variable
called mStringPtr, which is returned by the ConstStringPtr and StringPtr
functions. The derived class can assign the address of its string storage (in the case of
the PString class, mString) to mStringPtr in its constructors. Alternatively, a
derived class can add a simple function that returns a pointer to mString, without
involvingmStringPtr atall.

ADDING A CLASS FOR C STRINGS: CSTRING

Because Penultimate Videos makes such extensive use of C strings, the program can
be simplified considerably if it has a class for a C string that interacts seamlessly with
a PowerPlant class for Pascal strings. The CString class (Listing 10.2), is a complete C
string class that includes a large number of overloaded operators that work with the
CString object on either side of the operator. The overloading supports CString
objects, PString objects, and standard C strings (Char *).

A CString object can be used anywhere a function expects a char * parameter.
This capability is provided by the overloaded operator char*, whose implementa-
tion simply returns the address of the CString variable cString, a 255-character C
string.

Strings 233

Listing 10.2 The CString class

class CString
{

// operators overloaded as friend functions

// equal to

friend int operator== (CString, char *);
friend int operator== (char *, CString);
friend int operator== (CString, PString);
friend int operator== (PString, CString);

// not equal to

friend int operator!= (CString, char *);
friend int operator!= (char *, CString);
friend int operator!= (CString, PString);
friend int operator!= (PString, CString);

// greater than

friend int operator> (CString, char *);
friend int operator> (char *, CString);
friend int operator> (CString, PString);
friend int operator> (PString, CString);

// greater than or equal to

friend int operator>= (CString, char *);
friend int operator>= (char *, CString);
friend int operator>= (CString, PString);
friend int operator>= (PString, CString);

// less than

friend int operator< (CString, char *);
friend int operator< (char *, CString);
friend int operator< (CString, PString);
friend int operator< (PString, CString);

// less than or equal to

friend int operator<= (CString, char *);
friend int operator<= (char *, CString);
friend int operator<= (CString, PString);
friend int operator<= (PString, CString);

private:
char cString[256]; // 255 character C string
public:
CString (); // create and initialize to null
CString (CString &);
CString (char *);
CString (PString);
char * getcString (); // return pointer to the string itself
int len (); // get length of string
Continued next page

234 Chapter 10 e Strings, Lists, and Files

Listing 10.2 (Continued) The CString class

// overloaded operators

// assignment

void operator= (CString *); // assignment between two C string objects
void operator= (char *); // assignment from a literal

void operator= (PString *); // assignment and conversion from PString

// relationship

int operator== (CString);
int operator> (CString);

int operator>= (CString);
int operator< (CString);

int operator<= (CString);
int operator!= (CString);

// concatenation

void operator+= (CString);
void operator+= (char *);
void operator+= (PString);

// character access
char operator[] (int); // program sends in array index; use on right side of =

// type conversion (lets you use CString in place of char *)
operator char*();

The CString class suffers from the same limitation as PString: The [] operator can
be used only to retrieve a character from a given position in the string. It can’t be
used as the target of an assignment.

NOTE
PString and CString can be found in the files stringobjects.h and stringobjects.cpp.

USING THE STRING CLASSES

Using the PString and CString classes can greatly simplify string handling in a pro-
gram where you are mixing the two types of strings. As an example, look at the block
of code that appears in Listing 10.3, which has been taken from the Penultimate
Video application object’s DisplayTitleInfo function.

The program first declares an object of class PString. It then identifies the dialog
box that triggered the function call and retrieves a pointer to the dialog box’s list box.

Lists

235

Listing 10.3 Using PString and CString objects

// Declare a PString object
PString pascalString;

LDialogBox * theDialog = dialogResponse->dialogBox;
LListBox * thelist = (LListBox *) theDialog->FindPaneByID (TITLE_LIST_BOX);

// Use the PString object to receive the highlighted item
thelist->GetDescriptor (pascalString); // get first highlighted item

// Copy the PString object to a CString object, making the conversion from
// a Pascal string to a C string
CString cTitle = pascalString;

// Use the CString object in place of a C string
Parent = Items->find (cTitle); // find item with that title

Then it calls GetDescriptor to retrieve the text of the highlighted item in the list
box. However, unlike the examples you saw in Chapter 8, in this case the parameter
in which the descriptor is to be returned is a PString object rather than a variable of
type Str255. (Remember, you can use a PowerPlant Pascal string object anywhere a
function requires a Pascal string of the same length.)

Because the purpose of the DisplayTitleInfo function is to display a collec-
tion of information about the selected merchandise item, the function must retrieve
a pointer to the selected item. The Penultimate Videos program stores all its data as
C strings. Therefore, the PString object that contains the descriptor from the list box
must be converted to a CString before it can be used in a search of the binary tree of
titles. To make the conversion, all the program needs to do is create a CString object
and assign the contents of the PString object to it. The CString object can then be
used in the find function in place of a C string.

Lists

As you read earlier, PowerPlant makes extensive use of linked lists to relate objects
within the PowerPlant environment. The same classes that PowerPlant uses for its
own internal purposes are available to help you manage objects within your own pro-
gram.

The list class hierarchy begins with the class LIteratedList, an abstract base class
that provides support for connecting iterators to and removing iterators from a list.

236 Chapter 10 e Strings, Lists, and Files

It does not provide storage for or access to the members of a list. That must be pro-
vided by another class—LDynamicArray. The single derived class provided by Power-
Plant—the one used for many of PowerPlant’s internal data structures— is LList.

CREATING AND MAINTAINING A LIST

LList stores items of any type. As you might expect, typically those items are pointers
to objects. Once you've created the LList object, the class provides the following iter-
ations with the list:

[

Retrieval of the number of items in the list using the GetCount function.
Retrieval of an item at a specified position (index) in the list using the Fetch-
ItemAt function. The items in a list are numbered beginning with 1.
Insertion of one or more items at a specified index in the list using the In-
sertItemsAt function.

Removal of one or more items at a specified index in the list using the Re-
moveltemsAt function.

You may also find some of the FetchIndexOf function—which is inherited from
LDynamicArray—to be useful. It returns the position in the list of an item. In other
words, FetchIndexOf performs a search of the list using a pointer to the item you
want to find.

The Penultimate Videos program uses an object of class LList to connect rented
merchandise items to the customer who rented them. To support the list, the Cus-
tomer class contains a pointer to an LList object (Items_rented). The list object is
created in the class’s constructors with the following statement:

Items_rented = new LList();

This particular constructor sets up a list of unknown length and unknown item size.
Alternatively, you can pass a constructor the size of the item and the number of
spaces to allocate for the list. In both cases, you have defined an empty list. However,
if the items for the list happen to be available, you can pass yet a third constructor the
size of the items and a handle to where they are stored, generating a list that is
already populated.

Whenever a Penultimate Videos customer rents an item, a pointer to that item is
inserted into the linked list of rentals for that customer (see Listing 10.4). In the Rent
function, the program retrieves a pointer to the customer renting the item and then
calls the customer object’s InsertRentedItem function to actually perform the

Lists 237

insertion. As you can see in Listing 10.4,InsertRentedItem contains just a call to
the LList function InsertItemsAt.

Listing 10.4 Functions to insert an object into an LList object

date * Item_copy::Rent (Customer * theRenter, int rentalPeriod)

{

}

DateTimeRec todayRec;
date * today:

::GetTime (&todayRec); // call ToolBox routine to get current date and time
today = new date (todayRec);

*Date_due = (*today) + rentalPeriod; // uses overloaded operators
Renter_numb = theRenter->getRenter_numb();

// put item into customer's LList of rented items
theRenter->InsertRentedItem (this);

In_stock = FALSE;
return Date_due;

void Customer::InsertRentedItem (Item_copy * rentedItem)

{
}

Items_rented->InsertltemsAt (1, arraylndex_Last, &rentedltem);

To insert an item, you must specify three things:

» The number of items to be inserted (in this case, just one).

* The list position after which the new item(s) are to be inserted. In this example,
the function call uses a constant that indicates that the item is to be placed at the
end of the list.

o The address of the item being inserted. Notice in Listing 10.4, for example, that
the item being inserted is a pointer stored in the variable rentedItem. The func-
tion call therefore includes the address of the pointer variable rather than its con-
tents.

Removing an item from a list means you must find the item first and find its posi-
tion in the list. We will leave finding the item for a moment, because it provides a
good place to provide an example of using a list iterator. Therefore, assuming that
you do know an item’s list index, you can remove it with

thelist->RemoveltemsAt (1, index):

238 Chapter 10 ¢ Strings, Lists, and Files

The first parameter specifies the number of items to remove. The second is the start-
ing index in the list.

USING A LIST ITERATOR

You might want to use a list iterator for several reasons. The most obvious is to
traverse the list to access each member. However, you might also want to traverse the
list to search it based on some value other than a pointer to the item (the only type of
search supported by LList through its inherited FetchIndex0f function) or to find
the location for inserting an item when you are keeping the list in some order.

Basic list iteration is provided by the class LListIterator. It supports iteration from
the first or last item in the list, as well as from a specified index position. The four
functions you are most likely to use are these:

¢ Current: Returns the current item.

e Next: Moves to the next item in the list.

« Previous: Moves to the previous item in the list.

» ResetTo: Changes the current index to a specified position.

The first three functions, which actually access items in the list, each return a Bool-
ean that indicates whether the access was successful. For example, if Next or Prior
returns false, you have reached the end of the list.

The beauty of an LListlterator object is that it can keep track of its position in the
list even if the list changes. In other words, if you insert items into or remove items
from a list while an iterator is attached to the list, the iterator remains valid. In fact, if
the associated list object has been deleted, the iterator will gracefully handle the situ-
ation.

The problem with an LListIterator object is that it can’t tell you where it is: It can
return the current object, but can’t return that object’s index. If you happen to be
keeping the list in some order or need to search by something other than a pointer to
the object, then you desperately need to be able to know that index. Admittedly,
given that an iterator adjusts to changes in a list, the possibility exists that an index
returned during a list traversal could be invalid when you try to use it. However, if
you can be certain that the list won’t change in the interval between finding the item
and using the index of that item, then it would be extremely useful to have an iterator
that returned the index.

To solve the problem, the Penultimate Videos program uses a subclass of LListIt-
erator (IndexAccesslterator in Listing 10.5). This class adds a single function to LList-
Iterator that simply returns the value in the iterator object’s mCurrIndex variable.

Files

239

This iterator can then be used in any situation in which there is no chance that the
list will change before the retrieved index is used.

Listing 10.5 The IndexAccesslterator class

class Inde
{
friend

public

xAccessIterator : public LListIterator
class LIteratedList;

IndexAccesslterator (LIteratedList &inList, ArrayIndexT inPosition);
~IndexAccessIterator();

getCurrentIndex();

To see a list iterator in action, take a look at Listing 10.6, the function that removes
an item from a customer’s linked list of rented items. Although a pointer to the item
is available, for demonstration purposes the search uses the item’s inventory number.
The function first creates an iterator object from the IndexAccesslterator class. It
then gets the first item in the list. If the list is empty, the variable search_result
will contain false; otherwise, search_result is true and 1istItem contains a
pointer to the first item in the list.

The function continues to iterate through the list by placing a call to the Next
function in a while. The loop will stop as soon as the function encounters an item
with the correct inventory number or there are no more items in the list. At that
point, the function can remove the item from the linked list by placing a call to the
getCurrentIndex function in the call to RemoveItemsAt.

PowerPlant provides the class named LFile that acts as a wrapper for File Manager
calls. You can use it to manage the entire data and/or resource fork of a file.
Although LFile includes code for opening both the data and resource forks, it only
includes code for reading and writing the data fork; you will need to add your own
code for handling the resource fork.

