
S G 0 T T K N A S T E R

Extending~~_____,
he

Programming Menus, VVlndows,
Dialogs, and More

JOHN _C.MAY
.•·

J U DY / B . W H I T T L E

----\

Extending the Macintosh® Toolbox ·

Extending the
Macintosh® Toolbox
Programming Menus, Windows,
Dialogs, and More

John C. May

Judy B. Whittle

Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts • Menlo Park, California • New York
Don Mills, Ontario• Wokingha~, England• Amsterdam
Bonn • Sydney • Singapore • Tokyo • Madrid • San Juan
Paris• Seoul• Milan• Mexico City• Taipei

Many of the designations used by manufacturers and sellers to distin
guish their products are claimed as trademarks. Where those designa
tions appear in this book and Addison-Wesley was aware of a trademark
claim, the designations have been printed in initial capital letters.

Library of Congress Cataloging-in-Publication Data

May, John c.
Extending the Macintosh toolbox : programming menus,

windows, dialogs and more I John C. May, Judy B. Whittle.
p. cm. -- (Macintosh inside out)

Includes bibliographical references and index.
ISBN 0-201-57722-4
1. Macintosh (Computer)--Programming. 2. Macintosh Toolbox

(Computer programs) I. Whittle, Judy B. II. Title. III. Series.
QA76.8.M3M3765 1991 91-14461
005.265--dc20 CIP

Copyright© 1991 by John C. May and Judy B. Whittle

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without
the prior written permission of the publisher. Printed in the United States
of America. Published simultaneously in Canada.

The authors and publishers have taken care in preparation of this book,
but make no express or implied warranty of any kind and assume no
responsibility for errors or omissions.No liability is assumed for inciden
tal or consequential damages in connection with or arising out of the use
of the information or programs contained herein.

Sponsoring Editor: Carole McClendon
Project Editor: Elizabeth Rogalin
Cover design: Ronn Campisi
Set in 10.5-point Palatino by Don Huntington

12 3 4 5 6 7 8 9 -MW- 9594939291
First printing, August 1991

This book is dedicated to Pat Whittle.

1.

Contents

Foreword by Scott Knaster

Preface xix

Acknowledgments xxi

Introduction 1

Is This Book for You? 1
How the Book Is Organized 1
Conventions Used 2

xvii

Data Are or Data Is? 2
Punctuation with Code 2
Capital Letters in Source Code 2
Monospace Font for Code 3

Using the Routines in This Book 3

2. Programming Language 5

Programming Language Used in This Book 5
C Program.ming Standards 5

Case (Switch) Statements 5
Brace Rule 1 (separate lines) 6
Brace Rule 2 (if and else) 7
Parentheses Rule 1 (statements) 8
Parentheses Rule 2 <Junctions) 8

vii

viii ..,.. Contents

Arithmetic Operators Rule 9
Commas Rule 9
Semicolon Rule 10
Capitalization Rule 1 (junctions) 10
Capitalization Rule 2 (variables) 10

Useful Macros 11

Handling Errors 12

The Way Apple Prefers You to Program 12

3. Initializing the Toolbox 15
Setting Up Your Program with lnit ToolBox.c 15

Summary 19

4. Menus 21

Overview of Menus 21
Building Menus 21

InitMenu.c 22
The Apple Menu 23

DoAppleMenu.c 23
Routines Involving Menu Items 24

DablMenultem.c 24
EablMenultem.c 25
DAllMenultems.c 25
EAllMenultems.c 26
MarkMenultem.c 27

Testing the Keyboard 28
CommandlsDown.c 29
CapsLocklsDown.c 30
ControllsDown.c 31
OptionlsDown.c 31
ShiftlsDown.c 32

Using an 'MBAR' Resource 32

DrawMBar.c 33
A Simple Menu Example 34

MenuExample.c 34
MenuExample.R 35

Summary 36
Recommended Reading 36

5. Cursors 37

Overview of Cursors 37
Using Black-and-White and Color Cursors 37

FetchCursor.c 38
A Simple Cursor Example 41

CursorExample.c 41
CursorExample.R 43

Summary 48
Recommended Reading 48

6. Windows and Dialogs 49

Overview of Windows and Dialogs 49
Dialog Records 50
Creating Dialogs 51

OpenDialog.c 51
Dialog Positioning 52

CenterDialog.c 52
Window Positioning 54

CenterWindow.c 54
Window Stacking 56

StackWindow.c 56
Writing Your Own Modal Dialog Routine 58

MyModalDialog.c 59
Changing the Default Dialog Font 66

SetDFont.c 66

..,.. Contents ix

Creating a General-Purpose About Dialog Routine 67
AboutDialog.c 68

The About Example 70
AboutExample.c 70
AboutExample.R 72

Creating a General-Purpose Copyright Routine 73
CopyrightDialog.c 73

Summary 76
Recommended Reading 76

x ~ Contents

7. Alerts 77

Overview of Alerts 77
A General-Purpose Alert Routine 78

NoteAlert.c 78
CautionAlert.c 79
StopAlert.c 80

A Standard Confirmation Alert Routine 81
Confirmation.c 81

The Alert Example 83
AlertExample.c 83
AlertExample.R 85

Summary 86
Recommended Reading 86

8. Resources 87
Overview of Resources 87
Resource Compilers 92
Resource Editors 92
Special-Purpose Editors and Builders 93
Resource Decompiler 93
RMaker Program Syntax 93

RadioButton.R 95
Resource File Merging and Overwriting 98
Summary 99
Recommended Reading 99

9. Buttons 101
Overview of Buttons 101
Routine to Draw the Outline of a Default Button 101

FrmDefltem.c 102
A Simple Button Example 105

ButtonExample.c 106
ButtonExample.R 107

Summary 108
Recommended Reading 108

10. Check Boxes 109

Overview of Check Boxes 109
Getting and Setting the Check Box State 109

PutCheckBox.c 110
GetCheckBox.c 111

Toggling the Check Box State 112
ToggleCheckBox.c 112

A Simple Check Box Example 113
CheckBoxExample.c 113
CheckBoxExample.R 115

Summary 117

11. Radio Buttons 119
Overview of Radio Buttons 119
Setting the Radio Button State 119

GetRadioButton.c 120
PutRadioButton.c 121

Grouping Radio Buttons 123
PushRadioButton.c 123

A Simple Radio Button Example 125
RadioButtonExample.c 125
RadioButtonExample.R 126

Summary 128

12. Icons 129

Overview of Icons 129
Using Icons as Control Buttons 130

GetButton!con.c 130
DoButton!con.c 133
DispButton!con.c 136

Using Icons as Toggle Switches 136
GetTogglelcon.c 137
DoTogglelcon.c 138
DispTogglelcon.c 140
IconO.ff.c 141
IconOn.c 142

A Simple Icon Example 143
IconExample.c 143
IconExample.R 145

Summary 147

...,. Contents xi

xii ~ Contents

13. Pictures 149

Overview of Pictures 149
Drawing a Picture 149

DrawPict.c 150
A Simple Picture Example 151

PictExample.c 151
PictExample.R 154

Summary 161
Recommended Reading 161

14. Static Text 163

Overview of Static Text 163
Active and Inactive Static Text 163

ActiveStatic.c 163
InactiveStatic.c 164

A Simple Static Text Example 165
StaticTextExample.c 166
StaticTextExample.R 167

Summary 168
Recommended Reading 168

15. Edit Text 169

Overview of Edit Text 169
Active Edit Text Fields 170

GetActiveEditText.c 170
SetActiveEditText.c 171

Input and Output Routines for Integers 173
InputShort.c 174
InputLong.c 178
InputHexShort.c 179
InputHexLong.c 181
OutputShort.c 183
OutputLong.c 186
OutputHexShort.c 187
OutputHexLong.c 188

Input and Output Routines for Floating-Point Numbers 190

InputFloat.c 192
OutputFloat.c 199

Get and Put Routines for Edit Text 206
GetEditShort.c 207
PutEditShort.c 208
GetEditLong.c 210
PutEditLong.c 210
GetEditFloat.c 211
PutEditFloat.c 212

Displaying Strings 213
GetEditString.c 213
PutEditString.c 214

Text Edit Routines 215
TECopy.c 216
TECut.c 218
TEPaste.c 218
TESelectAll.c 219

..,.. Contents xiii

Lowercase, Uppercase, Capitalize, and Change Case 220
TELower.c 220
TEUpper.c 221
TECapitalize.c 222
TEChgCase.c 223

A Simple Edit Text Example 224
EditTextExample.c 224
EditTextExample.R 226

Summary 228
Recommended Reading 229

16. Lines 231

Overview of Lines 231
Drawing Dotted and Solid Lines 231

DrawDottedLine.c 231
DrawLine.c 233

A Simple Line Example 235
LineExample.c 235
LineExample.R 238

Summary 242

xiv ~ Contents

17. Rectangles 243
Overview of Rectangles 243
Drawing Rectangles in Various Styles 243

PlainFrame.c 244
ThickFrame.c 246
DoubleFrame.c 247
ShadowFrame.c 248

A Simple Rectangle Example 249
RectExample.c 249
RectExample.R 251

Summary 253
Recommended Reading 253

18. Scrolling Lists 255

Overview of Scrolling Lists 255
Drawing a Scrolling List 257

DrawScrollList.c 257
Handling the Scrolling List 259

DoScrollList.c 260
Updating a Scrolling List 261

UpScrollList.c 261
Setting the Cells of the Scrolling List 262

AddCell.c 262
SetCell.c 263

Getting the Cells of the Scrolling List 264
GetCell.c 264
GetListString.c 265

Selecting and Unselecting Cells in a Scrolling List 266
SelectCell.c 266
UnselectCell.c 267

Setting the Cells of the Scrolling List 267
GetStringList.c 268

A Simple Scrolling List Example 270
ScrollingListExample.c 270
ScrollingListExample.R 272

Summary 273
Recommended Reading 273

19. Pop-up Menus 275

Overview of Pop-up Menus 275
Drawing a Pop-up Menu 275

DrawPopUp.c 276
Handling a Pop-up Menu 280

DoPopUp.c 280
Updating a Pop-up Menu 286

UpPopUp.c 286
A Simple Pop-up Menu Example 289

PopUpExample.c 289
PopUpExample.R 290

Summary 292

20. Putting It All Together 293

A Comprehensive Example 293
Kit and Caboodle.c 293
Kit and Caboodle.R 297

Appendix A Glossary 305

~ Contents xv

Appendix B Modules Developed in This Book 309

Bibliography 313

Index 317

Foreword by Scott Knaster

When any new computer system appears, its designers do their best to
figure out how the world will receive and use their creation. Sometimes
they get it right, and sometimes they get surprised. When the original
Macintosh was being designed, lots of folks thought that its main
advantage for application programmers was that they could safely
ignore the human interface, since it was being done for them.

Of course, that isn't exactly what happened. Because the Macintosh
Toolbox provided unprecedented power and flexibility to the user
interface, application programmers were especially careful in their inter
face work. Building great interfaces, it turned out, became more impor
tant than ever, but it still required lots of hard work.

Although the Toolbox does much of the tough work for interface
programming, it's up to application programmers to put it all together.
This task includes designing the interface from the standard elements
provided, figuring out how to use everything in the right situations, and
knowing when to tweak the standard way of doing things just a little.

Inside Macintosh in its many beloved volumes has instructed program
mers for years on the right incantations to use to summon up the nifty
stuff that's in the Macintosh ROM and system, but it's not the job of Inside
Macintosh to discuss user interface strategy and tactics in any great detail.
This book will help you with that task.

As the Macintosh has matured over the years, the programming
community has figured out sensible ways of using the user interface
tools provided by Apple's system programmers. In this book, John May
and Judy Whittle present a treasure chest of user interface programming
code chunks and strategies for you to use.

xvii

xviii ~ Foreword

This is not a book of theory or lectures. Instead, it's extremely
practical, loaded with real-live working examples that you can use to
make your own programs come to life. In the text, the authors explain
just what's going on, so you can learn from what they've done in case
what you'd really like to do is just a little bit different from what they've
presented here.

