
.. . ---·· .

F

.

Complete Macintosh ·-

.Turbo Pascal
Joseph Kelly

Foreword by Philippe Kahn

----··

Complete Macintosh Turbo Pascal

Complete
Macintosh
Turbo Pascal

Joseph Kelly

Scott, Foresman and Company
Glenview, Illinois London

Cover photo courtesy of Apple Computer, Inc.

Apple® is registered to Apple Computer, Inc.
Macintosh111 is a trademark licensed to Apple Computer, Inc.
Turbo Pascal® Macintosh is a trademark of Borland International, Inc.
Turbo Pascal® Tutor Macintosh .. ', Turbo Pascal® Toolbox Numerical Methods Macintosh111,

and Turbo Pascal® Database Toolbox Macintosh'• are trademarks of Borland Interna
tional, Inc.

TMON is a trademark of ICOM Simulations, Inc.

library of CoDgl'eM Cataloging-in-Publication Data

Kelly, Joseph.
Complete Macintosh Turbo Pascal I Joseph Kelly.

p. cm.
Bibliography: p.
Includes index.
ISBN 0-673-38456-X
1. Macintosh (Computer)-Programming. 2. Pascal (Computer program

language) 3. Turbo Pascal (Computer program) I. Title.
QA76.8.M3K45 1989
005.265-dcl 9

1 2 3 4 5 6 KPF 94 93 92 91 90 89

ISBN 0-673-38456-X

Copyright© 1989 Scott, Foresman and Company.
All Rights Reserved.
Printed in the United States of America.

Notice of Liability

88-26876
CIP

The information in this book is distributed on an "As Is" basis, without warranty. Neither the
author nor Scott, Foresman and Company shall have any liability to customer or any other person
or entity with respect to any liability, loss, or damage caused or alleged to b~ caused directly or
indirectly by the programs contained herein. This includes, but is not limited to, interruption of
service, loss of data, loss of business or anticipatory profits, or consequential damages from the use
of the programs.

Scott, Foresman professional books are available for bulk sales at quantity discounts. For
information, please contact Marketing Manager, Professional Books Group, Scott, Foresman and
Company, 1900 East Lake Avenue, Glenview, IL 60025.

This book is dedicated to my daughter, Sarah Catherine

Foreword
Philippe Kahn

Turbo Pascal for the Macintosh has been a very successful product for
Borland International. The better to support this popular compiler, Borland has
teamed up with Scott, Foresman and Company to provide a complete and
concise Turbo Pascal tutorial that bears the names of both companies.

Complete Macintosh Turbo Pascal is the result of hundreds of hours of work,
not only by the author, but also by our technical support personnel at Borland.
Our technicians have critiqued every page of the text and have tested each of the
programs presented.

This book is an excellent tutorial for all users of Macintosh Turbo Pascal. The
book's organization allows the beginner to read it from cover to cover, while
more knowledgeable users can start with Part II or m for coverage of advanced
topics. Each chapter concludes with a quiz that reinforces the items covered.

All Macintosh-style programming topics are discussed, including menus,
dialog boxes, mouse programming, graphics, sound, event-handling, resources,
and more. An entire chapter is devoted to debugging strategies to help users at
all levels solve their programming problems. The author presents many
complete application programs that are useful in day-to-day programming
activities, including an album database and a date/ occasion reminder program.

When you have completed reading Complete Macintosh Turbo Pascal, you
will have enough knowledge of our powerful compiler to create sophisticated
programs which utilize the Macintosh environment Borland is pleased to
endorse Complete Macintosh Turbo Pascal as the "official" book on Turbo
Pascal for the Macintosh.

Contents

Introduction xv

Part I: AN INTRODUCTION 1

Chapter 1 The Fundamentals 3
What Is Programming? 3
What Is Pascal? 4
What Is Syntax? 6
What Is Programming Technique? 6
Flowchart Symbols 8
How Turbo Pascal Communicates with Macintosh 12
Machine Language 14
Macintosh Storage 14
Getting Ready to Use Turbo Pascal 18
Starting Turbo Pascal 20
Review Summary 23
Quiz 23

Chapter 2 Getting Acquainted with Turbo Pascal 24
The Turbo Pascal Screen 25
Menu Discussions 25
Your First Turbo Pascal Program 44
Running Your First Program 4 7
Editing Your Program 48
Saving Your Program 50
Printing Your Program 5 2

x Contents

Review Summary 54
Quiz 55

Part II: THE TURBO PASCAL LANGUAGE 57
Chapter 3 Turbo Pascal Revealed: structure and Syntax 59

The Right Stuff: Syntax 60
The Elements of a Turbo Pascal Program 60
Data Types: What to Declare 66
What to Declare: Variables 72
Assigning Variables 74
Constants 75
A Word on Punctuation: The Semicolon 76
Expressing Yourself 77
Mathematical Order of Operation 78
Simple Turbo Pascal Arithmetic 79
More on Data Types 82
Program Formatting 86
Review Summary 86
Quiz 87

Chapter4 Turbo Pascal Statements 88
The Write and Writeln Statements 89
Assigning Data Values with Read and Readln 97
Statement of Choice: The Conditionals 103
Decisions, Decisions ... The Thinking Mac 103
A Couple of Common Errors with If Statements 106
Nesting Your If Statements 108
Boolean Operators 110
Another Case to Consider 110
Review Summary 112
Quiz 112

Chapter 5 More Statements: The Looping Structures 113
Programs That Repeat 114
The While Statement 114
Counting Your Loops 116
Loops That Sum 118
The For Statement 119
Backward Looping with Downto 125
Summing up For Loops 126
The Repeat Statement 126
"While" versus "Repeat ... Until" 129
Nested Loops 129
One More Loop: The Goto Statement 130
Review Summary 132
Quiz 132

,_

Contents xi

Chapter 6 Procedures, Parameters, and Units 134
Structured Design 135
What Is a Procedure? 135
What Does a Procedure Consist Of? 136
Where Is a Procedure Placed? 137
How Are Procedures Used? 137
Using Variables with Procedures 139
Global versus Local Variables 140
Passing Information with Parameters 141
Variable Parameters 141
Value Parameters 145
Introducing Functions 148
Compiler Directives 151
The Turbo Pascal Unit 157
The Uses Clause 158
PasConsole Information 159
Using UnitMover 160
Review Summary 162
Quiz 164

Chapter 7 Turbo Pascal Library Features 165
How to Avoid Reinventing the Wheel 165
The Central Library 166
Library Routines 167
Review Summary 178
Quiz 178

Part Ill: APPLICATIONS AND ADVANCED CONCEPTS 179

Chapter 8 Programmer's Corner 181
The Entire Picture: Complete Pascal Programs 181
Metric Conversion Program 181
Guess-a-Number Program 186
Decimal-to-Hexadecimal Conversion Program 191
Tape Counter Program 199
Review Summary 201
Quiz 201

Chapter 9 Advanced Data Structures 202
Advanced Numeric Types: Long Integers and

Extended Real Numbers 202
What's in a Type? 204
Simple Arrays 206
Parallel Arrays 208
Records and Files 210
Sets 211
Using Arrays, Records, and Sets in an Application 213

xii Contents

Review Summary 216
Quiz 217

Chapter 10 Introduction to Advanced Concepts 218
Recursion; or, Can I Call Myself?! 218
The Pointer and Handle Data Types 221
Almost Everything in Life Has a Point(er)! 225
Further Study-Stacks, Queues, and Trees 230
Review Summary 234
Quiz 234

Chapter 11 More on Records and Flies 235
Fields, Records, and Files 235
Files versus Arrays of Records 236
File-Handling Library Procedures 237
Using a File in a Phone-Book Program 240
Sorting and Merging Records 245
Variant Records 251
Review Summary 253
Quiz 254

Chapter 12 Debugging and File Analysis 255
Debugging 255
File Analysis 256
Encipher/Decipher Program 263
MacsBug 266
TMON 268
Review Summary 269
Quiz 269

Chapter 13 Graphics, Sound, and Resources 270
Graphics 270
Turtle Graphics 271
Standard Macintosh Graphics 275
Fun with the Mouse 281
Making Music in Turbo Pascal 285
Resources 290
Using RMaker 293
Event-Handling Programming with a Resource File 293
Review Summary 299
Quiz 300

Chapter 14 A Few Programs for the Road 301
The Date-Minder Program 301
Batting-Average Program 308
Record Album Database Program 314
Summing Up 323

Contents xiii

Review Summary
Quiz

Appendix fl\. The Borland Toolboxes and Turbo Tutor
Appendix B: Reserved Words
Appendix C: Quiz Answers
Appendix D: Blbllography

Index

323
323

325
329
330
336
337

Introduction

Welcome to the world of Turbo Pascal programming on the Macintosh! We're
glad you chose this book to learn about this powerful language. This book is
structured so that the complete programming novice can use it to learn how to
write sophisticated programs on the Macintosh. However, Complete Macintosh
Turbo Pascal is not for beginners only! Experienced programmers will find a
great deal of information in this book including coverage of resource files, units,
event-handling, graphics, sound, etc. For the complete beginner to program
ming, we recommend that you start from the beginning of the book and
carefully study each section. For those of you familiar with programming in
another language (e.g. BASIC), we recommend that you start with Part II: The
Turbo Pascal Language. Finally, for those of you who have used Turbo Pascal
on the IBM PC or just want to know about Macintosh-specific areas of Turbo,
we recommend that you skip to Part ID: Applications and Advanced Concepts.

No matter what your current level of programming is, we sincerely hope you
will come to enjoy the full power of Borland International's Turbo Pascal
package for the Macintosh and that you will keep Complete Macintosh Turbo
Pascal handy as a reference guide when you have become a Turbo "master."

-1------
AN INTRODUCTION

---1-------------
The Fundamentals
What Is Programming?
What Is Pascal?
What Is Syntax?
What Is Programming Technique?
Flowchart Symbols
How Turbo Pascal Communicates with Macintosh
Machine Language
Macintosh storage
Getting Ready to Use Turbo Pascal
starting Turbo Pascal
Review Summary
Quiz

This chapter is an overview of the fundamentals required for effective
use of your Macintosh with Turbo Pascal. You will learn many computer
buzzwords and the meanings of this computer jargon, referred to as comput
erese. Basic computing concepts are introduced, defined, and illustrated. As
we progress through this chapter, we define the concept of computer pro
gramming in the language Pascal.

What Is Programming?
Your Macintosh is a wonderful machine. However, it is just a machine.
Computers, like other machines, must be told what to do. This task is
accomplished by giving the computer specific instructions. A set of specific
instructions, sequentially arranged, is called a program.

A program is also referred to as software. Software is something that you
cannot touch. It manipulates the information, or data, within the computer.
Your Macintosh computer, or the physical components that you can touch,
is known as hardware.

But just what is programming? Programming is creating a set of specific
instructions to perform a specific task. The answer to the aforementioned
question is academic; however, the concept of programming has been around
for a long time. Think about it for a minute. Have you ever followed a recipe

The Fundamentals

or assembled a bicycle using a set of instructions? Or perhaps solved a long
mathematical problem with a step-by-step approach? These are all examples
of sequenced instruction.

You may have noticed that many sets of instructions, such as those for
assembling stereo components, are presented in both English and foreign
languages. This is done for the sake of those who do not understand English.
Your Macintosh does not understand English, but it must be able to under
stand instructions. You, as its programmer, can write these instructions, or
programs, for the computer. This communication is accomplished much the
same way people communicate: by working with a language. A language is
a systematic means of communicating with symbols. A computer program
is a systematic set of symbols that are understood by the computer, and a
computer language is a written set of instructions, a program itself.

What Is Pascal?
People may use various languages for communication, such as English, Ger
man, French, or Spanish. Computers, too, use various languages for commu
nication. Some of the languages used in computing are BASIC, FORTRAN,
COBOL, and Pascal. Like many languages available to people, there are ad
ditional languages used by various computers. The use of grammar and the
depth of vocabulary are the principle differences between a computing lan
guage and a natural language such as English. This book is written with the
purpose of using your Macintosh with one language-Pascal.

Pascal was developed in 1968 by Niklaus Wirth as a teaching tool for
programming concepts. Pascal is simple yet complete enough to illustrate
good programming techniques.

A Look at Programming Languages
Early programming languages were either too limited or too difficult to learn.
Like Pascal, many such languages were designed for a specific purpose. An
early language for scientific computation is called FORTRAN (FORmula
TRANslator). FORTRAN is still in wide use today, but it is too complex
for the beginner.

BASIC (Beginner's All-purpose Symbolic Instruction Code) is the result of
an attempt to develop a language that was easier to learn than its predeces
sors. Developed in 1964 at Dartmouth College, BASIC is the most symbolic
of the natural languages. Its instructions are analogous to English. BASIC
has become the most popular language among microcomputer users because
it is simple and easy to use. BASIC, however, has its limitations and is not
recommended for long, complex programs.

What Is Pascal? 5

C, another very popular language because of its flexibility, power, and
portability, was written by Dennis Ritchie at Bell Labs. Because it allows
the programmer to get more involved with lower-level machine operations,
it is the choice of many software development organizations. C allows a
programmer to write and run a program on one computer, take the same
code to another, and execute it with only minor modifications, if any.

COBOL (COmmon Business Oriented Language) was developed in 1959.
COBOL is used widely in the business community because of its ability
to handle large, complex problems. A useful language that fulfills the need
of manipulating large amounts of information, COBOL lacks the simplicity
required of a first language.

Turbo Pascal: A Short History
Pascal, named after the French mathematician Blaise Pascal, is often classi
fied as a flexible and simple language for learning good programming tech
niques. Actually, a number of implementations of Pascal exist today. The
language developed by Wirth, sometimes called ANSI (American National
Standard Institute) standard Pascal, has been enhanced with new features and
modified to take advantage of the environments from which these features
operate. One version, UCSD Pascal, developed at the University of California
at San Diego, is widely used with microcomputers. Another popular version
is Apple II Pascal, a dialect similar to UCSD Pascal.

If you have shopped around, you have undoubtedly discovered that most
high-level compilers for microcomputers are in the hundreds of dollars. These
"serious" systems offer packages with everything you need to develop just
about any application you could imagine. Fortunately, our good friends at
Borland International Inc. saw the need for good, solid compilers at more
reasonable prices and have set the standard with such products as Turbo
Pascal, Turbo BASIC, and Turbo C for the IBM PC. These products are all
excellent development packages for only a fraction of the prices of other
similar compilers. In addition, these compilers are so fast and efficient that
the name Turbo is truly appropriate.

Borland has taken its tremendously popular IBM PC-based Pascal com
piler package and developed a similar product for the Macintosh: Turbo
Pascal Macintosh. Along with all the speed and flexibility of the MS-DOS
version, the Macintosh product offers all the Mac-specific user interfaces a
Macintosh programmer would expect. As you may know, it is common for
microcomputers to use a specific dialect of a language, much the same way as
people use different dialects of the same languages. The differences between
dialects are generally small, and the programmer is able to convert programs
from one dialect to another as long as the rules of syntax are followed.

6 The Fundamentals

What Is Syntax?

Fig. 1.1.

An English teacher drills students on proper sentence structure, spelling,
punctuation, and other rules. The teacher emphasizes the rules that are
required for proper grammar. These rules, taken collectively, are known as
syntax.

People can communicate with one another without using prop~r syntax.
A friend may find it amusing if you · use an improper statement during
a discussion. Your friend may even insult your intelligence but will most
likely understand your meaning. Your Macintosh, on the other hand, will not
interpret your intentions; it won't laugh or even ask you what you meant. It
displays an error message like the one shown in Figure 1.1.

Error 1: '; N expected.

and continues to display the message until the error is properly corrected.
Therefore, communicating with your Macintosh requires language instruc

tions that are syntactically and logically correct. Many syntax rules in Turbo
Pascal are a simple extension of symbols that you are already familiar with.
For example, you use the plus sign (+) for addition and the minus sign (-) for
subtraction. A hand calculator and an adding machine use the same symbols
for simple mathematical calculations. A few symbols, however, are not cus
tomarily used for similar calculations. Unlike the calculator, TURBO Pascal
uses the asterisk (*) for multiplication instead of the commonly used times
symbol (X).

Most programmers don't memorize the entire list of syntax rules for a
specific language, as this can be a very taxing chore. Don't be afraid to use
a table or reference as a programming aid. With practice you will learn to
use proper syntax and programming technique.

What Is Programming Technique?
A buzzword associated with Pascal is structure. What is a structured lan
guage? Let's answer this question by defining a programming scenario for
cooking a pot of chili.

Suppose you just finished reading the great American novel about the Old
West and have developed a craving for something representative of the era.
Embarking upon the fulfillment of your desire, you decide to make some
chili. To start you must purchase the appropriate foodstuffs (meat, tomatoes,
kidney beans, onions, chili peppers, and so on) from your local grocery. Next,

What Is Programming Technique? 7

select the proper cooking utensils. You mix the ingredients and cook them
over a slow heat. Finally you get to eat.

I have just defined a problem. Although the task defined is not a difficult
one and is more likely to be solved in the kitchen than in the computer room,
it serves to make several points. First the task is defined: to prepare chili.
Next the problem is broken down into a set of subproblems: purchasing food,
selecting pots and pans, mixing the ingredients, and cooking them over slow
heat. The process of taking a large problem and breaking it down into a set
of related subproblems is called top-down design. A program using top-down
design is called structured

In this example I can further subdivide the individual problems, such as
cooking beef, adding tomatoes, stirring, adding beans, and stirring again, until
the individual tasks represent the basic building blocks of our subprogram
ming modules. In Turbo Pascal these basic blocks can be solved individually,
accomplishing a single task or subproblem (mixing, cooking, eating) until the
entire macro problem is solved, which is chili prepared and hunger removed.
This structured nature of problem solving (top-down design) and flexibility
(working on smaller subproblems independently) is what makes Turbo Pas
cal so appealing as a language to teach good programming techniques. The
best advice that we can give is don't try to solve the macro problem all at
once. First define the problem. Break the problem down into its basic build
ing blocks and then solve them individually. When you are done, the entire
problem is solved.

The entire process of problem solving using basic building blocks of Pascal
instruction enables the programmer to define a complex problem and then
to develop the step-by-step solution to the defined problem. The acquired
solution is called an algorithm. Thus, the loosely defined example of preparing
chili results in an algorithm for satisfying the craving for Western food. More
important, we have defined several important concepts.

The Implementation Phase versus the
Problem-Solving Phase

When writing an algorithm, start with a little planning, called the problem
solving phase. In this phase the problem is analyzed and a general solution is
designed. Approach a problem by breaking it down into separate but related
tasks. To aid in this process you may use a pictorial graphic design called a
flowchart.

There are many applications of the flowchart. For example, diagrams and
graphs are used in business to depict the flow of information. A road map is

8 The Fundamentals

used to chart a traveler's destination from point A to point B. The mapped
route a traveler selects is a flowchart.

Flowcharts are often used by programmers to develop very complex pro
grams or a set of related programs. A set of related programs, called a system,
together performs a complex task. An inventory control program and a pay
roll program used together may function as an accounting system. Flowcharts
are generally helpful for complex problems but are not necessary to solve sim
ple problems. However, a novice programmer will find many simple tasks
difficult at first. In addition, a programmer develops good techniques and an
understanding of programming logic by using the flowchart as a road map
to the desired task.

Flowchart Symbols
This discussion introduces the symbols (or road signs) of a flowchart. The
symbols are standard and are used for problem solving across several pro
gramming languages. With practice you will become familiar with the flow
chart road map and its use.

The following is an explanation of common flowchart symbols and their
use. If the terminology is difficult to understand, don't worry. The concepts
will be explained in detail in the remaining chapters. This book uses the
standard flowchart symbols shown in Figure 1.2.

The flowchart symbols and their processes are summarized as follows:
The terminal symbol is used to start or end a program.
The process symbol indicates the processing of information, such as a

mathematical calculation.
The parallelogram represents an input/output (110) symbol. Input is the

data or instruction that you enter via the keyboard or mouse. Output is the
result of the processing of that information; it may be in the form of characters
on a screen or perhaps hard copy, a printout. Therefore, input/ output is the
process of putting data into and getting information out of the computer.

The 1/0 Symbol
The 1/0 symbol may take either of two common forms. A common input
form is the Read function. Read copies information from the storage medium
(disk) to main memory (the internal memory of your Macintosh) much as a
cassette recorder reads audio tones from a prerecorded cassette tape. (If you
read something from memory, you are accessing or loading prerecorded data.)
The Read function is used to put data into a program. To output information

(
TERMINAL

Symbol
"Start/Stop"

)

DECISION

Symbol

PROCESS

Symbol
"Ca 1 cul ate"

"What are we supposed to do?"

Flowchart Symbols 9

I /O (INPUT /OUTPUT)

Symbol
"Input Data/

Output Information"

oo
PAGE CONNECTOR

Symbols
"Entry/Exit"

Fig. 1.2. Flowchart symbols used to graphically depict programs.

to a screen or printer, we use the second 110 symbol, called Write. (In other
languages, such as C, the output command may be different, for example
Printt). Let's look at an example.

A mathematical operation that adds two numbers and then prints the sum is
broken down into steps by a flowchart. Figure 1.3 illustrates this calculation.

The flowchart shown in Figure 1.3 depicts a simple operation to add
two numbers and then write the result. The problem could have been easily
solved without the aid of a flowchart. However, the flowcharting principles
will become apparent in more complex examples as they are introduced
in later chapters. Remember, it's important to develop an understanding
of programming logic through good programming practice. As a beginning
programmer, you should use flowcharts to help you reach your goals.

It should be noted that there may be more than one solution to a program
ming problem. Therefore, there may be more than one correct flowchart-one
for each corresponding solution, or algorithm. People often have the oppor
tunity to select from alternative solutions to problems they encounter every
day. Similarly, a programmer may select a solution that he or she considers
the optimum answer. The flowcharts in this book are representative of sev
eral possible solutions. You are encouraged to experiment with the programs
and develop alternative solutions.

10 The Fundamentals

Fig. 1.3.

Ste rt

3+4

Write
Result

End

A. Symbol indicates the
process beginning

8. Process symbol per-
forms addition
operation

C. 1/0 symbol prints the
result of addition
operation as output

D. Terminal symbol
indicates the
conclusion of
processing

When the 110 symbol is used for entering information into a program,
the program reads data stored in memory and then performs the processing
instruction. This process is analogous to the brain reading data stored by the
memory.

For example, you may want to perform a mathematical calculation using
the data stored in memory and then write the result. The flowchart in Figure
1.4 depicts this example.

The Decision Symbol
The decision symbol permits flexibility when using a flowchart. The computer
can make logical decisions, such as whether the first number is larger than
the second, whether this is the last number to read, whether two pieces of data
are equal. The diamond-shaped symbol indicates this decision and requires
the computer to choose yes or no. A simple decision symbol is shown in
Figure 1.5.

The exits from a decision symbol represent a conditional These conditional
branches flow to another area of the flowchart according to the decision, like
the if-then equations you learned in beginning geometry. The decision symbol
can use different exit points, as depicted in Figure 1.6.

The arrows of the flowchart generally run top to bottom or left to right.
Crossing flowlines is not acceptable. To avoid crossing flowlines, use the

Fig. 1.4.

Start

Read
A,B

Calculate Function
AXB:C

Print
Result

c

End

Flowchart Symbols 11

connector symbol. A second connector symbol, the off-page connector, is
used for flowcharts covering more than one page. These symbols indicate
the transfer of control from one area of the flow to another. This principle
is applied in modular programming, in which the problem is split into
subprograms, or units. The majority of flowchart examples used in this book
will require a single page.

Yes

No

Fig. 1.5. The Decision Symbol.

12 The Fundamentals

Fig. 1.6. Exit points of the decision symbol.

Remember, memorizing the symbols of a flowchart won't make you a good
programmer, nor will memorizing the road signs make you a good driver.
The flowchart is simply a tool to be used in pictorially defining programming
logic, thus the first step in understanding programming logic.

How Turbo Pascal Communicates
with Macintosh

This section introduces you to a few more computerese terms. Many people
who purchase the Macintosh are not interested in how the computer under
stands commands or how it works internally. If you are one of these people,
skip to the next section.

Do you need to understand Mac's technology to use it? The answer is
no; however, the knowledge you gain will enable you to converse more
intelligently with other Macintosh enthusiasts about such topics as compilers
versus interpreters, memory, bits, bytes, K, RAM, and ROM. We invite you
to speak a little computerese.

How Turbo Pascal Communicates with Macintosh 13

Compilers versus Interpreters
Your computer doesn't understand Turbo Pascal. Pascal is a foreign language
to Macintosh and requires a translation into a language that Macintosh can
understand. Much as a foreign language interpreter translates German to an
Englishman, a Pascal interpreter makes available the translation of Pascal
into Mac's language-machine language.

The Turbo Pascal compiler is a program that is fixed and that resides in
external storage on the Turbo disk. When you enter Pascal code and select to
compile it, Turbo reads your code and translates it into Macintosh machine
language. The Turbo Pascal compiler is much more than a messenger service,
though; it is also an editor as well as a linker. As an editor, Turbo allows
you to change or modify your programs much the same way you would
change a Mac Write document. As a linker, Turbo allows you to pull in other
subprograms or units so that you can develop your applications in a modular
form. This linker then combines all the code needed into the final executable
program.

Most implementations of Pascal are translated using a compiler in
stead of an interpreter. An interpreter translates your Pascal code as it
is being executed and unlike a compiler is not capable of producing
stand-alone double-clickable applications. (In the Macintosh environment,
a stand-alone application-one that does not need an interpreter or similar
program to execute-is said to be double-clickable because it's icon may be
double-clicked-two rapid clicks with the mouse button-and the program
will be started.) Another difference between a compiler and an interpreter
involves the execution speed of a program. A compiler translates the entire
program into machine language before any execution begins, whereas the
interpreter must interpret each statement before it is executed. The advan
tage of compiler execution is that it is much faster than interpreter execution.
However, the disadvantage is that the programmer must wait until the entire
program is compiled before any error is identified regardless how small the
error may be. For example, in the earlier versions of MacPascal, an inter
preter from THINK Technologies, if the programmer entered in a misspelled
reserved word, an error was signaled before the program was interpreted,
whereas in Turbo Pascal, you wouldn't find this error until you tried to com
pile it. However, with the very fast compilation speed of Turbo Pascal, you
can enjoy the best of both worlds; many other Pascal compilers cannot com
pete for speed with Turbo.

Turbo is well suited for both the novice and advanced programmer. Bor
land boasts the ability to compile more than 12,000 lines per minute, although
these timings aren't realized with small programs because of the overhead in

14 The Fundamentals

starting up the compiler. Nevertheless, the Turbo Pascal package is easy to
use yet powerful enough to develop the most sophisticated programs for the
Macintosh.

Machine Language
What is machine language? Machine language is the only language a com
puter understands without translation. Machine-language programming is
programming at its lowest level. Instructions and data are sets of numbers in
binary form (binary numerals are 0 and 1). The binary digit is the fundamen
tal unit used by your Macintosh computer; a single binary digit is called a
bit (Binary digiT). Programs in binary form consist of sets of zeros and ones,
very tedious and difficult to understand.

Machine language may be translated into a more readable format using
a disassembl.er. A disassembler translates binary numbers into assembly lan
guage instructions. Assembly languages differ from one machine to another
depending upon the microprocessor used in the computer. The Macintosh uses
the Motorola-based 68000 family of microprocessors, and so the assembly
language it uses is called "68000 assembly language." The IBM PC fam
ily uses the Intel-based 8088/8086 microprocessors, hence "8088 or 8086
assembly language."

Even this level of instructions is very difficult for the novice programmer
to understand. In general, many assembly language instructions are required
to make up just one Pascal statement. This is primarily because the assembly
language instructions are very limited in operation (adding two numbers or
moving data from one location in memory to another), but when several are
combined, just about anything can be accomplished.

Macintosh Storage
One of the most powerful features of your Macintosh is its ability to store
information. Computer memory may appear to be an abstract term, since
many of us associate memory with the human brain. Unlike the human brain,
however, the memory of your Macintosh comes on little silicon chips.

The Macintosh memory. is composed of a series of electrical switches.
When a switch is on, it is a 1, and when off, a 0. The pattern of ls and Os
expresses the data. The status of each binary location is either 1 or 0, on or
off, yes or no. Let's say you just wrote a program that allows the user to enter
the names of all the members of his or her family. You need a flag to indicate
when you are finished entering names. A flag is a location in memory that

Macintosh storage 15

in the simplest case indicates whether something is true or false. This flag is
represented by a slot in memory that contains either a 1 or a 0. H the memory
slot is set to 1, it means the user is finished; a 0 means you have more names
to enter.

The use of bits is not limited to representing flags. Several bits can be
grouped so that other values are represented. The use of bits to represent
characters such as the letter 'A' requires a standard coding scheme known as
the American Standard Code for Information Interchange, or ASCII.

Character Bit Pattern Character Bit Pattern

space 00100000 ? 00111111
! 00100001 @ .01000000
" 00100010 A 01000001
00100011 B 01000010
$ 00100100 c 01000011
% 00100101 D 01000100
& 00100110 E 01000101

00100111 F 01000110
(00101000 G 01000111
) 00101001 H 01001000
* 00101010 I 01001001
+ 00101011 J 01001010

00101100 K 01001011
00101101 L 01001100
00101110 M 01001101

I 00101111 N 01001110
0 00110000 0 01001111
1 00110001 p 01010000
2 00110010 Q 01010001
3 00110011 R 01010010
4 00110100 s 01010011
5 00110101 T 01010100
6 00110110 u 01010101
7 00110111 v 01010110
8 00111000 w 01010111
9 00111001 x 01011000

00111010 y 01011001

' 00111011 z 01011010
< 00111100 [01011011

00111101 \ 01011100
> 00111110] 01011101

Continued

Fig. 1.7. American Standard Code for Information Interchange, or ASCII.

16 The Fundamentals

Character Bit Pattern Character Bit Pattern

01011110 0 01101111
01011111 p 01110000
01100000 q 01110001

a 01100001 r 01110010
b 01100010 s 01110011
c 01100011 t 01110100
d 01100100 u 01110101
e 01100101 v 01110110
f 01100110 w 01110111
g 01100111 x 01111000
h 01101000 y 01111001

01101001 z 01111010
j 01101010 { 01111011
k 01101011 I 01111100
l 01101100 } 01111101
m 01101101 01111110
n 01101110 (DEL) 01111111

Fig. 1.7., cont'd. American standard Code for Information Interchange, or ASCII.

The coding scheme symbolizes sets of electrified bits. This principle is also
applied in Morse code, where a series of dots and dashes represent letters.

In ASCII 8 bits make a byte, the unit of memory for a single letter, number,
or special character. A group of bytes makes a word such as "house," which
requires 5 bytes or 40 bits (8 bits X 5 letters).

To visualize the concept, picture a box with 8 electrical wires attached.
Each wire will either be on (1) or off (0). Inside the box is a character. The
character is determined by the combination of on and off wires. For example,
the combination 01000001 represents the letter A.

It should be noted that some computers, like the Macintosh, incorporate
several nonstandard ASCII characters. These characters also are represented
by binary numbers. To check on the complete Macintosh character set, refer
to Appendix E of your Macintosh Turbo Pascal manual.

Mac Memory
Your computer contains thousands of bits of memory. The standard configu
ration of memory is divided into two types-random-access memory (RAM)
and read-only memory (ROM). The unit of measurement for memory is a
kilobyte, or K One K of memory is equal to 1024 or 2 10 bytes. Therefore 64K

Macintosh storage 17

is a little more than 64,000 bytes, and since one character occupies one byte,
64K can hold approximately 64,000 characters, or 35 to 40 double-spaced
pages.

What Are RAM and ROM?

RAM is volatile memory; it can be changed. RAM holds the code for your
programs and does most of your calculations, such as simple scratchpad
work. This feature works much the same way that a pocket calculator does.
It's important to remember that when you turn your computer off, the data
in RAM will be lost.

The first version of the Macintosh contained 128K of RAM. Since that
initial release, memory upgrades and new Macintoshes (Fat Mac, Macintosh
Plus, Macintosh SE, and Macintosh m allow anywhere from 512K to several
megabytes. A megabyte is 1024K or approximately one million bytes. There
will be further memory upgrades available in the future, since the 68000 can
work with as much as 16 meg of memory.

Information in RAM can be stored externally on a microfloppy diskette
or a hard disk before you turn the computer off. It is sometimes confusing
when the memory of your computer is discussed in the same context with
the data stored on a microfloppy diskette. Just remember that the memory
of your Macintosh computer is internal storage, while the memory capacity
of a microfloppy diskette is external storage.

The concept of external storage is used in the music industry. The cassette
tape stores musical data on a medium external to the cassette recorder
itself. The process used to store your data, external to the computer, will
be explained in detail in Chapter 2.

Your Macintosh also contains 64K, 128K, or 256K of ROM (read-only
memory), internal memory that cannot be changed. We say 64K, 128K, or
256K because the early Macs were made with 64K, but from the Macintosh
Plus on, Apple has been releasing new products with 128K and 256K of
ROM. If you have one of the older Macs with 64K of ROM, you can have
your computer upgraded to 128K ROM.

ROM can be read from but not written to or used for storage. ROM is used
for programs and code segments that must never change and that are not lost
when your computer is turned off. Two of the more important portions of
the ROM in your Macintosh are the operating system and the QuickDraw
routines used to do fancy graphics. It's not important to know how these
areas function at this point. Simply recognize that the programs contained in
ROM remain there whether the computer is on or off.

18 The Fundamentals

Getting Ready to Use Turbo Pascal
Your Macintosh Turbo Pascal package comes with two disks: the Program
Disk and the Utilities & Sample Programs Disk. Before you do anything else
with these disks, you should copy them, put the originals in a safe place, and
use the backup copies only. The contents of each of these disks is shown
below:

PROGRAM DISK FILES

Turbo X.X
Read Me
Read.file
UnPack
Mac II Interfaces

NOTES

(X.X is the version of Turbo Pascal you have)
Program that provides additional Turbo information
Text file used by Read Me above
Program used to unpack the Mac II Interfaces file below
Interfaces necessary to program for Mac II

UTILITIES AND SAMPLE PROGRAMS FILES NOTES

RMaker
Font/DA Mover
Unit Mover

MyDemo Folder
My Demo.pas
MyDemo.R
MyDemo.Rsrc

MyDA Folder
My DA.pas
MyDA.R
MyDA.Rsrc

Turtle Folder
Dragon.pas
C_Curve.pas
Turtle Test.pas
Turtle Unit.pas

Clock Folder
Clock.pas

Lister Folder
Lister.pas
Lister.R
Lister.Rsrc

Program to create resource (RSRC) files
Utility to move fonts and desk accesssories
Utility used to move Turbo Pascal's units to

and from files
Demo example
Pascal source code
Resource text file
RMaker-compiled version of MyDemo.R
Example of a desk accessory
Pascal source code
Resource text file
RMaker-compiled version of MyDA.R
Example of Turtle Graphics
Pascal source code for graphics
Pascal source code for graphics
Pascal source code for graphics
Movable unit for Turtle Graphics

Pascal source code

Pascal source code
Resource text file
RMaker-compiled version of Lister.R

Getting Ready to Use Turbo Pascal 19

UTILITIES AND SAMPLE PROGRAMS FILES NOTES

Macintalk Folder
Macintalk
Speak.pas
Speak.R
Speak.Rsrc
Sample Speech

Sound
Noise.pas
Noise.R
Noise.Rsrc

Other Demos
Numerous.pas, .Rand .Rsrc files

Misc Folder
ATalk/ ABPackage
MacsBug

Compat Unit
Compat.inc
Compat.doc

Macintalk utility
Pascal source code for speech example
Resource text file
RMaker-compiled version of Speak.R
Auxiliary file for Speak program

Pascal source code for sound program
Resource text file
RMaker-compiled version of Noise.R

68000-based debugger package

Include file for compatibility

In order to use Macintosh Turbo Pascal, you need a Macintosh with at
least 512K of RAM and one single-sided 400K floppy disk drive. If you
are working with a more powerful machine (Mac Plus, SE, m or have a
double-sided drive, external drive or hard disk drive, you should have plenty
of flexibility in working Turbo Pascal. Since Borland does not copy-protect
Turbo Pascal, you may copy any of the files to another floppy disk or to
a hard disk. If, however, you are using the minimum configuration, you
will probably run into memory problems when trying to work with larger
programs, especially those that call in additional units. You should note that
neither Turbo Pascal disk is bootable; that is, neither of them has the Finder
or System files. Because of this you must either boot off another disk and then
work with the Turbo disk or set up the Turbo disk with only the essential
files. For example, you could remove the Read Me, Read.File, UnPack and
Mac II Interfaces files and be able to put the Finder and System files on the
program disk. Because the Turbo Pascal program is so large (over 200K),
you may find it necessary to conserve memory by removing some of the units
you won't be needing. To see how this is done, refer to the UnitMover section
in Chapter 7. If you are using a 512K Mac with one single-sided drive, we
suggest that you acquire a copy of a RAM disk package to use with Turbo.
A RAM disk package allows you to set up your system so that the Macintosh
thinks you have two disk drives. The RAM disk program reserves a portion

20 The Fundamentals

of RAM and tells the Mac to refer to this area of RAM as another disk. This
is suggested because if you put the full Turbo program on a 400K disk with
the Finder and System files, there's not much room left to store your Pascal
source files. When you set up your RAM disk, do it so that the Finder, System
and Imagewriter files are the only ones on the RAM disk. You can then use a
separate disk to hold just the Turbo program and your necessary source files.
Because this "disk" resides in RAM, when you tum your Macintosh off, its
contents disappear. But with the configuration described above, your source
files will always be written to the diskette with the Turbo program, so there
is no need to save the contents of the RAM disk before you tum the Mac off.

Starting Turbo Pascal
The following is a quick start for getting ready to use the Macintosh with
Turbo Pascal. The only assumption is that your Macintosh is completely set
up (all peripherals plugged in and the computer's power cord plugged into
the appropriate AC outlet).

Step 1: Tum on your Macintosh and adjust the brightness of the display
screen. The power switch is labeled 1 for on and 0 for off.

Step 2: Insert your backup copy of the Turbo Pascal Program Disk into
the disk drive with the label facing up and the metal slide switch away from
you. The disk can be inserted only one way; if it doesn't fit, don't force it.
You can, of course, insert the Program Disk before you tum on the computer.
The desktop should display the Turbo Pascal disk icon as in Figure 1.8.

Step 3: Open the Turbo Pascal disk icon by double-clicking the mouse
unit (press the mouse button rapidly twice and release) or by selecting Open
from the File menu (see Figure 1.9).
Once opened, the Turbo Pascal Program Disk will display icons for each of
the files described above (see Figure 1.10).

Once the Pascal disk is booted, or loaded into your computer, a built-in
applications program called Finder takes control of the operations that control
the system. Similar to a central nervous system (or operating system), Finder
allows you to move from one application to another, create disk windows,
start an application from an icon, and so on. For now we will let Finder
help us select the icon labeled Turbo X.X (again, X.X refers to the version
number) and activate its contents.

Position the pointer directly over the Turbo X.X icon with the checkered
flag and then perform a double-click with the mouse (or select Open from
the File menu). Within a few seconds the Turbo Pascal screen will appear
(see Figure 1.11).

At this point you are ready to begin using Turbo Pascal and realize the full
power of your Macintosh computer. Let's continue by turning to Chapter 2.

Fig. 1.8.

,.. s File Edit Uiew Special

Get Info
0U!)liC<l1 (~
Put !hmuJ

PIHJ•~ S<~tup

Print !: n tn!oq

Fig. 1.9. Open the Turbo Pascal Icon.

Starting Turbo Pascal 21

..,

..,

22 The Fundamentals

,. s File Edit Uiew Special
.,

383K in disk

~ RERD EJ PIE!
Turbo 1.1 Read Me Read .File

~ ~
Unpack MAC II Interfaces

Fig. 1.10. The Turbo Pascal Desktop.

,. s File Edit Search Format Font Compile Transfer
.,

D Untitled

I

Fig. 1.11. The Turbo Pascal Screen.

Quiz 23

Review Summary

Quiz

1. A set of sequential instructions is called a program. Programming is
creating a set of specific instructions to perform a specific task.

2. Hardware is the nuts and bolts of your computer, the part you can
physically touch. Software is the program instruction.

3. The Macintosh doesn't understand Pascal commands; they must first
be translated either by an interpreter or by a compiler such as Turbo
Pascal.

4. Programming logic can be depicted by using flowcharts. Flowcharts
provide a road map in structured form to a programming problem.

5. The Turbo Pascal compiler translates your Pascal statements into
machine-language instructions. Machine language is represented in bi
nary form. Binary instruction is written in sets of Os and 1 s.

6. The binary digit, or bit, is the fundamental unit used by your computer.
A byte represents the memory storage for a single number, letter, or
special character.

7. The internal storage of your Macintosh consists of two kinds of memory,
RAM and ROM. Storage is often referred to as the external storage of
your computer system. The external storage medium is the microfloppy
diskette or hard disk.

8. Memory refers to the information that your Macintosh can store and
retrieve. The unit of measure is the kilobyte, or K.

9. RAM is volatile and can be changed. ROM is that portion of memory
that cannot be changed. RAM can be used to do scratchpad work or
run various application programs. When the computer is turned off, the
data in RAM is lost. ROM can be read from but not written to or used
for storage. When the computer is turned off, the programs in ROM·
remain intact.

1. How much memory does one K equal? 128K equal? 512K equal? one
meg equal? four meg equal? What acronym does ASCII represent?

2. What is the primary difference between a compiler and an interpreter?
3. What happens in the problem-solving phase of programming? In the

implementation phase? What is the solution to a programming problem
called?

4. Design the necessary steps to boil an egg using a simple flowchart.

-2-----
Getting Aquainted with
Turbo Pascal
The Turbo Pascal Screen
Menu Discussions
Your First Turbo Pascal Program
Running Your First Program
Editing Your Program
Saving Your Program
Printing Your Program
Review Summary
Quiz

In this chapter you will learn:
• How to work within the Turbo Pascal environment.
• All of the options available to you In the Turbo menus.
• How to enter your first Pascal program.
• How to run or execute a program.
• How to edit. save. and print a program.

In this chapter we introduce you to the Turbo Pascal screen and acquaint
you with the special features of Turbo that make it a joy to work with on the
Macintosh. In addition you will learn how to enter, edit, run, save, and print
your first Turbo Pascal program. We often refer to Macintosh Turbo Pascal
as Turbo Pascal or just Turbo or Pascal. The official name is Macintosh
Turbo Pascal, but any of these names is appropriate.

It's important to note that many of the operations discussed in this chapter
are simple extensions of the ones learned while using MacWrite or MacPaint.
That's the beauty of Macintosh software. All software is designed to take
advantage of the Mac interface and thus provide a common ground for
learning. For example, the operation to print a hard copy of a Turbo Pascal
program is similar to printing a letter using Mac Write. Just in case you haven't
mastered these operations, we will review them as our discussion continues.

Menu Discussions 25

The Turbo Pascal Screen
The Turbo Pascal screen provides the user with a window in which he or she
can immediately start entering Pascal code (see Figure 2.1). Along with this
active code entry window, the regular Mac-style menu bar is displayed with
the following menus: Apple, File, Edit, Search, Format, Font, Compile, and
Transfer. Before going any further, take a close look at each of these menus
so that you will know exactly what they offer you.

Menu Discussions
The Apple Menu

Fig. 2.1.

The leftmost menu is the standard Apple menu, which displays options for
running any installed Desk Accessories as well as an option for learning more
about Turbo ... (see Figure 2.2).

If this option is selected, a small box is displayed. It explains that Turbo
Pascal is a Borland International product and shows the version number (see
Figure 2.3).

Any other options displayed with this menu are dependent upon how you
have your Desk Accessories configured.

,.. s File Edit Search Format Font Compile Transfer

D
I

Untitled

.,

26 Getting Acquainted with Turbo Pascal

Fig. 2.2.

Fig. 2.3.

,.. 0.File Edit Search Format Font Compile Transfer

,..

About Turbo .•.

Alarm Clock
Calculator
Chooser
Control Panel
Key Caps
Scrapbook

Untitled

File Edit Search Format Font Compile Transfer

Untitled

Turbo Pascal
Version 1.1

Copy right © 1986 Borland lnternationa 1

.,

.,

Menu Discussions 27

The File Menu

Fig. 2.4.

The File menu permits you to manipulate files, print files, and perform other
miscellaneous tasks (see Figure 2.4).

When the first option, New, is selected, a new editing window will open
and become the active window. You can have up to eight windows open at
any one time in Turbo, so you can edit multiple files without having to open
and close them every time you want to switch.

The next option, Open, allows you to open a file that already exists on
a disk. When you select this option, a dialog box like the one displayed
in Figure 2.5 is displayed. This dialog box allows you to scroll among the
available files on the active disk as well as change drives or eject a disk so
that a file may be opened.

Open Selection appears next in the File menu, and it allows the user to
open the file named by the selected text in the active window. This option
can be quite handy when you start dealing with what are known as include
files. Include files contain information about a program that may be needed
for multiple programs; breaking the information out into its own file lets
multiple programs refer to it without having to copy its contents into their
own source files. If you don't understand this, that's OK. This option will be
used only by fairly experienced programmers. The concept of include files is

· Edit Search Format Font Compile Transfer
3€N

Open ... 3€0
O!H~n SHI(~(tion :•:P
Close 3€.
Saue
Saue As ..•

P!H.P~ S(~1up .. ,
Prin t,,,

Edit Transfer •..
Saue Defaults

:ics

Transfer... 8€T
Quit 8€0

Untitled

.,

28 Getting Acquainted with Turbo Pascal

Fig. 2.5.

Edit Search Format Font Compile Transfer
.,

Untitled

I (g) Turbo Pascal I
Cl Testoebug.pas ~ (g) Turbo Pascal

Eject

Open

Cancel

further explained in Chapter 6. For those who are familiar with include files,
all you must do is select the include file by dragging the mouse over its name
in your source file and select this option. Turbo will open that file for you,
and if it runs into a problem trying to open it, Turbo will display an error
message. You should note, however, that this option will not be available
until you have selected text in the active window.

The next option, Close, will close the active window. This is the same as
clicking the close box in the upper left-hand comer of the title bar of that
window.

The last two options dealing with file opening and closing are Save and
Save As ... Either of these options may be used to save the contents of the
active window, but they operate in slightly different manners. The Save option
will save the file using whatever name the file was last given; the name
appears in the title of that edit window. If that file is still untitled, a dialog
box will allow you to enter a file name. On the other hand, Save As... will
automatically display the dialog box so that a name can be entered. Save As ...
is most often used when you want to write the file out to a temporary name
without overwriting the last version or when you are writing a new program
but using a good deal of code from an existing program. In the latter case
you would open the existing program's source file, make your modifications,
and then use Save As ... to write the modified file with the new name.

Fig. 2.6.

Menu Discussions 29

The next two options deal with printing files: Page Setup... and Print...
When the Page Setup ... option is selected, the dialog box shown in Figure 2.6
is displayed. This dialog box allows you to select several options like paper
style, horizontal/vertical printing, and a few special effects.

When the Print... option is selected, the dialog box shown in Figure 2.7
is displayed. This dialog box permits you to select the output quality, what
pages to print, and how many copies as well as how the paper will be fed
into the printer.

Once you have made your selections in this box and clicked the OK
button, the printing process will begin. At this point you will have the option
of terminating the print command by clicking the cancel button when the
printing begins.

Edit Transfer ... appears next and allows you to edit the file used to transfer
from one application to another. This file is used by the Transfer menu,
which is the rightmost menu on the Turbo menu bar. When you select this
option, a dialog box is displayed (see Figure 2.8) in which you can enter the
names of applications you would like to have in the Transfer menu. There
are no applications initially installed in Transfer and as a result no options
are initially available in the Transfer menu. To install an application enter its

· Edit Search Format Font Compile Transfer

I magellJriter

®US Letter
0 us Legal
0 Computer Paper

v2.3

0 A4 Letter
O International Fanfold

Special Effects: D Tall Adjusted
D 50 °lo Reduction
D No Gaps Between Pages

.,

n OK Il
(Cancel)

30 Getting Acquainted with Turbo Pascal

Fig. 2.7.

Fig. 2.8.

r s 111111 Edit Search Format Font Compile Transfer

Untitled

Image Writer

Quality:

Page Range:

Copies:

Paper Feed:

®Best

@All

D
®Automatic

.

v2.3

0 Faster 0 Draft

0 From: D To: D
0 Hand Feed ~

r S · Edit Search Format Font Compile Transfer

t OK J
(Cancel J

Untit.=============;;::;:;i

Transfer Menu Items:

(No items installed

OK (Cancel)

..,

..,

Fig. 2.9.

Menu Discussions 31

name in the Transfer menu Items box and click the OK button. If you look
at the Transfer menu, you should see an option available for that application.
You can select that option and bypass the Finder desktop. The applications
you install with Edit Transfer ... will remain intact until you quit the Turbo
program. To save them for future Turbo sessions, select Save Defaults in the
File menu. This menu option also saves any compiler options set up in the
Compile menu and edit options set up in the Edit menu (both are discussed
below).

The Transfer menu should not be confused with the next item in the File
menu: the Transfer option. When this item is selected, the familiar file open
dialog box is displayed (see Figure 2.9).

The items displayed in this box are all the double-clickable applications (or
files containing applications) found on the active disk. You can, of course,
select to eject the active disk or change disk drives from this dialog box;
however, the only items displayed on subsequent disk selections will be
double-clickable applications found on that disk.

The last option in the File menu is Quit. As you may have guessed, this
option allows you to leave the Turbo program. Before you leave, you are
asked whether you would like to update any open files.

I lg) Turbo Pascal I
«~ Turbo 1. 1 ~ lg) Turbo Pascal

Eject

[Transfer

Cancel

.,

32 Getting Acquainted with Turbo Pascal

The Edit Menu

Fig. 2.10.

The Edit menu should be familiar to anyone who has worked with any other
Macintosh applications. In the Turbo environment it offers the same basic
functions you would find in another editor or word processor (see Figure
2.10).

The first option, Undo, does exactly what it says; it reverses the most recent
editing operation performed. For instance, if you have just deleted a couple
of blocks of code and now decide you shouldn't have, select Undo and the
code is magically back in place. This works only with the last operation
performed, however. If you deleted those blocks, then deleted a few more
lines somewhere else, the original blocks you deleted cannot be brought back
via Undo.

Cut may be used to delete the currently selected text. This text is auto
matically copied to the Clipboard, a temporary storage area, so that it may
be restored or copied elsewhere via Undo or Paste. On the other hand, the
Copy option will copy the selected text to the Clipboard so that it may be
copied elsewhere. Paste will copy the text in the Clipboard to the location of
the cursor.

The Clear option deletes the selected text and does not copy it to the
Clipboard. This is identical in function to selecting text and pressing the
backspace key.

Search Format Font Compile Transfer
:)(:2

Cut SCH
Copy sec
Paste 8€U
Clear

Stlif1 U> t t :)[:[
Stlif1 Higtl1 :)(:]

Options ...

Untitled

..,

Fig. 2.11.

Menu Discussions 33

The next two options, Shift Left and Shift Right, are very useful for
indenting and aligning blocks of code. To use either one, select an entire
line of text (or several lines) and select the option to shift the text either
left or right one space. If you have trouble selecting either of these options
because they are disabled (light gray), make sure you have selected entire
lines. The easiest way to ensure this is to move the mouse all the way to
the left of the edit window and slide it down until you have the entire block
selected.

The last option in the Edit menu is entitled Options When this item is
selected, the dialog box shown in Figure 2.11 is displayed.

As you can see, this box allows you to enter options for the tab width
(how many spaces are skipped with the tab key), and whether Auto Indent
and the startup window are active. Auto Indent is a very handy option. It
starts each new line at the same horizontal position of the line above. This
enables the programmer to keep blocks of code aligned without having to
count the number of spaces to indent with each new line. When the startup
window is selected, each time Turbo is started up, an untitled window will be
displayed for immediate editing. This option should be based upon your own
personal preference, but we recommend that you keep the Auto Indent
option enabled. Once you have made any option changes, they will remain
in effect until you leave Turbo. To save them for later use, select the Save
Defaults command from the File menu.

Search Format Font Compile Transfer
.,

Untitled

Tab width: IGMI [gl Ru to Indent
[gl Startup Window

OK (Cancel)

34 Getting Acquainted with Turbo Pascal

The Search Menu

Fig. 2.12.

The Search menu provides you with the basic functions of search, search and
replace and a few other handy features (see Figure 2.12). When the Find ...
option is selected, the dialog box shown in Figure 2.13 is displayed.

To find a particular string-a sequence of characters, like "computer" -
enter the string in the Find What: field and select whether your selection is
for complete words only or if it is case-sensitive. For example, if you want
to find the next occurrence of the word "for," enter that string in the Find
What: field and select Words Only. If you click the OK button, Turbo will
search through your file until it finds the string "for." By selecting Words
Only, you are preventing Turbo from stopping if it finds the string "form" or
"forest" before it sees a "for." If you leave that option off, any word with the
substring "for" is a candidate for the search. In addition, in words-only mode
the strings "FOR," "FoR," "For," and so forth are treated as the equivalent
of "for." If you want only the exact upper- or lower-case format that you
have entered, select Case Sensitive. Note that the search begins at the cursor
and does not wrap around to the beginning of the file. If you have the cursor
positioned at the end of the file, you'll never find anything with the Find ...
option. When Turbo has located the desired string, it will move to that portion
of the file and the text will be shown in reverse video. If Turbo is unable to

.,

Hnd !l1h~Ht :J(:l) n 1 e
Change... SCA

Home Cursor SCH

Window SCW

Fig. 2.13.

Menu Discussions 35

r • ~ .. File Edit-Format Font Compile Transfer

Find What: l.__ ___________________ __,
OK D Words Only D Case Sensitiue (Cancel)

find that string, the Mac will beep and you'll be back where you were before
the Find ... option was selected.

Find Next may be used to search again for the next occurrence of the string
last specified in either a Find ... or Find Next. If you want to find all instances
of the word end in your program, start by selecting the Find... option and
specify the words-only string end as the search criterion. Once you find the
first occurrence, select Find Next... without reentering the string, and it will
take you to the next occurrence.

If you select the Change ... option from the Search menu, the dialog box
shown in Figure 2.14 will be displayed.

In this box you can specify the string to be searched, the change to be made,
and Words Only or Case Sensitive. Once you have entered the necessary
information and clicked OK (or pressed "RETURN") in this dialog box, the
dialog box shown in Figure 2.15 is shown every time Turbo encounters your
search string.

Within this dialog box you can specify whether you want the change to be
made to each case of the search string. If you know you want to change every
occurrence, click the all button, and Turbo will make the changes without
any intervention on your part.

The last two commands in the Search menu, Home Cursor and Window,
are little extras that don't actually do any searching but can assist you in

36 Getting Acquainted with Turbo Pascal

Fig. 2.14.'

Fig. 2.15.

Find What:

Change To:

OK D Words Only D Case Sensitiue

r S File Edit ..
p.-ogco• I Chonge7

begin
wri teln< 'Hello');
ml;
end.

Format Font Compile Transfer

Yes) (No) (All) (Cancel)

.,

(Cancel)

.,

I!
iiiii!

II

Menu Discussions 3 7

moving the cursor and switching windows. Home Cursor will move the cursor
to the top left comer of the active window, the home position. This can be
handy when you are working with a large file and want to jump and move
the cursor to the top of the file with one command. The Window command
allows you to hop from one window to the next within the Turbo editor. As
described later in this chapter, you can have up to eight windows open in the
editor, and this command allows you to move back and forth between all the
open windows.

The Format Menu

Fig. 2.16.

The Format menu gives you the ability to set up your windows in the Turbo
editor in a couple of different ways. It also allows you to expand and shrink
the active edit window as well as select different type sizes for each window
(see Figure 2.16).

The first option in the Format menu, Stack Windows, will take all the open
edit windows and arrange them so that the title bars for each are visible and

r • ~

i~F;i;le;;;Ed;i;t;;S;ea;r;c;ht•~·~!rr~liiI~ffil~~~rl'li~F~o~nt~lco~m;;p;ilei;i;Tr~a~n~s~fe~r~~~~~~I l§I Stack Windows ~
Tile Windows
Zoom Window &J

..,..9 point
1 O point
12 point
14 point
18 point
24 point

38 Getting Acquainted with Turbo Pascal

one window is stacked on top of the next (see Figure 2.17). This is Turbo's
default method of laying out windows as you open them in the editor.

Conversely, if you select the Tile Windows option in the Format menu,
your edit windows will be laid out so that all of the windows are completely
visible, although they are shortened vertically (see Figure 2.18).

This format allows you to see at least a portion of the text in each
edit window while working in any one. This window layout is particularly
attractive with the next option in the Format menu, Zoom Window. The
Zoom Window will cause the active window either to expand to occupy the
entire screen or shrink back to the size it was originally. This is essentially the
same as double-clicking on the active window's title bar. In the Tile Windows
environment Zoom Window allows you to take one of the edit windows, blow
it up to full size to do some work within it, then select Zoom Window again
to reduce it to the size it was before you selected Zoom Window. Used
together, Tile Windows and Zoom Window are quite handy when working
with multiple files in the Turbo editor.

The remainder of the Format menu consists of several type sizes you may
select for use in any of your windows; each window can use a different type
size.

