Easy ObJect
Programming_

for the Macintosh Using

Appl\/laker and THINK C

d
:Fa?
e —
J
\ <
§ =

Richard O. Parker

Easy Object Programming
For the Macintosh Using
AppMaker and THINK C”

Richard O. Parker

PRENTICE HALL, Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging-in-Publication Data

Parker, Richard O.

Easy object programming for the Macintosh using AppMaker and THINK

C / Richard 0. Parker.
p. cm.

Includes index.

ISBN 0-13-082966-2

1. Macintosh (Computer)--Programming. 2. Object-oriented
programming (Computer science) 3. AppMaker (Computer file)
4, THINK C (Computer file) I. Title.
QA76.8.M3P35 1993
005.265-~dc20 92-38625

cIP

Publisher: Alan Apt

Production Editor: Bayani Mendoza de Leon
Copy Editor: Brian Baker

Cover Designer: Bruce Kenselaar

Prepress Buyer: Linda Behrens
Manufacturing Buyer: Dave Dickéy
Editorial Assistant: Shirley McGuire

© 1993 by Prentice-Hall, Inc.
A Simon & Schuster Company
Englewood Cliffs, New Jersey 07632

The author and publisher of this book have used their best efforts in preparing this book. These efforts
include the development, research, and testing of the theories and programs to determine their
effectiveness. The author and publisher shall not be liable in any event for incidental or consequential
damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

All rights reserved. No part of this book may be reproduced, in any form or by any means, without
permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 65 4 3 21

ISBN 0-13-0929kbk-2

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada, Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Dethi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd, Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

This book is dedicated to my mother. Throughout its creation

she constantly encouraged me to keep on writing, even when I

was fighting bugs in the code or suffering for lack of the right
words to describe the development process.

She is a remarkable woman, a gifted artist in her own right
and one who has lived from before the dawn of the 20th century
to see and experience all the new technology leading to what
this book describes. May God grant her the gift of seeing
the dawn of the 21st century as well.

Contents

Prefacecoooiiiiiiiiiiiee et et xvii
Acknowledgmentscooeueviiiiiiiiiiiiiini e e XX

Chapter 1
m the TOOISoooiiiiiiiiiiiciee et rre e e e 1
Creating a New Resource File with AppMaker.........cccc.ccceevevnnerennnns 3
Creating the Think C Projectccccvviiiniiiiiiiieiiiininiiieininnnennn. 12
EXEICISES ..ivvieniiniiiiiiiiiiiiiiiiiiiiiiiin s eseses e e eas 19

Chapter 2
MEnsemble’s Structure.............cccociiiiiiiiiiini, 21
Ensemble’s Classes and Methodscceuuueiiiiiiiiiieiniierrnennnennen. 23
CApplication’s Initialization Method.........cc.cccovvvierencvenennnnnn. 25
CApplication’s Run Method........cccccvvveeiiiinieinieiciineienennnenn. 28
Processing EVEntS.....ccoooovuiiviiiiinniiiiiiiniiiicieniccenineenans 30
Handling the DoCommand (cmdNew) Message.........ccc.....c... 32
Examining the Chain of Commandcccceeeeevinnereninnnnnn. 36
Examining Event Handhingcccceeiviiiiiiiiiiniinnninninnnnne. 40
Summary of Ensemble’s Structure and Capabilities............ 44
EXEICISES .euuiiuniiiniiiiiiiiiiiiiiiiiii ettt e e st et s eenaseesenesennnaenns 45

vi »Contents

Chapter 3
Me Ensemble Application..................cccoovviiiiiiiiiiiieiiniieeee 47
Adding Text-editing Features to Ensemble...........cccooovviiiniiinnn. 47
Using AppMaker to Enhance the MainWindow.................... 48
Adding a New Menu to Ensemble...........ccooooviiiiiniiinniiinn 52
Adding a New Menu Bar and Font Menu to Ensemble......... 54
Adding a Dialog Box to Ensembleccooovuviiinniiinniiinnnne. 56
Compiling the Generated Codeccooooovviiiiiiiiiiniiiniiiiniinninnnnn, 63
EXEICISES .uuivviiiniiiniiiiiiiiiii it 64
Chapter 4
Examining the EditText Codecccceeiiiiiiiiiniiiiiiiiiicceeeee 67
The EditText Code Structurecovevvviiiniiiiininiiiiiinnnieninnnenn 68
Newly Generated Code in ZEnsembleApp.......ccccoeevuiieennnennne. 69
SetUpMenus Method Code, 69
Newly Generated Code in ZEnsembleDoc............cccceeeuneennee. 70
Newly Generated Code in ZMainWindowc.ccevevuenennen. 71
Newly Generated Code in ZNotebooK..........c.cuuuvurerreeeiinnnne. 72

IZNotebook Method Code, 72
NewList25 Method Code, 76
NewList29 Method Code, 77
UpdateMenus Method Code, 77

Newly Generated Code in CNotebookccocovervinniiiiennnnns 77
DoNotebook Function Code, 78
INotebook Method Code, 79
CList25 IViewTemp Method Code, 79
CList25 GetCellText Method Code, 80
CNotebook NewList25 Method Code, 81
CList29 Class Methods, 81
CNotebook UpdateMenus Method Code, 82
CNotebook DoCommand Method Code, 82
CNotebook ProviderChanged Method Code, 83

Recap of the Generated Code...........cceuuiiinrrrnereneicriienneennenns 86
EXEICISES .uuuivvuiiiiiiiiiiiiiiiniiiiiciiiicctr e s 86
Chapter 5
Customizing the EditText Code...............ccccceiiiiirniiiinniiiinieeneeeereeeenn 89
Customizing Methodology..........ccciuuiiiuiiiiueireneiiiirenneeenenrensennns 90
Customizing the CEnsembleApp Methods...........cccceeereiiennrennnn.. 91
Implementing the File Menu Commandscccoeeeevuenineiiennnnnen. 92
CreateDocument Method Code, 94
OpenDocument Method Code, 97
DoSave Method Code, 100
SaveAs Method Code, 102
Revert Method Code, 104
Adding Methods to the CMainWindow Class.......ccc....ccccuuererenne. 106
Implementing the Format Notebook Command..........cc.ccceeeeeuueens 107
Initial DoNotebook Code, 112
Sizing the Font Name List, 114
Initializing the Font Names, 115
Sizing the Font Size List, 115
Initializing the Font Size List, 116
Continuing the DoNotebook Code’s Initialization, 116
Creating and Operating the Dialog, 117
Handling User Interaction, 118
Retrieving the Modified Dialog Values, 124
Disposing of the Dialog and Handling Failures, 124
EXEICISES «uuuivviiiniiniiiniiiniiiiii ittt st st e s seasenesanese 125
Chapter 6
Adding a Worksheet Window.................cccoccviiiiiiiiiiiiniiiicciccieccnne, 127
Creating a New Window for Ensemblecc..cccovuiriiiinnnnniinnnn, 128

Beginning Construction of the CalcWindow....................... 131
Generating Code for the CalcWindow Addition to Ensemble......

viii »Contents

145
Changihg the CalcWindow Resource Parameters............... 150

| 055 (0 = SRR 165

Chapter 7

Examining the CalcWindow Codeccceviiiiiiiiiiiiniieniieeeeenans 167
The CalcWindow’'s Code StrucCture.......ccceeuvveveerniniiienieneneenenennes 168

Newly Generated Code in ZEnsembleDoc.............cccoeunenenn. 170
BuildWindows Method Code, 170

Newly Generated Code in ZCalcWindowcceeuerinnnen. 170
[ZCalcWindow Method Code, 171
NewList; Method Code, 172
NewUser; Method Code, 173
UpdateMenus Method Code, 174
DoCommand Method Code, 174

Newly Generated Code in CCalcWindow..........ccocevevvnrennenne 174
ICalcWindow Method Code, 175
List; IViewTemp Method Code, 175
List GetCellText Method Code, 176
List NewList; Method Code, 176
User IViewTemp Method Code, 178
User Draw Method Code, 178
User NewUser; Method Code, 179
UpdateMenus Method Code, 180
DoCommand Method Code, 180
ProviderChanged Method Code, 182

| D5 () (01 £ S 183

Chapter 8
L]
Customizing the Worksheet Code.....................ccocociiiiiiiiiiiiniiniiiennce 185

Customizing the CEnsembleData Code.........cc.oceeiivivniiiinnrennenns 186
Modifying the Initialization code.......c...ceeerreeeirerirreenirnnnnnns 186

ix

IEnsembleData Code, 186

Modifying the Input/Output Code..........co.eevuniriivinnnnniennnn.
ReadData Method Code, 187
ReadWSEntries Method Code, 190
WriteData Method Code, 192
WriteWSEntries Method Code, 195
DisposeData Method Code, 196

Adding a New Access Method...........oeevvviiiiniiiiiiniiincninnne,
GetCluster Method Code, 196

Summary: Customizing CEnsembleData.............ccceeevunneene
Customizing the CCalcWindow Codeccoeevurrienniriinnniiinrennnns

Customizing the ListScccccvviiiiiiiiiiiiniiniiniiniine,
CList5 IViewTemp Method Code, 199
CList5 GetCellText Method Code, 200
CList5 DrawCell Method Code, 201
CList10 IViewTemp Method Code, 202
CList10 GetCellText Method Code, 202
CList10 DrawCell Method Code, 203
CList15 IViewTemp Method Code, 203
CList15 GetCellText Method Code, 204
CList15 GetContents Method Code, 208
CList15 SetLists Method Code, 209
CList15 SetCluster Method Code, 209
CList15 SetArray Method Code, 210
CList15 ProviderChanged Method Code, 211
CList15 Scroll Method Code, 212

Customizing the CCalcWindow Code.........cccc.ccvvereennnennnnens
Defining a Cell's Contents, 213
The Customized Methods, 214
ICalcWindow Method Code, 215
UpdateMenus Method Code, 216
ProviderChanged Method Code, 217
DoEnterButton Method Code, 219
DoCancelButton Method Code, 220

x »Contents

ParseEntry Method Code, 221
GetExpression Method Code, 224
GetToken Method Code, 228
isConst Method Code, 231

isCell Method Code, 236
MakeStringObj Method Code, 237
MakeValueObj Method Code, 238
Activate Method Code, 239

Adding the CWSEntryClass and Methods..............ccceeeeeene. 239
IWSEntry Method Code, 240
CWSEntry Get Access Method Code, 241
CWSEntry Set Access Method Code, 241

Viewing the Customized Results...........cooovvuviiiiiiiininiininnnnnnnn... 242
EXEICISES ..cvvvviiniiiiiiiiiiiiniinii et 242

Chapter 9

Ammat Worksheet Dialog................cccovviiiiiiiiiiiiiiniiieeceeene 247
Creating the Worksheet Dialogcccocoviviiiniiiinniiiinniiinnniinn 247
Creating the Worksheet Menu Itemcccooooviiiiiiniiiiiiiinnnnnn, 256
Generating the Format Worksheet Codeccoooviviiiiiiiiiniennn. 257
EXEICISES ..ovuiiuiiiiiiiiiiiiiiici i 263

Chapter 10

;a-mi_nin_gthe Format Worksheet Code..................ccccoevvnniiiiinnnniennn. 265
The New Ensemble Application Structure...........cccoeevveinieneennnns 266
Examining the ZEnsembleDoc Code Changes........cccccooevvunnnnnee 267
Examining the Generated Code for ZWorksheet.............ccccoeveeee 269
Examining the Code for the Worksheet Subclass...........cccc........ 274

| D). {0 1< S 282

xi

Chapter 11

Customizing the Format Worksheet Codecooeeiiiiiinnnn. 285
Adding a CCellData ClasS.........ccvivurieniiuniiinnriniiinieunieierineienne, 286
Customizing the CEnsembleData Code..............ccooevvinniinnniinnnnis 288

Modifying the Initialization Code.......c...cccoeevviiiiiniiinnninnnnes 288
IEnsembleData Method Code, 289

Modifying the Input/Output Codec.ooeervviniiiiinnninnnnn. 289
WriteData Method Code, 290
WriteStyles Method Code, 292
WriteWSEntries Method Code, 293
ReadData Method Code, 294
ReadStyles Method Code, 295
ReadWSEntries Method Code, 296
DisposeData Method Code, 298
GetHList and GetVList Methods, 299

Customizing the CWorksheet Codeccccoeevviiiiiiinnnnnnnee. 299
DoWorksheet Function Code, 300
IWorksheet Method Code, 303
DoCommand Method Code, 305
ProviderChanged Method Code, 308
DrawSample Method Code, 311
CellToString Method Code, 312
GetSettings Method Code, 313
CList24 IViewTemp and GetCellText Methods, 316
CList28 IViewTemp and GetCellText Methods, 317

Customizing the CCalcWindow Code.ccocouveinviiniiininniinnnee. 318

Customizing the ListSccoeviiiiiiiiiiiiniinnne 318
CList10 DrawCell Method Code, 319
CList15 GetCellText Method Code, 319
CList15 DrawCell Method Code, 321
CList15 GetCellStyle Method Code, 322
CList15 DrawWSCell Method Code, 323
CList15 SetStyleLists Method Code, 326

Customizing the CCalcWindow Methodsccvvuueennne. 326

xii »Contents

Chapter 12

ICalcWindow Method Code, 327
MakeStringObj Method Code, 330
MakeValueObj Method Code, 330
UpdateMenus Method Code, 331

DoCommand Method Code, 332

GetCellData and SetCellData Methods, 336
GetCellStatus and SetCellStatus Methods, 336
GetColData and GetRowData Methods, 337
InitCellStyle Method Code, 337

Adding New CWSEntry Methodsccceeeevviiiviinnnniennnnnenn.
GetWSStyle & SetWSStyle Method Code, 338

Summary of the Changes to Ensembleccccoeeiiiiiiiinnnnnnnn.n.

5. (5 {01 (11 SN

Adding a Graph Window to Ensembleccocciiiiiiinniiennnineennn.

Chapter 13

Creating the GraphWindow with AppMaker..........cccceeeeuerernennnn.
Adding the Format Chart Menu Commandccceeuuueiereenes
Adding the Format Chart Dialog.........ccccuuuuviiiiiiiiimnneniiinneeennnn.
Generating the New Codec.coooiiiiimiiiiiiiiiiiiiiiiniinniiinnnnen.
Compiling the Generated Code........ccccoeeviiuiiiiiuniiriniiniennennnnens

D5 (5 o1 (T SN

Examining the GraphWindow Code..................ccccoevviirnvriiinnirennieennnnne,

The Final Structure of the Ensemble Application............ccc........

Newly Generated Code in ZEnsembleDoc...........ccccceeeeeeen.
BuildWindows Method Code, 365

Newly Generated Code in ZGraphWindowccccccvuvneee.
IZGraphWindow Method Code, 366
NewUser4 Method Code, 367
DoCommand Method Code, 367

Newly Generated Code in CGraphWindow...........cccceeeeeenen. 367
NewUser4 Method Code, 368
IGraphWindow Method Code, 368
UpdateMenus Method Code, 369
DoCommand Method Code, 369
ProviderChanged Method Code, 369

Newly Generated Code for CUSEr4.......c..coeevvvveriervvnnerennnnen. 370
IViewTemp Method Code, 370
Draw Method Code, 370

Newly Generated Code for DoChart...........ccooeeriviunniiiinnnnnns 371

Newly Generated Code for ZChartcccecvvrueeeneriienennen. 373
IZChart Method Code, 373
UpdateMenus Method Code, 375

Newly Generated Code for CChart........cccccoevvuirrecvennnennnnee. 375
IChart Method Code, 376
UpdateMenus Method Code, 376
DoCommand Method Code, 376
ProviderChanged Method Code, 377

EXEICISES ..uvivviiiiiniiiiiiiiiiiieiiic i 379
Chapter 14
T
Customizing the Graphing Code..................ccccviiiniiiiiiinniiiciniiieeeen. 381
Customizing the CEnsembleDoc Codecccoevevneiiiiiennireinnnnnes 382

SetCalcWindow Method Code, 382
GetCalcWindow Method Code, 382

Customizing the CCalcWindow Codeccovevuvirineiiinininneinnnes 382

GetValueString Method Code, 383
GetValueValue Method Code, 383

Customizing the Format Chart Dialogcccooovueviiiiiiiinnieninens 384
Customizing the DoChart Code........cc.ccceuviimnniiininiinninennnnes 384
Customizing the CChart Code........cccocoevviiinniiiniiiinniiinnnn. 389

IChart Method Code, 389

xiv »Contents

DoCommand Method Code, 390
ProviderChanged Method Code, 394
Validate Method Code, 395

Customizing the GraphWindow Codeccceeivuiiiiinieiniiennenns 403

Customizing the CGraphWindow Methodscc...ccceuue... 403
IGraphWindow Method Code, 403
UpdateMenus Method Code, 405
DoCommand Method Code, 406
GetCalcWindow Method Code, 406
GetChartInfo Method Code, 407

Customizing the CUser4 Methods.........ccoocevviiiiiiniienrinenenn. 407
IViewTemp Method Code, 407
Draw Method Code, 408
DrawHBarChart Method Code, 410
DrawVBarChart Method Code, 415
DrawXYChart Method Code, 421
GetBarThickness Method Code, 429
GetLabelMax Method Code, 429
GetDataMinMax Method Code, 430
DrawChartFrame Method Code, 432
DrawHorizTicks Method Code, 432
DrawVertTicks Method Code, 433
GetFormat Method Code, 434

Global Functions Used by the CUser4 Class Methods 436
log10x Function Code, 436
exp10x Function Code, 437
Lookup Tables for Global Functions, 437
RoundDown Function Code, 438
RoundUp Function Code, 439
lookUp Function Code, 441
lookDown Function Code, 441

Adding New ChartInfo Code........c.cceevuvuvieririnineeriiinineniinieeennnnnnn, 442

Defining the New CChartInfo Methodsc..cceeervuunnnennee, 443
IChartInfo Method Code, 443

XV

GetChartIinfo Method Code, 444
SetChartInfo Method Code, 444
GetHScale Method Code, 444
GetVScale Method Code, 445
GetHData Method Code, 445
GetVData Method Code, 445
GetHLabel Method Code, 446
GetVLabel Method Code, 446
Range2Rect Method Code, 447
GC Method Code, 450

| 05-CS o3 (=11 SN 450

Chapter 15

m“mble’s WINdOWS.........ccviiiiiiiiiiiiiiiccecccee s 453
Printing the MainWindow’s Panecccoccevuiiiniiiiniiiiinninnnnnn. 453
Printing the GraphWindow’s Paneccccceviviiniiiiiinninennns 459
Printing the CalcWindow’s Panec...ccoovveiuiiiininiinniiiinniinnnnn. 463
D5 4 o £ SN 470

Chapter 16

m the Ensemble Applicationcceivrririiiiiiirneinnnnnn. 473
Defining Ensemble’s Creator and File Type Codes..................... 473
Creating Unique Application and File Iconsc....ccocevvuneennnnen. 474
Creating the Stand-alone Ensemble Applicationccccceeuueee. 485
Completing the Process........ceuuuuveiiiiiiiiiiiiiiniiiiiiniiniiiicieeeenn 486
Summary: Application Development.......cc.ccoceveuniieiiniiiiiinnnnennns 490
J D555 (o 1= SN 491

I

Preface

This book is about object-oriented programming in C. But,
more than that, it stresses the ease with which object-ori-
ented programs can be developed with the aid of an excellent
development environment, an extremely robust class library,
and a powerful user interface design and code-generation
tool.

The book describes the evolution of a complete, multipurpose
application, starting from a skeleton application, automatically
generated by AppMaker. The user interface of the skeleton ap-
plication is enhanced within AppMaker to create a single Edit-
Text window, in which text can be written in any font, style, or
justification. The generated code is enhanced to provide the
capability of changing the selected text style, size, and justifi-
cation, using a custom-designed dialog box for making the se-
lections. Custom code is also provided to write the text to a file
and have the ability to open the file at a later date, revise the
text, and save the file with the same or a different name. The
book describes all of the custom additions to the code, in a
manner that shows how the application can gradually evolve
from a mere skeleton to a full-fledged Macintosh application.

In subsequent chapters, a spreadsheet window is designed,
the generated code for this new addition to the application is
described, and the custom code to make it fully functional is
covered in full. This is the third stage of evolution for the appli-
cation. A dialog for changing the characteristics of the spread-
sheet window is then designed, implemented, and described.

The penultimate addition to the application is a drawing win-
dow, in which graphs depicting patterns in the spreadsheet
data are prepared. The user interface design, the generated

xvii

xviii

» Preface

code, and the customizing needed to fully implement the
graphing addition’s functionality are discussed.

Finally, chapters that implement and describe the printing of
the various windows’ contents and a tutorial for creating a
stand-alone application are presented. As a whole, the applica-
tion is called Ensemble, to indicate that it embodies a combi-
nation of complementary modules that work together to
provide a notebook, worksheet, and graphing facility which
would make a good addition to any user’s repertoire.

More than anything else, the book strives to show that com-
plex Macintosh applications can be developed quite easily, in
an evolutionary manner, by using the right tools and by apply-
ing them in a step-by-step fashion. Because of the object-ori-
ented approach of the book, a great number of features in
Symantec’s THINK Class Library are presented. These illus-
trate the power of a comprehensive class library that works be-
hind the scenes to minimize the amount of complex code that
the programmer is required to develop.

Few, if any, Macintosh programming books cover the evolution
of an entire application; most merely focus on the use of indi-
vidual programming techniques. This book attempts to show
how a real application can be simply and easily developed, step
by step. The presentation is punctuated with data flow dia-
grams that illustrate the dynamic structure of the application
at various stages of its development. There are tutorials on
how to use AppMaker to produce the various user interface el-
ements for the windows, dialog boxes, and menus employed in
the application. The book contains a detailed examination of
the code generated by AppMaker for each new user interface
feature, as well as the manually added custom code to make
each new feature fully functional. The application is complete
and fully operational at each stage of its development.

Not only is the application whole and complete, but it is non-
trivial. It makes use of features of the Macintosh toolbox, as
well as the THINK Class Library, that would be difficult to
present outside the context of a complete application. The En-
semble application incorporates quite a few programming prin-
ciples that reinforce a useful structure for object-oriented
applications in general. These principles can be applied over

Xix

and over again, especially if the programmer is using App-
Maker and the THINK C programming tools.

The enclosed disk contains folders which include the source
code, THINK C project files, and AppMaker resource files for
six versions of the Ensemble application. These versions repre-
sent six distinct phases in the application’s evolution and cor-
respond directly to the chapters in the book associated with
each folder’s name. An executable version of the final Ensem-
ble application, along with its corresponding data file is also
included on the disk.

It should be possible to open this book at any one of its chap-
ters and refer to the interface design or customizing descrip-
tions without having to reread the entire book. Each major
user interface feature is described by a triad of chapters. The
first chapter describes how the feature is designed within the
AppMaker environment. The second chapter discusses the
code that is generated to implement the default behavior of the
feature, and the third chapter describes the custom code that
was added to make the new feature fully functional.

I used two mainstream development tools to create the appli-
cation described in this book: AppMaker version 1.5, created
by Bowers Development Corporation, and THINK C version
5.0, created by Symantec Corporation.

AppMaker is a resource editor and code-generation application
that allows the programmer to create complex user interface
elements with a visual paradigm. Its WYSIWYG (what you see
is what you get) tools allow windows, dialog boxes, menus, and
alerts to be designed. It also includes a balloon help editor and
comprehensive text styling for all of the user interface ele-
ments. Through the use of AppMaker, your windows and dia-
logs can contain all of the standard Macintosh user interface
elements, including checkboxes, radio buttons, lists, buttons,
drawing panes, borders, gray lines, PICT images, ICONs, and
other elements. Once a user interface element is designed,
AppMaker will generate code in any one of a variety of popular
languages and dialects, including THINK C, THINK Pascal,
MPW C, MPW Pascal, or C++. For each of these languages, the
generated code can be procedural or object oriented, as de-
sired.

xx > Preface

THINK C is an ANSI-compliant C language compiler, with ob-
ject programming extensions that are a compatible subset of
those found in the C++ language. The object features of the
language are supplemented by a comprehensive class library
called the THINK Class Library (TCL). All of the code in this
book is written with the underlying functionality provided by
AppMaker and TCL classes. In addition, THINK C is a marvel-
ously efficient development environment, where editing, com-
pilation, and debugging are accomplished with relative ease
and speed. These days, when object-oriented programming is
de rigueur for most new applications, there are very few books
that show how entire applications are structured. This book
attempts to fill that gap and show how a complex application
can be easily created, in a step-by-step manner, by using the
proper tools.

It is my fervent hope that programmers reading the book will
be left with an increased understanding of how to approach
the design of a complex application by using the suggested
tools. I also hope that they will have a greater appreciation of
the structure of Macintosh applications and will be better pre-
pared to begin programming in the object-oriented way.

Acknowledgments

This book is the result of the efforts of many people. I am very
grateful to each of them for helping to make the publication of
this book a reality. I would especially like to thank Carole Mc-
Clendon, my agent, for helping me understand the complexi-
ties of technical book publishing. I would also like to thank
Alan Apt, my publisher, for putting up with my barrage of
EMAIL messages and for being truly supportive throughout this
effort. Thanks also go to Bayani de Leon, my production editor,
for his help in creating the camera ready copy for the book. Fi-
nally, I would like to add my special thanks to the reviewers of
the book. Kurt Schmucker, Apple Computer, offered a great
number of suggestions for improving the technical quality of
the text and figures, and Spec Bower, Bowers Development,
performed a comprehensive review of the technical content of
the tutorials and all of the program code. I am very grateful to
both of these people for their unselfish contributions.

Richard O. Parker

Chapter 1

Introducing the Tools

This chapter describes the tools that were used to construct
the application that is developed in this book. In addition, it
contains a tutorial that will allow you to get started using the
tools to develop the framework for the sample application
that makes up the body of this book.

The fundamental software tools are AppMaker version 1.5
and THINK C version 5.0, although we will also be using Ap-
ple's ResEdit program in some instances. In addition, the
book will sometimes refer to Apple’s six-volume set of Inside
Macintosh manuals, which contains full documentation of the
toolbox routines that provide the Macintosh operating system
with its amazing capabilities. You may wish to refer to other
important books concerning Macintosh programming. The
four volume set titled Macintosh Revealed, by Stephen Cher-
nicoff (Hayden Books), and the two-volume set titled Macin-
tosh Programming Primer are particularly good. The first
volume of the Macintosh Programming Primer was written by
Dave Mark and Cartwright Reed. The second volume was
written solely by Dave Mark. (Both are published by Addison-
Wesley.)

The Chernicoff books are written for use by Pascal program-
mers, but because it is quite easy to translate between Pascal
and C, this should not be a deterrent to C programmers
wanting to know some of the inside secrets of programming
the Macintosh. The Mark and Reed book and Dave Mark's
second volume of that series are devoted to programming in
C, especially THINK C.

This book departs from those others by illustrating object-ori-
ented programming techniques at the outset. Object-oriented
programming is becoming such an essential part of all soft-
ware development—on a variety of platforms—that I feel that

1

2 Chapter 1> Introducing the Tools

it is important to begin to demystify the whole topic and teach
new and experienced programmers alike about the principles
of object-oriented programming for the Macintosh.

As with any other endeavor, having the right tools for the job
not only makes the job easier to accomplish, but can even
turn what seems an impossible chore into something that is
entirely feasible, as well as enjoyable, to accomplish.

When the Macintosh was first introduced, it provided a fea-
ture within its file structure that was entirely revolutionary.
Macintosh files had resource forks, which contained descrip-
tions of the user interface elements used within a given appli-
cation. To modify the position of a window, the wording of a
menu item, or the name of a push button, all you had to do
was edit the appropriate resource, and the change was ac-
complished, with no need to recompile the program. In fact,
many early users of the Macintosh became quite adept at
customizing their favorite programs, and even the operating
system itself, with no access whatsoever to the source code.

The tool of choice in the early days was ResEdit, which is still
a viable resource-editing tool that has been kept up to date
by Apple with the addition of editor modules for all the latest
resource types. ResEdit requires quite a bit of technical
knowledge about the various resources it creates and edits,
so it is often shunned by beginning Macintosh programmers,
who are intimidated by its potential to wreak havoc in their
systems. In fact, almost every tutorial on the use of ResEdit
hastens to caution the user about its potential dangers, and
always includes the admonition to work on a copy of the file
to be edited. Nonetheless, ResEdit continues to be a handy
utility, especially when custom resources need to be created
and the user is careful in its use. ResEdit will be used both to
modify and to create new resources in this book.

For the applications described in the book, AppMaker will be
used almost exclusively. While AppMaker is able to edit the
resources in existing applications, its greatest asset is its
ability to create the needed user interface resources for new
applications by using its onscreen WYSIWYG tools and then
generating the code to operate the interface.

Creating a New Resource File with AppMaker 3

In fact, AppMaker generates a complete application program
skeleton that includes all the elements which allow the appli-
cation’s user interface, once compiled, to be exercised. Com-
mands can be selected from menus, buttons can be clicked,
and dialog boxes can even be opened by making an appropri-
ate menu selection. Visual proof that the interface is operable
is provided by the standard highlighting of selected menu
commands, check marks appearing and disappearing in
checkboxes, and single-selection radio buttons that operate
within the group in which they have been defined. The inter-
face is truly operational.

Compilation of an AppMaker-generated application is easily
accomplished by using the Starter project for the THINK
Class Library (supplied in the AppMaker product), adding the
generated source files to the project, and then telling the
compiler to bring the project up to date. This process consists
of compiling not only the generated files, but also all the files
that form the THINK C Class Library (TCL). Because almost
all of the TCL is added to each project, and because THINK C
keeps the object code inside the project file, it is not unusual
for a THINK C project file to be several megabytes. Do not fear
that your compiled program will be that large, because the
THINK C linker will only include the files your program actu-
ally needs to execute properly.

Once the entire project has been compiled for the first time
(which might take quite a while, depending on the speed of
your particular Macintosh model), future compilations will be
limited to only the files that have changed (and others that
depend on these files) since the last compilation. In this re-
spect, THINK C is a very efficient environment for developing
new applications.

Creating a New Resource File with AppMaker

AppMaker is both a resource editor and a code generator. The
outputs from AppMaker are a resource file and (optionally) a
set of source files for the selected language. In this book,
AppMaker will be used to create and enhance the resource
file for our application and also to create source files for com-
pilation by THINK C.

4 Chapter 1> Introducing the Tools

Figure 1-1
AppMaker’s open file
dialog box

Complete instructions for using AppMaker are contained in
the product’s manual; however, it is useful to repeat the in-
structions for creating a new resource file at this point. I'm
assuming that you are sitting in front of your Macintosh and
are getting ready to launch the AppMaker application at this
time. It will be convenient for you to do so as you continue to
read this tutorial. Following are the steps for creating a new
resource file for your object-oriented programming project:

1. First, create a new folder on the disk where you want your
THINK C project and its source files to be stored. Name
the folder Ensemble.

2. Navigate back to the folder in which the AppMaker appli-
cation resides and launch AppMaker version 1.5.

3. You will see an open file dialog box for the folder in which
AppMaker is located, as shown in Figure 1-1.

SAMISY

o AMClassLibC < < Dianne

0O AMLibraryC —

0O AMLibraryP

[Basic App Desktop

0O Example App

0O Stationery
] Cancel |

4. Navigate to the Ensemble folder, and click on the New
button, as shown in Figure 1-2.

5. When the New button is clicked, AppMaker will display
the dialog box shown in Figure 1-3. You should name the
new resource file Ensemble.n.rsrc, as shown. This is
because THINK C project files are typically named with a
file extension of ‘.w’, and our THINK C project file will be
named Ensemble.n when we get to that point. THINK C
will always look for a resource file whose name exactly
matches that of the project, with the further file extension
of ‘.rsrc’. Click the Save button.

Creating a New Resource File with AppMaker 5

Figure 1-2
Creating a new
AppMaker resource

Figure 1-3
Naming the new
resource file

3 Ensemble ¥

uts = Dianne

Co)
Cow)
G| (Ccancel)

<3 Ensemble ¥

— Dianne

&
Name of new application: [_

[Ensemble.ﬂ.rsrc | (cancel)

6. After the Ensemble.rn.rsrc file has been created, App-

Maker will add a number of resources that THINK C and
the TCL require. These are shown in Figure 1-4, which is
a screen dump of the contents of the file’s resource fork,
as shown by the ResEdit utility. As you can see, quite a
number of resources are automatically written into the
Ensemble.rn.rsrc file’s resource fork. These constitute the
minimum set needed to support our AppMaker-generated
application, which automatically includes a menu bar,
Apple, File, and Edit menus, and a default Window defi-
nition. The other resources are needed by the TCL and
AppMaker’s default generated code.

.Look at AppMaker’s working area screen, which is

depicted in Figure 1-5. Notice that in addition to the stan-
dard Apple, File, and Edit menus, Appmaker adds an
active Select menu and inactive View, Tools, and
Options menus. In addition, there is a window on the
right portion of the screen that contains a list of items in

6 Chapter 1> Introducing the Tools

E[[=——— Ensemble.n.rsrc ==—=—"IF
Figure 1-4
iti o101 1101 =
Imtlal rt?sources -ﬁ,J I g?:z::?z %g @E
\I)Emtten ‘;ino ’ H g?g; srte B g &>
S o 1 ALRT AMKR BNDL CNTL
AppMaker
Gloriol) b = b
mens ¥R
gmaE B & Q-
Estr FREF icl4 iclg ICh#
] " e
By & & - ==
ics# ics4 ics8 MBAR MENU
00101001 =
61101010 D | @
Pan# SICN SIZE STR STR#
2.0bl = 0010 1001
sos | [g
S— 21000000 —
Z:rs WIND LAAX —0—
el
. ﬁ & File Edit Select Diew Toois Bplions 3:18 }
Figure 1-5 = D&
AppMaker's working [ECE Ensemble E07E|
area screen 1 Menu bar:

MainMenu, ID=1 [{]

7
\ |l

the current selection category. By default, AppMaker
selects the available menus and lists the MainMenu in
this window. Other resources can be selected by pulling

Creating a New Resource File with AppMaker 7

Figure 1-6
AppMaker's default
application menu bar

Figure 1-7
AppMaker's default
Apple menu

down the Select menu and choosing one of the other
items.

. Keep AppMaker’s default selection of Menus, and double-

click on the MainMenu item in the current selection win-
dow. AppMaker will display the default menu bar that will
automatically be included in your application, as shown
in Figure 1-6.

=[]

9.

% File Edit

Click on the Apple symbol in the menu bar, and App-
Maker will drop down the Apple menu, whose commands
will be included in your application. The menu is shown
in Figure 1-7. Notice that it only includes an About item
and a gray line. The names of the current desk accesso-
ries (or Apple Menu Items in System 7) will be filled in at
run time, when the application is started. The ‘#256’

File Edit
About Application. #256

10.

11.

appearing in the menu entry is the command number
required by the TCL for dispatching the selection of that
menu command.

Now, click on the word File, and the default File menu
will drop down. AppMaker inserts the appropriate File
menu commands, as required by the TCL, into the default
menu, pictured in Figure 1-8. Notice that each of the File
menu’s commands has a command number, as is required
by the TCL for command dispatching.

Finally, click on the word Edit to see the default Edit
menu provided by AppMaker. This menu contains all the
standard commands for cutting and pasting and also the
command to show the contents of the automatically gener-

8 Chapter 1> Introducing the Tools

Figure 1-8
AppMaker’s default
File menu
commands

Figure 1-9
AppMaker's default
Edit menu
commands

Edit
New BN #2
Open... ¥0: #3
Close ®IW: #4
Save ®S | #5
Save As... #6
Revert to Saved #7
Page Setup... #8
Print... #9
Quit 880 #1

ated Clipboard. The default Edit menu is shown in Figure
1-9. Once again, each of the Edit menu’s commands has
been assigned a standard command number, which corre-
sponds to the definitions in the TCL for these commands.

]
=
=H
na—(-
0

®2: #1186
Cut ®BH: #18
Copy ®BC: #1909
Paste 8 : #20
Clear #21
Show Clipboard #22

12. Now that you have seen the default menus that are auto-
matically generated by AppMaker for your application,
click on the Select menu and choose the Windows item.
You will see two standard window items in the current

Creating a New Resource File with AppMaker 9

Figure 1-10
AppMaker’s default
MainWindow
definition

selection window. One is the Clipboard, and the other is
a standard window called MainWindow. Double-click on
the MainWindow item to see its appearance on your
screen, as shown in Figure 1-10. The default MainWin-
dow shown in the Figure has a close box, a zoom box, and
also a size box. It is initially created as an (untitled) win-
dow; however, these characteristics can be changed, as
with any of AppMaker's generated resources. For now,
leave the window definition alone.

[(&———= (untitled) =———L=

&l

13. If you decide to do so, you can choose the Dialogs com-

mand from the Select menu and see that no dialogs are
listed. Selecting the Alerts command results in the dis-
play of quite a few standard Alerts in the current selection
window. Figure 1-11 shows a list of the default ALRT
resources defined by AppMaker. You can look at any of
these Alerts by double-clicking on any of the entries in
the current selection window.

14. After you have examined the Alerts, you should request

that AppMaker generate the code that implements your
application’s skeleton, using the default set of window,
menu, and alert resources that it has generated. To do
that, choose Generate from AppMaker’s File menu, as
shown in Figure 1-12. When this command is selected,
the dialog box shown in Figure 1-13 is displayed. This

10 Chapter 1> Introducing the Tools

Figure 1-11 IECI= Ensemble.w.rsrc =Hg|
AppMaker’s default]
ALRT resources 1 1 A]Erts

General, 1D = 128 <+

Dalidation, ID = 129
ConfirmRevert, 1D = 150
SaveChanges, 1D = 151
SevereError, 1D = 200
NoPrinter, 1D = 250
Error, 1D = 251

Error2, 1D = 252

assert, 1D = 253
0SError, 1D = 300

About, ID =1

=<

Figure 1-12 m Edit Select
Choosing the
Generate command H ew

from the File menu UDE“
Close EW
Bapa BN

Hegerlt R

Language...

Generate...

Quit 30

dialog lists all the modules that AppMaker has deter-
mined are needed to implement the current user interface

Creating a New Resource File with AppMaker 11

Figure 1-13
AppMaker’s
Generate dialog

Figure 1-14
AppMaker's save
changes dialog

design, which in this case includes only the default
resources described in the preceeding steps.

Generate

Generate which modules?
EnsembleMain.c
EnsembleData.c
EnsembleData.h
zEnsemblefApp.c
zEnsembleApp.h
Ensemblefpp.c
EnsemblefApp.h
zEnsembleDoc.c

Language:
THINK C 5.0
with Class Library

(Generate]

zEnsembleDoc.h
EnsembleDoc.c
EnsembleDoc.h
zMainlllindow.c
zMainWindow.h
MainlWlindow.c
Mainlllindow.h

15. Once all the modules have been generated, you can
choose the @uit command in AppMaker’s File menu. Be
sure to click Yes when AppMaker displays the dialog box
shown in Figure 1-14.

p— — —

I Q Save changes to “Ensemble.n.rsrc copy”?

— (oo) ()

At this point, you have created a complete set of source files
that, when compiled along with the THINK Class Library rou-
tines, will implement a working application. The next section
will discuss how to set up a THINK C project file for this de-
fault application and how to add your source files to it. We
will also discuss compiling the resulting set of files and run-
ning the application.

12 Chapter 1> Introducing the Tools

Perhaps you noticed in the previous set of steps that we al-
lowed AppMaker to use its default set of resources for our ini-
tial application. This is an important point. In most cases, the
default resources can be used as a starting point for applica-
tions you will develop. The next chapter will begin a discus-
sion of the structure of the Ensemble application and the
relationship between the classes from which it is composed.