The Macintosh Toolbox is a great place to begin writing any applica
tion. Now, with this book, you can jumpstart your programming with
the great techniques and examples provided by John and Judy.

Scott Knaster
Macintosh Inside Out Series Editor

Preface

This book is the brainchild of John May and Pat Whittle. John became an
enthusiastic Macintosh programmer in 1986 after years of developing
programs for super computers through work stations. When he discov
ered that the Macintosh Toolbox presented a major stumbling block in
designing software for the Macintosh, John began developing routines in
accordance with Apple's Human Interface Guidelines that would assist
programmers in overcoming the Toolbox obstacle. He approached Pat,
a writer with many technical books and articles under his belt, and the
two came up with a unique idea: a book full of ready-to-use, compiled,
and tested routines that any programmer could add to an application
routines that would take over the task of providing the desktop inter
faces at the appropriate time and in the appropriate format.

Pat died unexpectedly in January 1991, after he was well into the
project. It was his fervent wish that the book be completed, so his wife
Judy picked up where he left off and, with unending help from John and
Elizabeth Rogalin of Addison-Wesley, fulfilled the wish. With apprecia
tion for all of Pat's contributions, we dedicate this book to his memory.

We have tried where possible and applicable to include color at
tributes for the routines, keeping in mind that the Toolbox has under
gone enormous changes with the advent of color machines. It is a
certainty that the Toolbox will experience even more changes in the next
few years. We're so enthusiastic about that we already have another book
bursting its restraints on the drawing board.

JohnC. May
Judy B. Whittle

Danville, California
June 1991

xix

Acknowledgments

We'd like to thank the following people for helping us with this book:
Mary and Shawn May and Pat (Jr.) and Paul Whittle for their en

couragement, support and patience, without which we might have fallen
by the wayside.

Stacey Reineccius and Scott Knaster for their detailed technical re
view of the manuscript and their excellent suggestions.

Carole McClendon and Rachel Guichard, the Addison-Wesley folks
in Berkeley who got the book going and encouraged us throughout the
project.

Lori Renn, copy editor supreme, who fashioned a silk purse out of a
sow' s ear and was nice to us in the process.

Mary Cavaliere, Diane Freed and the other Addison-Wesley produc
tion staff who kept the project on schedule.

Most of all, huge thanks to Elizabeth Grose Rogalin, Project Editor,
without whose help, understanding, cajoling, encouragement, and a
little nagging this book would not have been possible. She took on the
project at a difficult time, gave us every kind of support we needed to get
the job done, and brought joy to the effort. It's been a great experience!

xxi

1 Introduction

This book is a compendium of instructions and advice on how to
construct graphic interfaces for the Macintosh using a combination of
Toolbox routines, our original routines, and THINK C programming.
With the techniques in this book, you can learn faster, easier ways to
develop applications distinguished by professional quality and pleasing
appearance, and you can concentrate on development without the dis
tractions of coping with the technicalities of the Macintosh desktop
interface.

~ Is This Book for You?
If you are interested in software development for the Macintosh, this
book is for you. This is not a primer, so you should be familiar with
Apple's Human Interface Guidelines and have some programming
experience with Symantec' s THINK C. If you have not programmed in C,
you should at least understand data structures, variables, and subrou
tines. Most of all, you need to understand the concept of resources as they
are used in the Macintosh environment.

~ How the Book Is Organized
We've organized this book into twenty chapters, most of which contain
routines or functions that can be grouped around a central user interface
theme: menus, dialogs, cursors, and so on. In Chapter 2, you'll find a
summary of C programming standards, complete with code examples.

1

2 ~ Chapter 1 Introduction

Chapter 3 introduces you to the Toolbox and the routine InitToolBox.c,
which you must call for all of our other routines.

The remaining chapters cover more than one hundred routines and
examples. First, we present an overview of the chapter's theme. Then, at
the beginning of each routine, comes a brief description of its purpose,
followed by the numbered lines of code. After the code listing, we review
in detail exact! y what happens in each line or section of the routine. At the
end of most chapters is a recommended reading list of briefs, articles, and
books that deal specifically with the subject of that chapter's routines .

....,.. Conventions Used
Any book, whether a technical treatise or the great American novel,
needs to be consistent. The following paragraphs explain the use of
certain expressions, punctuation, and type faces .

..,_ Data Are or Data Is?

What about data are or data is? We've standardized on regarding data as
a collective noun in the singular; hence, data is .

..,_ Punctuation with Code

Punctuation can get tricky when code is mixed with the straight text. If,
for instance, a period at the end of a sentence could be misinterpreted as
a code period, we leave it out. The same goes for colons and semicolons,
which are especially tricky because a semicolon marks the end of a
statement in the C programming language .

..,_ Capital Letters in Source Code

A popular convention with C programmers that we have also adopted is
to start the first word of a variable's name with a lowercase letter but to
capitalize the first letter of each subsequent word, as in screenRect. (Also,
the convention in this series is to italicize variables in the text.) Functions
are treated differently, with an initial capital letter for each word in the
function's name, as in CenterDialog.

..,.. Using the Routines in This Book 3

..,. Monospace Font for Code

Code listings appear in Courier font, which is probably the most widely
used of the monospace (or sometimes called "typewriter") fonts. Each
character in Courier is of the same width, or uniformly spaced, so the
characters line up neatly by column. In contrast, most fonts used in book,
magazine, and newspaper text are proportionally spaced: that is, a w
takes up more room than an i. Portions of code mentioned in the text are
not set in Courier because the mix of type styles fragments the text and
can confuse the eye .

....,_ Using the Routines in This Book
The essence of this book is the routines, more properly called functions
in C. You can keyboard the routines or load their files from the disk
available by returning the coupon in the back of the book. Doing either
is quite possible with little or no knowledge of programming; but the
better you understand the steps, the easier it will be to get the quality you
want in your application and to adapt and customize it. For this reason,
we explain every line or section of the routine FrmDefltem.c in Chapter
9. (This routine puts a double frame around the default button in a dialog
box.)

You'll find that certain functions, such as InitToolBox and FrmDefltem,
crop up throughout the routines. In fact, InitToolBox is essential as the
first function in every program in this book. Therefore, we devote
Chapter 3 to InitToolBox, and we give detailed descriptions of every
statement.

To include our routines in your own applications, you can keyboard
them into your Include statements in a THINK C Project file. Or you can
click on the Add item in the Project menu and then select the names of the
routines you want from the C module file.

If you send the coupon to obtain the floppy disk, you will have
everything you need to run the routines immediately. The disk includes
all of the C routines, which are in a folder. It also includes all examples
along with their resource files, source code, project files, RMaker-com
piled resource files and the applications themselves.

2 Programming Language

...,. Programming Language Used in This Book
Routines in this book are written in THINK C. For readers who have not
had much experience with C, we devote this chapter to a discussion of C
programming standards, complete with examples of the hierarchical
levels of the code. Although C is a popular language (developed in the
UNIX environment}, it is terse, and C programmers must follow pre
scribed conventions .

...,. C Programming Standards
One C convention is that if you can execute an if-test in one line, you don't
need to enclose it within a pair of curly braces. This can be confusing, so
it's a good idea always to use the braces. In the following paragraphs,
you'll find other examples of C programming conventions .

..,_ Case (Switch) Statements

"Case" is the name given to a type of statement that chooses one
condition from a list of several. Imagine your mouth is watering for a
sweet, crisp, fragrant apple. You go to the produce section of a market.
You know what varieties please your palate most, but they may not all
be available. Going through your mind is a case-statement that might
amount to: "Get golden Delicious, my favorite. In case there are no

5

6 ~ Chapter 2 Programming Language

golden Delicious, get red Delicious. In case they're out of red Delicious,
get Winesap." You might add a default statement: "If !can't get any of my
favorites, I'll grumble but take whatever variety they have."

The following shows a typical case-statement written in C.

switch (theVar)

case (1):

do stuff here

break;

case (2):

do more stuff here

break;

default

do default stuff here

break;

In this example, note the "break" at the end of each "case." The break
is a useful precaution. Say you have two cases, as shown. Later you add
a third case, after the second. If it were not for the break, case 2 would run
into case 3 and mess up your program.

~ Brace Rule l (separate lines)

This is a convention we use to avoid misunderstandings and oversights.
In the example of a for-loop, we prefer to put the brace on a separate line.
C will let you keep the brace on the same line, but it can be confusing
visually.

One good thing about indenting code is that it sets events apart and
makes the code more comprehensible. The bad thing about indenting
code is that a programmer tends to look at a particular level of indention
and assume that every operation on that level is going on simulta
neously, which is not necessarily true. C knows nothing about indenting;
C uses braces, not indentions, to determine what actions will take place.
That is one reason for making the braces stand out, as shown in the
following example.

This:

for (i = l; i <= 10; i++)
{

do stuff here

Not This:

for (i = l; i <= 10; i++){

do stuff here

~ Brace Rule 2 (if and else)

~ C Programming Standards 7

You need to follow this rule closely. If you don't, you can easily make
mistakes that can be disastrous to your program. C allows you to do an
if-statement with an else-statement without braces-if there is only one
line of code after the if-statement and only one line of code after the else
statement. If you do not use braces (braces are shown in the first
example), you stand a good chance of making the kind of mistake that
you see under "Styles."

This:

if (i < 0)

{

do one line

else
{

do another line

Not This:

if (i < 0)

do one line
else

do another line

8 ..,.. Chapter 2 Programming Language

Styles:

if (a = b)

c = d;
if (a = b);

c = d;

OK (bad form)

Wrong (error)

You must not put a semicolon after "if (a = b)" in the preceding
example. It is remarkably easy to make that mistake because in C almost
every line of code has a semicolon after it. The statement here should say,
"If a equals b, then c equals d." Instead, the "wrong" example says, "If a
equals b, then do nothing and always set c equal to d." The best way to
avoid this type of error is to use braces, shown below as the "best" style.

if (a = b) Best
{

c = d;

In this case, if you inadvertently put a semicolon after the "if (a= b)"
expression, the brace on the following line will automatically flag the
error.

~ Parentheses Rule 1 (statements)

Inserting a space in front of the left parenthesis in the following statement
separates that statement from a function that is not built into C.

This:

for (i = l; i <= 10; i++)

Not This:

for(i = 1; i <= 10; i++)

~ Parentheses Rule 2 (functions)

Here you do not insert a space in front of the left parenthesis. No space
indicates that this is a function you have written that will be called and
executed from your program.

This:

MyFunction(variable)

..,.. C Programming Standards 9

Not This:

MyFunction (variable)

...,. Arithmetic Operators Rule

The nasty statement below says: "a is equal to i plus j plus 1, times the
value pointed to by k. After that assignment to j, increment i by l." The
only way to comprehend this statement is with the spaces around the
operators. For example, two plus signs together (++) indicate a single
variable operator, and one plus sign (+)signifies addition, requiring two
variables. A star or asterisk (*) can mean multiplication, but it can also
mean "object pointed to by." To differentiate, you put spaces before and
after the binary operators that require two arguments. If they are not
binary operators, you put no spaces around them. The spaces do not
change the order of operation; single operations will be performed first,
and binary operations will be performed second.

This:

a = i++ + ++j * *k;

Not This:

a=i+++++j**k; (Huh?)

...,. Commas Rufe

This rule is mainly for esthetics, but it helps for clarity as well. A space
after every comma inside a function call makes it clear that you are
passing in discrete variables, in this case three variables. That fact is not
as readily comprehensible in the second example.

This:

MyFunction(theVarl, theVar2, theVar3)

Not This:

MyFunction(theVarl,theVar2,theVar3)

10 ~ Chapter 2 Programming Language

....., Semicolon Rule

The convention here is to put a space after every semicolon in the for
loop. This helps prevent the accidental omission of a variable. If you
forget to insert one of the required variables, the for-loop may loop
forever.