,.. .S File Edit Search Format Font Compile Transfer
.,

I
~~~~ 

Second.pas 

First.pas 

Third.pas 
program Third(input,output>; 

begin '8n1 
writeln('This is our third program . '>; Hii 

:~~~11 n; l!,!11 



Fig. 2.18. 

Menu Discussions 

,.. s File Edit Search Format Font Compile Transfer 

Second.pas 
program Second( input,output); 

begin 
writeln<'This is our second program . '); 
end . 

program Firs t<input,output); 

begin 
writeln <' Hel lo world . ') ; 
read In; 

l21 
D 

begin 

First.pas 

Third.pas 

wr i teln<'This is our third program . '); 
read In; 
end. 

39 

.., 

The Font Menu 
The Font menu shows all the available fonts you may use in your edit 
windows. Just as you may wish to have different type sizes in different 
windows, you may wish to have different type styles (see Figure 2.19). 

The fonts listed in this menu are those held in the system file. You may 
install or remove fonts from this file using the Font/DA Mover application. 

The Compile Menu 
The Compile menu is probably the menu you will use most often in Turbo 
Pascal. It provides you with the ability to compile, execute, check syntax, 
find errors, and a few other goodies (see Figure 2.20). 

The first option, Run, will compile the program in the active window to 
memory (discussed below) and execute it immediately provided no errors 
are encountered. If your program has already been compiled and no changes 
have been made to it, Run will execute your program without recompiling it. 
Run is probably the most often used command on the Compile menu, since 
it automatically recompiles any time you change your program. 



40 Getting Acquainted with Turbo Pascal 

,.. 

Fig. 2.19. 

s File Edit Search Format 11imJ1 Compile Transfer 

D Chicago 
Geneua 

../Monaco 
New York 

., 

., ,.. s File Edit Search Format Font b!J.W!llalTransfer 

Untit ...... ~.~-~ ................... =····=··· · ·=· · ··=· ···~---~~----~~.]. ;;~;;;w 

Fig. 2.20. 

To Memory 3CM 
To Disk 3CK 
Check SyntaH 3CY 
Hnt1 E rrnr :)['!: 

Get Info 3€1 

Options ... 



Menu Discussions 41 

The next two options, To Memory and To Disk, compile your program 
to memory and disk respectively. Compiling to memory is processing the 
Pascal code in the active window and placing the resulting executable module 
(68000 machine code, which the Macintosh understands) in RAM. As you 
know, RAM is volatile, so if you select this option and your Macintosh loses 
electrical power or you quit the Turbo program, the executable version of 
your program will not be saved anywhere. Of course, all you have to do to 
run your program again is get back into Turbo and recompile it, but if you 
want to have a double-clickable application on disk, you must choose To 
Disk in the Compile menu. When To Disk is selected, Turbo compiles the 
program in the active window and writes the resulting executable module to 
the active disk. This results in an additional icon that appears on that disk's 
contents on the desktop. This icon, if you double-click on it, will execute just 
as does MacWrite or any other Macintosh application. We'll discuss these 
concepts in further detail later in this chapter, but you should now understand 
the difference between compiling to memory and compiling to disk. 

The next option in the Compile menu is Check Syntax. It does just what 
it says. When you select this option, Turbo processes the program in the 
active window for any syntax errors. If an error is encountered, a message 
is displayed. Generally the offending code is selected in reverse video. If no 
error is found, you are returned to the editor within that program's window. 
When Turbo checks your programs for errors via Check Syntax, Run, or 
either of the compile options, as soon as it encounters an error, it stops and 
displays an appropriate error message. However, if you have more than one 
error in the program, the next error will not be detected until the next time you 
try to run the code through the compiler. This practice of signaling only one 
error at a time is fairly common among PC-based compilers such as Turbo. 
No doubt many who are used to running compilers on larger machines are 
spoiled by the ability of the more sophisticated compilers to find many errors 
on a single pass. You may find yourself having to recompile your programs 
many times before all your errors are uncovered, but the Turbo compiler is 
so fast and interacts so well with the Turbo editor that this is not a problem. 

The next option on the Compile menu, Find Error, will remain disabled 
until you encounter a run-time error. A run-time error crops up after com
pilation, while the program is executing. In other words, the program passed 
all the syntax tests Turbo uses before creating an executable module but con
tains a problem so severe that execution stops. All the possible run-time error 
types are listed under System Error Messages in your Turbo Pascal manual. 
If you are unfortunate enough to encounter one of these errors, control will 
be passed back to the Turbo editor and the error message will be displayed 
at the top of the screen. Once you click on the error message, it will disap-



42 Getting Acquainted with Turbo Pascal 

pear and the line of code where Turbo detected the error will be selected in 
reverse video, just as with a compile error. If you happen to move about in 
that window and perform some editing and wish to find where the error was 
detected, select the Find Error option and the window will scroll back to lo
cation of the run-time error and the code will again be selected in reverse 
video. 

Get Info is next on the Compile menu and when it is selected, a dialog 
. box like the one shown in Figure 2.21 is displayed. 

Fig. 2.21. 

This box shows information on the active window's program text, code, 
and heap sizes. The last option in the Compile menu is Options .... When this 
option is selected, the dialog box shown in Figure 2.22 is displayed. 

At the very top of the box you will see options for the symbol table size and 
Auto Save. A symbol table is used by the compiler to hold names of various 
identifiers in your code. Unless you are working with a large program, the 
32K symbol table default size should be sufficient. You may wish to tum on 
Auto Save by clicking in the box so that every time you select Run from the 
Compile menu, your Pascal source code is saved to disk. This can be quite 
handy if you forget to save your file and somehow crash the system, which 
is not all that difficult to do sometimes. If you selected Auto Save, at least 
you know all your code was saved to disk before the system went down. The 
remainder of the Options dialog box shows five lines; each starts with a dollar 

r s File Edit Search Format Font I' fll!llllc;ml· !LiTriiaiinilismf emrBllBllBllBllllllllllllllllllllll., 

First.pas 
program First( input, output>; 

be 
wr 
re 
en 

TeHt: First.pas, 74 bytes, 5 lines. 
Code: Not compiled. 

Heap: 352K bytes in total, 291 K bytes free. 

ig 

OK 

m 

I 
11111 

I 
IQ 



Fig. 2.22.: 

Menu Discussions 

,... s File Edit Search Format Font~ • I.nm Transfer 

First.pas 
progr £j l"«t.{_i nnut nutnut.l· 

begin 
write 
readltj 
end . 

Symbol table K-Bytes @I] 
Default Directories: 

$U 

$1 

$R 

$l 

$0 

OK 

181 Auto Saue TeHt 

(Cancel ) 

43 

., 

~ 

I 
II 

sign ($) and shows room for text entries. These are the default directories. 
These lines may be used to inform Turbo that you wish to refer to special 
files in different directories. Directories are used to separate different files on 
your disks. For instance, the line 

MyDisk:T~mpDir: 

tells Turbo to look on the disk named MyDisk and in the TempDir directory. 
You may have several files on MyDisk within that TempDir directory but 
you have set them up so that they may be referenced in this manner rather 
than just having them jumbled about on the disk. 

The various default directory types are 

$U Unit file directory 
$1 Include file directory 

· $R Resource file directory 
$L Link Object file directory 
$0 Output file directory 

Each is described in detail in the Turbo Pascal manual, but we are particularly 
interested in the $0 directory. When you select To Disk in the compile 



Getting Acquainted with Turbo Pascal 

menu, your executable program is written out to disk under the current 
default directory. It is a common practice to name Pascal source files with 
a .pas extension, for example MyFirst.pas. Using this convention, you can 
immediately see which files on a disk are Pascal source files. H you compile 
the source file MyFirst.pas to disk, the resulting double-clickable application 
is written out to disk with the name MyFirst (as long as the name in 
your program statement, which we will look at shortly, is MyFirst). Notice 
there is no extension. H you would prefer to have all your double-clickable 
applications written out to, say, your hard disk under a Turbo directory, you 
could set up the $0 option to be 

HardDisk:Turbo 

Every time you compiled to disk, the resulting applications would be 
written out to that directory. The other default directory types will become 
apparent as we become more familiar with Turbo Pascal. To save any options 
you set up with this menu item, select Save Defaults from the File menu after 
you have made all your option entries. 

The Transfer Menu 
The concept behind Transfer was discussed earlier for the Edit Transfer 
option in the File menu. Any applications installed via Edit Transfer will 
show up in the Transfer menu (see Figure 2.23). 

To switch to any of these applications, select it from the Transfer menu. 
Now that I have analyzed all the Turbo Pascal menus, it's time to get down 

to business and work with your first Pascal program. 

Your First Turbo Pascal Program 
Up to this point I have discussed some programming concepts without writing 
any Pascal source code. I cannot emphasize enough how important it is first 
to analyze a problem and then to determine a general solution before writing 
the actual algorithm. 

When you are ready to begin programming, information or data is entered 
via the keyboard and mouse in the form of letters, numbers, and special 
characters. The data is processed by the Macintosh and then put out via video 
display or a printer. The output is a result of the Turbo Pascal instructions 
that you provide. 



Fig. 2.23. 

,.. s File Edit Search Format 

program First< input, output>; 

begin 
writeln( ' Hel lo world . '>; 
read In; 
end . 

Your First Turbo Pascal Program 45 

., 

First.pas 

I will start with a very simple program that displays the following message 
on your screen: Isn't Turbo Pascal interesting? This message is the output of 
the program. The message will remain on your screen until you press the 
return key. Although no data is coming in with the return key, the act of 
pressing it may be referred to as a form of input to the program. 

Start up the Turbo program and in the Untitled window, enter the following 
short Pascal program: 

Program MyFirst; 

begin 
writeln('lsn"t Turbo Pascal interessting?' ); 
read In; 

end. 

Your screen should look like the one shown in Figure 2.24. If you have 
never worked with an editor before, just type the statements in as if you were 
using a typewriter; if you make any mistakes, just backspace over them and 
reenter the line. 

If your program looks like the one in Figure 2.24, select To Memory in the 



46 Getting Acquainted with Turbo Pascal 

Fig. 2.24 .. 

,.. s File Edit Search Format Font Compile Transfer 

D Untitled 
program MyFirst<input, output>; 

begin 
writeln(' l sn · 't Turbo Pascal interesting?'>; 
read In; 
end.I 

~ 

II 
II 

12J Jii!limm:1:m:m1m:mroro;;m,;~m;,,J;mi!~mommm1m!l;;;;~i!i!!li! i! i l!i! i!01!i !i!i!l!iii!!li!i~; i!m~mi!moiii,;1~m1ll <::I 

., 

Compile menu to make sure there are no typos. If all went well, you should 
be placed back in the edit window. Two items are very important when 
entering programs in Turbo Pascal: blank spaces and semicolons. If we insert 
a space between two words, you should too. Otherwise a syntax error may 
occur. Semicolons could be explained in a chapter all their own. We detail 
their use in Chapter 3. For now, it is important that you realize that Turbo 
Pascal is very rigid about them. In general, almost every program line must 
end with a semicolon. The semicolon is used to separate statements and to 
indicate to the computer that you are ready to begin a new statement. Many 
beginners' programming errors involve a missing or misplaced semicolon. 
When to use and when not to use a semicolon is sometimes confusing. For 
now, follow the general rule and watch your punctuation closely by carefully 
copying our examples. Also, you should follow the statement indentation and 
spacing as presented throughout this book when working with Turbo Pascal. 
For example, the statements between begin and end are indented to show the 
block. Now let's take a look at this simple program. 

The first statement-

Program MyFirst; 

-announces the beginning of a program named MyFirst. This is the program 
statement or the program heading. All Pascal programs must have a similar 



Running Your First Program 47 

heading. As we mentioned earlier, when you compile this program to disk, 
the resulting double-clickable application gets its name from this program 
statement. So a Turbo Pascal source file named TheFirst.pas could contain 
the program statement 

Program MyFirst; 

Compiling this program to disk produces an executable file called MyFirst. 
The next statement in the program is begin. You may also have noticed that 

the program ends with end. All Pascal programs have a block of executable 
lines that start with begin and conclude with end followed by a period. The 
executable lines are called the program statements. A program block always 
follows the program heading. In fact, several program blocks may follow, 
making up a large structured program. It is important to note that many 
program blocks within a single program will include end, but only the last 
one should be followed by a period. The period signals Pascal that this is the 
last line in the program. 

Immediately after begin comes the statement responsible for displaying the 
message: 

writeln('lsn"t Turbo Pascal interesting?'); 

This is a write-line statement. Its format will be detailed later, but for now 
you should realize that it is used to display messages. 

Finally comes the read-line statement: 

read In; 

As with writeln, readln will be discussed in detail later. For now all you 
need to know is that this statement causes all activity on the Macintosh to 
cease until you press the return key. Now that we have a rather limited 
understanding of our first program, let's see what happens when we exe
cute it. 

Running Your First Program 
Select Run from the Compile menu and watch what happens. If all went well, 
your screen should look like Figure 2.25, displaying the message Isn't Turbo 
Pascal interesting? This message remains on the screen until you press the 
return key. 

Again, if you ran into a compiler error, check your typing and make sure 
your program matches the listing shown above. Some programmers spend 



48 Getting Acquainted with Turbo Pascal 

,.. ., 

My First 
Isn't Turbo Pascal interesting? 

much time correcting errors, also called debugging a program. Keep in mind 
that debugging is not just correcting typos. Debugging is more precisely 
defined as finding and fixing incorrect statements and improper program 
construction. Correcting typing mistakes is a matter of editing. It is important 
to review editing tools next. 

Editing Your Program 
The computer won't notice typing mistakes in a program until you submit 
the code for compilation. For example, if you enter the following program-

Program Sample; 

begin 
writeln('Programming is fun!'); 
writeln('Have a nice day!'); 
read In; 

endd. 



Editing Your Program 49 

-the computer responds with an error message when you try to compile it 
because you misspelled the word "end" in the last line of the program. In 
addition, the line responsible for the error is selected in reverse video. 

To correct the error, first respond to the error message by pressing either 
the mouse key or the return key. The next step is to correct the mistake. 
You do this using the general editing techniques of the Macintosh. You move 
the mouse to place the pointer at any point on a program line, backspace to 
erase, hit the space bar to insert, or drag to select text. Selected text is erased 
by pressing the backspace key or replaced by typing the desired text. 

To correct the spelling error, move the pointer to the extra "d," select the 
letter by dragging the pointer horizontally, and then press the backspace key 
to delete the letter. Now run the program by selecting Run from the Compile 
menu. The resulting output should look like Figure 2.26. 

You may want to modify a program by inserting a statement between 
previously entered items. Insert a line between your two writeln statements 
like this: 

1. Move the pointer to the beginning of the second writeln statement. 
2. Enter the new line as 

writeln('This is a Turbo Pascal Program.'); 

Programming is fun! 
Have a nice day! 

Sample 

., 

Fig. 2.26. --------------------· 



50 Getting Acquainted with Turbo Pascal 

Now if you run your program, the result should look like Figure 2.27. 
You can also use the Cut, Copy, and Paste functions in the Edit menu 

as well as the functions in the Search menu. You should take some time to 
familiarize yourself with these edit functions before we move on to the next 
subject, saving your programs. 

Saving Your Program 
Recall that the Run command in the Compile menu will compile your 
program, create an executable version of it in 68000 machine code and 
place it in RAM. This command then executes the program but does not 
save it to disk. The option To Disk in the Compile menu must be used to 
write an executable version of your program to disk. If you compile to disk 
and leave Turbo without saving the source code, you will be able to run your 
program from the desktop, but you will not have the code in the editor. For 
that reason, you should periodically select Save from the File menu to save 
your source code. Let's save a copy of the following sample program to disk 
by selecting the Save option in the File menu. 

,. 

Programming is fun! 
Thi s i s a Turbo Pasco I Program . . 
Have a nice day! 

., 

Sample 



Fig. 2.28. 

Saving Your Program 51 

Program Sample; 

begin 
writeln('Programming is fun! ' ); 
writeln('Have a nice day!'); 
read In; 

end. 

Save displays the dialog box shown in Figure 2.28. In this box specify the 
name of your source file; I will call mine Sample.pas. We mentioned earlier 
that it is a common practice to flag Pascal source filenames with the .pas 
extension. 

Alternatively, you may select Save As ... from the File menu. Recall that 
Save As ... always displays the dialog box prompting for the filename, whereas 
Save displays the box only when the active window is untitled. You can 
use Save As ... later on if you decide to modify the sample program but not 
overwrite the original version. Once you have saved the sample program to 
disk, your edit window should look like the one shown in Figure 2.29. Notice 
that the window header now contains the name of the source code file. 

r S • Edit Search Format Font Compile Transfer 

Untitled 
progrom Somple; 

i s fun! · ) · 

reodln; 
end . 

I [g) Turbo Pascal 

D f"in1h~r 
D I m<19(~Ulri1 (~ I" 

D Scrn(m O 
D Scrn(m l 
D Scrn(m 2 
D Scrn m1 ·~ 

Saue teHt as: 

~[g) Turbo Pas ... 

rmn-, Eject 

I IQj 

Cancel 

II 
1111 

1111 

.., 



52 Getting Acquainted with Turbo Pascal 

Fig. 2.29. · 

r s File Edit Search Format Font Compile Transfer 
., 

D Sample.pas 
program Sample; 

~~l~l~~:~:~:;~"~::~;~j P~,.-o• . '); I 
I 

IQL Wi!!ili1:mmi!m:mi:mmm!ilimm1mm!ili;mm~J!im1~:;11;:;:,;11;;m!i:mmi;m1mm~mm11ti!!jlj1;,;:1!ili!!1!!1!ili!!!i!i!ii!i!~J 
If you now exit the Turbo program, you will notice the Sample.pas icon 

on your disk. You can tell that it contains Pascal source code because it has 
the .pas extension and that it was created via the Turbo editor because of the 
checkerboard symbol in the icon (see Figure 2.30). 

If you desire to get back into the Turbo editor with the Sample.pas file, 
double-click on the Sample.pas icon. Now let's take a look at how to print a 
copy of the source code. 

Printing Your Program 
It is often desirable to have your programs on paper instead of always looking 
at them on the screen. This is particularly useful when the programs are large 
and do not fit in the edit window without scrolling. In addition, you may want 
to store a copy of the program away in case the disk it is stored on is damaged 
or lost. As another safety precaution, you should make it a practice to back 
up your programs on another disk that is safely tucked away in a storage case 
so that, if something does happen to your main source file disk, the contents 
won't be lost. Finally, it's sometimes necessary to study a long program for 



Fig. 2.30. 

Printing Your Program 53 

r S File Edit Uiew Special 
., 

304K in disk .. 

errors, making changes, and so on. A hard copy of a program makes all these 
tasks easier. 

Printing a hard copy is a simple procedure. Make sure that your printer 
is properly connected to your Macintosh, that it is plugged into an electrical 
outlet, and that the paper is fed correctly. Next select Print... from the File 
menu, enter the desired options in the dialog box shown in Figure 2.31, and 
watch as the listing is printed. 

The Macintosh provides two printing features you may find useful. To print 
a copy of the screen (sometimes called a screen dump), engage the caps lock 
and press <COMMAND><SHIFT><4>. The command key is the one with 
the cloverleaf on it. Alternatively, you can dump the screen to a disk file by 
pressing <COMMAND><SHIFT><3> while the caps lock key is locked 
down. You can edit Screen 0, the file created by this option, via MacPaint or 
any comparable drawing program. Any subsequent screen dumps sent to the 
disk are named Screen 1, Screen 2, and so forth. 

This chapter covers a lot of ground and explores several important operations 
you will be using throughout the remainder of this book. In Chapter 3 I will 
start looking at the structure and syntax of Turbo Pascal programs. 



54 Getting Acquainted with Turbo Pascal 

Fig. 2.31. 

· Edit Search Format Font Compile Transfer 

lmageWriter 

Quality: 

Page Range: 

Copies: 

Paper Feed: 

@Best 

@Rll 

EJ 
@Rutomatic 

Sample.pas 

v2.3 

0 Faster 0 Draft 

O From: D To: D 
O Hand Feed ~ 

n OK D 

(Cancel ) 

I 
11111' 

Review Summary 
1. The menu bar in Turbo Pascal has eight entries: the Apple menu, File, 

Edit, Search, Format, Font, Compile, and Transfer. 
2. Turbo Pascal supports up to eight windows open simultaneously; the 

operations for using windows in Turbo are simple extensions of the 
same operations performed on other Mac software such as MacWrite. 

3. Information, or data, is put into the Mac via a keyboard or mouse in the 
form of letters, numbers, and special characters. The data is processed 
by the Mac, and then put out via an external device such as the video 
display or printer. 

4. All programs must begin with the program heading followed by at least 
one program block. 

5. A program block starts with the reserved word begin and concludes 
with the reserved word end followed by a period (.). All the statements 
within a program block are the executable lines of the program. In most 
instances, a Pascal statement is terminated by a semicolon (;). 

6. Turbo Pascal is not case-sensitive. That is, you can enter your programs · 
in either upper or lower case or a mixture of both and Turbo will not 
differentiate between the two. 



Quiz 

Quiz 55 

7. Editing your programs is made simple with the Edit menu. Just like 
MacWrite and other word processors, you can cut, copy, and paste as 
well as use the Clipboard for temporarily storing text. 

8. Storing your programs to disk is accomplished with the Save or Save 
As ... command in the File menu. 

9. To print a hard copy use the Print option in the File menu. 

1. Does the Turbo editor provide a file wrap feature on the Search options? 
2. What does the Clear option in the Edit menu do? 
3. What is the difference between Stack Windows and Tile Windows in 

the Format menu? 
4. What is the difference between compiling to disk and compiling to 

memory? 



-11-----
THE TURBO PASCAL LANGUAGE 



-3-----
Turbo Pascal Revealed: 
Structure and Syntax 
The Right Stuff: Syntax 
The Elements of a Turbo Pascal Program 
Data Types: What to Declare 
What to Declare: Variables 
Assigning Variables 
Constants 
A Word on Punctuation: The Semicolon 
Expressing Yourself 
Mathematical Order of Operation 
Simple Turbo Pascal Arithmetic 
More on Data Types 
Program Formatting 
Review Summary 
Quiz 

In this chapter you will learn: 
• The proper structure and syntax of a Turbo Pascal program. 
• What the different types of data are. 
• What a variable is. 
• How to use comments and constants. 
• How to use mathematical operations for arithmetic. 

This chapter focuses on many basics necessary to use Turbo Pascal on 
the Macintosh. The first step in programming is to analyze the problem and 
develop a general solution, or algorithm. Next the solution is translated into 
Pascal as instructions and implemented to test the results. From now on I 
will emphasize writing program instructions developed from algorithms. 

Before you can begin to solve complex problems, you must master some 
fundamental concepts of the language itself. The first concept is the structure 
of a Pascal program and the elements that make up a simple program. Later 
in this chapter I will introduce the variable and show how this feature is 



60 Turbo Pascal Revealed: Structure and Syntax 

invaluable for complex programming problems. Assuming Turbo Pascal is 
loaded, up, and running, let's get started by reviewing the fundamentals of 
Turbo Pascal programming. 

The Right Stuff: Syntax 
In any language certain rules must be followed. In a natural language such 
as English these rules are called grammar. In programming these rules are 
called syntax. A program in Pascal must be properly constructed according to 
strict rules. Programs must be syntactically correct, using valid statements. If 
the rules of syntax are not followed-for example if a semicolon is misplaced 
or a key word is missing-the program will fail. Throughout this book you 
will learn many syntax rules. In the next section I introduce a few of the most 
common ones. 

The Elements of a Turbo Pascal Program 
A valid program must include a few elements. These elements, introduced 
in Chapter 2, make up the structure of a Pascal program. Let's review the 
elements of a simple program step by step. The basic organization includes a 
program name or heading, declarations and/ or definitions, and the program 
body, as shown in Figure 3.1. 

A complete program might look like Figure 3.2. 

The First Line 
The construction of this example begins with the first element, the program 
heading, which must be the first line of the program. A program name, called 
an identifier in Turbo Pascal, can be made up of capital or lowercase letters, 
numbers, and underscores (_). Although an identifier may be as long as 
you like, only the first 63 characters are actually used by Turbo Pascal. All 
identifiers must begin with a letter. The rules governing the program identifier 
are a bit more strict: a program name cannot be longer than 31 characters. 
When you compile to disk, the resulting executable file's name is the same 
as the name in the program statement, so keep program names within this 
limit. 

Two important rules of syntax are illustrated with the program heading. 
First, a space must separate the word "program" from the program name. 
Second, a semicolon must immediately follow the program name. Both 
punctuation marks are necessary and should be mastered early on. 



PROGRAM BLOCK 

Fig. 3.1. 

The Elements of a Turbo Pascal Program 61 

Program .. . ; 

Declarations, 
Definitions, 
Comments, etc. 

begin 

end. 

PROGRAM HEADING 

DECLARATION & 
DEFINITION SECTION 

STATEMENTS SECTION 

./' 

A Word on Identifiers I 

Fig. 3.2. 

I 
Turbo Pascal provides a great amount of flexibility when naming identifiers. 
Early versions of Pascal and other high-level languages were restricted in the 
number of characters allowed for identifiers or similar naming procedures. 
Some versions allowed only one or two characters; others allowed more, but 
only the first two characters were significant and recognized by the computer. 
In Turbo Pascal you can use as many characters as you desire. However, 
you may want to limit the number of characters to a manageable number, 

r ti: File Edit Search Format Font Compile Transfer 

Untitled 
program MyF i rstProgram; 
{ This is a complete program . 

begin 
writeln<'You are a good programmer . ') 
end. 

., 

111111 



62 Turbo Pascal Revealed: Structure and Syntax 

say 10 to 15. In addition, an identifier should describe its program or item. 
Programs with descriptive names are easier to recall and identify than those 
with ambiguous names. 

It is important to remember that spaces, periods, and other punctuation 
in identifiers are illegal. As far as special characters are concerned, only 
the underscore is allowed. If you want to make a long name or separate 
words readable as an identifier, use an underscore or initial caps-capitalize 
the first letter or each word within the identifier-not a space, to sepa
rate them. For example, MyFirstProgram is easier to read than myfirstpro
gram or MYFIRSTPROGRAM. Or use an underscore to improve readability: 
My_FirsLProgram or MY _FIRST _PROGRAM. 

Remember, all identifiers must begin with a letter. Both uppercase and 
lowercase characters are recognized as the same by Turbo Pascal and are 
interchangeable. Any other change in the first 63 characters makes the 
identifier unique. For example, Al is different from A2, and SimpleGreeting 
is different from Simple-Greeting. The following is a list of some valid and 
invalid identifiers: 

Valid 

FirsLSample 
Employee25 

Invalid 

!Student 
Value# 
Start Program 

Gamel 
F8 

Reason 

Payroll 
Start_Add_Here 

Identifier must begin with a letter 
Invalid character(#) 
Identifier must not include space 

In summary, the rules for naming identifiers: 

1. An identifier must begin with a letter. 
2. An identifier may be of any length but only the first 63 characters are 

significant. 
3. An identifier may include capital or lowercase letters, numbers, and the 

undescore symbol(_). 

Declarations and Constants 
The second element of a basic Pascal program is the declarations. Declara
tions are used primarily for two functions: to declare the type of values that 
will be used in the program itself, and to describe what is going on within 
the program at any particular point. Declaring values is explained in detail 
in the following section, which describes variables. In Figure 3.2 the second 



The Elements of a Turbo Pascal Program 63 

line of the program represents the descriptive use of a declaration. This type 
of declaration is called a comment. 

Comments are useful tools employed by good programmers. These lines 
are ignored by the computer except under special conditions explained below 
but make a program easily understood. A comment should explain what is 
going on within a program. A properly documented program can be read by 
someone besides the programmer without too much clarification. 

A comment is enclosed in either a set of { curly brackets } or (*paren
theses and asterisks*). The matching delimiters are not interchangeable. For 
example, the comment line in Figure 3.2 can also be written as 

(* This is a complete program *) 

but not as: 

{ This is a complete program *) 

The comment line may contain anything, but avoid using another curly 
bracket or parenthesis/ asterisk pair like this: 

(*{This is an embedded comment }*) 

This is commonly known as a comment within a comment, or an embedded 
comment. Although Turbo Pascal permits you to do this, it is not a good 
practice because so many other compilers treat embedded comments as 
syntax errors. 

Because almost all comments are ignored by the computer, they may 
appear anywhere in a program. Special comments, which begin either (*$ 
or a {$, indicate a compiler directive. Compiler directives are discussed in 
detail in Chapter 4. For now all you need to know is that all comments are 
ignored by Turbo Pascal unless the first character of the comment is a dollar 
sign. If you use a comment to describe a particular line, place it after the 
semicolon delimiter of the same line. For instance, 

writeln ('Hello world.'); {This is a writeln statement} 

If you are explaining a complete block of code, it might be more understand
able to place a comment block before it like this: 

(***************************************************************) 

(* Now we want to add the taxable amounts and subtract *) 
(* the nontaxable amounts to get the net income. *) 
(***************************************************************) 



64 Turbo Pascal Revealed: Structure and Syntax 

followed by your actual Pascal statements. The use of comment blocks similar 
to this greatly improves the readability of programs and makes the comments 
easy to locate. Commenting on your code is a very important step in the 
development of programs. Many a programmer has gone back to a piece of 
code a few years or even days after writing it, and because it was not properly 
documented, cannot figure out its purpose. 

The Program Body 
The program body is the workhorse element of a Turbo Pascal program. 
The structure of this element is preceded by the reserved word begin and is 
completed with the reserved word end. The lines listed between the reserved 
words begin and end are the executable portion of the program and are called 
statements. Collectively, these lines represent a program block. 

A number of statements may appear with the begin-end pair. Our example 
in Figure 3.2 contains only one statement, which you were briefly introduced 
to in Chapter 2. W~teln (pronounced "write line") tells the Macintosh to write 
the message and move the cursor to the next line. This statement is used to 
send information to an output device such as your screen, a printer, or a file. 
In this instance we are requesting the output to go to the screen. Examine 
the syntax of this statement. The information that you wish to display on 
your screen must be enclosed within parentheses and apostrophes exactly 
as it appears in Figure 3.2. The statement may conclude with a semicolon. 
However, because it is the last statement that precedes an end, the semicolon 
is not required. You may recall that earlier we mentioned that the use of the 
semicolon is a tricky subject. Up to now we understood that all statements 
concluded with a semicolon. The only exception to this was the very last end, 
which is followed by a period to signify the end of the program. Nor is any 
statement immediately preceding an end required to have a semicolon. For 
example, this pr9gram contains three writelns, and all but the last one are 
concluded with a semicolon. 

Program Test; 

begin 
Writeln ('This is a test.'); 
Writeln ('This is only a test.'); 
Writeln ('For the next 60 seconds .. .') 

end. 

The last writeln does not require a semicolon because the end signifies 
the end of the block. Pascal recognizes that the statement end terminates 



The Elements of a Turbo Pascal Program 65 

the block and therefore also the preceding statement. I will discuss new 
exceptions to the semicolon rules as they arise. Later in this chapter I 
summarize these rules for semicolons. 

Writeln displays the characters desired and then performs a carriage return 
and drop the cursor down to the beginning of the next line. We will explore 
this statement in more detail shortly. 

At least one program block must follow a program heading. It is important 
to note, however, that several blocks may appear throughout a program. 
Where several program blocks are used as modules, structured programming 
occurs. Whenever begin appears, it marks the starting point for one or more 
executable statements; end marks the stopping point for the same. Each 
module is often used to perform a specific programming job. This structure is 
the basis for subdividing large programming problems into smaller, workable 
program modules. 

Each program block must include a begin-end pair. These pairs, or com
pound statements, follow the syntax rules applied to a program that contains 
only one begin and end pair. When begin appears, an end must follow one or 
more executable statements. The one notable syntax rule is the punctuation 
following end within the compound statement. A period must always follow 
the last end to indicate that the program is complete. An end that is not at 
the end of a program must be followed by a semicolon. Since only one end 
followed by a period should appear, at the end of the program, this rule is 
easily mastered. 

In summary, the rules for using the compound begin-end pair are as 
follows: 

1. At least one begin-end pair must follow a program heading. 
2. Where a begin exists, a matching end must follow. 
3. Only the last end should be followed by a period. Many programs 

contain several program blocks, hence a number of begin and end pairs. 
An end that is not the last one is followed by a semicolon. 

Program Review 
The program in Figure 3.2 includes two elements of a Turbo Pascal program: 
the program heading and the executable body, bounded by begin and end. 
The comment, you recall, is used to clarify programming intentions and is 
ignored by the compiler. The result is Simple_Example displays this message 
on the screen: You are a good programmer. Selecting Run from the Compile 
menu produces this result (see Figure 3.3). 

For more complex programs we need to explore the third element, the 



66 Turbo Pascal Revealed: Structure and Syntax 

Fig. 3.3. 

r ., 

MyFirstProgram 
You are a good programmer . 

declaration section, in more detail. This section is used to define the type of 
data processed within the program itself. 

Data Types: What to Declare 

Integer 

In programming, data is represented by letters, numbers, and special charac
ters, including standard punctuation marks. Before information can be pro
cessed, the characters must be defined. In this section I review the common 
data types required for short programs. These data types include integers, 
real numbers, chars, Boolean values, and strings. 

An integer is a whole number; it may be either positive or negative but 
cannot include a comma. Signs, positive ( +) and negative (-), are allowed. 
If a sign is omitted, the positive is assumed. Although the number of integers 
is infinite, there is a limit to the number available on the Macintosh in Turbo 
Pascal. The largest number represented by an integer is 32767; the smallest 
is -32768. Examples of valid integers include 

5 3 -14 0 1836 46 -135 



Data Types: What to Declare 67 

The maximum and minimum values for integers are determined by the fact 
that Turbo Pascal allots 2 bytes of memory for each integer. In Chapter 1 I 
discussed how the Macintosh uses ASCII representation to interpret one-byte 
values as characters. Each byte consists of 8 bits, and the value of the byte 
is determined by exactly which of its bits are on and which ones off. The 
standard integer type contains 2 bytes, or 16 bits. You are already quite 
familiar with decimal, or base 10, numbers. Base 10 is the number system 
we all use. We represent numbers in base 10 with the digits 0 through 9. 
Computers work with base 2, or binary, numbers, using the digits 0 and 1. 
That's it. There are only two values that may occupy any position in a number 
.in base 2; the position is either 0 or 1, just as computers understand only two 
states: on and off, zero and one, yes and no. Take a look at the following 
base 10 numbers and their binary equivalents: 

Base 10 

0 
1 
2 
3 
4 
5 

Binary 

0000000000000000 
0000000000000001 
0000000000000010 
0000000000000011 
0000000000000100 
0000000000000101 

Notice that I show all the bit positions of the binary numbers, so there are 
always 16 digits. This is not necessary, but want to reinforce the fact that the 
computer views an integer as a 2-byte or 16-bit value. The binary equivalent 
of 0 is 0000000000000000. That is no surprise. The binary equivalent of 1 
is 0000000000000001. That should not be any surprise either. However, the 
binary equivalent of 2 is 0000000000000010, and that relationship may not 
be so obvious. Since 1 is 0000000000000001 in the binary system and there 
are only 2 digits for each position (0 and 1), we must slide over to the next 
position to represent a 2. It's just like the next whole number above 9 in base 
1 O; there are no more unique digits, so another position must represent higher 
values. Another way to look at binary numbers is to consider that each digit 
except the one on the right in the number is some multiple of 2, just as each 
digit except the one on the right in a decimal value is some multiple of 10. 
For example, the decimal value 135 may be interpreted as follows: 

1x100 = 100 
3 x 10 - 30 
5 x 1 5 



68 Turbo Pascal Revealed: Structure and Syntax 

The digits in boldface are the digits in the number 135. The 1 is multiplied 
by 100 because it is in the 1 OOs position. The 3 is multiplied by 10 because 
it is in the 10s position. Finally, the 5 is multiplied by 1 because it is in the 
ls position. Actually, each digit in the number 135 is multiplied by a value 
of 10 raised to a power (10°, 101, 102, and so on). The powers increase 
as you go from right to left in the number. If you add up the results of 
the multiplications, you wind up with the original number: 135. The same 
principle holds true with binary numbers; the only difference is the naming 
of the positions. The 1 s position is the same as in base 10, but the other 
positions are represented by powers of 2 (2°, 21, 22, and so on). So the binary 
number 0000000000000010 is equal to 21, or 2, in base 10. As another 
example the base 10 equivalent of 0000000000001111 is 2° + 21 + 22 + 
23, or 1 +2+4+8 = 15. 

After this crash course in binary numbers, you know how the computer 
looks at 2-byte integers. At least you know how positive integers are repre
sented; what about negative integers? When working with signed integers, the 
Macintosh (along with quite a few other computers) uses the high-order bit to 
determine the sign. The high-order bit is the leftmost bit. You might think that 
-1 is 1000000000000001, but it is not. The Macintosh uses what is known 
as 2's complement notations for representing negative numbers. In short, this 
means translating a negative number to its absolute value requires changing 
all 1 s to Os and Os and 1 s and then adding 1. That sounds rather odd at first, 
but that's how it works. For example, -1 in binary is 1111111111111111. 
You can see that this value is negative because the leftmost bit is 1. Switch
ing all the 1 s to Os and the Os to 1 s yields 0000000000000000. Adding 1 
gives 0000000000000001, which is equal to 1. 

Now that you know about integer values in Turbo Pascal, let's look at how 
to represent numbers with fractional parts. 

Real Numbers 
Real numbers may contain fractional parts. Generally, at least one digit is 
placed to the right of the decimal point to indicate the fractional part of the 
real number. These numbers can be expressed in two ways. One method is 
to use the decimal point and place a number of digits to the right of the 
decimal point; for example, 4.12, 123.4, 0.234. If the number is negative, 
the negation sign is placed before the number, for example, -4.23, -36.2. 
The second method of notation, which requires a little explanation, is called 
scientific or exponential notation. · 



Data Types: What to Declare 69 

Scientific notation is used to display very large or very small numbers. For 
example, the number 5 million, represented as 5.0 X 106, is written thus: 

5.0E+6 

The number 5.0 is called the coefficien~ or mantissa, and the number +6 is 
called the exponent. The 5 is the whole part of the number to the left of the 
decimal point, while the exponent represents the power of 10, or the number 
of places to the right of the decimal point. The letter E means exponent. 
Therefore, to read a number written in scientific notation, move the decimal 
point of the mantissa to the right the number of places specified by the 
exponent. Another example: 4.34E+2 represents 434. 

Similarly, very small numbers are represented with scientific notation. For 
example, the real number represented by 0.00001234 is written thus: 

l.234E-5 

The negative exponent means that the decimal point of the mantissa should 
be moved 5 spaces to the left instead of the right. For a negative real number 
place the negation sign in front of the mantissa, that is, -4.52E-3, which 
represents -0.00452. 

A unit of real data occupies 4 bytes of memory. The real type is identical 
to the single type used for declaring real numbers. The format used to store 
real values in memory is based on the Standard Apple Numeric Environment 
(SANE) Library. This library is discussed in Chapter 26 of your Turbo Pascal 
manual. 

As discussed earlier, the computer may display using scientific notation. 
Such numbers are often called floating-point numbers and may contain frac
tional parts. We have just introduced the exponential or E notation used for 
very large and small numbers. Turbo Pascal provides for other variations 
of the data types involving both real numbers and integers. Such data types 
include double-precision, extended real, and comp real numbers, which pro
vide a greater degree of accuracy than the single-precision real numbers just 
discussed. Actually, real numbers are converted to the extended type before 
any mathematical operations are performed on them. Therefore it is more 
code-efficient to use extended data instead of any of the other real types so 
that this conversion does not always have to take place. However, the ex
tended type occupies 10 bytes of memory compared with the 4 bytes required 
by a single or real variable. So you must determine whether processing speed 
is more important than memory space or vice versa. For the remainder of 
this book we will use ordinary single-precision real numbers. 



70 Turbo Pascal Revealed: structure and Syntax 

Characters and Strings 
Numbers are not the only data type that can be manipulated with Turbo 
Pascal. Text information represented by upper- and lowercase letters and 
special characters can also be used. Such information is represented by the 
data types char (character) and string. 

Both characters and strings are represented by enclosure in single quotes 
or apostrophes. Examples of chars include 

'A' 'b' '$' '?' '8' 

How does the value '8' above differ from an integer that contains the value 
8? To represent an integer that contains the value 8, look like this: 

0000000000001000 

The bit in the 8 position is on and is the only one on, so the value is 8. 
However, a char type· occupies only one byte, and we represent the value '8' 
within it by using the ASCII value for 8 (see ASCII table in Chapter 1) like 
this: 

00111000 

As you can see, there is a definite difference between '8' and 8, so be careful 
not to get the values of integers and chars or strings confused. 

Because a single quote is used to denote the beginning and end of chars 
and strings, to represent a single quote itself, the quote must be written twice: 

We can also represent alphanumeric information as a sequence of char
acters instead of just one character at a time. This data type, the string, is 
particularly useful for displaying messages like the ones we have seen in our 
earlier simple programs. For example: 

'How old are you?' 

or 

'Isn't Turbo Pascal interesting?' 



Data Types: What to Declare 71 

Notice the double apostrophe in the word "Isn"t"; again, because the single 
apostrophe is used as a delimiter to show the beginning or end of a string, a 
double apostrophe in the string represents an actual apostrophe. Strings may 
contain up to 255 characters on a single line, enclosed within single quotes, 
of course. It is important to note that a string must end on the same line it 
began. The following is not syntactically correct: 

writeln ('Hi there!); 
writeln (How are you today?'); 

Some programming languages allow you to write code like this, but if you 
try it in Turbo Pascal, you'll get a syntax error. Sometimes this error arises 
because you forgot to put the apostrophe at the end of the first string and 
the beginning of the second one. Either way, because the compiler does not 
find the end of the string (denoted by another apostrophe) before it gets to 
the end of the statement's line, it is treated as an error. 

A string is declared by specifying the maximum size of the string. For 
example, a String[5] can hold up to 5 characters. A String[20] can hold up to 
20 characters. By specifying the maximum string size at declaration, you tell 
Turbo Pascal how many bytes of memory to reserve for your strings. How 
many bytes do you think a String[5] requires? If you said 5, you're on the 
right track but not quite right. A character may be represented in 1 byte, but 
when working with strings, you need to know exactly how long they are, not 
just the maximum size. For instance, the String[5] declared earlier may hold 
the string. 

'Joe' 

If this is the case, only 3 of the bytes within that string are in use or significant. 
For this reason all strings in Turbo Pascal are preceded by a 1-byte-length 
indicator that tells exactly how many characters are in the string. So if. 'Joe' 
is in our String[5] type, the 1-byte-length indicator would hold the value 3. 
However, if the string 

'Sarah' 

is in our String[5] type, the length indicator holds the value 5. You should 
be able to see that this length indicator allows you to place strings in longer 
string types; that is, to place "Joe," which is 3 characters long, in a string type 
5 characters long. Now how many bytes do you think a String[5] requires? 



72 Turbo Pascal Revealed: Structure and Syntax 

The answer is 6; the string holds up to 5 characters and requires 1 byte for 
the length indicator. 

A string type may be declared without specifying size. This is done by 
using the type string as opposed to String[5]. This is the same as declaring 
the string to be of type String[255] since the string type without a size reserves 
a block of memory large enough to handle the largest definable string (255 
characters). Also, a string that contains no characters is called a null string. 
A null string's length indicator is set at 0. 

Boolean Data 
Another data type available with Turbo Pascal is called the Boolean type, in 
honor of logician George Boole. Boolean data occupies 1 byte of memory and 
has only 2 logical values, true and false. With the Macintosh the value true 
is 1 and the value false is 0. Boolean data represents answers to questions 
and is generally used for testing conditions. We will explore programs that 
have the ability to choose between true and false conditions in Chapter 4. 
The concept of Boolean values is a very powerful feature of programming in 
Pascal. 

What to Declare: Variables 
In this section we discuss a fundamental concept of Turbo Pascal and 
programming in general. What is a variable? You may recall from basic 
algebra that a variable is something that changes. Computers use variables 
in much the same way. A variable can change. Specifically, data values are 
stored in memory at different locations. Each location may contain a value 
that can change. The computer must have the ability to manipulate data and 
change its values. 

In algebra a common expression is y = x + 2. The value of y changes 
as the value of x changes; x and y are called variables because their values 
can change. Now visualize an empty box marked "x". This box represents 
a location in memory, and it can accept only one item at a time. You can 
put any value you wish in this box, as if it were a constant value, until you 
change or remove it. 

On the Macintosh (or on any computer) each box is represented by a 
numeric address or location. The various versions of the Macintosh have 
anywhere from 128,000 to over 8 million of these locations in RAM. Turbo 
Pascal allows assigning a descriptive name called an identifier, to these 
locations. Using identifiers to represent specific locations in memory is much 



What to Declare: Variables 73 

easier than using numeric addresses. Each identifier must have a data type 
associated with it in order for Turbo Pascal to understand how you intend to 
use it. Let's look at how to assign some of the data types we already know 
about in Turbo Pascal. 

Because Turbo Pascal must know what sort of data to associate with a 
particular variable, you must define or declare a data type before it can be 
used. The data type must be consistent with the type of information assigned 
to the variable. For example, integers are declared as integer data types; real 
numbers are declared as real data types, text is declared as char or string 
data types, and so forth. 

To declare a variable, or block of variables, use the reserved word var 
(a complete list of reserved words in Turbo Pascal is presented in Appendix 
B). Var, or the variable section, is placed after the program statement and 
prior to the first program block, or begin-end pair. The var section denotes the 
declaration of variables that will be used in the program. Variables themselves 
are identified by a variable declaration statement. Such a statement consists 
of the variable's name or identifier, a colon, and the type of the variable 
identified. A semicolon follows a variable declaration to separate multiple 
statements. If you want to declare more than one variable of the same data 
type, you can type all the variables on the same line, separating them with 
commas. The following are examples of valid variable declaration statements: 

Var 
count : Integer; 
batting Average : Real; 
answer, response, selection : Char; 
lasLName : String[20]; 

Before moving on I want to emphasize that when providing variable iden
tifiers, we strong"ly recommend using identifiers that are descriptive of the 
variable defined. Identifiers may consist of as many characters as you wish, 
although only the first 63 are significant to the compiler. While there is 
nothing technically wrong with defining an identifier with a single character, 
readability should be a major consideration for proper program documenta
tion. For example, a variable that represents someone's grade point average 
is better suited by an identifier that is descriptive of its use rather than the 
letter x: 

Var 
gradePtA ve : real; 



7 4 Turbo Pascal Revealed: structure and Syntax 

Assigning Variables 
In the box example I state that a variable inside the box, or memory location, 
can contain any value. To do this, you need a method for putting values 
into a memory location. You can assign values to a variable by using the 
assignment statement, which has the following general syntax: 

variable := expression; 

The variable on the left is assigned the value of the expression on the right. 
The symbol: = is called the assignment operator. If the variable represents a 
legal numeric variable identifier; an assignment statement might be 

age:= 29; 

where the value 29 is assigned to the memory location defined by the variable 
age. It is important to note that the assignment operator here is not the same 
as the equal sign used in basic algebra. In algebra two values may be equal. 
Turbo Pascal's assignment operator simply means a variable is assigned to 
or is given or becomes the value of the expression. 

Remember, when assigning variables it is important that the two sides of 
the assignment statement be compatible with each other. If the left side of the 
statement is a numeric integer, the right side must be an integer. Likewise, 
if the left side is a string, the right side must be a string. The reason is that 
numeric variables are stored in memory differently than are text and string 
variables. In addition, integers are stored differently from reals. 

Only one variable can be on the left side of an assignment statement. 
Given the following declarations: 

Var 
pay 
letter 
score 
test, result 

: real; 
: char; 
: integer; 
: integer; 

the following are valid assignment statements: 

pay:= 6.25; 
letter := 'X'; 
score:= 8; 



the following are invalid assignments: 

letter:= 5; {5 is not a character or string data value; '5' is} 
score:= 99.9; {score is an integer, 99.9 is a real value} 

Constants 75 

test, result := 100; {only one variable allowed on left side of :=} 

Constants 
Having discussed identifiers whose values can change, or variables, I will now 
examine a value that remains unchanged, or constant. As the name applies, 
the constant has a value that is assigned to it. Constants, like variables, must 
be identified via a declaration statement. A constant declaration appears in 
the constant section. The constant section· usually appears before the var 
(variable) section and after the program statement, although the constant and 
variable blocks do not have to appear in any specific order in Turbo Pascal. 
To declare a constant, begin with the reserved word const. For example, the 
following represents the constant value 30 assigned to an identifier called 
MaxStudents: 

Const 
MaxStudents = 30; 

In our example the constant identifier (MaxStudents) is an integer value 
because the value implicitly assigned (30) is an integer. Likewise, we can 
define a real constant by assigning a real data value: 

Const 
Rate= 2.5; 
Multiple= 6.24; 

or define a character string or literal: 

Const 
name = 'Sarah'; 

Notice that the constant declaration uses the equal sign instead of the := 
operator used with the assignment statement. It is important to note that 
unlike the variable, a constant identifier that represents a location in memory 



76 Turbo Pascal Revealed: structure and Syntax 

cannot be changed or red~fined later in the program; it remains constant and 
equal to the value assigned to it. For instance, if we had the string constant 
Name = 'Sarah'; in a program, we could say: 

Var 

aName: String[25]; 

begin 
aName := Name; 

end. 

but not 

Var 
aName : String[25); 

begin 
Name := 'Kelly'; { this is a no-no! } 
aName := Name; 

end. 

It may help to visualize how Turbo Pascal treats constants to understand why 
the above example will result in a syntax error. When Turbo compiles your 
program and it finds a declaration for a constant, it replaces all references 
to that constant with the value assigned to it. So in the valid example, when 
this assignment is made: 

aName := Name; 

the literal 'Sarah' is substituted for the identifier Name. Remember, no 
modifiable memory location is set up on a constant declaration. 

A Word on Punctuation: The Semicolon 
As promised, it is time to restate some important points about the use of 
semicolons. You must be acutely aware that the syntax rules for program 
construction are very important for proper execution of a Turbo Pascal 
program. In particular, the omitted semicolon is often the first mistake a 
beginning programmer makes. In fact, experienced programmers have been 
known to omit the ominous semicolon. 



Expressing Yourself 77 

What is the semicolon used for? To separate program statements in Turbo 
Pascal. However, not all statements must end with a semicolon. For example, 
the last end in a program is followed by a period. The semicolon separates 
statements on separate lines as well as statements that appear on the same 
line. Yes, you can have two separate Pascal statements on the same line. For 
example: 

lowScore := 11 O; highScore := 287; 

The Turbo compiler knows they are separate statements because of the 
semicolon at the end of the first one. Sometimes the semicolon is optional. 
For example, the last statement before an end doesn't require a semicolon 
and is generally not used there. Also, there are special circumstances when 
it seems a semicolon should be used, but actually it's wrong to do so. When 
such a situation arises, I will point it out. For now, follow the general rule 
that semicolons are used to separate statements. Proper use of the semicolon 
is a fundamental concept that you will master with practice. 

Expressing Yourself 
I have introduced the concept of the expression during the discussion of the 
assignment statement. An expression is a sequence made up of variables, 
mathematical operators, and constants. The following are valid expressions: 

6+2 
a+b-3 
pay- 3.25 
sum+ 1 

Use the assignment operator to assign the value of an expression to a 
memory location defined by an identifier. The operators used in an expression 
must be valid for the type of data they operate on. The most commonly used 
expressions are arithmetic. Turbo Pascal is capable of performing most of 
the mathematical operations that you are familiar with 

+ 

* 
I 
DN 
MOD 

addition 
subtraction 
multiplication 
division (non-integer) 
integer division 
modulus or modulo division (remainder from integer division) 



78 Turbo Pascal Revealed: structure and Syntax 

You should recognize +, -, *, and /; however, the operators for DIV 
(integer division) and MOD (modulo division) may be new to you. When 
dividing two integers, the result is also an integer. Use the integer division 
operator thus: 

6 DIV 3 {the result is the integer 2} 
8 DIV 2 {the result is the integer 4} 
9 DIV 4 {the result is the integer 2} 

The first two examples should be easily understood; in the third the result is 
2 because in integer division the remainder is discarded. However, you can 
determine the discarded remainder via the modulo operator. 

The modulo operator is used to calculate the remainder of integer division. 
For example: 

6 MOD 5 returns a value of 1 
8 MOD 4 returns a value of 0 
9 MOD 6 returns a value of 3 
9 MOD 2 returns a value of 1 

DIV and MOD have no meaning on real values so may not be used with 
them. When dividing real values, use the I. Integers and reals may be used in 
the same expression, but the integer value is converted to a real, and the result 
is a real value. In other words, integers may be assigned to real variables, but 
real variables may not be assigned to an integer variable. 

Mathematical Order of Operation 
Mathematics is performed in a particular order of operation. For example, 
multiplication and division are performed before addition and subtraction. 
To illustrate, what do you think the result of this operation will be: 

3 + 5 * 6 

If you read this example from left to right, you may interpret the result 
as 48 instead of 33, but the multiplication (5 * 6) should be done before 
the addition (3 + 5). This is a result of the order of precedence of the 
operators. Operators with high precedence are performed before operators 
with low precedence. The high-precedence operators are *, I, MOD, and 
DIV. Operators with low precedence are+ and-. 

If operators are of the same precedence, the calculation may be performed 



Simple Turbo Pascal Arithmetic 79 

from left to right. In the example below the left-hand operation (addition) 
may be calculated first. 

6+9-2 

As you probably determined, the result of this expression is 13. 
Parentheses are used to dictate the order of operations in the same way they 

are used in basic mathematics. The operations contained within parentheses 
have a higher order of precedence than multiplication and division. For 
example, consider this statement: 

Total := (4 + 8) DIV 2; 

The result is that the variable Total is assigned a value of 6. The operation 
inside the parentheses is performed before the division (DIV) operation. 

Operations within parentheses must follow the normal order of precedence. 
Can you determine the value of this statement? 

rate := (6 * 2 + 18) - (8 - 16 DIV 4); 

The value is 26. 
In summary, arithmetic expressions consist of a sequence of variables, 

operators and/or constants. To eliminate any ambiguity in an arithmetic ex
pression, a mathematical order of precedence of operations must be followed. 

Slmple Turbo Pascal Arithmetic 
I have covered several fundamental concepts in this chapter, and so it is 
appropriate to review them in a couple of simple examples. Consider calculat
ing your gas mileage, a simple problem that Turbo Pascal on your Macintosh 
can easily solve. How many miles do you travel to work or school? How many 
gallons of gas do you use? Mileage is the number of miles traveled divided by 
the number of gallons of gas used. If you answered these questions-number 
of miles and number of gallons-you have defined the programming problem. 
If you determine that you traveled 200 miles last week on 8 gallons of gas, you 
can write a program that looks like this: 

(**************************************************) 

(*This program calculates your gas mileage. *) 
(**************************************************) 

Program GasMileage; 



80 Turbo Pascal Revealed: Structure and Syntax 

Fig. 3.4. 

Var 
miles, gas, mileage : real; 

begin 
miles := 200.0; 
gas:= 8.0; 
mileage:= miles I gas; 
writeln (mileage); 
read In 

end. 

When you run this program, the result is displayed in the upper left-hand 
corner of the display as shown in Figure 3.4. 

., 

GasMileag~ 
2 . 5e+1 

Review this program step by step. I won't explain every program in such 
excruciating detail, but it is important that you master these beginning 
concepts early. 

The first few lines are a comment block that briefly describes the program's 
purpose. The next line names the program GasMileage. Don't forget to place 
the semicolon at the end of the line. 

The next line begins the declaration section for variables. The reserved 
word var specifies this section. The variables miles, gas, and mileage are 



Simple Turbo Pascal Arithmetic 81 

declared as real variables. Because they are all of the same data type, we can 
declare them with a single statement separated by commas. 

The next section is the program block, identified by the begin-end pair. 
The program statements within the program block are the executable portion 
of the program. The first three lines following the reserved word begin are all 
assignment statements. Each line is concluded with a semicolon to separate 
the individual program statements. The last executable program is the readln 
statement. This statement causes nothing to happen until you press the return 
key. This allows you to read the result displayed on the screen. Note the 
punctuation (mileage), not 'mileage', in the writeln statement. If you use 
quotes, the string or literal value "mileage" itself is printed on the screen 
instead of the real calculation assigned to it. Remember, the last statement 
in the program block (before end) does not require a semicolon. 

The last line, of course, signals the end of the program. All program blocks 
must have a matching begin-end pair. Since this is the last program block, 
the end must be followed by a period. 

Are you beginning to understand the importance of punctuation? Omitting 
it will cause you many headaches. Did you notice that the placement of the 
semicolon followed a few general rules but that you didn't have to put one at 
the end of each line? For example, the semicolon is used to separate program 
statements, but you don't place them at the end of a few reserved words, such 
as var and begin. Don't worry if you're making a few initial mistakes. You 
will master the placement of the semicolon as we progress. 

Our next example further illustrates the use of mathematical variables and 
assignment statements. Study the following program and determine if you can 
understand the components. If you can't, you should review the appropriate 