This might be a good time to take a break and review the op-
erations involved in creating a set of default resources and
the source files that implement their functionality. Almost ev-
ery THINK C application that uses the TCL will be built in the
same way.

Creating the Think C Project

This section describes how to set up a THINK C version 5.0
project file that will contain all the necessary TCL source
files, as well as those generated by AppMaker for our Ensem-
ble example.

1. The first step is to make sure that AppMaker’'s AMClass-
LibC folder is inside the THINK C 5.0 Folder on your
development disk. This will ensure that the additional
classes provided with AppMaker will be available to your
projects.

2. Inside the AMClassLibC folder is a file called Starter.w,
which should be duplicated and moved into the folder
called Ensemble that you created in the previous section.
The Ensemble folder holds your new AppMaker resource
file and the generated source code files.

3. Rename the Starter.n file Ensemble.r (the ‘n’ symbol is
created by holding down the Option key and pressing the
‘p’ key). Your set of files should contain those shown in
Figure 1-15, which is a small icon view in the Finder.

4. Double-click on the Ensemble.r file to launch THINK C
version 5.0. You will notice that a great number of files
have already been added to the project window, as shown
in Figure 1-16. Notice that only a small fraction of the
number of files is shown. You can scroll through the files
using the scroll bar in the Ensemble.n project window.

Creating the Think C Project

13

Figure 1-15
List of Ensemble
project files in Finder

Figure 1-16
THINK C’s Ensemble
project files

Ensemble. 7 Ensemble.77.rsrc
EnsembleMain.c ResourceDefs.h
EnsembleApp.c EnsembleApp.h
EnsembleData.c EnsembleData.h
EnsembleDoc.c EnsembleDoc.h
MainWindow .c MainWindow h
zEnsembleApp.c zEnsembleApp.h
zEnsembleDoc.c zEnsembleDoc b
zMain¥indow .c zMainWindow h

Ensemble.n =—=
A Name obj size

H ¢ Place Holder.c

Exceptions.c
GlobalYars.c

LongCoordinates.c

MacTraps
MacTraps2
copsDebug
0SChecks.c
SANE
TBUtilities.c
TCLUtilities ¢

CAppleEvent.c
CArray.c
CBartender.c
CChore.c
CCluster.c

CCollaborator.c

CCollection.c
CDataFile.c
CDecorator.c
CEnvironment.c
CError.c
CFile.c

CList.c
CMBarChore.c
CMouseTask.c

O
|

You will also see that the files have already been grouped
into segments (separated by gray lines) that are of an
appropriate size. If you scroll back to the beginning of the
list, you will see a file in the first segment called
Place Holder.c. This file is in the first segment merely to
act as a placeholder for your project’s files. It serves no
other purpose.

14 Chapter 1> Introducing the Tools

5. Click on the Place Holder.c file to highlight it. This
selects the first segment for the next operation. Once you
have done that, pull down the Source menu and select
the Add command, as shown in Figure 1-17.

illlyd- Windows

Figure 1-17 ‘

Selecting THINK C’s

Add command Add...
Rerove
Get Info
fiebug #i
Chedk Syntanr Y
Propraoess
Bisassembie
Pracompiie..,
Compile #K
Load Lilvary
Make... 8\
Browser 38d

6. When the Add command is selzcted, you will see the dia-
log box shown in Figure 1-18. This dialog box has two
sections. Make sure that you navigate to the Ensemble
folder using the pop-up menu at the top of the dialog box
if it doesn’t already indicate that folder's name. Click the
Add All button, as shown in the figure.

7. After you have added all the files shown in the upper por-
tion of the dialog box, you’ll notice that the box is empty,
and all the file names have moved to the lower portion, as
shown in Figure 1-19. Click Done, as shown.

8. If you look in the Ensemble.r project window, you will see
that all the C language source files have been added to
the project, in alphabetical order, as shown ia Figure
1-20. In the next step, the ?lace Holder.c file will be
—~emoved.

Creating the Think C Project 15

Figure 1-18
Adding all the
Ensemble files

Figure 1-19
Clicking Done in the
Add dialog box

[e2 Ensemble #1 default v |

D EnsembleApp.c {3 = Dianne

D EnsembleData.c _

D EnsembleDoc.c

[n} Ensleml?leMaln.c Desktop

0 MainWindow.c

0 zEnsemblefpp.c

0 zEnsembleDoc.c

0 zMainWindow.c %] [Cancel
& frm——
—1 (_nAdd]
5

[€2 Ensemble #1 default i |

m ©Dianne
fiect
Desktop

Cancel

b

Ensemblefpp.c
EnsembleData.c

- §(§<§

EnsembleDoc.c Add ANl
EnsembieMain.c
MainWindow.c

9. Click on the Place Holder.c file to highlight it, and then

10.

11.

pull down the Source menu and select the Remove com-
mand, as shown in Figure 1-21.

At this point, you are ready to compile all the files in the
project. Select the Bring Up To Date command from
THINK C’s Project menu, as shown in Figure 1-22. This
will cause THINK C to begin compiling all the source files.

When the compilation is complete, select Run from the
Project menu, and THINK C will display its debugger win-
dows, with the execution cursor positioned at the begin-
ning of your application’s main function, as shown in
Figure 1-23. The figure also shows that the Go button in

16 Chapter 1> Introducing the Tools

== Ensemble.n =—
Name obj size
Ensemble App.c
EnsembleData._c (1]
EnsembleDoc . ¢ (1]
EnsembleMain.c (1]
MainWindow ¢ 1]}
Placeholder.c 1]
zEnsemble App.c (1]
zEnsembleDoc.c (1]
zMainWindow .c 0
1]
1]
1]
L1}
1}
o
1}

Figure 1-20

All Ensemble files
have been entered
into the project

Exceptions.c
Global¥ars.c
LongCoordinates. c
MacTraps
MacTraps2
oopsDebug
DS5Checks.c

Eﬂm Windows i

Figure 1-21 fidg
Removing the Add...

Place Holder.c file
Get Info

fiehug #i

Chadk Syntan Y
Prapgrodess
fisngspmbip

Pracompiie,..

Compile 8K
Load Liwary

Make... 84
Browser #dJ

the debugging window is about to be pressed. Doing so
will cause the application to begin execution.

12. When the application begins execution, it will display the
menus and default window that were created by App-
Maker, as described in the previous section. The display
will be similar to that shown in Figure 1-24.

Creating the Think C Project 17

Figure 1-22
Bringing the project
up to date by
compiling all its files

Figure 1-23
Ensemble
application ready to
run

Source Windows

Mews Profect..
dpan Praject.,
Close Project
Close & Compact

Set Project Type...
Remove Objects

Bring Up To Date, ¥U
Check Link 6L
Build Library...

Build Application...

v Use Debugger

Run %R

ﬁ € File Edit Debug Source Data Windows 1o (D @
Ensemble.w
A Name obj size |
+ EnsembleApp.c 1>
+ EnsembleData.c 806 -
¢ EnsembleDoc.c 148
+ EnsembleMain.c 50
+ Main¥indow.c 188
+ zEnsembleApp.c 566
+ zEnsembleDoc.c 880
s zMan¥indowee | 256
Exceptions.c 1080
GlobalVars.c o
LongCoordinates.c 1740
MacTraps 8342 | O]
MacTraps2 4246
EnsembleMain.c E=—=————D: Data
= =
L] C |Mx]
®include "Ensemblefpp.h” N
é extern CRpplication *gRpplication; B
i void main ¢>
o® gRpplication = new CEnsemblefpp;
o C(CEnsemblefpp *> gApplication)=> |EnsembleRpp ();
o gRpplication=>Run <;
Sel gRpplication->Exit ¢);
o}
[o
2
A
-’

13. When the application is running (Figure 1-24), the default

window and menus are active. Make some selections from
the File menu. If you choose New, another new untitled
window will be created. If you choose Close, the current
window will be closed. If you choose Open, then you will
be given the opportunity to open a file. This will result in
the file’s name being displayed in the window title; how-

18 Chapter 1> Introducing the Tools

Figure 1-24
Ensemble
application running

r .
(€ File Edit 11 (D @\\
E0==——————— (untitled) =——=————"—11| Ensemble.w
A Name obj size
+ EnsembleApp.c 250 [
+ EnsembleData.c 806 [|
+ EnsembleDoc.c 148
+ EnsembleMain.c s0
+ Main¥indow.c 188
+ zEnsembleApp.c 566
+ zEnsembleDoc.c 880
¢ zMain¥indow.c 256
Exceptions.c 1080
GlobalVars.c o
LongCoordinates.c 1740
MacTraps 8342 3‘
@j MacTraps2 4246 []
Data
2=
nclude "Ensemblefpp.h” Q
tern CRpplication *gApplication;
void main ¢
gfpplication = new CEnsembleRpp;
((CEnsenblefpp *)> gRpplication)->|Ensemblefpp);
gApp!ication=>Run (;
gRpplication—>Exit);
& <]
Iel I /
-

ever, because there is no code in the default program to
display the contents of the file—because AppMaker is in
no position to infer the format of the data in the selected
file—nothing will be displayed at this time. The code to
display the contents of various types of files used in the
Ensemble application will be covered in later chapters.

14. When you have finished trying out the various com-
mands, you should choose @uit from the File menu to
stop execution of the application.

At this point, you have created, compiled, and executed a
complete Macintosh application. It’s true that it doesn’t ac-
complish much, but we've all heard that creating the user in-
terface for an application is the most difficult and time-
consuming chore there is in program design. This is certainly
true if it must be accomplished with inadequate tools; how-
ever, you have accomplished the feat with ease.

The combination of AppMaker’s resource editor and code
generation, and the TCL's extraordinary facilities for perform-
ing much of the work in animating the user interface, is
something that you will come to appreciate more and more as
you continue to develop the Ensemble application and grow

Exercises 19

more proficient at using the AppMaker and THINK C develop-
ment tools described in this text.

Exercises

This book contains a number of exercises at the end of each
chapter. Some of the exercises will be simple to complete,
while others could be classified as relatively major projects.
Even if you are not a student, it will be worthwhile for you to
work the simple problems and think about the more complex
tasks that are suggested as “extra-credit” projects. All “extra-
credit” projects are noted as such in the text of the exercise or
in a footnote.

1.

Describe the features and functions of the AppMaker
application, and contrast them with the features of
Apple’s ResEdit application.

. Modify the contents of the About alert for the default

application. This alert will be shown when the About
Application command is chosen in the Apple menu for
the application that is running.

. Experiment with some of the tools in AppMaker, and cre-

ate a few simple user interface elements. Generate code
for a variety of languages and examine the results.

. Contrast the code generated in exercise 2 for a procedural

language, such as the procedural version of THINK C,
with the object-oriented code generated for that same lan-

guage.

. Explain the purpose of the Placeholder.c file in the start-

ing THINK C project file.

Chapter 2

Examining Ensemble’s Structure

This chapter discusses the structure of the initial version of
the Ensemble application’s files, classes, and methods. It
also describes how the generated classes and methods relate
both to each other and to the THINK Class Library (TCL) rou-
tines.

The discussion begins with a description of the THINK C
source program files generated by AppMaker. The files in-
cluded in the Ensemble project can be grouped into two cate-
gories:

1. Those in the first category have names beginning with the

letter ‘z and contain classes and methods that you
should never need to modify. Each of the classes in these
modules is referred to as a superclass. Each time you
modify the Ensemble.r.rsrc resource file and then gener-
ate code, AppMaker will generate new contents for all the
superclass files. There is nothing special about the letter
‘z’; it is merely a standard adopted by AppMaker to aid in
differentiating between the two categories of files.

. In most cases, the second category of files contains direct

descendants of the classes and methods in the superclass
files. The file names in the second category do not begin
with the letter ‘z’ and will never be automatically regener-
ated by AppMaker if the Ensemble.n.rsrec resource file is
modified. These files usually contain subclasses of the
corresponding superclasses and will eventually contain
all the code that implements the application’s unique
functionality.

In general, each THINK C source file also has a corresponding
header file, whose name ends in the extension ‘.h’. The excep-
tions to this rule, in the default set of files, are the file En-

21

22 Chapter 2> Examining Ensemble’s Structure

EnsembleMain.c

zEnsembleApp.c

EnsembleApp.c

zEnsembleDoc.c

EnsembleDoc.c

EnsembleData.c

sembleMain.c (which has no header file) and
Resourc:Defs.h (which has no corresponding source file).

As you follow along with the tutorials in the succeeding chap-
ters of this book, you will be making modifications to the files
in the second category. The automatically regenerated files
should be treated as though they are “read only.”

The header files (whose names end in ‘.h’) contain the class
and method declarations. The source files (Whose names end
in ‘.c’) contain the method definitions (the code that imple-
ments each method’s functionality). The default source files
are as follows (their contents will be described in greater de-
tail later in the chapter):

This file contains the main function, in which execution ini-
tially commences.

This file contains the initialization method for Ensemble’s
application class. It also contains the methods to create new
documents, open existing documents, set up the initial
menus, update menu items, and handle menu commands. It
will be regenerated each time the Ensemble resource file is
modified.

This file contains a method that specifies the type and creator
for files read and/or written by the application. In addition, it
contains methods that inherit and extend the behavior of the
methods in the zEnsembleApp.c file for updating menus and
handling menu commands.

This file contains methods associated with the Ensemble
application’s document class. The methods are invoked to
create a new file, open an existing file, save an existing file,
revert to a previously saved version of an existing file, create
the initial windows for the application, update menu items,
and handle menu commands.

This file contains methods that override the behavior of its
ancestor’s methods in the zEnsembleDoc.c file. In particular,
the file contains application-specific initialization and meth-
ods to update menu items and handle menu commands.

This file contains the methods that actually read, write, open,
close, save, and dispose of data contained in Macintosh files.
The methods in zEnsembleDoc.c call corresponding meth-

Ensemble’s Classes and Methods 23

ods in the EnsembleData.c file to handle the specifics of the
physical file formats.

zMainWindow.c This file contains the initialization method to establish the
appearance of the MainWindow resource (See page 9), as well
as methods to update menu items and handle commands.

MainWindow.c This file contains methods that override those in its ancestor
class in zMainWindow.c for performing application-specific
initialization, updating menu items, handling commands,
and handling other events associated with the window’s user
interface items.

ResourceDefs.h This file contains mnemonic definitions for each of the
resources defined in the generated code. Instead of referenc-
ing a menu command by its number, you can use the corre-
sponding mnemonic. When new resources are added to the
Ensemble.rn.rsre file, the contents of the ResourceDefs.h file
are rewritten.

The primary purpose served by describing these files is to
give you an idea where the various functions of the Ensemble
application are handled. To fully comprehend the relation-
ship of the application’s classes and methods, it will be im-
portant for you to understand the structure of the generated
code modules, how these interrelate, and how they relate to
the TCL.

In preparation for a discussion of the class structure of the
Ensemble application, you should examine Figure 2-1, which
illustrates the structure of the application and its connection
with the TCL. Notice in the figure that there are three catego-
ries of classes, indicated by the different background appear-
ances of the ovals. The two sets of generated classes (shaded
and unshaded) are respectively contained in the superclass
and subclass files described earlier. The ovals with a black
background refer to classes in the TCL. Not all of the TCL
classes that interact with the Ensemble application are
shown.

Ensemble’s Classes and Methods

Figure 2-1 shows the relationship between the various
classes in the application and the TCL. The main function,
where execution begins, is located in the module whose name

24 Chapter 2» Examining Ensemble’s Structure

Figure 2-1
Ensemble’s
structure and
command flow

@ TCLClass

O Generated Superclass

O Generated Subclass

— Inherited Method Flow

= Create New Instance

==«nsw» Chain of Command Flow

mgin CApplication
function ™
inherited
methods
EnsembleMain
ZEnsembleApp
Create
Instance f :
inherited CDataFile
methods
gApplication CEnsembleApp
inherited
methods
Create
Instance
CDocument

inherited
methods

Chain of :
Command ¢

CEnsembleData

gGapher . z ZEnsembleDoc
Chainof °, . Create
Command s, i Instance
¢ inherited
methods
CEnsembleDoc CWindow
Create inherited
Instance methods
ZMainWindow

inherited
methods

CMainWindow

is EnsembleMain, in the figure. The main function is not
represented as a method of any class. It is not object ori-
ented. When it begins executing, none of the other superclass
or subclass instances exist. The complete code for the main

function is as follows:

void main ()
The main function {
is in the . gApplication = new CEnsembleApp;
EnsembleMain.c ((CEnsembleApp *) gApplication)->IEnsembleApp ();
file gApplication->Run ();
gApplication->Exit ();

Ensemble’s Classes and Methods 25

It should be evident that the purpose of the main function is
to create an instance of the CEnsembleApp class, initialize
that instance, and then send it the Run and Exit messages.
The presumption is that when the Run method is sent to the
application, it will continue running and not return to the
main function until the user has selected the @uit command.
When this occurs, sending the application an Exit message
gives it the opportunity to clean up and exit in an orderly
fashion.

Messages can be sent to the application at any time, by refer-
ring to the global variable called gApplication, in which a
handle to the application’s instance is stored. Because the
TCL’s definition of the gApplication variable requires that it
contain an instance of class CApplication, the foregoing code
must “recast” gApplication as an instance of CEnsembleApp
to call the initialization method.

The following section describes the actions that result from
sending an IEnsembleApp message to the CEnsembleApp
instance and how this simple message results in a set of ac-
tions that perform a host of initialization functions which
prepare the application to begin execution.

CApplication’s Initialization Method

Figure 2-2 shows the structure of the Ensemble application
at the time the IEnsembleApp message is sent to the CEn-
sembleApp instance. Note that this message is inherited
from its superclass instance, ZEnsembleApp. The superclass
is responsible for performing all of the default initialization
for the application and does so (in this case) by sending the
IApplication message, which is processed by the corre-
sponding method in the CApplication class in the TCL. The
implications of executing the IApplication method are shown
in the figure, which also illustrates the new object instances
that are created during execution of the IApplication
method. To reiterate, the IApplication message is sent to the
gApplication instance in response to its IEnsembleApp’s
method being called. When the IApplication method—inher-
ited from CApplication—gains control, it creates instances of
a number of additional classes, including the following:

26 Chapter 2> Examining Ensemble’s Structure

Figure 2-2
Ensemble’s
structure when Run
message is sent

TCL Class
Generated Superclass
Generated Subclass

Normal Program Flow

11000

Create New Instance
and Initialize

CBartender

CClipboard

CDecorator

CDesktop

CDirectorOwner

CBartender gBartender
CClipboard

gClipboard CDecorator

gDecorator
|Decorator

CDirectorOwner

IDirectorOwner

InitToolbox
InitMemory
InspectSystem
InstallPatches
MakeDesktop
MakeClipboard

CApplication

|Application MakeDecorator
MakeSwitchboard
MakeBartender
ZEnsembleApp
SetUpFileParameters
IEnsembleApp

|EnsembleApp

CEnsembleApp

This instance manages the menu bar and initially receives con-
trol when the mouse is clicked in the menu bar. CBartender
can be addressed by use of the global variable gBartender.

This instance controls the operation of the application clip-
board and is responsible for exchanging its contents with the
contents of the system clipboard when the application is acti-
vated or deactivated. It can be addressed by use of the global
variable gClipboard.

This instance handles the positioning of windows on the desk-
top. It is responsible for initially sizing and placing windows.
It can be addressed by use of the global variable gDecorator.

This instance manages a view that encompasses the entire
screen. It manages a list of windows and can be addressed by
use of the global variable gDesktop.

This class is part of the TCL. The CApplication class inherits
functionality from the CDirectorOwner class. The CDirec-

Ensemble’s Classes and Methods 27

CSwitchboard

torOwner class is shown in the figure because the superclass
is initialized when the IApplication message is handled.

This instance manages the main event loop and is responsi-
ble for dispatching events to other methods in the applica-
tion. All events, including key presses, mouse clicks, update,
activate, suspend, resume, and high-level (Apple) events are
processed by CSwitchboard.

in addition to creating and initializing the preceeding in-
stcnces, the IApplication method allocates the memory re-
sources that are anticipated by the application for allocating
handles and pointers in the application heap. In the course of
this action, IApplication sets up a memory reserve, called
the “rainy day fund,” and allocates space for a number of
master pointers. It also creates instances of two other enti-
ties: An instance of class CList is created to handle “Idle
Chcres,” followed by creation of an instance of CCluster to
hold “Urgent Chores.”

Before continuing with the discussion of the CEnsembleApp
class and the actions of the IApplication method, it is impor-
tant to stress that instances of ZEnsembleApp and CApplica-
tion, as depicted in Figure 2-2, don’t really exist. Instead, only
the CEnsembleApp instance exists. When it is created, by vir-
tue of the TC™. object hierarchy, it inherits all the instance
variubles and metnods of its ancestors. The CEnsembleApp
instance is a CApplication object, in every sense of the word.
Therefore, at this stage of our application’s execution, only
CEnsembleApp and the instances created by its IApplication
inherited method actually exist. These include the CDesktop,
CClioboard, CDecorator, CBartender, and CSwitchboard
class instances. In this book, we will continue to show both
the real (subclass) instance, its direct superclass, and that
class’s ancestor in the TCL, to aid in clarifying the relation-
ship between the classes and the location of their correspond-
ing methods. Hopefully, this will not mislead you into thinking
that a multiplicity of instances exist for newly created objects
that are deeply buried in the TCL'’s class hierarchy.

After the CDesktop, CClipboard, and CDecorator instances
have been created and initialized, the 1Application method
sends the SetUpFileParameters message, for which it has a
default method. However, the SetUpFileParameters method
is overriacden by a method of the same name in the CEn-

28 Chapter 2> Examining Ensemble’s Structure

sembleApp subclass. (Note that overridden methods are
shown in oblique type in Figure 2-2.) Although the SetUp-
FileParameters method in the CEnsembleApp subclass first
calls the corresponding inherited method in CApplication,
this is a suitable place to customize the file types and creator
you wish to use for your application. By default, AppMaker
generates code to set a single file type of ‘TEXT and a signa-
ture (creator code) of XXXX'. These can easily be changed (as
shown in a later chapter).

After sending the SetUpFileParameters message, the IAppli-
cation method sends the SetUpMenus message, for which it
also has a default method. Once again, however, this method
has been overridden by a method with the same name in the
ZEnsembleApp superclass. The purpose of the override in
this case is to load and initialize any special menus not han-
dled by the normal operation of the IBartender method (such
as pop-up menus and the like). Because our application does
not currently have any special menus to initialize, the gener-
ated code merely calls the inherited SetUpMenus method in
the CApplication class.

The last act of the IApplication method is to set the value of
the gGopher global variable to point to the CEnsembleApp
instance. (The gGopher is a global variable that points to the
currently active member of the Chain of Command.) Contrary
to the stable state shown in Figure 2-1, where the gGopher
global variable points to the CEnsembleDoc instance, an in-
stance of this class doesn't exist at the time IApplication is
called. Therefore, gGopher is set to point to the CEnsemb-
leApp instance.

CApplication’s Run Method

After CEnsembleApp receives the IEnsembleApp message,
and the preceding sequence of events is complete, the main
module sends a Run message to the CEnsembleApp object.
The Run method is not overridden by methods in the CEn-
sembleApp or ZEnsembleApp classes. Instead, the message
is directed to the Run method inherited from the CApplica-
tion class.

It is important to note that at the time the Run method is ex-
ecuted, the Ensemble application may have been initially in-
voked in one of two different ways:

Ensemble’s Classes and Methods 29

The modularity of
this approach is
important when it is
necessary to
override the
GetAnEvent
method to “peek”
into the event queue.

1. The Ensemble application’s icon can be double-clicked,
or it can be selected and then the Open command in the
Finder’s File menu can be chosen.

2. One or more of Ensemble’s files (types that carry the
Ensemble application’s creator code) is selected, and
then either the Finder’s Print command or Open com-
mand is chosen from its File menu.

In the first case, nothing special needs to be done inside the
CApplication class’s Run method. In the second case, how-
ever, the selected files must be opened or printed, as re-
quired. One of the first actions of the Run method is to
determine in which way the application was invoked and
then handle that situation in an appropriate manner. This is
accomplished by invoking the Preload method, which per-
forms the following actions:

1. If the icon was double-clicked or the icon was selected
and then opened, the Preload method does nothing, and
the Run method can begin processing events.

2. If one or more files were selected, and either the Open or
Print Finder command was chosen, the Preload method
is obligated to open the chosen files, one by one, and pro-
cess them in an appropriate manner. In the case of the
Open command, the application is sent an OpenDocu-
ment message, which happens to be overridden by our
superclass, ZEnsembleApp. In the case of the Print com-
mand, a DoCommand message with a parameter of cmd-
Print is sent to the application, which in our case is
ignored (for the moment).

After the Open or Print command has been handled, the Run
method resumes control and begins processing events. It
sends a ProcesslEvent message, which is handled by a
method inside the CApplication class. This method sends a
ProcessEvent message to the CSwitchboard instance,
which, in turn, sends a GetAnEvent message that is nor-
mally processed by its method of the same name in the CS-
witchboard instance.

If the GetAnEvent method returns with a valid event, then a
DispatchEvent message is sent. This is usually handled by

30 Chapter 2>» Examining Ensemble’s Structure

the method of that name in the CSwitchboard instance. If no
event is currently in the queue, then the GetAnEvent
method sends a Doldle message, which is handled by its
method of that name, which sends an Idle message to the ap-
plication by referring to the gApplication global variable.

After the event has been processed (event processing is cov-
ered later in the chapter), the CApplication class’s Pro-
cesslEvent method regains control. It then determines
whether any urgent chores need to be processed and if so,
performs them one by one. Finally, it handles switching to
and from a desk accessory, if necessary, cleans up, and re-
turns to the event-processing loop inside the Run method.
Events are continually processed inside this method until
something resets the CApplication instance’s running vari-
able to FALSE. When that occurs, the application returns to
the main function (inside the CEnsemble module), at which
time the Exit message is sent to the CEnsembleApp in-
stance. In the case of our application, this message is handled
by the Exit method inherited from CApplication, which is an
empty (do-nothing) method. The main function then retuirns
to the operating system, where the Finder regains control.

Processing Events

When the Preload method is ready to return to the Run
method, it sends the application a StartUpAction message,
which is handled by a method of that name in the CApplica-
tion class. The StartUpAction method tests whether any
files were preloaded by either the Open or Print commands
and also whether the application environment supports high-
level Apple Events. If neither of these conditions is true, then
the method sends a DoCommand message, with a cmdNew
parameter, to the instance referenced by the current value of
the global gGopher variable. This results in the execution of a
New command, as though the user had chosen the command
from the application’s File menu.

If no files were preloaded and the application is capable of re-
ceiving high-level Apple Events, then when the application be-
gins processing events, it will discover an Open Application
event (placed in the queue by the Finder). It will handle this
event by sending a DoAppleEvent message, containing the
Open Application event code, to the instance referenced by tlie

Ensemble’s Classes and Methods 31

Figure 2-3
New window with
and without Apple

@ TCLClass
O Generated Superclass
O Generated Subclass

— Normal Event Flow

Flow with Apple Event

current value of the global gGopher variable (which points to
the CEnsembleApp instance at this point in our application).

The DoAppleEvent message will be handled by a method of
the same name in the CApplication class, which will send a
DoCommand message with a cmdNew parameter to the in-
stance referenced by the gGopher variable. This will result in
the creation of a new document, just as if the user had cho-
sen the New command from the application’s File menu.

Although the preceeding process seems rather circuitous, it
is necessary in an environment in which an application can
be started by any other application simply by sending the
Finder a request to start it. It should also be evident that the
TCL automatically handles a variety of situations. The entire
set of linkages is illustrated in Figure 2-3.

Event Queue
Open Application

GetAnEvent

CSwitchboard

o ProcessEvent
~ DoCommand
s (cmdNew)

CApplication

0

" DoCommand

Q

.. Run
é.' (cmdNew)

DoCommand
(cmdNew)

ZEnsembleApp

CreateDocument

CEnsembleApp

Sending the application (gGopher) the DoCommand message
with emdNew as a parameter starts another sequence of
events, which is described in the next section. Bear in mind
that event processing is the primary job of any Macintosh ap-
plication; every application action is triggered by an event of
some kind.

* Run
DoCommand (cmdNew)
CreateDocument

.
e
»
.

gGopher

32 Chapter 2> Examining Ensemble’s Structure

Handling the DoCommand (cmdNew) Message

The TRY, CATCH,
and ENDTRY
statermnents are part
of the TCL'’s error
recovery features.

When the DoCommand message is sent to the gGopher in-
stance with a parameter of cmdNew, the CEnsembleApp
doesn’t recognize that command, so it passes it on to its su-
perclass, ZEnsembleApp, which then passes it on to the
CApplication class method of the same name. The DoCom-
mand method in the CApplication class handles the cmd-
New parameter by sending a CreateDocument message to
the current application instance (CEnsembleApp in our
case). The method that implements this message is inherited
from the ZEnsembleApp superclass.

The CreateDocument method in the ZEnsembleApp class is
responsible for creating a new subclass of the CDocument
class, which is the supervisor of the data file and default win-
dow associated with the Ensemble application. The code for
the ZEnsembleApp class’s CreateDocument method is as
follows:

void ZEnsembleApp::CreateDocument(void)

{

CEnsembleDoc*theDocument;

TRY

{
theDocument = new CEnsembleDoc;
theDocument->IEnsembleDoc (this, TRUE);
theDocument->NewFile ();

}
CATCH

{
ForgetObject (theDocument);

}
ENDTRY;

The foregoing code was entirely generated by AppMaker. It
uses the new error-handling features of the TCL, which in-
clude the ability to place statements that might fail inside a
block headed by the TRY keyword and the ability to put the er-
ror-handling code inside a block headed by the CATCH key-
word. The CATCH block is ended by an ENDTRY keyword.

Ensemble’s Classes and Methods 33

The function of the CreateDocument code is to create a new
instance of class CEnsembleDoc, which is a subclass of ZEn-
sembleDoc, which is itself a subclass of CDocument, as
shown in Figure 2-1.

After the instance is created, it is initialized by sending the
IEnsembleDoc message, which is inherited from the ZEn-
sembleDoc superclass. The initialization consists of setting
the itsMainWindow instance variable to NULL and then send-
ing an IDocument message, which is handled by the inher-
ited method of that name in the CDocument class. This
message serves to initialize a number of the instance vari-
ables inherited from the CDocument class.

After the CEnsembleDoc instance has been initialized, it is
sent a NewFile message, which is handled by the method of the
same name inherited from and contained within the ZEnsem-
bleDoc module. The code for the NewFile method is as follows:

void ZEnsembleDoc::NewFile (void)
CEnsembleData *theData;

TRY
{

theData = new CEnsembleData;
theData->IEnsembleData (this);
itsFile = theData;

BuildWindows (theData);
itsWindow->Select ();

}
CATCH
{
ForgetObject (theData);

}
ENDTRY;

In the NewFile method (inherited from the ZEnsembleDoc
module), a new instance of class CEnsembleData is created.
Although there is no generated superclass for this instance, it
inherits its behavior and instance variables from the TCL'’s
CDatafile class—which, in turn, inherits instance variables

34 Chapter 2> Examining Ensemble’s Structure

and methods from the CFile class. When the CEnsemble-
Data instance has been created, it is sent the IEnsemble-
Data message, to initialize the instance. The initialization
code is as follows:

void CEnsembleData::IEnsembleData (CDocument *theDocument)

{
inherited::IDataFile ();

hasFile = FALSE;
itsDocument = theDocument;

/I your application-specific initialization
itsData = NULL,;

The preceeding code was generated by AppMaker. It first
sends an IDataFile message, which is inherited from the
CDatafile class, and then initializes the hasFile instance
variable to FALSE, indicating that no file is currently open for
this document. The itsDocument instance variable points
back to the CEnsembleDoc instance, so that the CEnsem-
bleData instance can subsequently refer to the document’s
methods. The itsData instance variable is set to NULL, indi-
cating that no data currently exist. Note that AppMaker has
indicated with a comment that this is a good place to insert
additional initialization code that is pertinent to the CEnsem-
bleData instance’s functionality. None is needed at this time.

The NewFile method (shown on page 33) follows up the initial-
ization of the CEnsembleData instance by setting the itsFile
instance variable to the value of the CEnsembleData instance.
It then sends a BuildWindows message, which is handled by
the method of the same name inherited from the ZEnsemble-
Doc superclass. The code for this method is as follows:

void ZEnsembleDoc::BuildWindows(void)

{
itsMainWindow = new CMainWindow;
itsMainWindow->IMainWindow (this, itsData);
gDecorator->StaggerWindow (itsMainWindow);
itsMainPane = itsMainWindow->itsMainPane;
itsWindow = itsMainWindow;

Ensemble’s Classes and Methods 35

The purpose of the BuildWindows method is to create the
windows that are intended to be open initially in the applica-
tion. In our case, this is a single window whose default sub-
class name is CMainWindow. The method begins by creating
an instance of CMainWindow, and then initializes the win-
dow, passing it arguments of this (CEnsembleDoc) and the
value of the itsData (CEnsembleData) instances.

The CEnsembleDoc instance is the supervisor of the window,
as required by window initialization methods, and passing
the CEnsembleData instance allows the window to be able to
refer to the instance variables and methods in that subclass.
In particular, if data are entered into the window, it will be
possible to mark the window as dirty and refer to other data
structures associated with the data class instance. The code
for IMainWindow is as follows:

void CMainWindow::IMainWindow(CDirector*aSupervisor,
CEnsembleData*theData)
{

itsData = theData;
inherited::1ZMainWindow (aSupervisor);
/l any additional initialization for your window

}

Once again, this code was wholly generated by AppMaker.
The reference to the CEnsembleData instance is saved in the
window’s itsData instance variable, and then the IZMain-
Window message (inherited from the ZMainWindow class) is
sent. The code for the IZMainWindow method is as follows:

void ZMainWindow::IZMainWindow(CDirector ~ *aSupervisor)
{

CView *enclosure;

CBureaucrat *supervisor;

CSizeBox *aSizeBox;

IWindow (MainWindowID, FALSE, gDesktop, aSupervisor);

itsMainPane = NULL;

enclosure = this;

supervisor = this;

aSizeBox = new CSizeBox;

aSizeBox->ISizeBox (enclosure, supervisor);

36 Chapter 2> Examining Ensemble’s Structure

The 1ZMainWindow method (inherited from the ZMainWin-
dow class) calls the IWindow method inherited from the
TCL's CWindow class. Then the IZMainWindow method sets
the itsMainPane instance variable to NULL, indicating that no
pane currently exists.

The IZMainWindow method sets local variables called enclo-
sure and supervisor to point to this, which is the CMain-
Window instance. It then creates an instance of a CSizeBox
class and initializes that class, making the window the super-
visor and enclosure of the size box that appears at the lower
right-hand corner of the default window.

When the IZMainWindow and IMainWindow methods return
to the BuildWindows method (see page 34), that method
sends the CDecorator class instance (via the global gDecora-
tor variable) a StaggerWindow message, which staggers the
window with respect to any other windows on the screen.
This ensures that all active windows are at least partially vis-
ible. The last act of BuildWindows is to set the itsWindow in-
stance variable to the value of itsMainWindow
(CMainWindow in our case).

The BuildWindows method returns to the CEnsembleDoc
NewFile method (see page 33), which sends the window a Se-
lect message, making the window visible. This is the culmi-
nation of handling the cmdNew command that was created
within the CApplication’s Run method.

Examining the Chain of Command

A command is defined either as an item selected from one of
the application’s menus or a keyboard shortcut for that item
(e.g., typing Command-C, instead of choosing Copy from the
Edit menu). In addition, AppMaker creates “click commands”
for buttons, checkboxes and radio buttons. Commands begin
as events that are fetched from the event queue and pro-
cessed according to the following rules:

% The CApplication instance’s Run method sends the Pro-
cess1Event message, which is handled by the method of
that same name in the CApplication class.

< The ProcesslEvent method sends a ProcessEvent mes-
sage to the CSwitchboard instance.

Ensemble’s Classes and Methods 37

e
0'0

The ProcessEvent method sends a GetAnEvent message,
which is handled by a method of that name in the
CSwitchboard instance.

The GetAnEvent method in CSwitchboard calls the Mac-
intosh event manager to fetch an event. Upon returning to
the ProcessEvent method, the event is examined. If no
event or a system event was fetched, then ProcessEvent
sends a Doldle message. If an event for this application
was fetched, then ProcessEvent sends a DispatchEvent
message, which is also handled in CSwitchboard.

The DispatchEvent method discriminates between the
various types of events (mouse events, key presses, disk
events, update, activate, high-level events, etc.) and sends
a message to the appropriate handler. In the case of a
mouse-down in the menu bar, DispatchEvent sends a
DoMouseDown message.

The DoMouseDown method in CSwitchboard sends a Dis-
patchClick message to the CDesktop instance.

The DispatchClick method discriminates between the var-
ious places on the desktop in which a mouse click can
occur and sends an UpdateAllMenus message to the
CBartender instance. It also sends a MenuSelect mes-
sage, and if a menu command was selected, it sends a
DoCommand message to the instance stored in the global
gGopher variable (in our case, CEnsembleDoc).

If, instead of a mouse click, the DispatchEvent method
recognizes a key press event, it sends a DoKeyEvent mes-
sage, which is handled by the method of that name in the
CSwitchboard instance. This method determines whether
the Command key is down, and if so, it sends an
UpdateAllMenus message to the CBartender instance.
Then, if a valid Command key combination was entered,
DoKeyEvent sends a DoCommand message to the
instance stored in the global gGopher variable (which,
again, is our CEnsembleDoc instance).

Looking at the default code generated by AppMaker, you can
see that when the CMainWindow instance is created, the its-
Gopher instance variable is set to point to the CEnsemble-

38 Chapter 2> Examining Ensemble’s Structure

DoCommand
method code
(beginning)

Doc instance, as shown in Figure 2-1. This means that all
commands will first be handled by the DoCommand method
in the CEnsembleDoc instance.

If you examine the code for the DoCommand method in the
CEnsembleDoc class, you will see that it does not handle even
a single command, but, instead, calls the inherited DoCom-
mand method in the TCL’s CDocument class. The code for the
CEnsembleDoc class’s DoCommand method is as follows:

void EnsembleDoc::DoCommand(long theCommand)

switch (theCommand)

{

default:

{
inherited::DoCommand (theCommand);
break;

}
}
}

The commands handled by the DoCommand method inher-
ited from the CDocument class include cmdSave, cmd-
SaveAs, cmdRevert, cmdPageSetup, cmdPrint, and
cmdUndo. All of these commands correspond to similarly
named items in the File and Edit menus. If the chosen com-
mand is not one of these, then the DoCommand method in-
herited from the CBureaucrat class (which is an ancestor of
the CDocument class in the TCL) will send the DoCommand
message to the supervisor of the current instance (which in
this case would be CEnsembleApp).

The DoCommand method of CEnsembleApp doesn’t do
much to handle any other command, but it is worthwhile to
look at its code:

void CEnsembleApp::DoCommand (long theCommand)
{

short theMenu;

short theltem;

Str255 theltemText;

if (theCommand < 0)

Ensemble’s Classes and Methods 39

DoCommand
method code
(concluded)

DoCommand
method code
(beginning)

/* menu generated dynamically */
theMenu = HiShort (-theCommand);
if (theMenu == MENUapple)

/* handle Apple menu in superclass */
inherited::DoCommand (theCommand);

}

else
{
theltem = LoShort (-theCommand);
Getltem (GetMHandle (theMenu), theltem, theltemText);
/* do the right thing with the text of the item */
}
}

else
switch (theCommand)
default:

inherited::DoCommand (theCommand);
break;

There are several important features of AppMaker’s generated
code in the CEnsembleApp instance’s DoCommand method.
First, the code tests whether the command number is nega-
tive. This will be the case only for desk accessories or other
dynamically generated menu commands.