This:

for (i = 1; i <= 10; i++)

Not This:

for (i = l;i <= lO;i++)

....., Capitalization Rule 1 (functions)

In the name of a function, subroutine, or routine, you capitalize the first
letter of each significant word within the function name (including the
first). That helps you recognize it as a function and not as a variable.

This:

MyFunction(theVar)

Not This:

myFunction(theVar)

Not This:

myfunction(theVar)

Not This:

MYFUNCTION(thevar)

The last three examples are not written in valid code .

....., Capitalization Rule 2 (variables)

Begin the first word of a variable's name with a lowercase letter, but
capitalize the first letter of each significant word that follows. This
convention helps you distinguish a variable from a function.

.,.. Useful Macros 11

This:

short eventRecord ;

Not This:

short Event Record ;

...._ Useful Macros

Important ~ I

Many routines in this book include macros to save time and space.
Following the list of macros, you'll find an explanation of how each is
used. Note that each macro begins with a "#define" statement. A macro
always appears in the declarations section at the beginning of a routine.

Listing 2-1. Nine useful macros

1: #define SetRGBColor(rgb , r , g , b) {(rgb)->red = (r) ; (rgb) - >green
(g); (rgb)->blue = (b) ; }

2: #define SetRect(rect,l,t , r , b) {(rect)->top = (t); (rect)->left
(l); (rect) - >bottom = (b); (rect)->right = (r);}

3: #define SetPt(Pt,hor,vert) {(Pt)->h = (hor) ; (Pt) - >v = (vert);}
4 : #define abs(a) ((a)<O?-(a): (a)) / *Absolute macro function*/
5 : #define min(a,b) ((a) < (b)?(a) : (b)) /*Minimum macro function*/
6 : #define max(a,b) ((a) < (b)?(b): (a) /*Maximum macro function*/
7 : #define false 0
8 : #define true 1
9 : #define NIL (OL)

/ *Logicals */

/*NIL pointer */

The first macro, SetRGBColor, is not found in the Toolbox, although it
probably should be. Here you define an RGB color and then define the
separate colors.

.. 'YV ~ show th_\~ macro tm ~~. lin~s because the~1ode, .;w011ld qgt fit C>P
one line in iliis book. However, C'does not allow you to have a car-
riage r£;tum within a mac~~· (The same is tr r macro 2.)..,

tW:.» :;.o):::.¢ ' ' ;>)~

SetRect is a Toolbox routine that we've replaced here with macro 2. As
stated in the THINK C User's Manual, it takes more time to use the
Toolbox's SetRect than it does to set up the coordinates yourself because
of the overhead required by the Macintosh trap dispatcher. If you set the
coordinates, it will take four lines to do so. This macro replaces the rect,

12 • Chapter 2 Programming Language

l, t, r, and b with four lines. All you will see before you compile the code
is the one line of the macro.

SetPt is another Toolbox routine we replaced with a macro for the
same reason we replaced SetRect. This macro sets a point equal to the
horizontal and vertical coordinates.

Macros 4, 5, and 6 are functions that are not normally found in the
compiler. They are essentially low-level numerical routines. Macro 4
takes an absolute value of some number; macro 5 takes the minimum
value between two numbers; and macro 6 takes the maximum value. The
awful looking code in these statements is necessary to defend against
precedence problems. It's a good idea to enclose each parameter in
parentheses and then to enclose the entire result expression in parenthe
ses to keep the macro out of a larger expression. In each macro the
question mark and colon have special meaning. In macro 4 the question
mark says, "If a is less than 0, then we take the negative of a." The colon
says, "Otherwise, take a."

Macro 7 defines false as O; macro 8 defines true as 1; and macro 9
defines NIL as 0 long .

....,. Handling Errors
Our philosophy in handling errors is not to go overboard in setting up
error checks. We did not include a test for errors if an error could not
possibly have been created by the user. Unless the user physically altered
the program, the user could not create an error. Therefore, we elected to
let the system handle errors such as running out of memory.

For the few routines in this book in which a user could originate
an error, we built in tests for errors. An example is OutputFloat.c in
Chapter 15 .

....,. The Way Apple Prefers You to Program
The folks at Apple have established a hierarchical approach they would
like Macintosh programmers to follow. Their approach minimizes the
chance of incompatibility when new versions of the Macintosh operating
system are introduced. The hierarchy, slightly dramatized, goes some
thing like this:

Using the Toolbox-best of all
Assigning low-memory global variables-nowhere near as good
Changing a value in or getting a value from a record-the pits

.,.. The Way Apple Prefers You to Program 13

If you change or get a value, Apple won't guarantee the procedure will
work right. Consider what might happen if Apple decided to stick a new
entry into the dialog record. They could put it ahead of the edit text field,
and your application would return garbage. Such a change would be
uncharacteristic of Apple, although they reserve the right to make it.
What they almost assuredly would do is to append the new entry to the
end of the record so as not to cause trouble for developers.

If you stick to Toolbox routines throughout your application, that
application has the best chance of running properly with an updated
operating system. Conformity may, however, cramp your style. The
more innovative your programming, the more you'll tend to break the
rules. Sound recording is one example; animation and screen savers are
others. A good rule is to use Toolbox calls when they're available and
when they will do the job.

3 Initializing the Toolbox

...,_ Setting Up Your Program with lnit ToolBox.c
You will need to call the lnitToolBox.c routine in every application you
write. It initializes the Macintosh Toolbox, setting up everything your
program needs.

Listing 3-1. Initializing the Toolbox

PROCEDURE InitToolBox();

1:
2:
3:
4:
5:

/***/
void InitToolBox() /* Initialization routine */
/***/

InitGraf(&thePort);
6: InitFonts();
7:
8:
9:

10:
11:
12:
13:

InitWindows();
InitMenus();
TEinit();
InitDialogs(OL);
InitCursor();
MaxApplZone();
MoreMasters();

14: MoreMasters();
15: MoreMasters();
16: MoreMasters();

/* Initialize Toolbox Managers */

/* Set cursor to arrow */
/* Fix up memory */

15

16 ...,. Chapter 3 Initializing the Toolbox

17: MoreMasters();
18: MoreMasters();
19: MoreMasters();
20: MoreMasters();
21: MoreMasters();
22: MoreMasters();
23: MoreMasters();
24: MoreMasters();
25: MoreMasters();
26: MoreMasters();
27: MoreMasters();
28: FlushEvents(everyEvent,0); /* Clean up events */
29:

On line 2 of the listing the "void" statement informs the Macintosh that
there is no value to return for this function-that's what "void" signifies
in C-and tells it to get on with the initialization. The pair of parentheses
with nothing between them() always means that there is no value to pass
in. As you can see, most calls in this routine have the empty parentheses.

Note that "void" has to be lowercase. To capitalize any or all of its
letters would earn you a good scolding, expressed by the compiler as a
syntax error. Another syntax requirement in C is that every line has to be
followed by a curly brace or a semicolon.

On line 4 is a left curly brace. Down on line 29 is a right curly brace. The
pair signifies that everything between them is executable code.

The first few lines call several routines that initialize the various
managers of the Toolbox. Apple specifies the order in which the calls are
to be made. Departing from the proper sequence is sure to cause prob
lems. As an example, the routine to initialize the fonts makes use of
several QuickDraw routines, and if QuickDraw has not been initialized,
the Macintosh is likely to crash.

Although we've put the several statements on separate lines for
clarity, you could just as easily combine them into longer lines, with each
statement ended by a semicolon. For that matter, you could merge all the
lines in the program into one huge block if each statement ended with a
semicolon. That illustrates one flexible feature of C. Another is that you
can indent lines to make them more readable. The decision is yours,
guided by your instincts for organizing the code and making it look
better. You are also at liberty to insert any comments, delimiting each by a
forward slash and a star(/*) at the beginning and a star and a forward slash
(*/)at the end. The comments can go anywhere you like, but they would
be likely to cause confusion if inserted in the middle of a statement.

I Bytheway..,. I

..,. Setting Up Your Program with lnit ToolBox.c 17

The statement on line 5 initializes QuickDraw. The ampersand(&) is
a symbol telling the C compiler that you want to pass the address of the
variable, thePort, to this.routine because the routine is going to change the
value of the variable. One of the rules of Toolbox programming is that
you ne~d to pass the address of a variable whenever you call a Toolbox
routine that is going to change a variable. If you don't pass the address,
the routine will change the variable, but when you return to your routine,
you won't get a value there.

The statement on lj.ne 6 has no variables to be passed in, hence the
empty pair of parentheses. It initializes the Font Manager, executing
several useful functions. One is to read into memory the system font,
Chicago, which is the standard font used to draw the menu items and the
window titles. Other functions are hidden in Apple proprietary code.

The statement on line 7 initializes global variables and private vari
ables for the Window Manager. It sets up a window to draw in. It also
draws the desktop for the Finder; however, it leaves the old desktop there
if the machine is running under MultiFinder.

Line 8 initializes the Menu Manager. As to exactly what it does, one
can only guess because its workings are Apple's proprietary informa
tion.

Line 9 initializes the Text Edit Manager, which handles static text and
all other kinds of text that are drawn into the window. Among this
manager's functions is to set up TextEdit scrap, or TEScrap in brief. Any
text you cut or copy goes into this private scrap on its way to the
Clipboard or Scrapbook.

The statement on line 10 passes in the variable OL and initializes the
Dialog Manager. The L denotes a long variable, meaning that it is 4 bytes
long. A 0 by itself simply will not do, because it is only 2 bytes long and
the Toolbox requires 4 bytes here. Notice that although the several
previous initialization commands do not pass in variables, this one does.
What it expects is a ResumeProc, an instruction to resume a program that

18 ..,.. Chapter 3 Initializing the Toolbox

Important ..,.

bombs; however, programmers rarely make provision to resume a pro
gram if it crashes. Most avoid putting in a ResumeProc, preferring
instead to restart rather than run the risk of damaging the memory or
even the disk. That's why the Resume button more often than not is
dimmed in bomb alerts.

Line 11 sets the cursor to the default arrow. If the cursor is invisible, it
is made visible. Of all the initialization routines, this is the only one you
can call at various times in the program.

MaxApplZone on line 12 is the abbreviation for maximum application
zone. Memory in the Macintosh is segmented. At the upper end of
memory is the stack; at the bottom is the application heap. Each call in a
programmer's routines creates data that is put onto the stack, which
grows downward toward the heap. Apple's Toolbox routines create data
that goes onto the heap, which you can visualize as piling up toward the
stack. Obviously, the space between the sinking bits in the stack and the
rising bits on the heap gets smaller and smaller. Without some way to
restrict this process, the two leading edges could meet and the bits get
scrambled. Catastrophe!

Apple fortunately has provided protection that, if properly invoked,
can prevent this disaster. The protection takes the form of a limit you can
set on the heap so that it won't invade the stack. You can specify the
amount of memory you want allocated to your heap, up to a maximum
built in by Apple. In this routine, MaxApplZone() allocates all the heap
memory that the Macintosh is capable of allowing. This protection is
particularly welcome when your program gobbles up big chunks of
memory. Color programs, especially those with lots of windows and
menus, are profligate in memory consumption.

Although you can put a cap on your heap, the Macintosh provides no
means of restraining the growth of the stack. This deficiency is of little
consequence, however, because the compiler will warn you if the heap
gets too close to the stack.

The MoreMasters() statements on lines 13-27 refer to master pointers,
each of which is a location in memory.

Whenever you bring in a resource or create a window or a control, the
Macintosh is going to need one or more master pointers. At the start of

I By the Way .,.. j

..,. Summary 19

a program, the Macintosh automatically allocates space for sixty-four
master pointers at the low end of the heap. This number is adequate for
smallish programs, but big programs, especially color ones, can quickly
use up all sixty-four. In the meantime, the Macintosh has been busy
stuffing data into adjacent memory locations. It places additional master
pointers here and there throughout the memory, fragmenting the large
chunks of contiguous memory needed for big programs. Then, when the
Memory Manager looks for a big enough chunk and can't find one, you
get a system error.

