
DA 'N WE ST 0 N

Elements of C++ Macintosh®
Programming

Elements of C++ Macintosh®
Programming

Dan Weston

A
'YT
Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid San Juan

Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where those
designations appear in this book and Addison-Wesley was aware of
a trademark claim, the designations have been printed in initial
capital letters (e.g., Apple is a registered trademark of Apple
Computer, Inc.)

Library of Congress Cataloging-in-Publication Data

Weston, Dan.
Elements of C++ Macintosh programming/Dan Weston

p. cm. - {Macintosh inside out)
ISBN 0-201-55025-3
1. Macintosh {Computer)-Programming. 2. C++ (Computer program language) I. Title

II. Series.
QA76.8.M3W48 1990
005.26'5-dc20

Copyright© 1990 by Dan Weston

90-35408
CIP

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publisher.
Printed in the United States of America. Published simultaneously
in Canada.

Sponsoring Editor: Carole McClendon
Technical Reviewer: John Dance
Cover Design: Ronn Campisi
Text Design: Copenhaver Cumpston
Set in 10.5 point Palatino by Don Huntington

ISBN 0-201-55025-3

ABCDEFGHIJ-MW-943210
First printing, June 1990

This book is dedicated to the members of the nerd breakfast club.

Contents

Preface xvii
Acknowledgments xix

IJJl> PART ONE Getting Your Feet Wet 1
An introduction to C++ and the concepts of object-oriented program
ming, plus some mechanical aspects of making C++ programs in the
MPW environment.

1. WhyC++? 3
Reasons to Learn C ++ 3
Reasons Not to Learn C++ 4
How to Learn C ++ 4

2. C++: A Better C 7
Comments 7
Declarations and Definitions 8

Variables 9

Functions 9
When to Declare and When to Define 10
Variable Definitions Anywhere in Code 12

Type Checking 12

vii

viii ~ Contents

Arguments by Reference 13
Default Argument Values 14
Inline Functions 15
Const Definitions 16
Overloaded Functions 17
Streams 17
Summary 19

3. C++ Objects 21
Class Declarations 21

Public, Protected, and Private 22
Friends 24

Accessing Members and Member Functions 24
Derived Classes 25
Members 27

Static Members 27
Member Functions 28

"this" as a Function Argument 28

Virtual Functions 30

Static Member Functions 31
Constructors and Destructors 31

Virtual Destructors 33

Creating Objects 34
A Generic List Class 35

Iterating on a List 42
Summary 44

4. Writing MPW Tools in C++ 45
Helloworld 46

Creating a Makefile 47
1/0 Redirection in MPW 49
Command Line Arguments 55
The TTool Class 56

Initializing and Running the Tool 58
Parsing Command Line Arguments 59

Making Streams for Input and Output 61

1/0 Redirection with TTool 62
Deriving a New Class from TTool 62
The Filter Member Function 63

The Main Function 64
Makefile for Fixcom2 65

Compiler Warnings 65

~ Contents ix

Reading the Command Line with TTool 66
Overriding the Initialization Member Function 67
Processing the Command Line 68
Calling the Do Work Member Function 69

Summary 70

Ill; PART TWO Total Immersion 71
Dig in and use object-oriented concepts to design nontrivial classes
specifically for the Macintosh environment. Emphasis on discussion of
how object-oriented design decisions are made.

5 . TDoc: The Generic Document Class 73
TDoc Members 74
Constructor and Destructor 74
Initializing Documents 77
Maintaining Windows 78
Handling Events 79

Update Events 79
Activation 81
Growing, Zooming, Dragging 83
Mouse Clicks and Key Presses 85
Idle Events 86

Handling Menus 86
Adjusting Menus 87
Handling Menu Commands 89

Cut, Copy, and Paste 91
Handling Files 92

Opening and Closing Document Files 92
Reading and Writing Document Files 94

x ~ Contents

Saving Document Files 94
Closing Documents 96
Specifying Document File Type 98

Printing 98
Utilities 99

Compiling TDoc 100
Resources 101
Summary 102

6. TApp: The Generic Application Class 103
Extending TList to Handle Documents 104
How to Use TApp 105
TApp Members 106
Clipboard Support 107

Private Clipboard and System Clipboard 108
The Clipboard without MultiFinder 109
The Clipboard with MultiFinder 111

T App Constructor and Destructor 112
Initializing the Application 115
Cleaning Up After the Application 116
Making Documents 116

Opening New Documents 118
Opening Old Documents 119
Opening Documents from the Finder 121

Deleting Documents 123
Handling Events 124

Idle Events 127
Mouse Down Events 128
Key Down Events 129
Activate Events 130
Update Events 131

MultiFinder Support 131
Suspend and Resume 133

Handling Menus 134
Adjusting Menus 134

Handling Menu Commands 136
File Menu Commands 139
Edit Menu Commands 140

TApp Resources 141
Compiling TApp 142
Summary 143

7. Helloworld, Revisited 145
Subclassing TApp and TDoc 146

THelloDoc 146
THelloApp 148

Making New THelloDoc Objects 148
The Draw Member Function 149
The Helloworld2 Main Program 149
The Helloworld2 Resources 151

~ Contents xi

Helloworld2 Makefile: Putting It All Together 152
Debugging Helloworld2 with SADE 158
Summary 159

l)i> PART THREE Swimming 161
How to use the T App and TDoc classes developed in Part II. The true
benefits of object-oriented programming become obviouS' while design
flaws in the original TApp and TDoc classes are revealed. The chapter
on MacApp shows how to use another, more fully developed class
system.

8. Scribble 163
Making a TScribbleDoc 164
TScribbleDoc's Constructor 164
Scribbling Functions 166
File Type and Creator 168
Opening Files from the Finder 170
Reading and Writing Scribble Files 170
Handling Menus 172

Handling Menu Commands 172
Adjusting Menus 174

xii II> Contents

The Scribble Application 176
Scribble Resources 177
The Scribble Makefile 177
Summary 178

9. Modeless Dialog Documents 179
TModelessDoc Constructor and Destructor 180
Making the Dialog Window 181
Handling Events 182

Using the Dialog Manager 182
Responding to Individual Item Hits 183
Receiving Events from T App · 183
Dialog Windows Shouldn't Be Resized 184

Using TModelessDoc: A Sample Application 184
TSampDlg 185

Initializing the Document 186
Dialog User Item 188
Handling User Input 189

TModelessApp 189
Application Resources 189
Making the Sample Application 190
Summary 191

10. TScrollDoc: The Generalized Scrolling Document Class 193
Overview of Scrolling 194

Scroll Bars 195
Members 197
Static Member and Static Member Function 198
Constructor and Destructor 200
Initialization 200
Geometry 201
Coordinate Offset and Focus 203
Managing the Scroll Bars 204
Handling Events 208

Activation/Deactivation 208
Updates 209

Mouse Clicks on Content 210
Zooming and Growing 211

Scrolling 212
Scrolling Utility Functions 213
Thumb Scroll 216
Page Scroll 217
Button Scroll 218
Scroll Action Procedure 218

TScrollDoc Resources 219
Summary 220

11. PictView: Using the TScrollDoc Class 221
The TPICTApp Class 221
The TPICTDoc Class 223
Constructing the Document 224
Initializing the Document 225
Destroying the Document 225
Reading 'PICT' Files 226
Drawing the Picture 228
Handling Scrolling 228
Printing the Document 229

PageSetup 229
Printing 231

The PictView Main Program 233
PictView Resources 234
The PictView Makefile 234
Summary 236

12. Text Edit Document 237
Overview of Toolbox TextEdit 238
TTEDoc Members 239
TTEDoc Constructor and Destructor 240
Initializing the Document 241
Scrolling the Text 243

AutoScrolling 244
Document Dimensions 246

IJJi> Contents xiii

xiv Ill> Contents

Changing the Text 248
Managing Selections 248
Accepting Keyboard Input 249
Adding Arbitrary Text 250
Cut, Copy, Paste 251

Handling Events 254
Activation/Deactivation 254
Drawing the Text 254
Mouse Clicks on Text 255
Idle Events: Adjusting the Cursor 256
Growing and Zooming 257

File Operations 257
Reading 'TEXT' Files 258
Writing 'TEXT' Files 259

Using TTEDoc: TTEApp 259
The TTEApp Class 260
The Main Program 261
TEApp Resources 261
The TEApp Makefile 262

Summary 263

13. TDebugDoc: Streams and Multiple Inheritance 265
About Multiple Inheritance 266
Streams and Streambufs 266
TWindowStreamBuff Class 268

TWindowStreamBuff Constructor 268
The Overflow Member Function 269

TDebugDoc 270
TDebugDoc Constructor and Destructor 271
Making Debug Documents 272

Using Debug Documents 273
Sending Output to Debug Documents 274

TDebugDoc Resources 275
Summary 275

14. MacApp and PictView 277
Overview of MacApp 278
MacApp and C++ 279
TPICTDocument 280

Initializing the Document 280
Making the Views 281
Adjusting the Menus 282
Reading 'PICT' Files 283
Closing the Document 283
Inspecting the Document 284

TPICTView 286
Calculating View Dimensions 287
Drawing the View 288

TPICTView App 288
Initializing the Application 289
Making a Document 290
Adjusting the Menus 291

The MAPictView Main Program 291
MAPictView Resources 292
Building MAPictView 293
Summary 294

_., Afterword by Scott Knaster 295

Appendix A Think C 4.0 and C++ 297

Appendix B Source Code Listings 299

Index 475

~ Contents xv

Preface

Three proverbs for C ++ programmers:

If you put five C programmers in a room and ask them to write the same pro
gram, you'll get five different programs. If you ask five C++ programmers to
write the same program, they'll sit around and argue about the design.

-Wm Leier

It's not the code you write. It's where you put it that matters.
- Steve Splonskowski

Fortran programs can be written in any language.
-Anon

Dan Weston
March 1990

xvii

Acknowledgments

Every author says that he or she couldn't have written the book with
out help. It's true. I am deeply indebted to many people who have gen
erously given time and energy to this book. Jim Berry and Stan Krute
read early drafts of the book and were kind enough to be truthful, criti
cal, and encouraging. Steve Splonskowski actually used the examples
in this book to write real programs in his work, and in the process
found many bugs and design flaws. Their questions and suggestions
have dramatically improved the quality of the book. Thanks to Al
Smith for teJling me how to fix a bug in the printing code. John Dance
did a thorough technical review and made many key suggestions that
raised the book to a higher level.

Thanks to Scott Knaster for keeping the faith. At Addison-Wesley,
Carole McClendon knew how to make a deal quickly when the time
was right.Also, many thanks to Joanne Clapp Fullagar for gentle edit
ing, Diane Freed for cooperative production, and Rachel Guichard for
everything else.

My family had to live with me while I wrote this book. I am grateful
for their patience and understanding and support. Thanks to Sarah and
Asa for diverting me so that I couldn't become too demented. Most of
all, thanks to Leslie for listening to my dreams.

xix

PART ONE

~ Getting Your Feet Wet

The first four chapters of this book provide an introduction to C++ and
object-oriented programming. Think of it as sticking your toes into a
swimming pool, trying to get used to the water before jumping in.
These first few chapters will introduce the major techniques, terminol
ogy, and syntax that are used throughout the rest of the book to develop
large-scale object-oriented programming projects.

Take your time with these chapters, but don't worry if you don't im
mediately grasp every concept that is introduced. All the concepts that
are described in Chapters 1-4 are illustrated by extensive example pro
grams in Chapters 5-14, so you will be able to see the concepts put to
work in actual problem-solving situations.

1 WhyC++?

Why should you learn C++? It's a good question. You are probably a
busy person. You already know a few computer languages and you
can write perfectly good programs using what you already know.
Why bother to learn another computer language, especially one as
complicated as C++?

This book shows you how C++ can help you write better programs.
C++ is n9t a simple language, but it is easy to use selected parts of the
language without first mastering all its subtle features.

The following sections list some reasons, in no particular order of
importance, why you should learn C++. Following that are some rea
sons why you might not want to learn C++. You can decide .

.._ Reasons to Learn C++
C++ can be used just like C. If you are a C programmer already, there is
almost no reason not to use C++ instead. C++ can be used just like C,
and it will make you a better C programmer because of features like
strong type checking and operator overloading. If you have been using
another language, like Pascal, and have been thinking of switching to
C, learn C++ instead. Chapter 2 describes the features of C++ that
make it a worthwhile replacement for C.

C++ supports object-oriented programming. Object-oriented program
ming can make you more productive, no doubt about it. Personal com
puters are getting more and more complicated and difficult to pro
gram. You need all the help you can get. Object-oriented programming
is described in general in Chapter 3 and illustrated in great detail in
later chapters.

3

4 ~ Chapter 1 Why C++?

C++ is going to be a mainstream language. Apple Computer has stated
publicly that its new system software will be written in C++. Microsoft
and IBM are making strong commitments to C++ for future versions of
OS/2. This is not to say that C++ is necessarily the best language -
just that its use will be widespread throughout the 90s, just as C was
dominant in the 88s. Because C++ will be the standard, more docu
mentation will be available describing how to use the language. Com
puter companies will define system software calls as C ++ functions.
Magazines will be filled with articles on C++ and object-oriented pro
gramming techniques.

~ Reasons Not to Learn C++
C++ is hard to learn. C++ is a big, inelegant language. It is easy to get
started in C++ but hard to master its many subtleties. C++ should not
be your first computer language.

C++ is not for small programs. Because C++ makes you spend more
time designing and declaring, it is not very good for small programs
(less than a few pages of code) that you might want to knock off in an
afternoon. Use some other language for those programs. C++'s advan
tages show most clearly in larger programming projects.

Compile times for C++ are long. Because C++ is typically implemented
as a preprocessor, it adds an extra step to your program's build pro
cess. C++ reads your source code and produces standard C code,
which it then feeds to a C compiler. All this takes extra time. But what
ever time you lose in extra compile time should be regained when you
spend less time debugging as your program becomes larger. Once
again, the benefits of C++ probably won't be apparent in small projects.

~ How to Learn C++
This book will teach you how to use C++ by showing lots of examples
of C++ code. It is one thing to see a description of a language's fea
tures. It is another to see how those features are applied to problem
solving situations. This book applies C++ to the general problem of
how to write Macintosh programs. C++ is not a simple language, but
this book tries to pick out the features that are particularly useful for
Macintosh programming and show those features at work in fully
functional programs. There are some features of the language that are
not even touched upon using this approach, but I think that you will
become comfortable enough with C++ so that you can continue with
your own exploration after finishing the book.

., How to Learn C++ 5

Chapters 2 and 3 provide a brief introduction to some of C++'s fea
tures. These chapters will acquaint you with terminology and show
some short examples, but they are not intended to be comprehensive
or deep. Chapter 4 describes several complete example programs using
the features described in Chapters 2 and 3. Moving on from Chapter 4,
the rest of the book develops increasingly complex programs and
classes to illustrate how C ++ can be used to solve problems that face
Macintosh programmers.

2 C++: A Better C

As its name suggests, C++ is incrementally derived from the C pro
gramming language. One of the design goals of C++ was that it be up
wardly compatible with C programs. That is, C programs should be
able to be compiled with C++ with minimal changes. That goal has
been largely met.

This chapter discusses some of the additions to the C language that
make C++ a better version of C. Most of these features are related to
strong type checking for function arguments and variable assign
ments. These features help reduce programming errors and make C++
more suitable for large-scale programming projects with many pro
grammers where strict interfacing guidelines must be enforced.

This chapter does not discuss those C++ features that pertain to ob
ject-oriented programming. Those features are described in Chapter 3.
Nor does this chapter discuss those features of C++ that are carried
over fromC.

• Comments
One of the most trivial but most welcome new features in C++ is the
double-slash (/ /) comment. This comment indicator tells the compiler
to ignore any following text until the end of the line. Old-style C com
ments, which begin with /* and end with *I, are still supported. The
big advantage of having I I comments, aside from the fact that they
are easier to use, is that they can be nested inside old-style comment
blocks. For example, consider the following function and its comment,
done in the old style.

7

8 ~ Chapter 2 C++: A Better C

int foo(int a, int b){
I* here is a comment about the function *I
return a + b;

If you wanted to comment out the entire function definition with
old-style comments, you couldn't: The end comment mark(*/) at the
end of the first comment line would prematurely terminate the larger
comment block. Old-style comments cannot be nested. In the past, to
comment out entire functions or large blocks of code containing com
ments, C programmers have used #ifdef directives, as shown in the
following code.

#ifdef NEVER
int foo(int a, int b) {

I* here is a comment about the function *I
return a + b;

#endif

If the previous function is rewritten with double-slash comments, it
is easy to comment out the entire function using old-style comments,
as shown by the following code.

I*
int foo(int a, int b) {

*I

II here is a comment about the function
return a + b;

Most of the programs in this book use the double-slash comments to
mark comments in program code. Old-style comments are reserved for
commenting out large blocks of code and for those situations where a
comment is inserted in the middle of a line but doesn't extend to the
end of the line .

.,_ Declarations and Definitions

One source of confusion for new C ++ programmers is the difference be
tween a declaration and a definition. C++ requires that all functions
and variables be declared before they are used. A declaration is a state
ment that tells the compiler about the variable or function. For varia
bles, the declaration specifies the name of the variable and its data type.

~ Declarations and Definitions 9

For functions, the declaration specifies the name of the function, its re
turn type and the data types of the function arguments, if any. A declar
ation does not allocate any space for the variable or function. It is
merely a way of specifying the interface for the variable or function.

A definition, on the other hand, explicitly allocates space for the vari
able or function. A declaration describes the interface. A definition de
scribes the implementation.

Key Point ~ I Definitions cause space to be allocated for a variable, or code to be
~enerated for a function. Declarations do not cause space allocation
pr code generation.

..!!.

~ Variables

For variables, the declaration and definition are most often combined
into the same statement. For example, the following statements declare
and define variables. Notice that variables can be initialized in the defi
nition statement.

int foo = 5 ;
Re ct theRe ct ;
fl oatf=3.66 ;

To declare a variable without actually defining it, you must precede
the variable declaration with the extern keyword, as shown in the fol
lowing declaration statements. Extern tells the compiler that the varia
ble will be defined elsewhere.

extern int foo ;
ext e r n Rect theRect;
e xte rn float f ;

~ Functions

For functions, declaration and definition are more often separated. A
function is declared by listing its name, its return type, and the types of
its arguments, as shown by the following statements.

i nt f oo (int a , int b);
voi d bar (int , shor t , c har *);
cha r * b atz (voi d);

\;>ec,,~.,-.._, J_ I ~"\$ j 0 I V\ J j • 4
~i fes

1 o _., Chapter 2 C++: A Better C

Several observations can be made about the previous function dec
larations. First, the argument list in a function definition may or may
not include names for the arguments, but it must show the type of
each argument. Thus, the following function declarations are all equiv
alent as far as C++ is concerned.

int foo(int, int);
int foo(int a, int);
int foo(int, int b);
int foo(int a, int b);

(In this book the convention is to include names for function argu
ments in function declarations unless there is a good reason not to. See
the "Compiler Warnings" section of Chapter 4 for an explanation of a
situation where argument names should be left out.)

The next observation about function declarations is that the return
type can be void. A void function does not return any value.

Finally, notice that the argument list can also be void, indicating that
the function does not take any arguments. You can also specify that
the function does not take any arguments by simply leaving the argu
ment list empty. Thus, the following two function declarations are
equivalent.

char * batz (void) ;
char * batz () ;

Function definitions provide the same information as the function
declaration plus a block of code that defines the implementation of the
function, as shown by the following function definition. When C++ en
counters a function definition, it will use the function block to produce
actual code to implement the function.

int foo(int a, int b)(
return a + b;

.., When to Declare and When to Define

C++ programs are typically broken into several separate source files.
These files are compiled separately and then linked together to pro
duce the final application program. Putting related functions and varia
bles into the same source file enables you to reuse that file in other pro-

Key Point~ I

~ Declarations and Definitions 11

gramming projects. For example, assume that you have defined a set of
functions that calculate the relationship of ohms to volts to current rep
resented by Ohm's law. The following functions can be declared.

float GetVolts (float ohms, float current); ~.,; 1 ~1 01?.S V:'1°'~ 5 k,_~
float GetCurrent (float volts, float ohms); srqe-~ ~(.J; (~ ~)
float GetOhms(float volts, float current); } ~

3
The declaration of the functions are put into the file elec.n. The defi-

nitions of the functions are put into the file elec.cp. The implementation
file elec.cp is compiled one time to produce the object file elec.cp.o.
This is the file that contains the actual object code for the functions.
This file must be linked to other object files to form an application.

The header file, elec.h, which contains the declaration of the func
tions, can be included in other source files that want to call the electric
ity functions. The declarations in elec.h tell C++ enough about the func
tions so that it can do the required type checking on calls to those
functions. It is not necessary to know about the definition of the func
tions. The actual implementation of the functions is immaterial to C++
when it is doing this kind of type checking. Because simple function
declarations alone do not cause any code to be generated, you can in
clude a header file in several other files without the penalty of recom
piling the functions each time.

Of course, if you include a header file with function declarations, you
must link with an object file containing the definitions (implementa
tions) of the functions or the linker will complain that it can't find the
missing functions. Chapter 7 describes in detail how to inform the
linker what files are necessary to resolve all function references.

~declaration& are generally contained in header files (.h) . .,,.~ate generau.ycontained in implementatkm files
~

Likewise for variables, if you have global variables that you want to
include in several other files, you can declare them as extern in a
header file and then define them in a separate implementation file.
That way, they are defined in only one file but can be referenced from
any file that includes the declaration header.

12 ~ Chapter 2 C++: A Better C

~ Variable Definitions Anywhere in Code

One big improvement of C++ over C is that in C++ you can define a
variable anywhere a normal statement can occur. This is most useful
when defining local variables within a function block. In C, all variable
declarations in a function must come at the beginning of the function.
This causes problems if the function is long because you have to keep
looking back at the beginning to check the name of the variable. It also
causes a problem when you delete a section of code in a long function
definition because you often forget to go back to the beginning and de
lete the variable definitions used by the deleted code.

C++ allows you to define variables right before you use them. Thus,
in a long function definition, you can group individual variable defini
tions with the code that uses them. This makes your code more reada
ble and maintainable.

A common use of this feature is to define a loop counter variable in
the for clause of a for-loop, as shown in the following code fragment.

for (int i = 0; i < maxCount ; i ++) {

., Type Checking

C++ checks the data types of all function arguments. This tends to
catch many errors during compilation rather than letting them go until
runtime. The reason that C++ requires full argument lists in function
declarations is so it can check arguments against the argument list
when the function is called.

Strong type checking means that C++ will warn you or refuse to
compile function calls where incompatible variables are passed to a
function. C++ will do some automatic type conversion for you when
the type that you pass can be converted to the type that the function
expects. For example, when passing a floating-point number to a func
tion that expects an integer, C++ will automatically truncate the float
ing-point number to its integer component before passing it to the
function. When the conversion will change the value, as it does in
floating-point to integer conversion, C++ will issue a warning during
compilation.

Strong type checking is a big advantage, but it can be somewhat re
strictive at times. Suppose you want to pass a pointer variable to a
function that expects a long integer. You know that a pointer is the
same size as a long integer, but the compiler complains because it
doesn' t have a standard way of converting a pointer to a long integer.

.._ Arguments by Reference 13

You can get around this problem by making an explicit typecast of the
pointer variable to a long integer when passing it as a function argu
ment, as shown in the following code fragment.

char * p ;
void foo (longl);
foo (p);
foo ((long)p);

11 definition of pointer variable
11 declaration for function with one long arg
11 compiler will complain ! ! !

I I typecast makes it all OK

Typecasting is a way of telling C++ that you know what you are do
ing. Actually, with C++'s ability to overload functions, you could de
fine another version of the function shown in the previous example so
that it could be called with a pointer argument as well as with a long
integer argument, thus eliminating the need for an explicit typecast.
See the section "Overloaded Functions" in this chapter for details .

.., Arguments by Reference

When you specify the arguments in a function's argument list, you can
follow the argument type name with a & character to indicate that the
argument should be passed by reference rather than by value. This
means that C++ will pass a pointer to the argument rather than passing
a copy of the argument to the function. Thus, you will be able to alter
the value of the argument in the function and have those changes show
up in the variable that was specified as the argument.

Pass-by-reference is essentially the same as the VAR argument fea
ture of Pascal. Pass-by-reference permits you to specify the name of a
variable when specifying an argument rather than needing to specify
the address of the variable. It also means that inside the function, you
do not have to dereference a pointer to get at the contents of the argu
ment. This is most useful for structures and other complex data types.

Consider the following example. Assume that a data structure has
been defined as follows to represent a rectangle.

struct Rect {
short top;
short left;
short bottom;
short right ;

);

Now consider a function to calculate the area of the rectangle. In C,
you would define the function to take a pointer to a Rect, as shown here.

14 .- Chapter 2 C++: A Better C

int Area (Rect * r) {
return ((r - >bottom - r - >top) * (r - >right - r - >left));

When calling this function, you would have to provide the address
of a Rect variable as an argument, as shown in the following code frag
ment.

Rect theRect ;
int theArea = Area (&theRect);

Using C++'s call-by-reference syntax, you could define the Area
function as follows.

int Area (Rect& r) {
return ((r . bottom - r . top) * (r . right - r . left));

When calling this version of the function, you could simply provide
the name of a Rect variable as an argument, as shown in the following
code fragment.

Rect theRect ;
int theArea = Area (theRect);

The pass-by-reference syntax allows you to avoid the dereferencing
and address-of operations that are typically used to pass pointer argu
ments. Pass-by-reference also forces the caller to allocate the structure
that is to be used by the called function. For example, if you used the
Area function that takes a pointer argument, there is nothing to pre
vent you from allocating a Rect pointer variable that doesn't actually
point to a valid Rect structure and then erroneously passing that
pointer to Area, as shown in the following code.

Re ct *pRect ;
int theAre a = Area (pRect); //DANGER : using uninitialized Pointer!

._ Default Argument Values

Another new feature of C++ is the ability to assign default values to
function arguments in the declaration of the function. For example, as
sume that you declared a function that played a sound at a specified
sample rate. The function would take two arguments, a pointer to the
sound data and an integer specifying the sample rate, as shown in the
following declaration.

"' lnline Functions 15

void Pl aySound (char *sound, int sampRate);

Assume further that the normal sample rate for sounds in your sys
tem is 22,000 Hz. You could define a default value for the sample rate
argument so that the caller of the function wouldn't have to provide
the sample rate argument if the default rate was acceptable. The declar
ation with the default assignment is shown as follows.

void PlaySound(char *sound, int sampRate = 22000);

C++ will substitute the default argument value only if the caller does
not supply the argument. More than one argument in an argument list
can have a default value, but substitution is based on the argument po
sition, so an argument with a default value cannot be followed in the
argument list with a nondefault argument. Another way of saying this
is that the default arguments must be last in the argument list. Thus, it
would be incorrect to declare the PlaySound function as follows.

void PlaySound(int sampRate = 22000 , char* sound) ; II INCORRECT!!

Key Point IJl> Default argument values can only be. specified once, in either the
declaration or the definition of the function, but not both. This book
uses the convention of specifying the default arguments in the func
tion declaration, but it could be done in the definition instead.

IJ)i. lnline Functions
C++ allows you to define inline functions. Inline functions are not in
voked through the normal function call mechanism, which involves
stack manipulation and can be rather inefficient for functions that are
called often or for small functions where the overhead of the function
call is greater than the actual work done by the function. Instead, the
body of inline functions is substituted directly into the code at the place
where the inline function is called. Any arguments are also type
checked and substituted. The substitution happens during compilation;
at runtime there is no actual function call, just execution of the substi
tuted code that makes up the function.

Inline functions basically replace the macro facility that is commonly
used by C programmers to avoid the overhead of function calls for short,
frequently called routines. Inline functions have the advantage over
macros of strong type checking for inline function arguments and return
types. For example, in a C program you might define the following mac
ros to return the high and low 16-bit words from a 32-bit long integer.

16 ~ Chapter 2 C++: A Better C

Key Point~ I

#define HiWrd(aLong) ((short) (((aLong) >> 16) & OxFFFF))
#define LoWrd(aLong) ((short) ((aLong) & OxFFFF))

In C++ you would define inline functions instead of macros, as
shown by the following inline function definitions.

inline short HiWrd(long aLong)
{return (short) (((aLong) >> 16) & OxFFFF);}

inline short LoWrd (long aLong)
{return (short) ((aLong) & OxFFFF);}

The advantage of defining inline functions rather than macros is
that C ++ checks the argument and return value for inline functions
but not for macros.

Const Definitions
In traditional C programs you typically define constants with #define
statements, such as the following.

#define MAXSHORT 32767
#define MINUSONE -1

C++ provides a better mechanism for defining constants that allows
you to specify the exact data type of the constant as well as its value. In
C++ the previous #define statements would be replaced by the follow
ing statements.

const short MAXSHORT = 32767 ;
const long MINUSONE = - 1 ;

Const definitions essentially create read-only variables. A const vari
able must be initialized when it is defined. It cannot be changed there
after. The advantage of const definitions over #define statements is
that the const variable has a definite data type and can thus be sub
jected to type checking when it is used as a function argument.

~ Overloaded Functions 17

.., Overloaded Functions

Function overloading in C++ permits you to define several versions of
a function, each with a different argument list. The same function name
then refers to several different function definitions. The compiler is
able to differentiate between the versions by looking at the argument
types. For example, look again at the example from the "Type Check
ing" section of this chapter where it was necessary to do an explicit
typecast in order to pass a pointer argument to a function that expected
a long integer argument, shown as follows.

char * p;
void foo (long l);
foo (p);
foo ((long) p);

II definition of pointer variable
II declaration for function with one long arg
II compi l er will compl ain ! ! !

II typecast makes it all OK

By overloading foo so that it can accept a pointer argument, you can
avoid the need to typecast, shown as follows.

char * p; II definition of pointer variable
void foo(long l) ; II declaration for function with one long arg
void foo(char * c); II OVERLOADED function declaration
foo (p) ; II compiler will NOT complain ! ! !

Each overloaded function must have its own definition. Each over
loaded version of the function is actually a separate function. All the
functions just share the same name. C++ decides which version of the
named function to call by matching the arguments provided against
the argument lists of the declarations .

.., Streams

Like C, C++ does not contain any predefined input and output opera
tors. All I/O is handled by library functions. C has the stdio library,
with the infamous printf function. C++ supports stdio, but it also de
fines a new type of I/O called the iostream library. Streams provide the
same type of formatting and input/ output services as the stdio library,
but they also provide better type checking and additional support for
user-defined data types.

A stream is a sequence of bytes. Data can be extracted from the
stream and placed into program variables with the extraction operator
(>>).Data can also be inserted into the stream with the insertion opera
tor(<<) . In a typical UNIX environment, streams can be associated with

18 .,,_ Chapter 2 C++: A Better C

the standard input and output 1/0 channels. For example, standard
input is often associated with a user terminal keyboard, and standard
output is the terminal screen. Thus, extracting data from the standard
input stream retrieves characters typed by the user at the terminal. In
serting characters into the standard output stream sends those charac
ters to the terminal screen.

The iostream library defines three stream variables - cin, cout, and
cerr - that correspond to standard input, standard output, and stan
dard error output channels of the system. You can use these prede
fined variables in your programs to extract and insert data into the
standard I/O channels. For example, to send a string to the standard
output channel, you could use the following statement.

cout << "This data will go to the output channel \n " ;

More important, you can combine insertion operations and use the
automatic formatting capabilities of the insertion operator to produce
composite output, as shown in the following statements.

int x = 23;
cout << "The value of xis " << x << " . \n ";

The previous statements will produce the following output.

The value of x i s 23 .

You can see that the insertion operator knows how to change the int
variable x into its textual representation before inserting it into the out
put stream. Likewise, the extraction operator knows how to take a tex
tual representation from an input stream and convert it into a specified
destination data type. For example, you could extract an integer from
the input stream and place its value into an int variable with the fol
lowing statements. In addition to inserting and extracting predefined
data types, the stream operators can be overloaded to operate on user
defined types.

i nt x;
c i n >> x;

Chapter 4 shows how to use iostreams in the MPW tools to take ad
vantage of the UNIX-like input and output redirection facilities of the
MPW environment. In a typical Macintosh program, however, standard
input and output are not supported. Streams are more useful in Macin-

11>- Summary 19

tosh programs when they are associated with files. When it is associated
with a file, a stream can be used to insert and extract data from the file.
Chapter 13 shows how to modify the basic functionality of a stream so
that its output is directed into a debugging window in your program.

I)!> Summary
C++ adds many new features to C. Many of those features center
around stronger type checking. This makes C ++ programs less prone
to runtime errors involving faulty function arguments or variable as
signments. Most of these improvements were made without sacrificing
the efficiency that C is famous for.

Even if C++ added only the features described in this chapter, it would
be worthwhile to make the switch from C to C++. But C++ also adds
new features that support object-oriented programming. The next chap
ter describes the object-oriented features of C++. The ability to do object
oriented programming is what makes the move to C++ really exciting.

3 C++ Objects

This chapter provides an overview of the object-oriented features of
C++. Object-oriented programming includes the ability to define
classes, create objects that belong to a class, and derive new classes
based on existing classes. These techniques can have a dramatic effect
on program design.

Object-oriented programming techniques are having the same sort of
impact on the programming profession that structured programming
had when it was first introduced in the mid 1970s. Object-oriented pro
gramming will change the way you write programs. Using object
oriented design techniques will make you a better programmer.

This chapter describes what a class is and discusses the different
parts of a class. The second half of the chapter develops a set of classes
that encapsulates the idea of a linked list. This example shows how
classes often work together to achieve a common goal.

_., Class Declarations

A class is like a data structure. It has slots for data, called members,
and slots for functions, called member functions. When you write a
declaration of a class, you are specifying a template for objects that be
long to that class. The class declaration tells the compiler how much
space to set aside each time an object of that class is created and how to
access the members and member functions of that class.

A class enables you to encapsulate data and functions that operate
on that data in one place. For example, a simple class declaration for a
class that represents a rectangle is shown as follows.

21

22 .,. Chapter 3 C++ Objects

I By The Way 9ll> I

Key Point 9ll> I

class TRect {
public :

CJ,('?:?~~ ben , ~ v L:\--~ T
Wi erM. ~~~ befJ ,;., w ~.\-~ _p

} ;

II these are the data members
short fTop ;
short fLeft ;
short fBottom ;
short fRight ;
II these are the member functions
short Area (void);
Boolean PointinRect (Point thePt);

The naming conventions used in this book for classes and members
are derived from the MacApp-Object Pascal naming scheme used
by Apple. Class names begin with T because in Object Pascal classes
are called types. Similarly, members begin with f, since in Object
Pascal members are called fields. Naming members this way helps
to distinguish between members and local and global variables.

The class declaration gives the name of the class, TRect, and then
lists the members and member functions for the class. The keyword
public: specifies the protection level of the members and member func
tions. Protection is discussed in the next section.

Notice that each member is preceded by a type designator and that
each member function declaration includes a full prototype of the
function, including argument types and return value.

Don't forget to put a semicolon after the closing brace of a class dec
laration. This is often confusing to new C++ programmers since the
closing brace of a function definition does not need to be followed
by a semicolon. Failure to put a closing semicolon after a class dec
laration can result in mystifying compiler error messages.

Public, Protected, and Private

C++ provides three levels of protection for members and member
functions within a class. The default protection level is private. That
means that a private member or member function cannot be accessed
by any function that is not a member function of that class. This is
sometimes known as data hiding, although in C++ functions as well as
data can be hidden. The next level of protection is protected. A pro-

Key Point ., J

., Class Declarations 23

tected member or member function is accessible only to other member
functions of that class or from classes derived from that class. (Derived
classes are described in a later section.) The protected designation is
most useful when you plan to derive other classes from your base class.
The least restrictive level of protection is public. Public members and
member functions can be accessed by any other function.

You control the protection level of members and member functions
by inserting the keywords public, protected, or private, followed by a
colon, in your class declarations. If none of these keywords is used, the
compiler assumes that you want everything to be private. You will
usually want at least some of the member functions for a class to be
public:, otherwise the class will be unusable by other parts of your pro
gram. (See the discussion of friends in the next section for a qualifica
tion to this statement.)

If you don't specify a protection level, C++ will assume that you
want private members and member functions by default.

The protection keywords can appear many times in a class declara
tion. For example, you can switch from public to protected and then go
back to public as often as you want within a declaration. The following
class declaration shows how this might be done.

class TRect {
protected :

II these data members are protected
short fTop ;
short fLeft ;
short fBottom ;
short fRight ;

public:
II these member functions are public
short Area(void) ;
Boolean PointinRect (Point thePt);
void SetRect(short top , short left ,

short bottom, short right) ;
protected :

} ;

II this member function is protected
short ComparePoint(Point thePt) ;

24 IJl. Chapter 3 C++ Objects

Using different levels of protection for different parts of your class
declaration permits you to hide some the details of your class while
making other parts explicitly visible to outside users. The TList class
described in the last half of this chapter shows how to use protected
members to hide implementation details while providing public mem
ber functions to use the class. The more elaborate classes developed in
Chapters 5 and 6 also show how to use the various protection levels in
a class declaration .

., Friends

There are cases where you will want to provide special access to pro
tected or private members to a particular function or class but you
won't want to open access completely by making the members public.
C ++ provides the friend keyword to allow you to designate specific
functions or classes that can access protected or private members and
member functions. This lets you grant special access privileges to spe
cific functions or classes without giving up the general protection en
joyed by the protected and private members. The iterator and list
classes described in the last half of this chapter show an example of
how to use the friend mechanism.

• Accessing Members and Member Functions
Class members and member functions are accessed just as if they were
elements of a data structure. For example, if you had a TRect variable
(going back to the original declaration of TRect that had public mem
bers and member functions), you could access its members and mem
ber functions as shown in the following code fragment.

Point p ;
TRect theRect ;
theRect.fTop = 0;
theRect . fLeft = 0;
theRect . fBottom = 100 ;
theRect . fRight = 300 ;
short theArea = theRect.Area ();
Boolean i nRect = theRect.PointinRect(p);

If your variable is a pointer to an object rather than the object itself,
you must use the dereference operator(->) to access the members and
member functions of the object, as shown by the following code.

IJJi. Derived Classes 25

Point p ;
TRect theRect ;
TRect * ptheRect = &theRect
ptheRect->fTop = 0;
ptheRect- >fLeft = 0;
ptheRect- >fBottom = 100 ;
ptheRect- >fRight = 300 ;
short theArea = ptheRect - >Area ();
Boolean inRect = ptheRect - >Point inRect(p);

Member functions of a class can access other members and member
functions of the same class by name alone, without supplying an object
or object pointer. This is shown by the following definition for the Area
member function in the TRect class. Area can access the other members
of the TRect class as if they were simple variables. Member functions
can likewise be accessed as if they were simple functions.

short TRect :: Area (voi d) {
return ((£Bottom - f Top) * (fRi ght - fLeft));

_.. Derived Classes

1
: dRl'lk

~ccess -lo >tA~
l/'4.V;Jol.e..s 0...- O~<r
(u,... e--J:ovtS r~ q

ck,ss,

One of the most important aspects of object-oriented programming is
the notion of inheritance. Once you define a class, you can derive other
classes from that class. The derived classes inherit all the members and
member functions of the original class. The original class, from which
you derive the new classes, is the parent or base class.

A derived class has all the characteristics of its parent class. Typically,
you derive one class from another so that you can add or change se
lected parts of the parent class in the derived class. There are two ways
to make changes when deriving a new class. First, you can extend the
parent class by adding new members or member functions to the new
class. These new members or member functions become part of the de
rived class in addition to the members and member functions that are
inherited from the parent class. The second way to modify a derived
class is to override member functions from the parent class. When you
override a member function, you supply a new definition for the func
tion. C++ will use that new function definition for the derived class,
but the original definition will remain valid for the parent class.

26 ~ Chapter 3 C++ Objects

c(q93 j~hu-:hf\UI -r
~c1ok& tl.1~1\Ak~ d

01Jt.r 1Je, ~re>l t

Auec/) ~·

For example, you can derive a round-cornered rectangle class from
the original TRect class with the following declaration.

class TRoundRect : public TRect
protected :

II add some new members
short fHOval ;
short fVOval ;

public :
II and override the area member function

-:>shor t Area (void) ;
} ;

TRoundRect is derived from TRect, as indicated by the single colon
following the class name TRoundRect. The first line of its declaration
also includes the keyword public, which specifies that TRoundRect is
publicly derived from TRect. Because TRoundRect is publicly derived
from TRect, objects in the TRoundRect class can be treated just like
objects from the TRect class. That is, you can create a TRoundRect ob
ject and use it to call member functions or access members that were
defined for the TRect class. If the public keyword is left off the first
line of the class derivation, then the class is privately derived by de
fault, and objects of the derived class cannot be used as if they were
objects of the parent class. For privately derived classes, only those
members and member functions that are defined (or overridden) in the
derived class can be accessed. Member functions of a privately derived
class can access the parent class's members and member functions, but
users of objects of the derived class cannot use the derived objects to
access members and member functions for the parent class. All the ex
amples in this book use public derivation since we want full access to
the parent class's members and member functions. It is, however,
sometimes useful to hide the details of a base class by using private
derivation for its derived classes.

TRoundRect also adds two new members, fHOval and fVOval, to
specify the shape of the round corners of the rectangle. TRoundRect
inherits the original four data members specifying the corners of the
rectangle from TRect. Finally, TRoundRect overrides the Area mem
ber function to more accurately calculate the area of the round
cornered rectangle.

Most of the rest of this book is dedicated to showing examples of de
rived classes. Inheritance, and the ability to modify or extend the be
havior of a base class, are the most powerful ideas in object-oriented
programming. The examples in Chapters 4-14 illustrate how useful
these techniques can be.

.._ Members 27

IJJii> Members
The class declaration describes the members that make up the class.
Each object of the class that is created gets a copy of all the class mem
bers. That is, each instance of a class has its own private copy of the
members. For example, if you create two TRect objects, as shown by
the following code fragment, each object will have separate copies of
the ff op, [Left, fBottom, and fRight members.

TRect rectl ; 1---- cvao..ft~L1 CP~J;._Js
TRect rect2 ; ,-J

0
., c(~s { sk"'-~5

rectl. fTop = O;
rectl. fLeft = O;
rectl . fBott om = 100 ;
rectl . fRight = 300 ;
rect2 .fTop = 20 ;
rect2 . fLe f t = 30 ;
rect2 . fBottom = 400 ;
rect2.fRight = 100 ;

The members of an object allow that object to maintain its own state,
independent of the state of any other objects of the same class that have
been created.

~ Static Members

If you declare a class member with the static keyword, that member is
shared by all objects of that class. There is only one copy of the static
member. Thus, if one object sets the value of the static member, that value
is reflected in all objects of that class. A static member is like a global vari
able that obeys access and protection rules as if it were a class member.
The following declaration adds a static member to the TRect class.

class TRect {
public :

} ;

II static member
static short fNumRects;
II these are the data members
short fTop ;
short fLeft ;
short fBottom;
short fRight ;
II these are the member functions
short Area (void) ;
Boolean PointinRect(Point thePt);

28 ., Chapter 3 C++ Objects

Static members are declared as shown in the declaration of the class.
They must be defined separately. A good rule of thumb is to define
and initialize static members just like global variables. The following
code shows how to define and initialize the fNumRects static member
for the TRect class.

short TRect: : fNumRects = 0;

Once initialized this way, the static member can be modified by any
of TRect' s member functions . The syntax for accessing a static member
from within a class member function is exactly the same as for non
static members. From outside the class, a static member can be ac
cessed by preceding its name with the name of the class and two co
lons, as shown in the definition statement. Of course, access from
outside the class also depends on the protection level (public, pro
tected, or private) of the static member. (See the TScrollDoc class in
Chapter 10 for an example of how to use a static member.)

Member Functions
All Q1>jehtl of a particular class share the member functions for that
class. W i e each object has a separate copy of the members, it would
be too inefficient to give each object copies of the code that implements
the member functions for the class. Thus, when you call a member
function for an object, it uses the common code that defines the mem
ber function for the whole class.

To call a member function for a particular class, you must have an
object, or a pointer to an object, that belongs to that class. It is neces
sary to associate a member function call with a specific object in this
way because member functions often alter the state of the object by ac
cessing members of that particular object.

IJll> "this" a~ a Function Argument

Every member function for a class must be declared with a function
prototype in the class declaration. This prototype lists the arguments
for the member function. C++ adds an additional argument, "this", to
the beginning of the argument list for every member function. The
"this" argument is a pointer to the individual object that is being used
to access the member function. For example, consider the following
declaration for the rectangle class.

[By The Woy ~ [

~ Member Functions 29

class TRect {
public :

} ;

II these are the data members
short fTop;
short fLeft;
short fBottom;
short fRight ;
II these are the member functions
short Area(void);
Boolean PointinRect (Point thePt);

The two member functions, Area and PointlnRect, are actually de
clared as follows after C ++ adds the implicit "this" argument.

short Area (TRect *this) ;
Boolean PointinRect (TRect *this , Point thePt);

Since the "this" argument is implicit, you do not have to include it in
the argument list for your member functions. Likewise, you never have
to worry about providing it when calling the member function from
C++, since the compiler automatically adds the extra argument when
you call the member function.

C++ uses "this" to make sure that access to class members from
within the member function affects the members of the particular ob
ject that was used to make the member function call. You can use "this"
to refer to the object itself within the definition of the member function,
although it is not usually necessary. You will need to use "this" only if
you want to pass a reference to the object to some other function.

The "this" argument to a member function can be used to explicitly
show that a member or member function for the class is being ac
cessed. Thus, assuming that a member named ff op is defined for a
class, this->ffop and ff op would be equivalent ways of referring to
the member from within a member function for that class. Many
programmers prefer the more explicit form, and there is no perfor
mance penalty for using it.

One consequence of the implicit "this" argument is that you cannot
use C++ member functions to write functions that will be called from
the Macintosh toolbox. Functions that are called from within the tool
box, such as the scroll action procedures described in Chapter 10, have
a strictly defined set of arguments and cannot accommodate the extra
implicit argument.

30 .,. Chapter 3 C++ Objects

~ Virtual Functions

When you declare a member function you can tell C++ that you will
probably be overriding that function in a derived class by preceding
the function declaration with the virtual keyword, as shown by the fol
lowing class declaration.

class TRect {
public :

};

II these are the data members
short fTop ;
short fLeft ;
short fBottom ;
short fRight ;
II these are the member funct ions
virtual short Area(void);
virtual Boolean PointinRect(Point thePt) ;

A virtual member function for a class is called through a jump table
associated with the class. This makes virtual functions slightly less effi
cient than nonvirtual functions, which are called with direct function
calls. In practice you should not notice the difference in efficiency, al
though if you find that you are repeatedly calling a virtual function in
a computationally intensive situation, you may want to make the func
tion nonvirtual instead.

Key Point .,. I A good rule of thumb is to make a member function virtual if you
think you will ever override it in a derived class.

Nonvirtual member function calls are bound at compile time. That
is, the compiler knows exactly which function corresponds to the
member function call and emits code to make a direct function call. In
contrast, virtual function calls are bound at runtime. This means that
the compiler can't figure out exactly which function should be called,
so it creates code that looks up the function pointer in the jump table
for the object. At runtime, the member function call invokes the code
to look up the function pointer and then jump to the actual virtual
function that is appropriate for that class. \

Virtual member functions are necessary since objects in derived
classes are often referenced by pointers to the parent class type. A
good example of this shows up in the generic application and docu
ment classes, T App and TDoc, used in Chapters 5-13. The application

Key Point ..,. ,

..,_ Constructors and Destructors 31

class manipulates documents by making calls to TDoc member func
tions. The application class keeps all its document references as TDoc
pointers. Yet, in practice, these document objects are actually classes
derived from TDoc. The application treats the documents as if they be
longed to the TDoc class, but because the document member functions
are virtual, the proper overridden member functions for the derived
documents get called. Without virtual functions, the original member
functions of TDoc would alwq.ys be called when the application used a
TDoc pointer to make a function call.

-.-
By making the member function virtual, you are telling the. com
piler to check the actual class of the object at runtime to ensure that
the derived class's member function will be called even if the
pointer used to access the member function is declared as a pointer
to the base class.

Static Member Functions

A static member function is a member function declared with the static
keyword. A static member function in a class can access only the static
members of the class. Static member functions provide a way to access
static members without needing an actual object of the class.

Static member functions do not have the implicit "this" argument de
scribed previously. This means that they cannot access any of the non
static members of the class. (See the TScrollDoc class in Chapter 10 for
an example of how to use a static member function to access a static
member.)

IJlll> Constructors and Destructors
One of the best features of C++ is that it provides a way to define func
tions that will be automatically called when an object is created and
when it is deleted. The function that is called when an object is created
is a constructor. Constructors are typically used to initialize the mem
bers of the object to their default state. The function that is called when
the object is deleted is a destructor. The destructor is typically used to
deallocate any memory allocated by the object.

A constructor is a member function that has the same name as its class.
A destructor has the same name as its class with a leading tilde(-). For
example, to add a constructor and destructor to the TRect class de
scribed earlier in this chapter, the following declaration would be used.

32 .,. Chapter 3 C++ Objects

class TRect {
public:

II these are the data members
short fTop;
short fLeft;
short fBottom;
short fRight;
II these are the member funct ions
short Area(void);
Boolean PointinRect(Point thePt);

, _.._.......,I constructor

Key Point .,. J

~w"... QJMl,ta1-.~d''J
141fcr1./1~ ~Ju-.s t!J~
1('1 c£JeJ ..t-r:> defJ~
~[c,at;.

TRect (void) ;
II destructor
-TRect (void) ;

} ;

If the constructor for a class is not public, only friends of that class
will be able to create objects of that class, since creating an object is
just like calling its constructor.

Neither a constructor nor a destructor can be declared to return any
value as a function result. A constructor can be declared to take argu
ments, but a destructor cannot have any arguments. The ability to pass
arguments to a constructor is a very useful feature, and it is commonly
used in C++ programs. For instance, the constructor for the TRect class
just described would more usefully be declared in the following way.

TRect(short top= 0, short left= 0,
short bottom= 0, short right= 0) ;

When declared this way with default arguments, the user has a
choice of providing the coordinates for the rectangle or passing no ar
guments and accepting the defaults. The following definition for the
constructor shows how the arguments could be used to initialize the
object members.

TRect : : TRect (short top , short left , short bottom, short right) {
fTop = top ;
~Left = left ;

fBottom = bottom;
fRight = right ;

_., Constructors and Destructors 33

Constructors and destructors are not required for a class. You can de
fine a constructor without a destructor, or a destructor without a con
structor, or neither, for any class.

When a class is derived from another class, it inherits its parent
class's constructor and destructor. Parent constructors are invoked be
fore derived constructors. Destructors are invoked in the opposite di
rection, proceeding from the derived class upward through its parent
chain. This topic is discussed in more detail with examples in Chapters
8, 9, and 11.

Since a constructor cannot return any status, it is unwise to do any
thing in a constructor that can fail. Constructors are typically used only
to initialize members, not to allocate memory or read in resources. If
your class needs to allocate memory, you should add a separate initiali
zation member function that is called separately after the object has
been created. For example, if the TRect class needed to allocate mem
ory, you would add a member function, called something like InitRec.t
or IRect, and call that function after creating a TRect object. See the
TDoc class in Chapter 5 and the TApp class in Chapter 6 for examples
of initialization functions that are separate from the constructor.

Destructors, on the other hand, are especially good for deallocating
memory that has been allocated by the object.

.., Virtual Destructors

Key Point _.,

It is important to make a virtual destructor for a class that will be used
as a base class for derived classes. This is necessary when the derived
objects are referenced with pointers to the base class, as discussed pre
viously in the "Virtual Functions" section. For example, the application
class described in Chapter 6 always deletes documents by calling the
delete operator on a pointer to the base document class, even though
the document is actually always an object of a derived class. Because
the document class destructor is virtual, however, the correct destruc
tor for the derived class is called.

Classes that will be used as base classes for derived classes should
have virtual destructors.

34 IJi. Chapter 3 C++ Objects

.., Creating Objects

A class declaration describes a template for the creation of objects.
During program execution you create objects that belong to one class
or another. C++ uses the class declaration to determine how much
memory to allocate for the object.

There are two ways to create objects in a C++ program. The first is to
define a variable with a particular class type, either as a global variable
or as a local variable within a block. For example, to define a TRect ob
ject this way, you would use a statement like that shown here.

void foo (void) {
TRect theRect; II constructor called here
II ... do something with theRect here
II destructor for theRect called here as it goes out of scope

When C++ sees a variable definition for an object type, it makes the
space for the object on the stack and calls the constructor, if any, for
the object. Thus, simply defining the variable as shown here is enough
to make its constructor execute. Similarly, when an object variable goes
out of scope (at the end of the block in which it was defined), its de
structor is called atitomatically by C++. In the preceding example,
since the TRect variable was defined within a function block, it will go
out of scope when the function terminates. Global variables go out of
scope when the program terminates. This automatic construction and
destruction of objects is one of the big advantages that C++ has over
other object-oriented languages such as Object Pascal.

The notion of scope goes deeper than just global variables and local
variables. Scope is defined by the smallest block that encloses the defi
nition. Thus, in the following example, the object variable theRect is
created when entering the for-loop and destroyed when leaving the
loop.

void foo (void) {
short i;
for(i = l; i < 10; i++) {

TRect theRect; II constructor called here
II ... do something with theRect here
II destructor for theRect called when it goes out of scope

II other function steps here can't access theRect

~ A Generic List Class 35

The other way to create an object is to declare a variable that is a
pointer to the object type and call the C++ new operator, which will al
locate space for the object on the heap and call the constructor, if any,
for the object. In the same way that memory for the object is allocated
with new, a pointer variable must be explicitly deallocated with the de
lete operator. The constructor for the object is executed when new is
called, and the destructor is executed when delete is called. The de
structor is not called automatically when the pointer variable goes out
of scope. You must explicitly call delete for objects created with new.
The following code shows how to create and destroy a TRect object
with new and delete.

void foo (void) {
TRect * t heRect = new TRe ct; I I cons truct or called here
II ... do something wi t h theRect he r e
II destructor for theRect called when it i s deleted
delete theRect;

The preceding example shows how delete can be called before the
function exits to deallocate the TRect object created at the beginning of
the function. However, you might not want to delete the object at that
point. The big advantage of using pointers to objects instead of the ob
jects themselves is that the object can live beyond the scope in which it
was originally created. This means that you can create a pointer to an
object and pass it around among many functions within a program, de
leting it at some later time when appropriate. This can make the object
available to many parts of a program without having to make it a glo
bal variable.

A Generic List Class

The rest of this chapter develops a few sample classes that can be used
together to manage lists of objects. And what would you do with a list
of objects? You must be able to add an object, remove an object, and
find out how many objects are in the list. These three operations can be
represented by the public member function of the class TList, as shown
by the following partial class declaration.

36 ~ Chapter 3 C++ Objects

class TList {
public:

TList(void) ; II constructor
virtual void Additem(void* item);
virtual void Removeitem(void* item);
int Numitems() { return fNumitems;)
II more class declarations to come ...

Notice that the items you add or remove are represented by void
pointer (void *) arguments. A void pointer tells the compiler that any
sort of pointer will do. Typically, the items added to the list will be ref
erenced by pointers to objects of one type or another. Because the argu
ments are declared as void pointers, the C++ compiler will let you pass
any sort of pointer to those member functions.

Notice also that the member functions Addltem and Removeltem
are virtual, which means that they can be overridden in classes derived
from TList. The member function Numltems is not virtual since it will
never need to be overridden.

The member functions just described tell you how to use the TList
class. But how will the list actually be implemented? There are options
for managing a list: a linked list, a doubly linked list, and a dynamic
array. Looking at the simple linked-list option, you can create a new
class, TLink, to describe each link in the list. Each link has a pointer to
the object that represents the item, and a pointer to the next link in the
list, as shown by Figure 3-1.

TLink TLink TLink TLink

~ ~ ~

fl , , , ,
item item item item

Figure 3- l . A Linked List

llJl. A Generic List Class 37

The TLink class is declared as follows.

class TLink {
TLink* fNext; //the link to the next item
void* fitem; //the item this link refers to

public:

};

TLink(TLink *n =nil, void *item= nil)
{fNext = n; fitem =item;}

TLink* GetNext ()
{ return fNext;

void* Get Item ()
{ return f!tem;

void SetNext(TLink* aLink)
{ fNext = aLink; }

void Set!tem(void* anitem)
{ f!tem = anitem; }

Notice that the members are private by default, since they are not ex
plicitly public or protected. Access to the private members is provided
by public member functions. You can see that all the member functions
of TLink are defined within the declaration of TLink. Because they are
defined within the class declaration, the compiler will treat them as in
line functions, as described in Chapter 2. This means that they will exe
cute faster than a traditional function call, thus lessening the penalty
for not being able to directly access the private members. Notice also
the default arguments to the constructor for TLink.

The constructor for the TLink class is also defined within the class
declaration. It takes a link and an item as arguments. It uses the link ar
gument to set the fNext member and uses the item argument to set the
{Item member. Thus, the act of creating a new link and running the con
structor establishes the connections between links that make up the list.
Figure 3-2 shows what happens when an existing link is used as an ar
gument to create a new link.

Now that the TLink class is defined, look again at the complete dec
laration of the TList class, shown as follows.

class TList {
protected:

TLink* fLink; // the first link in our list
int fNumitems; // the number of elements in the list

public:

};

TList(void); //constructor
virtual void Add!tem(void* item);
virtual void Removeitem(void* item);
int Numitems() { return fNumitems; }

38 ~ Chapter 3 C++ Objects

original link new link original link

TLink TLink TLink

[Next [Next [Next

[Item [Item (Item

nil Create new Link nil

~

item item item

Figure 3-2. Creating a New Link

Two protected members are included in the class to keep track of the
first link in the list and the number of items in the list. These members
are protected rather than private because they need to be accessible to
classes derived from TList, as shown in Chapter 6. If the members
were private, they would not be accessible to derived classes.

The constructor for the TList class is shown as follows. It merely ini
tializes the two members to show that the list is empty.

TList::TList(void){
fLink = nil;
fNurnitems = O;

The Addltem member function is called with an item pointer as its
argument. Addltem creates a new TLink object to hold the item, sets
the [Link list member to point to the new link, and increments the fNum
Items member. Addltem creates the new TLink object by calling the
C++ new operator, giving the name of the TLink class and the argu
ments to the TLink constructor. The arguments to TLink's constructor

~ A Generic List Class 39

are the current first link in the list and the pointer to the new item. In
the process of creating the new link, TLink's constructor uses the link
passed as its argument to set the [Next member of the new link. Be
cause Addltem uses the new link to set the fltem member of TList, the
new item becomes the first item in the list. Figure 3-3 shows what h11p
pens when a new item is added to the list.

TList

fNumltems = 1

1!!._em

original link

TLink

[Next n {Item

n ,,
item

Add a new item ...

Figure 3-3. Adding an Item to the List

TList

fNumitems = 2

7flem

,
new link

TLink

{Next

{Item

,
item

The code for Addltem is shown as follows.

void TList::Additem(void* item){
fLink =new TLink(fLink,item);
fNumitems++;

original link

TLink

~ [Next n {Item

ni

·~
item

To remove an item from the list, the Removeltem member function
must search the list to find a matching item and then delete the link

40 ._ Chapter 3 C++ Objects

that holds that item. Removeltem starts at the first link in the list and
compares its item to the item that was passed to Removeltem as its ar
gument. If the matching item is the first link in the list, then Remove
Item simply sets the [Item member of the list to point to the next link in
the list, as shown by Figure 3-4.

TList

fNumltems = 1

Jllem

original link

TLink

{Next

flt em

item

TList

Add a new item .. fNumltems = 2

original link

TLink

(Next

[Item

nil

item

Figure 3-4. Removing the First Item in the List

ori inal link

TLink

{Next

[Item

nil

item

If the match is not the first link in the list, then Removeltem must
change the [Next member of the link preceding the removed link so
that it points to the link that follows the removed link, as shown by
Figure3-5.

In either case, Removeltem uses the delete operator to deallocate the
link that it is removing. The delete call is necessary since the link ob
ject was originally allocated with the new operator. The code for Re
moveltem is shown as follows.

~ A Generic List Class 41

TList Remove Middle Item TList

item item item

Figure 3-5. Removing the Middle Item in the List

void TList::Removeitem(void* item) {
TLink* temp;
TLink* last;
last = nil;
for (temp= fLink; temp!= nil; temp= temp->GetNext())

if (temp->Getitem() ==item){
II if first item in list, just set first
if (last == nil)

fLink = temp->GetNext();
else

last->SetNext(temp->GetNext());
delete temp;
fNumitems--;
return;

else
last = temp;

42 II> Chapter 3 C++ Objects

Key Point ..- j

As defined here, TList can be used to keep lists of almost any kind of
object. The items in the list are referred to by void pointers, so the list
and link classes don' t care what the item pointers actually point to.
This makes the list class very flexible. Chapter 6 shows how to derive a
specialized list class from TList to keep a list of a specific kind of object.

The interesting thing about the TList class is that the public inter
face contains no information about how the list is actually imple
mented. Thus, if you needed to recode TList to use a faster or more
memory efficient list management scheme, you could do it without
changing the functions that use TList. The implementation details
of how the list is managed are hidden from the outside user. This
kind of separation of usage and implementation is one hallmark of
good design. The public, protected, and private sections of a class
declaration make it easier to enforce separation of usage and imple
mentation.

Iterating on a List

It is often useful to be able to perform the same operation on all items
in a list. An iterator object is a traditional C++ way of iterating on the
items in a list. The iterator is a class that knows how to access the inter
nals of the list class. The iterator is initialized with a pointer to the list
and then returns each item in turn, keeping track of how far down the
list it has traveled.

The class Tlterator is declared as follows.

c l ass Titerator {
TLink* fCurLink;

publ i c :
Titerator (TList* list)

{ f CurLink = list- >fLink ;
void* Next(void) ;

};

It has a single member, fCurLink, that keeps track of how far down
the list the iteration has progressed. It has a constructor that takes a
TList pointer as an argument and initializes the fCurLink member to
point to the first link in the list. It then declares the Next member func
tion, which is responsible for returning the next item in the list.

IJJ> A Generic List Class 43

Each time you call Next, it returns the item for the current link and
then updates the fCurLink member to point to the next link in the list.
When fC.urLink is equal to nil, which will happen after the last list item
has been returned or if the list is empty, Next simply returns nil. The
following code shows how Next returns the item and advances fC.ur
Link to point to the next link.

void* Titerator::Next(void) {
TLink* link = fCurLink;
if (fCurLink) {

fCurLink = fCurLink->GetNext();
return (link->Getitem());

else
return nil;

A typical use of the Tlterator class is to repeatedly call Next until it
returns nil, indicating that the end of the list has been reached. Each
time Next returns a valid pointer to an item, you can do something
with that pointer, as shown in the following code fragment. Because
Next returns a void pointer, you will have to typecast the pointer to
point to a particular object type before you can use it. See Chapter 6 for
an example of how an iterator can be used with a particular object type.

void DoToAll(TList * theList) {
void * theitem;
II create and initialize an iterator
Titerator theiterator(theList);
while(theitem = theiterator.Next() !=nil) {

11 do something with theitem ...

If you try to use Tlterator with TList as described in the previous dis
cussion, the compiler will complain that Tlterator cannot access the
[Link member of the TList class since [Link is a protected member. You
have three choices here: First, you can make [Link a public member.
Second, you could define a public access member function to retrieve
the value of [Link. Third, you could make Tlterator a friend class to
TList. The first two solutions defeat the separation of usage and imple
mentation that is supported by the public/private segregation in TList.
Making Tlterator a friend is the best solution, since it maintains the
protected nature of [Link to all other classes. You must change the dec
laration of TList as follows to specify Tlterator as a friend class.

44 I» Chapter 3 C++ Objects

class TList {
protected:

friend class Titerator;
TLink*
int

public:

fLink; II the first link in our list
fNumitems; II the number of elements in the list

} ;

TList(void);
virtual void

II constructor
Add!tem(void* item);

virtual void Remove!tem(void* item);
int Numitems() {return fNumitems; }

• Summary
Object-oriented programming can open up a whole new world of pro
gramming ideas to you. The ability to define base classes and then
derive other classes from the base classes is an extremely powerful
technique for program design.

The public, protected, and private protection levels offered by C++
permit you to hide some of the details of a class's implementation from
outside users. This makes it easier to change the internals of a class
without changing its external public interface.

This chapter did not describe all the features of C++ that are related
to object-oriented programming. Some of the more advanced or subtle
features, such as operator overloading and virtual base classes, were
left out on purpose to simplify the discussion. The features that were
discussed, however, seem to be the most useful for getting started with
object-oriented programming in C++, as illustrated by the examples in
the remaining chapters.

The rest of this book is filled with examples of how well-designed
base classes and derived classes can help you write great programs.
You will find that you will spend a considerable amount of time de
signing the original base classes, but that investment will pay off when
you create the derived classes that actually make up your programs.
This is a key characteristic of object-oriented programming - you will
spend more time designing your program and less time actually im
plementing it and even less time debugging it.

4 Writing MPW Tools in C++

The previous chapters discussed general concepts of C++ and gave
short example fragments of C++ code. This chapter shows you how to
write complete C++ programs that run in the MPW environment. The
programs in this chapter are MPW tools, which means that they can
not run outside the MPW environment.

Writing MPW tools is like writing programs in a traditional UNIX
environment. You can use streams or printf to print text messages to
the screen. MPW windows are like rniniterrninals in a more traditional
text-only computing environment. You can usually take C++ example
programs that are intended for traditional systems and compile them
unchanged as MPW tools. This makes MPW an ideal learning environ
ment for beginning C ++ programmers.

The examples in this chapter focus on the more generic aspects of
C++ programming. The programs created here can be run on almost
any system that supports C++ with minimal modification. Very few
Macintosh-specific features are used in these programs. Chapters 5-14,
however, develop classes and programs that address the special char
acteristics of the Macintosh more directly.

45

46 IJll> Chapter 4 Writing MPW Tools in C++

..,. Helloworld
It is traditional that your first C program should print out the words
"hello world." The following C program shows how this is usually done.

I*
* HelloWorld.c
* A simple program in C
* This program prints the words "hello world" to standard output
* January 1990, Dan Weston
*I

#include <stdio.h>
void main(){

printf("hello world\n");

The following C ++ program does the same thing as the C program
just shown.

II HelloWorld.cp
II A very simple C++ program
II This program prints the words "hello world" to standard output
II January 1990, Dan Weston
#include <iostream.h>
void main(void){

cout << "hello world\n";

Comparing the two versions of the program, you can see that both be
gin with comments that state what the program is supposed to do, who
wrote it, and when it was written. Next, notice the #include directives,
which tell the compiler to read in a file before attempting to compile the
rest of the code. The C program includes the file stdio.h (standard 1/0)
to get the declarations and definitions that enable it to use the printf
function. The C ++ program includes the file iostream.h, which contains
the declarations and definitions necessary for using streams for simple
input and output. In particular, iostream.h contains the definition for a
global ostream variable named cout that is used in the body of the code
for output.

Create a new file named Helloworld.cp in MPW and type in the C ++
code just shown. The next section explains how to create a makefile
and then compile, link, and execute the program.

liJi- Helloworld 47

..., Creating a Makefile

I By The Way liJi-1

Once you have created a file containing the code for the C++ Hello
world program, you need to compile it and link it with the proper
libraries. The easiest way to do this is to create a makefile for the pro
gram using the CreateMake tool that is part of MPW. Choose the
Create Build Commands ... menu item from the Build menu in MPW to
invoke the CreateMake tool, or simply enter the CreateMake ... com
mand from any MPW window.

When you invoke CreateMake, either from the Build menu or directly
from an MPW command window, the Commando dialog shown in Fig
ure 4-1 will appear. Fill in the name of the program, Helloworld, select
the Tool option for program type, and, choose the file Helloworld.cp af
ter clicking on the Source Files ... button. When you have done all this,
click on the CreateMake button in the lower right corner of the dialog .

.-CreoteMoke Options-----------------~

Program Nome ,_I H_e_ll_o_w_o_r_ld _____ __, Source Files ...

:,··· Program Type ···················,_:_ I: n~n tor r-···················i
. t i @ Default

' O Hpplicotion i l~Jil(~ i i
@Tool ' ' , 0 mc68020
0 Desk Hccessory ! ~m in rn tn1 Poin t ! i 0 mc68881

Q Code Resource i f!(~~OUfC (~ rmH~ L.J Q elems881
'·································· ····························· ·· ···' D Symbolic debugger information

r;:~ommond Line -
leateMake HelloW'orld -Tool HelloW'orld .cp

.-Help------------------,
Create a simple makefile for building an application , too 1, or desk
accessory . The makefile is for use by the Build menu.

'----------------------'

Figure 4- l . The Commando Dialog for CreateMake

(Concel]

n CreoteMoke B
3 .181

48 ~ Chapter 4 Writing MPW Tools in C++

CreateMake will examine the information passed to it by the Com
mando dialog and create a makefile for you. The default name for the
makefile is the name of your program with .make appended to it.
When given the input specified in the previous paragraph, Create
Make will create the file Helloworld.make, which is listed as follows.

File: HelloWorld.make
Target: HelloWorld
Sources: HelloWorld.cp
Created: Monday, January 29, 1990 9:36:51 AM

OBJECTS = HelloWorld.cp.o
HelloWorld ff HelloWorld.make {OBJECTS}

Link -w -c 'MPS I -t MPST a
{OBJECTS} o
"{CLibraries}"CSANELib.o o
"{CLibraries}"Math.o o
"{CLibraries}"CplusLib.o o
#"{CLibraries}"Complex.o o
"{CLibraries}"StdCLib.o o
"{CLibraries}"CII1terface.o o
"{Libraries}"Stubs.o o
"{CLibraries}"CRuntime.o o
"{Libraries}"Interface.o o
"{Libraries}"ToolLibs.o o
- o HelloWorld

HelloWorld.cp.o f HelloWorld.make HelloWorld.cp
CPlus HelloWorld.cp

The makefile begins with several lines of comments, identified by
the leading #. It then creates a temporary variable name, OBJECTS,
and initializes it with the name of the file that will be produced when
C++ compiles your source file. It then sets up two dependency rules.
The first dependency states that the file Helloworld is dependent on
the file Helloworld.make and the files that are specified by the variable
OBJECTS. If any of the files in the dependency list has been modified
since the last time Helloworld was made, the Link instruction that fol
lows will be executed. Notice that the Link command extends over
many lines, listing all the library files that need to be included to make
the program.

The other dependency rule says that the file Helloworld.cp.o is de
pendent on Helloworld.make and Helloworld.cp. If either of these files
has been modified since Helloworld.cp.o was last built, the CPlus
script will be invoked to recompile the program.

Key Point~ I

~ 1/0 Redirection in MPW 49

CreateMake is a big help when you are getting started with MPW be
cause it knows lots of details about the build process that would not be
immediately obvious to you, such as the list of files that are necessary
for the link phase. For the projects in this chapter you can use the
makefile created by CreateMake just as it is, or with only minor modifi
cations. It is very helpful to use CreateMake to create the initial make
file and then make modifications to that file to handle special circum
stances of your program's dependencies, as illustrated later in this
chapter. In later chapters the dependencies become more complex and
require custom makefiles.

It is important to name your MPW C++ source files with the .cp ex
tension·so that CreateMake will be able to differentiate them from
normal C files and thus produce the proper instructions for build
ing the program.

Once you have created the makefile, you can build your program by
choosing the Build ... menu item from the Build menu, specifying the
name of the program to the resulting dialog box. Another way of ac
complishing the same thing is to issue the command BuildProgram
Helloworld from any MPW window.

While the program is being built, MPW will print progress informa
tion to the window. When the process is done, you can select the pro
gram name and press the Enter key to see your program run. It should
respond by printing the words "hello world" in the window from
which it is run.

So there you have it - your first C++ program on the Macintosh.
Most of the work revolved around creating the makefile and actually
building the program rather than writing the program code. The fol
lowing sections develop more complicated programs, but the process
of creating the makefile and building the programs will remain essen
tially the same.

~ 1/0 Redirection in MPW

As we have seen, one big advantage of writing MPW tools is the ability
to do simple text output using streams. In addition, MPW supports re
directed input and output to tools. Every time a tool runs, it has three
predefined streams available to it: cout for output, cin for input, and
cerr for error message output. By default, cin, cout, and cerr are attached
to the window from which the tool was run. But MPW lets you hook

50 _. Chapter 4 Writing MPW Tools in C++

these standard input and output streams to other sources. The most
common use of redirection is to attach cin and cout to disk files. This is
done by using the redirection symbols < for input and > for output.
For example, if you invoke the Helloworld program with the com
mand line

Helloworld > myFile

the output message from Helloworld would go into the file myFile in
stead of to the window. If the file does not exist, MPW would create it
for you. If the file already exists, the output from Helloworld would re
place the previous file contents. You can also use the append symbol,
>>,to add output to the end of a file instead of replacing it.

I/O redirection is a very productive way to write tools that read in
put from the standard input stream, perform some operation on the in
coming data, and output the converted data to the standard output
stream. In the simplest case, where no redirection occurs, the input
and output both come from the MPW window where the program was
launched (or from a terminal in a more traditional UNIX environ
ment). With redirection, the program can read from one file and out
put to another file. Because MPW does all the work of opening, .and
possibly creating, the specified files, the program that does the data
conversion can be extremely simple - it merely reads from cin and
writes to cout. The program doesn't need to know the actual source
and destination for the data.

To illustrate this concept, consider the following problem. C++ al
lows you to use a double slash I I to mark comments. Most C compil
ers do not accept double-slash comments (Apple's MPW C compiler
being a notable exception). Think C 4.0, which has partial support for
object-oriented programming and uses some of the same syntax as
C++, does not accept double-slash comments. It would be useful to be
able to read in a C++ source file and change all the double-slash com
ments to traditional C comments, delimited by /* and *I.

This kind of operation can be thought of as a filter. The original
source file is read, one character at a time. When a double-slash com
ment is found, it is replaced by a traditional C comment. The filtered
characters are written to a new file. Because this program will use stan
dard input and output streams, it won't have to be concerned with file
names or with any other file system housekeeping. It will simply get
characters from cin and put characters to cout. MPW will take care of
making sure that these streams are attached to the indicated source
and destination.

1)1> 1/0 Redirection in MPW 51

The following program code shows how this filter can be written.
Notice that it includes the header file iostream.h so that the predefined
stream variables cin and cout are available. It then repeatedly calls the
Get member function for cin to look at each character from the source
file. The extraction operator(>>) is not used for input because it skips
white space, including new-line characters. Most of the time, the
incoming character is simply passed through to the output stream by
using the insertion operator(<<) on the cout stream. Whenever the char
acter coming in looks like it might be the start of a double-slash com
ment, extra processing is done to replace the C++ comment with the
equivalent C comment.

ll
II
II fixcom.cp
II
II Changes C++ style comments to C comments
II
II Uses cin and cout streams
II
II invoke with redirection from MPW, such as
II
II fixcom < foo.cp > foo.fixed
II
II ©1989 Dan Weston, all rights reserved
II
ll

#include <iostream.h>
int main (void) {

char c;
char nextc;
while (cin.get(c)){

if (c != 'I' l {
II most chars just pass right through filter
cout << c;

else {
II this may be a double-slash comment ...
II check next char following first 'I'
cin.get(nextc);
if (nextc != 'I') {

II not a double-slash comment,
II just output the 'I' and the following char
cout << c << nextc;

52 _.. Chapter 4 Writing MPW Tools in C++

else {
II it is a double-slash comment,
II substitute opening C comment
cout << 'I' << '*';
II pass chars through until end of line
cin.get(c);
while (c != '\n'){

cout << c;
cin.get(c);

II now insert a closing comment
cout << r , << , *, << , I,;
II and send the newline char out too
cout << c;

} II end nextc != 'I' else
} II end c != 'I' else

II end while
II make sure all output is flushed
cout << flush;
return O;

This program is called fixcom. You can create a makefile for it and
build it using the techniques described for the Helloworld program.
Once it is built, you can run it with the following command in MPW.

fixcom < fixcom.cp > fixcom.fixed

This command line redirects input from fixcom.cp and redirects out
put to fixcom.fixed. The output file is listed as follows. You can see
how the C++ comments have all been changed to C comments.

l*lll *I
I* *I
I* fixcom.cp *I
I* *I
I* Changes C++ style comments to C comments *I
I* *I
I* Uses cin and cout streams *I
I* *I
I* invoke with redirection from MPW, such as *I
I* *I

~ 1/0 Redirection in MPW 53

/* fixcom < foo.cp > foo.fixed */
/* */
/* ©1989 Dan Weston, all rights reserved */
/* */
/*l///////l///l//////ll///lll!////////////////////////////ll/I/ */

#include <iostream.h>
int main (void) {

char c;
char nextc;
while (cin.get(c)) {

if (c != '/') {
/* most chars just pass right through filter */
cout << c;

else {
/*this may be a double-slash comment ... */
/*check next char following first '/' */
cin.get(nextc);
if (nextc != '/'){

/* not a double-slash comment, */
/* just output the '/' and the following char*/
cout << c << nextc;

else {
/* it is a double-slash comment, */
/* substitute opening C comment */
cout << '/' << '*';
/* pass chars through until end of line */
cin.get(c);
while (c != '\n'){

cout << c;
cin.get(c);

/* now insert a closing comment */
cout << , , << , *, << , I, ;
/* and send the newline char out too */
cout << c;
/*end nextc != '/' else*/

/*end of c != '/' else*/
/* end while */

/* make sure all output is flushed */
cout << flush;
return 0;

54 IJJ. Chapter 4 Writing MPW Tools in C++

Key Point~ I

If you invoke fixcom without specifying any redirection for output,
the output will go to the window from which the tool was run. If you
don't specify any input redirection, the program will accept keyboard
input until it sees an end-of-file character, which you can generate in
MPW by pressing the Command-Enter key combination. You must ei
ther end each input line with the Enter key, or select a range of text
and press the Enter key before the text will be passed to the tool
through standard input.

One important thing to know about keyboard input from an MPW
window is that MPW tries to use the current selection in the win
dow as input to the tool when the Enter key is pressed. If there is no
current selection, MPW will send the entire line of text containing
the insertion point to the tool when you press the Enter key. This
can cause problems when you are porting programs from a UNIX
environment (for instance, when you are typing in programs from
other C++ books). For example, consider a program that prompted
the user for a temperature in degrees Celsius and output the tem
perature in degrees Fahrenheit. It might look something like this.

float convert(float temp_c);
float temp_C;
float temp_F;
cout << "Enter temperature in °Celsius: ";
cin » temp_C;
temp_F = convert(temp_C);
cout << ·~\n" << temp_C << " °C = " << temp_F << " °F\n";

As shown here, the program won't run successfully in an MPW
window because the user input is typed in on the same line as the
"Enter temperature ... " prompt. If the user selects the input text b~
fore pressing Enter, everything works as expected. But if the user
simply types in the temperature and presses the Enter key without
first selecting the input text, MPW will send the entire line, includ
ing the prompt text, to the tool. The input stream will not be able to
successfully format the combined prompt text and input value into
a float variable, and the program will not give the expected results.
The solution to this problem is simple: Just make certain that the
user's input is entered on a line by itself. To fix the previous exam
ple, add a new line at the end of the prompt, as shown.here.

cout << "Enter temperature in °Celsius:\n";

I By The Way IJJ> I

.,,_ Command Line Arguments 55

I/O redirection is a very elegant and powerful way to write filter
programs such as fixcom. These tool programs are flexible because
they can accept input from a file or directly from the keyboard. Like
wise, their output can go to a specified file or to an MPW window.