The handling of Apple menu items is relegated to the super-
class (ZEnsembleApp). Other menu commands created at
run time should be handled by adding code at the place indi-
cated by the comment. If the command number is positive,
then the command is automatically passed to the inherited
DoCommand method in the superclass.

The DoCommand method in the ZEnsembleApp instance
also handles a single instance: the About Application com-
mand from the Apple menu, as shown in the following code:

void ZEnsembleApp::DoCommand(long theCommand)
{

short itemNr;

40 Chapter 2> Examining Ensemble’s Structure

DoCommand
method code
(concluded)

switch (theCommand)
{
case cmdAbout:
{
itemNr = Alert (1, NULL);
break;
}
default:
{
inherited::DoCommand (theCommand);
break;

When the About Application command is chosen from the
Apple menu, the foregoing code will display an Alert. All other
commands are passed to the inherited DoCommand method.
In this case, the DoCommand method in CApplication is in-
voked. This method handles the commands cmdNew, cmd-
Open, cmdClose, cmdQuit, cmdUndo, cmdCut, cmdCopy,
cmdPaste, cmdClear, and cmdToggleClip. All of these cor-
respond to commands in the File and Edit menus.

CApplication’s DoCommand method also handles any com-
mands with negative command numbers that are passed up
the chain of command for it to handle. If no other method in
the chain of command is able to handle it, a command will be
ignored if the DoCommand method in CApplication cannot
handle it.

Examining Event Handling

To recap, events are continuously fetched by the loop inside
the Run method of the CApplication class.

The Run method sends the Process1Event message, which
sends a ProcessEvent message to the CSwitchboard in-
stance. The corresponding ProcessEvent method sends Get-
AnEvent and then DispatchEvent messages to the
CSwitchboard instance. The DispatchEvent method is the
crucial discriminator in how various types of events are sub-
sequently handled.

Ensemble’s Classes and Methods 41

In the discussion regarding the dispatch of commands (either
from menu choices or by combinations keyboard commands),
occurrence of the event was followed by sending a DoCom-
mand message to the current instance held in the gGopher
global variable.

Handling of events other than commands takes place in a dif-
ferent fashion. When the DispatchEvent message is sent, the
corresponding method determines what type of event has oc-
curred and how it should be handled. Some of the possibili-
ties are:

% In all cases, a mouse click is sent to the CDesktop
instance for resolution by its DispatchClick method.
Clicks in the menu bar are handled as described in the dis-
cussion of the chain of command. Other possibilities for
mouse clicks are:

If the mouse click occurs on an insignificant part of the
desktop, the number of clicks is counted and the
DoClick message is sent; however, neither CDesktop
nor its CView ancestor performs any function for this
message.

If the mouse click occurs in a “system window” (i.e., a
desk accessory), the toolbox SystemClick routine is
used to handle the event. If this is the case, the applica-
tion’s event handler has washed its hands of the event,
and no further processing takes place.

If the mouse click occurs in the content region of a win-
dow, then if the window is inactive, it is selected, and if
the actClick instance variable for the window is TRUE,
the window is sent an Activate message. If the
wantsClicks instance variable for the window is TRUE,
then a DispatchClick message is sent to the window;
otherwise, the click is handled in the same way as a
click in the desktop (i.e., it is essentially ignored).

If the click occurs in the drag region of the window’s title
bar, a Drag message is sent to the window. The CWin-
dow class’s Drag method sends a DragWind message to
the CDesktop class to handle dragging the window on
the desktop.

If the mouse click event occurs in the grow box of a win-
dow, then a Resize message is sent to the window. The

42

Chapter 2> Examining Ensemble’s Structure

Resize method of the CWindow class handles this event
by calling the GrowWindow toolbox call, and then
Resize sends a ChangeSize message to change the win-
dow’s physical size within the maximum and minimum
size constraints for the window. Resize also sends an
Update message to the window, to force it to redraw its
contents.

If the click occurred in the go-away box of a window,
then a Close message is sent to the window. The CWin-
dow class handles the Close message by sending the
window’s supervisor a CloseWind message. In the case
of the Ensemble application, CEnsembleDoc is the
supervisor of the window, and a CloseWind message
would be handled by the inherited method of that name
from the CDocument class.

If the click occurred in the zoom box of a window, then if
a mouse-up event also occurs in that box, the window is
sent a Zoom message. The CWindow class handles this
case by calling the ZoomWindow toolbox method, and
then ZoomWindow adjusts the size of all the subviews
by sending them an AdjustToEnclosure message.

Mouse-up events result in sending a DoMouseUp message
to the last view that was referenced by the initial mouse-
down click (held in the gLastViewHit global variable).

For key-down, key-up, or repeated key (autoKey) events,
the CSwitchboard'’s DispatchEvent method sends a DoK-
eyEvent message, which the CSwitchboard class’s
method of that name handles differently, depending on the
type of event that is involved. In most cases, the gGopher
global variable contains the destination instance to receive
the event. This allows keystrokes to be sent directly to an
active text field, minimizing the dispatch time.

If the event is a key-down event and the Command-key
is also pressed, the event is treated as a command, as
previously described.

If a key-down event was the F1 function key, it is han-
dled as an Undo command by sending a DoCommand
message with emdUndo to the current gGopher
instance.

Ensemble’s Classes and Methods 43

K2
%

m If a key-down event was the F2 function key, it is han-
dled as a Cut command by sending a DoCommand
message with ecmdCut to the current gGopher instance.

m If a key-down event was the F3 function key, it is han-
dled as a Copy command by sending a DoCommand
message with emdCopy to the current gGopher
instance.

m If a key-down event was the F4 function key, it is han-
dled as a Paste command by sending a DoCommand
message with cmdPaste to the current gGopher
instance.

m All other key-down events result in sending a DoKey-
Down message to the current gGopher instance.

m Key-up and repeated key events are sent as DoKeyUp
and DoAutoKey messages, respectively, to the current
gGopher instance.

The DispatchEvent method also handles “disk events” by
sending a DoDiskEvent message, which the CSwitch-
board method of that name ignores, unless the event mes-
sage indicates that an error has occurred (i.e., the disk
requires formatting). If this is the case, an alert is dis-
played and the user is given the opportunity to format the
disk.

If an Update event occurs, DispatchEvent sends a DoUp-
date message, which its method of that name handles by
sending an Update message to the window associated with
the Update event. Activate and Deactivate events are
handled in the same way, by sending a DoActivate or a
DoDeactivate message, which, in turn, causes an Acti-
vate or a Deactivate message to be sent to the appropriate
window.

Suspend and Resume events occur when another applica-
tion is selected while running under Multifinder or when
the current application is being resumed after a previously
active application was suspended while running under
Multifinder. DispatchEvent sends a DoSuspend or
DoResume message in this case, which, in turn, causes a
Suspend or a Resume message to be sent to the gApplica-
tion instance.

44 Chapter 2> Examining Ensemble’s Structure

% High-level events (Apple Events) are handled by sending a
DoHighLevelEvent message, which the CSwitchboard
method handles by checking whether the system is capa-
ble of handling Apple Events, and then if so, calling the
AEProcessAppleEvent toolbox routine to handle the stan-
dard Apple Events. If an application is capable of handling
other than the standard Apple Events, then it can override
the DoHighLevelEvent method and process the additional
high-level events.

% If any other event occurs, DispatchEvent sends a
DoOtherEvent message, which results in the method of
that name in the CSwitchboard class being invoked. The
DoOtherEvent method is empty, but can be overridden to
produce any other desired behavior.

Summary of Ensemble’s Structure and Capabilities

The Ensemble application is quite useless in its present
form. While most of the necessary structural members are
implemented, the application lacks a purpose or intrinsic
functionality.

This chapter has focused on the structure of the application
and how commands and events are handled, with the inten-
tion of convincing you that almost every application that you
create will embody at least the default features described in
the foregoing text.

Most applications have at least one window and at least the
standard Apple, File, and Edit menus. Commands and
events are handled identically, regardless of the structure or
complexity of an application built upon the THINK Class Li-
brary. The function of the global gGopher, gDesktop, gBar-
tender, gApplication, and other global variables does not
change as the application increases in complexity.

Subsequent chapters will discuss the procedures for trans-
forming the Ensemble application into a worthwhile pro-
gram. Each major addition to the application will be built
upon what has previously been presented. This is a standard
technique used when constructing applications.

While you may elect to define a greater percentage of the user
interface in a single session, incrementally adding the fea-

Exercises 45

tures described, combined with AppMaker’s power to main-
tain the integrity of your unique code, provides the incentive
to approach the application development process in a step-
by-step, methodical way.

Exercises

1. Explain how AppMaker’s code-generation approach for
THINK C will allow subsequent changes to be made to the
user interface without requiring the programmer to cut
and paste code from one generation to the next.

2. Describe the situations in which AppMaker’s code genera-
tion approach will inhibit rather than help during the
development of a large program. (Hint: Suppose you
decide to redesign the user interface completely. What
effect would this have on the generated code?)

3. When the user clicks the mouse button in various areas
of the screen, what TCL method receives these events,
and where are they dispatched?

4. What happens when the user enters keystrokes when the
application is active? Why is there no visible result of
these keystrokes in our default Ensemble application?

5. What is the purpose of the TRY and CATCH blocks in the
generated code? Explain what service these perform.
(Hint: Look in the Object-Oriented Programming Manual
for THINK C.)

6. Explain the purpose of the gGopher variable, what it con-
tains, and how it serves the object-oriented application.
In particular, how is the gGopher variable related to the
handling of events?

7. Assuming that Figure 2-1 illustrates the universe of
objects at the time the illustration was drawn, how many
actual object instances exist? Explain.

8. Describe the meaning of the terms “encapsulation,”
“inheritance,” and “polymorphism” with respect to object-
oriented programs.

Chapter 3

Creating the Ensemble Application

This chapter begins the task of improving and customizing
the operation of the Ensemble application. Up to this point,
we have used AppMaker to generate a default user interface,
with standard menus and a single window, but no specific
functionality. In this and the succeeding chapters, we will
mold the user interface and the code into a useful application.

It is the intent of this book to document the creation of a sin-
gle, but nontrivial application, discussing many of the fea-
tures of the TCL and how they are applied to realize a variety
of functions inside the application. The application is named
Ensemble because it embodies a set of cooperative functions
inside a cohesive framework. It is an ensemble of functional-

ity.

In order to explore most of the TCL's intrinsic capabilities, the
Ensemble application will incorporate the features of text ed-
iting, spreadsheet, and graphing functions. Together, these
will operate as a cooperative ensemble. The main intention is
to explore the facilities of the TCL that support text editing,
rectangular cellular tables, and drawing functions. With
some experience in all these disciplines, it should be quite
easy to apply these techniques to other, similar applications.

Adding Text-editing Features to Ensemble

The first, and easiest feature to add to the Ensemble applica-
tion is a text-editing window. The intention of the design is
not to provide an editor that is of desktop-publishing quality,
but to create a window that contains text in a single font,
size, style, and justification, with limited cut-and-paste edit-
ing abilities. The design is similar to a notebook in which you
would write short sections of text. The design will allow you to

47

48 Chapter 3> Creating the Ensemble Application

have multiple open text windows, and each of these can have
its own text font, size, style, and justification.

The primary purpose of adding features to the Ensemble ap-
plication in a piecemeal fashion is to illustrate how easy it is
to add capabilities incrementally to an existing object pro-
gram. We'll be using AppMaker to create the new user inter-
face elements, and then we will add the necessary code to
bring the interface to life. Once the coding is complete, we’ll
compile and run the application.

Using AppMaker to Enhance the MainWindow

Figure 3-1
Selecting Windows
in AppMaker

Recall that the resource file for the Ensemble application is
named Ensemble.r.rsrc. If you double-click on this file, you
will launch AppMaker, telling it to use the file. In the follow-
ing tutorials, we will be adding functionality to the previously
created resource file, and then we will also generate code to
operate the new resources. The steps to enhance the Ensem-
ble application’s resource file are as follows:

1. Launch AppMaker by double-clicking on the Ensem-
ble.r.rsre file.

2. You will see a screen that looks like that shown in Figure
1-5 on page 6. Only the selection window is displayed,
and it contains the currently defined menu bars. In our
case, only the MainMenu bar exists at this time.

3. Click the mouse cursor on the Select menu and choose
Windows, as shown in Figure 3-1.

Hamw H

vMenus #1

Windows %2,

Dialogs %3 |
Alerts %4

Adding Text-editing Features to Ensemble 49

Figure 3-2
Picking the
MainWindow entry

Figure 3-3
Ensemble’s default
MainWindow
definition

4. Note that the current selection window now displays the
Clipboard and default MainWindow entries. Double-click
on the MainWindow entry, as shown in Figure 3-2.

=[1= Ensemble.n.rsrc =HIE

2 Windows:

Clipboard, 1D = 200 ¢

el

5. When the MainWindow entry is selected, the default win-
dow that we created in Chapter 1 will be displayed. This
window has the appearance shown in Figure 3-3. Notice

=

f==—— (untitled) =——7"o—=L

=

that there are no scroll bars or other indications that the
window contains an editing pane. In fact, it does not. The
purpose of the next few steps is to instruct you how to
construct a text-editing pane inside this MainWindow
definition. You start the process by clicking the Scroll-
Pane tool, as shown in Figure 3-4.

50 Chapter 3> Creating the Ensemble Application

Figure 3-4
Selecting the
ScrollPane tool from
the Tools menu

0K

®

ScrollPane
* Tool

6. When you select the ScrollPane tool, the cursor changes

into a cross, and you should position the cross at the top
left corner of the blank portion of the window pane,
depress the mouse button, and drag the cursor down to
the lower right corner of the window pane (right to its bot-
tom right edge). When you release the mouse button, you
will see that a scroll pane has been constructed. App-
Maker constructs scroll panes with only a vertical scroll
bar, by default. The horizontal scroll bar can easily be
added. A scroll pane is a pane with a scroll bar that
allows an enclosed pane (called a panorama) to be
scrolled—either horizontally, vertically, or in both direc-
tions. In our case, the panorama is the EditText pane,
whose construction is described in the next step. The
complete construction of the text-editing pane is shown in
Figure 3-5, and you may wish to refer to this figure for the
succeeding steps.

7. The next step is to add the EditText pane. Select the

EditText tool, as shown in Figure 3-6. The cursor will
again turn into a cross, and you should move it to the top
left corner of the scroll pane, click and hold the mouse
button down, and drag the mouse down to the lower right
corner of the blank portion of the scroll pane. The Edit-
Text pane will show lines that correspond to the line

Adding Text-editing Features to Ensemble 51

Figure 3-5 (DYV"i——— (utitled) ===k
Adding a ScrollPane «——— Window
to the MainWindow
&
CScroll Pane
g CEditText Pane

Selecting
AppMaker’s EditText k
tool

| ««—— EditText Tool

&
Blml=] = i

spacing of text in the default font, size, and style. You
don’t have to bother changing this at the present time:
We're going to provide the user with a method of changing

52 Chapter 3> Creating the Ensemble Application

the text font, size, and style that will change the appear-
ance of the entire text in a single operation. The complete
text-editing window appears as shown in Figure 3-7.

Figure 3-7 S————o—= (untitled) ="iaaus—"o=g|

Complete text-
editing window

e

This completes the creation of the text-editing window. How-
ever, in order to provide the user with the ability to change
the text font, size, and style, we are going to create a new
menu, a menu command, and a corresponding dialog box for
changing the text window’s appearance.

Adding a New Menu to Ensemble

The next few steps describe the step-by-step approach for
adding a new menu to the Ensemble application’s menu bar.
This menu will contain only a single command at this time;
however, new commands will be added as the application’s
feature set grows.

1. The first step in creating a new menu requires that you
click on AppMaker’s Select menu, pull it down, and
select the Menus choice, as shown in Figure 3-8.

2. AppMaker’s selection window will show the MainMenu
choice. Pick that choice by double-clicking on it in the
window, as shown in Figure 3-9.

3. The default menu bar will appear on your screen. At this
point, go to the Edit menu and choose the Create Menu
command, as shown in Figure 3-10. This will create a
new blank menu to the right of the Edit menu in the

Adding Text-editing Features to Ensemble 53

Figure 3-8 Select FHETHEEE
Choosing Menus
from AppMaker's
Select menu

v Wlindows
Dialogs %3
Alerts #4

Figure 3-9 E = T, == E
e ECI= Ensemble.n.rsrc =FE
MainMenu bar in 1 1 Menu bar:

AppMaker's

selection window MﬂinME"U “]

Figure 3-10 : i .
Select Create Menu m Select UIEL"{ - d
from AppMaker's fan't Undg K4
Edit menu
{2 4
fopy EL
Paste Menu %D
{ipnr
Baiacl 8 wi
Teul $tula.. ®Y
Edit Balloons... 3E

Create Menu

54 Chapter 3> Creating the Ensemble Application

Ensemble application’s MainMenu menu bar, as shown
in Figure 3-11.

S[J=—= MainMenu —=LF
&€ File Edit | - Blank Menu

Figure 3-11
New blank menu

4. The next step is to click inside the rectangle at the top of
the new blank menu, type the name Format and then
enter a carriage return. AppMaker will create a rectangle
for the first menu command in the Format menu. You'll
notice that it has three compartments, containing, from
left to right, the command name, the command key, and
the command number. Enter the name Notebook... (note
that the ellipsis ‘...’ is formed either by typing three con-
secutive periods or by using the Option-; key combina-
tion), tab twice to skip the command key field, and type
2000 for the command number. The entire menu entry is
shown in Figure 3-12. Type the Enter key to indicate that

Figure 3-12
New Format menu,

commana " | Notebook... L #2000

the menu is complete, and then click on the close box of
the menu bar to dismiss the window.

Adding a New Menu Bar and Font Menu to Ensemble

The next series of steps creates a new menu bar for the En-
semble application. The purpose of this menu bar is simply to
contain a Font menu that we will be using when adding new

Adding Text-editing Features to Ensemble 55

code to insert the user’s installed fonts into the Format Note-
book dialog box that will be described shortly.

1. Make sure that the MainMenu window is closed, but that
Menus are still checked in the Select menu.

2. Pull down the Edit menu and select Create Menu Bar, as
shown in Figure 3-13.

‘ Select Biow fopis
Figure 3-13 m e
Create a new menu fan't Undg e

bar to hold the Font
menu {ut i
fopy AN
Pasie =i
{ipar

Salecl B B

Tenl $tyle. zY
Edit Balloons... %E

3. After you release the mouse button, AppMaker will dis-
play a dialog in which you can name your new menu bar,
as shown in Figure 3-14. The suggested new name is
SubMenus. This is fine, so click OK in the dialog box.
AppMaker will display a new blank menu bar, and the
name SubMenus will be in the selection list.

Figure 3-14

New SubMenus . [:
menu bar || Name: E 0K lI]

4. Select Create Menu from the Edit menu at this time, as
shown in Figure 3-15.

56 Chapter 3> Creating the Ensemble Application

Figure 3-15
Create new menu to
hold FONT
information

Figure 3-16
New Font menu and
two initial entries

Select UView ¥
fan't indg 2L

ful Y
Lopy #CE
Paste Kl
{ipar :

Saiect Rl s f

Toul §igia.. KA
Edit Balloons... $E [

5. Finally, type in the name Font at the top of the new
menu, and enter the names System and Application into
the menu, as shown in Figure 3-16. This will provide the
first two entries for the new menu. AppMaker will auto-
matically generate code to load the user’'s FONT names
into this menu, as you will see in the next chapter.

5ystem
Application

This concludes the operations necessary to create the Font
menu in a new menu bar. This menu will never be displayed;
however, the two initial entries and the user’s font names
that are added by AppMaker's generated code will be used to
create a scrolling list of font names in the Format Notebook
dialog box.

Adding a Dialog Box to Ensemble

The next series of steps involves the creation of a dialog box
that will automatically open when the Format Notebook

Adding Text-editing Features to Ensemble 57

command is chosen. When additional dialog boxes are added,
we will follow this same procedure.

1. The first step is to choose Dialogs from AppMaker's
Select menu, as shown in Figure 3-17.

ChooswgDiogs | Biew N

from AppMaker’s

Select menu |¥Menus %1
Windows 32
Dialogs
Alerts 34

2. You will notice that AppMaker's dialog selection list is
empty at this point. This is because no dialogs have yet
been defined. To create a new dialog, pull down the Edit
menu and choose Create Dialog, as shown in Figure 3-18.
e 3-18 Select iHam §

lChigO“’osmg Create | fan't Undo w2

Dialog from Lt w3

AppMaker’s Edit . g

menu Lopy ®e

Paste Many X H
{ipar

Sajuct 8 B

Toul $tygle... =y
Edit Balloons... $E

3. AppMaker will display a screen that shows the various
choices for types of dialog windows. Type in the informa-
tion and select the standard plain dialog window, as
shown in Figure 3-19.

58 Chapter 3> Creating the Ensemble Application

Figure 3-19
AppMaker’s dialog
information box

Figure 3-20
AppMaker’s dialog
selection list

Name: [T TSN '0:2000 | [0k
Title: |Format Document

=g (O T N TWE—
LT 1]
=
2oomDoc _ NoGrowDoc ZoomNoGrow Document RDoc
Movable DBox | PlainDBox AltDBox Other

O #as Clase bos ProclD: D

[visible at Startup

4. You should type the name Notebook for the name of the
dialog and anything you want for the title, which is not
displayed for a plain dialog window. The name Notebook
is used by AppMaker to match against corresponding
Menu commands, and because this name matches the
command with that name in the Format menu (see Fig-
ure 3-12), AppMaker will generate code to open our Note-
book dialog automatically when that menu command is
chosen. When you have completed this step, click the OK
button, and you'll see the Notebook entry appear in App-
Maker’s Dialog Selection List, as shown in Figure 3-20.

== Ensemble.n.rsrc =05

| Notebook, 1D = 2000

1 Dialog:

[

|

5. Double-click on the Notebook entry in the selection list
and you will see the empty Notebook dialog that is shown
in Figure 3-21. In the next few steps, you will be filling in
the contents of this dialog.

Adding Text-editing Features to Ensemble 59

Figure 3-21
Empty Notebook
dialog box

Figure 3-22
Notebook dialog with
components
annotated

((cancet] [ok]

6. In order to help you visualize what you need to do to
duplicate its appearance, the Notebook dialog is shown
in its completed state in Figure 3-22.

RadioGroup Pane
Static Text ltems RadioButton Item7
Style dJusfification
] Bold @Nert l
O 1tatic enter
J Underti
] o:u?;eme Right ;
O shadow Q Faorce Left |
Scrolling Lists

CDialogText ltems

7. Note that the dialog is created with default OK and Can-
cel buttons. The first step is to resize the dialog box to
make it wide enough to contain all the items shown in the
figure. You will also need to move the OK and Cancel but-
tons by clicking on them with the arrow tool and dragging
them to appropriate positions in the dialog.

8. Creation of the scrolling lists consists of combining sev-
eral interface components. This is best illustrated by the
diagram in Figure 3-23.

60 Chapter 3> Creating the Ensemble Application

Figure 3-23
Construction of
scroll pane

9.

10.

11.