This routine guards against this annoyance by including no fewer than
sixteen MoreMasters() calls. You can be pretty sure your application
won't encounter the fragmentation gremlin. The sixteen calls work their
magic by expanding the default total of sixty-four master pointers to 16
x 64 = 1,024 master pointers in memory. Each master pointer takes up
only 4 bytes, so this large number of master pointers occupies only 4,096
bytes of RAM. Because this small block is tucked neatly into the bottom
of the heap, you can safely write large color programs and other byte
hungry applications that will find plenty of room in RAM. If, instead, you
write a small program, you won't miss a measly 4,096 bytes of memory,
even on a SOOK machine.

The last subroutine call, on line 28, refers to the event queue.

FlushEvents passes in a couple of variables. The variable every Event
tells the machine not to leave any events in the queue. The variable 0
refers to a stop mask, not used in this program .

...,. Summary

This chapter presented the source code for and a discussion of
InitToolBox.c, which is the first routine to call in every application you
write.

4 MENUS

...,. Overview of Menus
Menus are paramount in Apple's human interface philosophy. They
allow you to execute an operation on an item you have selected in a
window or on the desktop. They also display the full range of activities
that can be performed, so you don't have to remember a long list of
commands. You can see quickly what actions are available in the menu
bar of any application.

Menus come in four types: pull-down, pop-up, hierarchical, and tear
off. The most common menu is the pull-down, which we deal with in this
chapter. Chapter 19 covers pop-up menus. We separate the two types of
menus because the functions of and the routines to produce each type
differ widely. This book will not cover hierarchical or tear-off menus .

...,. Building Menus
You can build new menus for your applications in a variety of ways,
many of which are complex and tedious. In this chapter, we show you
two ways to build menus with as few calls to the Toolbox and Menu
Manager as possible.

The first routine we discuss is InitMenu.c. Toward the end of the
chapter you'll find DrawMBar.c, which uses an 'MBAR' resource.

21

22 ..,.. Chapter 4 Menus

...,.. lnitMenu.c

This routine sets up all your menus and draws them. InitMenu.c requires
that you pass in only the ID numbers of the first and last menus. Suppose
you've given your first menu the ID of 300, the second menu 301, and the
last menu 305. You pass in 300 and 305. The routine takes care of all
menus with ID numbers between the first and last numbers. You need to
deal only with mouse-down events.

Listing 4-1. Creating a menu

PROCEDURE InitMenu(firstMenu: INTEGER, lastMenu: INTEGER);

1: /**/
2: void InitMenu(short firstMenu, short lastMenu)
3: /**/
4:
5: #define Apple 1
6 : short menu;
7: MenuHandle hMenu;
8: hMenu = GetMenu (Apple);
9: InsertMenu(hMenu, 0);

10: AddResMenu (hMenu, "DRVR");
11: for (menu = firstMenu; menu <= lastMenu; menu++)
12:
13: hMenu = GetMenu(menu);
14: InsertMenu(hMenu, 0);
15:
16: DrawMenuBar();
17:

Line 2 of InitMenu.c requires you to pass in the IDs of the first and last
menus.

After declarations on lines 5-7, the first real code begins on line 8. You
need a handle to the Apple menu to insert it into the menu bar. The
statement on line 8 calls GetMenu from the Toolbox and passes it a
constant called Apple, which is equivalent to the number 1 in the
resource file. The number 1 is a constant that tells GetMenu to return a
handle to a 'MENU' resource with an ID of 1. By convention, the Apple
menu always has an ID of 1.

Line 9 uses the Toolbox routine InsertMenu to insert the handle to the
Apple menu into the Macintosh's built-in menu list.

At this point, the Apple menu in the resource file is empty because you
don't know what desk accessories users of your application may have

.,.. The Apple Menu 23

installed. Line 10 calls the routine AddResMenu to find those accessories
and add them to the Apple menu. This single call to the Menu Manager asks
it to search all open resource files and look for the type of accessories you
specified-in this case 'DRVR', which is the resource type for desk accesso
ries. The Menu Manager then inserts them as items in the Apple menu.

Lines 11-15 do a for-loop to getthe rest of your menus. This for-loop states
that if you have a variable equal to the ID of the first menu, you want to get
the handle to it and insert it into the menu bar. The loop continues,
incrementing by 1 each time, until it reaches the ID of the last menu.

Line 16 calls the Toolbo~routine DrawMenuBar to redraw (or update)
your menu according to the new menu list.

~ · The Apple Menu
Desk accessories installed on a user's system are always available through
the Apple menu. The list of accessories may expand or diminish or
simply change in character depending on what application is running.
For example, you would have a spelling checker in the Apple menu only
if you were running a word processing program .

...., DoAppleMenu.c

The purpose of the DoAppleMenu routine is to find out what function is
performed when a user selects an item from the Apple menu. You call
this routine from your program's main event loop when a mouse-down
event occurs in the Apple menu.

Listing 4-2. Handling the selection of an item from the Apple menu

PROCEDURE DoAppleMenu(appleitem: INTEGER);

1: /**/
2: void DoAppleMenu(short appleitem)
3: /**/
4:
5: #define (Apple = 1)
6: MenuHandle hMenu;
7: long refNum;
8: Str255 name;
9: hMenu = GetMenu(Apple);

10: Getitem(hMenu, appleitem, name);
11: refNum = OpenDskAcc(narne);
12:

24 ..,.. Chapter 4 Menus

This is a short but useful routine. On line 2 of DoAppleMenu.c, you
pass in an item number in sequential order from the top. Remember that the
void-statement means that nothing will be returned. Also, remember
that all menu items, including dividing lines, have an item number.

In the routine, you skip down four lines of declarations (lines 5-8) to
the first real code on line 9. Here you get a handle to the Apple menu with
the statement hMenu = GetMenu(Apple).

On line 10 you pass in the number of the menu item that was selected.
The statement then returns the name of the Apple menu item, such as
"Chooser."

To open the desk accessory, the statement on line 11 passes in its name.
The routine returns the 'DRVR' reference number if it can open the desk
accessory; otherwise, it returns a 0 .

..,. Routines Involving Menu Items
The following five routines deal with specific menu items. They disable
(or gray out) a menu item; enable (or brighten) a menu item; disable all
items in a menu; enable all items in a menu; and check mark or unmark
an item through a toggling routine .

..._ DablMenultem.c

DablMenultem.c disables (or grays out) an item or items in a menu.

Listing 4-3. Disabling a menu item

PROCEDURE DablMenuitem(theMenuID: INTEGER, theitemNurnber: INTEGER);

1: /***/

2: void DablMenuitem(short theMenuID, short theitemNurnber)
3: /***/

4:
5: MenuHandle hMenu;
6: hMenu = GetMenu { theMenuID) ;
7: Disableitem(hMenu, theitemNurnber);
8:

On line 2 you pass in the resource ID of the menu and the number of the
menu item that you want to disable.

On line 6, the first line of real code, you call the Toolbox routine
GetMenu, which returns a handle to the menu when you pass it the
resource ID.

..., Routines Involving Menu Items 25

With another Toolbox routine on line 7, you disable the item that you
identified on line 2. That's all there is to it .

..._ EablMenultem.c

EablMenultem.c enables (or brightens) an item or items in a menu.

Listing 4-4. Enabling a menu item

PROCEDURE EablMenuitem(theMenuID: INTEGER, theitemNumber: INTEGER);

1: /***/
2: void EablMenuitem(short theMenuID, short theitemNumber)
3: /***/

4:
5: MenuHandle hMenu;
6: hMenu = GetMenu(theMenuID);
7: Enableitem(hMenu, theitemNumber);
8:

EablMenultem.c does the reverse of DablMenultem.c. In every other
aspect, the routines are identical.

..._ DAllMenultems.c

DAllMenultems.c disables (or grays out) all of the items in a menu.

Listing 4-5. Disabling all menu items

PROCEDURE DAllMenuitems(theMenuID: INTEGER);

1: /***/
2: void DAllMenuitems(short theMenuID)
3: /***/

Str255
MenuHandle
short
short

theString;
hMenu;
itemCount;
i;

4:
5:
6:
7:
8:
9: hMenu GetMenu(theMenuID);

10: itemCount = CountMitems(hMenu);
11: for (i = 1; i <= itemCount; i++)
12: {
13: Getitem(hMenu, i, theString);

26 ~ Chapter 4 Menus

14: if (theString != -)

15: {
16: Disableitem(hMenu, i);
17:
18:
19:

In the function declaration on line 2, you pass in the resource ID of the
menu. After declarations on lines 5-8, you reach the first real code on line
9. This statement passes in the GetMenu routine and returns a handle to
the menu.

On line 10 you get the numberofitems in the menu through item Count.
CountMltems requires that you pass it the menu handle; it returns the
number of items.

Lines 11-15 comprise a for-loop, which starts at the first item and
increments by 1 until the number is equal to the last item. On line 13 you
pass a handle to the item, and it returns a string. Line 14 states that if the
string is equal to a minus sign, a menu dividing line (separating groups
of items) resides there. The routine will not disable the line because it is
already disabled. If the string does not contain a minus sign, the routine
will disable the item .

...,. EAllMenultems.c

EAllMenultems.c enables or brightens all items in a menu.

Listing 4-6. Enabling all menu items

PROCEDURE EAllMenuitems(theMenuID: INTEGER);

1: /***/
2: void EAllMenuitems(short theMenuID)
3: /***/

4:
5:
6:
7:
8:

Str255
MenuHandle
short
short

theString;
hMenu;
itemCount;
i;

9: hMenu = GetMenu(theMenuID);
10: itemCount = CountMitems(hMenu);
11: for (i = l; i <= itemCount; i++)
12:
13: Getitem(hMenu, i, theString);
14: if (TheString != "-")

...,.. Routines Involving Menu Items 27

15:
16: Enableitem(hMenu, i);
17:
18:
19:

ThisroutineworksexactlythereverseofDAllMenultems. The statement
on line 14 is identical in both routines. Here it ensures that a dividing line
in a menu will not be enabled. To enable a menu dividing line and have
it selected would likely cause your program to crash .

..,.. MarkMenultem.c

MarkMenultem.c puts a check mark to the left of an item or items in a menu.
If a check mark is already next to the item, this routine will remove it.

Listing 4-7. Checkmarking or unmarking a menu item

PROCEDURE MarkMenuitem(theMenuID: INTEGER, theitemNumber: INTEGER);

1: /***/
2: void MarkMenuitem(short theMenuID, ~hort theitemNumber)
3: /***/
4:
5:
6:

char
char

oldMark;
newMark;

7: MenuHandle hMenu;
8: hMenu = GetMenu (theMenuID) ;
9: GetitemMark(hMenu, theitemNumber, &oldMark);

10: if (oldMark == Ox12)
11: {
12: newMark = Ox20;
13:
14: else
15:
16: newMark = Ox12;
17:
18: SetitemMark(hMenu, theitemNumber, newMark);
19:

To begin MarkMenultem on line 2, you pass in the resource ID of the
menu and the item number to check.

Line 8, the first real code, returns a handle to the menu when you pass
in the menu resource ID.

28 lill- Chapter 4 Menus

On line 9, GetlternMark returns the check character and leads to an
if-test on lines 10-13. This test makes the statement, "If the old mark is
equal to the hex number Oxl2, then set it to Ox20." In Chicago font (the
system font), the hex 12 is a check mark, and the hex 20 is a blank space.

The else-statement on lines 14-17 says that if the old mark was not a
hex 12, then make it a hex 12, completing the toggling aspect of the
routine.

Line 18 calls the Toolbox routine SetltemMark. This passes a handle to
Mark and sets the new mark-either a check mark or a blank space-next
to the item.

~ Testing the Keyboard
The names of all five routines available for testing the keyboard end in
the words" is down": CommandlsDown.c, CapsLocklsDown.c, Controlls
Down.c, OptionlsDown.c, and ShiftlsDown.c.