240

Chapter 10 ¢ Strings, Lists, and Files

Listing 10.6 Using a list iterator

void Customer::RemoveRentedItem (Item_copy * rentedItem)

{

Item_copy * listltem;
Boolean search_result;

// create list iterator
IndexAccessIterator * RIList = new IndexAccessIterator (*Items_rented, 1);

search_result = RIList->Current (&listlItem); // get first item

while (rentedItem->getInventory_numb() != TistItem->getInventory_numb()
&& search_result)

search_result = RIList->Next (&listlItem); // get next item in list

if (!search_result)

// alert goes here

// remove item found
Items_rented->RemoveltemsAt (1, RIList->getCurrentindex());

To demonstrate how an LFile object can simplify file handling, we’ll be looking at
code that opens and saves the contents of a Note object. In Listing 10.7, for example,
you will find code that opens a file containing a note and places the text that has been
read from the note into a Note object.

The OpenNote function first uses the standard GetFile dialog box to obtain a
FileSpec for the file to be opened. In particular, notice that the call to the ToolBox
routine StandardGetFile is bracketed by calls to two UDesktop routines: Deac-
tivateand Activate. You should use these functions whenever your program will
be displaying a modal dialog box, such as the GetFile dialog box. Deactivate makes
the front window inactive and lets the modal dialog box take over event trapping.
You should therefore call it just before displaying a modal dialog box. Activate
makes the front window active again and should be called immediately after a modal
dialog box has been closed.

Although there are several ways to initialize an LFile object, probably the easiest is
to use a FileSpec. As you can see in Listing 10.7, the OpenNote function retrieves the
FileSpec from the data structure returned when the GetFile dialog box is closed. It
then uses that FileSpec as input to a constructor when creating a new LFile object.
Creating the object opens the file. If no file matches the file specified by the FileSpec,

Files 241

Listing 10.7 Opening a note

void Note::0penNote ()

{

StandardFileReply replyStruct;
SFTypelist typelist;

short numTypes = 1;

Str63 fileName;

typeList[0] = 'TEXT'; // read just text files

UDesktop::Deactivate();
::StandardGetFile (nil, numTypes, typelist, &replyStruct);
UDesktop::Activate();

if (lreplyStruct.sfGood) return; // user cancelled
fileSpec = replyStruct.sfFile;

Try_

{
theFile = new LFile (fileSpec);
theFile->0penDataFork (fsRdWrPerm);
Handle tempTextH = theFile->ReadDataFork();
SetTextHandle (tempTextH);
::DisposeHandle (tempTextH);

LScroller * theScroller = (LScroller *) LPane::GetSuperView():
LWindow * theWindow = (LWindow *) theScroller->GetSuperView();
theWindow->SetDescriptor(replyStruct.sfFile.name);

}

Catch_ (inErr)
{

Throw_(inErr);
} EndCatch_

no file will be opened. As you will see shortly, when you want a new file, you must
create it explicitly.

Once the file has been opened, OpenNote opens the file’s data fork for both read-
ing and writing with the LFile function OpenDataFork. Then, the function can use
the function ReadDataFork to load the entire contents of the data fork into mem-
ory, returning a handle to where the data are located.

242

Chapter 10 e Strings, Lists, and Files

NOTE

LFile contains a function related to OpenDataFork—OpenResourceFork—to open the
resource fork of a file. However, there is no file analogous to ReadDataFork for the
resource fork. As mentioned earlier, you will need to code resource fork reads yourself
using File Manager calls.

The next step is to insert the text into the text edit record being managed by a
Note object. To do so, OpenNote calls the LTextEdit function SetTextHandle,
which modifies the Note object so that it uses the handle to the text loaded from the
file to locate a note’s contents. Finally, the function disposes of the handle it created
when loading data and sets the note window’s title to the name of the file from which
data were just loaded.

Saving something in a file’s data fork is almost precisely the opposite of reading
the data fork. As you can see in Listing 10.8, there are two functions that handle sav-
ing a note. SaveNote takes care of writing to the file; SaveAsNote handles naming
a new file.

Because saving a file always involves doing a Save As at least once, let’s look first at
the SaveAs function. To save a file under a new name, the function does the follow-

ing:

Deactivates the front window.

Displays the standard PutFile dialog box to obtain a FileSpec.

Reactivates the front window.

Sets the name of the note window to the file name chosen by the user.
Assuming the user wants to create a new file (rather than replace an existing file
of the same name), creates the file with the LFile function CreateNewData-
Fi1e. Notice that this function requires the creator string, the file type string, and
a constant for the script system that should be used to display the file name. The
0 in Listing 10.8 indicates a Roman script.

* Calls the SaveNote function to write the data to the file.

e o o o 0

NOTE
Constants for script systems can be found in Script.h.

The SaveNote function begins by deleting an existing LFile object, which closes
the file. Then it creates a new object using the stored FileSpec and opens the file’s
data fork. To prepare for writing, SaveNote gets the handle to the text to be written
and locks that handle. Finally, it can use the LFile function WriteDataFork to write
the entire note to the file at once. Notice that SaveNote passes WriteDataFork a
pointer to the text along with the number of bytes to be written.

Files 243

Listing 10.8 Saving a note

void Note::SaveNote ()

{

}

delete theFile; // remove existing file object
theFile = new LFile (fileSpec); // create new object
theFile->0OpenDataFork (fsRdWrPerm);

Handle tempTextH = GetTextHandle ();
StHandlelLocker thelock(tempTextH):
theFile->WriteDataFork (*tempTextH, GetHandleSize (tempTextH));

void Note::SaveAsNote ()

{

StandardFileReply replyStruct;
LStr255 prompt = "Save note as:":
LStr255 fileName;

UDesktop::Deactivate();
::StandardPutFile (prompt, fileName, &replyStruct);
UDesktop::Activate();
if (!freplyStruct.sfGood) return; // user cancelled
fileSpec = replyStruct.sfFile;
LScroller * theScroller = (LScroller *) LPane::GetSuperView();
LWindow * theWindow = (LWindow *) theScroller->GetSuperView();
theWindow->SetDescriptor(replyStruct.sfFile.name);
if (treplyStruct.sfReplacing)

theFile->CreateNewDataFile ('VidS', 'TEXT', 0);
SaveNote();

mustSaveAs = FALSE;

NOTE

In the CW8 InProgress folder, you will find a class called LStreamable. When complete,
this class will act as a mix-in base class for any class whose data values you want to
store in a file. Using overloaded operators inherited from LStream, you will be able to
use the stream insertion and extraction operators to read from and write to a file.
Doing so will be much like using ANSI stream 1/ O, although somewhat simpler because
you won’t need to worry about things such as placing nulls at the end of C strings and
skipping over blanks that follow numbers and precede strings. Keep an eye out for when
this class graduates from “in progress” to becoming a useful part of PowerPlant.

CHAPTER

Repeated Actions:
Periodicals

In Chapter 6, where we looked at editing text, you were introduced to the idea of a
periodical, a class whose objects receive attention at regular intervals, either after
every event (repeaters) or after every idle event (idlers). The most widely visible use of
a periodical in a Macintosh program, of course, is the flashing straight-line insertion
point. However, that isn’t the only instance in which an object needs to receive atten-
tion regularly.

In this chapter we’ll take a more in-depth look at periodicals so you can set up
your own periodicals as needed. The example we’ll be using is the Penultimate Vid-
eos memory monitor window (Figure 11.1), which displays the amount of memory
available to the program at any given time. Once the window has been opened, the
program updates it whenever the amount of free memory changes.

NOTE

Although you probably wouldn’t make this type of information available to users of a
real-world video store management program, the window nonetheless serves as a good
example of a periodical. Because Penultimate Videos is totally memory-based—its data

245

246

Chapter 11 ¢ Repeated Actions: Periodicals

Figure 11.1 The memory monitor window

= Memory Monitor

Amount of free memory:
1734112

are all stored in main memory—it also comes in handy when working on the program
as a warning when memory shortages are likely to occur.

The LPeriodical Class

LPeriodical is a mix-in class: You add it to a derived class to provide additional func-
tionality to whatever the derived class is inheriting from other its other base class(es).
If the class that should receive regular attention is a pane, then it will inherit from at
least the pane class and LPeriodical; if the class is a window, then it will inherit from
at least LWindow and LPeriodical.

The LPeriodical class maintains two linked lists (objects of class LList): one of
repeaters and one of idlers. The class stores pointers to the list objects. Because these
pointers are stored in Static variables, a program maintains only one copy of those
variables, which is shared by all objects that are derived from LPeriodical.

To request that a program give time to a periodical, the program must insert the
periodical into one or both of the periodical lists, using the following functions:

e StartIdling: Inserts a periodical into the idlers list.
» StartRepeating: Inserts a periodical into the repeaters list.

To stop giving time to a periodical, a program removes them from the appropriate
list using the following functions:

» StopIdling: Removes a periodical from the idlers list.
» StopRepeating: Removes a periodical from the repeaters list.

As you may remember from Chapter 1, where we looked at PowerPlant’s event
trapping mechanism, an application object’s ProcessNextEvent function (Listing

Subclassing to Create a Periodical 247

1.3) contains two functions that traverse the periodical lists and handle all periodicals
on those lists: UseId1eT1ime takes care of idle events, including a call to the LPeriod-
ical function DevoteTimeToIdlers, which takes care of objects in the idler list;
DevoteTimeToRepeaters is an LPeriodical function that handles the repeater list.

Both DevoteTimeToldlers and DevoteTimeToRepeaters traverse the
appropriate list and execute each object’s SpendTime function, a pure virtual func-
tion that you must override in a subclass. SpendTime should perform whatever
actions need to occur each time the object gets a chance to execute.

Subclassing to Create a
Periodical

As you have read, a subclass that inherits from LPeriodical must also inherit from at
least one other class. The memory monitor window class, for example, inherits from
both LPeriodical and LWindow (see Listing 11.1). The class includesa FinishCre-
ateSelf function (overriding the LPane function) and a SpendT ime function (over-
riding the LPeriodical function). The FindCommandStatus function takes care of
deactivating the Memory Monitor menu item when a window is open on the screen
so that no more than one memory monitor window appears at any given time.

Listing 11.1 The MemoryMonitor class

class MemoryMonitor : public LWindow, public LPeriodical
{
public:
static MemoryMonitor * CreateMemoryMonitorStream (LStream * inStream);
MemoryMonitor();
MemoryMonitor (LStream * inStream);
~MemoryMonitor();
void FindCommandStatus(CommandTinCommand, Boolean &outEnabled,
Boolean &outUsesMark,Charl6é &outMark,Str255 outName)

void FinishCreateSelf();

void SpendTime (const EventRecord & inMacEvent);
private:

LPane * FreeMemCaption;

long previousFree;

248

Chapter 11 ¢« Repeated Actions: Periodicals

The class’s FreeMemCapt ion variable holds a pointer to the LCaption object that
displays the number of bytes of free memory; the previousFree variable holds the
previous reading of the amount of free memory for determining whether the win-
dow needs to be updated.

Several important things need to happen in a periodical’s member functions. As
you can see in Listing 11.2, the FinishCreateSelf function inserts an object into
both the idler and repeater lists. The destructor removes the object from the lists, a
step that is essential to ensuring that the program doesn’t attempt to access a non-
existent object.

Of course, most of the work occurs in the SpendTime function, which begins by
calling the ToolBox routine FreeMem to retrieve the number of bytes of memory
available to the program. The function could then immediately update the caption
that displays the free memory. However, doing so causes the display to flicker.
SpendTime therefore checks to see if the amount of free memory has changed since
the last time the function was executed and updates the caption only if a change has
occurred.

Programming Support for a
Periodical

The Penultimate Videos application object activates the Memory Monitor menu item
in its application object’s FindCommandStatus function. It then traps selection of
that menu item in its ObeyCommand function, which simply creates the memory
monitor window:

LWindow * theMonitorWindow =
LWindow: :CreateWindow (WINDOW_MEMORY_MONITOR, this);

Because the memory monitor object’s FinishCreateSelf function takes care of
installing the object into the periodical lists, there is nothing else the application
object needs to do.