~—g&——CTable
l«—— CBorder
]
CScrollPane
~~~~~~~~~~~~~~~ Y4

Notice that the scrolling list is created from three basic
components: a CScrollPane, a CBorder, and a CTable
component. If you choose Show Tools as Text from App-
Maker’'s View menu, you will be able to choose these
components by name. Start by choosing the CScrollPane
tool, position the cursor (cross) at the top left edge of
where you want to locate the pane, press the mouse but-
ton, and drag down and to the right to create the pane.
When you release the mouse button, a pane with a verti-
cal scroll bar will be shown.

The next step is to create the border that encloses the
blank portion of the scroll pane. This is accomplished by
choosing the CBorder tool, positioning the cursor (cross)
at the upper-left corner of the ScrollPane, pressing the
mouse button, and dragging down and to the right just
until the border pane covers the blank portion of the
scroll pane.

The final step is to create a CTable object that fits within
the border. Select the CTable tool, click the cursor (cross)
at the top left of the border pane, press the mouse button,
and drag down and to the right so that the CTable pane
fits within the border previously drawn. When you release
the mouse button, you will see that AppMaker has writ-
ten four entries into the pane, to show you the appear-
ance of the completed table. These entries read: one, two,
three, infinity.



Adding Text-editing Features to Ensemble 61

Figure 3-24
Construction of
radio group

12,

13.

14.

Create another scrolling list by following steps 9-11. This
will be the Font Size scrolling list. Create the CScroll-
Pane, CBorder, and CTable components, as shown.

The next step is to create the checkboxes that will be used
to set the text style. Because text styles are additive, mul-
tiple boxes can be checked simultaneously. The checkbox
is the perfect interface element for this application. A
checkbox is a user interface element that changes state
from on to off each time it is clicked. The on status is
shown as an X inside the box, whereas in the off state,
the interior of the box is empty. To create a checkbox,
select the CCheckbox tool and click the mouse button at
the left edge of where you want the checkbox and its label
to be positioned. After you release the mouse button, you
will be able to type in the label for the checkbox. Although
AppMaker allows you to specify the style of each of the
text items you define, leave all the text in its default style.

The next interface item consists of two components: a
CRadioGroupPane and multiple CRadioControl ele-
ments. A radio group pane groups a set of radio button
elements, the distinguishing feature of which is that only
one button in the group can be active. The active state is
shown as a black dot inside the button, whereas when a
radio button is off, the interior of the button is empty.
The construction of this item is shown in Figure 3-24.
You have to create the CRadioGroupPane first, by select-
ing that tool. Then, position the cursor at the top left cor-
ner of the pane, press the mouse button, and drag down
and to the right to the bottom right corner that marks the
extent of the group. The CRadioControl elements are
placed inside the CRadioGroup pane.

@ Left - g:::ioGroup
(O Center

O Right

(O Force Left




62

Chapter 3 » Creating the Ensemble Application

15. Create the CRadioControl elements by selecting that tool
and then clicking the mouse button at the position where
you wish the left edge of the button to be located. When
you release the mouse button, you will be able to type in
the text associated with the button. If you need to resize
the CRadioGroupPane to accommodate the number of
buttons, that is easily accomplished by selecting the
Arrow tool, clicking on the pane’s border, and then using
the pane’s size box to change the size of the pane.

16. Next, create the CDialogText elements by choosing that
tool and creating a single-line element below each of the
scrolling lists, and a third element below the RadioGroup-
Pane. These will be used to show the chosen font, the
chosen size, and a sample of the actual text, respectively.

17. The final step in creating the dialog box is to enter the
Static Text items that identify the Font, Size, Style, and
Justification elements in the dialog box.

18. This completes the modifications to the Ensemble.r.rsrc
file at this time. Save the file and choose the Generate
option from the File menu. You will see that all of the files
whose names begin with the letter ‘2’ will be regenerated,
and four new files will have been added to the list: Note-
book.c, Notebook.h, zNotebook.c, and zNotebook.h.
These four files comprise the code that implements the
Notebook dialog box that you have just created.

During the course of creating the Notebook dialog box inter-
face elements, you may have to resize the dialog box or one or
more of the elements. Feel free to do so, until everything
looks correctly proportioned to your eye. You will be able to
change any item at any time in the future, so don’t worry
about getting everything right the first time. You can also de-
lete an element and recreate it at any time. This is one of the
powerful features of AppMaker; it allows you to modify the in-
terface appearance at any time. If you make changes by add-
ing or deleting elements, make sure that you choose
Generate from the File menu before you quit. Always save
the results of modifying the Ensemble.rn.rsrc file when an
AppMaker session is complete.



Compiling the Generated Code 63

Each time you generate files in AppMaker, you will discover
that all of the files whose names begin with the letter ‘2z’ are
regenerated. In addition, AppMaker will regenerate the Re-
sourceDefs.h file, because this file contains definitions of the
resource numbers for important user interface elements.

You'll notice that AppMaker never regenerates the files whose
names do not begin with the letter z. In this particular case,
we have defined a new dialog box, and therefore, two brand
new files are generated. The subclass files called Notebook.c
and Notebook.h will be generated this time, in addition to
their superclass files zNotebook.c and zNotebook.h.

You can force AppMaker to regenerate a subclass file by de-
leting the file from the project folder. When AppMaker notices
that it is missing, it will elect to regenerate the file.

Compiling the Generated Code

After the changes have been made to the Ensemble.n.rsrc
file, and new source code files have been generated, you can
launch THINK C to add these new source files to the project.
To do this, double-click on the Ensemble.r project file and
choose the Add command from THINK C’s Source menu.
Navigate to the project’s folder if necessary, and add the
Notebook.c and zNotebook.c files. (These should be the only
entirely new files.) Now you can compile the new code. The
best way to do this is to select Make from the Source menu.
Click the Use Disk button, wait for THINK C to determine
which files need to be recompiled, and then click on the Make
button.

When the source files have been recompiled, select Run from
the Project menu. This will display the debugger’s windows,
with the execution cursor positioned at the first instruction
in the main function. Click the Go button in the debugger
control window. The MainWindow will be displayed. If you
click the mouse inside the window, you will be able to type
text in a default font. You can also zoom and resize the win-
dow. If you type more text than will fit inside the window, the
vertical scroll bar will become active and you will be able to
scroll through the text. The standard Macintosh Cut and
Paste commands will also be active for this window. Try cut-
ting or copying some text to the clipboard and then pasting it



64 Chapter 3> Creating the Ensemble Application

back into the window. The text-editing features, with the ex-
ception of font, size, and style selection, are now complete.

You will also see that a Format menu has been added to the
menu bar, and pulling down that menu will display the Note-
book command. Choose this command now. The Notebook
dialog box should be displayed on the screen, just as it was
defined in AppMaker. Note that the scrolling lists include en-
tries with the words one, two, three, and infinity. This is the
result of code that AppMaker has automatically generated
and that we will modify for our own purposes in Chapter 5. If
you click on one of the scrolling list entries, it should become
highlighted. Clicking below all the entries should remove any

existing highlight.

If you click in the checkbox elements, the check marks will
appear and disappear with multiple clicks. The radio button
elements will work as a group, allowing only one member of
the group to be selected at a time.

It should be apparent that quite a bit of the code to operate
the application has already been automatically generated.
This is the real value of the AppMaker and THINK C combina-
tion. Between AppMaker’s generated code and the features of
the THINK Class Library, most of the hard work has already
been accomplished.

The next chapter describes portions of the newly generated
code, accenting the code that implements the new text-edit-
ing features added to the Ensemble application.

Exercises

1. Describe the purpose of the scroll pane, border, and text-
editing user interface elements. Indicate how these inter-
act during the course of the application’s execution.

2. Use AppMaker’s Text Style dialog to change the style of
the text associated with each of the checkboxes in the
Notebook dialog. The box titled Bold should be displayed
in a boldface style; the one titled Italic should be dis-
played in an italic style, and so forth.



Exercises 65

3. Explain the difference in functionality between the check-
box and radio button interface elements. When'is the use
of one preferred over the other?

4. Why are the radio buttons placed inside a radio group ele-
ment in the Notebook dialog? What would be the effect if
the radio group were not present. How would the radio
buttons react to mouse clicks?

5. Consider the consequences of allowing the user to enter a
font name or font size into the corresponding dialog text
fields. What should be done, if anything, to protect
against the entry of a non-existent font name or font size?
Explain.

6. The text-editing pane could have been created as a
CStyleText eclement instead of a CEditText element.
Describe the difference in functionality between these two
element types. (Hint: Refer to the description of the CEdit-
Text class in the THINK C Object-Oriented Programming
Manual, and the source code for the CStyleText class in
the Text Classes folder within the THINK Class Library 1.1
folder in the THINK C version 5.0 product.)

7. Design and implement the text-editing pane as a CStyle-
Text element. Make provisions for the pane to include
text in multiple fonts, sizes, and styles.!

1. Creating and supporting the text-editing feature as a CStyleText element is a rather large
undertaking. Covering this topic as part of an advanced course in object-oriented software
development is highly recommended.



Chapter 4

Examining the EditText Code

Let’s take a moment to summarize the accomplishments de-
scribed in the previous chapter. The Ensemble application’s
default resource file was initially created by AppMaker, as de-
scribed in Chapter 2. Beginning with that file, according to
the descriptions in Chapter 3, the following functions have
been added:

% ScrollPane and EditText panes to the MainWindow win-
dow generated by AppMaker.

< A new Format menu, with a command named Notebook.

+ A new SubMenus menu bar with a Font menu containing
two initial entries; System and Application, referring to
the System and Application fonts, respectively.

“ A Notebook dialog box with static text, scroll pane, text
editing, checkbox, radio group, and radio button elements.

% Generated code for the newly added features. This code
consists of new versions of the zEnsembleApp, zEnsem-
bleDoc, and zMainWindow files, and the new zNotebook
and Notebook files. The ResourceDefs.h file has also been
regenerated.

All of the new interface elements are implemented in code
within the files mentioned. As previously indicated, a file
whose name begins with a character other than ‘z’ is never
regenerated. The Notebook.c and Notebook.h files were gen-
erated this time, because they are completely new files. On
subsequent invocations of AppMaker, these files will not be
automatically regenerated.

67



68 Chapter 4> Examining the EditText Code

The EditText Code Structure

Figure 4-1
Ensemble
application’s
enhanced structure

TCL Class
Generated Superclass
Generated Subclass

Inherited Method Flow
Create New Instance
Chain-of-Command Flow

The best way to see how the new code differs from AppMak-
er's default-generated code is to compare the diagram in Fig-
ure 4-1 with the diagram for the default code shown in Figure
2-1 on page 24.

main CApplication
function

EnsembleMain

Create —
Instance .

CWindow

inherited
methods

inherited
methods

inherited

methods
gApplication | CEnsembleApp /
e

Create
Instance

CDataFile

inherited
methods

o
o

.

,.

. coocument IEERERES LD i SO
: .
Chainof ¢
Command 3
H

inherited
methods

Create

CAMDiafogDirector JRY
Instance E

inherited
methods

H / inherited

H
:
o :

g

methods : i K

CEnsembleDoc N inherited Chain of o
‘ methods o
5

Chain of
Command

",
.
.,
o,
.,
.....
.......
.....

Notice that the new CNotebook and ZNotebook classes are
now attached to the ZEnsembleDoc class. This is by virtue of
the new code generated into the ZEnsembleDoc’s DoCom-
mand method. In addition, because the MainWindow has a
pane that will accept events, the gGopher and the chain of
command extend to the CMainWindow instance, as shown in
the diagram. The CNotebook instance is created by the
DoNotebook function that is embedded in the generated code
for the CNotebook module. When the Notebook dialog is
open, the gGopher variable will point to the CNotebook in-
stance. In this case, the DoCommand method of the Note-
book dialog will be the first to receive any commands sent to
the gGopher.

What might not be apparent from looking at Figure 4-1 is
that quite a bit of new code has been added to several of the
‘z’ file classes. In order to put the newly generated code into



The EditText Code Structure 69

Table 4-1

Generated code for
the new EditText pane
and new Format
menu

perspective, Table 4-1 has been prepared to show the classes
in which new code has been generated, the specific methods
that have been enhanced, and the nature of the enhance-
ments. Later sections will discuss the details of the generated
code.

Class Method Description

ZEnsembleApp SetUpMenus Includes code to create the FONT
menu and add all the font names

ZEnsembleDoc  DoCommand Adds code to handle the Format
Notebook command

ZMainWindow [ZMainWindow  Additional code to create and
install the CScrollPane and
CEditText panes

ZNotebook 1ZNotebook Code to create all the elements of
the Format Notebook dialog

CNotebook DoNotebook Not really a method of this class,
but a global function that oper-
ates the Notebook dialog

The sections that follow in this chapter describe the new
code. Chapter 5 shows the details of the custom code, added
to these classes, that fully implements the text-formatting
features of the Ensemble application.

Newly Generated Code in ZEnsembleApp

In the new version of the generated code, the ZEnsembleApp
module has been updated to include additional functionality.
In general, only one of the original methods has been updated
with new code. The remaining methods in the ZEnsemble-
App module are unchanged.

SetUpMenus Method Code

The ZEnsembleApp module’s SetUpMenus method has been
enhanced to include code to create the Font submenu, and
also automatically add the names of all the FONT resources
by generating the AddResMenu code. The newly generated
code is as follows:



70 Chapter 4> Examining the EditText Code

void ZEnsembleApp::SetUpMenus(void)
{

MenuHandl macMenu;

inherited::SetUpMenus ();

macMenu = GetMenu (5); // Font menu
FailNILRes (macMenu);

AddResMenu (macMenu, 'FONT');

The default version of this method contained only the call to the
inherited SetUpMenus method, which is responsible for setting
up the standard MainMenu menu bar and its menus. The new
version adds the code to read in the menu (5) resource.

The names of the user’s list of installed fonts are added to the
new menu using the Mac Toolbox’s AddResMenu function,
which adds the names of all the open font resources to the
menu, in alphabetical order. This is the approved method for
obtaining a list of the installed fonts.

The new menu won't be used as such, but its list of fonts will
be invaluable when the Format Notebook dialog box is cre-
ated.

Newly Generated Code in ZEnsembleDoc

DoCommand
method code
(beginning)

The next significant change to the generated code, as shown
in Table 4-1, is the additional code in the ZEnsembleDoc
class’'s DoCommand method. The new code for DoCommand
is as follows:

void ZEnsembleDoc::DoCommand (long theCommand)

{

switch (theCommand)

{

case cmdNotebook:

{
DoNotebook(this);
break;

}
default:

inherited::DoCommand (theCommand);



The EditText Code Structure 71

DoCommand
method code
(concluded)

break;

}
}

Note that the DoCommand method handles only the Note-
book command from the Format menu. The generated code
calls a global function DoNotebook, which is contained in
the Notebook.c file. The single parameter passed to the
DoNotebook function is a handle to the current object (CEn-
sembleDoc). If any other command is chosen, the DoCom-
mand method calls its inherited method in the TCL’s
CDocument class.

Newly Generated Code in ZMainWindow

IZMainWindow
method code
(beginning)

The next new addition to the generated code can be found in
the IZMainWindow method in the ZMainWindow.c file. It’s
easy to see how the new code, shown on page 71, differs from
the code in the default version, shown on page 35. Specifi-
cally, new code has been generated to install and initialize the
CScrollPane and CAMEditText elements in the window.

AppMaker can take care of creating these elements, because
it has all the information it needs to do so. The resources that
define the CScrollPane and CAMEditText elements are
found in the Ensemble.n.rsre file, from which AppMaker can
generate the appropriate code.

AppMaker’s general approach to adding new user interface
elements is to generate a TCL-compatible resource containing
the parameters associated with the element, and then use the
IViewRes method inherited from the CView class in the TCL
to initialize the newly created element. Since most elements
have a few parameters that aren’t visible in the current ver-
sion of AppMaker, it is possible to “tune” the element’s ap-
pearance or behavior by using ResEdit or other resource-
editing applications. The code for the new IZMainWindow
method is as follows:

void ZMainWindow::IZMainWindow (CDirector *aSupervisor)

{

CView *enclosure;
CBureaucrat *supervisor;



72 Chapter 4> Examining the EditText Code

IZMainWindow
method code
(concluded)

CSizeBox *aSizeBox;
IWindow (MainWindowID, FALSE, gDesktop, aSupervisor);
itsMainPane = NULL;

enclosure = this;
supervisor = this;

ScrollPane1 = new CScrollPane;
ScrollPane1->IViewRes (‘ScPn’, 131, enclosure, supervisor);

Field3 = new CAMEditText;
Field3->IViewRes ('AETX', 133, ScrollPane1, supervisor);

ScrollPane1->InstallPanorama (Field3);

aSizeBox = new CSizeBox;
aSizeBox->ISizeBox (enclosure, supervisor);

Note that in the first (default) version of this method (shown
on page 35), AppMaker only generated code to call the inher-
ited IWindow method and create the CSizeBox instance.

In the new version of the IZMainWindow method, AppMaker
has generated code to create the CScrollPane (ScrollPanel)
and CAMEditText elements and install the CAMEditText
(Field3) element as the panorama for the CScrollPane. This
code is all that is needed to allow you to type into the Main-
Window pane, using the default system font.

Newly Generated Code in ZNotebook

The ZNotebook module (and its companion CNotebook mod-
ule) implements the content and user interface functions of
the Format Notebook dialog. The ZNotebook superclass
contains four methods, each of which will be fully described
in this section.

IZNotebook Method Code

The IZNotebook method is responsible for creating each of
the user interface elements in the Format Notebook dialog
and for initializing those elements. Each element is installed
into the window by creating an instance of its associated
class and then calling the appropriate IViewRes method to



The EditText Code Structure 73

Beginning of
IZNotebook method
to create and
initialize the user
interface elements
in the Format
Notebook dialog

set up its appearance and behavior. The code, which is quite
long, is as follows:

void ZNotebook::[ZNotebook (CDirectorOwner *aSupervisor)

{
CView *enclosure;
CBureaucrat *supervisor;

inherited::IAMDialogDirector (NotebooklID, aSupervisor);

enclosure = itsWindow;
supervisor = itsWindow;

OKButton = new CAMButton;
OKButton->IViewRes ('CtIP', 128, enclosure, supervisor);

CancelButton = new CAMButton;
CancelButton->IViewRes ('CtIP', 129, enclosure, supervisor);

FontLabel = new CAMStaticText;
FontLabel->IViewRes ('AETX', 129, enclosure, supervisor);

SizeLabel = new CAMStaticText;
SizeLabel->IViewRes ('AETx', 130, enclosure, supervisor);
StyleLabel = new CAMStaticText;
StyleLabel->IViewRes ('AETX', 131, enclosure, supervisor);

BoldCheck = new CAMCheckBox;
BoldCheck->1ViewRes ('CtIP', 132, enclosure, supervisor);

ItalicCheck = new CAMCheckBox;
ltalicCheck->IViewRes ('CtIP', 133, enclosure, supervisor);

UnderlineCheck = new CAMCheckBox;
UnderlineCheck->IViewRes ('CtlP', 134, enclosure, supervisor);

OutlineCheck = new CAMCheckBox;
OutlineCheck->IViewRes ('CtIP', 135, enclosure, supervisor);

ShadowCheck = new CAMCheckBox;
ShadowCheck->IViewRes ('CtlP', 136, enclosure, supervisor);

CondenseCheck = new CAMCheckBox;
CondenseCheck->IViewRes ('CtIP', 137, enclosure, supervisor);

ExtendCheck = new CAMCheckBox;
ExtendCheck->IViewRes ('CtIP', 138, enclosure, supervisor);
JustificationLabel = new CAMStaticText;



74 Chapter 4> Examining the EditText Code

JustificationLabel->IViewRes ('AETX', 132, enclosure, supervisor);
IZNotebook method

(condluded) Field14 = new CAMDialogText:

Field14->1ViewRes (‘'ADTX', 128, enclosure, supervisor);

Field15 = new CAMDialogText;
Field15->1ViewRes (‘'ADTX', 129, enclosure, supervisor);

Field16 = new CAMDialogText;
Field16->1ViewRes (‘ADTX', 130, enclosure, supervisor);

Group17 = new CRadioGroupPane;

Group17->IViewRes ('Pane’, 128, enclosure, supervisor);
CenterRadio = new CAMRadioControl;
CenterRadio->IViewRes ('CtIP', 140, Group17, Group17);
RightRadio = new CAMRadioControl;
RightRadio->IViewRes ('CtIP', 141, Group17, Group17);
ForceLeftRadio = new CAMRadioControl;
ForceLeftRadio->IViewRes ('CtIP', 143, Group17, Group17);
LeftRadio = new CAMRadioControl;

LeftRadio->IViewRes ('CtIP', 139, Group17, Group17);

ScrollPane22 = new CScrollPane;
ScrollPane22->|ViewRes ('ScPn', 132, enclosure, supervisor);

Rect24 = new CAMBorder;
Rect24->1ViewRes ('Bord', 130, ScrollPane22, supervisor);

List25 = NewList25 ();
List25->|ViewRes (‘ATbl', 134, Rect24, supervisor);

ScrollPane22->InstallPanorama (List25);

ScrollPane26 = new CScrollPane;
ScrollPane26->IViewRes ('ScPn', 133, enclosure, supervisor);

Rect28 = new CAMBorder;
Rect28->IViewRes (‘Bord', 131, ScrollPane26, supervisor);

List29 = NewList29 ();
List29->1ViewRes ('ATbl', 135, Rect28, supervisor);

ScrollPane26->InstallPanorama (List29);




The EditText Code Structure 75

As you can see, there is a great deal of generated code to im-
plement the appearance of the Format Notebook dialog. The
code performs the following actions:

1. The OKButton is the first to be created. AppMaker will
automatically create standard OK and Cancel buttons in
every new dialog. The OK button is the element that will
be given the bold outline when the dialog is first shown.

2. The CancelButton is the next to be defined and initial-
ized. This button does not have a bold outline.

3. The next three elements are CAMStaticText elements
called FontLabel, SizeLabel, and StyleLabel. They
appear in this order only because they were defined in
that order.

4. The next series of elements conprises instances of CAM-
Checkbox, which implements a standard Macintosh
checkbox function. The TCL takes care of automatically
drawing the ‘X’ in the box when it’s selected and clearing
the ‘X’ when it’s deselected. The CAMCheckbox elements
are named according to their labels: BoldCheck, Italic-
Check, UnderlineCheck, OutlineCheck, ShadowCheck,
CondenseCheck, and ExtendCheck.

5. The JustificationLabel CAMStaticText element is the
next element to be defined. When the dialog box was cre-
ated, that label was added after the width of the checkbox
elements had been determined.

6. The next three elements are the CAMDialogText items,
corresponding to the blank boxes in the dialog. The vari-
ous elements of the dialog are shown in Figure 3-22, on
page 59, where they are referred to as EditText items.
They are named Field14, Field15, and Field16 and will
eventually hold the selected font name, selected font size,
and a sample of the font in the selected size, style, and
justification, respectively.

7. The next element, called Groupl7, is a CRadioGroup-
Pane instance, which holds and manages the text justifi-
cation radio buttons.



76 Chapter 4> Examining the EditText Code

8. The individual text justification CAMRadioControl
instances are named CenterRadio, ForceLeftRadio,
RightRadio, and LeftRadio, to correspond to their
respective labels. Each of these is created and initialized
by passing the IViewRes method its supervisor, the
Groupl7 CRadioGroupPane element.

9. The final two elements are the scrolling lists that will hold
the font names and font sizes when the dialog is fully ini-
tialized. Each of the scrolling lists is built as shown in
Figure 3-23 on page 60. An instance of CScrollPane is
created, an instance of CAMBorder is placed inside of the
scroll pane, and then a new list is created and placed
inside the border. When the elements have all been cre-
ated, the list is installed as the panorama for the compos-
ite pane.

The two scrolling lists are very similar; their only fundamen-
tal difference is the use of the NewList25 and NewList29
methods to create the list instances. The rationale for provid-
ing custom methods for the lists is discussed in the following
section.

NewList25 Method Code

The IZNotebook method calls the NewList25 method to cre-
ate the font name list.

The code to implement this (along with AppMaker’s com-
ments) is as follows:

/I The only purpose of this function is so that you can override it
// to create the list as your subclass of CAMTable

CAMTable *ZNotebook::NewlList25 (void)
CAMTable *thelist;

thelList = new CAMTable;
return (theList);

As indicated by the generated comment, AppMaker expects
you to use an override method in the CNotebook module to



The EditText Code Structure 77

fully create and initialize the list instance. In fact, AppMaker
even generates an override method in the CNotebook class,
as will shortly be shown.

NewList29 Method Code

As with the NewList25 code, AppMaker generates a method
to create an instance of the font size list. AppMaker expects
you to use an override method to fully create and initialize
the list instance. The code generated into the ZNotebook
module for the NewList29 method is as follows:

CAMTable *ZNotebook::NewlList29 (void)
CAMTable *thelist;

theList = new CAMTable;
return (theList);

UpdateMenus Method Code

The ZNotebook class also contains an override of the inher-
ited CAMDialogDirector class’s UpdateMenus method,
merely to provide a method for the CNotebook class to over-
ride. The code that implements this method is as follows:

void ZNotebook::UpdateMenus (void)

inherited::UpdateMenus ();
}

As is apparent, the generated code merely calls the inherited
method.

Newly Generated Code in CNotebook

Quite a few methods are provided in the AppMaker-generated
CNotebook module. In addition, the DoNotebook global
function is also generated into this module. This is the func-
tion that the code in the DoCommand method of the ZEn-
sembleDoc class calls to initiate the opening of the Format
Notebook dialog. The next few sections discuss the code that



78 Chapter 4> Examining the EditText Code

was generated into the CNotebook.c file. In order to provide
the dialog with full functionality, additional code, described
in Chapter 5, will be provided.

DoNotebook Function Code

The generated code for the global DoNotebook function is
found in the CNotebook module. The function is global so
that the dialog can be called from any module in the applica-
tion, not just the ZEnsembleDoc module. The code for the
function is as follows:

void DoNotebook (CDirectorOwner *aSupervisor)

{
CNotebook *dialog;

long dismisser;
dialog = NULL;
TRY

{

dialog = new CNotebook;
dialog->INotebook (aSupervisor);

/* initialize dialog panes */
dialog->BeginDialog ();

dismisser = dialog->DoModalDialog (cmdOK);
if (dismisser == cmdOK)

{

/* extract values from dialog panes */

}

dialog->Dispose ();

}
CATCH
{

}
ENDTRY;

ForgetObject (dialog);

The generated code for DoNotebook contains an exception
handling mechanism that is a new feature in THINK C ver-
sion 5.0. The TRY and CATCH keywords are used, respectively,
to introduce code that might fail when the enclosed code is
executing and to specify the exception-handling procedure to
use if that situation occurs. The ENDTRY keyword delimits the
end of the exception-handling code. If an error occurs (such



The EditText Code Structure 79

as the inability to allocate memory for a new instance of the
CNotebook class), the CATCH code will receive control, dis-
pose of the dialog object, and propagate the failure condition
up the exception handler stack, which eventually will display
an appropriate alert to the user. It is possible to customize
the cAaTcH handler to display its own alert, with information
that is pertinent to the current application context.

AppMaker has generated comments in the code for the
DoNotebook function to indicate where to place additional
custom code to initialize the dialog and also where to extract
the results of the user’s actions when the dialog is dismissed
by clicking the OK button.

INotebook Method Code

The initialization code for the CNotebook instance created in
the DoNotebook function is as follows:

void CNotebook::INotebook (CDirectorOwner *aSupervisor)

inherited::1ZNotebook (aSupervisor);

}

Basically, this code calls the inherited IZNotebook method,
which creates instances of all the dialog interface elements
and initializes their default appearances. The purpose of such
an override method is to provide a place to perform additional
initialization of the dialog’s interface elements. IZZNotebook
will later be enhanced with custom code additions.

CList25 IViewTemp Method Code

The code for this method is as follow:

void ClList25::1ViewTemp(CView *anEnclosure,
CBureaucrat *aSupervisor,
Ptr viewData)

inherited::IViewTemp (anEnclosure, aSupervisor, viewData);

/I any additional initialization for your subclass
AddRow (4, 0); // e.g., add 4 rows at the beginning of the list

}




80 Chapter 4> Examining the EditText Code

GetCellText
method code
(beginning)

AppMaker generates code in the CNotebook subclass to over-
ride the ZNotebook class’s IViewTemp method for creating
the scrolling lists. In this case, AppMaker also generates a
single line of code that adds four rows to the beginning of the
list, just to indicate how adding rows is done. This method
will be modified to perform the appropriate initialization of
CList25, using the font names from the Font menu con-
structed within AppMaker.

CList25 GetCellText Method Code

The standard method that AppMaker uses in its generated
code for user interface elements of the CTable class is to
override the CTable class’s GetCellText method. This over-
ride provides a very simple method of supplying the text for
table cells.

The GetCellText method is called with three arguments. The
first argument contains the cell (column and row) that
CTable requires; the second provides the width of the cell, for
situations where you want to provide special clipping of the
cell’s contents; and the third is a pointer to a Str255 variable,
in which the text for that cell is to be stored. The function of
the GetCellText method is to provide the text for the cell.

Notice that the CTable class in the TCL keeps track of which
cells have text that needs to be updated. This is a perfect ex-
ample of the power of the THINK Class Library providing most
of the functionality of an interface element. Given the cell
whose text is required, you need only supply the code that
provides it, as as follows:

void ClList25::GetCellText (Cell aCell,
short availableWidth, StringPtr itsText)
{

// replace with your own code which uses the cell coordinates to access
/I your private data structures, then convert the cell data to a Str255.
switch (aCell.v) {
case 0:
CopyPString ("pOne", itsText);
break;
case 1:
CopyPString ("\pTwo", itsText);
break;
case 2:
CopyPString ("\pThree", itsText);



The EditText Code Structure 81

GetCellText
method code
(concluded)

break;
default:
CopyPString ("\plinfinity", itsText);
break;

The default-generated code uses the cell’s row (aCell.v) value
to determine which of the four messages to copy to the its-
Text string. Notice that cell rows (aCell.v) and columns
(aCell.h) are zero based. That is, their values begin with 0, in-
stead of 1. In the section of this chapter that discusses cus-
tomizing the GetCellText code, all of this code will be
customized to store the font names into the table’s cells.

CNotebook NewList25 Method Code

The ZNotebook superclass defined a method called New-
List25, shown on page 76. This method provides the oppor-
tunity to override NewList25’s functionality in the
CNotebook subclass, to provide a different type of list, or to
add new functionality to the list. The NewList25 code will not
need to be changed:

CAMTable *CNotebook::NewList25 (void)
{

Clist25 *thelList;

theList = new CList25;

return (thelList);

}

CList29 Class Methods

The CList29 class is generated for the font size table, and the
default initialization code generated for it is nearly identical
to the corresponding IViewTemp, GetCellText, and New-
List,, code for the CList25 class.

In general, AppMaker will generate a similar new class and
corresponding methods for each list element defined in the
user interface. Each such class will contain an IViewRes
method for its initialization, a GetCellText method to provide
the contents of each cell to the default DrawCell method in-
herited from the CTable class in the TCL, and finally, a New-



82

Chapter 4> Examining the EditText Code

DoCommand
method code

(beginning)

List, method that creates the instance of the list. We will not
be showing duplicates of these classes and methods in this
book, except when they need to contain unique custom code.

CNotebook UpdateMenus Method Code

AppMaker also generates an UpdateMenus method, as an
override of the same method generated in the ZNotebook su-
perclass. The method is intended for situations where menu
commands need to be enabled or disabled, depending on the
status of the dialog. The default-generated code is as follows:

void CNotebook::UpdateMenus (void)

inherited::UpdateMenus ();
}

The code for the UpdateMenus method will not need to be
modified.

CNotebook DoCommand Method Code

The generated code for the CNotebook class also contains
code for a DoCommand method. When the Format Note-
book dialog is active, the gGopher global variable points to
the dialog. Whenever an event occurs while the dialog is ac-
tive, its DoCommand method will be called. The code for the
DoCommand method is as follows:

void CNotebook::DoCommand (long theCommand)

switch (theCommand) {
case cmdBoldCheck:
/* DoBoldCheck ();*/
break;
case cmdltalicCheck:
/* DoltalicCheck ();*/
break;
case cmdUnderlineCheck:
/* DoUnderlineCheck ();*/
break;
case cmdOutlineCheck:
/* DoOutlineCheck ();*/
break;
case cmdShadowCheck:
/* DoShadowCheck ();*/



The EditText Code Structure 83

DoCommand
method code
(concluded)

break;
case cmdCondenseCheck:
/* DoCondenseCheck ();*/
break;
case cmdExtendCheck:
/* DoExtendCheck ();*/
break;
case cmdCenterRadio:
/* DoCenterRadio ();*/
break;
case cmdRightRadio:
/* DoRightRadio ();*/
break;
case cmdForceLeftRadio:
/* DoForcelLeftRadio ();*/
break;
case cmdLeftRadio:
/* DoLeftRadio ();*/
break;

default:
inherited::DoCommand (theCommand};
break;

The DoCommand method is called with the command num-
ber for the interface element associated with the command. It
is important to note that AppMaker generates click com-
mands for all of the checkboxes and radio buttons in the For-
mat Notebook dialog.

AppMaker also generates comments in the code which recom-
mend that you supply methods that handle the various types
of commands (e.g., DoBoldCheck( )). The custom code will be
added directly to the DoCommand method’s individual
cases. This is appropriate because each command will only
require the addition of a single statement. Creating separate
methods or functions for the purpose would be inefficient.

CNotebook ProviderChanged Method Code

The final method generated into the CNotebook class is called
ProviderChanged. This is a very powerful method that is part
of the TCL'’s provider and dependent notification methodology.



84 Chapter 4> Examining the EditText Code

There are many cases in which it is important to indicate to
an instance that the user has modified an interface element
associated with a different class. For example, if you had an
application that computed conversions in inches, picas,
points, or ciceros, it would be important to know that the
user had typed a value into one of these fields and to be able
to automatically update the others to reflect the change.

The TCL implements a class called CCollaborator which con-
tains methods that allow you to add providers and depen-
dents, such that when a provider class senses a change, it
can broadcast the nature of the change, and its dependents
can determine what to do in each instance.

The TCL's CBureaucrat class directly overrides the CCollabo-
rator’'s BroadcastChange method and sends a Provider-
Changed message to the supervisor of the class in which the
change occurred.

Each of the user interface items in the dialog is supervised by
the CNotebook class. When the user types into any of the di-
alog text panes, a BroadcastChange message is sent by the
DoKeyDown method inherited by the CAMDialogText in-
stance from the CDialogText class.

In a similar fashion, the SetValue method inherited from the
CControl class sends a BroadcastChange message when the
state of a control (checkbox or radio button) is changed, and
finally, the SelectRect and DeselectRect methods of the
CTable class send the BroadcastChange message when a ta-
ble entry is selected or deselected, respectively. Other classes
in the TCL also send the BroadcastChange message; however,
the ones previously mentioned pertain directly to the classes
whose elements appear in the Format Notebook dialog.

When the user clicks on one of the selections in the font
name list, for example, the SelectRect method inherited
from the CTable class sends a BroadcastChange message
that includes the argument “tableSelectionChanged”, which
is intercepted by the BroadcastChange method override in
the CBureaucrat class. This method in turn sends a Pro-
viderChanged message to the table’s supervisor, which is an
instance of our CNotebook class. The CBureaucrat class
also passes on the BroadcastChange message to the CCol-



The EditText Code Structure 85

ProviderChanged
method code
(beginning)

laborator class, which sends a ProviderChanged message to
any of the registered dependents of the provider class. In our
case, there are no registered dependents.

The ProviderChanged method in the CNotebook class will
catch the changes made to selections in the scrolling lists, as
well as keystrokes entered into any of the text panes. The de-
fault-generated code for the ProviderChanged method
merely identifies which user interface element is affected by
the change and leaves it up to us to provide appropriate code
to respond to the change. This method will be customized to
handle new list element selections and data typed into the
text panes. The default-generated code for the Provider-
Changed method is as follows:

void CNotebook::ProviderChanged (CCollaborator *aProvider,
long reason,
void* info)

if (aProvider == Field14) {
if (Field14->GetLength () == 0) {
/I text is empty
} else {
/ there is some text

}

}
if (aProvider == Field15) {
if (Field15->GetLength () == 0) {
/I text is empty
} else {
// there is some text

}

}
if (aProvider == Field16) {
if (Field16->GetLength () == 0) {
// text is empty
}else {
// there is some text

}

}
if (aProvider == List25) {
if (List25->HasSelection ()) {
// perhaps activate some buttons
} else {
/I perhaps deactivate
}
}



86 Chapter 4> Examining the EditText Code

ProviderChanged
method code
(concluded)

if (aProvider == List29)
{
if (List29->HasSelection ()) {
/ perhaps activate some buttons
} else {
// perhaps deactivate
}
}
}

AppMaker generates code for the text fields that determines
whether the fields contain data or are empty. In the case of
the list panes, AppMaker generates code that determines
whether a selection has been made or whether the click that
caused the method to be called has deselected all elements in
the list. The comments indicate the type of actions your code
might perform when the various events occur.

Recap of the Generated Code

As previously mentioned, AppMaker will generate new ver-
sions of all the superclass modules (the ones whose names
begin with the letter ‘z’), and it will also generate both super-
class and subclass modules for new windows and dialogs.
The zNotebook and Notebook modules are examples of this
code-generation philosophy.

When a new menu command is added, code will be added to
the DoCommand method of the document’s superclass (e.g.,
zEnsembleDoc) to recognize the new command. If a dialog
has the same name as a menu command, then code will be
generated to invoke the dialog (e.g., DoNotebook) in the Do-
Command method.

The next chapter discusses how the generated code pre-
sented in this chapter can be customized to fully implement
the EditText features of the Ensemble application.

Exercises

1. Assuming that Figure 4-1 shows the universe of objects
that exist at the time the illustration was drawn, how
many actual object instances are represented in the dia-



Exercises 87

gram? Why are some of the classes not “real” object
instances?

. Explain how the “chain of command” operates and what
happens to commands and keystroke events that are rel-
evant to the “chain of command.”

. Explain the operation of the DoCommand method in the
ZEnsembleDoc class. When and for what purpose does
this method execute?

. Describe the interaction of the CScrollPane and CAMEdit-
Text class methods. In what way are these interrelated in
our application? (Hint: Look up the description of the
CPanorama class in the Object-Oriented Programming
Manual for THINK C.)

. The IZNotebook method illustrates a very flexible feature
of AppMaker’s approach to code generation. What is sig-
nificant about the code in IZZNotebook?

. Describe the meaning of “collaboration,” as this term is
used in the THINK Class Library, and how our application
benefits from its use.

. Describe the purpose and operation of the Provider-
Changed method in the CNotebook class.



Chapter 5
Customizing the EditText Code

Table 5-1 shows the classes and methods that will be cus-

tomized and described in this chapter.

Table 5-1 Class Method Description
Customized methods
to fully implement CEnsembleApp SetUpMenus Adds Font menu
EditText features CEnsembleDoc IEnsembleDoc Creates CFontData instance
CEnsembleDoc NewFile Overrides the NewFile code
CEnsembleDoc InitTextFormat Initializes the EditText pane
CEnsembleDoc OpenFile Sets handle to file data into
EditText pane
CEnsembleDoc DoCommand Invokes DoNotebook dialog
CEnsembleData  IEnsembleData Initializes itsEditTextData
handle
CEnsembleData  ReadData Reads itsTextData from file
CEnsembleData  WriteData Gets EditText handle and
write out its contents
CEnsembleData  DoRevert Disposes of current data
CFontData IFontData, Get- New class to encapsulate data
FontData, Set- for Format Notebook dialog
FontData controls and settings
CMainWindow GetEditTextHan  Access methods for getting
dle, SetEdit- and setting the handle to the
TextHandle EditText pane
CMainWindow SetTextFontInfo Sets the text font information
CNotebook DoNotebook, Implements the Format Note-
and others book dialog box




90 Chapter 5> Customizing the EditText Code

Customizing Methodology

CEnsembleMain

CEnsembleApp

CEnsembleDoc

CEnsembleData

CMainWindow

CNotebook

This is an appropriate place to mention the overall philoso-
phy of customizing AppMaker’s generated code. The modules
generated for our application are typical, especially at this
point in its construction. They include:

The main program function, which creates the initial
instance of CEnsembleApp and serves to initiate execution of
the application.

The subclass module for the application instance. Along with
its ZEnsembleApp superclass, it defines the applicationwide
behavior of the application.

The document subclass that owns the primary window and
interfaces directly to the abstract data class, CEnsemble-
Data. Along with its superclass, ZEnsembleDoc, this class
forms the basis for all document-oriented behavior of the
application.

The abstract data class for the application. All operations
that interface with the file system are routed through this
module. Its direct ancestor is the TCL's CDataFile class.

The primary window in the application and the one owned
directly by the CEnsembleDoc class. Along with its super-
class, ZMainWindow, it defines the appearance of data
within the window.

The single dialog class, that, along with its ZNotebook super-
class, provides the appearance and functionality of the dia-
log. It is instantiated via its embedded DoNotebook global
function.

Following is a list of what, in general, we must always cus-
tomize:

1. To implement any applicationwide features, such as add-
ing the Font menu to the CBartender instance’s list, we
must modify the CEnsembleApp instance’s methods.

2. To customize aspects of our application that relate to its
document, including the creation of new container
classes for document-oriented data, modifications to the
input/output interface routines, and the handling of doc-



Customizing the CEnsembleApp Methods 91

ument-oriented commands, we must modify the appro-
priate methods in the CEnsembleDoc instance.

3. To implement the input/output (I/0) functions that are