Think of how often you have to hold down the Command key while
clicking the mouse or hold down the Command and Shift keys while
pressing another key. You can use these routines whenever you want to
know whether the user is pressing a modifier key. The routines were
designed with two criteria in mind. They work with any of the Macintosh
keyboards, so you don't run into problems if you switch from a Macintosh
Plus keyboard to an extended keyboard. They also tell you which key is
pressed without your having to go into the modifier field of the event record.

Whenever an event takes place, an event record is created. A bit is set
in the modifier flag: 1 if the key is down; 0 if it isn't. The flag is a short
number representing each of the modifier keys.

The five is-down routines avoid your having to wait for a notification
that a key has been pressed. You simply go in and ask for that informa
tion. The routines provide you with a "back door" into a program. The
back door works something like this: You can write your application so
that the user has to hold down a certain set of keys while double-clicking
on the program icon. This modification will make the program enter, for
example, a debug or diagnostics mode that the user doesn't know
about-except that the menu bar may show some extra items for the
debug or diagnostics procedure.

One of the first things you do in a program is to call InitToolBox to set
up the starting conditions for the routine. Among its effects is to flush the
event queue and make it ready for new events. If at this time your
application wanted to know whether the user was holding down a set of
keys for the back door, those events would be gone and confusion would
reign. The five is-down routines prevent that from happening by deny
ing access to the modifier flag.

..,. Testing the Keyboard 29

~ CommandlsDown.c

CommandisDown.c returns the answer to the question, "Is the Com
mand key(~) pressed?" (The Command key is also called the Apple
key.)

Listing 4-8. Finding out if the Command key is pressed

FUNCTION CorrrrnandlsDown(): BOOLEAN;

1: /**/

2: char CorrrrnandisDown ()
3: /**/

4:
5: char status;
6: KeyMap theMap;
7: GetKeys(&theMap);
8: status= (char)BitTst(&theMap, 48);
9: return(status);

10:

CommandisDown.c is declared as a character function in conformance
with popular conventions for C programming. Whereas Pascal has
Booleans (meaning TRUE or FALSE, or yes or no), the C language has a
character data type, which can be a short or a long. This routine uses a
character data type as a Boolean. It requires no variables to be passed in.
You say, "If the Command key is down, then perform a function."

The statement on line 7 calls the GetKeys Toolbox routine and passes
it theMap, which is an array of 16 bytes, each comprising 8 bits. Every bit
inside that map corresponds to one of the keys on the keyboard. When a
key is pressed, some bit in the map is going to be set to 1, or TRUE, while
all the other bits remain 0, or FALSE. GetKeys returns the status of the
keymap, telling you which key is down.

Line 8 forms an if-test that calls another Toolbox routine called BitTst.
You pass BitTst a pointer to the keymap, and you pass the bit represent
ing a particular key. In this example, 48 is the Command key. Counting
from the beginning of the string, BitTst tests the bits the way they are
stored in memory, from the most significant bit down to the least
significant. Apple, however, counts them from the least significant bit up
to the most significant, as shown in Table 4-1. If bit 48 has been set, the
status is set to TRUE and is returned as such. If bit 48 is set to FALSE, the
FALSE status is returned instead.

30 ~ Chapter 4 Menus

.....

Table 4-1 . Correspondence between Keymap Array and Keys for the
Apple Extended Keyboard

Array
Index Bit Number

7 6 5 4 3 2 1 0

0 x z G H F D s A
1 R E w Q B v c
2 5 6 4 3 2 1 T y
3 0] 0 8 7 9 =
4 J L return p I [u
5 M N I I \ K
6 38 esc delete space tab
7 cntl option shift cntl option caps shift
8 clear + *
9 enter I

10 5 4 3 2 1 0 =
11 9 8 7 6
12 Fll F9 FB F3 F7 F6 FS
13 F12 FlO F14 F13
14 end F4 del. x> pg up home help F15
15 reset up down right left Fl pgdn F2

CapslocklsDown .c

CapsLocklsDown.c answers the question, "Is the Caps Lock key pressed?"

Listing 4-9. Finding out if the Caps Lock key is pressed

FUNCTION CapsLockisDown(): BOOLEAN;

1: /***/
2: char CapsLockisDown()
3: /**/

4:
5: char status;
6: KeyMap theMap;
7: GetKeys(&theMap);
8: Status= (char)BitTst(&theMap, 62);
9: return(status);

10:

CapsLocklsDown.c is identical to CommandlsDown.c except that the
keymap bit is 62, corresponding to the Caps Lock key.

.,.. Testing the Keyboard 31

...,. ControllsDown.c

ControllsDown.c tells you whether the Control key is pressed.

Listing 4-10. Finding out if the Control key is pressed

FUNCTION ControlisDown(): BOOLEAN;

1: /***/
2 : char ControlisDown ()
3: /***/
4:
5: char status;
6: KeyMap theMap;
7: GetKeys (&theMap) ;
8: Status= (char)BitTst(&theMap, 60);
9: return(status);

10:

ControllsDown.c is identical to CommandlsDown.c except that the
keymap bit is 60, corresponding to the Control key .

...,. OptionlsDown.c

OptionlsDown.c returns the answer to the question, "Is the Option key
pressed?"

Listing 4-11. Finding out if the Option key is pressed

FUNCTION OptionisDown(): BOOLEAN;

1: /***/
2: char OptionisDown ()
3: /***/
4:
5: char status;
6: KeyMap theMap;
7: GetKeys (&theMap);
8: Status= (char) BitTst(&theMap, 61);
9: return(status);

10:

ControllsDown.c is identical to CommandlsDown.c except that the
keymap bit is 61, corresponding to the Option key.

32 ..,. Chapter 4 Menus

Note~

~ ShiftlsDown.c

ShiftlsDown.c returns the answer to the question, "Is the Shift key
pressed?"

Listing 4-12. Finding out if the Shift key is pressed

FUNCTION ShiftisDown(): BOOLEAN;

1: /***/
2: char ShiftisDown()
3: /***/
4:
5: char status;
6 : KeyMap theMap;
7: GetKeys (&theMap);
8: Status= (char)BitTst(&theMap, 63);
9: return(status);

10:

ShiftlsDown.c is identical to CommandlsDown.c except that the key
map bit is 63, corresponding to the Shift key.

Using an 'MBAR' Resource
Drawing the menu bar at the top of the screen can be done two ways:
through a program or through a resource file. Most common with
Macintosh programmers is to make half a dozen calls to the Menu
Manager. One call gets the handle of the menu from the resource.
Another Toolbox call takes that menu and inserts it into the current menu
list. Having made two calls for every menu they want to include, the
programmers then call the DrawMenuBar routine to redraw the menu
bar containing the new menus. Later, if they want to change any items in
a menu, the programmers have to go through their program and then
recompile it.

Apple gives us a more convenient method for redrawing the menu
bar. It offers a way to change a menu from a resource file without the
chore of recompiling your program. You use a resource editor instead.
Trouble is, you have to make five Toolbox calls because Apple doesn't

.,.. Using an 'MBAR' Resource 33

combine them into a single routine that would draw the menu bar and
the menu items. You also have to make an explicit call to the
AddResourceMenu routine to add the Apple menu, which contains the
desk accessories.

The following procedure, DrawMBar.c, eliminates the need to make a
number of calls to the Toolbox and also draws the Apple menu for you.
If you check even the most popular Macintosh applications, you'll find
that very few have a menu bar resource. Now you know why .

...,. DrawMBar.c

This routine calls the Toolbox DrawMenuBar routine and passes it the
menu bar ID. QuickDraw automatically draws the menu bar at the top of
the screen, complete with the various menu items.

Listing 4-13. Drawing a menu bar

PROCEDURE DrawMBar(mBarID: INTEGER);

1: /***/
2: void DrawMBar(short mBarID)
3: /***/
4:
5 : Handle hMBar;
6: MenuHandle hMenu;
7: #define Apple 1
8: hMBar = GetNewMBar(mBarID);
9: SetMenuBar (hMBar) ;

10: hMenu = GetMHandle(Apple);
11: if (hMenu)
12: {

13: AddResMenu(hMenu, 'DRVR');
14:
15:
16:

DrawMenuBar();

/* Menu bar handle *I
/* Menu handle */

/* Apple menu ID */
/* Handle to menu bar */

/* Make present menu bar *I
/* Add desk accessories *I

/* Draw the whole thing */

The statement on line 7, #define Apple 1, uses the precompiler to
replace every occurrence of the word" Apple" by the digit 1, which is the
ID of the Apple menu. You'll see in a moment why that's important.

The active code statements on lines 8-10 go out to the resources and
pass in the menu bar ID. As a result, a temporary area of memory called
a menu list is created. In it are all the items in the menu bar and the menus
themselves. You then get the handle to the Apple menu, the one contain-

34 ~ Chapter 4 Menus

ing the Chooser, the Control Panel, and so on. Here's where the digit 1
comes into play. Some applications don't have the Apple menu, so the
handle then is 0. If the application uses the Apple menu, as this one does,
the handle is 1, and you call the AddResMenu routine with the statement
on line 13. Pass it the handle and the 'DRVR' string that gets all the opened
resources of type 'DRVR.' It is more than a happy coincidence that all
resources of type 'DRVR' are desk accessories. The upshot is that which
ever desk accessories are open are loaded into the Apple menu. Neat!

By this time, you've created the entire menu, and the moment has
arrived for line 15 to draw it to the screen .

.,... A Simple Menu Example

This section contains a pair of source code listings that demonstrate the
DrawMBar routine. The pair consists of one file with the extension .c and
another file, containing the resources, with the extension .R. The two
types of files always go together to make up an application.

~ MenuExample.c

The following example tests the DrawMBar.c routine, and Figure 4-1
shows the result.

About Menus •••
Help ...

Open... 8€0
Close 8€W
Saue 8€S
Saue Rs •••
Delete •••

Quit 8€Q

Cut 8€H
Copy 8€C
Paste 8€U
Clear

Select Rll 8€R

Figure 4-1 . Menus created with DrawMBar.c routine

Listing 4-14. Example of a menu created with the DrawMBar.c routine

1: /***/

2: void main() /* Routine to test DrawMBar */
3: /***/

4:

..,. A Simple Menu Example 35

5:
6:
7:
8:

InitToolBox();
OpenResources("\pMenuExample.rsrc");
DrawMBar(300);

..,.. MenuExample.R

/* For devel. */

This section contains the resource file for the DrawMBar.c example.

Listing 4-15. Resource file for a menu example

MenuExample.rsrc
rsrcRSED

Type MBAR=GNRL
Menu Example,200
.I
3
1
200
201

Type MENU

Apple,1
\14

About Menus ...
Help ...
(-

File,200
File

Open. . ./O
Close/W
Save/S
Save As ...
Delete ...
(-
Quit/Q

Edit,201
Edit

(Undo/Z
(-
Cut/X

, , Number of menus
; ; Apple Menu
; ; File Menu
, , Edit Menu

; ; Apple Menu

, , File Menu

, , Edit Menu

36 ...,. Chapter 4 Menus

Copy/C
Paste/V
Clear
(-
Select All/A

...._ Summary

This chapter presented thirteen routines for

• Creating menus
• Dealing with the Apple menu
• Marking, enabling, and disabling menu items
• Testing the keyboard to see if modifier keys are being pressed

during an application
• Using the 'MBAR' resource

In addition, you have seen a sample menu routine and the resource file
for the sample menu .

...._ Recommended Reading

Gordon, Bob. "Menus and Windows in LightSpeed." (C.) The Complete
MacTutor-The Macintosh Programming Journal, Vol. 2, 1987.

Matthews, James. "Menus in Windows." (Pascal.) The Definitive
MacTutor-The Macintosh Programming Journal, Vol. 4, 1989.

Sheets, Steven. "Hierarchical Menus." (Pascal.) The Essential MacTutor
The Macintosh Programming Journal, Vol. 3, 1988.

5 Cursors

IJJJi- Overview of Cursors
A traditional command-line computer interface relies on a blinking
cursor to indicate where the next entry of text or numbers should be, and
it forces you to use arrow keys to change the entry point. The Macintosh
interface allows you to point to a new insertion point or graphics object
and choose it with the click of a mouse.