section. I have liberally used comment statements to facilitate understanding. 

(*This program calculates a student's grade point average*) 

Program StudentTestScore; 

Const { starts the declaration section for constants } 
AName ='Joe'; {declare AName as literal "Joe"} 

Var { starts the declaration section for variables } 
test1, test2, test3, test4: real; { test score variables } 
testAverage : real; {average test score } 
name: String[25]; {name of a student } 

begin { starts the program block } 
test1 := 85.0; { the following are assignments } 



82 Turbo Pascal Revealed: Structure and Syntax 

test2 := 90.0; 
test3 := 78.0; 
test4 := 79; 
name := AName; 
testAverage := (test1 + test2 + test3 + test4) I 4.0; 
writeln ('What is the student"s name and test average?'); 
writeln (name); {output the information } 
writeln (TestAverage); 
readln; { wait for user to press <RETURN> } 

end. 

When you execute this program, your screen should look like the one in 
Figure 3.5. 

More on Data Types 

Fig. 3.5. 

Now that you have examined a couple of simple programs, I want to discuss 
a few more options for data types. The most common data types are real, 
integer, char, string, and Boolean. In this section we discuss how you can 
define your own data types. 

r 

StudentTestScore 
~hat is the student"s name and test average? 
Joe 

8 . 3e+1 

., 



More on Data Types 83 

User-Defined Data Types 
Turbo Pascal lets the programmer create new names and data types with the 
reserved word type. The type declaration tells the computer that the identifier 
is a user-defined data type. The most simple data type is called ordinal or 
enumerated because it is defined by listing the possible values that represent 
the data. Other data types, such as records and arrays, define structures and 
will be discussed later in this book. If the data type is represented by more than 
one value, the values are separated by a comma and enclosed in parentheses. 
For example: 

Type 
Sport = (Football, Basketball, Hockey, Baseball); 

where the reserved word type appears after the program heading and before 
var. The three declaration sections we know of so far are const, type, and 
var, and they are generally presented in that order, although they need not 
appear in this sequence in Turbo Pascal. Once a data type is created, you 
can declare a variable of that type just as you would declare a variable that 
is an integer, char, or any other predefined type. Thus: 

Type 
Sport= (Football, Basketball, Hockey, Baseball); 

Var 
favoritePastime : Sport; 

where the variable favoritePastime is declared as data type Sport. 
Why are user-defined data types popular? The answer is simple: readabil

ity. Programs should be documented and as readable to the human eye as 
possible. Our example could have simply assigned a meaningless identifier, 
such as x, to represent the list of possible defined values (Football, Basketball) 
or perhaps have declared the same values as constants using strings. How
ever, defining the data types provides a little more flexibility when writing a 
program for other people to read. 

Once I have declared the variable favoritePastime above, I can make 
assignments to it like this: 

begin 
favoritePastime := Baseball; 

end. 



Turbo Pascal Revealed: structure and Syntax 

This is nice, but what if I want to display this information via writeln? Try 
this little program: 

Program SportTypeExample; 

Type 
Sport = (Football, Basketball, Hockey, Baseball): 

Var 
favoritePastime : Sport; 

begin 
favoritePastime := Baseball; 
writeln ('My favorite pastime is', favoritePastime); 

end. 

If you try to run or compile this program, you will get a compile error 
because Turbo Pascal does not permit this use of a variable. Some Pascal 
compilers will allow you to display the value of FavoritePastime as it is 
defined in the enumerated type. For instance, on those compilers, the output 
from the above program would be: 

My favorite pastime is Baseball 

Let's take a closer look at what goes on within the Macintosh when you 
define an enumerated type like Sport. First of all, Turbo doesn't know what 
football, basketball, and so on are, but it represents their values internally 
with the values 0 through 3. So when you declared the type Sport, Turbo set 
up a table so that when any references are made to the type Sport or any 
of its defined values, it assigns integer values to the variable instead of the 
names Football, Basketball, and so forth. The table is set up like this: 

Football= o 
Basketball = 1 
Hockey= 2 
Baseball= 3 

So when you made the assignment 

favoritePastime := Baseball; 



More on Data Types 85 

Turbo assigned the value 3 to favoritePastime. In addition, the variable 
favoritePastime occupies only 1 byte in memory. This is because 1 byte 
of memory can hold 256 different values (0 through 255). So I could have 
an enumerated type with up to 256 unique possible values and it still would 
occupy only 1 byte of memory. 

Subranges 
Ordinal data types have an important characteristic: they include a distinct 
set of values or constants that are ordered: 

Type 
Day= (Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday); 

In this type Monday follows Sunday, Tuesday follows Monday, and so on. 
Such a data type, where the set of values is ordered, is called scalar. 

You may want to use only a portion of your new data types. Turbo Pascal 
allows you to define a specific portien of any ordinal or scalar type (except 
real) as a specified subrange. Subranges are specified by placing two periods 
between the first value and the second value of an enumerated list. For 
example: 

Type 
Day= (Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday); 

WeekDay = Monday .. Friday; 

Var 
aDay: Day; 
a WeekDay : WeekDay; 

The subrange includes the values Monday, Tuesday, Wednesday, Thursday, 
and Friday. It is important to note that the first value of a subrange must 
be less than the second value. Note also that you do not use parentheses 
when defining subranges; simply specify the beginning and end of the range 
separated by two periods. Also, don't try to make this assignment 

aWeekday := Sunday; 

with the above declarations because you will get a compiler error, since it is 
outside of the defined subrange. 



86 Turbo Pascal Revealed: structure and Syntax 

Program Formatting 
Program formatting is a very important concept in Pascal. In general terms 
program formatting is where on the screen or line you begin a statement, 
insert a space, indent, and so on. The reason for program formatting is more 
than a compulsive desire for neatness; it makes your programs more readable, 
thus reduces the amount of time needed for debugging and for comprehension 
by someone other than the author. 

Indentation is a major factor in program formatting in complex source 
code. It is recommended that every time an indentation is necessary, you 
indent a fixed number of spaces, say, 3 or 4. You can also set up Auto Indent 
from the Options selection in the Edit menu. Take note of the formatting 
practices I present and keep your eye on them. This way your programs will 
take on a much more professional appearance and will lend themselves to 
easy tracing by other programmers. 

We have covered a lot of ground, so take a 15-minute break, absorb what 
you have learned thus far, review the points at the end of this chapter, answer 
the Quiz questions, and then go on to Chapter 4. If you don't understand all 
the concepts presented in this chapter, go back and reread the appropriate 
sections. 

Review Summary 
1. The primary elements of a Turbo Pascal program include the program 

heading, the declarations and definition section, and the program body. 
2. The rules for writing a program are called syntax. 
3. An identifier may include any combination of letters, numbers, and the 

underscore symbol (_). All identifiers must begin with a letter; they 
may be of any desired length, although only the first 63 characters are 
significant to the compiler. 

4. Constants may be declared using Const. This section generally appears 
after the program declaration. 

5. User-defined types may be declared with type. This section generally 
appears after the Const declaration section. 

6. Variables may be declared using var. This section generally appears 
after the type declaration section. 

7. To assign a value to a variable, use the assignment operator (:=). 
8. The two sides of an assignment statement must be compatible. In other 

words, if the left side is a numeric integer, the right side must be a 
numeric integer. 



Quiz 

Quiz 87 

9. An expression is a sequence made up of variables, mathematical 
operators, and constants. 

10. Program formatting is where on your screen or line you begin a 
statement, insert a space, indent, and so on. Turbo Pascal offers several 
automatic formatting features such as Auto Indent. 

1. What is an identifier? 
2. What are comments and where are they placed? 
3. When does a period follow the reserved word end? 
4. What is the general ordering of the var, const, and type declaration 

sections? 
5. What is the difference between integer and real data types? 
6. What is the semicolon used for? 
7. What is the order of precedence for mathematical operations? 
8. How is the order of precedence altered? 



-4------
Turbo Pascal Statements 
The Write and Wrlteln Statements 
Assigning Data Values with Read and Readln 
Statements of Choice: The Condltlonals 
Decisions, Decisions ... The Thinking Mac 
A Couple of Common Errors with If statements 
Nesting Your If Statements 
Boolean Operators 
Another Case to Consider 
Review Summary 
Quiz 

In this chapter you wlll learn: 
• How to communicate with the user; the Input/Output statements 
• Whatthe Write and Writeln routines are and how to use them for both screen output and 

printer output. 
• What the Read and Readln routines are and how to use them. 
• How to write programs that make decisions via if and case. 

This chapter takes a deeper look into Turbo Pascal. You have learned 
many of the fundamentals of program construction. Most of the material 
you are about to read discusses various program statements that enable you 
to write more complex programs. As you recall, program statements are the 
executable statements that appear within a program block, or begin-end pair. 
You will explore fundamental control structures that give the computer the 
ability to make decisions. In addition, you will study interactive statements 
between the computer and the user. First, however, you need to examine how 
information is displayed or output to your screen or printer. Start by taking 
a closer look at write and writeln. 

The Write and Wrlteln Statements 
You have been briefly introduced to writeln (pronounced write line). In 
this section we cover writeln and its cousin write in more detail. These 



Fig. 4.1. 

The Write and Wrlteln Statements 89 

statements are fundamental to programming in Turbo Pascal. In fact, these 
are the statements the Macintosh uses to communicate the output of your 
programs so that you can readily understand it. The general syntax for the 
write statement is 

write ( parameter list ); 

where the parameter list is a list of values or strings, separated by commas, 
that you want displayed. If the parameter list consists of valid variables, the 
Mac displays the values assigned to those variables. For example, a complete 
program might appear as shown in program Sample below. The result of 
program Sample is output as shown in Figure 4.1. 

Program Sample; 

Var 
a : integer; 
b: char; 

begin 

,.. 

a:= 25; 
b :='C'; 
write (A, B); 

---===---=-----------

2SC 

., 

Sample 



90 Turbo Pascal Statements 

read In; 
end. 

Notice that the semicolon follows write if it is not the last statement in the 
program block (that is, not preceding end); otherwise it is not necessary. 

Instead of a list of parameters separated by commas, you may wish to use 
a list of successive write statements to print each individual value or string. 
However, the resulting output is the same. For example, the write statement 
from program sample can be rewritten as two statements: 

write (A); 
write (B); 

I find the first method more efficient than the latter. However, the choice 
is yours. One important point is that whenever a write statement is executed, 
the values or parameter list will be printed on the same line. This is true even 
if you use a list of consecutive write statements to print individual values: all 
the values will be printed on the same line. 

Suppose you want to print a character string or message instead of a value 
assigned to a variable. 'To do this, simply enclose the character string within 
a set of single quotes. The single quotes signal the Mac that anything printed 
within the set of quotes (including spaces) is to be displayed exactly as written. 
For example, to display the character string I am the Macintosh., write this 
program: 

Program SampleMessage; 

begin 
write ('I am the Macintosh.'); 
read In; 

end. 

You can interchange strings and variables in a single parameter list: 

Program Interchange; 

Var 
a: integer; 
b: char; 

begin 
a :=25; 



The Write and Wrlteln Statements 91 

b :='C'; 
write ('Tom"s age is', A, 'and he rates a', B); 
read In; 

end. 

When this program is executed, the output is displayed as shown in Fig
ure 4.2. 

Using Writeln 

Fig. 4.2. 

Writeln is similar to write except for one important feature: Writeln causes 
output to be displayed line by line by generating a carriage return after the 
output statement. In other words, when a writeln executes, it writes out all 
the parameters associated with it and advances to the next line on the screen 
for any subsequent output. Take a look at an example: 

Program EasyMath; 

Var 

,. 

firstValue, secondValue, thirdValue : integer; 
addition, subtraction, multiplication : integer; 

I nterchnnge 
Tom's age is 25 and he rates a C 

., 



92 Turbo Pascal Statements 

Fig. 4.3. 

begin 
firstValue := 10; 
secondValue := 5; 
thirdValue := 2; 
addition := firstValue + secondValue; 
subtraction := secondValue - thirdValue; 
multiplication := firstValue * thirdValue; 
writeln (addition); 
writeln (subtraction); 
writeln (multiplication); 
read In; 

end. 

When this program is executed, the result is displayed as shown in Fig
ure 4.3. 

If I substitute the writeln statements with a single write or a series of 
successive write statements, the program displays the results on a single line 
because no carriage return was invoked. The output displayed in Figure 4.4 
shows the results with the writeln statements changed to write statements. 

,.. 

15 
3 
20 

., 

EasyMath 



The Write and Wrlteln Statements 93 

,.. .., 

EasyMath 
15320 

Fig. 4.4. 

Sending Output to the Printer 
Up to now you have seen how write and writeln may be used to send messages 
to your Macintosh's screen; they are also capable of sending output to other 
devices, like the system printer. Try out this short program: 

Program SendToPrinter; 

Uses 
PasPrinter; 

begin 
writeln(Printer, 'This is how you send output to the printer.'); 
writeln(Printer, 'See how easy it is?'); 

end. 

After the program statement is the first example of the uses statement, which 
tells the compiler to use the information contained in the specified unit. The 
unit is a feature of Turbo Pascal used to promote structured programming. 
The unit will be discussed in great detail in Chapter 6. For now, all you need 



94 Turbo Pascal Statements 

to know is that the uses statement here 1s informing the compiler that I wish 
to use information in the PasPrinter unit. The rest of the program should be 
fairly straightforward except for the identifier Printer, which appears at the 
beginning of each writeln statement. This parameter in the writeln statement 
informs the compiler that all output in those statements is to go to the system 
printer; the fact that I never used a parameter with these statements before 
told the compiler to default to the standard output device, the screen. Before 
you run this program, make sure your printer is properly hooked up and the 
paper has been fed into it. When you do run it, the following messages are 
displayed: 

This is how you send output to the printer. 
See how easy it is? 

Formatting Your Output 
It is often desirable to control how your output is arranged on the screen. 
Additional print control is provided by the field-width parameter. In simple 
terms a vertical position on the Mac screen is sometimes called a field. The 
first printable position in the upper left-hand comer of the output window 
is the first field, or column. Then exactly what is the field-width parameter? 
Look at the following short program: 

Program ShowFieldWidths; 

Var 
x, y : integer; 

begin 
x := 1; 
y := 2; 
writeln(x,y); 
writeln(x:1 O,y:1 O); 
x := 100; 
y := 200; 
writeln(x,y); 
writeln(x:1 O,y:1 O); 
writeln ('0123456789012345678901234567890'); 
read In; 

end. 

If you run this program, your screen will look like Figure 4.5. 



Fig. 4.5. 

The Write and Wrlteln Statements 95 

--- ShowfieldWidths ~--
12 

2 
100200 

100 200 
0123456789012345678901234567890 

The first time I wrote x and y, they were pushed up against each other with 
no space in between. This is because the write and writeln statements don't 
implicitly put any spaces between integers when they are displayed. However, 
when I specify a field width like this: 

writeln(x:10, y:10); 

I am instructing the compiler to display the values held in x and y in fields 
a minimum of 10 characters wide. If you look at the last Writeln statement, 
I display a measuring device to show exactly which column the numbers 
start in; displaying repeated sequences of 1, 2, 3, and so on right-justifies the 
numbers displayed through the Writeln (x:lO, y:lO); statement in the 10th 
and 20th columns respectively. This is because x:lO says to display the value 
in x in a field 10 characters wide and right-justified. Since y:lO says the same 
thing, the first 20 characters in that line are occupied with the values of x and 
y plus the spaces necessary to pad them out to 10 characters each. The same 
thing happens after I assign the values 100 and 200 to x and y respectively. 
The field width is still 10 characters for each variable displayed, and each 
value is right-justified within its field. 

To display real numbers Turbo Pascal provides a slightly modified no
tation. Two colons and accompanying field-width parameters are used. The 



96 Turbo Pascal statements 

Fig. 4.6. 

first parameter specifies the total minimum field width excluding the decimal 
point, and the second parameter specifies the number of digits following the 
decimal point. For example, look at this little program that shows formatting 
of real numbers: 

Program ShowReals; 

Var 
x, y : real; 

begin 
x := 1.234; 
y := 2.3456; 
writeln(x,y); 
write In (x:10:3, y: 10:3); 
write In ('12345678901234567890123456890'); 
read In; 

end. 

When you run this program, your screen looks like the one shown in Fig
ure 4.6. 

The first line of output is no surprise; it's the display of the real numbers 
in scientific notation we have seen before. However, the second Writeln 

.., 

ShowRenls 
1. 2e+O 2 .3e+O 

1. 234 2 . 346 
12345678901234567890123456789 



Assigning Data Values with Read and Readln 97 

displays the same numbers in a format whose minimum total field width 
is 10 characters and that displays 3 digits to the right of the decimal point. 
Notice how in the first Writeln the exact values are not displayed, since in 
scientific notation only one digit after the decimal point is displayed. Also, 
because the field width to the right of the decimal point is only three, the 
value of y is truncated and rounded up. That is, the third digit to the right of 
the decimal point for y is rounded up to 6. 

Using the same philosophy, you can format string output on your screen. 
Why bother with field-width parameters? This type of control is particularly 
useful for tabular material in rows and columns. It's much easier to align 
headings, labels, and prefixes when you control the display of your character 
output. 

Printing Blank Lines 
When you execute a writeln statement, a carriage return causes any subse
quent displaying of data to start on the next line. If you just type a writeln 
statement without a parameter list, the statement is executed and a blank line 
appears. This program inserts blank lines: 

Program ShowBlanklines; 

begin 
writeln ('You can insert'); 
writeln ('blank lines'); 
writeln; {this inserts a blank line} 
writeln('anywhere in your programs.'); 
read In; 

end. 

When you run the program, your screen looks like Figure 4.7. 

Assigning Data Values with Read 
and Readln 

The traditional assignment statement is not the only method at your disposal 
for assigning data values to variables. Turbo Pascal provides two additional 
interactive statements that assign input from within the program itself as it 
executes. The statements read and readln offer additional flexibility to the 
programmer because data values can also be assigned to a variable from 
outside the program. You have already seen examples of the use of the 



98 Turbo Pascal Statements 

Fig. 4.7. 

,.. 

You con insert 
blonk I ines 

onywhere in your progroms. 

., 

ShowBlanklines 

readln statement; in almost every program up to now I have used it to keep 
the program's output display on the screen until you hit Return so you have 
some time to look at each screen. The general syntax of read and readln is 
similar to that of write and writeln; the statement read or readln is followed 
by a parameter list of variables separated by commas and contained within 
parentheses. For example, if a is defined as an integer, I could say: 

read(a); 

or 

readln(a); 

The read and readln statements above are similar in that they both request 
the user to provide values for the variables, but readln is the more commonly 
used statement. For that reason I shall further discuss how to assign data 
values with readln. 

Mac Asks Questions 
Read and readln are often called interactive statements; that is, data values are 
assigned to variables directly from the user or programmer via the keyboard. 
When a read or readln statement is executed, the program stops and asks 
the user for information. The information given by the user is the value 



Assigning Data Values with Read and Readln 99 

assigned to the variables within the parameter block of the statement. Because 
read and readln act like an assignment statement, the same syntax rules for 
data-type compatibility apply. In other words variables must be first declared 
and subsequently assigned values of the data type used in the declaration. To 
illustrate, the computer can simulate a human conversation. A program that 
asks you for your name and then displays a customized message with your 
name on the screen can be written as 

Program SayHello; 

Var 
name : String; 

begin 
write ('What is your name?'); 
readln (name); 
writeln('You have a nice name', name); 
read In; 

end. 

Examine this program step by step. Line 1, of course, is the program 
statement; it defines the program as SayHello. Line 2 begins the declaration 
section with the reserved word var. Line 3 declares the variable name as a 
string. Simple enough so far. 

In the next section the familiar begin-end pair signals the start of the 
meat of this little program. In this program block the first write statement 
asks the user for information, in particular, the user's name. Next the readln 
statement is executed. This line stops the program and waits for you to give 
an appropriate response. Type your name and press the return key. The return 
key must be pressed here to signal to the Mac that your entry is complete. The 
next writeln statement displays the message enclosed within quotes, followed 
by the value assigned to the variable name via the readln statement. Finally, 
we see our old friend the readln statement with no parameters used simply to 
let you look at the output screen before returning to the Turbo environment 
A sample run of the SayHello program might look like this: 

The Computer Displays: You Type 
What is your name? Janet Craig <RETURN> 
You have a nice name Janet Craig 

In SayHello the variable name is assigned a value just as if with the following 
assignment statement: 

name:= 'Janet Craig'; 



100 Turbo Pascal statements 

The advantage to using a read or readln statement is that if you wish to 
change the value of the variable, you simply give a different response each 
time the program is executed. Otherwise the traditional assignment statement 
(using the:= operator) needs to be changed before the program is executed. 

Please note that a valid response to a read or a readln is required. A valid 
response is one that matches the data type previously declared. If the data 
entered into the keyboard is incompatible with the variable type declared, 
the Macintosh will blow up with the familiar system error with the lit bomb. 
If you are running the program from the Turbo environment, not from the 
desktop, the RESUME option will be available and you can get back into 
the editor by selecting it. Once back into Turbo you will be greeted with 
an error message which says that an 110 check failed. Once I get into more 
sophisticated programs, I will show you how to avoid this sort of problem, 
but for now try not to mismatch your readln entries. 

Here's an enhancement to my earlier program in which I not only request 
the user's name but also his or her age: 

Program LetsTalk; 

Var 
name : String; 
age : integer; 

begin 
writeln('What is your name?'); 
readln(name); 
writeln('How old are you', name,'?'); 
readln(age); 
writeln('Gee, you"re', age, 'years old',name, '!'); 
read In; 

end. 

A sample run of this program is shown in Figure 4.8. 
As you can see, I ask first for the user's name and then, using the previously 

entered name, for the user's age. Finally I display a message of surprise at 
his or her age. 

Reading Several Variables 
You can assign a list of variables using a single readln statement or by listing 
the variables in successive readln statements. The result is the same. For 
example, if a, b, and c are declared as integers, the following readlns could 
be performed to input their values: 

readln(a,b,c); 



Fig. 4.8. 

What is your name? 
Sarah 
How old are you Sarah ? 
5 

Assigning Data Values with Read and Read In 101 

Letslalk · 

Gee, you're 5 years old Sarah! 

or 

readln(a); 
readln(b); 
readln(c); 

In the first example, readln (a, b, c);, you need to press the return key after 
each entry just as for the second example, whose entries are split among 
three separate readlns. In this particular situation, because a, b, and c are 
integers, you can enter them on one line and separate them with spaces 
and just press Return at the end of the line for the first example. However, 
we suggest that you press Return after each entry instead due to possible 
portability problems with other compilers. Here's an example of how you 
might implement a multiple-item readln statement: 

Program Multiply; 

Var 
firstNumber, secondNumber : integer; 

begin 
writeln('Please enter one integer, press Return, and enter'); 



102 Turbo Pascal Statements 

Fig. 4.9. 

write('another integer and press Return:'); 
readln(firstNumber, secondNumber); 
writeln('The product of your numbers is: ', firstNumber * secondNumber); 
read In; 

end. 

I first explain how the user is expected to enter the numbers, then use a 
single readln to read in both, and finally display the result of the product 
of the two numbers via a writeln statement. This writeln statement is a bit 
different from any I have shown up to now; I actually calculate the product 
of the numbers within the writeln instead of calculating it before the writeln 
and using the result as a parameter like this: 

product := firstNumber * secondNumber; 
writeln('The product of your numbers is: ', product); 

By embedding the calculation in the writeln, I avoid having to declare 
another variable (product) and combine the two steps into one, making the 
Pascal code more compact. However, the resulting machine code may be 
equally large with either coding option because the compiler is still instructed 
to create machine code that does the same thing: multiply two numbers and 
show the result. A sample execution of this program is shown in Figure 4.9 . 

,.. 

Multiply 
Please enter one integer, press <RETURN>, and enter 
another integer and press <RETURN>: 10 
5 
The product of your numbers is: 50 

., 



Decisions, Decisions ... The Thinking Mac 103 

Explicitly Ask for Information 
When you use readln interactively, you are prompting or asking for infor
mation from the user. As a good programming practice, it is helpful if you 
explicitly ask for the type of information desired. In my previous examples 
I explicitly ask the user to enter specific information (name and age). If you 
are not specific, you may wind up with a system error. This is a potential 
problem for now, but I will show how to solve it in Chapter 7. 

Now that you understand the fundamentals for interactive use of readln, 
look at how the Macintosh can make decisions with the conditional state
ments if and case. 

Statements of Choice: The Conditionals 
A fundamental feature of any computer is its ability to make decisions 

based on certain conditions or tests. If a particular condition is met, the flow 
of control within a program is affected and a set of instructions is performed. 
Controlling the flow of a program is essential to writing powerful programs. 
The programs depicted in this book thus far simply execute each statement 
sequentially. Such step-by-step execution limits the ability to develop complex 
and useful programs. In the next section I will show how to change the flow 
of sequential instructions by looking at some fundamental control statements: 
the if ... then ... else compound statement and the case statement. 

Decisions, Decislons .. .The Thinking Mac 
For practical applications the computer must have the ability to make deci
sions based on a conditional, or if statement. For example, you ask a question; 
the response can be only true or false, and it will affect the output of the pro
gram. Such a response is an assertion to the circumstance of the question. 
The statement in Pascal that creates the conditional is the if statement. 

The if statement makes a decision by performing a decision test. The test 
is a true or false (Boolean), yes or no, or 1 or 0 result based on the condition 
expression. We say 1 or 0 because the only way any computer can think 
is in terms of 1 s and Os as bits. The syntax of the if statement is written 
as a compound statement with the associated statement and the optional 
else statement. The structure of the simple if statement provides two related 
choices. The first option: 



104 Turbo Pascal Statements 

if(boolean expression is true)then 
begin 

statement1; 
statement2; 
statement3; 

end; 
statement4; 

This first option states that if the expression is true, statement 1 is executed, 
followed by statement 2, and so forth until the end of the block, when 
statement 4 is executed. The conditional block is enclosed within the familiar 
begin-end pair. If the expression is false, the conditional block is bypassed 
and the next statement to be executed is statement 4. 

A second structure of the if statement can be written thus: 

if(boolean expression is true)then 
statement1 

else 
statement2; 

statement3; 

The choice above adds a second option, the else portion, to our compound 
statement. The addition of else provides for the possibility of one more 
statement being executed if the expression evaluates to false. Thus if the 
expression is true, statement 1 is executed, statement 2 is skipped over, and 
statement 3 is executed. If the expression is false, statement 1 is skipped over, 
statement 2 is executed, and then statement 3 is executed. 

Remember, when a conditional expression is executed, a relationship is 
compared to determine if a condition is true or false. If the condition is true, 
then the next statement or block of statements is executed (see flowchart 
in Figure 4.10). The condition itself is specified by relational clauses or 
operators. These are the relational operators used in Pascal: 

(equal) 
<> (not equal) 
< (less than) 
> (greater than) 
<= (less than or equal to) 
>= (greater than or equal to) 



Fig. 4.10. 

Decisions, Decisions ... The Thinking Mac 105 

else 
Statement 1 

Statement3 

Continue ... 

then 
Statement2 

This simple example illustrates the conditional if statement: 

Program DecisionTest; 

Var 
num1 ,num2:integer; 

begin 
write('Enter a number:'); 
readln{num1 ); 
write('Enter another number:'); 
readln{num2); 
if{num1 = num2)then 

writeln('Both numbers are equal!') 
else 

writeln('Both numbers are not equal!'); 
writeln{'lsn"t this fun?!'); 
read In; 

end. 

Study this program. If you obey the computer and enter the numbers 4 and 
2, then the second writeln statement is executed and displays: 

Both numbers are not equal! 
Isn't this fun?! 



106 Turbo Pascal statements 

Your curiosity gets the better of you, however. You decide to test the com
puter to see if it's awake. You run the program a second time, but now you 
enter the same number twice. This time your Mac responds with 

Both numbers are equal! 
Isn't this fun?! 

Why? Our second test resulted in a condition that was true. Under a true 
condition the first writeln statement is executed. Our first test resulted in 
a false condition; therefore, the first writeln statement is skipped over, and 
control of the program passes to the next available statement. 

A Couple of Common Errors with 
If Statements 

Beginning programmers in Pascal often make a mistake when using the if 
statement. The mistake is a logical one where the output received is an 
unexpected value. Specifically, I refer to the result of the conditional when 
the condition is false and more than one statement follows the check. 

When a condition is false, program flow skips the first statement and con
tinues with the first statement after the affirmative block. Execution, however, 
continues from that point and executes the next statement in successive or
der. This may not provide the results desired. To illustrate, examine a portion 
of the previous example: 

if(num1 = num2)then 
writeln('Both numbers are equal!') 

else 
writeln('Both numbers are not equal!'); 

writeln('lsn"t this fun?!'); 

When numl equals num2, the condition is true and the program flows to 
the first writeln statement and then to the third writeln statement. However, 
suppose you don't want the third writeln statement to be executed when 
the condition is true. At present this situation is not possible because the 
program flow will continue from the first to the third in a true condition. To 
change this, include all the alternatives in a single block of statements. The 
statements within the begin-end pair are executed in sequence. Consider this 
modification to the program: 



Program NewDecision; 
Var 

num1 ,num2:integer; 

begin 

A Couple of Common Errors with If statements 107 

writeln('Enter a number:'); 
readln(num1 ); 
writeln('Enter another number:'); 
readln(num2); 
if(num1 = num2)then 

writeln('Both numbers are equal!') 
else 
begin 

writeln('Both numbers are not equal!'); 
writeln('lsn"t this fun?!'); 

end; 
read In; 

end. 

In this situation the message "Isn't this fun?!" is displayed only when two 
different numbers are entered. Because it is within the block of the else 
portion, as designated by the begin-end pair, it will never be executed when 
two identical numbers are entered. 

Another· error with if statements is usually encountered by programmers 
who get carried away with semicolons. You may have noticed that no 
statement preceding the else clause ends with a semicolon. For example: 

if(num1 = num2)then 
writeln('They are equal.') 

else 
writeln('They are not equal.'); 

The first writeln does not end with a semicolon. If you place a semicolon at 
the end of the first writeln, you will get an error when you try to compile 
because that semicolon is interpreted as the end of the if statement, and when 
the compiler looks at the else clause, it has no if with which to associate it. 
Even if you have a block of statements before the else clause like this-

if(num1 = num2)then 
begin 

writeln('They are equal.'); 
writeln('The values are', num1, num2); 

end 
else 

writeln('They are not equal.'); 



108 Turbo Pascal Statements 

the end before the else is not followed by a semicolon. So another rule to 
add to the guidelines for semicolon usage is never to place a semicolon after 
a statement immediately followed by an else clause. 

Also, always indent statements within a compound block as shown above 
so that it is easy to trace which statements go with which block. It may 
not appear to be very important now, but when you 'start writing more 
sophisticated code, you'll be glad you did it. 

Nesting Your If Statements 
Any statements may follow the true or false clauses. They can be writeln 
statements, assignment statements, compound statements containing begin
end blocks, or even another if statement. An if statement within another is 
called a "compound if statement." Using multiple if statements within the 
same program structure is called "nesting". There is no steadfast restriction 
to the number of if statements that may nest within one another; this generally 
changes from compiler to compiler. However, such a complicated structure 
can become very difficult to follow logically. A sample of nested if statements: 

begin 
if(condition1 )then 

if( cond ition2)then 
statement1 

else 
statement2 

else 
statement3; 

end; 

Notice the successive indentation of each if statement. Again, this format
ting makes programs much easier to understand. 

Why use a nested if statement? Suppose you want a program to make 
a decision and then to perform one of two mutually exclusive actions. In 
this case, an if statement will satisfy your needs. Suppose, however, that you 
want the computer to provide three alternative actions instead of just two. 
To remedy this problem, we embed or nest an additional decision test. Study 
the following example of calculating an employee's pay: 

Program Payroll; 

Const 
Rate= 4.00; 



Var 
hrs: integer 
pay: real; 

begin 
write('How many hours worked?'); 
readln(hrs); 
if(hrs > 40)then 

if(hrs > 45)then 
begin 

Nesting Your If Statements 109 

pay:= (Rate*40.0) + (2.0*(Rate*(hrs - 40))); 
writeln ('You earned double OT! Your pay is $', pay:6:2); 

end 
else 
begin 

pay:= (Rate*40.0) + (1.5*(Rate* (hrs - 40))); 
writeln('You earned OT! Your pay is$', pay:6:2); 

end 
else 
begin 

pay := Rate*hrs; 
writeln ('Your pay this period is $', pay:6:2); 

end; 
read In; 

end. 

When the program is executed, the user is requested to enter the number 
of hours worked. If a value of 40 hours or less is entered, a straight-time pay 
rate ($4.00 per hour) is provided. If a value greater than 40 hours but not 
exceeding 45 is entered, the employee earns overtime pay. A value of greater 
than 45 hours results in double overtime pay. For example, if you enter 40, 
the screen displays 

Your pay this period is$ 160.00 

If you respond by entering 45 instead, the output is 

You earned OT! Your pay is$ 190.00 

Lastly, if you enter 50 instead, then the output is 

You earned double OT! Your pay is$ 240.00 



110 Turbo Pascal Statements 

In our sample program the nested if statement provides three courses of 
action. Only one statement or statement block may follow the affirmative, or 
true, clause and appear before each else. 

Boolean Operators 
We have not discussed Boolean operators. A conditional, logical, or Boolean 
expression is offered a greater amount of flexibility with the Boolean op
erators OR, AND, and NOT. These operators let you write compound ex
pressions. For example, suppose you input a value that you want tested for 
whether it is between 1 and 10. Write 

if(num > 1) AND (num < 10)then 

where the expression is true only if both assertions are true. Notice that 
both assertions are enclosed in parentheses and separated by AND. The 
individual assertions should be enclosed within parentheses to assure your 
intent is understood. 

The remaining two operators function in a similar fashion. The logic 
operator OR states that if one or both of the individual assertions are true, 
the entire expression is true. The logical NOT provides the opposite of a truth 
value and is called the logical negation; that is, not-true is false. The result 
of the three logical operators can be summarized in a truth table as follows: 

AANDB Result AORB Result NOTA Result 
T T T T T T T F 
T F F T F T F T 
F T F F T T 
F F F F F F 

Another Case to Consider 
You can write a segment of code that checks a variable for a specific value 
and based upon that value executes certain statements. We have seen this in 
if statements like this: 

if(num = 5)then 
writeln('The number is five') 

else 
writeln('The number is not five'); 



Another Cose to Consider 111 

With two alternatives, this statement is acceptable. However, what if I had 
to display a unique message if the number was any integer from one to five? 
The if statement would look like this: 

if(num = 1 )then 
writeln('The number is one') 

else if(num = 2)then 
writeln('The number is two') 

else if(num = 3)then 
writeln('The number is three') 

else if(num = 4)then 
writeln('The number is four') 

else if(num = 5)then 
writeln('The number is five') 

else 
writeln('The number is not within one to five'); 

As you can see, it is allowable to have progressive checks in an if statement 
via else if. This form of if statement checks each condition, and once it finds 
a true one, it executes the statement block associated with that condition and 
skips over the rest of the if statement. 

This form of if statement is indeed quite useful, but Pascal provides another, 
the case statement, that is much more readable than multiple else ... ifs. The 
same lengthy if statement looks like this as a case statement: 

case(num)of 
1 :writeln('The number is one'); 
2:writeln('The number is two'); 
3:writeln('The number is three'); 
4:writeln('The number is four'); 
5:writeln('The number is five'); 
otherwise 

writeln('The number is not within one to five'); 
end; 

As you might have guessed, the expression (num) is evaluated and its value is 
compared against the figures before each colon. When a match is found, that 
statement block is executed. After execution of the appropriate block case 
jumps over the remaining blocks. Finally, if the expression does not equal 
any of the case values, the otherwise block is executed. 

You have just completed another large portion of Pascal programming 
basics. In Chapter 5 we cover the looping statements, which provide addi
tional control over the flow of your programs. It's time now to review what 



112 Turbo Pascal statements 

you have learned so far. Again, if you have trouble with a particular section, 
review it before continuing on to Chapter 5. 

Review Summary 

Quiz 

1. The statements used to communicate the out;mt processed by your 
computer are write and writeln. 

2. To display a literal character or literal string of characters via write or 
writeln, enclose them within single quotes. To display a single quote 
itself, enter it twice. 

3. You can control how your output is arranged by using a field-width 
parameter. A field-width parameter indicates the total number of spaces 
allowed when displaying numeric values. 

4. The interactive statements that are used to assign data values to vari
ables from outside the program are read and readln. 

5. When prompting for information with readln, first explicitly state what 
type of information is desired by using a write or writeln statement. 

6. The compound if ... then ... else statement is a conditional statement used to 
make a decision based on a Boolean expression. A Boolean expression 
represents either a true or false condition. 

7. A nested if statement lies within another if statement. Nested if state
ments let the programmer set up more sophisticated logical checks. 

8. A Boolean expression can take on only a value of true or false. A 
Boolean expression may consist of a single Boolean variable or expres
sions using relational and/ or Boolean operators. The Boolean operators 
are AND, OR, and NOT. 

9. The case statement is another decision control structure that provides 
multiple alternatives to a decision test. The case statement is a good 
choice when multiple possible values produce different logic paths for 
each result. 

1. What is the difference between write and writeln? 
2. Assuming the real value 65535.342 is assigned to the variable rate, 

what will the following display: write(rate:7:2)? 
3. How can you insert blank lines in your program output? 
4. What ability does readln provide the programmer? 
5. Write a Boolean expression stating that the value of A is both less than 

100 and greater than 0. Write the same expression where the value of 
A can be either 100 or 0. 



-5-----
More Statements: 
The Looping Structures 
Programs That Repeat 
The Whlle Statement 
Counting Your Loops 
Loops That Sum 
The For Statement 
Backward Looping with Downto 
Summing up For Loops 
The Repeat Statement 
Whlle versus Repeat ... Untll 
Nested Loops 
One More Loop: The Goto Statement 
Review Summary 
Quiz 

In this chapter you will learn: 
• How to use the while statement to construct a programming loop. 
• What a counting and summing loop is and how to use one. 
• How to use the for statement in a looping structure. 
• How to use the repeat ... until statement to construct a loop. 
• What a nested loop is and how to use one. 

In this chapter I continue the discussion of Pascal statements. In particular I 
examine a few additional control structures that allow you to write programs 
that repeat or loop. Looping programs allow you to alter the flow of a 
program or its physical order of execution sequentially from the first program 
statement to the last. Pascal offers several looping constructs: the while 
statement, the for statement, and the repeat...until statement. Begin by looking 
at one of my favorites, the while statement. 



114 More statements: The Looping structures 

Programs That Repeat 
Thus far I have discussed programs that are executed one line at a time. To 
execute a program you double-click on its icon on the desktop or start it up 
via the Run command in the Compile menu of Turbo Pascal. If you wish 
to execute the program again, you must double-click on it a second time or 
select Run again. One statemeni in Pascal allows you to execute repeatedly 
a program or a block within a program without double-clicking or running it 
over and over again. The technique for this is to write a program that repeats 
itself over and over until a certain condition is false. This conditional control 
is the while statement. 

The While Statement 
Similar to the if statement, a while statement tests a condition to determine 
which two courses of action to take. However, unlike the if statement, after 
execution the while statement loops back to its start to test the condition 
again. As long as the tested condition is true, the first action is repeated 
endlessly. A sample syntax of the while loop can be written thus: 

while(boolean expression)do 
statement1; 

statement2; 

The reserved word while is followed by a Boolean expression and "state
ment I" may represent one statement or a block of statements enclosed within 
the begin-end pair. The expression is, of course, a true or false condition. If 
the expression tests true, the program will execute the statement (or statement 
block) once. After this execution the program loops back to test the expres
sion again. This continues until the expression results in a false value. A false 
value tells the computer to skip statement 1 (or the statement block) and ex
ecute statement 2. At this point, the looping while statement is completed, 
and the program will execute the next available statement. The program flow 
of the while statement is shown in Figure 5 .1. 

A special example of the while loop appears in the following program. 
We provide this special program to illustrate a point. In this example you 
are requested to enter a number. Any response other than 13 will make the 
condition true and endlessly continue to display the statement following the 
while check. This is an infinite loop. To stop an infinite loop on your Mac, 
press the interrupt switch on the programmer's key on the left side of your 
Mac. This switch will come in handy later on, when you learn how to fix 



Fig. 5.1. 

The While Statement 115 

Loops Back 

True 

Statement t 

False 

Statement2 

Continue ... 

software problems. If you press this key while running a program with an 
endless loop in the Turbo Pascal environment (e.g., not from the desktop), 
you get a dialog box that allows you to resume. Note: If you have a debugger, 
such as MacsBug, installed, depressing this key will put you into the debugger. 
Select the resume button (the restart button will reboot your Mac) and you 
will find yourself back in the Turbo editor. In the following program if the 
number entered is 13, the loop is avoided. 

Program FirstWhile; 

Const 
MyNum = 13; 

Var 
num:integer; 

begin 
write('Please enter a number:'); 
readln(num); 
while(num <> MyNum)do 

writeln('You entered the number', num); { infinite loop } 
writeln('You entered the number 13!!!'); 
read In; 

end. 



116 More Statements: The Looping structures 

Try running the program above. A response of 13 executes the second 
writeln and the loop is avoided. To see the effect of the infinite loop, enter 
a number other than 13. The screen fills up so fast with the same line it is 
almost hard to see each new one being displayed. 

The example above illustrates poor programming technique. Infinite loops 
should be avoided. A more practical use of the while loop is a structure 
whose loop is executed a specific number of times. This type of technique is 
discussed next. 

Counting Your Loops 
To control the number of times a loop executes, insert a counter to monitor 
the number of iterations. A counter is a variable assigned a value that rises 
each time the loop is executed. When the counter reaches some predefined 
value, the condition becomes false and the flow of control moves out of the 
program loop. To illustrate, try this program: 

Program AnotherWhile; 

Var 
count, loops_left: integer; 
num1 ,num2 :integer; 

begin 
count:= O; 
while(count < 5)do 
begin 

write('Enter a number:'); 
readln(num1 ); 
write('Enter another number:'); 
readln(num2); 
writeln('The product of this set is',(num 1 *num2)); 
count:= count + 1; 
loops_left:= 5 - count; 
writeln('This loop has executed', count, 'time(s).'); 
writeln('This program will loop ', loops_left, 'more time(s).'); 

end; 
writeln; writeln; 
writeln('THIS PROGRAM HAS ENDED!!!'); 
read In; 

end. 



Fig. 5.2. 

Counting Your Loops 117 

This program illustrates two important points. First, notice the construction 
of the while statement. The first course of action following the while line is a 
compound statement (begin-end pair). As we have said before, the compound 
statement may contain any number of statements and still be considered a 
single block by the construct of the while loop. In other words, referring to 
the syntax of the while loop, the compound statement represents statement!. 

The second point of this example is the construction of the loop counter. 
I have appropriately called mine "count." The counter is set to 0 outside the 
loop. Within the loop the counter is increased by 1 each time the while loop 
executes. When the condition of the while statement is false, program flow 
exits from the loop and informs the user that the program has ended. The 
loop itself executes exactly five times. How do we know this? The number 
of times the loop executes is determined by the loop control variable, in this 
case the variable count. Compare the value assigned to the variable when 
it was initialized (count := 0;) with the value of the condition test when the 
test is false (count>= 5). I can set the count equal to 1 and the condition test 
as (count <= 5). Either way the loop executes five times. Be careful when 
setting the number of controlled loops. If the counter is initially set to 0 and 
the decision test is set as (count <= 5), the loop will execute six times, not 
five. A sample execution of the program above appears in Figure 5.2. 

RnotherWhile 
This program wi I I loop 4 more time(s). 
Enter a number: 3 
Enter another number : 2 
The product of this set is 6 
This loop has executed 2 time<s) . 
This program wi I I loop 3 more time(s). 
Enter a number: 1 
Enter another number: 5 
The product of this set is 5 
This loop has executed 3 time(s) . 
This program wi I I loop 2 more time(s). 
Enter a number: 5 
Enter another number: 2 
The product of this set is 10 
This loop has executed 4 time(s). 
This program wi I I loop 1 more time(s). 
Enter a number: 8 
Enter another number : 5 
The product of this set is 40 
This loop has executed 5 time(s). 
This program wi I I loop 0 more time(s) . 

THIS PROGRAM HAS ENDED!!! 

., 



118 More Statements: The Looping Structures 

Loops That Sum 
A program can accumulate a result within a loop. Such a loop is used to sum 
a list of values and is called an accumulator, or summing loop. This type of 
loop looks just like the counter just discussed; in fact, the difference between 
the two is almost negligible. The point is that a summing loop doesn't need 
to be dependent upon the value of the counting variable within a while loop. 
The two loops, a counter and an accumulator, may coexist within the same 
while statement. For example: 

Program SumTheValues; 

Var 
num, count, sum:integer; 

begin 
writeln('This program will sum a list of numbers.'); 
writeln('You will be prompted to enter 5 numbers and you'); 
writeln('should press <RETURN> after each entry.'); 
count:= O; 
sum:= O; 
while(count < 5)do 
begin 

write('Enter a number.'); 
readln(num); 
sum := sum + num; 
writeln('The sum of your numbers so far is ', sum); 
count := count + 1; 
writeln('We have made', count, ' passes through the loop.'); 
writeln; 

end; 
writeln('The program is over and the sum of your numbers is ', sum); 
read In; 

end. 

As you can see, the variables count and sum are used to see how many 
times the program has been through the loop and the total of the numbers 
entered so far respectively. A sample run of the program might look like this: 

This program will sum a list of numbers: 
You will be prompted to enter 5 numbers and you 
should press <RETURN> after each entry. 



The For statement 119 

Enter a number: 1 
The sum of your numbers so far is 1 
We have made 1 passes through the loop. 

Enter a number: 2 
The sum of your numbers so far is 3 
We have made 2 passes through the loop. 

Enter a number: 3 
The sum of your numbers so far is 6 
We have made 3 passes through the loop. 

Enter a number: 4 
The sum of your numbers so far is 10 
We have made 4 passes through the loop. 

Enter a number: 5 
The sum of your numbers so far is 15 
We have made 5 passes through the loop. 

The program is over and the sum of your numbers is 15. 

Every time you enter a number, the sum so far is reported, as is the number 
of times you have gone through the loop. After five passes a message reports 
that the loop is finished and your final total is shown. Now take a look at 
another method of looping, the for statement. 

The For Statement 
The for statement, like the while statement, is a looping structure used to 
execute statements repeatedly. The for statement uses a built-in counter to 
specify the number of times a statement or compound statement executes. 
In addition, for allows you to initialize and perform regular updates on other 
variables. A sample format of the for statement is 

for x := 1 to 3 do 
statement1; 

statement2; 

where x represents the looping or counter-control variable, sometimes re
ferred to as the index variable, followed by the assignment operator(:=). The 



120 More statements: The Looping Structures 

loop will repeat itself within a specified range set by the beginning point (1 
above) to an ending point (3 above). The beginning and ending points are 
predefined values that can be represented by an expression. Similar to the 
while statement, the counter-control variable is checked against the ending 
value and repeats until the ending value is exceeded. In the above example 
the loop repeats three times (1 to 3). 

What is the value of a loop? I have briefly discussed how a loop provides 
additional control over the flow of a program. A loop can be a real time-saver 
too. Consider this program segment: 

for x:= 1 to 100 do 
writeln(num); 

When the program executes this loop, the values assigned to x are printed 
from the selected range of 1 to 100. In other words, the value of x is printed 
100 times. An alternative method is to use 100 readln and writeln statements. 
Which method is more practical? Study a simple example: 

Program Accountant; 

Var 
sum, exp_sum, mth_neLinc, mth_exp:real; 
inc_ave, exp_ave :real; 
month :integer; 

begin 
sum:= 0.0; 
exp_sum = 0.0; 
writeln('Enter your monthly income .. .'); 
for month := 1 to 12 do 
begin 

write('Enter income for month:', month, ''); 
readln(mth_neLinc); 
sum := sum + mth_neLinc; 

end; 
writeln;writeln; 
writeln('Enter your monthly expenses .. .'); 
for month := 1 to 12 do 
begin 

write('Enter expenses for month:', month, ''); 
readln(mth_exp); 
exp_sum := exp_sum + mth_exp; 

end; 



Fig. 5.3. 

The For Statement 121 

writeln;writeln; 
writeln('Your total net income for the year is$', sum:10:2); 
writeln('Your total expenses for the year is f, exp_sum:10:2); 
inc_ave := sum/12.0; 
exp_ave := exp_sum/12.0; 
writeln('Your ave. monthly net income is$', inc_ave:10:2); 
writeln('Your ave. monthly expenses is$', exp_ave:10:2); 
if(inc_ave < exp_ave)then 

writeln('Your accounts are in the red!') 
else 

writeln('Your accounts are in the black!'); 
read In; 

end. 

When you execute this program, you are requested to enter your net income 
for the month and then expenses for the same period. A sample run of this 
program is shown in Figure 5.3. 

Examine the for statement itself. Both loops contain an ending value of 12, 
which specifies that each loop will execute exactly 12 times. The statement 
following the for statement is a compound set (begin-end pair). All statements 
contained within this block are executed 12 times. This is how we are able 

,.. 

Enter your monthly income .. . 
Enter income for month: 1 246.98 
Enter income for month: 2 342 .78 
Enter income for month: 3 987.97 
Enter income for month : 4 543.99 
Enter income for month : 5 56.90 
Enter income for month : 6 642.91 
Enter income for month : 7 473.95 
Enter income for month : 8 763 .00 
Enter income for month : 9 

., 

Accountant 



122 More Statements: The Looping Structures 

to request input via readln 12 times. I included an accumulator within each 
loop to sum the amounts of net income and monthly expenses. When each 
loop is finished, program flow exits the loop and executes the next available 
statement. Note that any range that counts 12 times can be used in this 
example; a range of 12 to 23 will loop 12 times as well. It is the number 
of increments between the beginning and ending values, not how they are 
labeled, that is important. 

Using a compound statement following each for statement is important, 
because I want the 110 (writeln and readln) and the accumulator to execute 
12 times. If the begin-end pair is omitted, only the first statement following 
the for statement is executed as part of the loop. When the loop is finished, 
program flow passes to the readln, which is executed only once, and every
thing is a mess. 

You should be familiar with the components of the rest of this program. My 
goal was to simplify a programming task via the for statement, and although 
I have a fairly compact program, since I don't have 12 separate writelns and 
readlns for the 1/0, I can compact things even more like this: 

Program NewAccountant; 

Var 
sum, exp_sum, mth_neLinc, mth_exp, temp:real; 
counter :integer; 

begin 
sum:= 0.0; 
exp_sum := 0.0; 
writeln('Enter your monthly income and expenses .. .'); 

for counter:= 1 to 12 do 
begin 

write('Enter income for month ', counter, ' '); 
readln(mth_neLinc); 
sum := sum + mth_neLinc; 
write('Enter expenses for month ', counter, ' '); 
readln(mth_exp); 
exp_sum := exp_sum + mth_exp; 

end; 
writeln;writeln; 
writeln('Your total net income for the year is$', sum:10:2); 
writeln('Your total expenses for the year is$', exp_sum:10:2); 
temp:= sum/12.0; 
writeln('Your ave. monthly net income is$', temp:10:2); 
temp:= exp_sum/12.0; 



writeln('Your ave. monthly expenses is$', temp:10:2); 
if((sum/12.0) < (exp_sum/12.0))then 

writeln('Your accounts are in the red!') 
else 

writeln('Your accounts are in the black!'); 
read In; 
end. 

The For Statement 123 

In this version I have removed a couple of variables (inc_ave and exp_ave) 
and consolidated them into one (temp). More important, however, is the 
ability to consolidate the income and expense loops into one. Here enter 
each. month's income followed immediately by each month's expenses. In 
order to cut out variables and code, I added a bit of processing time to the 
program, since it now has to calculate both average income (sum/ 12.0) and 
average expenses (exp_sum I 12.0) in both the assignments to temp the if 
statement. 

The for statement is a very flexible control structure. A single program 
block may contain several for statements. In addition, you can specify the 
number of iterations of a for statement before it executes by predefining the 
ending value of the increment, say, 1to5. We can also write a program that 
lets the user interactively specify the number of iterations before the loop 
executes. The following example is another slightly modified version of the 
accountant program: 

Program EvenBetterAccountant; 

Var 
sum,exp_sum,mth_neLinc,mth_exp,temp1 ,temp2:real; 
num_mnths,counter :integer; 

begin 
sum:= 0.0; 
exp_sum := 0.0; 
write('How many months do you wish to do:'); 
readln(num_mnths); 
writeln('Enter your monthly income and expenses .. .'); 
for counter := 1 to num-mnths do 
begin 

write('Enter income for month', counter,':'); 
readln(mth_neLinc); 
sum := sum + mth_neLinc; 
write('Enter expenses for month', counter,':'); 



124 More Statements: The Looping Structures 

readln(mth_exp); 
exp_sum := exp_sum + mth_exp; 

end; 
writeln;writeln; 
writeln('Your total net income for the period is$', sum:10:2); 
writeln('Your total expenses for the period is$', exp_sum:10:2); 
temp1 := sum/num_mnths; 
writeln('Your ave. monthly net income is$', temp1 :10:2); 
temp2 := exp_sum/num_mnths; 
writeln('Your ave. monthly expenses is$', temp2:10:2); 
if(temp1 < temp2) then 

writeln('Your accounts are in the red!') 
else 

writeln('Your accounts are in the black!'); 
read In; 

end. 

The primary difference between this program and the last version of the 
accountant program is that the user interactively selects the number of times 
the loop executes. This task is accomplished with the Readln statement, which 
assigns a value to the variable representing the ending value of the range in 
the for statement. Specifically, I used the variable num_mnths to represent 
the ending value. Therefore, from the previous program, the statement 

for counter:= 1 to 12 do 

becomes 

for counter := 1 to num_mnths do 

where the value assigned to the variable num_mnths is the ending value of 
the for loop that replaces the value 12. This value must be assigned before 
the for statement executes. In this example the user is prompted to enter the 
desired value just before the for statement. Such a method provides a larger 
degree of flexibility. You can select 3 months, 6 months, 12 months, or any 
whole number that you desire. A sample run of this program is shown in 
Figure 5.4. 

Referring to the rest of the program, notice that the formats of the formulas 
before the writeln statements calculating temp 1 and temp2 that display the 
average value have been changed to incorporate the num_mnths variable. If 
I simply left these denominators at 12, the resulting values would be correct 
only when the user entered in 12 for the number of months to process. 



r 

Fig. 5.4. 

Backward Looping with Downto 125 

EuenBetterRccountant 
How many months do you wish to do : 5 
Enter your monthly income and expenses ... 
Enter income for month : 1:345 .78 
Enter expenses for month : 1: 123.67 
Enter income for month : 2 :428 .g6 
Enter expenses for month : 2 :236 .71 
Enter income for month : 3:462 .6g 

Backward Looping with Downto 
The for statement automatically increases its loop one number at a time. You 
can alter this rule by substituting the to option with downto. Downto allows 
the loop to decrease its count by one. 

Can you guess the number of times the following loop will execute? 

for z := 10 downto 6 do 
writeln (z); 

If you guessed five, you are correct. This loop outputs 

10 
9 
8 
7 
6 



126 More Statements: The Looping Structures 

Summing up For Loops 
Be careful when using the for statement. A program may contain a number of 
count-controlled loops. Try not to overuse them. In addition, a few important 
restrictions should be remembered: 

• The control variable cannot have its value redefined within the loop 
itself. Its value may be used but not modified; that is, you can write the 
value of i but you cannot reassign it, such as i := 6;. 

• The control variable can be any ordinal type and is generally an integer 
value. The beginning value and the ending value of the control variable 
must be the same type (for example, integer) as the control variable 
itself. 

• Neither the starting nor the ending value of the control variable can be 
altered within a loop. 

• When a loop has completed, the value of the control variable still 
contains the value it was last assigned and may be used again, but care 
should be taken to assure that subsequent statements are not dependent 
upon an earlier value. For example, you may define a general loop 
counter (count) and use it in several different for loops. If you try to 
use the final value later in the program, be sure you know which loop 
executed last to determine the exact value. 

• The starting value must be less than or equal to the ending value. If the 
values are equal, the loop executes once only. In the case of downto 
the opposite is true; the starting value must be greater than or equal to 
the ending value. 

In the next section I discuss one more looping control structure, the 
repeat. .. until statement. This structure is the last of Turbo Pascal's three 
looping options. 

The Repeat Statement 
The repeat statement consists of two parts: the body and the termination 
condition. It is essentially an upside-down while statement in which the 
condition is not checked until the loop has performed at least one iteration. 
The statement is used to repeat a set of statements (the body) until a condition 
is true (the termination condition). A sample of this statement is 



repeat 
statement1; 
statement2; 
statement3; 

statement" 
until (expression is true); 

The Repeat Statement 127 

The reserved word repeat is followed by a group of statements terminated 
by the reserved word until. The control structure tests the loop at the end 
of the loop. If the expression is evaluated as a false condition, the statement 
sequence is executed again. If the condition is true, the loop ends. Unlike 
while and for statements, repeat...until does not require a begin-end pair to 
designate a block of executable statements. The repeat statement contains a 
body of multiple statements that are delimited by the reserved word until. 