specific to our document, we must modify the methods in
the CEnsembleData instance, especially the ReadData,
WriteData, and Revert methods. These are the sole inter-
face with the physical data with which we will deal.

4. To implement the appearance of the main window, which
handles specific drawing functions, we must modify the
methods associated with the CMainWindow instance. In
the case of our EditText pane, all of the drawing is auto-
matically handled; however, we must still provide the win-
dow with access to the data to be transferred to and from
the window via the document and its abstract data class.

5. Finally, to implement the functionality of the Notebook
dialog, we must modify the DoNotebook function and the
methods in the CNotebook instance.

Each new window added to the application will result in the
generation of both a subclass and superclass, with methods
that are similar to those in the MainWindow modules. Each
new dialog will also result in the generation of a subclass and
superclass for the dialog, with a Do<dialog-name> global
function that must be modified, along with the methods in
the dialog subclass instance. If a new addition requires that
the file formats be changed, then modifications will have to
be made to the CEnsembleData instance’s methods. The
customization methodology is thus predictable. The following
section begins a step-by-step examination of our first set of
custom changes to AppMaker’s generated code.

Customizing the CEnsembleApp Methods

The CEnsembleAp module has been modified to add func-
tionality to the application level. A SetUpMenus method has
been added to override the superclass’s method, making the
menu available in the CBartender class’s list of menus. The
code for the enhanced method is as follows:



92

Chapter 5> Customizing the EditText Code

void CEnsembleApp::SetUpMenus ()
{
inherited::SetUpMenus();
gBartender->AddMenu (5, TRUE, hierMenu);// Font menu

}

The override method first calls the inherited method and then
sends a message to the CBartender instance (using the glo-
bal gBartender variable) to add the Font menu (menu 5) to
its list, treating the menu as a hierarchical menu (which
won’t cause the menu bar to be redrawn).

This method merely adds the menu to the gBartender in-
stance’s list of menus. It does not cause the menu to be in-
stalled in the menu bar. The primary purpose of adding this
customized feature is to permit the menu’s contents to be ac-
cessed easily by other application methods. Placing the ini-
tialization in the application guarantees that the menu will be
installed at the earliest possible moment.

Implementing the File Menu Commands

The next set of changes to AppMaker’s generated code in-
volves implementing the standard File menu commands.
These provide for saving text that has been entered into the
MainWindow pane, opening and reading text previously
saved in a file, and reverting to a previously saved version of a
file.

The commands named New, Open, Save, Save As, and Re-
vert that appear in the File menu are all sent to the DoCom-
mand method of the class whose handle is stored in the
gGopher global variable.

While the MainWindow is active, these commands will be
sent to the MainWindow subclass instance because the
gGopher variable will be pointing to that instance. (The Acti-
vate method for the CMainWindow class sets the new value
of the gGopher variable, when the window is activated.)

The sequence of events that occur when one of these com-
mands is issued is shown in Figure 5-1 and is described in



Implementing the File Menu Commands 93

Figure 5-1

Open command flow
through the
Ensemble
application

@ TCLClass
Generated Superclass
O Generated Subclass

...... Command Flow Path

——— Method Flow Path

the steps that follow (the numbers in the figure correspond to
the step numbers below):

CBureaucrat m
e, DoCommand | New |
N X cmdOpen
cmdopen ¢ S X%, (3)cmdopen  ERLEEER"CTece.,
OpenDocument s @': 5 e,
s :
CSwitchboard

CApplication
DoCommand

cmdOpen cmdOpen .5
s o : H DoCommand
gApplication
cmdopen : @ : ,'
@cmepen _: cmepen K

o
o

CDataFile
OpenfFile paES 5
emdopen (3) ReadAll

CEnsembleDoc
DoCommand

esest®
cmdOpen . ReadData

B
-""'

oo ( CEnsembleData ’

.

OpenData

1. Assuming that the Open command has been selected,
CSwitchboard will send this command to the DoCom-
mand method of the current gGopher, which is pointing
to the CMainWindow instance.

2. The CMainWindow's DoCommand method calls the
inherited DoCommand method in the ZMainWindow
class.

3. The ZMainWindow's DoCommand method doesn'’t recog-
nize the Open command, so it calls its inherited DoCom-
mand method, in the CBureaucrat class.

4. The CBureaucrat’'s DoCommand method sends the Open
command to the DoCommand method in the supervisor
for the current instance, which in this case is an instance
of CEnsembleDoc.

5. Neither CEnsembleDoc nor its superclass, ZEnsemble-
Doc, recognizes the Open command; instead, they pass it
up to the inherited method in the CDocument class.



94 Chapter 5» Customizing the EditText Code

6. Once again, the CDocument’s DoCommand method is
unable to recognize the Open command, so it passes the
command to its inherited method from the CDirector
class, which then passes the command up to the CBu-
reaucrat class to handle.

7. As in step 4, the CBureaucrat class sends the command
to the DoCommand method in the supervisor of the cur-
rent instance, which in this case would be an instance of
the CEnsembleApp class.

8. Neither the CEnsembleApp nor its ZEnsembleApp
superclass handles the Open command in its DoCom-
mand method, so the command is passed to the CAppli-
cation class.

9. Fortunately, the command’s long trek ends here, because
the DoCommand method in the CApplication class does
indeed recognize the Open command. In addition, it also
recognizes the New, Quit, and Show Clipboard com-
mands. When the Open command is recognized, the CAp-
plication’s DoCommand method calls the
OpenDocument method, which is an empty method in
that class, but is overridden in the ZEnsembleApp class.

The preceeding steps describe the (somewhat circuitous)
journey of a command to its intended handler. Most of the
commands in the File menu are recognized in either the
CApplication or CDocument class in the TCL. The cases in
the corresponding DoCommand methods in those classes
call upon other methods that must be overridden in the us-
er’'s supplied code. The reason for this is that only the user
knows what is required to open the selected document, how
to read its data, how to save its data, and how to revert to a
previously saved version of a file.

Fortunately, AppMaker generates most of the code to provide
the functionality we need for these tasks. The following sec-
tions describe the additional code that we have added to im-
plement the File menu command handlers.

CreateDocument Method Code

The CApplication class recognizes the New command and
sends a CreateDocument message, which is handled by the



Implementing the File Menu Commands 95

CEnsembleDoc
class declaration
(beginning)

override method in the ZEnsembleDoc class, as shown on
page 32. The override method in turn sends a NewFile mes-
sage, which is also handled by the generated code in the ZEn-
sembleDoc class, as shown in the sample code on page 33.
The generated code for these methods is unchanged in the
new version of the Ensemble application. However, because
we wish our text window to be initialized so that the user can
immediately begin typing, we have added an override for the
NewFile method in our CEnsembleDoc class. The code for
this method is as follows:

void CEnsembleDoc::NewFile (void)

{
inherited::NewFile();
InitTextFormat();

}

After the inherited NewFile method is called, we invoke a new
method that initializes the text pane format. This method
makes use of the new instance variables that we have defined
in the EnsembleDoc module. The complete class definition
for the new module is as follows:

class CEnsembleDoc : public ZEnsembleDoc
{
public:

/l

/I manually added instance variables

/I

CFontData *theTextData;

/

// generated public methods

/l

void |EnsembleDoc (CApplication *aSupervisor, //is override
Boolean printable);

void UpdateMenus(void); /l is override

void DoCommand(long theCommand); //is override

I

// manually added methods

I

void NewfFile (void); // is override
void OpenFile(SFReply*macSFReply); // is override
void InitTextFormat(void);



96 Chapter 5> Customizing the EditText Code

CEnsembleDoc
class declaration
(concluded)

CMainWindow *GetTextWindow (void);

protected:
// your application-specific instance variables:

b

The new InitTextFormat method is responsible for changing
the text format to the font, size, style, and alignment saved in
the text file. The code for the InitTextFormat method is as
follows:

void CEnsembleDoc::InitTextFormat(void)

{
itsMainWindow->SetTextFontinfo(theTextData);

}

The InitTextFormat method sends a message that is han-
dled by the SetTextFontInfo method in the CMainWindow
instance to accomplish its purpose. The theTextData is an
instance of the CFontData class, as shown in the CEnsem-
bleDoc class declaration. To complete the picture, the code
for the SetTextFontInfo method is as follows:

void CMainWindow::SetTextFontinfo (CFontData *theFontData)
{

fontinfo itsFontData;

itsFontData = theFontData->GetFontData();
Field3->SetFontNumber(itsFontData.fontNumber);
Field3->SetFontSize(itsFontData.fontSize);
Field3->SetFontStyle(0); // reset first
Field3->SetFontStyle(itsFontData.fontStyle);
Field3->SetAlignment(itsFontData.fontAlign);

The CMainWindow class must handle changing the at-
tributes of its panes, because, for example, the Field3 vari-
able is specific to the CMainWindow class (and refers to the
CAMEditText pane). The theFontData argument to the Set-
TextFontInfo method will be discussed later, in the context
of the Notebook dialog code descriptions.



Implementing the File Menu Commands 97

OpenDocument Method Code

The generated code for the OpenDocument method in the
ZEnsembleApp class is left as is. The code sends an Open-
File message to a newly created instance of CEnsembleDoc.
The OpenFile method is called with the SFReply record,
identifying the file that the user wishes to open. The code for
the CEnsembleDoc’s OpenFile method is as follows:

void CEnsembleDoc::OpenFile (SFReply *macSFReply)

{
Handle theData;

inherited::OpenFile(macSFReply);

theData = ((CEnsembleData *)itsFile)->GetEditTextHandle();
((CMainWindow *)itsWindow)->SetEditTextHandle (theData);
theData = ((CMainWindow *)itsWindow)->GetEditTextHandle();
((CEnsembleData *)itsFile)->SetEditTextHandle(theData);
InitTextFormat();

The code in the CEnsembleDoc’s OpenFile method first calls
the method inherited from its ZEnsembleDoc superclass. It
is important to recall that the superclass code is never cus-
tomized; all customizing is applied to the subclass code. This
enables AppMaker to regenerate the superclass code as new
interface elements are added to the application, and the sub-
class code can remain untouched.

The superclass method (ZEnsembleDoc::OpenFile) is re-
sponsible for creating a new instance of the CEnsembleData
class, initializing this instance, and then sending it the nec-
essary messages to implement the required input/output op-
erations. The CEnsembleData class is charged with the
responsibility for handling all of the physical I/O for the ap-
plication. This partitioning of tasks between the CEnsemble-
Doc and CEnsembleData classes is important. While the
former can inherit behavior from the CDocument hierarchy,
the latter class inherits its behavior from the CDataFile and
CFile classes. This gives the CEnsembleData class methods
the ability to use the TCL methods for performing file I/0.
Following is the ZEnsembleDoc’s OpenFile method, shown
for reference:



98 Chapter 5> Customizing the EditText Code

None of the code in
the ‘z’ file superclass
modules is modified
in any way.

void ZEnsembleDoc::OpenFile (SFReply *macSFReply)

{
Str63  theName;

itsData = new CEnsembleData;

itsData->|EnsembleData (this);

itsData->SFSpecify (macSFReply);

itsData->OpenData (fsRdWrPerm);

itsFile = itsData;

BuildWindows ();

itsFile->GetName (theName);

if (itsWindow != NULL) {
itsWindow->SetTitle (theName);
itsWindow->Select ();

}

}

Notice that the superclass method creates a new instance of
CEnsembleData, initializes the instance, and sends it SF-
Specify and then OpenData messages. The code for the IEn-
sembleData method is as follows:

void CEnsembleData::I[EnsembleData (CDocument *theDocument)
{

inherited::IDataFile ();

hasFile = FALSE;

itsDocument = theDocument;

/1 your application-specific initialization
itsEditTextData = NULL;

The IDataFile message is handled by the CDataFile class in
the TCL. The IDataFile method initializes the instance vari-
ables for the class. The IEnsembleData method sets the has-
File instance variable to FALSE, saves the reference to
theDocument into its itsDocument instance variable, and
includes the line of code to set a new instance variable called
itsEditTextData to NULL.

The OpenFile method for the ZEnsembleDoc superclass
sends the SFSpecify message, which is handled by the CFile
class in the TCL. The SFSpecify method saves the volume,



Implementing the File Menu Commands 99

directory, and file name information for the selected file. Fi-
nally, the OpenData message is sent to the new CEnsemble-
Data instance, whose code is as follows:

void CEnsembleData::OpenData (SignedByte permission)
{

Open (permission);

hasFile = TRUE;

ReadData ();

}

The permission argument passed to the OpenData method
is a constant named fsRdAWrPerm that gives both read and
write permission for the file. The OpenData method then
calls the Open method that is inherited from the CDataFile
class. The Open method performs the toolbox call that opens
the file. When it returns, the OpenData method sets the has-
File instance variable to TRUE and then sends a ReadData
message.

All of the code for the OpenData method was generated by
AppMaker and has not been altered. However, AppMaker
isn’t able to know the format of the data in the file that was
just opened. Nevertheless, it generates code that is almost
perfect for our application in this stage of its development.

The code for the ReadData method is located in the CEnsem-
bleData module and is as follows:

void CEnsembleData::ReadData (void)
{
I
/! modified to reference itsEditTextData
1
itsData = ReadAll ();
itsEditTextData = itsData;

The only code we have added to AppMaker’s generated code
in the preceeding method is the replacement statement that
saves the handle to the data (returned by the ReadAll
method in the CDataFile class) into a new instance variable
that we've called itsEditTextData. At the point when Read-
Data finishes execution, the entire contents of the file have



100 Chapter 5> Customizing the EditText Code

been read, the file is still open and positioned at its end, and
a handle to the data has been saved. When ReadData re-
turns, it will resume execution in the OpenFile method of the
ZEnsembleDoc class, as shown on page 98. The next action
taken by the ZEnsembleDoc’s OpenFile method (on page 98)
is to create the document’s window, by sending the Build-
Windows message. The BuildWindows code is found in the
ZEnsembleDoc module and will be described later, when we
discuss the generated code for the MainWindow class. After
creating the MainWindow, the OpenFile code gets the file
name and places it in the title bar of the window. Then it se-
lects the window, bringing it to the front as the active win-
dow. This completes the process of opening an existing file, in
response to the Open command.

DoSave Method Code

When the user chooses the Save command from the File
menu, the command travels through the route shown in Fig-
ure 5-1 and is intercepted by the DoCommand method in the
CDocument class. The code in that method sets the cursor to
the watch icon and then sends a DoSave message. The
DoSave method in the CDocument class is empty; however,
it is overridden in the ZEnsembleDoc superclass:

Boolean ZEnsembleDoc::DoSave (void)
{

if (itsFile == NULL)

{

return (DoSaveFileAs ());

}
else
{
if (itsData->Save ())
{
dirty = FALSE;
return (TRUE);
}

else

{
return (FALSE);
}
}
}




Implementing the File Menu Commands 101

WriteData method
code (beginning)

As usual, the DoSave code was generated by AppMaker and
is unmodified. It first checks whether a file is already associ-
ated with the document. If not, it sends a DoSaveFileAs mes-
sage; otherwise, it sends a Save message to the class
associated with the itsData instance variable. In the case of
the Ensemble application, this is the CEnsembleData class.

AppMaker generates code for all of the methods that perform
operations on file data in the CEnsembleData class. This not
only keeps the physical file operations separate from the
methods that are appropriate to the document as a whole,
but allows the CEnsembleData methods to reference the in-
herited methods directly in the CDataFile and CFile classes.

The code for the Save method is as follows:

Boolean CEnsembleData::Save (void)

if (hasFile)

{
return (WriteData ());

}

else

{
// shouldn't be called in this case
return (FALSE);

}

}

The Save method code generated by AppMaker has not been
modified. It tests to ensure that a file has been opened or pre-
viously saved, and if so, it calls the WriteData method, the
code for which is as follows:

Boolean CEnsembleData::WriteData (void)
{

CMainWindow *theTextWindow;

Handle theData;

I

/I modified WriteData to get the TextEdit pane's Text Handle

/I and then write out the contents of that handle.

)

theTextWindow = ((CEnsembleDoc *)itsDocument)->GetTextWindow();
theData = theTextWindow->GetEditTextHandle();



102 Chapter 5> Customizing the EditText Code

WriteData method
code (concluded)

SetEditTextHandle(theData);
WriteAll (itsEditTextData);
return (TRUE);

}

The code for the WriteData method has been modified to get
a handle to the CAMEditText pane in the CMainWindow in-
stance and then write out the contents of that handle. The
data in the handle represents the edited version of the origi-
nal data and is what we want to save to a file. The WriteAll
method is located in the CDataFile class in the TCL. The
method of getting the handle to the data is somewhat compli-
cated by the nature of data isolation afforded by the object-
oriented programming methodology. In this case, the CEn-
sembleData class “knows” nothing about the nature of the
source of the data, but merely that it needs to write the data
out. To get the handle to the CAMEditText pane, we first
send a message to the document to retrieve a reference to its
text window (GetTextWindow).

Once we have a reference to the proper window, we can send
it a message to return a reference to its EditText data (Get-
EditTextHandle). When we have retrieved the handle to the
EditText data, we also store it into an instance variable in
the CEnsembleData class by sending it in a SetEdit-
TextHandle message. With a handle to the data, we can now
write the data out through the WriteAll method in the
CDataFile class of the TCL.

The WriteAll method repositions the selected file to its begin-
ning and writes out the entire contents of the text addressed
by the handle.

SaveAs Method Code

When the user selects the Save command from the File
menu, and no data file is currently associated with the con-
tents of the MainWindow, the DoSave method (shown on
page 100) sends a DoSaveFileAs message. The DoSave-
FileAs message is also sent by the CDocument class when
the user selects the SaveAs command from the File menu. In
either case, the DoSaveFileAs method (located in the CDocu-
ment class) displays a standard “Save File” dialog box and al-
lows the user to specify the file into which the data are to be
saved.



Implementing the File Menu Commands 103

This is accomplished by sending a PickFileName message,
which is also handled in the CDocument class in the TCL. The
method associated with this message calls the SFPutFile tool-
box function to perform the function of displaying the dialog
box and allowing the user to navigate within it to specify the
desired file. When the file has been selected, then the DoSave-
FileAs method sends a DoSaveAs message, which is overrid-
den by the ZEnsembleDoc class. The code is as follows:

Boolean ZEnsembleDoc::DoSaveAs (SFReply *macSFReply)
{ if (itsData->SaveAs (macSFReply))
{ itsFile = itsData;
if (itsWindow != NULL)
{ itsWindow->SetTitle (macSFReply->fName);

}
dirty = FALSE;
return (TRUE);
}
else
{
return (FALSE);
}
}

When the DoSaveAs method executes, it sends a SaveAs
message to the class associated with the itsData instance
variable, which is the CEnsembleData class in this case. The
code for the SaveAs method is as follows:

Boolean CEnsembleData::SaveAs (SFReply *macSFReply)
{

OSErr ignoreErr;

if (hasFile)

Close ();

SFSpecify (macSFReply);

ignoreErr = HDelete (voINum, dirID, name); //in case already exists

CreateNew (gSignature, kFileType);

Open (fsRdWrPerm);

hasFile = TRUE;

return (Save ());




104 Chapter 5> Customizing the EditText Code

The first thing the SaveAs method does is check whether a
file is already associated with the data. If so, it closes that file
and then executes the SFSpecify method inherited from the
CFile class to set the new volume, directory, and file name
information. It then calls the HDelete toolbox method to de-
lete the new file if it currently exists, calls the CreateNew
method inherited from the CFile class, and calls the Open
method inherited from the CDataFile class in the TCL.

After opening the file, it can save the data by calling the Save
method in the CEnsembleData class, as shown on page 101.
The data are written out to the new file with the same Write-
Data method used by the Save command.

Revert Method Code

The cmdRevert command is recognized by the DoCommand
method in the CDocument class. The code for this case
sends a DoRevert message to the document, which is inter-
cepted by the override method in the ZEnsembleDoc class.
The code for the DoRevert method is as follows:

void ZEnsembleDoc::DoRevert (void)

{
itsData->Revert ();
dirty = FALSE;

}

The method accomplishes its task by sending a Revert mes-
sage to the CEnsembleData class, represented by the its-
Data instance variable.

As previously mentioned, all the physical file I/O is per-
formed by the CEnsembleData class, due to its ability to in-
herit methods from the CDataFile and CFile classes.

When the user decides to revert to a previous version of a file,
the application must first determine whether a file in fact ex-
ists. If not, then the Revert method should dispose of the
current data and do nothing else. This is the best interpreta-
tion of the user’s intent.

If the file does exist, then the Revert method can read the
data from it and proceed to enter its data into the EditText



Implementing the File Menu Commands 105

This method has
been modified quite
a bit, to access the
handle to the
EditText data

pane in the main window. These operations are shown in the
following code for the Revert method:

void CEnsembleData::Revert (void)
{
CMainWindow *theTextWindow;
Handle theData;

DisposeData ();
if (hasFile)
{
I
// reread the original file's data
Vi
ReadData ();
theTextWindow = ((CEnsembleDoc *)itsDocument)->GetTextWindow();
if(theTextWindow)
{
I
// set the new EditText handle, and then get it back
"
theTextWindow->SetEditTextHandle(itsEditTextData);
theData = theTextWindow->GetEditTextHandle();
SetEditTextHandle(theData);

In order to replace the existing data with the contents of the
file, the code must first dispose of the existing data, read the
contents of the file, and then store a handle to the EditText
data into the CAMEditText pane in the MainWindow. The
process of getting a reference to the window and then sending
it the message to set the new EditText handle is similar to
the approach outlined on page 101. In this case, we are, of
course, storing the handle, rather than retrieving it.

Once the handle has been set by sending the SetEdit-
TextHandle message to the window, it is immediately re-
trieved. This is necessary because the CEditText class’s
SetTextHandle method makes a copy of the data and then
changes the handle to point to the copy. Our Revert method
then saves the new handle by calling the SetEditTextHandle
method in our CEnsembleData class.



106 Chapter 5» Customizing the EditText Code

Adding Methods to the CMainWindow Class

We have written three new methods for this class that imple-
ment getting and setting the EditText pane’s handle and also
setting its text font parameters. The code for the GetEdit-
TextHandle method is as follows:

Handle CMainWindow::GetEditTextHandle (void)

{
return ((Handle) Field3->GetTextHandle ());

}

As is apparent, this method calls the GetTextHandle method
that is inherited from the TCL’s CEditText class and returns
it to the caller. The code for the counterpart method, SetEdit-
TextHandle, is as follows:

void CMainWindow::SetEditTextHandle (Handle theData)

{
Field3->SetTextHandle (theData);

}

The foregoing code sends a SetTextHandle message to the
EditText field, which is inherited from the TCL's CAbstract-
Text class. It is important to bear in mind that the Set-
TextHandle method creates a copy of the data contained in
the itsData instance variable and installs a new handle into
the EditText pane. Therefore, the methods that we have pre-
viously shown that reference the SetEditTextHandle method
immediately send a GetEditTextHandle message, to acquire
the real handle to the text.

The data used to set the EditText pane’s font, size, style, and
alignment are handled by a new method called SetTextFon-
tInfo. As you will see in the next section, concerned with im-
plementing the Format Notebook command, the
CEnsembleDoc class’s DoCommand method calls SetText-
FontInfo to change the EditText pane’s parameters, based
on the new values obtained from the DoNotebook method’s
execution. The code for the SetTextFontInfo method, from
page 96, is as follows:



Implementing the Format Notebook Command 107

void CMainWindow::SetTextFontinfo (CFontData *theFontData)
{

fontinfo itsFontData;

itsFontData = theFontData->GetFontData();
Field3->SetFontNumber(itsFontData.fontNumber);
Field3->SetFontSize(itsFontData.fontSize);
Field3->SetFontStyle(0); // reset first
Field3->SetFontStyle(itsFontData.fontStyle);
Field3->SetAlignment(itsFontData.fontAlign);

As you can see, the method sends a GetFontData message to
the CFontData class, which retrieves a handle to the object.
When the object’s handle is stored into the local itsFontData
variable, then the various text font, size, style, and alignment
methods in the CEditText class of the TCL can be referenced
to set the new parameters.

Iniplementing the Format Notebook Command

The first step in implementing the Format Notebook com-
mand is to devise methods for setting the initial values of the
various fields and controls in the Notebook dialog and for re-
trieving and saving these values from one invocation of the
dialog to the next.

We decided that the best way to encapsulate these values and
also provide access to them was to create a completely new
class, whose name was chosen to be CFontData.

The CFontData object is described in a new header file called
FontData.h, and its methods are defined in a new source
code file called FontData.c.

The FontData.h file contains the definition of a structure to
hold the initial or current font information for the text pane.
It also contains instance variables to hold those data, as well
as the definition of each of the changeable controls and fields
in the Notebook dialog. The complete content of the FontDa-
ta.h file is shown in two sections. The header for the file and
the definition of the fontInfo structure are as follows:



108 Chapter 5> Customizing the EditText Code

/* FontData.h -- font data class */

#define _H_FontData
#include <CObject.h>

typedef struct
{

short  fontNumber;
short  fontSize;
short  fontStyle;
short  fontAlign;

} fontinfo;

The definition of the CFontData class and its instance vari-
ables and methods are as follows:

class CFontData : public CObject

{
public:

fontinfo fontData;

short  BoldCheck;

short  ltalicCheck;
short  UnderlineCheck;
short  OutlineCheck;
short  ShadowCheck;
short  CondenseCheck;
short  ExtendCheck;
Str255 FontNameString;
Str255 FontSizeString;
Str255 FontSampleString;
long RadioStationiD;
short  FontSelection;
short  SizeSelection;

void IFontData(void);
fontinfo GetFontData(void);
void SetFontData (fontinfo theData);

The methods declared in the class definition for the new class
are GetFontData, SetFontData, and IFontData.



Implementing the Format Notebook Command 109

IFontData method
code

The code for the CFontData class’s GetFontData method is
as follows:

fontinfo CFontData::GetFontData (void)
{

return fontData;

}

As you can see, all this access method does is return the
structure holding the current font number, size, style, and
alignment settings.

The code for the SetFontData method is very similar to that
for GetFontData. It merely sets the fontData structure’s
content:

void CFontData::SetFontData(fontinfo theData)

{
fontData = theData;

}

Finally, the code to set the default values of all the CFont-
Data instance’s variables, is as follows:

void CFontData::IFontData (void)
{
fontData.fontNumber = 0;
fontData.fontSize =12;
fontData.fontStyle = 0;
fontData.fontAlign = teFlushLeft;

BoldCheck= 0;

ltalicCheck= 0;

UnderlineCheck= 0;

OutlineCheck= 0;

ShadowCheck= 0;

CondenseCheck= 0;

ExtendCheck= 0;

RadioStationID= 139; // LeftRadioViewID
CopyPString("\pSystem", FontNameString);
CopyPString("\p12", FontSizeString);
CopyPString("\pSample”, FontSampleString);
FontSelection= 0;

SizeSelection= 3;




110 Chapter 5> Customizing the EditText Code

The preceeding code is invoked by the CEnsembleDoc class’s
IEnsembleDoc method, to create an instance of the CFont-
Data class for each open document—the Ensemble applica-
tion will let you have more than one document open at a
time—and then initialize the instance.

The IEnsembleDoc method, as customized, is as follows:

void CEnsembleDoc::IEnsembleDoc (CApplication *aSupervisor,
Boolean printable)

{
CFontData*aFontData;

inherited::IEnsembleDoc (aSupervisor, printable);
aFontData = new CFontData;
aFontData->IFontData();

theTextData = aFontData;

After calling the inherited IEnsembleDoc method, which is
found in the ZEnsembleDoc superclass, the IEnsembleDoc
method creates a new instance of the CFontData class,
sends it an IFontData initialization message, and then stores
the new instance reference into the document’s theTextData
variable. The initial settings for the Notebook dialog are:

< In the fontData structure, the font is set to 0, which refers
to the “System Font,” the size is set to 12 points, the style
is set to 0, which is “plain,” and the alignment is set to left-
justified.

% All the font style checkboxes are initialized as being
unchecked.

< The “StationID,” referring to which radio button is selected
in the set of alignment choices, is initialized to enable the
left justified button.

< The font name string is set to “System”, the font size string
is set to “12”, and the font sample string is set to “Sample”.

% The number of the highlighted cell in the font name list is
set to O (the first cell, which refers to the system font), and



Implementing the Format Notebook Command 111

the number of the highlighted cell in the font size list is set
to 3 (the fourth cell, which refers to the size 12 entry).

Initializing the instance variables in the CFontData instance
provides a firm basis for the initial text font characteristics of
the EditText pane. When the MainWindow instance is cre-
ated, the EditText pane is initialized with the default font
settings. Both the New and Open commands in the File
menu call a method named InitTextFormat, whose code is
shown on page 96. This method sends a message to the
MainWindow method SetTextFontInfo, whose code is also
shown on page 96. The SetTextFontInfo method uses the
CFontData class’s GetFontData access method to retrieve
the contents of the fontInfo structure, so that it can initialize
the EditText pane with the current font information.

Up to this point, we’'ve discussed how the EditText pane’s
text characteristics are initialized and set. What remains is a
discussion of how the default characteristics are changed
and what methods are involved in this process. The first link
in the modification chain is the DoCommand method in the
CEnsembleDoc class. This method overrides the behavior in
its superclass, as follows:

void CEnsembleDoc::DoCommand (long theCommand)

switch (theCommand)

{

case cmdNotebook:

DoNotebook(this);
InitTextFormat();
break;

}
default:

inherited::DoCommand (theCommand);
break;
}
}
}

The override DoCommand method specifically tests for the
existence of a cmdNotebook command, which is sent to the
method in response to the user’s selection of the Format



112 Chapter 5> Customizing the EditText Code

Part 1 of the
DoNotebook global

function

menu’s Notebook command. The handler then calls the
DoNotebook function (a global function) with a handle to the
CEnsembleDoc instance (shown as this in the function’s ar-
gument). The DoNotebook function is responsible for creat-
ing, initializing, and managing the operation of the Notebook
dialog, as well as retrieving the values from its controls and
fields when the user has completed a set of text format modi-
fication actions.

The default-generated code for the DoNotebook function is
shown on page 78. The following listing of the function is bro-
ken into several parts, so that its custom features can be
more easily explained.

Initial DoNotebook Code

The first section of code for the DoNotebook function is as
follows:

void DoNotebook (CDirectorOwner *aSupervisor)

—~—

CNotebook *dialog;

long dismisser;

Str255 fontNameString;
Str255 fontSizeString;
Str255 fontSampleString;
short aChoice;
CFontData *theFontinfo;

dialog = NULL;
theFontinfo = ((CEnsembleDoc *) aSupervisor)->theTextData;
TRY {

dialog = new CNotebook;

dialog->INotebook (aSupervisor);

The code is nearly identical to the default code generated by
AppMaker; we have merely added some new local variables to
hold the font name, font size, and font sample strings.

A variable has been defined to hold the chosen entry in the
font name and font size lists. In addition, the initialized
CFontData instance is assigned to the theFontInfo variable,
by accessing the theTextData instance variable in the CEn-
sembleDoc class, using the aSupervisor argument to refer-
ence the instance.



Implementing the Format Notebook Command 113

After creating a new instance of the CNotebook class, the
code calls the INotebook method to initialize the instance.
The default code for the INotebook method is shown on
page 79. We have enhanced this code by adding some state-
ments that assign “StationID’s” to the text justification radio
buttons.

The definition of the “StationID’s” is contained in the Note-
book.h header file, as shown in the following code:

enum
{
LeftRadioViewlD=139,
CenterRadioViewlD,
RightRadioViewlID,
ForceLeftRadioViewlD

The “StationID’s” have been assigned an arbitrary sequence
of codes, beginning with 139. These were chosen to coincide
with the resource ID’s for the radio button controls. The code
for the new version of the INotebook method is as follows:

void CNotebook::INotebook(CDirectorOwner *aSupervisor)

{

inherited::IZNotebook (aSupervisor);

LeftRadio->ID= LeftRadioViewlD;
CenterRadio->ID= CenterRadioViewlID;
RightRadio->ID= RightRadioViewlID;
ForceleftRadio->ID= ForcelLeftRadioViewID;

When this method calls the inherited IZNotebook method,
the Notebook dialog and all its controls and fields are created
and initialized, as shown on page 73. During the execution of
the IZNotebook method, several of the dialog item instances
require additional initialization. AppMaker has generated the
skeleton for the INotebook method, and we have added the
custom code.



114 Chapter 5> Customizing the EditText Code

Sizing the Font Name List

The font name list is the first to be customized. The declara-
tion for the CList25 class in the Notebook.h module con-
tains the definition of the fontMenu instance variable, as
shown in the following code:

class CList25 : public CAMTable
{
public:
I
// new instance variables
/
short numFonts;
MenuHandle fontMenu;

void IViewTemp(CView*anEnclosure,
CBureaucrat*aSupervisor,
Ptr viewData);  //is override
void GetCellText(CellaCell,
short  availableWidth,
StringPtr itsText); // is override

The IViewTemp initialization method for the font name list
class (CList25) must be modified to add the font names to
the list:

void CList25::IViewTemp(CView*anEnclosure,
CBureaucrat*aSupervisor,
Ptr viewData)

inherited::|ViewTemp (anEnclosure, aSupervisor, viewData);
fontMenu = GetMHandle(FontiD);

numFonts = CountMItems(fontMenu);
AddRow (numFonts, 0);

This method makes use of the Font menu we created in
Chapter 3, beginning on page 54. AppMaker generated code
to add the names of all the user’s fonts to the menu in the
ZEnsembleApp class’s SetUpMenus method, shown on
page 70. The override method gets the handle to the Font



Implementing the Format Notebook Command 115

menu, calls the toolbox routine CountMItems to determine
how many names are in the menu, and then adds that num-
ber of rows to the CList25 instance. When the rows are
added, methods in the TCL’s CTable class will compute the
number of cells in the table, and then will repeatedly call the
GetCellText method to get the text for each of the table’s
cells.

Initializing the Font Names

We override the GetCellText method for the CList25 in-
stance and provide the font names as follows:

void CList25::GetCellText (Cell aCell,
short availableWidth,
StringPtr  itsText)

{

short  index;

index = aCell.v;
Getltem(fontMenu, index+1, itsText);

}

The GetCellText method uses the vertical (row) component of
the aCell argument to the function to get the menu item as-
sociated with that cell number. The toolbox routine GetItem
retrieves the font name directly into the location pointed to by
the itsText argument to the method.

Sizing the Font Size List

The CList29 dialog item is handled in a similar fashion. The
code in the IViewTemp method generated by AppMaker has
been customized to initialize the font size list with a set of
constant strings, as follows:

void ClList29::IViewTemp (CView *anEnclosure,
CBureaucrat *aSupervisor, Ptr viewData)
{
inherited::1ViewTemp (anEnclosure, aSupervisor, viewData);
CopyPString ("\p 8 910121416182024283236", typeSizes);
AddRow (12, 0);
}




116 Chapter 5> Customizing the EditText Code

After the inherited IViewTemp method is called, an instance
variable called typeSizes is initialized with a string consist-
ing of font sizes in text form, and the CTable class’s AddRow
method is called to add 12 rows to the table. When this is
done, the CTable class will call the GetCellText method to
access each of the list’s font size values.

Initializing the Font Size List

The GetCellText method has been rewritten as follows to
provide the text for the requested cells:

void ClList29::GetCellText (Cell aCell, short availableWidth,
StringPtr itsText)
{
short  strindex;
strindex = (aCell.v << 1) + 1;
*itsText++ = 2;
*itsText++ = typeSizes[strindex++];
*itsText = typeSizes[strindex];

Recall that the text for the font size list was stored as a single
string, as shown on page 115. Each size is stored as exactly
two characters in the string (note the blank space before the
entries of ‘8’ and ‘9’), so we can build the text entry pointed to
by the itsText argument simply by storing a string length
of 2 and the two characters of the size string that correspond
to the selected cell.

When the Notebook dialog is invoked for the first time, the
settings of the checkboxes, the selected list entries, the radio
buttons, and the text fields will be set to the default values
established when the CFontData instance was first initial-
ized. (See the IFontData code on page 109.)

When the user changes the default values, the new code in
the DoNotebook function copies the new values to the
CFontData instance, so that these values are shown on the
next invocation of the dialog.

Continuing the DoNotebook Code’s Initialization

The next section of the DoNotebook function performs fur-
ther initialization of the dialog’s items:



Implementing the Format Notebook Command 117

dialog->thelnfo = theFontinfo->GetFontData();

g‘;';ftg{mk dialog->BoldCheck->SetValue(theFontInfo->BoldCheck);
dialog->ItalicCheck->SetValue(theFontinfo->ltalicCheck);
dialog->UnderlineCheck->SetValue(theFontinfo->UnderlineCheck);
dialog->OutlineCheck->SetValue(theFontinfo->OutlineCheck);
dialog->ShadowCheck->SetValue(theFontinfo->ShadowCheck);
dialog->CondenseCheck->SetValue(theFontInfo->CondenseCheck);
dialog->ExtendCheck->SetValue(theFontinfo->ExtendCheck);
dialog->Group17->SetStationID(theFontinfo->RadioStationID);
dialog->List25->SetChoice(theFontInfo->FontSelection);
dialog->List29->SetChoice(theFontinfo->SizeSelection);
CopyPString(theFontInfo->FontNameString, fontNameString);
dialog->Field14->SetTextString(fontNameString);
CopyPString(theFontInfo->FontSizeString, fontSizeString);
dialog->Field15->SetTextString(fontSizeString);
CopyPString(theFontInfo->FontSampleString, fontSampleString);
dialog->Field16->SetTextString(fontSampleString);
dialog->Field16->SetFontNumber(dialog->thelnfo.fontNumber);
dialog->Field16->SetFontSize(dialog->thelnfo.fontSize);
dialog->Field16->SetFontStyle(dialog->thelnfo.fontStyle);
dialog->Field16->SetAlignment(dialog->thelnfo.fontAlign);

The foregoing statements access the data stored in the in-
stance of the CFontData class retrieved into the theFontInfo
variable. They set the values of the controls and fields in the
dialog to the previous settings. The fields and controls are ad-
dressed via the dialog variable, which points to the CNote-
book instance.

Creating and Operating the Dialog

After the dialog has been initialized, the next step is to make
it visible and let the user make any desired changes. This is
accomplished by the following code:

Part 3 of - - — .
DoNotebook d!alog >BeginDialog (); |
dismisser = dialog->DoModalDialog (cmdOK);

These statements show and operate the dialog. The BeginDi-
alog and DoModalDialog methods are inherited from the
CDialogDirector class in the TCL.



118 Chapter 5> Customizing the EditText Code

Handling User Interaction

Once the Notebook dialog has been made visible, the next
phase of operation is to handle any changes that the user
makes to the dialog’s setting. The TCL will provide all of the
functionality with regard to user feedback when the dialog is
operated:

+ Checkboxes are checked or unchecked automatically.

“ A previously selected radio button is deselected, and the
new one is selected when clicked.

< List items are highlighted as they are clicked.

Even though the user feedback for these items is automati-
cally provided, we must also add feedback that shows the re-
sults of the user’s selections. Notice that the Notebook dialog
(see Figure 3-22) has an EditText field just below the Font
list, another just below the Size list, and a third just below
the group of Justification radio buttons. Our custom code
must perform the following actions for these items:

< The field below the Font list must show the name of the
currently selected font.

% The field below the Size list must show the currently
selected size.

+ The field below the Justification radio button group must
show an example (the word Sample is the default) of the
application of all the settings.

In order to accomplish the preceeding objectives, we must be-
come aware of any changes made to the initial settings. This
is accomplished in two different ways:

« When the checkboxes and radio buttons are defined, App-
Maker automatically assigns each of these a “click com-
mand” that is sent to the current gGopher when the user
clicks on the item.

< When text is entered into the EditText panes, or if any of
the list items is selected, the appropriate class sends a
BroadcastChange message, which is intercepted by the



Implementing the Format Notebook Command 119

DoCommand
method code
(beginning)

TCL's CBureaucrat class and reissued as a Provider-
Changed message to the item’s supervisor (the Notebook
dialog in this case).

For the first case, a DoCommand method in the CNotebook
class is used to intercept clicks in the checkboxes and radio
buttons. When the Notebook dialog is operational, the
gGopher variable will be set to point to the CNotebook class.
It will revert to the CMainWindow class when the dialog is
dismissed. The concept of the DoCommand method is dis-
cussed in Chapter 4.

For the second case, a ProviderChanged method is gener-
ated, and all changes to the font or size list or to the text
fields will be handled in this method. The concept of the Pro-
viderChanged method is discussed in Chapter 4. The modi-
fied DoCommand code is as follows:

void CNotebook::DoCommand(longtheCommand)

{
short style = -100, align = -100;
switch (theCommand)

{

case cmdBoldCheck:

style = bold;
break;
}

case cmdItalicCheck:

{
style = italic;
break;

case cmdUnderlineCheck:

{

style = underline;
break;

case cmdOutlineCheck:
{

style = outline;

break;
case cmdShadowCheck:

style = shadow;



120 Chapter 5> Customizing the EditText Code

DoCommand break;
method code
(concluded) case cmdCondenseCheck:

style = condense;
break;

case cmdExtendCheck:

style = extend;
break;

case cmdCenterRadio:

align = teCenter;
break;

case cmdRightRadio:

align = teFlushRight;
break;

case cmdForceleftRadio:

align = teFlushDefault;
break;

case cmdLeftRadio:

align = teFlushLeft;
break;

default:

inherited::DoCommand (theCommand);
break;

}
}
if(style 1= -100)

Field16->SetFontStyle(style);
thelnfo.fontStyle A= style;
DrawSample();

}
if(align !=-100)
{

Field16->SetAlignment(align);
thelnfo.fontAlign = align;
DrawSample();
}
}




Implementing the Format Notebook Command 121

DrawSample
method code
(beginning)

Notice that we have merely set the values of the style and
align variables in the individual cases and then added code
at the end of the method to call the SetFontStyle and Set-
Alignment methods for Field16, which is the EditText field
that shows an example of the formatted text, located below
the Justification radio group. In addition, in each case, once
the style or alignment is changed, we call a new method to
draw the sample text in the Field16 pane.

The code for the DrawSample method is as follows:

void CNotebook::DrawSample(void)
{
StringPtr fontName;
short fontNum;
long fontSize, strLength;
Str255 theFontText, theSizeText, the SampleText;

strLength = Field14->GetlLength();
if(strLength > 0)

{
Field14->GetTextString(theFontText);

if(EqualString(theFontText, "\pSystem", TRUE, TRUE))
{

fontNum = systemFont;

}
else if(EqualString(theFontText, "\pApplication", TRUE, TRUE))
{

}

else

fontNum = applFont;

GetFNum(theFontText, &fontNum);

}
}

else

{

fontNum = systemFont;