Most applications use some or all of the five standard cursors:
arrow, I-beam, crosshairs, plus sign, and wristwatch. The routine and
example in this chapter show you how to create those and other cursors,
and how to switch from one type to another in the same application.

Now that color monitors are commonplace, color cursors can play a
big part in the design elements of a screen. When a large screen is in use,
a colorful cursor can be easy to find on a cluttered screen.

IJJJi- Using Black-and-White and Color Cursors
FetchCursor.c compensates for some minor inconsistencies in the Toolbox
managers. Say you want a window to come up automatically in color.
You create the window resource. When the Window Manager goes out
to open the window, it looks to see whether a 'wctb', or Window Color
Table resource, exists. If one does, the manager automatically opens that
resource in color, assuming that it is a color resource. The same goes for
dialogs and menus.

37

38 ..,. Chapter 5 Cursors

Unfortunately, cursors and icons don't get this favorable treatment. If
you have created your own color cursor and put it into your resource file,
the Resource Manager will overlook your color cursor because it is
lookingforablack-and-whitecursor. That'swhyyou'llfindFetchCursor.c
useful if you want to use color cursors in your application. This routine
provides a simple way to pass in the ID of a color cursor and have the
cursor opened. Some cursors in the Macintosh are stored in the System
file: the I-beam (resource ID= 1), the cross-hairs (resource ID= 2), the
plus sign (resource ID = 3), and the wrist-watch (resource ID = 4). The
arrow cursor (resource ID = 0) resides in ROM .

...,. FetchCursor.c

If you have a routine in which you want to switch from an arrow cursor
to a wrist watch cursor-while the program executes something
computationally intensive-then switch back to the arrow again,
Fetch Cursor .c takes care of the switching for you. It also provides color
equivalents of the five standard cursors, including a rainbow arrow. You
pass into the routine the ID of the cursor you want. The cursor automati
cally comes up in color if you're running the application on a color
machine; otherwise it comes up in black-and-white.

Listing 5-1. Getting a cursor

PROCEDURE FetchCursor(theID: INTEGER);

1: /**/
2: void FetchCursor(short theID)
3: /**/
4:
5:
6:
7:
8:
9:

10:

#define
#define
#define

SysEnvironsTrap OxA090
UnknownTrap OxA89F
Arrow 0

SysEnvRec sysEnv;
char hasColor;
CCrsrHandle hCCur;

11: CursHandle hCur;

/* Toolbox traps */

12: hasColor = false; /* Test for color */
13: if ((long)NGetTrapAddress(SysEnvironsTrap, OSTrap) !=

14: (long)NGetTrapAddress(UnknownTrap, ToolTrap))
15:
16: SysEnvirons(l, &sysEnv);
17: hasColor = sysEnv.hasColorQD;
18:

..,. Using Black-and-White and Color Cursors 39

19: switch (theID)
20:
21: case (Arrow) :
22: hCCur = nil;
23: if (hasColor)
24: {
25: hCCur = GetCCursor(Arrow);
26:
27: if (hCCur)
28: {
29: SetCCursor(hCCur);
30: DisposCCursor(hCCur);
31:
32: else
33:
34: InitCursor ();
35:
36: default:
37: hCCur = nil;
38: if (hasColor)
39: {
40: hCCur = GetCCursor(theID);
41:
42: if (hCCur)
43: {
44: SetCCursor(hCCur);
45: DisposCCursor(hCCur);
46:
47 :· else
48:
49:
50:
51:
52:
53:
54:
55:
56:

hCur = GetCursor(theID);
if (hCur)
{

SetCursor(*hCur);

To use this routine, call it and pass it the ID of the resource containing
the cursor you want drawn. For example, you might have both a black
and-white and a color version of your cursor in the resource. You give
each the same ID number, say 128, but the black-and-white, or mono
chrome, version is identified as CURS 128 and the color version as crsr 128.

40 ...,. Chapter 5 Cursors

Note first the two declarations on lines 5 and 6, and then skip down to
the first real code on line 12, in which hasColor is a local variable that
assumes you're using a monochrome machine.

Next you need to find out whether your program is running on a color
machine, so you call the Toolbox SysEnvirons routine. Early Macintoshes
with the original operating system did not come with SysEnvirons. It's
a routine Apple added later, and all but the non-upgraded Macintosh
512s have it. Just to be on the safe side, however, this routine includes an
if-test on lines 13-14 to determine whether SysEnvirons is present.

Here's where the two declarations on lines 5 and 6 come into play.
They define the number of the System environs trap and the number of
a nonexistent trap, called UnknownTrap. The if-test asks, "Does a valid
trap exist?" If it does, its address, OxA090, is returned, signifying that you
do, indeed, have SysEnvirons. If it doesn't, the number OxA89F is
returned. Apple not only has assigned OxA89F to Unknown Trap, but also
guarantees that the number will continue to be reserved for that purpose.
The if-test compares the two numbers. If they are equal, SysEnvirons is
absent. You can then be pretty sure that the Macintosh is not a color
machine. If they are not equal, SysEnvirons is present. That doesn't
necessarily mean the Macintosh has color. You still have to call
SysEnvirons (line 16), passing in the number 1, which returns a record
containing a lot of information about the machine. The number 1 is used
because Apple may some day decide to add a record saying that the
machine has, for instance, a CD-ROM. At that time, it may be necessary
to pass in a different number, such as 2.

One of the items in the SysEnvirons record is an indication that the
machine has color QuickDraw. If the statement on line 17 is equal to 1, the
machine has color; if equal to 0, the machine is black-and-white.

At this point you fall out of the if-test and go to a switch-statement on
line 19 and a case-statement on line 21. The case-statement is a test on the
ID. If the ID= 0, you've got the arrow cursor. You handle this cursor a
little differently from the other cursors because the arrow is set much
more often. You set a handle to color cursor equals 0 on line 22. Then, if
you want the color arrow, notably the one in rainbow colors, lines 23-26
tell you whether you have color. If you do, a value is returned and sets
a handle to the color arrow.

Now comes another if-test on lines 27-31. The if-test says, "If the
handle to the color cursor does not equal 0-meaning, in negative logic,
there is a valid color cursor-set the color cursor equal to the color cursor
handle, hCCur." If you do not have color, then you need a black-and
white cursor. The quickest way to bring up the black-and-white cursor is
to call (on line 34) the InitCursor routine from the Toolbox. You also call

~ A Simple Cursor Example 41

the routine DisposCCursor. This routine is necessary because of a quirk
in Apple's approach to purging. If the earlier call to get the color cursor
finds a color cursor, it puts that cursor in memory but doesn't flush it out.
On the other hand, if you call for the black-and-white cursor, the call not
only gets you the familiar arrow but also flushes it.

The next part of the else-statement (lines 36-46) says, "If I have color,
I do what I did just before; that is, I get the handle to the color cursor. Then
I run a test. If the cursor is not equal to 0, I set the color cursor and dispose
of it."

Now, on lines 47-53, comes a difference in the procedure. Earlier you
initialized the cursor with InitCursor; here you get a handle to the black
and-white cursor by calling GetCursor and passing it the ID. You say, "If
the handle to this black-and-white cursor is not equal to 0, call SetCursor
to a pointer, as opposed to a handle." The star in front of the handle (line
52) changes it to a pointer. You don't have to dispose of the black-and
white resource you read in because that is done automatically with
SetCursor.

~ A Simple Cursor Example

This section contains a pair of source code listings that demonstrate the
cursor. The pair consists of one file with the extension .c and another file,
containing the resources, with the extension .R. The two types of files
always go together to make up an application .

...,. CursorExample.c

CursorExample.c is an example of an arrow cursor inside a dialog box.
The box also contains radio buttons with indicators for five common
types of cursors, any of which you can select with the arrow cursor. The
routine will change the cursor to the type indicated by the selected radio
button. Figure 5-1 shows the result of the code.

Listing 5-2. Example of a cursor

1:
2:
3:
4:
5:
6:
7:

/**/

void main() /* Routine to test cursors */
/**/

DialogPtr theDialog;
short iternHit;
InitToolBox();

42 ..,.. Chapter 5 Cursors

8: OpenResources("\pCursorExarnple.rsrc"); /* For development */

9: CenterDialog(300);
10: OpenDialog(theDialog, 300);
11: FrmDefitem(theDialog);
12: PushRadioButton(theDialog, 2, 2, 6)
13: for (;;)
14: {
15: MyModalDialog(&itemHit)
16: switch (itemHit)
17: {

case (1):

break;
/* Quit button */ 18:

19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

case (2): /* Arrow radio button */

PushRadioButton(theDialog, 2, 2, 6);
FetchCursor(arrow);
continue;

case (3): /* I-beam radio button */

PushRadioButton(theDialog, 3, 2, 6);
FetchCursor(iBearnCursor);
continue;

case (4): /* Cross radio button */
PushRadioButton(theDialog, 4, 2, 6);
FetchCursor(crossCursor);
continue;

case (5): /* Plus radio button */

33: PushRadioButton(theDialog, 5, 2, 6);
34: FetchCursor(plusCursor);
35: continue;
36: case (6): /* Watch radio button */
37: PushRadioButton(theDialog, 6, 2, 6);
38: FetchCursor(watchCursor);
39: continue;
40: case (-updateEvt):
41: BeginUpdate(theDialog);
42 : UpDialog (theDialog) ;
43: FrmDefitem(theDialog);
44: EndUpdate(theDialog);
45:
46: break;
47:
48: DisposeDialog(theDialog);
49:

~ A Simple Cursor Example 43

Cursor EHample
by John C. May and Judy Whittle
(22Mar91)

®Arrow

0 IBeamCursor

0 CrossCursor

0 PlusCursor

(C auit)J 0 WatchCursor

Figure 5-1. Dialog box created with CursorExample.c.

~ CursorExample.R
This resource file brings up the CursorExample.

Listing 5-3. Resource file for example of a cursor

CursorExample.rsrc
rsrcRSED

Type DLOG
,300
Cursor Test
50 50 278 344
Visible NoGoAway
1
1
300

Type DITL
,300
7

* 1
Button Enabled
183 219 203 279
Quit

* 2
RadioButton Enabled
74 20 94 150
Arrow

* 3
RadioButton Enabled
103 20 124 150
IBeamcursor

,, Message (Title)
,, Rect (T,L,B,R)
, , Flags
, , Pree ID
, , Refcon
,, Resource ID of DITL list

'' Re ct (T,L,B,R)

'' Message

'' Re ct (T,L,B,R)

'' Message

" Rect (T,L,B,R)

'' Message

44 ..,. Chapters Cursors

• 4
RadioButton Enabled
133 20 153 150 ,, Re ct (T,L,B,R)
Crosscursor '' Message

• 5
RadioButton Enabled
163 20 182 150 ,, Rect (T,L,B,R)
PlusCursor '' Message

• 6
RadioButton Enabled
192 20 212 150 '' Rect (T,L,B,R)
WatchCursor '' Message

• 7
StaticText Disabled
10 10 60 280 ,, Re ct (T,L,B,R)
Cursor Example\ODby John C. May and Judy Whittle\0D(22Mar91) '' Message

Type crsr=GNRL
Rainbow Arrow,O
.H
8001 '' crsrType
00000060 '' srsrMap
00000092 '' crsrData
00000000 '' crsrXData
0000 '' crsrXValid
00000000 '' crsrXHandle
00004000 60007000 78007COO 7E007FOO 7F807COO 6C004600 06000300 01000000;; crsrlData
COOOEOOO FOOOF800 FCOOFEOO FF00FF80 FFCOFFEO FEOOEFOO CF008780 07800380;; crsrMask
.I
1 1 '' crsrHotSpot
.H
00000000 ,, crsrXTable
.L
0 '' crsrID
.H
00000000 ,, BaseAddr
8008 '' rowBytes
. I
0 0 16 16 '' Bounds
0 ,, pmVersion
0 '' packType
.H
00000000 ,, packSize
00480000 '' hRes
00480000 '' vRes
.I
0 '' pixel Type
4 ,, pixelSize