As with the while statement, you should include a condition in which the 
expression will be true and the flow exits the loop. Otherwise the loop will 
be infinite. This simple program example satisfies this requirement: 

Program FamilyBudget; 

Var 
rent, utilities, groceries, car, misc:real; 
neLincome, budget :real; 

begin 
writeln('This program calculates your monthly family budget.'); 
writeln('The program will quit when you are over budget.'); 
repeat 

write('Rent:'); 
readln(rent); 
write('Uti I ities:'); 
read In( utilities); 
write('Groceries:'); 
readln(groceries); 
write('Car payment:'); 
read In( car); 
write('Miscellaneous:'); 
readln(misc); 
write('Total net income:'); 



128 More Statements: The Looping Structures 

Fig. 5.5. 

readln(neLincome); 
budget := neLincome - (rent+ utilities+ groceries+ car+ misc); 
writeln;writeln; 
writeln('You are left with $', budget:10:2); 

until(budget <= 0.0); 
writeln;writeln; 
writeln('Your expenses exceeded your net income!!!'); 
read In; 

end. 

This program calculates a family's monthly budget. A sample run of the 
program is shown in Figure 5.5. 

All the statements in the loop will execute at least once. The program 
first instructs the user to enter a series of expenses (rent, utilities, groceries) 
followed by the user's net income. Expenses are totaled and then subtracted 
from net income to arrive at a budget for this particular month. If net income 
is greater than expenses, the program repeats another calculation (calculate 
another month). The mechanism used to exit the loop is provided by the 
condition at the end of the loop-until (budget <= 0.0). Specifically, when 
the net income for a particular month is less than the total amount of expenses, 
program flow exits the loop and the program ends. 

,.. 

FnmilyBudget 
This program calculates your monthly family budget . 
The program wi I I quit when you are over budget. 
Rent: 424 .00 
Uti I ities : 125 .00 
Groceries : 400 . 00 
Car payment : 315.00 

.., 



Nested Loops 129 

While versus Repeat. .. Until 
Because of the similarity in structure of the while loop and the repeat...until 
loop, they are often compared. These two loops, however, have one significant 
difference regarding their execution. Both must test a condition in order 
to execute the loop itself. The location of the decision test is the primary 
difference between the two. Specifically, the while statement tests the loop 
condition before executing the loop. On the other hand, the repeat...until 
statement tests the loop condition at the end of the loop. In other words 
repeat...until always executes its loop at least once. In addition, the result 
of the tested condition has just the opposite effect on each loop. The while 
statement executes and continues to loop as long as the tested condition is 
true; the repeat statement continues to loop as long as the tested condition 
is false. Which to use is entirely up to you, but for most instances the while 
version will be more appropriate. 

Nested Loops 
A nested loop is a loop within a loop. I have illustrated nesting program 
structures before, such as the compound begin-end pair and nested if state
ments. The logic for nesting a loop is similar. In simple terms the outer loop 
executes its initial task and then waits until the inner loop completes all of its 
loops or tasks. Here's a simple example that illustrates a nested for statement: 

Program NestedLoop; 

Var 
loop1, loop2, cnt1, cnt2:integer; 

begin 
write('How many times do you want'); 
write('the outer loop to execute:'); 
readln(loop1 ); 
write('How many times do you want'); 
write('the inner loop to execute:'); 
readln(loop2); 
for cnt1 := 1 to loop1 do 
begin 

writeln('Outer loop iteration#', cnt1); 
for cnt2 := 1 to loop2 do 

writeln('lnner loop iteration #', cnt2); 
end; 



130 More Statements: The Looping Structures 

writeln;writeln; 
writeln('All loops are now complete.'); 
read In; 

end. 

This program requests you to select the number of times you want the 
nested loop to execute. You enter a value for the outer loop and then you 
are requested to enter a value for the inner loop. In each case the outer loop 
and inner loop will execute the number of times assigned to the ending value 
(loopl and loop2) of the control variable (cntl and cnt2). A sample run of 
this program is shown in Figure 5.6. 

One More Loop: The Goto Statement 

Fig. 5.6. 

While and repeat...until are conditional looping statements, and if and case 
can perform a conditional branch. Conditional structures execute a selected 
number of statements depending on the value (condition) of an expression. 
Pascal offers one additional looping structure that alters program flow un
conditionally. This is the goto statement. 

Goto is common among programming languages, for example BASIC. 
However, it is not generally recommended because of its uncontrollable 

,.. 

Nestedloop 
How many times do you want the outer loop to execute: 4 
How many times do you want the inner loop to execute: 2 
Outer loop iterat on •1 
Inner loop iterat on •1 
Inner loop iterat on •2 
Outer loop iterat on •2 
Inner loop iterat on •1 
Inner loop iterat on •2 
Outer loop iterat on •3 
Inner loop iterat on •1 
Inner loop iterat on •2 
Outer loop iterat on •4 
Inner loop iterat on •1 
Inner loop iterat on •2 

Al I loops are now complete. 

., 



One More Loop: The Goto Statement 131 

nature and its inconvenience when trying to trace program flow. Its purpose 
is to pass control of the program flow unconditionally from one point in 
a program to another, skipping any statements between the two points. A 
common use of goto is to exit from a loop. 

The point to which the flow of program control is transferred is identified 
with a label. The general format of the goto statement is 

goto label; 

Label represents a valid name-with naming rules identical to those of 
variables-plus an unsigned integer (for example, 1 or 1000). A label is 
declared in the label section of the program declarations. Labels are declared 
immediately after the program name and before any other declaration. So the 
ordering of the declaration sections I have discussed so far is labels, constants, 
types, then variables. A sample label declaration: 

Program ShowLabels; 

Label 
here; 

begin 

end. 

An example of how to use this label is 

here: writeln('We used a goto statement'); 

where "here" is a valid label (declared above) and the statement 

goto here; 

although it does not sound grammatically correct, causes program flow to 
jump to the Writeln statement denoted by "here." 

Pascal offers several control structures designed for solid structured pro
gramming technique. The goto statement is not one of them. Programs can 
be written efficiently without goto. I was tempted to omit this statement from 
my discussion, but you do have the right to know it is available. Compare 
it with the control structures that have only one exit and one entry. Which 



132 More statements: The Looping structures 

structure would you like to read, follow, or debug? I think you will agree 
that you should avoid using goto. 

This chapter presents several types of program loops. You learned about 
the three important looping structures, while loops, for statements, and re
peat...until loops; about counting loops and loops that accumulate; about the 
differences between loops. 

It's time to take another break. Review the summaries and exercises that 
follow. When you're ready, continue to Chapter 6 to study procedures and 
functions or subroutines, a very important feature of structured programming 
in Pascal. 

Review Summary 

Quiz 

1. The while statement is a conditional control structure that repeats itself 
until a certain condition is false. 

2. An infinite loop repeats itself endlessly. 
3. A counter is a variable that increases or diminishes by one each time a 

loop is executed. 
4. An accumulator is a special form of counter. An accumulator is used 

to collect or sum a total. 
5. A for statement is used to execute statements repeatedly. The for 

statement executes with its own built-in counter that either rises or 
falls by one each time the loop executes. 

6. The repeat statement is used to repeat a set of statements until a 
condition is true. The repeat statement always executes at least once and 
is delimited by the reserved word until followed by the test condition. 

7. These are all conditional loops. One loop that branches unconditionally 
is the goto statement. Its purpose is to pass control of program flow 
unconditionally from one point in a program to another. The point to 
which flow of program control is transferred is identified with a label. 

8. Labels are generally declared immediately after the program name and 
before any other declaration such as const, type, or var. 

1. Give examples of a counter and an accumulator and state how they 
differ. 

2. Does the position of the counter inside a loop have any effect on the 
program? Why or why not? 



Quiz 133 

3. Write a while loop that reads input of five numbers and then displays 
the accumulated sum once. 

4. When and why are begin-end pairs used within a for statement? 
5. Write a program that permits interactively specifying the number of 

iterations of a for loop. 
6. What is the primary difference between a while loop and a repeat...until 

loop? 
7. What are nested loops used for? 
8. Why should goto statements be avoided? 



-6-----
Procedures, Parameters, 
and Units 
Structured Design 
What Is a Procedure? 
What Does a Procedure Consist Of? 
Where Is a Procedure Placed? 
How Are Procedures Used? 
Using Variables with Procedures 
Global versus Local Variables 
Passing Information with Parameters 
Variable Parameters 
Value Parameters 
Introducing Functions 
Compiler Directives 
The Turbo Pascal Unit 
The Uses Clause 
PasConsole Information 
Using UnltMover 
Review Summary 
Quiz 

In this chapter you wlll learn: 
• How to write a program that features structured design. 
• What a procedure Is and how to deflne one. 
• How to use a procedure with variables and parameters. 
• What a function is and how to define one. 
• What compiler directives are and how to use them. 
• What a Turbo Pascal Unit Is and how to work with them. 
• What the PasConsole environment Is and how It simulates standard Pascal 

1/0. 
• How to use UnltMover. 



What Is a Procedure? 135 

Thus far I have covered many important programming tools from which 
you can build useful programs. All of our examples have used a single 
program module or block to accomplish a single task. In this chapter I discuss 
ways of putting together a group of modules, each performing a single task. 
When the individual modules are taken collectively, a larger programming 
task is performed; this is called modula.r programming. One mechanism used 
to accomplish this goal is the procedure. 

Structured Design 
Large programming objectives are often broken down into smaller ones. Sub
programs are further divided until each subprogram consists of a few man
ageable statements. These miniprograms are generally easier to solve than 
the original macro program. Each subprogram performs a particular task, 
such as processing data mathematically or printing results. The individual 
subprograms are modules. The final program consists of a collection of mod
ules. This is referred to as structured programming because of its hierarchical 
tree nature. 

In this chapter we are going to discuss a particular type of structured design 
called top-down design. In top-down design, or called stepwise refinemen~ 
the original macro problem is represented by a main module that may consist 
of the major programming steps required to solve a problem. The main 
module calls upon individual subprograms to solve specific tasks. When all 
the simpler tasks are solved, the original problem is solved. 

The main module is divided into smaller and smaller modules. Each 
module represents a specific level of programming that performs a task 
independently of the other modules. For example the main module can be 
depicted as level 0, the next set of modules as level 1, and so on (Figure 6.1). 
Any module within this tree structure can make demands on any module at 
a lower level. 

The program as a collection of modules is a very important feature of 
Pascal. Tum your attention to the procedure, which identifies a subprogram 
or module. 

What Is a Procedure? 
A procedure is a declaration used to identify a collection of Pascal statements 
that perform a specific task. The procedure represents a subprogram and is 
executed each time the procedure is invoked. To use a procedure you assign 
it a name and then call it by name from some other point in the program. 
Once a procedure has executed, the flow of program control returns to the 
calling routine, for example Writeln and Readln. Although they may appear 



136 Procedures, Parameters, and Units 

Fig. 6.1. 

MAIN MODULE Level O 

T 

I l 

Level 1 

l T 

l 1 1 
- Level 2 

to you to be a black box to which you send some information and get other 
information back in the form of a display, assignment, or something, they 
are Pascal procedures, real-time, or embedded in the compiler itself. When 
invoked, they cause program flow to start executing their statements. Program 
flow subsequently resumes with the statement immediately following the one 
that called the procedure. 

What Does a Procedure Consist Of? 
The structure of the procedure is just like the program examples that I have 
been discussing. A procedure consists of two parts, the heading and the body. 
The heading, or name assigned to a procedure, is analogous to the name 
given to the program itself, except the reserved word procedure is used 
instead of the reserved word program. The body is the sequence of program 
statements (including declarations) specific to a procedure. Generally, there 
are no restrictions placed on the number of statements that a procedure may 
contain. However, one of the primary purposes of using procedures is to 
break down the programming problem into more meaningful tasks for both 
readability and to reduce the number of identical code blocks. For these 
reasons you really don't want to have a procedure that could be broken 
down further. The procedure looks just like a miniprogram, complete with 
a section for declarations and a begin-end pair. The one difference is that 
the last end is followed by a semicolon instead of a period. The semicolon 
informs the compiler that this is the end of a particular statement, in this case 
the end of a procedure. 



How Are Procedures Used? 137 

Where Is a Procedure Placed? 
A procedure must first be declared and is placed immediately following the 
var section of the main program. The keyword procedure is followed by a 
name and then a semicolon. The body of this miniprogram is completed with 
an end followed by a semicolon. 

How Are Procedures Used? 
Suppose a program is to perform a number of statements over and over 
again. You can rewrite the statements each time they are required or call 
a miniprogram or procedure to accomplish the same task. When the task 
is completed, the program proceeds. For example, examine the following 
program, which contains two mathematical functions, one for addition and 
one for multiplication: 

Program MathAce; 

Var 
num1, num2, sum, product : real; 

Procedure Add; 
begin {start of procedure Add} 

sum := num1 + num2; 
writeln ('The sum of your numbers is', sum:10:2 ); 

end; {end of procedure Add} 

. Procedure Mult; 
begin {start of procedure Mult} 

product := num1 * num2; 
writeln ('The product of your numbers is', product:10:2 ); 

end; {end of procedure Mult} 

begin {start of the main program} 
write ('Enter a number: '); 
readln ( num1 ); 
write ( 'Enter another number: ' ); 
readln ( num2 ); 
writeln; writeln; 
writeln ( 'We are now computing the addition .. .' ); 
Add; 
writeln; writeln; 
writeln ( 'We are now computing the multiplication .. .' ); 
Mult; 



138 Procedures, Parameters, and Units 

writeln; writeln; 
writeln ( 'The program is finished!' }; 
read In; 

end. {end of main program} 

I think it's important that you understand the flow of program control in 
this example. Take a look step by step. 

When you execute the program above, you are asked to enter two numbers. 
This is accomplished by the two Write and Readln combinations in the 
main routine. Next a message informs you that the addition is about to be 
performed. At this point the routine Add is invoked and control jumps to 
this procedure. The Add routine has all of its statements enclosed within a 
begin-end pair. The first statement executed is the calculation of the sum. 
Next the sum is printed out and the procedure ends. Then control returns to 
the main routine and a couple of blank lines are printed via two Writelns 
without parameters and a message indicates that the multiplication is about 
to be performed. As you can see, when the program left the main routine, 
it was about to perform this sequence of Writeln statements and as soon as 
it returns, they are executed. At this point Mult is invoked and control is 
passed to it, just as it was to Add. First the product is calculated and then 
it is displayed. This procedure then ends and control is transferred back to 
the main program routine, where the message "This program is finished!" is 
displayed. A sample run of this program is shown in Figure 6.2. 

Note two important points. First, the names of the procedures Add and 
Mult appear at the beginning of those procedures just as the program name 
appears at the beginning of the program. Second, the procedure's statements 
are enclosed within a begin-end pair just like those of the main routine, 
and compound statements appear within begin-end pairs just as in the main 
program routine. 

Writing such programs is easily accomplished using top-down design. The 
first step in writing the code involves breaking down the main program into 
manageable miniprograms. The logic of the main program is developed first, 
as in the previous example all the initializing input/ output statements are 
in the body of the main program. Next break the building blocks of the 
program into separate smaller tasks, or procedures, such as to do addition and 
its output, another to do multiplication and its output, and so on. Whenever 
such a task is required, call on that particular procedure again. Remember, 
you can call a procedure from any point in the main program as many times 
as you want. You can even have one procedure call another procedure. This 
should be easy to visualize, since the main program is nothing more than a 
special procedure itself. The key to allowing one procedure to call another is 



Fig. 6.2. 

Using Variables with Procedures 139 

MathAce 
Enter a number: 5 
Enter another number : 2 

~le are now compu t i ng the add i ti on ... 
The sum of your numbers is 7 .00 

We are now computing the multiplication . .. 
The product of your numbers is 10 .00 

The program is finished! 

that the called procedure must be placed above the calling procedure, so the 
compiler knows where to find it; otherwise, the called procedure is flagged 
as an unknown identifier. 

A procedure may contain a miniprogram that completes a more complex 
task than adding or multiplying two numbers. However, the concept is 
the same. It is important that you understand the logic behind structured 
programming with a top-down design, in which large programs are really 
a collection of smaller ones. Later in this book I will introduce applications 
that use this very important feature. 

Using Variables with Procedures 
Understanding and defining a procedure is simple. However, there are a few 
additional rules to discuss. In the previous example, I created a program 
that transmitted information from a procedure to the main program. All the 
variables were global to the program, and so any procedure was permitted 
to modify them at any time. I made global changes in these variables with 
the procedures Add and Mult. However, variables can be passed from one 
procedure to another, and changes therefore need not be global. There are 
two methods of passing values to a procedure, by value and by address. 



140 Procedures, Parameters, and Units 

These methods differ greatly and will be discussed later. First I will discuss 
the concept of global versus local variables. 

Global versus Local Variables 
Before you write a procedure that uses variables, you must determine how 
it is going to be used and what effect the variable will have on the rest 
of the program. In Pascal there are rules for governing the variables in a 
procedure; these are called scope rules. The scope of a variable defines its 
accessibility to the rest of the program. For example, if the variable a is used 
in a procedure, do you want its value accessible by other procedures? If so, 
it is a global variable. My mathematics program used this type of variable. A 
global variable has meaning throughout the program. 

On the other hand, suppose you want a procedure to use a variable that 
has no effect outside the procedure itself. This is a local variable, one that has 
meaning only while the body of the procedure where it resides is executing. 
When execution of this procedure is complete, a local variable no longer 
exists. How do you identify or define the scope of a variable? As you recall, 
all variables must be declared before they are used. This rule applies whether 
the variable is used in the main procedure or another. Where you place 
the variable declaration defines its scope. If the variable is declared after 
a procedure, it may be accessed only by that procedure. If the variable is 
declared outside of a procedure block, as our variables were, it is accessible 
by the entire program. 

Be careful if you declare a local variable with the same name as a global 
one because once the procedure transfers control to the calling routine, the 
local value of the variable will be lost and the calling routine will use the 
global value. The value assigned to the variable will be the last global value 
assigned from the main declaration. The result may not be what you expected. 

How to choose between a local variable and a global one? Good program
ming practice dictates that whenever possible you should use a local variable 
instead of a global one. It's wise to use a procedure to complete its task and 
then go about your business with the rest of the calling routine. Why? A 
practical question, since our first example used global variables. 

A global variable can wreck a good program. The reason is simple. In a 
large program you may wish to use a variable again. A global variable retains 
its value and can produce undesirable side effects later in your program. 
A local variable, however, has no effect on the main program and can be 
used repeatedly without unexpected results. 

Perhaps the best reason to use a local variable in a procedure is for 
flexibility when making multiple calls to the same routine. Each time a call 



Variable Parameters 141 

to a procedure is made, the variables start from scratch. If global variables 
are used, the values left over from the previous execution of the procedure 
are still in effect. 

Regardless of the reason, most experienced Pascal programmers agree that 
unnecessary global variables often lead to bugs. Such bugs are difficult to 
find even for the most seasoned programmer. As a rule of thumb you should 
use local variables whenever possible. 

I just made a case for using local variables, but I haven't described the 
method for exchanging information with a procedure when local variables 
are used. This process requires a mechanism called a parameter. 

Passing Information with Parameters 
Exchanging information between a procedure and the main program is 
efficiently accomplished using a parameter, a variable that allows a value to 
be passed between a procedure and the main program or another procedure. 
Parameters are listed in the procedure definition statement. For example, a 
procedure named MathSolution might be written as 

Procedure MathSolution ( Var x, y : Real ); 

where the variable parameters x and y are declared to be real data types. The 
reserved word procedure is followed by its identifier MathSolution, and the 
parenthetical declaration is followed by a semicolon. This example defines 
x and y as variable parameters (var). It is important to note that placement 
of the parenthetical list declares the variables local, and no other declaration 
for these variables is allowed in the procedure. 

A parameter may be either var (varia.bk) or a value, which is the default. 
The difference between the two involves how information is passed between 
a procedure and the calling routine. A var parameter is passed by reference 
and acts as a location pointer in memory. If it is a value parameter, the 
information is passed by value, and only a copy of the value is passed. The 
example above is a variable parameter, which I discuss next. 

Variable Parameters 
Calling a procedure using variable parameters is slightly different from 
calling a procedure without them. Suppose I want to pass the values of the 
variables num 1 and num2 from the main routine to the routines Add and 
Mult. My program would look like this: 



142 Procedures, Parameters, and Units 

Program MathAce; 

Var 
num1, num2 : real; 

Procedure Add ( Var aNum1, aNum2 : real ); 

Var 
sum: real; {declare sum local to Add} 

begin {start of procedure Add} 
sum := aNum1 + aNum2; 
writeln ( 'The sum of your numbers is', sum:10:2 ); 

end; {end of procedure Add} 

Procedure Mult ( Var mNum1, mNum2 : real ); 

Var 
product : real; {declare product local to Mult} 

begin {start of procedure Mult} 
product := mNum1 * mNum2; 
writeln ( 'The product of your numbers is ', product:10:2 ); 

end; {end of procedure Mult} 

begin {start of the main program} 
write ( 'Enter a number: ' ); 
readln ( num1 ); 
write ('Enter another number:' ); 
readln ( num2 ); 
writeln; writeln; 
writeln ('We are now computing the addition .. .'); 
Add ( num1, num2 ); 
writeln; writeln; 
writeln ('We are now computing the multiplication .. .'); 
Mult ( num1, num2 ); 
writeln; writeln; 
writeln ( 'The program is finished!' ); 
read In; 

end. {end of main program} 

Notice that num 1 and num2 are the only variables declared globally; I 
removed the global declarations for sum and product. Also, the procedures 
Add and Mult now have parameters in both their calls and their definitions. 



Variable Parameters 143 

For instance, 

Procedure Add ( Var aNum1, aNum2 : real ); 

declares Add as a routine with two parameters, aNuml and aNum2, both reals 
and passed as var parameters. 

Now when I invoke Add, I place the values of numl and num2 within 
the parentheses in the call. This is identical to the way I have been calling 
writeln and readln all along; I simply place the parameters in the order in 
which the procedure expects them. The rules outlined for Add apply to the 
procedure Mult. Remember, the variables sum and product are no longer 
declared globally. They are now local to the routines in which they are used. 
That is, now only Mult can access the variable product and Add is the only 
procedure that may access the variable sum. 

We refer to this as passing parameters by reference primarily because the 
value passed to the called routine is not the value of the variable but the 
address of the variable. For example, if the variable numl held the value 12, 
the item is passed to Add and Mult is not 12 but rather the location in the 
Macintosh's memory where the value of numl is stored. Recall that variables 
have their own memory locations set up when they are declared; passing a 
parameter by var indicates that the called routine is to know the location 
of the variable so that it can modify it. Since both Add and Mult know the 
addresses of numl and num2, they can change the value of either of them by 
changing either aNuml/aNum2 (for Add) or mNuml/mNum2 (for Mult). 
For example, I'll modify the program a bit so that the values of num 1 and 
num2 are changed within Add like this: 

Program MathAce; 

Var 
num1, num2 : real; 

Procedure Add ( Var aNum1, aNum2 : real ); 

Var 
sum: real; {declare sum local to Add} 

begin {start of procedure Add} 
sum := aNum1 + aNum2; 
writeln ( 'The sum of your numbers is ', sum:10:2 ); 
(**********************************************************) 

(* Now let's modify the values of num1 and num2 via *) 



144 Procedures, Parameters, and Units 

(* aNum1 and aNum2 ... *) 
(**********************************************************) 

aNum1 := aNum1 + 1.0; 
aNum2 := aNum2 + 1.0; 

end; {end of procedure Add} 

Procedure Mutt ( Var mNum1, mNum2 : real ); 

Var 
product : real; {declare product local to Mutt} 

begin {start of procedure Mutt} 
product := mNum1 * mNum2; 
writeln (The product of the new numbers is', product:10:2 ); 

end; {end of procedure Mult} 

begin {start of the main program} 
write ( 'Enter a number: ' ); 
readln ( num1 ); 
write ( 'Enter another number: ' ); 
readln ( num2); 
writeln; writeln; 
writeln ( 'We are now computing the addition .. .' ); 
Add ( num1, num2 ); 
writeln; writeln; 
writeln ( 'We are now computing the multiplication .. .' ); 
Mutt ( num1, num2 ); 
writeln; writeln; 
writeln ( 'The program is finished!' ); 
read In; 

end. {end of main program} 

By modifying the values of aNuml and aNum2 in Add, I change the values 
of the globally declared num 1 and num2. A sample run of this program is 
shown in Figure 6.3. 

You can see that the values of num 1 and num2 were changed in Add 
by the fact that the resulting product in Mult is based upon the new values. 
One other point I would like to mention here is that the type declarations for 
parameters in the procedure declaration line must match up with the types 
of parameters being passed to the routines. For example, the declarations 
for aNuml and aNum2 in Add are set up as reals. When I invoke the Add 
routine, I pass the variables numl and num2, which are declared globally as 
reals also; we could not have passed a variable of any other type. This rule 
holds true for parameters passed by value, which is our next topic. 



Value Parameters 145 

MathAce 

Enter a number: 5 
Enter another number : 2 

~~e are now compu t i ng the add i t i on .. . 
The sum of your numbers is 7 . 00 

We are now computing the multipl ication .. . 
The product of the new numbers is 18.00 

The program is finished! 

Fig. 6.3. 

Value Parameters 
A second way to pass parameters is to use value. Value parameters pass to 
the called procedure a copy of the value of the parameter. A value parameter 
has its memory location inside the procedure, and its original value cannot 
change. Only the copy is changed. Perhaps a simple distinction between a 
value parameter and a variable parameter is that a value parameter is fixed, 
like a constant. A variable parameter can take on any number of new values; 
only the address is fixed. 

When you declare value parameters, eliminate the key word var from the 
procedure definition statement. For example, a procedure named Continue 
might be written as 

Procedure Continue { x : char ); 

where the parameter list contains a single formal parameter, x. The identifier 
x is declared as a Char data type. Of course the parameter list may include 
any number of formal parameters as long as they are matched in number 
and data type with the variables in the calling statement. A valid statement 
to invoke Continue might be 

Continue { answer); 



146 Procedures, Parameters, and Units 

where the variable "answer" represents a value parameter previously declared 
as a Char data type. Look at how to implement MathAce with value param
eters: 

Program MathAce; 

Var 
num1, num2 : real; 

Procedure Add ( aNum1, aNum2: real); 

Var 
sum: real; {declare sum local to Add} 

begin {start of procedure Add} 
sum := aNum1 + aNum2; 
writeln ('The sum of your numbers is', sum:10:2 ); 
(*************************************************************) 

(* Changing the value of Anum1 and Anum2 has no *) 
(*effect on num1 and num2. *) 
(*************************************************************) 

aNum1 := aNum1 + 1.0; 
aNum2 := aNum2 + 1.0; 

end; {end of procedure Add} 

Procedure Mult ( mNum1, mNum2: real ); 
Var 

product : real; {declare product local to Mult} 

begin {start of procedure Mult} 
product := mNum1 • mNum2; 
writeln ('The product of your numbers is', product:10:2 ); 

end; {end of procedure Mult} 

begin {start of the main program} 
write ( 'Enter a number: ' ); 
readln ( num1 ); 
write ( 'Enter another number: ' ); 
readln ( num2 ); 
writeln ; writeln; 
writeln ( 'We are now computing the addition .. .' ); 
Add ( num1, num2 ); 
writeln; writeln; 
writeln ( 'We are now computing the multiplication .. .' ); 



Mult ( num1, num2 ); 
writeln; writeln; 
writeln ( 'The program is finished!' ); 
read In; 

end. {end of main program} 

Value Parameters 147 

As you can see, the declarations for Add and Mult look the same as before 
except that the parameters are not preceded by var. As a result the modifi
cation of aNuml and aNum2 in Add has no effect on the values of numl 
and num2; you can see this by the resulting product displayed via Mult. 

You need not choose between variable and value parameters. The exam
ples we have seen above show the use of only one kind at a time, but one of 
the parameters could be a variable and the other a value. For example, the 
declaration for Add could be 

Procedure Add ( aNum1 : real; Var aNum2 : real ); 

where aNum 1 is a value parameter and aNum2 is a variable. Also, keep in 
mind that this 

Procedure Add ( Var aNum1 : real; aNum2 : real ); 

declares aNuml as a var parameter, but aNum2 is a value parameter; each 
individual var parameter must be preceded by the var identifier. However, 

Procedure Add ( Var Anum1, Anum2 : real ); 

declares both aNuml and aNum2 as var parameters because they are grouped 
together via a multi-variable declaration by using the comma as a separator. 

Finally, for those of you interested in the internal workings of the Mac
intosh with Turbo Pascal, parameters in Turbo are passed via the stack. A 
stack is a block of memory used by the computer to keep track of various 
items like where to go after a procedure is finished and the value of a proce
dure's parameters. When you call a procedure, the Macintosh notes where it 
was when it encountered the procedure call and pushes that instruction's ad
dress on the stack. Then each procedure's parameters are placed on the stack 
so that the procedure knows where to look for them. When a value parame
ter is passed, the value of that variable is generally placed on the stack, and 
when a variable parameter is passed, the address of that variable is placed 
on the stack. I say generally the value of a nonvariable parameter is placed 
on the stack because Turbo Pascal uses a 4-byte pointer at the address if the 
variable is larger than 4 bytes. For example, given String[SO] as a value pa-



148 Procedures, Parameters, and Units 

rameter, instead of placing all 51 bytes on the stack, Turbo sets a pointer, 
just as it would if the same String[50] were a variable parameter. 

Now that you have a good deal of knowledge about procedures, let's look 
at another type of subroutine that is used specifically to return a value, the 
function. 

Introducing Functions 
Pascal offers an additional program structure called a function. A function, 
similar to a procedure, is a subroutine, a set of statements that performs some 
task. Sounds just like a procedure, doesn't it? They even look similar. Both 
a procedure and a function have a heading and a body. In the case of a 
function, the heading substitutes the reserved word function for procedure. 
The single important difference between functions and procedures is that a 
function is designed to return a specific computed value to the calling routine. 
Let's look at what this means. 

If you have mastered the procedure, the function will be easy to grasp. The 
·function looks something like a procedure. However, the heading includes the 
reserved word function, the function name, a parameter list (if any), and the 
type of Ju,nction. To illustrate, suppose I want to write a function that will 
return a Boolean value of TRUE if the character passed to it is a lowercase 
letter and FALSE otherwise. A function would do this: 

Function lsltLower ( inChar : char ) : boolean; 

begin 
if ( ( inChar >= 'a' ) AND ( inChar <= 'z' ) ) then 

lsltLower := True 
else 

lsltLower := FALSE; 
end; 

This defines a function named IsltLower followed by a single parameter, 
inChar. Notice the heading of the function declares the type of value returned 
by the function to be a Boolean. The body of the function, like the procedure, 
follows the function definition statement. Here is a begin-end pair and an if 
statement that checks the value of the inChar parameter to see if it is a 
lowercase character. I might use this function in a program like this: 

Program LookAtlnput; 



Var 
a Char :char; 
lowercase : boolean; 

Function lsltLower ( inChar : char) : boolean; 

begin {start of function lsltLower} 
if ( ( inChar >= 'a') AND ( inChar <= 'z' ) ) then 

lsltLower :=TRUE 
else 

lsltLower :=FALSE; 
end; {end of function lsltLower} 

begin {start of main program routine} 
repeat 

write ( 'Enter a character: ' ); 
readln ( aChar ); 
lowercase := lsltLower ( aChar ); 

until ( Lowercase= TRUE ); 
read In; 

end. {end of main program routine} 

lsltLower is invoked by the statement 

lowercase := lsltLower( aChar ); 

Introducing Functions 149 

In short, IsltLower is called, and within the function the value returned 
is either TRUE or FALSE based on the if statement within it. This is an 
important point about functions; you can (and should) assign a value to the 
function itself to be used by the calling routine. The reason I say that you 
should assign a value to it is that this is what makes a function different from · 
a procedure. In this case I could have used a procedure like this: 

Procedure lsltLower (inChar : char; Var aLower : boolean ); 

begin 
if ( ( inChar >= 'a' ) AND ( inChar <= 'z' ) ) then 

aLower := TRUE 
else 

aLower :=FALSE; 
end; 

The parameter aLower could then be looked at by the calling routine 
to see if the character was lowercase or not. This sort of a subroutine is 



150 Procedures, Parameters, and Units 

better suited for use as a function than as a procedure because it returns one 
parameter. You are, of course, free to use either type of implementation you 
deem appropriate. 

As with procedures and their parameters, you need to make sure that the 
function's parameter types match up with the actual variable types that are 
passed. In addition, you need to ensure that the declared type of the function 
matches up with the type of the variable you assign to it. For example, 
IsltLower is Boolean and the lowerCase variable its result is assigned. to 
is also Boolean. 

You should also notice that the function's name appears on the left side of 
the assignment operator(:=) only. It m~kes no sense to say something like 
this in our IsltLower function: 

saveBool := lsltlower; 

where saveBool is defined to be a Boolean variable. Be sure to make assign
ments only to the function name and not with the name in your functions. 
Let's take a look at a way to rewrite the example using lsltLower more 
economically: 

Program LookAtlnput; 

Var 
aChar : char; 

Function lsltlower ( inChar : char ) : boolean; 

begin {start of function lsltlower} 
if ( ( inChar >= 'a' ) AND ( lnChar <= 'z' ) ) then 

lsltlower := TRUE 
else 

lsltlower := FALSE; 
end; {end of function lsltlower} 

begin {start of main program routine} 
repeat 

write ( 'Enter a character: ' ); 
readln ( aChar); 

· until ( lsltlower(aChar) = TRUE ); 
read In; 

end. {end of main program routine} 

1n· this version I remove the Boolean variable lowercase and call lsltLower 
implicitly within the until portion of the repeat. .. until statement. Calling 
lsltLower at this point tells Turbo Pascal to use the returned value from 



Complier Directives 151 

the function as the condition in the repeat. .. until loop. This implicit check 
can also be written like this: 

until (lsltlower(aChar)); 

Turbo views that statement as a Boolean expression and if it is TRUE, 
exits the loop. Boolean expressions such as this are abbreviated like that very 
often. For example, the if statement 

if (done= TRUE) then 

can be abbreviated as 

if (done) then 

This shorthand notation is often quite confusing to the novice, but with a little 
experience you will be using it too to shorten programs and save keystrokes. 

Again, for those interested in the inner workings of Turbo, when you invoke 
a function, space is saved on the stack to hold the result of the function. This 
stack space is determined by the function type. For the simple data types like 
Boolean, Char, Integer, and enumerated types, either 2 or 4 bytes are reserved 
on the stack for the function result. One-byte types like the Boolean and 
Char are padded out to 2 bytes because the 68000 microprocessor works on 
even-number byte boundaries. This is a common occurrence on 68000-based 
machines and you should keep it in mind later when looking at type sizes. 
Just remember that odd-number-length types are generally padded with an 
extra byte to keep everything on an even boundary. For other function types, 
like strings, a pointer to the returned value is placed on the stack for the 
same reason you should pass larger data types as variable parameters even 
though Turbo Pascal will generally pass a pointer to value parameters larger 
than 4 bytes anyway: stack space and processing time considerations. 

Now that you are familiar with functions, take a look at some ways to 
control the Turbo Pascal compiler from within your programs via compiler 
directives. 

Compiler Directives 
All of the compiler directives available to you in Turbo Pascal are described 
in detail in Appendix C of the manual you received with the compiler. I feel 
it is appropriate to discuss many of the more popular ones here so that you 
will understand them when you encounter them in this book and in other 
programs and books. 



152 Procedures, Parameters, and Units 

To start with, a compiler directive is a statement that allows you to alter 
the way Turbo Pascal goes about compiling and linking your program. 
Compiler directives are specified in a comment line by placing a dollar sign 
immediately after the (* or { that opens a comment. Some compiler directives 
are flags that are set on or off by placing a plus or minus sign after the flag 
name (designated by a character) in the directive. For example, the line 

{$0+} 

tells the compiler to generate debug symbols in the program. This allows 
you to look at procedure and function names when using a debugger, a tool 
that allows you to follow the operations of a program and look at its internal 
execution. (Debugging will be discussed in detail in Chapter 12.) In order to 
set this flag on, use the directive like this: 

Program Test; 
{$0+} 

Var 
aFlag : boolean; 

{further variable declarations} 
begin 

end. 

The opposite of {$0+} is {$0-}, which tells the compiler not to generate 
debug symbols when compiling the program. Instead of using curly brackets 
to embed a compiler directive, I could use (* and *). For example, {$0+} 
could be written as (*$0+*). The flag-type compiler directives all have a 
default value that sets the flag on or off whether you specify or not. For 
example, the default value for the directive· to generate debug symbols is off, 
or {$0-}. I have not been stating it at the beginning of these programs, and 
I could have placed the {$0-} directive in each of them with no difference. 

Another very useful_ compiler directive allows you to check 1/0 results 
after any 1/0 activity. This flag directive uses the character 'I' and is either 
{$1-} or {$1+ }. As in readln, if you accidentally enter a string value when 
an integer is expected, you will wind up with the system error bomb on your 
screen. One of the simple ways around this is to change your code from 



Program RiskylO; 

Var 
anlnt : integer; 

begin 
write ('Enter an integer: '); 
readln ( Anlnt ); 

end. 

to 

Program GoodlO; 
{$1-} 

Var 
anlnt: integer; 

begin 
repeat 

write ('Enter an integer: '); 
readln ( Anlnt ); 

until ( IOResult = 0 ); 
end. 

Compiler Directives 153 

In the second example of integer input, {$1-} turns off Turbo's internal 110 
error checking; the default value for this directive is {$1+ }, and because 
of this, any time we don't manually tum the option off, a system error will 
result in bad input. Instead of requesting the input via write and readln, I have 
incorporated a repeat...until loop that continues until IOResult = 0. What does 
this mean? IOResult is built in to Turbo Pascal so that you can determine 
if an 110 error occurred on your last request, for example on a readln. A 
value of 0 from IOResult indicates that the input was OK. A complete list 
of IOResult codes is provided in the Turbo Pascal manual in Appendix B: 
Error Messages and Codes. At this point we're interested only in a value of 
0, since this means it is OK to proceed with the next step in the program. 
We will see a good deal more of {$1-} and IOResult in upcoming programs 
that deal with input through the keyboard as well as with 1/0 with disk files. 

The next compiler directory is not a flag but a command that tells Turbo to 
include another file with the one being compiled. Let's say you are working 
with some rather large programs that share the exact same constants, types, 
and variables. Rather than entering these declarations for each program, you 



154 Procedures, Parameters, and Units 

can use the include-file directive. Say you have just entered the declarations 
into the Turbo editor like this: 

Const 
HiValue = 100; 
LoValue = 1; 
MaxStudents = 30; 
MinStudents = 1; 

Type 
Week= (Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday); 
ClassType = ( Mathematics, Science, English, SocialStudies ); 

Var 
numberOfStudents : MinStudents ... MaxStudents; 
aDay: Week; 
whichClass : ClassType; 

I usually want to have more declarations before using an include file, but 
this example is valid. Next I can save this file on the disk just as I can 
save any other Turbo file; notice that this is not a complete program and 
therefore cannot be compiled on its own. However, I choose to save it with 
the filename GENDECL.INC. I use the .INC extension to signify that this is 
a Pascal Include file. I can read it in other programs like this: 

Program School; 
{$1 GENDECL.INC} 

begin 
write ( 'Enter the number of students: ' ); 
readln ( NumberOfStudents ); 
case NumberOfStudents of 

1 : writeln ( 'Wow! What a small class!' ); 
2 : writeln ('I can"t believe there"s only two of you!' ); 

end; 
end. 

The {$1 GENDECL.INC} directive tells the Turbo compiler to get the named 
file (GENDECL.INC) and treat it as if that entire file appeared at that point 
in the program. This sort of include-file use is not limited to declarations. 



Compiler Directives 155 

You can keep some commonly used procedures or functions in include files 
and pull them into different programs via the include-file directive. However, 
this is more commonly performed via the unit, which I will discuss later in 
this chapter. 

The next compiler directive is $L, which allows you to link other files 
to the one you are compiling and linking. I haven't discussed linking much 
because it is always implied in the compiling options. For example, when 
I run a program via the Compile menu, first the program is compiled and 
then any necessary external modules are linked in to generate an executable 
program. These external modules are generally created by other compilers 
or assemblers such as the MDS assembler. Instruct Turbo to link in a module 
with the $L directive like this: 

Program Test; 

{$L SCRNRTNS.REL} 
{$L FILERTNS.REL} 
Var 

begin 

end. 

This example shows how to link in the files SCRNRTNS.REL and FIL-. 
ERTNS.REL. As shown, $L must appear before the begin statement that 
starts the main program routine. 

If you have compiled any programs to disk, you have probably noticed that 
the name of the executable icon on the desktop is the name in the program 
statement. For example, if your program starts with 

Program Test; 

when you compile to disk, the double-clickable icon that results is called 
Test. This naming convention may be altered via the next directive, $0. If I 
place a $0 directive in our program like this: 

Program Test; 



156 Procedures, Parameters, and Units 

{$0 SimpleOutput} 
begin 

writeln ( 'Hi there.' }; 
read In; 

end. 

and compile to disk, the double-clickable file generated by Turbo will be 
called SimpleOutput instead of Test. 

The next directive is one you will not use until the topic of arrays comes 
up in Chapter 9. This directive, $R, is used to tum on and off the internal 
range checking on arrays. You have already been introduced to one form 
of array, the string. It is possible to refer to a particular character within a 
string by placing the position within two brackets after the string name. For 
example, given a string declared like this: 

Var 
name : String[20]; 

I can refer to the first character in the string like this: 

name[1] 

It is possible to try to look at an invalid index within a string; suppose I try 
to look at name[30]. I am not informed of any error if the $R option is off. 
Therefore, any time you work with arrays, tum $R on like this: 

Program Test; 
{$R+} 
begin 

end. 

so that any improper index references are flagged by a system error. This 
concept may not appear clear or important right now, but once we get into 
arrays, it will be used always. 

The next directive also uses $R but instructs the compiler that you wish 
to refer to a resource file. Explained in the next chapter, resource files are 
used to hold information about windows, menus, dialog boxes, and so forth 
that you set up and use in your programs. Resource files are compiled with 
the utility RMaker into a form directly usable by Turbo Pascal. In short, you 



The Turbo Pascal Unit 157 

write a resource file using the Turbo editor and save it with the extension .R. 
Compile it with RMaker, and a file is produced with the extension .RSRC. 
This .RSRC file may then be put into your Turbo Pascal programs via $R: 

Program Test; 

{$R MYWINDOW.RSRC} 
begin 

end. 

You may then refer to the resources defined in the file MYWINDOW.RSRC. 
As I have said, I'll get more into resources in the next chapter, so don't worry 
if you don't understand the specifics. 

The last directive I would like to discuss is $U, which specifies whether or 
not you want to use standard Turbo Pascal units. A unit is a group of related 
declarations in Turbo Pascal. A unit may consist of blocks of const, type, 
var, procedure, and function declarations. The Turbo Pascal unit allows you 
to break programs up into separately linkable modules. This is in contrast to 
include files, which are pulled into the program and compiled with it. 

Turbo Pascal comes with several interface units so that you can work with 
all the ROM-based routines for graphics, sound, and so on. These interface 
units are described in Appendix D of your Turbo Pascal manual. The directive 
$U tells Turbo to pull in the standard 1/0 units PaslnOut and PasConsole. 
This directive is always on by default-{$U+ }-so that you may always refer 
to routines such as ClearScreen and GoToXY, which will clear the output 
screen and place the cursor in a specified location respectively. Later you will 
want to turn this directive off to do special Macintosh-style 1/0 with windows 
and so on. In order to demonstrate units and their uses and importance in 
Turbo Pascal, I start with a fundamental description of the unit. 

The Turbo Pascal Unit 
A Turbo Pascal unit is a collection of declarations of constants, types, 
variables, procedures, and/or functions. In your Turbo Pascal manual at 
the QuickDraw unit there are several pages of these declarations. A unit, 
however, may contain more than these declarations. It may also contain 
Pascal code for procedures and functions as well as private declarations for 
each of them. The Turbo Pascal unit consists of two sections: inteeface and 



158 Procedures, Parameters, and Units 

impl.ementation. The interface section contains all the externally available 
declarations. For example, in PasConsole the procedure ClearScreen appears 
after the reserved word interface and therefore is in the interface section. In 
fact, all the items listed in any standard Turbo Pascal unit in the manual are 
declared in the interface section. There may, however, be some procedure 
and function blocks in the implementation section that are not in the units. 
In addition, you may have noticed that most of the procedure and function 
declarations in these units are followed by something like this: inline $Axxx, 
where xxx is a hexadecimal number. This inline $Axxx specification is a 
special pointer that tells Turbo where the code for these routines may be 
found in the Macintosh's ROM. There are also several routine declarations 
followed by the reserved word external. These declarations mean that the 
actual routines were written in assembly language and that their code appears 
in another file linked with the unit. 

The structure of a unit is 

unit NAME(#); 
interface 

(LIST OF ACC!:SSIBLE DECLARATIONS) 
implementation 

(LIST OF UNACCESSIBLE DECLARATIONS ANQ ROUTINES) 
end. 

NAME is an identifier that specifies how the unit will be referred to by other 
modules. The # is any 2-byte value you choose, as long as it doesn't match 
any other unit number used by the program. Notice that the Turbo Pascal 
units defined in your manual use negative unit numbers, and with 2 bytes 
available, you have a wide range of possibilities for your unit numbers. 

Compile a unit just as you would compile any other Turbo Pascal program. 
When you compile a unit to disk, the icon representing the compiled unit 
doesn't look like those of other compiled modules; compiled units have icons 
of miniature briefcases on the desktop. 

The Uses Clause 
You may have noticed that each unit defined in your manual contains a 
statement similar to this: 

Uses MemTypes, QuickDraw, Oslntf; 

This statement, which appears in Toollntf, says that this unit uses three other 
units, MemTypes, QuickDraw, and Oslntf. Look at Oslntf. It says it uses 



PasConsole Information 159 

MemTypes and QuickDraw; QuickDraw says it uses MemTypes; MemTypes 
has no uses clause, so it doesn't require any other units. When you write 
programs, you must specify any units via the uses clause. These declarations 
should be set up so that any units called up are already declared. Above, for 
example, Oslntf refers to both MemTypes and QuickDraw, so they must be 
declared before it. In addition, QuickDraw calls up MemTypes, so MemTypes 
must be declared before QuickDraw. 

In earlier examples I could have placed the line 

Uses PaslnOut, PasConsole; 

after the program declaration; this would have told Turbo to have available 
the routines listed in these units. $U is always on by default. Take a look at 
a few of the routines available via PasConsole. 

PasConsole Information 
PasConsole allows you to perform many simple 1/0 routines similar to the 
routines you might use on another computer. In fact, PasConsole allows you 
to set up your Macintosh screen to show 80 characters horizontally and 25 
lines vertically to simulate even the simplest of output devices. 

A simple call to the routine ClearScreen will erase the entire Macintosh 
display so that you can start with a clean slate. In addition, the routine 
GoToXY, which takes horizontal and vertical position parameters, will allow 
you to place the cursor anywhere on the screen so that you can start 1/0 
from there. We'll be working with many programs that use these very simple 
and effective 1/0 routines, so you will become quite familar with them. 

PasConsole also provides a couple of useful input-specific routines: Key
Pressed and ReadChar. ReadChar may be used to read in a single character 
of input like this: 

aChar := ReadChar; 

where aChar is defined to be a char variable. This sort of input is quite useful 
for input on menu selections. For example, if you display five options and 
ask the user to select one, he need only press the number of the option; there 
is no need to press the enter key. As soon as the Macintosh detects a key 
depression it sends it back to your program and you can continue with the 
next Pascal statement. On the other hand, KeyPressed is a Boolean function 
that returns the value TRUE when a key has been pressed. With this function, 



160 Procedures. Parameters, and Units 

you can set up a continuous loop that doesn't stop until the user presses a 
key like this: 

while NOT ( KeyPressed ) do; 

You will see extensive use of these routines, so it is necessary that you 
understand how they work. Now take a look at how to use Unit Mover, 
which allows you to modify existing units. 

Using UnltMover 
UnitMover, which appears on your Utilities disk, allows you to move units 
from one module to another or to delete them entirely. Before I discuss the 
workings of UnitMover, you must understand that the units listed in your 
Turbo Pascal manual are part of the Turbo program. That is, the modules 
that make up PasConsole, QuickDraw, and the rest are in the Turbo program 
that runs the compiler. That is why the Turbo program is so large; if you 
remove any units you won't need for a while-from your working disk, not 
the original Turbo disk-you can save a lot of RAM space. As of release 1.1 
of the Turbo compiler, UnitMover could not copy a unit to a nonexistent file 
in order to create a new unit. The folks at Borland have told me that this 
option may be in a future release of UnitMover, but for now all you can do 
is remove units or copy them from one unit file to another. 

When you invoke UnitMover, the screen shown in Figure 6.4 is displayed. 
Click on the open button to see what files are available via UnitMover. 

The dialog box shown in Figure 6.5 is displayed when you click on the open 
button. 

Select a unit. For example, I decide to remove some of the units I won't 
need. Look at how to remove MacPrint and FixMath. 

Once I have selected the unit, I use the scroll bar to select the units to be 
removed. I scroll to MacPrint and FixMath, drag over them, and release the 
mouse button. Information about these two units is displayed at the bottom 
of the UnitMover window as shown in Figure 6.6. 

This additional window area shows in bytes the number and size of the 
units you have selected. Click on the remove button, and the units are deleted 
from Turbo. Alternatively, you may open another unit in the top right window 
in UnitMover to specify the output unit file. This activates the copy button 
so that you can copy these units to the output unit file. Again, you should 
be working with UnitMover only on the copies of your master Turbo Pascal 
disks. If you remove a unit from your master disk and don't have a backup, 
it is gone for good! 



Using UnltMover 161 

,.. 
Turbo Pascal® Unit Mouer Uersion 1.1 ©1986, 1987 Borland International., 

~( [ 1)1)1.~ l ~ 

( fl(~rrl(lll(~ l 
lt 

( Help ) 

lo ( Quit ) lQJ 
( Open ••. l ( Open .•• ) 

Q 

Fig. 6.4. 
fQJ 

,.. 
Turbo Pascal® Unit Mou er Uersion 1.1 © 1986, 1987 Borland International ., 

I [g) Turbo Pascal I 
<?i Turbo 1. 1 f!1 [g) Turbo Pascal 

lt ( Eject 

( Driue 

Open 

Cancel 

Fig. 6.5. 



162 Procedures, Parameters, and Units 

Fig. 6.6. 

,.. 
Turbo Pascal® Unit Mouer Uersion 1.1 ©1986, 1987 Borland International., 

Turbo 1_1 
Po:s C onso I e 
Po:sPrinler 
ne•Tqpes 
Quic:kdro• 
SRliE 
OS I nlf 
Tool lnlf 
Pocklnlf 

Close .•. 

nacPrinl < -11)Size: 
PRSSYSTEn 
nEnTYPES 
QUICKDRHll 
OSIHTF 
TOOLIHTF 

Fixnath < -12>Size: 
PRSSYSTEn 

Remoue 

Help 

Quit 

1012 U:ses:: 

542 U:ses:: 

Unil• 
-1 
-5 
-7 
-8 
-g 

Uni l• 
-1 

Open •.• 

Size( in 
1300 

0 
0 

64QO 
502 

Size( in 
1300 

You have completed a very important chapter on Pascal programming. 
You learned how to define and to write procedures and functions. You now 
know the difference between a global variable and a local variable. You 
learned how to pass information with value and address parameters that 
use pointers. You have also learned about some of the more important and 
useful compiler directives as well as had an introduction to the world of units 
and UnitMover. Take a few minutes, give yourself a pat on the back, and 
review what you have learned. You'll discover you can write some interesting 
programs with what you have learned so far. 

Review Summary 
1. Structured programming is accomplished by breaking large programs 

down into smaller and smaller subprograms, or modules. The modules 
are divided until each submodule consists of a manageable block of 
statements, each performing a specific task. 

2. Top-down design, sometimes called stepwise refinement, is a struc
tured program design in which the original macro problem is repre
sented by a main module. The main module is broken down into a set 
of specific modules that solve specific tasks. The final program con-



Review Summary 163 

sists of a collection of submodules and appears as a hierarchical tree 
whose main module can be depicted at level 0, the next set of modules 
at level l, and so on. 

3. A procedure identifies a module or subprogram. It consists of a col
lection of statements that resembles a full-blown program. To access 
a procedure, you call it by name from some point in another module. 

4. A procedure consists of a heading and a body and is analogous in 
appearance to a standard program. In the procedure heading the 
reserved word procedure replaces the reserved word program. The 
last end of the procedure body is followed by a semicolon instead of 
a period. 

5. A procedure is placed immediately following the var section of the 
main program. 

6. Variables can be used with procedures and are either global or local. 
A global variable has meaning throughout the program, while a local 
variable has meaning only while the procedure is executing. 

7. A parameter can be used for passing information between a procedure 
and the main program. A parameter can be either variable or value. 
A variable parameter passes information by reference and acts as a 
location pointer in memory. When information is passed by a value 
parameter, only a copy of the value is passed. 

8. In a procedure definition statement the reserved word var is used for 
variable parameters, while no modifier is used with value parameters. 

9. Functions, like procedures, have a heading and a body. However, a 
function by definition returns a single computed value to the module 
that called it. 

10. Functions, like procedures, may include parameter lists with either 
value or variable parameters. 

11. Turbo Pascal offers several compiler directives set up via a comment 
line with a dollar sign-as the first character inside the comment. 
These directives may set up a flag to perform compilation in a certain 
manner or perform some other request, such as calling in a Pascal 
include file. 

12. Turbo Pascal offers the concept of units to aid in the development 
of structured programming. Units are defined with a special heading 
statement and consist of the sections interface and implementation. 
Interface is the section visible to calling routines. It contains the dec
larations for special constants, types, vars, procedures, and functions. 
Implementation is the portion of the unit that contains the code for 
the internally represented routines declared in the interface section. 

13. Turbo Pascal offers several standard units, including PasConsole, 



164 Procedures, Parameters, and Units 

Quiz 

which allows you to perform 1/0 via the Macintosh screen as though 
it were a standard 80-by-25 display. 

14. UnitMover allows you to remove or copy units from one file to another. 

1. What is the difference between a procedure and a function? 
2. What is the difference between a global and a local variable? 
3. What is the difference between passing a parameter by value and 

passing by var? 
4. What do {$1+} and {$1-} allow you to do? 
5. What is a unit? 
6. What are the two sections in a unit and how do they differ? 
7. What does UnitMover allow you to do? 



-7-----
Turbo Pascal 
Library Features 
How to Avoid Reinventing the Wheel 
The Central Library 
Library Routines 
Review Summary 
Quiz 

In this chapter you will learn: 
• What the library is. 
• How to use library routines for mathematics, strings, bit manipulation, and so forth. 

How to Avoid Reinventing the Wheel 
When you begin writing programs, you soon realize that it would be nice 
if the computer could magically perform some common tasks you use in 
different programs. Suppose, for some reason you need to check and see 
whether an integer variable is odd or even. You might develop a function 
like this: 

Function Odd ( number : integer ) : boolean; 

begin 
if ( (Number MOD 2) =O) then 

Odd :=FALSE 
else 

Odd :=TRUE 
end; {function Odd} 

Any time you invoke this function it returns FALSE if the number is even or 
TRUE if the number is odd. Assuming inNumber is an integer, you can refer 
to this function in your main program like this: 



166 Turbo Pascal Library Features 

readln ( inNumber ); 
if ( Odd ( inNumber) ) then 
begin 

{logic for Odd returning TRUE} 
end 
else 
begin 

{logic for Odd returning FALSE} 
end; 

It may have taken you only a few minutes to develop a function like Odd, 
but if you already had one, it would be a waste of time. There is a function 
very similar to our Odd, in the Turbo Pascal library, but before I discuss it 
and several other library routines, take a closer look at what is meant by 
library. 

The Central Library 
If you're an avid book reader, you know your local library has a wealth 
of books on topics from A to Z, you know that by taking advantage of its 
offerings, you may save hundreds of dollars by not buying them. 

The standard Turbo Pascal library is very similar to your local library 
in that it holds a wealth of procedures and functions for everything from 
mathematics to window manipulation. Because of this the Pascal library can 
save you time, just as your library can save you money, since you don't have 
to write these routines yourself. All you need to do is invoke them and follow 
a couple of simple rules: 

1. If the library routine is a function, make sure that the variable you 
assign it to is the same type as the function itself. 

2. If the routine passes parameters, make certain that the order of param
eters is identical to that of the routine and that their types match. 

This is very similar to the discussion of units in Chapter 6, but these library 
routines are not part of a unit. Rather, they are standard routines available 
in almost every edition of Pascal on any type. of computer. 

Once you understand a routine, all you need to do is call it up as if it 
were your own; there is no need to worry about scope, since library routines 
are treated as global declarations. The next several sections of this chapter 
present some of the more popular routines with a discussion and example of 
each. 



Library Routines 
Mathematical Routines 

1. Squaring 

Library Routines 167 

This function may be used to determine the square of a numeric value-22 

= 4-with the format 

Sqr ( Number ) 

where Number and the resulting value types are always identical. For exam
ple, if an integer is passed to Sqr, an integer is returned. An example of this 
function is 

writeln (Sqr ( 12) ); 

which displays the value 144. 

2. The Square Root 

This function may be used to determine the square root of a real expression, 
for example, the square root of 4 is 2, with the following format: 

Sqrt ( Number ) 

where Number is a real expression and the function returns a real value. 
An example of this function is 

writeln ( Sqrt ( 144.0 ) ); 