}
strLength = Field15->GetLength();
if(strLength > 0)

Field15->GetTextString(theSizeText);
StringToNum(theSizeText, &fontSize);

}

else

{



122 Chapter 5> Customizing the EditText Code

DrawSample
method code
(concluded)

ProviderChanged
method code
(beginning)

fontSize = 12;
}
CopyPString("\pSample", theSampleText);
Field16->SetTextString(theSampleText);
Field16->SetFontNumber(fontNum);
Field16->SetFontSize(fontSize);
thelnfo.fontNumber = fontNum;
thelnfo.fontSize = fontSize;

The DrawSample code has to make special provisions for the
System (systemFont) and Application (applFont) font
name choices and also has to handle the case where the user
has deleted or typed in a new font name. The font size isn’t
quite as important, because if the size is too small or too
large, the sample will not be visible in the Field16 EditText
field. Different text can also be typed into the sample field if
desired.

The final event-handling method is ProviderChanged, which
is invoked with changes to the list selections or when the
user types into the EditText fields. The code for Provider-
Changed is as follows:

void CNotebook::ProviderChanged (CCollaborator *aProvider,
long  reason,
void* info)

short index, num;
Str255 theText;

if (aProvider == Field14)
if (Field14->GetLength () !=0)

/I there is some text, so show a sample in Field16
DrawSample();
}
}
if (aProvider == Field15)
{
if (Field15->GetLength () != 0)
{
// there is some text, so show a sample in Field16
DrawSample();

}



Implementing the Format Notebook Command 123

ProviderChanged
method code
(concluded)

}
if (aProvider == List25)
{
if (List25->HasSelection ())
{
// store selection in EditText field
if(List25->GetChoice(&index))

Getltem(((CList25 *)List25)->fontMenu, index+1, theText);
Field14->SetTextString(theText);
DrawSample();
}
}
}
if (aProvider == List29)
{
if (List29->HasSelection ())
{
// store selection in EditText field
if(List29->GetChoice(&index))
{
index = (index << 1) +1;
theText[0] = 2;
theText[1] = ((CList29 *) List29)->typeSizes[index++];
theText[2] = ((CList29 *) List29)->typeSizes[index++];
Field15->SetTextString(theText);
DrawSample();

In the foregoing, we've modified the version of Provider-
Changed shown in Chapter 4 by changing the code to test for
nonzero text field lengths and eliminating the code for han-
dling changes to the Field16 (Sample) field entirely. The text
written into the Field16 field will always be the word Sample,
in the selected font, size, style, and justification. In each case
where the font name or font size text field contents have been
entered manually by the user, the code in the Provider-
Changed method calls the DrawSample method to show the
results of the change. In a similar fashion, when a selection is
made in either the font name or font size list, the selected cell
is identified, and its contents are written into the correspond-
ing EditText field. The DrawSample method is also called in
these cases.



124 Chapter 5> Customizing the EditText Code

Part 4 of
DoNotebook
function

Part-5 of the
DoNotebook
Junction (beginning)

Retrieving the Modified Dialog Values

Finally, after the user finishes making changes and dismisses
the dialog by clicking on either the OK or Cancel buttons, the
following code is executed in the DoNotebook function:

if (dismisser == cmdOK)

{
theFontinfo->SetFontData(dialog->thelnfo);
theFontinfo->BoldCheck = dialog->BoldCheck->GetValue();
theFontinfo->ltalicCheck = dialog->ItalicCheck->GetValue();
theFontinfo->UnderlineCheck = dialog->UnderlineCheck->GetValue();
theFontinfo->OutlineCheck = dialog->OutlineCheck->GetValue();
theFontinfo->ShadowCheck = dialog->ShadowCheck->GetValue();
theFontinfo->CondenseCheck = dialog->CondenseCheck->GetValue();
theFontinfo->ExtendCheck = dialog->ExtendCheck->GetValue();
theFontinfo->RadioStationID = dialog->Group17->GetStationlD();
dialog->List25->GetChoice(&aChoice);
theFontinfo->FontSelection = aChoice;
dialog->List29->GetChoice(&aChoice);
theFontinfo->SizeSelection = aChoice;
dialog->Field14->GetTextString(fontNameString);
CopyPString(fontNameString, theFontinfo->FontNameString);
dialog->Field15->GetTextString(fontSizeString);
CopyPString(fontSizeString, theFontinfo->FontSizeString);
dialog->Field16->GetTextString(fontSampleString);
CopyPString(fontSampleString, theFontinfo->FontSampleString);

If the dialog was dismissed by clicking the OK button, then
the foregoing code will extract the values of the fields and
controls and store them back into the corresponding instance
variables of the CFontData instance.

If the user dismissed the dialog by clicking the Cancel but-
ton, then the values would not be replaced in the CFontData
instance.

Disposing of the Dialog and Handling Failures

The final action of the DoNotebook function is unchanged
from the default-generated code:

dialog->Dispose ();

}
CATCH



Exercises 125

Part-5 of the
DoNotebook
function (concluded)

{

}
ENDTRY;

}

ForgetObject (dialog);

In the event that a failure is detected during the creation or
operation of the Notebook dialog, the CATCH block will han-
dle the failure and then propagate the condition up to the
next higher level. At the point of this failure, the only thing
that we can do is delete the dialog by using the ForgetObject
method.

When the DoNotebook function returns to the CEnsemble-
Doc class’s DoCommand method, that method calls the Init-
TextFormat method to set the current font, size, style, and
justification for the MainWindow pane’s text (see page 111).
Note that although the InitTextFormat method is called
even if the dialog was cancelled, the previous settings will be
intact, so the InitTextFormat method will change the pane’s
settings to their previous values.

The next chapter introduces a completely new feature into
the Ensemble application, and the succeeding chapters ex-
plain the default code generated by AppMaker and the
changes needed to make the default code fully operational.

Exercises

1. Explain the THINK Class Library’s technique of process-
ing command events. What flexibility does the intercep-
tion of commands in the CBureaucrat class provide?

2. Describe the relationship of the CEnsembleDoc and CEn-
sembleData classes. Why are these separate classes in
AppMaker's generated code?

3. What is the purpose of the Revert method in the CEn-
sembleData class?

4. Explain why the GetEditTextHandle and SetEditText
Handle methods are necessary in the MainWindow class.
How are these used in the application?



126 Chapter 5» Customizing the EditText Code

5. Describe the purpose of defining the CFontData class.
Why isn’t the fontInfo structure just global to the appli-
cation as a whole? Under what circumstances could mul-
tiple instances of this structure exist?

6. Describe a method for creating a list of font sizes other
than the fixed string that is presented. (Hint: Think about
a similar list of items that is implemented as a resource.)

7. Describe what mechanism is used to direct mouse clicks
on buttons and checkboxes in the Notebook dialog to the
corresponding DoCommand method?

8. Although the generated code for the ProviderChanged
method only includes tests for the text fields and list
instances in the Notebook dialog, describe how this
method could be used to advantage to handle events that
occur in other user interface elements in the Notebook
dialog? (Hint: Examine the implementation of the Set-
Value method in the TCL's CControl class to aid in
forumlating your answer.)



Chapter 6

Adding a Worksheet Window

In this chapter, we are going to add a spreadsheet like win-
dow to the Ensemble application. The chapter will focus on
the additions to the user interface, providing step-by-step in-
structions for using AppMaker to construct the window. The
following chapter will discuss the default-generated code for
this new window, and the chapter after that will document
the custom additions to AppMaker’s generated code to make
the worksheet completely functional.

This and the next two chapters are quite detailed, so you may
want to stop and review what we’ve covered so far before con-
tinuing. The addition of the worksheet window to the applica-
tion is intricate; however, with the facilities of AppMaker and
the THINK Class Library, its implementation is quite straight-
forward.

Beginning in this chapter, we will discontinue showing pic-
tures of menu command choices being made. We assume
that, by now, you have become familiar with the menus in
AppMaker and THINK C and will not need these pictures as a
reference.

We will also introduce the use of Apple’s ResEdit application
in the latter part of the chapter to “fine-tune” the resources
that AppMaker constructs. The instructions on how to ac-
complish the necessary modifications will be detailed in a
step-by-step approach.

The result at the end of this and the next two chapters will be
an operational worksheet that handles the calculation of for-
mulas that include constants, operators, and worksheet cell
references. The contents of a worksheet can be saved and
read, along with the text in the original main window.

127



128 Chapter 6> Adding a Worksheet Window

Creating a New Window for Ensemble

Figure 6-1
CalcWindow
appearance inside
AppMaker

Adding a new window to Ensemble is a very simple procedure
when AppMaker’s tools are used. However, the window we
will be adding has quite a few components that must be
placed in particular locations, so the construction process is
somewhat detailed. The diagram in Figure 6-1 shows the fully
constructed window, so that you will have an idea of its final
appearance.

E=———— (Untitled)
™ Cell Num: ([Entry ® || (Enter) (cancel)

L@ |pone ®
one fone >
two EwWo

hree
threfntinity

=)
i

infi ®
nity

@ Kl [T

The numbered panes in the figure correspond, in general, to
composite structures. The only exception to this is the
CStaticText field, shown as item ®@.

Basically, the window consists of three layers of objects on
top of a standard Macintosh window. Notice that the window
has no close box. We will construct each item in the steps
that follow and show the exact position and measurements of
the item, according to AppMaker’s Item Info dialog. The fol-
lowing steps are liberally illustrated with screen shots of the
Item Info dialog boxes.

Before beginning the step-by-step discussion of the construc-
tion of the window, it is appropriate to explain the nature and
composition of the numbered panes in Figure 6-1. The details
of each item are summarized in Table 6-1.



Creating a New Window for Ensemble 129

Table 6-1
Component
definitions for
CalcWindow items
shown in Figure 6-1

No. Outside Inside Dimensions Sizing
@® Bord 132 AETx 135 (4,80 24,192) H:;4, V4
® Bord133 n/a (32,-1 21,405) H:5, V4
® Bord 134 ATbl 137 (0,32 21,358) H:5, V:4
(1,1 19,356) H:5, V:4
@ Bord 135 n/a (52,-1 181,33) H:4, V:5
® Bord 136 ATbl 138 (0,0 165,33) H:4, V:5
(1,1 163,30) H:4, V:5
® ScPn 134 ATbl 136 (53,32 H:5, V:5
180,372) H:5, V:5
(0,0 164,356)
@ ® Pane 129 (1,2 19,29) H:4, V:4
® Pane 130 (1,390 19,15) H:4, V4
©)] @ Pane 131 (165,1 15,30) H:4, V:5
@ AETx 134 n/a n/a n/a

The information in the table is rather detailed, but it will
come in handy later, for “tweaking” the locations and dimen-
sions of the CalcWindow components. The columns of the ta-
ble are described as follows:

% The No. column contains the number corresponding to the
CalcWindow item in Figure 6-1.

< The Outside column contains the resource type and num-
ber of the outermost item of the item group. In most cases,
this is a Bord (CBorder) resource, but it may be a ScPn
(CScrollpane) or AETx (CEditText) resource. In the three
cases where this column contains a No. item, the number
refers to the “owning” item number.

% The Inside column identifies the resource type and num-
ber of the inside item of the item group. This may be an
AETx (EditText), ATbl (CTable), or Pane (CPane) item.

< The Dimensions column contains the position and dimen-
sions of the components of each item. They are given, in
order, as Top, Left, Height, and Width values (in pixels).



130 Chapter 6> Adding a Worksheet Window

Figure 6-2
Exploded view of the
construction of the
CalcWindow element

When two rows of dimensions are given, the top row corre-
sponds to the Outside element, and the bottom row corre-
sponds to the Inside element.

« The Sizing column specifies the final sizing characteristics
for each element of the item. If two rows are given, the top
row contains the sizing specification for the Outside ele-
ment, and the bottom row specifies the sizing for the
Inside element. Only two different sizing characteristics
are used:

m A value of 4 indicates that the corresponding dimension
(H = horizontal, V = vertical) is fixed and does not stretch
or shrink as the window is resized.

m A value of 5 indicates that the corresponding dimension
is able to stretch or shrink in proportion to the degree to
which the window is resized.

The final point of interest, before we get into the step-by-step
construction, is an exploded view of the CalcWindow, show-
ing the base window and the three layers of elements. This
view is shown in Figure 6-2.

-
=

o
ity /

\




Creating a New Window for Ensemble 131

Beginning Construction of the CalcWindow

The purpose of the following steps is to show how to add a
new window to the Ensemble application’s user interface.
This window will perform many of the functions of a standard
spreadsheet, so it will have a pane to enter a value into a
specified cell, a main spreadsheet pane with individual rows
and columns, and corresponding row and column label
panes. The window will be added to the resource file that we
zzused in the previous chapters of this book, that we have
called Ensemble.n.rsrc. The steps for constructing the win-
dow are as follows:

1. Launch AppMaker, by double-clicking on the Ensem-
ble.r.rsrc file, and then choose the Windows command
from the Select menu.

2. Selecting Windows allows you to modify an existing win-
dow or create a new window. To make all the window
tools available, choose the Tools as Text command from
the View menu.

3. Pull down the Edit menu and choose the Create Window
command.

4. When you choose the Create Window command, App-
Maker will display a dialog that shows pictures of the var-
ious types of windows that are available and the optional
accessories for each. We want to select a standard docu-
ment window, but one without a close box. The title and
name of the window and the selected options are shown
in Figure 6-3. Notice that except for the lack of a close
box, this is a standard Macintosh document window.
We've given the window the name CalcWindow and made
its title (Untitled). AppMaker will use the name you type
to create the name of the corresponding source code mod-
ules, in this case, CalcWindow. The title is displayed, by
default, in the title bar of the window when it is first
opened.

5. The appearance of the new window is shown in Figure
6-4. This window is almost identical to the one we created
for the MainWindow in Chapter 3 (see Figure 3-3). The
only difference is the absence of a close box in the new



132 Chapter 6> Adding a Worksheet Window

Figure 6-3
e Nome: [T 0:201 |
Lr;f;:rmatlon dialog Title: ‘(Untitled] J
== £
L)
=
ZoomDoc | NoGrowDoc ZoomMoGrow Documnent RDoc
ﬁj ?
Movable DBox PlainDBox AltDBox Other
[J Has Close box ProclD: -
[ visible at Startup
CalcWindow. We will later add a third window to the
Ensemble application that will be identical to this win-
dow. In our user interface, no individual window can be
closed without closing all of the windows. This is accom-
plished by clicking in the close box of the MainWindow or
by choosing the Close command in the File menu when
the MainWindow is in front.
Figure 6-4 =—— (Untitled) E=——1A9O015
Untitled
CalcWindow's
appearance

@)

6. Position the default window near the upper left corner of
your screen, and make its dimensions approximately 5.9
inches wide by 3.5 inches tall. It is rather important that
you size the window fairly close to these dimensions, as



Creating a New Window for Ensemble 133

Figure 6-5
Selecting
CalcWindow from
AppMaker'’s Selection
window

the various elements that make up the window’s contents
will need to be positioned and sized as the window is con-
structed. You can lay a ruler against your screen, and if
your display has a resolution of 72 dots per inch (which is
the case for most Mac displays), then the measurement
will be quite accurate. Select the CalcWindow window by
double-clicking on its name in the Selection List, as
shown in Figure 6-5.

[ECIE Ensemble.w.rsrc E0E]
3 Windows:

Clipboard, 1D = 200 oty
Mainllindow, 1D =1
CalclWindow, 10 = 201

=

7. With the window active (its title bar is not dimmed), pull
down the Tools menu and choose the CBorder tool. You
are going to create the border element for the cell entry
pane, shown as item @ in Figure 6-1. Position the mouse
with the cursor at the approximate position of the top left
corner of the border frame, and draw the border down
and to the right, so that it has approximately the appear-
ance shown in Figure 6-1.

8. Next, choose the Item Info command from the View
menu.

9. You will see a dialog box with settings for the position and
size of the element that is currently selected. This is iden-
tified at the bottom of the dialog box as a CAMBorder ele-
ment. Change the settings in the dialog box to match
those shown in Figure 6-6 by selecting and typing the
new values into the corresponding fields.

10. The next item is the wide horizontal border that is identi-
fied as item @ in Figure 6-1. This item spans the entire
width of the window and is approximately 20 pixels tall.
With the CBorder tool still selected, position the mouse



134 Chapter 6> Adding a Worksheet Window

Figure 6-6

Item Info settings
for the Entry pane
border

Figure 6-7

Item Info settings
for the wide
horizontal border

(=== |tem Info "t

Top: |4 Height: |24

Item 1 Rectangle

Left: |80 Width: |192
@ Enabled O Disabled
Class: |CAMBorder

on top of the window’s left border, at the approximate
position of the top left corner of the new border, and draw
down and across to the right window border. The Item
Info settings for this element are shown in Figure 6-7. If
the border doesn’t seem to be in quite the right relation to
the window border, resize the window slightly by dragging
on its resize box, so that the border’s right edge overlaps
the window’s right border. Notice that the left edge of the
new border is at position -1, with respect to the window
coordinates. This ensures that the left edge of the new
border overlaps the window’s left border.

S [=— Item Info ==

Top: |32 Height: |21

Item 2 Rectangle

Left: [-1 Width: (406
@ Enabled O Disabled
Class: |CAMBorder

11. The next element is also a border and is identified as

item ® in Figure 6-1. This border overlaps the wide hori-
zontal border, beginning about 31 pixels to the right of
the window’s left edge, and extends to about 16 pixels



Creating a New Window for Ensemble 135

Figure 6-8

Item Info settings
for CalcWindow’s
column label border

from the window’s right edge. It lays right on top of the
wide border, so when you draw it, position the mouse
right on top of the previous border’s top line, at approxi-
mately the position of the new border’s top left corner.
Click and drag the mouse to draw a border that is the
same height, but not quite as wide as the wide border.
This creates a border within a border and is the easiest
way to create the appearance and functionality we desire.
The Item Info for this border is shown in Figure 6-8.
Change the settings for your border to match those
shown in the figure. This border will enclose the column
labels for the spreadsheet.

E[1==— I|tem Info =

Top: |32 Height: |21

Item 3 Rectangle

Left: |31 Width: |358
@ Enabled O Disabled
Class: |(CAMBorder

12

13.

. The next element is also a border and is identified as
item @ in Figure 6-1. This is a tall, vertical border that is
approximately 30 pixels wide and extends from the bot-
tom of the wide horizontal border, at the left side of the
window, to the bottom of the window. Position the mouse
at the bottom left corner of the wide horizontal border,
and drag down and to the right, to overlap both the bot-
tom of the wide horizontal border and the bottom window
border. The Item Info data for this border is shown in
Figure 6-9. Make sure that the settings for your border
match those shown in the figure. Like the wide horizontal
border, this border is largely decorative, but will enclose
another border, described next.

The final border lies on top of the previous border to form
the enclosure for the spreadsheet’s row label pane. The
border’s top left corner lies exactly on top of the top left



136 Chapter 6> Adding a Worksheet Window

Figure 6-9

Item Info settings
for tall vertical
border

Figure 6-10
Item Info settings
for row label pane
border

Item Info

Top: |52 Height: (181

Item 4 Rectangle

Left: [-1 Width: (33
@® Enabled O Disabled
Class: |CAMBorder

corner of the previous (tall vertical border) but isn’t quite
as tall. This new border is identified as item ® in Figure
6-1. It extends to within 16 pixels of the bottom window
border. The Item Info settings for this border are shown
in Figure 6-10. Make sure that your settings agree.

S[[=— Item Info =]

Top: |52 | Height: |1/65

Item 5 Rectangle

Left: |[-1 Width: |33
® Enabled O Disabled
Class: |(CAMBorder

14. This completes the drawing of the CAMBorder elements.

When you're done with the preceding steps, the window
should have the appearance shown in Figure 6-11. Notice
that the wide horizontal border overlaps the window’s
right and left borders and that the tall vertical border
overlaps both the bottom of the horizontal border and the
bottom window border. The horizontal and vertical label
borders, which will hold the column and row label panes,
exactly overlap their corresponding wide horizontal and



Creating a New Window for Ensemble 137

tall vertical borders. The next series of steps will show you
how to add the panes that go inside the border elements.

(Untitled) ==——=———TF
Figure 6-11
CalcWindow with all |
borders drawn |
[@

15. Pull down the Tools menu and choose the CEditText
tool.

16. Position the mouse cursor just within the Entry border,
identified as item @ in Figure 6-1. Click and drag the
mouse to create a CAMEditText pane that is entirely
within, but about 1 pixel smaller on each side, of the
Entry border. After you release the mouse, click inside the
pane and type the name Entry inside it. The Item Info
settings for this pane are shown in Figure 6-12. Notice
that this item is Enabled.

Figure 6-12 £ == Item Info

Item Info settings

for CAMEditText -

Entry pane Item 2 Edit text
Top: |8 Height: (16

Left: |84 IDidth: |184
@ Enabled O Disabled
Class: |CEditTexnt




138 Chapter 6> Adding a Worksheet Window

Figure 6-13
Item Info settings
for CScrollPane

17

18.

. The next element is identified as item ® in Figure 6-1.
This is the CScrollPane that permits the spreadsheet to
scroll both horizontally and vertically. Choose the
CScrollPane tool from the Tools menu.

The CScrollPane object is going to cover the majority of
the bottom portion of the window. Its top left corner is
positioned about 1 pixel below and 1 pixel to the right of
the intersection of the horizontal and vertical label panes
(shown as items @ and ® respectively, in Figure 6-1).

Position the mouse cursor near the point of this intersec-
tion, click, and drag down and to the right, until the scroll
pane overlaps the right and bottom borders of the window
frame. The Item Info settings for this element are shown
in Figure 6-13. The scroll pane provides the horizontal
scroll bar only. We will add the vertical scrollbar in the
next step. The scroll pane also provides a framework
within which the spreadsheet panorama can be installed.

[[==—=—= I|tem Info |

Item 12 Scroll Pane
Top: |53 Height: |180
Left: |32 Width: (372
@ Enabled O Disabled

Class: |CScrollPane

19. Create the horizontal scroll bar by choosing CScrollBar

from AppMaker’'s Tools menu. Position the cursor on the
middle bottom edge of the window, so that the cursor still
retains the shape of a cross, and click the mouse button
once. A horizontal scroll bar that fills the width of the
scroll pane should be automatically drawn. If you don’t
achieve the desired results in the first try, delete the
imperfect scroll bar and try the procedure again.



Creating a New Window for Ensemble 139

Figure 6-14
Item Info settings
for CArrayPane

20. Now that the scroll pane is installed, along with its scroll

21.

bars, we can place the spreadsheet pane on top of it as its
panorama. For the purpose of the Ensemble application,
the TCL's CArrayPane class provides an excellent basis
for our spreadsheet. Basically, CArrayPane is a subclass
of the CTable class in which the data associated with
each of the table’s cells is kept in a separate array. The
array and the table are associated, however, by an explicit
dependency connection via the CCollaborator class.
Whenever an element in the array is changed, the associ-
ated table will get a ProviderChanged message to trigger
redrawing the affected cell. To create the spreadsheet
pane, pull down the Tools menu and choose the CArray-
Pane tool.

To draw the CArrayPane in the window, position the
mouse at the top left corner of the CScrollPane element
(shown as item ® in Figure 6-1), and drag down and to
the right until the pane covers the entire blank portion of
the scroll pane element (excluding the scroll bars). The
Item Info settings for the CArrayPane are shown in Fig-
ure 6-14.

E[J=— Item Info ==

Item 15 List

Top: (|53 | Height: (164
Left: [32 Width: |[356
@® Enabled O Disabled

Class: |CArrayPane

22. After the CArrayPane is installed, we want to set its text

style so that the text is smaller and in a different font than
the default 12 point Chicago system font. Make sure that
the CArrayPane is still selected, and then pull down the
Edit menu and choose the Text Style command. Match
the settings with those in the dialog box depicted in Figure
6-15 (9-point Geneva, plain style, with left justification).



140 Chapter 6> Adding a Worksheet Window

Figure 6-15
Setting the Text
Style for the
CAMArrayPane
element

Figure 6-16
Item Info settings
for Horizontal
“column” label
CTable element

Justification

0 [ []Bold @ Left

O Center

[ underline O Right
Oowtlime O Force Left
[ Shadomw

[J Condense Sample
[JExtend

Font Size Style

Bl New Centur...
Bl Palatino Bol..
Bl Times Boldit.
Bookman
Chicago
Courier
Geneva
Helvetica

IGeneua |

23. This and the next two steps are concerned with installing

the CTable panes for the row and column labels. First,
pull down the Tools menu and choose the CTable tool.

24. With the CTable tool selected, position the mouse cursor

just inside the horizontal label border element (shown as
item @ in Figure 6-1), at its top left corner, and then click
and drag until the table fills the inside of the border. You
may experience some difficulty in creating a CTable pane
that fits inside the border. Don’'t worry; just draw it the
best you can, and then use the Item Info settings in Fig-
ure 6-16 to modify your settings to correct the table’s
position and size.

S[=—— Item Info =——
Item 5 List

Top: |33 Height: |19
Left: |32 Width: |356

® Enabled O Disabled
Class: |CTablg

25. The vertical row label CTable pane is constructed in the

same fashion as in step 24. Position the mouse at the top



Creating a New Window for Ensemble 141

Figure 6-17

Item Info settings
for Vertical “row”
label CTable element

left corner, inside the border shown as item ® in Figure
6-1. Click and drag the mouse down and to the right,
until the entire row label border is filled. The Item Info
settings for this element are shown in Figure 6-17.

E[[=== Item Info

Top: |53 Height: [163
Left: |0 Width: |30

Class: |CTable

Item 10 List

® Enabled O Disabled

26. If you look carefully at the illustration in Figure 6-11, you

will see that there are small “holes” in the horizontal and
vertical border construction, at the top left, top right, and
bottom left. These are currently unused portions of the
window but we are going to fill them in with panes that
could have useful purposes as we enhance the Ensemble
application later. To “plug” these “holes,” choose the
CPane tool from the Tools menu.

27. Click within the top left hole of the horizontal border, and

drag down and to the right to fill in the small “hole” in
that border with a CPane element. The settings for this
element are shown in Figure 6-18.

28. The next “hole” we're going to fill in is the top right pane.

Click inside the border of that hole, and drag down and to
the right to fill in that portion of the border with a CPane
element. The Item Info settings for this element are
shown in Figure 6-19.

29. The final “hole” that we will fill is at the bottom left corner

of the window. Click the mouse inside the small border,
and drag it down and to the right to fill in the “hole.” The
Item Info settings for this element are shown in Figure
6-20. This completes the procedure for filling in the holes
in the CBorder panes.



142 Chapter 6> Adding a Worksheet Window

Figure 6-18
Item Info settings
for top left CPane

Figure 6-19
Item Info settings
for top right CPane

Figure 6-20
Item Info settings
for bottom left CPane

s[I=== Item Info

Item 6 User item
Top: |33 Height: |19
Left: |1 Width: |29

@® Enabled O Disabled

Class: |CPang

[ECI== I1tem Info

Item 7 User item

Top: |33 Height: |19

Left: | 389 | Width: |15

@® Enabled O Disabled

Class: |CPane

ECI=== Item Info

Item 11 User item

Top: (217 | Height: |15

Left: |0 Width: |30

@® Enabled O Disabled

Class: |CPane




Creating a New Window for Ensemble 143

30. The last set of steps completes the construction of the
remaining three user interface elements. Pull down the
Tools menu and choose the CStaticText tool.

31. Position the mouse cursor at the top left of the window,
about 10 pixels in from the left window border and cen-
tered vertically within the top and bottom boundaries of
the Entry pane. Click the mouse button once. This will
cause AppMaker to set the position of the leftmost char-
acter in the static text field. Type the characters CellNum
at this time. The Item Info settings for this element are
shown in Figure 6-21. Notice that the item is Disabled.
This will prevent it from reacting to mouse clicks.

Figure 6-21 Item Info
Item Info settings
for CStaticText Item 16 Static text

CellNum element

Top: (8 Height: (16
Left: |8 Width: |64
() Enabled @@ Disabled
Class: |CStaticText

32. Select the CButton tool from the Tools menu.

33. Position the mouse cursor at the approximate location of
the Enter button, as shown in Figure 6-1, and click the
mouse button once. This will create a standard-size Mac-
intosh button element. We are going to use a smaller ver-
sion of this, so change the settings for this button to
match those shown in Figure 6-22. Make sure that the
button is Enabled, as it won't accept mouse clicks if it is
set to Disabled.

34. Now, pull down the Edit menu and select the Text Style
command, which will show the dialog pictured in Figure
6-23. Change the font and style of the text to correspond
with the settings in the dialog (a 10-point, plain-style sys-
tem font with center justification). Click OK, click inside



144 Chapter 6> Adding a Worksheet Window

Figure 6-22 E[[==—= Item Info E’—I
Item Info settings

for the Enter button Item 17 Button

element

Top: |8 Height: |16
Left: |292 | Width: (44
® Enabled O Disabled
Class: |CButton

the button once or twice to ensure that you see a vertical
bar cursor, and then type the word Enter.

Figure 6-23 Font Size  Style Justification
The Text Style (] Bold O Left

gi‘:ff from the Edit Application O ttekic @ Center
Avant Garde [JUnderline O Right
B Avant Garde . [RJ0/uttlllinle] (O Force Left
B Bookman Demi O shadom
B Courier Bold [] Condense sample
B Helvetica Bold CJExtend
B New Century ...[<

foen ] [ (CGnee) (o)

35. Next, create the Cancel button in the same way you cre-
ated the Enter button. Click the mouse at the left edge of
where the button is supposed to be situated, and then
modify the Item Info settings to correspond to those
shown in Figure 6-24. Once again, pull down the Edit
menu and select the Text Style command, causing the
dialog shown in Figure 6-23 to be displayed. The proper
settings for the Cancel button duplicate those for the
Enter button. Click inside the button and type the word
Cancel.

The preceding set of steps completes the construction of the
CalcWindow window. At this point, we are ready to generate



Creating a New Window for Ensemble 145

Figure 6-24
Item Info settings
for Cancel button

=E0=— Item Info =——=—
Item 18 Button
Top: (8 Height: |16
Left: (352 | Width: |44

@ Enabled (O Disabled
Class: |CButton

code, but it will be helpful for you to look once again at the il-
lustration in Figure 6-1 to make sure that your window ap-
pears as shown in the figure. If so, you're ready to generate
code for the new version of the Ensemble application.

Generating Code for the CalcWindow Addition to Ensemble

Figure 6-25
AppMaker’s
suggested list of files
to generate

To generate code for the newly added window, pull down the
File menu and choose the Generate command.

When the Generate command is chosen, AppMaker will dis-
play a dialog that lists all the files that it intends to generate,
as shown in Figure 6-25. In most cases, you will want to gen-

Generate

Generate which modules?
zEnsemblefApp.c m
zEnsembleApp.h Language:
zEnsembleDoc.c THINK C 5.0
zEnsembleDoc.h with Class Library
zMainWindow.c
zMainWindow.h
zCalcWindow.c

zCalcWindow.h
CalcWindow.c
CalcWindow.h
zNotebook.c
zNotebook.h
ResourceDefs.h




146 Chapter 6> Adding a Worksheet Window

Figure 6-26
Complete set of files
for the new version of
the Ensemble
application

erate all the files that it suggests; however, in some cases,
where all you have done is “tweak” a user interface element
setting, or move an element within the window, you may
want to generate code for only the particular affected mod-
ules. With practice using AppMaker, and observing the code
that it generates, you will be able to make that determination.
For our purposes, all of the suggested modules will be gener-
ated. Notice that two new files called CalcWindow.c and Cal-
cWindow.h, have been added and that AppMaker also
intends to regenerate all the files whose names begin with the
letter z. These are the superclass files, many of which will be
modified to take into account the new window we’'ve added.
Click the Generate button for this window, and when App-
Maker is finished, choose the Quit command from the File
menu and click Save to save the changes to the resource file.

After the files have been generated, you will want to recompile
the project. Figure 6-26 shows all the files for the new version
of the project, as seen in the Finder’s small icon view.

Ensemble 7/ Ensemble. 7 rsrc CaleWindow.c CaleWindow h
EnsembleMain.c ResourceDefs.h zCaleWindow ¢ 2Caleindow h
EnsembleApp.c Ensemble App.h

EnsembleData.c EnsembleData.h

EnsembleDoc.c EnsembleDoc.h

FontData.c FontData.h

Main¥indow .c MainVindow h

Notebook.c Notebook h

zEnsembleApp.c zEnsembleApp h

zMainWindow .c zMain¥indow .h

zNotebook.c zNotebook h

To recompile the project, follow these simple directions:

1. Launch the THINK C application by double-clicking on
the Ensemble.n project file. Pull down the Source menu
and select the Add command.

2. When the Add command is chosen, THINK C will display
a dialog that shows all of the source files in the current
folder that are not present in the project. This is illus-

trated in Figure 6-27.



Creating a New Window for Ensemble 147

Figure 6-27
Selecting Add All in
the Add dialog

Figure 6-28
Clicking the Done
button in the Add

dialog

[€3 Ensemble #3 default v}

0 CalcWindow.c < Dianne
0O zCalcWindow.c

Desktop

fiane

Cancel

il

B [@

i

I

o Hemape

3. After the Add All button is clicked, and the file names all
show in the bottom window in the dialog, click the Done
button, as shown in Figure 6-28. This will dismiss the
dialog and cause all the files in the bottom window to be

added to the project.

Notice that the Add dialog doesn’t list any of the header
files. THINK C will automatically add the header files that
are needed by each source file as it is compiled.

[<2 Ensemble #3 default ¥

ity < Dianne
oot

Desktop

Cancel

" faa )

L

[ [

CalcWindow.c
zCalcWindow.c

Add Al
| Hemape |

<l

4. Figure 6-29 shows a portion of the project window, with
all of the files for the Ensemble project added. At this
point, none of the newly modified files has been compiled.



148 Chapter 6> Adding a Worksheet Window

Figure 6-29
Ensemble.r project
file showing all files
added

Figure 6-30
Clicking the Use
Disk button to force
THINK C to check
whether files have
been modified

Ensemble.n §'|

# Name obj size

+ CaleWindow.c

%+ Ensemble App.c
+ EnsembleData.c
# EnsembleDoc.c
+ EnsembleMain._c
4+ FontData.c

4 MainWindow.c
4+ Hotebook.c

+ zCaleWindow .c
4 zEnsemble App.c
+ zEnsembleDoc. ¢
+ zMainWindow ¢
¢ zHotebook.c

5. The next step is to pull down the Source menu and
choose the Make command. Use this command, rather
than the Bring Up To Date command from the Project
menu, because changes to files are not recorded in THINK
C, unless they have been made with its internal editor or
unless the files have never been compiled.

6. Choosing the Make command will cause THINK C to dis-
play a dialog, as shown in Figure 6-30. This dialog lists all
the source files in the project. Click the Use Disk button,
as shown in the figure. This will cause THINK C to scan
the files for any changes that may have been made since
it was last invoked. In this way, you can make THINK C
subsequently recompile the modified files.

Source files to compile: 0

Check Al
Libraries to load: 0

Check All .c

Calec¥indow.c
Ensemble App.c
EnsembleData.c
EnsembleDoc.c
EnsembleMain.c
FontData.c
Main¥indow.c
Notebook.c

{hpok Naoog

i

[ Quick Scan

[ Maka J [Don’t Make]

—

Cancel

—




Creating a New Window for Ensemble 149

7. After THINK C has scanned the files in the project and
determined which ones need to be updated (indicated by
check marks next to their names), you should click the
Make button at the bottom of the dialog (which is enabled
only if one or more files needs to be updated), as shown in
Figure 6-31.

If you are sure that one or more files needs to be recom-
piled, and THINK C fails to enable the Make button, click
the Quick Scan checkbox to get rid of the check mark,
and click the Use Disk button once again.

Rather than just perform a quick scan of the files, THINK
C will do a more thorough job and will undoubtedly check
the files that need recompilation. In the worst case, where
even this step fails, you can check files manually, by
clicking at the left of their names in the Make dialog.

Figure 6-31 Source files to compile: 9
Clicking the Make . - : Check All
button ia the Make Libraries to load: 0
dialog v Calc¥indow .c
v Ensemble App.c
v EnsembleData.c
v EnsembleDoc.c
v EnsembleMain.c
v FontData.c

v Main¥Window.c
v Notebook.c

@ ([lon’t Make ]

8. THINK C will commence compiling each of the files that it
has determined need to be recompiled. In many cases,
files that were not modified will require recompilation,
because they refer to header files that have changed.

Check All .c

Check None

[ Quick Scan

Cancel j

"

9. You are now ready to run the default version of the new
Ensemble application. Pull down the Project menu and
choose the Run option. Since the debugger is enabled by
default, you will also have to click the Go button in the
debugger’'s window. At this point, the initial EditText
window will be in front. Resize and move that window so
that it is below the CalcWindow that appears on the




152 Chapter 6> Adding a Worksheet Window

Figure 6-33
AppMaker v1.5
resources shown by
ResEdit

When AppMaker writes the parameters for border and pane
elements, it chooses the most likely values for the sizing
characteristics in the corresponding resource. In most cases,
this choice will be correct; however, for the complex overlap-
ping borders and panes of the CalcWindow design, we need
to correct a few of the default-generated sizing values.

The process of modifying the generated resources is pre-
sented in a step-by-step fashion. In this case, we will be us-
ing the ResEdit program that is shipped with the THINK C
version 5.0 product. This should be ResEdit version 2.1 or
later. The process is as follows:

1. First, make a copy of the TMPLs file that is shipped with
AppMaker version 1.5. We will not be altering the copy,
but will hold it aside, in case we run into problems while
performing the following steps. The original version of the
file can easily be replaced with the copy.

2. Launch ResEdit, and locate and open the TMPLs file. You
will see that ResEdit displays the existing resource types
as a series of icons in a window, as shown in Figure 6-33.
The TMPLs file only contains the ICON and TMPL
resource, as pictured.

== TMPLs —=0F

|CON

3. Make sure that the "TMPL' resource icon is selected, and
then pull down the Edit menu and choose the Copy com-
mand (or press Command-C). This will copy the TMPL
resources to the clipboard.

1. For more information on the sizing parameters of panes and other interface elements, see the
THINK C Object-Oriented Programming Manual, version 5.0, pages 107 through 113.



Creating a New Window for Ensemble 153

Figure 6-34
ResEdit
Preferences file
opened

Figure 6-35
TMPL resources
pasted

4. Pull down the File menu and choose the Quit command
to quit ResEdit. If ResEdit asks you whether you want to
save changes before you quit, click No. You can discard
the copy of the TMPLs file at this time.

5. Locate the ResEdit Preferences file. It will be in the Pref-
erences subfolder if you are running System 7.0 or
directly in the System folder if you are running System
6.0.x. Make a copy of this file, and then double-click the
original file to launch ResEdit. When it is launched,
ResEdit will display the resources that currently exist in
its Preferences file, as shown in Figure 6-34.

E[1= ResEdit Preferences =

PREF FREF PREF

FILE GNRL PAGE
PREF VIEW
PREF RUEW

6. Pull down the Edit menu and choose the Paste command
(or press Command-V). This will paste the TMPL
resources copied from the TMPLSs file to the ResEdit Pref-
erences file, as shown in Figure 6-35.

E[J= ResEdit Preferences S[J5|
uts

FREF PREF PREF

FILE GNRL PAGE
o o} —E=
=
PREF VIEW =1

PREF RUEM

7. Pull down the File menu and choose the Save command.
Then pull down the File menu and choose the @Quit com-
mand to terminate the execution of ResEdit. At this point,



154 Chapter 6> Adding a Worksheet Window

you can throw away the copy of the ResEdit Preferences
file.

Before continuing, it is useful to explain what the preceding
steps have accomplished. Because AppMaker creates quite a
few resource types that are undefined in the version of
ResEdit that ships with THINK C, it is necessary to provide
ResEdit with templates that describe the various fields of
these AppMaker-specific resources.

If you looked inside the set of TMPL resources, you would
find that there is a template for a Bord resource, a Pane re-
source, an AETx resource, and many other resources. Each
template describes the sizes and types of the various fields in
the corresponding resource type. Therefore, with AppMaker’s
templates installed into ResEdit, you can inspect and modify
the resources generated by AppMaker by looking at values in
named fields, rather than by decoding hexadecimal values in
ResEdit’s general editor.

AppMaker’s templates have to be installed into ResEdit’s
preferences file only once. If you have occasion to modify
AppMaker-generated resources in the future, the templates
you have just installed can be used without following the pre-
ceeding steps.

The next series of steps will describe the exact modifications
to the resources that AppMaker generated for the CalcWin-
dow window.

1. You should begin by duplicating the Ensemble.n.rsrc file
and then launching ResEdit and opening the original
Ensemble.rn.rsrc file. You should see a window that looks
something like that shown in Figure 6-36. As you can see,
a great number of different resource types are generated,
and all of these can be edited to modify the functionality
of the Ensemble application. In the steps that follow, we
will be modifying only a few of these resources; however,
in the later stages of development, we will come back to
ResEdit to personalize the application with its own Finder
icon and 'BNDL' resources, to make it a true stand-alone
and unique application.



Creating a New Window for Ensemble 155

EO=—= ensemble.n.rsrc =———=0115
Figure 6-36 0501001 aersiont feteien il 4D it
Ensemble.r.rsrc it T ] I S R o
resource ﬁle contents .0"1000000 3!000000 33000009 1IO0W°0 E
| ADTX AETx ALRT AMKR ATbI BNDL
sototeer [ et 1001 0001004
01101010 @E 01101010 Q1101010
00011110 00011110 0001 1110
01000000 § (}::D 91000000 91000000
Bord CNTL ctip Estr
o101 1101 = h
R oD
. @ 01060000 &
| FREF hmnu icld ics#
o atota0l  oarotact
: il s
& - & === 21080000 21000000
ics4 ics8 MBAR MENU Pan# Pane
o101 1101 P The
aisisls DO quik
o 200000 @ grovn
ScPn SICN SIZE STR STR® TEXT
2.0bl EEmE  atotest
es [ ] HEE
70.. —H =
| vers WIND XXXX =
=

2. With the ResEdit window open, showing the resources in
the Ensemble.n.rsrc file, double-click on the icon whose
type name is Bord, as shown in Figure 6-37. Note that the
window has been resized in this figure, to show only a few
of the resource types.

Figure 6-37 E[1= Ensemble.m.rsrc
Selecting the Bord o101 1101 0101 1101
1 ooioi00l 60101001
resource type 01101010 1101010
00011110 00011110
21000000 21000000
ADTx AETx
IR ] elol 10l
00101001 00101001
o110 1010 o110 1010
LLIRREE 0001 1110
01000000 01000000
| AMKR ATbl BNDL
] B w
01101010 [] @E o110 1010
0001 1110 00011110
01000000 <::||::) 21800000
CNTL CtIP




156 Chapter 6> Adding a Worksheet Window

Figure 6-38

A list of the Bord
resources in the
Ensemble
application

3. Instead of double-clicking on the Bord resource, you can

click to select it and then choose Open from ResEdit’'s
File menu. In any event, once the resource category has
been opened, you will see a list of Bord resources, as
shown in Figure 6-38. In the next few steps, you will be
modifying only two of these resources.

[EC= Bords from Ensemble.w.rsrc =05

10 Size Name
130 26 m
131 26
132 26
133 26
134 26
135 26 T
136 26 =

4. Double-click on the Bord resource whose ID is 134 in the

list. This is the border that corresponds to item @ in Fig-
ure 6-1, the wide horizontal border. We discovered the
number corresponding to this resource by looking in the
generated code for the zCalcWindow superclass module,
in the IZCalcWindow method. This code is as follows:

Rect4 = new CAMBorder;
Rect4->IViewRes (‘Bord', 134, Rect3, supervisor);

List5 = NewList5 ();
List5->1ViewRes (‘ATbl', 137, Rect4, supervisor);

Notice that the NewList5 (ATbl 137) element is enclosed
by the Rect4 element in the last line of the code. This is