'' cmpCount
4 '' cmpSize
.H
00000000 '' planeBytes
00000112 '' pmTable
.L
0 '' pmReserved
.H
00000000 00000000 01000000 00000000 01100000 00000000 01210000 00000000;; PixelData
02222000 00000000 02333200 00000000 03333330 00000000 03444445 00000000
04444445 50000000 04445500 00000000 05506600 00000000 05000660 00000000
00000660 00000000 00000066 00000000 00000066 00000000 00000000 00000000

~ A Simple Cursor Example 45

00000000 00000006 OOOOFFFF FFFFFFFF 00010000 08000000 0002FFFF 08000000;; CLUT
0003FFFF 4FOOOOOO 00040800 00000000 00059200 00008000 00060001 0005FFFF

Rainbow I8eam, 1
.H
8001
00000060
00000092
00000000
0000
00000000
OC600280 01000100 01000100
00000000 00000000 00000000
.I
4 7
.H
00000000
.L
0
.H
00000000
8008
.I
0 0 16 16
0
0
.H
00000000
00480000
00480000
.I
0
4
1
4
.H
00000000
00000112
.L
0
.H

" crsrType
,, srsrMap
,, crsrData

" crsrXData

" crsrXValid
, , crsrXHandle

01000100 01000100 01000100 01000100 02800C60;; crsrlData
00000000 00000000 00000000 00000000 00000000;; crsrMask

, , crsrHotSpot

, , crsrXTable

'' crsrIO

,, 8aseAddr

" rowBytes

'' Bounds

''
pmVersion

" packType

'' packSize
,, hRes

" vRes

"
pixel'fype

,, pixel Size

'' crnpCount

" crnpSize

" planeBytes

'' prnTable

'' pmReserved

00001100 01100000 00000010 10000000 00000001 00000000 00000002 00000000;; PixelData
00000002 00000000 00000003 00000000 00000003 00000000 00000003 00000000
00000004 00000000 00000004 00000000 00000004 00000000 00000005 00000000
00000005 00000000 00000006 00000000 00000060 60000000 00006600 06600000
00000000 00000007 OOOOFFFF FFFFFFFF 00010000 08000000 0002FFFF 08000000;; CLUT
0003FFFF 4FOOOOOO 00040800 00000000 00059200 00008000 00060000 OOOOFFFF
00070000 00000000

Color Cross,3
.H
8001
00000060
00000092
00000000
0000

'' crsr'fype

'' srsrMap

" crsrData

'' crsrXData

" crsrxvalid
, , crsrXHandle 00000000

000007CO
OFCOOFEO

04600460 04607C7C 43864286 43867C7E 3C7E0460 046007EO 03EOOOOO;; crsrlData
OFFOOFFO FFFFFFFE FC7FFC7F FC7FFFFF 7FFF7FFF OFFOOFFO 07F003EO;; crsrMask

. I
8 8
.H
00000000

, , crsrHotSpot

, , crsrXTable

46 ..,.. Chapter 5 Cursors

.L
0
.H
00000000
8008
.I
0 0 16 16
0
0
.H
00000000
00480000
00480000
.I
0
4

4
.H
00000000
00000112
.L
0
.H
00000000
00000200
02000011
00000200
00000000
00030000

00000000
02300000
10000230
02300000
00000003
00000000

Rainbow Plus,2
.H
8001
00000060
00000092
00000000
0000

, , crsrID

,, BaseAddr

'' rowBytes

'' Bounds

'' pmVersion

'' packType

'' packSize

'' hRes
,, vRes

'' pixel Type

'' pixelSize

'' crnpCount

'' crnpSize

'' planeBytes

'' prnTable

'' prnReserved

00000222 22000000 00000200 02300000 00000200 02300000;; PixelData
02222200 02222200 02000011 10000230 02000010 10000230
02222200 02222230 00333200 02333330 00000200 02300000
00000222 22300000 00000033 33300000 00000000 00000000
OOOOFFFF FFFFFFFF OOOlDBOO 00000000 00020000 OOOOFFFF;; CLUT

'' crsrType

'' srsrMap

'' crsrData

'' crsrXData

'' crsrxvalid
00000000 ,, crsrXHandle
04000400 04000400 0400FFEO 04000400 04000400 04000400 00000000 00000000;; crsrlData
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000;; crsrMask
.I
5 5
.H
00000000
.L
0
.H
00000000
8008
. I
0 0 16 16
0
0
.H
00000000
00480000
00480000
.I
0
4
1
4

, , crsrHotSpot

, , crsrXTable

'' crsrID

'' BaseAddr

'' rowBytes

'' Bounds

'' prnVersion

'' packType

'' packSize

'' hRes

'' vRes

'' pixel Type

'' pixelSize

'' crnpCount

'' crnpSize

~ A Simple Cursor Example 47

.H
00000000 .. planeBytes
00000112 .. pmTable
. L
0 .. pmReserved
. H
00000600 00000000 00000600 00000000 00000600 00000000 00000400 00000000;; Pixel Data
00000400 00000000 66644444 66600000 00000400 00000000 00000400 00000000
00000600 00000000 00000600 00000000 00000600 00000000 00000600 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000007 OOOOFFFF FFFFFFFF 00010000 DBOOOOOO 0002FFFF DBOOOOOO;; CLUT
0003FFFF 4FOOOOOO 0004DB00 00000000 00059200 OOOOBOOO 00060000 OOOOFFFF
00070000 00000000

Color Watch,4
.H
8001 .. crsrType
00000060 .. srsrMap
00000092 .. crsrData
00000000 .. crsrXData
0000 .. crsrxvalid
00000000 .. crsrXHandle
3F003F00 3F003FOO 40808440 84408460 9C608040 80404080 3F003FOO 3F003FOO;; crsrlData
3F003FOO 3F003F00 7F80FFCO FFCOFFCO FFCOFFCO FFC07F80 3F003FOO 3F003FOO;; crsrMask
. I
8 8 .. crsrHotSpot
. H
00000000 .. crsrXTable
. L
0 .. crsrID
. H
00000000 " BaseAddr
8008 .. rowBytes
. I
0 0 16 16 .. Bounds
0 " pmVersion
0 .. pack'fype
. H
00000000 .. packSize
00480000 .. hRes
00480000 .. vRes
. I
0 .. pixel'fype
4 .. pixelSize
1 .. cmpCount
4 .. cmpSize
. H
00000000 .. planeBytes
00000112 .. pmTable
. L
0 .. pmReserved
. H
00222222 00000000 00222222 00000000 00222222 00000000 00222222 00000000;; Pixel Data
02000000 20000000 20000100 02000000 20000100 02000000 20000100 02100000
20011100 02100000 20000000 02000000 20000000 02000000 02000000 20000000
00222222 00000000 00222222 00000000 00222222 00000000 00222222 00000000
00000000 00000003 OOOOFFFF FFFFFFFF 0001D100 3D004600 00021A36 134AC800;; CLUT
00030000 00000000

48 ..,. Chapter 5 Cursors

...,_ Summary

This chapter presented a routine that allows you to create and use cursors
on a monochrome or color routine. The routine demonstrated the fastest
way to bring up a black-and-white arrow cursor from a resource file. The
routine also showed how you can switch cursors from one type to
another and back again within an application .

...,_ Recommended Reading
Gibson, Robert S. T. "Cursor Control." (C.) MacTutor-The Macintosh

Programming Journal, Vol. 6, No. 9, September 1990.
Gordon, Bob. "Cursor Control." (C.) MacTutor-The Macintosh Program

ming Journal, Vol. 6, No. 4, June 1990.
Lesh, Richard. "Animated Color Cursors." (C.) MacTutor-The Macin

tosh Programming Journal, Vol. 7, No. 3, March 1991.

6 Windows and Dialogs

...,. Overview of Windows and Dialogs
A Macintosh window is simply a frame for viewing something. Usually
a document window contains text or graphics, depending on the appli
cation. A dialog box, on the other hand, is a window through which you
and the Macintosh talk to each other. The dialog prompts you to supply
information that the Macintosh needs before it can do your bidding. It
gets you to make decisions and to tell it exactly what you want it to do.

Document windows are highly standardized to give you a sense of
familiarity and control from application to application. They are also
visually responsive to give you the feeling of the "real world"; that is, you
"see" the window opening and closing and can watch the position of the
window change" over" the document when scrolling up or down through
the document using the vertical scroll bar. The window routines in this
chapter follow the conventions for standard windows. Dialogs come in
two types: modal and modeless. You can use the routines here inter
changeably for both types, except for the routine MyModalDialog.c.

The essential difference between modal and modeless dialogs is that
a modal dialog does not have a go-away box. It sits there until you
acknowledge it by selecting an OK button or a Cancel button, for
instance. And it won't let you do anything else in the meantime. Suppose
you need to print a file on your ImageWriter. You do the keyboard
shortcut Command-P or you select Print ... from the File menu. Up pops
a modal dialog box that offers you a number of options. You are required
to specify one of three print qualities. You are required to say whether

49

50 ..,. Chapter 6 Windows and Dialogs

you want to print all pages in your file or just selected pages or sections.
There's no way of evading the Macintosh's insistence on answering those
questions, exceptto say," Aw, forget it," by clicking on the Cancel button.

Another example of a modal dialog is what appears when you close a
file. The dialog asks, "Save changes before closing?" and insists that you
click on a Yes, No, or Cancel button. One more example is the Delete ...
item in the File menu. When you select a file to delete, a modal dialog
asks, "Delete file '(filename)'?" and obliges you to answer by clicking on
the Yes, No, or Cancel button. This type of modal dialog is called an alert;
alerts are described in Chapter 7.

A modeless dialog box is one that you can dismiss through its go-away
box. You may be able to perform other operations without first answer
ing its questions. Along the menu bar of a typical application are the
names of operations such as Print Preview, Page Setup, Find, and
Change whose selection will result in typical modeless dialog boxes. You
can choose options in or request information from these dialogs, or you
can select Cancel and return to your application window. Modeless
dialogs do not demand a response from you .

..,._ Dialog Records

The dialog record contains a number of entries over and above what is
found in the window record. Included in the additional entries is a
handle to a list of all the items in the dialog, such as buttons, static text,
and edit text fields, as well as a handle to TERecord, the text edit record.
This record comprises the information your application needs about all
text in the dialog box, both static and edit. When you click in an edit text
field, making it active, the Dialog Manager changes the pointer in the
TERecord. Static text is handled pretty much the same way. Whenever an
update event occurs, the Dialog Manager goes to every static text field in
turn and sets the TERecord to that text. It doesn't, however, draw a
rectangle around static text.

The TERecord also contains the font information used in the dialog
box. On monochrome machines the same font is used throughout the
dialog box; that is, you can't have different fonts for edit text and static
text. You can on color machines. Apple has provided an 'ictb' resource,
(Items Color Table resource). If you have an 'ictb' resource associated
with a particular 'DITL' resource, you can change the font of an indi
vidual static or edit text field. The Dialog Manager changes the font in the
chosen field, draws the field, then changes the font back to what it was.
There is still, however, only one TERecord for an entire dialog box.

..,.. Creating Dialogs 51

In the dialog record table is a handle to the edit text record. Immedi
ately after that handle in the table is a variable, defined as an integer that
contains the item number of the active edit text field. Interestingly, Apple
stores that integer as the item number-1. So, if you have item number 10,
it is stored as 9.

The next field in this dialog record is EditOpen. Apple uses it for its own
purposes. Last of all is a field that tells which button is the default .

...._ Creating Dialogs

Creating a dialog box is simple, compared to creating many other
routines. The following routine shows you how to create a new dialog
box, allocate space for it in the resource file, draw it to your specifications,
and then bring it to the front of the screen .

...,_ OpenDialog.c

This routine opens up a dialog box on the screen. You could use three
Toolbox calls to do the same thing, but if you're writing a program that
requires several dialog boxes, you'll find this a real time-saver.