which displays the value 12. 

3. Absolute Value 

This function may be used to determine the absolute value of a given 
number-the absolute value of 4 is 4; the absolute value of -7 is 7-with 
the format 

Abs ( Number ) 

where Number is a numeric parameter and the value returned by the function 
is the same type as Number. 



168 Turbo Pascal Library Features 

4. Odd 

An example of this function is 

writeln ( Abs ( -456 ), Abs ( 456) ); 

which displays 456 twice. 

This is the library function I discussed earlier in this chapter. It determines 
whether a given integer is even or odd and has the format 

Odd ( Number ) 

where Number is an integer and the function returns a Boolean value, TRUE 
for odd, FALSE for even. 

An example of this function is 

bool1 := Odd ( 3 ); 
bool2 := Odd ( 4 ); 

where bool 1 and bool2 are declared as type Boolean. Bool 1 will be assigned 
the value TRUE and Bool2 will be FALSE. 

5. Truncation 

This function may be used to strip the fraction off a real number so that 
only the whole number remains; after a truncation 5.7 is 5 and 3.6 is 3. The 
format is 

Trunc ( Number ) 

where Number is Real and the function returns a value of type long integer. 
An example of this function is 

writeln ( Trunc ( 3.1 ), Trunc ( 3.9 ) ); 

which displays two 3s. 

6. Rounding 

As opposed to truncation, this function does not merely strip off the fractional 
portion of a number; it rounds the number to the nearest integer value; after 
rounding 4.6 reads 5, whereas 4.4 reads 4. The function has the format 

Round ( Number ) 



7. Int 

Library Routines 169 

where Number is a real value and the function returns a value of type long 
integer. 

An example of this function is 

writeln (Round ( 3.1 ), Round ( 3.9) ); 

which displays 3 and 4 respectively. 

Like Trunc, this function may be used to strip off the fractional portion of a 
real number so that only the whole number remains; after int, 5.7 reads 5.0 
and 3.6 reads 3.0. Notice that the result returned is a Real as opposed to a 
long integer as with Trunc. The format is 

Int ( Number ) 

where Number is a real and the function returns a real value as noted above. 
An example of this function is 

writeln ( Int ( 3.1 ), Int ( 3.9 ) ); 

which results in 3.0 being displayed twice. 

8. The Cosine 

This trigonometric function returns the cosine of an angle expressed in radians 
with the format 

Cos (Angle) 

where angle is a Real type and the function returns a Real value. 
An example of this function is 

writeln ( Cos ( 0.0 ), Cos ( 22.0 I 7.0) ); 

which results in 1 and -1 being displayed. (Note: 2217 approximates the 
mathematical constant pi). 

9. The Sine 

This trigonometric function returns the sine of an angle expressed in radians 
with the following format: 

Sin (Angle) 

where Angle is a real type and the function returns a real value. 



170 Turbo Pascal Library Features 

10. Exp 

11. ln 

An example of this function is 

writeln( Sin ( 0.0 ), Sin ( 22.0 I 14.0 ) ); 

which results in a 0 and a 1 being displayed. 

This function may be used to determine the value of the natural number e 
raised to a power. The syntax is 

Exp ( Number ) 

where Number and the value returned are both real types. 
An example of this function is 

writeln ( Exp ( 1.0 ) ); 

which displays a 2. 7, or approximately the value of e. 

In, or natural log may be used to return the natural logarithm of a specified 
value. It has the syntax 

In (Number) 

where Number and the value returned again are real types. 
An example of this function is 

writeln ( In ( 5.0 ) ); 

which displays the value 1.6. 

12. ArcTan 

This function may be used to determine the arctangent of an angle specified 
in radians. Its syntax is 

ArcTan ( Number ) 

where Number and the returned value are both real types. 



An example of this function is 

writeln ( ArcTan ( 0.0 ) ); 

where the value 0.0 is displayed. 

String Routines 

1. Length 

Library Routines 171 

This function may be used to determine the length of a string variable. Its 
format is 

Length { String ) 

The value returned by the function is an integer type. 
An example of this function is 

reply := 'Hi Joe'; 
writeln ( reply, ' ', Length ( Reply) ); 

which results in the following output: 

Hi Joe 6 

since the string "Hi Joe" is 6 characters long. 

2. Concat 

This function concatenates, or Joms, two or more strings into one. The 
function has the format 

Concat { Strng1, Strng2, ... ) 

where Stmg 1 and Stmg2 are string type and the value returned by the function 
is also a string. As shown by the elipsis, you can have more than two strings 
in the parameter list. 

An example of the function is 

st1 :='Hi'; 
st2 := 'there'; 



172 Turbo Pascal Library Features 

3. Copy 

4. Delete 

st3 := 'Kelly'; 
writeln ( Concat ( st1, st2, st3 ) ); 

which would display: 

Hi there Kelly 

Note the blanks at the end of the "Hi" and "there" strings when they are 
assigned to Stl and St2; this is necessary, since Concat does not insert spaces 
between strings. Without them this would be displayed: 

HithereKelly 

This function may be used to copy a portion of a string into another string. 
Its format is 

Copy { Sing, Start, Count ) 

where Stng is the string from which to copy, Start is the index of the character 
you wish to start at, and Count is the number of characters including Start 
you wish to copy. Start and Count are both integers and the value returned 
by the function is a string. 

An example of this function is 

st1 := 'Oliver'; 
st2 := Copy ( st1, 2, 4 ); 
writeln ( St2 ); 

which displays 

live 

The function does not change the value of the string parameter (stl); it copies 
Count-4-characters starting at and including the Start-2nd-character. 

This is the first procedure discussed in this chapter; it may be used to remove 
a portion of a string. You should note that the string parameter is actually 
modified to contain the new value. The format is 

Delete { Sing, Start, Count ); 



5. Insert 

Library Routines 173 

where Count characters beginning at Start are deleted from Stng and this 
new value is placed in Stng. 

An example of this procedure is 

st1 := 'playground'; 
Delete ( st1, 5, 6 ); 
writeln ( st1 ); 

where this is displayed: 

play 

This procedure may be used to insert a string into another string. As with 
Delete, the string is modified to hold the new value. The procedure has the 
syntax 

Insert ( Stng1, Stng2, Start) 

where Stng 1 is inserted into Stng2 beginning at the Start character of St2. 
An example of this procedure is 

st1 := 'ground'; 
st2 := 'plays'; 
Insert ( st1, st2, 5 ); 
writeln ( st2 ); 

which displays 

playgrounds 

6. Position 

This function determines where a particular substring is located within an
other string. 

The function's format is 

Pos ( Stng1, Stng2) 

where Stng 1 is the substring you are searching for in Stng2. The value 
returned by the function is an Integer type and specifies the index within 
Stng2 where Stng 1 begins. 



174 Turbo Pascal Library Features 

An example of this function is 

st1 := 'ground'; 
st2 := 'playground'; 
location := Pos ( st1, st2 ); {Location is of type integer} 
writeln ( location ); 

where the following is displayed: 

5 

If the substring cannot be found, the value 0 is returned. 

Other Types of Routines 
1. Ord 

This function determines the ordinal value of an ordinal item. This function 
should be reviewed after you finish reading Chapter 9, which further discusses 
ordinal types. Its format is · 

Ord (Item) 

For example, with the declarations 

Type 
FruitType = (Orange, Apple, Banana); 

Var 
snack : FruitType; 

you could make the assignment 

snack := Orange; 

and display 

writeln ( Ord ( snack ) ); 

which results in 

0 



2. Chr 

3. Pred 

Library Routines 175 

displayed on the screen. Note: When dealing with ordinal types, Pascal 
numbers the first element 0, the next element 1, and so on. 

In the example above, the value returned is an Integer type. However, we 
can derive the Ord of a pointer and the value returned is a long integer. 
Another function, Ord4, returns a long integer regardless of whether the 
parameter is ordinal or a pointer. Again, this function should be reviewed 
after Chapter 9. 

This function converts an integer into its corresponding value in the Macin
tosh Character Set. 

The function has the format 

Chr ( Number ) 

where Number is some integer between 0 and 255. 
An example of this function is 

writeln ( Chr ( 100) ); 

which displays a lowercase d, the 1 OOth character in the Macintosh Character 
Set. 

This function seeks out the preceding ordinal item. It has the following format: 

Pred (Item) 

Given the declarations 

Type 
Week= (Sunday, Monday, Tuesday, Wednesday, Thursday, 

Friday, Saturday); 
Var 

day, yesterday: Week; 

and this assignments: 

day := Tuesday; 
yesterday := Pred ( day ); 



176 Turbo Pascal Library Features 

4. Succ 

the value Monday is assigned to "yesterday." The value returned by the 
function is one of the items specified in the type declaration. The Pred of 
any day as I have them set up in the Week type is the day before, with the 
exception of Sunday. Don't expect Pascal to know that the day preceding 
Sunday is Saturday. Warning: be very careful never to do a Pred on the first 
item in the type; a safe way to avoid doing this is to check to make sure that 
the item does not have an Ord equal to 0. 

This function is the complement to Pred; with it you can determine the 
succeeding item of a particular type. The function has the following format: 

Succ (Item) 

If we look at the Type declaration for Week and the Var declaration for day 
and tomorrow, the assignments 

day := Wednesday; 
tomorrow := Succ ( day ); 

result in tomorrow being assigned the value Thursday. As with Pred, don't 
expect Pascal to know the Succ of Saturday. A safe way around this problem 
is to know how many items there are in the type and make sure that the Ord 
is less than that. 

5. SizeOf 

This function determines the size of either a variable or a type identifier. 
SizeOf has the format 

SlzeOf (Identifier) 

where the result returned is an integer. The declaration 

Var 
aNumber : integer; 

plus the statement 

writeln ( SizeOf ( aNumber ), SizeOf ( integer) ); 

writes 2 on the screen twice. 



Library Routines 177 

6. Hi and HiWord 

This function retrieves the high-order byte of an integer. It has the syntax 

HI (Number) 

where the value returned is a 1-byte signed integer. If the integer variable 
anlnt contains the value 256-or $0100-the statement 

writeln ( Hi ( anlnt) ); 

displays the value 1, since the high-order word for 256 is $01. HiWord works 
identically to Hi except that it uses a long integer and returns an integer type. 

7. Lo and LoWord 

As compared with Hi, Lo returns the low-order byte of an integer with the 
following syntax: 

Lo (Number) 

where Lo is an integer. In the example above, Anlnt contained th,. value 256 
($0100). The statement 

writeln ( Lo ( anlnt ) ); 

displays a 0, since the low-order byte of 256 is $00. Lo Word works identically 
to Lo except that it uses a long integer and returns an integer. 

8. Swap and Swap Word 

This function swaps the high- and low-order bytes of an integer with the 
following syntax: 

Swap ( Number ) 

If Anlnt contains the value 256, the state1U:ent 

writeln ( Swap ( anlnt) ); 

displays the value 1 ($0001). The parameter Number and the returned value 
are both Integer types. Swap Word works identically to Swap except that it 
uses a long integer parameter and returns a long integer type. 



178 Turbo Pascal Library Features 

Review Summary 

Quiz 

1. A library is a central gathering of commonly used routines; the Pascal 
library has routines for mathematics, string manipulation, bit manipu
lation, and so on. 

2. Using the routines in the standard Pascal library as well as any other 
library saves time. 

1. What are the results of the following functions? 

A. Sqr(lO) 
B. Sqrt(25.0) 
C. Abs(12) 
D. Odd(900) 
E. Trunc(l.99) 
F. Round(l.99) 

2. What would the following lines of Pascal display on the screen? 

st1 := 'I like Pascal'; 
st2 := 'The funniest thing happened to me .. .'; 
st3 := 'How is your dog?'; 
st4 := Copy { st1, 8, 6 ); 
st5 := Copy { st2, 5, 3 ); 
st6 := Copy { st3, 5, 2 ); 
writeln ( Concat { st4, ', st6, ', st5 ); 

3. Given the declarations 

Type 
Week= {Sunday, Monday, Tuesday, Wednesday, 

Thursday, Friday, Saturday); 
Var 

aDay, anotherDay : Week; 

what is the final value of ADay in this statement? 

anotherDay := Wednesday; 
aDay := Pred ( Succ { Sue { Pred { anotherDay ) ) ) ); 



-111------
APPLICATIONS AND 

ADVANCED CONCEPTS 



-8-----
Programmer's Corner 
The Entire Picture: Complete Pascal Programs 
Metric Conversion Program 
Guess-a-Number Program 
Decimal-to-Hexadecimal Conversion Program 
Tape Counter Program 
Review Summary 
Quiz 

In this chapter you wlll learn: 
• How complete Pascal programs operate on the Macintosh. 
• How to modify existing programs to suit your needs. 
• Why comments are a critical part of programming. 
• The Importance of proper error handling. 
• Four programs for figuring how many songs will fit on a tape, doing metric conver

sions. guessing numbers. and converting to heY.adecimal notation. All are docu
mented with line-by-line. variable. and type explanations. 

The Entire Picture: 
Complete Pascal Programs 

Now that you have learned all the individual elements of Pascal program
ming, it is time to put everything together and discuss a few application 
programs. These programs are designed to tie together all the topics I have 
discussed as well as to prepare you for further study of file handling, graph
ics and sound, and pointers and linked lists. Take a look at a program that 
performs conversions to the metric system. 

Metric Conversion Program 
Enter the following program into your Macintosh, paying close attention to 
spacing within quotes ' ' and the use of semicolons: 



182 Programmer's Corner 

Program Metric; 

(******************************************************) 

(* This interactive program will calculate various *) 
(* metric conversions for you. *) 
(******************************************************) 

Var 
done : boolean; 
valid : boolean; 
choice : char; 

Procedure lnchToMeter; 

Const 
MeterConvConst = 39.37; 

Var 
numOflnches : real; 
numOfMeters : real; 

{are we finished yet?} 
{is this valid input?} 
{user's choice from menu} 

{conversion constant of inch to meter} 

{how many inches to express in meters} 
{how many meters} 

begin {procedure lnchToMeter} 
ClearScreen; 
write In; 
write ('How many inches? '); 
readln (numOflnches); 
numOfMeters := numOflnches/MeterConvConst; 
writeln; 
writeln (numOflnches: 8: 2, 'inches equals', numOfMeters: 8: 2, 

'meters.'); 
writeln; 
write ('Press any key to continue .. .'); 
choice := ReadChar; 

end; 

Procedure CublnchToLiter; 

Const 
LiterConvConst = 61.02; 

Var 
numOfCublnches : real; 
numOfLiters : real; 

{procedure lnchToMeter} 

{conversion constant of cub. inch to liter} 

{how many cubic inches} 
{how many liters} 



Metric Conversion Program 183 

begin {procedure CublnchToliter} 
ClearScreen; 
write In; 
write ('How many cubic inches? '); 
readln (numOfCublnches); 
numOfliters := numOfCublnches I LiterConvConst; 
writeln; 
writeln (numOfCublnches : 8 : 2, 'cubic inches equals', 

numOfliters : 8 : 2, 'liters.'); 
writeln; 
write ('Press any key to continue .. .'); 
choice := ReadChar; 

end; 

Procedure OunceToGram; 

Const 
GranConvConst = 0.035; 

Var 
numOfOunces : real; 
numOfGrams : real; 

{procedure CublnchToliter} 

{conversion constant} 

{how many ounces} 
{how many grams} 

begin {procedure OunceToGram} 
ClearScreen; 
writeln; 
write ('How many ounces? '); 
readln (numOfOunces); 
numOfGrams := numOfOunces I GramConvConst; 
write In; 
writeln (numOfOunces : 8 : 2, 'ounces equals', numOfGrams : 8 : 2, 

'grams.'); 
writeln; 
write ('Press any key to continue .. .'); 
choice := ReadChar; 

end; 

begin 
done:= FALSE; 
while NOT done do 
begin 

valid:= FALSE; 
while NOT valid do 

{procedure OunceToGram} 

{program Metric} 



184 Programmer's Corner 

begin 
ClearScreen; 
writeln ('Which do you wish to do:'); 
write In; 
writeln (' 
writeln (' 
writeln (' 
writeln (' 
writeln; 

1. Convert from inches to meters'); 
2. Convert from cubic inches to liters'); 
3. Convert from ounces to grams'); 
4. QUIT'); 

write ('PLEASE ENTER 1,2,3 OR 4 '); 
choice := ReadChar; 
case choice of 

'1': begin 
lnchToMeter; 
valid := TRUE; 

end; 

'2': begin 
CublnchToLiter; 
valid := TRUE; 

end; 

'3': begin 
OunceToGram; 
valid:= TRUE; 

end; 

'4': begin 
valid := TRUE; 
done:= TRUE; 

end; 

otherwise 
begin 

writeln; 
writeln ('INVALID RESPONSE ... PLEASE TRY AGAIN!'); 
writeln; 

end; 
end; 

end; 
end; 

end. 

{case choice of} 
{while NOT valid do} 
{while NOT done do} 
{program metric} 



.· 

Metric Conversion Program 185 

Figure 8.1 shows a sample run of this program, which allows you to 
convert inches to meters, cubic inches to liters, and ounces to grams. You 
may continue to make conversions without having to rerun the program, and 
the modular conversion procedures let you easily add more options. 

Program Explanation 

Fig. 8.1. 

I begin, of course, with the program name, Metric. The global variables are 
declared, and immediately thereafter come the blocks containing the three 
conversion procedures InchToMeter, CublnchToLiter, and OunceToGram. 
Finally, as the rules of Pascal dictate, the last block of code is the main 
program logic: Now let's look at each block in detail in order to determine 
exactly how they fit together. 

The main prbgram block begins by setting the Boolean done to FALSE, 
and the main loop starts with while NOT done. Then the Boolean valid is 
initialized to FALSE and a nested loop, while NOT valid, is started. This loop 
will be directly affected by valid input by the user. PasConsole procedure 
ClearScreen is invoked and a menu shows the user four options. As shown 

., 

Metric 

How many cubic inches? 100 

100.00 cubic inches equals 1.64 Ii ters . 

Press any key to continue ... 



186 Programmer's Comer 

in the successive writeln statements, the options include each of the three 
conversions and the option to QUIT the program. ReadChar (PasConsole) is 
executed, and the menu choice is used in a case statement to determine the 
appropriate action. As the case statement reads, if the user entered a 1, 2, 
or 3, the appropriate procedure is invoked and valid is set to TRUE because 
the user's response was acceptable. If a 4 was entered, the Boolean variables 
valid and done are set to TRUE because the user wishes to QUIT and the 
response was acceptable. The OTHERWISE clause of the case statement 
displays an error message, and no Boolean flags are changed. 

When you look at the two previous while loops, it should be obvious 
that the outer one-while NOT done-terminates only when a 4 is entered, 
whereas the inner one-while NOT valid-terminates when any value from 
1 to 4 is entered. 

The three procedures are quite similar in that they all request an 
amount-inches, cubic inches, or ounces-and then convert that amount into 
its equivalent in the metric system-meters, liters, or grams-through a con
version constant-MeterConvConst, LiterConvConst, or GramConvConst. 
You may also have noticed that each procedure uses the formatted writeln 
statement, for example num0flnches:8:2, where 8 specifies the minimum 
number of characters to be printed and 2 specifies how many digits will be 
displayed to the right of the decimal point. 

Be sure to save this program on disk before you look at the next program, 
which guesses a number in the least average number of attempts. 

Guess-a-Number Program 
This program guesses a chosen number between 1 and 100 in the lowest 
number of tries. In fact, I guarantee that it will require no more than eight 
guesses to determine your number. 

The secret behind the program is the binary search, which works as follows: 

1. A range is set up for possible values, in this case 1 to 100. 
2. The user is asked to pick a number within that range. 
3. The midpoint of possible values is calculated with the formula (maxi

mum value+ minimum value)+ 2, which yields 50-(100+ 1) + 2= 
50. 

4. The program asks you if your number is (a) equal to this midpoint, (b) 
greater than this midpoint, (or c) less than this midpoint. 

5. If it is equal to your number, the program stops. If your number is 
greater, the values 1 through 50 are thrown out and we make the 



Guess-a-Number Program 187 

midpoint, or first guess, the lowest possible value. Actually, midpoint+ 
1 is the lowest possible value, but integer truncation lets us ignor~ + 1. 
We go back to step 3. If your number is less than the guess, the top 
half of possible values are thrown out and the midpoint becomes the 
highest possible value. We go back to step 3. 

This loop from step 5 to step 3 will continue until your number has 
correctly been identified, and the given range of 1 to 100 will take no 
more than seven attempts. Seven is not a magic number that holds true 
for all ranges; rather, this figure is the lowest power of 2 that exceeds 
the range size. Take a moment to review the following table of powers 
of two: 

Power Expression Equivalent 

0 20 1 
1 2• 2 
2 22 4 
3 23 8 
4 24 16 
5 2s 32 
6 26 64 
7 21 128 
8 2s 256 
9 29 512 

10 210 1024 

The lowest power of 2 that results in a figure equal to or greater than 
the range size 100 is 7. Therefore, it will take at most seven guesses 
before the number is correctly picked. Two is the base number because 
the list of possibilities halves with each guess. 

Now that you understand how the program works, enter it into your 
Macintosh as it appears below: 

Program FindNum; 

(************************************************************************) 

(*This program shows how an interactive program can be written*) 
(* to guess a number via a binary search. *) 
(************************************************************************) 

Const 
MaxGuess = 7; {Maximum guesses the program will 

make} 



188 Programmer's Corner 

Var 
goAhead : char; 
found : boolean; 
guess : integer; 
done : boolean; 
maxNum : integer; 
minNum : integer; 
count : integer; 

valid : boolean; 

begin 
done := FALSE; 
while NOT done do 
begin 

ClearScreen; 

{Input character from user} 
{Has the program found your number?} 
{The program's actual guess} 
{Are you finished with the game?} 
{The current maximum range of guesses} 
{The current minimum range of guesses} 
{The number of guesses the program has 

made} 
{Did you provide a valid response?} 

minNum := 1; {We will set our range from 1 to 100} 
maxNum := 100; 
writeln ('Pick a number between 1 and 100 .. .'); 
writeln ('Press any key to continue .. .'); 
goAhead := ReadChar; 
found := FALSE; 
guess := (maxNum + minNum) DIV 2; 
count:= 1; 
while (NOT found) AND (count<= MaxGuess) do 
begin 

writeln; 
writeln ('Is your number less than (L), greater than (G),'); 
writeln ('or equal to (E)', Guess: 3, '?'); 
goAhead := ReadChar; 
case (goAhead) of 

'E', 'e': 
found:= TRUE; 

'L', 'I': 
begin 

maxNum := guess; 
guess := (maxNum + minNum) DIV 2; 
count := count + 1; 

end; 
'G', 'g': 

begin 



minNum : = guess; 
guess := (maxNum + minNum) DIV 2; 
count := count + 1; 

end; 
otherwise 

begin 
writeln; 

Guess-a-Number Program 189 

writeln ('INVALID RESPONSE ... PLEASE TRY AGAIN!!'); 
end; 

end; 
end; {while NOT found AND (count<maxGuess)} 
write In; 
if (count <= maxGuess) then 

write In ('See, the program guessed your number in only', count: 1, 'guess( es)!') 
else 
begin 

writeln ('You must have missed your number because'); 
writeln ('Mac has already made the maximum number'); 
writeln ('of guesses!'); 

end; 
valid:= FALSE; 
while NOT valid do 
begin 

writeln; 
writeln ('Would you like to play again (Y/N)?'); 
goAhead := ReadChar; 
case (goAhead) of 

·v·, 'y': 
valid := TRUE; 

'N', 'n': 
begin 

done := TRUE; 
valid := TRUE; 

end; 
otherwise 

writeln ('INVALID ... PLEASE TRY AGAIN!'); 
end; 
writeln; 
writeln; 

end; {while not valid} 
end; 

end. 



190 Programmer's Corner 

Program Explanation 
This program contains no procedures or functions and is therefore easily read 
from top to bottom. After the constant and variable declarations the first thing 
to do is set the Boolean done to FALSE. I then begin the main loop, while 
NOT done, which will continue until the user decides to stop playing. I do 
a ClearScreen and assign values to the minNum (1) and maxNum (100). 
Through writeln and ReadChar I ask the user to pick a number between 
1 and 100 and wait for any key to be pressed to continue. I set found to 
FALSE and use the formula for finding the midpoint between two numbers 
to determine the first guess; the formula adds maxNum and minNum and 
divides the sum by 2 to arrive at the midpoint of the two numbers. The 
integer variable count is set to 1 and through the next while loop-while 
(NOT found) AND (count <= maxGuess)-is not permitted to exceed 7. 
Rather than saying 

while (NOT found) AND (count<= 7) do 

we chose to assign a constant (MaxGuess) to represent 7 for two reasons: 

1. It makes the statement more readable. 
2. It lends itself to a more obvious change should anyone choose to 

modify the program to allow the range of numbers to be 1 to 1000. 
Remember, from the power of 2 chart above, you have to make the 
maximum number of guesses equal to 10, and you may forget what the 
7 represented, but with the constant name MaxGuess it should be more 
meaningful. 

So this while loop executes until it either finds the user's number or 
makes the maximum number of guesses. After starting this loop the 
user is asked to say whether the number is less than, greater than, or 
equal to the calculated guess. A case is then performed on the response. 

1. If the guess is equal to the number, found is set to TRUE so that the 
while (NOT found) AND (count <= MaxGuess) loop will terminate. 

2. If the number is less than the guess, the top half of possible numbers 
is thrown away (by assigning maxNum := guess) and a new guess is 
calculated. 

3. If the number is greater than the guess, the bottom half of possible 
numbers is thrown away (by assigning minNum := guess) and a new 
guess is calculated. 



Declmal-to-Hexadeclmal Conversion Program 191 

4. If an invalid response (the OTHERWISE clause) is entered, a message 
is displayed. 

(Note that both uppercase and lowercase letters are used in the case 
statement so that the user can have the caps lock key down or up and the 
input will be valid.) 

Next, when the program has either found the number or used the maximum 
number of guesses, if the number was guessed (meaning that count <= 
maxGuess is TRUE), a message says either that it took only Count guesses 
to determine it or that the maximum number of guesses has been made and 
since the number was not found, the user must have missed it. When either 
of these events is complete, the other nested while loop-while NOT valid, 
is executed. This loop is used to ask if the user would like to play again, and 
based upon the input, the flags valid (if a Y, y, N, or n is entered) and done 
(if an N or n is entered) are set to TRUE. As with other inputs of this nature, 
if an invalid response is entered (the OTHERWISE clause), an error message 
is displayed. 

Declmal-to-Hexadecimal Conversion 
Program 

The next program converts any decimal (base 10) integer into its hexadecimal 
(base 16) equivalent. If you are familiar with hexadecimal notation, enter 
the program and follow its· instructions to perform conversions. For those 
who are unfamiliar with hexadecimal, or hex, numbers, there follows a brief 
explanation of their use and significance in the computer world. 

Everyone uses the base 10 numbering system; the digits 0 through 9 
represent any number. Look at the number 425. This number represents four 
hundreds, two tens, and five ones; the digit 4 is in the hundreds position, the 
digit 2 is in the tens position, and the digit 5 is in the ones position. Multiply 
and add these figures to get 

4 x 100 = 400 
2 x 10 = 20 
5Xl 5 

425 total 



192 Programmer's Corner 

Note that in base 10 each digit is multiplied by 10 raised to its position 
minus 1, or: 

decimal place value = digit X 1 o<position - 1) 

The second decimal place's value is 

2 x lQ(2-l) = 2 x 101 = 2 x 10 = 20 

This discussion may seem trivial, but keep in mind that the same rules 
apply for hexadecimal numbers, except that they have 16 unique digits and 
each hexadecimal place in the number is multiplied by a power of 16. First 
of all, the 16 digits for hexadecimal notation are 

Hex Decimal Equivalent 

$0 0 
$1 1 
$2 2 
$3 3 
$4 4 
$5 5 
$6 6 
$7 7 
$8 8 
$9 9 
$A 10 
$B 11 
$C 12 
$0 13 
$E 14 
$F 15 

The digits 0 through 9 are equivalent and the values 10 through 15 are 
represented by the first six letters in the alphabet. Hex numbers are usually 
preceded by a dollar sign to differentiate them from a base 10 value. 

Now let's look at the hex number $1A9. What is this in base 10? If we 
use our rules from above, we would multiply and add to get the following: 

1 x 16<3·l) = 1 x 162 = 256 
10 x 16<2-n = 10 x 16 1 = 160 
9 x 16(1-1) = 9 x 1a<0> = 9 

425 total 



Decimal-to-Hexadecimal Conversion Program 193 

The hex values are represented in boldface to show how they fit into the 
computations; compare them to the base 10 values from the earlier example 
to understand the similarity figuring the total. Also recall that $A is equal to 
10 in base 10. 

Now that you know how to translate a hex number into base 10, let's see 
what's involved in converting from decimal to hex; remember to divide by 16 
and write the remainder. For example, to convert 425 into hex, first divide it 
by 16: 

425 + 16 = 26 with a remainder of 9 

Divide the resulting dividend (26) by 16: 

26 + 16 = 1 with a remainder of 10 

Divide the resulting dividend (1) by 16: 

1 + 16 = 0 with a remainder of 1 

Since my dividend is 0, I stop. I have determined that 1, 10, and 9 are the 
remainders, and if I convert them to their respective hex equivalents, I find 
that the hex equivalent of 425 is $1A9. 

You now know how to go from decimal to hex and vice versa, but you 
may still be wondering how to use this knowledge. In computer applications, 
numbers are quite often expressed in systems other than base 10, and hexa
decimal notation is one of the most popular of these systems. Therefore, it 
is worth your while to try a few conversions on your own and check them, 
either by converting back to the original system or by using the following 
program. 

Program Conversion; 

(**********************************************************) 

(*This program converts a decimal number from 0 to*) 
(* 32,767 to its hexadecimal equivalent. *) 
(**********************************************************) 

Type 
ConvType = String[6); 

Var 
done, valid : Boolean; 
answer : char; 

{Are we finished; Is this valid input?} 
{The user's response} 



194 Programmer's Corner 

Procedure FlipFlop (Var inTemp : ConvType); 

Var 
newString : ConvType; 
i : integer; 

begin 
for i := 1 to 6 do 

newString[i) := inTemp[6 - i + 1]; 
for i := 1 to 6 do 

inTemp[i] := NewString[i]; 
end; 

Procedure DecToHex; 

Var 
inDecimal : integer; 
outHex : ConvType; 
thislong : 0 .. 6; 
i, m :0 .. 5; 
allNumeric : boolean; 
actualNumber, 
tempNumber : integer; 
nextHex : char; 

{Temporary holder of flipped string} 
{Loop counter} 
{procedure FlipFlop} 

{procedure FlipFlop} 

{the number entered by user} 
{decimal input; hex output} 
{string length} 
{loop counters} 
{is the input all numeric?} 

{real number; temp. holder} 
{actual hex value} 

Function FigureHex (Var tempNumber : integer): char; 

Var 
tempRmdr: 0 .. 15; {remainder after div 16} 

begin {function FigureHex} 
tempRmdr := (tempNumber MOD 16); 
case (tempRmdr) of 

0: FigureHex := 'O'; 

1: FigureHex := '1 '; 

2: FigureHex := '2'; 

3: FigureHex := '3'; 

4: FigureHex := '4'; 

5: FigureHex := '5'; 



Declrnal-to-Hexadeclmal Conversion Program 195 

6: FigureHex := '6'; 

7: FigureHex := '7'; 

8: FigureHex := '8'; 

9: FigureHex := '9'; 

10: FigureHex :='A'; 

11: FigureHex := 'B'; 

12: FigureHex := 'C'; 

13: FigureHex := 'D'; 

14: FigureHex := 'E'; 

15: FigureHex := 'F'; 
end; {case (tempRmdr)} 
tempNumber := (tempNumber DIV 16); 

end; {function FigureHex} 

begin {procedure DecToHex} 
valid := FALSE; 
while NOT valid do 
begin 

writeln; 
writeln ('Please enter a decimal integer in the range of 0 to 32767'); 
write ('without commas or decimal points. '); 
readln (inDecimal); 
if (inDecimal >= 0) AND (inDecimal <= 32767) then 

valid := TRUE; 
if NOT valid then 
begin 

writeln; 
writeln ('INVALID ENTRY ... PLEASE TRY AGAIN!'); 
writeln; 

end; 
end; 
tempNumber := inDecimal; 
m :=1; 
outHex := '000000'; 

{if not Valid} 
{while not Valid} 



196 Programmer's Corner 

while (tempNumber) <> 0 do 
begin 

outHex[m] := FigureHex(tempNumber); 
m:=m+1; 

end; 

FlipFlop (outHex); 
writeln; 

{while (tempNumber <>O)} 

write ('The hexadecimal equivalent of,' inDecimal: 5); 
writeln ('is$', outHex[1], outHex[2], outHex[3], outHex[4], outHex[5], 

outHex[6], ' .. .'); 
end; 

begin 
done:= FALSE; 
while NOT done do 
begin 

ClearScreen; 
DecToHex; 
valid := FALSE; 
while NOT valid do 
begin 

write In; 

{Procedure DexToHex} 

{main program Conversion} 

write ('Would you like to try another number (Y/N)?'); 
answer := ReadChar; 
case (answer) of 

'Y', 'y' : valid :=TRUE; 

'N', 'n' : begin 
done := TRUE; 
valid := TRUE; 

end; 

otherwise 
begin 
write In; 
writeln ('Invalid response ... please try again!'); 

end; 
end; 

end; 
end; 

end. 

{case (answer)} 
{while NOT valid} 
{while NOT done} 
{program Conversion} 



Declmal-to-Hexadeclmal Conversion Program 197 

Program Explanation 
This program is composed of the main program block, two procedures, and 
one function nested within a procedure. If you look down to the main program 
block, where the begin statement for the main program Conversion is located, 
you can see that we set done to FALSE and perform a while loop based on 
the value of done that will continue until the user wishes to quit the program. 
Immediately inside this while loop the program executes ClearScreen and 
then DecToHex, has a nested function called FigureHex. Starting at the begin 
statement for DecToHex, the Boolean variable valid is set to FALSE and a 
while loop is started based upon the value of valid. A message asks the user 
to enter a decimal integer from 0 to 32767, and this value is read into the 
variable InDecimal of type integer. A check is performed on InDecimal to 
determine if it is indeed within the range of 0 to 32767; if this is true, valid 
is set to TRUE. The if statement is used to display an invalid-entry message 
if an invalid number was entered. This signifies the end of the while NOT 
valid loop. 

The statements tempNumber := inDecimal; m := 1; and outHex 
'000000'; are used to set local variables for the following reasons: 

1. tempNumber now holds the value of inDecimal, so that I may manip
ulate (namely, repeatedly divide by 16 and determine the remainder) 
without destroying the original value, which still resides in inDecimal. 

2. m is used as a counter to determine which digit the program is figuring; 
it starts with the first digit, so m is set to 1. 

3. outHex is a string and will hold the final converted hex value. 

A while loop based on tempNumber not equal to 0 now begins; it is directly 
related to dividing the decimal value by 16 and using its remainder until the 
quotient equals 0. This loop figures each hex digit and then increases m to 
prepare for the next digit. The nested function FigureHex is called for each 
iteration of the while loop; tempNumber is its only parameter. 

At the FigureHex declaration the program assigns the remainder from 
dividing tempNumber by 16 to the local variable tempRmdr. A case statement 
performed on the value of tempRmdr will assign hex value to the function 
FigureHex. If the first remainder is 13, FigureHex will be set equal to D. 
Finally, tempNumber is replaced by its present value divided by 16. Note: 
This final statement is the reason tempNumber is listed as a var parameter. 
Otherwise I would not be able to change the value of tempNumber. 



198 Programmer's Corner 

Having finished with the function FigureHex, return to the statement after 
it was invoked-but where was that? Remember? It was back in the while 
(tempNumber) <> 0 loop in DecToHex. Again, this loop continues to 
determine the next digit for the hex conversion until tempNumber equals 
0. So when this loop is complete, outHex will contain the converted hex 
value with one minor problem: it is backwards. If the converted number if 
$3A 7, it is stored in outHex as follows: 

outHex[ 1 ] 7 
outHex[ 2] A 
outHex[ 3] 3 

so if I try to write the line ( outHex[ 1 ], outHex[ 2 ], outHex[ 3] ); I will display 
$7 A3. The next procedure, Flipflop, takes care of this problem; I pass it 
outHex, it will flip the characters to the proper sequence. 

Flipflop, the first procedure in the program, shows that for each of the 
elements of outHex-or inTemp, as it is called locally-the opposite element 
of newString is set equal to it. If you work through the loop, this is what is 
happening. 

newString[ 1] := inTemp[ 6 ]; 
newString[ 2] := inTemp[ 5 ]; 
newString[ 3] := inTemp[ 4 ]; 
newString[ 4] := inTemp[ 3 ]; 
newString[ 5] := inTemp[ 2 ]; 
newString[ 6] := in Temp[ 1 ]; 

The value of newString is put into inTemp and Flipflop returns control to 
DecToHex, where three output statements display the original base 10 value 
and its hex equivalent. DecToHex is complete and control returns to the main 
program. 

The first statement after the call to DecToHex sets valid to FALSE and 
executes a while loop based upon the value of valid, that is, until the user 
enters a valid entry. The user is asked if he or she would like to run the 
program again and the input (answer) is used in a case statement to determine 
if the input is valid and the program done. Otherwise, in the event of an invalid 
response, a message is displayed. 

Figure 8.2 shows how the conversion looks on your Macintosh. 
Look at one more program, which allows you to figure out exactly how 

many songs you can fit on a recording tape. 



Fig. 8.2. 

Tape Counter Program 199 

Conuersion 

Please enter a decimal integer in the range of 0 to 32757 
without commas or decimal points. 100 

The hexadecimal equivalent of 100 is $000064 . . 

Would you I ike to try another number <Y/N)? 

, Tape Counter Program 
If you have ever taped any of your phonograph albums, you are familiar with 
the problem of trying to figure out exactly how many songs you can get on 
one side of a tape. Many of us have spent some time adding minutes and 
seconds to get the most out of a blank tape. If you take a few moments to 
use the following program, your tapes will be a snap to make. 

All you have to do is enter each song's length in minutes and seconds, and 
this short program will keep a running total of the amount of time necessary 
to make the recording. 

Program TapeCount; 

(********************************************************************) 

(* This short program allows the user to enter song lengths *) 
(* in minutes and seconds to see exactly how many songs will *) 
(* fit on a tape. *) 
(********************************************************************) 

Var 
minutes : integer; {length of song in minutes} 



200 Programmer's Corner 

seconds : integer; 
totMinutes : integer; 
totSeconds : integer; 

Procedure CalcNDisp; 

begin 

{length of song in seconds} 
{total minutes of all songs entered} 
{total seconds of all songs entered} 

totMinutes := totMinutes + minutes + (totSeconds + seconds) DIV 60; 
totSeconds := (totSeconds +seconds) MOD 60; 
ClearScreen; 
writeln ('Total required time so far is:', totMinutes, 

'minutes and', totSeconds, 'seconds .. .'); 
end; 

begin 
totMinutes := O; 
totSeconds := O; 
repeat 

{main TapeCount program} 

write ('How many minutes is this song?'); 
readln (minutes); 
if (minutes <> 0) then 
begin 

write ('How many seconds is this song?'); 
readln (seconds); 
CalcNDisp; 

end; 
until (Minutes = O); 

end. 

Program Explanation 

{zero entry for minutes means STOP} 
{program TapeCount} 

The tape counter program has one main repeat...until loop that continues 
until the user enters a 0 value for the number of minutes in a song. This loop 
requests the number of minutes and if minutes is not 0, the number of seconds. 
Then CalcNDisp is called to figure the running total of minutes and seconds 
thus far. TotMinutes is calculated by adding the previous totMinutes to the 
latest song's number of minutes. This amount is then added to the remainder 
after adding the totSeconds to the latest song's seconds and dividing that sum 
by 60 as follows: 

totMinutes := totMinutes +minutes+ (totSeconds+seconds) 
DIV60; 



Quiz 201 

TotSeconds is figured by using the remainder, or modulus, of adding the 
totSeconds to the latest song's seconds and dividing by 60. Again, the MOD 
operator is used to determine the remainder of dividing X by y (X MOD y). 

The cumulative totals are displayed by CalcNDisp, and control returns to 
the main routine, where the repeat...until loop continues until a 0 minutes 
entry is made. 

Review Summary 

Quiz 

1. In a binary search the list of possible items is reduced by half with each 
successive guess. 

2. Base 10 is the common numbering system using the 10 digits 0 through 
9 to represent all possible values. 

3. The hexadecimal system is the computer-oriented numbering system 
that uses the 16 digits 0 through F to represent all possible values. 

1. Why weren't minNum and maxNum (originally 1and100 respectively) 
declared as constants in the program Guess-a-Number? 

2. In the decimal-to-hexadecimal conversion program, a portion of the 
code in the procedure DecToHex reads: 

if ( in Decimal >= O ) AND ( in Decimal <= 32767) then 
valid := TRUE; 

if NOT valid then 
begin 

writeln; 
writeln ('INVALID ENTRY ... PLEASE TRY AGAIN!'); 
writeln; 

end; 

How could this code have been simplified? 
3. How could the procedure Flipflop (in the decimal-to-hex conversion 

program) have been omitted? 
4. Do any numbers have the same representation in both hexadecimal and 

base 10 notation? 



-9-----
Advanced Data Structures 
Advanced Numeric Types: Long Integers and Extended Real Numbers 
What's In a Type 
Simple Arrays 
Parallel Arrays 
Records and Flies 
Sets 
Using Arrays, Records, and Sets In an Application 
Review Summary 
Quiz 

In this chapter you will learn: 
• More about data types and how to construct your own. 
• The concept of arrays and how they are used in programs. 
• About record and file types. 
• About sets and their value and readability In Pascal. 

Advanced Numeric Types: Long Integers 
and Extended Real Numbers 

The range of integers acceptable to Turbo Pascal is -32768 to 32767. You 
may sometimes need an integer value that exceeds this range. To this end 
Turbo Pascal provides the data type long integer, or Longlnt. The range for 
long integers -2147483648 to 2147483647, which should accommodate 
most of your needs. A long integer is declared similarly to other data types: 

var 
number : Longlnt; 

The variable number is declared as a long integer. The values of a single in
teger and a long integer can be mixed when performing arithmetic; however, 



Advanced Numeric Types: Long Integers and Extended Real Numbers 203 

you should use long integers only when it is absolutely necessary because they 
require twice as much storage space (32 bits versus 16 bits) as do integers. 

I have presented some simple mathematics that your Macintosh can per
form for you. For a greater degree of accuracy in complex arithmetic, you 
may want to use the two additional real data types, double and extended in
tegers. The differences between the three are the number of significant digits 
and the range of numbers allowed. For example, a standard real variable pro
vides an accuracy of 7 to 8 decimal places and can be stored in a range of 
1.5 X 10-45 to 3.4 X lQ38, while a Double real variable provides accuracy of 
15 to 16 decimal places with a range of 5.0 X 10-324 to 1.7 X lQ3os. Simi
larly, the Extended type provides accuracy of 19 to 20 decimal places and a 
range of values from 1.9 X 10-4951 to 1.1X104932. Indeed, Double and Ex
tended data can be used to provide a much greater degree of accuracy than 
a standard real type. The drawback is that as with long integers, the larger 
the range of values, the more memory must be set aside. The following table 
shows the number of bytes occupied by each of these data types: 

~ 

Real Single 
Double 
Extended 

Size in bytes 

4 
8 

10 

Note that all three are compatible and can be mixed in mathematical 
computations. In fact, all real numbers are converted to extended and then 
back to the type needed. If you try to calculate a value that falls outside the 
range of the data type being used, an error will occur. 

Before leaving my discussion of real numbers, I must point out that 
a fourth type computes numbers without decimal points. The Comp (for 
computational) data type allows calculations of exact integer values without 
any rounding errors. Type Comp accepts values in the range of-9.2X1018 
to 9.2 X 1018. 

When using real number data types, be as prudent as possible. What you 
save in memory space, you may lose in speed. Remember, any real-number 
data are converted to extended, calculated, and then converted back to the 
original type. If you always use Extended types when working with real data, 
you will eliminate conversion and therefore save processor time. However, 
if memory is a consideration and speed is not, you may wish to use simple 
real numbers, which occupy only 4 bytes rather than the 10 bytes occupied 
by an extended number. 



204 Advanced Data structures 

What's In a Type? 
You are already familiar with many predefined types of data such as integer, 
char and Boolean), which are at your disposal any time in Pascal. To declare 
a variable of one of these types, you need only set up the necessary statements 
in the Var section of the routine. 

These predefined types are usually sufficient for very simple programs, 
but you may wish to create your own types for some advanced programs. In 
fact, Pascal does allow you to make customized types, which can make your 
program easier to develop as well as easier for others to read and follow. I 
spoke briefly about these types in Chapter 3; now it is time to take a closer 
look at them. 

For example, take a look at the following declaration: 

Type 
ColorType = ( White, Yellow, Blue, Brown, Black ); 

Var 
myFavoriteColor : ColorType; 

I have created an enumerated ColorType. This statement means that any 
variable declared to be of type ColorType may take on only the stated 
values, in this case white, yellow, blue, brown, and black. The variable 
myFavoriteColor may carry these values and only these values. Hence I can 
make the assignment statement 

myFavoriteColor := Blue; 

or 

myFavoriteColor := Yellow; 

and because I have made all the necessary declarations, Pascal understands. 
I am not limited to the names of colors, though. Take a look at the following: 

Type 
CarType = ( Sedan, Convertible, Stationwagon, Coupe ); 

Var 
myCar : CarType; 
yourCar: CarType; 



Whafs In a Type? 205 

I can use these declarations to define these statements: 

yourCar := Convertible; 
myCar := Coupe; 

If, however, I accidentally say 

myCar := Chevrolet; 

I receive an error from the compiler because "Chevrolet" is not one of the 
items listed in the declaration CarType. Although you and I may agree 
that a Chevrolet is a type of car, Pascal knows only what you tell it, and 
according to my instructions, the only valid types of car are sedan, convertible, 
stationwagon, and coupe. 

Be extra careful about punctuation. Do not make this sort of assignment 
based upon the above declarations: 

myCar := 'Coupe'; 

because the value "coupe" is enclosed in quotes, hence a string, whereas 
myCar is an enumerated variable, which may take on certain nonstring 
values. 

It is interesting to note that the Macintosh does not place the value "Con
vertible" in the memory location specified by myCar. Rather, an enumerated 
type is a group of items each of which is assigned an integer value, beginning 
with 0. For example, Pascal remembers ColorType as follows: 

MacPascal's value: 0 1 2 3 4 
Color Type= ( White, Yellow, Blue, Brown, Black) 

When you assign yellow to myFavoriteColor, Pascal places the value 1 in 
that slot in memory. This saves space in memory, since the number 1 takes 
up less room than the word yellow. This should also reinforce the meaning 
of the values of Ord, Succ, and Pred, described in Chapter 7; the order of 
yellow is 1, the successor (Succ) of Yellow is blue, and the predecessor (Pred) 
of yellow is white. 

As a final note on enumerated types, try to think of the Boolean type 
having a hidden declaration-

Type 
boolean = ( FALSE, TRUE ); 



206 Advanced Data structures 

-since a Boolean variable may be assigned only the value TRUE or FALSE 
and since, most versions of Pascal read the values of FALSE and TRUE 
as 0 and 1 respectively. If you ever have any problem remembering how 
enumerated types operate, try to keep in mind this declaration of the Boolean 
type. Now take a look at a very useful data structure, the array. 

Slmple Arrays 
Up to now I have presented the basic predefined types of Pascal, including 
integers, real numbers, characters, and strings-integer, real, char, string
as well as the concept of enumerated types. These types are quite useful 
indeed but would be somewhat limited for general programming without 
a mechanism to group similar variables. Take for example a program to 
display the standings of the six teams in baseball's National League East. I 
place these team names in variables by this declaration: 

Var 
team1 : String; 
team2 : String; 
team3: String; 
team4 : String; 
team5: String; 
team6 : String; 

Then I assign values like this: 

begin 
team1 :='Pirates'; 
team2 := 'Cardinals'; 
team3 :='Phillies'; 
team4 := 'Mets'; 
teams := 'Expos'; 
team6 := 'Cubs'; 

end; 

I could have created an array like 

Var 
teamArray : array [1 .. 6] of String; 

and made the assignments like this: 



begin 
teamArray[ 1 ] := 'Pirates'; 
teamArray[ 2 ] := 'Cardinals'; 
teamArray[ 3 ] := 'Phillies'; 
teamArray[ 4 ] := 'Mets'; 
teamArray[ 5 ] := 'Expos'; 
teamArray[ 6 ] := 'Cubs'; 

end; 

Simple Arrays 207 

TeamArray is an array 1 to 6 of type String. In other words, teamArray 
may have up to six elements and each element is a String. Picture teamArray 
as a set of six slots whose values after assignment look like this: 

6 Cubs 

5 Expos 

4 Mets 

3 Phillies 

2 Cardinals 

1 Pirates 

teamArray 

I address each element of the array by specifying the name of the array 
and the element or index position: teamArray[ 5 ]. As the index [ 1..6] states, 
I may address any whole value from 1 through 6. However, it would be an error 
to attempt to access an index outside the defined range: TeamArray[7]. This is 
one of the most common errors encountered when working with arrays, so 
beware! The compiler directive {$R+I-}, described earlier, shows how to 
receive an immediate error message on out-of-range subscripting with strings. 
This same directive monitors subscript errors with regular arrays. 

Array elements may be assigned to one another just like other variable 
types: 

teamArray[ 1 ] := 'Pirates'; 
teamArray[ 2 ] := teamArray[ 1 ]; 



208 Advanced Data Structures 

This places the string 'Pirates' in both teamArray[ 1 ] and teamArray[ 2 ]. 
Arrays don't have to contain string types, nor do they have to be indexed by 
integers. For instance, this array declaration could hold a secret code: 

Var 
codeArray : array [ A .. Z ] of char; 

I set up a code like this: 

begin 
codeArray [ A ] := 'Z'; 
codeArray [ B ] := 'Y'; 
codeArray [ C ] := 'X'; 

codeArray [ X ] := 'C'; 
codeArray [ Y ] := 'B'; 
codeArray [ Z ] := 'A'; 

end; 

The codeArray may be indexed from A to Z and only character values 
may be assigned to any element. 

In general the array's syntax is 

varName : array [ Range ] of ArrType; 

where Range is specified (for example 1..10) and ArrType is the predefined 
type of each element. Note that the range cannot be expressed in real 
numbers. This statement is illegal: 

thisArray: array [ 1.00 .. 10.00] of char;). 

The most obvious reason for not allowing a real-number index is that it would 
indicate an infinite number of elements, since there are infinite real numbers 
between 1.00 and 10.00. 

Parallel Arrays 
One of the most popular applications of arrays uses the concept of parallel 
arrays, which are related to one another by index. Consider the situation of 
a teacher who has 30 students and who would like to write a program that 



Parallel Arrays 209 

prompts for each student's name and grade and then sorts them in descending 
order. The major data structures for this problem might look like this: 

Var 
nameArray : array [ 1 .. 30 ] of String; 
gradeArray: array [ 1..30] of 0 .. 100; 

If I assign the first three elements of each array based upon 

student 

Jackson 
Macko wick 
Craig 

with the code 

nameArray[ 1 ] :='Jackson'; 
gradeArray[ 1 ] := 84; 
nameArray[ 2 ] := 'Mackowick'; 
gradeArray[ 2 ] := 100; 
nameArray[ 3 ] := 'Craig'; 
gradeArray[ 3] := 91; 

the arrays would look like this: 

3 [Craig 

2 [Mackowick 

[Jackson 

3 

2 

1 

91 

Grade 

84 
100 
91 

100 

84 

nameArray gradeArray 

As you may have noticed these assignment statements, the students' names 
and grades are matched in the two arrays; (that is, Mackowick's name is in 
slot 2 of the name array and his grade is in slot 2 of the grade array.). This 
may seem trivial upon first inspection; however, when the items are sorted 
in descending grade order, it keeps the relationship intact. Otherwise there 
would be no way of knowing which name corresponds to which grade. 



210 Advanced Data structures 

Records and Flies 
The student and grade example might better be solved using the data structure 
of records. A record is one or more different items or fields grouped for logic 
and convenience. For instance, this declaration sets up a record of students 
and grades: 

Type 
StudentRec = record 

name : String; 
grade: 0 .. 100; 
end; 

In StudentRec I establish two fields, name and grade. In general, the decla
ration of a record looks like this: 

Type 
RecType = record 

field1 : Type 1; 
field2 : Type 2; 

fieldN : TypeN; 
end; 

I next declare a variable of this type in order to work with it in a program: 

Var 
stRecVar : StudentRec; 

In order to make an assignment to a record's fields, specify the record's 
name and follow with a dot and the field name. Here I assign values to 
stRecVar: 

stRecVar.name := 'Craig'; 
stRecVar.grade := 91; 

It's as simple as that! But if I assign new values to those fields-such as the 
next name and grade-the original values are lost. A simple solution is to 
declare an array of records like this: 



Sets 

Type 
StudentRec = record 

name: String; 
grade: 0 .. 100; 

end; 

Var 
classArray : array [ 1 .. 30 ] of StudentRec; 

Now I can make my student and grade assignments like this: 

classArray[ 1 ].name :='Jackson'; 
classArray[ 1 ].grade:= 84; 
classArray[ 2 ].name:= 'Mackowick'; 
classArray[ 2 ).grade := 100; 
classArray[ 3 ].name := 'Craig'; 
classArray[ 3 ].grade := 91; 

Sets 211 

Instead of an array of records, I could have created a file, which is a 
collection of records: 

Type 
StudentRec = record 

name : string; 
grade: 0 .. 100; 

end; 

Var 
stRecVar : StudentRec; 
stdntFile : file of stRecVar; 

Files store records on disk for later retrieval. The better to understand 
the relationship between files, records, and fields, think of the filing cabinet 
in a doctor's office. The cabinet full of folders on different patients is a file. 
Each patient's folder is a record, and each item in that folder-name, address, 
height, weight-is a field. 

The set allows you to designate a group of items and determine whether 
or not a particular item is a member of that group. For instance, say you 
want to determine whether or not an integer variable holds a single-digit 



212 Advanced Data Structures 

numeral. The only method covered so far would involve a fairly lengthy set 
of if statements that would start out like this: 

if ( ( theNumber = O ) OR ( theNumber = 1 ) OR ( theNumber = 2 ) OR ... 

I can declare a set that holds all 10 values and then check to see if 
theNumber is a member of that set: 

Var 
numeralSet : set of 0 .. 9; 
theNumber : integer; 
dummyCounter : integer; 

begin 
for dummyCounter := 0 to 9 do 

numeralSet := numeralSet + [ dummyCounter ]; 
{this is where you assign the value of theNumber} 
if ( theNumber IN numeralSet) then 

{ then you know that theNumber is a single digit } 
else 

{ theNumber is not a single digit} 
end; 

The for loop used in this example is needed to initialize the value of the 
set. Just like any other variable, if it is not defined, it may contain garbage. So 
the method used to assign elements to a set is the plus sign ( + ). An element 
is added to the set by listing the set name; an addition sign; and within 
[brackets], the element itself. Be careful not to use {braces} or (parentheses) 
when referring to set elements. An element may be removed from a set by 
using the subtraction sign like this: 

numeralSet := numeralSet - [ 8 ]; 

which removes the value 8 from the numeralSet. 
If I want to know whether a particular item is an element of a set, I ask if 

the element is IN that set, just as I did above with: 

if (theNumber in numeralSet) then 

In order to determine whether the item is not an element of the set we 
would precede the condition of the "if" statement with a NOT operator. 

Sets are quite easy to work with and can add to the readability of a program 
by cutting out large segments of if statements. However, sets generate a 



Using Arrays, Records, and Sets in an Appllcatlon 213 

considerable amount of overhead, spent writing the assembly instructions 
required to manipulate them. In addition, a set may occupy up to 32 bytes 
of memory depending upon how many items it holds. So if memory space is 
a critical consideration, keep these points in mind when you consider using 
sets. Now look at a program that uses arrays, records, and sets to create a 
baseball team lineup. 

Using Arrays, Records, and Sets in an 
Appllcatlon 

The following program requests information, including name, position, bat
ting average, and spot in the batting order, for nine players on a baseball team. 
When this information is entered for all nine players, the array of records is 
scanned through to display the batting order of the team. Take a look at the 
program line by line: 

Program BaseBall; 

{$R+} 
(***************************************************************) 

(* This program shows the relationship between fields *) 
(* and records as well as showing an application of sets. *) 
(***************************************************************) 

Type 
PlayerRec = record 

name : String[20]; 
position : String[15]; 
average : 0 .. 1000; 
batOrder : 1 .. 9; 

end; 

Var 
teamArray : array[1 .. 9] of PlayerRec; 
orderSet : set of 1 .. 9; 
aChar : char; 

Procedure GetPlayerlnfo; 

Var 
counter : integer; 
valid : boolean; 

{record for each player} 
{player's name} 
{player's position (i.e. Short Stop)} 
{player's batting average (i.e. 300)} 
{player's spot in batting order} 

{array of players (i.e. a team)} 
{the set of batting order positions} 
{used for "Press any key ... "} 

{dummy counter} 
{is this entry valid?} 



214 Advanced Data Structures 

begin 
for counter := 1 to 9 do 

orderSet := orderSet - [counter]; 
for counter := 1 to 9 do 
begin 

ClearScreen; 
writeln; 
write In; 
write ('What is this player"s name?'); 
readln (teamArray[counter].name); 
writeln; 

{procedure GetPlayerlnfo} 

{initialize OrderSet to no entries} 

write ('What is this player"s position? '); 
readln (teamArray[counter].position); 
write In; 
write ('What is this player"s batting average?'); 
read In (teamArray[ counter] .average); 
repeat 

valid := TRUE; 
writeln; 
write ('What is this player"s spot in the batting order? '); 
read In (teamArray[ counter] .batOrder); 
if (teamArray[counter].batOrder IN orderSet) then 
begin 

writeln; 
writeln ('That spot in the order has already been used!'); 
writeln; 
aChar := ReadChar; 
valid := FALSE; 

end 
else 

orderSet := orderSet + [teamArray[counter].batOrder]; 
until Valid; 

end; 
end; 

{for Counter:= 1 to 9} 
{procedure GetPlayerlnfo} 

Procedure DisplayPlayerlnfo; 

Var 
whichBatter, counter: integer; 

begin 
ClearScreen; 
writeln; 
write In; 

{dummy counters} 

{procedure DisplayPlayerlnfo} 



Fig. 9.1. 

Using Arrays, Records, and Sets In an Application 215 

writeln ('Your batting order is as follows:'); 
writeln; 
for whichBatter := 1 to 9 do 
begin 

counter := 1; 
while (teamArray[counter].batOrder <> whichBatter) do 

counter := counter + 1; 
writeln ('Batter', whichBatter: 1, 'is', teamArray[counter].name, 

'who is playing', teamArray[counter].position); 
end; {for whichBatter := 1 to 9} 
write In; 
write ('Press any key to continue .. .'); 
aChar := ReadChar; 

end; {procedure DisplayPlayerlnfo} 

begin {program Baseball} 
GetPlayerl nfo; 
DisplayPlayerlnfo; 

end. {program BaseBall} 

r 

Figure 9 .1 shows a sample run of program BaseBall. 

BaseBall 

What is this player's name? Johnson 

· What is this p I ayer· s position? Shortstop 

What is this player's batting average? 301 

What is this player's spot in the batting order (i.e. 2)? 4 

., 



216 Advanced Data Structures 

Baseball has two procedures, one for gathering player information (GetPlay
erlnfo) and another for displaying it (DisplayPlayerlnfo). 

The main program's declarations begin with a record for the players that 
contains fields for name, position, batting average, and position in the batting 
order. The team array is declared and may hold nine player records; the set 
for batting order is declared to hold elements from 1 to 9. The main program 
calls GetPlayerlnfo and DisplayPlayerlnfo. 

The procedure GetPlayerlnfo initializes the orderSet so that it has no 
entries by subtracting all the possible elements from the set. There is another 
more readable method: 

orderSet := [ ]; 

The empty set, or null set, is denoted by brackets with nothing between them. 
You may use either method, but we recommend the empty set, which seems 
to be the norm. 

Next in BaseBall, the name, position, average, and batting order of each 
player are requested. During the request for batting order the orderSet makes 
sure that no two players are accidentally assigned the same position in the 
batting order, which would make no sense. If the number entered for the 
batting order is already an element of the set, an error is displayed; otherwise, 
the entered number is added to the set. · 

The procedure DisplayPlayerlnfo scans the teamArray for each successive 
position in the batting order, and with each one it finds, it displays the player's · 
name and position, via writeln. 

Enter the lineup of your favorite team or make one up to see how the pro
gram works in various situations. Be sure to see what happens when you enter 
the same batting order position for two or more players. 

As you can see, advanced data structures like arrays, records, and sets have 
significant use in Pascal and in fact complement one another for smooth, 
readable code. 

Review Summary 
1. An array is a collection of like items categorized by an index that points 

to a location within the structure. 
2. A record is a data structure containing one or more items or fields and 

is used to organize their meaning and use. 
3. A field is the smallest division of a record. 
4. A file is a collection of records. 



Quiz 

Quiz 217 

5. A set is a group of elements that may be added to or subtracted from 
via Pascal operations. 

1. Describe the relationship between fields, records, and files. 
2. Why does it not make sense to put as many fields as possible in a record 

declaration? 
3. What was the purpose of the for loop in the BaseBall program that 

successively removed the items 1 through 9 in GetPlayerlnfo? 



-10-----
lntroduction to 
Advanced Concepts 
Recursion; or, can I Call Myself?! 
The Pointer and Handle Data Types 
Almost Everything In Life Has a Polnt(er)I 
Further study-stacks, Queues, and Trees 
Review Summary 
Quiz 

In this chapter you will learn: 
• The concept of recursion and how to use it in Pascal. 
• The purpose of dynamic storage allocation (DSA). or how to use pointers. 
• What handles are and why they are useful on the Macintosh. 
• How to work with linked lists and manipulate them in Pascal. 
• About such areas as stacks. queues. and trees. 

Recursion: or. Can I Call Myself?I 
You have seen how procedures and functions can simplify the writing of 
lengthy programs by centralizing common operations and separating logical 
blocks of code. I have also explained that procedures and functions can be 
called by the main program, other procedures, and other functions, depending 
upon the scope of the program. One point I have not discussed, however, is that 
a procedure or function can call itself. For example, say I want to write a 
program that will calculate the product of a given integer and every integer 
between the given and 1; that is, given 4, the result is 4*3*2*1=24. This 
mathematical concept is the factorial and is written as 4!, which is read "four 
factorial." The following program will accomplish this job: 

Program Factorial; 

(****************************************************************) 

(* This program will calculate the factorial of a number *) 



Recursion; or, Can I Call Myself?! 219 

(* X, (X!). *) 
(****************************************************************) 

Var 
done : boolean; 
valid : boolean; 
facNum : integer; 
tempNum : integer; 
result : extended; 
again : char; 

Procedure CalcFact; 

begin 
while (tempNum <> 1) do 
begin 

result := result * tempNum; 
tempNum := tempNum - 1; 
CalcFact; 

end; 
end; 

begin 
done:= FALSE; 
while NOT done do 
begin 

result:= 1; 
valid := FALSE; 
while NOT valid do 
begin 

ClearScreen; 

{are we finished with the program yet?} 
{is this a valid positive integer?} 
{number to factorialize} 
{temp. var used to perform factorials} 
{result of factorializing FacNum} 
{Y/N answer to calculate again} 

{function CalcFact} 

{while (tempNum <> 1) do} 
{procedure CalcFact} 

{program Factorial} 

{initialize result to 1} 

writeln ('Please enter an integer between 1 and 1750'); 
write ('which you want to factorialize .. .'); 
readln (facNum); 
if (facNum >= 1) AND (facNum <= 1750) then 

valid:= TRUE 
else 
begin 

writeln; 
writeln ('INVALID RESPONSE ... PLEASE TRY AGAIN!ll'); 
writeln; 
write ('Press any key to try again .. .'); 
again := ReadChar; 

end; 
end; 

{else invalid number} 
{while NOT valid} 



220 Introduction to Advanced Concepts 

tempNum := facNum; 
CalcFact; 
writeln; 
writeln ('The result of factorializing,' facNum: 5, 'is', result:10:0); 
write In; 
write ('Would you like to calculate another number (Y/N)?'); 
again := ReadChar; 
if (again = 'N') OR (again = 'n') then 

done := TRUE; 
write In; 

end; 
end. 

{while NOT done} 
{program Factorial} 

The program accepts a number between 1 and 1750 and through the 
recursive procedure CalcFact calculates its factorial. CalcFact is said to 
be recursive because it calls itself at the end of the while loop. It makes 
sense to set up the program in this manner, since it repeatedly performs 
the same operation on a number. However, the same goal could have been 
accomplished with a while loop in CalcFact. In fact, most if not all recursive 
procedures can be eliminated by coding the routine differently. Try to avoid 
recursive programming for two major reasons: 