During one particularly acrimonious discussion among several pro
grammers regarding the relative merits of mouse-based editors ver
sus more traditional editors such as vi, a level head in the room re
marked that real programmers don't use editors - they just type
their code directly to the compiler through the standard input chan
nel. She said she did all he,: programming b~ simply invoking the
G++ cemP.iler with the following command, without specifying any
input file.

cpl us

She then typed in her code directly, ending each line with the Enter
key and ending the final line with the Command-Enter key combi
nation. Try it.

2 ~

IJ)l. Command Line Arguments
Unfortunately, tools that use redirected input and output are, in prac
tice, clumsy to use. Tool programs are more frequently written to ac
cept arguments from the command line. The command line arguments
typically specify the names of the input and output files and other op
tions that can change the operation of the tool. For example, if the fix
com program was written to accept command line arguments, it would
probably be invoked with the following command.

fixcom foo . cp - o f oo .fixed

The first argument is the name of the input file. The next argument is
an option, -o, that tells the tool that the following argument will be the
name of the output file. With a command line interface to the tool, it is
possible to add options to the tool. For example, it might be handy to
add an option to fixcom that caused it to delete comments from source
files.

MPW passes command line arguments to the main function of tool
programs in two function arguments, argc and argv. The argc argument
is the number of arguments on the command line, including the pro
gram name. The argv argument is a pointer to an array of pointers.

56 ~ Chapter 4 Writing MPW Tools in C++

Each pointer in the array points to a C string (null-terminated) contain
ing one argument from the command line.

You must define your main function as follows to be able to process
the information passed to your tool from MPW.

int main(int argc, char* argv(]){
II ...

The first string in the argv array is always the name of the program.
The rest of the strings are taken from the command line from left to
right. For example, the command line

fixcom foo.cp -o foe.fixed

would result in argc and argv as shown in Figure 4-2.

fixcom foo.cp -o foo.fixed

fix com
argc=4 argv[O]

argv[l] foo.cp

argv[2]
-o

ar [3]

foo.fixed

Figure 4-2. Command Line Arguments Passed to a Tool

The next section of this chapter describes a class that knows how to
parse arguments off the command line. This class will make it easier to
use the command line, allowing you to concentrate on the details that
are specific to your particular tool. A later section of this chapter devel
ops a version of fixcom that uses command line arguments.

~ The TTool Class
The programs described in the previous sections are written in C++ but
other than the fact that they use streams for input and output, they
could just as well have been written in C. This is one of the main charac
teristics of C ++ - you can use it just like C. But in order to get the full
benefit of C++, you should also use the object-oriented aspects of C++.

Ill> The TTool Class 57

This section develops a class that can be used to write MPW tool pro
grams. The TTool class's main job is to initialize the tool and then pull
arguments off the command line and pass them to member functions
that can process the arguments as appropriate for the particular tool.
This section will describe the TT ool base class. Later sections will show
how to derive classes from TTool to implement specific tool programs.

The file TTool.h contains the declaration of the TTool class. TTool.h
begins by including several header files to get the declarations for Mac
intosh toolbox and C++ library functions that the TTool class uses. The
following include statements show the files that are used by TTool.

#include <Quickdraw.h>
#include <Fonts.h>
#include <CursorCtl.h>
#include <iostrearn.h>
#include <fstrearn.h>
#include <FCntl.h>

Quickdraw.h, Fonts.h, and CursorCtl.h contain Macintosh-specific
function declarations that are used by the tool class. The last three files
listed contain C++ library function declarations for the stream and file
related calls that the tool class uses.

The TTool class is declared as follows.

class TTool {
protected:

int fArgc;
int fCurrentArg;
char ** fArgv;
char * fProgName;
char * fNextArg;

public:
virtual void ITool(int argc, char* argv[]);
virtual int Run(void);

protected:

};

II these three functions will probably NOT be overridden
virtual char* GetNextArg(void);
virtual fstrearn * MakeStrearn(char * fileNarne,int permission);
virtual int ParseArguments(void);
II these three functions will most likely be overridden
virtual int SetOption(char * option){return 1;}
virtual int HandleArg(char * arg){return 1;}
virtual int DoWork(void) {return 0;}

58 ~ Chapter 4 Writing MPW Tools in C++

The class contains five members and eight member functions. They
will be explained individually in the following sections. Notice that all
the member functions are virtual so that they can be overridden in
derived classes if necessary. Notice also that there are only two public
member functions; all other members and member functions are
protected.

llJ!> Initializing and Running the Tool

The ITool member function is responsible for initializing the tool. It
takes two arguments, argc and argv, which contain the information
passed to the tool from the MPW command line, as explained in an
earlier section. ITool uses these arguments to set the initial value of
several of the class members. ITool then goes on to call the toolbox
functions InitGraf and SetFScaleDisable. These two functions are nec
essary if your tool will call any QuickDraw routines (including the
function Random), so they are included in the base class just in case.
Finally, ITool calls the MPW tool library functions InitCursorCtl and
SpinCursor to initialize the "spinning beach ball" cursor that is typi
cally used in MPW tools. The definition for ITool is shown as follows.

void TTool::ITool(int argc, char* argv[]){
fArgc = argc;
fArgv = argv;
fFrogNarne = *fArgv++;
fCurrentArg = l;
fNextArg = 0;
II just in case you want to use QuickDraw
InitGraf(&qd.thePort);
II MPW tool documentation says to call this next function
SetFScaleDisable(true);
InitCursorCtl(nil);
SpinCursor(l);

Some of the member initialization done in ITool could have been
done in a constructor, but this class does not define a constructor since
that would complicate the derivation process. The IDoc class in Chap
ter 5 shows how to use a constructor to perform member initialization.

The Run member function is called once the tool has been initialized.
It calls the ParseArguments member function to process the command
line arguments and then calls the DoWork member function to actu
ally do the work that the tool is supposed to do. Parse.Arguments and
DoWork are explained in later sections. The definition for Run is
shown as follows.

int TTool::Run(void){
if(ParseArgurnents())

return DoWork ();
else

return 1;

IJJ> The TTool Class 59

ITool and Run are the only two public member functions for TTool.
Thus, they are the only functions that can be called from outside the
class. TTool (or one of its derived classes) is usually used as shown in
the following code. A TTool object is created, ITool is called, and then
Run is called. The result of Run is passed back to MPW as the overall
result of the tool. Most of the details of how the tool class works inter
nally are hidden from the user in protected member functions.

int main(int argc, char* argv[]) {
TTool aTool;
aTool.ITool(argc,argv);
return aTool.Run();

Of course the example just shown wouldn't do anything useful, since
the DoWork member function is defined by default to do nothing and
must be overridden to perform the work of your specific tool.

.,,, Parsing Command Line Arguments

As mentioned earlier in this chapter, MPW passes command line argu
ments to a tool in an array of string pointers and a counter. ITool uses
this array and counter to initialize the f Argv and f Argc members. ITool
also initializes its own counter member, fCurrentArg, to keep track of
which arguments have been processed. ITool takes the first string from
the array and uses it as the program name. So by the time ITool has
finished, fCurrentArg is equal to 1 (since the counter is zero-based).

The GetNextArg member function is defined to return the next avail
able argument from the fArgv array. GetNextArg is responsible for
updating the fCurrentArg member and comparing it to the overall argu
ment count so that it will know when the last argument has been re
trieved. GetNextArg returns the string pointer for the next argument,
or zero if all the arguments have been processed. The definition for
GetNextArg is shown as follows.

60 "' Chapter 4 Writing MPW Tools In C++

char* TTool::GetNextArg(void){
if(fCurrentArg++ < fArgc){

fNextArg = *fArgv++;
return fNextArg;

else
return 0;

ParseArguments repeatedly calls GetNextArg to get each command
line argument in turn. It examines the first character of each argument.
If the argument begins with a dash,'-', then ParseArguments assumes
that the argument is an option flag and passes the argument to the Set
Option member function. Otherwise, the argument is passed to the
HandleArg member function for processing. Both SetOption and
HandleArg return a value indicating if the argument could be success
fully processed, and ParseArguments examines these return values to
detect any error caused by an invalid argument. The definition of
ParseArguments is shown as follows.

int TTool::ParseArguments(void){
char * arg;
while((arg = GetNextArg()) != 0){

if(*arg == '-') {
if(SetOption(arg) == 0)

return O;
else {
if(HandleArg(arg) == 0)

return 0;

II signal success
return 1;

SetOption and HandleArg are both defined by default to do nothing
except return 1, indicating success. If your tool expects to use com
mand line arguments, you must override these two member functions
to process arguments and options. A later section of this chapter
shows an example of how to do this.

.,. The TTool Class 61

.,,,, Making Streams for Input and Output

When handling command line arguments, it is often necessary to take a
file name from the command line and open the file and create a stream
for the file. The MakeStream member function is provided in TTool
for just this purpose. It takes a file name as an argument, opens the file
(creating it first if necessary) and then creates an £stream attached to
the file. An £stream is derived from the iostream base class. Make
Stream encapsulates all the gritty details and error-reporting that you
don't want to recreate in every tool you write. You will probably not
need to override MakeStream. Its definition is shown as follows; its
use is shown in a later section of this chapter.

fstream * TTool::MakeStream(char * fileName,int permission){
const int BUFFSIZE = 1024;
int fd = open(fileName,permission);
if(fd = EOF){

fd = create(fileName);

if (fd != EOF) {
char* buff= new char[BUFFSIZE];
if (buff = 0) {

cerr << "### " << "error making stream\n";
return O;

fstream * fs =new fstream(fd,buff,BUFFSIZE);
if(fs = 0) {

cerr << "### " << "error making stream\n";
return O;

return f s;

cerr << "### " << "error opening file " << fileName <<"\n";
return O; II failed to open file

Notice that MakeStream uses the predefined error stream cerr to re
port error messages to the user. Unless redirected, these error messages
will go to the MPW window from which the tool was run. The cerr
stream is also a very useful way to display debugging messages while
developing an MPW tool.

62 ., Chapter 4 Writing MPW Tools in C++

._. 1/0 Redirection with TTool
Now that the TTool class is defined, you can use it to write a simple
tool. Let's rewrite the fixcom tool described earlier in this chapter. The
new tool, fixcom2, will use 1/0 redirection just like the original fix
com. Another revision of fixcom that takes command line arguments
will be developed in a later section.

To create fixcom2 you must derive a new class from TTool, overrid
ing the DoWork member function and adding a new member function
to do the comment filtering.

IJJi> Deriving a New Class from n ool

Both the declaration and definition of TTool are contained in the file
TTool.h. Usually, the declaration would be in TTool.h and the defini
tion would be in a file named TTool.cp, but because the function defi
nitions for TTool are rather short, it is easier to put them all in the
same file with the class declaration. In later chapters, where the declar
ation for the TDoc class might be used in several files, a more rigorous
separation of declaration and definition is used.

The definition of the new class for fixcom2 is shown as follows. No
tice that you must include the file TTool.h so that you can create de
rived classes from TTool. Notice also that DoWork is defined in the
declaration to call the Filter member function, which is a new function
for this new class for fixcom2.

ll
II
II fixcom2.cp
II
II Changes C++ style comments to C comments
II
II Uses MPW input and output redirection
II
II invoke with redirected input file and output file names
II
II fixcom2 < foo.cp > foo.c
II
II ©1990 Dan Weston, all rights reserved
II
ll
#include "TTool.h"
class TFixComment2 : public TTool {

~ 1/0 Redirection with TTool 63

public:
int DoWork(void)
{return Filter(cin,cout);}

protected:
int Filter(istream& in,ostream& out);

} ;

~ The Filter Member Function

Filter is the new member function defined for the TFixComment2
class. It takes an istream and an ostream as arguments and uses them
for input and output. The code for Filter is almost exactly like that of
the original fixcom program, except that it has been generalized so it
uses arguments to identify the input and output streams rather than
hard-coding them to cin and cout. It also includes a call to the tool li
brary function SpinCursor each time a character is retrieved from the
input file. SpinCursor spins the beach ball cursor to show the user that
the program is still running, and it also allows the user to switch to any
other program running under MultiFinder. The code for Filter is
shown as follows.

int TFixComment2::Filter(istream& in,ostream& out) {
char c;
char nextc;
while (in.get(c)){

SpinCursor(l);
if (c != 'I') {

II most chars just pass right through filter
out << c;

else {
II this may be a double-slash comment ...
II check next char following first 'I'
in. get (nextc) ;
if (nextc !='I'){

II not a double-slash comment,
II just output the 'I' and the following char
out << c << nextc;

else {
II it is a double-slash comment,
II substitute opening C comment
out<< 'I' << '*';
II pass chars through until end of line
in.get (c);

64 ~ Chapter 4 Writing MPW Tools in C++

while (c != '\n') {
out << c;
in.get(c);

II now insert a closing comment
out<< ' ' << '*' << 'I';
II and send the newline char out too
out << c;

) II end nextc != 'I' else
) II end of c != 'I' else

11 end while

II make sure all output is flushed
out << flush;
return O;

Notice that Filter uses reference arguments to identify the in and out
streams. Reference arguments are much easier to use than pointers in
this function since all stream operators expect to operate on a stream
rather than on a p0inter to a stream. See Chapter 2 for a discussion of
reference arguments.

In fixcom2, the DoWork member function calls Filter with cin and
cout as arguments, so the effect is exactly the same as in the original
fixcom program. However, generalizing Filter to use arbitrary input
and output streams will pay off in the next version of fixcom, where
file names from the command line will be used to create streams for in
put and output.

~ The Main Function

As shown in an earlier section, the TTool class has only two public
member functions. So to use TTool or any of its derivatives, you must
call ITool and then Run, as shown by the following definition for the
main function of fixcom2.

int main(int argc, char* argv[]) {
TFixComment2 fixComTool;
fixComTool.ITool(argc,argv);
return fixComTool.Run();

.,_ Compiler Warnings 65

IJ>- Makefile for Fixcom2

You build fixcom2 using the same processes described for Helloworld
earlier in this chapter. You can use CreateMake to create a makefile for
fixcom2 and then build the program. Because CreateMake will not per
mit you to specify header files on which the program is dependent, you
must add those dependencies to the makefile by hand. The modified
makefile for fixcom2 is shown as follows. Notice that the file ITool.h
has been added to the dependency list for fixcom2.cp.o. It is a common
practice to modify makefiles created with CreateMake to make them
more accurately reflect the dependencies of your program. Complete
code and makefile listings for fixcom2 are listed in Appendix B.

File:
Target:
Sources:
Created:

fixcom2.make
fixcom2
fixcom2.cp
Friday, January 19, 1990 11:58:21 AM

OBJECTS = fixcom2.cp.o

fixcom2 ff fixcom2.make {OBJECTS)
Link -w -c 'MPS I -t MPST a

{OBJECTS) d
"{CLibraries)"CS.ANELib.o d
"{CLibraries}"Math.o d
"{CLibraries}"CplusLib.o d
#"{CLibraries}"Complex.o d
"{CLibraries}"StdCLib.o d
"{CLibraries)"Cinterface.o d
"{Libraries)"Stubs.o d
"{CLibraries)"CRuntime.o d
"{Libraries)"Interface.o d
"{Libraries)"ToolLibs.o d
- o fixcom2

fixcom2.cp.o f fixcom2.make fixcom2.cp TTool.h
CPlus fixcom2.cp

.,.. Compiler Warnings
As you compile fixcom2.cp, the following warning messages will appear.

File "TTool.h"; line 51 #warning: option not used
File "TTool.h"; line 52 # warning: arg not used

66 ~ Chapter 4 Writing MPW Tools in C++

Key Point~ I

If you look at lines 51 and 52 in Tiool.h, you'll see

vi rtua l int SetOpt i on (char *option) {return 1; }
vi rtual int Handl eArg (char * arg) {return 1; }

The warning is generated because SetOption and HandleArg each
take an argument that is not used in the body of the function. Neither
of these member functions need their arguments since they are just
stubs, but the arguments may be needed when the functions are over
ridden in derived classes. Sometimes these warning messages can be
very helpful in identifying unnecessary function arguments (and local
variables that aren't used), but in this case the warnings can be ig
nored. If the warnings get to be too bothersome, you can turn them off
by adding the -w flag when calling the CPlus script.

~ · Reading the Command Line with TTool

Fixcom2 used TTool, but it didn't show much advantage over the orig
inal version largely because TTool contains more functionality than
fixcom2 needed. The following sections develop a third version of fix
com, fixcom3, that takes arguments from the command line and dem
onstrates the usefulness of TTool. The command line arguments are
assumed to be an input file name and an output file name. The output
file name is preceded by the -o option flag. If either the input or output
file names are not specified, standard input or standard output is used.

You begin fixcom3 by defining a new class derived from TTool, as
shown in the following code.

~ Reading the Command Line with TTool 67

ll
II
II fixcom3.cp
II
II Changes C++ style comments to C comments
II
II Uses MPW command line for input and output file
II
II invoke with input file name and -o output file names:
II
II fixcorn3 foo.cp -o foo.c
II
II ©1990 Dan Weston, all rights reserved
II
ll
#include "TTool.h"
class TFixComment3 : public TTool {
protected:

istream *fin;
ostream *fOut;

public:
void ITool(int argc, char* argv[]);
int DoWork(void);

protected:

};

int SetOption(char *option);
int HandleArg(char * arg);
int Filter(istream& in,ostream& out);

Two new members, fln and /Out, are added to the new class to hold
pointers to the input and output streams. The new class also overrides
the ITool, SetOption, and HandleArg member functions. Like fix
com2, fixcom3 adds a Filter member function .

.,.. Overriding the Initialization Member Function

The overridden ITool member function begins by calling the ITool
function for its parent class. It does this by preceding the name of the
function with the name of the parent class, TTool, and two colons, as in
TTool::ITool. After calling the inherited version of the initialization
function to take care of the default initialization, the derived version of
ITool goes on to initialize the fln and /Out members so that they point
to cin and cout. These stream pointers are attached to the standard in
and out streams by default in case no input or output file is specified
on the command line.

68 ..., Chapter 4 Writing MPW Tools in C++

Key Point IJll. j

void TFixComrnent3::ITool(int argc , char* argv[]) (
II do the inherited stuff first
TTool ::ITool (argc,argv) ;
II hook up default input and output
fin = &cin;
fOut = &cout ;

The derived ITool member function calls the ITool member func
tion for its parent class, Tiool, by preceding the member function
name with the class name and two colons, as shown here.

TTool::ITool(argc,argv);

.,. Processing the Command Line

Once the tool is initialized, ParseArguments is called. ParseArgu
ments repeatedly takes arguments out of the argument array and
passes them to either SetOption or HandleArg. These two member
functions must be overridden to perform the specific command opera
tions required of your tool.

HandleArg assumes that the argument passed to it is the name of
the input file. It uses that file name to create a stream by calling the
MakeStream member function. If the stream is successfully created,
HandleArg sets the fin member to point to that stream so that it will be
used for input later when the Filter member function is called. The
code for HandleArg is shown as follows.

int TFixComrnent3 ::HandleArg (char * arg) {
II open the file and create a stream for it
fstrearn * fs = MakeStrearn(arg , O_RDONLY);
if(fs != 0) (

fin = fs;
return l;

else
return O;

SetOption is called when ParseArguments encounters an argument
that begins with a dash(-). In this class, SetOption checks the charac
ter following the dash to make sure it is an "o". If the option character
is valid, then SetOption assumes that the next argument is the name of

"" Reading the Command Line with TTool 69

the output file name. It calls GetNextArg to retrieve the output file
name from the argument array and attempts to make a stream from it
by calling the MakeStream member function. If the stream is success
fully created, SetOption sets the fOut member to point to that stream.
If the option is not valid, or if the stream cannot be created, SetOption
returns 0 to indicate failure.

int TFixCorrunent3::SetOption(char *option){
char * arg;
if(*(++option) ~ 'o'){

II get the output file name
if((arg = GetNextArg()) != 0){

II open the file and create a stream for it
fstream * fs = MakeStream(arg,O_WRONLY);
if(fs != 0) {

fOut = fs;
return l;

else
return O;

else{
cerr << "### " << " missing file name\n"
return 0;

else {
cerr << "### "<<option<< " is not a valid option\n";
return 0;

~ Calling the DoWork Member Function

If ParseArguments does not return an error, the DoWork member
function is called. Fixcom3 overrides DoWork so that it calls the Filter
member function, supplying the [In and fOut members as the input and
output stream arguments. Remember that [In and fOut were initialized
to point to cin and cout, and then later set to point to input and output
files if those files were specified on the command line. The Filter func
tion is exactly the same as that used in fixcom2.

int TFixCorrunent3::DoWork(void) {
return Filter(*fin,*fOut);

70 . II> Chapter 4 Writing MPW Tools in C++

Fixcom3 shows how to use the command line parsing capabilities of
TTool to easily read arguments and attach input and output streams to
specified files. This is a very common thing to do in MPW tools. TTool
uses the object-oriented features of C++ to make writing tools easier .

..., Summary
MPW tools are a good way to begin your C++ explorations. You can
get a feel for how C++ programs are put together and how you can
employ the different parts of MPW to create and use makefiles. The
programs in this chapter are relatively simple because they rely on
MPW to handle most input and output. Once you have mastered the
concepts shown in this chapter you will be ready to move on to the
more complicated material of the later chapters.

Chapters 5-14 describe how to write stand-alone C++ programs that
run independently of the MPW environment and utilize all the fea
tures of the Macintosh interface, such as windows and menus. The
coming chapters also develop much larger classes to handle the com
plexities of Macintosh programming.

PART TWO

~ Total Immersion

The previous four chapters have given you a gentle introduction to C++
and object-oriented programming concepts. The next three chapters will
immerse you in a practical exercise to see how C++ can be used to solve
big programming problems. This section is like being thrown headfirst
into the deep end of a swimming pool.

As mentioned in earlier chapters, C++ is most useful in large, compli
cated programming projects. The next few chapters display that useful
ness by attempting to implement two large classes. You will learn a lot
by studying these classes and thinking about the decisions that went
into their design. There are things about object-oriented program design
that you just can't learn from small program examples.

The chapters in this section develop classes that can be used to help
write full-fledged Macintosh programs. The chapters are pretty dense.
Be prepared to put the book down halfway through a chapter and
pause for reflection. That is alright. The time that you spend working
through the example classes in this section and thoroughly understand
ing them will pay off when you begin to use those classes to develop
your own Macintosh programs.

71

5 ~ TDoc: The Generic
Document Class

This chapter describes a class that encapsulates the concept of a docu
ment in a Macintosh application. It is a rather simple model of a docu
ment, based on the idea that a document is associated with one file on
the disk and has one window in which to display its data, but the
model should be sufficient for you to write many useful Macintosh
programs. Even though this document model is quite simple, you will
find that there is a great deal of code necessary to support a minimal
document class. This chapter will take you through the process of de
signing a large class, while looking at some of the trade-offs you must
make between efficiency and flexibility.

This class, named TDoc, will be used as the basis for several derived
document classes developed in Chapters 7-13. TDoc itself is not derived
from any other object. It could have been derived from the Handle
Object type supplied by Apple in order to take advantage of the mem
ory management benefits of handle-based objects, but in Chapter 13
TDoc is used to derive a class using multiple inheritance, and Handle
Objects cannot be used in multiple inheritance hierarchies.

This chapter describes the members and member functions of TDoc,
but you might also want to look at the code listings in TDoc.h and
TDoc.cp in Appendix B to get a better idea of how a large class declara
tion and definition is put together. You will also want to read Chapter
6, on the T App application class, since the application class makes such
extensive use of the document member functions.

73

74 ~ Chapter 5 TDoc: The Generic Document Class

llJli> TDoc Members
Each document object contains seven members that describe its state.
All the members of TDoc are protected, so they can only be accessed via
member functions of TDoc or member functions of derived classes.
Notice that the members are not private, which would mean that de
rived classes could not access them, or public, which would mean that
anyone with a reference to the object could change the members.

TDoc' s members are declared as follows.

c l ass TDoc
p r otect ed:

OS Type
SFReply
Bool ean
shor t
WindowPtr
Bool ean
Bool ean

f Creator ;
fFileinfo ;
f FileOpen ;
f Re fNum;
fD ocWindow;
f NeedtoSave ;
fNeedtoSaveAs ;

The first two members, [Creator and fFilelnfo, hold information about
the file that contains the data for the document. The next member, fFile
Open, tells whether or not the file is currently open. The next member,
fRefNum, contains the file system reference number for the file if it is
open. Other TDoc member functions can use this refnum to perform
fiie 1/0 operations on the file. The next member, [Doc Window, refers to
the window for the document. Many member functions use this mem
ber to operate on the document window. The last two members, fNeed
toSave and fNeedtoSaveAs tell if the document has changed since the last
time it was saved. fNeedtoSave is true whenever there is unsaved data
in the document. fNeedtoSaveAs is true when there is unsaved data and
the file is not associated with a disk file (i.e.: it was created as a new,
blank document). All members are initialized by TDoc's constructor
and updated by other member functions during the life of the object.

llJli> Constructor and Destructor
As discussed in Chapter 3, the main purpose of a constructor is to ini
tialize members of the object. It is not wise to do anything in a con
structor that could fail since there is no way to return an error code
from a constructor. The constructor for TDoc is declared with the fol
lowing interface.

TDoc (OSType t heCreator = ' ???? ', SFReply * SFi nf o = (SFReply *) nil);

~ Constructor and Destructor 75

The constructor takes two arguments: theCreator is an OSType that
the document will use if it has to create a new file for the document;
SFinfo is a pointer to an SFReply structure that describes an existing file
for the document. Notice· that both arguments have default values in
the declaration. This means that you can call the constructor for TDoc
three different ways, shown as follows.

SFReply theinfo ;
TDoc * docl = new TDoc; II theCreat or and SFinfo both default
TDoc * doc2 = new TDoc (' MPNT'); II only SFinfo default
TDoc * doc3 =new TDoc('MPNT ' , &t heinfo); II neither default

Default arguments are substituted in strict left-to-right ordering.
Thus, you could not call the TDoc constructor as follows.

TDoc * theDoc = new TDoc (&theReply); II COMPILER WILL COMPLAIN

TDoc objects are typically created by the application in response to
the user choosing the New or Open menu items. If the document is
created as a new document, then SFinfo will be nil, to indicate that
there is no existing file for the document. If the document is created
from an Open menu choice, then SFinfo will point to a valid SFReply
containing information about the file obtained from the toolbox func
tion SFGetFile so that the document can later open the file and read
and write its contents.

The Macintosh operating system assigns all files a creator signature
and a file type signature. This supports the association of applications
with document files so that a user can open an application by opening
one of its documents in the Finder. File creator and file type signatures
also allow for application specific icons on the Finder desktop. The
Scribble application, described in Chapter 8, shows how to use unique
creator and type identifiers to enable these features.

The theCreator argument to TDoc's constructor allows the caller (usu
ally the application object) to specify the creator signature for the docu
ment. The document object uses the creator signature in case it needs to
create a new file when saving the document.

The constructor for TDoc initializes the object members to their de
fault values. The fNeedtoSaveAs member is set according to whether or
not the document was created from an existing file, as indicated by the
value of the SFinfo argument (nil indicating that there is no file asso
ciated with this document yet). The code for TDoc's constructor is
shown as follows.

76 ~ Chapter 5 TDoc: The Generic Document Class

Key Point ~ I

TDoc ::TDoc(OSType theCreator , SFReply * SFinfo) {
fCreator = theCreator ;
fNeedtoSave = false ;
fDocWi ndow = nil ;
fRefNum = 0;
fFileOpen = false ;
if (SFinf o !=nil) {

fNeedtoSaveAs = false;
fFileinfo = *SFinfo ;

else{
fNeedtoSaveAs = true ;
fFileinfo.good = false ;

The destructor for TDoc is called when a TDoc object is deleted. Its
responsibility is to dispose of the window associated with the docu
ment. The destructor of TDoc is declared as follows.

II virtual destructor so that derived destructors will be called
virtual -TDoc(void);

The destructor is declared to be virtual so that the destructors for
classes derived from TDoc will be called when the derived objects are
deleted, as explained in Chapter 3. This will be very important in later
chapters, which develop classes based on TDoc. The destructors for
those derived classes will need to be called to deallocate memory hold
ing the data for the derived documents.

It is very important to declare the destructor of a class as virtual if
you expect to derive any other classes from that class.

The destructor is defined as follows.

TDoc: : -TDoc(void) {
if(fDocWindow !=nil) {

DisposeWindow (fDocWindow);
fDocWindow = nil ;

~ Initializing Documents 77

IJJi> Initializing Documents
As previously mentioned, TDoc objects are typically created by an ap
plication when the user chooses a New or Open menu item. The appli
cation creates a TDoc object and then calls several other TDoc member
functions to create a window for the document and perform any other
document-specific initialization.

MakeWindow is the TDoc member function that creates a window
for the document. It is not part of the constructor for two reasons. First,
it involves resource and memory allocation when the window is
created, so it is possible that it might fail, thus making it dangerous to
do within the constructor. Second, it is split out from the constructor to
make it easy to change the way derived classes make their document
windows. For instance, Chapter 9 describes a derived class that over
rides MakeWindow to make a dialog window instead of a regular win
dow for the document. If the process of creating a document window
had been part of the constructor or part of some other initialization
member function, then the dialog class would have had to duplicate
much of the surrounding code in order to change the way a window
was created. As is often said, it isn't the code that you write that's im
portant, it's where you put it.

MakeWindow takes one argument that specifies whether or not to
make a Color QuickDraw-compatible window. The application that
creates the document sets this argument based on the availability of
Color QuickDraw in the runtime environment. MakeWindow returns
true if the window is created successfully, false if otherwise. If the win
dow can't be created, this allows the application to abort the document
creation process. The code for MakeWindow is shown as follows.

Boolean TDoc::MakeWindow(Boolean colorWindow) (
if(colorWindow)

fDocWindow = GetNeWCWindow(GetWinID(),nil, (WindowPtr)-1)
else

fDocWindow = GetNewWindow(GetWinID(),nil, (WindowPtr)-1);

return (fDocWindow !=nil);

Notice that MakeWindow calls a member function, GetWinlD, to
get the resource ID for the window it is creating. This makes it easier
for a derived class to use another resource as the basis of its windows.
The default resource for document windows is defined in TDoc.rsrc

78 ., Chapter 5 TDoc: The Generic Document Class

(see the "Resources" section of this chapter) as a 'WIND' resource with
the ID number rGenericDoc (this constant is defined in TDoc.h). Get
WinID just returns rGenericDoc by default. If your derived document
class wants to use a different resource definition for its windows, you
can simply override GetWinlD, without having to override Make Win
dow, to return a different ID number. The code for GetWinID is
shown as follows.

short TDoc::GetWinID(void){
return rGenericDoc;

The last initialization member function for TDoc is InitDoc. By de
fault, it returns true to show that initialization is complete. It is mainly
a placeholder for derived classes that might want to perform other ini
tialization tasks that could fail. It is called after the document window
has been created but before the window has been made visible. Init
Doc is defined in the declaration of TDoc, as shown here.

II InitDoc is available for your initialization
II routines that might fail,
II It gets called after the window is created
virtual Boolean InitDoc(void){return true;}

See Chapters 9 and 10 for examples of how a derived class can use
InitDoc for its own purposes .

..,_ Maintaining Windows

Once the document is initialized and its window created, the program
will need to move the window around and set its title. TDoc has sev
eral member functions that are provided to manipulate the document
window. These functions are defined in the declaration of TDoc,
shown as follows. Notice that these member functions are not virtual.
They cannot be overridden in derived classes. This is done because
these member functions are so basic that it should never be necessary
to change them, and it is faster to call a nonvirtual member function
than a virtual member function.

WindowPtr GetDocWindow(void)
{ return fDocWindow; }

void SetDocWindowTitle(Str255 title)

.._ Handling Events 79

{if(fDocWindow)SetWTitle(fDocWindow,title);}
void MoveDocWindow(short h, short v)

{if(fDocWindow)MoveWindow(fDocWindow,h,v,true);}
void ShowDocWindow(void)

{if(fDocWindow)ShowWindow(fDocWindow);}

_.,, Handling Events
TDoc contains many member functions that are called in response both
to user actions with the mouse and keyboard and to events generated
by the operating system. Typically, the application object (described in
Chapter 6) detects the event and calls the appropriate member function
for the document object. The following sections describe the event han
dling member functions for the document class. You will probably
override many of these member functions when deriving your own
document class.

IJi> Update Events

When the window for a document needs to be redrawn, the application
will receive an update event for the window. The application deter
mines which document owns the window, and then calls the DoThe
Update member function for that document. DoTheUpdate sets the
GrafPort to the window and calls the toolbox function BeginUpdate to
make sure that the clipping regions are set up for drawing in the win
dow. It then determines the bounding rectangle of the visRegion of the
window. This bounding rectangle will often be smaller than the win
dow itself, encompassing only that part of the window that needs to be
redrawn. DoTheUpdate then passes this rectangle to the Draw mem
ber function, where the actual drawing of the window contents occurs.
Then, DoTheUpdate calls the DoDrawGrowlcon member function to
draw the grow icon. Finally, it calls the toolbox function EndUpdate to
tell the system that the window has been redrawn. The code for Do
TheUpdate is shown as follows.

void TDoc::DoTheUpdate(EventRecord*/*theEvent*/) {
if(fDocWindow !=nil){

SetPort(fDocWindow);
BeginUpdate(fDocWindow);
Rect r = (**(fDocWindow->visRgn)) .rgnBBox;
Draw(&r);

80 .,.. Chapter 5 TDoc: The Generic Document Class

Key Point~

DoDrawGrowicon();
EndUpdate(fDocWindow);

The code for the DoDrawGrowlcon member function is quite sim
ple. It merely calls the toolbox function DrawGrowlcon. You might
wonder why this is packaged as an object member function rather than
as a straight toolbox call in DoTheUpdate. The reason is that derived
classes might want windows without grow boxes (see TScribbleDoc in
Chapter 8 and TModelessDoc in Chapter 9), but they don't want to
have to rewrite the entire DoTheUpdate member function just to
change the way the grow box is drawn. With DoDrawGrowlcon split
out as a member function, it is easy for the derived class to alter that
portion of the update process without having to change DoTheUpdate.
Even though it is less efficient to go through a member function instead
of calling the toolbox directly, the gain in class flexibility is well worth
it. The code for DoDrawGrowlcon is shown as follows.

II override this if you don't want grow box
virtual void DoDrawGrowicon(void)

{if(fDocWindow)DrawGrowicon(fDocWindow);}

The other member function that is called from DoTheUpdate is
Draw. It is hard to imagine a document class derived from TDoc that
won't override Draw. This member function is responsible for drawing
a representation of the document's data. Draw should not be con
cerned with setting the Gra£Port before it draws, since this is done for it
by DoTheUpdate. Draw is declared as a protected member function,
so that only member functions of TDoc and its derived classes will call
it; thus it is easier to depend on the Gra£Port being set correctly before
Draw is called.

Draw should not make any reference to the document window, since
the Draw member function might be called to draw the data into an
off-screen Gra£Port or a printing Gra£Port rather than a window. The
rectangle argument specifies the area that needs to be drawn. It allows
for optimizations when only a portion of a large data set needs to be
drawn. The default definition of Draw is shown as follows.

void TDoc::Draw(Rect *r){
EraseRect(r);

IJli. Handling Events 81

DoTheUpdate will probably not be overridden in most classes de
rived from TDoc. DoDrawGrowlcon will only be overridden if you
don't want a grow box in your window. Draw will almost always be
overridden.

~ Activation

Macintosh programs typically can have more than one document win
dow open at any given time. The window that appears closest to the
front is called the active window. In the TDoc/TApp class structure, the
document associated with the active window is called the current docu
ment. The Macintosh operating system generates activation/deactivation
events for a window when it becomes the active window or when it
stops being the active window. The application determines which docu
ment is associated with the activating or deactivating window and calls
the DoActivate member function for that document.

Figure 5-1 shows two windows on the Macintosh desktop. You can
see that the active window looks different than the inactive window.
The active window's title bar is highlighted and its grow box and scroll
bars are fully drawn. The inactive window, on the other hand, has an
unhighlighted title bar, invisible scroll bars, and its grow box is empty.
The operating system takes care of highlighting the title bar when a
window becomes active or inactive. It is the program's responsibility to
appropriately draw the scroll bars and grow box. (See Chapter 10 for a
discussion of how to activate the scroll bars.) The toolbox function
DrawGrowlcon checks the activation state of the window when it is
called and draws the grow box appropriately. Thus, TDoc's responsi
bility is to call DoDrawGrowlcon when the window changes activa
tion states.

DoActivate handles both activation and deactivation. It calls the Do
DrawGrowlcon member function in either case, since the grow icon
will be redrawn appropriately depending on the activation state of the
window.

After redrawing the grow box, DoActivate calls the Activate or De
activate member function, depending on whether the window is be
coming active or inactive. Activate is the member function that you
will override to provide your document with its specific activation

82 ~ Chapter 5 TDoc: The Generic Document Class

response. Deactivate is the member function that you will override to
provide your document with its specific deactivation response. For ex
ample, the TTEDoc class in Chapter 12 calls the toolbox function TE
Deactivate from the Deactivate member function and TEActivate from
the Activate member function.

tS File Edit

Actiue Window

This is the inactive window
This is the inactive window
This is the inactive window
Thi s i s the inactive window
This is the inactive window
This is the inactive window

Figure 5-1. Active and Inactive Windows

The code for DoActivate is shown as follows.

void TDoc ::DoAct i va te (EventRecord* theEvent) {
Boolean act ivating = t heEvent->modifiers & a ctiveFlag;

II no need to activat e if no window
if(fDocWindow == nil)

return ;

SetPor t {fDocWindow);
DoDrawGr owi con();

if(activating)
Activate();

else
Deactivate();

~ Handling Events 83

Your derived classes will probably not need to override the DoActi
vate member function since it is applicable to almost all situations. Ac
tivate and Deactivate are both defined as empty functions. They exist
to be overridden by derived document classes. The Activate and Deac
tivate member functions are split off to allow a convenient spot to put
your document-specific code without having to change the common
code. Activate and Deactivate are defined in the declaration of TDoc
as follows.

II override these to de/activate window (TEActivate, etc)
virtual void Activate(void) {} '
virtual void Deactivate(void){}

~ Growing, Zooming, Dragging

Windows associated with TDoc documents can be resized, zoomed,
and dragged. All these actions are pretty straightforward. Derived doc
ument classes will probably not need to override any of the member
functions listed in this section, although they are declared as virtual
functions just in case. These member functions encapsulate standard
Macintosh interface behavior for a document window. They are called
from the application when it detects mouse clicks in the grow box, title
bar, or zoom box of a document window.

The DoGrow member function has three tasks. First, it must set up a
growbounds rectangle that defines the minimum and maximum size that
the window can assume. Next, DoGrow calls the toolbox function Grow
Window to let the user drag a gray outline to size the window. Finally, it
invalidates areas of the window that need to be redrawn and calls the
toolbox function SizeWindow to draw the window at its new size.

The top and left coordinates of the growbounds rectangle represent
the minimum vertical and horizontal dimensions of the window. The
bottom and right coordinates of the rectangle represent the maximum
vertical and horizontal dimensions. DoGrow calls the toolbox function
GetGrayRgn to get a handle to the gray region of the desktop. DoGrow
uses the bottom and right coordinates of that region's rectangle for its
maximum grow size.

84 llll- Chapter 5 TDoc: The Generic Document Class

The only tricky thing about the code in DoGrow is that it invalidates
the scroll bar areas of the window before and after the call SizeWin
dow. This ensures that the window will be properly updated and re
drawn at its new size. The code for the DoGrow member function is
shown as follows.

void TDoc::DoGrow(EventRecord* theEvent){
long result;

II use desktop gray region as grow limits
RgnHandle theGrayRgn = GetGrayRgn();

Rect r = (**theGrayRgn).rgnBBox;
r.top = GetMinHeight(); r.left = GetMinWidth();

SetPort(fDocWindow);
result= GrowWindow(fDocWindow, theEvent->where, &r);

if (result != 0){
II invalidate the old scroll bar areas
r = fDocWindow->portRect;
r.left = r.right - kScrollBarPos;
InvalRect(&r);
r = fDocWindow->portRect
r.top = r.bottom - kScrollBarPos;
InvalRect(&r);

II now make the window the new size
SizeWindow(fDocWindow, LoWrd(result), HiWrd(result), true);

II invalidate the new scroll bar areas
r = fDocWindow->portRect;
r.left = r.right - kScrollBarPos;
InvalRect(&r);
r = fDocWindow->portRect;
r.top = r.bottom - kScrollBarPos;
InvalRect(&r);

The member functions GetMinHeight and GetMin Width are used by
DoGrow to set up the minimum window size in the growbounds rec
tangle. These two member functions are defined by default to return a
value of 75, but you can override them if you want a different minimum
window size. They are defined in the declaration of TDoc as follows.

~ Handling Events 85

virtual void GetMinHeight(void){return 75;}
virtual void GetMinWidth{void) {return 75;}

The DoZoom and DoDrag member functions implement zooming and
dragging as suggested by Inside Macintosh. You will probably never need
to override these two member functions. They are shown as follows.

void TDoc::DoZoom(short partCode){
if (fDocWindow) {

SetPort(fDocWindow);
EraseRect(&fDocWindow->portRect);
ZoomWindow(fDocWindow, partCode,
fDocWindow == FrontWindow());
II invalidate the whole content
InvalRect(&fDocWindow->portRect);

void TDoc::DoDrag(EventRecord* theEvent){

II use desktop gray region as drag limits
RgnHandle theGrayRgn = GetGrayRgn();
Rect r = (**theGrayRgn) .rgnBBox;

if(fDocWindow)
DragWindow(fDocWindow, theEvent->where, &r);

~ Mouse Clicks and Key Presses

By default, TDoc does not do anything with mouse clicks in the con
tent area of the window. Likewise, it does nothing in response to key
presses when the document window is active. Two empty member
functions, DoContent and DoKeyDown, are defined to handle these
events. You will probably want to override these member functions in
your derived document class to respond to these events. For example,
TScribbleDoc (in Chapter 8) overrides DoContent to track the mouse
and let the user draw in the window. TTEDoc (in Chapter 12) over
rides DoKeyDown to call the toolbox function TEClick to add the key
press to the text in the window. DoContent and DoKeyDown are de
fined as follows.

II override these to respond to clicks and keys
virtual void DoContent(EventRecord* theEvent) {}
virtual void DoKeyDown(EventRecord* theEvent) {}

86 IJJi> Chapter 5 TDoc: The Generic Document Class

.,.. Idle Events

Whenever the application has no other events pending, it calls the Do
Idle member function of the current document. Idle events are a good
time to do background processing and housekeeping tasks. Doldle is
defined as an empty function by default, but you may want to override
it in your derived document class. The TTEDoc class, described in
Chapter 12, uses Doldle to call the toolbox function TEidle. Whatever
you do in your Doldle member function, make sure that it doesn't take
more than about 1/10 second, since pending user mouse clicks and key
presses won't be handled until you return from Doldle.

AdjustCursor is another empty member function defined in TDoc.h.
If your document needs to have a special cursor shape depending on
the mouse location, you should override AdjustCursor and call it from
Doldle, passing the mouse position (in local coordinates of the docu
ment window) as the argument. AdjustCursor can then examine the
mouse position and set the cursor accordingly. (See TTEDoc in Chap
ter 12 for an example of how to use Doldle and AdjustCursor.) The de
fault definitions of Doldle and AdjustCursor are shown as follows:

virtual void Doidle(void) {)
virtual void AdjustCursor(Point where) {)

~ Handling Menus
The document class and the application class (described in Chapter 6)
share a common header file, AppDocMenus.h, which defines the menu
and item ID numbers for standard Apple, File, and Edit menus, as
shown in Figure 5-2.

There are two main tasks relating to menus in a Macintosh applica
tion. The first is to adjust the menus to make sure that the user is al
lowed to choose only those menu items that are appropriate for the
current state of the application and document. For example, the Close
menu item should be disabled when there are no open documents to be
closed. Properly setting up the menus reduces the need for extensive
error checking in other parts of the program since it is much harder for
the user to choose an inappropriate command. The second type of
menu task is to actually handle commands chosen by the user from the
enabled menu items.

Rbout Generic

l)i. Handling Menus 87

KZ

.. Cut KH

Clo~e KW Copy KC
Saue KS Paste KU
Saue as •••

Page Setup
Print KP

Quit KQ

Clear

Select RH KR

Figure 5-2. Standard menus

The application class and the document class share the responsibility
for.both types of menu processing. The application class is responsible
for adjusting the state of some of the menu items and the document
class is responsible for others. For example, the application controls
whether or not the New and Open menu items are enabled since these
commands trigger the creation of new documents, which is the applica
tion's job. On the other hand, the document class is responsible for ena
bling or disabling the Save and SaveAs menu items since these com
mands directly affect the current document. Likewise, the application
class handles the menu commands for opening new documents, and
the document class handles the Save and SaveAs commands. A discus
sion of the details of both types of menu processing follows.

IJjJi> Adjusting Menus

A short inline utility function, SetMenuAbility, is defined to ease the
task of enabling or disabling the individual menu items. It uses the
toolbox functions Enableltem and Disableltem. Because this function is
defined in the header file TDoc.h, it can be used by the application
class as well as the document class. The definition of SetMenuAbility
is shown as follows. Notice that this is not a member function of IDoc
or any other class.

inline void SetMenuAbility(MenuHandle menu,short item,Boolean enable)
{enable? Enable!tem(menu,item) :Disable!tem(menu,item);}

The document member function AdjustDocMenus is called by the
application whenever the user is about to make a menu choice. This
member function is responsible for enabling or disabling menu items

88 tJi. Chapter 5 TDoc: The Generic Document Class

that depend on the current state of the document. For instance, the
Save menu item is enabled only if the fNeedtoSave member is true. The
definition of AdjustDocMenus is shown as follows.

void TDoc::AdjustDocMenus(void){
MenuHandle menu;

II Do the document's portion of the file menu
menu= GetMHandle(rFileMenu);
SetMenuAbility(menu,iClose,CanClose());
SetMenuAbility(menu,iSave,CanSave());
SetMenuAbility(menu,iSaveAs,CanSaveAs());
SetMenuAbility(menu,iPageSetup,CanPageSetup());
SetMenuAbility(menu,iPrint,CanPrint());

II now the edit menu, App handles Paste Item
menu= GetMHandle(rEdit);
SetMenuAbility(menu,iUndo,CanUndo());
SetMenuAbility(menu,iCut,HaveSelection());
SetMenuAbility(menu,iCopy,HaveSelection());
SetMenuAbility(menu,iClear,HaveSelection());
SetMenuAbility(menu,iSelectAll,CanSelectAll());

You can see that AdjustDocMenus calls a separate member function
for each of the menu items to determine if it should be enabled or disa
bled. All of these functions return a Boolean value. These menu query
functions are defined in the declaration of IDoc, as follows.

virtual Boolean CanUndo(void) { return false;)
virtual Boolean HaveSelection(void) { return false;
virtual Boolean CanPaste(OSType l*theType*I) { return false; }
virtual Boolean CanSelectAll(void){return false;}
virtual Boolean CanClose(void) { return true; }
virtual Boolean CanSave(void) { return fNeedtoSave;
virtual Boolean CanSaveAs(void) { return false; }
virtual Boolean CanPageSetup(void){return false;}
virtual Boolean CanPrint(void) { return false; }

These member functions provide a convenient way for you to change
the default enabling/ disabling behavior without overriding Adjust
DocMenus. For example, if your document can handle the Print menu
command, then you will override CanPrint to return true instead of
false. The document classes in Chapters 7-13 show examples of how to
override these functions.

Key Point ~I

~ Handling Menus 89

The default definition of AdjustDocMenus only covers the standard
File and Edit menus. If your document class adds other menus you will
need to override AdjustDocMenus to account for the additional menu
items. When overriding AdjustDocMenus it is important to call the
parent class's version of AdjustDocMenus as part of the derived ver
sion so that you will inherit the default behavior. For example, the fol
lowing code skeleton shows how to override AdjustDocMenus.

void TDerivedDoc::AdjustDocMenus(void) {
II adjust the additional menu items for the derived document
11 ... 11
II and now call the parent class for default behavior
TDoc::AdjustDocMenus() ;

The Scribble program in Chapter 8 contains an example of how to
override AdjustDocMenus to enable and disable menus beyond the
standard Edit and File menus.

~ Handling Menu Commands

The document member function DoDocMenuCommand is called by
the application whenever the user makes a menu choice, either with
the mouse or a command-key equivalent. DoDocMenuCommand gets
first shot at the menu command to see if it is one of the commands that
can be handled by the document without any help from the applica
tion. For example, the document is completely responsible for respond
ing to the Save command.

If the document handles the menu command, then DoDocMenu
Command returns true so that the application won't try to do any fur
ther processing for that command. For each menu item that it handles,
DoDocMenuCommand calls other document member functions to do
the actual processing. Those member functions are described individu
ally in other sections of this chapter.

90 ._ Chapter 5 TDoc: The Generic Document Class

If DoDocMenuCom.mand returns false, then the application assumes
that the menu command is one that it is responsible for and processes
the command with its own methods. DoDocMenuCom.mand is de
fined as follows.

Boolean TDoc::DoDocMenuCommand(short menuID, short menuitem){
switch (menuID){

case rFileMenu:
switch (menultem){

case iSave:
DoSave();

break;
case iSaveAs:

DoSaveAs();
break;

case iPageSetup:
DoPageSetup ();
break;

case iPrint:
DoPrint ();
break;

default: II we didn't handle command
return false;

II end menultem switch
return true; II we handled this command

case rEdit:
if (!SystemEdit(menuitem-1)){

switch (menultem) {
case iClear:

DoClear();
break;

case iSelectAll:
DoSelectAll () ;
break;

default:
II we didn't handle command
return false;

} II end menultem switch
return true; II we handled this command

else
return true; II SystemEdit handled command

}II end menuID switch
II we didn't handle command
return false;

~ Cut, Copy, and Paste 91

Like AdjustDocMenus, DoDocMenuCommand only knows about
the standard File and Edit menus. If your document class adds other me
nus, you will have to override DoDocMenuCommand to process those
additional menu items. Like AdjustDocMenus, it is important to call the
parent class's version of DoDocMenuCommand from your derived ver
sion so that the default behavior will occur along with any new capabili
ties. See the Scribble program in Chapter 8 for an example of how to
override DoDocMenuCommand to process additional menu items.

9J> Cut, Copy, and Paste

The Macintosh clipboard provides a metaphor and mechanism for
tranSferring data from one place to another within an application and
between applications. The TDoc document class implements clipboard
handling by defining member functions for cut, copy, and paste. Clip
board data always has a four-character type designator associated with
it. The two most common data types are 'TEXT' and 'PICT'.

Clipboard handling is a cooperative effort between the document
class and the application class (see Chapter 6). When the user selects
the Copy menu item, the application calls the DoCopy member func
tion of the current document, passing it a pointer to a handle to hold
the clipboard data and a pointer to a variable to specify the type of
data. DoCopy allocates memory for the clipped data and passes its
handle and data type back to the caller through the arguments. DoCut
is similar, except that the document also deletes the clipped data after
copying it. These two member functions are stubbed out in TDoc since
they depend on the type of data in the document. You will need to
override these member functions if your document supports cutting
and pasting to the clipboard. (The TextEdit document class in Chapter
12 shows an example of how to override these member functions.) Do
Cut and DoCopy are defined in TDoc as follows.

II these are all empty, override if you want them
virtual Boolean DoCut(Handle *theData,OSType *theType)

{*theData = nil;*theType ='????';return false;}
virtual Boolean DoCopy(Handle *theData,OSType *theType)

{*theData = nil;*theType ='????';return false;}

After the application has called DoCut or DoCopy for a document, it
then keeps the resulting clipboard data handle. Later, if the user
chooses the Paste menu command, the application will send the data
handle and type designator to the document by calling the DoPaste

92 9'> Chapter 5 TDoc: The Generic Document Class

member function for the document. The document takes the pasted
data and incorporates it into the document. Like DoCut and DoCopy,
this member function is just a stub in TDoc. You will want to override
DoPaste if your document supports the clipboard. Again, see Chapter
12 for a document class that overrides the DoPaste member function.
DoPaste is defined as follows.

virtual void DoPaste(Handle theData,OSType theType) {)

The document class deals with the clipboard operations in terms of
only handles and data types. It does not interact with the toolbox func
tions that operate on the Macintosh's system clipboard. The application
class is responsible for passing clipboard data on to the system as nec
essary, as explained in Chapter 6.

There are also three other member functions associated with items in
the Edit menu that do not affect the clipboard contents. They are de
fined as empty functions that you will override if you want this func
tionality in your document. They are defined as follows.

virtual void DoClear(void) {)
virtual void DoSelectAll(void) {)
virtual void DoUndo(void) {)

., Handling Files
Much of the previous discussion of the TDoc class centered on its win
dow and menu handling member functions. The window is merely a
way of representing, or visualizing, the document's data to the user.
The other major responsibility of the document class is to maintain its
data in a disk file. This section discusses the member functions that
TDoc uses to keep track of the file that is associated with the document.

~ Opening and Closing Document Files

Two low-level member functions, OpenDocFile and CloseDocFile, are
defined to open and close the document's file. When a document is
created from an existing file, TDoc keeps open the file associated with
the document until the user closes the document. This is a precaution
to ensure that other applications in the MultiFinder or AppleShare en
vironment can't modify the file while TDoc has the file open. If the
document is created as a new, blank document, then it will have no file

tJI> Handling Flies 93

associated with it until the user does a SaveAs operation, after which
the newly created file is kept open until the document is closed.

OpenDocFile's argument is an SFReply which contains the file name
and volume reference number for the file. The return value from Open
DocFile is the reference number for the newly opened file, or 0 if the
file could not be opened. OpenDocFile tries to open the file, based on
the information in the SFRt[ply. If the file is already open, OpenDoc
File calls the utility function ErrorAlert, described in a later section of
this chapter, to display an alert dialog and then returns 0. If the file can
not be found, which can happen during a SaveAs operation, the Open
DocFile tries to create the file and then open the newly created file. If
the file is successfully opened, OpenDocFile sets the fFileOpen and fRef
Num members of the document and returns the refnum for the file. The
code for OpenDocFile is shown as follows.

short TDoc::OpenDocFile(SFReply *reply){

short refnum;
OSErr err.= FSOpen((Str255)reply->fName,

reply->vRefNum,&refnum);
switch(err){

case fnfErr: II file not found, create it
err= Create((Str255)reply->fName,

reply->vRefNum,
fCreator,
GetDocType());

if(err ~ noErr){
err= FSOpen((Str255)reply->fName,

reply->vRefNum,
&refnum);

if(err != noErr)
return O;

else
return 0;

II if open was successful, fall through
I I to next case

case noErr: II file opened OK
fFileOpen = true;
fRefNum = refnum;
return refnum;

case opWrErr:
ErrorAlert(rDocErrorStrings,sFileOpen);
return 0;

94 9Ji> Chapter 5 TDoc: The Generic Document Class

default:
ErrorAlert (rDocErrorStrings,sUnknownErr);
return O;

CloseDocFile is very simple; it just uses the refnum supplied as its
argument to close the file, as follows.

void TDoc::CloseDocFile(short refNum){
OSErr err= SClose(refNum);

llJi. Reading and Writing Document Files

Two other low-level member functions, DoWriteFile and DoReadFile,
are defined as empty member functions. You must override these
member functions if your derived document class wants to move data
to or from a file. Both of these member functions take a refnum argu
ment and return a Boolean to indicate if the operation was successful.
Chapters 8, 11, and 12 contain examples of how to override DoWrite
File and DoReadFile. They are defined in TDoc as follows.

II override these to read and write files
virtual Boolean ReadDocFile(short l*refnum*ll {return true;}
virtual Boolean WriteDocFile(short l*refnum*ll {return true;}

llJi. Saving Document Files

On a higher level, several member functions are defined to be called in
response to user menu choices. These member functions include Do
Save, DoSaveAs, and DoClose.

DoSaveAs is called when the user chooses the SaveAs menu item, or
when the user tries to close a document that has unsaved changes and
was created as a blank document. DoSaveAs calls the toolbox function
SFPutFile to put up a dialog to allow the user to specify a file name and
directory for the file. If the user cancels from within the SFPutFile dia
log, then DoSaveAs returns false and does not do any further process
ing. If the user does not cancel, then DoSaveAs tries to open the speci
fied file by calling OpenDocFile, which will create the file if it doesn't
already exist. Once the file is open, DoSaveAs calls WriteDocFile to
write the document data to the file and rename the document window

~ Handling Flies 95

to match the new file name. The code for DoSaveAs is shown as fol
lows. Notice that when the data has been successfully written to the
file, the fNeedtoSave and fNeedtoSaveAs members are set to false.

Boolean TDoc::DcSaveAs(void) {
SFReply whereToSave;
Point p;
Str255 title;

GetWTitle(fDocWindow,title);

p.h = 100; p.v = 100;
SFPutFile(p,

"\pSave file as ... ",
title,
(DlgHookProcPtr)nil,
&whereToSave);

if(! whereToSave.good) {
II the user canceled the SaveAs
return false;

}else{
fFileinfo = whereToSave;
fRefNum = OpenDocFile(&whereToSave);
if(fRefNum = 0) {

II file didn't open
return false;

}else{
fFileOpen = true;
if(! WriteDocFile(fRefNum)) {

II write was unsuccessful
return false;

}else{
fNeedtoSave = false;
fNeedtoSaveAs = false;
SetDocWindowTitle(whereToSave.fName);

return true; II passed every test for success

The DoSave member function is called when the user chooses the
Save menu item or when the user tries to close a document that has un
saved changes. It will call DoSaveAs if the fNeedtoSaveAs member is
true, indicating that the file was created as a blank document and has
never been saved. If DoSaveAs is not called, then DoSave calls Write-

96 ~ Chapter 5 TDoc: The Generic Document Class

DocFile to put the document's data in the file and then sets the fNeedto
Save and fNeedtoSaveAs members to false to show that the file has been
saved. DoSave is defined as follows.

Boolean TDoc::DoSave(void){
if(fNeedtoSaveAs)

return DoSaveAs();

if(WriteDocFile(fRefNum)){
fNeedtoSave = false;
fNeedtoSaveAs = false;
return true;

else
return false;

~ Closing Documents

The application calls DoClose when the user chooses the Close menu
item or clicks on the close box of a document window. It checks the
fNeedtoSave member of the document to see if the document has any
unsaved changes, and it calls WantToSave to display a dialog to give
the user a chance to save those changes before actually closing the win
dow, as shown in Figure 5-3.

The code for the WantToSave member function is shown as follows.

short TDoc::WantToSave(void) {
Str255 title;
Str255 nullStr;
*nullStr = O;

if (fDocWindow) {
GetWTitle(fDocWindow,title);
ParamText(title,nullStr,nullStr,nullStr);

else
ParamText(nullStr,nullStr,nullStr,nullStr);

return Alert(rWantToSave, (ModalFilterProcPtr)nil);

The WantToSave dialog gives the user three choices. The user can
say "yes, I want to save," or "no, don't save, but continue," or "cancel
the whole operation." If the user clicks the Cancel button, then the Do
Close operation is canceled. If the user clicks the No button, then Do
Close proceeds without trying to save the document changes. If the
user clicks the Yes button, then DoClose tries to save the document be
fore proceeding with closing the document.

Untitled

This document has not
been saved yet.

~ Handling Files 97

Saue changes to "Untitled" before
closing?

n Yes D
(No Cancel

Figure 5-3. The WantToSave Dialog

If the user chooses to save before closing, the DoSave member func
tion is called. The user can cancel the operation while saving, so the re
turn code from DoSave is checked before proceeding. If all goes well,
DoClose closes the document file and returns true. The definition of
DoClose is shown as follows.

Boolean TDoc::DoClose(void) (
II give the user a chance to save if necessary
II and possibly cancel the close operation

if(fNeedtoSave) {
II ask if they want to save it
short saveit = WantToSave();
if(saveit == iCancel)

return false;
if(saveit == iYes) {

II User can cancel save at this point too
if (! DoSave ())

return false;

//close the file
if(fFileOpen)

CloseDocFile(fRefNurn);

II if all goes well, return true
return true;

98 ~ Chapter 5 TDoc: The Generic Document Class

The application also calls the DoClose member function for all its
documents when the user chooses the Quit menu item. If any docu
ment returns false from DoClose, then the quitting process is aborted
and the application continues running.

~ Specifying Document File Type

The GetDocType member function is provided to specify the file type
for the document file. For example, the TTEDoc class described in
Chapter 12 overrides this function to return 'TEXT'. GetDocType is de
fined in TDoc as follows.

virtual OSType GetDocType(void){return '????';}

You will probably never need to override DoSave, DoSaveAs, or Do
Close. They encapsulate the proper logic to deal with unsaved changes
in a general way to implement behavior that Macintosh users have
come to expect. Because they are part of the TDoc base class, this be
havior will show up in your derived classes as well. Typically, Do
ReadFile, DoWriteFile, and GetDocType are the only file-related
member functions that you will have to override when deriving your
own document class. All the other operations for file maintenance -
opening and closing a file, asking the user to save before closing a doc
ument with unsaved changes, and getting a new file name during a
SaveAs operation - are taken care of by the default member functions
of TDoc. Your only responsibility is to read and write the data in the
file to tell the application the file type for the file .

., Printing

TDoc provides two empty member functions, DoPageSetup and Do
Print, that you can override to provide printing support. These two
member functions correspond to the Page Setup and Print menu items,
respectively.

When you override DoPageSetup, you will call the toolbox Print Man
ager functions to fill in the values for a print record. You can also define
an additional document member to store the print record information.

When overriding DoPrint, you can open a printing port for the cur
rent printer and then call the Draw member function to draw the image
of the document's data. Notice that the discussion of the Draw member
function said that Draw should not assume that it is drawing in a win
dow. If you follow that restriction, you should be able to use the Draw
member function to do your printing as well as your window drawing.

~ Utilities 99

The empty definitions for DoPageSetup and DoPrint follow. See the
PictView program in Chapter 11 for an example of how to implement
printing by overriding these member functions.

II override these for printing support
virtual void DoPageSetup(void) {}
virtual void DoPrint(void) {}

• Utilities
Three utility functions are defined in TDoc.h and TDoc.cp. These utility
functions are not defined as member functions of TDoc since they do
not need to access any members of the TDoc class. They are included
in the same files as the TDoc class merely for convenience.

HiWrd and LoWrd take a 4-byte integer as input and return the
upper or lower 2-byte word. They are defined as inline functions for ef
ficiency, as shown here.

inline short HiWrd(long aLong)
{return (short) (((aLong) >> 16) & OxFFFF);}

inline short LoWrd(long aLong)
{return (short) ((aLong) & OxFFFF);}

In a traditional C program, these two functions would probably be
defined as macros. The big disadvantage of macros, however, is that
there is no type-checking for arguments or return values for macros.

The other utility function is ErrorAlert. It is used by several member
functions in TDoc to put up an alert to tell the user of an error condi
tion, such as when the user tries to open a file that is already open.
Ei:rorAlert pulls in the string resources specified by its arguments and
substitutes them into the generic error alert dialog with the toolbox
function ParamText. It then displays the alert and waits for the user to
click the OK button before going on. The first argument specifies the ID
number of the STR# resource and the second argument indicates which
string to pull from the STR# resource. This allows derived classes to
add their own STR# resources to handle error conditions that do not
occur in the base class. Look at the DoOpenFile member function in
the "Opening and Closing Document Files" section of this chapter for
an example of how ErrorAlert can be used.

100 .., Chapter 5 TDoc: The Generic Document Class

void ErrorAlert(short stringsID,short theError){
short result;
Str255 theStr;
Str255 nullStr;
*nullStr = 0;

GetindString(theStr,stringsID,theError);

ParamText(theStr,nullStr,nullStr,nullStr);
result= CautionAlert(rErrorAlert, (ModalFilterProcPtr)nil);

IJJi; Compiling TDoc
TDoc cannot run as a program by itself. It is designed to work with the
TApp application class described in the next chapter. You do, however,
have to compile TDoc.cp to create an object file, TDoc.cp.o, which can
be linked with other files to create a full application. .

One crucial element of the compilation process is to specify a seg
ment name for the TDoc code. This is done by placing the following
compiler directive just before the first line of code.

#pragrna segment DocSeg

This line directs the compiler to put the code that follows into a seg
ment named DocSeg. It is a good idea to break your program into
smaller segments to make it more memory efficient. When you link
your final program, all the various code segments will be included.
You do not need to be concerned about whether a function call is to a
function in the same segment or a different segment since the linker
takes care of resolving those address calculations.

To compile TDoc.cp, invoke the following command in MPW, mak
ing sure, of course, that the current directory contains the file TDoc.cp.

CPlus TDoc.cp - o TDoc.cp.o

That command above causes the CPlus script to run, which calls
CFront to create C code from your C++ code; it then calls the C com
piler to compile the final object code. The code is output as TDoc.cp.o,
as specified by the -o flag in the command.

IJli. Resources 101

~ Resources
The source code for the TDoc class is contained in TDoc.cp and
TDoc.h. It is compiled to produce object code, which resides in the file
TDoc.cp.o. The object code can be linked with other application code to
form the final program. But, a Macintosh program also requires re
sources to be complete. The code in TDoc depends on several re
sources to function properly. The resources are in the file TDoc.rsrc.
Appendix B contains a rez-compatible listing of these resources in the
file TDoc.rsrc.r.

The resources in TDoc.rsrc are shown in Table 5-1.

Table 5- l . TDoc Resources

Res. Type ID No. Description

'WIND'

'ALRT'
'DITL'
'ALRT'

'DITL'
'STR#'

1000 The default window resource for the document
window

255 The generic error alert
255 The dialog item list for the generic alert
500 An alert that asks if the user wants to save a docu

ment
500 The dialog item list for the want-to-save alert
255 A list of strings that can be substituted in the generic

alert

You will need to replace some of these resources as you create classes
derived from TDoc. Chapters 7-13 contain examples of how to replace
resources for the TDoc class.

~ Summary

The TDoc class provides a core for creating documents in Macintosh
applications. The document class is responsible for maintaining a win
dow to display the data and for reading and writing the data to and
from the disk.

TDoc is really not very useful in itself. It is designed to be a base
class. You use TDoc as the basis for derived document classes that fit
the kind of data you want to manipulate. Most of its member functions
are defined as virtual member functions so that the derived classes can
override and extend the class's functionality.

The next chapter describes the T App application class. The application
class is closely tied to the document class. Together, they form a good
framework on which you can quickly build Macintosh applications.

6 ~ TApp: The Generic
Application Class

TApp is a class that encapsulates the standard behavior of a Macintosh
application. It knows how to initialize the toolbox managers and dis
play menus. It supports desk accessories and is compatible with Multi
Finder. It can respond to standard File and Edit menu commands by
opening and closing documents and performing clipboard operations.

TApp, when used with the TDoc class described in Chapter 5, can be
the basis for your own Macintosh applications. You can create a de
rived application class from TApp, changing only those member func
tions of TApp that are necessary to match the functionality of your ap
plication. You will find that you probably do not have to change TApp
as much as TDoc to get a working application. Chapters 7-13 show ex
amples of how to modify TApp to create your own applications.

TApp is very dependent on TDoc. It makes calls to TDoc member
functions to respond to most user events. TApp acts mainly as a man
ager for one or more documents, routing events to the proper docu
ment so that they can be processed.

This chapter describes the TApp class by discussing its various mem
bers and member functions. TApp is a very large class, so you might not
want to try to read this entire chapter in one sitting. You can also look at
the complete code listing for TApp.h and TApp.cp in Appendix B.

103

104 IJJi- Chapter 6 TApp: The Generic Application Class

~ Extending Tlist to Handle Documents
One of the most fundamental tasks of the application class is to manage
one or more document objects. To do this, the application class needs
to keep a list of all open documents. Chapter 3 developed the TList
class to manage lists of objects. You can derive a document list class,
TDocList, from the TList class to keep a list of TDoc objects. The dec
laration of TDocList is shown here.

class TDocList : public TList {

public:

l;

II add one new member function
II find the TDocument associated with the window
TDoc* FindDoc(WindowPtr window);

TDocList uses all the existing TList members and member functions
to add and delete objects from the list. It defines one additional mem
ber function to make it more useful to the application class. The appli
cation's job is to route event messages from the operating system to a
document object where the event can be processed. Unfortunately,
event reporting in the Macintosh operating system is always tied to the
window that should be concerned with the event. The operating sys
tem knows nothing about document objects. It is up to the application
to determine which document object is associated with the window
specified in the event message. To do this, TDocList adds a member
function, FindDoc, that takes a WindowPtr as an argument and
searches the document list for the document that is associated with that
window. As shown in the following code, FindDoc repeatedly calls the
GetNext member function of TList to get a pointer to the next item in
the list. It then compares the [Doc Window member of the item to see if it
is equal to the window argument. It returns a pointer to the item that
matches, or nil if no match is found.

TDoc* TDocList::FindDoc(WindowPtr window) (
TLink* temp;
TDoc* tDoc;

for (temp= £Link; temp !=nil; temp= temp->GetNext()) {
tDoc = (TDoc*)temp->Getitem();

Key Point .,, I

~ How to Use TApp 105

if (tDoc- >GetDocWindow() ~window)

return t Doc ;

return nil;

The TList class is implemented. with void pointers (void *) so that
its internals don't need to be changed to accommodate different ob
~ types as list items. This is because the member functions of
TList never try to access members or member functions of the ob
~ in the list. The FindDoc member function of IDocList, how
ever, needs to typecast the void pointer returned fromGetNext to
be a pointer to a IDoc object (IDoc "') so that it can access the fDoc
Window member of_ the document object item.

How to Use TApp
T App is a large class. It contains over fifty member functions, yet fewer
than ten of those member functions are public. Most of the complexity
of TApp is hidden in protected member functions that are called only
by other TApp member functions . When you use TApp to create Mac
intosh applications you will actually call only a few of T App' s member
functions. For example, the following code fragment shows how you
could use T App to make a very simple program.

void main (void) {
TApp theApp;

if(theApp . InitApp ()) {
theApp . OpenNewDoc();
t heApp . EventLoop();

theApp.CleanUp();

The code starts by defining a T App variable. This allocates space for
the object and causes its constructor to run. Next, it calls the InitApp
member function to initialize the application object. This member func
tion returns a Boolean value indicating if the initialization was success
ful. If the application object is successfully initialized, you then call the

106 tJi. Chapter 6 TApp: The Generic Application Class

OpenNewDoc member function to create a new, blank document.
Next, call the EventLoop member function. This member function will
continue to handle user input and operating system events until the
Quit menu item is chosen. Finally, the Cleanup member function is
called to allow the application a chance to perform any last chores be
fore the program terminates. Notice also that the destructor for the ap
plication object will run when the TApp variable goes out of scope
when main terminates.

This example created a TApp object. Normally, you will first derive
your own application class from TApp and then define an object of
your derived application class rather than TApp. When deriving your
application class, you will probably also derive a document class from
TDoc. In your derived application class, you will override the Make
Doc member function to create documents of your derived document
class rather than the default TDoc class. Later sections of this chapter
will discuss in more detail the member functions that you will proba
bly override when deriving your own application class from TApp,
and Chapters 7-13 contain examples of derived application classes .

.,_ TApp Members

TApp needs to maintain several members to indicate the state of the
application and the environment. The declaration for T App' s members
is listed as follows.

class TApp

public:
II other classes might like to see this
SysEnvRec fenvRec;

protected:
II members just for TApp and derived classes
TDocList* fDocList;
TDoc* fCurDoc;
Boolean fHaveWaitNextEvent;
Boolean fDone;
Boolean finBackground;
Handle fClipData;
OS Type fClipType;
Boolean fDAonTop;
short fLastScrapCount;

II> Clipboard Support 107

The first member, fenvRec, is filled in when TApp calls the toolbox
function SysEnvirons. The resulting structure contains information
about the current hardware and software environment, including such
information as whether or not the current machine has Color Quick
Draw. This member is in the public section of the class declaration be
cause functions outside the TApp class might want to access this struc
ture to determine characteristics of the environment.

The rest of the members are protected, so that only member functions
of TApp and its derived classes can access them. The purpose of each
member will be discussed in the following sections that describe the
various T App member functions.

_.,, Clipboard Support

T App supports the standard Macintosh clipboard model by maintain
ing several members. fClipData is a handle to a block of data holding the
data for the clipboard. fClipType is an OSType variable that contains the
current type designator for the clip data. Standard clipboard data types
include 'TEXT' and 'PICT'. Other members that are used for clipboard
support are fDAonTop and fLastScrapCount, which are explained later.

The clipboard model implemented by T App is rather limited in that
it only allows an application to support a single clipboard data type.
The CanAcceptClipType member function returns an OSType value
that indicates what kind of clipboard data the application supports.
The default definition of CanAcceptClipType is shown as follows.

OSType TApp::CanAcceptClipType(void) {

return '????';

Since the default CanAcceptClipType member function returns a
useless data specifier, you will need to override this member function if
your application supports the clipboard. The TextEdit application de
scribed in Chapter 12 overrides this member function to return 'TEXT'.

108 _.. Chapter 6 TApp: The Generic Application Class

._ Private Clipboard and System Clipboard

The application keeps a copy of its clipboard data separate from the
system clipboard. It uses its private copy when handling cut, copy, and
paste commands for its documents. This avoids the overhead of access
ing the system clipboard for every cut, copy, or paste operation. The
application exchanges its private clipboard data with the system clip
board whenever it gives up or regains control from a desk accessory or
another application. This exchange is handled differently depending
on whether or not the application is running under MultiFinder. Be
cause there is no way for an application to actually tell whether or not
it is running under MultiFinder, TApp uses both clipboard strategies
all the time. But they do not conflict since the conditions that trigger
their activation do not overlap the two environments. That is, the Mul
tiFinder-specific code will never have any effect in a non-MultiFinder
runtime environment, and vice versa.

Two member functions are defined to move data between the system
clipboard and the application's private clipboard. These member func..,
tions are used whether or not MultiFinder is running. The first, Get
ClipFromSystem, calls the CanAcceptClipType member function to
determine what kind of data the application can use and then calls the
toolbox function GetScrap to get the data from the system clipboard.
The data returned from GetScrap is used to set the value of the fClip
Data member of the application object, shown as follows.

void TApp::GetClipFromSystem(void){

long offset;
Handle newData = NewHandle(O);
OSType newType = CanAcceptClipType();

long result= GetScrap(newData,newType,&offset);
if,(result > 0) {

if(fClipData !=nil)
DisposHandle(fClipData);

fClipData = newData;
fClipType = newType;

The GiveClipToSystem member function takes the application's pri
vate clipboard and writes it to the system clipboard with the toolbox
function PutScrap. This member function is called whenever the appli-

~ Clipboard Support 109

cation is about to give up control to a desk accessory or to another ap
plication under MultiFinder, or because the application is terminating.
The other task of GiveClipToSystem is to update the fLastScrapCount
member. The scrapcount is a value maintained by the system clipboard
that changes every time the data on the system clipboard changes.
GiveClipToSystem calls the toolbox function InfoScrap to get the cur
rent value of scrapcount (after the data has been written to the clip
board). Later, TApp can check the current system scrapcount against
fLastScrapCount to see if the clipboard contents have changed. The code
for GiveClipToSystem is shown as follows.

void TApp::GiveClipToSystem(void) {
if(fClipData !=nil){

)

long result= ZeroScrap();
if(result != noErr)

return;

long size= GetHandleSize(fClipData);
HLock(fClipData);
result= PutScrap(size,fClipType,*fClipData);
HUnlock(fClipData);

II update our scrapcount field so we can tell if scrap
II has changed later on
PScrapStuff scrapinfo = InfoScrap();
fLastScrapCount = scrapinfo->scrapCount;

~ The Clipboard without MultiFinder

When the application is not running under MultiFinder, there are four
distinct situations where the private and system clipboards must be
reconciled, as listed here.

• When the application starts up, it should copy the system clipboard
to its private clipboard. This makes the last cut or copy operation in
the previous application available to the new application. T App
calls GetClipFromSystem as part of its initialization.

• When the application terminates, it should copy its private clip
board to the system clipboard. This makes the application's last cut
or copy operation available to the next application that runs. TApp
calls GiveClipToSystem as part of its termination sequence.

110 ~ Chapter 6 TApp: The Generic Application Class

•When a desk accessory (DA) becomes active, the application should
copy its private clipboard to the system clipboard so that the DA
can access the last copy or cut operation from the application.
T App detects this situation by monitoring and updating the class
member fDAonTop.

• When an application window becomes active after a desk accessory
has been active and the clipboard changed while the DA was active.
This allows the last cut or copy operation in the DA to be available
to the application. TApp detects this situation by monitoring and
updating the class members fDAonTop and fLastScrapCount. It
copies the system clipboard to the private clipboard only if the cur
rent scrapcount is different than fLastScrapCount.

Two key member functions that implement the clipboard scheme for
the non-MultiFinder environment are ClipHasChanged and Check
ForDASwitch. ClipHasChanged calls the toolbox function InfoScrap
to get the current scrapcount value for the system clipboard. It com
pares that value to the fLastScrapCount member. If they are the same,
then ClipHasChanged returns false, to indicate that the clipboard has
not changed. If the two values are different, then ClipHasChanged re
turns true, as follows.

Boolean TApp::ClipHasChanged(void) {
PScrapStuff scrapinfo = InfoScrap();
return (scrapinfo->scrapCount != fLastScrapCount);

The CheckForDASwitch member function is called every time TApp
fetches a new event in the event loop (the event loop is discussed in a
later section of this chapter). It checks to see if the front window be
longs to a desk accessory by looking at the windowKind element of the
WindowRecord returned by the toolbox function FrontWindow. TApp
keeps a status member, fDAonTop, to indicate whether or not the front
window belongs to a desk accessory. This allows it to detect when a
desk accessory first becomes active or when one of the application's
own windows becomes active after a desk accessory has been on top.
When it detects a desk accessory window first becoming active, it calls
GiveClipToSystem. When it detects one of its own windows becoming
active after a desk accessory, it calls GetClipFromSystem if the clip
board has changed since it was last written out to the system. The code
for CheckForDASwitch is shown as follows.

IJJi. Clipboard Support 111

void TApp::CheckForDASwitch(WindowPtr theFrontWindow) {

if(theFrontWindow ~nil)
return;

Boolean DAWindowOnTop;
DAWindowOnTop = ((WindowPeek)theFrontWindow)->windowKind < O;

II if the state has changed since we last checked it, then
II do clipboard conversion
if(DAWindowOnTop != fDAonTop) {

fDAonTop = DAWindowOnTop;

if(DAWindowOnTop)
II DA is becoming active, give up the clipboard
GiveClipToSystem();

else {
II DA is becoming inactive, reclaim clip if necessary
if(ClipHasChanged())

GetClipFromSystem();

.,, The Clipboard with MultiFinder

When the application is running under MultiFinder, there are also four
distinct situations where the private and system clipboard must be rec
onciled, but two of these situations are defined differently than for the
non-MultiFinder environment.

• When the application starts up, it should copy the system clipboard
to its private clipboard. This makes the last cut or copy operation in
the previous application available to the new application. This is
handled just as it is in the non-MultiFinder environment.

•When the application terminates, it should copy its private clip
board to the system clipboard. This makes the application's last cut
or copy operation available to the next application that runs. This is
handled just as it is in the non-MultiFinder environment.

• When the application is giving up control to another application, the
first application should copy its private clipboard to the system clip
board so that the other application can access the last copy or cut op
eration from the first application. MultiFinder signals this situation

112 ... Chapter 6 TApp: The Generic Application Class

by sending a Suspend event to the first application. A flag in the
event message indicates whether or not clipboard conversion is nec
essary. TApp responds to a Suspend event by calling GiveClipTo
System if the flag indicates that clipboard conversion is necessary.