proof that it is Rect4, and thus Bord 134, that we need to
modify. Because you have installed AppMaker's TMPL
(template) resources in ResEdit’s Preferences file, you
will be able to see all of the parameters that govern the
position, size, appearance, functionality, and sizing for
this resource. The settings for the Bord 134 resource are
shown in Figure 6-39. Note that the figure shows radio
buttons for the Boolean variables, such as Visible and
Active, and has decimal values for the numeric parame-



Creating a New Window for Ensemble 157

Figure 6-39
Settings for Bord 134

ters, such as the border’s Height and Width. The two siz-
ing parameters that you will need to modify are listed as
Horiz Sizing and Vert Sizing. Change these to the values
5 and 4, as shown in the figure. This indicates that the
border is elastic in the horizontal direction when the win-
dow is resized, but is fixed in the vertical direction. If you
think about it, that makes sense. You want the horizontal
border to always reach from the left to the right window
border, but you don't want its vertical position to change
when the window is resized. You will also need to click the
False selection for the Wants Clicks item. Doing so dis-
ables mouse clicks in this pane. After changing these val-
ues, click in the window’s close box.

E[J==———= Bord |D = 134 from Ensemble.n.rsrc
Disible @® True O False
Active ® True O False
Wants Clicks QO True @ False
Width
Height 21
Horiz 32
Location
Vert
Location

H
1]

Print Clip 0
Thickness 1
Drop 0
Shadow

Length

oriz Sizing |5

ert Sizing |4
@ True QO False

uto
efresh

5

. You should still have the list of Bord resources, as shown
in Figure 6-38, on your screen. Double-click on the
resource whose ID is 136. This is the vertical (row label
pane) border (which you can verify by consulting the gen-
erated code, as described before). Its settings are shown
in Figure 6-40. Change the Horiz Sizing and Vert Sizing
parameters to 4 and 5, respectively. This will allow the
border to stretch vertically, but remain fixed horizontally.
The settings are shown in the figure. Also, click the False



158 Chapter 6> Adding a Worksheet Window

radio button for the Wants Clicks setting. This will dis-
able mouse clicks from being recognized in this pane.
When you have made the indicated changes, click the
window’s close box, and then click the close box of the list
of Bord resources. You should still have the window
showing all of the resources in the Ensemble.rn.rsrc file
on your screen.

ED Bord 1D = 136 from Ensemble.w.rsrc
Figure 6-40
Settings for Bord 136 Visible @® True O False
| RActive ® True (O False
| wants Clicks O True @ False
width
| Height 165
Horiz 0
Location
Location
Horiz Sizing |4 |
Vert Sizing 5 I
Auto @® True O False
Refresh
Print Clip 0
Thickness 1
| prop 0
Shadow
Length

6. Scroll to the icon that shows the ATbl resource type, and
double-click on that icon, as shown in Figure 6-41. This
set of resources contains the parameters of all the
CTable-oriented user interface elements. Among them are
the two CTable panes (row and column labels), as well as
the CArrayPane that occupies the majority of the window.

7. When you open the ATbl resource, you will see a list of all
the tables that have currently been defined in the Ensem-
ble application. The list is shown in Figure 6-42. Note
that in addition to the three tables we defined in the Calc-
Window design, there are two additional tables in the list.
These correspond to the Font and Size tables in the Note-
book dialog design, from Chapter 3.



Creating a New Window for Ensemble 159

Figure 6-41
ATbl resources
selected

Figure 6-42

A list of the ATbl
resources in the
Ensemble
application

=[J= Ensemble.w.rsrc =]
[JLINRI]] elol el G
010 1001 001 1001
ol10 1010 ol 1ol .
[SIINNRL 001 1110
g.l 000000 1!000000
ADTx RETx  ALRT
aial 1ol
i 48
LIl IR NN @
01000000 B
AMKR BNOL

] LICINNT]]

1 Eﬁimi 0010 100}
ollolold ] @E elig1al0
ool 1110 00011110
0100 0000 <::| |::> 01000000

Bord CNTL CtIP

== ATbls from Ensemble.n.rsrc SOE|
1D Size Name
134 76 I
135 TH
136 g2
137 76 ol
136 TH EJ

8. Double-click on the ATbl resource whose ID is 137 to open

it for the purpose of changing its sizing parameters. This is
the table that corresponds to the column labels associated
with item @ in Figure 6-1, the table that will hold the col-
umn labels for the spreadsheet displayed in the CalcWin-
dow. There are a great number of parameters associated
with an ATbl resource, so we will just focus on the sizing
parameters, but you may want to look at all the various
settings that are available to be modified. Change the
Horiz Sizing and Vert Sizing parameters to match the
settings in Figure 6-43. This will enable the column labels
to stretch or shrink horizontally, but remain fixed verti-
cally. When you have made these changes, click in the



160 Chapter 6> Adding a Worksheet Window

Figure 6-43
Settings for ATbl 137

close box of the window. You should still have the list of
ATbl resources on your screen, as shown in Figure 6-42.

E[J=——= ATbl ID = 137 from Ensemble.n.rsrc

| Horiz Sizing |5

Disible
Active
| Wants Clicks @ True O False
| Width
Height 19

Horiz 1
| Location

Dert
Location

Vert Sizing 4

Auto
Refresh

@ True QO False
@ True O False

@ True QFalse

9.

10.

11.

12.

Double-click (or select and then choose the Open com-
mand from ResEdit’s File menu) the ATbl resource whose
ID is 138. This is the table corresponding to the vertical
(row labels) pane, identified as item ® in Figure 6-1. The
settings for the sizing characteristics for this table are
shown in Figure 6-44, as 4 and 5 for the Horiz Sizing
and Vert Sizing parameters, respectively. These settings
enable the pane to stretch and shrink vertically, but
remain fixed horizontally. When you are finished making
these changes, close the window and also the list of ATbl
resources by clicking in their respective close boxes.

The next series of steps will modify the sizing characteris-
tics of several Pane resources. Scroll the window showing
the resources in the Ensemble.n.rsrc file until the icon
with the name Pane is visible, and then double-click this
icon to open the list of these resources, as shown in Fig-
ure 6-45.

A window listing the Pane resources in the Ensemble
application should appear, as shown in Figure 6-46.

Double-click on the Pamne resource whose ID is 129 to
open a window containing the settings of this resource, as
shown in Figure 6-47. The figure shows the complete set
of parameters for the Pane resources. Change the Horiz



Creating a New Window for Ensemble 161

ATbI 1D = 138 from Ensemble.vw.rsrc %

Figure 6-44 .
Settings for ATb1 138 Disible @ True O False
Active @ True O False
Wants Clicks @ True O False
width
Height 163
Horiz 1
Location
Location
Horiz Sizing |4
Dert Sizing 5
fluto @ True O False
| Refresh
Figure 6-45 IECI= Ensemble.v.rsrc =
Selecting the list of
Pane resources -
ics4 ics8 MBAR
riLE [JLIRNE ]
0010 1001
ST o110 10 lg |
(=== o104 4000 ;
MENU Pan#
2010 1001
speine Q0
21000000 @
ScPn SICHN SIZE

Sizing and Vert Sizing parameters to 4 and 4, respec-
tively, to force the pane to remain fixed in size and loca-
tion when the window is resized. This pane corresponds
to the “hole” at the upper left corner of the horizontal bor-
der and is identified as item @ in Figure 6-1. When the
changes have been made, close the window.



162

Chapter 6> Adding a Worksheet Window

Figure 6-46
A list of Pane
resources in the
Ensemble
application

Figure 6-47
Settings for Pane 129

Em=

Panes from Ensemble.mw.rsrc E0IE

1D Size Name
128 22 ats
129 22 u
130 22 o
131 22 El

ECJ==== Pane ID = 129 from Ensemble.m.rsrc E_|
<

Visible
fctive
Wants Clicks @ True O False

Width
Height 19

Horiz 2

Location

Location
Horiz Sizing |4
Uert Sizing 4

Auto
Refresh

Print Clip

@ True QFalse |
®True O False

@ True QO False

[

B[]

13. Double-click to open the Pane resource whose ID is 130,

14.

the settings of which are shown in Figure 6-48. Change
the sizing settings for this pane to match those shown in
the figure. The pane is shown as item ® in Figure 6-1,
and it fits in the upper right “hole” in the horizontal bor-
der. Both sizing parameters are set to 4, indicating that
the pane is fixed horizontally and vertically in size and
position. When you have completed these changes, close
the window.

Double-click to open the Pane resource whose ID is 131,
the settings of which are shown in Figure 6-49. Change
the sizing settings for this pane to match those shown in
the figure. The pane is shown as item ® in Figure 6-1, fit-
ting into the “hole” at the lower left corner of the window.
The sizing, both horizontally and vertically, should be set
to 4, indicating that the pane is fixed in size and position.
When you have completed the changes to this pane, click



Creating a New Window for Ensemble 163

EZDE Pane 1D = 130 from Ei T.rsre

Figure 6-48 Visible @True O False
Setﬂngs for Pane 130 Active @ True QO False
Wants Clicks @ True Q False
Width
Height 19
Horiz 390
Location
Location
Horiz Sizing (4
Vert Sizing 4
Auto @ True O False
| Refresh
printcip [0 |

the close box to dismiss the window, and also click the
close box to dismiss the list of Pane resources.

EEI— Pane ID = 131 from Ensemble.n.rsrc S——]
Figul'e 6-49 Visible @True QFalse
Settings for Pane 131 Active @True OFalse
Wants Clicks @ True O Faise
Width

Height

Horiz
Location

15
1
4
4

Location

Horiz Sizing

Uert Sizing

Auto @ True QO False
Refresh

printclip [0 |

15. The final change modifies the Line Width parameter of
the EditText pane that is identified as item @ in Figure
6-1. This is the Entry pane, represented by an AETX
resource. Double-click on the AETx resource icon, as
shown in Figure 6-50.

16. When the AETx resource list is opened, a window con-
taining a list of these resources is displayed, as shown in
Figure 6-51.

17. Double-click on the AETx resource whose ID is 135. This
resource contains the settings for the Entry pane. We are



164 Chapter 6> Adding a Worksheet Window

Figure 6-50 E1= Ensemble.n.rsrc =
Opening the AETx
resources o101 1101 TI01 1101
00101001 0010 1001
el1e 1010 21101010
0001 1110 0001 11148
21000000 o100 0008
ADTx
2101 1101 e101 1101
mops, et Gl
0001 1110 00011110 B
21000000 21000000 B
AMKR ATbl BHOL
o101 1101 2101 1101
miletl QSR
2001 1110 o001 1110
2100 0000 (:JED 21060000
Bord CHTL CtIP
Figure 6-51 EC]= AET®s from Ensemble.w.rsrc =05
A list of AETx 1D Size Name
resources in the 129 56 >
Ensemble 130 56
131 56
132 56
133 56
134 56 §
135 56 )

interested only in changing the Line Width parameter to
the value 400, as shown in Figure 6-52. This setting will
allow the Entry pane to scroll, after we have customized
the code to enable scrolling for this EditText field. The
value 400 is a little more than twice the width of the ele-
ment, as indicated in the Width field of Figure 6-12.

When you have completed this change, close the window,
and also close the window containing the list of AETx
resources, by clicking in their respective close boxes.



Exercises 165

Figure 6-52
Settings for AETx
135

El| AETx ID = 135 from Ensemble.m.rsrc
Vertical |0__|
Position
Horizontal D
Position
Line Width
Whole Lines (O True @ False
Editable @ True O False
Styleable @® True O False
TEXT ID 132
Teut Just. 0
Tent Style 0
Text Size 0
Font Name |

18. Pull down ResEdit’s File menu and choose the Save com-
mand, to preserve the changes that have been made to
the resources. After saving the changes, pull down the
File menu and choose the @Quit command to terminate
execution of the ResEdit application.

After following the preceding steps, you can discard the copy
of the Ensemble.n.rsrc file if all of the steps were completed
successfully.

Exercises

1. Describe the rationale for using instances of the CTable
class to represent the column and row labels in the work-
sheet window.

2. Explain what purpose could be served by the CPane ele-
ments that were placed in the top left, top right, and bot-
tom left corners of the worksheet window. (Hint: Think
about scrolling a very large worksheet.)

3. Explain how the various sizing parameters affect their
corresponding elements in a window’s design. For exam-
ple, what would happen if the sizing characteristics of the
column label border weren’'t modified?



166 Chapter 6> Adding a Worksheet Window

4. What different techniques would have to be used to han-
dle the entry of data into the worksheet if a different
approach were used? What problems would have to be
resolved? (Hint: A Pane can overlay and obscure anything
underneath it in a window.)!

1. This exercise has far-reaching consequences in the overall design of the application and
would be an excellent extra-credit project. The goal would be to provide the means for han-
dling in-cell entry and editing of worksheet data.



Chapter 7

Examining the CalcWindow Code

This chapter describes the modifications to the Ensemble ap-
plications code generated by AppMaker after adding the Calc-
Window user interface elements. It should be apparent that
none of the subclass files, whose names do not begin with the
letter z, were modified. Thus, their contents are safe. Only
the superclass files, whose names do begin with the letter z,
have been regenerated. This is a tremendous help, as we will
never (well... hardly ever) have to make any changes to the
superclass files, and they are available to be reconstructed at
AppMaker’s will.

In the course of generating new files, after the CalcWindow
was added to the user interface in Chapter 6, AppMaker gen-
erated two new source files and their companion header files:

% CalcWindow.c contains the subclass methods that over-
ride and supplement the methods generated in the super-
class and will also be the target file for the custom code
that is described in Chapter 8.

< CalcWindow.h contains the class declarations for the sub-
classes defined in the CalcWindow.c source file.

< zCalcWindow.c contains the superclass methods, that
implement the initialization and default behavior of the
new user interface elements.

% zCalcWindow.h contains the class declarations for the
superclasses defined in the zCalcWindow.c source file.

All of the superclass source and header files have been regener-
ated; however, we will only describe the differences in them
brought about by the addition of the new user interface elements.

167



168 Chapter 7> Examining the CalcWindow Code

The CalcWindow’s Code Structure

As indicated in Chapter 4, the best way to see how the newly
generated code files are associated with the other parts of the
Ensemble application is to look at the diagram shown in Fig-
ure 7-1 and compare it with Figure 4-1.

Figure 7-1 . g?i" CApplication CWindow
unction
Ensemble inherited
Application
structure with EnsembleMain
ZE
CalcWindow added nsembleApp
Create ZMainWindow
inherited .
@ TCLCHass methods coatariic N
methods
— i N inherited  gGopher
O : methods «** Chain of
Generated Subclass : | Create P
: nst
H ance CDocument .,

— Inherited Method Flow
== Create New Instance
----- #»  Chain-of-Command Flow

Chainof §

Command § CAMDialogDirector I}
H

inherited Create

H methods Instance
ZEnsembleDoc CEnsembleData inherited
methods

Instance
inherited S~
ethods

ZNotebook Chainof §
Command §

CEnsembleDoc inherited
Create methods :
Instance ‘ ] i
K Frelam CDirector :-
S, nstance ;
Chain of . \ DoNotebook CNotebock K
Command ‘s, &
*, CCalcWindow inherited o

‘. methods inherited B
R
o, ZCalcWindow methods o
% o
. »

.
Rl
.

. .
.........
.........
..................

It is clear from the figure that the CCaleWindow subclass in-
stance is created from the ZEnsembleDoc class—specifically,
by the BuildWindows method. Its superclass, ZCalcWindow,
is a subclass of the TCL's CDirector class, as is the CDocu-
ment class (although that relationship isn’t shown in the dia-
gram). It is important to note that all subsidiary windows will
be created from the ZEnsembleDoc class and will inherit
their behavior from the CDirector class. The structure of all
AppMaker-generated applications have only one window that
is managed by the TCL’'s CDocument class. This implies
that, because the document creates the CDataFile class in-
stance, all windows will share a common file. If you need to



The CalcWindow’s Code Structure 169

open a different type of file for each window, it is better to de-
sign the application so that it has a single window, with mul-
tiple instances of that window (created by the New and Open
commands in the application’s File menu). This model is per-
fect for our purposes. The modified classes and methods are
shown in Table 7-1.

Table 7-1 Class Method Description

Generated code ZEnsembleDoc BuildWindows includes code to create an

changes for the :
instance of CCalcWindow and
CalcWindow user initialize it

interface element

ZCalcWindow 1ZCalcWindow contains all the code to create
and initialize all of the interface
elements in the CalcWindow
defined in AppMaker

ZCalcWindow various methods for creating the CTable

and CArrayPane, as well as the
hole filler panes. Meant to be

overridden
CCalcWindow ICalcWindow calls the inherited IZCalcWindow
initialization method, and con-
tains post initialization code
CCalcWindow various methods to create, initialize and

supply the cell text for each of the
CTable panes (e.g., NewList5,
IViewTemp, and GetCellText)

CCalcWindow various creating, initialization, draw, and
other methods for each of the hole
filler panes (e.g., NewUser6,
IViewTemp, and Draw)

CCalcWindow DoEnterButton methods to handle mouse clicks
DoCancelButton  on the respective buttons

CCalcWindow UpdateMenus calls inherited method

CCalcWindow DoCommand recognizes mouse commands for
the Enter and Cancel buttons

CCalcWindow ProviderChanged intercepts ProviderChanged
messages from the CTable and
EditText instances

The classes and methods listed in the table provide only the
default appearance shown in Figure 6-32 when the generated
code was compiled and executed. It is this default functional-
ity that the following sections discuss.



170 Chapter 7> Examining the CalcWindow Code

Newly Generated Code in ZEnsembleDoc

In the newly generated code, none of the superclass modules
except zEnsembleDoc.c has been modified, even though the
other modules were regenerated. There is no harm to this,
and user interface modifications could very well affect other
modules.

BuildWindows Method Code

The ZEnsembleDoc class’s BuildWindows method has been
modified to create and initialize the new CalcWindow that we
defined. The new version of this code is as follows:

void ZEnsembleDoc::BuildWindows (void)
{

CWindow *mainWindow;

CDirector *subWindow;

mainWindow = new CMainWindow;

itsWindow = mainWindow;

((CMainWindow *)mainWindow)->IMainWindow (this, itsData);
itsMainPane = ((CMainWindow *)mainWindow)->itsMainPane;

subWindow = new CCalcWindow;
((CCalcWindow *)subWindow)->ICalcWindow (this, itsData);

The foregoing code creates the MainWindow, in the same
way as shown in Chapter 2, on page 34. In addition, it cre-
ates a new instance of CCalcWindow and calls its initializa-
tion method.

If additional windows are added to the application, the Build-
Windows method will be enhanced to create and initialize
these as well.

Newly Generated Code in ZCalcWindow

The zCalcWindow.c file has been generated to contain the
initialization method and other superclass methods that es-
tablish the default appearance and functionality of the Calc-
Window window.



The CalcWindow’s Code Structure 171

IZCalcWindow Method Code

The code to create and initialize all of the interface elements
that form a part of the CalcWindow design is contained in
the IZCalcWindow method. This is a rather large method, be-
cause of all the elements we defined. The code is as follows:

i i :1ZCalcWi i * i
The IZCalcWindow }/oud ZCalcWindow::1ZCalcWindow(CDirectorOwner *aSupervisor)

method creates and

initializes all the CView *enclosure; '
user interface CBureaucrat *supervisor;
elements in the CSizeBox *aSizeBox;
CalcWindow

inherited::IDirector (aSupervisor);

itsWindow = new CWindow;

itsWindow->IWindow (CalcWindowlID, FALSE, gDesktop, this);
enclosure = itsWindow;

supervisor = this;
Rect1 = new CAMBorder;
Rect1->IViewRes (‘Bord', 132, enclosure, supervisor);

EntryField = new CAMEditText;
EntryField->IViewRes ('AETX', 135, Rect1, supervisor);

Rect3 = new CAMBorder;
Rect3->1ViewRes ('Bord', 133, enclosure, supervisor);

Rect4 = new CAMBorder;
Rect4->1ViewRes (‘Bord', 134, Rect3, supervisor);

List5 = NewList5 ();
List5->IViewRes (‘ATbl', 137, Rect4, supervisor);

User6 = NewUser6 ();

User6->1ViewRes ('Pane’, 129, Rect3, supervisor);
User7 = NewUser7 ();

User7->IViewRes ('Pane’, 130, Rect3, supervisor);
Rect8 = new CAMBorder;

Rect8->IViewRes ('Bord', 135, enclosure, supervisor);
Rect9 = new CAMBorder;

Rect9->1ViewRes ('Bord', 136, Rect8, supervisor);
List10 = NewList10 ();

List10->1ViewRes (‘ATbl', 138, Rect9, supervisor);
User11 = NewUser11 ();

User11->IViewRes ('Pane’, 131, Rect8, supervisor);
ScrollPane12 = new CScrollPane;
ScrollPane12->1ViewRes ('ScPn', 134, enclosure, supervisor);



172 Chapter 7> Examining the CalcWindow Code

IZCalcWindow
method code
(concluded)

Note: The author
made a list of each
resource type and ID
and then examined
them with ResEdit to
determine their
generated settings.

List15 = NewList15 ();

List15->IViewRes ('ATbl', 136, ScrollPane12, supervisor);
ScrollPane12->InstallPanorama (List15);
CellNumLabel = new CAMStaticText;
CellNumLabel->|ViewRes ('AETX', 134, enclosure, supervisor);
EnterButton = new CAMButton;
EnterButton->1ViewRes ('CtIP', 144, enclosure, supervisor);
CancelButton = new CAMButton;
CancelButton->1ViewRes ('CtIP', 145, enclosure, supervisor);
aSizeBox = new CSizeBox;
aSizeBox->ISizeBox (enclosure, supervisor);

The IZCalcWindow code creates and initializes each of the
user interface elements in the CalcWindow. Borders are
given names beginning with the word Reect, lists begin with
List, and user items (such as hole filler panes) begin with
User. The single CScrollPane instance carries a name begin-
ning with ScroliPane, and the Enter and Cancel buttons are
named EnterButton and CancelButton, respectively. The
CAMEditText Entry field is named EntryField, and the
CAMStaticText item holding the words Cell Num has been
named CellNumLabel.

You'll notice that the elements are numbered in ascending se-
quence, regardless of their types. Also, each is created from
the parameters in a template of a particular type and re-
source ID. The IViewRes method contains the type name and
resource ID of the resource template. These correspond to the
template type names and IDs whose sizing characteristics
were modified in Chapter 6.

Several of the IViewTemp methods are overridden in the
CCalcWindow class. We’ll be looking at these methods
shortly.

NewList; Method Code

AppMaker generates code in the superclass to create each of
the List; elements. The sole purpose of generating this code is
so that it can be overridden by the corresponding subclass
method. Notice that the superclass method creates an in-
stance of the CAMTable class while the subclass override
method creates a new subclass of that table instance (see the



The CalcWindow’s Code Structure 173

subclass code for NewList5 on page 177). An example of the
superclass code is the following:

CAMTable *ZCalcWindow::NewList5(void)

{
CAMTable *theList;

theList = new CAMTable;
return (theList);

}

This code creates the Listb element (the horizontal cell label
CAMTable instance) and returns the instance to the caller
(IZCalcWindow). The method is overridden in the subclass,
as will be shown. The zCalcWindow.c module contains
nearly identical code for the other two lists; the only differ-
ence being in the creation of the List15 element, which is
created as a CAMArrayPane object.

NewUser; Method Code

The hole filler panes are created in much the same way as the
lists. A method is provided for each, so that it can be overrid-
den by the subclass if desired.

An example of one of these methods is the following;:

CPane *ZCalcWindow::NewUser6(void)
{

CPane *pane;

pane = new CPane;
return (pane);

}

Each hole filler pane is created in a fashion identical to that
shown in the preceding code. The pane there is initialized by
a resource named Pane 129, which corresponds to the top
left hole filler, shown as item @ in Table 6-1.

Remember, the creation methods merely create the object in-
stance and return it to the caller (IZCalcWindow).



174 Chapter 7> Examining the CalcWindow Code

UpdateMenus Method Code

The default code for the UpdateMenus method merely calls
the inherited method:

void ZCalcWindow::UpdateMenus(void)
{

}

inherited::UpdateMenus ();

Code is also generated in the subclass for this method; how-
ever, by default, it also merely calls the inherited method, as
we will show later.

DoCommand Method Code

The code for the superclass’s DoCommand method, also very
simple, is provided as a method that the subclass can override:

void ZCalcWindow::DoCommand(longtheCommand)

{

switch (theCommand)

default:
inherited::DoCommand (theCommand);
break;

As is apparent, only the default case is handled, by calling
the inherited method to handle the command.

Newly Generated Code in CCalcWindow

The generated code in the CaleWindow.c module provides
very little additional functionality, but serves as a framework
for customizing the behavior of the CalcWindow user inter-
face element. Many of the methods that override or supple-
ment those in the superclass merely call the inherited
method. Thus, the default execution functionality of the win-
dow is provided almost entirely by the code generated into the
superclass. This section discusses the subclass methods,
which will be the basis for all the custom code that will be
added and described in Chapter 8.



The CalcWindow’s Code Structure 175

ICalcWindow Method Code

When the ZEnsembleDoc class’s BuildWindows method first
creates the CalcWindow instance, it calls the ICalcWindow
method to perform the initialization for this new window. The
code for the ICalcWindow method saves the handle to the
CEnsembleData instance (theData), calls the inherited 1Z-
CalcWindow method, and sends the gDecorator a message
to stagger the new window with respect to the other windows
currently on the screen.

The method also serves as a placeholder for additional cus-
tom code that we will be adding in the next chapter. The code
for the ICalcWindow method is as follows:

void CCalcWindow::ICalcWindow(CDirector *aSupervisor,
CEnsembleData *theData)
{

itsData = theData;

inherited::1ZCalcWindow (aSupervisor);
gDecorator->StaggerWindow (itsWindow);

/I any additional initialization for your window

Notice that AppMaker has inserted a comment in the generated
code, indicating where additional initialization code can be
placed. This is one of the most useful features of the generated
code. Such comments are sprinkled liberally throughout the
code, to aid you in placing modifications and custom additions.

List; IViewTemp Method Code

Each of the list elements is accompanied by three generated
methods in the subclass: an IViewTemp, a GetCellText, and
a NewList; method. The code for the IViewTemp method is
as follows:

void CList5::IViewTemp (CView *anEnclosure,
CBureaucrat *aSupervisor, Ptr viewData)
{

inherited::IViewTemp (anEnclosure, aSupervisor, viewData);
// any additional initialization for your subclass
AddRow (4, 0); // e.g., add 4 rows at the beginning of the list

}




176 Chapter 7> Examining the CalcWindow Code

List GetCellText Method Code

The GetCellText method is called by the TCL's CTable class
whenever the contents of a list cell need to be redrawn. The
GetCellText code for the CList5 class instance is as follows:

void CList5::GetCellText (Cell aCell,
short availableWidth, StringPtr itsText)
{
// replace with your own code, which uses the cell coordinates
// to access your private data structures;
// then convert the cell data to a Str255
switch (aCell.v) {
case 0:
CopyPString ("\pOne", itsText);
break;
case 1:
CopyPString ("\pTwo", itsText);
break;
case 2:
CopyPString ("\pThree", itsText);
break;
default:
CopyPsString ("\plnfinity", itsText);
break;

Note that AppMaker has once again generated comments
which indicate that the code included in the GetCellText
method is only an example of what is needed and should be
replaced with code pertinent to your application. We will be
replacing all of this code in the next chapter.

List NewList; Method Code

When a new list element is created, AppMaker generates code
to create this element both in the superclass and the sub-
class, so that the code can be overridden if desired.

The code to create a new list element is rather simple; how-
ever, being able to override it allows you a lot of flexibility in
how the list is created. It also gives you the opportunity to
add code to perform related tasks inside the creation method.
The code for the NewList5 method is as follows:



The CalcWindow’s Code Structure 177

CAMTable *CCalcWindow::NewList5(void)
{

CList5 *thelList;

theList = new CList5;

return (theList);

}

The superclass method for NewList5 creates an instance of
CAMTable, as shown on page 173. The corresponding over-
riding method in the subclass creates a unique class in-
stance. This, in turn, is a subclass of CAMTable as
illustrated by the following class declaration taken from the
CalcWindow.h header file:

class CList5 : public CAMTable
{
public:
void IViewTemp(CView *anEnclosure,
CBureaucrat *aSupervisor,
Ptr viewData); // is override
void GetCellText(Cell aCell,
short availableWidth,
StringPtr itsText); // is override

The foregoing declaration for CList5 defines it as a direct de-
scendant of the AppMaker library class CAMTable, which, in
turn, is a direct descendant of the TCL’s CTable class. Gener-
ating a unique class name for each list (or table) is necessary,
so that each type of list can have its own IViewTemp and
GetCellText methods.

The CalcWindow.c module also contains IViewTemp, Get-
CellText, and NewList; methods for lists CList10 and
CList15. The direct ancestor of the CList15 class is CAMAr-
rayPane, rather than CAMTable.

Incidentally, AppMaker interposes its own library classes in
between many of its generated classes and the TCL, to pro-
vide text styles for almost every element. For example, in
Chapter 6, the text style for the main spreadsheet table
(shown in the code as CList15) was changed to 9-point
Geneva, rather than the System font (12-point Chicago). The



178 Chapter 7> Examining the CalcWindow Code

Draw method code
for CUser®6 class
(beginning)

IViewTemp method inherited from most AppMaker library
classes initializes the text size, style, and justification of the
corresponding elements. Therefore, when the generated code
calls the inherited IViewTemp method first, it is allowing
AppMaker’s library method to set up the specified text style
information from the resource template.

User IViewTemp Method Code

For each hole filler pane that is created, AppMaker generates
a class beginning with the word User, with a number ap-
pended to make it unique. The IViewTemp initialization
method for one such pane is as follows:

void CUser6::IViewTemp (CView *anEnclosure,
CBureaucrat *aSupervisor,
Ptr viewData)
{
inherited::1ViewTemp (anEnclosure, aSupervisor, viewData);
/I any additional initialization for your subclass

}

Note that AppMaker has generated a comment in this
method, after the call to the inherited method, to the effect
that if additional initialization is appropriate for this item, the
code can be inserted at that location.

User Draw Method Code

AppMaker also generates a Draw method for User panes. The
code shown for this method is only an example of what might
be needed; it is benign and needn’t be changed if nothing spe-
cial is required to draw the contents of the element. Sample
code for one such User element is as follows:

void CUser6::Draw (Rect *area)
{
/I replace with your own code which draws the pane
// note that 'area’ is usually ignored; it has no relationship
// to the size of the pane; it merely indicates what portion
// (in QuickDraw coordinates) of the pane needs to be drawn

Rect theFrame;
PenState savePen;



The CalcWindow’s Code Structure 179

Draw method code
Jfor CUser®6 class
(concluded)

GetPenState (&savePen);
PenNormal ();

FrameToQDR (&frame, &theFrame);
SetPenState (&savePen);

The preceding code calls the GetPenState toolbox routine to
get information on the current pen state, including the pen
location, size, transfer mode, and pattern. The PenNormal
toolbox call resets the pen state to the initial (default) set-
tings. The FrameTo@DR method (located in the CPane class)
converts the instance variable frame (describing the top left
and bottom right coordinates of the pane) from frame coordi-
nates to Quickdraw coordinates.

The final statement calls the SetPenState toolbox routine to
reset the pen state to the value it had before the Draw
method was entered. As generated, the method performs no
useful function; however, if you wished to draw something in
the pane, you would insert the appropriate code right after
the call to the FrameTo@QDR method. We will not be modify-
ing this code, as the panes are simply hole fillers at this point.
They could serve other useful functions, however, so we
elected to create panes, rather than just leave the corre-
sponding border areas empty.

User NewUser; Method Code

The final method generated for each user item creates the
method instance and returns it to the caller. The code for the
NewUser6 method is as follows:

CPane *CCalcWindow::NewUser6(void)
{

CUser6 *pane;

pane = new CUser6;
return (pane);

}

Each User element is a direct descendant of the TCL’s CPane
class, as shown by the class declaration for the User6 ele-
ment, taken from the CalcWindow.h module:



180 Chapter 7> Examining the CalcWindow Code

class CUser6 : public CPane
{
public:
void [ViewTemp(CView *anEnclosure,
CBureaucrat *aSupervisor,
Ptr viewData); // is override

void Draw(Rect *area); //is override

b

In addition to the IViewTemp, Draw, and NewUser6 methods
generated for the User6 element, AppMaker has also gener-
ated nearly identical declarations and methods for the Usex7
and Userl1 elements.

UpdateMenus Method Code

AppMaker’s generated code for the UpdateMenus method
merely calls the inherited UpdateMenus method; however, if
additional changes to the state of the menus on the screen
are needed, then, when the CalcWindow is active, this
method provides an appropriate place to insert the necessary
code.

The default-generated code is as follows:

void CCalcWindow::UpdateMenus(void)
{

}

inherited::UpdateMenus ();

In the next chapter, we will be enhancing this code to disable
the Close command in the File menu when the CalcWindow
is active.

DoCommand Method Code

When the user chooses a command from one of the applica-
tion’s menus, or if a “click command” is assigned to a button
or other item, the DoCommand method associated with the
current gGopher will be called with the command number
parameter. The generated code for the CCalcWindow class’s
DoCommand method is as follows:



The CalcWindow’s Code Structure 181

void CCalcWindow::DoCommand(long theCommand)
{

switch (theCommand)

{

case cmdEnterButton:

{

DoEnterButton ();
break;

}

case cmdCancelButton:

{

DoCancelButton ();
break;

}

default:

{
inherited::DoCommand (theCommand);
break;

}

}
}

AppMaker assigns “click commands” to all buttons as a stan-
dard procedure, so these were created for the Enter and Can-
cel buttons in the resource templates for those elements.
When the user clicks on either of these buttons, the TCL will
generate a DoCommand message containing the command
number of the button that is clicked.

When the DoCommand method is called with either the
cmdEnterButton or the cmdCancelButton command, the
method will invoke the appropriate corresponding method.

The default-generated code for both of these methods is as
follows:

void CCalcWindow::DoEnterButton (void)
{
}

void CCalcWindow::DoCancelButton (void)

{
}




182 Chapter 7> Examining the CalcWindow Code

ProviderChanged
method code

(beginning)

As you can see, both methods are completely empty; however,
we will be adding code to them in the next chapter.

ProviderChanged Method Code

The collaboration mechanism, defined as part of the TCL, was
described in full in Chapter 4. This mechanism is used by a
range of providers, including the descendants of the TCL’s
CTable class.

As explained in Chapter 4, if a selection changes, a Broad-
castChange message is sent to the list instance, which inher-
its the functionality of the corresponding method in the
CCollaborator class; however, in addition, the CBureaucrat
class overrides this method and also sends a Provider-
Changed message to the table’s supervisor, which, in the
case of our tables (main spreadsheet, row labels, and column
labels), will cause the CCalecWindow instance’s Provider-
Changed method to be invoked. The message includes the
instance handle of the provider that issued the Broad-
castChange message, the reason for the broadcast, and any
other appropriate data, which are addressed via a pointer.

AppMaker generates a ProviderChanged method for each
window or dialog in the application. We did not need to use
this method in the CMainWindow class, but did in the
CNotebook and will in the CCalcWindow class.

The generated code for the ProviderChanged method is as
follows:

void CCalcWindow::ProviderChanged(CCollaborator *aProvider,
long  reason,
void*  info)

if (aProvider == List5) {
if (List5->HasSelection ()) {
// perhaps activate some buttons
} else {
// perhaps deactivate

}

}
if (aProvider == List10) {
if (List10->HasSelection ()) {
// perhaps activate some buttons
} else {



Exercises 183

ProviderChanged
method code
(concluded)

// perhaps deactivate

}
}
if (aProvider == List15) {
if (List15->HasSelection ()) {
// perhaps activate some buttons
} else {
// perhaps deactivate
}
}
}

This code tests whether the aProvider parameter is one of
the lists (List5, List10, or List15) and then checks whether a
cell is selected for that table. No action code is included; how-
ever, we will be customizing the method in the next chapter to
handle selections in the main spreadsheet table (List15).

Exercises

1. Figure 7-1 shows the “chain of command” when the
MainWindow instance is frontmost on the screen.
Describe the “chain of command” if the CalcWindow is
frontmost.

2. Explain why each of the column labels, row labels, and
main worksheet lists must be a separate subclass of the
TCL'’s CTable class.

3. Compare the features of the TCL’s CTable class with the
built-in Macintosh List Manager.

4. What mechanism causes the GetCellText methods of the
column, row, and worksheet lists to be invoked?

5. Explain the rationale for having both superclass and sub-
class NewList; and NewUser; methods? (Hint: Look at the
1ZCalcWindow method for a clue to this organization of
classes and methods.)

6. What functions are performed by the Enter and Cancel
buttons in the worksheet window? What methods will
need to be enhanced to implement these functions? Out-
line the features of the code to do so.



184 Chapter 7» Examining the CalcWindow Code

7. The worksheet's column and row label lists are imple-
mented as subclass instances of AppMaker's CAMTable
class. In what way does the user interact with these user
interface elements? How must the code in the Provider-
Changed method, as generated by AppMaker, be modified
to support the required interactions? (Hint: Examine the
steps for modifying the Bord resource panes that enclose
these lists, as described in Chapter 6.)

8. Assuming that you have decided to draw a pattern in the
empty panes at the top left, top right, and bottom left cor-
ners in the worksheet, how would you implement your
intentions, based upon the classes and methods shown in
this chapter? Modify the appropriate methods to do so.!

1. This is a relatively simple task, but it will require some thought and knowledge of the Macin-
tosh toolbox routines. It could be assigned as an extra-credit project.



Chapter 8

Customizing the Worksheet Code

Table 8-1
Customized methods
to implement the I/O
for EditText and
spreadsheet data

This chapter describes the classes and methods that have
been customized to implement the full functionality of the
CalcWindow interface component. In the course of describ-
ing the implementation of a functional spreadsheet, a great
amount of detail was required. Such detail is justified in or-
der to present the complete, step-by-step documentation of
this nontrivial addition to the Ensemble application.

Class Method Description
CEnsembleData  IEnsembleData Create CCluster to hold
spreadsheet data
CEnsembleData  ReadData Rewritten to handle text and
spreadsheet data
CEnsembleData  ReadWSEntries New method to read spread-
sheet entries
CEnsembleData  WriteData Rewritten to handle text and
spreadsheet data
CEnsembleData  WriteWSEntries New method to write spread-
sheet entries
CEnsembleData  DisposeData Disposes of EditText and
spreadsheet data entries
CEnsembleData  GetCluster Access method to return
spreadsheet cluster instance

Table 8-1 lists the methods and modifications that support
input/output of both the EditText and worksheet data in a

shared file.

185



186 Chapter 8 » Customizing the Worksheet Code

Customizing the CEnsembleData Code

Chapter 5 contains descriptions of all of the existing methods
in the CEnsembleData class. This class is responsible for
performing all of the physical input/output for the applica-
tion. It contains methods to open, close, save, save as, and
revert to a previous version of a file. It also contains methods
to initialize the class and dispose of all the data. The CEn-
sembleData class is created to support the CEnsembleDoc
class, which contains the methods that are called by the TCL
to create a new document, open an existing document, and
read from and write to the application’s windows.

Because our new user interface model has two windows, each
holding a different type of data, it becomes necessary to be able
to perform all of the input/output operations on a composite
file. There are very few methods that need revision to support
this new concept, and the modifications are straightforward.

Modifying the Initialization code

Because all of the input/output for the application is carried
out in the CEnsembleData class, it is natural for the data to
be owned by this class. The data will need to be accessed by
other classes, but the CEnsembleData class owns both the
EditText and the worksheet data.

IEnsembleData Code

The code for initializing the CEnsembleData instance has
been modified to create a CCluster to hold the worksheet
data. The modified code is as follows:

void CEnsembleData::IEnsembleData(CDocument *theDocument)
{

inherited::|DataFile ();

hasFile = FALSE;

itsDocument = theDocument;

/1 your application-specific initialization

itsEditTextData = NULL;

itsCluster = new CCluster;

itsCluster->ICluster();




Customizing the CEnsembleData Code 187

The code is not very different from what was shown in
Chapter 5, on page 98. The main difference is that a new in-
stance variable has been defined to contain an instance of
CCluster—a data collection class in the TCL—and the cluster
is initialized.

The itsCluster instance variable has been added to the CEn-
sembleData class declaration in the CEnsembleData.h
header file as a protected variable, along with the existing its-
EditTextData variable.

Modifying the Input/Output Code

ReadData method
code (beginning)

Because of the addition of the new window (CalcWindow), the
input/output code must be modified to make provision for
storing both worksheet and text data in the same file. This is
quite easy, and you’ll find the custom code additions
straightforward and simple. The modified methods (and new,
custom methods) are listed in Table 8-1. The following sub-
sections discuss the new code.

ReadData Method Code

The ReadData method has been substantially changed, to re-
flect the fact that three different types of data are stored in
the single data file owned by the CEnsembleData class. The
three types of data are text font information (font, style, size,
justification), text data, and worksheet cell data.

The file format has been completely changed to make provi-
sion for the existence of either or both of the text or work-
sheet data. Both need not be present, but both are
accommodated.

The code for the new ReadData method is as follows:

void CEnsembleData::ReadData(void)
{
long textLength, WSEntryCt;
fontinfo theFontinfo;

/l

// modified to handle both the EditText and Worksheet data
// in the file. The file format is:

/



188 Chapter 8> Customizing the Worksheet Code

ReadData method
code (concluded)

I
"
I
"
I
"
I
/i

char. pos. description
0-3 text length (bytes)
4-7 worksheet cell count
8-15 text style information
16— n text data bytes
n+1-m worksheet entries

TRY

{

}

"
/I get text and worksheet data sizes
1/
FailOSErr (SetFPos( refNum, fsFromStart, OL));
ReadSome((Ptr)&textLength, sizeof(long));
ReadSome((Ptr)&WSEntryCt, sizeof(long));
"
// read in the EditText data
n"
if(textLength > 0)
{
I
// read the font info
I
ReadSome((Ptr)&theFontinfo, sizeof (fontinfo));
((CEnsembleDoc *) itsDocument)->theTextData
->SetFontData (theFontinfo);
"
// now, read the text
I
itsEditTextData = NewHandleCanFail(textLength);
FailNIL(itsEditTextData);
ReadSome(*itsEditTextData, textLength);
}
N
// read in the worksheet data
if(WSEntryCt > 0)

ReadWSEntries(WSEntryCt);
}

CATCH

{

ForgetHandle (itsEditTextData);

}
ENDTRY;

}




Customizing the CEnsembleData Code 189

The comments at the beginning of this code describe the new
file format. The file begins with two long integers. The first
contains the length of the text portion of the file, and the sec-
ond contains the number of worksheet entries in the file. Fol-
lowing the long integers are the text data, if present. If so, the
data are preceded by the style information that was applied
to the text before it was last saved. The style information
takes up 8 bytes and is immediately followed by the text it-
self. Following the text (or immediately after the worksheet
cell count if the text isn’t present) are the individual work-
sheet entries (if any).

The code for the ReadData method is placed inside a TRY
block, so that if an error occurs during reading of the file, the
data can be properly disposed. The error will also be propa-
gated to the error handler defined by the IApplication
method, which will show an alert, informing the user of the
nature of the error.

The sequence of steps taken by the ReadData method is as
follows:

1. The first task is to reset the file position to its beginning
and read in the two long integer values. The contents of
these values will determine which additional functions of
the method will be performed.

2. If the text length is nonzero, the text style information will
be read. The CEnsembleDoc class's SetFontData
method is called to store the font style information, so
that it can be applied when the EditText window is
opened. (The file is usually read before the window is
open. The only exception is when a Revert command is