1. It is very difficult for someone else and sometimes even for the pro
grammer to follow the logic of a recursive routine. 

2. Recursive routines are famous for crashing programs because they eat 
up a lot of RAM. For instance, I had to limit the Factorial program to 
1750 because any number greater than that resulted in an error of too 
many recursive calls. It is difficult to say how many times you can call 
a recursive routine, but to give you an example, I tried the following 
program, which displays the number of times its recursive routine was 
called, and the highest number displayed was 46200 on a 512K Mac: 

Program RecCount; 

(*****************************************************************) 

(* This program shows how many times you can call *) 
(* a recursive routine before you run out of memory. *) 
(*****************************************************************) 

Var 
i: longlnt; {counts how many times recursion takes place} 

Procedure RecurseAgain; 



begin 
if (i MOD 100 = 0) then 

writeln (i); 
i := i +1; 
RecurseAgain; 

end; 

begin 
i := 1; 
RecurseAgain; 

end. 

The Pointer and Handle Data Types 221 

{only display every 100 times} 

{program RecCount} 

{program RecCount} 

This program is not very useful except for proving that recursive routines 
can run you out of memory if they are not used properly. When you run this 
program, a count is displayed every time i is evenly divisible by 100. When 
memory is exhausted, a system error is displayed, and you should press the 
resume key to return to the Turbo editor. 

The Pointer and Handle Data Types 
I have discussed integers, long integers, real numbers, characters, Boolean 
values, and so on. These data types all have something in common: when a 
variable is declared to be of any of these types, a certain portion of memory is 
allocated to hold the values assigned to the variable throughout the program. 
Different variable types require different amounts of memory; for instance, 
a long integer takes up more memory than an integer. I have discussed the 
memory requirements of these types as I introduced them; you need to know 
them. The Macintosh has a finite amount of memory, and Turbo Pascal is 
designed to allow no more than 32K of space for variables in any program. 
This limit is quite large for the simple programs I have been using, but large 
applications may eat that much memory in no time at all. 

Although it is unlikely that you will run out of memory in your beginning 
programs, there is no doubt that sophisticated programs dealing with several 
variables may cause chaos. 

One way to save or manage memory is to use pointer. The pointer is 
analagous to the index at the end of a textbook; the book index provides a 
page number, or address, where a topic may be found. A reference tells you 
where to find information. The Pascal pointer holds an address, or memory 
location, where the value of the variable may be found, just as with variable 
parameters for procedures and functions. You may recall that a variable 
parameter is a 4-byte pointer placed on a stack in lieu of a value itself. The 
type of pointer I will be referring to here is also a 4-byte value. 



222 Introduction to Advanced Concepts 

I can declare a variable like this: 

Var { CASE #1 } 
myString : String[255]; 

This sets aside a certain block of memory, 256 bytes, to be used only for the 
values assigned to myString. Instead, you could declare this pointer type and 
variable: 

Type { CASE #2 } 
StngPtr = String[255]; 

Var 
ptrToMyString : StngPtr; 

This declares a type that points to a String[255] value. Notice that the up 
arrow (") is used to designate a pointer type. At this point in each case I 
have declared a variable that can be used to hold the value of a string. One 
of the major differences is that CASE #1 has already eaten up 256 bytes 
of memory, whereas CASE #2 has nibbled only 4 bytes, a fraction of the 
amount used in CASE #1. I have not yet allocated any memory to hold a 
string value for ptrToMyString, but I must before I try to assign it a value. 
The standard Pascal library procedure New allocates memory. Its format is 

new ( PointerVariableType ); 

where PointerVariableType in CASE #2 is ptrToMyString. Now I can begin 
to develop a program to use pointers like this: 

Program SamplePointer; 

Type 
StngPtr = "String[255]; 

Var 
ptrToMyString : StngPtr; 

begin {program SamplePointer} 
new ( ptrToMyString ); 
{now you assign a value to ptrToMyString} 

end. 



The Pointer and Handle Data Types 223 

Assigning a value to a pointer is slightly different from assigning to a 
normal variable. To assign your name to the variable in CASE #1 you would 
say 

myString :='Joe Wikert'; 

In order to accomplish the same result with the pointer, you would say 

ptrToMyStringA:= 'Joe Wikert'; 

which says to put 'Joe Wikert' in the memory space you allocated for 
ptrToMyString. Notice again the use of the up arrow (A) in assignment 
statements for pointer variables. Our sample program now looks like this: 

Program SamplePointer; 
Type 

StngPtr =AString[255]; 

Var 
ptrToMyString : StngPtr; 

begin {program SamplePointer} 
new ( ptrToMyString ); 
ptrToMyString A := 'Joe Wikert'; 

end. 

At this point there is no advantage to using pointers as opposed to con
ventional variables in this program, since I have had to perform a new and 
set aside as large a chunk of memory for this variable as with myString in 
CASE # 1. Actually, with the pointer method I allocated 4 bytes more than 
with the standard string method because I had to declare the pointer itself. 
Once finished with the pointer, however, I can free its memory space with 
the procedure dispose, whose format is identical to new. Here's how it would 
look: 

Program SamplePointer; 

Type 
StngPtr = AString[255]; 



224 Introduction to Advanced Concepts 

Var 
ptrToMyString : StngPtr; 

begin {program SamplePointer} 
new ( ptrToMyString ); 
ptrToMyString A:= 'Joe Wikert'; 
{you might want to display the string with a writeln statement here} 
dispose ( ptrToMyString ); 
{Now any memory originally set aside for ptrToMyString is available 

for use by other pointer variables, etc.} 
end. 

Keep in mind that the statement 

ptrToMyStringA :='Joe Wikert'; 

assigns a value to what ptrToMyString points at and not to the value of 
ptrToMyString itself (since ptrToMyString is merely a location in memory). 
There are two ways to assign a value to ptrToMyString. First, you can set it 
equal to another pointer-

ptrToMyString := another Ptr; 

-where anotherPtr is also declared to be of type StngPtr. 
Or you can assign it the predefined value nil, which essentially sets it equal 

to nothing. Note: It is an error to try to manipulate what a pointer points at 
if its value is nil. This sequence of statements is not legal: 

ptrToMyString :=nil; 
anotherPtr A:= ptrToMyStringA; 

MemTypes defines a blind pointer, Ptr, which may define var pointers. 
These can subsequently be assigned to each other even though they may 
not point to the exact same data type. Another item in MemTypes worth 
mentioning is Handle, defined like this: 

Handle =A Ptr; 

What does this mean? A handle is a pointer to a pointer. The Macintosh 
has a fairly sophisticated memory management system that allows you to 
compact blocks of free memory. Memory may become fragmented, split into 
pieces too small for your program to use, and there may be several pieces of 



Almost Everything In Life Has a Polnt(er)I 225 

nearly contiguous memory separated only by variables in use. Handles allow 
all the memory in use to be pushed together, creating larger contiguous blocks 
of unused memory. Handles are used throughout Macintosh applications for 
this and other reasons. If you have declared ourHndle, ourHndleA refers to the 
pointer ourHndle points to and ourHndle A A refers to the data pointed to by 
ourHndle A. The handle is a nested pointer. 

These are the fundamentals of pointers and handles. To demonstrate their 
usefulness, I will discuss a practical application of pointers and linked lists. 

Almost Everything in Life Has a Point( er) I 
Nearly everyone has a daily ritual to perform before work or school. A 
common sequence of events might look like this: 

Wake Up--->Take Shower--->Eat Breakfast--->Brush Teeth--->Leave Home 

This series can be referred to as a linked list, which is one item followed by 
another in a well-defined manner. Each event (except "Leave Home") points 
to another event which could be called its next event. For example, the next 
event after taking a shower is eating breakfast. For a program to keep track 
of this schedule the obvious choice for a data structure is an array like this: 

Wake Up 

2 Take Shower 

3 Eat Breakfast 

4 Brush Teeth 

5 Leave Home 

So array element number 2, Take Shower, immediately precedes element 
number 3, Eat Breakfast; the general rule for going from one event to the 
next is to add one to the array index. What if I need to insert an event in 
this array? Say after I enter the five events, I realize that I read the paper after I 
wake up and before I take a shower; that is, between elements 1 and 2 of 
the array. In order to maintain the general rule of going from one event to 



226 Introduction to Advanced Concepts 

the next by adding one to the array index, I have to shift all of the elements 
from index 2 through 4 down one spot and insert the new step. The array 
now looks like this: 

Wake Up 

2 Read Paper 

3 Take Shower 

4 Eat Breakfast 

5 Brush Teeth 

6 Leave Home 

The next event after waking up is to read the paper and the next event 
after that is to take a shower, and so on. 

The same sort of logic applies if you want to delete an item from the 
list. For example, to remove "Eat Breakfast" you have to move all the items 
below it up one slot in the array. As you can see, writing a Pascal program 
to solve this problem would be quite complex for the beginner. One major 
problem is to determine how large an array to declare. If a program with 
pointers handles most of the work, the job is much simpler, as the following 
program illustrates: 

Program Pointers; 

(****************************************************************) 

(* This program illustrates the use of Pascal pointers. *) 
(****************************************************************) 

Type 
StepPointer =A Step; 
Step = record 

action : String; 
nextStep : StepPointer; 

end; 

{pointer to step record} 
{step record of action and next step} 
{what you must do} 
{what's next?} 



Almost Everything In Life Has a Polnt(er)I 227 

Var; 
firstAction : StepPointer; 
currentTask : StepPointer; 
done : Boolean; 
tempString : String; 
found : Boolean; 
saveTemp : StepPointer; 
addTemp : StepPointer; 
aChar : char; 

begin 
new.(firstAction); 
new (currentTask); 
new (saveTemp); 
new (addTemp); 
currentTask".action :='Wake Up'; 
firstAction := currentTask; 
done:= FALSE; 
while NOT done do 
begin 

{the first thing you must do} 
{what you are currently doing} 
{are we finished adding jobs?} 
{holds step to search for} 
{have we found the entry?} 
{temporary pointer} 
{temporary pointer} 
{used for "Press any key ... "} 

new (currentTask".nextStep); 
currentTask := currentTask".nextStep; 
write ('What is your next step? (press <RETURN> to stop)'); 
read In (cu rrentT ask" .action); 
writeln; 
if (currentTask".action = ") then 

done := TRUE; 
end; 
currentTask" .nextStep := nil; 
currentTask := firstAction; 
ClearScreen; 
writeln; 

{while not Done} 
{last step points to nothing} 

writeln ('Your steps are as follows:'); 
while (currentTask".nextStep <>nil) do 
begin 

writeln (' ', currentTask".action); 
currentTask := currentTask".nextStep; 

end; {while currentTask".nextStep <> nil} 
writeln; 
write ('After which step do you wish to insert? '); 
readln (tempString); 
currentTask := firstAction; 
found := FALSE; 
while (currentTask" .nextStep <>nil) AND (NOT found) do 



228 Introduction to Advanced Concepts 

if (currentTask ... action = tempString) then 
found :=TRUE 

else 
currentTask := currentTask".nextStep; 

if (NOT found) then 
begin 

writeln; 
writeln ('Sorry, that"s not in the list!!'); 
writeln ('Try the program again and write down your steps .. .'); 

end 
else 
begin 

writeln; 
write ('What do you wish to insert? '); 
readln (addTemp ... action); 
writeln; 
save Temp := currentTask ... nextStep; 
currentTask".nextStep := addTemp;{make previous point to add} 
addTemp ... nextStep := save Temp; . 
currentTask .. := firstAction; {go back to beginning} 
ClearScreen; 
writeln ('Here"s your new list:'); 
while (currentTask ... nextStep <>nil) do 
begin 

writeln (' ', currentTask ... action); 
currentTask := currentTask ... nextStep; 

end; {while (currentTask ... nextStep <>nil)} 
end; {else (found)} 
write In; 
write ('Press any key to continue .. .'); 
aChar := ReadChar; 

dispose (firstAction); 
dispose (currentTask); 
dispose (saveTemp); 
dispose (addTemp); 

end. {program Pointers} 

Let's look closer at the Pointers program by first studying our pointer type 
declaration: 

StepPointer = .. Step; 
Step = record 

action : String; 
nextStep : StepPointer; 

end; 



Almost Everything In Life Has a Polnt(er)I 229 

This declaration is read as "StepPointer points to a Step record, which 
consists of two fields. The first field is called action and is a String type, and 
the second field is called nextStep and is a StepPointer type." Two new items 
have been introduced to you in this declaration: 

1. Declaring StepPointer to be of type Step, normally would generate an 
error message, since Step is not yet declared. However, if I declare Step 
first, I will also have declared nextStep as type StepPointer, which has 
not yet declared. This appears to be Catch-22, but Pascal realizes this, 
and by convention you should always declare the pointer first, and then 
if necessary declare the type to which it points immediately afterward. 
I have done so by declaring first the type StepPointer and then Step, 
the type to which StepPointer points. 

2. Within the pointer declaration of Step, I declared another pointer
nextStep: StepPointer. As you will see shortly, this permits a record for 
each of daily morning task and a field in the record that points to the 
next task. 

The program begins by performing a new on four pointer types, which 
are explained in the comments. The next step is to assign Wake Up to cur
rentTask".action; that says that the current task is Wake Up. The FirstAction 
pointer is set equal to currentTask to provide a reference point to the first task; 
that is, after I change the value of currentTask, I will still have firstAction 
pointing to the beginning of the series of events. 

Done is initialized to FALSE, setting off a while loop. Within this while 
loop the program will continue adding items to the list until a Return 
is pressed with no data. Next a new currentTask".nextStep provides the 
currentTask with a location that holds the value of the nextStep. Assuming 
this is the first time through the while loop, I now have a pointer to the first 
event (firstAction); WakeUp is the currentTask; and currentTask will point 
to the next event, currentTask".nextStep. Next a request is made for the user 
to enter the next step; you might enter Read Paper. If nothing is entered but 
Return is pressed in response to currentTask" .action = ", the user is finished 
and done set to TRUE. When this while loop is complete, currentTask is 
set to nil, so the last event in the series, Leave Home, points to nothing. 
The current task is then set equal to firstAction, the beginning of the list, to 
display the steps for the user. A while loop displays currentTask" .action and 
then sets currentTask equal to currentTask" .nextStep. The display keeps on 
moving through the list until currentTask" .nextStep is nil. 

The lines of code up to this point in the program are all you need to build 
a linked list, which has a definite order defined by pointer values to each 
next item in the list. The remaining code shows how to insert an item in the 



230 Introduction to Advanced Concepts 

linked list. TemptString prompts the user to enter the name of the item, after 
which he or she wishes to insert another item. CurrentTask is made to point 
at the beginning of the list by assigning it the value of firstAction, and the 
Boolean found is set to FALSE. A while loop continues to search the linked 
list for the item, and if it is located, found is set to TRUE; otherwise the 
loop continues to search until either the end of the list is encountered or the 
item is located. If the item is not in the list, a message suggests running the 
program again. If the item is located, the user is asked what to insert. Notice 
that currentTask now points to the item before the insert. So a temporary 
variable, saveTemp, mimics currentTask".nextStep to preserve this value and 
make currentTask".nextStep point to the new item. Finally, the new item is 
made to point at the previous value of currentTask" .nextStep by assigning it 
the value of saveTemp. The three statements 

save Temp := currentTask" .nextStep; 
currentTask".nextStep := addTemp; 
addTemp" .nextStep := save Temp; 

are the fundamental statements used to manipulate the linked list so that a 
new item may be inserted. Study them carefully and be sure to understand 
their significance before you do any work with linked lists. 

Finally, by moving currentTask to the beginning of the list again, the 
program displays the updated linked list. A dispose is performed on all the 
pointer variables, making available any memory they were using. This last 
step has little significance in the program Pointer, since it takes place at the 
end of the program, but if there were more statements after the disposes, there 
would be more memory available to other variables. This is the foundation 
of dynamic storage allocation: use only the memory absolutely necessary for 
that portion of the program. Now take a look at some other item-handling 
methods: stacks, queues, and trees. 

Further study-stacks, Queues. and Trees 
There are several different ways of handling items for processing by a 
program. I have shown how to store elements in arrays and go through the 
array to find a particular element. I have also shown how to use pointers to 
keep track of events in your morning ritual. The first two processing strategies 
mentioned above, stacks and queues, are quite similar in that their ordering 
is linear; you can go straight down a sequence of items and determine which 
one is next to be processed. 

A stack is just like the tray bin at your local cafeteria: data, or trays, are 



Fig. 10.1. 

Further Study-Stacks, Queues, and Trees 231 

processed, or used, in order from the top down. When people go through the 
line of a cafeteria they take the next available tray off the top of the stack. 
When clean trays are returned to the stack, they are placed at the top of the 
stack. This leads to what is commonly referred to as a last-in-first-out, or 
LIFO, traffic because the last tray put onto the stack is the next one taken 
off. 

In contrast, a queue is a first-in-first-out, or FIFO, strategy, analogous to 
the line in a bank, where the first customer in line is the first one served. 
When new items are placed into the queue they are placed at the end and 
are processed after all previously entered items. 

These two methods of processing data may be implemented using an array. 
To use an array for a stack, place each new item at the next available index 
and take each item to be processed off the top of the stack. This means that 
you must know the top item's index at all times; an integer variable can be 
used for this purpose. If an array is used to simulate a queue, things get a bit 
more complicated. Place new items at the next available index location, but 
when you take an item from the queue, you must remove it from the bottom, 
or index 1, and slide all the remaining items down the array so that index 
item 2 gets moved to index 1, index item 3 get moved to index 2, and soon. 
Two common problems in this sort of programming: 

1. Trying to remove an item from an empty stack or queue. 
2. Placing one too many items in a stack or queue. 

Both of these problems may be avoided by carefully coding and using arrays, 
but they could more logically be avoided with pointers and linked lists. 

The final topic of this chapter is binary trees. You saw in Chapter 8 how 
a binary search can quickly deduce a number between 1 and 100. The logic 
behind a binary tree is very similar to that of the binary search. A binary 
tree may be used to arrange items so they are more easily retrieved for the 
processing. For example, I wish to sort these numbers: 4 7, 3, 17, 29, 81, 1, 
and 12 so I can quickly say whether a particular number is in our list. I start 
out by placing the first number, 47, at the top of the tree and examining 
the next number to determine whether it is less than or greater than the first 
number; since it is 3, it is less, and so I place the 3 below and to the left of 
the 47 as shown in Figure 10.1. 



232 Introduction to Advanced Concepts 

Fig. 10.2. 

Fig. 10.3. 

Fig. 10.4. 

The next number, 17, is less than 47, so I go to the left of 47 and find 3. 
Since 17 is greater than 3, I go to the right of 3 and find nothing there. I 
place the 17 below and to the right of the 3 as shown in Figure 10.2. 

The next number, 29, is less than 47, so I look to the left and again find the 
3. Since 29 is greater than 3, I look to the right of 3 and find 17. Again, 29 
is greater than 17, so I look to the right of 17. Finding nothing, I place 29 
below and to the right of 17 as shown in Figure 10.3. 

I use the same process to place 81, 1, and 12 on the tree so that the final 
tree looks like Figure 10.4. 

,/·~1 
1/\, 

/\ 
12 29 



Further study-stacks, Queues. and Trees 233 

In this binary tree 4 7 is the base from which all sorting and searching begins. 
The simple pattern for inserting numbers is to compare the new number to 
the current base and Look for a new base or empty slot to the left if the new 
number is less than the base and to the right if the new number is greater 
than the base. I continue to search for a place to insert the new number until 
I find an empty slot. You can see that the final configuration of numbers 
looks very much like an upside-down tree or the roots of a tree. 

Each number in the tree has two nodes associated with it. For 4 7 the left 
node is 3 and the right node is 81. Some of the numbers in the trees have no 
value for either node. For example, 1 has no values for its left or right nodes. 
It is also possible for a number to have only one node with a value, although 
none of the numbers in this tree fall into this category. 

To code a Pascal program to create a binary tree, this pointer type is very 
appropriate: 

Type 
BinaryPointer = .. BinPtrType; 
BinPtrType = record 

number : integer; 
leftNode : BinaryPointer; 
rightNode : BinaryPointer; 

end; 

This declares a variable, BinaryPointer, to represent current location on the 
tree. I need another variable of this type to point to the base of the tree. To 
insert a number, compare it against the current spot in the tree and go either 
left or right to check further. When you find LeftNode to be nil (assuming 
the new number is less than the current number) or RightNode to be nil 
(assuming the new number is greater than the current number), make that 
directional node point to the new number, since the current number points 
to nothing in that direction. Continue to search for a number until you find 
a nil, which means that the number is not in the list. 

Stacks, queues, and trees are only some of the techniques used to arrange 
and sort items for processing. With the assistance of pointers and linked 
lists you can use them effectively, but be extra cautious to avoid the errors 
that may arise when using this dynamic storage type; watch out for disposing 
of a necessary pointer and for trying to access what is pointed at by a nil 
pointer. 



234 Introduction to Advanced Concepts 

Review Summary 

Quiz 

1. Recursion is the act of a procedure or function calling itself repeat
edly. One of the most popular examples is the mathematical factorial 
function. 

2. A pointer is useful for dynamically allocating memory space, or occu
pying memory only when necessary. 

3. A handle is a pointer to a pointer. Handles permit the compression of 
occupied memory. 

4. A linked list is organized so that the first item points to the second, the 
second to the third, and the final item points to nothing, or nil. 

5. Last-in-first-out, or LIFO, is an item organization method in which the 
last item in the group is the first to get processed, similar to the stack 
of trays in a cafeteria. 

6. First-in-last-out, or FIFO, is an item organization method in which the 
first item in the group is the first to get processed, similar to the line of 
customers in a bank or grocery store. 

1. Why is it not a good idea to incorporate recursive routines in Pascal 
programs? 

2. In the daily ritual linked list, why was it easier to use a linked list with 
pointers than an array to represent the list? 

3. How would the following sequence of numbers be organized in a binary 
tree: 1, 3, 4, 5, 2? 

4. What is the difference between a stack and a queue? 



-11-----
More on Records 
and Files 
Flelds, Records, and Flies 
Flies versus Arrays of Records 
Fll•Handllng Library Procedures 
Using a Fiie In a Phon•Book Program 
Sorting and Merging Records 
Variant Records 
Review Summary 
Quiz 

In this chapter you will learn: 
• About the organization of fields within records and records within files. 
• The similarities between files and arrays of records. 
• Some of the most useful file-handling library routines. 
• How to sort and merge records within a file. 
• What variant records are and how to use them. 

Fields, Records, and Files 
Every day people deal with files of many different types. The phone book is 
one of the most obvious examples of a file. It consists of numerous entries 
containing the names, addresses, and phone numbers of local residents. Below 
is a portion of a sample phone book: 

Craig, Janet E. 
Johnson, Ralph 
Mackowick, Paul 
Zimmerman, Larry 

451 Emerson Rd. 
1121 Elm Place 
1487 Altaview Ave. 
1234 Maple Ave. 

555-1200 
555-1201 
555-1202 
555-1203 

The entire book is a file, each entry is a record, and each record has three 
fields: name, address, and phone number. The following type could represent 
a phone-book record: 



236 More on Records and Flies 

PhoneBookType = record 
name : String; 
address : String; 
number : String[B); 

end; 

If phBkVar were declared to be of type PhoneBookType, the fields of the 
record would read like this: 

write ( 'What is the person's name? ' ); 
readln ( phBkVar.name ); 
write ('What is their address? '); 
readln ( phBkVar.address ); 
write ( 'What is their phone number? ' ); 
readln ( phBkVar.number ); 

These would go into a Pascal file, but since you don't know how to do 
this yet, look at an alternative. 

Flies versus Arrays of Records 
If I wanted to work with several phone-book records within a program, I 
could declare a variable like this: 

Var 
phBkArray : array[ 1..10 ] of PhoneBookType; 

This allows me to read in up to 10 records like this: 

for i := 1 to 10 do 
begin 

write ( 'What is the person's name? ' ); 
readln ( phBkArray[ i ].name ); 
write ( 'What is their address?'); 
readln ( phBkArray[ i ].address ); 
write ( 'What is their phone number? ' ); 
readln ( phBkArray[ i ].number ); 

end; 

This array can be sorted alphabetically by last name, by phone number, 
or by street address. The main problem arises when saving the information 
for future use; when the program ends, the array's contents are forever lost. 



Fiie-Handling Library Procedures 237 

Although you could have declared a larger array, you will always be limited 
by the size of the array if you want to work with many more records. 

The Pascal file type can simplify this problem. I declare a file within the 
program such as this: 

Type 
PhoneBookType = record 

name : String; 
address : String; 
number : String[8]; 

end; 

Var 
phoneFile : file of PhoneBookType; 

This declaration will later allow me to place multiple PhoneBookType 
records on a disk so that I can later retrieve and manipulate them. The file is 
the obvious choice for storing phone book records, since the information may 
be retrieved after the program has been terminated and since the number of 
records is usually limited only by the available disk space. The manipulation 
of files involves several major Pascal procedures: rewrite, reset, read, write, 
and close. 

Flle-Handllng Library Procedures 
In order to open a file for rewriting, use this procedure: 

rewrite ( ProgFlleName, DlskFlleName ); 

ProgFileName is the file variable that calls up the file, and DiskFileName is 
the name of the file as it appears on the disk or on the Macintosh desktop. 

In order to open a file for subsequent reading, the reset routine is used as 
follows: 

reset ( ProgFlleName, DiskFlleName, [BuffSize] ); 

The first two parameters represent the same items as in rewrite above, and 
the optional (as denoted by the brackets) parameter BuffSize specifies the 
size of the buffer to use for reading (usually 512 bytes) and is used only for 
TEXT files. 



238 More on Records and Flies 

Once you have opened a file, you may read or write to it using these 
procedures: 

read ( ProgflleName, Component ); 
write ( ProgFlleName, Component ); 

Again, ProgFileName is the file variable and Component is the item you 
wish to read or write from or to the file. 

When you are finished with a file, always close it with this procedure: 

close ( ProgflleName ); 

Always use a corresponding close upon every opened file. If you do not follow 
that simple rule, you may end up with many problems in your programs. 

When reading from a file, do not attempt to read beyond the last record, 
since there is nothing there. The Boolean EOF (End Of File) function is used 
to detect this situation and may be expressed like this: 

while NOT EOF ( phoneFILE) do 
{perform your reading, etc.} 

EOF ( phoneFile ) will return TRUE if you have reached the end of the file, 
or FALSE if there is still at least one more record in the file. 

The file-handling routines described up to this point are the standard ones 
in almost any version of Pascal on other machines. Turbo Pascal offers several 
other routines that may be used in their place. Take a look at the most useful 
of these Turbo-based file routines. 

Instead of using reset or rewrite to open files, Turbo offers the functions 
FSOpen and Create, which use MemTypes, QuickDraw and OSintf, so you 
have to specify them in a Uses statement. The syntax for FSOpen is 

result := FSOpen ( FName, FNum, RefNum ): 

where the result is an OSErr, which is defined in OSintf as an integer. OSintf 
also declares several constants, for example FNFErr, which may be checked 
against result for the file status. The parameter FName is the name of the file 
in string format; FNum is the number to associate with the file; and RetNum 
is the reference number returned from FSOpen. This number is used for 
identification in subsequent accesses to the file. 



Fll•Handllng Library Procedures 239 

ff you try to open a file via FSOpen and the result is FNFErr (file not 
found error), you'll need to Create it like this: 

result := Create ( FName, RefNum, Creator, FlleType ); 

FName and RetNum are the same parameters as in FSOpen; Creator is a four
character ID you specify as the file creator; and FileType is a four-character 
ID you specify as the file's type. These last two parameters may be set as you 
deem appropriate. For example, in a program that writes telephone numbers 
to a file I have specified the Creator as "PHNE" and the type of file as 
"NUMS." 

When you open a file, you find yourself at the beginning of it ff you want 
to append it, use the function SetFPos, whose syntax is 

result := SetFPos ( RefNum, Mode, Offset ); 

where RetNum is the reference number and Mode, the type of offset you 
specify, is one of four constant values: 

FSAtMark 0 
FSFromStart 1 
FSFromLEOF 2 
FSFromMark 3 

Offs~t derives from what you have specified as the Mode. For example, to 
find the end of a file, do it like this: 

result:= SetFPos ( refNum, FSFromLEOF, 0 ); 

Once you have the file pointer correctly situated, you can write to it via 
the function FSWrite, whose syntax is 

result := FSWrlte ( RelNum, Size, BufrPtr ); 

where RetNum is as defined previously; Size is the size of the buffer to be 
written; and BufrPtr is the address of the item to be written. ff I have properly 
opened a file and wish to write a record to it, I can do so like this: 

recSize := SizeOf ( phoneRecord ); 
result:= FSWrite ( refNum, recSize, @phoneRecord ); 



240 More on Records and Flies 

where phoneRecord is defined like this: 

Type 
PhoneType = record 

firstName: String[ 10 ]; 
lastName : String[ 10 ); 
number : String[ 8 ); 

end; 

Var 
phoneRecord : PhoneType; 

You may wonder what the @ before phoneRecord means. This tells the 
Turbo compiler to pass the address of phoneRecord and not the variable 
itself; remember that the final parameter (BufrPtr) of FSWrite is an address. 
You can specify the address of any variable by placing the @, or address 
operator, before its name. 

If you wish to read from the file rather than write to it, use the function 
FSRead, whose syntax is 

result := FSRead ( RefNum, Size, BufrPtr ); 

Each of these parameters is the same as those listed with FSWrite. 
When finished with a file, close it via FSClose with the following syntax: 

result := FSClose ( RefNum ); 

If you just finished writing to the file, you should always call Flush Vol after 
FSClose like this: 

result := FlushVol ( StrngPtr, FNum ); 

where StrngPtr may be a nil pointer and FNum is the number specified in 
FSOpen. 

As we have mentioned, the Result may be one of several constants declared 
in OSintf, and it should be checked after any 1/0 but is most commonly 
viewed only after FSOpen to see if the file exists or not. 

Using a File in a Phone-Book Program 
The concepts described above are brought out in this program, which may 
be used to keep your own private phone book on a Macintosh disk: 



Using a Fiie In a Phone-Book Program 241 

Program PhoneBook; 

(*****************************************************************) 

(*This program illustrates the use of various file
(* accessing routines available in Turbo Pascal. 

*) 
*) 

(*****************************************************************) 

Uses 
MemTypes, QuickDraw, Oslntf; 

Type 
PhoneType = record 

firstName: String[10]; 
lastName : String(10); 
number :. String[B]; 

end; 

Var 
userFileName: String[10]; 
response : char; 
done : boolean; 
phoneRecord : PhoneType; 
anErr : OSErr; 
refNum 
recSize 

: integer; 
: longint; 

Procedure AddRecord; 

{phone-book file type} 
{entry's first name} 
{entry's last name} 
{entry's phone number} 

{user's phone book file name} 
{menu selection} 
{are we finished?} 
{var for writing/reading PhoneFile} 
{errors returned from file rou•ines} 
{file path reference number} 
{tells file routines how large record is} 

begin {procedure AddRecord} 
write ('What is this person"s first name? '); 
readln (phoneRecord.firstName); 
write ('What is this person"s last name? '); 
readln (phoneRecord.lastName); 
write (What is this person"s phone number? (e.g. 555-1212) '); 
readln (phoneRecord.number); 
anErr := FSOpen (userFileName, 0, refNum); 
(*****************************************************************) 

(* Find the end of the file so that we can append. *) 
(*****************************************************************) 

anErr := SetFPos (refNum, fsFromLEOF, O); 

anErr := FSWrite (refNum, recSize, @phoneRecord); 
anErr := FSClose (RefN.um); 
anErr := FlushVol (nil, 0); 

end; {procedure AddRecord} 



242 More on Records and Flies 

Procedure SearchFile; 

Var 
findName: String[10); 
found : boolean; 

{name user wants to search for} 
{have we found the name yet?} 

begin {procedure SearchFile} 
write ('What is the last name you wish to search for? '); 
readln (findName); 
anErr := FSOpen (userFileName, 0, refNum); 
found:= FALSE; 
while (NOT found) AND (an Err<> EOFErr) do 
begin 

anErr := FSRead (refNum, recSize, @phoneRecord); 
if (phoneRecord.lastName = findName) then 

found := TRUE; 
end; 
writeln; 
if found then 
begin 

write (phoneRecord.firstName,' ', phoneRecord.lastName, '"S'); 
writeln ('phone number is:', phoneRecord.number); 

end 
else 

writeln ('Your file contains no number for,' findName); 
anErr := FSClose (refNum); 
(*****************************************************************) 

(* Display info until user is finished reading it. *) 
(*****************************************************************) 

write In; 
write In; 
writeln(' Press any key to continue'); 
response := ReadChar; 

end; {procedure SearchFile} 

begin {main program PhoneBook} 
recSize := SizeOf (phoneRecord); 
done:= FALSE; 
write ('Enter your file"s name and press <RETURN> .. .'); 
readln (userFileName); 
if userFileName ="then 

userFileName := 'Nameless'; 
(*****************************************************************) 

(* Need to check to see if this file exists first. 
(* If it doesn't, we need to create it. 

*) 
*) 



Using a Fiie In a Phone-Book Program 

(*****************************************************************) 

anErr := FSOpen (userFileName, 0, refNum); 
if anErr = fnfErr then {File not found error} 

anErr :=Create (userFileName, refNum, 'PHNE', 'NUMS') 
else 

anErr := FSClose (refNum); 

while NOT done do 
begin 

ClearScreen; 
writeln; 
write In; 
writeln ('Which do you wish to do:'); 
writeln; 
writeln (' 
writeln (' 
writeln (' 
write In; 

1. Add a record to the file'); 
2. Search the file'); 
3. QUIT'); 

write ('PLEASE ENTER A 1, 2, OR 3 '); 
response := ReadChar; 
ClearScreen; 
case response of 

'1 ': AddRecord; 

'2': SearchFile; 

'3': done := TRUE; 

otherwise; 
end; 

end; 
end. 

{case Response} 
{while not done} 
{program PhoneBook} 

This program may be used to create your own disk-based phone book 
file, add records to it, and search for particular entries. Figure 11.1 shows an 
example ·of the program's interactive output. 

PhoneType is a type of record written to.the file; it has fields for first and 
last names and phone numbers. The program contains the main program and 
two procedures, AddRecord and SearchFile, which place an entry at the end 
of the file and find a particular entry within the file respectively. 

The main program asks for a file name (userFileName) to use in the 
remainder of the program. If the user presses Return with no name, the default 
"Nameless" is assigned to the file. The program menu, including the options 
to add a record, search the file, and quit the program, is displayed. Depending 



244 More on Records and Files 

,.. 

BaseBall 

What is this p I a•der' s name? J ohnson 

~·lr1at is this p I ayer ' s positi on? Shorts top 

What i s th i s player 's batting average? 301 

~·lha t i s th i s p I ayer ' s spot i n the ba tt i ng order ( i . e . 2 )? 4 

upon the selection either AddRecord or SearchFile will be invoked, or Done 
will be set to TRUE and the program will be terminated. 

When AddRecord is invoked, the procedure requests the first name, last 
name, and phone number of the record to be added to the file. The file is 
opened and the end of the file is located via this code: 

anErr := SetFPos ( refNum, FSFromLEOF, O ); 

After the end of file is found, the record is written (FSWrite), the file is closed 
(FSClose), and the output is flushed (FlushVol). 

When SearchFile is called, the user is asked which last name he or she 
wishes to locate in the file. The file is opened, and the search is begun through 
a while loop that continues until either the last name is found or end of file is 
reached (EOFErr). If the name is found, the entire name is displayed along 
with its phone number; otherwise a message explains that the name is not in 
the file. In either situation the file is closed (FSClose) before returning to the 
main program. 

The phone-book program creates a very simple file; there is no real order 
to the records within the file. When a new record is added to the file it is 
placed at the end, not in alphabetical order like your local phone book. This 
should not create a problem for a small file that is infrequently used, but 



Sorting and Merging Records 

if there are quite a few entries in the file and you search it often, it would 
be nice to not have to look at almost every record in the file to find the 
one you want. If the file is stored in alphabetical order, there is a noticeable 
difference in speed when accessing a particular record. Before you do this, I 
must discuss the concepts of sorting and merging records. 

Sorting and Merging Records 
The phone book is a list of names and numbers in alphabetical order. If 
the book were not in any order, it would take hours to find the number of a 
friend. My phone book program has just that problem, but since the computer 
can search files so quickly, this time goes almost unnoticed unless the file is 
quite large. In order to make my phone book program create a file similar to 
the phone book, I must sort the records in the file before actually writing to 
and closing it. If I need to add a record that would be the last record in the 
file, I simply add it to the end as in the original program. But when I need 
to insert the record at the beginning or between two existing records, I must 
make room for the new entry and merge it with the existing records. The 
following program has the modifications necessary to create an alphabetical 
phone-book file; 

Program SortPhoneBook; 

{$R+} 

(*****************************************************************) 

(* This program illustrates the use of sorted files. *) 
(*****************************************************************) 

Uses 
MemTypes, QuickDraw, Oslntf; 

Type 
PhoneType =record 

firstName: String[10); 
lastName : String[10); 
number : String[8]; 

end; 

Var 

{phone-book file type} 
{entry's first name} 
{entry's last name} 
{entry's phone number} 

userFileName : String[10); {user's phone-book file name} 
phoneArray : array[1 .. 50]of PhoneType; {array for sorting} 



246 More on Records and Flies 

response : char; 
done : boolean; 
phoneRecord : PhoneType; 
index, counter : 0 .. 50; 
anErr : OSErr; 
refNum : integer; 
recSize : longint; 

Procedure lnsertAndSort; 

Var 
locatedSlot : boolean; 

dummy : 0 .. 50; 

begin 
locatedSlot := FALSE; 
counter := 1; 

{menu selection} 
{are we finished?} 
{var for writing/reading PhoneFile} 
{PhoneArray index} 
{errors returned from file routines} 
{file path reference number} 
{tells file routines how large record is} 

{have we found the spot to insert 
record?} 

{used to slide array elements down} 

{procedure lnsertAndSort} 

while (counter<= index) AND (NOT locatedSlot) do 
begin 

if (phoneArray[counter].lastName <phoneRecord.lastName) then 
counter := counter + 1 

else 
locatedSlot := TRUE; 

end; {while (counter<= index) AND (NOT 
locatedSlot)} 

for dummy:= index downto counter do 
phoneArray[Dummy + 1) := PhoneArray[Dummy); 

phoneArray[counter] := phoneRecord; 
end; {procedure lnsertAndSort} 

Procedure AddRecord; 

Var 
dummy : 0 .. 50; {used as index for writing to file} 

begin {procedure AddRecord} 
index:= 1; 
anErr := FSOpen(userFileName, 0, refNum); 
while (an Err<> EOFErr) do 
begin 

anErr := FSRead (refNum, recSize, @phoneArray[index]); 
index:= index+ 1; 

end; 
anErr := FSClose (refNum); 



Sorting and Merging Records 247 

ClearScreen; 
write ('What is this person"s first name? '); 
readln (phoneRecord.firstName); 
write ('What is this person"s last name? '); 
readln (phoneRecord.lastName); 
write ('What is this person"s phone number? (i.e. 555-1212) '); 
readln (phoneRecord.number); 
I nsertAndSort; 
(*****************************************************************) 

(* If we use the Create function, we can rewrite 
(* the file with the new record in sorted order. 

*) 
*) 

(*****************************************************************) 

anErr := Create (userFileName, refNum, 'PHNE', 'NUMS'); 
anErr := FSOpen (userFileName, 0, refNum); 
for dummy := 1 to index + 1 do 

anErr := FSWrite (refNum, recSize, @phoneArray[dummy]); 
anErr := FSClose (refNum); 
anErr := FlushVol (nil, O); 

end; 

Procedure SearchFile; 

Var 
findName: String[10); 
found : boolean; 
beyond : boolean; 

{procedure AddRecord} 

{name user wants to search for} 
{have we found the name yet?} 
{have we gone alphabetically beyond 

the name?} 

begin {procedure SearchFile} 
beyond:= FALSE; 
ClearScreen; 
write ('What is the last name you wish to search for? '); 
readln (findName); 
anErr := FSOpen (userFileName, 0, refNum); 
found := FALSE; 
writeln; 
while (NOT found) AND (anErr <> EOFErr) AND (NOT beyond) do 
begin 

anErr := FSRead (refNum, recSize, @phoneRecord); 
if (phoneRecord.lastName = findName) then 

found := TRUE 
else if (phoneRecord.lastName > findName) then 

beyond := TRUE; {we have alphabetically searched 
beyond the name} 

end; 



248 More on Records and Flies 

if found then 
begin 

write (phoneRecord.firstName,' ', phoneRecord.lastName, '"s'); 
writeln ('phone number is:', phoneRecord.number); 

end 
else 

writeln ('Your file contains no number for', findName); 

(*****************************************************************) 

(* Allow user to read screen before proceeding. *) 
(*****************************************************************) 

write (' Press any key to continue .. .'); 
response := ReadChar; 
anErr := FSClose (refNum); 

end; {procedure SearchFile} 

begin {main program SortPhoneBook} 
recSize := SizeOf (phoneRecord); 
done := FALSE; 
write ('Enter your file"s name and press <RETURN> .. .'); 
readln (userFileName); 
if userFileName = " then 

userFileName :='Nameless'; 

(*****************************************************************) 

(* Need to check to see if this file exists first. 
(* If it doesn't, we need to create it. 

*) 
*) 

(*****************************************************************) 

anErr := FSOpen (userFileName, 0, refNum); 
if anErr = fnfErr then {File not found error} 

anErr := Create (userFileName, refNum, 'PHNE', 'NUMS') 
else 

anErr := FSClose (refNum); 

while NOT done do 
begin 

ClearScreen; 
write In; 
write In; 
writeln ('Which do you wish to do:'); 
writeln; 
writeln (' 1. Add a record to the file'); 
writeln (' 2. Search the file'); 
writeln (' 3. QUIT'); 
writeln; 



Sorting and Merging Records 249 

write ('PLEASE ENTER A 1, 2, or 3 '); 
response := ReadChar; 
write In; 
case response of 

'1' : AddRecord; 

'2': SearchFile; 

'3' : Done := TRUE; 

end; 
end; 

end. 

{case response} 
{while NOT done} 
{program SortPhoneBook} 

This new program uses a phoneArray that can hold up to 50- records and 
that is used to sort the file before writing it to disk. The procedure Add.Record 
has been changed to read the file into the array and then call InsertAndSort. 
This procedure finds where the insertion should be made, ·slides all subsequent 
records down one position in the array, and places the new record in its proper 
position. Finally, the procedure SearchFile no longer simply searches the file 
until it finds either the record or the end of the file; it knows that the file 
is arranged alphabetically, so once it gets past the point where the record 
should be, it quits. For example, if you are searching for the name Boyle and 
you come to the name Carlson, you have gone too far and the name is not 
in the file. 

You probably will not notice much difference in this version of the pro
gram, but to see how the file itself is completely different, use the following 
program to display the contents of your phone-book file. 

Program DisplayPhoneBook; 

(*****************************************************************) 

(* This program may be used to display the phone- *) 
(* book file created via the PhoneBook program *) 
(* presented earlier. *) 
(*****************************************************************) 

Uses 
MemTypes, QuickDraw, OSlntf; 

Type 
PhoneType = record 

firstName: String[10]; 
{phone-book file type} 
{entry's first 11ame} 



250 More on Records and Flies 

lastName : String[10]; 
number : String[S]; 

{entry's last name} 
{entry's phone number} 

end; 

Var 
phoneRecord : PhoneType; 
userFileName: String[10]; 

{var for writing/reading PhoneFile} 
{name of user's file} 

fileExists : boolean; 
anErr : OSErr; 
aChar : char; 

{did the user enter an existing file?} 
{errors returned from file routines} 
{used for "Press any key to ... "} 

refNum : integer; {file path reference number} 
recSize : longint; {tells file routines how large record is} 

begin {main program DisplayPhoneBook} 
fileExists :=FALSE; 
while NOT fileExists do 
begin 

ClearScreen; 
write ('Enter your file"s name and press <RETURN> .. .'); 
readln (userFileName); 
if userFileName = " then 

userFileName := 'Nameless'; 
(*****************************************************************) 

(* Does the file exist? *) 
(*****************************************************************) 

anErr := FSOpen (userFileName, 0, refNum); 
if anErr = fnfErr then {File not found error} 
begin 

writeln ('That file doesn"t exist...'); 
writeln ('Press any key to continue .. .'); 
aChar := ReadChar; 

end 
else 

fileExists := TRUE; 
end; 
write In; 
recSize := SizeOf (phoneRecord); 
while (FSRead(refNum, recSize, @phoneRecord) <> EOFErr) do 

writeln (' ', phoneRecord.firstName,' ', 
phoneRecord.lastName,' ',phoneRecord.number); 

(*****************************************************************) 

(* Now await input to continue. *) 
(*****************************************************************) 



Variant Records 251 

writeln; 
write (' Press any key to continue .. .'); 
aChar := ReadChar; 
anErr := FSClose (refNum); 
end. {program DisplayPhoneBook} 

With a good understanding of records and how they may be written to 
disk files, take a look at a special type of record, the variant record. 

Variant Records 
Now that you know how to write files to disks, say you want to write a 
program to keep some statistics on your favorite athletes. Maybe you have 
four favorite sports: baseball, basketball, football, and hockey. Further, all 
you wish to maintain is the player's name, what sport he plays, and some 
statistics about offensive play, so you come up with a structure like this: 

Type 
SportType = (Baseball, Basketball, Football, Hockey); 

SportRecord = record 

end; 

playerName : String[40]; 
whatSport : SportType; 
atBats : integer; 
hits : integer; 
walks : integer; 
runs : integer; 
twoPtFieldGoals : integer; 
threePtFieldGoals : integer; 
freeThrows : integer; 
touchDowns : integer; 
goals : integer; 
assists : integer; 

{baseball stats} 

{basketball stats} 

{football stat} 
{hockey stats} 

You can subsequently define a variable to be of type SportRecord and use 
it in a program, having read in the name, sport, and statistics. The size of 
this record is 64 bytes: String[ 40 ] takes 42 including the length indicator 
(plus-pad byte); whichSport takes 1 plus the pad byte; and the statistics require 
10 2-byte integers. So every time you write one of these records to a file, you 
are writing 64 bytes. What if most records are for football players? You need 
to write only 46 bytes of information, since the only fields used for football 



252 More on Records and Flies 

are playerName, whichSport and touchDowns. This appears to be a waste of 
space, since the other nonrelated fields in the record have to be written but 
don't contain any information. One way to avoid wasting space is to use a 
variant record, a structure that allows you to define a particular data space 
to be called up by different names. In other words, you can overlay your data 
fields. In order for you to be able to use an overlay structure like a variant 
record, some of the fields in the record structure must be mutually exclusive. 
Fortunately, several groups of fields in SportRecord are not used at the same 
time, so you can set it up as a variant record like this: 

Type 
SportType = (Baseball, Basketball, Football, Hockey); 

SportRecord = record 
playerName : String[40]; 
whichSport : SportType; 
caseSportType of {variant part} 

Baseball : (atBats: integer; 
hits : integer; 
walks : integer; 
runs : integer); 

Basketball : (twoPtFieldGoals : integer; 
threePtFieldGoals : integer; 
freeThrows : integer); 

Football : (touchdowns : integer); 
Hockey : (goals : integer; 

assists : integer); 
end; 

This declaration starts just like the earlier one, with PlayerName and 
whichSport. However, immediately after that begins the declaration of a 
variant with a case statement. This case statement is different from the 
one you have seen previously. Instead of branching the program control to 
different blocks of Pascal statements, it is used in the variant record to show 
what the variant portions are based on. In this case the variant portion is 
broken up by SportType. So for each SportType a block of variables looks 
like this: 

Enumeratedltem : (Var1 : Var1Type; 
Var2 : Var2Type; 

VarN : VarNType); 



Review Summary 253 

where Enumeratedltem is one of the possible values of the case type; for 
example, Baseball is one of the values for the SportType. The list of variables 
associated with that variant portion is then placed within parentheses. Finally, 
the structure is completed with the end statement. The functionality of the 
record structure is not changed; if playerRec is declared as a SportRecord, 
you still refer to each field like this: 

playerRec.atBats 

or 

playerRec.whichSport 

The most significant task so far accomplished is that the total record size has 
been decreased from 64 bytes to 52 bytes without sacrificing any function. 
The record size is smaller because the separate sport blocks overlay each 
other so that no space is reserved for empty categories. The largest block 
is the one for Baseball, which has four 2-byte integers. The total length of 
SportType is the sum of the fixed fields and the longest variant portion: 

playerName 42 bytes 
whichSport 2 bytes 
Baseball 8 bytes 

5 2 fixed bytes 

BaseBall is the longest variant portion at four 2-byte fields. 
When using a variant record, it is the programmer's job to make sure 

always to look at the correct variant block. For instance, don't look at atBats 
when working with a hockey player. This is no different from working with 
the original SportType. Note that if you know the value of whichSport, you 
can determine exactly which variant block to use. 

You have just completed one of the most important chapters in this book, 
all about working with disk-based files and record structures to write even 
the most sophisticated of programs. Be sure to take another look over the 
major topics of this chapter before moving on to our next subject, debugging. 

Review Summary 
1. The EOF (filename) function is the end-of-file status, which is set to 

TRUE when there are no more records in the file. 
2. Turbo Pascal supports the standard Pascal file 110 routines such as 

reset, close, read, and write, but more important, it offers several other 



254 More on Records and Flies 

Quiz 

1/0 routines that permit more flexibility and better error handling. The 
most useful of these routines are Create, FSOpen, FSClose, SetFPos, 
FSWrite, FSRead, and FlushVol. 

3. The operator @ may be used to determine the address of a variable by 
placing it before the variable's name; for instance, address:= @myVar;. 

4. Sorting is the act of organizing records in a particular order, for example 
alphabetically or numerically. 

5. Merging is the act of combining a set of records with existing records 
so that the entire new file is properly sorted. 

6. A variant record structure allows you to overlay mutually exclusive 
blocks of fields within a record. 

1. Draw an analogy between a file to and collection of musical albums. 
2. In the program PhoneBook, what was the purpose of this statement: 

anErr := SetFPos ( refNum, FSFromLEOF, 0 ); 

3. What is the most important advantage of using variant record struc
tures? 



12-----
Debugging and 
File Analysis 
Debugging 
Fiie Analysis 
Encipher/Decipher Program 
MacsBug 
TMON 
Review Summary 
Quiz 

In this chapter you wlll learn: 
• Some tips on debugging programs with Turbo Pascal on the Macintosh. 
• A file-dump utility that wlll allow you to view entire contents of files. 
• A file-encryption program to protect your files from unwanted viewing. 
• How to use the debuggers available to you with Turbo Pascal on the Macintosh: 

MacsBug and TMON. 

Debugging 
Program logic up to now has, I trust, been very easy for you to follow. 
Programs only a few dozen lines long can be written and debugged in a 
fairly short time. Debug means to fix problems in programs. A debugger is a 
utility that assists the programmer in fixing the problems by allowing him to 
step through his program line by line and look at and modify variable values. 
If you run into a problem with a program, with the help of a debugger you 
may be able to single out a variable and see why it's causing you headaches. 

The Turbo Pascal package includes a debugger from Apple called Macs
Bug. This debugger is difficult to use with Turbo for several reasons; for one, 
it is very difficult to locate code within it. MacsBug is a 68000-based de
bugger, so if you are not familiar with 68000 assembly code, it will be even 
harder to work with. 



256 Debugging and Fiie Analysis 

As an alternative, the TMON debugger from ICOM Simulations, Inc., is an 
excellent 68000-based debugger you can purchase separately. I will briefly 
discuss each of these debuggers later in the chapter, but for now look at 
methods of debugging your programs if you don't want to get into assembly 
code. The following few debugging tips will probably come in handy some 
day, and you will be able to solve some problems without a debugger. 

First of all, closely monitor your program for such things as disk activity 
and screen display. For instance, you might notice that one string is making 
it to the screen but the next one is not, so you compare the code for the two 
strings to see what code executed between them may be causing a problem. · 
Or maybe you're working with a file-based program that is supposed to read 
and write a file on one of your disks. If the disk never starts moving before the 
program bombs out, look at the code before the disk command statements. 
With just these small bits of knowledge you can more easily locate your 
problem. 

If you're having problems with a particular variable and you're not sure 
what value it is holding, it is a good idea to use a few Writeln statements to 
display the variable at strategic locations. This is called echo printing because 
the value of the variable echoes on the screen. Although this process requires 
an extra compilation or two, it can save hours of distress. In fact, in writing 
this book I relied heavily on echo printing to solve several strange problems! 

If you start working with very lengthy programs, you may find it convenient 
to have a debug routine you can call at any time to look at particular variables. 
This is a rather awkward way to fix problems, but once you get the procedure 
written, you insert calls to it only where you need them; you do not have to 
worry about duplicating large blocks of code and remembering to remove 
them once the problems are fixed. 

If you are working with a file-building program and are able to achieve 
some disk activity, you can get some idea of whether something was actually 
written out by using the option Get Info ... from the File menu on the desktop. 
Sometimes this is all you need to see whether anything was written to the 
file. On the other hand, you may wish to find out exactly what was written 
instead of just the size of the file. For this reason I have developed a file-dump 
program that allows you to look at most of your files to see exactly what 
they contain. 

File Analysis 
Let's take a look at this program: 



Program HexDump; 

{$R+} 
{$1-} 

Uses 

Fiie Analysls 257 

MemTypes, QuickDraw, Oslntf, Toollntf; 

Var 
1, J : integer; 
fileName : String[15); 
wait : char; 
inChar : char; 
asciiArr : array [1..16) of char; 
hexArray: array (0 .. 15) of char; 
theFile : text; 

Procedure PrintHex; 

Type 
OverlayType = record 

case boolean of 

Var 

TRUE: (along : longint); 
FALSE: (aChar : char; 

end; 

bChar : char; 
cChar : char; 
dChar: char); 

anOverlay : OverlayType; 
loNib, hiNib : char; 

{counters} 
{file to be dumped} 
{used in "Press any key ... "} 
{each character processed in file} 
{the array of characters to be printed} 
{array of hex digits} 
{the actual file to be read} 

{variant for longint and char} 

{the longint portion} 

{the four-character portion} 

{the var used for overlaying} 
{the low and high nibbles to print} 

begin {procedure PrintHex} 
anOverlay.aLong := BitAnd ($00000000, $00000000); {set all bits off} 

anOverlay.bChar := inChar; 

(*****************************************************************) 

(* BitAnd so that only get lower 4 bits *) 
(*****************************************************************) 

loNib := hexArray [BitAnd ($0000000F, anOverlay.aLong)]; 



258 Debugging and Fiie Analysis 

(*****************************************************************) 

(* BitShift 4 bits to get upper 4 bits *) 
(*****************************************************************) 

anOverlay.along := BitAnd ($000000FO, anOverlay.along); 
hiNib := hexArray [anOverlay.along shr 4]; 

(*****************************************************************) 

(* Now write them out *) 
(*****************************************************************) 

write (hiNib, loNib, ' '); 
end; 

begin 
hexArray[O] := 'O'; 
hexArray[1] := '1 '; 
hexArray[2] := '2'; 
hexArray[3] := '3'; 
hexArray[4] := '4'; 
hexArray(5] := '5'; 
hexArray[6] := '6'; 
hexArray[7] := '7'; 
hexArray[8] := '8'; 
hexArray[9] := '9'; 
hexArray[10] :='A'; 
hexArray[11] := 'B'; 
hexArray[12] := 'C'; 
hexArray[13] := 'D'; 
hexArray[14] := 'E'; 
hexArray[15] := 'F'; 
write ('Please enter the file name:'); 
readln (fileName); 
if (fileName = ") then 

fileName := 'Nameless'; 
reset (theFile, fileName, 1 ); 

{procedure PrintHex} 

{main routine of HexDump} 
{initialize HexArray to hex digits} 

{buffer size of 1 } 
(***********************************************~****************) 

(* If the file doesn't exist, display message *) 
(****************************************************************) 

if IOResult <> O then 
writeln (' NON-EXISTENT FILE ERROR!') 

else 
begin 

for j := 1 to 16 do 
asciiArr[j] := '.'; {initialize array} 



i := 1; 
while NOT EOF (theFile) do 
begin 

read (theFile, inChar); 
PrintHex; 
if (inChar IN [' '..' ... ]) then 

asciiArr[i] := inChar; 
if (i = 16) then 
begin 

write(' '); 
for j := 1 to 16 do 
begin 

write (asciiArr[j]); 
asciiArr[j] := '.'; 

end; 
writeln; 
i := 1; 

Fiie Analysis 259 

{printable characters} 

{force out ASCllArr and go to new line} 

{put 5 blanks between hex and ASCII} 

{re-initialize array} 

{force new line} 
{reset index array} 

(*****************************************************************) 

(* Allow user to freeze screen after each line *) 
(*****************************************************************) 

if KeyPressed then 
begin 

wait := ReadChar; 
wait := ReadChar; 

{once to clear buffer} 
{again to go on} 

(*****************************************************************) 

(* Allow user to quit *) 
(*****************************************************************) 

if (wait = 'Q') OR (wait = 'q') then 
halt; 

end; 
end 
else 

i := i + 1; 
end; 

if (i > 1) AND (i < 16) then 
begin 

for j := 1 to 16 do 
write (' '); 

write(' '); 
for j := 1 to i do 

write (asciiArr[j]); 
end; 

{just increment index array} 
{while NOT EOF (theFile) do} 

{gracefully force out rest of last line} 

{3 blanks per hex Byte dump} 
{put 5 blanks between hex and ASCII} 

{if (i > 1) AND (i < 16) then} 



260 Debugging and File Analysis 

close (theFile); 
end; 
writeln; 
write In; 

{else} 

write (' Press any key to continue .. .'); 
inChar := ReadChar; 

end. {program HexDump} 

The hex-character dump program is fairly straightforward, but it introduces 
a few new concepts: text files, the function BitAnd, and the operator shr. 
You may have noticed that TheFile is declared as text. This is an easy 
way of declaring a file pointer to almost any type of file. I use text here 
because I want to be able to dump different types of files and I look at 
them on a byte-by-byte basis. You may have noticed the standard Pascal file 
routines reset, EOF, read, and close. This shows that programs can be written 
with Turbo Pascal using the standard procedures and can be ported to other 
Pascal compilers and interpreters. The function BitAnd simplifies converting 
characters to hexadecimal notation for output. BitAnd takes two parameters, 
both longint types, and performs a logical AND on them. The result of a 
logical AND is determined by turning on the bits in both the parameters. For 
example, if I perform an AND on 7 and 14, I compare the binary values as 
follows: 

00000111 {7} 
AND 00001110 {14} 

00000110 {6} 

The result is 6 because only the second and third rightmost bits are on in 
both 7 and 14. 

In the program HexDump I use BitAnd to mask out 4 bits at a time from 
the byte in question. If I do a logical AND against the hex value $0000000F, 
the result will always be the 4 low-order bits of the value I AND it against. 
In this manner I can isolate the high- and low-order nibbles (a nibble is half 
a byte) of the byte we are converting. 

The operator shr (shift/right) moves bits to the right in a value. Once I have 
isolated the high-order nibble in a character using BitAnd with $000000FO, 
I need to shift the bits to the right four slots so as to finish the conversion. 
The index: 

[ anOverlay.aLong shr 4] 

takes the current value of anOverlay.aLong and returns a new value in which 
all the on bits are shifted 4 positions to the right. The opposite of this is shl 



Fiie Analysis 261 

(shift left), which may be used to shift bits left by a specified number of 
positions. 

When you run the program, you are prompted to enter the name of the file 
to examine. The file is displayed in both ASCII and the character translation. 
For example, if you enter the file 

Hi there. 
This is what a file dump looks like. 
As you can see, even numbers look kind of funny! 
1234567890 
But, this is a very good debugging tool for files. 

Its file dump looks like this: 

48 69 20 74 68 65 72 65 2E OA 54 68 69 73 20 69 Hi there .. This i 
73 20 77 68 61 74 20 61 20 66 69 6C 65 20 64 75 s what a file du 
60 70 20 6C 6F 6F 6B 73 20 6C 69 6B 65 2E OA 41 mp looks like .. A 
73 20 79 6F 75 20 63 61 6E 20 73 65 65 2C 20 65 s you can see, e 
76 65 6E 20 6E 75 60 62 65 72 73 20 6C 6F 6F 6B ven numbers look 
20 6B 69 6E 64 20 6F 66 20 66 75 6E 6R 79 21 OA kind of funny!. 
31 32 33 34 35 36 37 38 39 30 OA 42 75 74 2C 20 1234567890. But, 
74 68 69 73 20 69 73 20 61 20 76 65 72 79 20 67 this is a very g 
6F 6F 64 20 64 65 62 75 67 67 69 6E 67 20 74 6F ood debugging to 
6F 6C 20 66 6F 72 20 66 69 6C 65 73 2E OA ol for files .. 

Each line of the dump represents 16 bytes of the file, first in ASCII and 
second in the converted-character representation. Remember, ASCII is a 
method of representing characters that is recognizable by computers. The 
hexadecimal ASCII conversion values for printable characters are as follows: 

Hex Value Character 

20 (space) 
21 ! 
22 " 
23 # 
24 $ 
25 112 
26 & 
27 
28 ( 
29 ) 

Hex Value 

2A 
2B 
2C 
2D 
2E 
2F 
30 
31 
32 
33 

Character 

* 
+ 

I 
0 
1 
2 
3 



262 Debugging and Fiie Analysis 

Hex Value Character Hex Value Character 

34 4 S9 y 
3S s SA z 
36 6 SB [ 
37 7 SC I 
38 8 so ] 
39 9 SE 
3A SF 
3B . 60 ' 3C < 61 a 
30 - 62 b 
3E > 63 c 