•When the application regains control after another application has
been active and the clipboard changed while the other application
was active. This allows the last cut or copy operation in the other
application to be available to the application that is regaining con
trol. MultiFinder signals this situation by sending a Resume event
to the application that is regaining control. A flag in the event mes
sage indicates whether or not clipboard conversion is necessary.
T App responds to a Resume event by calling GetClipFromSystem
if the flag indicates that clipboard conversion is necessary.

Other details of how T App supports MultiFinder and Suspend and
Resume events are discussed in the "MultiFinder Support" section of
this chapter.

~ TApp Constructor and Destructor

Key Point .., ,

The constructor for a TApp object is called whenever you define a
TApp variable or when you create a TApp object with the C++ new
operator. The code fragments that follow show two ways to create
T App objects.

TApp theApp; // define a TApp variable
TApp * ptheApp =new TApp; // use pointer to TApp

In the first case, simply defining a TApp variable causes the compiler
to allocate space for the object and run its constructor. In the second
case, we are defining a variable that is a pointer to a TApp object. When
you define pointer variables, the compiler allocates space for the
pointer variable, but you must explicitly ask it to allocate space for the
actual object by using the new operator. The new operator will allocate
space for the object and run its constructor.

Because each program can have only one applicatio]'\qbj~_, you . . .·.··.
wiUusualJy define it as a simple variable rather thari as a 11d¥lt~~ Iri)%j

contrast; document objects are almost always defined as pomter
variables and allocated with the new operator.

llll- TApp Constructor and Destructor 113

The T App constructor has three main tasks. First, it must initialize all
the object members and create an empty document list object. Next, it
must initialize the Macintosh toolbox managers and investigate the
hardware and software environments. Finally, it loads the menus for
the application and displays the menu bar. In the earlier discussion of
constructors, it was said that you should never do anything that can
fail in a constructor. In this case we stretch that rule a bit by loading
menu resources in the constructor. But unless you make a mistake
when building the program or the available memory is extremely low
at program startup, there is no reason why the menu building code
should fail, and it is probably safe to do it in the constructor. The code
for TA pp' s constructor is shown as follows.

TApp::TApp(void) {

II initialize our class variables
fCurDoc = nil;
fDone = false;
finBackground = false;
fClipData = nil;
fClipType = '????';
fDAonTop = false;
fLastScrapCount = 0;

II initialize Mac Toolbox components
InitGraf((Ptr) &qd.thePort);
InitFonts();
InitWindows ();
Ini tMenus () ;
TEinit ();
InitDialogs((ResumeProcPtr) nil);
InitCursor () ;

(void) SysEnvirons(curSysEnvVers, &fenvRec);

II expand the heap so new code segments load at the top
MaxApplZone();

II allocate an empty document list
fDocList = new TDocList;

II check to see if WaitNextEvent is implemented
fHaveWaitNextEvent = TrapAvailable(_WaitNextEvent, ToolTrap);

114 I>- Chapter 6 TApp: The Generic Application Class

II read menus into menu bar
Handle menuBar = GetNewMBar(rMenuBarID);
II install menus
SetMenuBar(menuBar);
DisposHandle(menuBar);

II add DA names to Apple menu
AddResMenu(GetMHandle(rAppleMenu), 'DRVR');

DrawMenuBar();

Notice that the constructor initializes the menus by loading an
'MBAR' resource with the resource ID number rMenuBar. This constant
is defined in TApp.h. If you want to change or add menus to your ap
plication, you must still have an 'MBAR' resource with this ID in your
application's resource fork. (See the Scribble program in Chapter 8 for
an example of how to add menus to an application based on TApp.)

A short utility member function, TrapAvailable, is defined to tell
whether or not a particular toolbox function is available. The constructor
calls TrapAvailable to set the Boolean member fHaveWaitNextEvent to
indicate whether or not the toolbox function WaitNextEvent, which is as
sociated with MultiFinder, is present in the system. The TrapAvailable
member function is shown as follows.

Boolean TApp::TrapAvailable(short tNumber,TrapType tType){

return NGetTrapAddress(tNumber, tType) !=
GetTrapAddress(_Unimplemented);

The destructor for T App simply deletes the document list allocated
in the destructor. The fDocList member holds a pointer to the document
list. The destructor uses the delete operator to deallocate the list object
pointed to by fDocList. Notice that delete will not crash even if it is
passed a pointer equal to zero. The code for T App' s destructor is de
fined in the declaration of the T App class, as shown here.

virtual - TApp(void) {delete fDocList;}

~ Initializing the Application 115

., Initializing the Application

Key Point ~I

The constructor takes care of most of the initialization tasks for the
application object, but an additional member function, InitApp, is pro
vided to perform other initialization for the application. By default,
InitApp calls the GetClipFromSystem member function to load the
system clipboard. InitApp returns a Boolean value to indicate if its op
erations were successful. By default, it returns true. The code for Init
App is shown as follows.

Boolean TApp::InitApp(void) {

GetClipFromSystem();
return true;

By the time InitApp is called, you can be sure that the constructor
has run and that the fenvRec member has been filled in from a call to
the toolbox function SysEnvirons. You can override InitApp in your
derived application class to perform initialization tasks that you don't
want to put in the constructor, such as allocating memory or checking
the hardware and software environment to see if your application
should run, but you must be sure to call the parent class's version of
InitApp from your derived version. For example, your derived Init
App could return false if your application depended on Color Quick
Draw and it wasn't available, as shown in the following example.

Boolean TMyApp::InitApp(void){

if(TApp::InitApp())
return fenvRec.hasColorQD;

else
return false;

116 ..,, Chapter 6 TApp: The Generic Application Class

_., Cleaning Up After the Application

The Cleanup member function is provided for you to perform any fi
nal clean up or memory deallocation before the application terminates.
In its default definition it simply calls GiveClipToSystem to make sure
that the application's private clipboard is made available to subsequent
applications, as shown here.

void TApp::CleanUp(void) (

GiveClipToSystem();

If you override CleanUp, be sure to call the parent class's Cleanup in
your version, as shown by the following example.

Void TMyApp::CleanUp(void) (

II do your stuff
II

II and then call the parent class
TApp::CleanUp();

_., Making Documents

One of the main jobs of an application object is to create documents.
The member function MakeDoc is provided for this purpose. It takes a
pointer to an SFReply structure as an argument. As shown in the fol
lowing declaration, that argument defaults to nil if it is not supplied.

virtual TDoc * MakeDoc(SFReply *reply= (SFReply *)nil);

The default argument allows you to use MakeDoc in two different
ways. When you are making a new, blank document that is not asso
ciated with an existing file, you can call MakeDoc with no argument. If
you are creating a document from an existing file, you can pass a
pointer to the SFReply that contains the file name and volume refer
ence number for the file.

~ Making Documents 117

MakeDoc creates the document dynamically by using the C++ new
operator in conjunction with the class name of the document it wishes
to create. The default definition of MakeDoc creates a TDoc object, as
shown by the following code. You must override MakeDoc to create
your own derived document type in your application. Chapters 7-13
contain examples of how to override MakeDoc.

TDoc * TApp::MakeDoc(SFReply *reply){

return new TDoc(GetCreator(),reply);

Notice that MakeDoc passes two arguments to the constructor for
the document object. The first argument is the creator signature for the
application, as returned by the member function GetCreator. The docu
ment will use the creator signature when creating new files so that the
files will be associated with the application that created them. The sec
ond argument is the SFReply pointer that was passed as the argument
to MakeDoc. These arguments will be passed to TDoc's constructor.
(See Chapter 5 for a description of TDoc's constructor.)

GetCreator is defined by default to return the signature '????'. If your
application has a unique signature, override GetCreator to return your
signature. The Scribble program in Chapter 8 uses a unique application
signature to allow it to use its own icons in the Finder and to allow the
user to launch the application by opening one of its documents in the
Finder.

virtual OSType GetCreator(void) (return '????';}

The AddDocument member function provides a way to add a new
document to the application's document list and to update the fC.urDoc
member to point to the new document. It is used by other member func
tions such as OpenNewDoc and OpenOldDoc after they have created
a document object. AddDocument also provides a single member func
tion that you can override if you need additional processing when a
new document is added to the application. For example, you could use
AddDocument as a way of updating a menu that listed all open docu
ments. The default definition of AddDocument is shown as follows.

void TApp::AddDocurnent(TDoc *theDoc){

fDocList->Additem(theDoc);
fCurDoc = theDoc;

118 ~ Chapter 6 TApp: The Generic Application Class

The next three sections describe three different member functi0ns for
creating documents. The first member function creates a blank docu
ment when the user chooses the New menu item. The next member
function creates a document from an existing file when the user
chooses the Open menu item. The last member function creates a docu
ment from an existing file when the user starts up the application by
opening a document from the Finder. All three of these member func
tions call MakeDoc to actually create the document object; thus, by
overriding MakeDoc you can control the type of document created in
all three situations. Likewise, all three member functions call AddDoc
ument to add the new document to the application's document list, so
any change to that member function will apply to all three creation
member functions.

~ Opening New Documents

When the user chooses the New menu command, the application object
responds by calling the OpenNewDoc member function. OpenNew
Doc calls MakeDoc with no argument to create a blank document. It
then calls the MakeWindow and InitDoc document member functions
for the new document. If those member functions return true, then it
staggers the position of the document window based on how many doc
uments are already open. Once the window, which is still not visible, is
positioned, OpenNewDoc calls the document member function Show
DocWindow to make the window visible. Finally, it calls the applica
tion member function AddDocument to add the document to the appli
cation document list. The code for OpenNewDoc is shown as follows.

void TApp::OpenNewDoc(void){

TDoc * newDoc = MakeDoc();
if(newDoc){

if((newDoc->MakeWindow(fenvRec.hasColorQD)) &&
(newDoc->InitDoc())){
short numDocs = fDocList->Numitems() ;
newDoc->MoveDocWindow(kHPos + (numDocs * kStagger),

kVPos + (numDocs * kStagger));
newDoc->ShowDocWindow();
AddDocument(newDoc);

else {
II MakeWindow or InitDoc failed, but doc created
delete(newDoc);

IJJi> Making Documents 119

IJJ> Opening Old Documents

When the user chooses the Open menu command, the application ob
ject responds by calling the OpenOldDoc member function. OpenOld
Doc puts up a standard file dialog by calling the toolbox function
SFGetFile to allow the user to pick which file to open. The type of files
shown in the standard file list is determined by two application mem
ber functions, GetNumFileTypes and GetFileTypesList. By default,
GetNumFileTypes returns 0 and GetFileTypesList returns nil. This
causes SFGetFile to display files of all types in the file list. If you want
to display files of a certain type only, such as only 'TEXT' or 'PICT' files,
you must override GetNumFileTypes and GetFileTypesList. Chapters
8, 11, and 12 show examples of how to override these member func
tions to limit the types of files displayed by OpenOldDoc. By isolating
these actions in separate member functions, you can change the behav
ior of OpenOldDoc without having to actually override OpenOldDoc.
GetNumFileTypes and GetFileTypesList are defined in the declara-
tion of TApp, shown as follows. ·

virtual int GetNumFileTypes(void) {return 0;}
virtual SFTypeList GetFileTypesList(void){return (SFTypeList)nil;}

Once the user has dismissed the standard file dialog, OpenOldDoc
examines the "good" member of the SFReply structure to see if the user
canceled the dialog. If good is false, OpenOldDoc returns without do
ing anything more. Otherwise, it assumes that the user chose a file
whose name and volume location are contained in the SFReply struc
ture. It then passes that structure to the InitOldDoc member function,
where the document will be created and the file opened and its con
tents read in. The code for OpenOldDoc is shown as follows.

void TApp::OpenOldDoc(void){

SFReply reply;
Point p;

p.h = 100; p.v = 100;
SFGetFile(p,

(Str255) 1111 ,

(FileFilterProcPtr)nil,
GetNumFileTypes(),
GetFileTypesList(),
(DlgHookProcPtr)nil,
&reply);

120 IJli> Chapter 6 TApp: The Generic Application Class

II don't go on if user cancels dialog
if (! reply. good)
return;

(void)InitOlclDoc(&reply);

InitOldDoc is like OpenNewDoc in that it creates a document by
calling MakeDoc and then makes a window and initializes the docu
ment. It also staggers the document's window position depending on
the number of open documents. In addition, InitOldDoc opens the file
specified by the SFReply structure. It calls the document member func
tions OpenDocFile and ReadDocFile. It also sets the document win
dow title to match the file name. Because so many things potentially
can go wrong, the error checking in this member function is rather in
volved. InitOldDoc must carefully clean up, depending on how far it
got before the error occurred. The following code shows the definition
for InitOldDoc.

Boolean TApp::InitOlclDoc(SFReply *reply) {

TDoc * newDoc = MakeDoc(reply);
if(newDoc) {

if((newDoc->MakeWindow(fenvRec.hasColorQD))
&& (newDoc->InitDoc())){
short numDocs = fDocList->Numitems() ;
newDoc->MoveDocWindow(kHPos + (numDocs * kStagger),

kVPos + (numDocs * kStagger));
newDoc->SetDocWindowTitle((Str255)reply->fName);
short refNum = newDoc->OpenDocFile(reply);

if (refNum != 0) {
if(newDoc->ReadDocFile(refNum)) {

newDoc->ShowDocWindow();
AdclDocument(newDoc);

}else{
II open was successful, but read failed
newDoc->CloseDocFile(refNum);
delete (newDoc);
return false;

else {
II file not opened successfully, but doc created
delete(newDoc);

Key Point llll-1

}

._ Making Documents 121

return false ;

else
II MakeWindow or InitDoc failed, but doc created
delete (newDoc);
return false ;

else{
II document not created
return false ;

II if we get this far , all went well
return true ;

Notice that the same code is used by OpenNewDoc and InitOld
Doc to stagger the window position. This suggests that the code
should be split out and put into a separate member function, mak
ing it easy for you to modify the staggering behavior without re
writing other parts of the document creation member functions.

Opening Documents from the Finder

The last member function for creating documents will open documents
if the user has launched the application by opening one or more of its
documents in the Finder. When the user opens an application's docu
ment files in the Finder, the Finder launches the application but it
doesn't actually open the files. Instead, it places information about the
files in a specific area of memory where the application can examine it.
It is the application's responsibility to actually open the files. The tool
box functions CountAppFiles and GetAppFiles allow an application to
retrieve information about the files that the user asked to be opened.

Usually, you will call the OpenDocFromFinder member function af
ter initializing your application. It returns a Boolean result value to in
dicate whether or not it successfully opened one or more document
files from the Finder. A typical scenario at program startup is to open a
blank document unless existing files were opened from the Finder, as
illustrated by the applications in Chapters 8, 11, and 12.

The OpenDocFromFinder member function begins by calling the
toolbox function CountAppFiles to see if any files were opened from
the Finder. If no files need to be opened, then it simply returns false.

122 ~ Chapter 6 TApp: The Generic Application Class

If one or more files need to be opened, then OpenDocFromFinder
calls the toolbox function GetAppFiles for each file, filling in an App
File structure with information about the file. The AppFile structure is
very similar to an SFReply structure, so OpenDocFromFinder copies
the information from the AppFile to an SFReply. It then uses the SFRe
ply as the argument to the InitOldDoc member function, which was
described in the previous section. From this point on, the process of
creating the document is the same as it was when the user chose the
Open menu item.

One check you must make before calling InitOldDoc is to make sure
that the file type is one that your application knows how to handle.
OpenOldDoc was able to filter the file types that appeared in the
SFGetFile dialog. Here, however, there is nothing to prevent the user
from selecting a group of incompatible files in the Finder and launch
ing the application. Therefore, OpenDocFromFinder calls the member
function AcceptableFileType for each file to make sure that the appli
cation can handle the file before trying to open it. AcceptableFileType
uses the GetNumFileTypes and GetFileTypesList member functions
to get the same list of file types that are used in OpenOldDoc. The
code for OpenDocFromFinder and AcceptableFileType is as follows.

Boolean TApp::OpenDocFromFinder(void){

short message;
short count;
AppFile theApp;
SFReply reply;
Boolean fileOpened = false;

II see if there are any files to be opened or printed
CountAppFiles(&message,&count);
if (count = 0)

return false;

for(short i = count;i;i--) {
GetAppFiles(i,&theApp);
II convert theApp to an SFReply
reply.good= true;
reply.fType = theApp.fType;
reply.vRefNum = theApp.vRefNum;
reply.version = theApp.versNum;
unsigned char strLen = theApp.fName[O);
for(short j = 0; j <= strLen; j++)

reply.fName[j) = theApp.fName[j);

IJJ!. Deleting Documents 123

II check here to see if file is an acceptable type
if(AcceptableFileType(reply.fType))

II now create the document and open the file
if(InitOldDoc(&reply))

fileOpened = true;

return f ileOpened;

Boolean TApp::AcceptableFileType(OSType theType) {

int numTypes = GetNumFileTypes();
OSType *theTypeList = (OSType *)GetFileTypesList();

if((numTypes == 0) I I (theTypeList ==nil))
return true;

for (int i = O;i < numTypes; i++) (
if(theType == *theTypeList++)

return true;

return false;

In a simple application, the only document creation member function
you must override is MakeDoc. Other member functions that you will
probably override are GetNumFileTypes and GetFileTypesList to fil
ter the types of files shown in the standard file dialog. You will proba
bly never need to override the other member functions that control
document creation. These member functions are general enough that
they should serve in any derived application.

~ Deleting Documents

There is a single member function, CloseADoc, that deletes a docu
ment. It is called when the user chooses the Close menu item, when the
user clicks on the close box of a document window, or when the appli
cation is about to terminate.

CloseADoc calls the DoClose member function for the document
and checks its return value since the user can cancel a close operation.
If the document is closed successfully, CloseADoc removes the docu
ment from the application's document list. Next, if the document that it
just closed was the front document, it sets the application's fCurDoc

124 IJJi> Chapter 6 TApp: The Generic Application Class

Key Point ~I

member to nil. Finally, since the document object was allocated dynam
ically with the new operator, CloseADoc uses the delete operator to
deallocate the object and cause the destructor for the document object
to run.

The code for CloseADoc is shown as follows. Notice that it returns a
Boolean value to indicate if the document was actually closed.

Boolean TApp::CloseADoc(TDoc * theDoc){

if(theDoc !=nil)
if(theDoc->DoClose()) {

fDocList->Removeitem(theDoc);
if(theDoc == fCurDoc)

fCurDoc = nil;
delete theDoc;
return true;

II if we get here, the doc didn't close
return false;

It is normally not necessary to override CloseADoc, although the
Scribble program in Chapter 8 does override it to adjust menus when
ever a document is deleted.

~ Handling Events
Another major task for the application object is responding to user in
put and operating system events. The member function EventLoop is
the heart of T App' s event handling capabilities. Once the application is
initialized, you call EventLoop. This member function repeatedly re
trieves and dispatches events until the user chooses the Quit menu
item. EventLoop is the central switchboard for the application object.

Each time through its loop, EventLoop calls the toolbox function
FrontWindow to get the WindowPtr to the frontrnost window on the
screen. It then passes this window to the member function CheckFor
DASwitch to detect when a desk accessory becomes active or inactive,
as explained earlier in the "Clipboard Support" section of this chapter.

.._ Handling Events 125

EventLoop then searches the document list to see if the window
matches the window for any of its documents. If a match is found, the
member fCurDoc is set to point to that document. Thus, fCurDoc is al
ways pointing to the document associated with the front window, or it
will be nil if the front window doesn't belong to a document (such as
when a desk accessory is in front). Many other member functions rely
on fCurDoc being set correctly since the frontmost document will be
given the chance to process most user input. The following code frag
ment shows how fCurDoc is set up in EventLoop.

void TApp::EventLoop(void) {

int gotEvent;
EventRecord theEvent;
WindowPtr theFrontWindow;

while (fDone ~ false) {
theFrontWindow = FrontWindow();

II find out if a DA is becoming active or inactive
CheckForDASwitch(theFrontWindow);

II see if window belongs to a document,
II FindDoc will return nil if not one of our windows
fCurDoc = fDocList->FindDoc(theFrontWindow);

Once the current document is determined, EventLoop calls either
WaitNextEvent or GetNextEvent, depending on the setting of the
member fHaveWaitNextEvent, which was set by the constructor. Wait
NextEvent is the MultiFinder-friendly version of GetNextEvent. Either
function will retrieve the next pending event from the operating sys
tem, returning true if an event was retrieved or false if no event was
pending. If no event was received, EventLoop calls the Appldle mem
ber function and then branches back to the beginning of the loop to
fetch another event, as shown by the following code.

if (fHaveWaitNextEvent)
gotEvent = WaitNextEvent(everyEvent,

&theEvent,
SleepVal(),
(RgnHandle) nil);

else {
SysternTask();
gotEvent = GetNextEvent(everyEvent, theEvent);

126 ~ Chapter 6 TApp: The Generic Application Class

II make sure we got a real event
if (gotEvent ~ false) {

Appidle();
continue;

Notice that the third argument to WaitNextEvent is specified by call
ing the member function Sleep Val. This argument tells WaitNextEvent
how long the caller is willing to sleep if no events are pending. Specify
ing a large value here will make your application give up more time to
other applications running under MultiFinder when it doesn't have
any pending events. By default, SleepVal is defined to return 0. You
can override SleepVal to return a larger number if your application
can afford to give up more idle time to other applications.

If an event was received, EventLoop branches to an appropriate
event handler member function based on the nature of the event, as
shown by the following code. Once the event is handled, EventLoop
loops back for another event.

switch (theEvent.what) {
case nullEvent

Doidle ();
break;

case mouseDown
MouseDown(&theEvent);
break;

case mouseUp :
MouseUp(&theEvent);
break;

case keyDown :
case autoKey :

KeyDown(&theEvent);
break;

case updateEvt :
UpdateEvt(&theEvent);
break;

case diskEvt :
DiskEvt(&theEvent);
break;

case activateEvt :
ActivateEvt(&theEvent);
break;

case kOSEvent :
OSEvent(&theEvent);
break;

default :
break;

II end switch

llll> Idle Events

~ Handling Events 127

Whenever EventLoop tries to retrieve an event and none is pending, it
calls the application's Appldle member function. Appldle in turn calls
the Doldle member function for the current document object pointed
to by fCurDoc, as shown here.

void TApp::Appidle(void)(
if (fCurDoc != nil)

fCurDoc->Doidle();

The document closest to the front is given a chance to perform idle
time processing. Typical uses for the Doldle document member func
tion are to blink a text insertion cursor or change the mouse pointer
shape, as shown by the TextEdit document class in Chapter 12.

You might want to override the application's Appldle member func
tion to call Doldle for all existing documents if your documents used
idle time messages to do animation or perform background computa
tion. To accomplish this, you would create an iterator object for the
document list, as explained in Chapter 3, and call the Doldle member
function for each document in the list, as shown in the following code.

void TMyApp::Appidle(void){

Titerator iter(fDocList);
TDoc * nextDoc;

while (nextDoc = (TDoc *liter.Next())
nextDoc->Doidle();

128 IJli. Chapter 6 TApp: The Generic Application Class

~ Mouse Down Events

When the application event loop detects a mouse down event, it calls
the MouseDown member function. MouseDown calls the toolbox
function FindWindow to determine where the mouse down event oc
curred. It also searches the document list to see if the window where
the mouse down event occurred is one of the application's document
windows. It then branches to an appropriate member function or tool
box function to handle the event. If the mouse down event was in a
document window, T App typically calls a document member function.
In other cases, such as a mouse down event in a desk accessory win
dow or in the menu bar, TApp handles the event with an application
member function or toolbox call. The code for the MouseDown mem
ber function is shown as follows.

void TApp::MouseDown(EventRecord * theEvent){

WindowPtr theWindow;

short partCode = FindWindow(theEvent->where, &theWindow);

TDoc * tempDoc = fDocList->FindDoc(theWindow);

switch (partCode) {
case inSysWindow

SystemClick(theEvent,theWindow);
break;

case inMenuBar :
AdjustMenus();
long mResult = MenuSelect(theEvent->where);
if (HiWrd(mResult) != 0){

DoMenuCommand(HiWrd(mResult),LoWrd(mResult));
HiliteMenu(O);

break;
case inGoAway

if TrackGoAway(theWindow, theEvent->where))
CloseADoc(tempDoc);

break;
case inDrag :

if(tempDoc !=nil)
tempDoc->DoDrag(theEvent);

break;

case inGrow :
if (tempDoc != nil)

tempDoc->DoGrow(theEvent);
break;

case inZoomin :
case inZoomOut :

~ Handling Events 129

if ((TrackBox(theWindow, theEvent->where, partCode)) &&
(tempDoc != nil))·
tempDoc->DoZoom(partCode);

break;
case inContent :

if(theWindow != FrontWindow())
SelectWindow(theWindow);

else
if(tempDoc !=nil)

tempDoc->DoContent(theEvent);
break;

One thing to notice is that MouseDown calls the member function
AdjustMenus just before calling the toolbox function MenuSelect in re
sponse to a mouse down event in the menu bar. AdjustMenus takes
care of enabling or disabling individual menu items to reflect the current
state of the application. It is discussed in a later section of this chapter .

.,,, Key Down Events

Key down events are handled by the KeyDown member function. If
the command key was pressed along with another key, then KeyDown
calls the toolbox function MenuKey to handle command-key equiva
lents to menu items. Notice that it calls the AdjustMenus member
function before MenuKey to make sure that the enabled menu items
are up-to-date.

If the key press was not a menu key, then KeyDown calls the Do
KeyDown member function for the current document to let it handle
the event. You will probably never need to override the application's
KeyDown member function, since most of the functionality for key
processing will be in the document. For example, the TextEdit docu
ment class responds to key events by calling the toolbox function TE
Key. The code for KeyDown is shown as follows.

130 ~ Chapter 6 TApp: The Generic Application Class

void TApp::KeyDown(EventRecord * theEvent){

char key;
long mResult;

key= (char) (theEvent->message & charCodeMask);
if ((theEvent->modifiers & cmdKey) &&

(theEvent->what ==key Down)){
II only do command keys if we are not autokeying
AdjustMenus(); II make sure menus are up-to-date
mResult = MenuKey(key);
II if it wasn't a menu key, pass it through
if (HiWrd(mResult) != 0){

)else

DoMenuCommand(HiWrd(mResult), LoWrd(mResult));
HiliteMenu(O);
return;

if (fCurDoc != nil)
fCurDoc->DoKeyDown(theEvent);

.., Activate Events

The application responds to activate events by determining if the win
dow getting the activation message belongs to one of the application's
documents. If it does, the application sends the event to the document
by calling the document's DoActivate member function, as follows.

void TApp::ActivateEvt(EventRecord * theEvent){

WindowPtr theWindow;

II event record contains window ptr
theWindow = (WindowPtr) theEvent->message;
II see if window belongs to a document
TDoc *tempDoc = fDocList->FindDoc(theWindow);

if (tempDoc != nil)
tempDoc->DoActivate(theEvent);

~ Multifinder Support 131

I>- Update Events

The application responds to update events as it does to activation
events, by determining if the window getting the update belongs to
one of the application's documents. If so, the application sends the
event to the document by calling the document's DoTheUpdate mem
ber function, as follows.

void TApp::UpdateEvt(EventRecord * theEvent) {

WindowPtr theWindow;

II event record contains window ptr
theWindow = (WindowPtr) theEvent->message;
II see if window belongs to a document
TDoc *tempDoc = fDocList->FindDoc(theWindow);

if (tempDoc != nil)
tempDoc->DoTheUpdate(theEvent);

~ MuffiAnderSupport
TApp is designed to be compatible with MultiFinder. The "accept sus
pend/ resume events" bit in the 'SIZE' resource is set (see the "TApp Re
sources" section of this chapter), causing MultiFinder to send both a
suspend event to the application when it is about to give up control to
another application and a resume event when it is about to regain con
trol. When T App receives a suspend event, it is responsible for deacti
vating the front window and for copying the application's private clip
board to the system. When the application receives a resume event, it
must activate the front window and copy the system clipboard to its
private clipboard if the clipboard has changed while the application
was suspended.

The ability to accept suspend and resume events makes it easier and
more efficient for MultiFinder to move the application into the back
ground and then back into the foreground. If the application's 'SIZE'
resource indicates that it cannot respond to suspend and resume
events, then MultiFinder goes through an elaborate ruse to make the
application think that a desk accessory window is becoming active
when the application is losing control and that a desk accessory win
dow is becoming inactive when the application regains control. This se
ries of events triggers the clipboard conversion and window activation

132 ~ Chapter 6 TApp: The Generic Application Class

mechanisms that were discussed earlier in this chapter for the non
MultiFinder environment.

Suspend and resume events are actually sent to the application as a
single event type called an OSEvent, with bits in the EventRecord dif
ferentiating between suspend and resume. TApp defines a set of con
stants to locate these flag bits in the event. Some flags specify the type
of event; another indicates if clipboard conversion is necessary. The
OSEvent member function decodes the various bits in the EventRecord
to determine the exact nature of the event, and then it calls appropriate
member functions to process the event. One side effect of this member
function is to set the state of the member finBackground to show
whether or not the application is in the background.

An OSEvent event is also sent to an application if it specified a mouse
region when calling WaitNextEvent and the mouse has moved outside
that region. You can process a mouse-moved message just like an Idle
event to adjust the mouse cursor shape. Although TApp does not use
the mouse region feature of WaitNextEvent, it is a good way to reduce
the am.ount of processing time that your application needs while it is
waiting for events.

The code for the OSEvent member function is shown as follows. Its
main feature is that it encapsulates all the details of decoding the flag
bits of an OSEvent message.

void TApp::OSEvent(EventRecord * theEvent){
Boolean doConvert;
u.nsigned char evType;
II is it a multifinder event?
evType = (unsigned char) (theEvent->message >> 24) & OxOOff;
switch (evType) { II high byte of message is type of event

case kMouseMovedMessage :
Appidle(); II mouse-moved is also an idle event
break;

case kSuspendResumeMessage :
doConvert = (theEvent->message & kClipConvertMask) !=

O;
finBackground = (theEvent->message & kResumeMask) == O;
if (finBackground)

DoSuspend(theEvent,doConvert);
else

DoResume(theEvent,doConvert);
break;

.._ MultiFinder Support 133

~ Suspend and Resume

The DoSuspend member function is called when the application re
ceives an OSEvent message that indicates it is about to be switched into
the background under MultiFinder. This member function receives a
pointer to an EventRecord and a Boolean argument indicating whether
or not the application should give its clipboard data to the system clip
board. If the application needs to give the clipboard to the system, it calls
the GiveClipToSystem member function (described in an earlier section
of this chapter). It then calls the DoActivate. member function for the
current document to tell it to deactivate. DqSuspend clears the active
Flag bit of the modifier member in the EventRecord before passing that
structure to DoActivate. The code for DoSuspend is shown as follows.

void TApp::DoSuspend(EventRecord * theEvent,Boolean convertClip) {

if(convertClip)
GiveClipToSystem();

if (fCurDoc !=nil){
II tell DoActivate to deactivate
theEvent->modifiers &= (!activeFlag);
fCurDoc->DoActivate(theEvent);

The DoResume member function reverses the process outlined for
DoSuspend. It is called when the application is about to be reactivated
under MultiFinder. If the clipboard needs to be updated, DoResume
calls the GetClipFromSystem member function to copy the system
clipboard into the application's private clipboard. It then calls the
DoActivate member function for the current document after first set
ting the activeFlag bit in the EventRecord. The code for DoResume is
shown as follows.

void TApp::DoResume(EventRecord * theEvent,Boolean convertClip){

if(convertClip)
GetClipFromSystem();

if (fCurDoc !=nil){
II tell DoActivate to activate
theEvent->modifiers I= activeFlag;
fCurDoc->DoActivate(theEvent);

134 llJl- Chapter 6 TApp: The Generic Application Class

The member functions defined for handling MultiFinder events
should not have to be overridden since application behavior in those
situations is well defined and will not normally change from one appli
cation to the next.

.., Handling Menus
As explained in Chapter 5, the application class and the document class
share responsibility for the menus. The application's constructor loads
the menu resources and displays the menu bar. The application also
acts as a switchboard for menu commands, handling some commands
itself and passing others off to the current document to be processed.
During program execution, both the application and document classes
adjust the menus to enable and disable menu items based on the cur
rent state of the application and the active document.

The default application and document classes know only about the
standard Apple, File, and Edit menus, as described in Chapter 5. How
ever, it is easy to override the menu handling member functions to in
corporate additional menus, as explained in the following sections and
shown in the Scribble program in Chapter 8.

~ Adjusting Menus

As mentioned in previous sections, the AdjustMenus member function
is called just before a user makes a menu selection. AdjustMenus selec
tively enables and disables menu items so that only appropriate menu
items are enabled when the user makes a selection. For instance, it
makes no sense for the Close menu item to be enabled if there is no
document currently open.

The application itself is responsible for the state of some of the menu
items, such as the New, Open, and Quit items in the File menu. The
current document is responsible for enabling many of the other items.
AdjustMenus calls the current document's member function Adjust
DocMenus to allow the document to adjust its portion of the menus. If
there is no current document, the application disables the items that the
document normally controls - unless there is an active desk accessory,
in which case the Edit menu items are all enabled.

The code for AdjustMenus is shown as follows. Even though it is
called between the time the user clicks the mouse on the menu bar and
the time when the menu drops down to allow the user to make a
choice, it executes quickly enough so that you will not notice any delay.

.,_ Handling Menus 135

void TApp::AdjustMenus(void) {

MenuHandle menu;

II first give the current document a chance to adjust the
11 menus
if(fCurDoc !=nil)

fCurDoc->AdjustDocMenus();

II Now do the file menu
menu= GetMHandle(rFileMenu);
II the app controls whether we can open and new and quit
SetMenuAbility(menu,iNew,CanNew());
SetMenuAbility(menu,iOpen,CanOpen());
SetMenuAbility(menu,iQuit,CanQuit());

if (fCurDoc ==nil){
II no current doc, disable File menu items
II usually handled by the document
SetMenuAbility(menu,iClose,false);
SetMenuAbility(menu,iSave,false);
SetMenuAbility(menu,iSaveAs,false);
SetMenuAbility(menu,iPageSetup,false);
SetMenuAbility(menu,iPrint,false);

II now the edit menu
menu= GetMHandle(rEdit);
II if no current doc, then enable edit menu depending
II on whether a DA is on top
if (fCurDoc ==nil){

SetMenuAbility(menu,iUndo,fDAonTop);
SetMenuAbility(menu,iCut,fDAonTop);
SetMenuAbility(menu,iCopy,fDAonTop);
SetMenuAbility(menu,iPaste,fDAonTop);
SetMenuAbility(menu,iClear,fDAonTdp);
SetMenuAbility(menu,iSelectAll,fDAonTop);

else {
II Paste is the one Edit item that the doc can't
II set by itself
SetMenuAbility(menu,iPaste, (fClipData != nil) &&

(fCurDoc->CanPaste(fClipType)));

Notice also that the state of each individual menu item is controlled
by a short member function such as CanOpen and CanNew. You can
easily control the standard menu items by overriding these member
functions rather than having to rewrite AdjustMenus.

136 ~ Chapter 6 TApp: The Generic Application Class

You can override AdjustMenus if your derived application defines
additional menus beyond the standard Apple, File, and Edit menus.
There are two options available for handling additional menus. If the
additional menu items relate to an individual document, such as a Font
menu, then the document member functions should probably handle
the menu. If, on the other hand, the menu has an effect on the applica
tion as a whole, such as a menu that lists all open documents, then ap
plication member functions should handle those menu items. Allowing
a document class to handle its own menus is particularly useful when
the application will support several document types.

If you decide to override AdjustMenus, you should include a call to
T App::AdjustMenus in your derived version so that the standard File
and Edit menu items are enabled and disabled. The following code
skeleton shows how you could override AdjustMenus.

void TDerivedApp::AdjustMenus(void) {

II adjust the additional menu items for the derived application

11 ... 11

II now call the parent class to do default processing
TApp::AdjustMenus();

~ Handling Menu Commands

After the menus have been adjusted, the application must respond to
the user's menu item selection. The application member function Do
MenuCommand is called whenever the user selects a menu command,
either with the mouse or with a command-key combination. The main
switchboard directs the command to the proper member function for
processing. DoMenuCommand first calls the document member func
tion DoDocMenuCommand to give the document class a chance to
process the command. This document member function contains all the
information necessary to process menu commands that are unique to
that document class. If the current document's DoDocMenuCommand
returns true, indicating that it handled the command, then DoMenu
Command does nothing more. If DoDocMenuCommand returns false,
indicating that it didn't handle the command, then DoMenuCommand
proceeds to decode the menu item before dispatching it for processing.

DoMenuCommand handles some of the menu commands by calling
application member functions, such as the Open, New, Close, and Quit

~ Handling Menus 137

menu items. The application also handles the About ... menu command
and menu commands to open a desk accessory. Other menu choices
from the standard File and Edit menus are passed on to member func
tions of the current document. For example, when the user chooses the
Cut menu item, the application passes this command on to the current
document's DoCut member function. The code for DoMenuCommand
is shown here.

void TApp::DoMenuCorrunand(short menuID, short menuitem) (

short itemHit;
Str255 daName;
short daRefNum;

II allow the current doc a chance to handle it first
if((fCurDoc !=nil) &&

(fCurDoc->DoDocMenuCorrunand(menuID,menuitem)))
return;

switch (menuID)(
case rAppleMenu:

switch (menuitem) (
case iAbout:

itemHit = Alert(rAboutID, nil);
break;

default:
Getitem(GetMHandle(rAppleMenu), menuitem,

daName);
daRefNum = OpenDeskAcc(daName);
break;

II end menuitem switch

break;

case rFileMenu:
switch (menuitem)(

case iNew:
OpenNewDoc();
break;

case iOpen:
OpenOldDoc();
break;

case iClose:
CloseADoc(fCurDoc);
break;

138 ~ Chapter 6 TApp: The Generic Application Class

case iQuit:
Quit() ;
break;

} II end menuitem switch

break;

case rEdit:
if (!SystemEdit(menuitem-1)){

switch (menuitem){
case iUndo:

DoUndoCmd(fCurDoc);
break;

case iCut:
DoCutCmd(fCurDoc);
break;

case iCopy:
DoCopyCmd(fCurDoc);
break;

case iPaste:
DoPasteCmd(fCurDoc);
break;

} II end menuitem switch
II end if

break;

} II end menuID switch

Like the AdjustMenus member function, DoMenuCommand can be
overridden in applications derived from TApp if the applications in
clude additional menus. If the new menus affect the application as a
whole, then you must override DoMenuCommand to process the new
menu commands. Otherwise, you can leave DoMenuCommand the
way it is and put all specialized menu processing into the document
class. The Scribble program in Chapter 8 contains an example of how to
handle additional menus in this way.

If you do override DoMenuCommand, don't forget to include a call
to TApp::DoMenuCommand to get the default processing for the stan- ·
dard Apple, File, and Edit menu items.

~ Handling Menus 139

~ File Menu Commands

As discussed previously, the application responds to some menu com
mands with application member functions and to others by calling doc
ument member functions. This section discusses some of the application
member functions used to handle menu commands in the File menu.

The Open and New menu commands are handled by the member
functions OpenOldDoc and OpenNewDoc, respectively. Those mem
ber functions are described in previous sections of this chapter.

When the user selects the Quit menu item, the application must make
sure that all open documents are safely saved and closed before actu
ally terminating. The Quit member function creates an iterator object
(iterators are described in Chapter 3) for the application's document
list. It then calls the CloseADoc member function for each document in
the list. In the course of closing a document, CloseADoc calls the Do
Close member function for the document. That member function, in
turn, will call the document's WantToSave member function if the doc
ument has unsaved changes. If the user chooses to cancel during the
save operation, we assume that the entire quit process should also be
canceled. Thus, if any document is not successfullY' closed, as indicated
by a false return value from CloseADoc, then the quit process is
aborted. If, in fact, all documents are successfully closed, then Quit
calls the ExitLoop member function, which will break out of the Event
Loop and cause the program to run to completion. The code for Quit is
shown as follows.

void-TApp::Quit(void) {
Tlterator iter(fDocList);
TDoc * nextDoc;
Boolean OKToQuit = true;

II ask each doc if it is ready to Quit
II It is possible that the user may cancel
II while saving one of these documents,
II thus aborting the Quit process
while (nextDoc = (TDoc *)iter.next())

if(! CloseADoc(nextDoc)){
OKToQuit = false;
break; II don't continue iterating

If(OKToQuit)
ExitLoop () ;

140 _., Chapter 6 TApp: The Generic Application Class

I>- Edit Menu Commands

Like the member functions that deal with File menu commands, there
are also member functions to handle Edit menu commands. DoMenu
Command calls these member functions with fCurDoc as the argument.
The service member functions call the appropriate member functions
for the specified document to do most of the actual command process
ing. It is unlikely that you will ever need to override the member func
tions described in the following paragraphs.

Cut, Copy, and Paste commands are handled in close conjunction
with document member functions. The document member functions
for clipboard support expect a handle to a block of clipboard data and a
type designator for the data. The application sends its clipboard data to
the document for Paste commands and receives data from the docu
ment for Cut or Copy commands.

When the user chooses the Paste menu command, DoMenuCom
mand calls the application member function DoPasteCmd, passing the
current document as an argument. This member function calls the Do
Paste member function for the specified document, passing the clip
board data and type designator contained in fClipData and fClipType as
arguments. The document takes that data and uses it to complete the
Paste command. The code for DoPasteCmd is shown as follows. See
Chapter 5 for a discussion of the document's DoPaste member function.

void TApp::DoPasteCmd(TDoc * theDoc) {

if(theDoc !=nil)
theDoc->DoPaste(fClipData,fClipType);

When the user chooses the Cut menu command, DoMenuCommand
calls the application member function DoCutCmd, passing the current
document as an argument. DoCutCmd calls the DoCut member func
tion for the document. DoCut fills in a handle and data type argument
with the result of the cut operation. If the document member function
returns true, indicating that the cut operation was successful, then Do
CutCmd disposes of the old clipboard data and assigns the new clip
board data and type designator to the fClipData and fClipType members.
For Copy menu commands, the DoCopyCmd member function does
essentially the same thing, except that it calls the document's DoCopy
member function instead of DoCut. The code for these two application
member functions is shown as follows. See Chapter 5 for a description
of the document member functions for cutting and copying.

void TApp::DoCutCmd(TDoc * theDoc){

Handle newData;
OSType newType;

.,_ TApp Resources 141

if(theDoc !=nil)
if(theDoc->DoCut(&newData,&newType)){

//get rid of old clip data if DoCut succeeds
if(fClipData != nil)

DisposHandle(fClipData);
fClipData = newData;
fClipType = newType;

void TApp::DoCopyCmd(TDoc * theDoc) {

Handle newData;
OSType newType;

if(theDoc !=nil)
if(theDoc->DoCopy(&newData,&newType)) {

//get rid of old clip data if DoCopy succeeds
if(fClipData !=nil)

DisposHandle(fClipData);
fClipData = newData;
fClipType = newType;

It is unlikely that you will need to override any of the application
member functions for handling Edit menu commands. Most of the cut
and paste functionality that you need to change is in the document
class. See Chapter 12 for an example of how the TextEdit application
and document work together to support cut, copy, and paste.

• TApp Resources
Like TDoc, the T App class depends on several resources. These re
sources are defined in the file TApp.rsrc. Appendix B contains a rez
compatible listing of the resources in the file TApp.rsrc.r. The resources
are listed in Table 6-1. You will need to replace some of the resources
for TApp with your own application-specific resources. Chapters 7-13
contain examples of how to replace the default resources for T App.

142 Ill> Chapter 6 TApp: The Generic Application Class

Table 6-1 . TApp Resources

Res. Type ID No. Description

'ALRT' 128 Generic About alert window, replace for your
application

'DITL' 128 Generic About alert dialog item list, replace for your
application

'MBAR' 128 MenuBar for application, replace if you add menus
'MENU' 128 Apple menu, replace to change About item
'MENU' 129 File menu, probably won't replace
'MENU' 130 Edit menu, probably won't replace
'SIZE' -1 MultiFinder resource, replace to change memory

required

..,, Compiling TApp
Like TDoc, TApp cannot run as a program by itself. It is designed to
work with TDoc. You do, however, have to compile TApp.cp to create
an object file, TApp.cp.o, which can be linked with other files to create
a full application.

You also need to make sure that the application object code is placed
in its own segment by placing the following compiler directive just be
fore the first line of code. The justifications for segmenting your code
are discussed in Chapter 5.

#pragma segment AppSeg

To compile TApp.cp, invoke the following command in MPW, mak
ing sure, of course, that the current directory contains the file TApp.cp:

CPlus TApp.cp - o TApp.cp.o

That command causes the CPlus script to run, which calls CFront to
create C code from your C++ code, and then calls the C compiler to
compile the final object code. The code is output as TApp.cp.o, as speci
fied by the -o flag in the command.

.,, Summary 143

• Summary
TApp is by far the biggest class that is defined in this book. It encapsu
lates many fundamental principles of Macintosh programming so that
you will never again have to be concerned with details like where par
ticular flag bits are in an OSEvent. It also takes care of the clipboard
and menus and opening documents.

There are actually very few member functions in T App that you will
have to overrid.e in a typical application. But you will almost surely over
ride MakeDoc so that it creates one of your derived document objects in
stead of the generic TDoc document. Other member functions that you
will probably override specify the type of data that you will support on
the clipboard and adjust menus and respond to menu commands.

The hardest part is over. Object-oriented programming often in
cludes a steep learning curve to get started and become familiar with a
set of base classes. Now that you have developed a familiarity with
C++ techniques and have developed a base document and application
class, you are ready to start enjoying the benefits of object-oriented pro
gramming. Most of the rest of this book develops applications based on
TApp and TDoc. Those chapters show how to override selected mem
ber functions in the application and document base classes to create a
variety of programs.

7 ~ Helloworld, Revisited

The previous two chapters have described, in great detail, an applica
tion class and a document class that can make Macintosh programming
easier. Now it is time to show how to use those classes. This chapter
develops a simple program based on TApp and TDoc. The program
will display multiple windows with the message "hello world" in each
window, as shown in Figure 7-1.

r S File Edit

Untitled

hello world

Figure 7-1 . The Helloworld2 Application

145

146 ~ Chapter 7 Helloworld, Revisited

This chapter describes the parts necessary to build the Helloworld.2
application. These parts include the C++ code, resource definitions,
and the makefile. Although the Helloworld2 application is very simple,
the mechanics of building it will be applicable to more complex appli
cations that appear later in this book. The complete code for the Hel
loworld2 application is listed in Appendix B.

~ Subclassing TApp and TDoc
The key to the power of object-oriented programming is the ability to
derive new classes from existing classes. A derived class inherits all the
behavior of its parent class except for those member functions that you
choose to override in the derived class. For the Helloworld2 applica
tion, we will derive a new application class from TApp and a new doc
ument class from TDoc.

~ THelloDoc

The new document class is called THelloDoc. The only difference be
tween it and its parent, TDoc, is the Draw member function. THello
Doc documents respond to Draw messages by drawing the words
"hello world" in the document window. All other behavior is just like
the parent class. The declaration of the THelloDoc class is shown as
follows.

class THelloDoc : public TDoc{

protected:

II draw the window
virtual void Draw(Rect *r);

} ;

Let's examine the declaration in detail. The first line declares that
THelloDoc is the name of a class and that it is derived from the class
TDoc. Furthermore, since the derivation is public, THelloDoc member
functions will be able to access all public and protected members of the
parent class. If the declaration was written without the public key
word, as shown here

class THelloDoc : TDoc{

Key Point~ I

Key Point~

~ Subclassing TApp and TDoc 147

then the users of THelloDoc documents could not access the members
or member functions of TDoc. This is not what we want in this case.
We want THelloDoc to be just like TDoc except in the way it draws
the contents of its document windows. Notice that if TDoc had any pri
vate members or member functions (which it doesn't), THelloDoc
would not be able to access them, even though it is declared as a public
derivation. Private members and member functions are never visible to
derived classes.

In the protected section of THelloDoc, the Draw member function is
declared to indicate that this version of Draw is to be called rather than
the original version in TDoc. In order to override the original Draw
member function, you must declare the new Draw with the same argu
ment types as in the original. For example, if you declared Draw with
out the Rect argument, C++ would think that this was simply another
version of the Draw member function with a different argument list.
You want to replace the original Draw rather than provide an alternate
version, so you must use the same argument list.

148 IJJ> Chapter 7 Helloworld, Revisited

.. THelloApp

Our new application class is called THelloApp. It overrides the mem
ber function MakeDoc to make a THelloDoc object instead of a TDoc
object. The declaration of THelloApp is shown as follows. Notice that
the SFReply * argument to MakeDoc will be assigned a value of nil if
no argument is passed to the member function.

class THelloApp : public TApp{
protected:

II make our kind of document
virtual TDoc * MakeDoc(SFReply *reply= (SFReply *)nil);

} ;

THelloApp is declared to be a class that is publicly derived from the
T App class. In its protected section we override the Make Doc member
function. MakeDoc is declared with the same argument types as in
TApp so that the new version will override the original version, just as
discussed for the THelloDoc Draw member function. MakeDoc is a
protected member function since it is called only from other member
functions of TApp.

_,,, Making New THelloDoc Objects

THelloApp overrides the member function MakeDoc so that it will
make THelloDoc objects rather than the default TDoc objects. You will
want to override MakeDoc in almost any program that is based on
TApp and TDoc. The code for overriding MakeDoc is shown as follows.

TDoc * THelloApp::MakeDoc(SFReply *reply) {
return new THelloDoc();

MakeDoc takes a pointer to an SFReply structure (which defaults to
nil if no pointer is supplied, as specified in the original declaration of
the member function) and creates a new THelloDoc object. We did not
declare a constructor for THelloDoc objects, so the constructor for the
parent class, TDoc, is called by default. Since the constructor for a
TDoc object has default assignments for both of its arguments (see
Chapter 5 for discussion of the TDoc constructor), we can also create a
new THelloDoc without supplying any arguments.

.., The Draw Member Function 149

"" The Draw Member Function

I By the Way ~ I

The only part of THelloDoc that is different from TDoc is its Draw
member function. By the time Draw is called, it assumes that the Graf
Port is set correctly. The Draw member function is responsible for
drawing only the contents of the window. The code for Draw is shown
as follows.

void THelloDoc :: Draw(Rect *r){

EraseRect (r) ;
TextSize (48);
MoveTo (20 , 65) ;
DrawString("\phello world");

C and C++ expect strings to end in the null character. Pascal expects
strings to begin with a byte that specifies the length of the string.
Toolbox functions such as DrawString expect Pascal strings as argu
ments. You can tell C++ that you want a string constant to be en
coded in Pascal string format by starting the s~ with \p, as in
"\phello world".

You can see that it is quite simpleminded. You might want to spice it
up a bit by centering the text or changing the font size since the win
dows are resizable. Better yet, load the string from a resource so that
the program could be easily translated into a foreign language.

"" The Helloworld2 Main Program

Once the THelloApp and THelloDoc classes are declared, we can use
them in an application. The code for the Helloworld2's main function is
shown as follows.

void main(void) {
THelloApp theApp;
II initialize the application
if(theApp . InitApp ()) {

II open one window to start with
theApp.OpenNewDoc ();

150 ~ Chapter 7 Helloworld, Revisited

Key Point~ I

II Start our main event loop running.
II This won't return until user quits
theApp .EventLoop();

//now clean up
theApp . CleanUp() ;

You declare a THelloApp variable at the beginning of main. This
causes a THelloApp object to be created on the stack (in the local varia
ble space) . The constructor for theApp will be automatically called
when main is entered. Likewise, the destructor for theApp will automat
ically be called when you exit main and the variable goes out of scope.
This sort of automatic construction and destruction is one of C++'s
most useful features.

The automatic construction and destruction of C++ objects based on
scope does not occur for C++ object pointer variables. For example,
if you defined theApp to be a pointer to a TApp object, you would
have to explicitly use the new operator to allocate space for it on the
ltMp and cause its constructor to run. When you were done, you
would have to use the delete operator to invoke its deskUCtor and
deallocate its space, as shown here.

int rnain(void){
THelloApp * theApp = new THelloApp;
II initialize the application
if(theApp->InitApp()){

II open one window to start with
theApp->OpenNewOoc();

. //Start our main event loop running.
II this won't return until user quits
theApp->EventLoop();
//now clean up
theApp->CleanUp();

II delete the.App so destructor will run
delete theApp;

~ The Helloworld2 Resources 151

Next, we call InitApp to further initialize the application object and
check the result of that member function before proceeding. In your ap
plications, you might override InitApp to check the current configura
tion to see if your program should run. For example, you could check
for the presence of Color QuickDraw, and return false if it wasn't avail
able, thus aborting the program.

If InitDoc returns true, we call OpenNewDoc to create a new docu
ment. OpenNewDoc calls MakeDoc, which will make a THelloDoc
object since we have overridden MakeDoc. Once the first document is
made, we drop into the main event loop for the application object.
When the user finally chooses the Quit menu item, we drop out of
EventLoop and call Cleanup.

This main program seems quite simple, given the fact that the pro
gram supports multiple, resizable windows and is MultiFinder
friendly. This is where object-oriented programming begins to really
pay off. Most of the functionality of this program is encapsulated in the
TApp and TDoc classes. You only needed to make minimal changes to
create this program .

.., The Helloworld2 Resources
In order to make a Macintosh program, you must gather code and re
sources together into one file. The TApp and TDoc classes depend on
certain resources (such as menus and windows), being present in the
resource file of the program. The resources for the Helloworld2 pro
gram are made up of resources from the TApp.rsrc and TDoc.rsrc files,
and some resources that are unique to this application. The use of re
sources is similar to the use of the code for the classes. We only need to
define our own resources where those resources are different from the
resources defined for the parent classes. The resources that we create
specifically for Helloworld2 are in a file named Helloworld2.rsrc. You
can use ResEdit to create these application-specific resources, or you
can use rez to compile the resources listed in the file Helloworld2.rsrc.r
in Appendix B.

The first resource that Helloworld2 overrides is the Apple menu. We
want the first item in the Apple menu to read About Helloworld2 ...
instead of About Generic. To do this, define a menu resource with the
resource ID number rAppleMenu. (This constant is defined in TApp.h.)

We also want to override the About dialog that describes our applica
tion. The resources that define the About box are 'ALRT' and 'DITL' re
sources with the resource ID number rAbout. (This constant is defined
in TApp.h.)

152 ~ Chapter 7 Helloworld, Revisited

Finally, we want a different window resource than the default de
fined in TDoc.rsrc. We define a 'WIND' resource with the resource ID
number rGenericDoc. (This constant defined in TDoc.h.)

The file Helloworld2.r uses rez to collect all the required resources
. from the parent resource files and the specific resource file for Hello

world. It uses include statements to load resources from the specified
files, as shown in the following code. Default resources come from the
parent class resource files TApp.rsrc and TDoc.rsrc. Overridden re
sources come from the application resource file Helloworld2.rsrc.

include "TApp. rsrc" ;
include "TDoc . rsrc" ;
include "Helloworld2.rsrc";

Key Point~ I ~~of inclusion in rez files is important because resources
Wltli 'M $Une type and ID number that are included last will re
pla(e resources from the earlier files. Thus, in the preceding exam
ple, ~es from Helloworld.2.rsrc will overwrite similar re
soutces from TApp.rsrc and TDoc.rsrc. ·

I By the Way ~ I NOte the difference between #include and include statements in rez
source files. Statements that begin with #include are used to bring
in text files that contain resource definitions. Include statements are
used to read in resources in binary form from the specified file.
Note also that include statements end in a semicolon while #include
statements do not.

Helloworld2 Makefile: Putting It All Together
Now it is time to build the Helloworld2 application. Many tools and
files are required to build an application in MPW. The makefile coordi
nates all this activity. Figure 7-2 shows the source files and tools re
quired to build the Helloworld2 application.

The MPW Make tool reads a makefile, examines the dependencies
specified therein, and decides which tools need to be run to build the
program.

Unfortunately, the CreateMake tool that we used in Chapter 4 is not
smart enough to write a makefile for the Helloworld2 application be
cause it is not able to specify multiple directories for source and in
clude files. You will have to use the makefile discussed here as a tem
plate for creating your own makefiles.

IJll. Helloworld2 Makefile: Putting It All Together 153

00 00 00 00 00 [!] 00 00
"~\'

AppDocMenus.h TDoc.h TDoo.op Ht11oworld2.cp TDoc.h T App.h

/"" J/ \,/-/
~ - ~o;•' ~ -
CFront CFront CFront

~o;•' ~o;' ~o;'
c c c

' + +
TApp.cp.o TDoc.op.o Ht11oworld2.op.o

--------..... ' ...---------
~O:•'

Unk

Ht11oworld2

/~~
~ ~ ~ 00

Ht11oworld2.r Ht11oworld2.rsrc T App.rsrc TDoc.rsrc

Figure 7-2. Dependencies for Helloworld

154 ., Chapter 7 Helloworld, Revisited

The makefile for the application is named Helloworld2.make. We
start the makefile by specifying the directory where the sources and ob
ject files for TApp and TDoc reside. This directory tells C++ where to
search for the include files TApp.h and TDoc.h. It also tells the linker
where to find the object files TApp.cp.o and TDoc.cp.o., and it tells rez
where to find the files TApp.rsrc and TDoc.rsrc. Specifying a separate
directory for the application and document class sources means that
you don't have to copy all these files to the directory where your appli
cation is. This saves disk space and also allows you to keep one master
copy of the parent class files . Keeping these files in a separate directory
is also the reason why you can't use CreateMake to write the makefile
for Helloworld2. The following statement in the makefile defines the
path name for the directory containing the TApp and TDoc code and
resources.

tell cplus and rez where to f i nd i nc l uded files for TApp and TDoc
AppObjectDi r = : :App-Doc :

The directory is specified with a partial path name beginning with a
double colon, which means to back up one directory level and start
down the new path. This assumes that you have a directory structure
where the App-Doc folder and Helloworld2 folder are both in the same
parent folder, as shown by Figure 7-3. If your disk is structured differ
ently, you will have to make changes as necessary to specify the correct
directory path.

§0 C++

19 items 72,464K in disk

CJ CJ CJ CJ
App-Doc Mode lessDoc TScrollDoc DebugDoc

CJ CJ CJ CJ
HelloWorld2 Mode less App Pictview DebugTEApp

CJ LJ LJ
Scribble TEDoc TE App

Figure 7-3. Directory Organization

~ Helloworld2 Makefile: Putting It All Together 155

Next, use the directory specified above and other flags to create option
specifications for CPlus, link, and rez. The -sym on option tells the com
piler and linker to create symbol tables so that the program can be de
bugged using SADE. This option slows down the compilation and link
processes, so you may want to specify-sym off if you aren't using SADE.

use SADE symbol generation
SymOpts = -sym on

The -i option for CPlus and rez tells these tools where to look for
header files included with the #include directive. The -s option for rez
tells it where to look for resources included with the include directive
We also pass the SADE symbol definition option that we just defined
through to C++.

options for C++
CPlusOptions = {SymOpts} -i "{AppObjectDir}"

options for rez
RezOptions = -s "{AppObjectDir}" -i "{AppObjectDir}"

For the linker, specify the -msg nodup option to suppress warnings
about duplicate label definitions during the link phase. These duplicate
labels happen because C++ sometimes creates virtual tables for the
same class from several different source files. The duplicate label mes
sages can be ignored, so we suppress their output. The other option
that we pass to the linker is the SADE symbol definition option, which
was defined previously.

options for the linker,
nodup ignores duplicate labels in object files
LinkOptions = -rnsg nodup {SymOpts}

Next, define a rule that tells Make how to compile C++ files that are
out of date. Make contains a default rule for C++ files, but we want to
change the rule to include the CPlusOptions that we have defined. The
rule says that files that end in cp.o are dependent on similarly named
files that end in .cp. For example, the file MyFile.cp.o is assumed, by
this rule, to be dependent on MyFile.cp.

We need to change this rule to include CPlusOptions
.cp.o f .cp

CPlus {default}.cp -o {default}.cp.o {CPlusOptions}

156 ~ Chapter 7 Helloworld, Revisited

I By the Way .-1

Next, we define a list of object files that are needed to build the appli
cation. Note that TApp.cp.o and TDoc.cp.o are preceded by the varia
ble that we defined for the App-Doc directory. Helloworld2.cp.o is as
sumed to be in the current directory. We also define a list of resource
files that are needed for the application.

Ob jects = o
11 {AppObjectDir }11 TApp. cp.o o
11 {AppObjectDir} 11 TDoc.cp.o o
Helloworld2.cp.o

ResourceFiles = o
II {AppObjectDir} 11 TApp. rsrc a
11 {AppObjectDir} 11 TDoc .rsrc o
Helloworld2.rsrc

The tine oorttmuation character, a, is used to show: that the next line
is actually a continllaion of the current line. This allows you to
break up loJ,lg lines of multiple file names into a more readable for
ma~ l1're$S Qption-d on the keyboard to get a a character.

The default dependency rule for C++ files described previously tells
Make what shell commands are necessary to compile C++ source files,
but it does not adequately describe all the dependencies for individual
C++ files. We must list the dependencies for TApp and TDoc so that
they will be correctly rebuilt whenever any of th~ files on which they
depend are changed.

The dependency rules for TDoc.cp.o and TApp.cp.o are listed as fol
lows. Notice that the dependencies do not include any shell com
mands to invoke if the dependent files are out of date, so Make uses
the commands listed in the default rule.

dependency rules for TDoc and TApp
11 {AppOb jectDir} 11 TDoc.cp. o f "{AppObjectDir} 11 TDoc.cp o

II {AppObjectDir} 11 TDoc . h a
11 {AppObjectDir} 11AppDocMenus .h

11 {AppObjectDir} 11 TApp.cp.o f "{AppObjectDir} 11 TApp.cp o
11 {AppObjectDir }11 TApp. h o
11 {AppObjectDir} 11 TDoc.h o
11 {AppObjectDir} 11AppDocMenus .h

Finally, define the dependencies for the Helloworld2 application.
Helloworld.cp.o is dependent on Helloworld2.cp, TApp.h, TDoc.h, and

II>- Helloworld2 Makefile: Putting It All Together 157

Helloworld2.make. If any one of these files has a modification date
later than Helloworld2.cp.o, then CPlus will be invoked to recompile
Helloworld2.cp.

Helloworld.cp.o f Helloworld2.cp a
"{AppObjectDir}"TApp.h ()
"{AppObjectDir}"TDoc.h a
Helloworld2.make

The application itself, Helloworld2, is defined in multiple dependency
rules, as signaled by ff rather than/. The first dependency says that Hel
loworld2 is dependent on all of the object files in the object file list Ob
jects, which was previously defined, and on Helloworld2.make. If this
dependency rule is triggered, the program will be relinked with the ap
propriate object files. After the application file is linked, the SetFile tool
is run to set the type, creator, and bundle bit attribute of the application.

Helloworld2 ff {Objects} Helloworld2.make
Link - o {Targ} {LinkOptions} a

{Objects} a
"{CLibraries}"CPlusLib.o a
"{CLibraries}"CRuntime.o a
"{CLibraries}"StdCLib.o a
"{CLibraries}"Cinterface.o a
"{Libraries}"Interface.o

SetFile {Targ} -t APPL -c '????' -a B

The second dependency rule for Helloworld lists the resource files on
which Helloworld depends. If any of these files has changed, then rez
is invoked to bring the resources in Helloworld2 up-to-date, as directed
by the following dependency statement.

Helloworld2 ff Helloworld2.r a
"{AppObjectDir}"TApp.rh a
"{AppObjectDir}"TDoc.rh a
{ResourceFiles}

Rez -append - o {Targ} {RezOptions} Helloworld2.r

All of these definitions and dependencies are combined in a file
named Helloworld2.make. When you want to build the Helloworld2
application, you choose the Build ... menu command from MPW. When
the dialog comes up, specify Helloworld2 as the file you want to build,
and then sit back to watch the build process. Make sure that the current
directory is set to the folder containing Helloworld2.cp, Helloworld2.r,
Helloworld2.rsrc, and Helloworld2.make before trying to build the
application.

1. 58 ..,, Chapter 7 Helloworld, Revisited

.., Debugging Helloworld2 with SADE
Once you have built your program, you can run it. In the unlikely
event that the program does not run correctly, you can use SADE to de
bug it. SADE is a symbolic debugger, which means that it will display
your C++ code rather than assembly language while you debug your
application.

To use SADE you must compile and link your program with the -sym
on option. You must also prepare a short script that tells SADE where
to find the source files for your program. Open SADE and create a new
file named Helloworld2.sade. (Make sure that you are running Multi
Finder, or SADE won't allow you to debug your program.) Type the
following lines into the Helloworld2.sade window.

directory 'hd:mpw:C++:helloworld2'
sourcepath '::helloworld2','::App-Doc'
target 'Helloworld2'
open source ('Helloworld2.cp')

Save the file, select all the lines you just typed, and press the Enter
key. This causes SADE to execute the selected text, much like MPW
would. In fact, you will notice many similarities between the user inter
face of MPW and SADE.

Let's examine the commands in Helloworld2.sade. The first line

directory 'hd:mpw:C++:helloworld2'

sets the current directory to the directory containing the Helloworld ap
plication. You should use a complete path name to set the directory here.

The next line

sourcepath '::helloworld2', '::App-Doc'

tells SADE where to look for the source files when it debugs the pro
gram. Notice that we specify two directories with relative path names
- one for Helloworld2.cp and the other for TApp.cp and TDoc.cp.

The third line

target 'Helloworld2'

tells SADE the name of the application that you will be debugging. 1t
uses that name to find the symbol file, which in this case will be named
Helloworld2.SYM.

~ Summary 159

The last line

open source ('Helloworld2.cp')

tells SADE to open the specified source file.
Once the source file, Helloworld2.cp, is open, you can select a line of

the source code and choose the GoTill ... menu command in SADE.
SADE will then start executing your program until it reaches the se
lected line of code. It will then halt your program and display the
source file containing the selected line. You can then step through your
code, one line at a time, or select another line and GoTill While
stopped, you can also select a variable name and ask SADE to display
its value.

SADE is actually capable of much more than described here. It is a
very powerful debugging environment, worthy of an entire book in it
self. The simple commands described here will get you into SADE and
let you watch your code execute and see the value of your variables.
This can be extremely helpful in finding bugs. As you gain experience
with SADE, you may want to study its documentation to see how its
more powerful features can be used.

_., Summary
Helloworld2 is a very simple program. It builds upon the TApp and
TDoc classes by deriving new application and document classes. These
new classes inherit most of the behavior of their parent class, changing
only those member functions necessary to give them their own charac
teristic behavior.

You have seen how to declare and define a derived class. You have
also seen how to combine resources from several sources into the final
application.

The makefile for even a simple program like Helloworld2 is rather
complicated. But the good news is that the makefile for more compli
cated programs will be about the same as the makefile for Helloworld2.
You now know as much about makefiles as you will probably ever
need to know.

Finally, we discussed the basic operation of SADE. The ability to
symbolically debug your programs will become more important as
your applications become bigger and more complex.

Helloworld2 illustrates just how much work is required to get the
simplest C++ program running. Think of the time you spent develop
ing the TApp and TDoc classes and all the intricacies of the makefile.
That is why I suggested that C++ is not suitable for quick projects, at

160 .,. Chapter 7 Helloworld, Revisited

least at first. Now, however, the worst is over. Once the foundation of
good base classes has been laid, you can use C++ to dramatically in
crease your programming productivity. In the next several chapters we
will begin to develop more complicated applications. You will see that
the complicated programs aren't much harder than the simple pro
grams. That is where C++ really pays off.

PART THREE

~Swimming

The previous section was like being thrown into the deep end of a pool;
this section is like swimming. Now you have all the basic classes and
concepts that you need to start using C ++ to write Macintosh programs.
You can relax and start to see the benefits of all the hard work you did
in the first part of this book.

The chapters in this section build upon the application and document
classes presented in the previous section. The projects described in this
section show how the original base classes can be extended to provide
new functionality without sacrificing the old. This is the heart of object
oriented programming. This is how object-oriented programming is a
good idea. This is how object-oriented programming will make you
both more productive and a better programmer.

The last chapter of this section develops a program using the Ma
cApp class library instead of the application and document classes used
in the other chapters. MacApp is a much more fully developed class sys
tem. If you get serious about object-oriented programming on the Mac
intosh, you will probably want to investigate MacApp further.

161

8 ~ Scribble

Scribble is a simple drawing program based on the T App and TDoc
classes. It can display multiple windows in which the user can draw
freehand with the mouse. Scribble can save the drawings to the disk
and can later open the files for further drawing. It also adds a menu
from which the user can choose several pen sizes and pen patterns. The
Scribble screen is shown in Figure 8-1.

,.. S File Edit Pen

Figure 8- l . The Scribble Application

The Scribble program shows how to extend T App and TDoc to use
application-specific menus and how to read and write disk files . These
two capabilities are essential when using T App and TDoc for anything
but the most trivial program. Scribble also shows how to define an

163

164 .,, Chapter 8 Scribble

application-specific file type and creator so that a user can open the ap
plication by opening one or more of its documents from the Finder.

This chapter develops the two new classes, TScribbleDoc and
TScribbleApp, in the context of the application as a whole, so the dis
cussion is somewhat interwoven. See Appendix B for a complete code
listing for the classes and the Scribble application .

., Making a TScribbleDoc
Just as you did in the Helloworld program in Chapter 7, you need to
override MakeDoc to make a document that is specific to the applica
tion rather than the generic TDoc. One difference between this version
of MakeDoc and the one shown in the Helloworld2 application is that
we want to pass actual arguments to the TScribbleDoc constructor
rather than settling for the defaults. You call GetCreator to pass the
creator identifier for the Scribble application, 'SCBL', to the new docu
ment so that it will be able to correctly set the creator when saving files.
You also pass an SFReply pointer to the new document. The reply argu
ment will be nil if you are opening a new, blank document, but it will
point to an SFReply structure if you are opening an existing document
that the user selected with SFGetFile. The code for MakeDoc and Get
Creator is shown as follows.

virtual GetCreator(void) {return 'SCBL';}
TDoc * TScribbleApp::MakeDoc(SFReply *reply) {

return new TScribbleDoc(GetCreator(),reply);

., TScribbleDoc's Constructor
The constructor for TScribbleDoc has two purposes. The first is to pass
its arguments on to the constructor for its parent class, TDoc. The sec
ond task for the constructor is to initialize the members that are specific
to TScribbleDoc. The code for TScribbleDoc's constructor is shown as
follows.

TScribbleDoc::TScribbleDoc(OSType theCreator,SFReply *reply):
TDoc(theCreator,reply) {
fPenSize = 2;
fPattern = patGray;
fPic = nil;

Key Point IJJJ-

Key Point ... I

IJJJ- TScribbleDoc's Constructor 165

The colon following the argument list for TScribbleDoc tells the
compiler to look for instructions on how to invoke the parent class con
structor. In this example, we specify that the constructor for the TDoc
class be called with theCreator and reply as arguments. The TScribble
Doc constructor passes its arguments off to the constructor for its par
ent class.

; .
Arguments can be passed to the constructor of a parent class by fol-
lowiitgftte argum~nt list of the derived construqor with a 9olort
and an argument list for the parent clCJ.ss. ~or eximple, TScri&ble
Doc passes arguments to its parent, TDoc, with the following con-
structor definition. '

TScribbleDoc::TScribbleDoc(OSType theCreator,SFReply *reply):
TDoc (theCreator, re_Bly) {/**i'l

The constructor for the parent class is executed before the body of the
constructor for the derived class. In the case of TScribbleDoc, this is of
no consequence. But in some classes it can be crucial to remember that
the parent constructor has already run to completion before the de
rived constructor body is executed.

The drawing in a Scribble window is controlled by two members of
the TScribbleDoc class, fPenSize and [Pattern. The pen size is initialized
by the constructor to 2 pixels by 2 pixels and the pen pattern is initial
ized to gray.

The pen pattern member is an enumerated type that we define to
keep track of the possible patterns for a Scribble document. The declar
ation for the enumerated type is shown as follows.

enurn penPat{patBlack, patGray, patWhite};

Finally, the fPic member is a PicHandle that contains a QuickDraw
picture of the window's contents. When the document is initialized, the
picture is empty, so we set it to nil. Other member functions of the doc
ument will set it to refer to a valid picture.

If the derived class has any members tllat are nqt in the parent class,
the derived constructor should initialize them.

166 ., Chapter 8 Scribble

..., Scribbling Functions
As previously discussed, drawing is controlled by the fPenSize and
[Pattern members of TScribbleDoc. These members are initialized by
the constructor and changed when a user chooses items from the Pen
menu. Since these members are private, we provide public member
functions of TScribbleDoc to set and get their values, as shown here.

II new member functions related to pen menu
void SetPenSize(short p) (fPenSize = p;}
void SetPenPat(penPat p) (fPattern = p;}
short GetPenSize(void) (return fPenSize;}
penPat GetPenPat(void) (return fPattern;}

A TScribbleDoc document needs to respond to mouse clicks in the
content area of its window by allowing the user to draw. It does this by
overriding the DoContent member function. The application object
will take care of calling DoContent for the appropriate document when
mouse down events occur in a document window.

DoContent sets the GrafPort to the document window, and then it
sets the pen size and pen pattern attributes of the port depending on
the setting of the /Size and [Pattern members of the document. These
settings can be changed when a user chooses an item from the Pen
menu. Choosing the menu item only changes the setting of the mem
ber; it does not actually change the GrafPort attributes. The attributes
must be reset each time you start to draw, in case the member settings
have changed since the last time you drew.

Next, DoContent determines the starting point from the EventRe
cotd and starts tracking the mouse, drawing lines as fast as it can while
the mouse moves. When the user lets up on the button, we set the
fNeedToSave member to true to show that the document has changed
and should be saved before being closed.

Finally, DoContent captures the image in the window as a Quick
Draw picture so that it can be redrawn if the window is obscured by
another window or dialog. DoContent checks if there is a current pic
ture in the fPic member, and deletes the picture if it is non-nil. Next,
DoContent calls the toolbox function CopyBits to copy the contents of
the window into a new picture. The picture handle is stored in the fPic
member. The Draw member function, explained later, uses the fPic pic
ture to redraw the window during update events.

This technique for capturing the window contents has a significant
weakness; it captures only what is visible in the window. If the window
is made smaller and more drawing occurs, all the previous drawing

~ Scribbling Functions 167

that is outside the new window boundaries will be lost the next time the
window snapshot is taken. A more serious approach would be to main
tain an off-screen bitmap copy of the entire drawing and use CopyBits
to move portions of the drawing back and forth to the window.

The code for DoContent is shown as follows.

void TScribbleDoc::DoContent(EventRecord* theEvent){

Point newPoint;

if(fDocWindow) {
SetPort(fDocWindow);
PenSize(fPenSize,fPenSize);

if(fPattern ~ patBlack)
PenPat(qd.black);

if(fPattern ~ patGray)
PenPat(qd.gray);

if(fPattern ~ patWhite)
PenPat(qd.white);

GlobalToLocal(&theEvent->where);
MoveTo(theEvent->where.h, theEvent->where.v);
do{

GetMouse(&newPoint);
LineTo(newPoint.h, newPoint.v);

}while(StillDown());

fNeedtoSave = true;

II now take a snapshot of window
if (fPic != nil)

KillPicture(fPic);
fPic = OpenPicture(&fDocWindow->portRect);
CopyBits(&fDocWindow->portBits,

&fDocWindow->portBits,
&fDocWindow->portRect,
&fDocWindow->portRect,
srcCopy,
(RgnHandle) nil);

ClosePicture ();

168 Ill> Chapter 8 Scribble

As mentioned previously, TScribbleDoc also overrides the Draw
member function to redraw the window contents during update
events. The Draw member function uses the f Pie member as a PicHan-

. dle and calls the toolbox function Draw Picture to draw the picture into
the window. Notice that we extract the original rectangle from the pic
ture and use it as the destination rectangle. Another option would be to
use the window's portRect as the destination, which would result in
the picture being scaled to fit in the window. The code for the Draw
member function is as follows.

void TScribbleDoc::Draw(Rect *r){

if (fPic != nil)
DrawPicture(fPic,&((**fPic) .picFrame));

TScribbleDoc overrides DoDrawGrowlcon so that the grow box is
not drawn in the window. The user can still resize the window, but the
grow box is not drawn so as not to overwrite the picture in the window.

IJ)i- File Type and Creator

Scribble reads and writes disk files that enable it to save and restore
drawings. To do this it must create files with a file type and file creator
that are specific to Scribble. File type and file creator identifiers are
four-character constants such as 'TEXT', 'PICT', and 'MSWD'. The
Finder uses the file type and creator to link applications with their own
document files. The connection between a document file and its creator
allows a user to start up an application by opening one of its docu
ments in the Finder. When the user opens a document in the Finder,
the Finder launches the application that has the same creator signature
as the document. File types allow applications that support more than
one document type to differentiate among its documents, and it also al
lows applications that share a file type to share document files. The
Scribble application uses 'SCBL' as the creator and 'SPCT' for the file
type for its files.

TApp and TDoc have generic support built in for application
specific file types and creators, but you need to override several mem
ber functions in both the application and document classes to specify
the file type and creator you will be using in your application.

IJJi> File Type and Creator 169

In the document class, you override GetDocType to return the file
type for your document. Other parts of the T App and TDoc objects call
this member function when they need to know the type of the docu
ment files. TScribbleDoc overrides GetDocType as follows.

virtual OSType GetDocType(){return 'SPCT';}

In the application class, you must override the GetCreator member
function to return the creator identifier for the application. An applica
tion can have only one creator signature, although it might support
several different document types and file types. TScribbleApp over
rides GetCreator as follows.

virtual OSType GetCreator(void){return 'SCBL';}

File types are also used when TApp calls SFGetFile to put up a stan
dard file dialog to enable the user to open a file. If your application
supports a specific file type, then you want files of only tha.t type to be
displayed in the dialog. T App contains two member functions, Get
Num.FileTypes and GetFileTypesList, that you will override to specify
which file types should be displayed in the file dialog. Since Scribble
only supports one document type, GetNumFileTypes is overridden to
return 1, as follows.

II file info for SFGetFile
virtual int GetNurnFileTypes(void) {return 1;};

GetFileTypesList is overridden to return a pointer to an array of file
type identifiers. We declare a global variable, gtheTypes, as an SFType
List and initialize it with a single file type, 'SPCT', as shown in the follow
ing code. (Notice the ability to initialize an array as part of its definition.)
GetFileTypesList then returns a pointer to gtheTypes, as shown here.

II define as a global variable
SFTypeList gtheTypes = {'SPCT'};

II override this member function to return ptr to types list
SFTypeList TScribbleApp::GetFileTypesList(void){

return gtheTypes;

170 .,, Chapter 8 Scribble

..,, Opening Files from the Finder
Once you have defined a file type and creator for your application's
documents, you will be able to take advantage of TApp's mechanism
for opening documents from the Finder. If the application was
launched by a user opening one or more documents from the Finder,
OpenDocFromFinder opens the documents and returns true. Scribble
checks the return value from OpenDocFromFinder so that it doesn't
open a blank document at startup if other documents are already open.

if(! theApp.OpenDocFromFinder())
theApp.OpenNewDoc();

..,, Reading and Writing Scribble Files
The final TDoc member functions you need to override to support doc
ument files are WriteDocFile and ReadDocFile. These two member
functions handle the low-level tasks of transferring the document data
to and from the actual disk file. Other member functions take care of
creating, opening, and closing the files, and these do not typically need
to be overridden. But TDoc has no way of knowing the structure of the
content of the files, so you must provide this functionality.