Programming Support for a Periodical 249

Listing 11.2 The MemoryMonitor class’s member functions

MemoryMonitor * MemoryMonitor::CreateMemoryMonitorStream (LStream * inStream)
{

return (new MemoryMonitor (inStream));
}

MemoryMonitor::MemoryMonitor()
{ // empty
}

MemoryMonitor::MemoryMonitor (LStream * inStream)
: LWindow (inStream)

{
previousfFree = 0;

}

// Destructor

MemoryMonitor::~MemoryMonitor()

{
// Remove object from lists of idlers and repeaters
StopRepeating();
Stopldling();

}

// FinishCreateSelf

void MemoryMonitor::FinishCreateSelf()

{
// Save pointer to caption that displays amount of free memory
FreeMemCaption = (LPane *) FindPaneByID (FREE_MEMORY);
// Add object to 1ists of idlers and repeaters
StartRepeating();
StartIdling();

}

// FindCommandStatus: used to deactivate menu option while window is on screen
void MemoryMonitor::FindCommandStatus(CommandT inCommand, Boolean &outEnabled,
Boolean &outUsesMark, Charl6 &outMark,Str255 outName) v
{
switch (inCommand)
{
case cmd_memory_monitor:
outEnabled = false;
outUsesMark = false;
break;
default:
LWindow: :FindCommandStatus (inCommand, outEnabled, outUsesMark,
outMark, outName);
break;

Continued next page

250 Chapter 11 ¢ Repeated Actions: Periodicals

Listing 11.2 (Continued) The MemoryMonitor class’s member functions

// SpendTime

void MemoryMonitor::SpendTime (const EventRecord & inMacEvent)
{

ffpragma unused (inMacEvent) // suppress error messages

long bytesfFree = ::FreeMem ();
// update only if memory has changed to avoid flicker
if (previousFree != bytesFree)

{
PString stringBytes = bytesFree;
previousFree = bytesfree;
FreeMemCaption->SetDescriptor (stringBytes);
FreeMemCaption->Refresh();

CHAPTER

Printing

Printing from a Macintosh application, while relatively simple for the user, has
always been a challenge from the programmer’s point of view. Fortunately, one of the
things that PowerPlant does well is to simplify programming for printing. For exam-
ple, PowerPlant takes care of figuring out how to break up a document into pages.

In this chapter we will be looking at the way in which PowerPlant implements
printing and in particular at the classes LPrintout, LPlaceholder, and UPrintingMgr.
You will see how to create LPrintout objects that contain LPlaceholder objects, how
to implement the printing process, and how to add support for the Page Setup and
Print dialog boxes.

251

252 Chapter 12 ¢ Printing

How PowerPlant Printing
Works

Like many parts of PowerPlant, printing functions are managed by a sequence of
interlinked functions that belong to more than one class. In this particular case, what
the programmer needs to do and what PowerPlant does are very far removed from
each other. To help you understand what is happened, we’ll first look at what a pro-
gram needs to do to implement printing. Then we’ll explore what PowerPlant does
when a program initiates printing.

A PROGRAM’S PRINTING TASKS
To print the contents of a PowerPlant window, a program does the following:

« Creates an object of class LPrintout. The printout object contains views created
from LPlaceholder.

* Installs views from the window whose contents are being printed into the place-
holders on the printout.

* Tells the printout to print itself.

* Deletes the LPrintout object to return the views from the placeholders to their
original locations.

Before telling the printout to print itself, a program may also display the Print Job
dialog box.

THE PRINTING PROCESS

Before beginning to print, the LPrintout class takes care of dividing the panes or
views being printed into pages. The portion of a pane or view being printed that will
fit on one page is called a panel. In this case, the boundaries of the placeholder into
which a view is installed become the view’s frame for the time the view resides in the
placeholder. A panel is therefore the amount of a view that will fit into the place-
holder’s frame.

The printing process is actually handled by both LPrintout and either LPane or
LView (depending on whether you are printing a pane or a view). When a program
calls the LPrintout function DoPrintJob, the call initiates the following sequence of
actions:

Creating LPrintout Objects 253

* DoPrintJob obtains the print job information (the range of panels to be printed
and the number of copies to print). It then calls PrintPanelRange, another
LPrintout function.

» PrintPanelRange opens the print manager using the UPrintingMgr function
OpenPrinter.Itthen calls LPrintout::PrintCopiesOfPages.

e PrintCopiesOfPages contains a loop that repeatedly calls LPrint -
out::PrintPanel to print the required number of copies of each panel.

e LPrintout::PrintPanel calls either LPane: :PrintPanel or
LView::PrintPanel (depending on whether you're printing a pane or view)
for each pane and subpane in the LPrintout object panel.

e LPane::PrintPanel or LView::PrintPanel takes care of supplying local
frame coordinates and then calls PrintPanelSelf, which by default simply
calls DrawSel f.

LPRINTOUT’S LIMITATIONS

In most cases, you won’t need to subclass LPrintout. Its default behavior can handle
most printing situations. However, although LPrintout does handle the pagination of
multiple-page documents, there are a couple of things that, as a generalized printing
engine, it simply can’t do. In particular, it can’t determine whether the place at which
a page breaks is actually appropriate. For example, if you are printing text, LPrintout
has no way to know if a panel boundary cuts through the middle of a line of text. In
addition, LPrintout doesn’t handle nonplaceholder views or panes well. For example,
you might want to add a letterhead, graphics, or display text to a printout that
doesn’t appear on the screen view. However, you usually can’t add those elements
directly to the LPrintout object and expect them to print properly on a multipage
document.

If you need to determine panel boundaries yourself or want to add items other
than placeholders to printed output, you will need to create a subclass for the view
being printed and override the LPane or LView function PrintPanelSelf. Unfor-
tunately, there’s nothing simple about figuring out where panels should break. Doing
so is very program-dependent and therefore beyond the scope of this book.

Creating LPrintout Objects

The first step in printing is to use Constructor to create an LPrintout object that con-
tains a placeholder for the data to be printed. The simplest LPrintout object used by

254

Chapter 12 ¢ Printing

Penultimate Videos, for example, handles printing a note. As you can see in Figure
12.1, the object contains only one pane: the LPlaceholder object with the resource ID
1502. In contrast, the LPrintout object for handling a printed customer receipt (Fig-
ure 12.2) contains several placeholders, as well as objects of class LPicture and
LCaption.

Figure 12.1 The LPrintout object for printing a note

Z : e PPob 1500, “Printed nt" E

Creating LPrintout Objects 255

Figure 12.2 The LPrintout object for printing a customer receipt

NOTE

Although printing typically doesn’t work well when you place objects other than place-
holders on an LPrintout object, you can often get away with it if a printout will never be
more than one page in size. This happens to be the case for the receipt, which means
that the receipt can contain the Penultimate Videos logo and some display text without
requiring overriding of the LPane function PrintPanelSelf.

To create an LPrintout object, open Constructor and create a new view of type
LPrintout. Then, drag LPlaceholder objects onto the view; resize, number, and move
them as needed.

As you can see in Figure 12.3, an LPrintout object has very few properties with
which you need to be concerned. By default, the size is set to letter-sized paper in a
portrait orientation. However, during the printing process, LPrintout adjusts the size

256

Chapter 12 e Printing

based on the paper size and oriented specified by the user through the Page Setup
dialog box.

Figure 12.3 LPrintout properties

é == | Printout from PPob 1500, “Printed note” =[]
‘.‘(}
Width: Enabled B

E1Z
Height: X Active

User Constant: CI
Class ID:

Page Numbering: @ Across Then Down
O Down Then Across

<l B2

B

The Page Numbering property refers to the order in which panels are numbered
and printed. Assume, for example, that you are printing a large poster containing the
image in Figure 12.4. The poster is far too large to fit on one piece of paper. It there-
fore has been broken up into 18 panels, represented by the heavy lines in Figure 12.4.
These panes can be printed across, moving from left to right beginning in the top
row, or down, moving from top to bottom beginning with the leftmost column. Use
the Page Numbering radio buttons to select the correct panel printing order for your
output.

LPlaceholder’s properties (Figure 12.5) are primarily inherited from LView. How-
ever, the alignment properties at the bottom of the properties window are particu-
larly important. They determine how a portion of a view or pane that is smaller than
the panel in which it is installed will be aligned with the panel’s frame. The align-
ment possibilities affect the printed output in the following way:

* No alignment: The pane or view is resized to fit the panel’s frame.

» Horizontal alignment but no vertical alignment: The pane or view is sized verti-
cally to fit the panel’s height, but the chosen horizontal alignment is used for plac-
ing the pane or view within the panel’s width.

* Vertical alignment but no horizontal alignment: The pane or view is sized hori-
zontally to fit the panel’s width, but the chosen vertical alignment is used for plac-
ing pane or view within the panel’s height.

* Both horizontal and vertical alignment: The pane or view is not resized, but
placed using the horizontal and vertical specifications.

Coding Simple Printing 257

Figure 12.4 Panel “numbering”

Number
across?

Coding Simple Printing

If you want to print without showing the Print Job dialog box, coding the printing is
straightforward. In Listing 12.1, for example, you can see how the Penultimate Vid-
eos application object prints a customer receipt in its PrintReceipt function. The
code uses the same general steps outlined earlier in this chapter.

PrintReceipt first creates an object of class LPrintout (thePrintout). Next,
the function calls FindPaneByID to first get a pointer to one of the LPlaceholder
objects on the printer. It then calls FindPaneBy ID again to get a pointer to the pane
that is to be installed in the placeholder.

To install the pane into the placeholder, PrintReceipt calls the LPlaceholder
function InstallOccupant, passing in the pointer to the pane being installed and a
constant that indicates the alignment to be used. (Alignment constants, such as the
atNone used by Penultimate Videos, can be found in Icons.h.) This process—getting
the pointers and installing the pane—is repeated for each placeholder on thePrint-
out.

258

Chapter 12 ¢ Printing

Figure 12.5 LPlaceholder properties

“E=———— |PlaceHolder ID 1502 =53]
Location: Binding to Superview: R
Top:
Orop
Left:[65 | Width: O Lett [right
[:I Bottom

Height:

Pane ID: Otexto (X Enabled
User Constant: D [] Text constant X visibte
Class ID:

Image Size: —————

~ Seroll Unit: ————— Scroll Position:

Width: CI Horizontal: D Horizontal: D
Height: D Vertical: I:] Vertical: [:I

E] Reconcile Overhang

rHorizontal Alignment: Yertical Alignment:

@ None @ None
O Centered O Centered
O Left flush O Top flush
O Right flush (O Bottom flush
A%
1 B

Once all the panes have been transferred to the printout object, PrintReceipt
calls DoPrintJob. As you read earlier, DoPrintJob initiates a series of actions that
perform the actual printing.

When printing is completed, the panes that were transferred to the printout

object need to be returned to their original location. This activity is performed by
LPrintout’s destructor. A program should therefore delete the printout object.

Adding Support for the Printing Dialog Boxes 259

Listing 12.1 Printing without the Print Job dialog box

void CPPVideoStoreApp::PrintReceipt (SDialogResponse * dialogResponse)
{
// create prinoutout object from resource
LPrintout * thePrintout = LPrintout::CreatePrintout (WINDOW_RECEIPT_PRINTOUT);

// get panes in dialog box and install in placeholders
LPlaceHolder * thePlace = (LPlaceHolder *)
thePrintout->FindPaneByID (RECEIPT_PRINTOUT_DATE);
LView * theView = (LView *) receiptDialog->FindPaneByID (RECEIPT_DATE);
thePlace->Install0ccupant (theView, atNone);

thePlace = (LPlaceHolder *) thePrintout->FindPaneByID (RECEIPT_PRINTOUT_CUST_NUMB);
theView = (LView *) receiptDialog->FindPaneByID (RECEIPT_CUST_NUMB);
thePlace->InstallOccupant (theView, atNone);

thePlace = (LPlaceHolder *) thePrintout->FindPaneByID (RECEIPT_PRINTOUT_NAME);
theView = (LView *) receiptDialog->FindPaneByID (RECEIPT_NAME);
thePlace->InstallOccupant (theView, atNone);

thePlace = (LPlaceHolder *) thePrintout->FindPaneByID (RECEIPT_PRINTOUT_LIST);
theView = (LView *) receiptDialog->FindPaneByID (RECEIPT_TABLE);
thePlace->InstallOccupant (theView, atNone);

// now, print it; Print Job dialog box doesn't appear
thePrintout->DoPrintJob();

// to get the scrolling view back to its window, you must delete the
// printout to trigger its destructor
delete thePrintout;

// close other dialog boxes
CloseRentWindows (dialogResponse);

Adding Support for the
Printing Dialog Boxes

Although there are some situations in which it is acceptable to print without display-
ing the Print Job dialog box and without giving the user access to the Page Setup dia-
log box, in most cases you will want to give users the flexibility those dialog boxes
provide. Because both dialog boxes modify a print record, code that supports them
must allocate a print record and store a handle to that record.