3F ? 64 d 
40 @ 6S e 
41 A 66 f 
42 B 67 g 
43 c 68 h 
44 0 69 i 
4S E 6A j 
46 F 6B k 
47 G 6C I 
48 H 60 m 
49 I 6E n 
4A J 6F 0 

4B K 70 p 
4C L 71 q 
40 M 72 r 
4E N 73 s 
4F 0 74 t 
so p 7S u 
Sl Q 76 v 
S2 R 77 w 
S3 s 78 x 
S4 T 79 y 
SS u 7A z 
S6 v 7B { 
S7 w 7C I 
S8 x 70 } 

Analysis of files with this program shows exactly how much information is 
written to the file on a byte-by-byte basis until the end of the file is reached. 
You may have noticed that there are several dots ( ·:) in the character 
translation that were not in the original file. The dots represent nonprintable 



Encipher/Decipher Program 263 

characters and those that are not easily represented on the screen. If you 
are dumping a file that starts to scroll off the screen, you can press any key 
to freeze the screen and take a closer look at that portion of the dump. To 
continue, just press a key other than Q. If you do press Q while the screen 
is stopped, the program calls the procedure Halt. Halt stops the program and 
returns you to the Macintosh desktop or the Turbo Pascal editor, depending 
upon how your program was invoked. 

As you can see, this dump utility is quite useful in many applications. Now 
look at a program that allows you to encipher data files so that nobody else 
can read them. 

Encipher/Decipher Program 
Try the following program: 

Program CiphDecip; 

{$1-} 

Var 
selection : char; 
valid : boolean; 
inFileName : String[15]; 
outFileName: String[15]; 
inFile : text; 
outFile : text; 
aChar : char; 

Procedure Encipher; 

{user's selection} 
{is the input valid?} 
{name of the input file} 
{name of the output file} 
{file pointer for input} 
{file pointer for output} 
{a character in the file} 

begin {procedure Encipher} 
ClearScreen; 
write ('What is the name of the text file?'); 
readln (inFileName); 
if (inFileName = ") then 

inFileName := 'NoNamelnput'; 
writeln; 
write ('What is the name of the enciphered file?'); 
readln (outFileName); 
if (outFileName =")then 

outFileName := 'NoNameOutput'; 
reset (in File, inFileName, 1 ); {buffer size of 1} 



264 Debugging and Fiie Analysis 

if IOResult <> 0 then 
begin 

{flag as an error} 

writeln; 
writeln (' 

end 
NON-EXISTENT INPUT FILE!'); 

else 
begin 

rewrite (outFile, outFileName); 
while NOT EOF (inFile) do 
begin 

read (inFile, aChar); 
aChar := CHR (ORD (aChar) + 1); {add one to encipher data} 
write (outFile, aChar); 

end; 
close (inFile); 
close (outFile); 
write In; 
writeln (' YOUR FILE HAS NOW BEEN ENCIPHERED!'); 

end; 
writeln; 
write (' Press any key to continue .. .'); 
selection := ReadChar; 

end; {procedure Encipher} 

Procedure Decipher; 

begin {procedure Decipher} 
ClearScreen; 
write ('What is the name of the enciphered file?'); 
readln (inFileName); 
if (inFileName =")then 

inFileName := 'NoNameOutput'; {name of nameless output in Encipher} 
writeln; 
write ('What is the name of the deciphered file?'); 
readln (outFileName); 
if (outFileName = ") then 

outFileName := 'NoNamelnput'; 
reset (inFile, inFileName, 1 ); 
if IORresult <> 0 then 

{name of nameless input in Encipher} 
{buffer size of 1 } 

begin 
writeln; 
writeln (' 

end 
NON-EXISTENT INPUT FILE!'); 

else 



begin 
rewrite (outFile, outfileName); 
while NOT EOF (inFile) do 
begin 

read (inFile, aChar); 

Encipher/Decipher Program 265 

aChar := CHR (ORD (aChar) - 1); {subtract one to decipher data} 
write(outFile, aChar); 

end; 
writeln; 
writeln(' YOUR FILE HAS BEEN DECIPHERED!'); 
close (inFile); 
close (outFile); 

end; 
writeln; 
write(' Press any key to continue .. .'); 
selection := ReadChar; 

end; 

begin 
valid := FALSE; 
while NOT valid do 
begin 

ClearScreen; 

{procedure Decipher} 

{program CiphDecip} 

writeln (' Please select the option you would like to do:'); 
writeln (' 1. Encipher a text file'); 
write (' 2. Decipher an enciphered file'); 
selection := ReadChar; 
case selection of 

'1': begin 
valid := TRUE; 
Encipher; 

end; 

'2': begin 
valid:= TRUE; 
Decipher; 

end; 

otherwise 
begin 

writeln (' INVALID RESPONSE ... PLEASE TRY AGAIN!'); 
writeln; 
write (' Press any key to continue .. .'); 
selection := ReadChar; 



266 Debugging and Fiie Analysis 

end; 
end; 

end; 
end. 

{case Selection of} 
{while NOT valid} 
{program CiphDecip} 

The basic premise behind the encipher program is to add 1 to every byte 
in the file and write the results out to a file. In other words, all spaces appear 
as $21, capital A appears as $42, and so on. The output file will hold your 
enciphered file and no one will be able to read it, without the algorithm behind 
the encipher program. When you need to view your file, you run the decipher 
option. The program can easily be modified to allow you to delete the original 
file or a deciphered file to a file. For those who are interested in working 
with the 68000-based debuggers available for Turbo Pascal programs, the 
next sections discuss the use of MacsBug and TMON. 

Macs Bug 
In the Misc Folder on the Turbo Pascal Utilities and Sample Programs disk 
is a file called MacsBug; this is the debugger Borland provides for use 
with Turbo Pascal. MacsBug is intended for use with assembly-language 
programs and compilers that provide an intermediate step between high-level 
languages and 68000, generating assembly-language listings. MacsBug can 
debug Turbo programs provided patience and a fairly good knowledge of 
68000 assembly language. 

To begin with, copy the MacsBug file into the System Folder of the boot 
disk you will use when you debug. When you boot from that disk, the 
regular "Welcome to Macintosh" screen will say at the bottom of the box 
that MacsBug is installed. From this point on you may never notice that you 
have installed MacsBug because no other screens are affected. 

You may invoke the debugger in one of three ways: first, by pressing 
the interrupt button on the programmer's switch on the rear left side of the 
Macintosh; a second, by placing a call to MacsBug. In order to do this, you'll 
have to explain to Turbo that MacsBug is a routine defined like this: 

Procedure MacsBug; inline $A9FF; 

If you place that declaration anywhere between the program declaration and 
the beginning of the main routine, you may invoke MacsBug simply by calling 
the procedure. The final method of invoking MacsBug is actually a safety 
measure; if a system error occurs while MacsBug is installed, MacsBug will 
automatically kick in to gear. This way, if your program does bomb out, 



MacsBug 267 

at least you can look around at variables and instruction paths to get some 
information on the crash. 

Before you use MacsBug, compile with $D, which generates debug sym
bols, and compile the program to disk besides. $D+ allows you to look for 
your procedure and function names in the assembly listing while you are 
working in the MacsBug environment. This should help a bit in pinpointing 
specific instructions, but you still must have a good understanding of 68000 
assembly code to see how the Turbo statements are translated. You should 
compile your program to disk and start it up by double-clicking on it be
cause memory is set up differently when you run your program from within 
the Turbo environment. 

When you do invoke MacsBug, your screen will clear and the MacsBug 
screen will take over. The instruction about to be executed will be displayed 
along with all 68000 registers-AO through A7, DO through D7, the program 
counter (PC), and the status register (SR). At this point you may start 
interacting with the debugger by entering the MacsBug commands listed 
in your Turbo Pascal manual. Below is a brief description of some of the 
more useful commands: 

? Provides help with the MacsBug debugger. 
DV Displays the MacsBug version number. 
RB Reboots the system from within MacsBug. 
EA Exits to the application running when MacsBug was invoked. 
DM [[address] number] Displays memory at the address provided for the 

number of bytes specified. 
TD Provides a total display of the registers. 
BR [address] Sets a breakpoint at the address specified. 
G Continues execution of the program. 
CL Removes all breakpoints (or selective breakpoints if CL [address]). 
S Single-step execution of the program. 
HD Provides a complete dump of heap information. 
IL [address [number] Disassembles memory beginning at specified address 

for number of bytes listed. 
Dn [value] The Dn (DO, Dl, D2) by itself will display the value of the 

specified register. If a value is placed after the register name (for 
example D 1 FFFFFFFF), that value is plugged into the register. 

An [value] Same as Dn [value] described above except works with address 
registers. 

Several other instructions are available in MacsBug. They are briefly 
described in the Turbo Pascal manual. If you are not familiar with the 



268 Debugging and File Analysis 

workings of 68000 assembly, I suggest you read a book or two on the subject 
(such as The Complete Book of Macintosh Assembly Language Programming, 
Volumes I and II from Scott, Foresman and Company). Even with a good 
understanding of assembly language, MacsBug is rather difficult to use. A 
more powerful debugger, TMON, may be purchased separately from ICOM 
Simulations, Inc. Take a look at some of TMON's capabilities. 

TMON 
A 68000-based debugger for the Macintosh, TMON may be purchased 
separately at a local computer store. If you have trouble finding it, you can 
order it, at this address: 

ICOM Simulations, Inc. 
648 S. Wheeling Road 
Wheeling, IL 60090 

or call (312) 520-4440. 
Unlike MacsBug, TMON has its own small installation procedure, detailed 

in the manual that comes with the debugger. Once you have installed TMON, 
you may invoke it by pressing the interrupt button on the programmer's 
switch. This is where the real differences between MacsBug and TMON 
become apparent. 

Window-based TMON also uses the Macintosh menu environment, albeit 
in a rather bare-bones manner. You may have several debug windows open at 
a time so as to look at assembly instructions, view the heap, set breakpoints, 
and so forth. Each window may be opened by selecting the appropriate item 
from the TMON menu bar. Rather than restricting you to the conventional 
debugger interaction of entering a command and awaiting a response from 
the computer so that you may enter another, TMON allows you to modify 
instructions, registers, and so on. To do so place the cursor via the mouse 
over the item to be changed, select it just like text in the Turbo Pascal editor, 
and modify it. This debugger truly uses the Macintosh-style interface and is 
a pleasure to use. In short, you can do everything in TMON that you can do 
in MacsBug, do a good deal more, and because it is so easy to use, probably 
go further with TMON than with MacsBug. TMON is an excellent package, 
used in many software houses that write Macintosh programs. You still need 
to know how 68000 assembly language works-a handy 68000 reference 
booklet is included with the TMON package-so there is no difference in 
this regard between MacsBug and TMON, but we believe TMON is a better 
product. 



Quiz 269 

Review Summary 

Quiz 

1. A debugger is a utility that may allow you to view your program's 
execution line by line, look at, and modify variables. 

2. Echo printing is a debugging method showing variable values at strate
gic locations within your code. 

3. The Turbo Pascal package includes the MacsBug compiler from Apple, 
but the TMON debugger is much easier to use and more powerful than 
MacsBug. 

1. Why is it sometimes beneficial not to have access to a sophisticated 
debugger? 

2. What does the following ASCII string say? 

43 20 49 53 20 46 55 4E 

3. What is the result using BitAnd on the following values? 

A. 14 AND 3 C. 15 AND 15 
B. 8AND2 D. 3 AND 12 



13-----
Graphics, Sound, 
and Resources 
Graphics 
Turtle Graphics 
Standard Macintosh Graphics 
Fun with the Mouse 
Making Music In Turbo Pascal 
Resources 
Using RMaker 
Event-Handling Programming with a ·Resource Fiie 
Review summary 
Quiz 

In this chapter you wlll learn: 
• How to work with some popular graphics routines available to you in Turtle and 

QuickDraw. 
• About the unique environment used to work with QulckDraw routines In Turbo Pascal. 
• How to design programs that use the mouse-oriented routines. 
• How to write and store songs using a music library routine. 
• How to use resource files and RMaker. 
• How to write event-driven programs on the Macintosh. 

Graphics 
As you probably know, the Macintosh is well known for its graphics. In 
fact, the level of graphics attainable on the Macintosh is unsurpassed in the 
microcomputer industry today. One of the reasons is the high number of 
pixels, or dots, per square inch on the Macintosh screen; the more dots in a 
given area, the crisper the resulting picture. 

In Turbo Pascal you have access to Turtle and QuickDraw, which are 
compilations of graphics routines. For various reasons these routines are 
much faster and probably easier to use than most graphics routines you could 
develop yourself. Take a look at the graphics available to you in Turtle. 



Turtle Graphics 271 

Turtle Graphics 
Turbo Pascal offers Turtle, which allows you to create simple graphics 
without much effort. Turtle's routines let you draw figures in a manner similar 
to the Logo language's turtle graphics. Unlike many versions of Logo, Turbo 
has no cute little turtle or triangle showing the drawing tool, or pen in Turbo 
Pascal. When you use Turtle, the screen is treated as a grid whose home 
position (0,0) is in the center. Positive values on the horizontal, or x, axis 
take you to the right across the screen. Positive values on the vertical, or 
y, axis take you up the screen. You may draw on your screen with Turtle 
routines by specifying a location or by directing the pen and saying how far 
you want it to travel in that direction. There are thirteen procedures and three 
functions available in the Turtle unit; here is a brief description of each; 

Back(Distance) 

Clear 

This procedure moves the pen backward the distance specified. A negative 
distance will move the pen forward. 

This procedure clears the window and moves the pen to the home position 
(0,0) in the middle of the screen. 

Forwd(Distance) 
The opposite of Back(Distance), it moves the pen in the direction it is pointing 
for a specified Distance. If distance is negative, the pen will move backward. 

Direction := Heading 
The function Heading returns an integer value in the range 0 to 359 that 
specifies the angle at which the pen is pointing. The . value 0 means that 
the pen is pointing directly up, and any other value is the angle in degrees 
clockwise from the vertical. 



272 Graphics, Sound, and Resources 

Home 
The procedure Home places the pen in the home position in the window and 
points it straight up. 

No Wrap 
No Wrap keeps the pen from wrapping around from one side of the window 
to the other when it has gone outside the boundaries of the window. 

Pen Down 

Pen Up 

PenDown activates the pen so that drawing may begin. 

The opposite of PenDown, PenUp allows movement of the pen without 
drawing. 

SetHeading(Angle) 
SetHeading points the pen in the direction specified by Angle. As with 
Heading, an angle of 0 is straight up, and angles increase clockwise from 
0. Four constants have been declared in Turtle: 

SetPosltlon(x, y) 

Constant Name 

North 
East 
South 
West 

Value 

0 
90 
180 
270 

SetPosition lifts the pen and positions it at point (x, y). 

TurnLeft(Angle) 
TurnLeft rotates the pen counterclockwise for positiye angles and clockwise 
for negative angles. 



Turtle Graphics 273 

TurnRlght(Angle) 
TurnRight rotates the pen clockwise for positive angles and counterclockwise 
for negative angles. 

TurtleDelay(Tlme) 

Wrap 

TurtleDelay may be used to set up a timing delay between operations; time 
is in milliseconds. 

The opposite of No Wrap, Wrap allows the pen's drawing action to wrap from 
one side of the window to the other when the pen goes outside the boundary 
of the window. 

Location:= XCor 
The function XCor returns an integer value that specifies the horizontal 
position of the pen. 

Location := YCor 
The function YCor returns an integer value that specifies the vertical position 
of the pen. 

For an example of some of the more useful Turtle routines, try the 
following program: 

Program TheTurtle; 

Uses 
MemTypes, QuickDraw, OSlntf, Toollntf, Turtle; 

Var 
aChar : char; 

: integer; 

begin 
SetPosition (-200, 125); 
SetHeading (East); 

{used for "Press any key ... } 

{program TheTurtle} 



274 Graphics, Sound, and Resources 

(*****************************************************************) 

(* First draw a rectangle. *) 
(*****************************************************************) 

Forwd (150); 
TurnRight (90); 
Forwd (75); 
TurnRight (90); 
Forwd (150); 
TurnRight (90); 
Forwd (75); 
(*****************************************************************) 

(*Now draw a circle. *) 
(*****************************************************************) 

SetPosition (100, 90); 
for i := 1 to 125 do 
begin 

TurnRight (3); 
Forwd (2); 

end; 

(*****************************************************************) 

(* Now draw a triangle *) 
(*****************************************************************) 

SetPosition (0, 10); 
SetHeading (225); 
Forwd (100); 
SetHeading (East); 
Forwd (142); 
SetHeading (315); 
Forwd (100); 
GotoXY (27, 23); 
write ('Press any key to continue .. .'); 
aChar := ReadChar; 

end. 

The output of this program, which draws a rectangle, circle, and triangle, 
is shown in Figure 13.1. Although no routines in the Turtle environment are 
explicitly used to make curved lines, you can draw curves, circles, and so on 
with creative code like this, which draws the circle: 

for i := 1 to 125 do 
begin 

TurnRight ( 3 ); 
Forwd ( 2 ); 

end; 



standard Maclntosl;'I Graphics 275 

TheTurtle 

0 

Press any key to continue . .. 

Fig. 13.1. 

For more sophisticated drawings you will probably want to use QuickDraw. 

Standard Macintosh Graphics 
The better to understand the concepts behind QuickDraw graphics in Turbo 
Pascal, look at the following program: 

Program Streetlight; 

(**************************************************************************) 

(* This program draws a streetlight on the standard output screen *) 
(* and flashes the three lights to different shades. *) 
(**************************************************************************) 

Uses 
MemTypes, QuickDraw; 

Var 
lightBox 
red light 

: Rect; 
: Rect; 

yellowlight : Rect; 

{The light box rectangle coordinates} 
{The red light's oval rectangle 

coordinates} 
{The yellow light's oval rectangle 

coordinates} 



276 Graphics, Sound, and Resources 

greenLight : Rect; 

loop 
count 
turboPort 

begin 

: integer; 
: integer; 
: GrafPtr; 

{The green light's oval rectangle 
coordinates} 

{loop control variable} 
{time delay for light display} 
{holds the Graf Ptr for PasConsole 

routines} 

(***************************************************************************************) 

(* Need to do the following sequence of three routines because Turbo *) 
(* defaults to using its own PasConsole info and we must save off the *) 
(* PasConsole info before calling lnitGraf and then restore it *) 
(* afterwards. Another alternative is to simply not use PasConsole by *) 
(* using the {$U-} directive and creating our own window via the *) 
(* window manager. *) 
(***************************************************************************************) 

GetPort (turboPort); 
lnitGraf (@thePort); 
SetPort (turboPort); 

HideCursor; 
SetRect (redLight, 228, 81, 253, 106); {set up all the rectangles} 
SetRect (yellowLight, 228, 112, 253, 137)·; 
SetRect (greenLight, 228, 143, 253, 168); 
SetRect (lightBox, 216, 75, 266, 175); 
FrameRect (lightBox); 
FillRect (lightBox, LtGray); 
for loop := 1 to 100 do 
begin· 

if odd (loop) then 
PenPat (black) {change the pen pattern to black} 

else 
PenPat (white); 

PaintOval (redLight); {paint the red light; black} 
for count := 1 to 5000 do 

if odd (loop) then 
PenPat (gray) 

else 
PenPat (white); 

PaintOval (yellowLight); 
for count := 1 to 5000 do 

if odd (loop) then 
PenPat (dkGray) 

{change the pen pattern to gray} 

{paint the yellow light; dark gray} 

{change to pen pattern to dark gray} 



else 
PenPat (white); 

PaintOval (greenLight); 
for count := 1 to 5000 do 

end; 
ShowCursor; 

end. 

standard Macintosh Graphics 277 

{paint the green light; gray} 

{for loop := 1 to 100} 

As you can see, the uses statement informs Turbo that I wish to use 
QuickDraw. The first item you have not seen before is Rect. In QuickDraw 
the rectangle is defined as follows: 

Rect = record 
case integer of 

0 : ( top, left, bottom, right : integer ); 
1 : ( topLeft, botRight : point ); 

end; 

Further, a point is defined in QuickDraw thus: 

VHSelect = (v, h); 
Point = record 

case integer of 
0 : (v, h : integer ); 
1 : ( vh : array[ VHSelect] of integer); 

end; 

structure is passed to several different QuickDraw routines and is used to 
specify a particular rectangle on the screen. 

The next unfamiliar type you will see is GratPtr, which points at a Graf
Port record structure. The GratPort record structure contains a good deal of 
informaton controlling how QuickDraw operates. For a listing of the com
plete GratPort type, refer to the description of QuickDraw in the Turbo Pas
cal manual. I must declare the variable TurboPort as a GratPtr type for the 
following sequence of statements: 

GetPort ( turboPort ); 
lnitGraf ( @thePort ); 
SetPort ( turboPort ); 

As mentioned in the commented code, I need these three procedures because 
I am using the standard PasConsole output with QuickDraw. Generally, the 



278 Graphics, Sound, and Resources 

PasConsole output window is not used with QuickDraw, but it is indeed 
possible. Any time QuickDraw routines are used, you must first perform some 
initialization via InitGraf. ThePort is declared in QuickDraw as a GrafPtr, 
and its address passes to InitGraf for subsequent use by QuickDraw routines. 
Because I am using the PasConsole window, I first perform a GetPort, which 
retrieves the port using the variable TurboPort. Next I invoke InitGraf to 
perform the necessary initializations for QuickDraw. Finally I call SetPort to 
restore turboPort as the active port. It is not all that important to understand 
why these three procedure calls are necessary. Just remember that they must 
be invoked in that order whenever you use QuickDraw routines with the 
PasConsole output window. After I discuss the rest of the new routines in this 
program, I will show how to do the same program without the PasConsole 
output window. 

The next procedure, HideCursor, does just that: it hides the cursor so that 
it can't be seen on the screen even if you move the mouse around. A call at 
the end of the program to ShowCursor restores it. 

After HideCursor, I set up the coordinates for the light box itself and the 
three lights inside it via SetRect, whose first parameter is a Rect type, and 
the next four parameters are the left, top, right, and bottom coordinates re
spectively. I can set up the rectangle coordinates with simple assignment 
statements, but SetRect combines four assignment statements in one proce
dure call, minimizing the source code. 

I draw the light box by calling FrameRect with the LightBox as a pa
rameter. FrameRect draws a rectangle with the coordinates of the parameter 
Rect. FillRect then fills in the light box with light gray, one of several shading 
constants defined in QuickDraw. 

The last section of program StreetLight is a for loop that changes the 
shading of the lights based on the function odd. For example, every time the 
loop variable is odd, the pen pattern for the red light is set to black via the 
PenPat routine. Next, PaintOval is called with redLight as the parameter. The 
routine PaintOval will draw an oval circumscribed by the parameter Rect, 
redLight in this case. Since the pen pattern was changed with PenPat, the 
redLight is drawn with black shading. On even iterations of the for loop the 
pen pattern is set to white and the redLight is drawn with white shading. The 
same logic is used to draw the yellow light with either gray or white shading 
and the greenLight with either dark gray or white shading. After each light 
has been drawn, a timing delay loop from 1 to 5000 slows the program down 
so that the color changing does not happen too rapidly. The outer for loop 
shows one way to perform simple animation on the Macintosh screen. 

In order to rewrite the program without the PasConsole output window, I 
create my own window via the Macintosh window manager. Here is how to 
rewrite the program with its own output window: 



Standard Macintosh Graphics 279 

Program Streetlight; 

{$U-} 

(*****************************************************************) 

(*This version of Streetlight doesn't use the *) 
(* standard PasConsole routines ({$U-}) and uses *) 
(* QuickDraw to open an output window. *) 
(*****************************************************************) 

Uses 
MemTypes, QuickDraw, Oslntf, Toollntf; 

Var 
lightBox 
redlight 

: Rect; 
: Rect; 

yellowlight : Rect; 

greenlight : Rect; 

loop : integer; 
count : integer; 
windowRect : Rect; 
behind, wPtr : WindowPtr; 

begin 
lnitGraf (@thePort); 
lnitWindows; 

HideCursor; 

{The light box rectangle coordinates} 
{The red light's oval rectangle 

coordinates} 
{The yellow light's oval rectangle 

coordinates} 
{The green light's oval rectangle 

coordinates} 
{loop control variable} 
{time delay for light display} 
{Rect definition for output window} 
{window screen location and the pointer 

to it} 

SetRect (windowRect, 5, 50, 500, 300); {left, top, right, bottom} 
behind := POINTER (-1 ); {sets up window to be in front of all 

others} 
WPtr := NewWindow (nil, windowRect, 'Our Streetlight Output Window', 

TRUE, NoGrowDocProc, behind, FALSE, O); 

SetRect (redlight, 228, 81, 253, 106); 
SetRect (yellowlight, 228, 112, 253, 137); 
SetRect (greenlight, 228, 143, 253, 168); 
SetRect (lightBox, 216, 75, 266, 175); 
FrameRect (lightBox); 
FillRect (lightBox, LtGray); 
for loop := 1 to 100 do 



280 Graphics, Sound, and Resources 

begin 
if odd (loop) then 

PenPat (black) 
else 

PenPat (white); 
PaintOval (redLight); 
for count:= 1 to 5000 do 

if odd (loop) then 
PenPat (gray) 

else 
PenPat (white); 

PaintOval (yellowlight); 
for count := 1 to 5000 do 

if odd (loop) then 
PenPat (dkGray) 

else 
PenPat (white); 

PaintOval (greenLight); 
for count := 1 to 5000 do 

end; 
ShowCursor; 
DisposeWindow (wPtr); 

end. 

{change the pen pattern to black} 

{paint the red light; black} 

{change the pen pattern to gray} 

{paint the yellow light; dark gray} 

{change to pen pattern to dark gray} 

{paint the green light; gray} 

{for loop := 1 to 100} 

This version of the program executes like the first one except that the ti
tle now displayed in the output window is Our StreetLight Output Window. I 
included Oslntf and Toollntf in the uses statement because the window man
ager routines are defined in Toollntf. I have a few n~w variable declarations, 
including windowRect, a Rect definition of the output window. I also de
clared a couple of WindowPtr types: behind and wPtr. WindowPtr is nothing 
more than a GrafPtr with its own definition for clarity. 

Immediately after our call to InitGraf the procedure InitWindows is in
voked. InitWindows must be called before any other window manager rou
tines. The cursor is hidden and a call to SetRect defines the boundaries of 
the window. Next parameters are set up for the call to the routine NewWin
dow. The first parameter, nil, instructs NewWindow to allocate the storage 
space for our window. Next windowRect defines the boundaries Qf the win
dow to be drawn. I pass the title to be displayed at the top of the window and 
set a Boolean flag to be TRUE if the window is to be visible and FALSE if 
not Next the parameter NoGrowDocProc instructs NewWindow to draw the 



Fun with the Mouse 281 

window without a grow box, the little box in the bottom right comer used 
for resizing windows. The parameter behind is next; it says whether or not 
this window will be displayed behind other windows. I set behind equal to 
the result of Pointer (-1), so NewWindow will place our window on top of 
all others. This is no big deal here, since this window will be the only one on 
the screen, but it is an important parameter for programs that display mul
tiple windows. The next parameter, FALSE, tells NewWindow to close the 
window with a go-away box in the upper right comer. Finally, a reference 
constant of 0 is passed to designate this window as number 0. The call to 
NewWindow draws the window, and if you go on, the rest of the program is 
the same as the earlier version except that I perform a Dispose Window on 
wPtr. This procedure frees up the memory space used by the window. 

NewWindow takes loads of parameters and is rather bulky to use for 
several windows. Later in this chapter I will show you how to use another 
window-creation routine, GetNewWindow, requires a resource file but fewer 
parameters. 

Fun with the Mouse 
The Macintosh mouse can be used in several different ways in Pascal. Here I 
present a few useful routines that allow you to know the status of the mouse's 
button and the position of the cursor on the screen. 

The following program, TheButton, provides you with the mechanism to 
determine whether the mouse's button is being pressed or not. Try running 
this program so that you can see what sort of value the Button routine returns: 

Program TheButton; 
(*****************************************************************) 

(* This program shows how the functions Button and *) 
(* KeyPressed work. *) 
(*********************************************'*******************) 

Uses 
MemTypes, QuickDraw, Oslntf, Toollntf; 

Var 
c: char; 

begin {program TheButton} 
GotoXY (10, 5); 
write ('The value of the Button Function is:'); 
GotoXY (10, 10); 



282 Graphics, Sound, and Resources 

writeln ('(To stop, press a key on the keyboard)'); 
while NOT (KeyPressed) do 
begin 

GotoXY (47, 5); 
if Button then 
begin 

write ('TRUE (Press any key to continue)'); 
(*****************************************************************) 

(* Wait until a key is pressed so 
(*that the TRUE message can be 
(* displayed. 

*) 
*) 
*) 

(*****************************************************************) 

repeat 
until KeyPressed; 
c := ReadChar; 

end 
else 

end; 
end. 

write ('FALSE '); 
{while NOT (KeyPressed) do} 
{program TheButton} 

As you press the mouse button, the value TRUE is displayed and you are 
instructed to press a key to continue. When you press a key, the value FALSE 
is displayed. The routine Button returns a Boolean value, which you may use 
to determine any further action, for instance wait until the user presses the 
button. 

If you enjoy drawing on the Macintosh, you'll appreciate the following 
mouse-based program, which allows you to create images in the standard 
output window. When you run this program, press the mouse button while 
moving it around to draw freehand: 

Program Draw; 

(*****************************************************************) 

(* This program allows the user to make drawings on *) 
(* the standard output screen. It also has a few *) 
(* commented statements, which when un-commented *) 
(* add certain drawing characteristics. *) 
(*****************************************************************) 

Uses 
MemTypes, QuickDraw, OSlntf, Toollntf; 



Var 
loop : integer; 
count : integer; 
horizontal : integer; 
vertical : integer; 
dummy : integer; 
turboPort : GrafPtr; 
thePt : Point; 
done : boolean; 

begin 

Fun with the Mouse 283 

{loop control variable} 
{time delay for light display} 
{the horizontal position of the cursor} 
{the vertical position of the cursor} 
{temporarily holds horizontal point} 
{holds GrafPtr for PasConsole routines} 
{position of mouse} 
{are we finished drawing yet?} 

{program Draw} 
(*****************************************************************) 

(* Set up so that we can use the QuickDraw routines *) 
(* in the standard console window. *) 
(*****************************************************************) 

GetPort (turboPort); 
lnitGraf (@thePort); 
SetPort (turboPort); 

done:= FALSE; 
while NOT done do 
begin 

repeat 
if KeyPressed then 

done :=TRUE; 
until ((Button) OR (done)); 
if NOT done then 
begin 

GetMouse (thePt); 
MoveTo (thePt.h, thePt.v); 
while Button do 
begin 

GetMouse (thePt); 
LineTo (thePt.h, thePt.v); 

(* LineTo (thePt.h + 1, thePt.v + 1 ); *) 
(* LineTo (thePt.h + 5, thePt.v + 5); *) 
(* dummy := thePt.h - 255; *) 
(* thePt.h := 255 - dummy; *) 
(* LineTo (thePt.h, thePt.v); *) 

end; 
end; 

end; 
end. 

{while Button do} 
{if NOT done then} 
{while NOT done do} 
{program Draw} 



284 Graphics, Sound, and Resources 

This program uses a while loop to allow you to draw freehand on the 
screen using the mouse until a key is pressed on the keyboard. 

GetMouse returns the coordinates in the ThePt parameter of the cursor so 
that the drawing pen may be moved with the MoveTo routine. Then, while 
the button is being held down (while Button do), GetMouse determines where 
to draw a line using the routine LineTo. All three procedures are easily used 
together, since their parameters have the same meaning. 

After you have drawn with this configuration of the program, remove the 
comment marks (* and *) from the first of the five commented lines and 
see how this affects drawing. Then delete that line and remove the com
ment marks from the next statement. These lines accentuate your freehand 
movements by drawing additional lines 1 and 5 pixels respectively from your 
current position. Finally, delete the previous line and remove the comments 
from the last three commented lines. Then see how easy it is to make mirror 
images with Turbo Pascal. Figure 13.2 shows an example of what you can 
draw using the last three commented lines: 

The many other QuickDraw routines would take an entire book to explain; 
they are listed in the Turbo Pascal manual. At this point you should be able 
to draw in Pascal by applying the pens, rectangles, paint, and so on that have 
been discussed here. But dazzling graphics aren't the only fun thing you can 

,. 

Draw 

0 0 



Making Music In Turbo Pascal 285 

do on the Macintosh; Turbo Pascal can generate sound, which you may wish 
to incorporate with your programs. Look at how to make the Mac sing. 

Making Music in Turbo Pascal 
In order to discuss how to make music on the Macintosh, I must first discuss 
data types. The following three type declarations, which are found in OSintf, 
are the only ones you need to produce music on the Mac: 

Type 
Tone = record 

count : integer; 
amplitude : integer; 
duration : integer; 

·end; 

Tones= array[0 .. 5000) of Tone; 

SWSynthRec =record 
mode : integer; 
triplets : Tones; 

end; 

The type Tone declares the basic items that make up a musical tone: count 
(or frequency), amplitude (or intensity), and duration. The array Tones sets up 
an array of up to 5001 different tone records, and SWSynthRec-for Square 
Wave Synthesizer Record-allows me to set up one record that may contain 
an entire song. Square wave synthesizer tone generation is just one way to 
produce sophisticated sounds on the Macintosh. It is one of the easiest ways 
to play simple songs, so I will w0rk with it exclusively. 

In order to play a simple song on the Macintosh, enter the varjous notes 
into the triplets field of a SWSynthRec variable, set its mode to the constant 
SWMode, declared in OSlntf, and call the procedure StartSound, whose 
syntax is 

StartSound ( PtrToSynthRec, RecSize, NextProc ); 

PtrToSynthRec is the address of the SWSynthRec variable, RecSize is the 
block of tones to play, and NextProc is a pointer to the procedure to perform 
when all sounds have been produced. We will pass the result of the Pointer 
( -1 ) function in the NextProc to produce synchronous sounds. 



286 Graphics, Sound, and Resources 

As we mentioned above, the amplitude field of Tone indicates the intensity 
of the note. The count field refers to the note's frequency, and the chart below 
shows the frequencies of notes from one octave below middle C to one octave 
above it. 

Note Count Note Count 

c 262 C (Middle) 523 
C Sharp 277 C Sharp 554 
D 294 D 587 
D Sharp 311 D Sharp 622 
E 330 E 659 
F 349 F 698 
F Sharp 370 F Sharp 740 
G 392 G 784 
G Sharp 415 G Sharp 831 
A 440 A 880 
A Sharp 466 A Sharp 923 
B 494 B 988 

In order to play an actual song it is almost a necessity to build the song in 
a file first. The following program builds a song file based on the input for 
file name, frequencies, and durations: 

Program SongBuilder; 

Uses 
MemTypes, QuickDraw, OSlntf; 

(*****************************************************************) 

(* This program may be used to create "song" files which *) 
(* will then be used in a song-playing program to create *) 
(* Square Wave music via Turbo Pascal. *) 
(*****************************************************************) 

Var 
nameOfFile: String; 
done : boolean; 
songFile : file of Tone; 
eachNote : Tone; 
moreNotes : char; 
valid : boolean; 

{song file name} 
{are we finished?} 
{file of notes (song)} 
{var for each note} 
{user's response (Y/N)} 
{is this a valid response?} 



Making Music In Turbo· Pascal 287 

begin {program SongBuilder} 
write ('Please enter your song file name ... '); 
readln (nameOfFile); 
if (nameOfFile =")then 

nameOfFile := 'Nameless Song'; 
rewrite (songFile, nameOfFile); 
done := FALSE; 
while NOT done do 
begin 

write In; 
write ('What is the note"s frequency? '); 
readln (eachNote.count); 
eachNote.amplitude := 200; {set to 200 so don't have to keep 

write In; 
write ('What is the note"s duration?'); 
readln (eachNote.duration); 
write (songFile, eachNote); 
valid:= FALSE; 
while NOT valid do 
begin 

writeln; 

entering I} 

write ('Are there any more notes (Y /N)? '); 
moreNotes := ReadChar; 
case moreNotes of 

'Y', 'y' : valid :=TRUE; 
'N', 'n' : begin 

valid :=TRUE; 
done := TRUE; 

end; 

otherwise 
begin 

writeln; 
writeln ('INVALID RESPONSE ... PLEASE TRY AGAIN!'); 

end; 
end; 

end; 
end; 
close (songFile); 

end. 

{case moreNotes} 
{while NOT valid} 
{while NOT done} 

{program SongBuilder} 

The program's logic is fairly straightforward, and there are no new con
cepts in it. It is simply a file that holds all the information for the notes to 



288 Graphics, Sound, and Resources 

the song of your choosing. The intensity or amplitude is set to 200 (each
Note.amplitude := 200;) so that you don't have to keep on entering a number. 
You may want to remove this and insert code to give each note a unique in
tensity. Try entering the following notes and durations for a song: 

Note Duration 

131 15 
311 15 
294 15 
262 15 
247 15 
415 15 
392 15 
349 15 
311 15 
622 15 
587 15 
523 15 
494 15 
587 15 
415 15 

All the durations are 15, which means that each note is played for exactly 
the same amount of time. Once you build the song file with this program, 
you can play it by running the following program and specifying the name 
of the SongBuilder file. 

Program PlaySong; 

(*****************************************************************) 

(* This program may be used to play song files created *) 
(* with the song-building program presented earlier. *) 
(* The songs are played via the Square Wave Synthesizer. *) 
(*****************************************************************) 

Uses 
MemTypes, QuickDraw, OSlntf; 

Var 
nameOfFile: String; 
eachNote : Tone; 
ourSong : SWSynthRec; 
index : integer; 

{song filename} 
{var for each note} 
{array to hold notes} 
{index into OurSong} 



Making Music In Turbo Pascal 289 

anErr 
good Name 
refNum 

: OSErr; 
: boolean; 
: integer; 

{error statuses for FSOpen/Close} 
{has the user entered a valid file?} 
{file path reference number} 

: char; {for "Press any key ... "} a Char 
recSize : longint; {tells file routines how large record is} 

begin 
goodName := FALSE; 
recSize := SizeOf (tone); 
while NOT goodName DO 
begin 

ClearScreen; 
write ('What SongFile do you wish to play? '); 
readln (nameOfFile); 
if nameOfFile = " then 

nameOfFile := 'Nameless Song'; 
anErr := FSOpen (nameOfFile, 0, refNum); 
if anErr = fnfErr then {File not found error} 
begin 

write In; 
writeln ('That file does not exist!'); 
writeln ('Press any key to try again .. .'); 
aChar := ReadChar; 

end 
else 

goodName :=TRUE; 
end; 
index:= O; 

(*****************************************************************) 

(* We will use Square Wave Synthesizer only. *) 
(*****************************************************************) 

ourSong.mode := SWMode; 

while (FSRead (refNum,recSize, @eachNote) <> EOFErr) do 
begin 

ourSong.triplets[index] := eachNote; 
index := index + 1; 

end; 

anErr := FSClose (refNum); 

{while (FSRead (refNum ... ) <> EOFErr) 
do} 

(*****************************************************************) 

(* Now play the song via StartSound. *) 
(*****************************************************************) 



290 Graphics, Sound, and Resources 

StartSound (@ourSong, (2 + ((index) * (SizeOf (tone)))), 
Pointer (-1 )); 

end. {program PlaySong} 

This program merely opens the song file, reads each note record, and loads it 
into the record OurSong until end of file is reached. The song is played when 
StartSound passes the address of OurSong and the size of the block of notes 
to play. This last is derived from the number of notes (index) times the size 
of a tone plus the size of the mode (2), and Pointer (-1), which plays the 
tones synchronously. 

Through these two programs you can save songs on a disk and play 
them back on the Macintosh. Try entering some of your favorite songs by 
converting the notes off the sheet music to the corresponding frequency and 
see what ratio of durations (that is, quarter notes to eighth notes and so on) is 
best for that song. StartSound can provide a lot of fun while you are learning 
how to program in Pascal. Take a look at how to use resources. 

Resources 
The Macintosh system allows you to define files that contain information 
about your program (menus, windows, and so on) and are separate from 
Turbo Pascal source code files. These are resource files, useful in just about 
all languages on the Macintosh, including Turbo Pascal. 

Suppose I want to write a program that has a menu bar across the top of 
the screen and that draws a window. I can create a resource file that looks 
like this: 

*This is a simple resource file 

Test.Rsrc 

Type WIND 
,1000 (4) 
Our Window 
50 10 300 500 
Visible GoAway 
0 
0 

Type MENU 
,1001 (4) 
\14 

;;resource ID 
;;title 
;;coordinates (top, left, bottom, right) 
;;make visible with a goaway box 
;;definition ID 
;;reference ID 

;;title (the Apple menu) 



Type MENU 
,1002 (4) 
Example 
Bomb Sounds 
Quit 

;;our Example menu 
;;Alert Box option 
;;Quit option 

Resources 291 

The file starts off with the comment * This is a simple resource file. Resource 
files show a comment with an asterisk at the beginning of a line; when the 
program runs, the rest of the line is ignored. You can also specify comments 
within a resource line by placing a pair of semicolons before the comment. 

I next define the output name of the resource file to be Test.Rsrc. I build the 
resource file shown above with an editor such as the Turbo Pascal editor and 
then compile it, much as I compile a Turbo Pascal program, with RMaker. 
The naming convention for resource text files and RMaker-compiled files is 
that the text files have the extension .R and compiled files have the extension 
.Rsrc. So having typed in the test resource file, I save it as Test.R. When it is 
compiled by RMaker, as you will see, the output file will be called Test.Rsrc 
because of the second line above. 

The remainder of the file Test.R contains the actual definitions of the 
window and menu items. The first line of the window definition is 

Type WIND 

which says that the following several lines define a window. In general, an 
item definition in a resource file must begin with the type XXXX statement, 
where XXXX is the name of the item type. RMaker supports 12 different 
resource types, but we will discuss only windows (Wind) and menus (Menu). 
For a detailed explanation of the other types, consult the Turbo Pascal manual 
or the Inside Macintosh publications. 

The next line in the window definition is a comma followed by the number 
1000 and a 4 in parentheses. This line represents the name and identification 
number for the resource item. The name field is optional, so I omitted it, but I 
have designated the number 1000 as the identifier for the window item. You 
can use any value from 128 to 32767 for an identifier number. The number 
4 in parentheses on this line means I wish to have this resource item loaded 
automatically. Several more attributes are discussed in the Turbo manual, 
but without the (4), the item will not be preloaded. After the (4) comes a 
comment. Again, the double semicolon tells RMaker to ignore the rest of the 
line. 

The lines 

Type WIND 



292 Graphics, Sound, and Resources 

and 

,1000 (4) 

are necessary for all of the different resource types. They are header lines 
used for all resource types with which you will work. The rest of the window 
definition contains items unique to WIND. The next line contains the words 
"Our Window" followed by another comment. In a WIND definition this line 
specifies the title to be displayed on the window. The next line contains the 
coordinates for the top, left, bottom, and right of the window. Notice that 
these numbers are not separated by commas; proper syntax in a resource file 
is just as important as in a Turbo Pascal file. 

The next line specifies two parameters: whether the window will be visible 
or invisible and whether it has a go-away box in the top left corner. The 
specific values are Visible and Invisible, GoAway and NoGoAway. The last 
two lines of the window definition specify the ID and another reference 
value; we have selected the number 0 for both. So the general format for 
a WIND-type resource definition is: 

type WIND 
name, identification# 
title 
top left bottom right 
VisibleFlag CloseBoxFlag 
Definition ID 
ReferenceValue 

(attributes) 

A window in a resource file must have this format. Also take note that this 
declaration is followed by a blank line, which must follow each resource-item 
definition. 

The last two items in the example resource file define two menus: the 
Apple menu and my own menu. The format for MENU type items is simple: 
after the two header lines, state the menu title and the options on that menu. 
My first menu definition looks like this: 

Type MENU 
,1001 (4) 
\14 

The Type MENU line says this is a menu definition; the next line states that 
the resource identification number is 1001 and it should be preloaded. The 



Event-Handling Programming with a Resource File 293 

last line is a little different. The \ 14 tells RMaker to use a special character 
as the title for this menu. The backslash specifies a special character and 14 
is the number of the Apple icon at the top of the leftmost menu in Macintosh 
applications. So I have defined the first Menu type to have for a title the 
Apple icon. You will see later how the various desk accessory names are 
placed under that title so they may be executed. 

The last definition in the file Test.R is the new menu, which contains the 
identification number 1002, the command to preload, the title Example, and 
the two options Bombs Sounds and Quit. Now that you know how to create 
a resource file, take a look at the resource compiler, RMaker. 

Using RMaker 
RMaker comes standard with the Turbo Pascal package and may be initiated 
by double-clicking on its icon, just like any other application. Once you have 
started RMaker, a dialog box asks you what file to compile. Notice that only 
files with the extension .R are displayed in this dialog box. Once you select 
a file on this screen by double-clicking on it or selecting it and clicking the 
open button), RMaker starts to compile the file. If any errors are encountered 
during compilation, they will be displayed on the screen. Otherwise click 
the quit button when compilation is finished. The Macintosh desktop will 
show the compiled file with the extension .Rsc. Now look at how to use 
this resource file in a true Macintosh application that uses event handling to 
interact with the user. 

Event-Handling Programming with a Resource 
File 

Up to now I have handled input from the user via several means: readln 
and a few mouse and mouse button status routines. One function declared in 
Toollntf handles virtually all the input possible from a user; this function is 
called GetNextEvent and is defined like this: 

function GetNextEvent ( mask : integer; 
Var theEvent : EventRecord) : boolean; 

Mask tells the function what type of events to return and which to ignore. 
TheEvent is a record that contains information about the returned event. Its 
structure is 



294 Graphics, Sound, and Resources 

EventRecord = record 
what : integer; 
message : longlnt; 
when : longlnt; 
where : Point; 
modifiers : integer; 

end; 

The information in the EventRecord returned from GetNextEvent may be 
looked at to determine what should be done within the application to respond. 
Take a close look at the following program, which performs event handling 
and uses the resource file I defined earlier: 

Program EvntHndlr; 

{$R EvntHndlr.RSRC} 
{$U-} 

Uses 
MemTypes, QuickDraw, Oslntf, Toollntf; 

Const 
Menu1 = 1001; 
Menu2 = 1002; 

Var 
the Event 
done 
menuH1 
menuH2 

: EventRecord; 
: boolean; 
: MenuHandle; 
: MenuHandle; 

menuResult : longint; 
whichMenu, 
Whichltem : integer; 
ourSong : SWSynthRec; 

: integer; 

Procedure SetUp; 

Var 
myWindow: WindowPtr; 

begin 
done := FALSE; 
lnitGraf (@thePort); 

{menu ID #1001} 
{menu ID #1002} 

{the event record} 
{are we finished yet?} 
{handle for Menu1} 
{handle for Menu2} 
{result of call to MenuSelect} 

{High word and low word of MenuResult} 
{array to hold notes} 
{loop counter} 

{pointer to our window} 

{procedure SetUp} 



Event-Handling Programming with a Resource File 295 

lnitWindows; 
lnitMenus; 
lnitCursor; 

myWindow := GetNewWindow (1000, nil, pointer (-1)); 

menuH1 := GetMenu (menu1); 
menuH2 := GetMenu (menu2); 
AddResMenu (menuH1, 'DRVR'); 
lnsertMenu (menuH1, O); 
lnsertMenu (menuH2, O); 
DrawMenuBar; 

(* Set up for notes selection in menu *) 
ourSong.mode := SWMode; 
for i := 0 to 19 do 
begin 

ourSong.triplets[i].count := 262 + i; 
ourSong.triplets[i].amplitude := 200; 
ourSong.triplets[i].duration := 2; 
ourSong.triplets[i + 20].count := 262 + 1; 
ourSong.triplets[i + 20].amplitude := 200; 
ourSong.triplets[i + 20].duration := 2; 

end; 
end; 

Procedure ProcessEvent; 

Var 
whichWindow : WindowPtr; 
whichDA : Str255; 

dumblnt : integer; 

begin 
case theEvent.what of 

{procedure SetUp} 

{the window ptr filled by FindWindow} 
{which DA to open if Apple menu 

selected} 
{blow off value returned from 

OpenDeskAcc} 

MouseDown: case (FindWindow (theEvent.where, whichWindow)) of 
lnMenuBar : begin 

menuResult := menuSelect (theEvent.where); 
whichMenu := HiWord (menuResult); 
whichltem := LoWord (menuResult); 
case WhichMenu of 

1 : begin {retrieve and open the DA} 



296 Graphics, Sound, and Resources 

end; 

Getltem (menuH1, which Item, which DA); 
if (OpenDeskAcc(whichDA) > 0) then; 

2 : case whichltem of {Example menu} 
1 : StartSound (@ourSong, 

end; 
end; 

(2 + (40 * (SizeOf (tone)))), 
Pointer (-1 )); 

2 : done := TRUE; 

HiliteMenu(O); {dehighlight menu selected} 
end; 

(* Need to handle DA activity *) 
lnSysWindow: SystemClick (theEvent, whichWindow); 

lnDrag : DragWindow (whichWindow, theEvent.where, 
screenBits.bounds); 

lnGoAway : done := TrackGoAway (whichWindow, 
theEvent.where); 

end; 
end; 

end; 

begin 
SetUp; 
repeat 
System Task; 

{case theEvent.what of} 

{program EvntHndlr} 

if GetNextEvent (everyEvent, theEvent) then 
ProcessEvent; 

until done; 
end. {program EvntHndlr} 

The $R compiler directive informs the Turbo compiler that it is to include 
the file EvntHndlr.Rsrc in the program; I renamed the file Test.R EvntHndlr.R 
and recompiled it via RMaker for use in the program. The next noteworthy 
declarations are the constants Menu 1 and Menu2, defined as 1001 and 1002 
respectively. Note that these numbers match the identification numbers in 
the resource file for the menu definitions. I define an EventRecord type 



Event-Handling Programming with a Resource File 297 

called TheEvent for subsequent use in event handling and declare a couple 
of variables called menuHl and menuH2, which are of MenuHandle type. 
MenuHandle is declared in Toollntf as follows: 

MenuHandle = "MenuPtr; 
MenuPtr =record 

menulD : integer; 
menuWidth : integer; 
menuHeight : integer; 
menuProc : Handle; 
enableFlags : Longlnt; 
menuData : Str255; 

end; 

The MenuHandle type variables are used in a couple of the menu-handling 
routines described shortly. 

The main routine of the program starts off by calling SetUp and then per
forms a repeat...until loop to call SystemTask, GetNextEvent, and Process
Event until the program is Done. The repeat...until loop is the heart of Mac
intosh event-handling programming. The procedure SystemTask in Toollntf 
updates any desk accessory items, for example resets the clock. Then Get
NextEvent is called, and if it returns a true value, the routine ProcessEvent 
is called. The first parameter of GetNextEvent, everyEvent, is a constant de
fined in OSintf to instruct GetNextEvent to return every type of event it 
encounters. Before I talk about how events are handled in this ProcessEvent 
routine. I should discuss some new setup routines. 

Along with the initialization routines I discussed earlier, I invoke the 
routine InitMenus to tell the menu manager to do some work with menu 
routines. I display the window defined in the resource file EventHndlr by 
calling the routine GetNewWindow. Notice that GetNewWindow contains 
far fewer parameters than NewWindow. The format for GetNewWindow is 

WPtr := GetNewWindow ( WID, wStorage, behind); 

where WPtr is the pointer to the window, Wid is the identification number of 
the window as specified in the resource file, and wStorage points where the 
window should be stored (nil indicates that the window should be stored on 
the heap, since no local space is declared for it. Behind another WindowPtr 
type defines whether the window should be on top or behind other windows; 
the value returned by the function pointer ( -1 ) instructs the window manager 
to place this window in front of all others. These last two parameters are 
identical to the first and third from last parameters in NewWindow. The only 



298 Graphics, Sound, and Resources 

parameter introduced in GetNewWindow is the identification number. You 
need not worry about the other parameters in NewWindow, since they are 
defined in the resource file. 

I start building the menu bar for the program by calling the function 
GetMenu for both menus. GetMenu's only parameter is the identification 
number for the menu resource definition as shown in the resource file. A 
MenuHandle is returned from GetMenu and is used next in the routine 
AddResMenu. Remember how I defined the Apple menu without any menu 
options? AddResMenu automatically adds options to the menu for the desk 
accessories defined for the system. I pass the MenuHandle for the Apple 
menu (menuHl) and the string DRVR, which tells MenuHandle to place the 
options on menuH 1. · 

InsertMenu inserts each of our menus into the menu bar. InsertMenu's 
first parameter is the handle of the menu to be added. Its second is an integer 
specifying before which menu the new menu should be placed; a value of 0 
tells InsertMenu to place the menu after all others. Finally, the menu bar is 
drawn by calling the routine DrawMenuBar. The rest of the SetUp routine is 
used to define the bomb sounds made when the first option of the new menu 
is selected. 

In the routine ProcessEvent I case out on the what field of theEvent record, 
and I care only about MouseDowns. If a MouseDown occurs, FindWindow 
is called to determine where the mouse button was when the button was 
pressed. FindWindow takes two parameters, the point where the button was 
pressed (theEvent.where) and a WindowPtr type set by FindWindow to the 
window the mouse was in when the button was clicked. The value returned 
by FindWindow is an integer for which several constants have been declared: 
InMenuBar, InSysWindow, InDrag, and so on. For each of these results 
different processing must be performed. If the button was clicked in the 
menu bar (lnMenuBar), I first call the MenuSelect function. MenuSelect's 
only parameter is the where field of theEvent. It returns a long integer 
whose high-order word contains the menu selected and whose low-order word 
contains the option selected within that menu. This is why I call the functions 
HiWord and Lo Word to fill in the variables WhichMenu and Whichltem 
respectively. I case out on WhichMenu to determine whether the button was 
clicked in the Apple menu or the example menu. If the button was clicked on 
an item in the Apple menu, I must do some work to start up the appropriate 
desk accessory. First I call Getltem for the name of the desk accessory. 
Getltem's parameters are the MenuHandle for the Apple menu, the item 
selected from Whichltem, and the name of the desk accessory (or DA) to start 
up. The last parameter is filled by Getltem and passed to OpenDeskAcc. The 
value returned by OpenDeskAcc may be ignored, since any error resulting 



Review Summary 299 

from opening it will be handled by OpenDeskAcc itself. The calls to Getltem 
and OpenDeskAcc start up the available desk accessories without the user 
knowing anything further about them. 

If the second menu is selected (case whichMenu of), I know it is the 
Example menu and should either start the bomb sounds via StartSound or 
stop the program by setting done to TRUE. At the end of the block of code 
lnMenuBar I call the routine HiliteMenu with the parameter 0 to dehighlight 
the highlighted menu. 

If the result of the FindWindow ·call is InSysWindow, I must call the 
procedure SystemClick to handle activity on any open desk accessories. 
SystemClick's parameters are the record theEvent and TheWindow in which 
the button was clicked. 

If FindWindow returns the value InDrag, call the procedure DragWindow. 
DragWindow's parameters are the window pointer set up by FindWindow, 
the where field of theEvent record, and the bounds field of the ScreenBits 
record declared in QuickDraw. 

Finally, if the result of FindWindow is InGoAway, TrackGoAway should 
be called to determine if the button is released in the go-away box and to close 
the window. TrackGoAway's parameters are the window pointer returned 
from FindWindow and the where field of theEvent record. I automatically 
set the variable done to the result of TrackGoAway so that the program will 
end when the window is closed. 

That's all you need to know about event-handling programming to write 
Macintosh-style applications. I have covered a good deal of material in this 
chapter, so I suggest that you review all of the sections before continuing 
with our final chapter, which contains a few useful applications. 

Review Summary 
1. The Turtle provides you with several easy-to-use graphics routines in 

Turbo Pascal. 
2. QuickDraw defines several very useful and fast graphics routines that 

are much more powerful than those in Turtle. 
3. A pen may be used to draw pictures on the. screen in black, dark gray, 

gray, light gray, and white. 
4. Frequency is the numeric value that corresponds to the scale of musical 

notes; middle Chas a frequency of 523. 
5. The procedure StartSound allows you to produce sound on the Macin

tosh via a Turbo Pascal program. 



300 Graphics, Sound, and Resources 

Quiz 

6. Resource files let you externally define in your programs several types 
of items such as windows and menus. 

7. RMaker compiles your resource (.R) files and creates .Rsrc files, which 
may be called up from a Turbo Pascal program. 

8. GetNextEvent is the centerpiece of Macintosh-style applications. When 
used in an event loop, it allows you to handle all user input in a highly 
structured manner. 

1. What advantage do Turtle routines have over QuickDraw routines? 
Vice versa? 

2. If I changed the coordinates for the light box in the StreetLight program 
from 216, 75, 266, 175 to 216, 0, 266, 100, what effect would that have 
on the graphics display? 

3. Given the following code, how many times would "Music" be displayed? 

while NOT TRUE do 
for i := 1 to 10 do 

writeln ( 'Music' ); 

4. What is GetNextEvent used for? 
5. What is the difference between GetNewWindow and NewWindow? 



14-----
A Few Programs for 
the Road 
The Date-Minder Program 
Batting-Average Program 
Record Album Database Program 
Summing Up 
Review Summary 
Quiz 

In this chapter you will learn: 
• A very useful electronic calendar program that can be modified quite easily by 

incorporating additional routines. 
• A program to calculate and maintain baseball batting averages. 
• A database program to catalog your album collection. 
• The concept of modularity for designing menu-driven programs. 

The Date-Minder Program 
The first program in this chapter is one I hope you will find helpful all year 
round. It's an electronic calendar that will tell you what events are coming up 
in the next 30 days. All you have to do is enter such information as birthdays 
and anniversaries. Then, when you need to see what's on the horizon for the 
next month, you select the option "View the next month of events" from the 
menu. All your calendar information will be stored on disk, so you can add 
more dates to the file at any time. 

Look at the program before I discuss it in detail. 

Program DateMinder; 

(*****************************************************************) 

(*This program may be used to create an electronic calendar*) 
(* where you can store important dates and view the next *) 



302 A Few Programs for the Road 

(* month's important dates. *) 
{*****************************************************************) 

Uses 
MemTypes, QuickDraw, OSlntf; 

Const 
NameOfFile ='Important Dates'; 

Type 
MonthDayRec = record 

month : String[9]; 
numDays : integer; 

end; 

EventRec = record 
month : integer; 
date : integer; 
occasion : String; 

end; 

Var 
done : boolean; 
yearArray : array[1..12] of 

MonthDayRec; 
eventVarRec : EventRec; 
anErr : OSErr; 
refNum : integer; 
recSize : longint; 

Procedure AddDates; 

Var 
valid : boolean; 
finished : boolean; 
month : integer; 
date : integer; 
occasion : String; 
response : char; 
junkRecord : EventRec; 

begin 

{record for each month} 
{Month name} 
{number of days in month} 

{record for each event} 
{event month} 
{event date} 
{event name} 

{are we finished with the program?} 

{array of months} 
{reads/writes EventRecs} 
{error returned from file routines} 
{file path reference number} 
{tells file routine how large record is} 

{is user's input valid?} 
{is user finished adding dates?} 
{month of the occasion} 
{date of the occasion} 
{the occasion name} 
{user's Y/N response for more additions} 
{used for finding EOF} 

{procedure AddDates} 
(*****************************************************************) 

(* Need to check to see if this file exists first. *) 



The oat.Minder Program 303 

(* If it doesn't, we need to create. *) 
(*****************************************************************) 

anErr := FSOpen (nameOfFile, 0, refNum); 
if an Err= fnfErr then {File not found error} 
begin 

anErr :=Create (nameOfFile, refNum, 'DATM', 'OATS'); 
anErr := FSOpen (nameOfFile, 0, refNum); 

end; 

(*****************************************************************) 

(* Find the end of the file so that we can append *) 
(*****************************************************************) 

anErr := SetFPos (refNum, fsFromLEOF, O); 

finished:= FALSE; 
while NOT finished do 
begin 

ClearScreen; 
valid:= FALSE; 
while NOT valid do 
begin 

writeln; 
writeln; 
writeln; 
write ('What month is this occasion (1-12)? '); 
readln (eventVarRec.month); 
If ((eventVarRec.month > 0) AND (eventVarRec.month < 13)) then 

valid:= TRUE; 
end; 
valid:= FALSE; 
while NOT valid do 
begin 

writeln; 
writeln; 
writeln; 

{while NOT valid} 

write ('what date is this occasion (1-31)? '); 
readln (eventVarRec.date); 
if ((eventVarRec.date > 0) AND 
(eventVarRec.date <= yearArray[eventVarRec.month].numDays)) then 

valid := TRUE; 
end; 

writeln; 
writeln; 

{while NOT valid} 



304 A Few Programs for the Road 

writeln; 
write ('What is the occasion? '); 
readln (eventVarRec.occasion); 
anErr := FSWrite (refNum, recSize, @eventVarRec); 
writeln; 
writeln; 
writeln; 
write ('do you have any more entries (Y/N)?'); 
response := ReadChar; 
if ((response= 'N;) OR (response= 'n')) then 

finished := TRUE; 
end; 
anErr := FSClose (refNum); 
anErr := FlushVol (nil, O); 

end; 

Procedure ViewDates; 

Var 
holdDateTime : DateTimeRec; 
nextMonth : integer; 
a Char : char; 

{while NOT finished} 

{procedure AddDates} 

{holds current date/time} 
{next month (for Jan. after Dec.)} 
{used for "Press any key to continue"} 

begin {procedure ViewDates} 

ClearScreen; 
GetTime (holdDateTime); {library routine which returns date} 
anErr := FSOpen (nameOfFile, 0, refNum); 
if (anErr = fnfErr) then {File not found error} 
begin 

GotoXY (30, 10); 
write ('NON-EXISTENT FILE!!!'); 
GotoXY (27, 12); 
write ('Press any key to continue .. .'); 
aChar := ReadChar; 

end 
else 
begin 

writeln; 
writeln; 
write ('**********************************'); 
writeln ('*** ***************************'); 
if (holdDateTime.month = 12) then 

nextMonth := 1 
else 

nextMonth := holdDateTime.month + 1; 



The Date-Minder Program 305 

while (FSRead (refNum, recSize, @eventVarRec) <> EOFErr) do 
if (((eventVarRec.month = holdDateTime.month) AND 

(eventVarRec.date >= holdDateTime.day)) OR 
((eventVarRec.month = nextMonth) AND 

(eventVarRec.date < holdDateTime.day))) then 
writeln (' ', eventVarRec.occasion, 'is on', 

yearArray[eventVarRec.month].month, eventVarRec.date: 3); 
write ('*********************************'); 
writeln ('****************************'); 
anErr := FSClose (refNum); 
writeln; 
write (' Press any key to continue .. .'); 
aChar := ReadChar; 

end; 
end; 

Procedure DisplayMenu; 

Var 
selection : char; 
valid : boolean; 

begin 
valid := FALSE; 
while NOT valid do 
begin 

ClearScreen; 
writeln; 
writeln; 

{procedure ViewDates} 

{user's menu selection} 
{is user's response valid?} 

{procedure DisplayMenu} 

writeln; 
writeln (' 
writeln (' 
writeln (' 
writeln (' 
writeln; 
writeln; 

Which would you like to do:'); 
1. Add dates to the file'); 
2. View the next month of events'); 
3. QUIT'); 

write (' (Enter 1, 2 or 3) '); 
selection := ReadChar; 
if (selection= '1') OR (selection= '2') OR (selection= '3') then 

valid := TRUE; 
end; 
case selection of 

'1' : addDates; 

'2' : ViewDates; 

{while NOT valid} 



306 A Few Programs for the Road 

'3' : done := TRUE; 

end; 
end; 

{case Selection} 
{procedure DisplayMenu} 

begin {program DateMinder} 
recSize := SizeOf (eventRec); 
{set up table for months and number of days} 
yearArray[1 ].month := 'January'; 
yearArray[2].month :='February'; 
yearArray[3].month :='March'; 
yearArray[4].month :='April'; 
yearArray[5].month :='May'; 
yearArray[6].month :='June'; 
yearArray[7].month :='July'; 
yearArray[B].month :='August'; 
yearArray[9].month :='September'; 
yearArray[10].month :='October'; 
yearArray[11 ].month := 'November'; 
yearArray[12].month :='December'; 
yearArray[1].numDays := 31; 
yearArray[2].numDays := 28; 
yearArray[3].numDays := 31; 
yearArray[4].numDays := 30; 
yearArray[5].numDays := 31; 
yearArray[6].numDays := 30; 
yearArray[7].numDays := 31; 
yearArray[B].numDays := 31; 
yearArray[9];numDays := 30; 
yearArray[10].numDays := 31; 