WriteDocFile takes the content of the fPic handle, which contains the
QuickDraw picture of the window contents, and writes it to the file.
The code is straightforward, as shown here. Notice that we reset the
file position to the beginning of the file before writing. This precaution
is necessary since the file remains open as long as the document is open
and other operations (such as the original read operations) could have
moved the position indicator in the file. WriteDocFile returns true if
the file operations are successful, false if otherwise. Other member
functions that call WriteDocFile use the result to determine if the
larger operation (such as a save operation) was successful.

Boolean TScribbleDoc::WriteDocFile(short refNum){

if (fDocWindow) {
if (fPic != nil) {

long len = GetHandleSize((Handle)fPic);
HLock ((Handle) fPic);
OSErr err= SetFPos(refNum,fsFromStart,0);
err= FSWrite(refNum,&len, (Ptr)*fPic);
HUnlock((Handle)fPic);

}

~ Reading and Writing Scribble Files 171

if(err = noErr)
return true;

else
return false;

II if there ain't no window .•.
return false;

ReadDocFile reads the contents of a document file and places it in a
handle which is then used as a QuickDraw picture of the window con
tents. ReadDocFile starts by allocating a new handle to hold the file
contents. Notice that it displays an error alert inherited from TDoc if it
can't allocate enough memory. If the memory allocation is successful,
ReadDocFile reads the data from the file and extracts the picFrame rec
tangle from the picture data. It then attempts to make the document
window the same size as the picture, limited by the size of the screen.
Like WriteDocFile, ReadDocFile returns true or false to indicate if the
file operations were successful or not. The following code shows the
definition of ReadDocFile.

Boolean TScribbleDoc::ReadDocFile(short refNum){
const short kHAdjust = 50;
const short kWAdjust = 40;

if(fDocWindow){
long len;
OSErr err= GetEOF(refNum,&len);
Handle thePic = NewHandle(len);
if(thePic =nil){

ErrorAlert(rDocErrorStrings,sNoMem);
return false;

HLock(thePic);
err= SetFPos(refNum,fsFromStart,0);
err= FSRead(refNum,&len, (Ptr)*thePic);
HUnlock(thePic);
if(err = noErr){

II now make the window the size of the picture
Rect r = (**((PicHandle)thePic)) .picFrame;
short height = r.bottom - r.top;
short width = r.right - r.left;
r = qd.screenBits.bounds;

172 IJJi- Chapter 8 Scribble

height= min(height ,r.bottom - r.top - kHAdjust);
width= min(width, r.right - r.left - kWAdjust);
SizeWindow(fDocWindow, width, height, true);

II set the member to reference Picture
fPic = (PicHandle)thePic;
return true;

else {
DisposHandle(thePic);
return false;

II if there ain't no window ...
return false;

All the other details of handling files are handled by the default mem
ber functions of T App and TDoc. You have to override only those mem
ber functions that pertain to the specific nature of your files, and the base
classes do the rest. For example, if the user tries to close a Scribble docu
ment that has unsaved changes, TDoc will ask if the file should be saved
before closing. This also will happen if the user tries to quit with un
saved documents. All of that functionality comes from the base classes.

IJli> Handling Menus
There are two main areas where Scribble must deal with menus. First,
since it supports reading and writing files, it must make sure that the
Open, Save, and SaveAs menu items of TApp are enabled and disabled
appropriately. Second, it must support the Pen menu, about which the
parent class knows nothing.

~ Handling Menu Commands

You must override the document member function DoDocMenuCom
mand to handle selections from the Pen menu, which the TDoc class
knows nothing about. DoDocMenuCommand is called from the appli
cation class member function DoMenuCommand. The derived Do
DocMenuCommand for Scribble documents returns true if the menu
item is from the Pen menu, thus telling the application that it doesn't
need to do any further processing with the menu command. If the
menu item isn't in the Pen menu, then you pass the command on to the

II>- Handling Menus 173

parent class by calling TDoc::DoDocMenuCommand in case the menu
item is one of the default items handled by the document class. The
code for DoDocMenuCommand is shown as follows.

Boolean TScribbleDoc::DoDocMenuCorrunand (short menuID, short
menuitem) {

if(menuID ~ rPenMenu) {
switch (menuitem){

case ilXl:
SetPenSize(l)
break;

case i2X2:
SetPenSize(2)
break;

case i3X3:
SetPenSize(3)
break;

case iBlack:
SetPenPat(patBlack)
break;

case iGray:
SetPenPat(patGray)
break;

case iWhite:
SetPenPat(patWhite)
break;

default:
return false; II this should never happen

}

II tell the app that we handled this menu item
return true;

else{
II it's not one of our menus, give the parent class a chance
return TDoc::DoDocMenuCorrunand(menuID,menuitem);

174 ., Chapter 8 Scribble

~ Adjusting Menus

As explained in Chapters 5 and 6, the application and document classes
enable individual menu items by calling query member functions. The
Open menu is controlled by the TApp member function CanOpen,
which returns false by default in the definition of TApp. Since we want
the Scribble application to be able to use the Open menu command, we
must override CanOpen in TScribbleApp so that it returns true.
CanOpen is defined in the declaration of TScribbleApp as follows.

virtual Boolean CanOpen (void) {return true;}

Likewise, the TDoc member functions CanSave and CanSaveAs con
trol the Save and SaveAs menu items. You must override CanSaveAs
to return true, since it returns false by default. You don't have to over
ride CanSave, because it is defined in TDoc to return the fNeedtoSave
member of the document. Thus, as long as you correctly set fNeedtoSave
to true whenever the document has unsaved changes (TScribbleDoc
does this in the DoContent member function), the CanSave member
function will work correctly without needing to be overridden. Can
SaveAs is defined in the declaration of TScribbleDoc as follows.

virtual Boolean CanSaveAs(void){return true;}

Just as you extended the document's DoDocMenuCommand to in
clude the Pen menu, so you must extend its AdjustDocMenus member
function in the same way. The derived AdjustDocMenus makes calls
to document member functions to determine the current pen width
and pen pattern and sets the checkmarks on the menu items accord
ingly so that the menu reflects the settings of the current document.
The definition for AdjustDocMenus is shown as follows. Notice that it
also calls AdjustDocMenus for the parent class to make sure that the
default processing gets done.

void TScribbleDoc::AdjustDocMenus(void){

II Do the pen menu
MenuHandle menu= GetMHandle(rPenMenu);

Checkitem(menu,ilXl,GetPenSize() == l);
Checkitem(menu,i2X2,GetPenSize() == 2);
Checkitem{menu,i3X3,GetPenSize() == 3);
Checkitem(menu,iBlack,GetPenPat() == patBlack);

~ Handling Menus 175

Checkitem(menu,iGray,GetPenPat() ~ patGray);
Checkitem(menu,iWhite,GetPenPat() ~ patWhite);

II now let the parent class have a shot at the menus
TDoc::AdjustDocMenus();

By default, AdjustDocMenus is called whenever the user clicks the
mouse button in the menu bar, just before the menu is pulled down.
This works fine as long as you are only enabling and disabling individ
ual menu items. In Scribble, however, you want to disable the entire
Pen menu, including the title in the menu bar, when there is no active
Scribble document. If you specify item number 0 to the toolbox function
Disableltem, it will disable all the items, including the menu title. How
ever, the title will not be redrawn in its disabled state unless you also
call the toolbox function DrawMenuBar. Similarly, passing item num
ber 0 to the toolbox function Enableltem will enable all items and the
menu title, but it will not show the change until you call DrawMenuBar.

It is annoying to redraw the menu bar every time the user makes a
menu selection. What we really want is for the menu to change only
when a Scribble document is activated or deactivated. When a Scribble
document is activated, it should enable the entire Pen menu and re
draw the menu bar. When the document is disabled, it should disable
the entire Pen menu and redraw the menu bar. We can extend the doc
ument member functions Activate and Deactivate to perform these
tasks. In addition, since there is no deactivation event when a window
is closed, we must also override the DoClose document member func
tion to disable the Pen menu and redraw the menu bar.

TScribbleDoc defines a utility member function, TogglePenMenu, to
enable or disable the menu and redraw the menu bar, shown as follows.

void TScribbleDoc::TogglePenMenu(Boolean en~ble){

MenuHandle menu= GetMHandle(rPenMenu);
SetMenuAbility(menu,kEveryitem,enable);
DrawMenuBar();

TScribbleDoc overrides the Activate, Deactivate, and DoClose mem
ber functions to call TogglePenMenu in addition to their default ac
tions. Each of these functions first calls the parent class's version of the
function to get the default processing and then goes on to call Toggle
PenMenu. This is another example of extending the functionality of a
class. These three member functions are overridden as follows.

176 ~ Chapter 8 Scribble

void TScribbleDoc::Activate(void){
TDoc::Activate();
TogglePenMenu(true);

void TScribbleDoc::Deactivate(void){
TDoc::Deactivate();
TogglePenMenu(false);

Boolean TScribbleDoc::DoClose(void) {
if(TDoc::DoClose()) {

TogglePenMenu(false);
return true;

else
return false;

IJJJl. The Scribble Application

The main application for Scribble is exactly like the main application
for the Helloworld2 application described in Chapter 7, with one excep
tion. If Scribble was launched by the user opening a Scribble document
from the Finder, then we shouldn't open a blank document at program
startup since one or more existing documents will be opened instead.
You decide whether to open a blank document by looking at the return
value from OpenDocFrom.Finder. The code for the main program is
shown as follows.

void main(void) {
TScribbleApp theApp;
II initialize the application
if(theApp.InitApp()){

II open one window to start with
II unless files were opened from the Finder
if(! theApp.OpenDocFromFinder())

theApp.OpenNewDoc();
II Start our main event loop running
theApp.EventLoop();
'//now clean up
theApp.CleanUp();

.- Scribble Resources 177

lllll> Scribble Resources
The Scribble program's Pen menu is defined in the file Scribble.rsrc.
Just as you did in the Helloworld2 program, you include resources
from T App.rsrc and TDoc.rsrc first, and then include the resources
from Scribble.rsrc to replace those resources you want to change.

Scribble.rsrc contains both an Apple menu with the correct About ...
item and the Pen menu. In order to include the Pen menu, the default
'MBAR' resource in TApp.rsrc must be replaced by a new 'MBAR' re
source that contains the Apple, File, Edit, and Pen menu identifiers.
You can define the new 'MBAR' in Scribble.rsrc and include it in the
application to replace the 'MBAR' from TApp.rsrc. You also want to
override the default About dialog, so we define a new 'ALRT' and
'DITL' resource in Scribble.rsrc and include these instead to replace the
equivalent resources from TApp.rsrc. Finally, Scribble.rsrc contains
'BNDL' and 'ICN#' resources that allow the Finder to display the Scrib
ble application and its documents with their own icons. The rez source
file for Scribble is shown here:

include "TApp.rsrc" ;
include "TDoc.rsrc" ;
include "Scribble.rsrc"

lllll> The Scribble Makefile
As promised, the makefile for Scribble is almost exactly the same as the
makefile for the Helloworld2 application described in Chapter 7. See
Appendix B for a complete listing of Scribble.make. The most impor
tant difference is that the creator must be set correctly for the applica
tion. The following SetFile command, which comes just after the Link
step, shows how this is done. Notice also that we set the Bundle attrib
ute of the application so that the Finder will be able to connect the ap
plication to its document files.

SetFile {Targ} -t APPL -c SCBL -a B

178 ~ Chapter 8 Scribble

~ Summary

The main features illustrated by the Scribble program are how to read
and write application-specific files and how to incorporate application
specific menus. Both of these techniques are crucial to developing use
ful applications based on T App and TDoc.

For an application to use its own files, its document class must over
ride ReadDocFile and WriteDocFile. The document class must also tell
the application that it can save files by returning true for the CanSave
As member function. One other responsibility of the document class is
to override GetDocType to return the OSType of the files that it uses.

Likewise, for an application to use its own files the application class
must override CanOpen to return true so that the Open menu item will
be enabled. It must also override GetNumFileTypes and GetFile
TypesList to provide the parameters for SFGetFile. Finally, it must
override MakeDoc to provide the creator signature to the new docu
ment so that newly created files will have the correct creator.

If the document and application classes override the member func
tions named in the previous two paragraphs, then opening documents
by double-clicking on a document in the Finder is automatically sup
ported by T App. The only responsibility of the derived application is
to check the return value of OpenDocFromFinder to see if files actually
were opened with the application. Scribble uses this technique to de
cide whether to open a blank document at startup.

For a document class to use its own menus, the derived document
class must override AdjustDocMenus and DoDocMenuCommand.
These overridden member functions do the processing that is necessary
for the document-specific menus, and then call the inherited version of
the member functions to perform the general menu processing in
TDoc. Similarly, the application class can extend AdjustMenus and
DoMenuCommand to handle additional menus that pertain to the ap
plication. This technique of extending the function by calling the par
ent's member function as part of the derived class's member function is
very important in object-oriented programming.

9 ~ Modeless Dialog Documents

This chapter develops a modeless document class, TModelessDoc, de
rived from the generic document class described in Chapter 5. The
modeless document class allows you to create a document whose win
dow is a modeless dialog instead of a standard document window.
This lets you use the toolbox Dialog Manager to handle buttons and
other types of controls within the window.

As its name suggests, this class creates modeless dialogs. A modeless
dialog acts just like a normal document window in that it can be
moved about the screen and go behind another window when the
other window is selected. In contrast, a modal dialog will not permit
the user to select any other window until the dialog is dismissed.

This class is relatively simple to derive from TDoc. You need to
change the member functions that create the document window and
handle events. The public interface for the class will be the same as the
public interface for TDoc, so the application class described in Chapter
6 will be able to use documents from the TModelessDoc class in exactly
the same way as it uses documents from TDoc. The ability to substitute
a derived class in place of the parent class is one of the best reasons to
use an object-oriented language.

TModelessDoc is intended to be a base class. That is, it is not very
useful unless you derive your own class from it. But you will find that
deriving a class from TModelessDoc typically requires that you over
ride only one or two member functions and define the resources for
your dialog window. The second half of this chapter develops a class
derived from TModelessDoc and uses it in a small application. The
complete code for the TModelessDoc class and the application that
uses it are listed in Appendix B.

179

180 ~ Chapter 9 Modeless Dialog Documents

._,, TModelessDoc Constructor and Destructor
The constructor for TModelessDoc does nothing except pass its argu
ments on to its parent class, TDoc. The syntax for passing constructor
arguments to a parent class is described for TScribbleDoc's construc
tor in Chapter 8. One difference between the example in Chapter 8 and
the constructor defined here is that this definition is done within the
declaration of the class. In other words, TModelessDoc' s constructor is
declared and defined at the same time in the file TModelessDoc.h. The
ability to combine declaration and definition is especially useful when
the body of the member function is empty, as it is here for TModeless
Doc' s constructor.

TModelessDoc(OSType theCreator = '????',
SFReply * SFinfo = (SFReply *)nil):

TDoc(theCreator,SFinfo)
{}

The destructor for TModelessDoc calls the toolbox function Dispos
Dialog to delete the dialog window that was allocated for the docu
ment. (See the next section for a discussion of how the dialog window
is created.) Notice that we typecast the [Doc Window member, which is
declared as a WindowPtr, to be a DialogPtr so that we can pass it to
DisposDialog. The definition for TModelessDoc' s destructor is shown
as follows. Like our other derived document classes, this destructor is
declared to be virtual so that it will be called even though the docu
ment is accessed through a TDoc pointer.

TModelessDoc::-TModelessDoc(void){

if (fDocWindow) {
DisposDialog((DialogPtr)fDocWindow);
fDocWindow = nil;

The destructor for the parent class, TDoc, will be called automatically
after the destructor for TModelessDoc. For this reason, TModeless
Doc' s destructor sets the [Doc Window member to nil so that TDoc' s de
structor will not try to delete a window that has already been deleted.

~ Making the Dialog Window 181

~ Making the Dialog Window

TModelessDoc overrides the MakeWindow member function to
create a dialog window instead of a normal document window. It calls
the toolbox function GetNewDialog to load the specified 'DLOG' and
'DITL' resources. The code for Make Window is shown as follows.

Boolean TModelessDoc::MakeWindow(Boolean /*colorWindow*/) {

fDocWindow = (WindowPtr)GetNewDialog(GetWinID(),nil,
(WindowPtr) -1) ;

return (fDocWindow !=nil);

Notice that we don't use the color Window argument to Make Window,
so we comment it out to prevent compiler warnings. There is no special
toolbox call to create color dialogs. If you want a color dialog you must
create a 'dctb' (dialog color table) resource with the same ID number as
the 'DLOG' resource. GetNewDialog automatically makes a color dia
log if it finds a matching 'dctb' resource when creating the dialog.

Notice also that we typecast the DialogPtr returned by GetNewDia
log to be a WindowPtr so that we can assign it to the [Doc Window mem
ber of the document.

MakeWindow calls GetWinID to get the resource ID when it calls
GetNewDialog. TModelessDoc overrides GetWinID to return the con
stant rGenericDialog, which is defined in TModelessDoc.h. You will
want to override this function if you define your own 'DLOG' and
'DITL' resources with a different ID number. GetWinID is shown as
follows. You don't have to override GetWinID if you define your
'DLOG' and 'DITL' resources with an ID number of rGenericDialog.
The default definition of GetWinID is also shown.

short TModelessDoc::GetWinID(void) {
return rGenericDialog;

182 ~ Chapter 9 Modeless Dialog Documents

.., Handling Events
One reason to use dialogs instead of regular document windows is that
the toolbox Dialog Manager will take care of much of the event han
dling that you would normally have to do for a regular window. The
following sections describe how to modify the event handling member
functions of TDoc to use the Dialog Manager.

~ Using the Dialog Manager

The Dialog Manager functions IsDialogEvent and DialogSelect are es
pecially designed to support modeless dialogs. Each time you receive
an event you pass the event to IsDialogEvent to see if the event in
volves a dialog window. If IsDialogEvent returns true, you call Dialog
Select, passing the event as an argument along with pointers to a Dia
logPtr variable and a short integer variable. If the event involves an
enabled item in the dialog, such as a mouse click on a button or a text
entry in a text edit control, then DialogSelect returns true and fills in the
DialogPtr and short integer arguments to indicate the identity of the di
alog and the item affected by the event. For update and activate events,
DialogSelect updates or activates the dialog window and returns false,
indicating that no further processing of this event is necessary.

TModelessDoc defines a new member function, DoDialogEvent, to
handle all events. It calls lsDialogEvent and DialogSelect to determine
if the event affects an enabled dialog item and to automatically handle
updates and activation events. If an enabled item is involved in the
event, then it calls another new member function, DoltemHit, to spe
cifically respond to the event. The code for DoDialogEvent is shown as
follows.

void TModelessDoc::DoDialogEvent (EventRecord* theEvent) (

short itemHit;
DialogPtr theDialog;

if (IsDialogEvent(theEvent)) {
if(DialogSelect(theEvent,&theDialog,&itemHit))

DoitemHit(theDialog,itemHit);

~ Handling Events 183

~ Responding to Individual Item Hits

DoDialogEvent calls the DoltemHit member function when it detects an
event that affects a particular dialog item. DoltemHit is responsible for
responding to the event. For example, DoltemHit might respond to a
click on the OK button of a dialog by initiating some process. DoltemHit
is the member function that you must override in your derived dialog
document class. It is the member function that embodies information
about the function of individual dialog items in your document. Doltem
Hit is defined, as follows, as an empty function in the declaration of
TModelessDoc. The sample derived class described in the second half of
this chapter shows an example of how to override DoltemHit.

virtual void DoitemHit(DialogPtr theDialog,short theitem) {}

~ Receiving Events from TApp

DoDialogEvent and DoltemHit are both new member functions that
are unique to this class. They are both declared in the protected section
of the class declaration. Because they are protected, the application
class cannot call them directly. You must override the public event han
dling member functions for the document class so that they call DoDia
logEvent. Thus, the application treats the dialog document just like a
regular document, but the dialog document uses its own internal
implementation to handle the events that are passed to it by the appli
cation. TModelessDoc overrides the following four event handling
member functions so that they pass the event on to DoDialogEvent.

virtual void DoActivate(EventRecord* theEvent)
{DoDialogEvent(theEvent);}

virtual void DoTheUpdate(EventRecord* theEvent)
{DoDialogEvent(theEvent);}

virtual void DoContent(EventRecord* theEvent)
{DoDialogEvent(theEvent);}

virtual void DoKeyDown(EventRecord* theEvent)
{DoDialogEvent(theEvent);}

In addition, you must also override the Doldle member function so
that it calls DoDialogEvent. This is necessary so that the insertion
point will blink in edit text items in the dialog. Since Doldle does not
have an EventRecord argument, you must create one as a local varia
ble, set the what field of the record to be a null event, and then pass the
event on to DoDialogSelect. The code for Doldle is shown as follows.

184 llJI> Chapter 9 Modeless Dialog Documents

void TModelessDoc::Doidle(void){

EventRecord theEvent;
theEvent.what = nullEvent;

DoDialogEvent(&theEvent);

IJi> Dialog Windows Shouldn't Be Resized

One final issue for event handling involves the ability to resize the win
dow. Normally, a dialog window should not be resized, so you need to
override the DoGrow and DoDrawGrowlcon member functions to
disable this functionality. Both of the member functions are redefined
as empty member functions, as shown here. If you want to be able to
resize your dialog windows, then override these member functions in
your derived class to restore the functionality that was present in the
original TDoc class.

II disable grow actions
virtual void DoGrow(EventRecord* theEvent)

{}

virtual void DoDrawGrowicon(void)
{}

.., Using TModelessDoc: A Sample Application
The rest of this chapter describes a sample application that uses a docu
ment class derived from the modeless dialog class. The derived dialog
class is very simple; it contains a single button and a user item that fills a
rectangle with a series of ever smaller rectangles, as shown in Figure 9-1.

Even though this application is very simple, it illustrates several key
points related to using the modeless dialog class. First, it shows how to
use dialog user items. User items enable you to install your own proce
dures to draw in the dialog window. User items give you almost unlim
ited opportunities to customize the look of your dialogs and make them
appear more professional. Next, the derived dialog document class
shows how to override the DoltemHit member function to respond to
user input in your dialog. You must override this member function in

IJJ>- TSampDlg 185

your dialog class since the base class defines this member function as
empty. Finally, the sample class shows how to define 'DLOG' and
'DITL' resources for the dialog. You must define these resources for
your derived class since the base class contains no default resources.

"" S File Edit

Figure 9- l. A Sample Dia log

... TSampDlg

TSampDlg is a class derived from TModelessDoc. The declaration of
TSampDlg is shown as follows.

class TSampDlg : public TModelessDoc{

public :
TSampDlg(OSType creator , SFReply * theRepl y) ;
virtual Boolean InitDoc (void) ;

p rotected:
virtua l void DoitemHi t (DialogPtr theDialog, short t heitem);

) ;

The constructor for TSampDlg has no purpose other than to pass its ar
guments on to the parent class, as illustrated by the following definition.

186 ., Chapter 9 Modeless Dialog Documents

TSarnpDlg::TSampDlg(OSType creator,SFReply * theReply):
TModelessDoc(creator,theReply) {

TSampDlg overrides only two other member functions, InitDoc and
DoltemHit. These functions are discussed in the rest of this chapter.

IJ)i> Initializing the Document

I By the Way IJll- I

Dialog user items enable you to hook your own drawing procedures to
dialog items. When the toolbox dialog manager gets an update event
for a dialog window, it steps through all the items in the dialog, draw
ing each one in turn. For the standard dialog items such as buttons and
static text items, the dialog manager uses standard toolbox functions to
draw the items. When the dialog manager encounters a user item, it
employs the user item procedure supplied by the program to draw the
item; this allows the program to draw any sort of image to represent
the item.

The ·biggest danger in this scheme is that the user item and its draw
ing procedure must be hooked up at runtime, before the first update
event for the dialog. If the dialog manager tries to draw the user item
before you have specified the drawing procedure, it will try to use a nil
procedure pointer and will crash.

TSampDlg uses the InitDoc member function to set up the proce
dure pointer for the user item in the sample dialog. Remember that
InitDoc is called after the window has been created but before it has
been made visible. This is the perfect time to hook the user item to its
drawing procedure. The toolbox functions GetDltem and SetDltem are
used to first gather information about the user item and then attach a
pointer to the user item drawing procedure to the user item. We define
a constant, iUserltem, to specify the item number of the user item.

Dia~i,item n'1Jllbers are assigned in the order ih:which the ''"""'T"""''
aredefih.edm,the 'DITL' resource for the dialog~

The code for InitDoc is shown as follows. Notice that it calls the in
herited version of InitDoc first to take care of any initialization for its
parent classes. It then calls GetDltem to fill in some variables with in
formation about the specified dialog item. It then calls SetDltem, sup
plying a pointer to the user item procedure as the fourth argument.

~ TSampDlg 187

The function prototype for the user item procedure is declared at the
beginning of InitDoc so that it can be used as a procedure pointer
when calling SetDltem. The prototype tells the compiler that some
where else there is a function named UserltemProc that uses the Pascal
calling method and has two arguments. This function is actually
defined later in the same source file, although it could alternately be
defined in another source file.

Boolean TSampDlg::InitDoc(void) {

II install user item proc
void pascal UseritemProc(WindowPtr theWindow,short theitem);

Rect theRect;
short theType;
Handle theitem;

if(TModelessDoc::InitDoc()) (
GetDitem((DialogPtr)fDocWindow,

iUseritem,
&theType,
&theitem,
&theRect);

SetDitem((DialogPtr)fDocWindow,
iUseritem,
theType,
(Handle)UseritemProc,
&theRect);

return true;

else
return false;

The fourth argument to the toolbox function SetDltem is supposed to
be a handle. We must therefore typecast our procedure pointer, User
ItemProc, to be a handle before the compiler will accept it. This type
cast is needed to correctly interface with the toolbox call, but it causes
the following compiler warning.

File "ModelessApp.cp"; line 115 # warning: pointer to function
cast to pointer to non function

188 ~ Chapter 9 Modeless Dialog Documents

You can ignore this warning. The typecast is necessary because Set
Dltem is used for many purposes and for most, the fourth argument is
a handle. However, when hooking up a user item to a user item proce
dure, SetDltem needs a function pointer instead of a handle.

Key Point ~ Because the toolbox interface is defined in Pascal, it is not possible
to dedare two~ of SetDltem. If the toolbox were defined in
C++, tlUJ,R~~ be avoided by overloading SetDBem so
tha~ oae~ had a handle a& the fourth Jl'gUJXlent and the other
veisioai.t a function ~ter.

~ Dialog User Item

The arguments for the user item procedure are defined in the "Dialog
Manager" section of Inside Macintosh. It must use the Pascal calling con
vention and take two arguments - a window pointer and an item
number. The sample user item procedure uses the dialog pointer and
item number to call GetDltem to get the rectangle that encloses the user
item. It then draws ever smaller rectangles to fill the item area. The
code for the user item procedure is shown as follows. Notice that it is
not a member function, since a member function would have an extra,
implicit argument pointing to the object, as discussed in Chapter 3.

void pascal UseritemProc (WindowPtr theWindow, short theitem) {
Rect r;
short theType;
Handle theitemH;
short width;

GetDitem((DialogPtr)theWindow,
the Item,
&theType,
&theitemH,
&r);

width = (r.right - r.left);
Era seRect (&r);
FrameRect (&r);
for(short i =width I 2; i > O; i -= 2) {

InsetRect(&r,2,2);
FrameRect (&r);

~ TModelessApp 189

..- Handling User Input

As mentioned in the discussion of the base class, you must override the
DoltemHit member function to respond to user input. This function is
called whenever there is a mouse click or key press in an enabled dia
log item. The arguments are a DialogPtr and the item number. You can
use the item number to determine what action to take. The DialogPtr
can be useful if you want to set the state of radio buttons or check
boxes. The code for the sample DoltemHit is shown as follows. It sim
ply beeps when the OK button is clicked.

void TSarnpDlg::DoitemHit(DialogPtr/*theDialog*/,short theitem) (
if(theitem ~ iOK)

SysBeep(l);

..,, TModelessApp
You must define the minimal derived application class to tie every
thing together. Like other application classes that you have seen in pre
vious chapters, this class must override the MakeDoc member function
to create the desired type of document. The declaration of the new ap
plication class and the definition of its MakeDoc member function are
listed as follows.

class TModelessApp : public TApp(
virtual TDoc * MakeDoc(SFReply *reply= (SFReply *) nil);

} ;

TDoc * TModelessApp::MakeDoc(SFReply *reply) (
return new TSarnpDlg(GetCreator(),reply);

..,, Application Resources
The derived dialog document class that is defined for this application
needs to have its own 'DLOG' and 'DITL' resources. If you define them
both with the ID number rGenericDialog (defined as 1000 in TMode
lessDoc.h), you will not have to override GetWinlD. Appendix B con
tains the definition for the sample 'DLOG' and 'DITL' resources in the
file ModelessApp.rsrc.r.

190 ... Chapter 9 Modeless Dialog Documents

The file ModelessApp.r lists all the resource files necessary to create
the application resources. As before, they are listed in a particular or
der so that the resources in the last files will replace equivalent re
sources in the first files. The listing for ModelessApp.r is as follows.

II ModelessApp.r
II gather the resources for simple program
II that uses TModelessDoc's

include "TApp.rsrc";
include "TDoc.rsrc";
include "ModelessApp.rsrc";

I> Making the Sample Application
The makefile for this sample application is similar to those in previous
chapters. Since TSampDlg is derived from TModelessDoc, you need
to include the directory for TModelessDoc in the search path for C++
and the linker. Just as in Chapter 6, where we defined a path name for
the directory containing TApp and TDoc, you can define an additional
directory path for the modeless dialog class, as follows.

tell cplus and rez where to find included files for TApp, TDoc,
and TModelessDoc
AppObjectDir =::App-Doc:
ModelessObjDir = ::ModelessDoc:

Next, tell C++ to search that directory when looking for include files
by adding the ModelessDoc directory to CPlusOptions, as follows.

options for C++, where to look for include files
CPlusOptions = {SymOpts} -i "{AppObjectDir}" -i "{ModelessObjDir}"

Then you add the object file for TModelessDoc to the list of object
files, and you include the object file for the sample application Mode
lessApp, shown as follows.

Objects = ()
"{AppObjectDir}"TApp.cp.o ()
"{AppObjectDir}"TDoc.cp.o ()
"{ModelessObjDir)"TModelessDoc.cp.o ()
ModelessApp.cp.o

.,. Summary 191

Because ModelessApp uses the TModelessDoc class, you must in
clude a dependency rule for the new document class so that it will be
rebuilt correctly when any of its dependent files are changed. TMode
lessDoc.cp.o is dependent on TModelessDoc.cp and TModelessDoc.h
and also on TDoc.h, as shown by the following dependency rule.

dependency rules for TModelessDoc
"{ModelessObjDir}"TModelessDoc.cp.o f o

"{ModelessObjDir}"TModelessDoc.cp o
"{ModelessObjDir}"TModelessDoc.h o
"{AppObjectDir}"TDoc.h

These are the major changes you must make to the makefile. They
deal largely with the problem of how to include header files and object
modules from an additional directory. See the complete text of Mode
lessApp.make in Appendix B for the finer details of putting the appli
cation together.

~ Summary
TModelessDoc is an easy modification of TDoc that enables you to
create and manage documents that utilize features of the toolbox Dia
log Manager. It gives you the ability to use buttons, text boxes, and
user items in document windows.

This chapter discussed the TModelessDoc class as a base class and
then developed a derived class that could be used in an application.
The derived class showed how to use standard dialog items like a but
ton and also how to include user items to give your dialogs a custo
mized look.

The ability to adapt the original TDoc class to use dialogs instead of
regular windows shows the flexibility of a good base class. If these
changes had been more difficult to make, it would have indicated that
the design of the original class was at fault.

TModelessDoc was derived from TDoc to serve as a new base class
for other derived document classes. It will not be developed any fur
ther in this book. The next chapter also develops a new document class
derived from TDoc. That new class will be used as the base class for
the document classes derived in Chapters 11-13.

10 ~ TScrollDoc: The Generalized
Scrolling Document Class

This chapter describes the TScrollDoc class. TScrollDoc is derived
from the TDoc class presented in Chapter 5. TScrollDoc supports
scroll bars in a window very generally, so it can be used as the basis
for many types of documents that need to scroll images that are larger
than the window itself.

Supporting scroll bars and scrolling images is one of the hardest
parts of Macintosh programming. It involves defining functions that
are called from the toolbox and requires well-coordinated error check
ing to keep the image and the scroll bars in sync. TScrollDoc encapsu
lates fundamental concepts about scrolling and the QuickDraw coordi
nate system, and it also implements most of the trickiest scrolling
routines that are needed to support scroll bars.

The scrolling member functions contained in this class were origi
nally developed as part of the TextEdit document class described in
Chapter 12. But in the course of creating that class, I decided it would
be better to separate the scrolling member functions from the text han
dling member functions. The result was a scrolling class that sup
porte_d the TextEdit class and could also be used to support a docu
ment class that displayed 'PICT' images, as shown in Chapter 11. My
main motivation for isolating and generalizing the scrolling code was
that I never wanted to have to write scrolling code again.

One of the goals of TScrollDoc is to hide most of the complexity of
scrolling. Just because a class has a complex implementation is no rea
son for it to have a complicated external interface. You will find the
TScrollDoc class easy to use. The member functions that you have to

193

194 • Chapter 1 O TScroll Doc: The Generalized Scrolling Document Class

override when creating your derived scrolling classes are well isolated
and typically trivial to implement. You should not have to rewrite the
hard parts.

This chapter discusses general scrolling concepts and various mem
ber functions of TScrollDoc. The complete code for TScrollDoc is
listed in Appendix B.

~ Overview of Scrolling
Scrolling is a way to display an image in a window when the image is
larger than the window. Think of a window as a stationary piece of
cardboard with a rectangular hole cut in its center. Think of the image
as a large piece of paper that sits behind the cardboard window. You
can see only that portion of the image that sits behind the hole in the
cardboard. To see other parts of the image, you can slide the paper be
neath the cardboard so that another portion of the image comes into
view through the hole. Scrolling is analogous to moving the paper be
neath the cardboard.

Let's translate cardboard and paper into QuickDraw GrafPorts and
coordinate systems. A window displays images by drawing into a
GrafPort. The interior of the window is analogous to the hole in the
cardboard. By default, the coordinate system for a window's GrafPort
has its origin in the upper left corner of the interior of the window, as
shown in Figure 10-1. Images that are drawn in the window are posi
tioned according to the coordinate system of the window's GrafPort.
The large 'PICT' image in Figure 10-1 is drawn into the rectangle
(0,0,450,400) (top left, bottom right).

Now consider the fact that the origin of a window's GrafPort does
not always have to be in the upper left corner of the window. It is pos
sible to specify the coordinates of the upper left corner of the window
with the toolbox function SetOrigin. Figure 10-2 shows how a large
'PICT' image would be displayed if the window's upper left corner
was set to the coordinate (300,145) (vertical, horizontal). The 'PICT' is
still drawn into the rectangle (0,0,450,400), but this rectangle is now in
a different place relative to the interior of the window. The coordinate
system of the window's GrafPort has been moved up and to the left,
just like the piece of paper beneath the cardboard.

TScrollDoc uses coordinate system offsets to implement scrolling.
The class keeps track of the current coordinates of the top left corner of
the window and calls SetOrigin to slide the window's GrafPort to
match these offsets. User clicks on the scroll bars cause the class to ad
just the coordinate offsets and redraw the image. This scrolling strat
egy turns out to be general enough to apply to all sorts of image data.

.,, Overview of Scrolling 195

(0,0)

: . · · .. : · ... ·: .. · ... · ... · ·:::. ·:. ·:. ·:. ·: . ·: ·:. ·:. ·:. ·:. ·:::. ·:. ·:. ·: ..

(450,400)

Figure l 0- l . A Window and a Large Image

~ Scroll Bars

Scroll bars are a convenient way for a user to control scrolling in a win
dow, but they are not absolutely necessary. Remember, for example,
that the original MacPaint program had no scroll bars, yet the user
could view a selected portion of a full-page document in a small, fixed
size window. MacPaint let the user move the image with a "hand" cur
sor instead of scroll bars. The hand cursor helped the user visualize, in
a very direct way, the metaphor of sliding a piece of paper beneath the
window until the desired portion came into view.

196 .,. Chapter 1 O TScroll Doc: The Generalized Scrolling Document Class

(0,0)

Figure 10-2. An Offset Window and a Large Image

Scroll bars perform the same function as the hand cursor. They tell
the program how far to slide the image. Scroll bars contain several dis
tinct parts, as shown in Figure 10-3.

The program can determine what part of a scroll bar was clicked by a
user by calling the toolbox function FindControl. The program can then
scroll the image by the appropriate amount, depending on which part
of the scroll bar was clicked. Clicks on the up or down arrows typically
cause the image to scroll by a small amount, such as one line of text in a
text window. Clicks on the page up or page down areas normally result
in scrolling equal to the width or height of the window. Dragging the
thumb permits the user to scroll to an arbitrary location in the image.

• Members 197

down arrow

Figure l 0-3. Scroll Bar Parts

Scroll bars also maintain three state variables: minimum value, maxi
mum value, and current value. The thumb position indicates the cur
rent scroll bar value relative to the minimum and maximum values.
TScrollDoc always sets the minimum value of a scroll bar to 0. It sets
the maximum value of a scroll bar to the vertical or horizontal dimen
sion, in pixels, of the image, minus the height or width of the window.
Looking back at Figure 10-1, the image is 450 pixels tall and the win
dow 150 pixels tall, so the maximum value of the vertical scroll bar
would be 300. TScrollDoc uses the current value of the scroll bar to
hold the current vertical or horizontal offset in the GrafPort' s coordi
nate system. In Figure 10-2, the current value of the vertical scroll bar is
300 and the horizontal scroll bar is 145.

~ Members

TScrollDoc is derived from TDoc, so it contains all the members of
TDoc. It also defines four additional members that are specific to its
scrolling features. Two of the members contain ControlHandles that re
fer to the vertical and horizontal scroll bars of the document window.
The other two members contain integers that keep track of the amount
of horizontal and vertical offset in the coordinate system that has oc
curred as a result of scrolling, as described in the previous section. The
declaration of TScrollDoc' s members is shown as follows.

class TScrollDoc : public TDoc {

protected:
ControlHandle fHorizScrollBar;
ControlHandle fVertScrollBar
short fVOffset;
short fHOffset;

198 Ill>- Chapter 1 O TScroll Doc: The Generalized Scrolling Document Class

All of these members are declared as protected so that they can only
be accessed by member functions of TScrollDoc and its derived
classes. We do provide public member functions, however, to get the
value of the scroll bar ControlHandles since they need to be available
to functions that are not class member functions (this is explained in
the "Scroll Action Procedure" section of this chapter). The two member
functions to return the ControlHandles are defined in the declaration
of TScrollDoc shown here.

public:

ControlHandle GetVScroll(void){return fVertScrollBar;}
ControlHandle GetHScroll(void){return fHorizScrollBar;}

_., Static Member and Static Member Function

In addition to the four members described in the previous section,
TScrollDoc defines a static member that is a pointer to a TScrollDoc
object. This member, fCurrScrollDoc, is declared in the declaration of
TScrollDoc in the file TScrollDoc.h as shown here. Notice that fCurr
ScrollDoc is protected so that it can't be accessed from outside the class.

class TScrollDoc : public TDoc {
protected:

ControlHandle fHorizScrollBar;
ControlHandle fVertScrollBar;
short fVOffset;
short fHOffset;
static TScrollDoc *fCurrScrollDoc;

It is defined and initialized in TScrollDoc.cp with the following
statement.

TScrollDoc *TScrollDoc::fCurrScrollDoc =nil;

This definition statement causes the compiler to allocate space for the
static member when TScrollDoc.cp is compiled. As explained in Chapter
3, static members are essentially global variables that obey the access
rules of class members.

fCurrScrollDoc is initialized to nil in its definition statement. Subse
quently, it is set to the value of the currently active document when-

Key Point_.. ,

_., Static Member and Static Member Function 199

ever a new document becomes active (see the description of the Acti
vate member function later in this chapter). All scrolling document ob
jects share a single instance of fCurrScrollDoc; thus its value always
points to the current scrolling document.

TScrollDoc also defines a static member function, GetCurrScroll
Doc, to allow functions from outside the class to get the value of fCurr
ScrollDoc, which is protected. The key attribute of a static member func
tion is that you don't need to have an object reference to call the static
member function. To call a regular member function, you must have a
specific object, or a pointer to an object, of that class. With a static mem
ber function, however, you can call the function simply by preceding
its name with the name of the class and two colons, as follows.

II call the static member function
TScrollDoc * theCurrScrollDoc = TScroll :: GetCur rSc rollDoc ();

GetCurrScrollDoc is defined in the declaration of TScrollDoc as fol
lows. Notice the static keyword before the declaration.

static TScrollDoc *GetCurrScrollDoc (void) {return fCurrScro l lDoc ; }

Because GetCurrScrollDoc is a static member function, it is possible
for functions that do not have an object reference to call it and gain ac
cess to the current scrolling document. This is necessary because cer
tain parts of the scrolling mechanism, explained in the "ScrollAction
Procedure" section of this chapter, cannot be written as object member
functions and cannot gain access to the scrolling member functions
without first getting a pointer to the current scrolling document from
GetCurrScrollDoc.

The static member and static member function enable the parts of the
scrolling code that are not member functions to utilize the member
functions of the scrolling class. This could also have been accomplished
by using a global variable to hold a pointer to the current scrolling doc
ument, but a static member can be protected while a global can be al
tered by any piece of code.

Static members and static member functions are often preferable to
global variables because static members can be protected from un
authotjzed modification. .

200 _.. Chapter 1 O TScroll Doc: The Generalized Scrolling Document Class

_.. Constructor and Destructor
The constructor for TScrollDoc merely initializes the members that are
unique to this class and passes its two arguments on to its parent class,
TDoc. The mechanism for passing arguments to parent constructors is
described in more detail in Chapter 8. The code for TScrollDoc' s con
structor is shown as follows.

TScrollDoc::TScrollDoc(OSType theCreator,SFReply * SFinfo):
TDoc(theCreator,SFinfo) {
fHorizScrollBar = nil;
fVertScrollBar = nil;
fVOffset = O;
fHOffset = 0;

The destructor is defined as follows as an empty member function.
Since TScrollDoc will be used as a base class for other document
classes, the destructor is virtual to ensure that the destructor for the de
rived class will be called, as explained in Chapter 3.

II virtual destructor so that derived destructors will be called
virtual -TScrollDoc(void) {}

_.. Initialization
TScrollDoc overrides the InitDoc member function to create the two
scroll bars for the document window. It calls the lnitDoc member func
tion for its parent class first, to make sure that the default initialization
is successful before it proceeds. The application class calls InitDoc for
all new documents. If the new document is a member of the TScrollDoc
class, then the version of InitDoc shown as follows will be executed.

Boolean TScrollDoc::InitDoc(void) {
if (! TDoc: : InitDoc ())

return false;
if(fDocWindow !=nil){

SetPort(fDocWindow);
fHorizScrollBar = GetNewControl(rHScroll,fDocWindow);
fVertScrollBar = GetNewControl(rVScroll,fDocWindow);
SizeScrollBars();
SynchScrollBars();

return ((fHorizScrollBar !=nil) && .(fVertScrollBar !=nil));

~ Geometry 201

InitDoc calls the toolbox function GetNewControl to load in the re
sources for the scroll bars. It then calls two member functions, SizeScroll
Bars and SynchScrollBars to fit the scroll bars to the window. These two
member functions are explained in a later section of this chapter.

InitDoc returns true if both scroll bars were created successfully. One
problem with this class is that there is no way to specify whether or not
you want both scroll bars. What if you wanted a window without the
horizontal scroll bar? The problem is that the original design of TDoc
did not deal with scroll bars, so there are no arguments to any of its ini
tialization member functions to specify how many scroll bars to install.
This problem is perpetuated because TApp treats all documents like
members of the TDoc class. You could solve this by adding parameters
to the InitDoc member function to control scroll bar creation, but you
would also have to change the TApp class to pass these parameters
when it calls InitDoc.

You might want to make these changes. Essentially, you want to
create a derived application class that uses TScrollDoc instead of TDoc
as its base document class.

ll1> Geometry
TScrollDoc defines several new member functions that are concerned
with the dimensions of the image and the viewing area of the window.
Some other member functions specify how far to scroll in response to
various scrolling actions. These are the member functions that you will
typically override when deriving a class from TScrollDoc. Other scroll
ing member functions in the class use these member functions to get
the specific characteristics of your image so that it can be scrolled.

The GetContentRect member function fills in a rectangle that defines
the area of the document window where the image is displayed. By de
fault, we take the portRect of the window and subtract the scroll bars,
leaving just the interior of the window. GetContentRect is a critical
member function since it is used by many other member functions in
the class. It is not necessary to override this member function if your
image occupies all of the window except the scroll bars, but you will
want to override it if your image takes up more or less space than that.
For example, the PictView document class in Chapter 11 does not over
ride GetContentRect, but the TextEdit class in Chapter 12 does over
ride it since the text window has a narrow top and left margin where
no text is ever displayed. You could also override GetContentRect if
your derived class had a palette area, like MacDraw, within each win
dow. The definition of GetContentRect is shown as follows.

202 ~ Chapter 1 O TScroll Doc: The Generalized Scrolling Document Class

void TScrollDoc::GetContentRect(Rect & r){

II how big is the content area of the window, discounting the
II scroll bars
r = fDocWindow->portRect;
if(fVertScrollBar !=nil)

r.right -= kScrollBarPos;
if(fHorizScrollBar !=nil)

r.bottom -= kScrollBarPos;

The next two member functions, GetVertSize and GetHorizSize, re
turn the vertical and horizontal dimensions, in pixels, of the document
image. You must override these member functions since they return 0 by
default. For example, the PictView document class in Chapter 11 returns
the width and height of the picture's bounding rectangle. The default
definitions of GetVertSize and GetHorizSize are shown as follows.

II these two member functions must be overridden
virtual short GetVertSize(void) {return 0;}
virtual short GetHorizSize(void){return 0;}

Finally, four member functions are defined to tell the scrolling rou
tines how far to scroll when the user clicks on the up or down scroll ar
rows or the page scroll areas of the scroll bar.

You must override the first two of these member functions. They
specify how far to scroll in response to a click on the up or down ar
rows of the scroll bar, which is known as a line scroll. The member
function GetVertlineScrollAmount gives the amount to scroll verti
cally and GetHorizlineScrollAmount gives the amount for horizontal
scrolling. By default these member functions return 0. The TextEdit doc
ument class overrides these member functions to return the number of
pixels in one line of text. The default definitions are shown as follows.

virtual short GetVertLineScrollAmount(void) {return 0;}
virtual short GetHorizLineScrollAmount(void){return 0;}

The other two member functions that specify how much to scroll are
GetVertPageScrollAmount and GetHorizPageScrollAmount. These
two member functions return the number of pixels to scroll, either ver
tically or horizontally, in response to a click on the page scroll area of
the scroll bar. By default they return the height or width of the content
area of the window, minus a small constant value to give some over
lap. Essentially, they scroll the image one full window at a time. Since

11'- Coordinate Offset and Focus 203

most Macintosh users have come to expect this behavior, you will
probably not need to override these member functions. The definitions
of GetVertPageScrollAmount and GetHorizPageScrollAmount are
shown as follows.

short TScrollDoc::GetVertPageScrollAmount(void){
Rect r;
GetContentRect(r);
return r.bottom - r.top - kScrollOverlap;

short TScrollDoc::GetHorizPageScrollAmount(void) {
Rect r;
GetContentRect(r);
return r.right - r.left - kScrollOverlap;

I])> Coordinate Offset and Focus
As mentioned earlier in this chapter, the key to the scrolling techniques
of this class is changing the coordinate system of the document win
dow's GrafPort. The contents of the window are drawn within a coor
dinate system that is offset to reflect how far the image has been
scrolled. Whenever we are about to draw the contents of a window, we
need to make sure that the origin of the window is set to reflect this co
ordinate offset. The member function FocusOnContent uses the fVOff
set and fHOffset members (of the document) to set the coordinate origin
with the toolbox function SetOrigin. It also sets the clip region of the
window to encompass just the content area of the window, excluding
the scroll bars. This ensures that drawing the document's image will
not infringe upon the scroll bars. The code for FocusOnContent is
shown as follows.

void TScrollDoc::FocusOnContent() {
SetPort(fDocWindow);
SetOrigin(fHOffset,fVOffset);
Rect r;
GetContentRect(r);
ClipRect (&r) ;

204 ~ Chapter 10 TScroll Doc: The Generalized Scrolling Document Class

TScrollDoc also defines a member function, FocusOnWindow, that
we call whenever we are about to draw some of the structural parts of the
window, such as the scroll bars or the grow box. This member function
sets the origin of the window back to 0,0 and opens up the clip region to
include the scroll bar areas. FocusOn Window is shown as follows.

void TScrollDoc::FocusOnWindow() {
SetPort(fDocWindow);
SetOrigin(0,0);
Rect r = fDocWindow->portRect;
ClipRect (&r);

These two member functions allow TScrollDoc to maintain two dis
tinct coordinate systems for the document window. When drawing the
image contents, it offsets the coordinates in accordance with how far
the image has been scrolled. When drawing the structural parts of the
window, it reverts to a fixed coordinate system with no offset. Other
member functions that draw in the window are responsible for calling
FocusOnContent or FocusOnWindow, as appropriate, to make sure
that both the coordinate system is aligned with the part of the window
that they want to draw in and the clip region is set properly.

_.. Managing the Scroll Bars
We define three member functions to manage the scroll bars. The first
member function, SizeScrollBars, is called when the document win
dow is first created and whenever it is resized thereafter. SizeScroll
Bars first calls FocusOnWindow to reset the coordinate system origin
to 0,0. Then it uses the portRect of the window to calculate the position
and size of the horizontal and vertical scroll bars. Notice that after a
scroll bar is drawn in its new position, we call the toolbox function Val
idRect so that the scroll bar won't be needlessly drawn again as part of
an update event. The code for SizeScrollBars is shown as follows. You
will probably never have to override this member function.

~ Managing the Scroll Bars 205

void TScrollDoc::SizeScrollBars(void){

if(fDocWindow !=nil){
FocusOnWindow();
Rect r = fDocWindow->portRect;

if(fVertScrollBar !=nil){
HideControl(fVertScrollBar);
SizeControl(fVertScrollBar,

kScrollBarWidth,
(r.bottom - r.top - kScrollBarPos) + 2);

MoveControl(fVertScrollBar,
r.right - kScrollBarPos,
-1);

ShowControl(fVertScrollBar);
ValidRect(&(**fVertScrollBar) .contrlRect);

if(fHorizScrollBar !=nil){
HideControl(fHorizScrollBar);
SizeControl(fHorizScrollBar,

(r.right - r.left - kScrollBarPos) + 2,
kScrollBarWidth);

MoveControl(fHorizScrollBar,
-1,
r.bottom - r.top - kScrollBarPos);

ShowControl(fHorizScrollBar);
ValidRect(&(**fHorizScrollBar) .contrlRect);

The next member function is AdjustScrollBars. It is responsible for
adjusting the minimum and maximum values of the scroll bars. Re
member from our previous discussion that the maximum value of a
scroll bar in a TScrollDoc document is equal to the width or height of
the image minus the width or height of the content area of the window.
Thus, any time the size of the window changes or the dimensions of the
image change we must adjust the scroll bars. AdjustScrollBars calcu
lates the maximum value of the horizontal and vertical scroll bars by
subtracting the dimensions of the content rectangle of the window from
the image dimensions returned by the member functions GetVertSize
and GetHorizSize, as shown here in the first part of AdjustScrollBars.

206 ~ Chapter 1 O TScroll Doc: The Generalized Scrolling Document Class

void TScrollDoc::AdjustScrollBars(void) {

II don't activate the scroll bars until
II the data extends beyond the window boundaries
II If currentCtlValue is greater than new ctlmax,
II scroll image to bring it in line
Rect r ;
GetContentRect(r);
short dh,dv;
dh = dv = 0;
short currentValue;
short newMax;

II now ask the document how big its image is
II first for the vertical dimension
if(fVertScrollBar !=nil) {

currentValue = GetCtlValue(fVertScrollBar);
newMax = GetVertSize() - (r.bottom - r.top);
if (newMax < 0)

newMax = 0;
if(currentValue > newMax)

dv = currentValue - newMax;
SetCtlMax(fVertScrollBar,newMax);

II and then the horizontal dimension
if(fHorizScrollBar != nil) {

currentValue = GetCtlValue(fHorizScrollBar);
newMax = GetHorizSize() - (r.right - r.left);
if (newMax < 0)

newMax = 0;
if(currentValue > newMax)

dh = currentValue - newMax;
SetCtlMax(fHorizScrollBar,newMax);

AdjustScrollBars then compares these new maximum values to the
current control values of the scroll bars. If the current scroll bar value is
greater than the new maximum, we must scroll the image back so that
the image is in synch with the scroll bars. This happens when the win
dow is made larger or the image becomes smaller. We don't actually
want the image to be redrawn by the scrolling operation at this point.
We want to affect only the underlying data structures and coordinate
offset values, so we shut the clip region down to an empty rectangle be-

~ Managing the Scroll Bars 207

fore calling ScrollContents. After scrolling, we reset the clip region to
its former setting. We invalidate the entire window so that the image
will be redrawn in its proper place by an update event. The second half
of AdjustScrollBars is shown as follows.

II adjust the position of the image if the window
II has gotten bigger than the image.
if(dh I dv){

FocusOnContent();

II invalidate the whole content area
GetContentRect(&r);
InvalRect(&r);

II shut the clip region down to zero
II so that the scrolling won't actually
II draw in the window; wait for update instead
RgnHandle oldClip = NewRgn();
GetClip(oldClip);
SetRect(&r,0,0,0,0);
ClipRect (&r);
ScrollContents(dh,dv);
II now reset the clip region
SetClip(oldClip);
DisposeRgn(oldClip);

You will probably never need to override AdjustScrollBars.
The final member function for managing the scroll bars is SetScroll

BarValues. This member function calculates the current value for the
scroll bar indicator thumbs. The thumbs indicate how far the image has
been scrolled. In the default case, the value of the horizontal scroll bar is
equal to the horizontal offset value in the member fHOffset and the verti
cal scroll bar is equal to fVOffset. SetScrollBarValues calls the toolbox
function SetCtlValue to set the scroll bar value. It calls FocusOn Win
dow first, to make sure that the clip region includes the scroll bars so
that any change in the thumb position will be drawn in the scroll bar. If
you use the default scrolling member functions described later in this
chapter, you will probably not have to override SetScrollBarValues.
The TextEdit document class described in Chapter 12 uses different
scrolling techniques and therefore must override SetScrollBarValues.
The default definition for SetScrollBarValues is shown as follows.

208 ~ Chapter 1 O TScroll Doc: The Generalized Scrolling Document Class

void TScrollDoc::SetScrollBarValues(void) {
FocusOnWindow();
if(fHorizScrollBar != nil)

SetCtlValue(fHorizScrollBar,fHOffset);
if(fVertScrollBar != nil)

SetCtlValue(fVertScrollBar,fVOffset);

Since AdjustScrollBars and SetScrollBarValues are often called in
tandem, TScrollDoc defines a utility member function, SynchScroll
Bars, to call them together, shown by the following code.

void TScrollDoc::SynchScrollBars(void) {
AdjustScrollBars();
SetScrollBarValues();

.., Handling Events
TScrollDoc is derived from TDoc, so it has all the same event handling
member functions of the parent class. It overrides many of the event
member functions to account for the scroll bars. The various event
member functions are described in the sections that follow .

.,,, Activation/Deactivation

When the document window is becoming active, the Activate member
function must call the toolbox function ShowControl to make the scroll
bars active. Before calling ShowControl, Activate calls the FocusOn Win
dow member function to make certain that the clip region of the win
dow includes the scroll bars so that they will be redrawn to show their
active status. Activate must also set the static member fCurrScrollDoc to
"this" to refer to the document object that is becoming active. This static
member allows functions that are not document member functions, such
as the scroll action procedure described later in this chapter, to have ac
cess to TScrollDoc member functions for the currently active document.
The Activate member function, which is an empty function in the TDoc
class, is overridden in TScrollDoc as follows.

void TScrollDoc::Activate(void){
FocusOnWindow();
if(fVertScrollBar !=nil)

ShowControl(fVertScrollBar);
if(fHorizScrollBar != nil)

ShowControl(fHorizScrollBar);

_.. Handling Events 209

II set up static member so that scroll action proc
II can access object member functions
fCurrScrollDoc = this;

Likewise, when the document window is becoming inactive, the
Deactivate member function calls HideControl to make the scroll bars
inactive. Like the activation case, Deactivate focuses on the entire win
dow so that the drawing necessary to deactivate the scroll bars will
show up. The Deactivate member function is shown as follows.

void TScrollDoc::Deactivate(void){
FocusOnWindow();
if(fVertScrollBar !=nil)

HideControl(fVertScrollBar);
if(fHorizScrollBar !=nil)

HideControl(fHorizScrollBar~;

..- Updates

TScrollDoc overrides the DoTheUpdate member function to include ex
tra code to adjust the window focus and coordinate system and to draw
the scroll bars with the toolbox function DrawControls. DoTheUpdate
calls the FocusOnContent member function before calling the Draw
member function to draw the contents of the window, and then it calls
FocusOnWindow before drawing the scroll bars and grow box. The code
for DoTheUpdate is shown as follows. As with the TDoc class, you will
want to override the Draw member function to do the actual drawing in
the window, and you will probably not need to override DoTheUpdate.

void TScrollDoc::DoTheUpdate(EventRecord * l*theEvent*I){

if(fDocWindow !=nil){
FocusOnContent();
BeginUpdate(fDocWindow);

210 ~ Chapter 10 TScroll Doc: The Generalized Scrolling Document Class

Rect r = (**(fDocWindow->visRgn)) .rgnBBox;
Draw(&r);
FocusOnWindow();
DrawControls(fDocWindow);
DoDrawGrowicon();
EndUpdate(fDocWindow);

~ Mouse Clicks on Content

In the original TDoc class, it was enough to know that the mouse had
been clicked on the content area of the window. In that class, the con
tent area included the area occupied by the scroll bars in the TScroll
Doc class. Now we need to have a more precise division of labor when
responding to mouse clicks. TScrollDoc overrides the DoContent
member function to determine if the mouse click is on the scroll bars or
the content area of the window. It also defines two new member func
tions, ContentClick and ScrollClick, to handle the two possible cases.
The overridden DoContent is shown here. It uses the GetContentRect
member function to determine the boundaries between the content
area and the scroll bars.

void TScrollDoc::DoContent(EventRecord* theEvent){

FocusOnWindow();
GlobalToLocal(&theEvent->where);
Rect contents;
GetContentRect(contents);
if(PtinRect(theEvent->where,&contents))

ContentClick(theEvent);
else

ScrollClick(theEvent);

ContentClick is defined as an empty member function that you will
want to override if your document responds to clicks on the content
area. The TextEdit document class in Chapter 12 overrides Content
Click to call the toolbox function TEClick.

ScrollClick is defined to call the toolbox function FindControl to de
termine on which part of the scroll bar the mouse was clicked. It uses

IJli. Handllng Events 211

the part code returned from FindControl to branch to the appropriate
scrolling member function. (The scrolling member functions are de
scribed in a later section of this chapter.) You will probably not need to
override ScrollClick; any change in behavior that you want is more
likely to be in the individual scrolling member functions than in Scroll
Click. The definition of ScrollClick is shown as follows.

void TScrollDoc::ScrollClick(EventRecord *theEvent){
ControlHandle whichControl;
short part;
FocusOnWindow();
if(part = FindControl(theEvent>where,fDocWindow,&whichControl)){

switch (part) {
case inThumb:

DoThumbScroll(whichControl,theEvent->where);
break;

case inUpButton:
case inDownButton:

DoButtonScroll(whichControl,theEvent->where);
break;

case inPageUp:
case inPageDown:

DoPageScroll(whichControl,part);
break;

~ Zooming and Growing

The member functions for growing and zooming a window both call
the equivalent member function for the parent class to do the default
processing for the document window and then call additional member
functions to resize and adjust the scroll bars. The definitions for Do
Grow and DoZoom are shown as follows.

212 ~ Chapter 1 O TScroll Doc: The Generalized Scrolling Document Class

Key Point~ I

void TScr ollDoc :: DoGrow(EventRecord* theEvent) {

FocusOnWi ndow() ;
II call t he parent c l ass
TDoc : :DoGrow (theEvent);
SizeScrollBars() ;
SynchScrollBars() ;

void TScr ollDoc : :DoZoom(s hort part Code) {

FocusOnWindow() ;
II call the parent class
TDoc :: DoZoom (partCode);
SizeSc r ollBars ();
SynchScr ollBars() ;

.,.. Scrolling
The member functions that deal with scrolling and user input in the
scroll bars are divided up so that you will typically override only one
or two member functions related to the low-level mechanisms that are
used to scroll your image. The rest of the member functions are written
to be general enough so that they should not need to be overridden.
The more general member functions are dependent on the more spe
cific, low-level utility member functions, so that any changes in the util
ity functions are reflected in the general member functions. This is an
area where a well-designed base class can save a lot of work when you
are creating derived classes. Try to isolate the parts of your class that
will change in utility member functions and then write the rest of your
member functions so that they call those utility member functions. That
way, the changes you make to the utility functions will show up in all
member functions that use the utility functions.

.,,. Scrolling 213

.., Scrolling Utility Functions

ScrollContents is the utility member function that actually scrolls the
image within the window. It is responsible for changing the fHOffset
and fVOffset members, moving the bits within the window and forcing
the window to be redrawn as necessary to show parts of the image that
have just scrolled into view. All other member functions that respond
to user input in the scroll bars eventually call ScrollContents to actu
ally scroll the image in the window. The default definition of Scroll
Contents uses the toolbox function ScrollRect to scroll the bits of the
image by the specified vertical and horizontal amounts. ScrollRect fills
in a region handle with a region representing the area that scrolls into
view and thus needs to be redrawn. Scroll Contents invalidates -this re
gion to add it to the window's update region and forces an immediate
update by calling the DoTheUpdate member function.

After scrolling the image, ScrollContents changes fVOffset and fHOff
set to reflect the distance that the image has scrolled. ScrollContents is
defined as follows.

void TScrollDoc::ScrollContents(short dh,short dv){

II determine the area to scroll
Rect r;
GetContentRect(r);

II now scroll the image
RgnHandle updateRgn = NewRgn();
ScrollRect(&r,dh,dv,updateRgn);

II keep track of how far off the origin we are
fVOffset -- dv;
fHOffset -- dh;

II tell window to redraw uncovered content
InvalRgn(updateRgn);

II now force the update area to be drawn
DoTheUpdate((EventRecord *)nil);

II dispose of the region
DisposeRgn(updateRgn);

214 ~ Chapter 10 TScroll Doc: The Generalized Scrolling Document Class

The default definition of ScrollContents will be sufficient to support
scrolling in many classes derived from TScrollDoc. For example, the
'PICT' viewer document class described in Chapter 11 does not change
ScrollContents. For some derived classes, however, you may want to
override this member function to enable a different scrolling technique.
For instance, the TextEdit document class in Chapter 12 uses the tool
box function TEScroll instead of ScrollRect and does not use fVOffset
and fHOffset to keep track of how much the image has scrolled, relying
instead on the destination and viewing rectangles that the toolbox Text
Edit routines maintain. If you decide to override ScrollContents, there
is a good chance that you will also override SetScrollBarV alues, since
that function assumes that fVOffset and fHOffset are set correctly by
ScrollContents. See the TextEdit class in Chapter 12 for an example of
how to implement a custom scrolling technique.

The other scrolling utility function that is defined is Scroll. This
member function will scroll the image either horizontally or vertically
and make sure that the scroll bar values remain in synch with the im
age. One of the hardest things about using scroll bars is making certain
that you don't scroll past the endpoints. That is, when the scroll bar
thumb is all the way to the top of the scroll bar, you don't want to
scroll any further when the user clicks the mouse on the up button. All
of the endpoint checking code is isolated in Scroll.

Scroll can be used to perform general image scrolling and scroll bar
updating. For example, it is called from the member functions that re
spond to mouse clicks on the scroll bars, but it can also be called from
other parts of the program, such as when a user drags a text selection
outside the window in a TextEdit document (see Chapter 12). Scroll
generalizes scrolling so that it doesn't necessarily have to originate
with some action in a scroll bar, yet it still ensures that the scroll bars
are in synch with the image.

The first part of Scroll, shown as follows, saves the clip region of the
window so that it can be reinstated later. It then does the endpoint
checking to make sure that the specified scroll amount will not take the
image beyond the minimum or maximum values of the scroll bar.

void TScrollDoc::Scroll(ControlHandle theControl,short change){

II This routine changes the value of the scroll bar
II and scrolls the contents.
II It can be used for arbitrary scrolling,
II either from scroll bar action procs

II or while dragging the mouse outside window.
II save current clip region
RgnHandle oldClip = NewRgn();
GetClip(oldClip);

short diff = 0;
short oldValue = GetCtlValue(theControl);
short newValue = oldValue + change;

II check for endpoint
if (change< 0)(

short minValue = GetCtlMin(theControl);
if(newValue < minValue)
newValue = minValue;

else {
short maxValue = GetCtlMax(theControl);

1))- Scrolling 215

II figure the new value and check for endpoint
if(newValue > maxValue)

newValue = maxValue;

diff = oldValue - newValue;

Next, Scroll calls FocusOnContent and ScrollContents to scroll the
image within the window. It then calls FocusOnWindow and SetScroll
BarValues to make certain that the scroll bar thumbs reflect the new po
sition of the image. Finally, it resets the clip region for the window to its
original setting. The second half of Scroll is shown as follows.

II do the scrolling and set the new scroll bar values
FocusOnContent();
if(theControl == fHorizScrollBar)

ScrollContents(diff,O);
if(theControl == fVertScrollBar)

ScrollContents(O,diff);

FocusOnWindow();
SetScrollBarValues();

II restore old clip region
SetClip(oldClip);
DisposeRgn(oldClip);

216 ~ Chapter 10 TScroll Doc: The Generalized Scrolling Document Class

You probably won't need to override Scroll, even if your derived class
uses a different scrolling technique than TScrollDoc uses. It is more
likely that you will override Scroll Contents and SetScrollBarV alues to
implement the low-level details of your scrolling strategy. Since Scroll
calls these member functions to do the actual scrolling, changes you
make in the low-level functions will carry through to Scroll.

_., Thumb Scroll

The DoThumbScroll member function is defined to respond to mouse
clicks on the thumb of a scroll bar. It calls the toolbox function Track
Control to enable the user to move the thumb within the scroll bar.
When the user releases the mouse button, TrackControl returns with
the scroll bar value set to reflect the new position of the thumb. We call
the toolbox function GetCtlV alue to get the new value and compare it
to the thumb position before we began tracking. We use the difference
between the old and new thumb positions as the argument to Scroll
Contents, which actually scrolls the image to its new position. The
code for DoThumbScroll is shown here.

void TScrollDoc::DoThurnbScroll(ControlHandle theControl,
Point localPt){

short oldValue = GetCtlValue(theControl);
short trackResult = TrackControl(theControl,localPt,nil);
if(trackResult != 0){

short newValue = GetCtlValue(theControl);
short cliff = oldValue - newValue;
FocusOnContent();
if(theControl == fHorizScrollBar)

ScrollContents(diff,0);
if(theControl == fVertScrollBar)

ScrollContents(O,diff);
FocusOnWindow();

You will not need to override DoThumbScroll unless you want to
have immediate feedback while the user is moving the thumb. With
the default implementation, the image is not scrolled until the user re
leases the mouse button. It is possible to actually scroll the image while
tracking the thumb movement by supplying an action procedure

~ Scrolling 217

pointer as the third argument to TrackControl. We supply nil for this
argument, so there is no other activity while tracking the thumb. You
might want to write an action procedure and override DoThumbScroll
to supply the procedure pointer when calling TrackControl. (See the ac
tion procedure defined for up and down arrow scrolling in a later sec
tion of this chapter and look in the "Control Manager" chapter of Inside
Macintosh for more information about action procedures.)

IJli> Page Scroll

DoPageScroll is a member function that is called when the user presses
the mouse button on the page up or page down areas of a scroll bar of a
TScrollDoc document. It calls GetVertPageScrollAmount or GetHoriz
PageScrollAmount to determine how far to scroll, and then it repeat
edly calls the Scroll member function for as long as the user clicks the
mouse button on that area of the scroll bar. Scroll takes care of calling
ScrollContents to scroll the image and SetScrollBarValues to update
the thumb position so that the user gets visual feedback as the scrolling
operation proceeds. You will probably have no reason to override Do
PageScroll. Its definition is shown as follows.

void TScrollDoc::DoPageScroll(ControlHandle theControl,short part){

short scrollAmount;
Point thePt;
short currentPart;

if((theControl ~ fVertScrollBar))
scrollAmount = GetVertPageScrollAmount();

else
scrollAmount = GetHorizPageScrollAmount();

II repeat as long as user holds down mouse button
do {

GetMouse(&thePt);
currentPart = TestControl(theControl,thePt);
if(currentPart ~part) {

if(currentPart ~ inPageUp)
Scroll(theControl,-scrollAmount);

if(currentPart ~ inPageDown)
Scroll(theControl,scrollAmount);

}while(Button());

218 .,,,, Chapter 1 O TScroll Doc: The Generalized Scrolling Document Class

.._ Button Scroll

Finally, the DoButtonScroll member function is called when the user
clicks the mouse button on an up or down arrow of a scroll bar. Its sole
task is to call the toolbox function TrackControl, supplying a pointer to
a scroll action procedure where most of the scrolling will take place.
The scroll action procedure is described in the next section. It is un
likely that you will need to override the default definition of DoBut
tonScroll, which is shown as follows.

void TScrollDoc::DoButtonScroll(ControlHandle theControl,
Point localPt){

II declare the action procedure
pascal void ActionProc(ControlHandle theControl,short partCode);
short result= TrackControl(theControl,

.._ Scroll Action Procedure

localPt,
(ProcPtr)ActionProc);

One of the key elements of supporting scroll bars is the scroll action
procedure. This function is called repeatedly by the toolbox function
TrackControl while the user clicks the mouse button on the up or down
arrows of a scroll bar. The scroll action procedure can scroll the image
and change the scroll bar value. The scroll action procedure must be
defined as a function with two arguments. It must also be defined with
the pascal keyword so that it will obey the calling conventions like a
function written in Pascal, since that is what the toolbox expects. The
two arguments are a handle to the scroll bar on which the mouse is
clicked and a part code indicating where the mouse is at the current
time. The part argument allows you to stop scrolling when the user
moves the mouse off of the up or down arrow and resume scrolling
when it moves back on.

The scroll action procedure cannot be implemented as a class mem
ber function because all member functions have a hidden parameter,
"this," that is a pointer to the object itself. Since the action procedure is
called from the toolbox, there is no way to get this hidden argument
passed to an action procedure written as a class member function.
Thus, we have to define the scroll action procedure as a simple func·
tion, shown in the following code.

~ TScroll Doc Resources 219

pascal void ActionProc(ControlHandle theControl,short partCode) {
TScrollDoc * theCurrScrollDoc = TScrollDoc::GetCurrScrollDoc();
short scrollAmount = 0;
if(theControl ~ theCurrScrollDoc->GetVScroll())

scrollAmount = theCurrScrollDoc->GetVertLineScrollAmount();
if(theControl ~ theCurrScrollDoc->GetHScroll())

scrollAmount = theCurrScrollDoc->GetHorizLineScrollAmount();

if(partCode ~ inUpButton)
theCurrScrollDoc->Scroll(theControl,-scrollAmount);

if(partCode ~ inDownButton)
theCurrScrollDoc->Scroll(theControl,scrollAmount);

The action procedure uses the static member function GetCurrScroll
Doc to retrieve the fCurrScrollDoc static member to call member functions
for the current scrolling document object. Remember that fCurrScrollDoc
is set to point to the currently active scroll document by the Activate
member function. The action procedure examines the control handle
passed to it from the toolbox to see if it is the vertical or horizontal scroll
bar for our document. It then asks the document how far to scroll by call
ing either GetHorizLineScrollAmount or GetVertLineScrollAmount.
The action procedure then looks at the partCode argument to decide
whether to scroll with a positive or negative scroll amount. It calls the
Scroll member function to actually scroll the image and update the
scroll bar values. Because the action procedure calls TScrollDoc mem
ber functions to decide how much to scroll and also to do the actual
scrolling, you should not have to rewrite it. It is sufficient to override
some of the member functions that this function uses in order to
change its behavior to suit your particular document needs.

llJll. TScrollDoc Resources
TScrollDoc.rsrc contains two control definitions, one for the vertical
scroll bar and one for the horizontal scroll bar. The InitDoc member
function for TScrollDoc loads these controls with the toolbox function
GetNewControl. These two controls are defined to occupy an empty
rectangle (0,0,0,0) and the minimum, maximum, and current control val
ues are also defined as zero. The scroll bars are resized and positioned
and the control values adjusted when the document is initialized and as
the contents of the document change or the window size changes.

220 Ill> Chapter 1 O TScroll Doc: The Generalized Scrolling Document Class

You will probably not need to change the resources for TScrollDoc.
Your only responsibility will be to include TScrollDoc.rsrc with the re
sources for your program. See Chapters 11-13 for examples of how to
include these resources in your program.

I)> Summary
The most fundamental idea of the scrolling class is to use the coordi
nate offsetting capabilities of QuickDraw to do most of the scrolling.
This simple technique can be applied to scrolling almost any kind of
image in a window.

One interesting C ++ technique used in the scrolling class is the use of
a static member and static member functiOJ'.l in place of a global varia
ble. You should consider using a static member whenever you are
tempted to use a global variable in your own classes.

The TScrollDoc class attempts to take a particularly difficult aspect
of Macintosh programming and encapsulate it so that you don't have
to be concerned with too many grimy details. It was originally part of
the TextEdit document class but was separated into its own class to
maximize its usefulness for nontext documents.

A major design goal for the class is to channel most processing through
a few low-level utility member functions that are clearly identified so
that a minimal amount of overriding is necessary to adapt the class to
different types of data. Chapters 11 and 12 show two examples of docu
ment classes derived from TScrollDoc. The document class in Chapter
11 displays 'PICT' images and scrolls them with almost no change to the
default scrolling mechanisms of TScrollDoc. The class in Chapter 12 dis
plays text with the toolbox TextEdit functions. This class uses a different
scrolling strategy yet still requires minimal changes to TScrollDoc.

11 ~ PictView: Using the
TScrollDoc Class

This chapter describes a program that can read 'PICT' files and display
them in movable, scrollable windows. It will also print 'PICT' images
to any standard printer that is attached to the Macintosh. This program
uses the TScrollDoc class described in the previous chapter as a base
class for the 'PICT' document. The code that we must write for the Pict
View program is remarkably short. Instead, we will rely on the parent
classes for most of the program's functionality. Once again, you will be
able to see how the hard work that you put into good base classes can
really pay off when you are building on top of those classes.

'PICT' files are a standard Macintosh way of saving graphic images.
Most graphics programs can read and write 'PICT' files. The 'PICT' file
is a way of saving a QuickDraw picture from memory onto the disk.
The 'PICT' format is flexible enough to display black-and-white and
color pictures. The PictView application screen is shown in Figure 11-1.

This chapter discusses the members and member functions neces
sary to create the 'PICT' application and document class. Appendix B
contains a complete code listing of the file PictView.cp.

~ The TPICTApp Class
The application class for PictView is very simple. It is derived from the
TApp class and inherits all the default behavior of TApp. There are
just a few things that need to change. First, you must override Make
Doc to create TPICTDoc documents, shown as follows.

221

222 ~ Chapter 11 PictView: Using the TScrollDoc Class

Figure 11-1. The PictView Application

TDoc * TPICTApp : :MakeDoc(SFReply * reply) {
return new TPICTDoc(GetCreator (), reply);

Next, override those member functions that configure SFGetFile so
that it will display only 'PICT' files for the user to open. Since we want
to open only one kind of document, we override GetNumFileTypes to
return 1. We put the one file type that we want to open, 'PICT', into a
global array and return a pointer to the array from the overridden Get
FileTypesList member function. Both member functions and the glo
bal variable definition are shown as follows . GetNumFileTypes is de
fined within the declaration of TPICT App and GetFileTypesList is
defined outside the declaration. The global list of file types is defined
in the global area of the program.

II defined within TPICTApp declaration
virtual int GetNumFileTypes(void) {return l ; }

~ The TPictDoc Class 223

II Global list of file types for SFGetFile
SFTypeList gtheTypes ={'PICT'};

SFTypeList TPICTApp::GetFileTypesList(void){
return gtheTypes;

Finally, TPICTApp enables the Open menu item by overriding the
CanOpen member function, and disables the New menu item by over
riding the CanNew member function, as shown by the following defi
nitions. New is disabled since PictView cannot create new documents.
It can only read existing 'PICT' files created by other applications.

virtual Boolean CanOpen(void){return true;}
virtual Boolean CanNew(void){return false;}

... The TPICTDoc Class
The TPICTDoc class defines the behavior of documents in PictView.
TPICTDoc is derived from TScrollDoc, which is described in Chapter
10. Because TScrollDoc is derived from TDoc, TPICTDoc inherits the
behavior from TDoc that TScrollDoc does not override. Most of the
functionality of TPICTDoc is inherited from its parent classes. The
main work that we need to do inside TPICTDoc is to read 'PICT' files,
draw the document picture in the window, tell TScrollDoc the dimen
sions of the document's picture, and print the picture. The declaration
of TPICTDoc is shown as follows. Notice how it switches back and
forth between public and protected sections for the members and
member function declarations.

class TPICTDoc : public TScrollDoc{
protected:

Handle fPict;
Handle fHeader;
THPrint fPrintRecord;

public:
TPICTDoc(OSType theCreator = '????',

SFReply *reply= (SFReply*) nil);
virtual -TPICTDoc();
virtual Boolean InitDoc(void);

protected:

224 .._ Chapter 11 PictView: Using the TScrollDoc Class

II routines you must override to support scrolling
virtual short GetVertSize(void);
virtual short GetHorizSize(void);
virtual short GetVertLineScrollAmount(void){return 16;}
virtual short GetHorizLineScrollAmount(void) {return 16;}
II draw the picture
void Draw(Rect *r);

public:

} ;

II This is the file type of the document
virtual OSType GetDocType() {return 'PICT';}
II this function reads in the file
virtual Boolean ReadDocFile(short refNum);
II disable the SaveAs menu
virtual Boolean CanSaveAs(void) {return false;}
virtual void DoPageSetup(void);
virtual void DoPrint(void);
virtual Boolean CanPrint(void){return true;}
virtual Boolean CanPageSetup(void} {return true;}

IJl. Constructing the Document
The constructor for the TPICTDoc class is very similar to the construc
tor for the TScribbleDoc class described in Chapter 8. It passes its ar
guments on to its parent, TScrollDoc, and then initializes its members
to nil. The chain of inherited constructors extends back through
TScrollDoc to TDoc, which is the progenitor of both TScrollDoc and
TPICTDoc. Just as TPICTDoc passes its arguments on to TScrollDoc,
so TScrollDoc will pass those arguments on to TDoc. The body of the
constructor for TDoc will be executed first, the body of TScrolllDoc' s
constructor will be next, and the body of TPICTDoc's constructor will
be last.

TPICTDoc::TPICTDoc(OSType theCreator,SFReply *reply):
TScrollDoc(theCreator,reply) {

fPict = nil;
fHeader = nil;
fPrintRecord = nil;

., Initializing the Document 225

Key Point .. I

~ Initializing the Document

You override the InitDoc member function to allocate and initialize a
print record for the document. This task is not done in the constructor
since it is possible that the memory allocation for the print record can
fail. The print record is allocated as a handle, the size of which is deter
mined by the expression sizeof(TPrint). The resulting handle is stored
in the fPrintRecord member of the document. If the handle is success
fully created, InitDoc opens the toolbox Print Manager by calling Pr
Open. It then calls PrintDefault to fill in the print record with default
values, such as page size and orientation, for the current printer. The
toolbox function PrClose closes the Print Manager. The Print Manager
will be reopened later when the document needs to do other printing
operations. The code for InitDoc is shown as follows. Notice that it
calls its parent class first to take care of the parent's initialization.