260 Chapter 12 ¢ Printing

As an example of supporting the printing dialog boxes, the Note class turns on the
Page Setup menu option whenever at least one note window is open; printing a note
displays the Print Job dialog box. To provide access to the print record needed to sup-
port both dialog boxes, the Note class includes a variable of type THPrint (mPrint-
RecordH).

Support for Page Setup is usually placed in the ObeyCommand function of a print-
able object. In our example, it appears in the Note class. However, if every window
opened by an application is printable, you may want to place the Page Setup code in
the application object’s ObeyCommand function.

In Listing 12.2 you will find the Page Setup code from the Note class. The Power-
Plant class that forms the basis of this code is UPrintingMgr. The UPrintingMgr class
acts as a wrapper for many Printing Manager functions, including such things as cre-
ating a new print record, obtaining a handle to the class’s print record, and opening
and closing a printer driver.

Listing 12.2 Handling the Page Setup dialog box

case cmd_PageSetup:
UDesktop::Deactivate();

// check for existing print record
if (mPrintRecordH == nil)
mPrintRecordH = UPrintingMgr::GetDefaultPrintRecord();

// display the page setup dialog box
UPrintingMgr: :AskPageSetup(mPrintRecordH);

UDesktop::Activate();
break;

As you can see in Listing 12.2, to provide the Page Setup dialog box, you call the
UPrintingMgr function AskPageSetup, passing it a handle to the print record that
should be modified. If a print record hasn’t been allocated, the call to Ask-
PageSetup will cause a program crash. Therefore, the code first checks for a valid
print record handle and if necessary calls GetDefaultPrintRecord to obtain the
class’s default print record handle. Notice also that because the Page Setup dialog box
is modal, the code deactivates the front window with UDesktop::Deactivate
before displaying the dialog box. Once the dialog box has been dismissed, it makes
the front window active again with UDesktop: :Activate.

As you have read, LPrintout checks a printable class’s print record to determine
the number of copies and page range to print. To give the user the opportunity to

Adding Support for the Printing Dialog Boxes 261

change these values, a Macintosh application displays the Page Job dialog box. A
PowerPlant program can do so with the UPrintingMgr function AskPrintJob.

The code used by the Note class to print itself appears in Listing 12.3. Notice that
this function first creates an LPrintout object. It then determines whether a print
record exists. If there is no print record, it creates one by calling UPrinting-
Mgr::CreatePrintRecord, which returns a handle to the newly created data
structure. Then, it attaches the new print record to the LPrintout object by calling
LPrintout::SetPrintRecord.

Listing 12.3 Printing with the Print Job dialog box

void Note::PrintNote()
{

// Create the LPrintout object
LPrintout * thePrintout = LPrintout::CreatePrintout (WINDOW_NOTE_PRINTOUT);

// Create print record if necessary
if (mPrintRecordH == nil)
mPrintRecordH = UPrintingMgr::CreatePrintRecord();

// Switch the print record
thePrintout->SetPrintRecord (mPrintRecordH);

// Create a pointer to the placeholder

LPlaceHolder * thePlace = (LPlaceHolder *)
thePrintout->FindPaneByID (RETURN_PLACEHOLDER);

// Find ID of the pane that scrolls inside the scroller

LView * theView = (LView *) LTextEditM::FindPaneByID (NOTE_TE);

// Install pane into place holder in printout object

thePlace->Install0ccupant (theView, atNone);

// display Job dialog box

UDesktop::Deactivate();

Boolean PrintIt = UPrintingMgr::AskPrintJob (mPrintRecordH);
UDesktop::Activate();

if (!Printlt)
return; // user cancelled; get out of here

// now, print it
thePrintout->DoPrintdob();

// to get the scrolling view back to its window, you must delete the
// printout to trigger its destructor
delete thePrintout;

262

Chapter 12 ¢ Printing

PrintNote installs the Note object into the LPrintout object’s placeholder. At
that point, the function deactivates the front window, displays the Print Job dialog
box, and then reactivates the front window. At that point, the note is ready to be
printed with DoPrintJob. The final step is to return the Note to its original super-
view by deleting the LPrintout object.

Binary Search Appendix
Trees

A binary search tree is a data structure that organizes elements in key order to provide
fast searches based on that key. Although binary search trees are classic data struc-
tures that have been used for many years, the influence of object-oriented program-
ming has introduced new ways of handling these structures.

In this appendix you will first be introduced to the binary tree data structure along
with algorithms for inserting, searching for, and deleting items. You will also be
introduced to tree traversal algorithms. If you are familiar with classic binary trees,
you can skip this first material. The second major portion of this chapter looks at the
classes and techniques used to implement binary trees in an object-oriented pro-
gram. These latter techniques are used to provide the underlying data management
for the Penultimate Videos sample program.

263

264

Appendix ¢ Binary Search Trees

The Binary Tree Data
Structure

A binary tree is made up of a collection of nodes, each of which is usually contains a
pointer to an object. It is theoretically possible to store an entire object as a node ina
tree. However, more commonly binary trees are viewed like indexes to a book: A
book’s index contains an ordered list of topics and pointers (page numbers) to where
the topic can be found. Using pointers to objects means that the same object can
appear in many trees, yet only be stored in memory once. If we extend the example
of book indexes, a book can contain an index by topic, another by illustration, and
yet another by authors of works cited in the book. In all three cases, the book uses
page numbers as pointers to avoid repeating any information in the text.

A binary tree gets its name from its structure. As you can see in Figure App.1, each
node points to at most two nodes below it (its left child and right child). Each node
also has at most one node above it (its parent).

Figure App.1 A binary search tree

/ Root node
Henry
Left child l
Right child
[| e
Bobby Mary

I |

Anne David Terry
[L—_l

Cathy Edward Veronica

. —

Leaf nodes . Vernon

The Binary Tree Data Structure 265

The node at the top of the tree is called the root. This is the first node that is placed
in the tree and provides the single entry point to the entire tree. It is the only node
that doesn’t have a parent. Any node that has no children is called a leaf.

The tree in Figure App.1 uses a person’s first name as the key by which the nodes
are ordered. In an actual tree, the keys aren’t part of the nodes, but have been
included in the illustration to make it possible to identify the way in which the nodes
are ordered.

If you look at any given node, you will notice that the key of its right child is
greater than the key of the node; the key of its left child is less than the key of the
node. This very simple organizing principle enables very fast searching of the tree.

SEARCHING A BINARY TREE

The most common reason for using a binary tree is for fast searching. If the 10 nodes
of the tree in Figure App.1 were stored in a linked list ordered by name, a program
would need to access every node to find Veronica, the alphabetically last node in the
list. However, when searching the binary tree, a program only needs to access four
nodes to find Veronica. By the same token, an unsuccessful search of a linked list (a
search. where the key for which the program is looking isn’t present in the list)
requires searching every element in the list. In contrast, an unsuccessful search of a
binary tree will require searching only one node at each level in the tree. This means
that in the worst case of an unsuccessful search of the tree in Figure App.1, a program
will at most need to consult only five nodes, whereas if the objects were stored in a
linked list, the program would need to consult 10 nodes.
The process for searching a binary tree can be summarized as follows:

Find the root node and make it the current node.

Compare the search key with the key of the current node.

If the search key and the current node’s key match, the search has been successful.
If the search key is less than the current node’s key, retrieve the current node’s
left child. If the current node has no left child, the search is unsuccessful. Other-
wise, make the left child the current node and continue with Step 2.

5. Ifthe search key is greater than the current node’s key, retrieve the current node’s
right child. If the current node has no right child, the search is unsuccessful. Oth-
erwise, make the right child the current node and continue with Step 2.

Pl ol e

As an example, assume that we are searching for Veronica in Figure App.1. The
search then proceeds in this way:

266

Appendix ¢ Binary Search Trees

Find Henry and make Henry the current node.
Compare Henry to Veronica.

. Veronica is greater than Henry. Therefore, retrieve the right child (Mary) and

make it the current node.
Compare Mary to Veronica.

. Veronica is greater than Mary. Therefore, retrieve the right child (Terry) and

make it the current node.
Compare Terry to Veronica.

. Veronica is greater than Terry. Therefore, retrieve the right child (Veronica) and

make it the current node.

. Compare Veronica to Veronica.
. The search key matches the key of the current node. Therefore, the correct node

has been found and the search ends successfully.

An example of a function to search a binary tree appears in Listing App.1. This

particular function works on a binary tree made up of pointers to Merchandise_Item
objects and is organized by item number. To support the tree, the Merchandise_Item
class includes pointers for an object’s left and right children (the variables Le ftNumb
and RightNumb). The class also includes functions to set the pointers (setLeft-
Numb and setRightNumb) and retrieve the pointers (getLeftNumb and getlLeft-
Numb). As you read through this code, compare it to the general algorithm described
earlier.

INSERTING NODES INTO A BINARY TREE

To inert a node into a binary tree, a program searches the tree until it finds an unused
child pointer that will place the new node in the correct sequence in the tree. The
general algorithm is as follows:

p BN

If the tree is empty, insert the new node as the root node.

Otherwise, find the root node and make it the current node.

Compare the key of the new node with the current node.

If the key of the new node is less than the key of the current node, retrieve the
current node’s left child. If there is no left child, insert the new node as the current
node’s left child. Otherwise, make the left child the current node. Continue with
Step 3.

. If the key of the new node is greater than or equal to the key of the current node,

retrieve the current node’s right child. If there is no right child, insert the new

The Binary Tree Data Structure 267

Listing App.1 Searching a binary tree

Merchandise_Item * MerchTree::find (ANSIstring iTitle)

{

Merchandise_Item * current;

if (root) // make sure there is at least one node

{

current = root;
while (current) // as long as there's a pointer

{

if (strcmp (current->getTitle(), iTitle) == 0)

return current; // send back pointer to merchandise item object

// if less, go down right side

i

f (strcmp (current->getTitle(), iTitle) < 0)
current = current->getRightName();

// if greater, go down left side
else

J
}

return 0;

current = current->getlLeftName();

// not found

node as the current node’s right child. Otherwise, make the right child the current
node. Continue with Step 3.

As an example, assume that we want to insert a new node with a key of Tammy

into the binary tree in Figure App.1. A program performing the insertion would pro-
ceed in this way:

Ealib ol M

AN

10.

Determine that the tree is not empty because a root node exists.

Make Henry the current node.

Compare Tammy to Henry.

Because Tammy is greater than the current node, retrieve the current node’s right
child (Mary).

Because a right child exists, make it the current node.

Compare Tammy to Mary.

Because Tammy is greater than the current node, retrieve the current node’s right
child (Terry).

Because a right child exists, make it the current node.

Compare Tammy to Terry.

Because Tammy is less than the current node, retrieve the current node’s left
child.

268 Appendix ¢ Binary Search Trees

11. Because no left child exists, insert the new node as the left child of the current
node.

A function to insert an object into the tree that orders objects of classes derived
from Merchandise_Item by item number appears in Listing App.2.