executed.)

3. After the text style information has been read, the text
that follows (whose length is specified in the first long inte-
ger) is read into a handle allocated to hold the data. The
handle is stored in the itsEditTextData instance variable.

4. If the number of worksheet cells is nonzero, a separate
method is called to read the cell entries. This method is
described next.



190 Chapter 8 » Customizing the Worksheet Code

ReadWSEntries
method (beginning)

After the entire contents of the file have been read without er-
ror, the text and/or worksheet data will have been filed away
for reference by other classes and methods.

ReadWSEntries Method Code

The method that reads worksheet entries is called by the
ReadData method if worksheet data are present in the input
file.

The ReadWSEntries method is passed only one parameter,
indicating the number of entries to be read. Prior to display-
ing the method itself, we will discuss the format of a work-
sheet entry by showing its structure and expected contents.

The worksheet entry consists of a header record that is de-
fined by a structure called WSCellEntry. The header is im-
mediately followed by the ASCII text of the corresponding
cell's contents. The contents of the WSCellEntry structure
are as follows:

typedef struct

{
Cell WSCell;
short  WSType;
short  WSSize;

} WSCellEntry;

In the structure, the Cell type is the same as a Point and is
used with all of the TCL’s CTable methods, instead of the
Macintosh Point data type. The WSCell identifies the column
and row of the cell to which the rest of the entry applies. The
column is stored in the WSCell.h component, and the row is
stored in WSCell.v. The WSType field identifies numeric ver-
sus string entries, and the WSSize field specifies the length of
the entry string that follows. Rather than keep a lot of non-
essential data for each worksheet cell, only the entry text that
defines the contents of the entry is stored. The code to read
these entries is as follows:

void CEnsembleData::ReadWSEntries (long entryCount)

WSCellEntry anEntry;
short index;



Customizing the CEnsembleData Code 191

ReadWSEntries
method (concluded)

Str255 entryData;
CWSEntry *aWSEntry;

for(index = 0; index < entryCount; index++)
{

ReadSome((Ptr)&anEntry, sizeof(WSCellEntry));

ReadSome((Ptr)&entryData[1], (long) anEntry.WSSize);

entryData[0] = anEntry.WSSize;

TRY

{
/"
/I create a worksheet cell entry, putting the
// entry text that was read into the entry field
/I of the worksheet cell, then set the value field
// 10 0.0. If the entry type is a value, then the
// value will be recalculated when the worksheet is
// displayed. Enter the worksheet cell into the Cluster.
"
aWSEntry = new CWSEntry;
aWSEntry->IWSEntry ();
aWSEntry->SetWSCell (anEntry. WSCell);
aWSEntry->SetWSType (anEntry.WSType);
aWSEntry->SetWSValue (0.0);
aWSEntry->SetWSEntry (entryData);
if(@anEntry. WSType == 1)
{

}

else

{

3tsCIuster->Add(aWSEntry) ;
}CATCH
{ ForgetObject (aWSEntry);
{ENDTRY;

}

aWSEntry->SetWSText(entryData); // string

aWSEntry->SetWSText("\p0.00");  // value

}

After the WSCellEntry header structure has been read, the
string defining the contents of the cell is read. (Its size is
specified by the WSSize field.)



192 Chapter 8 » Customizing the Worksheet Code

WriteData method
code (beginning)

When the header and entry string have been read, the
method creates a new instance of the CWSEntry class and
initializes its instance variables by calling the access methods
to set its cell, type, value, entry string, and text representa-
tion string,. If the cell is intended to hold a string, the text rep-
resentation is a copy of the entry string. If the cell holds a
value, the text representation is set to 0.0. The CWSEntry
class will be discussed in more detail later.

After the CWSEntry has been built, it is added to the cluster
that was allocated by the IEnsembleData method for storage
of the worksheet cell data.

The process of reading a new header and its entry string, cre-
ating a new CWSEntry instance, initializing the instance
variables, and adding the CWSEntry instance to the cluster
is repeated until the entry count is exhausted. If an error oc-
curs during this process, the CATCH block of the code will be
executed, disposing of the entry that may have been allo-
cated. The error is propagated to the error handler created by
the IApplication method, where an error alert is posted, noti-
fying the user of the problem.

WriteData Method Code

The WriteData method has been substantially rewritten to
write the EditText and worksheet data in the new file format
(defined in the ReadData method on page 187). The code for
the WriteData method is as follows:

Boolean CEnsembleData::WriteData(void)

{
CMainWindow *theTextWindow;
long textLength, WSEntryCt, fileLength;
fontinfo theFontinfo;

Vi

/I modified WriteData to get the TextEdit pane's Text Handle

// and then write out the contents of that handle.

/I

// additional modifications to handle writing out worksheet

// cell entries into a composite file.

I

theTextWindow = ((CEnsembleDoc *)itsDocument)
->GetTextWindow();

itsEditTextData = theTextWindow->GetEditTextHandle();



Customizing the CEnsembleData Code

193

WriteData method
code (concluded)

textLength = GetHandleSize(itsEditTextData);
WSEntryCt = itsCluster->GetNumltems();

/)

/I write out the textLength & WSEntryCt values

I

FailOSErr (SetFPos( refNum, fsFromStart, OL));
WriteSome ((Ptr)&textLength, (long) sizeof(long));
WriteSome ((Ptr)&WSEntryCt, (long) sizeof(long));

1
/I now, write out the text data, if any
/I
if(textLength > 0)
{
/
/1 first, write out the fontInfo structure’s contents
I
theFontinfo = ((CEnsembleDoc *) itsDocument)
->theTextData->GetFontData();
WriteSome ((Ptr)&theFontinfo, sizeof (fontinfo));

I

// now, write the text

I

WriteSome (*itsEditTextData, textLength);
}

I
// finally, write out the worksheet
/I cell entries, if any
/
if( WSEntryCt > 0)
{
WriteWSEntries (WSEntryCt);
}
fileLength = GetLength();
FailOSErr(SetEOF( refNum, fileLength));
FailOSErr( FlushVol( NULL, volNum));
return (TRUE);

The WriteData method follows essentially the same sequence
of operations as the ReadData method, except that it writes
data to the file, rather than reading from the file. The steps
are as follows:



194 Chapter 8 » Customizing the Worksheet Code

1. The WriteData method sends a message to the CEnsem-
bleDoc’s GetTextWindow method, to get a handle to the
CMainWindow instance. It uses this handle to call the
MainWindow’'s GetEditTextHandle method, to access
the handle to the current EditText data in that window (if
any). WriteData then calls the toolbox routine to return
the handle size and stores this value in a long integer
variable called textLength.

2. A GetNumlItems message is sent to the cluster (itsClus-
ter) to determine the number of entries in the worksheet
cluster. The number is stored in a long integer variable
called WSEntryCt.

3. The file is positioned at its start, and the contents of the
two long integer variables’ (textLength and WSEntryCt)
are written to the file.

4. The code tests whether the textLength variable holds a
value greater than 0, and if so, it accesses the CEnsem-
bleDoc instance’s theTextData variable and sends it the
GetFontData message, storing the result in a local vari-
able called theFontInfo. This is the following 8-byte fon-
tInfo structure:

typedef struct

{
short fontNumber;
short fontSize;
short fontStyle;
short fontAlign;

} fontinfo;

5. After acquiring the fontInfo structure, the WriteData
method writes it out to the file.

6. The text itself is written to the file, immediately following
the fontInfo structure. The length of the text is contained
in the textLength variable.

7. The WriteData method then checks whether any work-
sheet entries are present by testing the WSEntryCt value.



Customizing the CEnsembleData Code 195

If there are entries, it calls the WriteWSEntries method
(to be described shortly) to write these entries to the file.

8. Before the WriteData method finishes, it gets the length
of the file, calls the SetEOF method to set the end-of-file
marker at that point, and then calls flushVol to write the
contents of the buffer out to the file.

WriteWSEntries Method Code

The WriteWSEntries method writes all of the worksheet en-
tries in the cluster to the file, in the proper format. This
method is fairly simple, compared with the ReadWSEntries
code previously described. The code for WriteWSEntries is as
follows:

void CEnsembleData::WriteWSEntries (long entryCount)
{
WSCellEntry anEntry;
short  index;
long WSEntryCt;
Str255  entryData;
CWSEntry *aWSEntry;
for(index = 1; index <= entryCount; index++)
{
itsCluster->Getltem (&aWSEntry, index);
FailNIL (aWSEntry);
anEntry.WSCell = aWSEntry->GetWSCell();
anEntry.WSType = aWSEntry->GetWSType();
aWSEntry->GetWSEntry(entryData);
anEntry.WSSize = entryData[0];
WriteSome ((Ptr)&anEntry, sizeof(WSCellEntry));
WriteSome ((Ptr)&entryData[1], (long) entryData[0]);

All of the needed information is contained in the cluster en-
tries. The method is passed a single parameter specifying the
number of entries, and it proceeds to get each item, in turn,
accessing the cell, type, entry string, and entry size informa-
tion from the entry by calling the appropriate access meth-
ods. Once acquired, these data are written out to the file.
Each entry consists of a WSCellEntry structure (described
on page 190), followed by the entry string itself. As previously
indicated, the structure and the entry string are all that is re-
quired to reconstitute the contents of the worksheet cell.



196 Chapter 8» Customizing the Worksheet Code

DisposeData Method Code

The DisposeData method has been modified to handle the
deletion of the worksheet data from memory. The method is
called when, for example, a Revert or Close operation is per-
formed. The code is as follows:

void CEnsembleData::DisposeData(void)
{

long WSEntryCt;

long index;

if (itsEditTextData = NULL)

{
DisposHandle (itsEditTextData);
itsEditTextData = NULL;

}

if (itsCluster != NULL)

{
WSEntryCt = itsCluster->GetNumltems();
for (index = 1; index <= WSEntryCt; index++)
{

}

itsCluster->Deleteltem (1);

The method tests whether the itsEditTextData handle is
NULL, and if not, it disposes of the handle. It also tests
whether the itsCluster instance is NULL, and if not, it sends
the cluster a message to delete item 1 continually, until the
number of items has been depleted.

Adding a New Access Method

Other classes in the application need to access the data
stored in the worksheet cluster, so an access method to re-
turn the handle to the cluster’s instance has been added.

GetCluster Method Code

The code for accessing the worksheet’s cluster is provided as
a public access method of the CEnsembleData class. The
code is as follows:



Customizing the CCalcWindow Code 197

CCluster *CEnsembleData::GetCluster (void)
{

return itsCluster;

}

All that this method does is return the value of the itsCluster
instance variable.

Summary: Customizing CEnsembleData

The modifications to various methods in the CEnsembleData
module described in the preceding sections were required be-
cause a new file format was adopted and we needed to en-
hance the ReadData and WriteData methods greatly,
compared with their versions described in Chapter 5. It’s im-
portant to note, however, that although we made a significant
change to the file format and its contents, the modifications
to effect this change are localized in the CEnsembleData
class. None of the methods in the CEnsembleDoc or CMain-
Window classes were affected.

The principle of keeping changes localized is a side effect (or
natural consequence) of object-oriented design. Changes that
affect one area of the application (one object) need only be
made to that area.

In order to ensure the insulation (encapsulation) of the ele-
ments in one object from others, special methods to permit
other objects to access the private data are provided. With
these methods, we can modify the internal behavior of a given
class without making a single change to other classes in the
application. This principle is upheld throughout the design of
the Ensemble application.

Customizing the CCalcWindow Code

The code to implement the full functionality of a capable
worksheet is contained in the CaleWindow.c module. This
module contains quite a few classes. To describe the custom-
izing procedures, we will break this section into a number of
appropriate subsections, each of which will discuss an aspect
of implementing the worksheet.



198 Chapter 8 » Customizing the Worksheet Code

Customizing the Lists

Table 8-2

Custom code
modifications to list
classes

The worksheet contains three lists that implement the col-
umn labels, row labels, and main worksheet cells, respec-
tively. The column and row label lists work in concert with
the main worksheet list to provide synchronized scrolling and
autodrag selection. Although the model we've implemented
allows only a single cell at a time to be selected, this behavior
could be modified to allow selecting rectangular contiguous
cells without much difficulty.

Table 8-2 defines the classes and methods that implement
the list handling chores for the worksheet. Recall that when

Class Method Description

CList5 IViewTemp Initializes column label list

CList5 GetCellText Returns specified column label

CList5 DrawCell Draws a column label cell

CList10 IViewTemp Initializes row label list

CList10 GetCellText Returns specified row label

CList10 DrawCell Draws a row label cell

CList15 IViewTemp Initializes main worksheet
table

CList15 GetCellText Returns worksheet cell text
entry

CList15 GetContents Extracts entry string, text
string, value, and type from a
cell

CList15 Scroll Scrolls the worksheet

CList15 SetLists Provides access methods to

SetCluster store instances needed by the
SetArray methods in the class.

CList15 ProviderChanged Handles selections in the main

worksheet table

the Bord resources were modified, in Chapter 6, we disabled
mouse clicks (set the Wants Clicks parameter to FALSE) for
both the Bord 134 and Bord 136 borders (see Figure 6-39 on



Customizing the CCalcWindow Code 199

Definitions of
worksheet
parameters

page 157 and Figure 6-40 on page 158). We did this pur-
posely, because we didn’t want the column and row label list
cells to become highlighted when the mouse was clicked in-
side the border. Setting the Wants Clicks field to FALSE for a
border disables clicks for anything inside that border.

Each of the lists has the IViewTemp and GetCellText meth-
ods. The column and row label lists also have a new Draw-
Cell method, which overrides that method in the TCL’s
CTable class. The main worksheet has several additional
methods, including an override of the CTable Scroll method,
several new access methods, and a ProviderChanged
method to intercept the BroadcastChange messages sent by
the CTable class in response to selection changes in the
worksheet.

The subsections that follow describe the individual methods
for each of the lists and display the modified code that imple-
ments the intended behavior for the method. Each of the lists
is set up according to some definitions that we have added to
the code, to make it fairly easy to change for different num-
bers of rows or columns. The following #define statements
establish the current settings for these parameters:

I

// added definitions

/

#define tblCellWidth 48 /] worksheet cell width
#define tbiCellHeight 14 // worksheet cell height
#define horLabWidth 48 // column label width
#define horLabHeight 20  // column label height
#define vertLabWidth 32 // row label width
#define vertLabHeight 14 // row label height
#define vertLabMargin 5  //row label margin
#define numRows 50 // number of rows
#define numCols 26 // number of columns

The comments are self-explanatory.

CList5 IViewTemp Method Code

The CList5 class implements the column label list, which will
be scrolled in sync with the horizontal scroll bar of the main
worksheet. The code is as follows:



200 Chapter 8 » Customizing the Worksheet Code

void CList5::IViewTemp(CView *anEnclosure,
CBureaucrat *aSupervisor,
Ptr viewData)

inherited::IViewTemp (anEnclosure, aSupervisor, viewData);

// any additional initialization for your subclass
DeleteCol(1, 0);

SetDefaults(horLabWidth, horLabHeight);
SetColBorders(1, patCopy, black);
AddRow(1, 0);

AddCol(numCols,0);

When AppMaker generates the resources for the list ele-
ments, it makes the assumption that you will be creating a
single-column list with multiple rows and that you will be us-
ing the default settings for the row or column height and
width.

The IViewTemp code for List5 (column labels) deletes the
first column (columns and rows in lists are numbered begin-
ning with 0), and then applies the new default settings for the
column labels (horLabWidth and horLabHeight). It also sets
column borders to 1-point black lines, with a transfer mode
of patCopy, which will overwrite anything else in that posi-
tion.

Finally, the IViewTemp method addsone row, beginning with
row O, and then adds the number of columns specified by the
numCols definition. This sets up a horizontal table that con-
sists of 1 row and 26 columns (using the specified definitions).

The columns are 20 pixels tall and 48 pixels wide. In this ver-
sion of the Ensemble application, the columns and rows have
fixed sizes. In the next chapter, we will be adding the user in-
terface features to permit the worksheet format to be modified.

CList5 GetCellText Method Code

The GetCellText method generated by AppMaker for the
CListb class has been rewritten as follows:



Customizing the CCalcWindow Code 201

void CList5::GetCellText (Cell aCell,
short  availableWidth,
StringPtr itsText)

short col;
col = aCell.h;

CopyPString("\pA", itsText);
itsText[1] += col;

This code makes provision for a maximum of 26 columns. It
changes column numbers in the range 0-25 to A-Z and
stores the string representation in the itsText variable. The
method could easily be modified to handle a larger number of
columns.

CList5 DrawCell Method Code

This method overrides and takes the place of the correspond-
ing method in the CTable class. The code is as follows:

void CList5::DrawCell (Cell theCell, Rect *cellRect)
{

Str255 cellText;

short availWidth, textWidth;

availWidth = cellRect->right - cellRect->left;
GetCellText(theCell, availWidth, cellText);
textWidth = StringWidth(cellText);

indent.h = (availWidth - textWidth) >> 1;

if (cellText[0] > 0)

MoveTo( cellRect->left + indent.h, cellRect->top + indent.v);
DrawString( cellText);
}
}

The code calculates the available width of the column (avail-
Width), using its full width. It calls the GetCellText method,
calculates the number of pixels occupied by the column label,
and then calculates a horizontal indent.h value that will cen-
ter the label in the column. If the label width is greater than



202 Chapter 8» Customizing the Worksheet Code

GetCellText
method code
(beginning)

0, the column label string is drawn at the appropriate posi-
tion within the cell.

CList10 IViewTemp Method Code

The CList10 class implements the row label table for the
worksheet. The IViewTemp code for this class initializes the
row label list to accommodate a single column and multiple
rows, specified by the definitions listed earlier. The code for
the IViewTemp method is as follows:

void CList10::IViewTemp (CView *anEnclosure,
CBureaucrat *aSupervisor,
Ptr  viewData)

{

inherited::IViewTemp (anEnclosure, aSupervisor, viewData);

// any additional initialization for your subclass
DeleteCol(1, 0);

SetDefaults(vertLabWidth, vertLabHeight);
SetRowBorders(1, patCopy, black);

AddCaol (1, 0);

AddRow (numRows, 0);

As was indicated for the column label list, AppMaker’s im-
plied single-column, multiple-row table, with default settings,
is modified by deleting the first (only) column and then set-
ting the default values for the label width and height (vertLa-
bWidth and vertLabHeight) to 32 and 14 pixels, respectively.
The row borders are set to 1-point black lines, using the pat-
Copy mode to overwrite anything in the border’s position.
The single column is added, followed by the number of rows
specified by the numRows definition, whose value here is 50.

CList10 GetCellText Method Code

The GetCellText method for the List10 table has been re-
written to convert the row number to a string value between 1
and 50. The code is as follows:

void CList10::GetCellText (Cell aCell,
short  availableWidth,
StringPtr itsText)



Customizing the CCalcWindow Code 203

GetCellText
method code
(concluded)

short row;

row = aCell.v+1;
NumToString(row, itsText);

}

In this code, the row is increased by 1, so that we won't have
arow O, and then the toolbox NumToString utility is used to
convert the number to a string in the itsText parameter.

CList10 DrawCell Method Code

This method overrides and replaces the corresponding
method in the CTable class. The code is as follows:

void CList10::DrawCell (Cell theCell, Rect *cellRect)
{

Str255 cellText;

short availWidth

short textWidth;

availWidth = cellRect->right - cellRect->left;
GetCellText(theCell, availWidth, cellText);
textWidth = StringWidth(cellText);

indent.h = availWidth - textWidth - vertLabMargin;
if (cellText[0] > O)

{

MoveTo( cellRect->left + indent.h, cellRect->top + indent.v);
DrawString( cellText);
}
}

For the row labels, we want to right-justify the row number,
so this method calculates the available width, calls the Get-
CellText method and calculates its text width, and then in-
dents the text so that it is right-justified in the row, with the
exception of a small (5-pixel) right margin (vertLabMargin). If
the label string has a length greater than 0O, the row label
string is drawn at the calculated position.

CList15 IViewTemp Method Code

The CList15 class implements the body of the worksheet,
which has 26 columns and 50 rows, by using the definitions
described earlier. The code for the IViewTemp method initial-
izes the table so that it has the proper number of cells, with



204 Chapter 8» Customizing the Worksheet Code

GetCellText
method code
(beginning)

widths and heights that correspond to the settings for the
column and row label tables. The code for this method is as
follows:

void CList15::IViewTemp (CView *anEnclosure,
CBureaucrat *aSupervisor,
Ptr  viewData)

inherited::IViewTemp (anEnclosure, aSupervisor, viewData);

// any additional initialization for your subclass
DeleteCol(1, 0);

SetDefaults(tbICellWidth, tbiCellHeight);
SetColBorders(1, patCopy, ltGray);
SetRowBorders(1, patCopy, ItGray);
AddRow(numRows, 0);

AddCol(numCols, 0);

The IViewTemp method for the CList15 class follows essen-
tially the same pattern as the corresponding methods in the
CList5 and CList10 classes. The initial single column is de-
leted, and the default settings are changed to the column la-
bel width and the row label height, so that the cells will
match the dimensions of the corresponding column and row
label tables.

In this case, we are setting 1-point column and row borders,
in light gray (ItGray) rather than black, with the patCopy
transfer mode. Finally, the number of rows and columns
specified by the numRows and numCols variables is allo-
cated for the table. Note that although the full number of
rows and columns is allocated, no extra storage is set aside
for the contents of these cells. In essence, they are assumed
empty until they are explicitly filled with values.

CList15 GetCellText Method Code

The code for the GetCellText method of the CList15 class is
as follows:

void CList15::GetCellText (Cell ~aCell, short availableWidth,
StringPtr  itsText)
{

double itsValue, newValue;



Customizing the CCalcWindow Code

205

GetCellText
method code
(concluded)

short itsType, index;

long aParam;

Str255  itsEntry, itsCellText;
decform aFormat;
extended temp;

CWSEntry *anObj;

if((CWSEntry *)itsCluster == NULL)
{
CopyPString("\p", itsText);
return;

}

aParam = *(long*) &aCell;

anObj = (CWSEntry *)itsCluster->Findltem1 (FindWSCell, aParam);

if(anObj)

if((itsType = anObj->GetWSType()) == 2)
{
index = 1;
anObj->GetWSEntry(itsEntry);

newValue = ((CCalcWindow *)itsSupervisor)->GetExpression

(itsEntry, &index, 0);

itsValue = anObj->GetWSValue();

if (newValue = itsValue)

{
aFormat.style = FIXEDDECIMAL;
aFormat.digits = 2;
x96tox80(&newValue, &temp);
num2str(&aFormat, temp, itsCellText);
anObj->SetWSText(itsCellText);
anObj->SetWSValue(newValue);

}

}
anObj->GetWSText(itsCellText);
CopyPString(itsCellText, itsText);

else
CopyPString("\p", itsText);

Following is an explanation of the operation of the GetCell-
Text code:

1. If the instance variable itsCluster is NULL, then an empty
string is written into the itsText parameter and the
method returns. This case can (and will) occur when the
table is first initialized, because the IViewTemp method



206 Chapter 8> Customizing the Worksheet Code

FindWSCell global
function code

2.

for the table will execute before the ICaleWindow method
has an opportunity to store the handle to the cluster.

The aCell parameter is cast into a long variable (aParam)
so that the TCL’s FindIteml1l method can be used (it
requires a pointer to a single long variable) to search for a
cell in the cluster whose cell number matches the one
being sought. We have supplied a search function called
FindWSCell, whose definition is as follows:

Boolean FindWSCell (CObject *anEntry, long param)

{

}

Cell eCell, pCeli;

pCell = *(Cell*) &param;
eCell = ((CWSEntry *) anEntry)->GetWSCell();

if((pCell.h == eCell.h) && (pCell.v == eCell.v))
{

}

return TRUE;

else

}

return FALSE;

The FindWSCell function recasts the incoming param
argument to a Cell type, placing it into the variable pCell
(parameter cell). It then accesses the cell addressed by
the anEntry argument, storing this cell into the variable
eCell (entry cell). Next, it compares the column and row
components of the two cells, and if they match exactly,
the function returns a result of TRUE; otherwise, it returns
a result of FALSE. The FindItem1 method continues exe-
cuting, calling the FindWSCell function for each entry in
the cluster until a result of TRUE is returned, in which
case it returns a handle to the matched entry. If no cells
match, the FindItem1 method returns a NULL handle.

.The GetCellText method stores the object handle

returned by the FindItem1 method in a variable called
anObj. If the handle is NULL, an empty Pascal string is



Customizing the CCalcWindow Code 207

copied into the itsText parameter, and the GetCellText
method returns.

4. If the specified cell exists in the cluster, the GetCellText
method calls the access method to get the type of entry,
storing this in the itsType variable. There are two types
of entries: type 1, a string, and type 2, a formula (value).
If the type is not equal to 2, then it is a string, and the
method accesses the text representation of the cell’s con-
tents, copies it to the itsText parameter, and returns.

5. If the type of the entry is equal to 2, then the entry con-
tains a formula (which may be a simple numeric value)
that must be parsed to obtain its current value. The pars-
ing operation is handled by a new method called GetEx-
pression, which will be described later. This method
takes the entry handle, a starting index that points to the
first position of the formula string (the GetExpression
method may be called recursively), and a nesting depth
value, which is initially set to 0. When the method
returns, the double-precision floating-point result is
stored in a variable called newValue.

6. If the existing value differs from the newValue (deter-
mined by using the access method to obtain the existing
value and then comparing the two), the cell’'s text must be
updated. A format of FIXEDDECIMAL, with two digits of pre-
cision after the decimal, is established, the 96-bit float-
ing-point value is converted to a compatible 80-bit
Standard Apple® Numerics Environment (SANE) extended
value, and then the SANE num2str function is called to
convert the value to a string. The string is stored back
into the entry by calling the SetWSText access method,
and the value is stored into the entry by calling the Set-
WSValue access method. Finally, the code to copy the
string (itsCellText) into the itsText parameter is exe-
cuted and the method returns.

The last step makes use of the SANE functions to convert the
value returned by the GetExpression method to a string. The
first step is to convert the double-precision 96-bit floating-
point value to an 80-bit SANE extended type and then perform
the conversion to a string. The ANsI sprintf function could
have been used instead; however, this would require that the



208 Chapter 8 » Customizing the Worksheet Code

GetContents
method code
(beginning)

large ANsI library be a permanent part of the project, instead
of the relatively small SANE routines.

Another important point that was mentioned in passing, but
bears some amplification, is the handling of non existent
cells. When the GetCellText method is called by the CTable
class’s DrawCell method, it expects an existing cell, whose
contents are to be drawn. By not storing dummy empty cells
in the cluster for non existent cells, we have greatly reduced
the memory requirements for the worksheet. In fact, if you
define values for the top left and bottom right cells in the
worksheet, only two entries will be stored in the cluster.

CList15 GetContents Method Code

The GetContents method is called by other methods to ac-
cess the current values of a cell’s instance variables. The
method determines whether the cluster exists.If it does, the
method uses the CCluster FindItem1 method to attempt to
locate the cell in the cluster. If the cluster doesn’t exist or the
cell can’t be found, then the method stores empty strings for
the entry and text representation and a value of 0.0.

If the cell exists, then its entry and text strings and the cur-
rent value are returned. The code for the GetContents
method is as follows:

void CList15::GetContents (Cell aCell, StringPtr entry, double *itsValue,
short *itsType, StringPtr cellText)
{

long aParam;
CWSEntry *anEntry;
aParam = *(long*) &aCell;
if((CWSEntry *) itsCluster)
{
if((@nEntry = (CWSEntry *)itsCluster->Findltem1 (FindWSCell,
aParam)) == NULL)
{

CopyPString ("\p", entry);
CopyPString ("\p", cellText);

*itsValue = 0.0;
“itsType = -1;

}

else

{
anEntry->GetWSEntry (entry);



Customizing the CCalcWindow Code 209

GetContents
method code
(concluded)

anEntry->GetWSText (cellText);
*itsValue = anEntry->GetWSValue();
*itsType = anEntry->GetWSType();
}
}
else
{
CopyPString ("\p", entry);
CopyPString ("\p", cellText);
*itsValue = 0.0;
*itsType = -1;

If the cell exists, the GetContents method merely accesses
the current settings for the cell’s instance variables. No at-
tempt is made to parse the entry string to recompute the
value, even if the cell type is 2 (a formula).

CList15 SetLists Method Code

The SetLists method is called by the ICalcWindow initializa-
tion method to pass the handles of the column label and row
label lists to the main worksheet list. The function SetLists is
commonly called an access method, because it provides the
means to access something that isn’t normally accessible. In
this case, access to the label lists is provided to the main
worksheet list. The code for SetLists is as follows:

void CList15::SetlLists (CTable *hLabelList, CTable *vLabelList)

itsHList = hLabelList;
itsVList = vLabelList;
}

As is apparent, the code merely stores the incoming parame-
ters into instance variables that we’ve added to the CList1l5
class declaration.

CList15 SetCluster Method Code

The SetCluster code is also an access method used by the
ICalcWindow code to pass a handle—for the cluster holding
the cell entries—to the main worksheet list class. The code for
the SetCluster method is as follows:



210 Chapter 8» Customizing the Worksheet Code

void CList15::SetCluster (CCluster *aCluster)
{

}

itsCluster = aCluster;

Once again, the code merely stores the incoming cluster han-
dle into an instance variable for the CList15 class. This pro-
vides access to the cluster from within the class.

CList15 SetArray Method Code

The cluster to hold the cell entries for the main worksheet
was allocated in the CEnsembleData class (see page 186),
but it must be installed into the collaboration mechanism as
the provider for the CList15 class. This is done so that
changes to the elements of the array will cause a Broad-
castChange message to be sent to the CCollaborator, which
calls the ProviderChanged method of the CList15 class.

In the case of the CAMArrayPane that makes up the main
worksheet’s table, the collaboration connection must be es-
tablished explicitly. Once the CList15 instance is established
as an explicit dependent of the cluster, any changes to the
cluster will immediately be reflected by the receipt of a Pro-
viderChanged message.

The code for the method to install the cluster as the work-
sheet’s provider is as follows:

void CList15::SetArray ( CArray *anArray, Boolean fOwnership)
{

itsArray = anArray;

ownsArray = fOwnership;

DependUpon( itsArray);
}

This method is provided to override the SetArray method in
the CArrayPane class. That method requires that the array
contain entries for the scope of the companion table. Because
we are handling nonexistent entries and want the entire table
to be allocated, we must override the superclass method. The
instance variable called ownsArray establishes ownership of
the array by the table. We don’t want this connection, so a



Customizing the CCalcWindow Code 211

value of FALSE is passed to SetArray when it is called. The
DependUpon method establishes the fact that the CList15
class depends upon itsArray.

CList15 ProviderChanged Method Code

The ProviderChanged method is called in response to
changes to the cluster holding the cell entries for the main
worksheet. It overrides the functionality of the default
method for two of the potential BroadcastChange messages
sent by the array.

Specifically, we don’t want to observe the default behavior
when elements are inserted or deleted from the array. In those
cases, the standard behavior is to expand or shrink the table.
Because we would like the appearance of the table to remain
constant, these messages are ignored by our override method.
The code for the ProviderChanged method is as follows:

void CList15::ProviderChanged (CCollaborator *aProvider,
long reason, void *info)
{

if (aProvider == itsArray)
{ switch( reason)
{ case arraylnsertElement:
Z handle this case as an NOP (no operation)
/l;reak;

case arrayDeleteElement:
I
// handle this case as an NOP (no operation)
n
break;

default:
inherited::ProviderChanged( aProvider, reason, info);
break;
}
}
else
inherited::ProviderChanged( aProvider, reason, info);




212 Chapter 8 » Customizing the Worksheet Code

Note that we specifically handle the arrayInsertElement and
arrayDeleteElement messages as do-nothing cases. For
messages other than these, the inherited method is called.

CList15 Scroll Method Code

The scroll bars for the worksheet are associated with CScroll-
Pane, which only covers the area of the main worksheet.
However, when the scroll bars are used, we want the column
and/or row label lists to scroll in synchrony with the main
worksheet. In order to synchronize the scrolling operation, we
have created an override for the CTable class’s Scroll
method. The following code shows a very simple method for
synchronizing the operation of multiple lists with a single set
of scroll bars:

void CList15::Scroll (long hDelta, long vDelta, Boolean redraw)
{
inherited::Scroll (hDelta, vDelta, redraw);
if(hDelta)
{
itsHList->Scroll(hDelta, 0, TRUE);
}
if(vDelta)
{
itsVList->Scroll(0, vDelta, TRUE);
}
}

The Scroll method requires us to include the SetLists access
method (page 209) in the CList15 class. The inherited
method is called to scroll the main worksheet, and, depend-
ing on whether the hDelta or vDelta value is nonzero, the
corresponding column or row (itsHList or itsVList) handle is
used to call the Scroll method for that class.

Customizing the CCalcWindow Code

The bulk of the code that supports the functionality of the
worksheet is contained in the CCalcWindow class. This class
contains the methods that initialize the worksheet elements,
handle the selection of cells, and process the strings and for-
mula entries that constitute a cell entry’s contents.



Customizing the CCalcWindow Code 213

Table 8-3
Example worksheet
entries

Defining a Cell's Contents

In order to provide reasonable functionality, it was decided
that cells could contain any of the following elements, in an
appropriate order:

< If the cell entry text begins with a single quote, the entry is
assumed to be a string and the characters that follow the
single quote are stored, as is, into the cell.

% If the cell entry begins with anything other than a single
quote, then it is assumed to be a formula. Formulas can
contain the following elements:

m Balanced left and right parenthesis (), for grouping
terms.

m Simple numeric constants, specified either with or with-
out an embedded decimal point. All constants are con-
verted to floating-point values and no scientific notation
is allowed. Values such as 10 or 43.95 are examples of
the acceptable notation.

m References to other cells (e.g., B13, Z5, or Al).

m Standard arithmetic operators for addition, subtraction,
multiplication, and division, entered as +, -, *, and /,
respectively.

Worksheet cell formulas are evaluated in a strict left-to-right
sequence, without regard to any implied precedence of the
operators. When the order of evaluation is important, paren-
theses can be used to enclose the terms to be evaluated be-
fore a succeeding operator is applied. Examples of legal cell
entries are shown in Table 8-3.

Cell Cell Entry Displayed Contents
Al ‘This is a very long string This is a very long string
B10 10 10.00

C4 B10 + 15 25.00

D3 (C4+5)/3*B10 100.00




214 Chapter 8 » Customizing the Worksheet Code

Table 8-4
CCalcWindow

customized and new

methods

Class Method Description
CCalcWindow ICalcWindow Initializes the window and its
interface elements
CCalcWindow UpdateMenus Disables Close command in
File menu
CCalcWindow ProviderChanged Handles selection of a cell
CCalcWindow DoEnterButton Makes a cell entry
CCalcWindow DoCancelButton  Reverts to original cell contents
CCalcWindow ParseEntry Parses the Entry field and cre-
ates a cell object of the correct
type
CCalcWindow GetExpression Evaluates a formula entry
CCalcWindow GetToken Returns the next token while
evaluating an entry
CCalcWindow isConst Determines whether a token is a
constant
CCalcWindow isCell Determines whether a token is a
reference to another cell
CCalcWindow MakeStringObj Creates a string-type cell entry
CCalcWindow MakeValueObj Creates a value-type cell entry
CCalcWindow Activate Refreshes the table on an acti-
vate event

Strings that exceed the width of a cell will overlap the adja-
cent cells to their right. This allows you to create headings
that span a number of cells. The entry is anchored in the be-
ginning cell. You can justify string entries by inserting an ap-
propriate number of spaces in between the single-quote mark
and the first character of the string. Looking at the formulas
in the table should give you an idea of how to construct even
more complex forms. Parentheses can be nested to any
depth, as desired.

The Customized Methods

In order to implement the functions of a worksheet in the
CCalcWindow class, several new methods have been added
to those generated by AppMaker. The full list of methods in
the CCalcWindow class is shown in Table 8-4.



Customizing the CCalcWindow Code 215

The methods shown in boldface type in the table are newly
created. The names in plain type were generated by App-
Maker, but have been customized for our purposes.

ICalcWindow Method Code

The ICalcWindow method is called by the BuildWindows
method in the zEnsembleDoc module when the window is
created. The code for the ICalcWindow method is as follows:

void CCalcWindow::ICalcWindow (CDirector *aSupervisor,
CEnsembleData *theData)

{
Str255 theFilename;

itsData = theData;
inherited::1ZCalcWindow (aSupervisor);
gDecorator->StaggerWindow (itsWindow);
if(((CEnsembleDoc *) aSupervisor)->itsFile != NULL)
{
((CEnsembleDoc *) aSupervisor)->itsFile
->GetName(theFilename);
itsWindow->SetTitle(theFilename);
}
EntryField->SetTextString("\p");
TEAutoView (TRUE, EntryField->macTE);
((CList15 *)List15)->SetLists (List5, List10);
wsCluster = theData->GetCluster();
((CList15 *)List15)->SetCluster (wsCluster);
((CList15 *)List15)->SetArray(wsCluster, FALSE);
((CList15 *)List15)->Refresh();

In the preceding code, the first three executable statements
were generated by AppMaker. We have added the remaining
code. The first statement saves the handle to the CEnsemble-
Data instance in an instance variable called itsData. Next,
the inherited IZCaleWindow method is called to create and
initialize all the interface elements in the window. It is at this
time that all the IViewTemp methods for the borders, lists,
buttons, scroll pane, and user panes are called. After the IZ-
CalcWindow method returns, the window and all its ele-
ments have been created and initialized. The gDecorator is
sent a message to stagger the window, with respect to the
other windows on the screen.



216 Chapter 8 » Customizing the Worksheet Code

Following the AppMaker-generated code, there are a few things
that need to be done before the worksheet is ready for use:

1.If a file is associated with the document, the code

accesses its title and also writes it into the title bar of the
CalcWindow.

. The contents of the Entry field are set to an empty string,
and the toolbox TEAutoView function is called with a
handle to the TextEdit record for the Entry field, so that
the field will scroll when a long entry is typed into the
field.

. The series of access methods is called. The SetLists, Get-
Cluster, SetCluster, and SetArray methods were
described previously. The Get method accesses an exist-
ing handle, and the corresponding Set method passes the
handle to another class, when it can be stored in an
instance variable, for easy access.

4. The Refresh method forces the worksheet to be redrawn.

The GetCellText method for the main worksheet
(CList15) is called, whereupon it reevaluates the contents
of each cell and redraws it on the screen.

UpdateMenus Method Code

The UpdateMenus method has been modified as follows:

void CCalcWindow::UpdateMenus(void)

{

inherited::UpdateMenus ();

I

// disable Close if CalcWindow is

// the frontmost window

I

gBartender->DisableCmd (cmdClose);

A single statement has been added to the code generated by
AppMaker. When the CaleWindow is frontmost on the
screen, we want to disable the Close command in the File
menu, so that the worksheet alone cannot be closed.



Customizing the CCalcWindow Code 217

ProviderChanged
method code

(beginning)

ProviderChanged Method Code

The ProviderChanged method for the CCalcWindow class is
called when a mouse click occurs inside the main worksheet.
The CTable class sends a BroadcastChange message that is
intercepted by the CBureaucrat class and sent to the table’s
supervisor as a ProviderChanged message, which in this
case is the CCalcWindow class. Our worksheet design inter-
prets a mouse click in a cell as a selection of that cell and as
a prelude to changing or making a new entry into the cell.
The code in the modified ProviderChanged method elimi-
nates quite a bit of the superfluous code generated by App-
Maker pertaining to the column and row lists (CList5 and
Clist10), as these lists are not operated on directly by the
user. The modified code for the ProviderChanged method is
as follows:

void CCalcWindow::ProviderChanged (CCollaborator *aProvider,
long reason,
void* info)

Str32 itsCellTitle;
Str255 entry, cellText;
long length;

Cell aCell;

short row, col, type;
double value;

if (aProvider == List15)

if (List15->HasSelection ())

{
SetPt (&aCell, 0, 0);
List15->GetSelect (TRUE, &aCell);
row = aCell.v;
col = aCell.h;
CopyPString("\pA", itsCellTitle);
itsCellTitle[1] += col;
NumToString (row+1, entry);
ConcatPStrings (itsCellTitle, entry);
ConcatPStrings (itsCellTitle, "\p:");
CellNumLabel->SetTextString (itsCellTitle);
((CList15 *)List15)->GetContents (aCell, entry, &value,

&type, cellText);

if(type == 1)
{

CopyPString("\p", entry);



218 Chapter 8 » Customizing the Worksheet Code

ConcatPStrings(entry, cellText);
ProviderChanged
method code }
(concluded) EntryField->SetTextString (entry);

EntryField->BecomeGopher(TRUE);
EntryField->SelectAll(TRUE);

This code deals only with messages that relate to the CList15
instance. All others are ignored. If a cell is selected in the list,
then the method proceeds; otherwise, it ignores the message.
Following are the steps taken to handle a selection:

1. The selected cell is accessed via the GetSelect method,
which returns the first (and only) selected cell. The com-
ponents of the cell are saved as row and col variables.

2. The next series of statements formats the col and row
values to take on the appearance of a cell number (e.g.,
B13, corresponding to col=1 and row=12). The cell num-
ber is written to the static text field (CellNumLabel).

3. The next series of statements checks whether the selected
cell holds a string (type=1), and if so, the Entry field is
written with a single quote appended to the front of the
entry text; otherwise, for a formula, the entry text is cop-
ied to the Entry field using the SetTextString method.

4. Sending the BecomeGopher message to the EntryField
allows the field to accept all subsequent events (such as
keystrokes and mouse clicks). The SelectAll message
causes the entire contents of the EntryField to become
highlighted. Pressing the delete key will delete all of the
text in the entry. Entering any other text when the entry
is highlighted will replace the contents of the EntryField.

Once the contents of the EntryField are changed, they can
be stored by clicking on the Enter button. If you change your
mind about making changes to the entry, you can click the
Cancel button to restore the original contents of the cell to
the EntryField.



Customizing the CCalcWindow Code 219

DoEnterButton Method Code

The DoEnterButton method is called by the DoCommand
method generated by AppMaker. The latter method does not
require any changes. The DoEnterButton method was gener-
ated as an empty method by AppMaker, and we have added
the necessary code to make it fully functional:

void CCalcWindow::DoEnterButton (void)
{

long length, param;

Cell aCell;

Str255 theText;

Handle theTextHandle;

CWSEntry *anEntry, *anObj;

length = EntryField->GetLength();
if(length > 0)

SetPt(&aCell, 0, 0);
if(List15->GetSelect(TRUE, &aCell))
{
theTextHandle = EntryField->GetTextHandle();
BlockMove((*theTextHandle), &theText[1], length);
theText[0] = length;
if(anObj = ParseEntry (aCell, theText))
{
param = *(long *)&aCell;
if((anEntry = (CWSEntry *)wsCluster->Findltem1
(FindWSCell, param)) != NU