Bool ean TPICTDoc :: InitDoc(voi d) {

if(TScr ollDoc ::InitDoc ()) {

}

fP rint Record = (THPrint)NewHandle (s izeof (TPrint));
if (fPrintRecord != nil) {

PrOpen () ;
PrintDefault(f PrintRecor d);
PrClose();
return true;

II or if something went wrong
r eturn false ;

~ Destroying the Document

The destructor for the TPICTDoc object is called when the document
object is deleted. This usually happens when the user closes the docu
ment, but it can also happen if ari error occurs while reading a file
when the document is first created. In either case, we check the fPict,
[Header, and fPrintRecord handles and deallocate the memory if the
handles are non-nil, as shown here.

226 ~ Chapter 11 PictView: Using the TScrollDoc Class

Key Point~ I

TPICTDoc :: - TPICTDoc() {

if(fHeader !=ni l) {
DisposHandle(fHeader);
fHeader = nil ;

if(fPict !=nil) {
Kil l Picture ((PicHandle)fPict);
f Pi ct = nil;

if(fPrintRecord != nil) {
DisposHandle((Handle) f PrintRecord) ;
fPrintRecord = nil;

The destructors for the parent classes will also be automatically
called when a TPICTDoc object is deleted. The order of destructor in
vocation is the opposite of the constructors, so TPICTDoc's destructor
is first, TScrollDoc' s is next, and TDoc' s is last.

Destructors for derived classes execute before the destructors for
parent classes.

Reading 'PICT' Files

T

'PICT' files have a 512-byte header followed by the bytes of a Quick
Draw picture. The header contains application-specific information
about the picture that PictView can ignore. (MacDraw, for example,
puts extra information about the picture in the header.) There is no
particular reason to keep the header around, although if you modified
this program so that it could write files as well as read them, you
would want to save the header so that it could be written back out
with the file.

TPICTDoc overrides ReadDocFile to read the data from the file . It al
locates handles for the header and the picture data and reads in the
header and picture. The handle to the picture data can then be treated
as a PicHandle and passed to the toolbox function DrawPicture to
draw the picture.

If the memory allocations and file operations are successful, Read
DocFile assigns the two handles to the [Header and [Pict members of

., Reading 'PICT' Files 227

the document object so that other document member functions can ac
cess them. It also calls the AdjustScrollBars member function so that
the scroll bars will reflect the dimensions of the picture. ReadDocFile
is shown as follows.

Boolean TPICTDoc::ReadDocFile(short refNurn){

if (fDocWindow) {

}

long pictLength;
long headerLength = kPictHeaderSize;
OSErr err= GetEOF(refNurn,&pictLength);
pictLength -= kPictHeaderSize;
Handle thePic = NewHandle(pictLength);
if(thePic ==nil){

ErrorAlert(rDocErrorStrings,sNoMem);
return false;

Handle theHeader = NewHandle(headerLength);
if(theHeader ==nil) {

ErrorAlert(rDocErrorStrings,sNoMem);
DisposHandle(thePic);
return false;

HLock(theHeader);
HLock(thePic);
err= SetFPos(refNurn,fsFromStart,0);
err= FSRead(refNurn,&headerLength, (Ptr)*theHeader);
err= FSRead(refNum,&pictLength, (Ptr)*thePic);
HUnlock(thePic);
HUnlock(theHeader);
if(err == noErr) {

fPict = thePic;
fHeader 7 theHeader;
AdjustScrollBars();
return true;

else {
DisposHandle(thePic);
DisposHandle(theHeader);
return false;

II if there ain't no window ...
return false;

228 Ill> Chapter 11 PlctView: Using the TScrollDoc Class

IJ)l. Drawing the Picture
Because we maintain a handle to the picture as a member of the docu
ment object, we can draw the window simply by calling the toolbox
functions EraseRect and DrawPicture. This is the same technique used
in the Scribble program in Chapter 8. Notice that Draw makes no refer
ence to the window because it is also used to draw the picture when
printing the document. Draw is overridden as follows.

void TPICTDoc::Draw(Rect *r){

if(fPict != nil) {
EraseRect(r);
DrawPicture((PicHandle)fPict,

& ((**) (PicHandle) fPict)) .picFrarne));

IJ)l. Handling Scrolling
Because the scrolling routines in TScrollDoc are written to apply gen
erally to all sorts of data within windows, there is actually very little
that you need to do to support scrolling in PictView. You must over
ride both the member functions that tell TScrollDoc how tall and wide
the picture is and those that tell how far to scroll when the user clicks
on the up or down arrows of a scroll bar.

GetVertSize and GetHorizSize determine the height and width of
the picture by examining the picFrame field of the QuickDraw picture
data structure, as shown here.

short TPICTDoc::GetVertSize(void) {
Rect r ;
if(fPict) (

r = (**((PicHandle)fPict)) .picFrarne;
return r.bottom - r.top;

}else
return O;

short TPICTDoc::GetHorizSize(void) {
Rect r ;
if (fPict) {

.,_ Printing the Document 229

r = (**((PicHandle)fPict)) .picFrame;
return r.right - r.left;

)else
return O;

The amount to scroll for an up or down arrow click is arbitrary; we
chose 16 pixels in this program, but you could use any reasonable value.
TScrollDoc overrides the member functions that return these values
with definitions in the declaration of the TPICTDoc class, as follows.

virtual short GetVertLineScrollAmount(void){return 16;)
virtual short GetHorizLineScrollAmount(void) {return 16;)

The amount to scroll when the user clicks on the page up or page
down area of a scroll bar is set by default in TScrollDoc to be the cur
rent width or height of the window, so you don't need to override the
member functions that provide those values.

All the other actions for scrolling do not need to be overridden. It was
hard work putting the TScrollDoc class together, but you won't ever
have to do that work again. Now you can reap the fruits of your labor .

.- Printing the Document
As discussed in a previous section, the lnitDoc member function is
overridden to allocate and initialize a print record for each document.
The print record contains all the information that the Print Manager
needs to print the document. .

TPICTDoc also supports printing by overriding the CanPrint, Do
Print, CanPageSetup, and DoPageSetup member functions, as de
scribed in the following sections.

_., PageSetup

The print record allocated and initialized by InitDoc contains the de
fault settings for the printer at the time InitDoc executed. The print
record must be changed if the user does not want the default settings.
For example, the default page orientation for most printers is portrait
mode, but the user might want to print a document in landscape mode.

230 liJJ> Chapter 11 PictView: Using the TScrollDoc Class

Key Point IJJJ> I

The toolbox function PrStlDialog can be called to let the user change
the contents of the print record. It displays a style dialog that permits
the user to specify characteristics such as page orientation and print
quality. Different printers will have printer-specific options, such as
color options for color printers, in this dialog.

The DoPageSetup member function is called by the application
when the user chooses the PageSetup menu item. It calls the toolbox
function PrOpen to open the Print Manager. Then it calls PrStlDialog,
passing in the fPrintRecord member. PrStlDialog will display the style
dialog and accept the user's choices. If the user cancels the dialog, then
PrStlDialog returns false and does not change any values in the print
record. If the user clicks the OK button of the style dialog, then
PrStlDialog fills in the print record to reflect the user's choices in the

· dialog and returns true. Since the print record is not changed if
PrStlDialog returns false, it is not necessary to check the function re
sult, although you might want to know if the user has changed the
print record so that you could save it with the document. The code for
DoPageSetup is shown as follows.

void TPICTDoc :: DoPageSetup(voi d) {

II open the print manager
PrOpen () ;
II put up the s t yl e d i a l og
(vo i d) PrStlDialog (fPrintRecord);
II and close the print manager
PrClose ();

(Void) PrStlDia~og(fPrintRecord);

Of course, the CanPageSetup member function must be overridden to
return true, as follows, so that the PageSetup menu item will be enabled.

vi rtual Bool ean CanPageSetup(voi d) {r eturn true ; }

~ Printing the Document 231

~ Printing

A document is printed when the user chooses the Print menu item. The
CanPrint member function must be overridden so that the Print menu
item will be enabled, as shown here.

virtual Boolean CanPrint(void){return true;}

The DoPrint member function is overridden to actually print the pic
ture. It begins by opening the Print Manager with the toolbox function
PrOpen. Next, it passes the fPrintRecord member to the PrValidate
function to see if the print record is compatible with the current
printer. PrValidate returns false if the print record is valid (meaning, I
suppose, that no validation was necessary). If the print record is valid,
then DoPrint proceeds to the next step in the printing process. If the
print record is invalid, which can happen if the user employs the
Chooser to change printers after the document is initialized, then Do
Print passes the print record to PrStlDialog to allow the user to make
new choices based on the new printer. The result of PrStlDialog is
checked because if the user cancels that dialog in this context, then the
entire printing operation should be canceled.

Once the print record is in order, DoPrint calls the Print Manager
function PrJobDialog. This function displays a dialog that prompts the
user to specify the number of copies and page range for the print job.
This dialog should be displayed each time the document is printed.
The first part of DoPrint, which validates the print record and displays
the job dialog, is shown as follows. Notice how it calls PrClose if the
user cancels either the style or job dialog.

void TPICTDoc::DoPrint(void){

TPPrPort printPort;
II open the Print Manager
PrOpen ();
II if print record doesn't match printer,
II put up the style dialog
if(PrValidate(fPrintRecord))

II if user cancels style dialog, cancel all printing
if(! PrStlDialog(fPrintRecord)){

PrClose();
return;

else
fSavePageSetup = true;

232 .,,. Chapter 11 PictView: Using the TScrollDoc Class

II Always put up the job dialog,
II check to see if user cancels
if(! PrJobDialog(fPrintRecord)){

PrClose();
return;

Now that all the print record manipulation is out of the way, Do
Print can go ahead and print the document. It first calls PrOpenDoc to
create a printing GrafPort. PrOpenDoc creates the GrafPort and sets it
to be the current port, so all subsequent drawing operations will go to
this GrafPort. PrOpenPage is then called to prepare a page for print
ing. The Draw member function is then called to draw into that page.
Because the GrafPort is set to the printing port, all the QuickDraw
functions in Draw will go to the printing port instead of the window.
An empty rectangle is passed into Draw since it uses the rectangle ar
gument to determine how much area to erase before drawing the pic
ture and it is not necessary to erase anything when printing.

After the image is drawn, DoPrint calls PrClosePage to output the
page. Since this program only prints one page per document, DoPrint
then calls PrCloseDoc to close the printing GrafPort. If the program
printed more than one page per document, then each page would be
drawn with Draw and output with PrClosePage before PrCloseDoc
was called. After closing the printing GrafPort, DoPrint calls PrPicFile
if the print record indicates that the Print Manager has stored the
printing output in a spool file. The Print Manager spools its output
when printing to the lmageWriter, but doesn't spool when printing to
the LaserWriter. PrPicFile sends the accumulated printing output in
the spoolfile to the printer. The Print Manager spool file should not be
confused with the print spooling offered by MultiFinder for the Laser
Writer.

DoPrint finishes by calling PrClose to close the Print Manager. The
second half of DoPrint is shown as follows.

II now open the printing port
printPort = PrOpenDoc(fPrintRecord,nil,nil);

11 open a page
PrOpenPage(printPort,nil);

II draw the image
II use an empty rect to avoid unnecessary EraseRect
Rect r;

SetRect(&r,0,0,0,0);
Draw (&r);

II close the page
PrClosePage(printPort);

II close the printing port
PrCloseDoc(printPort);

..,_ The PictView Main Program 233

II call PrPicFile for spooled printing (imagewriter)
if((**fPrintRecord) .prJob.bJDocLoop != 0){

TPrStatus status;
PrPicFile(fPrintRecord,nil,nil,nil,&status);

II close the Print Manager
PrClose();

DoPrint will only print one page, even if the picture is larger than
the page. Parts of the picture that extend beyond the page boundaries
are simply clipped off. Supporting multiple page printing is not really
much harder than single page printing, but it is beyond the scope of
this chapter. MacApp automatically supports multipage printing, as
you will see in Chapter 14.

• The PictView Main Program
The main program code for PictView is almost identical to the other
programs based on IDoc and T App. One difference is that it prompts
the user to open an existing 'PICT' document at startup instead of
opening a new, blank document if no documents were opened from
the Finder. This is because PictView is a read-only program; it cannot
create new documents. It only reads 'PICT' files created from other ap
plications. The main program code for PictView is shown as follows.

void main(void)
{

TPICTApp theApp;

II initialize the application
if(theApp.InitApp()) {

234 .,, Chapter 11 PictView: Using the TScrollDoc Class

II allow the user to open a 'PICT' file first thing
if(! theApp.OpenDocFromFinder())

theApp.OpenOldDoc();

II Start our main event loop running.
theApp.EventLoop();

//now clean up
theApp.CleanUp();

I)> PictView Resources

The resources for PictView are handled in the same way as the other ob
ject programs in this book. Resources from the base classes are included
first, followed by the resources specific to the current application.

PictView.rsrc contains a new Apple menu with a correct About item
and an 'ALRT' and 'DITL' for the About dialog. Otherwise, it relies on
the resources of its base classes. Notice that TScrollDoc.rsrc is included
as well, since TPICTDoc is derived from TScrollDoc.

/* PictView.r rez source for the PictView application */

include "TApp.rsrc" ;
include "TDoc.rsrc";
include "TScrollDoc.rsrc";
include "PictView.rsrc" ;

I)> The PictView Makefile
The makefile for PictView is very similar to those seen for previous
programs in this book. Since TPICTDoc is derived from TScrollDoc,
you need to include dependencies and directory information for the
scrolling document object and resources.

First, define the directory path to the folder containing the code and
resources to TScrollDoc. Then add this path to the options for CPlus
and rez, as shown here.

tell cplus and rez where to find included files for TApp, TDoc,
and TScrollDoc

AppObjectDir
ScrollObjDir

: :App/Doc:
: : TScrollDoc:

IJl> The PictView Makefile 235

options for C++, where to look for include files
CPlusOptions = {SyrnOpts} -i "{AppObjectDir}"o

-i "{ScrollObjDir}"

options for rez, where to look for include and #include files
RezOptions = -s "{AppObjectDir}" -s "{ScrollObjDir}"o

-i "{AppObjectDir}" -i "{ScrollObjDir}"

Next, add TScrollDoc.cp.o and TScrollDoc.rsrc to the list of objects
and resource files. You must also include a dependency rule for
TScrollDoc.cp.o, as follows.

Objects = o
"{AppObjectDir}"TApp.cp.o o
"{AppObjectDir}"TDoc.cp.o o
"{ScrollObjDir}"TScrollDoc.cp.o o
PictView.cp.o

ResourceFiles = o
"{AppObjectDir} "TApp. rsrc o
"{AppObjectDir} "TDoc. rsrc o
"{ScrollObjDir}"TScrollDoc.rsrc o
PictView.rsrc

dependency rules for TScrollDoc
"{ScrollObjDir}"TScrollDoc.cp.o f o

"{ScrollObjDir}"TScrollDoc.cp o
"{ScrollObjDir}"TScrollDoc.h o
"{AppObjectDir} "TDoc. h

Finally, define a dependency rule for PictView.cp.p to shown that it
is dependent on TScrollDoc.h as well as the other normal files, as
shown here.

PictView.cp.o f PictView.cp o
"{AppObjectDir}"TApp.h o
"{AppObjectDir} "TDoc. h o
"{ScrollObjDir}"TScrollDoc.h o
PictView.make

All other parts of the makefile are the same as we've seen before. See
Appendix B for a complete listing of PictView.make.

236 ~ Chapter 11 PictView: Using the TScrollDoc Class

._. Summary

By now you should be convinced of the value of object-oriented pro
gramming. The PictView program involves a minimal amount of code
and explanation, yet it displays a remarkable amount of functionality.
All of this is based on the strength of the base classes that we have de
veloped in the previous chapters.

This program demonstrates how to use the TScrollDoc class to auto
mate scrolling. Hopefully, you will be able to use it for your own pro
jects so that you never have to write your own scroll bar routines. That
is the point of object-oriented programming; why reinvent the wheel?

PictView also shows how to implement simple printing for docu
ments by overriding the DoPrint and DoPageSetup member functions.

Chapter 14 describes essentially the same program using MacApp. It
shows many similar strategies and capabilities, although MacApp sur
passes TApp and TDoc in many ways.

12 _.. Text Edit Document

This chapter develops a document class derived from TScrollDoc that
knows how to use the toolbox TextEdit functions to manage and edit
text. This document class, named TIEDoc, is able to read and write
text files, display the text in a resizable and scrollable window, and
support the normal Macintosh text editing operations such as selection
and cut, copy, and paste.

This chapter continues to build on the base classes TDoc and
TScrollDoc. This heredity model is the key power behind object
oriented programming. As shown in earlier chapters, you change only
those aspects of the base classes that are necessary for the new class's
distinctive behavior. Everything else remains the same.

The last sections of this chapter describe a simple application that
uses TIEDoc documents to create a multiwindow text editor. Al
though TIEDoc is fully functional as it is written, it can also be used
as a base class for derived classes that need text editing capabilities.
Chapter 13 develops a debugging window that is derived from TIE
Doc and the C++ ostream class to provide a convenient way to display
debugging output within the Macintosh window environment.

The complete source code for the TIEDoc class and the application
that uses it is included in Appendix B.

237

238 IJJi- Chapter 12 Text Edit Document

IJJll. Overview of Toolbox TextEdit
The Macintosh ROM contains a set of functions that implement the
fundamental aspects of Macintosh text editing. These functions are col
lectively know as the Text Edit Manager, or TE. They provide a con
venient way for Macintosh programmers to implement text editing in a
fashion that is consistent with the Macintosh user interface guidelines.

TE depends on two overlapping rectangles to define how the text is
displayed in a window. The view rectangle specifies the coordinates of
the rectangle in which the visible portion of the text is displayed. It is
typically equivalent to the content area of the window. The destination
rectangle, on the other hand, defines the ultimate size of the rectangle in
which the text is formatted. The destination rectangle is normally larger
than the view rectangle, and its right edge determines where the text
automatically wraps to the next line. Figure 12-1 shows a typical view
and destination rectangle for a text edit document. Since rectangle coor
dinates are signed 16-bit numbers, the right and bottom coordinates of
the destination rectangle in Figure 12-1 are as large as they can be.

TE also provides for scrolling with the function TEScroll. TE keeps
track of scrolling by offsetting the destination rectangle in relation to
the view rectangle. For example, when a TE document is first created,
the top left corner of the view and destination rectangles are the same,
as shown in Figure 12-1. As the text is scrolled toward the end of the
document, the top coordinate of the destination rectangle will become
negatively offset from the view rectangle, as shown in Figure 12-2.

TE uses the difference between the view and destination rectangles
to determine which portion of the text is visible in the view rectangle at
any one time. It is similar to, although not exactly the same as, the offset
technique we used in the TScrollDoc class in Chapter 10. Because TE
has its own mechanism for keeping track of scrolling, TTEDoc needs to
modify the scrolling routines of TScrollDoc somewhat in order to take
advantage of TE's built-in capabilities. But these modifications prove to
be very simple, thus once again demonstrating the flexibility of a well
designed base class.

TE has some real limitations, including an absolute 32767 character
limit (and a much smaller realistic limit before performance slows in
tolerably). You would not want to base the next heavyweight word
processor on TE. Despite its shortcomings, however, TE remains a very
useful tool for simple text display and editing.

~ TTEDoc Members 239

View rectangle: (0,0, 100, 400)

'
~o TERpp.cp

illl
II
I II This fi 1 e: TEApp.cp
jl I
II This is the mein epplicetion object for the simplest

Ill epplicetion program using TTEDoc

lllf
I

"'include "TApp.h"
1

I "'include 'TDoc.h" \
I "'include 'TTEDoc.h" \

I 11'
II I

I ~~ cless decleretions I I

I 11\
I cless TTEApp: public TApp{

\
I protected: I

virtue! TDoc * MekeDoc(SFReply *reply= (SFReply *)nil); /
I virtuel int GetNumFileTypes(void){return 1 ;};

L-- --- - - --- -- - ·- - - -- -'\. I
Destination rectangle: (0,0,32767, 32767)

Figure 12-1. The Text Edit View and Destination Rectangles

~ TTEDoc Members
TTEDoc defines only one new member, fTEHandle, to hold a handle to
the TERecord that is allocated for the toolbox TextEdit functions. All
other members of TDoc and TScrollDoc are also present since this
class is derived from TScrollDoc, which in turn is derived from TDoc.
The fTEHandle member is declared in the protected section of the dec
laration, shown as follows, so that it cannot be accessed from outside
the class.

240 .,,, Chapter 12 Text Edit Document

- - Destination Rectangle (-300,0,32767,32767) -~ll"il
II

I 11 Th1s me: TEApp.cp
II

I 11 This 1s the ma1n application object for the s1mplest
11 11ppl1c11t1on program us1ng TTEDoc

111
11 © 1969 D11n Weston, A 11 Rights Reserved

I

\

)
111
ll

1
•1nclude "TApp.h" \

I •1nclude "TDoc.h"
•1nclude "TIEDoc.h" \

I 11
1

111
11 class declarat1ons
II

ClllSS I I ~APP: puo11c I APPi

protected:

I
TERpp.cp

v1rtual TDoc * MakeDoc(SFReply *reply= (SFReply *) nill;
Yirtu111 int GetNumF11eT es(void){return 1;}·

I
\

\ \. ,,,. ... -- --~

Figure 12-2. The Text Edit Rectangles After Scrolling

class TTEDoc : public TScrollDoc
protected:

TEHandle fTEHandle;

..,, TTEDoc Constructor and Destructor
The constructor for TTEDoc simply passes its arguments to its parent
class and initializes fTEHandle to nil. This is in keeping with the mini
malist behavior of constructors that has been advocated throughout
this book. The real work of initializing the class will take place in the
InitDoc member function, which is overridden in the next section.
TTEDoc' s constructor passes its arguments to TScrollDoc, which in
tum passes them to TDoc. The body of the constructor for TDoc will
execute first, then TScrollDoc will execute, and finally TTEDoc.

.,, Initializing the Document 241

TTEDoc :: TTEDoc(OSType theCreator , SFReply * SFi nf o):
TScrollDoc (theCreator , SFi nf o) {
f TEHandle = nil ;

The destructor for TTEDoc is responsible for calling the toolbox
function TEDispose to deallocate the text editing memory used by the
toolbox TextEdit functions. The other deallocation tasks, such as for the
window and the scroll bars, will be performed by the destructors for
TScrollDoc and TDoc. Remember that destructors are executed in the
reverse order of constructors, with TTEDoc' s destructor running first,
then upward through the parent class chain so that TDoc's constructor
will be the last to run. The definition for TTEDoc' s destructor is shown
as follows. Like all other document classes in this book, its destructor is
declared as virtual so that it will be invoked even though the applica
tion keeps track of all documents as generic TDoc pointers.

TTEDoc :: -TTEDoc (void) {
if(fTEHandle !=nil) {

TEDispose{fTEHandle);
f TEHandle = nil ;

~ Initializing the Document

Key Point~

We override the InitDoc member function to initialize the text edit ca
pabilities of the class. InitDoc begins by calling the parent class's Init
Doc member function, specified as TScrollDoc::lnitDoc. If the parent
class's initialization function returns true, then we proceed with our
specific initialization tasks.

Remember from Chapter 10 that TScrollDoc's version of lnitDoc
calls TDoc::lnitDoc so that the entire chain of initialization Wilt otcur.
Notice, however, that while you must explicitly call the parent class's
version of InitDoc, the constructors for parent classes are automatf..
cally invoked when the constru.ctoi' for a derived class is ~tad .

.. . ___ ,_,, ____ • . !i!> .. ___ ,,.,._.,,,,,,.« ... --..,,..,...,,,.,_,,,_,......,_..,..,, .. ,.,,,,,~

InitDoc sets up destination and view rectangles for TE based on the
document's window size (remember that InitDoc is not called until the
document window has been created). The bottom and right coordi-'
nates of the destination rectangle are set to the maximum short integer

242 ~ Chapter 12 Text Edit Document

(32767), which means that there will be no word wrap at the right
edge. This is typical of most simple text editors (as opposed to word
processors, where word wrap is expected). The top and left coordinates
of the destination rectangle are inset by four pixels to provide a small
margin at the top and left edge of the window. We define two con
stants to specify the maximum integer and margin size, as shown here.

const short kMaxShort = 32767 ;
const short kTEMargin = 4;

~----~ 'fi''4Wf"''<''#~-'l"<"'°'(•»:<fi'«>Cif'•W'•'.Ywe<·>•:·;··:;e,W::C""'•W•'•'":""•'f>\'~''""'.'"''-''W:CC<'CC'&'><f•···(·;,;.w,;,·,:·iJ<o'•'"•·':'c»·,,··•:·:.·e"<.W·>\W<<W<W<•:•')'•'(:<'<'•'":i··::"<"'•:.:·.;;.,.,·':i•'•····,··.;·:•·~,:

I . In traditional C programs, you normally define constants with
~----~ #define statements, such as

Key Point

#define kMaxShort 32767
#define kTEMargin 4

In C++, it is recommended that you use a const definition instead of
'l #define whenever possible, as shown here.
·~ it'

const short kMaxShort = 32767;
const short kTEMargin = 4;

After setting up the view and destination rectangles, InitDoc calls
the toolbox function TENew to create a new TERecord. TENew returns
a TEHandle that we install in the fTEHandle member. After creating the
TERecord, InitDoc calls the member function SetTERect to set the size
of the view rectangle to fit exactly in the content area of the window.

Next, InitDoc calls the toolbox function TEAutoView to tell TE that
we want it to do automatic scrolling whenever the insertion cursor
moves outside the view rectangle. We also call the toolbox function Set
ClikLoop to install our own click loop procedure that TE will call when
ever the user drags a selection outside the view rectangle. These two
topics will be discussed in more detail in later sections of this chapter.

Finally, InitDoc returns true if the TEHandle was successfully allo
cated. The definition for the overridden version of InitDoc is shown as
follows.

Boolean TTEDoc::InitDoc(void) {

Rect view,dest;
if(TScrollDoc::InitDoc()){

SetPort(fDocWindow);
view = dest = fDocWindow->portRect;
dest.left += kTEMargin;
dest.top += kTEMargin;
dest.right = kMaxShort;
dest.bottom = kMaxShort;
fTEHandle = TENew(&dest,&view);
SetTERect ();

TEAutoView(true,fTEHandle);

II install the click loop procedure
SetClikLoop(MyClickLoop,fTEHandle);

return (fTEHandle !=nil);

IJJi!> Scrolling the Text

• Scrolling the Text 243

As mentioned in previous sections, TE has its own scrolling mecha
nisms so TTEDoc needs to override some of the scrolling member func
tions of TScrollDoc. The most important member function to override
is ScrollContents. This is the member function that actually scrolls the
image in the window and changes the offset values. TScrollDoc calls
the toolbox function ScrollRect and also changes the fVOffset and fHOff
set members of the document to reflect the amount that the image has
scrolled. TTEDoc, on the other hand, calls the toolbox routine TEScroll
instead of ScrollRect and does not change the fVOffset and fHOffset
members. TTEDoc doesn't use the offset members because TE takes
care of the scrolling position by changing the destination rectangle in
relation to the view rectangle. TTEDoc doesn't have to keep track of the
offset itself. The new definition for ScrollContents is shown as follows.

void TTEDoc::ScrollContents(short dh,short dv){
if(fTEHandle !=nil)

TEScroll(dh,dv,fTEHandle);

244 llJl> Chapter 12 Text Edit Document

The other scrolling member function that TTEDoc must change is
SetScrollBarValues. TScrollDoc uses the value of the fVOffset and
fHOffset members to determine the values of the vertical and horizon
tal scroll bars. In TTEDoc, those two members are not used and will
never change from their initial zero values. Thus, TTEDoc must look
in the TERecord for the difference between the destination and view
rectangles to determine how much the text has scrolled. This is very
similar, conceptually, to the offset model of TScrollDoc, but it relies on
the internal mechanics of TE. Since TTEDoc lets TE take care of the
scrolling, it must also use TE' s data structures to determine how to set
the scroll bar values. SetScrollBarValues is overridden as follows.

void TTEDoc: : SetScrollBarValues (void) {
Rect visible = (**fTEHandle) .viewRect;
Rect dest = (**fTEHandle) .destRect;

short vPos =visible.top - dest.top;
short hPos = visible.left - dest.left;
FocusOnWindow();
SetCtlValue(fHorizScrollBar,hPos);
SetCtlValue(fVertScrollBar,vPos);

Notice that because the destination rectangle's top and left coordi
nates will typically be negative when the text has been scrolled, the re
sulting scroll bar values will be positive, since we subtract the negative
values from the view rectangle's coordinates. This sort of negative
positive confusion is one of the hardest things to get right in any sort
of scrolling scheme .

.,. AutoScrolling

TE contains built-in mechanisms for scrolling the text whenever the in
sertion point moves outside the visible region. This can happen when
the user presses one of the arrow keys on the keyboard, or when a cut
or paste operation changes the text selection. You enable those built-in
scrolling mechanisms by calling the toolbox function TEAutoView, as
described earlier in the section on initializing the document.

Autoscrolling is great, but it's tricky: you have to make sure that the
scroll bars stay in synch with the text as it scrolls. TE doesn't know
anything about scroll bars, so it doesn't do anything to them when it
autoscrolls the text. It is up to TTEDoc to reset the scroll bars when it

~ Scrolling the Text 245

thinks that the text might have scrolled. TTEDoc does this by calling
the SynchScrollBars member function after any operation that may
have caused autoscrolling. For example, it calls SynchScrollBars after
every keystroke and cut or paste operation.

TE also provides autoscrolling when the user drags the mouse out
side the view rectangle in the process of selecting text. This capability
is particularly useful for dialog text edit controls that. have no scroll
bars, but it is less useful for our purposes because TTEDoc can't reset
the scroll bars until the user lets up on the mouse button and the docu
ment gets a chance to call SynchScrollBars. It is better to be able to
change the scroll bar settings while the user is dragging the mouse and
the text is scrolling. In fact, the user finds such immediate feedback
very useful.

In order to manipulate the scroll bars during drag scrolling, we must
tell TE to use our procedure to scroll the text rather than its default au
toscroll procedure. We can do this by passing a procedure pointer to
the toolbox function SetClikLoop, as explained earlier in the section on
initializing the document. Our click loop procedure cannot be a mem
ber function, so it must use the static member function GetCurrScroll
Doc (explained in Chapter 10) to gain access to the members and mem
ber functions of the current document.

When TTEDoc detects a mouse click in the text area of its window, it
calls the toolbox function TEClick. TEClick tracks the mouse as long as
the button is held down, changing the selection as required. If the
mouse moves outside the view rectangle, TEClick calls our click loop
procedure repeatedly until the mouse moves back into the view rectan
gle. The click loop procedure examines the current mouse location and
calls the Scroll member function to scroll the text to follow the mouse. If
the mouse is outside the view rectangle, the text is scrolled toward the
mouse. Remember that Scroll will scroll the image and adjust the scroll
bars, so the user will get instant feedback from the scroll bars as the text
scrolls. The code for our click loop procedure is shown as follows.

pascal Boolean MyClickLoop(void){
Point where;
Rect view;
TScrollDoc * theCurrScrollDoc =

TScrollDoc::GetCurrScrollDoc ();
theCurrScrollDoc->GetContentRect(view);

GetMouse(&where);
if(where.v >view.bottom){

246 .,, Chapter 12 Text Edit Document

theCurrScrollDoc->Scroll(theCurrScrollDoc->GetVScroll(),
theCurrScrollDoc->GetVertLineScrollAmount());

if(where.h >view.right){
theCurrScrollDoc->Scroll(theCurrScrollDoc->GetHScroll(),

theCurrScrollDoc->GetHorizLineScrollAmount());

if(where.v <view.top){
theCurrScrollDoc->Scroll(theCurrScrollDoc->GetVScroll(),

-(theCurrScrollDoc->GetVertLineScrollAmount()));

if(where.h <view.left){
theCurrScrollDoc->Scroll(theCurrScrollDoc->GetHScroll(),

-(theCurrScrollDoc->GetHorizLineScrollAmount()));

return true;

• Document Dimensions
Another set of member functions that TTEDoc must override to sup
port text scrolling are those that specify the dimensions of the docu
ment image. Text, in this case, is just an image made up of characters
drawn within a specified rectangle. It is really no different than the pic
tures displayed by PictView in Chapter 11.

TTEDoc begins by overriding GetContentRect to take away 4 pixels
from the top and left edge of the content area of the window. This
moves the text slightly down and to the right, away from the window
edge, to make it more readable. The overridden version of GetContent
Rect first calls TScrollDoc::GetContentRect to get the default calcula
tion for the content area, and then adjusts the resulting rectangle to al
low for the text margins, as shown in the following code. Once again,
you see an example of using the parent class member function and
then extending its functionality.

void TTEDoc::GetContentRect(Rect &r){
II ask the base class how big the rect is
TScrollDoc::GetContentRect(r);
II and now take away the TE margins
r.left += kTEMargin;
r.top += kTEMargin;

.,_ Document Dimensions 247

Next, TTEDoc defines a new member function, SetTERect, to make
sure that the viewRect in the TERecord reflects the current size of the
document window's content area. This member function is called when
ever the size of the window changes, such as when you are growing or
zooming the window. The definition for SetTERect is shown as follows.

void TTEDoc::SetTERect(void) {
if(fTEHandle !=nil){

II set up the view rect
Rect r;
GetContentRect(r);
(**fTEHandle) .viewRect = r;

As we have defined TTEDoc, the right edge of the destination rec
tangle is set permanently to its maximum setting to defeat word wrap.
You could change SetTERect to also modify the destination rectangle
if you wanted a text edit document where the text automatically
wrapped at the edge of the window.

GetVertSize and GetHorizSize must be overridden to tell the scroll
ing member functions the height and width of the text image. We get
the vertical size by multiplying the number of lines of text times the
number of pixels in each line. We get those values from the TERecord
referenced by the fTEHandle member. The vertical dimension of the
text will change as more lines of text are added or removed. The defini
tion for GetVertSize is shown as follows.

short TTEDoc::GetVertSize(void){
return ((**fTEHandle) .nLines * (**fTEHandle) .lineHeight)

The horizontal size of the text image does not change, unlike the ver
tical dimension. TTEDoc sets the width to match the width of the TE
destination rectangle, as shown in the following definition. Even if you
decided to create a TE document class where the destination rectangle
was the same width as the view rectangle in order to enable automatic
word wrap, the method of calculating the horizontal size of the image
in the following code would still work.

short TTEDoc::GetHorizSize(void) {
return (**fTEHandle) .destRect.right -

(**fTEHandle) .destRect. left;

248 I). Chapter 12 Text Edit Document

Finally, TIEDoc overrides two other member functions to tell the
scrolling functions how far to scroll when the user clicks on the up or
down arrow of a scroll bar. These member functions return zero by de
fault in TScrollDoc, so you must override them in any derived class.
GetVertLineScrollAmount examines the fTEHandle member and re
turns the height of one line of text, in pixels, as the amount for vertical
scrolling. The line height is also used for horizontal scrolling, although
other values might be appropriate as well. GetVertLineScrollAmount
and GetHorizLineScrollAmount are defined as follows.

short TTEDoc::GetVertLineScrollAmount(void) {
if(fTEHandle !=nil)

return (**fTEHandle).lineHeight;
else

return 0;

short TTEDoc::GetHorizLineScrollAmount(void){
if(fTEHandle != nil)

return (**fTEHandle) .lineHeight;
else

return O;

~ Changing the Text
Once you have initialized the TextEdit document, there are three ways
to add or take away text. First, the document must take keyboard in
put to add or delete characters. Second, it must be able to accept arbi
trary chunks of text and add them to the document, such as when a
text file is read and its contents displayed in the document. Last, it
must support the cut, copy, and paste operations.

I!)> Managing Selections

The current selection is the range of text that will be affected by the next
text editing operation. The selection can be a single insertion point be
tween two characters or it can include one or more characters. TE uses in
verse highlighting to indicate the extent of the current selection. TIEDoc
overrides several member functions to enable the selection capabilities.

IJl- Changing the Text 249

First, to allow the user to select text by dragging the mouse, TTEDoc
calls the toolbox function TEClick from the ContentClick member
function in response to mouse down events in the document window.
TEClick automatically tracks the mouse and changes the selection
range as the mouse moves. ContentClick is described in more detail in
a later section of this chapter.

Next, TTEDoc must override the CanSelectAll member function to
tell the application that it can perform the SelectAll menu command. It
must also override the DoSelectAll member function to perform that
operation, shown as follows. DoSelectAll calls the toolbox function
TESetSelect, indicating that the selection should encompass all the text
by setting the selection start to zero and the selection end to the maxi
mum short integer value (32767).

virtual Boolean CanSelectAll(void)
{return true;}

void TTEDoc::DoSelectAll(void) {
if(fTEHandle)

TESetSelect(O,kMaxShort,fTEHandle);

Finally, TTEDoc overrides the HaveSelection member function to
indicate whether or not the selection includes at least one character.
The application uses this information to enable or disable the Cut,
Copy, and Clear menu items. Obviously, it makes no sense to perform
one of these operations if the selection is empty. The code for HaveSe
lection is shown as follows.

Boolean TTEDoc::HaveSelection(void) {
if(fTEHandle)

return ((**fTEHandle) .selStart != (**fTEHandle) .selEnd);
else

return false;

.., Accepting Keyboard Input

TTEDoc overrides the DoKeyDown member function to enable key
board input to the document. The application class calls DoKeyDown
for the current document whenever a key down event occurs. TTEDoc
extracts the ASCII code for the key from the EventRecord and passes it

250 ~ Chapter 12 Text Edit Document

to the toolbox function TEKey, where it will be entered into the text. If
the key is the delete character, then the character just before the inser
tion point is deleted, or the current selection range is deleted. Arrow
keys cause the insertion point to move appropriately and the text will
autoscroll if the insertion point moves outside the view rectangle.
Other valid characters are added to the text at the insertion point, or
they replace the current selection. TTEDoc relies heavily on the built
in capabilities of TE to process keyboard input.

After each keystroke, DoKeyDown sets the fNeedtoSave member to
true to show that the document contents have changed. Actually, it
would be better to check the character and not set fNeedtoSave when an
arrow key is pressed. DoKeyDown also calls the SynchScrollBars
member function after each keystroke in case the size of the text image
has changed (lines added or taken away) or the text has autoscrolled
when the insertion point moved outside the view rectangle. The defini
tion of DoKeyDown is shown as follows.

void TTEDoc::DoKeyDown(EventRecord* theEvent) {
if(fTEHandle){

TEKey(LoWrd(theEvent->message),fTEHandle);
fNeedtoSave = true;
II reset the scroll bars since the key press
II may have caused the text to scroll or added
II text
SynchScrollBars();

..,. Adding Arbitrary Text

TTEDoc defines a new member function, AddText, to insert arbitrary
blocks of text into the document. It calls the toolbox function TEinsert
to add the text to the TERecord and sets the fNeedtoSave member to
show that the document has unsaved changes. It then calls the toolbox
function TESelView so that the text will autoscroll if the new insertion
point is outside the view rectangle. Finally, it calls SynchScrollBars to
adjust the scroll bars in case the new text has changed the size of the
text image or caused the text to autoscroll. The code for AddText is
shown as follows. This member function makes it easy for the program
(rather than the user) to write text to the document, such as in the de
bugging document described in Chapter 13.

I)> Changing the Text 251

void TTEDoc::AddText(Ptr text, long len) {
if(fTEHandle !=nil) {

TEinsert(text,len,fTEHandle);
fNeedtoSave = true;
TESelView(fTEHandle);
SynchScrollBars();

~ Cut, Copy, Paste

TE supports cut, copy, and paste with its own private clipboard, known
as the TEScrap. Several TE toolbox functions are available for cut, copy,
and paste operations. TTEDoc uses these TE toolbox functions, but it
must also adhere to the more general clipboard model defined in TDoc
and TApp. Thus, much of the work in TTEDoc to support the clipboard
is dedicated to transferring data from the TEScrap to the TDoc clip
board model and back again.

The first clipboard member function to override is CanPaste. This
function tells the application if the document can accept a particular
clipboard data type. TTEDoc returns true if the type is 'TEXT', false if
otherwise, as follows.

virtual Boolean CanPaste(OSType theType)
{return (theType =='TEXT');

Next, TTEDoc overrides the DoClear member function. This func
tion is quite simple since it doesn't affect the clipboard. Its only pur
pose is to delete the current selection. DoClear calls the toolbox func
tion TEDelete to delete the selection, and then it sets the fNeedtoSave
member to true to show that the document contents have changed. Fi
nally, DoClear calls SynchScrollBars to make sure that the scroll bars
are in synch with the new text image size and scroll position.

void TTEDoc::DoClear(void) {
if(fTEHandle){

TEDelete(fTEHandle);
fNeedtoSave = true;
SynchScrollBars();

252 llll- Chapter 12 Text Edit Document

The DoCopy member function is declared in TDoc to take two argu
ments. The first argument is a pointer to a handle that the function is
supposed to fill in with a handle to the data that is being copied. Do
Copy is responsible for allocating the memory for the copied data and
passing the handle to the data back to the caller through the first argu
ment. The second argument is a pointer to an OSType variable that
DoCopy should fill in with the data type of the copied data. This is a
very general model for clipboard operations.

When TIEDoc overrides DoCopy, it first calls the toolbox function
TECopy to take the current text selection and place it in the TEScrap.
Next, it sets the clip type argument to 'TEXT' and the data handle argu
ment to nil. DoCopy then calls the toolbox function TEScrapHandle to
get the handle to the data that was just copied by TECopy. It then calls
the toolbox function HandToHand to copy the data specified by that
handle into a new block. DoCopy passes that new handle back to the
caller by setting the handle indicated by the first argument. Essentially,
DoCopy is allowing TE to take care of all the details regarding the
copy operation on the document text and then copying TE's copy of
the data into a new handle and passing the new handle back to the ap
plication. DoCopy is defined as follows.

Boolean TTEDoc::DoCopy(Handle *theData,OSType *theType) {
if(fTEHandle){

II put data on TEScrap
TECopy(fTEHandle);

II set theType
*theType ='TEXT';

II do this in case we fail
*theData = nil;

II copy the handle to the data
Handle TEData = TEScrapHandle();
OSErr err= HandToHand(&TEData);
if(err != noErr)

return false;
*theData = TEData;

return true;

~ Changing the Text 253

Notice that DoCopy does not change the text in the document; it
only copies the selection to the clipboard. DoCut, on the other hand,
deletes the selection after copying it. DoCut is easy to implement since
it simply calls the DoCopy and DoClear member functions that we
have already defined, as follows.

Boolean TTEDoc::DoCut(Handle *theData,OSType *theType){
Boolean result;
if (result= DoCopy(theData,theType))

DoClear();
return result;

Finally, TIEDoc must override the DoPaste member function to im
plement the paste operation. This function receives a handle to the
data to be pasted from the application. It puts this data handle in the
low-memory global TEScrapHandle to tell TE that this is the data it
should use for subsequent TE paste operations. Notice that DoPaste
has to set the low-memory global directly, since there is no toolbox
function to do it for us. Once DoPaste sets the TEScrapHandle to point
to the appropriate data, it can call the toolbox function TEPaste to per
form the paste operation on the document text. It also sets the fNeedTo
Save member and calls SynchScrollBars to finish the operation. Do
Paste is shown as follows.

void TTEDoc::DoPaste(Handle theData,OSType theType){

if((fTEHandle) && (theType =='TEXT')){
II put data in TEScrap
long scrapLen = GetHandleSize(theData);
TESetScrapLen(scrapLen);

II set low-memory TEScrap handle with our data handle
Handle * TEScrapHandle = (Handle *) TEScrpHandle;
*TEScrapHandle = theData;

II now go ahead and paste
TEPaste(fTEHandle);

fNeedtoSave = true;
SynchScrollBars();

254 ~ Chapter 12 Text Edit Document

llJJl> Handling Events
Several of the event handling member functions defined in TDoc and
TScrollDoc need to be overridden in TTEDoc to account for the text
editing capabilities in the derived class. These member functions are
discussed in the following sections. In most cases TTEDoc is extending
the functionality of the base class member functions - first it calls the
base class function and then it proceeds with the text-specific opera
tions to complete the function.

~ Activation/Deactivation

TE has built-in support for activation and deactivation. When a text
document window becomes active, its selection must be highlighted
and the insertion cursor shown. When the window is deactivated, the
selection must be unhighlighted and the cursor hidden. TTEDoc over
rides the Activate and Deactivate member functions to call the toolbox
functions TEActivate and TEDeactivate, respectively. The definitions
for Activate and Deactivate are shown as follows.

void TTEDoc::Activate(void){
TScrollDoc::Activate();
if(fTEHandle)

TEActivate(fTEHandle);

void TTEDoc::Deactivate(void){
TScrollDoc::Deactivate();
if(fTEHandle)

TEDeactivate(fTEHandle);

Notice that each of these overridden functions begins by calling the
matching member function for the parent class, TScrollDoc, in order
to get the default behavior before going on to the processing necessary
for the derived class.

~ Drawing the Text

The Draw member function is called in response to update events in
the document window. TTEDoc simply erases the specified rectangle
and draws the text by calling the toolbox routine TEUpdate to draw
the text, shown as follows.

void TTEDoc::Draw(Rect *r){
if(fTEHandle){

EraseRect(r);
TEUpdate(r,fTEHandle);

.,_ Mouse Clicks on Text

II> Handling Events 255

As mentioned in an earlier section, TTEDoc calls the toolbox function
TEClick from the ContentClick member function. If the user clicks on
a location in the text, the insertion point is moved to that location. If
the user clicks and holds the mouse button, TEClick tracks the mouse
and changes the selection while the user is dragging the mouse. We
want our click loop procedure, which is called from TEClick while the
mouse button is held down, to detect when the mouse leaves the view
rectangle and to scroll the text appropriately to extend the selection.

TTEDoc installed our click loop procedure during document initiali
zation with the toolbox function SetClikLoop. TTEDoc must tum off
TE' s built-in default autoscrolling while the mouse is being dragged in
order to get the custom click loop procedure called. When TIEDoc re
sponds to keystrokes, the default autoscrolling is sufficient since the
document gets a chance to adjust the scroll bars after each keystroke.
But when the mouse is being dragged, we want to use our own click
loop procedure instead of the default procedure because the default
procedure doesn't allow us to adjust the scroll bars while the mouse
button is being held down. Our custom click loop procedure scrolls the
text and adjusts the scroll bars repeatedly while the mouse button is
being held down, thus giving the user immediate feedback.

ContentClick calls the toolbox function TEAuto View with false as
the first argument in order to tum off TE' s autoscrolling functions.
Then it calls TEClick to track the mouse as long as the button is being
held down. TEClick will call our click loop procedure while tracking
the mouse to give us a chance to scroll the text and update the scroll
bars. After TEClick returns, we tum the autoscroll features back on by
calling TEAuto View with true for the first argument. The code for
ContentClick is shown as follows.

void TTEDoc::ContentClick(EventRecord *theEvent){
Boolean shiftKeyDown = ((theEvent->modifiers & shiftKey) != 0);
if(fTEHandle){

II turn off autoscrolling, we do it ourselves for clicking
TEAutoView(false,fTEHandle);
TEClick(theEvent->where,shiftKeyDown,fTEHandle);

256 ..,, Chapter 12 Text Edit Document

TEAutoView(true,fTEHandle);

.._ Idle Events: Adjusting the Cursor

The application calls the Doldle member function for the current doc
ument whenever it sees that no other events are waiting in the event
queue. ITEDoc overrides the Doldle function to call the toolbox func
tion TEidle, which blinks the insertion cursor. It also gets the current
mouse location, in local coordinates, and passes that location to the
AdjustCursor member function. AdjustCursor sets the mouse cursor
to the I-beam cursor shape that is normally associated with text inser
tion when the mouse is within the content area of the document win
dow. Otherwise it sets the cursor to the arrow shape with the toolbox
function InitCursor. The code for Doldle and AdjustCursor is shown
as follows.

void TTEDoc::Doidle(void){
TScrollDoc::Doidle();
if(fTEHandle){

TEidle(fTEHandle);

GrafPtr oldPort;
GetPort(&oldPort);
SetPort(fDocWindow);
Point thePt;
GetMouse(&thePt);
AdjustCursor(thePt);
SetPort(oldPort);

void TTEDoc::AdjustCursor(Point where){
Rect r;
II decide if it is in content or scroll bars
GetContentRect(r);
if(PtinRect(where,&r)){

CursHandle !Beam= GetCursor(iBeamCursor);
if(IBeam !=nil){

SetCursor(*IBeam);

}else
II it must be in the scroll bars or grow box
InitCursor();

._ File Operations 257

IJll> Growing and Zooming

The code for growing and zooming the document window is simple.
In both cases, you just call the matching member function from the par
ent class to take care of resizing the window and the scroll bars and
then call SetTERect to adjust the view rectangle for the text to fit the
new window size. The code for DoGrow and DoZoom is shown as fol
lows. Once again, you can see the power of inheritance.

void TTEDoc::DoGrow(EventRecord* theEvent){
II call the parent class, this will adjust scroll bars
TScrollDoc::DoGrow(theEvent);
I/ adjust the TE rectangle
Set TERect () ;

void TTEDoc::DoZoom(short partCode){
II call the parent class, this will adjust scroll bars
TScrollDoc::DoZoom(partCode);
II adjust the TE rectangle
SetTERect();

., File Operations
In addition to the text editing capabilities described in the previous
sections, TTEDoc can also read and write text files. As with the TScrib
bleDoc class in Chapter 8, you need to override only a few member
functions to enable the document's file operations.

GetDocType is the member function that tells the application the file
type of the document's files. TTEDoc overrides this method to return
'TEXT'. GetDocType is defined in the declaration of TTEDoc as follows.

virtual OSType GetDocType(){return 'TEXT';}

TTEDoc also overrides the CanSaveAs member function to return
true so that the SaveAs menu item will be enabled whenever a TTE
Doc document is active. The code for CanSaveAs is defined within the
declaration of the TTEDoc class as follows.

virtual Boolean CanSaveAs(void){return true;}

As explained in Chapter 8, the CanSave member function is defined
by default to depend on the value of the fNeedtoSave member, so TTE
Doc doesn't need to override CanSave to enable the Save menu item; it
will be enabled whenever the fNeedtoSave member for the current doc
ument is true.

258 9JJ- Chapter 12 Text Edit Document

.., Reading 'TEXT Files

By the time the ReadDocFile member function is called, the file is al
ready open. ReadDocFile must determine how many bytes are in the
file and allocate sufficient memory to read the entire file. Because of
the 32767 character limit for TE, ReadDocFile will not read more than
that many characters. Once the memory has been successfully allo
cated, ReadDocFile sets the file position to the beginning of the file
and reads the entire file into the handle that was just allocated. Assum
ing that there are no errors, ReadDocFile uses that handle to set the
text for the document with the toolbox function TESetText. Since TE
SetText makes a copy of the specified text, we dispose of the handle
once the text has been passed to TE. Finally, ReadDocFile sets the text
selection position to zero and calls SynchScrollBars so that the scroll
bars will reflect the amount of text in the document. The code for
ReadDocFile is shown as follows.

Boolean TTEDoc::ReaclDocFile(short refNurn) {
if((fDocWindow) && (fTEHandle !=nil)) {

long len;
OSErr err= GetEOF(refNurn,&len);
II truncate to TE limits
if(len > kMaxShort) (

len = kMaxShort;

Handle thetext = NewHandle(len);
if(thetext ==nil) {

ErrorAlert(rDocErrorStrings,sNoMem);
return false;

HLock (thetext);
err= SetFPos(refNurn,fsFromStart,0);
err= FSRead(refNurn,&len, (Ptr)*thetext);
HUnlock(thetext);
if(err == noErr){

II set the text in the TERecord
HLock (thetext);
TESetText(*thetext,len,fTEHandle);
HUnlock(thetext);
DisposHandle(thetext);

II set the selection to the first char
TESetSelect(0,0,fTEHandle);
SynchScrollBars();
return true;

else {
DisposHandle(thetext);
return false;

}

II if there ain't no window ...
return false;

_.. Writing 'TEXT' Files

.,_ Using TTEDoc: TTEApp 259

Like ReadDocFile, the file is already open by the time WriteDocFile is
called. TTEDoc' s only responsibility in this member function is to
write the text from the document out to the file. The toolbox function
TEGetText returns a handle to the text and WriteDocFile writes the
contents of that handle out to the file, resetting the file position to zero
before writing. That's all there is to it. The code for WriteDocFile is
shown as follows.

Boolean TTEDoc::WriteDocFile(short refNum){
if((fDocWindow !=nil) && (fTEHandle !=nil)) {

long len = (long) (**fTEHandle) .teLength;
CharsHandle thetext = TEGetText(fTEHandle);
HLock((Handle)thetext);

}

OSErr err= SetFPos(refNum,fsFromStart,0);
err= FSWrite(refNum,&len, (Ptr)*thetext);
HUnlock((Handle)thetext);
if (err = noErr)

return true;
else

return false;

II if there ain't no window ...
return false;

.,, Using TTEDoc: TTEApp
The remainder of this chapter is devoted to developing a simple appli
cation that uses the 'ITEDoc class. A derived application class,
'ITEApp, is described along with a main program and makefile to put
it all together. The TE application is similar to the applications devel
oped in Chapters 7-9 and 11, so it will be treated rather briefly here.

260 .._ Chapter 12 Text Edit Document

.., The TIEApp Class

You must define a derived application class for the TE application. Its
main jobs are to create TE documents and configure SFGetFile to read
'TEXT' files. It also must override the CanAcceptClipType member
function to specify that the application will support 'TEXT' clipboard
data. The declaration of TTEApp is shown as follows.

class TTEApp : public TApp{
protected:

} ;

virtual TDoc * MakeDoc(SFReply *reply= SFReply *) nil);
virtual SFTypeList GetFileTypesList(void);
virtual int GetNumFileTypes(void) {return l;};
virtual Boolean CanOpen(void) {return true;}
virtual OSType CanAcceptClipType(void){return 'TEXT';}

As always, you override MakeDoc to create a specific document
type rather than the default TDoc. In TTEApp, you want to make
TTEDoc documents, as follows.

TDoc * TTEApp::MakeDoc(SFReply *reply){
return new TTEDoc(GetCreator(),reply);

You also must define a global variable to hold the file types list con
taining one element specifying that you want to read 'TEXT' files, as
shown here.

SFTypeList gtheTypes ={'TEXT'};

Likewise, you override GetFileTypesList to return a pointer to the
file types list just defined.

SFTypeList TTEApp::GetFileTypesList(void) {
return gtheTypes;

And you must override GetNumFileTypes to return 1 to indicate
that you only want to read one type of file, as follows.

virtual int GetNumFileTypes(void){return l;};

Since TTEApp can open existing text files, you override CanOpen to
return true, as shown here.

virtual Boolean CanOpen(void){return true;}

.. Using lTEDoc: lTEApp 261

And finally, you override CanAcceptClipType to return 'TEXT', in
dicating that the application can accept data from the system clipboard
if it has the clipboard data type 'TEXT'.

virtual OSType CanAcceptClipType(void){return 'TEXT';}

As you can see, the modifications necessary to adapt the application
base class to work with TTEDoc are minimal and easy to implement.

..,. The Main Program

The main program for the text application is exactly like the main pro
gram for the Scribble program in Chapter 8, except that here you create
an application object from the TTEApp class instead of the TScribble
App class. The code for the main program is shown as follows.

void main(void)
{

II create an instance of TTEApp
TTEApp theApp;
II initialize the application
if(theApp.InitApp(}) {

II open one window to start with,
II unless we got files from the Finder
if(! theApp.OpenDocFromFinder())

theApp.OpenNewDoc();
II run the event loop until user quits
theApp.EventLoop();
//now clean up
theApp.CleanUp();

..,. TEApp Resources

The resources for the TE application are pulled from TApp.rsrc,
TDoc.rsrc, TScrollDoc.rsrc, and TEApp.rsrc. The resources in the first
three files were discussed in the chapters that described the associated
classes. The last file, TEApp.rsrc, contains a new Apple menu with the
text of the About item changed and a new 'ALRT' and 'DITL' to display
the correct information about the program when the user chooses the
About item. These are the minimal resource changes necessary to create
a derived application. The file TEApp.r contains the following state
ments to include the resources from all four files. Remember that the last
resources included replace equivalent resources read from earlier files.

262 .,. Chapter 12 Text Edit Document

include "TApp.rsrc";
include "TDoc.rsrc" ;
include "TScrollDoc.rsrc";
include "TEApp.rsrc";

IJll> The TEApp Makefile

The makefile for the TE application is also very similar to those seen for
the other applications in this book. One addition is the definition of a
new source path for the TTEDoc class. C++, the Linker, and rez need to
know about the TIEDoc folder so they can find the header files and re
sources necessary to build the complete application. The following state
ment is added at the beginning of the makefile to define the relative path
to the folder containing the TTEDoc class source code and resources.

TEObjDir = ::TEDoc:

You then add that source path to the options for C++ and rez, as
follows.

options for C++, where to look for include files
CPlusOptions = {SyrnOpts} o

-i "{AppObjectDir}"o
-i "{TEObjDir}"o
-i "{ScrollObjDir}"

RezOptions = -s "{AppObjectDir}" -s "{ScrollObjDir}"o
-i "{AppObjectDir}" -i "{ScrollObjDir}"

The object code for the TTEDoc class must also be added to the list
of object code files for the finished program, as shown here.

Objects = o
{AppObjectDir}"TDoc.cp.o o
"{ScrollObjDir}"TScrollDoc.cp.o o
"{TEObjDir}"TTEDoc.cp.o o
TEApp.cp.o

The resource file, TEApp.rsrc, must be included in the list of re
source files that are combined in the final program, as follows.

ResourceFiles = o
"{AppObjectDir}"TApp.rsrc o

"{AppObjectDir}"TDoc.rsrc o
"{ScrollObjDir}"TScrollDoc.rsrc o
TEApp.rsrc

., Summary 263

You must define a new dependency rule for the TTEDoc class,
shown as follows. Notice that TTEDoc.cp.o is dependent on TScroll
Doc.h and TDoc.h, showing its inheritance lineage.

dependency rules for TTEDoc
"{TEObjDir}"TTEDoc.cp.o f "{TEObjDir}"TTEDoc.cp o

"{TEObjDir}"TTEDoc.h o
"{ScrollObjDir}"TScrollDoc.h o
"{AppObjectDir}"TDoc.h

And finally, the dependencies for TEApp.cp.o are defined with the
following statement.

TEApp.cp.o f TEApp.cp o
"{AppObjectDir}"TApp.h o
"{AppObjectDir}"TDoc.h o
"{ScrollObjDir}"TScrollDoc.h o
"{TEObjDir}"TTEDoc.h o
"TEApp.make

See Appendix B for a complete listing of TEApp.make, as this section
has discussed only the parts of the file that are different from other
makefiles described in previous chapters.

llJlli> Summary
This chapter described a TextEdit document class built on top of the ex
isting TDoc and TScrollDoc base classes. TTEDoc knows how to edit
text and read and write text files. It also shows how to utilize the clip
board member functions to implement cut, copy, and paste operations.

TTEDoc is a very useful class. Almost every program can use some
sort of simple text editing capability. Because it is completely self
contained, TTEDoc documents can be used along with other document
types in an application that supported more than one document type.

TTEDoc also shows how to adapt TScrollDoc to a different scrolling
mechanism. It uses the built-in scrolling from the toolbox TE functions
within the structure of the TScrollDoc class member functions to pro
vide scrolling text. This is much easier than trying to implement scroll
ing text from scratch.

264 .., Chapter 12 Text Edit Document

This chapter also built a small application to use TTEDoc. With min
imal effort, the T App class was modified to support the text editing
documents. The result was a multiwindow editor.

TTEDoc can be used as a functional class just the way it is, or it can
be used as a base class to derive specialized text editing documents.
The next chapter uses multiple inheritance to create a document class
based on TTEDoc and the ostream class that is part of the C++ I/O li
brary. The result is a text document that you can treat just like a stream.

13 ~ TDebugDoc: Streams and
Multiple Inheritance

This chapter develops a new document class, TDebugDoc, based on
the TTEDoc class described in the preceding chapter. In addition,
TDebugDoc is also derived from the C++ ostream class. The ability to
inherit from more than one class is called multiple inheritance, and it is
one of the most far-reaching features of C++ 2.0. Thus, TDebugDoc
has all the members and member functions of the TTEDoc class plus
all the members and member functions of the ostream class. You can
treat a TDebugDoc object just like a TTEDoc, or just like an ostream.
It embodies the characteristics of both parent classes.

TDebugDoc can be used to write debugging messages into a win
dow during program execution. Because it inherits from TTEDoc, it
knows how to display and edit text in a scrollable window, and it can
be manipulated by the application just like other documents for activa
tion and update purposes. And, because it inherits from the ostream
class, it knows how to format numbers and strings for textual output.
By combining these capabilities, you can use all the formatting
strengths of streams and all the display features of TTEDoc.

You will need to modify the base classes very little to create this new
hybrid class. Streams typically use the standard input and output
channels of the operating environment, as we saw when using streams
with MPW in Chapter 4. In this chapter we will modify the stream so
that it sends its output to a text window. The techniques shown in this
chapter can be extended and applied to create other stream deriva
tives, such as a stream class that sends its output over a network.

The complete source code for this class and an application that dem
onstrates how to use it are listed in Appendix B.

265

266 ~ Chapter 13 TDebugDoc: Streams and Multiple Inheritance

.., About Multiple Inheritance
C++ 2.0 allows a class to be derived from more than one parent class,
which can be an extremely useful design tool when you are creating
new classes. You can combine capabilities from different classes into
new classes with characteristics of all the parent classes. And if the new
class is derived publicly from the parent classes, it will have access to all
the public and protected members and member functions of its parents.

The basic idea behind multiple inheritance is easy to grasp, but there
are a few snags that you must avoid when combining classes. First, the
same member name or member function name in two or more parent
classes causes ambiguity when the derived class tries to access the
shared name. Although you can get around this ambiguity, it is best to
eliminate it altogether by using dissimilar member names in your par
ent classes. The second restriction is that Apple's C++ does not allow
multiple inheritance from parent classes that are derived from the
HandleObject class or the PascalObject class. This is the reason I did
not use HandleObjects as the basis for TDoc in this book, even though
HandleObjects use memory more efficiently than regular objects do. (If
you don't expect to use multiple inheritance, it would be a good idea
to redefine TDoc as a HandleObject.)

There is much more to say about multiple inheritance, but it is be
yond the scope of this chapter. Here we will simply show how to
create a working class using multiple inheritance and leave the discus
sion of the finer points to other references .

.., Streams and Streambufs
Chapter 4 contained many examples of using streams to produce for
matted output in the MPW environment. The current chapter concen
trates on the internal workings of streams in order to modify their
behavior.

The two main stream classes that are defined in the C++ stream li
brary are ostream and istream. Ostream handles output and istream
handles input. A third class, iostream, is available for streams that
need both input and output.

Stream 1/0 is built in two layers - one for formatting and the other
for raw character input and output. The ostream and istream classes
are responsible for formatting. The streambuf class is responsible for
raw input and output. For output, the stream takes the insertion argu
ment and formats it into a sequence of characters. It then passes those
characters on to the streambuf for consumption. Similarly for input,

_. Streams and Streambufs 267

characters pa~s in~o the streambuf from some source, such as the key
board or a disk file, and are withdrawn from the streambuf by the
~tream. Once the stream withdraws the characters from the streambuf,
1! scans them and converts them into the format required by the extrac
tion argument.

When used for input, a streambuf is said to produce characters, and
when used for output, the streambuf is said to consume characters.
For example, consuming the characters in the streambuf might entail
writing the characters to a disk file, or sending them over the serial
port or to the standard I/0 channel of MPW. All stream objects have
an associated streambuf that is required as an argument when the
stream is created.

The formatting capabilities of streams are rarely modified directly.
Rather, you will normally extend the formatting abilities by overload
ing the insertion (<<) and extraction (>>) operators to handle your
own data types and classes in addition to the predefined formatting
definitions.

In contrast, the consumption and production of characters by the
streambuf class are often replaced by totally new capabilities in order
to redirect stream I/O. By deriving new classes from streambuf, you
can change the raw consumption and production mechanisms for the
streambuf.

Two member functions of the streambuf class are crucial to redefining
the production and consumption mechanisms. The first member func
tion, overflow, contains the low-level code that actually consumes the
characters, whether to a disk file or some other destination. The other
function, underflow, contains the code that actually produces the char
acters from their source. So, by overriding underflow and overflow,
you can control where the characters come from and where they go.

A streambuf object typically has an associated area of memory
where it buffers characters so that the actual input or output does not
have to proceed one character at a time. For example, if a streambuf
has an 80-character buffer, it could accept up to 80 characters before
overflow needed to be called. Of course, you can also flush the buffer
even if it is not completely full. It is also possible to create a streambuf
that has no buffer. An unbuffered streambuf performs raw 1/0 each
time a character is inserted or extracted.

The following section develops a derived streambuf class that knows
how to output its characters to a TfEDoc window. That. deri"."ed
streambuf will then be associated with an ostream so that all msertion
operations on that stream will appear in the tex! wind~:W· You can also
find more details on streams and streambufs m the 10stream Exam
ples" section of the MPW C++ manual.

270 IJl. Chapter 13 TDebugDoc: Streams and Multiple Inheritance

Overflow is the only member function that we need to o~erride in
the streambuf class to redirect output. If we wanted to use this stream
buf for input as well, we would also override the un~erflow me~ber
function. The following sections show how to associate the denved
streambuf with a stream and how to send output to that stream.

_.. TDebugDoc

Key Point.,,.,

TDebugDoc is a text editing document. TDebugDoc is an ostream.
TDebugDoc is both. This is the wonder of multiple inheritance. We
derive TDebugDoc from the TTEDoc class to get all of its text editing
and window management functions. We also derive from the ostream
class to get all of that class's output capabilities. We want TDebugDoc
to have access to the public and protected members of the paren't
classes, so we declare that it is publicly derived from both parents. The
declaration of TDebugDoc is shown as follows.

c l a s s TDebugDoc : publ ic TTEDoc ,public ost r eam
protect ed :

TWi ndowSt reamBuff * fBuff;
public :

} ;

TDebugDoc ::TDebugDoc (TWindowStreamBuff *buff,
OSType t heCreator = ' ???? ',
SFReply * SFi nfo = (SFReply *)nil);

virt ual -TDebugDoc (void);
virt ual short GetWinI D(void) {return rDebugDoc ; }
II do this so Close menu isn ' t acti ve
II when debug window i s on top
virtual Boolean CanClose(void) { r eturn false ; };

Notice that on the first line we state that TDebugDoc has two pare
classes, and that the public keyword is used for each parent class, ind
pendent of the other. The list of parent classes is separated by comma
You can have more than two parent classes.

To declare a derived class with multiple inheritance, list the"
classes, separated by commas, in the first line of the derived dass
declaration, as shown here.

class TDebugDoc : public TTEDoo, Public ost~ {
II ...

(

\ ~ TDebugDoc 271

The declaration includes a constructor and destructor for TDebug
Doc and a new member, [Buff, which holds a pointer to a TWindow
StreamBuff. We use this pointer to shut down the streambuf when the
document is deleted so that no further output will be attempted.

TDebugDoc also overrides the member functions GetWinID and
CanClose. GetWinID is defined in the class declaration to return the
ID number of the 'WIND' resource for the debugging document win
dow. TDebugDoc uses a different resource from the default document
window since we don't want the debugging window to have a close
box. Toward this same end, CanClose is overridden to return false so
that the Close menu item is disabled whenever the debugging docu
ment is the active document.

~ TDebugDoc Constructor and Destructor

Like other derived constructors that have been described in this book,
the constructor for TDebugDoc must pass its arguments on to its par
ent classes. When there is more than one parent class, the syntax for
passing arguments to them is similar to the method used with one par
ent except that you use a list of parent classes, separated by commas,
instead of just one class. Each parent class is listed along with the argu
ments it is to receive.

TDebugDoc' s constructor takes three arguments. The first is a
pointer to a TWindowStreamBuff. This streambuf must be created be
fore we can create a TDebugDoc because it is required as an argument
to the parent ostream class. TDebugDoc also uses the streambuf argu
ment to initialize the [Buff member. The other two arguments are a
creator designator and an SFReply pointer, which are passed to the
document parent class. The definition for TDebugDoc' s constructor is
as follows.

TDebugDoc::TDebugDoc(TWindowStreamBuff *buff,
OSType theCreator,SFReply * SFinfo):

TTEDoc(theCreator,SFinfo),
ostream(buff){

II save a reference to the strearnbuffer
II so we can disable it when the window closes
fBuff = buff;

272 ~ Chapter 13 TDebugDoc: Streams and Multiple Inheritance

Key Point~ I

The destructor for TDebugDoc is declared as a virtual function so
that it will be called even though the application will delete it with a
generic TDoc pointer. Its sole task is to set the TWindowStreamBuff's
fTEDoc member to nil so that the streambuf will not try to do anymore
output. Remember that TWindowStreamBuff's overflow function al
ways checks the fTEDoc member before attempting to send text to the
document. When the document is being deleted, it must make sure
that no more output is sent to it. The code for -TDebugDoc is shown
as follows.

TDebugDoc :: - TDebugDoc (void) {
II disabl e t he streambuff so it won' t
II try to out put t o a de leted document
fBuff->f TEDoc = nil;

IJJ!> Making Debug Documents

MakeDebugDoc is a utility function that knows how to create TDe
bugDoc objects and add them to the application's document list. It
creates a TWindowStreamBuff after first allocating memory for the
streambuf's buffer. Once the TWindowStreamBuff is created, it is
used as an argument to create a new TDebugDoc. The resulting TDe
bugDoc is then initialized and added to the application's document
list. Once the document is part of the application's document list, it
will be treated like any other document derived from TDoc.

The TWindowStreamBuff is used as an argument to create the TDe
bugDoc document so that the ostream part of TDebugDoc will have a
streambuf to send its characters to. But the TWindowStreamBuff ob
ject itself must contain a reference to the TDebugDoc document so

IJJ> Using Debug Documents 273

that it has a place to send its final output. This sort of circular referenc
ing can be tricky to initialize. The final task of MakeDebugDoc is to set
the fI'EDoc member of the TWindowStreamBuff object to point to the
TDebugDoc object that was just created. The code for MakeDebug
Doc is shown as follows.

TDebugDoc * MakeDebugDoc(TApp * theApp) {
II grab some memory for the stream buffer
char* theBuffer =new char[kBufferSize];
if (! theBuffer)

return nil;
II create the streambuffer
TWindowStreamBuff *buff= new TWindowStreamBuff(theBuffer,

kBufferSize) ;
II and pass it to the new DebugDoc's constructor
TDebugDoc *temp= new TDebugDoc(buff);
if(! temp)

return nil;
II make the window
if(temp->MakeWindow(theApp->fenvRec.hasColorQD) &&

temp->InitDoc()){
temp->ShowDocWindow();
theApp->AddDocument(temp);
II connect the streambuff to the TTEDoc document
buff->fTEDoc = temp;
return temp;

else
return nil;

.., Using Debug Documents

Once you have defined the TDebugDoc class as described in previous
sections, you can use it in your programs to provide diagnostic text
output while the program executes. A typical use of TDebugDoc is to
declare a single global pointer to a TDebugDoc object. The MakeDe
bugDoc function is used to create a debugging document and it is as
signed to the global variable. Then other functions in your program
can access the global variable as if it were a pointer to an ostream. The
following code shows how to declare the global variable and create the
debugging document within the context of an application that also
supports regular TTEDoc documents.

274 .,,_ Chapter 13 TDebugDoc: Streams and Multiple Inheritance

SFTypeList gtheTypes ={'TEXT'};
TDebugDoc *gdebugDoc = nil;
void main(void){

II create an instance of TTEApp
TTEApp theApp;
/I initialize the application
if(theApp.InitApp()){

gdebugDoc = MakeDebugDoc(&theApp);
II open one window to start with,
II unless we got files from the Finder
if(! theApp.OpenDocFromFinder())

theApp.OpenNewDoc();
II run the event loop until user quits
theApp.EventLoop();
//now clean up
theApp.CleanUp();

IJJi> Sending Output to Debug Documents

Once the debugging document has been created and assigned to a glo
bal variable, as shown in the previous section, other parts of the pro
gram can use it just like a stream for character output. For example,
you could override the MakeDoc member function of the application
to write diagnostic information each time it made a new document, as
follows. Notice that you must dereference the pointer to the ostream
since the insertion operator works on stream objects rather than
stream pointers.

TDoc * TTEApp::MakeDoc(SFReply *reply)(
TTEDoc *temp= new TTEDoc(GetCreator(),reply);
*gdebugDoc << "Making a new document, address = "

« (int)temp
<< endl;

return temp;

That's all there is to it. The debugging document is a stream, so it
embodies all the formatting capabilities of streams. But it is also a doc
ument, with that class's window management and file handling func
tionality. Best of all, it will coexist with other document types in an ap
plication so that you can add debugging support to any application
based on TApp and TDoc.

~ TDebugDoc Resources 275

~ TDebugDoc Resources
The only new resource necessary for a TDebugDoc is a 'WIND' re
source with an ID number of rDebugDoc (defined as a constant equal
to 1000 in TDebugDoc.h). This window resource creates a window with
no close box. It uses a different ID number from the default document
window ID number so that they can coexist in the same application.

If you use TDebugDoc in your application, you must also add TDe
bugDoc.rsrc to your list of resources. See the files DebugTEApp.make
and DebugTEApp.r in Appendix B for details.

~ Summary
Multiple inheritance enables you to create classes that inherit members
and member functions from more than one parent class. The example
used here was a document class that was also a stream. The result is a
document that can handle stream operations to produce debugging
output in a Macintosh window. This can be a very useful class since
the Macintosh doesn't normally support this sort of output.

This chapter also demonstrated how the streambuf class can be mod
ified to redirect the output of a stream. Sending stream output to a text
window is a useful technique, but it would be just as easy to create a
streambuf that sent its output through the serial port to a debugging
terminal. You might want to try overriding the overflow member func
tion to achieve this effect.

This is the final chapter that will use TApp and TDoc. These classes
and their derivatives have been very useful for learning the basics of
C++, and they are quite useful for creating programs on the Macintosh.
But they do have many shortcomings as the programs become more
complex. The next chapter describes the MacApp class library.
MacApp is a much more complete and fully developed class system.
You will find that MacApp is a better way to go if you want to develop
industrial-strength applications.

14 ~ MacApp and PictView

This chapter reimplements the PictView program, originally devel
oped in Chapter 11 using the TApp and TScrollDoc classes, using the
MacApp class library. MacApp is a set of classes from Apple Com
puter that encapsulates much of the standard behavior of Macintosh
applications and documents. In many ways, the application and docu
ment classes described in Chapters 5-13 are stripped-down versions of
MacApp. But MacApp is a much more fully developed class library. It
has been under development at Apple since 1984, so the class design
has had a chance to mature and the bugs have been worked out
through extensive testing and application use.

The PictView program developed in this chapter is named MAPict
View to distinguish it from the program developed in Chapter 11.
MAPictView has essentially the same functionality as the original Pict
View program, which allows you to compare the coding requirements
for the TApp-TDoc class system and MacApp. You will find that
MacApp and TApp and TDoc are similar in many ways and dissimilar
in others. One thing you will find is that MacApp is more complicated
than TApp or TDoc. This can be good and bad. TApp and TDoc were
designed to be useful teaching tools, so many features that would dis
tract from their teaching role were left out. MacApp, on the other
hand, was designed to help programmers write robust application pro
grams. MacApp has it all. As a consequence, MacApp is harder to
learn than T App or TDoc. But if your goal is to write the next block
buster commercial application, MacApp is a good choice.

You might also be tempted to implement your own application and
document class system, based on your experience with the classes in

277

278 _., Chapter 14 MacApp and Plctview

Chapters 5-13. Although it is a lot of fun to create your own base
classes, your time will probably be better spent learning a well
designed and well-tested class library like MacApp and then applying
your creative efforts to building on top of those classes to address the
needs of your specific application. Apple has devoted five or six years
and untold engineering hours to developing and testing MacApp, so it
makes sense to take advantage of all that work and experience.

The program developed in this chapter is very simple, and it does
not begin to explain or utilize all the features of MacApp. It will, how
ever, give you a taste of MacApp programming. The complete code is
listed in Appendix B. If you are interested in learning more about
MacApp, see the MacApp documentation from Apple or Wilson, Ro
senstein, and Shafer's excellent book Programming with MacApp, (Addi
son-Wesley, 1990).

• Overview of MacApp
MacApp is a set of classes that provide a skeleton on which to build a
Macintosh application. It has a document class and an application
class, similar to the ones described in Chapters 5 and 6. The applica
tion class of Chapter 6 and the MacApp application class are similar in
form and function. They are both responsible for dispatching events
and managing a list of documents. The document class from Chapter 5
and the MacApp document class are quite different. While the TDoc
class in Chapter 5 took care of managing the document data and dis
playing it, MacApp creates an additional class, TView, that takes the
display responsibilities away from the document class. In MacApp, the
document class is responsible for reading and writing data from the
disk, and the view class is responsible for displaying the data.

MacApp uses the view class pervasively to implement display objects
on the screen. Windows are derived from the view class. Controls such
as buttons, scroll bars, and edit text boxes are also derived from the
view class. Scrollers are special views that control scrolling images. A
typical document window is made up of a window, a scroller, and an
application-specific view to display the document data. The sample
program described in this chapter will illustrate how to subclass the ap
plication, document, and view classes to create a new application.

In addition to the application, document, and view classes, MacApp
provides many other support classes to make Macintosh programming
easier. One of the biggest strengths of MacApp is a well-designed error
handling mechanism. Although the program in this chapter will not
explore the error-handling aspects of MacApp in any detail, it does call
some of the error-catching functions provided by MacApp.

~ MacApp and C++ 279

.,_ MacApp and C++

The classes that make up the MacApp class library are written in Ob
ject Pascal. Apple had to make several additions to its version of C++
in order to make the use of MacApp (and other classes written in Ob
ject Pascal) possible from C++.

Object Pascal and C++ use very different mechanisms for calling vir
tual functions. Apple has added a C++ ba~lass called PascalObject
so that any C++ classes derived from PascalObject use the function
dispatching mechanisms of Object Pascal. This means that classes de
rived from PascalObject in C++ can be called from Object Pascal and
that classes written in Object Pascal can be called from C++ as if they
were derived from the C++ class PascalObject.

This provides an elegant way to access all of MacApp from your
C++ programs. Apple has created a set of header files that declare the
MacApp classes as descendents of PascalObject. All of the members
and member functions in the MacApp classes are represented in the
C++ header files. For example, the following Object Pascal code de
clares the interface to the class Foo.

Foo = OBJECT
PROCEDURE Foo.Funcl(varl : INTEGER; var2 Rect);
FUNCTION Foo.Func2(varl : Longint; var2 INTEGER): INTEGER;

END;

In C++, Foo would be declared in the following way.

class Foo : public PascalObject {
public:

} ;

virtual pascal void Funcl(short varl, Rect * var2);
virtual pascal short Func2(long varl, short var2);

Notice how all the member functions from an Object Pascal class are
defined as virtual when translated into a C++ declaration. Notice also
that all the member functions are declared with the pascal keyword so
that they will use the Pascal calling conventions for arguments and
function results. Pascal data types must be converted to the equivalent
C++ types: a Pascal INTEGER becomes a C++ short and so on.