Listing App.2 Inserting a node into a binary tree

void MerchTree::Insert (Merchandise_Item * newltem, ANSIstring iTitle, Boolean
file_flag)

{

Merchandise_Item * current, * child;

if (root) // if root node exists
{
current = root;
while (current) // keep going while there's a pointer
{
if (strcmp(current->getTitle(), iTitle) < 0)
{
// go down right side
child = current->getRightName();
if (!child) // if no right child, insert
{
current->setRightName (newltem);
break;

// go down left side
child = current->getLeftName();
if (!child) // if no left child, insert
{
current->setlLeftName (newltem);
break;
}
}
current = child;
}
}
else
root = newltem;
if (!file_flag)
Item_count++;

The Binary Tree Data Structure 269

DELETING ELEMENTS FROM A BINARY TREE

Unlike searching and inserting, both of which are relatively simple, deleting nodes
from a binary tree is somewhat challenging. A program can’t just remove the node; if
anode isn’t a leaf, the space left by the node must be filled with something.

The general algorithm is as follows:

1. Find the node to be deleted, using the search technique discussed earlier in this
appendix.

2. Ifthe nodeis aleaf, set the pointer of its parent to zero. This deletes the node from
the tree, without removing the object from memory.

3. If the node is not a leaf, determine whether the node has children.

4. Determine whether the node is the left or right child of its parent.

5. If the node has a left child but no right child, make the node’s left child the child
of the node’s parent.

6. If the node has a right child but no left child, make the node’s right child the child
of the node’s parent.

7. If the node has both a right child and a left child, find the lowest right node in the
node’s left child tree. Replace the node to be deleted with the lowest right node
in the left child tree.

The trickiest part of the delete algorithm occurs when the node to be deleted has
both right and left children. To see what must happen, assume that you want to
delete Bobby from the tree in Figure App.1. The program first finds Bobby and iden-
tifies the node as the left child of its parent. Then the program finds the lowest right
node in the left child tree. In this case, the left subtree consists of only one node,
Anne. (If Anne had a right child, that program would use that child rather than
Anne.) To finish the delete, the program makes Anne the left subchild of Bobby’s par-
ent (Henry).

An implementation of the delete algorithm for the MerchTree class can be found
in Listing App.3. Notice that this function uses a find function that returns two val-
ues: a pointer to the node to be deleted and a pointer to its parent.

NOTE

If the value of a node’s key value changes, a program must delete the node from the tree
and reinsert it using the new key. Otherwise, the tree will no longer be in the correct
order. Because the Penultimate Videos program maintains a tree by item title and by
customer name (first and last), this procedure must be used whenever a user modifies
the title/name data of either type of object.

270

Appendix ¢ Binary Search Trees

Listing App.3 Deleting a node from a binary tree

Boolean MerchTree::Delete (Boolean deleteCopies, Merchandise_Item * forDeletion,
CopyTree * Copies)

{

Merchandise_Item * theltem, * parent, * rightChild, * leftChild, * parentRightChild;
char * iTitle, * iSystem;

iTitle = forDeletion->getTitle();
if (forDeletion->getItem_type() == GAME)
{
Game * theGame = (Game *) forDeletion;
iSystem = theGame->getSystem();
find (iTitle, iSystem, theltem, parent);
}
else
find (iTitle, theltem, parent);

if (theltem == 0)
return FALSE; // item not found

if (deleteCopies) // remove all copies from copy tree
{
Item_copy * currentCopy, * oldCopy;
int copy_numb;
currentCopy = forDeletion->getFirst();
while (currentCopy)
{
copy_numb = currentCopy->getInventory_numb();
Copies->Delete (copy_numb);
o1dCopy = currentCopy;
delete currentCopy; // remove copy from memory
currentCopy = oldCopy->getNext();

}

rightChild = theltem->getRightName();
leftChild = theltem->getLeftName();
parentRightChild = parent->getRightName();
// used to figure out which side of parent node is on

if (rightChild == 0 && leftChild == 0) // node to be deleted is a leaf
{
if (parentRightChild == theltem)
parent->setRightName (0);
else
parent->setlLeftName (0);

Continued next page

The Binary Tree Data Structure 271

Listing App.3 (Continued) Deleting a node from a binary tree

else if (rightChild == 0) // node to be deleted has left child but no right
{

if (parentRightChild == theltem)
parent->setRightName (leftChild);
else
parent->setlLeftName (leftChild);
}
else if (leftChild == 0) // node to be deleted has right child but no left
{
if (parentRightChild == theltem)
parent->setRightName (rightChild);
else
parent->setlLeftName (rightChild);
}
else // node to be deleted has both right and left children
{
Merchandise_Item * current = theltem;
Merchandise_Item * stack[20];
int stackPtr = -1;

current = current->getlLeftName(); // get left child
while (current) // slide right while right child
{
stack[++stackPtr] = current;
current = current->getRightName ();
}

// replace node to be deleted with node at top of stack
stack[stackPtr]l->setRightName (rightChild);
stack[stackPtr]->setLeftName (leftChild);
if (parentRightChild == theltem)
parent->setRightName (stack[stackPtrl);
else
parent->setlLeftName (stack[stackPtr]);
stack[stackPtr - 1]->setRightName (0);
// parent of rightmost child no longer has child
)
Item_count--;
return TRUE;

272 Appendix ¢ Binary Search Trees

Tree Traversals

The primary reason for creating a binary search tree is to facilitate fast data retrieval.
However, there are also times when you need to retrieve the data stored in the tree in
order. This is known as traversing the tree. There are three general traversals:

* In-order traversal: Nodes appear in whatever ordering is used to construct the
tree. In the example in X, an in-order traversal would produce a listing in alpha-
betical order. To implement an in-order traversal, a program processes a node’s
left subtree, the node itself, and then the node’s right subtree.

* Pre-order traversal: A pre-order traversal processes the node first, followed by its
right subtree and then its left subtree.

« Post-order traversal: A post-order traversal processes a node’s right subtree, its
left subtree, and finally the node itself.

The Penultimate Videos program uses in-order traversals to populate scrolling
lists. However, it uses a pre-order traversal when writing data to a file. The in-order
traversal would produce an alphabetical list in a file. When the file was read back into
memory, the resulting tree would be no better than a linked list. (If you don’t believe
this, create an alphabetical list of a half dozen names and insert them, in order, into a
binary tree.)

THE IN-ORDER TRAVERSAL

To perform an in-order traversal, a program needs to keep track of the nodes it visits
as it travels down a right or left subtree. Therefore, in-order traversal algorithms typ-

ically use a stack to store nodes as the program visits them. The basic process is as
follows:

Find the root node and make it the current node.

Push the current node onto the stack.

Make the current node’s left child the current node.

Repeat steps 2 and 3 until you encounter a node without a left child. This slides

all the way down the left subtree.

Process the node on the top of the stack.

6. Pop the top node from the stack and make it the current node. If the stack is emp-
ty (no node left to pop), stop the traversal.

7. Retrieve the current node’s right child and make it the current node. Go to step 3.

b

b

Object-Oriented Binary Trees 273

8. If there is no right child, the current node becomes the node at the top of the
stack.

9. Go back to step 5.

To see how this works, trace through Figure App.2, which graphically illustrates
the process for the sample tree in Figure App.1.

THE PRE-ORDER TRAVERSAL

As you read earlier, a pre-order traversal processes the node first, followed by its right
subtree and its left subtree. Like the in-order traversal, the pre-order traversal uses a
stack to contain nodes to be processed. The algorithm—which is considerably sim-
pler than that for the in-order traversal-—can be generalized as follows:

1. Push the root node on the stack.

2. Process the node on the top of the stack.

3. Pop the node from the top of the stack, making it the current node. If there is no
-node to pop (the stack is empty), the traversal is complete.

4. If the current node has a left child, push that left child onto the stack.

If the current node has a right child, push that right child onto the stack.

6. Go back to step 2.

b

To see a pre-order traversal in action, trace through Figure App.3, which graphi-
cally illustrates the process for the tree in Figure App.1.

Object-Oriented Binary Trees

The object-oriented way of handling data structures is considerably different from
that used in traditional structured programs. In this section you will learn how
object-oriented trees are managed and how tree traversals are performed. To under-
stand how tree traversals work, you should be very comfortable with operator over-
loading.

274

Appendix ¢ Binary Search Trees

Figure App.2 An in-order tree traversal

1.

10.

current = Henry

Push Henry

current = Bobby

Push Bobby

current = Anne

Push Anne

Process Anne

Pop Anne
current = Bobby

Process Bobby

Pop Bobby
current = Bobby

Henry

Stack

Bobby
Henry

Stack

Anne

Bobby
Henry

Stack

Bobby
Henry

Stack

Henry

Stack

1.

12.

13.

14.

15.

16.

17.

18.

Push David

current = David

Push Cathy

Process Cathy

Pop Cathy
current = David

Process David

Pop David
current = David

Push Edward

David
Henry

Stack

Cathy
David
Henry

Stack

David
Henry

Stack

Henry

Stack

Edward
Henry

Stack

Continued next page

Object-Oriented Binary Trees

275

Figure App.2 (Continued) An in-order tree traversal

19. Process Edward

20.

21.

23.

24.

25.

26.

27.

28.

Pop Edward
current = Henry

Process Henry

Pop Henry
current = Henry

Push Mary

Process Mary

Pop Mary
current = Mary

Push Terry

Process Terry

Pop Terry
current = Terry

Henry

Stack

Stack

Mary

Stack

Stack

Terry

Stack

Stack

29.

30.

31.
32.

33.

34.

Push Veronica
Veronica
Stack
Push Vernon
Vernon
Veronica
Stack
Process Vernon
Pop Vernon
current = Veronica
Veronica
Stack
Process Veronica
Pop Veronica
current = ?
Stack

Traversal stops because there's no
node to pop to make current

276

Appendix ¢ Binary Search Trees

Figure App.3 A pre-order tree traversal

1. Push Henry

2. Process Henry

3. Pop Henry

4. Push Bobby

5. Push Mary

6. Process Mary

7. Pop Mary

8. Push Terry

Henry

Stack

Stack

Bobby

Stack

Mary
Bobby

Stack

Bobby

Stack

Terry
Bobby

Stack

9.

10.

1.

12.

13.

14.

15.

16.

17.

18.

Process Terry

Pop Terry

Push Veronica

Process Veronica

Pop Veronica

Push Vernon

Process Vernon

Pop Vernon

Process Bobby

Pop Bobby

Bobby

Stack

Veronica
Bobby

Stack

Bobby

Stack

Vernon
Bobby

Stack

Bobby

Stack

Stack
Continued next page

Object-Oriented Binary Trees 277

Figure App.3 (Continued) A pre-order tree traversal

19. Push Anne 24. Push Edward Edward
Cathy

Anne Anne

Stack Stack

25. Process Edward
20. Push David

David 2. Pop Edward
Anne Cathy
Stack Anne
Stack
21. Process David 27. ProcessCathy
28. Pop Cathy
22. Pop David Anne
Anne Stack
29. Process Anne
Stack
30. Pop Anne
23. Push Cathy
Cathy Stack
Anne
Traversal stops because next attempt
Stack to pop fails (no nodes left on stack)

TREE CONTAINER CLASSES

Object-oriented programs use container classes to manage data structures. A con-
tainer class is a class designed specifically to “contain” access to a data structure. The
code that you have seen in this appendix for inserting, deleting, and modifying ele-
ments in a binary tree has all come from a container class.

A container class usually doesn’t contain the actual data that make up the data
structure. Instead, it contains just enough information to access the data structure.
For example, a container class that manages a linked list would contain a pointer to
the first element in the list; a container class that manages a tree would contain a
pointer to the root node of the tree. The pointers that link elements in the data struc-

278

Appendix ¢ Binary Search Trees

ture (pointers to the “next” element in a list or to the left and right children in a
binary tree) are part of the objects whose pointers make up the data structure.