yearArray[11 ].numDays := 30; 
yearArray[12].numDays := 31; 
done:= FALSE; 

while NOT done do 
DisplayMenu; 

end. {program DateMinder} 

The program has the structure type EventRec, which holds the month, date, 
and name of each occasion. The main routine performs initialization and calls 
DisplayMenu until the program is finished. The routine DisplayMenu shows 
the main menu and depending on the user's selection, calls AddDates or 
ViewDates or stops the program. 

AddDates is the routine that actually writes the event records out to the 
file. The file where these dates are stored is called Important Dates. This 



The Date-Minder Program 307 

name can be changed through the constant NameOfFile at the beginning of 
the program. At the start of AddDates the file is opened and the end of the 
file is found. Then, while the user is not finished adding records and events 
two loops are performed to validate the input for the month and date of the 
occasion. The occasion name is entered and the record is written to the file 
and the user is asked if he or she has any more entries. H there are more, 
the while NOT Finished loop is continued; otherwise the file is closed and 
control is passed back to DisplayMenu. 

The last function in the date-minder program is called ViewDates. First the 
date is determined via the procedure GetTime, which is declared in OSintf. 
GetTime returns a record of DateTimeRec whose format is also defined in 
OSintf. This record structure contains fields for month, day, and year; their 
contents designate which events stored in the file will occur within the next 
month. This if statement opens the event file and determines the next month: 

if ( holdDateTime.month = 12) then 
nextMonth := 1 

else 
nextMonth := hold Date Time.month + 1; 

As you can see, if this month is December, I want to make next month 
January. Otherwise I add 1 to the current month. 

Then, the events of the next month are displayed on the screen. A very 
long if statement is used to determine whether a month fits into this category. 
It may be helpful to split this statement into two, either of which may be true 
for the date and event to be displayed: 

1) if ( ( eventVarRec.month = holdDateTime.month ) AND 
( eventVarRec.date >= holdDateTime.day ) ) 

or 

2) ( ( eventVarRec.month = nextMonth ) AND 
( eventVarRec.date < holdDateTime.day ) ) 

Suppose today is July 10 and the event takes place on July 31; both 
segments of the case are true, since the event's month (eventVarRec.month) 
is the same as holdDateTime.month and the event's date (eventVarRec.date) 
is greater than eventVarRec.date. 

On the other hand, suppose today is July 10 and the event is on Au
gust 5. Both segments are true here also, since the event's month (eventVar-



308 A Few Programs for the Road 

Rec.month) is the same as nextMonth and the event's date (eventVarRec.date) 
is less than holdDateTime.day. 

At the end of the file it is closed and control returns to the DisplayMenu 
routine. 

Take a look at a program that allows you to maintain a file of your favorite 
baseball player's batting average. 

Batting-Average Program 
This program allows you to enter up to 20 baseball players, their number, 
number of at-bats and number of hits. It will calculate their batting averages 
and store the file on disk. 

Program BaseAvgs; 

{$A+} 

Uses 
MemTypes, QuickDraw, OSlnft; 

(*****************************************************************) 

(* This program permits the user to create a file containing *) 
(*batting averages for a baseball team. It also permits *) 
(* complete maintenance of the file as well as the ability *) 
(* to display it. *) 
(*****************************************************************) 

Const 
Team = 'BallClub'; 

Type 
PlayerRec = record 

number : String[4]; 
lastName : String[15]; 
firstName : String[10]; 
atBats : real; 
hits : real; 
battingAve : real; 

end; 

Var 
choice 
done 
aPlayer 

: char; 
: boolean; 
: PlayerRec; 

{the file name} 

{the player record structure} 
{player's number} 
{player's last name} 
{player's first name} 
{number of at-b,ts} 
{number of hits} 
{batting average} 

{use's menu selection} 
{are we finished yet?} 
{a player var} 



Batting-Average Program 309 

arrOfPI : array[1 .. 20] of PlayerRec; {array of players} 
numOfPlyrs : integer; {current number of players} 
anErr : OSErr; {error returned from file routines} 
refNum : integer; {file path reference number} 
aChar : char; {used for "Press any key ... "} 
recSize : longint; {tells file routines how large record is} 

Procedure LoadArray; 

begin {procedure LoadArray} 
numOf Pl yrs := O; 
anErr := FSOpen (team, 0, refNum); 
(*****************************************************************) 

(* If the file doesn't exist, create it *) 
(*****************************************************************) 

if anErr = fnfErr then {File not found error} 

begin 
anErr :=Create (team, refNum, 'BAVE', 'AVES'); 
anErr := FSOpen (team, 0, refNum); 

end; 
while (FSRead (refNum, recSize, 

@arrOfPl[numOfPlyrs = 1]) <> EOFErr) do 
numOf Ply rs := numOf Ply rs + 1; 

anErr := FSClose (refNum); 
end; {procedure LoadArray} 

Procedure ReDoFile; 

Var 
i: integer; {loop counter} 

begin {procedure ReDoFile} 
anErr := FSDelete (team, O); {delete the old file first} 
anErr :=Create (team, 0, 'BAVE', 'AVES'); 
anErr := FSOpen (team, 0, refNum); 
for i := 1 to numOf Ply rs do 

anErr := FSWrite (refNum, recSize, @arrOfPl[i]); 
anErr := FSClose (refNum); 
anErr := FlushVol (nil, O); 

end; {procedure ReDoFile} 

Procedure Entlnfo; 

Var 
: integer; {loop counter} 



310 A Few Programs for the Road 

response : char; 
data : real; 

begin 
LoadArray; 
for i := 1 to numOfPlyrs do 
begin 

ClearScreen; 

{user's response} 
{user's input figure} 

write ('Do you have any data for', arrOfPl[i].lastName, '?'); 
response := ReadChar; 
if ((response= 'Y') OR (response= 'y')) then 
begin 

writeln; 
write ('How many additional at-bats?'); 
readln (data); 
arrOfPl[i].atBats := arrOfPl[i].atBats +data; 
write ('How many additional hits?'); 
readln (data); 
arrOfPl[i].hits := arrOfPl[i].hits +data; 
if (arrOfPl[i].atBats <> 0) then 

arrOfPl[i].battingAve := arrOfPl[i].hits I arrOfPl[i].atBats 
else 

arrOfPl[i].battingAve := O; 
end; 

end; 
ReDoFile; 

end; 

Procedure DelPlyr; 

Var 

!Name : String[15]; 
i,j : integer; 
found : boolean; 
aChar : char; 

begin 
ClearScreen; 

{procedure Entlnfo} 

{last name of player to be deleted} 
{counters} 
{have we found the name yet?} 
{used for "Press any key ... "} 

write ('What is the last name of the player to be deleted?'); 
readln (IName); 
LoadArray; 
i := 1; 
found:= FALSE; 
while ((i <= numOfPlyrs) AND (NOT found)) do 



if (IName = arrOfPl[i].lastName) then 
found := TRUE 

else 
i := i + 1; 

if NOT found then 
begin 

writeln; 

Baiting-Average Program 311 

writeln ('THAT NAME IS NOT IN THE FILE!'); 
end 
else 
begin 

for j := I to numOfPlyrs - 1 do 
arrOfPl[j] := arrOfPl[j + 1]; 

numOf Ply rs := numOf Ply rs - 1; 
ReDoFile; 
writeln; 
writeln ('THAT PLAYER HAS NOW BEEN DELETED .. .'); 

end; 
writeln; 
write ('PRESS ANY KEY TO CONTINUE .. .'); 
aChar := ReadChar; 

end; {procedure DelPlyr} 

Procedure DoDisp; 

Var 
i : integer; {loop counter} 

begin {procedure DoDisp} 
anErr := FSOpen (team, 0, refNum); 
if anErr = fnfErr then {File not found error} 
begin 

writeln; 
writeln ('THERE IS NO BASEBALL FILE ON THIS DISK!'); 
writeln; 
write ('Press any key to continue .. .'); 

end 
else 
begin 

ClearScreen; 
write ('NUMBER NAME '); 
writeln('AT-BATS HITS BATTING AVE'); 
write ('--------------------------------------'); 
write In (' ------------------------------'); 



312 A Few Programs for the Road 

for i := 1 to numOf Ply rs do 
writeln (' ', arr0fPl[i).number:4, • ', arrOfPl[i).firstName:10,' ', 
arrOf Pl [i] .lastName:15,' ', arrOf Pl [i] .atBats:3:0, 
• ', arrOfPl[i].hits:3:0,' ', 
arrOfPl[i).battingAve:3:3); 

end; 
writeln; 
write ('Press any key to continue .. .'); 
aChar := ReadChar; 
anErr := FSClose (refNum); 

end; 

Procedure sort; 

Var 
h,j : integer; 
tempPlyr : PlayerRec; 

{procedure DoDisp} 

{loop counters} 
{temporary storage for sort proc} 

begin {procedure Sort} 
LoadArray; 
for j := 1 to numOf Pl yrs do 
for h := 1 to numOf Ply rs - j do 

if (arrOfPl[h.].battingAve < arrOfPl[h + 1).battingAve) then 
begin 

end; 

tempPlyr := arrOfPl[h]; 
arrOfPl[h) := arrOfPl[h + 1); 
arrOfPl[h + 1) := tempPlyr; 

end; 

Procedure DisAve; 

begin 
Sort; 
DoDisp; 

end; 

Procedure AddPlyr; 

{procedure Sort} 

{procedure DisAve} 

{procedure DisAve} 

begin {procedure AddPlyr} 
Clear Screen; 
LoadArray; 
numOf Ply rs := numOfPlyrs + 1; 
write ('What is the player"s first name? '); 



readln (arrOfPl[numOfPlyrs].firstName); 
write ('What is the player"s last name? '); 
readln (arrOfPl[numOfPlyrs].lastName); 
write ('What is his number? '); 
readln(arrOfPl[numOfPlyrs].number); 

Batting-Average Program 313 

write ('How many at-bats does he currently have? '); 
readln (arrOfPl[numOfPlyrs].atBats); 
write ('How many hits does he currently have? '); 
readln (arrOfPl[numOfPlyrs].hits); 
if(arrOfPl[numOfPlyrs].atBats <> 0) then 

arrOfPl[numOfPlyrs].battingAve := 
arrOfPl[numOfPlyrs].hits I arrOfPl[numOfPlyrs].atBats 

else 
arrOfPl[numOfPlyrs].battingAve := O; 

ReDoFile; 
end; 

begin 
recSize := SizeOf (playerRec); 
done:= FALSE; 
while NOT done do 
begin 

ClearScreen; 

{procedure AddPlyr} 

{main procedure} 

writeln ('Which of the following do you wish to perform:'); 
write In; 
writeln; 
writeln (' 1. Add a player to the file'); 
writeln (' 2. Delete a player from the file'): 
writeln (' 3. Enter information for a player'); 
writeln (' 4. Display the file by batting average'); 
writeln (' 5. QUIT'); 
writeln; 
writeln; 
write ('Please enter your selection:'); 
choice := ReadChar; 
case choice of 
'1' : AddPlyr; 

'2' : DelPlyr; 

'3' : Entlnfo; 

'4' : DisAve; 

'5' : done := TRUE; 



314 A Few Programs for the Road 

otherwise 
begin 

writeln; 
writeln; 
writeln ('INVALID RESPONSE ... TRY AGAIN!'); 
writeln; 
write ('Press any key to continue .. .'); 
choice := ReadChar; 

end; 
end; 

end; 
end. 

{case choice of} 
{while NOT done do} 
{main procedure} 

This program introduces no new concepts and therefore should be very 
easy to understand. The menu displays four options: add a player, delete a 
player, enter information for existing players, and display the file by order of 
batting average. The program contains a separate routine for each option as 
well as three other routines used by some or all of the menu-option routines. 
These additional functions, ReDoFile, Sort, and LoadArray, are responsible 
for rewriting the file, sorting the file in the memory array, and reading the 
file into the memory array respectively. Step through this program and try 
entering a few statistics to verify that the program works as you expect. 

Record Album Database Program 
The final program I will show you is one that catalogs record albums. Having 
entered all my albums, I can either sequentially view the file or search the file 
based upon album title, artist, year of release, or an extra field for comments. 
Again, there are no concepts introduced in this program, so you should have 
no problem following the logic. 

Program Albums; 

Uses 
MemTypes, QuickDraw, OSlntf; 

(*****************************************************************) 

(* This program allows the user to create a file which *) 
(* contains records for each of his or her musical albums. *) 
(*****************************************************************) 

Const 
AlbFile = 'MyAlbums'; {the name of the file} 



Type 
AlbumType = record 

title : String[25]; 
artist : String[20); 
year : String[4]; 
xtraField : String[20); 

end; 

Var 
anAlbum : AlbumType; 
finished : boolean; 
choice : char; 
anErr : OSErr; 
recSize : longint; 
refNum : integer; 

Procedure AddAlbums; 

var 

Record Album Database Program 315 

{the album record type} 
{album title} 
{album artist} 
{album's year of release} 
{extra field for misc. search} 

{the album record var} 
{are we finished?} 
{user's menu selection} 
{error returned from file routines} 
{tells file routines how large record is} 
{file path reference number} 

done : boolean; {Are we finished adding?} 

begin {procedure AddAlbums} 
done:= FALSE; 
anErr := FSOpen (albFile, 0, refNum); 
(*****************************************************************) 

(* If the file doesn't exist, create it. *) 
(*****************************************************************) 

if anErr = fnfErr then {File not found error} 
begin 

anErr :=Create {albFile, 0, 'ALBS', 'RECS'); 
anErr := FSOpen (albFile, 0, RefNum); 

end; 
(*****************************************************************) 

(* Find the end of the file so that we can append *) 
(*****************************************************************) 

anErr := SetFPos (refNum, fsFromLEOF, O); 

while NOT done do 
begin 

ClearScreen; 
GotoXY (10, 10); 
write ('What is the album"s title {$ to end)?'); 
readln (AnAlbum.title); 
if (anAlbum.title ='$')then {enter$ to stop} 

done:= TRUE 



316 A Few Programs for the Road 

else 
begin 

GotoXY (10, 11); 
write ('Who is the artist? '); 
readln (anAlbum.artist); 
GotoXY (10, 12); 
write ('What year was the album made? '); 
readln (anAlbum.year); 
GotoXY (10, 13); 
write ('What do you want in the .extra field?'); 
readln (anAlbum.xtraField); 
anErr := FSWrite (refNum, recSize, @anAlbum); 

end; 
end; 
anErr := FSClose (refNum); 
anErr := FlushVol (nil, O); 

end; {procedure AddAlbums} 

Procedure DispTheRecord; 

begin {procedure DispTheRecord} 
ClearScreen; 
GotoXY (20, 10); 
writeln ('The album title is: ', anAlbum.title); 
GotoXY (20, 11 ); 
writeln ('The album artist is: ', anAlbum.artist); 
GotoXY (20, 12); 
writeln ('The album"s release was in: ', anAlbum.year); 
GotoXY (20, 13); 
writeln ('The extra field is: ', anAlbum.xtraField); 
GotoXY (25, 16); 
wrote ('PRESS ANY KEY TO CONTINUE .. .'); 
choice := ReadChar; 

end; {procedure DispTheRecord} 

Procedure DisplayFile; 

begin {procedure DisplayFile} 
anErr := FSOpen (albFile, 0, refNum); 
(*****************************************************************) 

(* If file doesn't exist, display message. *) 
(*****************************************************************) 

if anErr = fnfErr then 
begin 

ClearScreen; 

{File not found error} 



Record Album Database Program 317 

writeln (' THERE IS NO ALBUM FILE ON THE DISK!'); 
writeln; 
write (' Press any key to continue'); 
choice := ReadChar; 

end 
else 
begin 

while (FSRead (refNum, recSize, @anAlbum) <> EOFErr) do 
DispTheRecord; 

anErr := FSClose (refNum); 
end; 

end; 

Procedure GrpSearch; 

Var 
foundOne : boolean; 
group : String[20]; 

{procedure DisplayFile} 

{have we found a match yet?} 
{holds name of group we wish to search} 

begin {procedure GrpSearch} 
GotoXY (15, 16); 
write ('For which Group/Artist do you wish to search?'); 
readln (group); 
anErr := FSOpen (albFile, 0, refNum); 
(*****************************************************************) 

(* If the file doesn't exist, display message. *) 
(*****************************************************************) 

if anErr = fnfErr then 
begin 

ClearScreen; 
writeln (' 
writeln; 
write(' 
choice := ReadChar; 

end 

{File not found error} 

THERE IS NO ALBUM FILE ON THE DISK!'); 

Press any key to continue'); 

else {search the file} 
begin 

foundOne := FALSE; 
while (FSRead (refNum, recSize, @anAlbum) <> EOFErr) do 

if (anAlbum.artist =group) then 
begin 

foundOne := TRUE; 
DispTheRecord; 

end; 



318 A Few Programs for the Road 

if NOT foundOne then 
begin 

writeln; 
writeln; 
writeln ('THAT ARTIST IS NOT ON THE FILE!'); 
writeln; 
write ('Press any key to continue .. .'); 
choice := ReadChar; 

end; 
anErr := FSClose (refNum); 

end; 
end; {procedure GrpSearch} 

Procedure Tag1Search; 

Var 
foundOne : Boolean; 
tag1 : String[20]; 

{have we found a match yet?} 
{holds tag 1 we wish to search} 

begin {procedure GrpSearch} 
GotoXy (15, 16); 
write ('What is the extra field you wish to search?'); 
readln (tag1 ); 
anErr := FSOpen (albFile, 0, refNum); 
(*****************************************************************) 

(* If the file doesn't exist, display message. *) 
(*****************************************************************) 

if anErr = fnfErr then 
begin 

ClearScreen; 

{file not found error} 

writeln (' There is no album file on the disk!'); 
writeln; 
write (' Press any key to continue'); 
choice := ReadChar; 

end 
else 
begin 

foundOne := FALSE; 

{search the file} 

while (FSRead (refNum, recSize, @anAlbum) <> EOFErr) do 
if (anAlbum.xtraField = tag1) then 
begin 

foundOne := TRUE; 
DispTheRecord; 

end; 
if NOT foundOne then 



Record Album Database Program 319 

begin 
writeln; 
writeln; 
writeln ('THAT EXTRA FIELD IS NOT ON THE FILE!'); 
writeln; 
write (' Press any key to continue .. .'); 
choice := ReadChar; 

end; 
anErr := FSClose (refNum); 

end; 
end; {procedure Tag 1 Search} 

Procedure TitleSearch; 

Var 
foundOne : boolean; 
title : String[25]; 

{have we found a match yet?} 
{holds title we wish to search} 

begin {procedure GrpSearch} 
GotoXY (15, 16); 
write ('What title do you wish to search?'); 
readln (title); 
anErr := FSOpen (albFile, 0, refNum); 
(*****************************************************************) 

(* If the file doesn't exist, display message. *) 
(*****************************************************************) 

if anErr = fnfErr then 
begin 

ClearScreen; 

{file not found error} 

writeln (' THERE IS NO ALBUM FILE ON THE DISK!'); 
writeln; 
write (' Press any key to continue'); 
choice := ReadChar; 

end 
else {search the file} 
begin 

foundOne :=FALSE; 
while (FSRead (refNum, recSize, @anAlbum) <> EOFErr) do 

if (anAlbum.title =title) then 
begin 

foundOne := TRUE; 
DispTheRecord; 

end; 
if NOT foundOne then 
begin 



320 A Few Programs for the Road 

writeln; 
writeln; 
writeln ('THAT TITLE IS NOT ON THE FILE!'); 
writeln; 
write ('Press any key to continue .. .'); 
choice := ReadChar; 

end; 
anErr := FSClose (refNum); 

end; 
end; {procedure TitleSearch} 

Procedure YearSearch; 

Var 
foundOne : boolean; 
year : String[4]; 

{have we found a match yet?} 
{holds year we wish to search} 

begin {procedure GrpSearch} 
GotoXY (15, 16); 
write ('For what year do you wish to search?'); 
readln (year); 
anErr := FSOpen (albFile, 0, refNum); 
(*****************************************************************) 

(* If the file doesn't exist, display message. *) 
(*****************************************************************) 

if anErr = fnfErr then {File not found error} 
begin 

ClearScreen; 
writeln (' THERE IS NOT ALBUM FILE ON THE DISK!'); 
writeln; . 
write (' Press any key to continue'); 
choice := ReadChar; 

end 
else {search the file} 
begin 

foundOne := FALSE; 
while (FSRead (refNum, recSize, @anAlbum) <> EOFErr) do 

if (anAlbum.year = year) then 
begin 

foundOne := TRUE; 
DispTheRecord; 

end; 
if NOT foundOne then 
begin 

writeln; 



Record Album Database Program 321 

writeln; 
writeln ('THAT YEAR IS NOT ON THE FILE!'); 
writeln; 
write ('Press any key to continue .. .'); 
choice := ReadChar; 

end; 
anErr := FSClose (refNum); 

end; 
end; 

Procedure Search; 

Var 
done : boolean; 
selection : char; 

begin 
done := FALSE; 
while NOT done do 
begin 

ClearScreen; 
GotoXY (20, 8); 

{procedure YearSearch} 

{are we finished searching?} 
{the user's search selection} 

{procedure Search} 

writeln ('Which field would you like to search:'); 
GotoXY (20, 9); 
writeln (' 1, Group/ Artist Name'); 
GotoXY (20, 10); 
writeln (' 2. Album Title'); 
GotoXY (20, 11 ); 
writeln (' 3. Year of Release'); 
GotoXY (20, 12); 
writeln (' 4. Extra field'); 
GotoXY (20, 13); 
writeln (' 5. QUIT'); 
GotoXY (20, 14); 
write ('Please enter your selection: '); 
selection := ReadChar; 
case selection of 

'1': GrpSearch; 

'2' : TitleSearch; 

'3': YearSearch; 

'4': Tag1Search; 

'5' : done := TRUE; 



322 A Few Programs for the Road 

otherwise; 
end; 

end; 
end; 

begin 
recSize := SizeOf (anAlbum); 
finished := FALSE; 
while NOT finished do 
begin 

ClearScreen; 
GotoXY (20, 8); 

{don't do anything; redisplay screen} 
{case selection of} 
{while NOT done do} 
{procedure Search} 

{main procedure} 

writeln ('Select one of the following options:'); 
GotoXY (20, 9); 
writeln (' 1. Add albums to the file'); 
GotoXY (20, 10); 
writeln (' 2. Sequentially display the file'); 
GotoXY (20, 11 ); 
writeln (' 3. Search the file'); 
GotoXY (20, 12); 
writeln (' 4. QUIT'); 
GotoXY (20, 13); 
write ('What is your choice?'); 
choice := ReadChar; 
case choice of 

'1' : AddAlbums; 

'2' : DisplayFile; 

'3' : Search; 

'4': finished :=TRUE; 

otherwise; 
end; 

end; 
end. 

{dont' do anything; redisplay screen} 
{case choice of} 
{while NOT finished do} 
program Albums} 

This program lends itself to the addition of new options and modules. The 
search routines are almost identical. When you wish to stop adding albums 
to the file, just enter a dollar sign and control will return to the main menu. 
The extra field may be used to specify the condition of the album, the owner 
of the album, the type of music, and so forth. Be sure to log some albums 
to see how easy it is. Then search for albums by a particular artist, from a 
certain year, and so on. 



Quiz 323 

Summing Up 
The date-minder program can definitely help you and your family if you 
often forget important dates. The program is modular; you can easily add 
more options to the main menu, for instance viewing the next 60 days' 
events or maybe even the entire file. Because of the modular structure of 
the program-each task having its own routine-all you have to do is add 
more options to the menu in DisplayMenu and make sure they are accepted 
as valid in the if and case statements thereafter. Then add the appropriate 
routines to the program. The baseball and album programs are both modular 
and can easily be customized. 

I sincerely hope that the information you have learned in this and all 
the preceding chapters is all you need to write your own applications. Even 
though you have finished reading this book, keep it handy for use as a quick 
reference guide when working in Turbo Pascal. 

Review Summary 

Quiz 

1. Modular structure is used in all the programs in this chapter: each 
separate task has its own routine, and more tasks can be added by 
developing additional routines. 

1. Why couldn't I have added ope to the current month to get the value 
of the next month in the date-minder program? 

2. Why do I always check the value of the atBats field before calculating 
the batting average in the Entlnfo routine? 

3. How are invalid entries handled in the main menu of the album database 
program? 



AppendixA--
The Borland Toolboxes 
and Turbo Tutor 
Turbo Pascal Database Toolbox 
Turbo Pascal Access 
Turbo Pascal Toolbox Numerlcal Methods 
Turbo Pascal Tutor 

Borland International offers three additional products for the Turbo Pascal 
compiler. The first one, Turbo Pascal Database Toolbox, provides routines 
that sort files (TurboSort) and maintain a database (Turbo Pascal Access). 

Turbo Pascal Database Toolbox 
One part of the database toolbox calls a function that will sort an input file 
based on the specifications you provide. This function has the syntax 

function TurboSort ( ltemLength : integer; 
lnpPtr, LessPtr, OutPtr : ProcPtr ) : integer; 

where ltemLength uses SizeOf to describe the length of the items to be sorted. 
InpPtr, LessPtr, and OutPtr are pointers to routines to be executed for the 
three phases input, sort, and output respectively. These last three parameters 
are addresses and may be passed by placing an at sign(@) before the names 
of the routines. For example, to sort a file of PlayerRec type that receives 
data via an Enter routine, that uses PlayerSort to sort the players, and that 
reports results via a Display routine, I call TurboSort like this: 

SortResult := TurboSort( SizeOf ( PlayerRec ), @Enter, 
@PlayerSort, @Display ); 

Of course I declare and write the routines Enter, PlayerSort, and Display 
somewhere else in the program. The Enter routine, which lacks parameters, 
should specify how data for the players is to be put in-via screen entry or 



326 The Borland Toolboxes and Turbo Tutor 

file reading-and calls another Database Toolbox routine, SortRelease, to 
pass the item to be sorted. PlayerSort should be a function that returns a 
Boolean value of true if the two parameter records are in the correct sorted 
order. Finally, the Display routine, which has no parameters, should perform 
an output loop that calls SortReturn. This Toolbox routine retrieves the next 
item in the list, writes or displays it, and continues item after item until the 
Toolbox function SortEOS returns a value of TRUE, which indicates the 
whole list has been parsed. 

Database Toolbox contains two units with sorting routines: Sort and LSort. 
The routines I described above are for use with Sort, which may be used to 
sort up to 32767 items. To sort more than 32767 items use the routines in 
LSort, which have the same syntax but whose routine names are preceded 
with an L. 

Turbo Pascal Access 
The Turbo Pascal Access portion of the Database Toolbox provides prewrit
ten routines to maintain a database. These routines are available in high- and 
low-level interface. The records in the database file may be ordered by one 
or more keys into the file. Suppose I want to index a phone book file on both 
the phone number and the name. I can do it because I have a separate index 
file that specifies the ordering of the records in the data file by field. 

The Turbo Pascal Access routines require a bit of setup via SetConst, which 
comes with the package. Once this is complete, you may write programs to 
use either low- or high-level calls to Access routines. The indexing method 
used for the database files is a B+ tree structure. The B+ tree is similar to 
the binary tree except that more than two siblings are allowed on each level. 
B+ trees are discussed in detail in Appendix B of the Turbo Pascal Database 
Toolbox manual. 

Through the low-level routines AddRec, DeleteRec, and PutRec, the data 
file may be manipulated in any way. The index files must be kept in synch 
via the routines AddKey and DeleteKey. The data file may be parsed via the 
routines FindKey, SearchKey, NextKey, and PrevKey. 

Alternatively, high-level routines make much of the index manipulation 
invisible to the programmer. The names of these routines generally start 
with a TA for Turbo Access. The database file may be handled via calls to 
the routines TAinsert, TADelete, and TAUpdate. In addition, records may 
be read via T ARead; the file may be parsed via T APrev or TAN ext; and 
it may be reset to the beginning via T AReset. The Turbo Pascal Database 



Turbo Pascal Tutor 327 

Toolbox manual details these operations as well as several others I have not 
mentioned. The purpose of this discussion is to show you what tools are in 
the Database Toolbox and to determine if it includes the tools to satisfy your 
programming needs. 

Take a quick look at some of the capabilities of the other Toolbox package, 
Numerical Methods. 

Turbo Pascal Toolbox Numerical Methods 
The Numerical Toolbox is geared toward engineers, scientists, and students 
of advanced mathematics. The package includes routines for the following 
types of problems and solutions: 

• Roots to equations in one variable 
• Interpolation 
• Differentiation 
• Integration 
• Matrices 
• Eigenvalues and eigenvectors 
• Initial and boundary value methods 
• Least-square approximation 
• Fast Fourier transform 
• Graphics demonstrations 

If these topics are foreign to you, the Numerical Methods Toolbox may not be 
what you need. However, the graphics demonstration programs at the end of 
the manual are worth seeing. Least-squares approximation and Fourier trans
forms are presented in the programs LSQDemo and FFTDemo respectively. 
Although this package is directed toward scientific and engineering applica
tions, students of calculus and even algebra will find interesting routines that 
quickly solve mathematical problems. 

Borland International offers one more add-on package for the Macintosh: 
Turbo Pascal Tutor. 

Turbo Pascal Tutor 
The Turbo Pascal Tutor comes with a diskette that contains all the programs 
discussed in the manual. Anyone who wishes to learn how to program Turbo 
Pascal on the Macintosh will find valuable information in this package. It may 



328 The Borland Toolboxes and Turbo Tutor 

be used as either a tutorial for the novice or as a reference guide for the more 
experienced programmer. With over 600 pages of programming information, 
it is probably the most detailed publication on Macintosh Turbo Pascal to 
date. The accompanying disk containing all the source code for programs and 
resource files is invaluable for quickly working with the sample programs. 
The Turbo Pascal Tutor is a worthwhile investment for anyone working with 
Turbo Pascal on the Macintosh. 



Appendix B--
Reserved Words 

These are the reserved words in Macintosh Turbo Pascal: 

and 
array 
begin 
case 
const 
div 
do 
down to 
else 
external 
file 
for 
forward 
function 
goto 
if 

implementation 
in 
inline 
interface 
label 
mod 
nil 
not 
of 
or 
otherwise 
packed 
procedure 
program 
record 

repeat 
set 
sci 
shr 
string 
then 
to 
type 
unit 
until 
uses 
var 
while 
with 
xor 



-AppendixC 
Quiz Answers 

Chapter 1 

1. lK = 1024. 128K = 131,072, or approximately 128,000. 512K = 
524,288 or approximately 512,000. 1 meg = 1,024,000. 4 meg = 
4,096,000. 

2. An interpreter translates Pascal code on the fly as it is being executed 
and unlike a compiler, is not generally capable of producing stand-alone 
double-clickable applications. 

3. In the problem-solving phase the programming problem is defined and 
analyzed, and a general solution of the problem is developed step by 
step. In the implementation phase the general solution is translated into 
code that the computer can understand. The general solution itself is 
called an algorithm. 

4. First start the water boiling, then get an egg and drop it into the boiling 
water. A delay is executed for the length of cooking time necessary 
before the egg is removed. 

Chapter 2 

1. No 
2. The option Clear deletes the selected text and does not copy it to the 

Clipboard. 
3. Stack Windows places the edit windows on top of each other, whereas 

Tile Windows gives each window its own area of the screen. 
4. Compiling to disk results in a double-clickable application on the disk, 

whereas compiling to memory simply creates an executable version of 
the program in RAM. 

Chapter 3 

1. An identifier is a name given to a constant, type, variable, procedure, 
function, or program. 



Quiz Answers 331 

2. Comments are an important part of programming. They may be placed 
anywhere in the program for the purpose of explaining code steps and/or 
identifiers. 

3. At the end of the program. 
4. The proper order is const, type var. 
5. An integer takes up less memory and must always represent a whole 

number. 
6. The semicolon denotes the end of a statement in Pascal. 
7. In order of high precedence to low:*,/, MOD, DN, +, -. 
8. By the use of parentheses. 

Chapter 4 

1. Subsequent output is always started on the next line followed by a 
writeln whereas a write does not cause output to start on a new line. 

2. 65535.34 
3. You can insert blank lines via writelns with no parameters. 
4. Readln provides the programmer with the ability to request input from 

the user. 
5. if ((A < 100) AND (A > 0)) then .. .if ((A = 100) OR (A = 0)) then ... 

Chapter 5 

1. A counter determines how many times a loop is executed and an accu
mulator gathers a total that will periodically be updated. An example 
of a counter is i as shown here: 

i := O; 
if name = 'Smith' then 

i := i + 1; 

Alternatively, an example of i as an accumulator is 

for i := 1 to 10 do 

2. It does not matter how or where you use a counter inside loop as long 
as you do not modify it for the purpose of early termination. 

3. 1 := 1; Total := O; 



332 Quiz Answers 

while (1 <= 5) do 
begin 
readln(UserNumber); 
Total := Total + UserNumber; 
end; 

writeln('The total is: ', Total); 

4. Begin-end pairs within a for statement denote a compound statement 
within the loop. 

5. write('How many iterations? '); 

readln(l); 
for Loop := 1 to I do 

6. A repeat. .. until loop will always execute once, since the loop test is not 
performed until the end, whereas a while loop may never be executed. 

7. Nested loops may repeatedly perform a block of code within another 
repeatedly performed block of code. 

8. Goto statements should be avoided in order to maintain a structured 
programming approach where hard-to-follow branches are not used. 

Chapter 6 

1. A function by definition returns a value separate from any parameters 
passed to it, whereas a procedure may return values only as passed by 
reference. 

2. Global variables may be accessed and changed by any routine (unless 
redefined as a local procedure), whereas local variables are limited to 
change only by the routine in which they are declared. 

3. Parameters passed as var may be modified by the called routine, 
whereas those passed with no var specification may not be changed. 

4. The $1 compiler directive may be used to check 1/0 results via the 
function IOResult to determine if unexpected input was received, for 
example a real when an integer is required. 

5. A unit is a program block that allows better program structure, modu
larity, and separate compilation. 

6. The interface section is visible by other areas, for example the calling 
program. The implementation section is private to the unit and not 
visible by calling routines. 

7. UnitMover moves units from one file to another. It lets you make the 
Turbo program small enough to run on a 512K Macintosh. 



Chapter 7 

1. A. 100 
B. 5 
c. 12 
D. FALSE 
E. 1 
F. 2 

2. Pascal is fun 
3. Wednesday 

Chapter 8 

Quiz Answers 333 

1. Although these figures started out as fixed values, they must be per
mitted to change throughout the program in order to specify the new 
range of possible numbers after each guess. For example, if your num
ber is 75, MinNum changes to 51 after the program's first guess so that 
the new range of possible numbers is 51 through 100. 

2. If the conditions are met in the first if statement, the second if statement 
is not executed, so the code can be simplified as follows: 

if NOT ( inDecimal >=O ) OR NOT ( inDecimal <= 65535 ) then 
begin 

writeln; 
writeln ('INVALID ENTRY ... PLEASE TRY AGAIN!'); 
writeln; 

end; 

3. I could have reversed the order of the outHex elements in the WRITELN 
statement in DecToHex to read 

writeln ( 'is', outHex[ 6 ], outHex[ 5 ], outHex[ 4 ], 
outHex[ 3 ], outHex[ 2], outHex[ 1 ], '. . .' ) 

4. Yes, 0 through 9 are written the same way in hexadecimal and base 10 
notation. 

Chapter 9 

1. Simply put, a file is a collection of records and a record is a group of 
fields. 

2. Because the purpose of a record is not to centralize data structures but 



334 Quiz Answers 

rather to group related items like the name, and position in program 
Base Ball. 

3. If was used to remove any possible garbage left over in memory from 
any other variables that may have used that memory address. It is 
not necessary to understand why this garbage may exist; however, it 
is important always to initialize sets just as you would initialize any 
other variable. 

Chapter 10 

1. Because it is very difficult to follow the logic of a recursive routine and 
because they can very easily cause the program to crash due to lack of 
memory. 

2. With the linked list there is no worry about reshuffling the entire list 
when an item is added; the only item affected is the one that now must 
point to the new item. 

3. 

~ 
/~ 2 4"" s 

4. A stack is a LIFO structure, in which the last item placed on the stack 
is the first to be processed. By contrast, a queue is a FIFO structure, in 
which the first item in the queue is the first to be processed. 

Chapter 11 

1. The entire collection is the file, each album is a record, and each song 
is a field for that particular record. 

2. The statement ran sequentially through the file until the end in order to 
receive new entries. 

3. Variant records can save memory space. 

Chapter 12 

1. It forces the programmer to think through the program logic more 
thoroughly without having a debugger to fall back on for help. 



Quiz Answers 335 

2. C IS FUN 
3. A: 2 B: 0 C: 15 D:O 

Chapter 13 

1. Turtle routines are easy to use, but QuickDraw routines are much more 
powerful. 

2. It would shift the light box up 75 pixels, but the lights would still be in 
their original position. 

3. None, since the value of (while NOT TRUE do) will never be true. 
4. GetNextEvent is used to get all input from a user via one routine. It is 

the heart of all Macintosh-style event-handling programs. 
5. GetNewWindow uses fewer parameters than NewWindow because it 

operates with a window definition in a resource file. 

Chapter 14 

1. The same problem would arise: the Succ of 12 (Succ(12)) would be 13, 
which is meaningless. So no matter how I set up that part of the code, 
I would have to take the special case of January being after December 
into account. 

2. It is checked so that I don't divide by 0. 
3. The screen is redisplayed. 



--Append~D-----
Bibliography 
Borland International, Turbo Pascal Macintosh (package manual), Borland 

International, Inc, 1986. 

Borland International, Turbo Pascal Tutor (package manual), Borland Inter
national, Inc, 1987. 

Wikert, J. and Davis, S., Leaming Macintosh Pascal, Scott, Foresman and 
Company, 1986. 



Index 

A 

Absolute value function, 167-168 
Accumulator, 118 
Add 

modifying values of, 144, 145 
variable parameters and, 141-143 

AddDates, 306 
AddRecord, 244, 326 
Address, 139 
Add routine, 138 
Advanced concepts 

handle data types and, 221-225 
introduction to, 218-234 
pointer and, 221-225, 225-230 
queues and, 230-233 
recursion and, 218-221 
stacks and, 230-233 
trees and, 230-233 

Advanced data structures, 216 
Algorithm, 7, 58 
Alphabetical phone-book file program, 

245-249 
Alphanumeric information, 70 
American National Standard Institute, 5 
American Standard Code, 15-16, 261 
Amplitude, 288 

AND, 110 
ANSI standard Pascal, 5 
Apostrophe, 61, 64, 70 
Appending a file, 239 
Apple II Pascal, 5 
Apple Menu, 25-26 
Application programs, 181 
Applications and advanced concepts. See 

Advanced concepts 
data structures in. See Data structures 
debugging and file analysis. See 

Debugging and file analysis 
graphics, sound, and resources. See 

Graphics, sound, and resources 
programs in. See Programs 
records and files in. See Records and 

files 
ArcTan function, 170-171 
Arithmetic, 79-82 
Arrays 

application of, 213-216 
data types and, 83 
elements of, 207, 225 
files versus records in, 236-237 
parallel, 208-209 
simple, 206-208 

ASCII, 15-16, 261 



338 Index 

ASCII hexadecimal conversion values, 
261-262 

Assembly language 
binary numbers and, 14 
MacsBug and, 266 

Assignment operator, 74 
values of expression and, 77 

Assignment statement 
invalid, 75 
use of, 81, 82 
valid, 74 
variables and, 74 

Asterisks, 63 
Auto Indent, 33, 86 
Auto Save, 42 

B 

Back, Turtle graphics and, 271 
Backward looping with Downto, 125 
Base 10 integers, 67 
BASIC,4 
Batting-average program, 308-314 
Begin-end pair 

examples of, 99 
Pascal programs and, 4 7 
procedure and, 13 8 
program body and, 64-65 

Beginner's All-purpose Symbolic 
Instruction Code, 4 

Bibliography, 336 
Binary numbers, 14, 67-68 
BinaryPointer, 233 
Binary search, 185 
BitAnd function, 260 
16-bit integer, 67 
Bits 

flags and, 15 
term of, 14 

Blank lines, printing of, 97, 98 
Blank spaces, 46 
Blind pointer, 224 
Body 

of function, 148 
of procedure, 136 
of repeat statement, 126 

Boolean data, 72 

Boolean End of File function, 238 
Boolean expression, 185 

function and, 150, 151 
Boolean operators, 110 
Boolean type, 206 
Boolean values, 66, 72 
Borland toolboxes, 325-327 

Turbo Pascal access in, 326-327 
Turbo Pascal database toolbox in, 

325-326 
Turbo Pascal toolbox numerical 

methods in, 327 
Boundary value methods, 327 
Brackets, curly, 63 
B+ tree structure, 326 
Buffer, 237 
BuffSize, 237 
Button routine program, 281-282 
Byte 

ASCII and, 16 
integers and, 67 

2-byte integer, 67 
I-byte-length indicator, 71 
4-byte value, 221 

c 

CalcFact, 220 
CalcNDisp, 200 
Calendar program, 301-308 
Call procedure, 138-139, 149 
Carriage return, 97 
Case-sensitivity with Find What, 34 
Case statement, 111, 252, 395 
Central library, 166 
Change, 35, 36 
Characters, 66, 70-72 

identifier and, 60, 61 
Character string, printing of, 90, 91 
Checks in If statement, 111 
Check Syntax, 41 
Chr function, 175 
Clear, 32 

Turtle graphics and, 271 
ClearScreen, 185 
Clipboard, 32 
Clock Folder file, 18 



Close, 237 
corresponding, 238 
file menu and, 28 

Closing a file, 238 
COBOL,4, 5 
Coefficient scientific notation, 69 
ColorType, 204 
Command key, 53 
Comment 

block, 63-64 
declaration and, 61, 63 
embedded, 63 
line, 61, 63 
marks, 284 
resource file and, 291 
specifying, 291 

Common Business Oriented Language, 4, 5 
Comp. See Computional data type 
Compat Unit file, 19 
Compilation, 48 
Compile menu, 39-44 

functions of, 39, 40 
selecting Run from, 65, 66 

Compiler 
versus interpreters, 13-14 
MacsBug and, 266 
Turbo Pascal, 13 

Compiler directive, 63 
flag-type, 152 
$L, 155 
$0, 155-156 
parameters and, 151-157 
$R, 156 

event handling and, 296 
$U, 157 

2's complement notations, signed integers 
and,68 

Complete Pascal programs, 181 
Compound expressions, 110 

with while loop, 11 7 
Compound If statement, 108 
Comp real numbers, 69 
Computerese, 3 
Computer language, 4 
Computional data type, 203 
Concat function, 1 71-172 
Concepts, advanced. See Advanced 

concepts 

Condition 
false, 106 
true, 106 

Conditional, 103, 104 

Index 339 

decision symbol and, 10 
Conditional If statement, 105 
Conditional structures, 130 
Connector symbol, 11 
Const. See Constant 
Constant, 62-64, 75-76 

declaring a, 75 
Turtle and, 2 72 

Constant section, 75 
Control variable, 130 

loops and, 126 
Conversion programs, 185 
Conversion values for hexadecimal ASCII, 

261-262 
Copy function, 1 72 
Copy option, 32 
Corresponding close, 238 
Cosine function, 169 
Counter-control variable, 119-120 
Counter loop, 116-117 
Count field, 286 
C program language, 5 
Create, 238 
CublnchToLiter, 185 
Curly brackets with comments, 63 
CurrentTask, 230 
Cut, 32 

D 

Database toolbox, 325-326 
Data space, 252 
Data structures 

advanced,202-217 
numeric types and, 202-203 
parallel arrays and, 208-209 
records and files and, 210-211 
sets and, 211-213 
simple arrays and, 206-208 
types and, 204-206 
using arrays, records, and sets in an 

application and, 213-216 



340 Index 

Data type, 82-85 
array, 83 
declaring,66-72, 73 
defining, 73 
enumerated, 83 
handle, 221-225 
identifier and, 73 
ordinal, 83, 85 
real number, 203 
records, 83 
scalar, 85 
user-defined, 83-85 

Data values, 72 
assigning with Read and Readln, 

97-103 
Date-minder program, 301-308 
DateTimeRec, 307 
Debugger, 255 

compiler directives and, 152 
TMON, 256 

Debugging and file analysis, 48, 255-269 
encipher/decipher program and, 

263-266 
MacsBug and, 266-268 
TMON and, 268 

Decimal point, 68 
real numbers and, 68 

Decimal-to-hexadecimal conversion 
program, 191-199 

explanation of, 197 -199 
Decipher option, 266 
Decipher program, 263-266 
Decisions, 103-106 
Decision symbol, 10-12 

exit points of, 12 
Decision test, I 03 
Declarations, 62-64, 66, 75 

examples of, 99 
DecToHex, 197 
Default directory types, 43 
Delete function, 172-173 
DeleteRec, 326 
Desk Accessories for Apple Menu, 25, 26 
Diamond-shaped decision symbol, 10 
Differentiation, 327 
Directive include-file, 154 
Disassembler, 14 
Disk activity, 256 

Display routine, 326 
DIV. See Integer division 
Dots symbol, 262-263 
Double-clickable applications, 13 
Double integers, 203 
Double-precision data types, 69 
Double real variable, 203 
Downto, 125 
Drawing freehand, 284 
Dump program, 256-260 
Duration, 288 . 
$D with MacsBug, 267 
$D+ with MacsBug, 267 
Dynamic storage allocation, 230 

E 

Echo printing, 256 
Editing Turbo Pascal program, 48-50 
Edit menu, 32-33 
Editor, 13 
Edit Transfer, 29 
Edit window, 37 

after saving, 51, 52 
Eigenvalues and eigenvectors, 327 
Eigenvectors, eigenvalues and, 327 
8088 or 8086 assembly language, 14 
Electrical switches, 14 
Electronic calendar program, 301-308 
Elements, 207 
Else portion of If statement, 104 
Embedded comment, 63 
Encipher/decipher program, 263-268 
Ending value with loops, 126 
Enter routine, 324-325 
Enumerated data type, 83, 205-206 
EOF. See Boolean End of File function 
Equations in one variable, 327 
Error message, 6 

Read and Readln and, 100 
Errors, 13 
E scientific notation, 69 
Event-handling programming with 

resource file, 293-299 
EventRecord, 294 
EventRec type, 306 
Executable lines, 4 7 



Exit points, 12 
Exp function, 170 
Exponent, 69 
Exponentialnotation,68 
Expression, 77-78 

arithmetic, 77 
valid, 77 
variables, mathematical operators, and 

constants in, 77 
Extended integers, 203 
Extended real numbers, 202-203 

data types of, 69 
External storage, 17 
Extra field with record album database 

program, 322 

F 

Factorial program, 218-220 
False, decision making and, 103-104 
Fast Fourier transform, 327 
Fields, records and files, 235-236 
Field-width parameter, 94, 95 
FIFO. See First-in-first-out stategy 
FigureHex, 197 
File-building program, 256 
File-dump program, 256-260 
File-handling library procedures, 237-240 
File-handling routines. See Boolean End of 

File function 
File menu, 27-31 
File name, 243 
Files,210-211,235-254 

appending, 239 
defining, 290 
file-handling library procedures and, 

237-240 
phone-book program and, 240-245 
records and, 211 
sorting and merging, 245-251 
variant records and, 251-25 3 

Files versus arrays of records, 236-237 
Find, 34 
Finder 

Pascal disk and, 20 
RAM disk and, 20 

Find Error, 41, 42 

Find Next, 35 
dialog box for, 35, 36 

Find option, 34, 35 

Index 341 

Find What, 34 
First-in-first-out stategy, 231 
First line of program, 60-61 
Flag, 14-15, 152 
Flexibility, 124, 125 
FlipFlop, 198 
Floating-point numbers, 69 
Flowchart, 7 -8 
Flowchart symbols, 8-12 
Flowlines, 10-11 
Flow of a program, 103 
Flush Vol, 240 
FName, 238 
FNum, 238 
Font/DA Mover 

application, 39 
utilities and sample programs file of, 18 

Font menu, 39 
Font Windows, 39, 40 
For loop, 212 
Format menu, 37-39 
Formatting 

output, 94-97 
program, 86 

Formula Translator, 4 
For statement, 113, 119, 119-125 
FORTRAN,4 
Forwd, Turtle graphics and, 271 
FSClose, 240 
FSOpen, 238 
FSWrite, 240 

syntax for, 239 
Function 

parameters and, 148-151 
type of, 148 

Fundamentals, 3-23 
flowchart symbols and, 8-12 
machine language and, 14 
Macintosh storage and, 14-17 
Pascal and, 4-5 
programming and, 3-4 
programming technique and, 6-8 
Syntax and, 6 
Turbo Pascal and, 12-14, 18-20, 

20-22 



342 Index 

G 

Get Info 
compile menu and, 42 
dialog box for, 42 

GetMouse, 284 
GetNewWindow, 297 
GetNextEvent, 293 
GetPort, 278 
Global variables, 185 

versus local variables, 140-141 
Go-away box window, 292 
Goto statement, 130-132 

avoiding the use of, 131-132 
GrafPort record structure, 277 
Graphics, 270-285 

mouse and, 281-285 
standard Macintosh, 275-281 
Turtle, 271-275 

Graphics demonstrations, 327 
Grow box, 281 
Guess-a-number program, 186-191 

explanation of, 190-191 

H 

Halt, 263 
Handle data types, 221-225 
Hard copy 

printing,53 
of program, 53 

Header lines, 292 
Heading 

function and, 148 
procedure and, 136 
program, 46, 60 
Turtle graphics and, 271 

Hexadecimal ASCII conversion values, 
261-262 

Hexadecimal notation, 191-192 
Hex-character dump program, 256-260 
Hex values, 192-193 
HideCursor, 278 
Hi function, 177. 
High-level interface, 326 
High-order bit, 68 
High-order nibble, 260 

HiWord function, 177 
Home, Turtle graphics and, 272 
Home Cursor, 35 

I 

$1. See Include file directory 
Icon on disk, 52 
Identifier, 60, 61-62, 72-73 

invalid, 62 
legal numeric variable, 74 
naming,62 
valid, 62 

If statement, 103 
common errors with, 106-108 
compound, 108 
conditional, 105 
nesting the, 108-110 

If ... then ... else compound statement, 103 
Images, 282 
Imagewriter, 20 
Implementation of Turbo Pascal unit, 158 
Implementation phase, 7-8 
InchToMeter, 185 
Include file directory, 43, 154 
Include files, 27-28 
InDecimal, 197 
Indentation in program formatting, 46, 86 
Index variable, 119 
Infinite loop, 114, 116 
Information, 103 
lnitGraf, 278 
Initial and boundary value methods, 327 
Initial value methods, 327 
InitWindows, 280 
Inner loop, 130 
Input file, 325 
Input/output routines, 159 
Input/output symbol, 8-10 
Insert function, 173 
Inserting numbers with binary tree, 233 
InsertMenu, 298 
Integer division, 78 
Integer division operator, 78 
Integers, 66-68 

double, 203 
extended, 203 



long, 202-203 
maximum and minumum values for, 

66-67 
range of, 202 
valid,66 

Integration, 327 
Intel-based 8088/8086microprocessors,14 
Intensity, 288 
Interactive statements, 98 
Interface 

high-level, 326 
low-level, 326 
of Turbo Pascal unit, 157-158 

Internal storage, 17 
Interpolation, 327 
Interpreter 

versus compilers, 13-14 
Turbo Pascal and, 13 

Int library function, 169 
Invalid assignment statement, 75 
Invalid identifier, 62 
Invisible window, 292 
1/0. See Input/output symbol 
IOResult, 153 

K 

K. See Kilobyte 
KeyPressed, 159-160 
Kilobyte, 16-17 

L 

$L. See Link Object file directory 
Label declaration, 131 
Label with Goto statement, 131 
Last-in-first-out traffic, 231 
Least-square approximation, 327 
Legal numeric variable identifier, 74 
Length of a string variable, 171 
Library, 166 
Library features, 165-178 
Library procedures, 237-240 
Library routines, 166, 167-177 

mathematical routines and, 167-171 
string routines and, 171-174 

Index 

LIFO. See Last-in-first-out traffic 
Linked list, 225 
Linker, 13 
Link Object file directory, 43 

compiler directive and, 155 
Lister Folder file, 18 
Ln function, 170 
LoadArray, 314 
Local variable 

declaring, 140 
global versus, procedures and, 140-141 

Lo function, 177 
Longlnt. See Long integer 
Long integer, 202-203 
Loop 

counting, 116-11 7 
infinite, stopping, 114, 116 
inner, 130 
nested, 129-130 
outer, 130 
repeat... until, 129 
summary of, 126 
while, 114, 129 

Loop control variable, 11 7 
Loop counter, 116-117 
Looping structures, 1 l 3-13 3 

backward with Downto and, 125 
counting the, 116-117 
Goto statement and, 130-132 
nested, 129-130 
repeat statement and, 126-128 
repeat... until, 129 
for statement and, 119-125 
summing, 118-119 
while, 129 
while statement and, 114-116 

Low-level interface, 326 
Low-order nibble, 260 
LoWord function, 177 
LSort,326 

M 

Machine code, 102 
Machine-language programming, 14 
Mac II Interfaces disk file, 18 
Macintalk Folder file, 19 



Index 

Macintosh 
communicating with Turbo Pascal, 

12-14 
memory, 14, 16-17 
mouse for, 281 
storage, 14-1 7 
window manager program, 278-289 

MacPaint, 53 
MacsBug, 255, 266-268 

commands, 267 
invoking, 266-267 

Mac screen, 94 
Main memory, 8 
Main module, 135, 136 
Main program, 185 

declarations of, 216 
logic of, 185 

Mantissa scientific notation, 69 
Mathematical calculation with flowcharts, 

10 
Mathematical order of operation, 78-79 
Mathematical routines, 167-171 
Mathematical variables, 81, 82 
Matrices, 327 
MaxGuess, 190 
Megabyte, 17 
Memory, RAM-ROM, 16-17 
Memory location, 221 
Memory requirements of data types, 221 
Menu, 25-44 

Apple, 25-26 
Compile, 39-44 
Edit, 32-33 
File, 27-31 
Font, 39 
Format, 37-39 
Search, 34-37 
Transfer, 44 

Menul, 296-297 
Menu2, 296-297 
Menu bar, 298 
MenuHandle type variables, 297 
Merging records, 245-251 
Message, printing of, 90, 91 
Metric conversion program, 181-186 

explanation of, 185-186 
Microprocessor, 14 
Misc Folder file, 19 
Mistake correction, 49 

MOD. See Modulo division 
Modular programming, 135 
Modules of program, 135 

main, 135, 136 
Modulo division, 78 
Motorola-based 68000 microprocessors, 

14 
Mouse, 281-285 
Mouse-based program, 282 
Mouse button, 281 
Mult 

procedure and, 138 
variable parameters and, 141-143 

Multiple-item Readln statement, 101 
Multi-variable declaration, 147 
Music in Turbo Pascal, 285-290 
MyDA Folder file, 18 
MyDemo Folder file, 18 

N 

Natural log function, 170 
Nested loop, 129-130, 185 
Nesting, 108 
New 

file menu and, 27 
memory and, 222 

NewString, 198 
NewWindow, 280-281 
Nibble 

high-order, 260 
low-order, 260 

NoGrowDocProc, 280-281 
NOT, 110 
Note frequencies, 286 
NoWrap, Turtle graphics and, 272 
Null string, 72 

length indicator, 72 
Numerical methods, 327 
Numerical toolbox, 327 
Numeric types, 202-203 

0 

$0. See Output file, directory of 
Odd function, 168 
Off-page connector symbol, 11 
Open, file menu and, 27 



Operating system, ROM and, 17 
Operator order of precedence, 78-79 
Optional parameter BuffSize, 237 
Options, 33 

Compile menu and, 42 
dialog box for, 33, 43 

OR, 110 
Order of precedence of operators, 78-79 
Ord function, 174-175 
Ordinal data type, 83, 85 
OunceToGram, 185 
Outer loop, 130 
Out-of-range subscripting, 207 
Output 

first line of, 96 
formatting, 94-97 

Output file 
directory of, 43 
enciphered file and, 266 

Output unit file, 160 
Overlay structure, 252 

p 

Page setup, 29 
Parallel arrays, 208-209 
Parameters, 141-157 

compiler directives and, 151-157 
field-width, 94, 95 
functions and, 148-151 
passing, 143 
passing information with, 141 
type declarations for, 144 
value, 145, 145-148 
variable, 141-145 
Writeln and, 89 

Parentheses, 64 
comment and, 63 
order of operations and, 79 

Pascal. See also Turbo Pascal 
Apple II, 5 
definition of, 4-5 
University of California at San Diego 

version, 5 
PasConsole, 185 

QuickDraw and, 278 
unit and, 159-160 

.pas extension, 44 

PasPrinter unit, 94 
Passing parameters, 143 
Past, 32 

Index 345 

PenDown, Turtle graphics and, 272 
Pen movement, 271-275 
Pen pattern, 278 
PenUp, Turtle graphics and, 272 
Phase implementation, 7-8 
Phase problem-solving, 7-8 
PhoneArray, 249 
Phone-book file, 245-249 

displaying contents of, 249-251 
Phone-book program, using a file in, 

240-245 
PhoneType,243 
PlayerSort, 326 
Plus sign, 212 
Pointer, 221-230 

assigning value to, 223 
blind, 224 
var, 224 

Pointers program, 228 
Pointer type 

declaration, 228 
up arrow and, 222 

Position function, 173-17 4 
Positive values, Turtle graphics and, 271 
Pred function, 175-176 
Print, 29 

file menu and, 30 
printing program with, 53 

Printer 
preparing, 53 
sending output to, 93-94 

Printer identifier, 94 
Printing 

blank lines, 97, 98 
echo, 256 
Turbo Pascal program, 52-54 

Problem-solving phase, 7-8 
Procedure, 134-141 

call, 138-139 
execution of, 135-136 
global versus local variables and, 140-141 
passing values to, 139 
placement of, 137 
structure of, 136 
use of, 137-139 
variables with, 139-140 

I 



\ 

346 Index 

Procedure definition statement, 141 
Procedure dispose, 223-224 
Processing strategies, 230 
Process symbol, 8 
Program block, 61 

examples of, 99 
main, 185 
modules and, 65 

Program Disk, 18, 20 
Program flow 

if statements and, 106 
procedure and, 136 
of while statement, 114 

Program heading, 46, 60 
Programming 

definition of, 3-4, 6-8 
modular, 135 

Programming languages, 4-5 
machine-language, 14 

Programs, 181-201, 301-323 
application, 181 
BaseBall, 215 
batting-average, 308-314 
body of, 64-65 
controlling flow of, 103 
date-minder, 301-308 
decimal-to-hexadecimal conversion, 

191-199 
editing, 48-50 
elements of, 60-66 
encipher/decipher, 263-266 
execution speed of, 13 
file-building, 256 
file-dump, 256-260 
first, 44-4 7 
formatting of, 86 
guess-a-number, 186-191 
hex-character dump, 256-260 
metric conversion, 181-186 
phone-book,240-245 
printing,52-54 
record album database, 314,..322 
review of, 65-66 
running, 47-48 
saving, 50-52 
tape-counter, 199-201 

Program statement, 46, 4 7 
compiling programs to disk by, 155-156 
examples of, 99 

Punctuation, 205 
importance of, 81 

PutRec, 326 

Q 

Queues, 230-233 
QuickDraw graphics, 275-277 

ROM and, 17 
Quit, 31 
Quiz answers, 330-335 
Quotes 

R 

doubling single, 70-71 
single, 70 

$R. See Resource file, directory of 
RAM, 16-17, 19 
Random-access memory, 16-17 

disk package, 19 
Range with guess-a-number program, 185 
$R compiler directive, 156 

event handling and, 296 
Read, 237 

assigning data values with, 97-103 
general syntax of, 98 
input command of, 8 

ReadChar, 159-160 
Read.file program disk file, 18 
Reading a file, 238 
Read-line statement, 47 
Readln 

assigning data values with, 97-103 
general syntax of, 98 
statement, 101 

Read Me program disk file, 18 
Read-only memory, 16-17 
Real data, 69 
Real numbers, 66, 68-69 

converting, 203 
data types and, 203 
extended, 202-203 
formatting of, 96 
fractional parts in, 68 
index, 208 



Real variable 
double, 203 
standard, 203 

Record album database program, 314-322 
Records, 210-211 

data type of, 83 
declaring, 210-211, 213 
files versus arrays of, 236-237 
size of, 253 
sorting and merging, 245-251 
use of, in application, 213-216 
variant, 251-25 3 

Record structure, 25 3 
Recursion, 218-221 
ReDoFile, 314 
Relational operators, 104 
Repeat statement, 126-128 
Repeat... until loop, 129 

event handling programming and, 297 
tape counter program and, 200 
while versus, 129 

Repeat... until statement, 113, 127 
function and, 150-151 

Reserved words, 329 
Reset, 237 
Resource file, 156-157, 290 

directory of, 43 
event-handling programming with, 

293-299 
simple, 291 
syntax for, 291-292 

Resources 
event-handling programming and, 

293-299 
graphics, sound, and, 270-300 
RMaker and, 293 

RESUME option, 100 
Return, 101 
Rewrite, 237 
RMaker 

compiling, 292-293 
using, 293 
utilities and sample programs file of, 18 

ROM, 16-17 
Roots to equations in one variable, 327 
Rounding function, 168-169 
Routines, library, 167-177 
Run, 47 

compile menu and, 39 

Index 347 

Run program, 47, 48, 49 
Run-time error, 41 

s 

Sample, 89 
SANE. See Standard Apple Numeric 

Environment Library 
Save 

dialog box for, 51 
File menu and, 28 

Save As 
File menu and, 28 
saving a program and, 51 

Save Defaults, 31 
File menu and, 44 

Save option, 50-51 
Saving Turbo Pascal program, 50-52 
Scalar data type, 85 
Scientific notation, 68 
Scope of variable, 140 
Scope rules, 140 
Screen, 22, 24, 25, 94, 256 
Screen dump, 53 
SearchFile, 244 
Search menu, 34-37 

functions of, 34 
Semicolons, 76-77 

errors with If statements and, 107-108 
procedure and, 136 
program heading and, 60 
uses of, 46 
writeln and, 64 

Set, 211-213 
declaring a, 212 
using in an application, 213-216 

SetConst, 326 
SetHeading, Turtle graphics and, 272 
SetPosition, Turtle graphics and, 272 
SetRect, 278, 280 
Shift Left, 33 
Shift Right, 33 
ShowCursor, 278 
Shr operator, 260 
Simple arrays, 206-208 
Simple resource file, 291 
Simple Turbo Pascal arithmetic, 79-82 
Sine function, 169-170 

/ 



\ 

348 Index 

Single write statement, 92, 93 
68000 assembly language, 14 
SizeOf function, 176 
Song 

notes and duration for, 288 
playing a simple, 285 
saving on disks, 290 

SongBuilder file, 288 
Song file program, 286-287 
Sort 

batting-average program and, 314 
database toolbox and, 326 

Sorting and merging records, 245-251 
SortRelease, 326 
Sound,270-300 

making music in Turbo Pascal and, 
285-290 

utilities and sample programs file of, 19 
Spaces, 46 

program heading and, 60 
Writeln and Writeln statements and, 95 

Spelling error correction, 49 
Square root function, 167 
Square wave synthesizer tone generation, 

285 
Squaring function, 167 
Stacks, 230-233 

array and, 231 
parameters and, 147-148 

Stack Windows, 37, 38 
Standard Apple Numeric Environment 

Library, 69 
Standard Macintosh graphics, 275-281 
Standard real variable, 203 
Starting value with loops, 126 
StartSound, 285 
Startup window, 33 
Statement, 88-112 

Boolean operators and, 110 
case, 103, 111 
conditionals and, 103 
data values and, 97-103 
decisions and, 103-106 
For, 113, 119-125 
Goto, 130-132 
If, 103 

common errors with, 106-108 
nesting the, 108-110 

If statements and, 106-108 

If ... then ... else compound, 103 
procedure definition, 141 
program, 46, 4 7 
Read and, 97 -103 
read-line, 47 
Readln and, 97-103 
repeat, 126-128 
repeat... until, 113 

function and, 150-151 
Turbo Pascal, 88-112 
while, 113, 114-116 
write, 89-97 
write-line, 47 
writeln, 89-97 

Statement indentation, 46 
StepPointer, 229 
Stepwise refinement, 135 
Storage, 14-17 

external, 17 
internal, 17 

Storage medium, 8 
String,66, 70-72 

maximum size of, 71 
null, 72 
$R compiler directive and, 156 
value of, 222 

String output, 97 
String routines, 171-17 4 
String type declaration, 71-72 
Structure and syntax, 58-88 

constants and, 75-76 
data types and, 66-72, 82-85 
expression and, 77-78 
mathematical order of operation and, 

78-79 
program formatting and, 86 
semicolon and, 76-77 
simple Turbo Pascal arithmetic and, 

79-82 
Turbo Pascal program and, 60-66 
variables and, 72-73, 74-75 

Structured design, 6-7 
modular programming and, 135 
procedures and, 135 

Structured programming, 135 
unit and, 93 

Subprogram of modular programming, 7, 
135 

Subranges, 85 



Subtraction sign, 212 
Succ function, 176 
Summing loops, 118-119 
Swap function, 177 
Swap Word function, 177 
SWSynthRec. See Square wave synthesizer 

tone generation 
Symbol, 6 

;ca, 240 
decision, l 0-12 
flowchart, 8-12 
input/output, 8-10 
three dots, 262-263 

Symbol table, 42 
Syntax 

definition of, 6 
errors in, 41 
structure and. See Structure and syntax 

System 
flowchart and, 8 
RAM disk and, 20 

System error, 103 
System Error Messages, 41 

T 

T ADelete, 326 
T Alnsert, 326 
TANext, 326 
Tape counter program, 199-201 

explanation of, 200-201 
TAPrev, 326 
T AReset, 326 
TA Update, 326 
TempNumber, 197 
Terminal symbol, 8 
Termination condition of repeat statement, 

126 
Text files, 260 
TheButton,281 
TheEvent, 293-294 
Tile Windows, 38, 39 

Format menu and, 38 
TMON, 268 

debugger, 256 
window-based, 268 

To Disk, 41 
double-clickable application in, 41 
saving program and, 50 

To Memory, 41 
Tone 

Index 349 

amplitude field of, 286 
arrays, 285 
type, 285 

Toolbox numerical methods, 327 
Top-down design, 135 

problem solving by, 7 
procedure and, 138 

Total record size, 253 
TotMinutes, 200 
TotSeconds, 201 
Transfer menu, 44, 45 

dialog box for, 29, 30 
file menu and, 29 

Transfer option, 31 
dialog box for, 31 

Trees, 230-233 
True condition, 106 
True or false 

condition, 114 
decision making and, 103-104 

Truncation function, 168 
Turbo compiler with semicolons, 77 
Turbo Pascal 

arithmetic, 79-82 
communicating with Macintosh, 12-14 
compiler, 13 
complete program in, 181 
creating binary tree and, 233 
database toolbox, 325-326 
disk icon, 20, 21 
editing of program for, 48-50 
first program for, 44-4 7 
getting acquainted with, 24-55 
getting ready to use, 18-20 
history of, 5 
introduction to, 5 
library features in, 165-178 
looping structures in. See Looping 

structures 
making music in, 285-290 
menu discussions of, 25-44 
parameters in. See Parameters 
printing program for, 52-54 
procedures in. See Procedure 
programs in. See Programs 
running the program for, 47-48 
saving the program for, 50-52 

I 



\ 

350 Index 

Turbo Pascal (cont.) 
screen, 25 
starting, 20-22 
structure and syntax in. See Structure 

and syntax 
toolbox numerical methods, 327 
tutor, 327-328 
unit, 157-158 
units in. See Unit 

Turbo Pascal Access, 325, 326-327 
Turbo Pascal Desktop, 22 
TurboPort, 277 
TurboSort, 325 
Turbo X.X program disk file, 18 
TurnLeft, Turtle graphics and, 272 
TurnRight, Turtle graphics and, 273 
TurtleDelay, Turtle graphics and, 273 
Turtle Folder file, 18 
Turtle graphics, 271-275 
Turtle routines, 273-274 
Turtle unit, 271-275 
Tutor, Turbo Pascl'll, 327-328 
Type declaration, 83, 285 

for parameters, 144 
Type of function, 148 
Types, 204-206 

u 

$U. See Unit file directory 
$U compiler directive, 157 
UCSD Pascal, 5 
Underscore, 62 
Undo, 32 
Unit, 157-162 

compiling, 158 
modular programming and, 11 
PasConsole information and, 159-160 
structure of, 158 
Turbo Pascal and, 93, 157-158 
UnitMover and; 160-162 
uses clause and, 158-159 

Unit file directory, 43 
UnitMover, 160-162 

dialog box for, 160, 161 
invoking, 160, 161 
utilities and sample programs file of, 18 

UnitMover window, 160, 162 
University of California at San Diego 

Pascal version, 5 
UnPack program disk file, 18 
User-defined data types, 83-85 
Uses clause, 158-159 
Uses statement, 277 
Utilities and Sample Programs Disk, 18 

v 

Valid assignment statement, 74 
Valid expression, 77 
Valid identifier, 62 
Valid integers, 66 
Valid response, 100 
Valid variable declaration statement, 73 
Value parameters, declaring, 145 
Values 

ending, 126 
midpoints of, guess-a-number program 

and, 185 
parameters for, 145-148 
procedure and, 139 
starting, 126 

Var. See Variables 
Variable declaration statement, 73 
Variable identifier, 7 4 
Variable name, 99 
Variable number, 202 
Variable parameters, 141-145 
Variables 

assigning, 74-75 
declaring, 72-73, 140, 210 
double real, 203 
global, 185 
global versus local, 140-141 
index, 119 
MenuHandle type, 297 
problems with, 256 
reading, 100-102 
readln and, l 00 
standard real, 203 

Variant block, 253 
Variant records, 251-253 
Var pointer, 224 
Vertical position on Mac screen, 94 



ViewDates, 307 
View the Next Month of Events Option, 

304 
Visible window, 292 

w 

VVhileloop, 114, 129, 185 
drawing freehand with, 284 

VVhile statement, 113, 114-116 
VVbile versus repeat ... until loops, 129 
Window 

defining a, 291 
File menu and, 27 
go-away box, 292 
invisible, 292 
resizing, 281 
Search menu and, 35, 37 
visible, 292 

Window-based TMON, 268 
Window manager program, 278-289 
WindowPtr types, 280 
WindowRect, 280 
Words only with Find What, 34 
Wrap, Turtle graphics and, 273 

Index 351 

Write, 237 
output symbol of, 9 
semicolon and, 90 
statements and, 89-97 

execution of, 90 
single, 92, 93 

Write-line statement, 47 
Writeln, 64 

dislay, 96-97 
statements and, 89-97 
using, 91-93 

Writing a file, 238 

x 

XCor, Turtle graphics and, 273 

y 

YCor, Turtle graphics and, 273-275 

z 

Zoom window, 38 

__ / 



>$21-95 

The Official Book on Turbo Pascal for the 
Macintosh 
"When you have completed reading COMPLETE MACINTOSH 
TURBO PASCAL, you will have enough knowledge of our powerful 
compiler to create sophisticated programs which utilize the Macin
tosh environment. Borland is pleased to endorse COMPLETE . 
MACINTOSH TURBO PASCAL as the 'official' book on Turbo Pas-
cal for the Macintosh." 

From the Foreword by Philippe Kahn 

An all-in-one reference guide and tutorial, Complete Macintosh Turbo 
Pascal provides everything you'll need to begin programming in Pascal 
with Borland's compiler. 

Complete Macintosh Turbo Pa5cal lets you build your programming skills 
from the ground up. The book starts with a thorough explanation of pro
gramming and the Pascal language and progresses through advanced 
topics. Experienced programmers will welcome this book's complete 
coverage of: 

• Debugging 
• Assembly Language 
• File dumps 
• Resource files 
• Windows 

• Event handling 
• Mouse programming 
• Graphics 
• -Using other Borland products 

with Turbo Pascal 

Complete Macintosh Turbo Pascal provides examples with each topic and 
offers several complete programs, including a date minder and a record 
album database program. 

Whether you're a novke or an experienced programmer, Complete Macin
!:osh Turbo Pascal is your key to enjoying the full power of Borland's 
sophisticated compiler with your Macintosh. 

Joseph Kelly is a systems analyst and the author of several well-received computer 
books. 

ISBN 0-673-38456-X 

90000 

9 780673 384560 Scott, Foresman and Company 