Apple has also added the inherited keyword to C++ to give compati
bility with a similar capability in Object Pascal. C++ classes that are de
rived from the base class PascalObject can use the inherited keyword
to reference their parent class. In contrast, C++ classes that are not de
rived from PascalObject must explicitly use the parent class name to
call the parent's member function.

280 Ill> Chapter 14 MacApp and Plctview

IJll> TPICTDocument

The TPICTDocument class is responsible for reading the data off the
disk and making the window and view to display the data. It is de
clared as a derivative of the MacApp class TDoeument, as follows.

class TPICTDocument : public TDocument {

};

public:
Handle fPICTData;
Handle fPICTHeader;

II The PICT owned by the document
II header for PICT file

II Initialization and freeing
virtual pascal void IPICTDocument(void);
virtual pascal void Free(void);

II disable Save and SaveAs menu items
virtual pascal void DoSetupMenus(void);
II read the file
virtual pascal void DoRead(short aRefNum,Boolean rsrcExists,

Boolean forPrinting);
II Making views and windows
virtual pascal void DoMakeViews(Boolean forPrinting);
II Inspecting
virtual pascal void Fields(pascal void (*DoToField

StringPtr fielc:IName,
Ptr fieldAddr,
short fieldType,
void *DoToField_StaticLink),
void *DoToField_StaticLink);

TPICTDocument declares two new members, fPICTData and fPICT
Header, similar to the TPICTDoc class described in Chapter 11. The
overridden member functions are discussed in the following sections .

.,. Initializing the Document

The IPICTDocument member function is defined to do the initializa
tion specific to TPICTDocument. It begins by calling the !Document
member function to take care of all the default initialization for the
TDocument class, and then it goes on to initialize its class-specific
members. This member function serves the same purpose that the con
structor and the InitDoc member function served in the TPICTDoc
class described in Chapter 11. Although it is possible to define con
structors for your MacApp classes written in C++, it is generally not

Key Point ... ,

... TPICTDocument 281

done - those portions of MacApp written in Object Pascal don't have
constructors and it would be confusing to mix the two initialization
styles. The code for IPICTDocument is shown as follows.

#pragma segment AOpen
pascal void TPICTDocument :: IPICTDocument(void) {

II do the inherited stuff
IDocument(kFileType,

kSignature ,
kUsesDataFork,
! kUsesRsrcFork ,
kDataOpen,
! kRsrcOpen);

II and now do our specific members
fPICTData = nil;
fPICTHeader = nil;

_., Making the Views

The document object is responsible for creating the views that display
the document's data. TPICTDocument calls the MacApp utility func
tion NewTemplateWindow to read in a view resource and create the
document window, the scroller, and TPICTView. NewTemplateWin
dow returns a pointer to the view object that represents the window
(the window class is derived from the view class). DoMakeViews then
calls the FindSub View member function for the window to extract the
TPICTView from the window. Each view in the view resource is given
a four-character identifier. DoMakeViews uses the identifier for the
TPICTView view to retrieve a pointer to that view object.

DoMakeViews then creates a print handler, which is a MacApp
class that knows how to print views. This is the only thing that you
need to do to support printing in most MacApp programs. The print
handler is initialized with a pointer to the view that it will print. Later,
when the user chooses the Print menu command, the application will
call the appropriate member functions for the print handler to print the
view. Automatic support for multipage printing is included in the

282 ~ Chapter 14 MacApp and Plctview

print handler. Compare this to the printing code that was needed to
enable printing in Chapter 11.

The code for DoMake Views is shown as follows.

#pragma segment AOpen
pascal void TPICTDocument::DoMakeViews(Boolean /*forPrinting*/) {

TView *theWindow,*thePictView;
TStdPrintHandler *aHandler;
theWindow = NewTernplateWindow(kWindowRsrcID, this);
FailNIL(theWindow);
thePictView = theWindow->FindSubView('PicV');
aHandler = new TStdPrintHandler;
FailNIL(aHandler);
aHandler->IStdPrintHandler(this,

ShowReverted();

thePictView,
! kSquareDots,
kFixedSize,
! kFixedSize);

Notice how DoMakeViews calls the MacApp utility FailNIL each
time to check that a new object was successfully created. This built-in
error handling capability is one of MacApp' s greatest strengths .

..,, Adjusting the Menus

TPICTDocument overrides the DoSetUpMenus member function so
that the Save and SaveAs menu items in the File menu will be disa
bled. In MacApp, menu items are associated with command numbers,
so the code to enable or disable individual items uses the command
number for the item rather than the position number of the item
within the menu. This is a great improvement over the methods used
in Chapters 5-13, since it means that you can add or delete menu items
without having to rewrite all the menu adjustment code.

The code for DoSetUpMenus is shown as follows. Notice that it calls
the inherited version from its parent class before doing the class
specific processing.

#pragma segment ARes
pascal void TPICTDocument::DoSetupMenus(void) {

inherited::DoSetupMenus();
Enable(cSaveAs, false);
Enable(cSaveCopy, false);

II> TPICTDocument 283

~ Reading 'PICT' Files

The document member function that is used to read the picture data
off the disk is essentially the same as that described in Chapter 11. Do
Read needs to allocate enough memory to hold the picture header and
the actual bytes of the picture. One difference between the function
shown here and the one in Chapter 11 is that this version of DoRead
checks for errors with the MacApp utilities FailNIL and FailOSErr,
which makes error-checking much cleaner and easier. The code for Do
Read is shown as follows.

#pragma segment AReadFile
pascal void TPICTDocurnent::DoRead(short aRefNurn,

Boolean l*rsrcExists*I,
Boolean l*forPrinting*I) {

long pictSize;
long headerSize = kPictHeaderSize;
II calculate size of file, subtract header size
FailOSErr(GetEOF(aRefNurn, &pictSize));
pictSize = pictSize - kPictHeaderSize;
II allocate memory for header and pict
fPICTHeader = NewPermHandle(kPictHeaderSize);
FailNIL(fPICTHeader);
fPICTData = NewPermHandle(pictSize);
FailNIL(fPICTData);
II now read header and pict
HLock(fPICTHeader);
FailOSErr(FSRead(aRefNum, &headerSize, *fPICTHeader));
HUnlock(fPICTHeader);
HLock(fPICTData);
FailOSErr(FSRead(aRefNurn, &pictSize, *fPICTData));
HUnlock(fPICTData);

~ Closing the Document

TPICTDocument overrides the Free member function so that it can
deallocate the memory for the picture and the picture header when the
document is closed. This is similar to the work done by the destructor
in the document class in Chapter 11. But destructors are rarely used for
MacApp classes written in C++. The code for Free is shown as follows.
Notice that it calls inherited::Free to make sure that its parent classes
also have a chance to clean up and deallocate their memory.

284 .,, Chapter 14 MacApp and Pictview

pragrna segment AClose
pascal void TPICTDocurnent::Free(void) {

if(fPICTData !=nil){
DisposHandle(fPICTData);
fPICTData = nil;

if(fPICTHeader !=nil){
DisposHandle(fPICTHeader);
fPICTHeader = nil;

inherited::Free();

~ Inspecting the Document

MacApp includes a facility for inspecting objects while an application
is running. You can choose to build your MacApp program with de
bugging support included during development and then build it with
all the debugging code stripped out for final production, as described
in a later section of this chapter. When the debugging support is in
cluded, an extra menu is included that lets you to open inspector win
dows. Figure 14-1 shows an inspector window examining the contents
of a TPICTDocument object for an open document.

You can see from Figure 14-1 that the inspector lists all the members
for the selected object. Notice that the members for each parent class
are also shown, all the way back to the ultimate parent class.

In order to allow your class to be inspected in this way, you must
override the Fields member function for the class. Fields receives a
pointer to a function as its first argument. The function, called DoTo
Field, is responsible for drawing the information in the inspector win
dow. Fields first passes the name of the class to DoToField. Fields then
passes information about each of its members to this function. The
class that is being inspected doesn't need to know anything about how
the inspector operates. It only supplies information about its name and
members to DoToField. After the class has called DoToField for all its
members, it calls inherited::Fields to invoke the Fields member func
tion for its parent class. This invocation chain continues up through
the parent lineage, resulting in the display of all members, as shown in
Figure 14-1.

.,,_ TPICTDocument 285

~ s File Edit Debug

Bi ll §0 Inspector 1 0§
TDESKSCRAPVIEW
TLIST

TPICTVIEW
TP ICTVIEWAPP
TPR INTH ANDLER
TQU ITCOMM AND
TP ICTDOCUMENT $372BB4 Bill
TP ICTDocument

fPICTDat. : $00372880
fP ICTHeader : $00372898

TDocument
twindowlist: $00372BAO
Niewl ist: $00372BA4
fChangeCount : 0
fDocPrintHandler: $00372AFO
fSavePrint lnfo: FALSE ($00)
fSharePrint Info : TRUE ($01)
fPrint Info : $00372AEC
fTitl•: Bill
fFi leType: 'P ICT'
fCreator: 'DANW'
No1Re1Num: -32701
fModDate: 11 56002475
fReopenAlert: TRUE ($01)
fSaveExists: TRUE ($0 1)
f'CommitOnSave: TRUE ($01)
fUsesDataFork : TRUE ($01)
fUsesRsrcF ork : FALSE ($00)
fDataOpen : TRUE ($01)
fRsrcOpen: FALSE ($00)
fDataPerm : 1
fRsrcPerm: 1
fDataRefnum : 1318
fRsr cRe1Num : - 32766
fSave lnPlace: 0

TEvtHandler
1NextHandler : $00372CD8
fldleFreq : 2147483647
flastldle: 0

TObject
Ob jClass ID : 82
Size in bytes : 80

l2J

Figure 14- l. An Inspector Window w ith a TPICTDocument

The code for TPICTDocument::Fields is shown as follows.

#pragrna segment AFields
pascal void TPICTDocurnent: :Fields(pascal void (*DoToField) (

StringPtr fielc:INarne,
Ptr fieldAddr,
short fieldType ,
void *DoToField_StaticLink),
void *DoToField_StaticLink) (

DoToField(" \ pTPICTDocurnent",
nil,

286 ~ Chapter 14 MacApp and Pictview

bClass,
DoToField_StaticLink);

DoToField ("\pfPICTData",
(Ptr) &fPICTData,
bHandle,
DoToField_StaticLink);

DoToField("\pfPICTHeader",
(Ptr)&fPICTHeader,
bHandle,
DoToField_StaticLink);

inherited::Fields(DoToField,DoToField_StaticLink);
}

The second argument to Fields is DoToField_StaticLink. This is pro
vided to assure compatibility with nested procedures written in Object
Pascal. In C++ you can disregard this argument, simply passing it
through to the DoToField function .

.., TPICTView

The TPICTView class is the primary view that displays the picture. As
mentioned in a previous section, MacApp separates the display chores
from the document class. Whereas in Chapter 11 the document class
was also responsible for drawing the picture, in MacApp a document
contains one or more view objects that take care of the drawing.

TPICTView is derived from TView, which is defined in the
MacApp headers. Its declaration is shown as follows.

class TPICTView : public TView

} ;

public:
II drawing and sizing
virtual pascal void CalcMinSize(VPoint *minSize)
virtual pascal void Draw(Rect *area);

From the declaration you can see that TPICTView overrides two
member functions. These functions are discussed separately in the fol
lowing sections.

You might notice that this class does not override the Fields member
function, as in the previous two classes. This is because TPICTView
does not define any new members, so its parent class's Fields will be
sufficient to permit the class to be inspected. You only need to override
Fields when you define new members for a class.

_.. TPICTView 287

~ Calculating View Dimensions

TPICTView is contained within a window. It is also contained within
a special MacApp view class called a scroller. The scroller is responsi
ble for managing the scroll bars and performing the coordinate system
manipulations that enable the image in the view to scroll. MacApp
uses a coordinate offset mechanism very similar to that used by
TScrollDoc, as explained in Chapter 10. MacApp, however, develops
those ideas further and encapsulates them, separate from the docu
ment class and the view class, in the scroller class. Scrollers are one of
the trickiest parts of MacApp to understand, but fortunately it is sel
dom necessary to modify scrollers directly so they are actually quite
easy to use.

TPICTView must override the CalcMinSize member function to tell
the scroller how big the view's image is. This function is similar to the
GetVertSize and GetHorizSize member functions for TScrollDoc, as
explained in Chapter 10. As you saw in the original PictView program
in Chapter 11, the dimensions of the image is extracted from the pic
Frame field of the Picture data structure. CalcMinSize uses the [Docu
ment member (which is declared as a part of the base class TView) to
get access to the document and then retrieves the picture from the
fPICTData member of the document. Because [Document is declared as
a pointer to a TDocument object, CalcMinSize must typecast it to be a
pointer to a TPICTDocument so that it can access the document's
fPICTData member, which is specific to the TPICTDocument class.
CalcMinSize then looks at the picFrame field of the Picture and calcu
lates the width and height of the image. These dimensions are passed
back to the caller by setting the VPoint argument to CalcMinSize,
shown as follows.

#pragma segment ARes
pascal void TPICTView::CalcMinSize(VPoint *minSize) {

short hSize,vSize;
TPICTDocument * PICTDoc = (TPICTDocument *)fDocument;
if(PICTDoc->fPICTData) {

hSize = (**((PicHandle)PICTDoc->fPICTData)) .picFrame.right
- (**((PicHandle)PICTDoc->fPICTData)) .picFrame.left;

vSize = (**((PicHandle)PICTDoc->fPICTData)) .picFrame.bottom
- (**((PicHandle)PICTDoc->fPICTData)) .picFrame.top;

SetVPt(minSize, hSize,vSize);
else
SetVPt(minSize,0,0);

288 llll- Chapter 14 MacApp and Pictview

The scroller calls CalcMinSize to determine the minimum and maxi
mum values for the scroll bars in much the same way that TScrollDoc
used GetVertSize and GetHorizSize in Chapters 10 and 11.

~ Drawing the View

Because views are responsible for displaying data on the screen,
TPICTView must override the Draw member function. The code for
Draw is essentially the same as that shown in the PictView program in
Chapter 11. Just as you saw in CalcMinSize, the view must go to the
document to get the picture data. Draw passes the picture to the tool
box function DrawPicture, as shown here.

#pragma segment ARes
pascal void TPICTView::Draw(Rect */*area*/){

TPICTDocument * PICTDoc = (TPICTDocument *)fDocument;
if(PICTDoc->fPICTData)

DrawPicture((PicHandle) (PICTDoc->fPICTData),
&(**((PicHandle)PICTDoc->fPICTData)) .picFrame);

lllJll- TPICTView App

The third class that is necessary for the MAPictView program is an ap
plication class derived from the MacApp class TApplication. It is simi
lar in functionality to the TApp class developed in Chapter 6. The dec
laration for TPICTViewApp is shown as follows. The individual
member functions that are defined in this class are discussed in the fol
lowing sections.

class TPICTViewApp: public TApplication
public:

} ;

II Initialize the Application
virtual pascal void IPICTViewApp(void);
II Launches a TPICTDocument
virtual pascal struct TDocument *DoMakeDocument(CmdNumber

itsCmdNumber);
II disable the new menu item
virtual pascal void DoSetupMenus(void);
II Prevents empty document on launch
virtual pascal void OpenNew(CmdNumber itsCmdNumber);

9J» TPICTViewApp 289

..- Initializing the Application

TPICTViewApp defines a new initialization function, IPICTView
App, to initialize the application and register the TPICTView class so
that it won't be stripped out by the linker. The default application ini
tialization is invoked by calling the IApplication member function.
IPICTViewApp then initializes the global variable gStaggerCount,
which is used to control the stagger position of new windows as they
are opened.

Next, IPICTViewApp calls the new operator to create a TPICTView
object. This is necessary because the linker will automatically strip out
all code for classes that don't actually get created by the program. If
the linker doesn't see an object of a particular class created with the
new operator in your code, it assumes that the class isn't used and
strips out the code for the class during the link process. This can be
very useful when you are linking with large libraries that contain
many classes, most of which you won't use. But it can also strip out
needed code when objects of a class are created implicitly so that the
linker can't detect their use.

Objects belonging to the other two classes that are unique to this pro
gram, TPICTDocument and TPICTViewApp, are created with the
new operator in other parts of the program, but a TPICTView object is
never created directly. Instead, it is automatically created when New
TemplateWindow reads in the resource template for the window and
its views. Therefore, it is necessary to include code that explicitly
creates a TPICTView object with the new operator so that the linker
will not strip out the code for the class. You don't have to delete the ob
ject since the creation code is contained in a conditional block that will
never be executed.

This method of protecting classes from the linker may change in fu
ture versions of MacApp or the linker, but for now it is a necessary
kludge. See the MacApp documentation for more details on this prob
lem. The code for IPICTViewApp is shown as follows.

#pragma segment Ainit
pascal void TPICTViewApp::IPICTViewApp(void) {

IApplication(kFileType);
gStaggerCount = 0;

II So the linker doesn't dead strip class info
if(gDeadStripSuppression) {

TPICTView *aPICTView;

290 _., Chapter 14 MacApp and Pictview

aPICTView = new TPICTView;

.., Making a Document

Just as the TApp class described in Chapter 6 had the member func
tion MakeDoc to create new documents, so the MacApp class TAppli
cation has the DoMakeDocument member function. TPICTViewApp
overrides DoMakeDocument to create and initialize a TPICTDocu
ment. The new document is responsible for creating its window and
views, as explained in a previous section. The code for DoMakeDocu
ment is shown as follows.

#pragma segment AOpen
pascal struct TDocument *TPICTViewApp::DoMakeDocument(Crnc:INumber

/*itsCrnc:INumber*/) {
TPICTDocument *aPICTDocument;
aPICTDocument = new TPICTDocument;
FailNIL(aPICTDocument);
aPICTDocument->IPICTDocument();
return aPICTDocument;

Normally, MacApp creates a new, blank document at program
startup by calling the OpenNew member function. Since the MAPict
View program can work only with existing files, we don't want to
open a blank document at startup. TPICTViewApp overrides Open
New so that it displays a standard file dialog to let the user open an ex
isting file instead of a blank document. The code for OpenNew is
shown as follows.

#pragma segment AOpen
pascal void TPICTViewApp::OpenNew(CrndNumber /*itsCrnc:INumber*/) {

AppFile anAppFile;
if (ChooseDocument(cFinderOpen, &anAppFile))

OpenOld(cFinderOpen, &anAppFile);

~ The MAPictView Main Program 291

~ Adjusting the Menus

Just as the document class overrode DoSetUpMenus to disable the
Save and SaveAs menu items, so the application class overrides DoSet
UpMenus so that the New menu item is disabled. The New menu item
must be disabled for this program because it can only read existing
'PICT' files, not create new ones. The application class is responsible for
disabling New since the application is the class that would respond to
the New menu command, just as the document class must disable Save
and SaveAs since it responds to those menu commands. The code that
TPICTViewApp uses to override DoSetUpMenus is shown as fol
lows. Notice that the inherited version of the function is called before
the class-specific operations are performed.

#pragrna segment ARes
pascal void TPICTViewApp::DoSetupMenus(void) {
inherited::DoSetupMenus();
Enable(cNew,false);

}

IJ)> The MAPictView Main Program

You must write a main function to create the application object, initial
ize it, and start it running. Before creating the application object, you
must initialize the toolbox and MacApp.

One interesting function that MacApp provides is ValidateConfigu
ration. You can specify many different environmental requirements for
your program by setting flags during the build process. For example,
your application might require Color QuickDraw to function properly.
V alidateConfiguration checks the current execution environment
against those requirements and returns true only if all those require
ments are met. If the environment is unsuitable to the program, Vali
dateConfiguration will return false, an error alert will be displayed,
and the program will terminate.

The code for the main function for the MAPictView program is
shown as follows. It is similar in intent to the main functions described
in Chapters 7-13.

292 ~ Chapter 14 MacApp and Pictview

TPICTViewApp *gPICTViewApp;
#pragma segment Main
void main(void){

InitToolBox();// Essential toolbox and utilities initialization
II Make sure we can run
if(ValidateConfiguration(&gConfiguration)) {

InitUMacApp(S) //Initialize MacApp; 8 calls to MoreMasters
InitUPrinting();// Initialize the Printing unit
gPICTViewApp = new TPICTViewApp;

FailNIL(gPICTViewApp);
gPICTViewApp->IPICTViewApp(); //Initialize the application
gPICTViewApp->Run(); //Run the application

else
StdAlert(phUnsupportedConfiguration);

.,, MAPictView Resources
As mentioned in a previous section, MacApp allows you to define re
sources that describe an arrangement of views in a window. This re
source can then be loaded and all the views initialized with a single
call to NewTemplateWindow. This makes it much easier to create win
dows with multiple views.

The ViewEdit program that comes with MacApp is an interactive re
source editor, much like ResEdit, except that it knows about view re
sources and about the predefined view classes that are part of the
MacApp class library. You can use ViewEdit to create your view re
sources and then include those resources in your applications pro
gram.

The view resource for the MAPictView program includes three
views. The first view is the window. Inside the window view is the
scroller view, and inside the scroller view is the TPICTView view. The
following resource definition defines these three views in relation to
each other. Each view definition contains information about the size
and location of the view, the four-character identifier for the view and
its parent view, and other class-specific initialization information.

resource 'view' (kWindowRsrcID, purgable)

root, 'WIND', { 50, 40 }, { 250, 450 },
sizeVariable, sizeVariable, shown, enabled,

Window {
1111

I

zoomDocProc, goAwayBox, resizable,

} ;

};

~ Building MAPictVlew 293

modeless, ignoreFirstClick, freeOnClosing,
disposeOnFree, closesDocument, openWithDocument,
dontAdaptToScreen, stagger,
forceOnScreen, dontCenter, noID, ""

'WIND', 'SCLR', { 0, 0 }, { 250-kSBarSizeMinusl,
450-kSBarSizeMinusl },
sizeRelSuperView, sizeRelSuperView, shown, enabled,

Scroller {

} ;

"" ,
vertScrollBar, horzScrollBar, 0, 0, 16, 16,
vertConstrain, horzConstrain, { 0, 0, 0, 0 }

'SCLR', 'PicV', { 0, 0 }, { 116, 1020 },
sizeVariable, sizeVariable, shown, enabled,

View
{"TPICTView"}

The complete resource definition file for MAPictView is listed in Ap
pendix Bin the file MAPictView.r. It includes many default resources
from MacApp and defines some application-specific resources .

._ Building MAPictView
MacApp includes a sophisticated build system so that you don't have
to write a makefile for most MacApp projects. The key to using
MacApp' s built-in build capabilities is to name your source files in ac
cordance with Apple's file naming conventions, as shown in Table 14-1.

Assuming that the name of your application is MAPictView, you
would create the following files.

Table 14-1. MacApp Naming Conventions

File Name

UMAPictView.h

UMAPictView.cp

MMAPictView.cp

MAPictView.r

MAPictView

File Contents

class declarations (interface)

definition of member functions (implementation)

main function

resource definitions

application

294 IJ>. Chapter 14 MacApp and Pictvlew

If you name your files in this way, the default build instructions in
the MABuild tool will automatically build your program. You can in
voke MABuild directly from the MPW command line, or you can use
the MPW Build ... menu command, supplying the name of the applica
tion that you want to build. In either case, MABuild will take care of
examining the dependencies and rebuilding your application.

Starting with version 2.0b12, MABuild does not include debugging
code in your MacApp application by default. The debugging code al
lows you to use the inspector and the MacApp debugger, but it adds
about 150 Kilobytes to your application and slows down its overall
performance. To build a version of your application with the debug
ging code, add the -debug option when you invoke MABuild .

.,. Summary
This chapter has touched on some of the fundamental aspects of pro
gramming with MacApp and C++. MacApp is a fully developed class
library designed to make it easier to write Macintosh programs. It pro
vides base classes that you can subclass to create your own applications.

The MAPictView program developed in this chapter is similar to the
program described in Chapter 11, and the application classes in this
chapter and in Chapter 11 are essentially the same. But in Chapter 11
the document class handled all the data management and display
tasks; in MacApp the document class gives up its display chores to the
view class.

Many important aspects of MacApp programming are not covered
in this chapter. The most important of these are command objects,
which provide an elegant mechanism for doing and undoing com
mands in response to user actions. You are encouraged to explore
MacApp further. It is a rich storehouse of Macintosh programming
gems and a great foundation on which to build your programs. Taking
advantage of this accumulated wisdom is the biggest benefit of object
oriented programming.

Afterword by Scott Knaster

A "Cult Classic" is a work of art that's appreciated and revered by a
(usually) small but devoted band of followers. Cult classics often are
created as labors of love. Although their commercial success may not
be great, devotees of cult classics are fanatical.

The strange little community of Macintosh programmers has pro
duced a few cult classic books in the years since the Macintosh was in
troduced. Two of the greatest of these are Dan Weston's famous
assembly language books. I remember reading these books back when
they came out and being astonished to discover that there was some
one outside the cubicles of Apple who knew so much about what was
going on with such an arcane subject. I also loved Dan's conversational
style of presenting very technical material.

When Macintosh Inside Out was started, Dan was one of the first au
thors we talked to about writing a book for the new series. For some
reason, Dan has always refused to leave his beautiful home in the idyl
lic northwest for the traffic-choked, smog-encrusted, overpriced hell of
Silicon Valley, so a Macintosh Inside Out book was an ideal chance for
Dan to do something without having to leave his favored environment.

It turned out that he was working with C++, a topic we definitely
wanted to cover in the series. I was really looking forward to seeing
Dan's explanation of what the heck is going on in C++.

The book Dan wrote (this one) turned out to be much more than an
overview of C++. As I read Dan's manuscript, I was amazed to dis
cover that he had done something that I'd never seen done in a book
before: He had taken the time to implement a real live class library,

295

296 IJJi- Afterword

and he had taken the reader along on the journey, acting as a tour
guide and explaining what he was doing along the way. This is great!
It's wonderful to get your feet wet (to borrow one of Dan's metaphors)
in object programming by watching as a class library is designed by
someone who really knows how to do it.

Dan's writing skill and attention to detail are going to make this
book another cult classic, but the importance of C++ is going to make
this particular cult very large. I hope you've enjoyed learning from
Dan about what goes on inside the mind of an object designer and that
you have fun with C++.

Scott Knaster
Macintosh Inside Out Series Editor

Appendix A
Think C 4.0 and C++

About the same time that Apple released its version of MPW C++, Sy
mantec released Think C version 4.0. This version of Think C included
many object-oriented extensions, but it is not a full C++ implementa
tion. This appendix discusses some of the similarities and differences
between Think C 4.0 and MPW C++.

~ Think C: C+-
Think C includes many object-oriented programming features that are
similar to C++, but it is not C++. In particular, several key C++ fea
tures are missing from Think C, as shown in the following list.

•No double-slash (/ /) comments.

•No const definitions.

• No default argument values.

• New and delete are not operators in Think C. They are functions,
so parentheses are always required for arguments to new and de
lete in Think C.

• No protected and private protection levels in classes. All members
and member functions are public.

•No constructors and destructors.

• No multiple inheritance.

297

298 ~ Appendix A Think C 4.0 and C++

Think C has no virtual keyword. All member functions are virtual
automatically. This can cause problems if you are trying to port code
from Think C to MPW C++. One solution is to make the

#define virtual

definition in your Think C files and then add virtual to all your Think
C member function declarations so that when they are moved to C++
you will be able to override them in derived classes.

Porting code from Think C to MPW C++ is not easy. Because Think
C is a subset of C++, it is much easier to port code from Think C to
MPW C++ than the other way around. But you must be careful to pay
attention to the small differences between Think C and C++. For exam
ple, an int is 16 bits in Think C and 32 bits in C++. Another potential
problem is that Think C uses different names for some of its Macintosh
include files.

Think C's biggest advantage over MPW is that Think C compiles and
links code much faster than MPW does. Think C was originally called
Lightspeed C for good reason. The ability to turn code around in a
hurry is especially valuable when you are learning a language.

Think C has excellent debugging support with its source level de
bugger. The Think C debugger is much easier to use than the SADE
debugger in MPW C++.

All-in-all, Think C provides a great way to get into object-oriented
programming. If you can get by without some of the C++ features that
Think C leaves out, you should find that Think C is more than ade
quate for all your programming needs .

._,, The Think C Class Library
You get a big bonus with Think C: the Think Class Library, written by
Greg Dow. This class library contains numerous classes that help you
write Macintosh applications. It is like a simplified MacApp. Actually,
because it is somewhat simpler than MacApp, it may be preferable to
MacApp for most programmers. The Think Class Library is a great
way to make a Macintosh program. Several nontrivial example pro
grams are also provided to show how to use the classes in the library.

Appendix B
Source Code Listings

Appendix B is a chapter-by-chapter compilation of all source code for
the programs contained in this book. (You can also order a source code
disk of these program listings; please see the tear-out order card at the
end of this book.) The following list identifies each program included
in Appendix B, followed by the page number in parentheses on which
each program begins.

_.. Chapter 4 Programs:
HelloWorld.cp (302)
HelloWorld.make (303)
fixcom.cp (304)
fixcom.make (306)
TTool.h (307)
fixcom2.cp (310)
fixcom2.make (312)
fixcom3.cp (313)
fixcom3.make (316)

_.. Chapter 5 Programs:
TDoc.h (317)
TDoc.cp (321)
TDoc.rsrc.r (330)
AppDocMenus.h (333)

299

300 ~ Appendix B Source Code Listings

... Chapter 6 Programs:
TApp.h (334)
TApp.cp (339)
TApp.rsrc.r (359)

... Chapter 7 Programs:
Helloworld2.cp (363)
Helloworld2.make (365)
Helloworld2.r (367)
Helloworld2.rsrc.r (368)
Helloworld2.sade (370)

... Chapter 8 Programs:
Scribble.cp (371)
Scribble.make (380)
Scribble.r (382)
Scribble.rsrc.r (383)
Scribble.sade (387)

... Chapter 9 Programs:
TModelessDoc.h (388)
TModelessDoc.cp (390)
ModelessApp.cp (392)
ModelessApp.make (396)
ModelessApp.r (398)
ModelessApp.rsrc.r (399)
ModelessApp.sade (400)

... Chapter 10 Programs:
TScrollDoc.h (401)
TScrollDoc.cp (403)
TScrollDoc.rsrc.r (414)

~ Appendix B Source Code Listings 301

~ Chapter 11 Programs:
Pictview.cp (415)
Pictview.make (423)
Pictview.r (425)
Pictview.rsrc.r (426)
Pictview.sade (428)

~ Chapter 12 Programs:
TIEDoc.h (429)
TIEDoc.cp (431)
TEApp.cp (442)
TEApp.make (444)
TEApp.r (446)
TEApp.rsrc (447)
TEApp.sade (449)

~ Chapter 13 Programs:
TDebugDoc.h (450)
TDebugDoc.cp (452)
TDebugDoc.rsrc.r (455)
DebugTEApp.cp (456)
DebugTEApp.make (458)
DebugTEApp.r (460)
DebugTEApp.sade (461)

~ Chapter 14 Programs:
UMAPictView.h (462)
UMAPictView.cp (464)
MMAPictView.cp (470)
MAPictView.r (471)

BelloWorld.cp Page 1

I I He lloWor ld. cp
II A very simple C++ program
II This program prints the words "hello world" to standard output
II January 1990, Dan Weston

#include <iostream.h>

void main(void) {

cout << "hello world\n";

302

J?aqe 1

File:
Target:
Sources:
Created:

HelloWorld.make
HelloWorld
HelloWorld.cp
Monday, January 29, 1990 9:36:51 AM

OBJECTS He lloWor ld. cp. o

HelloWorld ff HelloWorld.make {OBJECTS}
Link -w -c 'MPS I -t MPST a

{OBJECTS} a
"{CLibraries}"CSANELib.o a
"{CLibraries}"Math.o a
"{CLibraries}"CplusLib.o a
#"{CLibraries}"Complex.o a
"{CLibraries}"StdCLib.o a
"{CLibraries}"Cinterface.o a
"{Libraries}"Stubs.o a
"{CLibraries}"CRuntime.o a
"{Libraries}"Interface.o a
"{Libraries}"ToolLibs.o a
-o HelloWorld

HelloWorld.cp.o f HelloWorld.make HelloWorld.cp
CPlus HelloWorld.cp

HelloWorld.make

303

fixcom.cp

llllllllllllllllllllllllllllllllllllJlllllllllllllllllllllllllll
II
II fixcom.cp
II
II Changes C++ style comments to C comments
II
II Uses cin and cout streams
II
II invoke with redirection from MPW, such as
II
II fixcom < foo.cp > foe.fixed
II
II ©1990 Dan Weston, all rights reserved
II
ll

#include <iostream.h>

int main(void) {

304

char c;
char nextc;

while (cin.get(c)) {
if (c !='I'){

II most chars just pass right through filter
cout << c;

else {
II this may be a double slash comment ...
II check next char following first 'I'
cin.get(nextc);
if (nextc != '1 1) {

II not a double slash comment,
II just output the 'I' and the following char
cout << c << nextc;

else
II it is a double slash comment,
II substitute opening C comment
cout << 'I' << '*';

II pass chars through until end of line
cin.get(c);
while (c != '\n') {

cout << c;
cin.get(c);

II now insert a closing comment
cout << , ' << , *, << , I, ;

Page 1

Page 2

II and send the newline char out too
cout << c;

II end nextc != 'I' else

II end of c != 'I' else

II end while

II make sure all output is flushed
cout << flush;
return 0;

fixcom.cp

305

fixcom.make

File:
Target:
Sources:
Created:

fixcom.make
fix corn
fixcom.cp
Monday, January 29, 1990 10:49:49 AM

OBJECTS fixcom.cp.o

fixcom ff fixcom.make {OBJECTS}
Link -w -c 'MPS I -t MPST a

{OBJECTS} o
"{CLibraries}"CSANELib.o o
"{CLibraries}"Math.o o
"{CLibraries}"CplusLib.o o
#"{CLibraries}"Complex.o o
"{CLibraries}"StdCLib.o o
"{CLibraries}"Cinterface.o o
"{Libraries}"Stubs.o o
"{CLibraries}"CRuntime.o o
"{Libraries}"Interface.o o
"{Libraries}"ToolLibs.o o
-o fixcom

fixcom.cp.o f fixcom.make fixcom.cp
CPlus fixcom.cp

306

Page 1

Page 1 TTool.h

/////////////////////ll//////////////l//l///////I//////////////////////
II
I I TTool. h
II
II A simple class for writing MPW tools
II
II
II
II
II
II
II
II

Include TTool.h in your tool program,
derive a class from TTool,
Override SetOption to process arguments that begin with '-'
Override HandleArg to process all other arguments
Override DoWork to do the actual work of the tool

©1990 Dan Weston, all rights reserved
II
/////l/ll/////l/ll/////ll///l///////////l/l////////////l/////////////I/

#include <Quickdraw.h>
#include <Fonts.h>
#include <CursorCtl.h>
#include <iostream.h>
#include <fstream.h>
#include <FCntl.h>

//////l//l/ll/l/l////////////l/ll////ll/////////////////l//l///ll//////
II
II class TTool
II
/l/////l////////ll///////////////////l////////////////////////l//ll////
class TTool {

protected:

int fArgc;
int fCurrentArg;
char ** fArgv;
char * fProgName;
char * fNextArg;

public:

virtual void ITool(int argc, char* argv[]);
virtual int Run(void);

protected:

virtual char* GetNextArg(void);
virtual fstream * MakeStream(char * fileName,int permission);
virtual int ParseArguments(void);

virtual int SetOption(char */*option*/) {return 1;}
virtual int HandleArg(char * /*arg*/) {return 1;)

307

TTool.h Page 2

virtual int DoWork(void) {return 0;}
} ;

lll
II
II TTool::ITool
II
lll
void TTool::ITool(int argc, char* argv[]) {

fArgc = argc;
fArgv = argv;

fProgName = *fArgv++;
fCurrentArg = 1;
fNextArg = 0;

II just in case you want to use Quickdraw
InitGraf(&qd.thePort);

II MPW tool documentation says to call this next function
SetFScaleDisable(true);

InitCursorCtl(nil);
SpinCursor(l);

}

lll
II
I I TTool: : Run
II
lll
int TTool::Run(void) {

if(ParseArguments())
return DoWork();

else
return l;

}

lll
II
II TTool::ParseArguments
II
lll
int TTool::ParseArguments(void) {

308

char * arg;
while ((arg = GetNextArg ()) ! = 0) {

if(*arg == '-') {
if(SetOption(arg) == 0)

return 0;
} else {

Page 3 TTool.h

}

if(HandleArg(arg)
return 0;

II signal success
return 1;

0)

}

111111111111111111/ll
II
II TTool::GetNextArg
II
lll
char* TTool: :GetNextArg(void) {

if(fCurrentArg++ < fArgc) {
fNextArg = *fArgv++;
return fNextArg;

else
return 0;

}
lll
II
II TTool::MakeStream
II
lll
fstream * TTool::MakeStream(char * fileName,int permission) {

const int BUFFSIZE = 1024;

int fd = open(fileName,permission);
if (fd == EOF) {

fd = creat(fileName);

if (fd != EOF) {
char* buff= new char[BUFFSIZE];
if (buff == 0) {

cerr << "### " << "error making stream\n";
return O;

fstream * fs = new fstream(fd,buff,BUFFSIZE);
if (fs == 0) {

cerr << "### " << "error making stream\n";
return 0;

return fs;

cerr << "### " << "error opening file " << fileName <<"\n";
return 0; II failed to open file

309

fixcom2.cp

11111111/lll
II
II fixcom2.cp
II
II Changes C++ style comments to C comments
II
II Uses MPW input and output redirection
II
II invoke with redirected input file and output file names
II
II fixcom2 < foo.cp > foo.c
II
II ©1990 Dan Weston, all rights reserved
II
111111/lllllllllllllllllllllllllll!ll!llllllllllllllllllllllllll

#include "TTool.h"

class TFixComment2 public TTool {

public:

int DoWork(void)
{return Filter(cin,cout);}

protected:

int Filter(istream& in,ostream& out);

} ;

int TFixComment2::Filter(istream& in,ostream& out) {

310

char c;
char nextc;

while (in.get(c)) {
SpinCursor(l);
if (c !='I'){

II most chars just pass right through filter
out << c;

else {
II this may be a double slash comment ...
II check next char following first 'I'
in.get(nextc);
if (nextc != 'I') {

II not a double slash comment,
II just output the 'I' and the following char
out << c << nextc;

Paqe 1

Paqe 2

else
II it is a double slash comment,
II substitute opening C comment
out<< 'I' << '*'. I

II pass chars through until end of line
in.get(c);
while (c != '\n') {

out << c;
in.get(c);

II now insert a closing comment
out<< ' ' << '*' << 'I';

II and send the newline char out too
out << c;

II end nextc != 'I' else

II end of c != 'I' else

II end while

II make sure all output is flushed
out << flush;
return O;

int main (int ar.gc, char* argv []) {

TFixComment2 fixComTool;

fixComTool.ITool(argc,argv);
return fixComTool.Run();

fixcom2.cp

311

figcom2.make

File:
Target:
Sources:
Created:

fixcom2.make
fixcom2
fixcom2.cp
Friday, January 19, 1990 11:58:21 AM

OBJECTS fixcom2.cp.o

fixcom2 ff fixcom2.make {OBJECTS}
Link -w -c 'MPS I -t MPST a

{OBJECTS} o
"{CLibraries}"CSANELib.o o
"{CLibraries}"Math.o o
"{CLibraries}"CplusLib.o o
#"{CLibraries}"Complex.o o
"{CLibraries}"StdCLib.o o
"{CLibraries}"Cinterface.o o
"{Libraries}"Stubs.o o
"{CLibraries}"CRuntime.o o
"{Libraries}"Interface.o o
"{Libraries}"ToolLibs.o o
-o fixcom2

fixcom2.cp.o f fixcom2.make fixcom2.cp TTool.h
CPlus fixcom2.cp

312

Page 1

Paqe 1 fixcom3.cp

ll
II
II fixcom3.cp
II
II Changes C++ style comments to c comments
II
II Uses MPW command line for input and output file
II
II invoke with input file name and -o output file names:
II
II fixcom2 foo.cp -o foo.c
II
II if input or output file is not specified, standard in or out is used
II
II ©1990 Dan Weston, all rights reserved
II
llllllllllllllllllllllllllllll/lllllllllllllllllllllllllllllllll

#include "TTool.h"

class TFixComment3 public TTool {

protected:
istream *f!n;
ostream *fOut;

public:
void !Tool(int argc, char* argv[]};

int DoWork(void);

protected:

} ;

int SetOption(char *option};
int HandleArg(char * arg);

int Filter(istream& in,ostream& out);

void TFixComment3::ITool(int argc, char* argv(J) {

II do the inherited stuff first
TTool::ITool(argc,argv);

II hook up default input and output
f!n = &cin;
fOut = &cout;

313

fixcom3.cp

int TFixComrnent3::DoWork(void) {
return Filter(*fin,*fOut);

int TFixComrnent3::SetOption(char *option) {

char * arg;

if(*(++option) == 'o') {
II get the output file name
if((arg = GetNextArg()) != 0){

else

II open the file and create a stream for it
fstream * fs = MakeStream(arg,O_WRONLY);
if(fs != 0) {

fOut = fs;
return 1;

else
return 0;

else{
cerr << "### " << " missing file name\n"
return O;

cerr << "### " << option << " is not a valid option\n";
return 0;

int TFixComrnent3::HandleArg(char * arg) {

II open the file and create a stream for it
fstream * fs = MakeStream(arg,O_RDONLY);
if(fs!=O){

f!n = fs;
return 1;

else
return 0;

int TFixComrnent3::Filter(istream& in,ostream& out) {

314

char c;
char nextc;

while (in.get(c)) (
SpinCursor(l);
if (c !='I')(

II most chars just pass right through filter
out << c;

Page 2·

Page 3

else
II this may be a double slash comment ...
II check next char following first 'I'
in.get(nextc);
if (nextc !='I'){

II not a double slash comment,
II just output the 'I' and the following char
out << c << nextc;

else
II it is a double slash comment,
II substitute opening C comment
out<< 'I' << '*'. ,

II pass chars through until end of line
in.get(c);
while (c != '\n'){

out << c;
in.get (c);

II now insert a closing comment
out << ' ' << '*' << 'I';

II and send the newline char out too
out << c;

II end nextc != 'I' else

II end of c != 'I' else

II end while

II make sure all output is flushed
out << flush;
return O;

int main(int argc, char* argv[]) {

TFixComment3 fixComTool;

fixComTool.ITool(argc,argv);
return fixComTool.Run();

fixcom3.cp

315

fixcom3.make

File:
Target:
Sources:
Created:

fixcom3.make
fixcom3
fixcom3.cp
Friday, January 19, 1990 11:58:21 AM

OBJECTS fixcom3.cp.o

fixcom3 ff fixcom3.make {OBJECTS}
Link -w -c 'MPS I -t MPST a

{OBJECTS} a
"{CLibraries}"CSANELib.o a
"{CLibraries}"Math.o a
"{CLibraries}"CplusLib.o a
#"{CLibraries}"Complex.o a
"{CLibraries}"StdCLib.o a
"{CLibraries}"Cinterface.o a
"{Libraries}"Stubs.o a
"{CLibraries}"CRuntime.o a
"{Libraries}"Interface.o a
"{Libraries}"ToolLibs.o a
-o fixcom3

fixcom3.cp.o f fixcom3.make fixcom3.cp TTool.h
CPlus fixcom3.cp

316

Page 1

Page 1 TDoc.h

lll
II
II This is the generic document object
II
II © 1990 Dan Weston, All Rights Reserved
II
1111111111111/ll/lllll/

#ifndef TDoc Defs
#define TDoc Defs

II Include necessary interface files
#include <Types.h>
#include <Quickdraw.h>
#include <Windows.h>
#include <Packages.h>
#include <Menus.h>

lll/1111111111111111/lll/
II
II constants
II
l/lll/llll/llllllllll/lll/lll

con st short kScrollBarWidth = 16;
con st short kScrollBarPos kScrollBarWidth -1;

con st short rErrorAlert = 255;
con st short rDocErrorStrings 255;
con st short sNoMem = 1;
con st short sFileOpen = 2;
con st short sUnknownErr = 3;

con st short rGenericDoc = 1000;

con st short rWantToSave = 500;
con st short iYes = 1;
con st short iNo = 3;
con st short iCancel = 2;

lllllllllllllllllllllll/lllllllll/llllllllllllllllll//11111111111111111
II
II utility routines
II
llll/l//l/l/ll/llllllllll/l/l/l/llll/ll/l/ll!l/lllll//l/l/llllll/llllll

II Define HiWrd and LoWrd function inline for efficiency
inline short HiWrd(long aLong) {return (short) (((aLong) >> 16) & OxFFFF);}
inline short LoWrd(long aLong) {return (short) ((aLong) & OxFFFF);}

void ErrorAlert(short StringsID,short theErrorID);

317

TDoc.h Page 2

inline void SetMenuAbility(MenuHandle menu, short item,Boolean enable)
{enable? Enableitem(menu,item) :Disableitem(menu,item);}

lll
II
II class declarations
II
lll

class TDoc
protected:

OS Type
SFReply
Boolean
short
WindowPtr
Boolean
Boolean

fCreator;
fFileinfo;
fFileOpen;
fRefNum;
fDocWindow;
fNeedtoSave;
fNeedtoSaveAs;

public:

II SFinfo will be non-nil when opening an existing document
TDoc(OSType theCreator = '????',SFReply * SFinfo = (SFReply *) nil);

II virtual destructor so that derived destructors will be called
virtual -TDoc(void);

II called by TApp when making a document,
II you probably won't override this
virtual Boolean MakeWindow(Boolean colorWindow);

II override to get your own WIND resource read in
virtual short GetWinID(void);

II InitDoc is available for your initialization
II routines that might fail,
II It gets called after the window is created
virtual Boolean TDoc::InitDoc(void) {return true;};

II utilities that manipulate the window
II can't be overridden
WindowPtr GetDocWindow(void) { return fDocWindow;
void SetDocWindowTitle(Str255 title)

{if(fDocWindow)SetWTitle(fDocWindow,title);}
void MoveDocWindow(short h, short v)

{if(fDocWindow)MoveWindow(fDocWindow,h,v,true);}
void ShowDocWindow(void)

{if(fDocWindow)ShowWindow(fDocWindow);}

II Event actions

318

Page 3

II this probably won't be overridden
virtual void DoTheUpdate(EventRecord* theEvent);

protected:
II override this to draw window contents
virtual void Draw(Rect *r);

public:

II override this if you don't want grow box
virtual void DoDrawGrowicon(void)

{if(fDocWindow)DrawGrowicon(fDocWindow);}

virtual void DoActivate(EventRecord* theEvent);

II override these to de/activate window (TEActivate, etc)
virtual void Activate(void) {}
virtual void Deactivate(void) {}

II override these if you don't want default behavior
virtual void DoZoom(short partCode)
virtual void DoGrow(EventRecord* theEvent);
virtual void DoDrag(EventRecord* theEvent);
virtual short GetMinHeight(void) {return 75;}
virtual short GetMinWidth(void) {return 75;}

II override these to respond to clicks and keys
virtual void DoContent(EventRecord* theEvent) {}
virtual void DoKeyDown(EventRecord* theEvent) {}

virtual void Doidle(void) {}

TDoc.h

virtual void AdjustCursor(Point where) {} //where is in local coords

II Edit menu and clipboard actions

public: II public functions are called from App class

virtual void DoUndo(void) {}
virtual Boolean DoCut(Handle *theData,OSType *theType)

{*theData = nil;*theType = '????';return false;}
virtual Boolean DoCopy(Handle *theData,OSType *theType)

{*theData = nil;*theType = '????';return false;}
virtual void DoPaste(Handle theData,OSType theType) {}

protected: // protected functions are only called from Doc class

virtual void DoClear(void) {}
virtual void DoSelectAll(void) {}

public:

319

TDoc.h Page 4

} ;

II called by app to handle doc specific menu items
II return true if you handle the menu command
virtual Boolean DoDocMenuCommand(short menuID, short menuitem);
virtual void AdjustDocMenus(void);

II query state of document - useful for adjusting menu state
II override if you can do any of these operations
virtual Boolean CanUndo(void) (return false; }
virtual Boolean HaveSelection(void) { return false;
virtual Boolean CanPaste(OSType l*theType*I) (return false; }
virtual Boolean CanSelectAll(void) {return false;}
virtual Boolean CanClose(void) (return true; }
virtual Boolean CanSaveAs(void) { return false; }
virtual Boolean CanPageSetup(void) {return false;}
virtual Boolean CanPrint(void) { return false; }

II this probably won't be overridden
virtual Boolean CanSave(void) { return fNeedtoSave;

II override these to read and write files
virtual Boolean ReadDocFile(short l*refNum*I) {return true;}
virtual Boolean WriteDocFile(short l*refNum*I) (return true;}

II override this if you have your own file type, such as TEXT
virtual OSType GetDocType(void} {return '????';}

II these probably don't need to be changed
virtual short OpenDocFile(SFReply *reply);
virtual void CloseDocFile(short refNum);

II these are called when user chooses associated menu item
II these probably don't need to be changed
virtual Boolean DoClose(void);
virtual Boolean DoSave(void) ;
virtual Boolean DoSaveAs(void}

II this is called when user tries to close a doc
II with unsaved changes
II this probably doesn't need to be changed
virtual short WantToSave(void);

II override these for printing support
virtual void DoPageSetup(void) {}
virtual void DoPrint(void) {}

#endif TDoc Def s

320

Page 1 TDoc.cp

lllllllllllllllllllllllllllllllll/llllll/llllllllllllllllllllllllllllll
II
II This is the generic document object
II
II © 1990 Dan Weston, All Rights Reserved
II
lll

II Mac Includes
#include <Types.h>
#include <Windows.h>
#include <OSUtils.h>
#include <ToolUtils.h>
#include <Dialogs.h>
#include <Files.h>
#include <Errors.h>
#include <SysEqu.h>
#include <Desk.h>

#include "TDoc.h"
#include "AppDocMenus.h"

II define the segment for the TDoc class
#pragma segment DocSeg

llllllllllllllll/lllllllll/llllll/llll/lllll/l/lllllllllllll/l/ll/lllll
II
II ErrorAlert
II
lll/111/1111111111111
void ErrorAlert(short stringsID,short theError) {

short result;
Str255 theStr;
Str255 nullStr;
*nullStr = O;

GetindString(theStr,stringsID,theError);

ParamText(theStr,nullStr,nullStr,nullStr);
result= CautionAlert(rErrorAlert, (ModalFilterProcPtr)nil);

}

1111/ll
II
11 TDoc: :TDoc
II
lllllllllllllllllllll/ll/ll/lllllllll/lll/lll////l/lllll/lllllllll/llll
TDoc::TDoc(OSType theCreator,SFReply * SFinfo) {

fCreator = theCreator;

321

TDoc.cp

fNeedtoSave = false;
fDocWindow = nil;
fRefNum = O;
fFileOpen = false;
if(SFinfo !=nil) {

fNeedtoSaveAs = false;
fFileinfo = *SFinfo;

else{
fNeedtoSaveAs = true;
fFileinfo.good = false;

Page 2

}
lll
II
II TDoc: :-TDoc
II
lll
TDoc: :-TDoc(void) {

if(fDocWindow !=nil) {
DisposeWindow(fDocWindow);
fDocWindow = nil;

}
lll
II
II TDoc::GetWinID
II
lll
short TDoc::GetWinID(void) {

return rGenericDoc;

lll
II
II TDoc: :MakeWindow
II
lll
Boolean TDoc::MakeWindow(Boolean colorWindow) {

if(colorWindow)
fDocWindow GetNewCWindow(GetWinID(),nil, (WindowPtr)-1);

else
fDocWindow = GetNewWindow(GetWinID(),nil, (WindowPtr)-1);

return (fDocWindow !=nil);

lll

322

Paqe 3 TDoc.cp

II
II TDoc::DoActivate
II
lll
void TDoc::DoActivate(EventRecord* theEvent) {

Boolean activating = theEvent->modifiers & activeFlag;

II no need to activate if no window
if(fDocWindow ==nil)

return;

SetPort(fDocWindow);
DoDrawGrowicon();

if(activating)
Activate();

else
Deactivate();

lll
II
II TDoc: :DoTheUpdate
II
lllllllllllllllllllll/ll/lllllllllll/llllllllllllllll/lllllllllllll/lll
void TDoc::DoTheUpdate(EventRecord* /*theEvent*I) {

if(fDocWindow != nil) {
SetPort(fDocWindow);
BeginUpdate(fDocWindow);
Rect r = (**(fDocWindow->visRgn)) .rgnBBox;
Draw(&r);
DoDrawGrowicon();
EndUpdate(fDocWindow);

}
l/llll/llllllllllllllllll/lllllllll/llllllllllll//l/lllll/llllllllll/ll
II
II TDoc::Draw
II
lllllllllllllllllllllllllllllllllllll/lllllllllllllllllllllll/111111111
void TDoc: :Draw(Rect *r) {

EraseRect(r);

llllllll/lll/llllllllllllll/lllllllllllllllllll/llllllllllllllll/llllll
II
II TDoc::DoGrow

323

TDoc.cp Page 4

II
///////////////////////////l/l//l///////////l//////l//l////l///////I///
void TDoc::DoGrow(EventRecord* theEvent) {

long result;

II use desktop gray region as grow limits
RgnHandle theGrayRgn = GetGrayRgn();

Rect r = (**theGrayRgn) .rgnBBox;
r.top = GetMinHeight(); r.left = GetMinWidth();

SetPort(fDocWindow);
result= GrowWindow(fDocWindow, theEvent->where, &r);
if (result != 0) {

II invalidate the old scroll bar areas
r = fDocWindow->portRect;
r.left = r.right - kScrollBarPos;
InvalRect(&r);
r = fDocWindow->portRect;
r.top = r.bottom - kScrollBarPos;
InvalRect(&r);

II now make the window the new size
SizeWindow(fDocWindow, LoWrd(result), HiWrd(result), true);

II invalidate the new scroll bar areas
r = fDocWindow->portRect;
r.left = r.right - kScrollBarPos;
InvalRect(&r);
r = fDocWindow->portRect;
r.top = r.bottom - kScrollBarPos;
InvalRect(&r);

}
/////////////////////l////////l//ll////////////////////////////////////
II
II TDoc: :DoZoom
II
/////////////////////////////////II////////////////////////////////////
void TDoc::DoZoom(short partCode) {

324

if(fDocWindow) (
SetPort(fDocWindow);
EraseRect(&fDocWindow->portRect);
ZoomWindow(fDocWindow, partCode, fDocWindow

II invalidate the whole content
InvalRect(&fDocWindow->portRect);

FrontWindow());

Page 5 TDoc.cp

lll
II
II TDoc::DoDrag
II
lll
void TDoc::DoDrag(EventRecord* theEvent) {

II use desktop gray region as drag limits
RgnHandle theGrayRgn = GetGrayRgn{);
Rect r = (**theGrayRgn) .rgnBBox;

if(fDocWindow)
DragWindow(fDocWindow, theEvent->where, &r);

}

lll
II
II TDoc::DoDocMenuCommand
II
lll
Boolean TDoc::DoDocMenuCommand(short menuID, short menuitem) {

switch (menuID) {
case rFileMenu:

switch (menuitem) {
case iSave:

DoSave();
break;

case iSaveAs:
DoSaveAs();
break;

case iPageSetup:
DoPageSetup();
break;

case iPrint:
DoPrint();
break;

default:
II we didn't handle command
return false;

} II end menuitem switch
return true; II we handled this command

case rEdit:
if (!SystemEdit(menuitem-1)) {

switch (menuitem) {
case iClear:

DoClear();
break;

case iSelectAll:
DoSelectAll () ;
break;

325

TDoc.cp

default:
II we didn't handle command
return false;

) II end menuitem switch
return true; II we handled this command

else
return true; II SystemEdit handled command

) II end menuID switch
II we didn't handle command
return false;

Page 6

lll
II
II TDoc::AdjustDocMenus
II
lll
void TDoc::AdjustDocMenus(void) {

MenuHandle menu;

II Do the document's portion of the file menu
menu= GetMHandle(rFileMenu);
SetMenuAbility(menu,iClose,CanClose());
SetMenuAbility(menu,iSave,CanSave());
SetMenuAbility(menu,iSaveAs,CanSaveAs());
SetMenuAbility(menu,iPageSetup,CanPageSetup());
SetMenuAbility(menu,iPrint,CanPrint());

II now the edit menu, App handles Paste Item
menu= GetMHandle(rEdit);
SetMenuAbility(menu,iUndo,CanUndo());
SetMenuAbility(menu,iCut,HaveSelection());
SetMenuAbility(menu,iCopy,HaveSelection());
SetMenuAbility(menu,iClear,HaveSelection());
SetMenuAbility(menu,iSelectAll,CanSelectAll());

lll
II
II TDoc: :OpenDocFile
II
lll
short TDoc::OpenDocFile(SFReply *reply) {

326

short refnum;
OSErr err= FSOpen((Str255)reply->fName,reply->vRefNum,&refnum);
switch(err) {

case fnfErr: II file not found, create it
err= Create((Str255)reply->fName,

Page 7 TDoc.cp

reply->vRefNum,
fCreator,
GetDocType());

if(err == noErr) {
err= FSOpen((Str255)reply->fName,

reply->vRefNum,
&refnum);

if(err != noErr)
return 0;

else
return O;

II if open was successful, fall through
II to next case

case noErr: II file opened OK
fFileOpen true;
fRefNum = refnum;
return refnum;

case opWrErr:
ErrorAlert(rDocErrorStrings,sFileOpen);
return O;

default:
ErrorAlert(rDocErrorStrings,sUnknownErr);
return 0;

}

lll
II
II TDoc::CloseDocFile
II
llllllllllllllllllllllllllllll/lll///l///ll///l/////ll/lll/l//////l//I/
void TDoc::CloseDocFile(short refNum) {

OSErr err= FSClose(refNum);

llllll/lllllllllllllllll//lllllllllll/lllef !llllllllllllll/1111111111111
II
II TDoc: :DoClose
II
llllllllllllllllllllllllllllllllllll/11111111111111111/lllllllllllllll/
Boolean TDoc::DoClose(void) {

II you could give the user a chance to save if necessary

327

TDoc.cp

II and possibly cancel the close operation

if(fNeedtoSave) {
II ask if they want to save it
short saveit = WantToSave();
if(saveit == iCancel)

return false;
if(saveit == iYes) {

II User can cancel save at this point too
if (! DoSave())

return false;

//close the file
if(fFileOpen)

CloseDocFile(fRefNum);

II if all goes well, return true
return true;

Page 8

}

ll!///////////////////////////////l/////////////////////I//////////////
II
II TDoc::WantToSave
II
l//////ll!//////////////////////////////l/!/l/lll/I////////////////////
short TDoc: :WantToSave(void) {

Str255 title;
Str255 nullStr;
*nullStr = 0;

if (fDocWindow) {
GetWTitle(fDocWindow,title);
ParamText(title,nullStr,nullStr,nullStr);

else
ParamText(nullStr,nullStr,nullStr,nullStr);

return Alert(rWantToSave, (ModalFilterProcPtr)nil);

}

lll//llll//////lll/ll/l////////////l//lll/l//l//l/lllllllll/l//l/l//I//
II
II TDoc::DoSaveAs
II
//////////////////////////////////l/////////////////////l///////////I//
Boolean TDoc::DoSaveAs(void) {

328

SFReply whereToSave;
Point p;
Str255 title;

Page 9 TDoc.cp

GetWTitle(fDocWindow,title);

p.h = 100; p.v = 100;
SFPutFile (p,

"\pSave file as ... ",
title,
(DlgHookProcPtr)nil,
&whereToSave);

if(! whereToSave.good) {
II the user canceled the SaveAs
return false;

}else{
fFileinfo = whereToSave;
fRefNum = OpenDocFile(&whereToSave);
if(fRefNum == 0) {

II file didn't open
return false;

}else{
fFileOpen = true;
if(! WriteDocFile(fRefNum)) {

II write was unsuccessful
return false;

}else{
fNeedtoSave = false;
fNeedtoSaveAs = false;
SetDocWindowTitle(whereToSave.fName);

return true; II passed every test for success
}

lll
II
I I TDoc: : DoSave
II
/ll//lll/l/llllll/l/lllll/lllllllll/llllll/lllll/lll//ll//llll/llll/l/I
Boolean TDoc::DoSave(void) {

if(fNeedtoSaveAs)
return DoSaveAs();

if(WriteDocFile(fRefNum)) {
fNeedtoSave = false;
fNeedtoSaveAs = false;
return true;

else
return false;

329

TDoc.rsrc.r

/* TDoc.rsrc.r

*
* rez source for TDoc resources

*
* © 1990 Dan Weston All rights reserved

*
* Build it with the following rez command

*
* rez TDoc.rsrc.r -o TDoc.rsrc -t rsrc -c RSED

*
*/

#include "types.r"

resource 'WIND' (1000) {
{ 40, 40, 182, 304},
zoomDocProc,
invisible,
goAway,
OxO,
Untitled

} ;

resource 'ALRT' (500, "phSaveChanges", purgeable)
(100, 110, 220, 402},

} ;

500,
{ /* array: 4 elements */

/* [1] */
OK, visible, silent,
/* [2] */
OK, visible, silent,
/* [3] */
OK, visible, silent,
/* [4] */
OK, visible, silent

resource 'ALRT' (2 55, "ErrorAlert", purgeable)
{ 100, 110, 220, 402},

330

255,
{ /* array: 4 elements */

/* [1] */
OK, visible, silent,
/* [2] */
OK, visible, silent,
/* [3] */
OK, visible, silent,
/* [4] */

Page 1

Page 2

OK, visible, silent

} ;

resource 'DITL' (500, "phSaveChanges", purgeable)
/* array DITLarray: 4 elements */

} ;

/* [l] */
{58, 25, 76, 99),
Button {

} I

enabled,
"Yes"

/* [2] */
{ 86, 195, 104, 269} I

Button {

} I

enabled,
"Cancel"

/* [3] */
{86, 25, 104, 99),
Button {

} I

enabled,
"No"

/* [4] */
{12, 20, 53, 279),
StaticText {

disabled,
"Save changes to ftAO" before closing?"

resource 'DITL' (255, "phSaveChanges", purgeable)
/* array DITLarray: 2 elements */

} ;

/* [l] */
{85, 199, 105, 259),
Button {

} ,

enabled,
"OK"

/* [2] */
{11, 96, 76, 284),
StaticText {

disabled,
llAQtl

resource 'STR#' (255) {

TDoc.rsrc.r

331

TDoc.rsrc.r

} ;

332

/* array StringArray: 3 elements */
/* [l] */
"Not enough memory to complete this opera"
"tion.",
/* [2] */
"That file is already open.",
/* [3] */
"Unknown error."

Page 3

Page 1 AppDocMenus.h

l///I//////////////
II
II Menu ID constants shared by TApp and TDoc
II
//ll//////////////////////l//l/////////ll////I/////////////////////////

const short rMenuBarID = 128;

con st short rAppleMenu 128;
con st short iAbout l;

con st short rFileMenu 12 9;
const short iNew = l;
con st short iOpen = 2;
II -----
const short iClose = 4;
const short iSave = 5;
const short iSaveAs = 6;
//----
const short iPageSetup
const short iPrint = 9;
//----
const short iQuit 11;

const short rEdit
const short iUndo
!!----

130;
l;

const short iCut = 3;
const short iCopy = 4;
const short iPaste 5;
const short iClear = 6;
//----

8;

const short iSelectAll 8;

/* application's menu bar */

/* Apple menu */

/* File menu */

l(/,dvl/ 6t- 7

1r ~twJU 6e 1°

/* Edit menu */

333

TApp.h Page 1

///////l/l//l/////////////l//l//l//////l///l/ll///l////l//////l/ll/l//I
II
II This is the generic application object
II
II © 1990 Dan Weston, All Rights Reserved
II
l///////////ll/l////l/l//l/////ll///ll///////////////l/l//llll////I////

#ifndef TApp H
#define TApp::::H

#include <Types.h>
#include <Desk.h>
#include <Events.h>
#include <Menus.h>
#include <OSUtils.h>

II we need definitions of Document class
#include "TDoc.h"

/l///////ll/////////l////ll//l//ll/////////////////////l///////////I///
II
II class TLink
II TLink is a utility class that is used by
II the TList class below.
II
/lll/l/l/lll//lllll/ll/l//l//l//l/l/ll////l///lll///llll/ll////ll/llll/
class TLink {

TLink*
void*

fNext; //the link to the next item
fitem; //the item this link refers to

public:

} ;

TLink(TLink *n =nil, void *item nil)
{fNext = n; fitem =item;}

TLink* GetNext ()
{ return fNext;

void* Getitem()
{ return fitem;

void SetNext(TLink* aLink)
{ fNext = aLink; }

void Setitem(void* anitem)
{ fitem = anitem; }

///////I/Ill///
II
II class TList
II

334

Page 2 TApp.h

lll

class TList
protected:

friend
TLink*

class Titerator;
fLink; II the first link in our list

I'\ int

I p\blic:

fNumitems; I I the number of elements in the list

} ;

TList (void) ;

virtual void
virtual void
int Numitems ()

II constructor

Add!tem(void* item);
Removeitem(void* item);

return fNumitems; }

lll
II
II class Titerator
II
lll
class Titerator {

TLink* fCurLink;

public:

} ;

Titerator(TList* list) { fCurLink list->fLink; }
void* Next(void);

lll
II
II class TDocList
II
lll
class TDocList : public TList {

public:

} ;

II add one new member function
II find the TDocument associated with the window
TDoc* FindDoc(WindowPtr window);

ll/1111111111
II
II class TApp
II
lll

335

TApp.h

class TApp

public:

II other classes might like to see this
SysEnvRec fenvRec;

protected:

II members just
TDocList*
TDoc*
Boolean
Boolean
Boolean
Handle
OS Type
Boolean
short

for TApp and derived classes
fDocList;
fCurDoc;
fHaveWaitNextEvent;
fDone;
finBackground;
fClipData;
fClipType;
fDAonTop;
fLastScrapCount;

public:

II constructor needs to be public
TApp (void) ;

virtual -TApp(void) {delete fDocList;}

II These three member functions get called from main()
virtual Boolean InitApp(void);
virtual void EventLoop(void);
virtual void CleanUp(void);

II these functions create documents, and manipulate
II the document list
II probably won't be overridden
virtual Boolean OpenDocFromFinder(void);
virtual void OpenNewDoc(void);
virtual void OpenOldDoc(void);

II add a document to app's document list
virtual void AddDocument(TDoc * theDoc);

protected:

336

II override this function to make the kind of document
II supported by your application
virtual TDoc * MakeDoc(SFReply *reply= (SFReply *)nil);

II override this if your app has a unique creator signature
virtual OSType GetCreator(void) {return '????';}

Page 3

Paqe 4 TApp.h

II routines to override to configure SFGetFile
II override these to specify the type of files you can open
virtual int GetNumFileTypes(void) {return 0;};
virtual SFTypeList GetFileTypesList(void) {return (SFTypeList)nil;}
virtual Boolean AcceptableFileType(OSType theType);

II common code for OpenDocFromFinder and OpenOldDoc
virtual Boolean InitOldDoc(SFReply *reply);

II event handlers you shouldn't need to override in a typical application
II these call event handlers for documents, where real functionality is

virtual void OSEvent(EventRecord * theEvent);
virtual void MouseDown(EventRecord * theEvent);
virtual void KeyDown(EventRecord * theEvent);
virtual void ActivateEvt(EventRecord * theEvent);
virtual void UpdateEvt(EventRecord * theEvent);
virtual void ExitLoop(void) {fDone =true;}
virtual void Appidle(void);

II override these if you need to respond to
II mouseups or disk inserted events

virtual void MouseUp(EventRecord * theEvent) {}
virtual void DiskEvt(EventRecord * theEvent) {}

II MultiFinder friendly functions
virtual void DoSuspend(EventRecord * theEvent,Boolean convertClip);
virtual void DoResume(EventRecord * theEvent,Boolean convertClip);

II how long to sleep in WaitNextEvent
virtual unsigned long SleepVal(void) { return O; }

II menu functions

II handles standard DA, File, and Edit menus
II override to handle additional menus
II but call TApp::DoMenuCommand if your derived function
II doesn't handle menu choice
virtual void DoMenuCommand(short menuID, short menu!tem);

II functions that control state of menu items
virtual void AdjustMenus(void);
virtual Boolean CanNew(void) {return true;}
virtual Boolean CanOpen(void) (return false;}
virtual Boolean CanQuit(void) {return true;}

II responses for File Menu items
virtual Boolean CloseADoc(TDoc * theDoc);
virtual void Quit(void);

II clipboard support

337

TApp.h Page 5

} ;

virtual void GetClipFromSystem(void);
virtual void GiveClipToSystem(void);
virtual OSType CanAcceptClipType(void);
virtual Boolean ClipHasChanged(void);
virtual void CheckForDASwitch(WindowPtr theFrontWindow);

II responses to Edit menu items
virtual void DoUndoCmd(TDoc * theDoc);
virtual void DoCutCmd(TDoc * theDoc);
virtual void DoCopyCmd(TDoc * theDoc);
virtual void DoPasteCmd(TDoc * theDoc);

II Utility routine
Boolean TrapAvailable(short tNumber,TrapType tType);

#endif TApp_H

338

Page 1 TApp.cp

lll
II
II This is the generic application object
II
II© 1990 Dan Weston, All Rights Reserved
II
lll

II Mac Includes
#include <Types.h>
#include <Events.h>
#include <Windows.h>
#include <Menus.h>
#include <Dialogs.h>
#include <Desk.h>
#include <ToolUtils.h>
#include <Fonts.h>
#include <Memory.h>
#include <OSUtils.h>
#include <Traps.h>
#include <SegLoad.h>
#include <Scrap.h>

II our includes
#include "TApp.h"
#include "AppDocMenus.h"

II define the segment for the TApp class
#pragma segment AppSeg

llllllllllllllllll/ll
II
II constants
II
ll/111111111111

const short rAboutID = 128; I* about alert *I

con st short kOSEvent app4Evt;
con st short kSuspendResumeMessage = OxOl;
const short kClipConvertMask = Ox02;
con st short kResumeMask = OxOl;
con st short kMouseMovedMessage = OxFA;

con st short kStagger = 20;
con st short kHPos 20;
con st short kVPos = 50;

lllllllll/llllllllll/lllllllllll/llllllllllllllllllllllllllllllllllllll
II

339

TApp.cp Page 2

II TList::TList
II
lll
TList::TList(void) {

fLink = nil;
fNumitems = O;

lllllllllllllllllllllllllllllllll/llllllllllllllllllllll/lllllllll/ll/I
II
II TList::Additem
II
lllllllllllllllllllllllllllll/lll
void TList::Additem(void* item) {

TLink* temp;

temp= new TLink(fLink,item);
fLink = temp;
fNumitems++;

}

111111111111111111/lll/llll
II
II TList::Removeitem
II
111111111111111/lllllllllll/lll
void TList: :Removeitem(void* item) {

TLink* temp;
TLink* last;

last = nil;
for (temp= fLink; temp !=nil; temp= temp->GetNext())

if (temp->Getitem() == item) {
11 if first item in list, just set first
if (last == nil)

fLink = temp->GetNext();
else

last->SetNext(temp->GetNext());
delete temp;
fNumitems--;
return;

else
last = temp;

/llllllllllllllllllllllllllll/lll
II
II TDocList::FindDoc
II find the TDoc associated with the window
II
ll/111111111111

340

Paqe 3 TApp.cp

TDoc* TDocList::FindDoc(WindowPtr window) {
TLink* temp;
TDoc* tDoc;

for (temp= fLink; temp !=nil; temp= temp->GetNext()) {
tDoc = (TDoc*)temp->Getitem();
if (tDoc->GetDocWindow() == window)

return tDoc;

return nil;

lll
II
II Titerator::Next
II
lll
void* Titerator: :Next(void) {

TLink* link = fCurLink;

if (fCurLink)
fCurLink = fCurLink->GetNext();
return (link->Getitem());

else
return nil;

lll
II
11 TApp: :TApp
II
lll
TApp::TApp(void) {

II initialize our class variables
fCurDoc = nil;
fDone = false;
finBackground = false;
fClipData = nil;
fClipType = '????';
fDAonTop = false;
fLastScrapCount = 0;

II initialize Mac Toolbox components
InitGraf((Ptr) &qd.thePort);
InitFonts () ;
InitWindows () ;
InitMenus();
TEinit();
InitDialogs((ResumeProcPtr) nil);

341

TApp.cp

InitCursor();

(void) SysEnvirons(curSysEnvVers, &fenvRec);

II expand the heap so new code segments load at the top
MaxApplZone();

II allocate an empty document list
fDocList = new TDocList;

II check to see if WaitNextEvent is implemented
fHaveWaitNextEvent = TrapAvailable(_WaitNextEvent, ToolTrap);

II read menus into menu bar
Handle menuBar = GetNewMBar(rMenuBarID);
II install menus
SetMenuBar(menuBar);
DisposHandle(menuBar);

II add DA names to Apple menu
AddResMenu(GetMHandle(rAppleMenu), 'DRVR');

DrawMenuBar();

Page 4

lll
II
II TApp::InitApp
II
lll
Boolean TApp::InitApp(void) {

GetClipFromSystem();
return true;

lll
II
II TApp::CleanUp
II
lll
void TApp::CleanUp(void) {

GiveClipToSystem();

lll
II
II TApp::CheckForDASwitch
II

342

Page 5 TApp.cp

lll
void TApp::CheckForDASwitch(WindowPtr

if(theFrontWindow == nil)
return;

Boolean DAWindowOnTop;

theFrontWindow) {

DAWindowOnTop = ((WindowPeek)theFrontWindow)->windowKind < 0;

II if the state has changed since we last checked it, then
II do clipboard conversion
if(DAWindowOnTop != fDAonTop) {

fDAonTop = DAWindowOnTop;

if(DAWindowOnTop)
II DA is becoming active, give up the clipboard
GiveClipToSystem();

else {
II DA is becoming inactive, reclaim clip if necessary
if(ClipHasChanged())

GetClipFromSystem();

}
lll
II
II TApp::ClipHasChanged
II
lll
Boolean TApp::ClipHasChanged(void) {

PScrapStuff scrapinfo = InfoScrap();

return (scrapinfo->scrapCount != fLastScrapCount);

lll
II
II TApp: :GiveClipToSystem
II
lllllllllllllllllllllllll/lllll!llllllllllllllllll!lll///l/l/l//l//ll/I
void TApp::GiveClipToSystem(void) {

if(fClipData !=nil) {
long result= ZeroScrap();
if(result != noErr)

return;

long size= GetHandleSize(fClipData);

343

TApp.cp

}

HLock(fClipData);
result= PutScrap(size,fClipType,*fClipData);
HUnlock(fClipData);

II update our scrapcount field so we can tell if scrap
II has changed later on
PScrapStuff scrapinfo = InfoScrap();
fLastScrapCount = scrapinfo->scrapCount;

Paqe 6

}
lll
II
II TApp::GetClipFromSystem
II
lll
void TApp::GetClipFromSystem(void){

long offset;
Handle newData = NewHandle(O);
OSType newType = CanAcceptClipType();

long result= GetScrap(newData,newType,&offset);
if(result > 0) {

if(fClipData !=nil)
DisposHandle(fClipData);

fClipData newData;
fClipType = newType;

}
lll
II
II TApp::CanAcceptClipType
II
lll
OSType TApp::CanAcceptClipType(void) {

return '????';

lll
II
II TApp::EventLoop
II
lll
void TApp::EventLoop(void) {

344

int gotEvent;
EventRecord theEvent;
WindowPtr theFrontWindow;

Paqe 7

while (fDone == false) {
theFrontWindow FrontWindow();

II find out if a DA is becoming active or inactive
CheckForDASwitch(theFrontWindow);

II see if window belongs to a document,
II FindDoc will return nil if not one of our windows
fCurDoc = fDocList->FindDoc(theFrontWindow);

if (fHaveWaitNextEvent)
gotEvent = WaitNextEvent(everyEvent,

&theEvent,
SleepVal(),
(RgnHandle) nil);

else {
SystemTask();
gotEvent = GetNextEvent(everyEvent, &theEvent);

II make sure we got a real event
if (gotEvent == false) {

App!dle();
continue;

switch (theEvent.what) {
case nullEvent

Appidle();
break;

case mouseDown
MouseDown(&theEvent);
break;

case mouseUp :
MouseUp(&theEvent);
break;

case keyDown :
case autoKey :

KeyDown(&theEvent);
break;

case updateEvt :
UpdateEvt(&theEvent);
break;

case diskEvt :
DiskEvt(&theEvent);
break;

case activateEvt :
ActivateEvt(&theEvent);
break;

case kOSEvent :
OSEvent(&theEvent);

TApp.cp

345

'l'App.cp

break;
default :

break;
} II end switch
11 end while

Page 8

lll
II
II TApp::AddDocument
II
lll
void TApp::AddDocument(TDoc *theDoc) {

fDocList->Additem(theDoc);
fCurDoc = theDoc;

lll
II
II TApp::OpenDocFromFinder
II
lll
Boolean TApp::OpenDocFromFinder(void) {

346

short
short
AppFile
SFReply
Boolean

message;
count;
theApp;
reply;
fileOpened = false;

II see if there are any files to be opened or printed
CountAppFiles(&message,&count};
if(count == 0)

return false;

for(short i = count;i;i--} {
GetAppFiles(i,&theApp);
II convert theApp to an SFReply
reply.good = true;
reply.fType = theApp.fType;
reply.vRefNum = theApp.vRefNum;
reply.version = theApp.versNum;
unsigned char strLen = theApp.fName[O];
for(short j = 0; j <= strLen; j++)

reply.fName[j] = theApp.fName[j];

II check here to see if file is an acceptable type
if(AcceptableFileType(reply.fType))

II now create the document and open the file

Page 9 TApp.cp

if(InitOldDoc(&reply))
fileOpened = true;

return fileOpened;
}
lll
II
II TApp::OpenNewDoc
II Creates a new document object, staggers it, and adds it to doclist
II
lll
void TApp::OpenNewDoc(void) {

TDoc * newDoc = MakeDoc();
if(newDoc) {

if((newDoc->MakeWindow(fenvRec.hasColorQD)) &&
(newDoc->InitDoc())) {
short numDocs = fDocList->Numitems() ;
newDoc->MoveDocWindow(kHPos + (numDocs * kStagger),

kVPos + (numDocs * kStagger));
newDoc->ShowDocWindow();
AddDocument(newDoc);

else {
II MakeWindow or InitDoc failed, but doc created
delete(newDoc);

lll
II
II TApp::OpenOldDoc
II
lll
void TApp::OpenOldDoc(void) {

SFReply reply;
Point p;

p.h = 100; p.v = 100;
SFGetFile(p,

(Str255)"",
(FileFilterProcPtr)nil,
GetNumFileTypes(),
GetFileTypesList(),
(DlgHookProcPtr)nil,
&reply);

II don't go on if user cancels dialog
if(! reply.good)

return;

347

TApp.cp Page 10

(void)InitOldDoc(&reply);

lll
II
II TApp::InitOldDoc
II
II Creates a new document object, reads in data for it,
II sets the window title to file name, staggers it,
II and adds it to doclist

II
II

This routine is shared by both OpenDocFromFinder
and OpenOldDoc

II
/ll
Boolean TApp::InitOldDoc(SFReply *reply) {

348

TDoc * newDoc = MakeDoc(reply);
if (newDoc) {

if((newDoc->MakeWindow(fenvRec.hasColorQD))
&& (newDoc->InitDoc())) {
short numDocs = fDocList->Numitems() ;
newDoc->MoveDocWindow(kHPos + (numDocs * kStagger),

kVPos + (numDocs * kStagger));
newDoc->SetDocWindowTitle((Str255)reply->fName);
short refNum = newDoc->OpenDocFile(reply);

if (re fNum ! = 0) {
if(newDoc->ReadDocFile(refNum)) {

newDoc->ShowDocWindow();
AddDocument(newDoc);

}else{

else

II open was successful, but read failed
newDoc->CloseDocFile(refNum);
delete(newDoc);
return false;

II file not opened successfully, but doc created
delete(newDoc);
return false;

else

else{

II MakeWindow or InitDoc failed, but doc created
delete(newDoc);
return false;

Paqe 11 TApp.cp

II document not created
return false;

}

II if we get this far, all went well
return true;

lll
II
II TApp: :MakeDoc
II Override this function to make the type of document
II that your application uses
II
lll
TDoc * TApp::MakeDoc(SFReply *reply) {

return new TDoc(GetCreator(),reply);

lll
II
II TApp: :AcceptableFileType
II
lll
Boolean TApp::AcceptableFileType(OSType theType) {

int numTypes = GetNumFileTypes();
OSType *theTypeList = (OSType *)GetFileTypesList();

if ((numTypes == 0) I I (theTypeList == nil))
return true;

for (int i = O;i < numTypes; i++) {
if(theType == *theTypeList++)

return true;

return false;

lll
II
I I TApp: : OSEvent
II
lll
void TApp::OSEvent(EventRecord * theEvent) {

Boolean doConvert;
unsigned char evType;

II is it a multifinder event?