The container class for a binary tree actually needs no other variables beyond the
address of the root node. However, as you can see in Listing App.4 (the MerchTree
class, which organizes items alphabetically by title), the container class also holds a
count of the items in the tree and the last item number used. Until the program
deletes a merchandise item, the count of items and the last item number used will
remain the same. However, even when items are deleted, the item numbers continue
to increment as new items are added; item numbers for deleted items are not reused.

Listing App.4 A container class for a binary tree

class MerchTree

{

private:

Merchandise_Item * root;
int Item_count, lastTitle_numb;

public:

system)

MerchTree (int, int); // base constructor

void Insert (Merchandise_Item *, ANSIstring, Boolean);

Merchandise_Item * find (ANSIstring); // find

Game * find (ANSIstring, ANSIstring); // used just for games (based on title and

// Flag indicates whether copies should be deleted along with the title

Boolean Delete (Boolean, Merchandise_Item *, CopyTree *);

void find (ANSIstring, Merchandise_Item * &, Merchandise_Item * &); // for videos
void find (ANSIstring, ANSIstring, Merchandise_Item * &, Merchandise_Item * &);

// for games

int getItem_count();

void setltem_count (int);

int getlastTitle_numb ();

int inclastTitle_numb ();
Merchandise_Item * getRoot();

The container class contains all functions needed to maintain the tree, including
inserting new items, deleting items, and searching for items. It also provides func-
tions that return container class values. However, notice that the container class does
not perform tree traversals. That is left to a special type of class known as an intera-
tor.

Object-Oriented Binary Trees 279

TRAVERSAL ITERATORS

An iterator is a class that performs a traversal of the objects organized by a data struc-
ture. In the case of a linked list, an iterator provides access in first/next or last/prior
order. A binary tree iterator is written to handle one of the three traversal orders
(pre-order, post-order, or in-order). Whenever a program needs to traverse a binary
tree, it creates an iterator object to manage the process.

To understand how an iterator works, let’s first look at some code that uses one.
In Listing App.5, for example, the Penultimate Videos application object is perform-
ing an in-order traversal of the merchandise item tree (an object of class MerchTree
named Items) to display titles in a list box object.

Listing App.5 Using an iterator object

MerchItr traversal;
int Type, row = 0;
Merchandise_Item * currentOne;
char * Title;
Cell theCell, * theCellPtr;
// a cell (row & column number) and a pointer to the variable
theCellPtr = &theCell;

for (traversal.Init (Items); !traversal; ++traversal)
{
currentOne = traversal();
Type = currentOne->getitem_type();
if (Type == item_type)
{
Title = currentOne->getTitle();
::LAddRow (1, row, thelistHandle); // add a row to the 1ist
::SetPt (theCellPtr, 0, rowt++);
// initialize the coordinates of the cell just added
::LSetCell (Title, strlen(Title), theCell, thelistHandle); // add the data

The program first creates an iterator object (traversal, from the class Merch-
Itr). Then it uses a for loop to perform the traversal. The first portion of the for
initializes the iterator with the root node of the tree being traversed and slides all the
way left to find the first node that should be processed. The termination condition
(!traversal) stops the process when an attempt to pop a node off the iterator’s

280

Appendix ¢ Binary Search Trees

stack fails. The increment (++traversal) moves to the “next” node in the tree.
Meanwhile, in the body of the loop, traversal () returns a pointer to a node for
processing.

An In-Order Traversal Iterator

The iterator class that performs an in-order traversal (Listing App.6) maintains a
stack, a stack pointer, and private functions to push items onto and pop items off the
stack and to slide left until a node without a left child is found. The public functions
include the function that initializes the iterator and the overloaded operators that are
used by a program performing a traversal.

Listing App.6 An iterator class for an in-order traversal

class Merchltr

{

private:

Merchandise_Item * stack[25], * root;

int stackPtr;

void push (Merchandise_Item *); // push onto stack
Merchandise_Item * pop (); // pop from stack

void goleft (Merchandise_Item *);

public:

MerchItr ();

int Init (MerchTree *);

int operator++ (); // find node

int operator! (); // check for end of traversal

Merchandise_Item * operator() (); // return pointer to current object

The member functions for the Merchltr class can be found in Listing App.7. First
take a look at the Init function. Notice that it retrieves the root of the tree being
traversed and then calls the goLeft function, which pushes nodes onto the stack
until it reaches a node that has no left child.

The goLeft function works in conjunction with the overloaded ++ operator to
provide the traversal. To see how this happens, take a look at the function for ++. It
first pops the top node off the stack. Then it checks to see if the node just popped has
a right child. If it does, then the function uses goLeft to slide all the way down the
right child’s left subtree.

Object-Oriented Binary Trees 281

Listing App.7 An iterator class’s member functions for an in-order traversal

int MerchItr::Init (MerchTree * tree)

{

int

}

stackPtr = -1; // set stack as empty

root = tree->getRoot(); // initialize current node to root
goLeft (root); // go down left side of tree

return stackPtr >= 0; // is stack empty?

Merchltr::operator++ ()
Merchandise_Item * parent, * child;
if (stackPtr >=0)

parent = pop();

child = parent->getRightName();
if (child)

goLeft (child);

return stackPtr >= 0;

Merchandise_Item * Merchltr::operator() ()

{ return stack[stackPtr]; } // current node is top of stack

void Merchltr::golLeft (Merchandise_Item * Item)

{

}

while (Item)

push (Item);
Item = Item->getLeftName();

int Merchltr::operator! ()

{ return stackPtr >= 0; } // check for end of traversal

void MerchItr::push (Merchandise_Item * Item)

{ stack[++stackPtr] = Item; }

Merchandise_Item * Merchltr::pop ()

[return stack[stackPtr--1; }

Notice that a pop occurs only in the ++ function. When the program asks for a
node to process, the () function sends back the contents of the top of the stack,
without removing it from the stack.

282 Appendix ¢ Binary Search Trees

A Pre-order Traversal Iterator

A class to perform a pre-order traversal is very similar to the class to perform an in-
order traversal. In fact, as you can see in Listing App.8, the only difference between
the MerchltrPre class and the Merchltr class is the absence of a goLeft function,
which the pre-order traversal doesn’t need.

Listing App.8 An iterator class that performs a pre-order traversal

class MerchltrPre
{
private:
Merchandise_Item * stack[25], * root;
int stackPtr;
void push (Merchandise_Item *); // push onto stack
Merchandise_Item * pop (); // pop from stack
public:
MerchItrPre ();
int Init (MerchTree *);
int operator++ (); // find node
int operator! (); // check for end of traversal
Merchandise_Item * operator() (); // return pointer to current object

The differences between the two iterators becomes clearer when you look at the
member functions (Listing App.9). Notice first that the Init function simply pushes
the root node onto the stack to start the traversal, rather than pushing all nodes that
are in the left subtree as is done with an in-order traversal.

To move to the “next” node, the ++ function pops the top node from the stack,
just like the in-order traversal. However, after this point the process changes. The
function looks to see if the node just popped has a left child. If so, it pushes the node
on the stack. It then repeats the procedure for a right child.

NOTE

The beauty of iterators is that the programmer who uses one doesn’t need to be con-
cerned about the internal workings of a traversal. If you look at the code in the Penulti-
mate Videos program—in particular, if you compare the code in the application class’s
Unload function to the code in any function that builds a list of titles—you’ll notice
that both in-order and pre-order iterators are used in exactly the same way. The only
difference is the class from which the iterator object is created.

Object-Oriented Binary Trees 283

Listing App.9 An iterator class’s member functions for a pre-order traversal

MerchltrPre::MerchlItrPre()
{

stackPtr = 0;
root = 0;

int MerchItrPre::Init (MerchTree * tree)

stackPtr = -1;
root = tree->getRoot();
if (root)

push (root); // place root on stack to get traversal started
return stackPtr >= 0; // is stack empty?

int MerchItrPre::operator++ ()
Merchandise_Item * parent, * child;

if (stackPtr >= 0)
{
parent = pop(); // remove current node from stack
child = parent->getLeftName();
if (child)
push (child); // push left child, if any
child = parent->getRightName();
if (child)
push (child); // push right child, if any
}
return stackPtr >= 0;
}

Merchandise_Item * MerchltrPre::operator() ()
{ return stack(stackPtrl; } // returns note at top of stack for processing

int MerchltrPre::operator! ()
{ return stackPtr >= 0; } // check for empty stack and end of traversal

void MerchItrPre::push (Merchandise_Item * Item)
{ stack[++stackPtr] = Item; }

Merchandise_Item * MerchItrPre::pop ()
{ return stack[stackPtr--1; }

Glossary

Action: Something that can be undone.
Active: A property of a pane; any pane in an active window.

Application framework: A shell program that provides basic program services and is
customized and expanded by a programmer.

Attachment: A class that modifies the behavior of another class while a program is
running.

Broadcaster: An object that sends a message that another object (a listener) must act
upon.

Chain of command: The ordering of commanders that determines the order in
which events are passed to commanders for handling.

Commander: A class that listens and responds to messages generated by keystrokes
and menu choices.

Container class: A class that manages a data structure, such as a tree, list, or array.

285

286

Glossary

Enabled: A property of a pane that means that a pane can respond to mouse clicks.
Frame: The rectangle that forms the border of an object.
Idler: An object that receives attention after every idle event.

Iterator: A class that manages the traversal of objects in a data structure such as a
linked list or binary tree.

Listener: An object that listens for a message sent by another object (a broacaster).
Node: An element in a binary tree.

Pane: An area in which a program can draw. A pane also can respond to clicks of the
mouse pointer.

Pane descriptor: A Pascal string describing some major property of a pane, such as
its contents.

Pane value: The integer equivalent of the pane descriptor.
Panel: The portion of a pane or view being printed that will fit on one page.

Periodical: A class whose objects receive attention at regular intervals, either after
every event (repeaters) or after every idle event (idlers).

PowerPlant object: A resource that can be used as the basis of an object created from
a PowerPlant class. ‘

PPob: A PowerPlant object resource.

Registering classes: The action that occurs when a PowerPlant program builds a
table of class IDs and names of constructors to use when creating objects from exter-
nal data sources (usually resource files).

Repeater: An object that receives attention after every event.

Root node: The single node at the top of a binary search tree.
Subcommander: Objects below a commander in the chain of command.
Subpane: A pane that is contained within a view.

Supercommander: An object above a commander in the chain of command.
Superview: The view containing a specific pane.

Synthetic commands: Items for menus such as the ® or Font menu where the menu
items can’t be specified before the program is run.

Target: The single object that is available to listen for and handle a command.

Glossary 287

Traverse (a binary tree): Access the nodes in a tree in some known order.
Value message: The message sent by a broadcaster.

View: A container for panes.

IndeXx

289

290

Index

<PP Starter Header>.h 51
<PP Starter Resource>.rsrc 57
<PP Starter Source>.cp 51

A
Activate 240, 260
AddAttachment 157, 190
AddListener 183, 191, 214
AdjustMenu 146, 150
ANSI support 60
Apple Events 59
Application classes 7—8
Application frameworks 2
Application objects 8

event loop 9-11
AskPageSetup 260
AskPrintdob 261
Attachment

definition 9
Attachments 153-160

B
BackwardErase 160
Binary search trees see Trees
Binding 96-97
Broadcasters 19-20, 191, 205
Buttons 175-177

messages 171

trapping actions in 191-192

C
CalclLocalFrameRect 111, 123
CanRedo 156
CanUndo 156
Chain of command 15
Check boxes
putting values in 196
reading values from 196, 202-207
resources for 180

Classes
application 7-8, 52-57
commanders 13-19
for PowerPlant objects 21
hierarchy of 5
naming conventions 7
registering 21-22

subclasses 53, 87, 97-98, 119-123,

188, 220-221

types of 3—4
Commanders 13-19
Constructor 20

adding panes 91-94

creating menus with 73-79

creating new file 88

creating new resource 89

custom panes 114-123

dialog boxes 167-171

resource properties 90-96

resource types 88

RidL resources 182

tab groups 174-175

tables 218

text traits 136
Container classes 277-278
Controls see Specific types of controls
Coordinate systems 106—-107
CouldBeKeyCommand 14
CPPb 115
CreateNewDataFile 242
CreateObject 24
CreateObject 100
CreatePrintRecord 261
CreateWindow 23, 99-105, 123, 190
Creating

files 240

lists 236-238

printout objects 253-256
Current 238
Custom panes 114-123

Index

291

D
Deactivate 240, 260
DevoteTimeToldlers 141, 247
DevoteTimeToRepeaters 141, 247
Dialog boxes

displaying 188-190

example of 200

removing 192

resources for 167171
DisableMenu 146
DispatchEvent 11
Display text

reading values from 199

resources for 172

setting text 199
DoPrintJob 252-253, 258
DrawCel1 221, 223, 225
Drawing

coordinate systems 106—107

with QuickDraw 107-111

DrawSelf 87, 107-111, 119, 121-123,

206, 221, 223, 253

E
Edit fields
clearing 194-195
putting data in 193
resources for 173-175
retrieving data from 193
EnableMenu 146
Event loop 9-11
EventKeyDown 14
ExecuteAttachments 11

F

FetchCellHitBy 224
FetchIndex0f 236
FetchItemAt 236
FetchLocalCellFrame 225

Files
creating 240

FindCommandStatus 13, 52, 53, 80-82,
150, 152, 153, 247

FindKeyCommand 14

FindPaneByID 190, 191, 214, 215, 222,
257

FinishCreate 101-104

FinishCreateSelf 87, 101-104, 129,
144,204, 247

Font menu 146-153

ForewardErase 160

Frame 86

G

GetBytes 100

GetCount 221, 236
GetDefaultPrintRecord 260
GetDescriptor 193, 196, 199, 214
GetDescriptor 197
GetFontNumber 153
GetFontSize 153
GetLocalUpdateRgn 223
GetMacListH 212

GetMacTEH 138
GetMovieFromFile 112
GetSelectedCell 226
GetTextHandle 138
GetUserCon 215

GetValue 193, 196, 197
Global coordinates 106-107
GlobalToPortPoint 107

H
HandleKeyPress 14

I

Idlers 140-141, 245-248
Image coordinates 106-107
ImagePointIsInFrame 107

292

Index

ImageRectIntersectsFrame 107
ImageToLocalPoint 107
Initialize 112
InitTextEdit 141, 156
InputCharacter 160
Insertion point 191
InsertItemsAt 236
InstallMenu 79
InstallOccupant 257
IsSyntheticCommand 150
Iterators 238-239, 279-283

L
LAction 153-160
LApplication 7-8, 13, 52
LBroadcaster 4, 19-20
LCaption 172, 178, 199
LCommander 13, 191
LControl 4, 19
LDataStream 100
LDialogBox 5, 19, 21, 167-171, 176, 191,
200
LDocApplication 7-8, 52
LDocument 7-8, 13, 52
LDynamicArray 221, 236
LEditField 13, 15, 18, 173-175
LEventDispatcher 11
LFile 4, 239-243
LGrafPortView 21
LinkListenerToControls 19, 182, 204
List boxes
adding columns to 211-214
adding rows to 211-214
double-clicks in 214-216
finding selected item 214
resources for 210
List iterators 238-239
Listeners 19-20, 190-191, 205
ListenToMessage 188, 204, 205, 215
Lists

creating 236238
inserting items in 236
iterators 238239
removing items from 236
retrieving items from 236
LIteratedList 235
LList 235-239
LListBox 13, 209-216
LListener 19-20, 204
LListIterator 238
LMenu 4, 5
LMenuBar 4, 5, 79
LMovieController 111, 112, 114, 140
Local coordinates 106—107
LocalToImagePoint 107,223
LocalToPortPoint 107
LPane 4, 87, 95, 114, 120
LPeriodical 140-141, 246-247
LPicture 219
LPlaceholder 252262
LPrintout 21, 252-262
LRadioGroup 180
LScroller 129-132
LSingleDoc 7-8, 52
LStdButton 5, 175-177
LStdCheckBox 180, 196, 202-207
LStdPopupMenu 5, 177-179, 197-198
LStdRadioButton 179-180, 196-197
LStr255 228-232
LString 228-232
LTabGroup 13, 18, 174-175
LTable 175, 216226
LTEClearAction 155-160
LTECutAction 155-160
LTEPasteAction 155-160
LTETextAction 155-160
LTextEdit 13, 15, 128-146, 193-195
LUndoer 153-160, 190
LView 21

Index

293

Lwindow 13, 19, 20, 21, 23, 90-91, 171,
204

M
MBAR resource 68, 73, 79
MBAR_Initial 79
Mcmd resource 68, 69-70, 71, 73-79
Menu bar 79
MENU resource 68, 7379
adding menu item 77-78
creating new 7677
maintaining 79
Menus
activating 80-82
constants for 71-72
deactivating 80—82
popup 177-179, 197-198
trapping selections in 82—83
Messages
default dialog box button 171
Messages, value 19
MessageT 71
mFrameLocation 86
mFrameSize 86
mPanelD 86

N
Next 238

(0]
ObeyCommand 15, 52, 53
ObeyCommand 13, 82—-84, 158, 188, 191,
204, 211, 215, 248, 260

Objects

application 8

on and off duty 18-19

PowerPlant 20-27

printout 253-256

subclasses 220-221
ObjectsFromStream 24, 100

On and off duty objects 18-19
OpenDataFork 241
OpenPrinter 253
OpenResourceFork 242

P
Page Setup dialog box 259-262
Panels 252
Panes 24-27
adding to resources 91-94
attributes of 86, 94-96
binding 96-97
coordinate systems 106—107
creating resources for 88—97
custom 114-123
drawing in 105, 107-111
frame 86
non-PowerPlant objects 111-114
properties of 94-96
resource IDs 94, 95
subclasses for 87, 97-98, 119-123
Periodicals 140-141, 245-248
PICT resources 117, 119
Popup menus
putting values into 197-198
reading values from 197-198
resources for 177-179
Port coordinates 106107
PortToGlobalPoint 107
PortToLocalPoint 107
PostAction 158
PowerPlant
application framework 2
installing 3
PowerPlant objects 20-27
class ID 21
creating 23-24, 99-105
registering 21-22
PP Action Strings.rsrc 57, 157
PP DebugAlerts.rsrc 57

294

Index

PP_Messages.h 71
Precompiled headers 61-64
Previous 238
Print Job dialog box 259-262
PrintCopiesOfPages 253
Printing
creating objects for 253-256
installing placeholder occupants 257
Page Setup dialog box 259-262
Print Job dialog box 259-262
steps in 252-253
tasks for 252
PrintPanel 253
PrintPanelRange 253
PrintPanelSelf 253
ProcessCommand 188
Projects

starter 49-50

Q

QuickTime
classes for 111
closing 112
initializing 112
playing a movie 112

R
Radio buttons
putting values in 196—-197
reading values from 196-197
resources for 179—180
ReadData 100, 120
ReadDataFork 241
ReadObject 24
ReadObjects 100
Redo 153-160
Redo 156, 158
RedoSelf 156
Refresh 206
RegisterAl11PPClasses 22

RegisterClass 22,96
RemoveltemsAt 236
Repeaters 140141, 245-248
ResetTo 238
Resource IDs 95
Resources 57-58
constants for 183-184
PICT 219
RidL 182-183
Resources see alsoSpecific types of resources
Resources see Constructor
RidL resources 182—-183
Run 9

S
ScrollImageBy 131, 132
Scrolling 129-132
Scrolling lists
adding columns to 211-214
adding rows to 211-214
double-clicks in 214-216
finding selected item 214
resources for 210
SendAEQuit 59
SetCellData 222
SetDescriptor 193, 196, 197, 199, 212
SetDescriptor 144
SetItemAt 221
SetLatentSub 142
SetPrintRecord 261
SetTextHandle 138, 242
SetTextPtr 138
SetTextTraitsID 136
SetUserCon 214
SetValue 193, 196, 197, 198
Show 190, 214
Size menu 146-153
Source code
starter 51
subclassing 53

Index

SpendTime 141, 247, 248
StartIdling 246
StartRepeating 246
StartUp 52

Startup 59
StColorPenState 111
StopIdling 246
StopRepeating 246
Stream I/0 60

StResource 100

Strings 227-235

Style menu 146-153
Subclasses 53, 87, 97-98, 119-123, 188
Subcommanders 15, 18
Supercommanders 15
SwitchTarget 18, 191
Synthetic commands 68

T

Tab groups 174-175

Tables
drawing cells 223-225
finding selected cell 226
initializing storage for 221
placing data in 222-223
resources for 217-218
subclasses for 220-221

Target
allowing objects to become 90
definition 15-18
switching 18, 191

Text editing see LTextEdit 128

Text menus 146-153

Text traits 136

Thermometers 114-123

Trees
container classes for 277-278
deleting items from 269-271
in-order traversal 272273, 280
inserting items into 266-268

iterators for 279-283
pre-order traversal 273, 282
searching 265266
structure of 264—265

U

UDesktop 240, 260
UFontMenu 146

Undo 153-160, 190
Undo 156

UndoSelf 156
UPrintingMgr 4, 253, 260-261
UQuickTime 111
UQuickTime.cpp 111
UReanimator 19, 24
URegistrar 22, 100
UseldleTime 141, 247
UserChangedText 158
UserCon 171,214
USizeMenu 146
UStyleMenu 146
UTextMenusBase 146

\'%
Value message 19
Views 24-27

W
Window RefCon 171
WriteDataFork 242

WARRANTY DISCLAIMER

METROWERKS AND METROWERKS’ LICENSOR(S), AND THEIR
DIRECTORS, OFFICERS, EMPLOYEES OR AGENTS (COLLECTIVELY
METROWERKS) MAKE NO WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
REGARDING THE SOFTWARE. METROWERKS DOES NOT WARRANT,
GUARANTEE OR MAKE ANY REPRESENTATIONS REGARDING THE
USE OR THE RESULTS OF THE USE OF THE SOFTWARE IN TERMS
OF ITS CORRECTNESS, ACCURACY, RELIABILITY, CURRENTNESS OR
OTHERWISE. THE ENTIRE RISK AS TO THE RESULTS AND PERFOR-
MANCE OF THE SOFTWARE IS ASSUMED BY YOU. THE EXCLUSION
OF IMPLIED WARRANTIES IS NOT PERMITTED BY SOME JURISDIC-
TIONS. THE ABOVE EXCLUSION MAY NOT APPLY TO YOU.

IN NO EVENT WILL METROWERKS AND METROWERKS’
LICENSOR(S), AND THEIR DIRECTORS, OFFICERS, EMPLOYEES OR
AGENTS (COLLECTIVELY METROWERKS) BE LIABLE TO YOU FOR
ANY CONSEQUENTIAL, INCIDENTAL OR INDIRECT DAMAGES
(INCLUDING DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSI-
NESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, AND THE
LIKE) ARISING OUT OF THE USE OR INABILITY TO USE THE SOFT-
WARE EVEN IF METROWERKS HAS BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGES. BECAUSE SOME JURISDICTIONS DO
NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR
CONSEQUENTIAL OR INCIDENTAL DAMAGES, THE ABOVE LIMITA-
TIONS MAY NOT APPLY TO YOU. Metrowerks liability to you for actual
damages from any cause whatsoever, and regardless of the form of the
action (whether in contract, tort (including negligence), product liability or
otherwise), will be limited so as not to exceed the cost of the replacement of
the media on which the software is distributed.

SOFTWARE LICENSE

PLEASE READ THIS LICENSE CAREFULLY BEFORE USING THE
SOFTWARE. BY USING THE SOFTWARE, YOU ARE AGREEING TO
BE BOUND BY THE TERMS OF THIS LICENSE. IF YOU DO NOT
AGREE TO THE TERMS OF THIS LICENSE, PROMPTLY RETURN
THE UNUSED SOFTWARE TO THE PLACE WHERE YOU OBTAINED
IT AND YOUR MONEY WILL BE REFUNDED.