349

TApp.cp Paqe 12

evType = (unsigned char) (theEvent->message >> 24) & OxOOff;
switch (evType) { II high byte of message is type of event

case kMouseMovedMessage
Appidle(); II mouse-moved is also an idle event
break;

case kSuspendResumeMessage·
doConvert = (theEvent->message & kClipConvertMask) != O;
finBackground = (theEvent->message & kResumeMask) == 0;
if (finBackground)

DoSuspend(theEvent,doConvert);
else

DoResume(theEvent,doConvert);
break;

lll
II
II TApp::MouseDown
II
lll
void TApp::MouseDown(EventRecord * theEvent) {

350

WindowPtr theWindow;

short partCode FindWindow(theEvent->where, &theWindow);

TDoc * tempDoc fDocList->FindDoc(theWindow);

switch (partCode) {
case inSysWindow

SystemClick(theEvent,theWindow);
break;

case inMenuBar :
AdjustMenus();
long mResult = MenuSelect(theEvent->where);
if (HiWrd(mResult) != 0) {

DoMenuCommand(tiiWrd(mResult),LoWrd(mResult));
HiliteMenu(O);

break;
case inGoAway

if (TrackGoAway(theWindow, theEvent->where))
CloseADoc(tempDoc);

break;
case inDrag :

if(tempDoc !=nil)
tempDoc->DoDrag(theEvent);

break;
case inGrow :

if (tempDoc != nil)

Page 13 TApp.cp

tempDoc->DoGrow(theEvent);
break;

case inZoomin :
case inZoomOut :

if ((TrackBox(theWindow, theEvent->where, partCode)) &&
(tempDoc !=nil))

tempDoc->DoZoom(partCode);
break;

case inContent :
if(theWindow != FrontWindow())

SelectWindow(theWindow);
else

if(tempDoc !=nil)
tempDoc->DoContent(theEvent);

break;

lll
II
II TApp::KeyDown
II
lll
void TApp::KeyDown(EventRecord * theEvent) {

char key;
long mResult;

key= (char) (theEvent->message & charCodeMask);
if ((theEvent->modifiers & cmdKey) &&

(theEvent->what == keyDown)) {
II only do command keys if we are not autokeying
AdjustMenus(); II make sure menus are up to date
mResult = MenuKey(key);
II if it wasn't a menu key, pass it through
if (HiWrd(mResult} != 0) {

}else

DoMenuCommand(HiWrd(mResult), LoWrd(mResult});
HiliteMenu(O};
return;

if (fCurDoc != nil)
fCurDoc->DoKeyDown(theEvent};

}

lll
II
II TApp::ActivateEvt
II
lll
void TApp::ActivateEvt(EventRecord * theEvent) {

351

TApp.cp

WindowPtr theWindow;

II event record contains window ptr
theWindow = (WindowPtr) theEvent->message;

II see if window belongs to a document
TDoc *tempDoc = fDocList->FindDoc(theWindow);

if (tempDoc != nil)
tempDoc->DoActivate(theEvent);

Page 14

}
lll
II
II TApp::UpdateEvt
II
lll
void TApp::UpdateEvt(EventRecord * theEvent) {

WindowPtr theWindow;

II event record contains window ptr
theWindow = (WindowPtr) theEvent->message;

II see if window belongs to a document
TDoc *tempDoc = fDocList->FindDoc(theWindow);

if (tempDoc != nil)
tempDoc->DoTheUpdate(theEvent);

lll/////////ll/
II
II TApp::Appidle
II
llll/ll////l/////lllll/lll/l/l/ll/ll//llll//l///////ll/I///////////////
void TApp::Appidle(void) {

if (fCurDoc != nil)
fCurDoc->Doidle();

lllllllllllllllll/l///lllllllllll//l///lll/llllllllllllll/llllllllllll/
II
II TApp: :DoSuspend
II
lllllllllll//lllllll/lllllllll/llllllllll/l/1/l///lll//ll////////l///ll
void TApp::DoSuspend(EventRecord * theEvent,Boolean convertClip) {

352

Paqe 15 TApp.cp

if(convertClip)
GiveClipToSystem();

if (fCurDoc != nil) {
II tell DoActivate to deactivate
theEvent->modifiers &= (!activeFlag);
fCurDoc->DoActivate(theEvent);

}

lll
II
II TApp::DoResume
II
lll
void TApp::DoResume(EventRecord * theEvent,Boolean convertClip) {

if(convertClip)
GetClipFromSystem();

if (fCurDoc !=nil){
II tell DoActivate to activate
theEvent->modifiers I= activeFlag;
fCurDoc->DoActivate(theEvent);

lll
II
II TApp::AdjustMenus
II Enable and disable menus based on the current state.
II
lll
void TApp::AdjustMenus(void) {

MenuHandle menu;

II first give the current document a chance to adjust the menus
if(fCurDoc !=nil)

fCurDoc->AdjustDocMenus();

II Now do the file menu
menu= GetMHandle(rFileMenu);
II the app controls whether we can open and new and quit
SetMenuAbility(menu,iNew,CanNew());
SetMenuAbility(menu,iOpen,CanOpen());
SetMenuAbility(menu,iQuit,CanQuit());

if (fCurDoc == nil) {
II no current doc, disable File menu items
II usually handled by the document

353

TApp.cp Page 16

SetMenuAbility(menu,iClose,false);
SetMenuAbility(menu,iSave,false);
SetMenuAbility(menu,iSaveAs,false);
SetMenuAbility(menu,iPageSetup,false);
SetMenuAbility(menu,iPrint,false);

II now the edit menu
menu= GetMHandle(rEdit);
II if no current doc, then enable edit menu depending
II on whether a DA is on top
if (fCurDoc == nil) (

SetMenuAbility(menu,iUndo,fDAonTop);
SetMenuAbility(menu,iCut,fDAonTop);
SetMenuAbility(menu,iCopy,fDAonTop);
SetMenuAbility(menu,iPaste,fDAonTop);
SetMenuAbility(menu,iClear,fDAonTop);
SetMenuAbility(menu,iSelectAll,fDAonTop);

else {
II Paste is the one Edit item that the doc can't
II set by itself
SetMenuAbility(menu,iPaste, (fClipData !=nil) &&

(fCurDoc->CanPaste(fClipType)));

}

lll
II
II TApp::DoMenuCommand
II
lll
void TApp::DoMenuCommand(short menuID, short menultem) {

354

short
Str255
short

itemHit;
daName;
daRefNum;

II allow the current doc a chance to handle it first
if((fCurDoc !=nil) &&

(fCurDoc->DoDocMenuCommand(menuID,menultem)))
return;

switch (menuID) {
case rAppleMenu:

switch (menultem) {
case iAbout:

itemHit Alert(rAboutID, nil);
break;

default:
Getltem(GetMHandle(rAppleMenu), menultem, daName);
daRefNum = OpenDeskAcc(daName);
break;

Page 17 TApp.cp

II end menuitem switch

break;

case rFileMenu:
switch (menuitem) {

case iNew:
OpenNewDoc();
break;

case iOpen:
OpenOldDoc();
break;

case iClcse:
CloseADoc(fCurDoc);
break;

case iQuit:
Quit();
break;

} II end menuitem switch

break;

case rEdit:
if (!SystemEdit(menuitem-1)) {

switch (menuitem) {
case iUndo:

DoUndoCmd(fCurDoc);
break;

case icut:
DoCutCmd(fCurDoc);
break;

case iCopy:
DoCopyCmd(fCurDoc);
break;

case iPaste:
DoPasteCmd(fCurDoc);
break;

} II end menuitem switch
11 end if

break;

II end menuID switch

lllil
II
II TApp::CloseADoc
II
lllllllllllllllllllllllllllllllll/ll/lllllllllll/l/lll/llllll/111111111

355

TApp.cp

Boolean TApp::CloseADoc(TDoc * theDoc) {

if(theDoc !=nil)
if(theDoc->DoClose()) {

fDocList->Removeitem(theDoc);
if(theDoc == fCurDoc)

fCurDoc = nil;
delete theDoc;
return true;

II if we get here, the doc didn't close
return false;

Page 18

lll
II
I I TApp: :Quit
II
lll
void TApp: :Quit(void) {

Titerator iter(fDocList);
TDoc * nextDoc;
Boolean OKToQuit = true;

II ask each doc if it is ready to Quit
II It is possible that the user may cancel
II while saving one of these documents,
II thus aborting the Quit process
while (nextDoc = (TDoc *)iter.Next())

if(! CloseADoc(nextDoc)) {
OKToQuit = false;
break; II don't continue iterating

if(OKToQuit)
Exit Loop ();

lll
II
II TApp: :DoUndoCmd
II
lll
void TApp::DoUndoCmd(TDoc * theDoc) {

356

if(theDoc !=nil)
theDoc->DoUndo();

Paqe 19 TApp.cp

lllllllllllllllllllll/lll/ll//////////lllllllllllll/ll/ll/l/////l/I////
II
II TApp::DoCutCmd
II
//l/////////////l////////////////////ll/////////////////////////l////I/
void TApp::DoCutCmd(TDoc * theDoc) {

Handle newData;
OSType newType;

if(theDoc !=nil)
if(theDoc->DoCut(&newData,&newType)) {

//get rid of old clip data if DoCut succeeds
if(fClipData != nil)

DisposHandle(fClipData);
fClipData newData;
fClipType = newType;

}

/////////////////////////////////////l///////////l////////////ll///////
II
II TApp::DoCopyCmd
II
/////////////////////l/l///lll/////l/////l//////////////////////l////I/
void TApp::DoCopyCmd(TDoc * theDoc) {

Handle newData;
OSType newType;

if(theDoc != nil)
if(theDoc->DoCopy(&newData,&newType)) {

//get rid of old clip data if DoCopy succeeds
if(fClipData != nil)

DisposHandle(fClipData);
fClipData newData;
fClipType = newType;

}
//////////////////l/ll/l/////////////l//////////////ll/ll/l///l///I////
II
II TApp::DoPasteCmd
II
////////////////////////////////ll//////////////////////////////ll/////
void TApp::DoPasteCmd(TDoc * theDoc) {

if(theDoc !=nil)
theDoc->DoPaste(fClipData,fClipType);

}

////////////////////l////////////////ll////////ll////////l////l//////1/

357

TApp.cp Paqe 20

II
II TApp::TrapAvailable
II
lll
Boolean TApp::TrapAvailable(short tNumber,TrapType tType) {

358

return NGetTrapAddress(tNumber, tType) !=
GetTrapAddress(_Unimplemented);

Page 1

/* TApp.rsrc.r

*
* rez source for TApp resources

*
* © 1990 Dan Weston All rights reserved

*
* Build it with the following rez command

*
* rez TApp.rsrc.r -o TApp.rsrc -t rsrc -c RSED

*
*/

#include "types.r"

resource 'ALRT' (128 I purgeable)
{68, 76, 172, 376} I

128,
{ /* array: 4 elements */

/* [1] *I
OK, visible, silent,
/* [2] */
OK, visible, silent,
/* [3] */
OK, visible, silent,
/* [4 J */
OK, visible, silent

} ;

resource 'DITL' (128, purgeable) {
/* array DITLarray: 5 elements */
/* [ll */
{ 65, 199, 85, 279} I

Button {

} I

enabled,
"OK"

/* [2] */
(8, 8, 24, 304},
StaticText {

disabled,
"Generic Application"

} I

/* [3] */
{44, 199, 59, 245},
StaticText {

disabled,

""
} I

TApp.rsrc.r

359

TApp.rsrc.r

} ;

/* [4) */
{42, 34, 58, 162),
StaticText {

disabled,
"version number ??"

} '
/* [5) */
{ 65, 34, 89, 165}'
StaticText {

disabled,
"Date completed"

resource 'MENU' (128, preload)
128,

} ;

textMenuProc,
Ox7FFFFFFD,
enabled,
apple,
{ /* array: 2 elements */

/* [l) */
"About Generic", no!con, noKey, noMark, plain,
/* [2) */
"-", no!con, noKey, noMark, plain

resource 'MENU' (129, preload)
129'

360

textMenuProc,
Ox7FFFFDBB,
enabled,
"File",

/* array: 11 elements */
/* [l) */
"New", no!con, "N", noMark, plain,
/* [2) */
"Open", no!con, "O", noMark, plain,
/* [3J */
"-", no!con, noKey, noMark, plain,
/* [4) */
"Close", no!con, "W", noMark, plain,
/* [5) */
"Save", noicon, "S", noMark, plain,
/* [6) */
"Save as ... ", no!con, noKey, noMark, plain,
/* [7] */
"-", no!con, noKey, noMark, plain,
/* [8) */

Page 2

Paqe 3

} ;

"Page Setup", noicon, noKey, noMark, plain,
/* [9] */
"Print", noicon, "P", noMark, plain,
/* [10) */
"-", noicon, noKey, noMark, plain,
/* [11) */
"Quit", noicon, "Q", noMark, plain

resource 'MENU' (130, preload)
130,

} ;

textMenuProc,
OxBD,
enabled,
"Edit",

/* array: 8 elements */
/* [lJ */
"Undo", noicon, "Z", noMark, plain,
/* [2) */
"-", noicon, noKey, noMark, plain,
/* [3J */
"Cut", noicon, "X", noMark, plain,
/* [4J */
"Copy", noicon, "C", noMark, plain,
/* [5) */
"Paste", noicon, "V", noMark, plain,
/* [6) */
"Clear", noicon, noKey, noMark, plain,
/* [7) */
"-", noicon, noKey, noMark, plain,
/* [8] */
"Select All", noicon, "A", noMark, plain

resource 'MBAR' (128, preload)

} ;

/* array MenuArray: 3 elements */
/* [1] */
128,
/* [2] */
129,
/* [3] */
130

resource 'SIZE' (-1)
dontSaveScreen,
acceptSuspendResumeEvents,

TApp.rsrc.r

361

TApp.rsrc.r

} ;

362

enableOptionSwitch,
canBackground,
multiFinderAware,
backgroundAndForeground,
dontGetFrontClicks,
ignoreChildDiedEvents,
is32BitCompatible,
reserved,
reserved,
reserved,
reserved,
reserved,
reserved,
reserved,
384000,
384000

Page 4

Page 1 Helloworld2.cp

lll
II
II This file: Helloworld2.cp
II
II This is the source for the
II Helloworld2 program
II
II© 1990 Dan Weston, All Rights Reserved
II
lll

*include <Windows.h>
*include <Fonts.h>

*include "TApp.h"
*include "TDoc.h"

lll
II
II class declarations
II
lll

class THelloDoc : public TDoc{

protected:

II draw the window
virtual void Draw(Rect *r);

} ;

class THelloApp public TApp{

protected:
II make our kind of document
virtual TDoc * MakeDoc(SFReply *reply= (SFReply *)nil);

} ;

lllllllllllllllllllllllllllllllllllll!llllllllllllllllll/l/ll/111111111
II
II main
II
lllllllllllllllllllllll/11111/llllllllllllllllllllll/llllllllllllllllll
void main(void) {

THelloApp theApp;

II initialize the application
if(theApp.InitApp()) {

II open one window to start with

363

Helloworld2.cp

theApp.OpenNewDoc();

II Start our main event loop running.
II This won't return until user quits
theApp.EventLoop();

//now clean up
theApp.CleanUp();

Paqe 2

l/l/////l/ll///////////////l///l///////l////////////////lll//l/////ll//
II
II THelloApp::MakeDoc
II
l!ll!///l/////////l///l///////////l///////I////////////////////////////
TDoc * THelloApp::MakeDoc(SFReply */*reply*/) {

return new THelloDoc();

////////l//////ll/l///ll///////l/////l////////////////////////////ll///
II
II THelloDoc::Draw
II
l//l//////l///////l/////l//l//////l//l/l////ll///////l//l/////////ll///
void THelloDoc::Draw(Rect * r) { ·

364

EraseRect(r);
TextSize(48);
MoveTo(20,65);
DrawString("\phello world");

Page 1 Helloworld2.make

#---
Make file for the simplest program using the App and Doc objects
#To use it, use the MPW "Build ... " command from the build menu,
specifying "Helloworld2" and the target file

#© 1990 Dan Weston, All rights reserved

tell cplus and rez where to find included files for TApp and TDoc
AppObjectDir = : :App-Doc:

use SADE symbol generation, -sym off will result in faster builds
SymOpts = -sym on

options for C++, where to look for include files
CPlusOptions = {SymOpts} -i "{AppObjectDir}"

options for the linker

LinkOptions = -msg nodup {SymOpts}

options for rez, where to look for include and #include files
RezOptions = -s "{AppObjectDir}" -i "{AppObjectDir}"

We need to change this rule to include CPlusOptions
.cp.o f .cp

CPlus {default}.cp -o {default}.cp.o {CPlusOptions}

Objects = a
"{AppObjectDir}"TApp.cp.o a
"{AppObjectDir}"TDoc.cp.o a
Helloworld2.cp.o

ResourceFiles = a
"{AppObjectDir}"TApp.rsrc a
"{AppObjectDir}"TDoc.rsrc a
Helloworld2.rsrc

dependency rules for TDoc and TApp
"{AppObjectDir)"TDoc.cp.o f "{AppObjectDir}"TDoc.cp a

"{AppObjectDir}"TDoc.h a
"{AppObjectDir}"AppDocMenus.h

"{AppObjectDir}"TApp.cp.o f "{AppObjectDir}"TApp.cp a
"{AppObjectDir}"TApp.h a
"{AppObjectDir}"TDoc.h a
"{AppObjectDir}"AppDocMenus.h

dependency rules for Helloworld2
Helloworld2.cp.o f Helloworld2.cp a

"{AppObjectDir}"TApp.h a
"{AppObjectDir}"TDoc.h a

365

Helloworld2.make

Helloworld2.make

Helloworld2 ff {Objects} Helloworld2.make
Link -o {Targ} {LinkOptions} o

{Objects} o
"{CLibraries}"CPlusLib.o o
"{CLibraries}"CRuntime.o o
"{CLibraries}"StdCLib.o o
"{CLibraries}"Cinterface.o o
"{Libraries}"Interface.o

SetFile {Targ} -t APPL -c '????' -a B

Helloworld2 ff Helloworld2.r o
{ResourceFiles} o
Helloworld2.make

Rez -append -o {Targ} {RezOptions} Helloworld2.r

366

Page 2

Paqe 1 Belloworld2.r

I* Helloworld2.r rez source for a simple generic application *I

II the order of includes is important, since the last
II resources included will replace resources loaded
II before. We use this to override certain resources in
II TApp and TDoc with the resources in Helloworld.
include "TApp.rsrc";
include "TDoc.rsrc";
include "Helloworld2.rsrc";

367

HelloWorld2.rsrc.r

/* HelloWorld2.rsrc.r

*
* rez source for HelloWorld2 resources

*
* © 1990 Dan Weston All rights reserved

*
* Build it with the following rez command

*
* rez HelloWorld2.rsrc.r -o HelloWorld2.rsrc -t rsrc -c RSED

*
*/

#include "types.r"

resource 'ALRT' (128, purgeable)
{68, 76, 172, 376),

} ;

128,
{ /* array: 4 elements */

/* [1] */
OK, visible, silent,
/* [2] */
OK, visible, silent,
/* [3] */
OK, visible, silent,
/* [4] */
OK, visible, silent

resource 'DITL' (128, purgeable)

368

/* array DITLarray: 5 elements */
/* [lJ */
{65, 199, 85, 279),
Button {

},

enabled,
"OK"

/* [2] */
{8, 8, 24, 304),
StaticText {

disabled,
"Helloworld2: a very simple application."

} ,
/* [3] */
{44, 199, 59, 245),
StaticText {

disabled,

""
},

/* [4] */

Page 1

Paqe 2 HelloWorld2.rsrc.r

} ;

{ 42, 34, 58, 162} I

StaticText {
disabled,
"version 1.0"

} I

/* [5] */
(65, 34, 89, 165},
StaticText {

disabled,
"January 15, 1990"

resource 'MENU' (128, preload)
128,

} ;

textMenuProc,
Ox7FFFFFFD,
enabled,
apple,
{ /* array: 2 elements */

/* [1] */
"About Helloworld2", no!con, noKey, noMark, plain,
/* [2] */
"-", no!con, noKey, noMark, plain

resource 'WIND' (1000) {
(40, 40, 152, 368},
zoomDocProc,
invisible,
goAway,
OxO,
Untitled

} ;

369

Helloworld2.sade

directory 'hd:mpw:C++:helloworld2:'

sourcepath '::App/Doc:', a
' : : helloworld2: '

target 'helloworld2'

open source ('helloworld2.cp')

370

Page 1

Page 1 Scribble.cp

lll
II
II This file: Scribble.cp
II
II This is the main application object for the Scribble program
II
II © 1990 Dan Weston, All Rights Reserved
II
11111/lll/lllllllllllllllll

#include <Quickdraw.h>
#include <Windows.h>
#include <Memory.h>
#include <Files.h>
#include <Errors.h>

#include "TApp.h"
#include "TDoc.h"

lll
II
II constants
II
llll/lllllllllll/llllllllllllllllllllll/lllllllllllllllllllllllllllllll

con st short rPenMenu = 131;
con st short ilXl = 1;
con st short i2X2 = 2;
con st short i3X3 = 3;
const short iBlack = 5;
con st short iGray = 6;
con st short iWhite = 7;

static const short kEveryltem = 0;

lllllllllllllllllllllll/lllll/111111111111/llllllllllllllllllllllllllll
II
II utility functions
II
lllllllllllll/ll/l/l/lllllllllllll/lllllll/llllllllllllllllllllllllllll

inline short min(short a, short b) {return (a< b? a : b);}

lll/111111111/llllllllllllllllll/llllllllllllllllllllllllllllllllllllll
II
II class declarations
II
111/lllllllllllllllll//ll
enum penPat{patBlack,patGray, patWhite};

class TScribbleDoc : public TDoc{

371

Scribble.cp

private:

short fPenSize;
penPat fPattern;
PicHandle fPic;

public:

TScribbleDoc(OSType theCreator = '????',
SFReply *reply= (SFReply *)nil);

II this method does the doodling
virtual void DoContent(EventRecord *theEvent);

II take care of our document-specific menus
virtual void AdjustDocMenus(void);

Page 2

virtual Boolean DoDocMenuCommand(short menuID, short menuitem);

protected:

II draw the picture during updates
virtual void Draw(Rect *r);

public:

II make this do nothing so that grow box isn't drawn
virtual void DoDrawGrowicon(void) {};

II This is the file type of the document
virtual OSType GetDocType() {return 'SPCT';}

II file related methods
virtual Boolean ReadDocFile(short refNum);
virtual Boolean WriteDocFile(short refNum);
virtual Boolean CanSaveAs(void) {return true;}

II override these methods to fiddle with pen menu
II so that it is enabled when a scribble doc is active
II and disabled when a scribble doc is disabled or close
virtual void Activate(void);
virtual void Deactivate(void);
virtual Boolean DoClose(void);

protected:

372

II new method to actually enable and disable pen menu
virtual void TogglePenMenu(Boolean enable);

II new methods related to pen menu
void SetPenSize(short p) {fPenSize = p;}

Page 3 Scribble.cp

} ;

void SetPenPat(penPat p) {fPattern = p;}
short GetPenSize(void) {return fPenSize;}
penPat GetPenPat(void) {return fPattern;}

class TScribbleApp public TApp{

protected:

} ;

II make our kind of document
virtual TDoc * MakeDoc(SFReply *reply= (SFReply *)nil);

II yes, we can open old documents
virtual Boolean CanOpen(void) {return true;}

II file info for SFGetFile and CreateFile
virtual OSType GetCreator(void){return 'SCBL';}
virtual int GetNumFileTypes(void) {return l;};
virtual SFTypeList GetFileTypesList(void);

lll
II
II Globals
II
lll

SFTypeList gtheTypes = {'SPCT'};

lll
II
II main
II
lll
void main(void)
{

TScribbleApp theApp;

II initialize the application
if(theApp.InitApp()) {

II open one window to start with
if(! theApp.OpenDocFromFinder())

theApp.OpenNewDoc();

373

Scribble.cp

II Start our main event loop running.
II This won't return until user quits
theApp.EventLoop();

//now clean up
theApp.CleanUp();

Page 4

//////l/////////////////////l//////l//l//////////////////l//ll/l/I/////
II
II TScribbleApp::MakeDoc
II
////////l/////////////////l//l/!l/////////////////////////lll//I///////
TDoc * TScribbleApp::MakeDoc(SFReply *reply) {

return new TScribbleDoc(GetCreator(),reply);

}

//l/////l///////////////////l//l/////////////////////////////////ll////
II
II TScribbleApp::GetFileTypesList
II
///////////////l/l///////ll////////l///////////ll///////////ll///I/////
SFTypeList TScribbleApp::GetFileTypesList(void) {

return gtheTypes;

/l//////////l////////////////l////l//ll///l//////////l/ll//////////////
II
II TScribbleDoc: :DoDocMenuCommand
II
/////l////l/l//////////////////l///l//////////////l///I////////////////
Boolean TScribbleDoc::DoDocMenuCommand(short menuID, short menuitem) {

374

if(menuID == rPenMenu) {
switch (menuitem) {

case ilXl:
SetPenSize(l)
break;

case i2X2:
SetPenSize(2)
break;

case i3X3:
SetPenSize(3)
break;

case iBlack:
SetPenPat(patBlack)
break;

case iGray:
SetPenPat(patGray)

Page 5 Scribble.cp

break;
case iWhite:

SetPenPat(patWhite)
break;

default:
return false; II this should never happen

}
II tell the app that we handled this menu item
return true;

else{
II its not one of our menus, give the parent class a chance
return TDoc::DoDocMenuCommand(menuID,menuitem);

}
lll
II
II TScribbleDoc::AdjustDocMenus
II
lll/11111111111111111
void TScribbleDoc::AdjustDocMenus(void) {

II Do the pen menu
MenuHandle menu= GetMHandle(rPenMenu);

Checkitem(menu,ilXl,GetPenSize() l);
Checkitem(menu,i2X2,GetPenSize() 2);
Checkitem(menu,i3X3,GetPenSize() 3);
Checkitem(menu,iBlack,GetPenPat() == patBlack);
Checkitem(menu,iGray,GetPenPat() == patGray);
Checkitem(menu,iWhite,GetPenPat() == patWhite);

II now let the parent class have a shot at the menus
TDoc::AdjustDocMenus();

}
llllllllllllllllllllllllllllllllllll/lllllllllllllllllllllllll/11111111
II
II TScribbleDoc::TogglePenMenu
II
lll
void TScribbleDoc::TogglePenMenu(Boolean enable) {

MenuHandle menu= GetMHandle(rPenMenu);

SetMenuAbility(menu,kEveryitem,enable);
DrawMenuBar();

lll/111111111111111
II
II TScribbleDoc::Activate

375

Scribble.op Page 6

II
l////////////////l/llll//lllll/l/l/ll/////lll/llll/lll/ll/ll/lllll/llll
void TScribbleDoc::Activate(void) {

TDoc::Activate();
TogglePenMenu(true);

llllll/lllllllllllllllllll/l//l/ll/lll/lllllllllllllllllllllllllll/llll
II
II TScribbleDoc::Deactivate
II
///l//////l///l/l////l////////l/////////////l///l////l/I///////////////
void TScribbleDoc::Deactivate(void) {

TDoc::Deactivate();
TogglePenMenu(false);

}
///l///////////////l/l////ll////l////l///////l/////l//////l/l/l/I//////
II
II TScribbleDoc: :DoClose
II
///lll/l///////////l//////////ll///l////lllllllllll/lllll/lll!llll!l/!I
Boolean TScribbleDoc::DoClose(void) {

if(TDoc: :DoClose()) (
TogglePenMenu(false);
return true;

else
return false;

//////////l///////l///////////l/l//l///////////////////////l/l/l///I///
II
II TScribbleDoc::TScribbleDoc
II
///l///l////l///////////////l///////////////l/l//////l//ll/////////////
TScribbleDoc::TScribbleDoc(OSType theCreator,SFReply *reply):

TDoc(theCreator,reply) {

fPenSize = 2;
£Pattern = patGray;
fPic = nil;

}
l//l////////////////////////ll//////////l///////////I//////////////////
II
II TScribbleDoc::Draw
II
////////////l///l/////////////l/////////////ll///////I/////////////////

376

Paqe 7 Scribble.cp

void TScribbleDoc::Draw(Rect * l*r*I) (

if(fPic != nil)
DrawPicture(fPic,&((**fPic) .picFrame));

}

lll
II
II TScribbleDoc::DoContent
II
lll
void TScribbleDoc::DoContent(EventRecord* theEvent) {

Point newPoint;

if (fDocWindow) {
SetPort(fDocWindow);
PenSize(fPenSize,fPenSize);

if(fPattern == patBlack)
PenPat(qd.black);

if(fPattern == patGray)
PenPat (qd.gray);

if(fPattern == patWhite)
PenPat(qd.white);

GlobalToLocal(&theEvent->where);
MoveTo(theEvent->where.h, theEvent->where.v);
do{

GetMouse(&newPoint);
LineTo(newPoint.h, newPoint.v);

}while(StillDown());

fNeedtoSave true;

II now take a snap shot of window
if(fPic != nil)

KillPicture(fPic);
fPic = OpenPicture(&fDocWindow->portRect);
CopyBits(&fDocWindow->portBits,

&fDocWindow->portBits,
&fDocWindow->portRect,
&fDocWindow->portRect,
srcCopy,
(RgnHandle)nil);

ClosePicture();

lll

377

Scribble.cp Page 8

II
II TScribbleDoc::ReadDocFile
II
lll
Boolean TScribbleDoc::ReadDocFile(short refNum) {
canst short kHAdjust 50;
canst short kWAdjust = 40;

if(fDocWindow) {

}

long !en;
OSErr err= GetEOF(refNum,&len);
Handle thePic = NewHandle(len);
if(thePic == nil) {

ErrorAlert(rDocErrorStrings,sNoMem);
return false;

HLock(thePic);
err= SetFPos(refNum,fsFromStart,0);
err= FSRead(refNum,&len, (Ptr)*thePic);
HUnlock(thePic);
if(err == noErr) {

II now make the window the size of the picture
Rect r = (**{(PicHandle)thePic)) .picFrame;
short height = r.bottom - r.top;
short width = r.right - r.left;
r = qd.screenBits.bounds;

height= min(height ,r.bottom - r.top - kHAdjust);
width= min(width, r.right - r.left - kWAdjust);
SizeWindow(fDocWindow, width, height, true);

II set the member to reference Picture
fPic = (PicHandle)thePic;
return true;

else {
DisposHandle(thePic);
return false;

II if there ain't no window ...
return false;

lll
II
II TScribbleDoc::WriteDocFile
II
lll
Boolean TScribbleDoc::WriteDocFile(short refNum) {

378

Paqe 9

if (fDocWindow) {

}

if(fPic != nil) {
long len = GetHandleSize((Handle)fPic);
HLock((Handle)fPic);
OSErr err= SetFPos(refNum,fsFromStart,0);
err = FSWrite (refNum, &len, (Ptr) *fPic);
HUnlock((Handle)fPic);
if(err == noErr)

return true;
else

return false;

II if there ain't no window ...
return false;

Scribble.cp

379

Scribble.make Page 1

#--
Make file for the Scribble program using the App and Doc objects
#To use it, use the MPW "Build ... " command from the build menu,
specifying "Scribble" and the target file

#© 1990 Dan Weston, All rights reserved

tell cplus and rez where to find included files for TApp and TDoc
AppObjectDir = : :App-Doc:

use SADE symbol generation, -sym off will result in faster builds
SymOpts = -sym on

options for C++, where to look for include files
CPlusOptions = {SymOpts} -i "{AppObjectDir}"

options for the linker

LinkOptions = -msg nodup {SymOpts}

options for rez, where to look for include and #include files
RezOptions = -s "{AppObjectDir}" -i "{AppObjectDir}"

We need to change this rule to include CPlusOptions
.cp.o f .cp

CPlus {default}.cp -o {default} .cp.o {CPlusOptions}

. cp. o f . h
CPlus {default}.cp -o {default}.cp.o {CPlusOptions}

Objects = o
"{AppObjectDir}"TApp.cp.o o
"{AppObjectDir}"TDoc.cp.o o
Scribble.cp.o

ResourceFiles = o
"{AppObjectDir}"TApp.rsrc o
"{AppObjectDir}"TDoc.rsrc o
Scribble.rsrc

dependency rules for TDoc and TApp
"{AppObjectDir}"TDoc.cp.o f "{AppObjectDir}"TDoc.cp o

"{AppObjectDir}"TDoc.h o
"{AppObjectDir}"AppDocMenus.h

"{AppObjectDir}"TApp.cp.o f "{AppObjectDir}"TApp.cp o
"{AppObjectDir}"TApp.h o
"{AppObjectDir}"TDoc.h o
"{AppObjectDir}"AppDocMenus.h

dependency rules for Scribble

380

Page 2

Scribble.cp.o f Scribble.cp d
"{AppObjectDir}"TApp.h d
"{AppObjectDir}"TDoc.h d
Scribble.make

Scribble ff {Objects} Scribble.make
Link -o {Targ} {LinkOptions} d

{Objects} d
"{CLibraries}"CPlusLib.o d
"{CLibraries}"CRuntime.o d
"{CLibraries}"StdCLib.o d
"{CLibraries}"Cinterface.o d
"{Libraries}"Interface.o

SetFile {Targ} -t APPL -c SCBL -a B

Scribble ff Scribble.rd
{ResourceFiles}

Rez -append -o {Targ} {RezOptions} Scribble.r

Scribble.make

381

Scribble. r Page 1

/* Scribble.r rez source for the scribble application */

include "TApp.rsrc";
include "TDoc.rsrc";
include "Scribble.rsrc";

382

Page 1 Scribble.rsrc.r

/* Scribble.rsrc.r

*
* rez source for Scribble resources

*
* © 1990 Dan Weston All rights reserved

*
* Build it with the following rez command

*
* rez Scribble.rsrc.r -o Scribble.rsrc -t rsrc -c RSED

*
*/

linclude "types.r"

resource 'MENU' (128, preload)
128,

} ;

textMenuProc,
Ox7FFFFFFD,
enabled,
apple,
{ /* array: 2 elements */

/* [1] */
"About Scribble ... ", noicon, noKey, noMark, plain,
/* [2] */
"-", noicon, noKey, noMark, plain

resource 'MENU' (131)
131,
textMenuProc,
allEnabled,
enabled,

} ;

"Pen",
/* array: 7 elements */
/* [1] */
"1 x 1", no Icon, noKey, check, plain,
/* [2] */
"2 x 2", no Icon, noKey, noMark, plain,
/* [3] */
"3 x 3"' no Icon, noKey, noMark, plain,
/* [4] */
"-", noicon, noKey, noMark, plain,
/* [5] */
"Black", noicon, noKey, check, plain,
/* [6] */
"Gray", noicon, noKey, noMark, plain,
/* [7] */
"White", noicon, noKey, noMark, plain

383

Scribble.rsrc.r

resource 'DITL' (128, purgeable) {

} ;

{ /* array DITLarray: 5 elements */
/* [l] */
{65, 199, 85, 279},
Button {

},

enabled,
"OK"

/* [2] */
{8, 8, 24, 304},
StaticText {

disabled,
"Scribble: a very simple application."

},

/* [3] */
{ 44, 199, 59, 245},
StaticText {

disabled,

},

/* [4] */
{ 42, 34, 58, 162},
StaticText {

},

disabled,
"version 1.0"

/* [5] */
{65, 34, 89, 165},
StaticText {

disabled,
"February 15, 1990"

resource 'ALRT' (128, purgeable)
{68, 76, 172, 376},

I ;

384

128,
{ /* array: 4 elements */

/* [lJ */
OK, visible, silent,
/* [2] */
OK, visible, silent,
I* [3J */
OK, visible, silent,
/* [4] */
OK, visible, silent

Paqe 2

Page 3

resource 'BNDL'
I SCBL I'
0,

(128) {

{ /* array TypeArray: 2 elements */
/* [l] */
I ICN# I'
{ /* array IDArray:

/* [1] */
0, 128,
/* [2] */
1, 129

} '
/* [2] */
I FREF I'
{ /* array IDArray:

/* [1] */
O, 128,
/* [2] */
1, 129

} ;

resource 'FREF' (129) {
I SPCT I'
1,

} ;

resource 'FREF' (128) {
I APPL I'
0,

} ;

resource 'ICN#' (12 9' pre load)

2 elements

2 elements

{

I* array: 2 elements */
/* [1] *I
$"0FFF FEOO 0800 0300 0812 6280
$"0889 4A20 08CB 4Al0 OASF FBF8
$"0920 0708 09CO 0228 OSCO 03E8
$"OBOE 71F8 088E 7088 088E F088
$"0880 C088 0880 4088 0843 C088
$"0820 1108 082C 7108 0823 C308
$"0818 1C08 080F FOOS 0800 0008
$"0800 0008 0800 0008 0800 0008
/* [2] */
$"0FFF FEOO OFFF FFOO OFFF FF80
$"0FFF FFEO OFFF FFFO OFFF FFF8
$"0FFF FFF8 OFFF FFF8 OFFF FFF8
$"0FFF FFF8 OFFF FFF8 OFFF FFF8

*/

*/

089B
OB70
occo
0880
0840
0810
0800
OFFF

OFFF
OFFF
OFFF
OFFF

Scribble.rsrc.r

4E40"
1CE8"
0118"
8088"
0108"
0608"
0008"
FFF8",

FFCO"
FFF8"
FFF8"
FFF8"

385

Scribble.rsrc.r Paqe 4

$"0FFF FFF8 OFFF FFF8 OFFF FFF8 OFFF FFF8"
$"0FFF FFF8 OFFF FFF8 OFFF FFF8 OFFF FFF8"
$"0FFF FFF8 OFFF FFF8 OFFF FFF8 OFFF FFF8"
$"0FFF FFF8 OFFF FFF8 OFFF FFF8 OFFF FFF8"

} ;

resource 'ICN#' (128, pre load) {

I* array: 2 elements */
I* [l] */
$"0001 0000 0002 8000 0004 4000 0008 2000"
$"0010 1000 0025 4800 0055 5400 0097 0200"
$"015C 7500 0270 3480 0540 1C40 09CO 0820"
$"1680 OElO 2390 C808 4110 FF04 8090 C082"
$"4086 8041 2085 3022 1087 C814 087E 7F8F"
$"044A 3007 0227 0007 0111 8007 008F E007"
$"0040 1FE7 0020 021F 0010 0407 0008 0800"
$"0004 1000 0002 2000 0001 4000 0000 80",
/* [2] */
$"0001 0000 0003 8000 0007 cooo OOOF EOOO"
$"001F FOOO 003F F800 007F FCOO DOFF FEOO"
$"01FF FFOO 03FF FF80 07FF FFCO OFFF FFEO"
$"1FFF FFFO 3FFF FFF8 7FFF FFFC FFFF FFFE"
$"7FFF FFFF 3FFF FFFE lFFF FFFC OFFF FFFF"
$"07FF FFFF 03FF FFFF OlFF FFFF OQFF FFFF"
$"007F FFFF 003F FElF OOlF FC07 OOOF F800"
$"0007 FOOD 0003 EOOO 0001 cooo 0000 80"

} ;

resource 'MBAR' (128) {

/* array MenuArray: 4 elements */
I* [l] *I
128,
/* [2] *I
129,
I* [3] *I
130,
/* [4] */
131

} ;

data 'SCBL' (0) {
$"1F53 6372 6962 626C 652C 4665 6220 3135"
I* . Scribble, Feb 15 */
$"2C31 3939 3020 4461 6E20 5765 7374 6F6E"
/* ,1990 Dan Weston */

I ;

386

Page 1

directory 'hd:mpw:C++:Scribble:'

sourcepath I ::App/Doc:', a
' : : Scribble: '

Scribble.sade

target "Scribble" # assumes symbol file is 'application name.SYM'

open source ('Scribble.cp')

387

TModelessDoc.h Page 1

lll
II
II This is the generic modeless dialog document object
II
II © 1990 Dan Weston, All Rights Reserved
II
lll

#ifndef TModelessDoc Defs
#define TModelessDoc Defs

II Include necessary interface files
#include <Types.h>
#include <Quickdraw.h>
#include <Windows.h>
#include <Packages.h>
#include <TDoc.h>

lll
II
II constants
II
lll

const short rGenericDialog = 1000;

lll
II
II class declarations
II
lll

class TModelessDoc : public TDoc {

public:

388

II SFinfo will be non-nil when
TModelessDoc(OSType theCreator

SFReply * SFinfo =
TDoc (theCreator, SFinfo) {};

opening an existing document
= 1????•

• • • • I

(SFReply *)nil):

II virtual destructor so that derived destructors will be called
virtual -TModelessDoc();

II called by TApp when making a document,
virtual Boolean MakeWindow(Boolean colorWindow);

virtual short GetWinID(void);

Paqe 2

II Event actions
virtual void Doidle(void);

virtual void DoActivate(Eve~tRecord* theEvent)
{DoDialogEvent(theEvent);}

virtual void DoTheUpdate(EventRecord* theEvent)
{DoDialogEvent(theEvent);}

virtual void DoContent(EventRecord* theEvent)
{DoDialogEvent(theEvent);}

virtual void DoKeyDown(EventRecord* theEvent)
{DoDialogEvent(theEvent);}

II disable grow actions
virtual void DoGrow(EventRecord* theEvent) {}
virtual void DoDrawGrowicon(void)

{}

protected:
virtual void DoDialogEvent(EventRecord* theEvent);

TModelessDoc.h

virtual void DoitemHit(DialogPtr theDialog,short theitem) {}

} ;

#endif TModelessDoc Def s

389

TModelessDoc.cp Page 1

lll
II
II This is the generic modeless dialog document object
II
II © 1990 Dan Weston, All Rights Reserved
II
lll

II Mac Includes
#include <Types.h>
#include <Windows.h>
#include <OSUtils.h>
#include <Files.h>
#include <Errors.h>

#include "TModelessDoc.h"

II define a segment for the Modeless Doc code
#pragma segment ModelessSeg

lll
II
II TModelessDoc::GetWinID
II
lll
short TModelessDoc::GetWinID(void) {

return rGenericDialog;

lll
II
II TModelessDoc::MakeWindow
II
lll
Boolean TModelessDoc::MakeWindow(Boolean l*colorWindow*I){

fDocWindow = (WindowPtr)GetNewDialog(GetWinID(),nil, (WindowPtr)-1);

return (fDocWindow !=nil);

llllllllllllll/llllllllllllll!llllllllllllll/l//llll/l/llllllll!lll//ll
II
II TModelessDoc::-TModelessDoc
II
llllllllllllllllllllllllllllllllllllll/1111/lllllllllllllllllllllllllll
TModelessDoc::-TModelessDoc(void) {

390

if(fDocWindow) {
DisposDialog((DialogPtr)fDocWindow);

Page 2 TModelessDoc.cp

fDocWindow = nil;

}
lll
II
II TModelessDoc::DoDialogEvent
II
lll
void TModelessDoc::DoDialogEvent(EventRecord* theEvent) {

short itemHit;
DialogPtr theDialog;

if (IsDialogEvent(theEvent)) {
if(DialogSelect(theEvent,&theDialog,&itemHit))

Do!temHit(theDialog,itemHit);

lll
II
II TModelessDoc::Do!dle
II
lll
void TModelessDoc::Do!dle(void) {

II this is necessary so that the insertion point
II will blink in edit text dialog items
EventRecord theEvent;
theEvent.what = nullEvent;

DoDialogEvent(&theEvent);

391

ModelessApp.cp Page 1

lll
II
II
II This file: ModelessApp.cp C++ Source
II
II
II
II

This is the main application object a simple
application program using TModelessDoc

II © 1990 Dan Weston, All Rights Reserved
II
lll
#include "TApp.h"
#include "TDoc.h"
#include "TModelessDoc.h"

lll
II
II constants
II
lll

const short iOK = 1;
const short iUseritem = 2;

ll!llllllllllllllllllllll
II
II class declarations
II
lll!llllllllllllllllllll/lllllllllll/llll/llllllll/lllllll!llllllllllll

class TModelessApp : public TApp{

virtual TDoc * MakeDoc(SFReply * reply (SFReply *) nil);

} ;

class TSampDlg : public TModelessDoc{

public:
TSampDlg(OSType creator,SFReply * theReply);

virtual Boolean InitDoc(void);

protected:
virtual void DoitemHit(DialogPtr theDialog,short theitem);

} ;

lllllll/llllllll/l/ll/l/llllllllllllllllllllllllllllll!llllllllllllllll
II
II main
II

392

Paqe 2 ModelessApp.cp

/ll/////l/////////////////////l///////////////////////////////////l///I
void main(void)
(

II create an instance of TModelessApp
TModelessApp theApp ;

II initialize the application
if(theApp.InitApp()) (

II open one window to start with,
II unless we got files from the Finder
if(! theApp.OpenDocFromFinder())

theApp.OpenNewDoc();

II run the event loop until user quits
theApp.EventLoop();

//now clean up
theApp.CleanUp();

/ll////ll//ll////////ll/l///ll/lll///////l//////lllll//ll/l//////I/////
II
II TModelessApp::MakeDoc
II
//l//l//////////////////////////////l////////////////l/ll/////////l//I/
TDoc * TModelessApp::MakeDoc(SFReply *reply) (

return new TSarnpDlg(GetCreator(),reply);

//l//ll///////////////////l/l///////l/////////////////////l/////////I//
II
II TSarnpDlg: :TSarnpDlg
II
//////////////////////////////////ll//////////l///////////////I////////
TSarnpDlg::TSarnpDlg(OSType creator,SFReply * theReply):

TModelessDoc(creator,theReply) (

////////////////////////////////ll//l//l/l/l//////l////l//l//////I/////
II
II TSarnpDlg::InitDoc
II
///////////////////////ll///l//////ll////////////////l////////////l//ll
Boolean TSarnpDlg::InitDoc(void) (

II install user item proc

393

ModelessApp.cp

void pascal UseritemProc(WindowPtr theWindow,short theitem);

Rect theRect;
short theType;
Handle theitem;

if(TModelessDoc::InitDoc()) {

else

GetDitem((DialogPtr)fDocWindow,
iUseritem,
&theType,
&the Item,
&theRect);

SetDitem((DialogPtr)fDocWindow,
iUseritem,
theType,
(Handle)UseritemProc,
&theRect);

return true;

return false;

Page 3

ll,'
II
II TSampDlg::DoitemHit
II
lll
void TSampDlg::DoitemHit(DialogPtr l*theDialog*l,short theitem) {

if(theitem == iOK)
SysBeep(l);

lll
II
II UseritemProc
II
llllllllllll////ll///l//lllllllllllllll/llllll/llll/l/ll/llll/l/l/l//ll
void pascal UseritemProc(WindowPtr theWindow, short theitem) {

394

Rect r;
short theType;
Handle theitemH;
short width;

GetDitem((DialogPtr)theWindow,

Page 4 ModelessApp.cp

the Item,
&theType,
&theitemH,
&r);

width = (r.right - r.left)

EraseRect(&r);
FrameRect(&r);
for (short i = width I 2; i > 0; i 2) {

InsetRect(&r,2,2);
FrameRect(&r);

395

ModelessApp.make Paqe 1

#--
Make file for the simplest program using the ModelessDoc objects
#To use it, use the MPW "Build ... " command from the build menu,
specifying "ModelessApp" and the target file

#© 1990 Dan Weston, All rights reserved

tell cplus and rez where to find included files for TApp,TDoc,
and TModelessDoc
AppObjectDir = ::App-Doc:
ModelessObjDir = ::ModelessDoc:

use SADE symbol generation, -sym off will result in faster builds
SymOpts = -sym on

options for C++, where to look for include files
CPlusOptions = {SymOpts} -i "{AppObjectDir}" -i "{ModelessObjDir}"

options for the linker

LinkOptions = -msg nodup {SymOpts}

options for rez, where to look for include and #include files
RezOptions = -s "{AppObjectDir}" -i "{AppObjectDir}"

We need to change this rule to include CPlusOptions
.cp.o f .cp

CPlus {default}.cp -o {default}.cp.o {CPlusOptions}

Objects = a
"{AppObjectDir}"TApp.cp.o a
"{AppObjectDir}"TDoc.cp.o d
"{ModelessObjDir}"TModelessDoc.cp.o a
ModelessApp.cp.o

ResourceFiles = d
"{AppObjectDir}"TApp.rsrc d
"{AppObjectDir}"TDoc.rsrc a
ModelessApp.rsrc

dependency rules for TDoc and TApp
"{AppObjectDir}"TDoc.cp.o f "{AppObjectDir}"TDoc.cp d

"{AppObjectDir}"TDoc.h a
"{AppObjectDir}"AppDocMenus.h

"{AppObjectDir}"TApp.cp.o f "{AppObjectDir}"TApp.cp a
"{AppObjectDir}"TApp.h a
"{AppObjectDir}"TDoc.h a
"{AppObjectDir}"AppDocMenus.h

dependency rules for TModelessDoc

396

Paqe 2

"{ModelessObjDir}"TModelessDoc.cp.o f a
"{ModelessObjDir}"TModelessDoc.cp a
"{ModelessObjDir}"TModelessDoc.h a
"{AppObjectDir}"TDoc.h

dependency rules for ModelessApp
ModelessApp.cp.o f ModelessApp.cp a

"{AppObjectDir}"TApp.h a
"{AppObjectDir}"TDoc.h a
"{ModelessObjDir}"TModelessDoc.h a
ModelessApp.make

ModelessApp ff {Objects} ModelessApp.make
Link -o {Targ} {LinkOptions} a

{Objects} a
"{CLibraries}"CPlusLib.o a
"{CLibraries}"CRuntime.o a
"{CLibraries}"StdCLib.o a
"{CLibraries}"Cinterface.o a
"{Libraries}"Interface.o

SetFile {Targ} -t APPL -c '????' -a B

ModelessApp ff ModelessApp.r a
{ResourceFiles}

Rez -append -o {Targ} {RezOptions} ModelessApp.r

ModelessApp.make

397

ModelessApp.r

II ModelessApp.r
II gather the resources for simple program
II that uses TModelessDoc's

include "TApp.rsrc";
include "TDoc.rsrc";
include "ModelessApp.rsrc";

398

Paqe 1

Page 1

/* modelessapp.rsrc.r
*
* rez source for modelessapp resources
*
* © 1990 Dan Weston All rights reserved
*
* Build it with the following rez command
*

ModelessApp.rsrc.r

* rez modelessapp.rsrc.r -o modelessapp.rsrc -t rsrc -c RSED
*
*/

#include "types.r"

resource 'DITL' (1000)

} ;

/* array DITLarray: 2 elements */
/* [l] */
(99, 194, 119, 254),
Button {

} '

enabled,
"OK"

/* [2] */
(11, 33, 135, 177),
Useritem {

enabled

resource 'DLOG' (1000) {
(40, 40, 190, 324),
documentProc,
invisible,
goAway,
OxO,
1000,
"New Dialog"

} ;

399

ModelessApp.sade

directory 'hd:mpw:C++:ModelessApp:'

sourcepath '::App/Doc:•,a
• ::ModelessDoc: •,a
': :ModelessApp:'

Page 1

target 'ModelessApp' # assumes symbol file is 'application name.SYM'

open source ('ModelessApp.cp')

400

Page 1 TScrollDoc.h

lll
II
II This is the generic scrolling document object
II
II © 1990 Dan Weston, All Rights Reserved
II
lll

#ifndef TScrollDoc Defs
#define TScrollDoc Defs

II Include necessary interface files
#include <Types.h>
#include <Quickdraw.h>
#include <Windows.h>
#include <Packages.h>
#include <TDoc.h>

llll/llllll/lllll/l/llllllllll/lllllll/lllllllllllllll/1111111111111111
II
II class declarations
II
lll

class TScrollDoc :
protected:

ControlHandle
ControlHandle

public TDoc {

fHorizScrollBar;
fVertScrollBar

short
short

fVOffset;
fHOffset;

static TScrollDoc *fCurrScrollDoc;

public:
static TScrollDoc *GetCurrScrollDoc(void) {return fCurrScrollDoc;)

ControlHandle
ControlHandle

GetVScroll(void) {return fVertScrollBar;}
GetHScroll(void) {return fHorizScrollBar;}

II SFinfo will be non-nil when opening an existing document
TScrollDoc(OSType theCreator '????',

SFReply * SFinfo = (SFReply *)nil);

II virtual destructor so that derived destructors will be called
virtual -TScrollDoc() {}

virtual Boolean InitDoc(void);

II Event actions that are different from TDoc
II you probably won't need to override these

401

TScrollDoc.h Page 2

virtual void DoContent(EventRecord* theEvent);
virtual void DoTheUpdate(EventRecord *theEvent);
virtual void DoZoom(short partCode);
virtual void DoGrow(EventRecord *theEvent);

II override these for activation deactivation stuff
II be sure and call TScrollDoc::Activate or
II TScrollDoc::Deactivate in your override functions.
virtual void Activate(void);
virtual void Deactivate(void);

protected:
II new functions to support scrolling

II you probably won't need to override these
virtual void ScrollClick(EventRecord *theEvent);

virtual void DoThumbScroll(ControlHandle theControl,Point localPt);
virtual void DoPageScroll(ControlHandle theControl,short part);
virtual void DoButtonScroll(ControlHandle theControl,Point localPt);

virtual void SizeScrollBars(void);
virtual void AdjustScrollBars(void);
virtual void SetScrollBarValues(void);
virtual void SynchScrollBars(void);

public:

} ;

virtual void FocusOnWindow();
virtual void FocusOnContent();
virtual void Scroll(ControlHandle theControl,short change);
virtual void GetContentRect(Rect& r);

II routines you must override
virtual short GetVertSize(void) {return 0;}
virtual short GetHorizSize(void) {return 0;}
virtual short GetVertLineScrollAmount(void) {return 0;}
virtual short GetHorizLineScrollAmount(void) {return 0;}

II override these only if you don't want a page
II scroll to be one window full
virtual short GetVertPageScrollAmount(void);
virtual short GetHorizPageScrollAmount(void);

II routines you might override
virtual void ContentClick(EventRecord *theEvent) {}
virtual void ScrollContents(short dh,short dv);

#endif TScrollDoc Defs

402

Page 1 TScrollDoc.cp

lll
II
II This is the generic scrolling document object
II
II© 1990 Dan Weston, All Rights Reserved
II
lll

#include <Types.h>
#include <Windows.h>
#include <OSUtils.h>
#include <Files.h>
#include <Errors.h>
#include <Memory.h>
#include <SysEqu.h>

#include "TScrollDoc.h"

II define a segment for the ScrollDoc code
#pragma segment ScrollSeg

lll
II
II constants
II
lll

II how much of the screen to leave during page scroll
const short kScrollOverlap = 16;

II resource ID's for scroll bars
const rVScroll 128;
const rHScroll = 129;

lll
II
II static members are defined like globals
II
ll/llll//l/lllllllllll/ll
TScrollDoc *TScrollDoc::fCurrScrollDoc =nil;

lll
II
II TScrollDoc::TScrollDoc
II
lll
TScrollDoc::TScrollDoc(OSType theCreator,SFReply * SFinfo):

TDoc(theCreator,SFinfo) {

fHorizScrollBar = nil;
fVertScrollBar = nil;

403

TScrollDoc.cp

fVOffset 0;
fHOffset = 0;

Paqe 2

}

lll
II
II TScrollDoc::InitDoc
II
lll
Boolean TScrollDoc::InitDoc(void) {

if(! TDoc::InitDoc())
return false;

if(fDocWindow != nil) {
SetPort(fDocWindow);
fHorizScrollBar = GetNewControl(rHScroll,fDocWindow);
fVertScrollBar = GetNewControl(rVScroll,fDocWindow);
SizeScrollBars();
SynchScrollBars();

return ((fHorizScrollBar !=nil) && (fVertScrollBar !=nil));
}

lll
II
II TScrollDoc::SizeScrollBars
II
lll
void TScrollDoc::SizeScrollBars(void) {

404

if(fDocWindow !=nil) {
FocusOnWindow();
Rect r = fDocWindow->portRect;

if(fVertScrollBar != nil) {
HideControl(fVertScrollBar);
SizeControl(fVertScrollBar,

kScrollBarWidth,
(r.bottom - r.top - kScrollBarPos) + 2);

MoveControl(fVertScrollBar,
r.right - kScrollBarPos,
-1) ;

ShowControl(fVertScrollBar);
ValidRect(&(**fVertScrollBar) .contrlRect);

if(fHorizScrollBar != nil) {
HideControl(fHorizScrollBar);
SizeControl(fHorizScrollBar,

(r.right - r.left - kScrollBarPos) + 2,
kScrollBarWidth);

Page 3 TScrollDoc.cp

MoveControl(fHorizScrollBar,
-1,
r.bottom - r.top - kScrollBarPos);

ShowControl(fHorizScrollBar);
ValidRect(&(**fHorizScrollBar) .contrlRect);

}

////!////////////////////////I/I/I/II//////////////////////////////////
II
II TScrollDoc::AdjustScrollBars
II
////l////////////////////l///l//ll/ll//ll///l//l////////I//////////////
void TScrollDoc::AdjustScrollBars(void) {

II don't activate the scroll bars until
II the data extends beyond the window boundaries
II If currentCtlValue is greater than new ctlmax ,
II scroll image to bring it in line
Rect r ;
GetContentRect(r);
short dh,dv;
dh = dv = 0;
short currentValue;
short newMax;
II now ask the document how big its image is
II first for the vertical dimension
if(fVertScrollBar !=nil) {

currentValue = GetCtlValue(fVertScrollBar);
newMax = GetVertSize() - (r.bottom - r.top);
if(newMax < 0)

newMax = 0;
if(currentValue > newMax)

dv = currentValue - newMax;
SetCtlMax(fVertScrollBar,newMax);

if(fHorizScrollBar !=nil) {
currentValue = GetCtlValue(fHorizScrollBar);
newMax = GetHorizSize() - (r.right - r.left);
if(newMax < 0)

newMax = 0;
if(currentValue > newMax)

dh = currentValue - newMax;
SetCtlMax(fHorizScrollBar,newMax);

II adjust the position of the image if the window
II has gotten bigger than the image.
if(dh I dv){

405

TScrollDoc.cp Page 4

FocusOnContent();
II invalidate the whole content area
GetContentRect(r);
InvalRect(&r);

II shut the clip region down to zero
II so that the scrolling won't actually
II draw in the window, wait for update instead
RgnHandle oldClip = NewRgn();
GetClip(oldClip);
SetRect(&r,0,0,0,0);
ClipRect(&r);
ScrollContents(dh,dv);
II now reset the clip region
SetClip(oldClip);
DisposeRgn(oldClip);

}
lll
II
II TScrollDoc::SynchScrollBars
II
lll
void TScrollDoc::SynchScrollBars(void) {

AdjustScrollBars();
SetScrollBarValues();

}
lll
II
II TScrollDoc::SetScrollBarValues
II
lll
void TScrollDoc: :SetScrollBarValues(void) {

FocusOnWindow();
if(fHorizScrollBar != nil)

SetCtlValue(fHorizScrollBar,fHOffset);
if(fVertScrollBar !=nil)

SetCtlValue(fVertScrollBar,fVOffset);
}
ll/l//////l//lllll///llll/I
II
II TScrollDoc::FocusOnWindow
II
llllllllllllllllllllllllll/llllllllll!lllllllllll/ll/llllllllllllllllll
void TScrollDoc::FocusOnWindow() {

406

SetPort(fDocWindow);
SetOrigin(0,0);

Page 5 TScrollDoc.cp

Rect r = fDocWindow->portRect;
ClipRect(&r);

l
lll
II
II TScrollDoc::FocusOnContent
II
lll
void TScrollDoc::FocusOnContent() {

SetPort(fDocWindow);
SetOrigin(fHOffset,fVOffset);
Rect r;
GetContentRect(r);
ClipRect(&r);

l
lll
II
II TScrollDoc::GetVertPageScrollAmount
II
lll/1111111
short TScrollDoc::GetVertPageScrollAmount(void) {

Rect r;
GetContentRect(r);
return r.bottom - r.top - kScrollOverlap;

l
lll/1111111
II
II TScrollDoc::GetHorizPageScrollAmount
II
lll/1111111
short TScrollDoc::GetHorizPageScrollAmount(void) {

Rect r;
GetContentRect(r);
return r.right - r.left - kScrollOverlap;

l
lll
II
II TScrollDoc::GetContentRect
II
lll
void TScrollDoc::GetContentRect(Rect& r) {

II how big is the content area of the window, discounting the
II scroll bars
r = fDocWindow->portRect;
if(fVertScrollBar != nil)

407

TScrollDoc.cp

r.right -= kScrollBarPos;
if(fHorizScrollBar !=nil)

r.bottom -= kScrollBarPos;

Paqe 6

}

lll
II
II TScrollDoc::ScrollClick
II
lll
void TScrollDoc::ScrollClick(EventRecord *theEvent) {

ControlHandle whichControl;
short part;
FocusOnWindow();
if(part = FindControl(theEvent->where,fDocWindow,&whichControl)) {

switch (part) {
case inThumb:

DoThumbScroll(whichControl,theEvent->where);
break;

case inUpButton:
case inDownButton:

DoButtonScroll(whichControl,theEvent->where);
break;

case inPageUp:
case inPageDown:

DoPageScroll(whichControl,part);
break;

}

lll
II
II TScrollDoc::DoButtonScroll
II
lll
void TScrollDoc::DoButtonScroll(ControlHandle theControl,Point localPt) {

II declare the action procedure
pascal void ActionProc(ControlHandle theControl,short partCode);

short result= TrackControl(theControl,
localPt,
(ProcPtr)ActionProc);

}

lll
II

408

Page 7 TScrollDoc.cp

II TScrollDoc::DoPageScroll
II
lll
void TScrollDoc::DoPageScroll(ControlHandle theControl,short part) {

short scrollAmount;
Point thePt;
short currentPart;

if((theControl == fVertScrollBar))
scrollAmount GetVertPageScrollAmount();

else
scrollAmount GetHorizPageScrollAmount();

II repeat as long as user holds down mouse button
do {

GetMouse(&thePt);
currentPart = TestControl(theControl,thePt);
if(currentPart ==part) {

if(currentPart == inPageUp)
Scroll(theControl,-scrollAmount);

if(currentPart == inPageDown)
Scroll(theControl,scrollAmount);

}
}while(Button());

}
ll/1111111111111111
II
II TScrollDoc::Scroll
II
lll
void TScrollDoc::Scroll(ControlHandle theControl,short change) (

II this routine changes the value of the scroll bar
II and scrolls the contents,
II it can be used for arbitrary scrolling,
II either from scroll bar action procs
II or while dragging mouse outside window

II save current clip region
RgnHandle oldClip = NewRgn();
GetClip(oldClip);

short diff = 0;
short oldValue GetCtlValue(theControl);
short newValue = oldValue + change;

II check for endpoint
if (change < 0) (

short minValue = GetCtlMin(theControl);
if(newValue < minValue)

409

TScrollDoc.cp

}

newValue minValue;
else {

short maxValue = GetCtlMax(theControl);
II figure the new value and check for endpoint
if(newValue > maxValue)

newValue = maxValue;

diff oldValue - newValue;

II do the scrolling and set the new scroll bar values
FocusOnContent();
if(theControl == fHorizScrollBar)

ScrollContents(diff,0);
if(theControl == fVertScrollBar)

ScrollContents(O,diff);

FocusOnWindow();
SetScrollBarValues();

II restore old clip region
SetClip(oldClip);
DisposeRgn(oldClip);

Paqe 8

}
l///I////////////////
II
II TScrollDoc::DoThumbScroll
II
lll/lll/l/llll/llllll//lll/////////l/llllll///lllll/l//l/l/l/lllllll///
void TScrollDoc: :DoThumbScroll(ControlHandle theControl,Point localPt) {

short oldValue = GetCtlValue(theControl);
short trackResult = TrackControl(theControl,localPt,nil);
if(trackResult != 0) {

short newValue = GetCtlValue(theControl);
short diff = oldValue - newValue;
FocusOnContent();
if(theControl == fHorizScrollBar)

ScrollContents(diff,0);
if(theControl == fVertScrollBar)

ScrollContents(O,diff);
FocusOnWindow();

}

/////ll
II
II ActionProc
II
lll
pascal void ActionProc(ControlHandle theControl,short partCode) {

410

Page 9 TScrollDoc.cp

II use static member function to get static member
TScrollDoc * theCurrScrollDoc = TScrollDoc::GetCurrScrollDoc();

short scrollAmount = 0;
if(theControl == theCurrScrollDoc->GetVScroll())

scrollAmount = theCurrScrollDoc->GetVertLineScrollAmount();
if(theControl == theCurrScrollDoc->GetHScroll())

scrollAmount = theCurrScrollDoc->GetHorizLineScrollAmount();

if(partCode == inUpButton)
theCurrScrollDoc->Scroll(theControl,-scrollAmount);

if(partCode == inDownButton)
theCurrScrollDoc->Scroll(theControl,scrollAmount);

}
lll
II
II TScrollDoc::ScrollContents
II
lll
void TScrollDoc::ScrollContents(short dh,short dv) {

II determine the area to scroll
Rect r;
GetContentRect(r);

II now scroll the image
RgnHandle updateRgn = NewRgn();
ScrollRect(&r,dh,dv,updateRgn);

II keep track of how far off the origin we are
fVOffset dv;
fHOffset -= dh;

II tell window to redraw uncovered content
InvalRgn(updateRgn);

II now force the update area to be drawn
DoTheUpdate((EventRecord *)nil);

II dispose of the region
DisposeRgn(updateRgn);

}
lll
II
II TScrollDoc::Activate
II
ll/llllllll/111/lllll
void TScrollDoc::Activate(void) {

FocusOnWindow();

41)

TScrollDoc.cp

if(fVertScrollBar !=nil)
ShowControl(fVertScrollBar);

if(fHorizScrollBar !=nil)
ShowControl(fHorizScrollBar);

II set up static member so that scroll action proc can access
II member functions
fCurrScrollDoc = this;

Page 10

}
lll
II
II TScrollDoc::Deactivate
II
lll
void TScrollDoc: :Deactivate(void) {

FocusOnWindow();
if(fVertScrollBar !=nil)

HideControl(fVertScrollBar);
if(fHorizScrollBar !=nil)

HideControl(fHorizScrollBar);

}
lll
II
II TScrollDoc::DoTheUpdate
II
lll
void TScrollDoc: :DoTheUpdate(EventRecord * l*theEvent*I) {

if(fDocWindow !=nil) {
FocusOnContent();
BeginUpdate(fDocWindow);
Rect r = (**(fDocWindow->visRgn)) .rgnBBox;
Draw(&r);
FocusOnWindow();
DrawControls(fDocWindow);
DoDrawGrowicon();
EndUpdate(fDocWindow);

}
lll
II
II TScrollDoc: :DoContent
II
lll
void TScrollDoc::DoContent(EventRecord* theEvent) {

FocusOnWindow();
GlobalToLocal(&theEvent->where);
Rect contents;

Page 11 TScrollDoc.cp

GetContentRect(contents);
if(PtinRect(theEvent->where,&contents)) {

FocusOnContent();
ContentClick(theEvent);

else
ScrollClick(theEvent);

}
lll
II
II TScrollDoc::DoZoom
II
lll
void TScrollDoc: :DoZoom(short partCode) {

FocusOnWindow();
II call the parent class
TDoc::DoZoom(partCode);

SizeScrollBars();
SynchScrollBars();

}
lll
II
II TScrollDoc::DoGrow
II
lll
void TScrollDoc::DoGrow(EventRecord* theEvent) {

FocusOnWindow();

II call the parent class
TDoc::DoGrow(theEvent);

SizeScrollBars();
SynchScrollBars();

413

TScrollDoc.rsrc.r

/* TScrollDoc.rsrc.r

*
* rez source for TScrollDoc resources

*
* © 1990 Dan Weston All rights reserved

*
* Build it with the following rez command

*
* rez TScrollDoc.rsrc.r -o TScrollDoc.rsrc -t rsrc -c RSED

*
*/

#include "types.r"

resource 'CNTL' (129)
(0, 0, 0, 0),
0,
visible,
0,
0,
scrollBarProc,
0,
""

} ;

resource 'CNTL' (128)
{ 0, 0, 0, 0},
0,
visible,
0,
0,
scrollBarProc,
0,

""
} ;

414

Paqe 1

Page 1 Pictview.cp

lll
II
II This file: PictView.cp C++ Source
II
II This is the main application object for the PictView program
II
II © 1990 Dan Weston, All Rights Reserved
II
lll

#include <Quickdraw.h>
#include <Windows.h>
#include <Memory.h>
#include <Files.h>
#include <Errors.h>
#include <Printing.h>

#include "TApp.h"
#include "TScrollDoc.h"

llllllllll/llll/llll/llllllllllllllllllllllllll/lllllllllllllllllllll/I
II
II class declarations
II
lll

const long kPictHeaderSize = 512;

class TPICTDoc : public TScrollDoc{

protected:

Handle
Handle
THPrint

public:

fPict;
fHeader;
fPrintRecord;

TPICTDoc(OSType theCreator '????',SFReply *reply (SFReply *)nil);

virtual -TPICTDoc();

virtual Boolean InitDoc(void);

protected:

II routines you must override
virtual short GetVertSize(void);
virtual short GetHorizSize(void);
virtual short GetVertLineScrollAmount(void) {return 16;}
virtual short GetHorizLineScrollAmount(void) {return 16;}

415

Pictview.cp

II draw the picture
void Draw(Rect *r);

public:

) ;

II This is the file type of the document
virtual OSType GetDocType() {return 'PICT';)

II this function reads in the file
virtual Boolean ReadDocFile(short refNum);

II disable the SaveAs menu
virtual Boolean CanSaveAs(void) {return false;)

virtual void DoPageSetup(void);
virtual void DoPrint(void);

virtual Boolean CanPrint(void) {return true;)
virtual Boolean CanPageSetup(void) {return true;)

class TPICTApp public TApp{

protected:

) ;

II make our kind of document
virtual TDoc * MakeDoc(SFReply *reply= (SFReply *)nil);

virtual Boolean CanOpen(void) {return true;)

II configure SFGetFile
virtual int GetNumFileTypes(void) {return l;)
virtual SFTypeList GetFileTypesList(void);

II disable the New menu
virtual Boolean CanNew(void) {return false;)

Paqe 2

lll
II
II Globals
II
ll/11

II list of file types for SFGetFile
SFTypeList gtheTypes = {'PICT');

l//lll/!ll/l//lllll//!ll/llllllll/ll/lll!l/l/l/ll////lll/ll/llllll////I
II

416

Page 3 Pictview.cp

II main
II
///////l////////////////////////////ll////////l//////l/////////I///////
void main(void)
{

TPICTApp theApp;

II initialize the application
if(theApp.InitApp()) {

II allow the user to open a PICT file first thing
if(! theApp.OpenDocFromFinder())

theApp.OpenOldDoc();

II Start our main event loop running.
II This won't return until user quits
theApp.EventLoop();

//now clean up
theApp.CleanUp();

///ll///////l///l/////////////////ll///////////////////////////////I///
II
II TPICTApp::MakeDoc
II
ll///ll/l/l///ll////////////lll/ll//llll/l/lll/lllllllllll//ll/////////
TDoc * TPICTApp::MakeDoc(SFReply *reply) {

return new TPICTDoc(GetCreator(),reply);

}
//ll/////////l/lllllllll/llll//l///ll//lll//////////ll//l/l/ll/////////
II
// TPICTApp::GetFileTypesList
II
//////////////////ll////////l/////ll//l/////l//l/l////////////ll///////
SFTypeList TPICTApp::GetFileTypesList(void) {

return gtheTypes;

///ll///l////////////////////l////l////l//////////////////l/I//////////
II
// TPICTDoc::TPICTDoc
II
///l/l////l///////ll////////ll////l/l//ll/////llllllll///////////////I/
TPICTDoc::TPICTDoc(OSType theCreator,SFReply *reply):

TScrollDoc(theCreator,reply) {

417

Pictview.cp

£Pict = nil;
£Header = nil;
fPrintRecord = nil;

Page 4

lll
II
II TPICTDoc::-TPICTDoc
II
lll
TPICTDoc::-TPICTDoc() {

}

if(fHeader l= nil) {
DisposHandle(fHeader);
£Header = nil;

if(fPict l= nil) {
KillPicture((PicHandle)fPict);
£Pict = nil;

if(fPrintRecord l= nil) {
DisposHandle((Handle)fPrintRecord);
fPrintRecord = nil;

,lll
II
II TPICTDoc::InitDoc
II
lll
Boolean TPICTDoc::InitDoc(void) {

if(TScrollDoc::InitDoc()) {
fPrintRecord = (THPrint)NewHandle(sizeof(TPrint));
if(fPrintRecord l= nil) {

PrOpen();
PrintDefault(fPrintRecord);
PrClose();
return true;

II ot if something went wrong
return false;

}
lll
II
II TPICTDoc::Draw
II
lll
void TPICTDoc::Draw(Rect *r) {

418

Page 5 Pictview.cp

if(fPict !=nil) {
EraseRect(r);
DrawPicture((PicHandle)fPict,

&((**((PicHandle)fPict)) .picFrame));

lll
II
II TPICTDoc::ReadDocFile
II
lll
Boolean TPICTDoc::ReadDocFile(short refNum) {

if (fDocWindow) {

long pictLength;
long headerLength = kPictHeaderSize;

OSErr err= GetEOF(refNum,&pictLength);
pictLength -= kPictHeaderSize;
Handle thePic = NewHandle(pictLength);
if(thePic == nil) {

ErrorAlert(rDocErrorStrings,sNoMem);
return false;

Handle theHeader = NewHandle(headerLength);
if(theHeader ==nil) {

ErrorAlert(rDocErrorStrings,sNoMem);
DisposHandle(thePic);
return false;

HLock(theHeader);
HLock(thePic);
err SetFPos(refNum,fsFromStart,0);
err= FSRead(refNum,&headerLength, (Ptr)*theHeader);
err= FSRead(refNum,&pictLength, (Ptr)*thePic);
HUnlock(thePic);
HUnlock(theHeader);

if(err == noErr) {
fPict = thePic;
fHeader = theHeader;
AdjustScrollBars();
return true;

else {
DisposHandle(thePic);
DisposHandle(theHeader);
return false;

419

Pictview.cp

}

II if there ain't no window ...
return false;

Paqe 6

lll
II
II TPICTDoc::GetVertSize
II
lll
short TPICTDoc::GetVertSize(void) {

Rect r ;
if (fPict) {

r = (**((PicHandle)fPict)) .picFrame;
return r.bottom - r.top;

}else
return O;

}

lll
II
II TPICTDoc: :GetHorizSize
II
lll
short TPICTDoc::GetHorizSize(void) {

Rect r ;
if(fPict){

r = (**((PicHandle)fPict)) .picFrame;
return r.right - r.left;

}else
return 0;

lll
II
II TPICTDoc::DoPageSetup
II
lll
void TPICTDoc: :DoPageSetup(void) {

420

II open the print manager
PrOpen ();

II put up the style dialog
(void)PrStlDialog(fPrintRecord);

Page 7 Pictview.cp

II and close the print manager
PrClose();

}

lll
II
II TPICTDoc::DoPrint
II
llllllllllllllllllllllll!lll!llll/llllllllll!l/llllllll/lllllllllll/lll
void TPICTDoc::DoPrint(void) {

TPPrPort printPort;

II open the print manager
PrOpen();

II if print record doesn't match printer,
II put up the style dialog
if(PrValidate(fPrintRecord))

II if user cancels style dialog, cancel all printing
if(! PrStlDialog(fPrintRecord)) {

PrClose();
return;

II Always put up the job dialog,
II check to see if user cancels
if(! PrJobDialog(fPrintRecord)) {

PrClose ();
return;

II now open the printing port
printPort PrOpenDoc(fPrintRecord,nil,nil);

II open a page
PrOpenPage(printPort,nil);

II draw the image
II use an empty rect to avoid unnecessary EraseRect
Re ct r;
SetRect(&r,0,0,0,0);
Draw(&r);

II close the page
PrClosePage(printPort);

II close the printing port
PrCloseDoc(printPort);

421

Pictview.cp

422

II call PrPicFile for spooled printing (imagewriter)
if((**fPrintRecord) .prJob.bJDocLoop != 0) {

TPrStatus status;
PrPicFile(fPrintRecord,nil,nil,nil,&status);

II close the print manager
PrClose();

Page 8

Page 1 Pictview.make

#--
Make file for a simple program using TScrollDoc
#To use it, use the MPW "Build ... " command from the build menu,
specifying "PictView" and the target file

#© 1990 Dan Weston, All rights reserved

tell cplus and rez where to find included files for TApp,TDoc,
and TScrollDoc
AppObjectDir ::App-Doc:
ScrollObjDir = ::TScrollDoc:

use SADE symbol generation, -sym off will result in faster builds
SymOpts = -sym on

options for C++, where to look for include files
CPlusOptions = {SymOpts} -i "{AppObjectDir}"a

-i "{ScrollObjDir)"

options for the linker

LinkOptions = -msg nodup {SymOpts}

options for rez, where to look for include and #include files
RezOptions = -s "{AppObjectDir}" -s "{ScrollObjDir}"a

-i "{AppObjectDir}" -i "{ScrollObjDir}"

We need to change this rule to include CPlusOptions
.cp.o f .cp

CPlus {default}.cp -o {default}.cp.o {CPlusOptions}

Objects = o
"{AppObjectDir}"TApp.cp.o a
"{AppObjectDir}"TDoc.cp.o o
"{ScrollObjDir}"TScrollDoc.cp.o a
PictView.cp.o

ResourceFiles = o
"{AppObjectDir}"TApp.rsrc a
"{AppObjectDir}"TDoc.rsrc a
"{ScrollObjDir}"TScrollDoc.rsrc o
PictView.rsrc

dependency rules for TDoc and TApp
"{AppObjectDir}"TDoc.cp.o f "{AppObjectDir}"TDoc.cp a

"{AppObjectDir}"TDoc.h o
"{AppObjectDir}"AppDocMenus.h

"{AppObjectDir}"TApp.cp.o f "{AppObjectDir}"TApp.cp a
"{AppObjectDir}"TApp.h o
"{AppObjectDir}"TDoc.h o

423

Pictview.make

"{AppObjectDir}"AppDocMenus.h

dependency rules for TScrollDoc
"{ScrollObjDir}"TScrollDoc.cp.o f a

"{ScrollObjDir}"TScrollDoc.cp a
"{ScrollObjDir}"TScrollDoc.h a
"{AppObjectDir}"TDoc.h

dependency rules for PictView
PictView.cp.o f PictView.cp a

"{AppObjectDir}"TApp.h a
"{AppObjectDir}"TDoc.h a
"{ScrollObjDir}"TScrollDoc.h a
PictView.make

PictView ff {Objects} PictView.make
Link -o {Targ} {LinkOptions} a

{Objects} a
"{CLibraries}"CPlusLib.o a
"{CLibraries}"CRuntime.o a
"{CLibraries}"StdCLib.o a
"{CLibraries}"Cinterface.o a
"{Libraries}"Interface.o

SetFile {Targ} -t APPL -c '????' -a B

PictView ff PictView.r a
{ResourceFiles}

Rez -append -o {Targ} {RezOptions} PictView.r

424

Page 2

Paqe 1 Pictview.r

/* PictView.r rez source for the PictView application */

include "TApp.rsrc" ;
include "TDoc.rsrc";
include "TScrollDoc.rsrc";
include "PictView.rsrc" ;

425

Pictview.rsrc.r

I* PictView.rsrc.r

*
* rez source for PictView resources

*
* © 1990 Dan Weston All rights reserved

*
* Build it with the following rez command

*
* rez PictView.rsrc.r -o PictView.rsrc -t rsrc -c RSED

*
*/

#include "types.r"

resource 'MENU' (128, preload)
128,

} ;

textMenuProc,
Ox7FFFFFFD,
enabled,
apple,
{ /* array: 2 elements */

/* [l] */
"About PictView ... ", noicon, noKey, noMark, plain,
/* [2] */
"-", noicon, noKey, noMark, plain

resource 'DITL' (128, purgeable)

426

/* array DITLarray: 5 elements */
/* [ll */
{76, 195, 96, 275),
Button {

} ,

enabled,
"OK"

/* [2] */
{9, 10, 48, 292),
StaticText {

},

disabled,
"PictView: a simple application to view
"PICT files."

/* [3] */
{ 55, 199, 70, 245},
StaticText {

disabled,

} ,

Page 1

Page 1 TTEDoc.cp

lll
II
II This is the generic text edit object
II
II © 1990 Dan Weston, All Rights Reserved
II
lll/lllllllllllllllllllllll

II Mac Includes
#include <Types.h>
#include <Windows.h>
#include <OSUtils .h>
#include <Files.h>
#include <Errors.h>
#include <Memory.h>
#include <SysEqu.h>
#include <ToolUtils.h>

#include "TTEDoc.h"

II define the segment for the TEDoc classs
#pragma segment TEDocSeg

lll
II
II constants
II
lll

const short kTEMargin = 4;
const short kMaxShort = 32767;

lll
II
II TTEDoc::TTEDoc
II
lll
TTEDoc: :TTEDoc(OSType theCreator,SFReply * SFinfo):

TScrollDoc(theCreator,SFinfo) {

fTEHandle = nil;

lll
II
II TTEDoc::InitDoc
II
lll
Boolean TTEDoc::InitDoc(void) {

431

TTEDoc.cp

Rect view,dest;
if(TScrollDoc::InitDoc()) {

SetPort(fDocWindow);
view = dest = fDocWindow->portRect;
dest.left += kTEMargin;
dest.top += kTEMargin;
dest.right = kMaxShort;
dest.bottom = kMaxShort;
fTEHandle = TENew(&dest,&view);
SetTERect();

TEAutoView(true,fTEHandle);

II install the click loop procedure
SetClikLoop(MyClickLoop,fTEHandle);

return (fTEHandle !=nil);

Page 2

lll
II
II TTEDoc::-TTEDoc
II
lll
TTEDoc::-TTEDoc(void) {

if(fTEHandle != nil) {
TEDispose(fTEHandle);
fTEHandle = nil;

lll
II
II TTEDoc::ScrollContents
II
lll
void TTEDoc::ScrollContents(short dh,short dv) {

if(fTEHandle != nil)
TEScroll(dh,dv,fTEHandle);

lll
II
II TTEDoc::SetScrollBarValues
II
llllllll///lll///l//l////////ll///l/l/////l//l/////l////////ll/l//lllll
void TTEDoc::SetScrollBarValues(void) {

432

Page 3 TTEDoc.cp

Rect visible = (**fTEHandle) .viewRect;
Rect dest = (**fTEHandle) .destRect;

short vPos = visible.top - dest.top;
short hPos =visible.left - dest.left;

FocusOnWindow();
SetCtlValue(fHorizScrollBar,hPos);
SetCtlValue(fVertScrollBar,vPos);

lll
II
II TTEDoc::GetContentRect
II
lll
void TTEDoc::GetContentRect(Rect& r) {

II ask the base class how big the rect is
TScrollDoc::GetContentRect(r);

II and now take away the TE margins
r.left += kTEMargin;
r.top += kTEMargin;

lll
II
II TTEDoc::SetTERect
II
lll
void TTEDoc::SetTERect(void) {

if(fTEHandle !=nil) {
II set up the view rect
Rect r;
GetContentRect(r);
(**fTEHandle) .viewRect = r;

}
lll
II
II TTEDoc::GetVertSize
II
lll
short TTEDoc::GetVertSize(void) {

return ((**fTEHandle) .nLines * (**fTEHandle) .lineHeight) ;

433

TTEDoc.cp Page 4

lll
II
II TTEDoc::GetHorizSize
II
lll
short TTEDoc: :GetHorizSize(void) {

return (**fTEHandle) .destRect.right - (**fTEHandle) .destRect.left;

}
lll
II
II TTEDoc::GetVertLineScrollArnount
II
lll
short TTEDoc::GetVertLineScrollArnount(void) {

if(fTEHandle != nil)
return (**fTEHandle) .lineHeight;

else
return 0;

}
lll
II
II TTEDoc::GetHorizLineScrollArnount
II
lll
short TTEDoc::GetHorizLineScrollArnount(void) {

if(fTEHandle !=nil)
return (**fTEHandle) .lineHeight;

else
return 0;

lll
II
II TTEDoc::AddText
II
lll
void TTEDoc: :AddText(Ptr text, long len) {

434

if(fTEHandle !=nil) {
TEinsert(text,len,fTEHandle);
fNeedtoSave = true;
TESelView(fTEHandle);

Paqe 5 TTEDoc.cp

SynchScrollBars();

llllllllllllllllllllllllllllllllllll!llllllllllllllllllllllllllllllllll
II
II TTEDoc::HaveSelection
II
lll
Boolean TTEDoc::HaveSelection(void} {

if(fTEHandle}
return ((**fTEHandle} .selStart != (**fTEHandle} .selEnd};

else
return false;

}

lll
II
I I TTEDoc: : DoCut
II
lll
Boolean TTEDoc::DoCut(Handle *theData,OSType *theType) {

Boolean result;
if (result= DoCopy(theData,theType))

DoClear(};

return result;
}

lll
II
II TTEDoc::DoCopy
II
lll
Boolean TTEDoc::DoCopy(Handle *theData,OSType *theType} {

if (fTEHandle) {
II put data on TEScrap
TECopy(fTEHandle);

II set theType
*theType = 'TEXT';

II do this in case we fail
*theData = nil;

II copy the handle to the data
Handle TEData = TEScrapHandle();
OSErr err= HandToHand(&TEData);
if(err != noErr)

435

TTEDoc.cp

return false;
*theData = TEData;

return true;

Page 6

}
lll
II
II TTEDoc::DoPaste
II
llllllllllllllllllllllllllllllllllll/llllllllllllllllllllllllllllllllll
void TTEDoc::DoPaste(Handle theData,OSType theType) {

if((fTEHandle) && (theType == 'TEXT')) {
II put data in TEScrap
long scrapLen = GetHandleSize(theData);
TESetScrapLen(scrapLen);

II set low memory TEScrap handle with our data handle
Handle * TEScrapHandle = (Handle *) TEScrpHandle;
*TEScrapHandle = theData;

II now go ahead and paste
TEPaste(fTEHandle);

fNeedtoSave = true;
SynchScrollBars();

lll
II
II TTEDoc::DoClear
II
lll
void TTEDoc::DoClear(void) {

if(fTEHandle) {
TEDelete(fTEHandle);
fNeedtoSave = true;
SynchScrollBars();

}
111111111111111/lll
II
II TTEDoc::DoSelectAll
II
lll
void TTEDoc::DoSelectAll(void) {

if(fTEHandle)

436

Page 7 TTEDoc.cp

TESetSelect(O,kMaxShort,fTEHandle);

/l/lll////l//l/l////////////////////l////ll////l///l//l///l//ll/I//////
II
II TTEDoc::Activate
II
//////////////////////l///ll///l/l////l///////////I////////////////////
void TTEDoc::Activate(void) {

TScrollDoc::Activate();
if(fTEHandle)

TEActivate(fTEHandle);

}
l//llllllllllllllllllll/l/l//////l/ll/////////l///ll/llll/llll//lll/ll/
II
II TTEDoc::Deactivate
II
////////////////ll!l!/l/l!l/ll//l/////l///////////l//ll////////////////
void TTEDoc::Deactivate(void) {

TScrollDoc::Deactivate();
if(fTEHandle)

TEDeactivate(fTEHandle);

/l////////l//////////////////////////I/////////////////////////////////
II
II TTEDoc: :Draw
II
///l//l//////l///////////////////////l////////////////I////////////////
void TTEDoc::Draw(Rect *r) {

if(fTEHandle) {
EraseRect(r);
TEUpdate(r,fTEHandle);

}
/l/l///////////////////////////////l/ll//////I/////////////////////////
II
II TTEDoc: :ContentClick
II
/////////////l/////////////////l/ll///l/////////////////////I//////////
void TTEDoc::ContentClick(EventRecord *theEvent) {

Boolean shiftKeyDown = ((theEvent->modifiers & shiftKey) != 0);
if(fTEHandle) {

II turn off auto scrolling, we do it ourselves for clicking
TEAutoView(false,fTEHandle);

437

TTEDoc.cp

TEClick(theEvent->where,shiftKeyDown,fTEHandle);
TEAutoView(true,fTEHandle);

Page 8

lll
II
II TTEDoc::DoKeyDown
II
lll
void TTEDoc::DoKeyDown(EventRecord* theEvent) {

if(fTEHandle) {
TEKey(LoWrd(theEvent->message),fTEHandle);
fNeedtoSave = true;

II reset the scroll bars since the key press
II may have caused the text to scroll or added
II text
FocusOnWindow();
SynchScrollBars();

lll
II
II TTEDoc::Doidle
II
lll
void TTEDoc::Doidle(void) {

TScrollDoc::Doidle();
if(fTEHandle) {

TEidle(fTEHandle);

GrafPtr oldPort;
GetPort(&oldPort);
SetPort(fDocWindow);
Point thePt;
GetMouse(&thePt);
AdjustCursor(thePt);
SetPort(oldPort);

}
lll
II
II TTEDoc::AdjustCursor
II
lll
void TTEDoc::AdjustCursor(Point where) {

438

Page 9 TTEDoc.cp

Rect r;
II decide if it is in content or scroll bars
GetContentRect(r);
if(PtinRect(where,&r)) {

CursHandle !Beam= GetCursor(iBeamCursor);
if(IBeam !=nil) {

SetCursor(*IBeam);

}else
II it must be in the scroll bars or grow box
InitCursor();

}
lll
II
II TTEDoc::DoZoom
II
1111/ll
void TTEDoc::DoZoom(short partCode) {

II call the parent class, this will adjust scroll bars
TScrollDoc::DoZoom(partCode);

II adjust the TE rectangle
SetTERect();

}
lll
II
II TTEDoc::DoGrow
II
1111/ll
void TTEDoc::DoGrow(EventRecord* theEvent) {

II call the parent class, this will adjust scroll bars
TScrollDoc::DoGrow(theEvent);

II adjust the TE rectangle
SetTERect();

}
lllllllllllllllllllllllllll/llllllllllllllllllllllllllllll/111111111111
II
II TTEDoc: :ReadDocFile
II
11111111111111111111111/lll
Boolean TTEDoc::ReadDocFile(short refNum) {

if((fDocWindow) && (fTEHandle !=nil)) {

long len;
OSErr err GetEOF(refNum,&len);

439

TTEDoc.cp

}

II truncate to TE limits
if(len > kMaxShort) {

len = kMaxShort;

Handle thetext = NewHandle(len);
if(thetext == nil) {

ErrorAlert(rDocErrorStrings,sNoMem);
return false;

HLock(thetext);
err= SetFPos(refNum,fsFromStart,0);
err= FSRead(refNum,&len, (Ptr)*thetext);
HUnlock(thetext);
if(err == noErr) {

II add the text to the document
HLock(thetext);
TESetText(*thetext,len,fTEHandle);
HUnlock(thetext);
DisposHandle(thetext);

II set the selection to the first char
TESetSelect(O,O,fTEHandle);

II adjust scroll bars to new text
SynchScrollBars();

return true;

else {
DisposHandle(thetext);
return false;

II if there ain't no window ...
return false;

Page 10

lll
II
II TTEDoc::WriteDocFile
II
lll
Boolean TTEDoc::WriteDocFile(short refNum) {

440

if((fDocWindow !=nil) && (fTEHandle !=nil)) {
long len = (long) {**fTEHandle) .teLength;
CharsHandle thetext = TEGetText(fTEHandle);
HLock((Handle)thetext);
OSErr err= SetFPos(refNum,fsFromStart,0);

Page 11 TTEDoc.cp

}

err= FSWrite(refNum,&len, (Ptr)*thetext);
HUnlock((Handle)thetext);
if(err == noErr)

return true;
else

return false;

II if there ain't no window ...
return false;

}
lll
II
II MyClickLoop
II
lll
pascal Boolean MyClickLoop(void) {

Point where;
Rect view;

II use static member function to get static member
TScrollDoc * theCurrScrollDoc = TScrollDoc: :GetCurrScrollDoc();

theCurrScrollDoc->GetContentRect(view);

GetMouse(&where);
if(where.v > view.bottom) {

theCurrScrollDoc->Scroll(theCurrScrollDoc->GetVScroll(),
theCurrScrollDoc->GetVertLineScrollArnount());

if(where.h >view.right) {
theCurrScrollDoc->Scroll(theCurrScrollDoc->GetHScroll(),

theCurrScrollDoc->GetHorizLineScrollArnount());

if(where.v <view.top) {
theCurrScrollDoc->Scroll(theCurrScrollDoc->GetVScroll(),

-(theCurrScrollDoc->GetVertLineScrollArnount()));

if(where.h < view.left) {
theCurrScrollDoc->Scroll(theCurrScrollDoc->GetHScroll(),

-(theCurrScrollDoc->GetHorizLineScrollArnount()));

return true;

441

TEApp.cp Page 1

lll
II
II This file: TEApp.cp
II
II
II
II

This is the main application object for the simplest
application program using TTEDoc

II© 1990 Dan Weston, All Rights Reserved
II
lll

#include "TApp.h"
#include "TDoc.h"
#include "TTEDoc.h"

lll
II
II class declarations
II
lll
class TTEApp : public TApp{

protected:

} ;

virtual TDoc * MakeDoc(SFReply *reply= (SFReply *) nil);
virtual int GetNumFileTypes(void) {return l;};
virtual SFTypeList GetFileTypesList(void);
virtual Boolean CanOpen(void) {return true;}
virtual OSType CanAcceptClipType(void) {return 'TEXT';}

lll
II
II Globals
II
lll

SFTypeList gtheTypes = {'TEXT'};

lll
II
II main
II
lll
void main(void)
{

442

II create an instance of TTEApp
TTEApp theApp;

II initialize the application

Paqe 2 TEApp.cp

if(theApp.InitApp()){

II open one window to start with,
II unless we got files from the Finder
if(! theApp.OpenDocFromFinder()).

theApp.OpenNewDoc();

II run the event loop until user quits
theApp.EventLoop();

//now clean up
theApp.CleanUp();

l/////////////////////////////l/////ll///////////////l////////l//I/////
II
II TTEApp::MakeDoc
II
///////////////////////////l///l///ll////////////////////l////l/////I//
TDoc * TTEApp::MakeDoc(SFReply *reply) {

return new TTEDoc(GetCreator(),reply);

}
//////////////l//ll/ll///l//l/l///l/////////////l/l///l//l////l///////I
II
II TTEApp::GetFileTypesList
II
l/l/ll///////////////l/////l///l///////l////////l/////l/l/////l/////I//
SFTypeList TTEApp::GetFileTypesList(void) {

return gtheTypes;

443

TEApp.make

#--
Make file for a simple program using TTEDoc
#To use it, use the MPW "Build ... " command from the build menu,
specifying "TEApp" and the target file

#© 1990 Dan Weston, All rights reserved

tell cplus and rez where to find included files for TApp,TDoc,
TScrollDoc, and TTEDoc
AppObjectDir = ::App-Doc:
ScrollObjDir = : :TScrollDoc:
TEObjDir = : :TEDoc:

Page 1

use SADE symbol generation, -sym off will result in faster builds
SymOpts = -sym on

options for C++, where to look for include files
CPlusOptions = {SymOpts} d

-i "{AppObjectDir}"d
-i "{TEObjDir}"d
-i "{ScrollObjDir}"

options for the linker
LinkOptions = -msg nodup {SymOpts}

options for rez, where to look for include and #include files
RezOptions = -s "{AppObjectDir}" -s "{ScrollObjDir}"d

-i "{AppObjectDir}" -i "{ScrollObjDir}"

We need to change this rule to include CPlusOptions
.cp.o f .cp

CPlus {default}.cp -o {default}.cp.o {CPlusOptions}

Objects = d
"{AppObjectDir}"TApp.cp.o d
"{AppObjectDir}"TDoc.cp.o d
"{ScrollObjDir}"TScrollDoc.cp.o d
"{TEObjDir}"TTEDoc.cp.o d
TEApp.cp.o

ResourceFiles = d
"{AppObjectDir}"TApp.rsrc d
"{AppObjectDir}"TDoc.rsrc d
"{ScrollObjDir}"TScrollDoc.rsrc d
TEApp.rsrc

dependency rules for TDoc and TApp
"{AppObjectDir}"TDoc.cp.o f "{AppObjectDir}"TDoc.cp d

"{AppObjectDir}"TDoc.h d
"{AppObjectDir}"AppDocMenus.h

444

Page 2 TEApp.make

"{AppObjectDir}"TApp.cp.o f "{AppObjectDir}"TApp.cp a
"{AppObjectDir}"TApp.h a
"{AppObjectDir}"TDoc.h a
"{AppObjectDir}"AppDocMenus.h

dependency rules for TScrollDoc
"{ScrollObjDir}"TScrollDoc.cp.o f a

"{ScrollObjDir}"TScrollDoc.cp a
"{ScrollObjDir}"TScrollDoc.h a
"{AppObjectDir}"TDoc.h

dependency rules for TTEDoc
"{TEObjDir}"TTEDoc.cp.o f "{TEObjDir}"TTEDoc.cp a

"{TEObjDir}"TTEDoc.h a
"{ScrollObjDir}"TScrollDoc.h a
"{AppObjectDir}"TDoc.h

dependency rules for TEApp
TEApp.cp.o f TEApp.cp a

"{AppObjectDir}"TApp.h a
"{AppObjectDir}"TDoc.h a
"{ScrollObjDir}"TScrollDoc.h a
"[TEObjDir}"TTEDoc.h a
TEApp.make

TEApp ff {Objects} TEApp.make
Link -o {Targ} {LinkOptions} a

{Objects} a
"{CLibraries}"CPlusLib.o a
"{CLibraries}"CRuntime.o a
"{CLibraries}"StdCLib.o a
"{CLibraries}"Cinterface.o a
"{Libraries}"Interface.o

SetFile {Targ} -t APPL -c '????' -a B

TEApp ff TEApp.r a
{ResourceFiles}

Rez -append -o {Targ} {RezOptions} TEApp.r

445

TEApp.r

II TEApp.r rez source for the simplest program
II that uses TTEDoc

include "TApp.rsrc";
include "TDoc.rsrc" ;
include "TScrollDoc.rsrc";
include "TEApp.rsrc" ;

446

Page 1

Page 1

/* TEApp.rsrc.r

*
* rez source for TEApp resources
*
* © 1990 Dan Weston All rights reserved

*
* Build it with the following rez command

*
*
*
*/

rez TEApp.rsrc.r -o TEApp.rsrc -t rsrc -c RSED

resource 'MENU' (128, preload)
128,

} ;

textMenuProc,
Ox7FFFFFFD,
enabled,
apple,
{ /* array: 2 elements */

/* [l] */
"About TEApp ... ", no!con, noKey, noMark, plain,
/* [2] */
"-", noicon, noKey, noMark, plain

resource 'ALRT' (128, purgeable)
(68, 76, 172, 376},

} ;

128,
{ /* array: 4 elements */

/* [l] */
OK, visible, silent,
/* [2] */
OK, visible, silent,
/* [3] */
OK, visible, silent,
/* [4] */
OK, visible, silent

resource 'DITL' (128, purgeable)
/* array DITLarray: 5 elements */
/* [l] */
{ 65, 199, 85, 279},
Button {

},

enabled,
"OK"

/* [2] */
{8, 8, 24, 304),

TEApp.rsrc.r

447

TEApp.rsrc.r

} ;

448

StaticText
disabled,
"TEApp: a very simple text edit applicati"
"on."

},

/* [3) */
{44, 199, 59, 245},
StaticText [

disabled,

""
} ,
/* [4) */
{42, 34, 58, 162},
StaticText {

},

disabled,
"version 1.0"

/* [5) */
{ 65, 34, 89, 165},
StaticText [

disabled,
"April 15, 1990"

Page 2

Page 1

directory 'hd:mpw:C++:TEApp:'

sourcepath '::App-Doc:•,a
' : : TEDoc: ' I a
'::TScrollDoc: •,a
': :TEApp:'

target 'TEApp'

open source ('TEApp.cp')

TEApp.sade

449

TDebuqDoc.h Page 1

///////l/////l///////////l/ll//////l//l/////////////l///////////l////ll
II
II TDebugDoc.h
II
II A document/window that draws stream text in the window
II
II© 1990 Dan Weston, All Rights Reserved
II
/////////////l////l/////l//ll//l//l////////////ll//////////////////I///

#include <QuickDraw.h>
#include <Events.h>
#include <Windows.h>
#include <iostream.h>

#include "TTEDoc.h"

#ifndef TDebugDoc_Defs
#define TDebugDoc_Defs

const short rDebugDoc = 5555;
const int kBufferSize = 80;

/l/////////l///l///////////ll///l/////l/////////////////I//////////////
II
II class TWindowStreamBuff
II
/l/////l/////////////l//////////l/////l/l//////////////l/////I/////////
class TWindowStreamBuff: public streambuf {

public:
TTEDoc * fTEDoc;

int overflow(int c = EOF);

TWindowStreamBuff(char *p, int len);
} ;

/l///////////////l/lll//ll/////ll////////l//l///////////////////l//I///
II
II class TDebugDoc
II
l//l///l/////ll////ll///l/l//lll///l//////ll//l/l/l/ll/ll////l//I//////
class TDebugDoc : public TTEDoc,public ostream{

protected:

TWindowStreamBuff * fBuff;

public:

450

Paqe 2

} ;

TDebugDoc::TDebugDoc(TWindowStreamBuff *buff,
OSType theCreator = '????',
SFReply * SFinfo = (SFReply *)nil);

virtual -TDebugDoc(void);

virtual short GetWinID(void) {return rDebugDoc;}

II do this so Close menu isn't active
II when debug window is on top
virtual Boolean CanClose(void) { return false; };

II utility routine to make a DebugDoc and add it to doc list
TDebugDoc * MakeDebugDoc(TApp * theApp);

#endif TDebugDoc_Defs

TDebuqDoc.h

451

TDebugDoc.cp Page 1

///l//////l////////l////////l///////l//l/l/ll//l//l//l////l/I//////////
II
II TDebugDoc.cp
II
II A document/window that draws stream text in the window
II
II © 1990 Dan Weston, All Rights Reserved
II
////////l////////////////ll///////l/l////////l//l/////l/////l///////ll/

#include <Types.h>
#include <QuickDraw.h>
#include <Events.h>
#include <Windows.h>
#include <OSUtils.h>
#include <Strings.h>

#include "TApp.h"
#include "TDebugDoc.h"

II define a segment for DebugDoc
#pragma segment DebugDocSeg

////////////////////l//l///////l//l//l//////////l//l//l///ll//ll/I/////
II
II TDebugDoc::TDebugDoc
II
/////l///////////////////l//ll////////////////////ll///////////////////
TDebugDoc: :TDebugDoc(TWindowStreamBuff *buff,

OSType theCreator,SFReply * SFinfo):
TTEDoc(theCreator,SFinfo),ostream(buff) {

II save a reference to the streambuffer
II so we can disable it when the window closes
fBuff = buff;

}
/////l////////ll////ll//////l////////////////l//l/////////////I////////
II
II TDebugDoc: :-TDebugDoc
II
////l///l/////l//l//l//l///////l/////l////l//l//l//l//I////////////////
TDebugDoc::-TDebugDoc(void) (

452

II disable the streambuff so it won't
II try to output to a deleted document
fBuff->fTEDoc = nil;

Page 2 TDebugDoc.cp

lll
II
II MakeDebugDoc: A utility routine to make a debugging document
II
lll
TDebugDoc * MakeDebugDoc(TApp * theApp) {

II grab some memory for the stream buffer
char* theBuffer =new char[kBufferSize];

if(!theBuffer)
return nil;

II create the streambuffer
TWindowStreamBuff *buff= new TWindowStreamBuff(theBuffer,

kBufferSize);

II and pass it to the new DebugDoc's constructor
TDebugDoc *temp= new TDebugDoc(buff);

if(! temp)
return nil;

II make the window
if(temp->MakeWindow(theApp->fenvRec.hasColorQD) &&

temp->InitDoc()) {
temp->ShowDocWindow();
theApp->AddDocument(temp);

II connect the streambuff to the TEDocument
buff->fTEDoc temp;
return temp;

else
return nil;

lll
II
II TWindowStreamBuff::TWindowStreamBuff
II
lll////l/ll///ll/l/l//l///l/l//I/
TWindowStreamBuff::TWindowStreamBuff(char *p, int len):

streambuf(p,len) {

fTEDoc = nil;
}
l/l/l/lllll/lll//l/l///l///////l//llll/l/////l/ll/l//1/ll/l/ll//lll//I/
II
II TWindowStreamBuff::overflow
II

453

TDebugDoc.cp Page 3

lll
int TWindowStreamBuff::overflow(int c) {

454

if (fTEDoc) {
II how many chars?
long len = pptr() - base();

II add them to the text document
fTEDoc->AddText((Ptr)base(),len);

II reset everything
setp(base(),epptr());
if (c != EOF)

sputc(c);

return 0;

return EOF;

Paqe 1 TDebuqDoc.rsrc.r

/* TDebugDoc.rsrc.r
*
* rez source for TDebugDoc resources
*
* © 1990 Dan Weston All rights reserved
*
* Build it with the following rez command
*
* rez TDebugDoc.rsrc.r -o TDebugDoc.rsrc -t rsrc -c RSED

*
*/

#include "types.r"

resource 'WIND' (5555)
{192, 20, 268, 280),
documentProc,
visible,
noGoAway,
OxO,
"Debugging ... "

} ;

455

DebugTEApp.cp Page 1

lll
II
II
II This file: DebugTEApp.cp
II
II
II
II

This is the main application object for the simplest
application program using TTEDoc and TDebugDoc

II © 1990 Dan Weston, All Rights Reserved
II
lll

#include "TApp.h"
#include "TDoc.h"
#include "TTEDoc.h"
#include "TDebugDoc.h"

lll
II
II class declarations
II
lll

class TTEApp : public TApp{

protected:

} ;

virtual TDoc * MakeDoc(SFReply *reply= (SFReply *) nil);
virtual int GetNumFileTypes(void) {return l;};
virtual SFTypeList GetFileTypesList(void);
virtual Boolean CanOpen(void) {return true;}
virtual OSType CanAcceptClipType(void) {return 'TEXT';)

lll
II
II Globals
II
lll

SFTypeList gtheTypes {'TEXT'};

TDebugDoc *gdebugDoc nil;

lll
II
II main
II
lll
void main(void)

456

Page 2 DebugTEApp.cp

II create an instance of TTEApp
TTEApp theApp;

II initialize the application
if(theApp.InitApp()) {

gdebugDoc = MakeDebugDoc(&theApp);

II open one window to start with,
II unless we got files from the Finder
if(! theApp.OpenDocFromFinder())

theApp.OpenNewDoc();

II run the event loop until user quits
theApp.EventLoop();

//now clean up
theApp.CleanUp();

/ll///lll//ll/l/l//l/l/lll//llll////ll///ll//l//ll/llllll/lll/l/ll//l/I
II
II TTEApp::MakeDoc
II
llll/l//l//lllll///////l//l/ll/lll/llllllll//ll//l//l/l/////lllllllllll
TDoc * TTEApp::MakeDoc(SFReply *reply) {

TTEDoc *temp= new TTEDoc(GetCreator(),reply);
*gdebugDoc << "Making a new document, address = "

<< (int)temp << endl;
return temp;

}

l/l///l/l///ll//lllll/lll/l/lllll///ll/l///ll//ll//l/ll///ll//l////l/I/
II
II TTEApp::GetFileTypesList
II
lllll/ll/l/ll/l//l/lllll//l//l/l/lll/l//l//lll/l/l/ll/l//l/l//lllllllll
SFTypeList TTEApp::GetFileTypesList(void) {

return gtheTypes;

457

Debug'l'EApp.make Page 1

#---
Make file for a simple program using TDebugDoc
#To use it, use the MPW "Build ... " command from the build menu,
specifying "DebugTEApp" and the target file
#© 1990 Dan Weston, All rights reserved

tell cplus and rez where to find included files for TApp,TDoc
TScrollDoc, TTEDoc, and TDebugDoc
AppObjectDir =::App-Doc:
ScrollObjDir = ::TScrollDoc:
TEObjDir = ::TEDoc:
DebugObjDir = ::DebugDoc:

use SADE symbol generation, -sym off will result in faster builds
SymOpts = -sym on

options for C++, where to look for include files
CPlusOptions = {SymOpts} -i "{AppObjectDir}"o

-i "{TEObjDir}"o
-i "{ScrollObjDir}"o
-i "{DebugObjDir}"

options for the linker
LinkOptions = -msg nodup {SymOpts}

options for rez, where to look for include and #include files
RezOptions = -s "{AppObjectDir}" o

-s "{ScrollObjDir}"o
-s "{DebugObjDir}" o
-i "{AppObjectDir}" o
-i "{ScrollObjDir}" o
-i "{DebugObjDir}"

We need to change this rule to include CPlusOptions
.cp.o f .cp

CPlus {default}.cp -o {default}.cp.o {CPlusOptions}

Objects = o
"{AppObjectDir}"TApp.cp.o o
"{AppObjectDir}"TDoc.cp.o o
"{ScrollObjDir}"TScrollDoc.cp.o o
"{TEObjDir}"TTEDoc.cp.o o
"{DebugObjDir}"TDebugDoc.cp.o o
DebugTEApp.cp.o

ResourceFiles = o
"{AppObjectDir}"TApp.rsrc o
"{AppObjectDir}"TDoc.rsrc o
"{ScrollObjDir}"TScrollDoc.cp.o o
"{DebugObjDir}"TDebugDoc.rsrc

458

Paqe 2 DebuqTEApp.make

dependency rules for TDoc and TApp
"{AppObjectDir}"TDoc.cp.o f "{AppObjectDir}"TDoc.cp ()

"{AppObjectDir}"TDoc.h ()
"{AppObjectDir}"AppDocMenus.h

"{AppObjectDir}"TApp.cp.o f "{AppObjectDir}"TApp.cp ()
"{AppObjectDir}"TApp.h ()
"{AppObjectDir}"TDoc.h ()
"{AppObjectDir}"AppDocMenus.h

dependency rules for TScrollDoc
"{ScrollObjDir}"TScrollDoc.cp.o f ()

"{ScrollObjDir}"TScrollDoc.cp ()
"{ScrollObjDir}"TScrollDoc.h ()
"{AppObjectDir}"TDoc.h

dependency rules for TEDoc
"{TEObjDir}"TTEDoc.cp.o f "{TEObjDir}"TTEDoc.cp ()

"{TEObjDir}"TTEDoc.h ()
"{ScrollObjDir}"TScrollDoc.h ()
"{AppObjectDir}"TDoc.h

dependency rules for TDebugDoc
"{DebugObjDir}"TDebugDoc.cp.o f ()

"{DebugObjDir}"TDebugDoc.cp ()
"{DebugObjDir}"TDebugDoc.h ()
"{TEObjDir}"TTEDoc.h ()
"{ScrollObjDir}"TScrollDoc.h ()
"{AppObjectDir}"TDoc.h

dependency rules for DebugTEApp
DebugTEApp.cp.o f DebugTEApp.cp ()

"{AppObjectDir}"TApp.h ()
"{AppObjectDir}"TDoc.h ()
"{TEObjDir}"TTEDoc.h ()
DebugTEApp.make

DebugTEApp ff {Objects} DebugTEApp.make
Link -o {Targ} {LinkOptions} ()

{Objects} ()
"{CLibraries}"CPlusLib.o ()
"{CLibraries}"CRuntime.o ()
"{CLibraries}"StdCLib.o ()
"{CLibraries}"Cinterface.o ()
"{Libraries}"Interface.o

SetFile {Targ} -t APPL -c '????' -a B

DebugTEApp ff DebugTEApp.r ()
{ResourceFiles}

Rez -append -o {Targ} {RezOptions} DebugTEApp.r

459

DebugTEApp.r

II TEApp.r rez source for the simple
II that uses TTEDoc

include "TApp.rsrc";
include "TDoc.rsrc" ;
include "TScrollDoc.rsrc"
include "TDebugDoc.rsrc";

460

Page l

Page 1

directory 'hd:mpw:C++:DebugTEApp:'

sourcepath '::App/Doc:•,a
': :TEDoc: ',a
I: :DebugDoc: I' a
' : : DebugTEApp: '

target 'DebugTEApp'

open source ('DebugTEApp.cp')

DebugTEApp. sade

461

UMAPictView.h Page 1

lll
II
II UMAPICTView.h
II This is the interface of the application objects for the
II MAPictView program
II
II© 1990 Dan Weston, All Rights Reserved
II
lll

class TPICTViewApp: public TApplication {
public:

} ;

II Initialize the Application
virtual pascal void IPICTViewApp(void);

II Launches a TPICTDocument
virtual pascal struct TDocument *DoMakeDocument(CmdNumber

itsCmdNumber);

II disable the new menu item
virtual pascal void DoSetupMenus(void);

II Prevents empty document on laun~h
virtual pascal void OpenNew(CmdNumber itsCmdNumber);

class TPICTDocument public TDocument {

462

public:
Handle
Handle

fPICTData; II The PICT owned by the document
fPICTHeader; II header for PICT file

II Initialization and freeing
virtual pascal void IPICTDocument(void);
virtual pascal void Free(void);

II disable Save and SaveAs menu items
virtual pascal void DoSetupMenus(void);

II read the file
virtual pascal void DoRead(short aRefNum,Boolean rsrcExists,

Boolean forPrinting);

II Making views and windows
virtual pascal void DoMakeViews(Boolean forPrinting);

II Inspecting
virtual pascal void Fields(pascal void (*DoToField) (

StringPtr fieldName,

Paqe 2

} ;

class TPICTView

Ptr fieldAddr,
short fieldType,

UMAPictView.h

void *DoToField_StaticLink),
void *DoToField_StaticLink);

public TView {

public:

II drawing and sizing
virtual pascal void CalcMinSize(VPoint *minSize);

virtual pascal void Draw(Rect *area);

} ;

463

UMAPictView.cp Paqe 1

///l/!l/////////////l//////ll/////l////l////////l/////ll///////l//l/I//
II
II UMAPICTView.cp
II This is the implementation of the application objects for the
II MAPictView program
II
II The interface for these objects is in UMAPICTView.h
II
II© 1990 Dan Weston, All Rights Reserved
II
////////////l/////l/////l/ll///ll//////////l//ll///l/!l//////////////I/

#include
#include

#include

#include

<UMacApp.h>
<UPrinting.h>

<ToolUtils.h>

<UMAPictView.h>

ll!l////////l/l/!ll!ll///////l/////////////////////l//l//ll!ll/////////
II
II constants
II
//l///ll!llll!ll//////////lll//l//llllllllllllll/llll/ll/ll/lllll//l/I/

II application signature
canst OSType kSignature = 'DANW';

II file-type code for saved disk files
canst OSType kFileType = 'PICT';

//'view' template for a PICTView window
canst short kWindowRsrcID = 1004;

II how much to stagger doc windows
canst short kStaggerAmount = 16;

II ALRT for file-too-big
canst short kFileTooBig 1000;

II size of PICT file header
canst long kPictHeaderSize = 512;

ll/l/l/l///ll/l//l/lll/ll/l/ll/ll//l///l//l/ll/1//ll//llll//l//l/l//ll/
II
II globals
II
ll/llllllll///lllll/ll//////ll/////ll//l///llllll//lllll/l/lll/l/ll/l/I

short gStaggerCount;

464

Paqe 2 UMAPictView.cp

#pragma segment Ainit
lll
II
II TPICTViewApp::IPICTViewApp
II
lll
pascal void TPICTViewApp::IPICTViewApp(void){

IApplication(kFileType);
gStaggerCount = 0;

II So the linker doesn't dead strip class info.
II (gDeadStripSuppression is never true, so the
II code never actually executes at run time.)
if(gDeadStripSuppression) {

TPICTView *aPICTView;
aPICTView = new TPICTView;

#pragma segment AOpen
lll/111111111111111
II
II TPICTViewApplication::DoMakeDocument
II
lll
pascal struct TDocument *TPICTViewApp::DoMakeDocument(CmdNumber

TPICTDocument *aPICTDocument;

aPICTDocument new TPICTDocument;
FailNIL(aPICTDocument);
aPICTDocument->IPICTDocument();
return aPICTDocument;

l*itsCmdNumber*I) {

#pragma segment AOpen
lll
II
II TPICTViewApplication::OpenNew
II
lll
pascal void TPICTViewApp::OpenNew(CmdNumber l*itsCmdNumber*I) {

AppFile anAppFile;

if (ChooseDocument(cFinderOpen, &anAppFile))

465

tJMAPictView.cp Page 3

OpenOld(cFinderOpen, &anAppFile);

#pragma segment ARes
lll
II
II TPICTViewApp::DoSetupMenus
II
lll
pascal void TPICTViewApp::DoSetupMenus(void) {

inherited::DoSetupMenus();

Enable(cNew,false);

#pragma segment AOpen
lll
II
II TPICTDocument::IPICTDocument
II
lll
pascal void TPICTDocument::IPICTDocument(void) {

II do the inherited stuff
IDocument(kFileType,

kSignature,
kUsesDataFork,
! kUsesRsrcFork,
kDataOpen,
! kRsrcOpen);

II and now do our specific members
fPICTData = nil;
fPICTHeader = nil;

#pragma segment AClose
lll
II
II TPICTDocument::Free
II
lll
pascal void TPICTDocument::Free(void) {

466

if(fPICTData !=nil) {
DisposHandle(fPICTData);

Page 4 UMAPictView.cp

fPICTData = nil;

if(fPICTHeader !=nil) {
DisposHandle(fPICTHeader);
fPICTHeader = nil;

inherited::Free();

#pragma segment AOpen
lll
II
II TPICTDocument::DoMakeViews
II
lll
pascal void TPICTDocument::DoMakeViews(Boolean l*forPrinting*I) {

TView *theWindow,*thePictView;
TStdPrintHandler *aHandler;

theWindow = NewTemplateWindow(kWindowRsrcID, this);

FailNIL(theWindow);
thePictView = theWindow->FindSubView('PicV');

aHandler = new TStdPrintHandler;
FailNIL(aHandler);
aHandler->IStdPrintHandler(this,

ShowReverted();

thePictView,
! kSquareDots,
kFixedSize,
! kFixedSize);

#pragma segment AReadFile
lll
II
II TPICTDocument::DoRead
II
lll
pascal void TPICTDocument: :DoRead(short aRefNum,

long pictSize;

Boolean l*rsrcExists*I,
Boolean l*forPrinting*I} {

long headerSize = kPictHeaderSize;

II calculate size of file, subtract header size
FailOSErr(GetEOF(aRefNum, &pictSize));
pictSize = pictSize - kPictHeaderSize;

467

UMAPictView.cp

II allocate memory for header and pict
fPICTHeader = NewPermHandle(kPictHeaderSize);
FailNIL(fPICTHeader);

fPICTData = NewPermHandle(pictSize);
FailNIL(fPICTData);

II now read header and pict
HLock(fPICTHeader);
FailOSErr(FSRead(aRefNum, &headerSize, *fPICTHeader));
HUnlock(fPICTHeader);

HLock(fPICTData);
FailOSErr(FSRead(aRefNum, &pictSize, *fPICTData));
HUnlock(fPICTData);

Page 5

#pragma segment ARes
lll
II
II TPICTDocument::DoSetupMenus
II
lll
pascal void TPICTDocument::DoSetupMenus(void) {

inherited::DoSetupMenus();

Enable(cSaveAs, false);
Enable(cSaveCopy, false);

#pragma segment AFields
lll
II
II TPICTDocument: :Fields
II
lll
pascal void TPICTDocument::Fields(pascal void (*DoToField) (

468

StringPtr fieldName,
Ptr fieldAddr,
short fieldType,
void *DoToField_StaticLink),'
void *DoToField_StaticLink) {

DoToField("\pTPICTDocument", nil,
bClass,DoToField_StaticLink);

DoToF ield ("\pfPICTData", (Ptr) & fPICTData,
bHandle,DoToField_StaticLink);

DoToField("\pfPICTHeader", (Ptr) &fPICTHeader,

Page 6 UMAPictView.cp

bHandle,DoToField_StaticLink);
inherited::Fields(DoToField,DoToField_StaticLink);

#pragma segment ARes
/l/l//////////////ll////l////l///////I/////////////////////////////////
II
II TPICTView::CalcMinSize
II
//l//l//l////////////////////l/l//l////l//l//ll/lll/ll/l/ll/l/l/l//ll//
pascal void TPICTView::CalcMinSize(VPoint *minSize) {

short hSize,vSize;
TPICTDocument * PICTDoc

if(PICTDoc->fPICTData) {

(TPICTDocument *)fDocument;

hSize = (**((PicHandle)PICTDoc->fPICTData)) .picFrame.right
- (**((PicHandle)PICTDoc->fPICTData)) .picFrame.left;

vSize = (**((PicHandle)PICTDoc->fPICTData)) .picFrame.bottom
- (**((PicHandle)PICTDoc->fPICTData)) .picFrame.top;

SetVPt(minSize, hSize,vSize);

else
SetVPt(minSize,0,0);

#pragma segment ARes
///l/ll/l//////l/////////////l//ll/////ll//l//l/ll/////////////////////
II
// TPICTView::Draw
II
////////l/l////l/////////////////////l///////////////l/lll///l///l/I///
pascal void TPICTView::Draw(Rect */*area*/) {

TPICTDocument * PICTDoc = (TPICTDocument *)fDocument;

if(PICTDoc->fPICTData)
DrawPicture((PicHandle) (PICTDoc->fPICTData),

&(**((PicHandle)PICTDoc->fPICTData)) .picFrame);

469

MMAPictView.cp Page 1

l//////////l//////////////////l///l/l///l///l/ll/l/l////l////I/////////
II
// MMAPICTView.cp
II This is the main program for MAPICTView
II
II© 1990 Dan Weston, All Rights Reserved
II
///////l//////////////////////lll/ll//////////ll/ll//ll//////////I/////

#include <UMacApp.h>
#include <UPrinting.h>

#include <UMAPictView.h>
/////////////////////l////////l////l////l///ll/ll//l/l//l/l////l//I////
II
II globals
II
//////////////////l//l//////l//////////////////l///////ll//l//////l/ll/

TPICTViewApp *gPICTViewApp;

#pragma segment Main
//////ll//////////////////////l/////////////l//l//l/ll/////l////l//l/I/
II
II main
II
//////////////////l/////////////l//////////////I///////////////////////
void main(void) (

470

InitToolBox(); //Essential toolbox and utilities initialization

if(ValidateConfiguration(&gConfiguration)) (//Make sure we can run

InitUMacApp(8);
InitUPrinting();

//Initialize MacApp; 8 calls to MoreMasters
II Initialize the Printing unit

gPICTViewApp = new TPICTViewApp;
FailNIL(gPICTViewApp);
gPICTViewApp->IPICTViewApp();
gPICTViewApp->Run();

else
StdAlert(phUnsupportedConfiguration);

Page 1

/* • Auto-Include the requirements for this source */
#ifndef TYPES.R
#include-;;-Types.r"
#endif

#ifndef ~MacAppTypes
#include "MacAppTypes.r"
#endif

#if qTemplateViews
#ifndef ~ViewTypes
#include "ViewTypes.r"
#endif
#endif

#if qDebug
include "Debug.rsrc";
#endif
include "MacApp.rsrc";
include "Printing.rsrc";

include $$Shell("ObjApp")"MAPictView" 'CODE';

/* Resource ids */

/* The 'File is too large' alert */
#define kFileTooBig 1000
/* resource ID of window */
#define kWindowRsrcID 1004

resource 'view' (kWindowRsrcID, purgeable)

root, 'WIND', { 50, 40 } , { 250, 450 } , sizeVariable,
sizeVariable, shown, enabled,

Window {
"" ,

zoomDocProc, goAwayBox, resizable, modeless,
ignoreFirstClick, freeOnClosing,
disposeOnFree, closesDocument,
openWithDocument, dontAdaptToScreen, stagger,
forceOnScreen, dontCenter, noID, "" };

'WIND I , I SCLR I , 0, 0 } , { 250-kSBarSizeMinusl,
450-kSBarSizeMinusl },

sizeRelSuperView, sizeRelSuperView, shown, enabled,
Scroller {

tltt ,
vertScrollBar, horzScrollBar, 0, 0, 16, 16,

MAPictView.r

471

MAPictView.r Page 2

} ;

vertConstrain, horzConstrain, { 0, 0, 0, 0 } } ;

'SCLR', 'PicV', { 0, 0 }, { 116, 1020 },
sizeVariable, sizeVariable, shown, enabled,

View {"TPICTView"}

resource 'SIZE' (-1)
saveScreen,
acceptSuspendResumeEvents,
enableOptionSwitch,
canBackground,
MultiFinderAware,
backgroundAndForeground,
dontGetFrontClicks,
ignoreChildDiedEvents,
is32BitCompatible,
reserved,
reserved,
reserved,
reserved,
reserved,
reserved,
reserved,

#if qdebug
1024 * 1024,
760 * 1024

#else
1024 * 1024,
760 * 1024

#endif
} ;

/*

*/

Printing to the LaserWriter is the time when the most
temporary memory is in use. We need the segments in
use at that time

resource 'seg ! ' { 2 5 6, purgeable)

472

"GWriteFile";
"GClipboard";
"GNonRes";
"GFile";
"GSelCommand";
"GTerminate";
"GClose";

Paqe 3 MAPictView.r

"GDoCommand";

} ;

resource 'DITL' (phAboutApp, purgeable)
{

I* [l] *I { 160, 182, 180, 262} I

Button {
enabled,
"OK"

} ;
I* [2] *I {10, 75, 150, 320},

StaticText {

} ;

disabled,
"This sample program views \nPICT files."
"\n\nThis program was written "
"with MacApp® © 1990 Dan Weston,"
"\n© 1985-1989 Apple Computer, Inc."

I* [3] *I {10, 20, 42, 52},
Icon {

disabled,
1

} ;

II Grab the default about box
include "Defaults. rsrc" 'ALRT' (phAboutApp) ;

I*
Used when the user attempts to
read a file larger than we can handle

*I

resource 'DITL' (kFileTooBig, purgeable)
{

I* [l] *I {82, 198, 100, 272},
Button {

enabled,
"OK"

} ;

I* [2] *I {10, 70, 77, 272},
StaticText
disabled,
"PICT View can't read the entire "
"file because it is too long."
} ;

I* [3] *I {10, 20, 42, 52},
Icon {

disabled,

473

MAPictView.r

0

} ;

resource 'ALRT' (kFileTooBig,
{ 100, llO, 210, 402},
kFileTooBig,
{

purgeable)

/* [l] *I OK,
/* [2] */ OK,
/* [3] *I OK,
/* [4) */ OK,

visible,
visible,
visible,
visible,

silent;

}
} ;

silent;
silent;
silent

II Grab the default Apple/File menus
include "Defaults.rsrc" 'cmnu' (mApple);
include "Defaults.rsrc" 'cmnu' (mFile);
include "Defaults.rsrc" 'cmnu' (mEdit);

/* Displayed menus on a non-hierarchical system */
resource 'MBAR' (kMBarDisplayed)

{mApple; mFile; mEdit}
} ;

II Grab the default credits
include "Defaults.rsrc" 'STR#' (kDefaultCredits);

II Get the default MacApp® application icon
II and necessary bundling rsrcs
include "Defaults. rsrc" 'MApp' (0);
include "Defaults.rsrc" 'FREF' (128);
include "Defaults.rsrc" 'BNDL' (128);
include "Defaults.rsrc" 'ICN#' (128);

II Get the default Version resources
II Application or file specific
include "Defaults.rsrc" 'vers' (l);

II Overall package
include "Defaults. rsrc" 'vers' (2);

474

Page 4

Index

A
AcceptableFileType member func

tion (TApp), 122
Access

to classes, 22-24
to members and member func

tions, 24-25
Activate member function

for TDoc, 81-83
for TScribbleDoc, 175-176
for TScrollDoc, 208-209, 219
for TTEDoc, 254

Activation of windows
and clipboard, 110
with TApp, 130, 133
with TModelessDoc, 183

AddDocument member function
(TApp), 117-118

Addltem member function
(TLink), 38-39

Address-of operations, avoidance
of, 13-14

AddText member function (TTE
Doc), 250, 269

AdjustCursor member function
forTDoc, 86

for TTEDoc, 256
AdjustDocMenus member func-

tion
from TApp, 134
for TDoc, 87-89
for TScribbleDoc, 174-175

AdjustMenus member function
(TApp), 129, 134-136

AdjustScrollBars member function
(TScrollDoc), 205-208, 227

Allocation of memory, 9, 33, 112
'ALRT' resource type

for PictView, 234
for Scribble, 177
for TApp, 142, 151
for TDoc, 101
for TEApp, 261

AppDocMenus.h file, 86
Appending to files, 50
Appldle member function (TApp),

125, 127
Apple Computer and C++, 4
Argc argument, 55
Arguments

command line, 55-60, 66-70
for constructors, 32

475

476 ., Index

default values for, 14-15
for derived member functions,

147
and overloaded functions, 17
pass-by-reference, 13-14
"this", 28-29
type checking of, 10, 12-13, 16,

147
Argv argument, 55-56
ASCII codes, in keydown events,

249-250
Automatic construction and de

struction, 150
Automatic type conversions, 12
Autoscrolling, 244-246

B
Base classes, 25, 33
Base member function (stream-

buD, 269
BeginUpdate toolbox function, 79
'BNDL' resource, 177
Bounding rectangles, 79
Buffers, 266-267
Bugs. See Debugging
Build process, 47-49, 293-294
Build ... menu command, 157
BuildProgram command, 49
Button scrolling, 218

c
CalcMinSize member function

(TPICTView), 287-288
Call-by-reference, 14
CanAcceptClipType member

function
for TApp, 107-108
for TTEApp, 260-261

CanClose member function
for TDoc, 88
for TDebugDoc, 271

CanNew member function

for TApp, 135
for TPICTApp, 223

CanOpen member function
for TApp, 135
for TPICTApp, 223
for TScribbleApp, 174
for TTEApp, 260

CanPageSetup member function
for TDoc, 88
for TPICTDoc, 229-230

CanPaste member function
for TDoc, 88
for TTEDoc, 251

CanPrint member function
for TDoc, 88
for TPICTDoc, 229, 231

CanSaveAs member function
for TDoc, 88
for TScribbleDoc, 174
for TTEDoc, 257

CanSelectAll member function
for TDoc, 88
for TTEDoc, 249

cerr stream variable, 18, 49, 61
CheckForDASwitch member func

tion (TApp), 110, 124
cin stream variable, 18, 49-50
Classes

access to, 22-25
constructors and destructors

for, 31-33
declarations for, 21-24
derived, 25-26, 33, 146
library of, 277-279
for lists, 35-44
member functions in, 28-31
members in, 27-28
and object creation, 34-35

Cleanup member function
(TApp), 106, 116, 151

Click loop procedure, 245-246, 255
Clipboard, 91-92, 140

with MultiFinder, 111-112
without MultiFinder, 109-111
private vs. system, 108-109
and suspend events, 131
for TApp, 107
for TTEApp, 260-261
for TTEDoc, 249, 251-253

ClipHasChanged member func
tion (TApp), 110

Clipping region, setting of, 79,
203,207

CloseADoc member function
(TApp), 123-124, 139

CloseDocFile member function
(TDoc), 92, 94

Closing of files, 92, 94, 96-98, 123-
124, 139

Color dialogs, 181
Color QuickDraw, 77, 107
Command-line arguments, 55-60,

66-70
Commands, menu, 89-91, 136-141,

172-173
Comments, 7-8

conversion of, 50-55, 62-63, 66-
70

Compilation
of C++ files, 4
for HelloWorld2, 152-157
and inline functions, 15
of TApp, 142
of TDoc, 100
warnings with, 65-66
See also Makefiles

Const definitions, 16
Constructors, 31-33

automatic, 150
forTApp, 112-114
for TDebugDoc, 271-272
for TDoc, 74-76
for TModelessDoc, 180
for TPICTDoc, 224-225

.,, Index 477

for TSampDlg, 185-186
for TScribbleDoc, 164-165
for TScrollDoc, 200
for TTEDoc, 240-241
for TWindowStreamBuff, 268

ContentClick member function
(TScrollDoc), 210, 255

Conversion of comments, 50-55,
62-63, 66-70

Coordinates for windows, 194, 203
with MacApp, 287
for text rectangles, 241-242, 244
for TScrollDoc, 203-204

CopyBits toolbox function, 166-
167

Copying
with clipboard, 91-92, 108-111,

140
for TTEDoc, 249, 251-253

CountAppFiles toolbox function,
121

cout stream variable, 18, 46, 49-50
CreateMake program, 47-48, 65
Creator signatures and identifiers,

75, 169
returning of, 117, 164
for Scribble, 168-169

Current documents, 81
Current selection, 248
Cursor, adjustment of, 86, 256
CursorCtl.h file, 57
Cutting

D

with clipboard, 91-92, 108-111,
140

for TTEDoc, 249, 251-253

Data hiding, 22-24
Data slots for classes, 21
Data types. See Types and type

checking
Deactivate member function

478 IJJJ. Index

for TDoc, 81-83
for TScribbleDoc, 175-176
for TScrollDoc, 209
for TTEDoc, 254

Debugging
class for, 265, 270-273, 275
of HelloWorld2, 158-159
symbol tables for, 155

Declarations
for classes, 21-24
and definitions, 8-12, 180
of members, 28
of variables, 35

Default argument values, 14-15
#define statement vs. const, 15-16
Definitions

and declarations, 8-12, 180
of members, 28
for overloaded functions, 17
of variables, 34

Delete operator, 33, 35, 114, 124
Deletion of documents, 123-124
Dependency rules, 48

for HelloWorld2, 153-157
for Pict View, 235
for TModelessDoc, 191
for TTEApp, 263

Dereference operator(->), 14, 24
Derived classes, 25-26, 33, 146
Desk accessories, 110, 137
Destination rectangles, 238-242,

247
Destructors, 31-33

automatic, 150
for TApp, 114
for TDebugDoc, 271-272
for TDoc, 76
for TModelessDoc, 180
for TPICTDoc, 225-226
for TScrollDoc, 200
for TTEDoc, 241
virtual, 33, 76

Dialog documents. See TModeless-
Doc class

Dialog Manager, 182-183
DialogSelect toolbox function, 182
Directories in makefiles, 154
Disableltem toolbox function, 87,

175
DisposDialog toolbox function,

180
'DITL' resource

and dialog items, 186
for PictView, 234
for Scribble, 177
for TApp, 142, 151
for TDoc, 101
for TEApp, 261
for TModelessDoc, 181, 189

'DLOG' resource, 181, 189
DoActivate member function

called from TApp, 130, 133
for TDoc, 81-83
for TModelessDoc, 183

DoButtonScroll member function
(TScrollDoc), 218

DoClear member function
for TDoc, 92
for TTEDoc, 251, 253

DoClose member function
called from TApp, 123, 139
for TDoc, 94, 96-98
for TScribbleDoc, 175-176

DoContent member function
for TDoc, 85
for TModelessDoc, 183
for TScribbleDoc, 166-167
for TScrollDoc, 210

DoCopy member function
for TDoc, 91, 140
for TTEDoc, 252-253

DoCopyCmd member function
(TApp), 140-141

Documents
creation of, 116-123
deletion of, 123-124
initialization of, 77-78
See also Files
and file management; TDoc

class
DoCut member function

called from TApp, 137
for TDoc, 91, 140
for TTEDoc, 253

DoCutCmd member function
(TApp), 140-141

DoDialogEvent member function
(TModelessDoc), 182-183

DoDialogSelect member function
(TModelessDoc), 183

DoDocMenuCommand member
function

called from TApp, 136
for TDoc, 89-91
for TScribbleDoc, 172-173

DoDrag member function (TDoc),
85

DoDrawGrowlcon member func-
tion

for TDoc, 79-81
for TModelessDoc, 184
for TScribbleDoc, 168

DoGrow member function
for TDoc, 83-84
for TModelessDoc, 184
for TScrollDoc, 211-212
for TTEDoc, 257

Doldle member function
called from TApp, 127
forTDoc, 86
for TModelessDoc, 183-184
for TTEDoc, 256

DoltemHit member function
for TModelessDoc, 182-183
for TSampDlg, 186, 189

.,,. Index 479

DoKeyDown member function
called from TApp, 129
forTDoc, 85
for TModelessDoc, 183
for TTEDoc, 249-250

DoMakeDocument member func
tion (TPICTViewApp), 290

DoMakeViews member function
(TPICTDocument), 281-282

DoMenuCommand member func
tion

for TApp, 136-138, 140
DoOpenFile member function

(TDoc), 99
DoPageScroll member function

(TScrollDoc), 217
DoPageSetup member function

for TDoc, 98-99
for TPICTDoc, 229-230

DoPaste member function
for TDoc, 91-92, 140
for TTEDoc, 253

DoPasteCmd member function
(TApp), 140

DoPrint member function
for TDoc, 98-99
for TPICTDoc, 229, 231-233

DoRead member function (TPICT
Document), 283

DoReadFile member function
(TDoc), 94, 98

DoResume member function
(TApp), 133

DoSave member function (TDoc),
94-95, 97-98

DoSaveAs member function
(TDoc), 94-95, 98

DoSelect member function (TDoc),
92

DoSelectAll member function
(TTEDoc), 249

DoSetUpMenus member function

480 ._ Index

for TPICTDocument, 282
for TPICTViewApp, 291

DoSuspend member function
(TApp), 133

DoTheUpdate member function
called from TApp, 131
for TDoc, 79-81
for TModelessDoc, 183
for TScrollDoc, 209, 213

DoThumbScroll member function
(TScrollDoc), 216-217

DoToField member function
(TPICTDocument), 284

Double-slash(//) for comments,
7-8

programs to convert, 50-55, 62-
63, 66-70

DoUndo member function (TDoc),
92

Do Work member function
(TTool), 58, 62, 64, 69

DoWriteFile member function
(TDoc), 94, 98

DoZoom member function
forTDoc, 85
for TScrollDoc, 211-212
for TTEDoc, 257

Dragging of windows, 83-85
Draw member function

for TDoc, 79-81, 98
for THelloDoc, 146-147, 149
for TPICTDoc, 228, 232
for TPICTView, 288
for TScribbleDoc, 168
for TScrollDoc, 209
for TTEDoc, 254-255

DrawControls toolbox function,
209

DrawGrowlcon toolbox function,
80

Drawing. See Draw member func
tion; Scribble program

DrawMenuBar toolbox function,
175

DrawPicture toolbox function,
168,228

Duplication of member functions,
reduction of, 80

E
Edit menu commands, 140-141
Ellipses (...), 47
Empty functions, 83
Enableltem toolbox function, 87,

175
EndUpdate toolbox function, 79
EraseRect toolbox function, 228
Error Alert utility function (TDoc),

93,99-100
Errors

and constructors, 74
standard stream for, 18, 49, 61

Event handling
by TApp, 106, 124-131
by TDoc, 79-86
by TModelessDoc, 182-184
by TScrollDoc, 208-212
by TTEDoc, 254-257

EventLoop member function
(TApp), 106, 124-127

ExitLoop member function
(TApp), 139

Extern keyword, 9
Extraction operator(>>), 17-18, 51,

267

F
FailNIL utility (MacApp), 283
FailOSErr utility (MacApp), 283
Fields member function (TPICT-

Document), 284-286
File types

filtering of, 122
for Scribble, 168-169
signatures for, 75
forTApp, 119, 122-123
for TPICTApp, 222
for TScribbleApp, 169

for TTEApp, 260
Files and file management

appending to, 50
closing of, 92, 94, 96-98, 123-124,

139
menu commands for, 139
opening of. See Opening of files
reading of, 94, 98, 170-172, 226-

227
saving of, 87, 94-98
by Scribble, 170-172
and streams, 17-19, 61-62, 265-

267
by TDoc, 92-98
by TTEDoc, 257-259
writing to, 94, 98, 170-172
See also Documents

Filter member function (TTool),
62-64, 68-69

Filtering
of files types, 122
with redirection, 50-55, 62-64,

68-69
FindControl toolbox function, 196,

210-211
FindDoc member function (TDo

cList), 104
Finder, document opening with,

121-123, 168, 170
FindSub View member function

(TPICTDocument), 281
FindWindow toolbox function,

128
Fixcom.cp program, 51-55
Fixcom2.cp program, 62-63
Fixcom3.cp program, 66-70
FocusOnContent member func-

tion (TScrollDoc), 203-204
FocusOn Window member func

tion (TScrollDoc), 204, 207-
209, 215

Fonts.h file, 57

.,, Index 481

Free member function (TPICTDoc
ument), 283-284

Friend classes, 24, 43
FrontWindow toolbox function,

124
£streams, 61
Functions

for classes, 21
declaration and definition of, 9-

11
inline, 15-16, 37
member. See Members and

member functions
overloaded, 17

overriding of, 67-68

G
GetAppFiles toolbox function,

121-122
GetClipFromSystem member

function (TApp), 108-110,
115, 133

GetContentRect member function
for TScrollDoc, 201, 210
for TTEDoc, 246

GetCreator member function
for TApp, 117, 164
for TScribbleApp, 169

GetCtlValue toolbox function, 216
GetCurrScrollDoc member func

tion (TScrollDoc), 199, 219,
245

GetDitem toolbox function, 186,
188

GetDocType member function
forTDoc, 98
for TScribbleDoc, 169
for TTEDoc, 257

GetFileTypesList member func
tion

for TApp, 119, 122-123
for TPICTApp, 222

482 ~ Index

for TScribbleApp, 169
for TTEApp, 260

GetGrayRgn toolbox function, 83
GetHorizLineScrollArnount mem-

ber function
for TPICTDoc, 229
for TScrollDoc, 202, 219
for TTEDoc, 248

GetHorizPageScrollAmount mem
ber function (TScrollDoc),
202-203, 217

GetHorizSize member function
for TPICTDoc, 228
for TScrollDoc, 202, 205
for TTEDoc, 247

GetMinHeight member function
(TDoc), 84-85

GetMinWidth member function
(TDoc), 84-85

GetNewControl toolbox function,
201,219

GetNewDialog toolbox function,
181

GetNext member function (TList),
104

GetNextArg member function
(TTool), 59-60, 69

GetNextEvent toolbox function,
125

GetNumFileTypes member func-
tion

for TApp, 119, 122-123
for TPICTApp, 222
for TScribbleApp, 169
for TTEApp, 260

GetScrap toolbox function, 108
GetVertLineScrollAmount mem-

ber function
for TPICTDoc, 229
for TScrollDoc, 202, 219
for TTEDoc, 248

GetVertPageScrollAmount mem
ber function (TScrollDoc),

202-203, 217
GetVertSize member function

for TPICTDoc, 228
for TScrollDoc, 202, 205
for TTEDoc, 247

GetWinID member function
for TDebugDoc, 271
for TDoc, 77-78
for TModelessDoc, 181, 189

GiveClipToSystem member func
tion (TApp), 108-110, 116, 133

Global variables, 34
in header files, 11
and static members, 27, 199

GrafPort, 79-80, 166, 194, 203
Greater than sign (>)

for extraction operator(>>), 17-
18, 267

for file appending(>>), 50
for 1/0 redirection, 50

Growing of windows
with TDoc, 79-81, 83-85
with TModelessDoc, 184
with TScribbleDoc, 168
with TScrollDoc, 211-212
with TTEDoc, 257

GrowWindow toolbox function,
83

H
HandleArg member function

(TTool), 60, 66, 68
HandleObject class, 266
HandToHand toolbox function,

252
HaveSelection member function

(TTEDoc), 249
Header files for function declara-

tions, 11
HelloWorld.c program, 46
HelloWorld.cp program, 46-49
Hello World2 program, 145

debugging of, 158-159

derived classes for, 146-148
main program for, 149-151
makefile for, 152-157
objects for, 148-149
resources for, 151-152

HideControl member function
(TScrollDoc), 209

HiWrd utility (TDoc), 99

I
!Application member function

(TPICTViewApp), 289
'ICN#' resource, 177
Idle events

with TApp, 127
with TDoc, 86
with TModelessDoc, 183-184
with TTEDoc, 256

!Document member function
(TPICTDocument), 280

Implementation files, 11
InfoScrap toolbox function, 109
Inheritance, 25-26, 146

of constructors and destructors,
33

multiple, 265-266, 270-273
InitApp member function (TApp),

105, 115, 151
InitCursorCtl tool function, 58
InitDoc member function

called from TApp, 118
for TDoc, 78
for TPICTDoc, 225, 229
for TSampDlg, 186-187
for TScrollDoc, 200-201, 219
for TTEDoc, 240-243

InitGraf toolbox function, 58-59
Initialization

of application objects, 105, 115
of const variables, 16
of dialog box windows, 186
of documents, 77-78

., Index 483

ofmembers,28,33
of static members, 28, 198
of tools, 58
of TPICTDocument, 280-281
of variables, 9
See also lnitDoc member func

tion
InitOldDoc member function

(TApp), 119-120, 122
Inline functions, 15-16, 37
Input, keyboard, 249-250

redirection of, 49-55, 62-65
and streams, 17-19, 61-62, 265-

267
Insertion operator(<<), 17-18, 51,

267, 274
Iostream class, 17, 46, 61
IPICTDocument member function

(TPICTDocument), 280-281
IPICTViewApp (TPICTViewApp),

289
IsDialogEvent toolbox function,

182
!stream class, 266
Iterator objects, 42-43, 139
ITool member function (TTool),

58-59

J
Jump tables for virtual functions,

30

K
Keyboard and key press handling

input from, 18, 54, 249-250
by TApp, 129-130
byTDoc, 85
by TModelessDoc, 183
by TTEDoc1 249-250

KeyDown member function
(TApp), 129

Knaster, Scott, 295-296

vana61es fo;: 112, 150

l

486 ., Index

void, 36, 105
Pptr member function (stream

buf), 269
#pragma segment directive, 100,

281
PrClose toolbox function, 225, 231
PrCloseDoc toolbox function, 232
PrClosePage toolbox function, 232
Preprocessor, 4
Print Manager, 98, 225
Printing, 225

with TDoc, 98-99
with TPICTDoc, 229-233
with TPICTDocument, 281-282

Private clipboards, 108-111
Private protection level, 22-23
PrJobDialog toolbox function, 231
PrOpen toolbox function, 225, 230
PrOpenDoc toolbox function, 232
PrOpenPage toolbox function, 232
Protected protection level, 22-23
Protection levels for classes, 22-24,

289-290
and constructors, 32
and static members, 199

PrPicFile toolbox function, 232
PrStlDialog toolbox function, 230-

231
PrValidate toolbox function, 231
Public protection level, 22-23, 147
PutScrap toolbox function, 108

Q
QuickDraw, 57-58, 77, 107

See also PictView program
Quit member function (TApp),

139

R
Read-only variables, 16
ReadDocFile member function

called from TApp, 120

for TPICTDoc, 226-227
for TScribbleDoc, 170
for TTEDoc, 258

Reading of files
of 'PICT' files, 226-227, 283
with TDoc, 94, 98
of text files, 258
See also ReadDocFile member

function
Rectangles, 79, 238-242, 247
Redirection of 1/0, 49-55, 62-65
Removeltem member function

(TLink), 39-41
Resizing of dialog windows, 184
Resource IDs for windows, 77
Resources

for HelloWorld2, 151-152
for MAPictView program, 292-

293
for PictView, 234
for Scribble, 177
for TApp, 141-142
for TDebugDoc, 275
for TDoc, 101
for TModelessDoc, 189-190
for TScrollDoc, 219-220
for TTEApp, 261-262

Resume events, 112, 131-134
Run member function (TTool), 58-

59, 64

s
SADE

debugging with, 158-159
symbol tables for, 155

Saving of files, 87, 94-98
'SCBL' files, 164, 168
Scope of variables, 34 j
Scribble program, 163 ;'i

application for, 176
class for, 164-165 ·. ~

file 1ype and creator fur, 17

(
'

functions for, 166-168
makefile for, 177
menu handling by, 172-176
reading and writing of files

with, 170-172
resources for, 177

Scroll bars, 195-197, 204-208, 227
Scroll member function (TScroll

Doc), 214-217
ScrollClick member function

(TScrollDoc), 210
ScrollContents member function

for TScrollDoc, 207, 213-214, 216
for TTEDoc, 243

Scrolling
with PictView, 228-229
with TE, 238, 240
with TPICTView, 287
with TTEDoc, 243-246
See also TScrollDoc class

ScrollRect toolbox function, 243
Segments

for MacApp programs, 281
for TDoc, 100

Selections, text, 92, 248-249
SetClikLoop toolbox function, 242,

245,255
SetDitem toolbox function, 186-

188
SetFScaleDisable toolbox function,

58
SetMenuAbility utility function,

87
SetOption member function

(TTool), 60, 66, 68-69
SetOrigin toolbox function, 194,

203
Setp member function (stream

buf), 269
SetScrollBarValues member func

tion
for TScrollDoc, 207-208, 214-217

.,,. Index 487

for TTEDoc, 244
SetTERect member function (TTE

Doc), 242, 247
SFGetFile toolbox function, 119
ShowControl toolbox function,

208
ShowDocWindow member func-

tion (TApp), 118
Signatures, 75, 117, 164, 168-169
'SIZE' resource, 131, 142
SizeScrollBars member function

(TScrollDoc), 201, 204
SizeWindow toolbox function, 83-

84
Sizing of windows, 83-85, 184
Slashes(//) for comments, 7-8

programs to convert, 50-55, 62-
63, 66-70

Sleep Val member function
(TApp), 126

Space allocation, 9, 33, 112
'SPCT' files, 168
SpinCursor tool function, 58, 63
Splonskowski, Steve, xvii
Standard 1/0, 18, 49
Static members, 27-28, 31, 198-199
'STR#' resource, 99, 101
Streambuf class, 266-267
Streams, 17-19, 61-62, 265-267
Strings, C vs. Pascal, 149
Suspend events, 112, 131-134
Symbol tables with compilation,

155
SynchScrollBars member function

for TScrollDoc, 201, 208
for TTEDoc, 245, 250-251, 253,

258
SysEnvirons toolbox function, 107
System clipboards, 108-111
Systems software in C ++, 4

488 .,. Index

T
TApp class, 103

cleaning up with, 116
clipboard support by, 107-112
compilation of, 142
constructor for, 112-114
destructor for, 114
for document creation, 116-123
for document deletion, 123-124
event handling by, 124-131
initialization of, 115
members of, 106-107
menu handling by, 134-141
and MultiFinder, 131-134
resources for, 141-142
use of, 105-106

TApplication class (MacApp), 288
TDebugDoc class, 265, 270-273,

275
TDoc class, 73

for clipboard handling, 91-92
compilation of, 100
constructor and destructor for,

74-76
and document initialization, 77-

78
event handling by, 79-86
file handling by, 92-98
members in, 7 4
menu handling by, 86-91
for printing, 98-99
resources for, 101
and TApp, 103
utilities for, 99-100
window maintenance by, 78-79

TDocList class, 104
TE (Text Edit Manager), 238
TEActivate toolbox function, 254
TEAutoView toolbox function,

242,244,255
TEClick toolbox function, 85, 245,

249,255
TECopy toolbox function, 252

TEDeactivate toolbox function,
254

TEDelete toolbox function, 251
TEDispose toolbox function, 241
TEGetText toolbox function, 259
TEidle toolbox function, 86, 256
TEinsert toolbox function, 250
TEKey toolbox function, 129, 250
Templates for objects, 21, 34
TENew toolbox function, 242
TEScrapHandle toolbox function,

252
TEScroll toolbox function, 214,

238,243
TESetSelect toolbox function, 249
TESetText toolbox function, 258
TEUpdate toolbox function, 254
Text Edit Manager, 238
Text editing. See TTEDoc class
'TEXT' files

with clipboard, 91
reading of, 258-259
writing of, 259

THelloApp class, 148
THelloDoc class, 146-147
Think C, 297-298
"This" as function argument, 28-29
Thumb position, scroll bar, 207,

216-217
Tildes(-) for destructors, 31
Tlt~rator class, 42-44
TLink class, 36-39
TList class, 35-38, 104-105
TModelessApp class, 189
TModelessDoc class, 179

application using, 184-189
constructor and destructor for,

180
event handling by, 182-184
makefile for, 190-191
resources for, 189-190
for window creation, 181

TogglePenMenu member function

(TScribbleDoc), 175
Tool programs, class for, 56-61
TPICTApp class, 221-223
TPICTDoc class, 223-226
TPICTDocument class, 280-286
TPICTView class, 286-288
TPICTViewApp class, 288-291
TrackControl toolbox function,

216, 218
TrapA vailable member function

(TApp), 114
Truncation, warning for, 12
TSampDlg class, 185-189
TScribbleDoc class, 164-165
TScrollDoc class, 193-197

constructor and destructor for,
200

coordinate system for, 203-204
event handling by, 208-212
geometry of, 201-203
initialization of, 200-201
members for, 197-199
resources for, 219-220
for scroll bar management, 204-

208
scrolling with, 212-219

TTEApp class, 259-263
TTEDoc class, 237

application class for, 259-263
changing of text with, 248-253
constructor and destructor for,

240-241
document dimensions with,

246-248
for event handling, 254-257
file operations with, 257-259
initialization of, 241-243
membersfor,239-240
scrolling with, 243-246

TTool class, 56-61
TView class, 278
TWindowStreamBuff class, 268-

272

~ Index 489

Types and type checking

u

for arguments, 10, 12-13, 16, 147
for class members, 22
of const variables, 16
with streams, 17
of utilities vs. macros, 99

Underflow member function
(streambuf), 267

UNIX environments and streams,
17-18

Update events
with TApp, 131
with TDoc, 79-81
with TModelessDoc, 183
with TScrollDoc, 209-210, 213

User input with dialog boxes, 189
Utilities for TDoc, 99-100

v
ValidateConfiguration function

(MacApp), 291-292
Variables

declaration and definition of,
8-9, 11-12, 34-35

global, 11, 27, 34, 199
local, 12, 34
pointer, 112, 150
read-only, 16

View rectangles, 238-242
ViewEdit program, 292
Virtual destructors, 33, 76
Virtual member functions, 30-31
Void functions, 10, 230
Void pointers, 36, 105

w
WaitNextEvent toolbox function,

114, 125-126, 132
WantToSave member function

called from TApp, 139
for TDoc, 96

490 _., Index

Warnings, compiler, 65-66
suppression of, 155
for truncation, 12

Weston, Dan, 295-296
'WIND' resource, 78, 101, 151, 271-

272, 275
Windows

activation of. See Activate mem
ber function; Activation of
windows

coordinates for. See Coordinates
for windows

creation of. See MakeWindow
member function

dialog, 181, 184, 186
dragging of, 83-85
and GrafPort, 194, 203
maintenance and management

of, 78-79, 83-85
rectangles in, 79, 238-242, 247
resource for, 77-78, 101, 151,

271-272, 275
sizing of. See Growing of win

dows
Word wrap for TTEDoc, 242, 247
WriteDocFile member function

for TDoc, 94-96
for TScribbleDoc, 170
for TTEDoc, 259

Writing to files, 94, 98,170-172, 259

z
Zooming of windows

with TDoc, 83-85
with TScrollDoc, 211-212
with TIEDoc, 257

C++ Source Code Disk Available

~
\<::)

Complete source code for all programs in
Elements of C++ Macintosh Programming
on an SOOK Macintosh floppy. Requires
MPW C++ 3.lbl, or later.

Leave the typing to us - Save time and worry I

Just $35.00, postage and handling included.
Mastercard and Visa accepted.

Send in the coupon below or phone in your order today.

Company ____________ _

Address -------------
City, State, Zip __________ _

Nerd works
Date _____________ _

3410 SW Water Ave. $35.00 check enclosed _Visa _Mastercard

Portland, OR 97201 card # exp date
(503) 274-9577 ---

signature-------------

Programming

Elements of C++ Macintosn
Programming

D AN WE S T O N

The C++ programming language i
recognized as the future of
Macintosh® programming, and it is
rapidly becoming the standard
programming language for Apple®
Computer, Inc. Every Macintosh
programmer, both beginning and
advanced, needs to begin exploring
the power of c + + .

Elements ofC++ Macintosh
Programming teaches Macintosh
programmers just what they need to
know to take the step forward from
programming with C to programming
with c ++ . It is also the perfect
guide for programmers already
programming with C+ + . This book
teaches the basic elements of c+ +
programming, concentrating on the
object-oriented programming style
and syntax. Through numerous
hands-on examples, both beginning
and more experienced programmers
will learn how to design practical
and effective programs wi th c + + l

including the newest version,
Release 2.

You will also learn how to:

• Create document and application
classes that simpli fy programming

• Derive document classes that
can scroll pictures and text

Author photograph by Eric Edwa rds

Cover design by Ronn Campisi

Addison-Wesley Publishing Com pan)\ l nc.

Use streams for eas ily displaying
debugging info rmation

• Create powerful hybrid classes
using multiple inheritance

• Use C++ Release 2 with
MacApp®version 2.

In addition, the appendices include
th e complete original source code
used in the examples in the book.
This h ands-on approach to C+ +
makes Elements of C + +
Macintosh Programming an
invaluable guide for all Macintosh
programmers.

Dan Weston
is an expert on c + +
Macintosh programm ing.
He is a Macintosh
software developer and
programming instructor
and is a member
of Apple's Certified
Developers Group.
He is also the author of
The Complete Book ef Macintosh
Assemb!J Language Programming. -- -- -~--- -· J

ISB - N-0-201 - 55025~ 3

:1::~~) , ... :1:,'.'.':i.!'.?, ··r· ('' ,··;· 1::· r"~:i:. ·;::;"·:,1t .. '·:':.~r··:;
::. l - ::.t· c 1·-~ , :, · ·1• ·-

() l ./ 'i. () .. / i.? :~:_:'. ' .

ISBN 0-201-55025-3
5502 5