1. License. The application, demonstration, system and other software
accompanying this License, whether on disk, in read only memory, or on
any other media (the “Software”) the related documentation and fonts are
licensed to you by Metrowerks. You own the disk on which the Software
and fonts are recorded but Metrowerks and/or Metrowerks’ Licensor retain
title to the Software, related documentation and fonts. This License allows
you to use the Software and fonts on a single Apple computer and make one
copy of the Software and fonts in machine-readable form for backup pur-
poses only. You must reproduce on such copy the Metrowerks copyright
notice and any other proprietary legends that were on the original copy of
the Software and fonts. You may also transfer all your license rights in the
Software and fonts, the backup copy of the Software and fonts, the related
documentation and a copy of this License to another party, provided the
other party reads and agrees to accept the terms and conditions of this
License.

2. Restrictions. The Software contains copyrighted material, trade secrets
and other proprietary material. In order to protect them, and except as
permitted by applicable legislation, you may not decompile, reverse
engineer, disassemble or otherwise reduce the Software to a human-per-
ceivable form. You may not modify, network, rent, lease, loan, distribute or
create derivative works based upon the Software in whole or in part. You
may not electronically transmit the Software from one computer to anoth-

er or over a network.

3. Termination. This License is effective until terminated. You may
terminate this License at any time by destroying the Software, related
documentation and fonts and all copies thereof. This License will termi-
nate immediately without notice from Metrowerks if you fail to comply with
any provision of this License. Upon termination you must destroy the
Software, related documentation and fonts and all copies thereof.

4. Export Law Assurances. You agree and certify that neither the Software
nor any other technical data received from Metrowerks, nor the direct
product thereof, will be exported outside the United States except as
authorized and as permitted by the laws and regulations of the United
States. If the Software has been rightfully obtained by you outside of the
United States, you agree that you will not re-export the Software nor any
other technical data received from Metrowerks, nor the direct product
thereof, except as permitted by the laws and regulations of the United
States and the laws and regulations of the jurisdiction in which you
obtained the Software.

5. Government End Users. If you are acquiring the Software and fonts on
behalf of any unit or agency of the United States Government, the following
provisions apply. The Government agrees: (i) if the Software and fonts are
supplied to the Department of Defense (DoD), the Software and fonts are
classified as “Commercial Computer Software” and the Government is
acquiring only “restricted rights” in the Software, its documentation and
fonts as that term is defined in Clause 252.227-7013(c)(1) of the DFARS; and
(ii) if the Software and fonts are supplied to any unit or agency of the
United States Government other than DoD, the Government’s rights in the
Software, its documentation and fonts will be as defined in Clause 52.227-
19(c)(2) of the FAR or, in the case of NASA, in Clause 18-52.227-86(d) of the
NASA Supplement to the FAR.

6. Limited Warranty on Media. Metrowerks warrants the diskettes and/or
compact disc on which the Software and fonts are recorded to be free from
defects in materials and workmanship under normal use for a period of
ninety (90) days from the date of purchase as evidenced by a copy of the
receipt. Metrowerks’ entire liability and your exclusive remedy will be
replacement of the diskettes and/or compact disc not meeting Metrowerks’
limited warranty and which is returned to Metrowerks or a Metrowerks
authorized representative with a copy of the receipt. Metrowerks will have
no responsibility to replace a disk/disc damaged by accident,abuse or

misapplication. ANY IMPLIED WARRANTIES ON THE DISKETTES

AND/OR COMPACT DISC, INCLUDING THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY (90) DAYS FROM THE

DATE OF DELIVERY. THIS WARRANTY GIVES YOU SPECIFIC LEGAL
RIGHTS, AND YOU MAY ALSO HAVE OTHER RIGHTS WHICH VARY BY
JURISDICTION.

7. Disclaimer of Warranty on Apple Software. You expressly acknowledge
and agree that use of the Software and fonts is at your sole risk. Except as
is stated above, the Software, related documentation and fonts are provid-
ed “AS IS” and without warranty of any kind and Metrowerks and
Metrowerks’ Licensor(s) (for the purposes of provisions 7 and 8,
Metrowerks and Metrowerks’ Licensor(s) shall be collectively referred to as
“Metrowerks”) EXPRESSLY DISCLAIM ALL OTHER WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. ACADEMIC PRESS DOES NOT WARRANT THAT
THE FUNCTIONS CONTAINED IN THE SOFTWARE WILL MEET YOUR
REQUIREMENTS, OR THAT THE OPERATION OF THE SOFTWARE WILL
BE UNINTERRUPTED OR ERROR-FREE, OR THAT DEFECTS IN THE
SOFTWARE AND THE FONTS WILL BE CORRECTED. FURTHERMORE,
ACADEMIC PRESS DOES NOT WARRANT OR MAKE ANY REPRESENTA-
TIONS REGARDING THE USE OR THE RESULTS OF THE USE OF THE
SOFTWARE AND FONTS OR RELATED DOCUMENTATION IN TERMS OF
THEIR CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE. NO
ORAL OR WRITTEN INFORMATION OR ADVICE GIVEN BY ACADEMIC
PRESS OR AN ACADEMIC PRESS AUTHORIZED REPRESENTATIVE
SHALL CREATE A WARRANTY OR IN ANY WAY INCREASE THE SCOPE OF
THIS WARRANTY. SHOULD THE SOFTWARE PROVE DEFECTIVE, YOU
(AND NOT ACADEMIC PRESS OR AN ACADEMIC PRESS AUTHORIZED
REPRESENTATIVE) ASSUME THE ENTIRE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION. SOME JURISDICTIONS DO NOT
ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE
EXCLUSION MAY NOT APPLY TO YOU.

8. Limitation of Liability. UNDER NO CIRCUMSTANCES INCLUDING NEG-
LIGENCE, SHALL ACADEMIC PRESS BE LIABLE FOR ANY INCIDENTAL,
SPECIAL OR CONSEQUENTIAL DAMAGES THAT RESULT FROM THE
USE OR INABILITY TO USE THE SOFTWARE OR RELATED DOCUMEN-
TATION, EVEN IF ACADEMIC PRESS OR AN ACADEMIC PRESS AUTHO-
RIZED REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES. SOME JURISDICTIONS DO NOT ALLOW THE LIMITA-
TION OR EXCLUSION OF LIABILITY FOR INCIDENTAL OR CONSE-

QUENTIAL DAMAGES SO THE ABOVE LIMITATION OR EXCLUSION MAY
NOT APPLY TO YOU.

In no event shall Metrowerks’ total liability to you for all damages, losses,
and causes of action (whether in contract, tort (including negligence) or
otherwise) exceed that portion of the amount paid by you which is fairly
attributable to the Software and fonts.

9. Controlling Law and Severability. This License shall be governed by and
construed in accordance with the laws of the United States and the State of
California, as applied to agreements entered into and to be performed
entirely within California between California residents. If for any reason
a court of competent jurisdiction finds any provision of this License, or
portion thereof, to be unenforceable, that provision of the License shall be
enforced to the maximum extent permissible so as to effect the intent of the
parties, and the remainder of this License shall continue in full force and
effect.

10. Complete Agreement. This License constitutes the entire agreement
between the parties with respect to the use of the Software, the related
documentation and fonts, and supersedes all prior or contemporaneous
understandings or agreements, written or oral, regarding such subject
matter. No amendment to or modification of this License will be binding
unless in writing and signed by a duly authorized representative of
Metrowerks.

[cut here]

Become a CodeWarrior now!

Order the commercial version of
Metrowerks CodeWarrior!

Metrowerks CodeWarrior delivers three times a §)
year. When you buy CodeWarrior and register
with Metrowerks, you will receive free updates
throughout the year.

CodeWarrior Gold
(For Power & 68K Macintosh,
Win32/x86, MagicCap, Be, Java) $399

Discover Programming for Macintosh
(For 68K Macintosh development) $79

Discover Programming with Java
(For Java development) $99

Metrowerks CodeWarrior.
The world’s best-selling
Macintosh development tools.

Metrowerks is continually adding new features and products.
Check our website for the latest products, prices and Geekware.

Gold @Us$399ea. X __= _
Discover Programming for Macintosh
@Us $79ea. X__=
Discover Programming with Java
@us$99ea. X___=
Subtotal
Plus sales tax & shipping
(as may apply)
Total
Method of Payment
QVIsA
Q Mastercard Exp. Date (M/Y)
Credit Card Number

INNNNNNRNNNERNEEDR

Metrowerks CodeWarrior

Order Form

First & Last name

Street

City/State/Prov. Zip/Postal Code

Email address

Phone number

Signature Date Ordered

Fax to: (512) 873-4901 or call (800) 377-5416

or Mail to: Metrowerks Corp
Dept 334
P.0. Box 9700
Austin, TX 78766-9700

For Sales info:

WWW: http://www.metrowerks.com
Voice: (512) 873-4700

Fax: (512) 873-4901

Email: sales@metrowerks.com

Prices and product availability may change without notice - check our website for the

|atest information.

About the CD-ROM

The CD-ROM that accompanies this book contains the source code, supporting files,
and project files for the Penultimate Videos program in a folder named Penultimate
Videos. To compile and run the program, first make sure that you have PowerPlant
installed. (See the last paragraph of this section if you don’t own CodeWarrior
already.) Also be sure that you have QuickTime in your Extensions folder and, if you
are working on a PowerMac, the QuickTime PowerPlug. The PowerPlug is required
to run QuickTime from native PowerPC code.

Copy the Penultimate Videos folder to your hard disk. Then, move the files
PP_VidSHeaders and PP_VidSHeaders (68K) from the Penultimate Videos folder to the
Precompiled Headers folder (inside the PowerPlant Folder, which is inside the
MacOS Support folder, which is inside the Metrowerks CodeWarrior folder). At this
point, you can open the appropriate project file (68K or PPC) and go.

NOTE
If you have a lot of fonts, the Penultimate Videos program may take a while to launch
because it must build a font menu.

If you don’t yet have your own copy of the CodeWarrior development software,
install CodeWarrior Lite that comes on the CD-ROM. This version of CodeWarrior
will allow you to run and view the sample programs. However, the text editor’s Save
option has been disabled so that you won’t be able to save any changes made to
source code files.

Programming/Macintosh

Famnrianmaan’
W i v;' WA N Sorwnne Devoener Ui PowenPuanr
Jan L Haniweron

This pgckage is designed to give Macintosh programmers all they need to develop object-oriented apphica-
tions. The CD includes CodeWarrior Lite and all the source code for the book. The book provides in-
depth coverage of the PowerPlant application framework and the classes that support it.

Key Features

* Designed for C++ programmers who want to develop object-oriented software applications
for the Macintosh E

» Covers CodeWarrior 8

* Demystifies the complexity of the PowerPlant environment by identifying common elements
among classes and explaining how those elements are used within the PowerPlant program

« Contains tips that will help someone learning to work with PowerPlant avoid common pitfalls
and errors

» Uses one large example program, rather than a collection of small programs, to illustrate effectively
the scope and complexity of a realistic Macintosh program

About the Author

Jan L. Harrington is the author of C++ Programming with CodeWarrior. She has been working with and
writing about the Macintosh since 1984. She is the author of more than 20 books, including Macintosh
Assembly Language: A Primer, Navigating Svstem 7, and Fix Your Mac: Upgrading and Troubleshooting.
She also teaches courses relating to object technology (including C++).

System Requirements

Motorola 68020, 68030, 68040, or PowerPC processor, 8 megabytes of RAM, System 7.1 or later (for
68K-based computers) or System 7.1.2 or later (for Power Macintosh computers), and a CD-ROM drive to

install the software.
} “ il

SKill Level
123"264
ISBN 0-l2-32k4Yee-7

Intermediate to advanced programmer
>%3Y4.95

EAN

6 08628"642277