Listing 6-1 . Opening a dialog box

PROCEDURE OpenDialog(UAR theDialog: DialogPtr, theID: INTEGER);
1: /***/
2: void OpenDialog(DialogPtr *theDialog, short theID)
3: /***/
4:
5: *theDialog = GetNewDialog(theID, 0, -1);
6: SetPort(*theDialog);
7 : ShowWindow (* theDialog) ;
8:

On line 2 you pass in to the resource file the ID number of the dialog
box that you want to open up, and it returns a pointer.

Line 5 is a call to the Toolbox routine GetNewDialog. You pass in the
resource ID and also a 0 designating a variable called dStorage, which
specifies that you want to allocate storage on the heap. If you wanted to
specify storage that you had created, you would pass in a pointer. To
allocate storage on the heap, you pass in a 0. The next parameter, the
constant -1, specifies that you want the routine to open up your dialog
box as the frontmost window.

52 ..,_ Chapter 6 Windows and Dialogs

Next, on line 6, you set the QuickDraw port to your new dialog box by
calling the Toolbox routine SetPort and passing it the variable theDinlog.

Line 7 makes the new window visible through the Toolbox routine
Show Window. If your window is invisible, the routine makes it visible.
If your window is already visible, it doesn't do anything more to it.

~ Dialog Positioning

Sometimes a user gets frustrated trying to figure out where on the screen
a dialog box will open. We've all worked with applications where one
dialog box opens up in the lower right-hand corner, another in the upper
left-hand corner, and another in the top center. If you have a large-screen
Macintosh, this can get annoying, especially when you're trying to locate
where on the screen you left your cursor.

The routine CenterDialog.c shows you how to position your dialog
boxes so that they will always open in the center of the screen. If you
choose to have your dialogs open in another position, you can modify the
coordinates to accomplish your ends .

..,_ CenterDialog.c

This routine places your dialog window in the center of the screen,
horizontally, and slightly above center, vertically.

Listing 6-2. Centering a dialog box

PROCEDURE CenterDialog(theID: INTEGER);

1: /**/

2: void CenterDialog(short theID) /* Set dialog window to center
screen */

3: /**/

4:
5:
6:
7:

8:
9:

10:
11:
12:
13:

Re ct screenRect;
Re ct theRect;
long menuHeight;
Handle theHandle;
DialogTPtr thePointer;
short h, v;
screenRect screenBits.bounds;
menuHeight MBarHeight;
theHandle = GetResource('DLOG',

/* Screen rect */
/* Dialog rect */

/* Height of menu bar */
/* Hdl to DLOG template */
/* Ptr to DLOG template */

I* H and V offsets */
I* Get screen rect */

/* Get menu bar height */
theID); /*Get hndl to DLOG */

1111- Dialog Positioning 53

14:
15:

if (theHandle != 0)
{

/*Valid handle? */

16: thePointer = *(DialogTHndl)theHandle; /*Get ptr to DLOG */
17: theRect = thePointer->boundsRect; /* Get dialog rect */
18: h =
19: -theRect.left +

20: ((screenRect.right - screenRect.left) -/*Comp.offsets*/
21: (theRect.right - theRect.left)) I 2;
22: v =
23: -theRect.top +

24: (((screenRect.bottom - screenRect.top -
25: menuHeight) -
26: (theRect.bottom - theRect.top)) I 3) +

27:

28:
29:
30:
31:

menuHeight;
OffsetRect(&theRect, h, v);
thePointer->boundsRect = theRect;

/* Set new location */

Note that the syntax follows certain conventions of C programming.
For instance, the first character of a variable name begins with a lower
case letter, and each additional word begins with an uppercase letter;
hence, screenRect. In contrast, each word in a function name begins with
an uppercase letter, as in GetResource. Acronyms such as ID are in all
capital letters.

In line 2 of the declaration, void states that there is no value to return,
and short theID means that the value to be passed in (the ID number of
the dialog) is 2 bytes in length.

On lines 5-10 are several declarations of variables. They are explained
in the comments.

Program execution statements follow the standard Pascal calling
sequence as applied to the Toolbox. They begin with line 11, which
passes in the rectangle represented by the variable (&screenRect). Being
a variable, screenRect is preceded by the ampersand character (&).Line 12
returns the default height of the menu bar.

In line 13, GetResource is a Toolbox routine. If no resource of type
'DLOG' with this ID exists, the GetResource routine returns a 0. The next
line states that if theHandle is not equal to 0, execute all the indented lines.

Line 16 turns the handle into a pointer and gets the information to
which the handle points. This statement shows how strict C is in regard
to type casting. For that matter, so is Pascal. You've already declared the
pointer as a DialogTPointer (line 9) and the handle as simply a handle.
When you call GetResource, it returns just an ordinary handle. It is
necessary to convert this first to a dialog template handle, then to a dialog

54 ~ Chapter 6 Windows and Dialogs

template pointer. Because C is so strict, it forces us to declare that this
handle is a dialog template handle. If you don't, C will say your state
ment is invalid.

Line 17 gets the rectangle from the dialog template. The pointer is
pointing to a structure that contains a lot of information. The statement
here instructs the pointer to pull out the dimensions of the dialog box and
put them into a local variable for later computation.

Next come two lengthy statements, beginning with lines 18 and 22,
that determine where the dialog box appears on the screen. They com
pute how far up or down and right or left you have to move the dialog
box to have it centered. Getting the horizontal offset is rather compli
cated. You take the left-hand coordinate of the dialog box and add it to
the right-hand coordinate of the whole screen minus the left-hand
coordinate of the whole screen, then subtract from that value the right
hand coordinate of the dialog box minus the left-hand coordinate of the
dialog box. Finally you divide the result by 2 and invert the signs.

You convert vertical offset in a similar manner, except that you have
to figure in the height of the menu bar. Also, you divide by 3 in the
interest of esthetics: A rectangle appearing above center is more pleasing
to the eye than one centered.

Line 28 calls the Toolbox routine OffsetRect and passes in the horizon
tal and vertical coordinates. The ampersand is placed before theRect to
denote that the rectangle is bigger than 4 bytes and is being changed by
OffsetRect; h and v do not have an ampersand in front because they are
only 2 bytes long and are not being changed.

Now thatthe rectangle has been computed, you need to put it back into
the structure. That's what line 29 does .

...,. Window Positioning
Window positioning is accomplished in much the same way as dialog
positioning. Unlike dialogs, which you may want to offset for emphasis,
you probably will always want your windows to come up centered so
that you can take full advantage of the screen .

...,. CenterWindow.c

CenterWindow.c allows you to position your window so that it will
always open in the center of the screen. If you want to open your window
in some other position, you can modify the horizontal and vertical
coordinates in this routine.

~ Window Positioning 55

Listing 6-3. Centering a window

PROCEDURE CenterWindow (theID: INTEGER);

1: /**/
2: void CenterWindow(short theID) /* Set window center screen */
3: /**/

4:
5:
6:
7:
8:
9:

10:

11:
12:
13:
14:

Re ct
Re ct
long
Handle
DialogTPtr
short
short

screenRect;
theRect;
menuHeight;
theHandle;
thePointer;
h, v;
titleBarHeight

screenRect screenBits.bounds;
menuHeight MBarHeight;
titleBarHeight = 20;

/* Screen rect */
/* Dialog rect */

/* Height of menu bar */
/* Hdl to DLOG template */
/* Ptr to DLOG template */

/* H and V offsets */
/* Height of title bar */

/* Get screen rect */
/* Get menu bar height */

15: theHandle = GetResource('WIND', theID); /*Get hndl to WIND*/
16: if (theHandle != 0) /* Valid handle? */
17: {
18: thePointer = *(DialogTHndl)theHandle; /*Get ptr to WIND*/
19:
20:

theRect = thePointer->boundsRect;
h

21: -theRect.left +

/* Get window rect */

22: ((screenRect.right - screenRect.left) -/*Comp offsets*/
23: (theRect.right - theRect.left)) I 2;
24: v
25: -theRect.top +

26: (((screenRect.bottom - screenRect.top -
27: menuHeight) -
28: (theRect.bottom - (theRect.top - titleBarHeight)))
29: I 3) + menuHeight;
30: OffsetRect(&theRect, h, v); /*Set new location*/
31: thePointer->boundsRect = theRect;
32:
33:

The CenterWindow.c routine is almost a replica of the CenterDialog.c
routine. You will see the differences in CenterWindow in the form of
extra lines of code (lines 11and14) dealing with title bar height. Since
modal dialogs do not have title bars, CenterDialog.c does not reference
them.

56 ~ Chapter 6 Windows and Dialogs

~ Window Stacking
In most cases, when you open more than one window on the screen, you
find that the window in front obscures the windows in back. Often, you
have to close the front window to see what lies behind. However, you can
control the position and appearance of those windows by stacking them,
assuring that the title bars of the windows behind are in clear view .

.,.. StackWindow.c

This routine stacks windows that are already open so that each successive
window is to the right of and just below the title bar of the window behind.

Listing 6-4. Stacking windows

PROCEDURE StackWindows(theWindowList: WindowList);

1: /**/

2: void StackWindows(WindowLst theWindowList)
3: /**/

4:
5:
6:
7:

8:

9:
10:
11:
12:
13:

Graf Ptr
short
Re ct
WindowPtr
Rect
short
short
short
short

savePort;
nurnWindows;
screenRect;

tempW;
newRect;
vStaggerFactor;
hStaggerFactor;
n
h, v

14: short nh, nv
15: short windowTitleHeight;
16: short hSlop, vSlop;
17: vSlop = 10;
18: hSlop = 10;
19: GetPort(&savePort);

/* Old grafPort */

/* Nwnber of windows */
/* Screen reel */

20: nurnWindows = sizeof(WindowList) I 4; /*Gel number or pLr:; */
21: if (nurnWindows > 1) /* More than onr,·f */
22:
23: screenRect = screenBits.bounds;
24: windowTitleHeight = 20;
2 5: screenRect. top = screenRect. top + MBa rl lei qhL t

windowTitleHeight + vSlop;
26: screenRect.left = screenRect.lefL + hSlop;

..,.. Window Stacking 57

27: vStaggerFactor = vSlop + windowTitleHeight;
28: hStaggerFactor = hSlop;
29: v = O;
30: h = O;
31:
32:

for (n = l; n <= numWindows, n++)
{

33: newRect.top = screenRect.top;
34: newRect.left = screenRect.left;
35: newRect.bottom = newRect.top + l;
36: newRect.right = newRect.left + l;
37: OffsetRect(&newRect, h, v);
38: tempW = theWindowList[n];
39: SetPort(tempW);
40: HideWindow (tempW) ;
41: nh = newRect.left;
42: nv = newRect.top;
43: MoveWindow(tempW, nh, nv, true);
44 : ShowWindow (tempW) ;
45: v = v + vStaggerFactor;
46: h = h + hStaggerFactor;
47:
48:
49: SetPort(savePort);
50:

/* Cycle through */

This routine requires that you set up a special structure called a
Window List. This is an array of window pointers that need to be stacked.
You pass in the WindowList on line 2.

The first real code starts on lines 17 and 18, where you set the vertical
and horizontal slop. The slop refers to the indentation and lowering, or
overlap factor, of the windows. In this case, you set those factors to 10
pixels for v and 10 pixels for h.

You get and save the port on line 19. On line 20 you get the number of
windows that will be stacked through Window List, which tells the size
of the list in bytes. Each window on the list is a window pointer, which
is 4 bytes long. You divide the number of pointers by 4 to get the number
of windows.

Line 21 states that if the number of windows is greater than 1, the if
test will continue. However, if the number of windows is less than 1, the
routine will end automatically with this line of code.

Line 23 sends a call to the Toolbox, which returns the size of the screen
in global coordinates.

Line 24 sets the window title height to 20 pixels.

58 ~ Chapter 6 Windows and Dialogs

Line 25 allows for menu bar height and window title height. You
reduce the screen height by lowering the menu bar height. You compen
sate for the menu bar and title bar and then go down about 10 more pixels
for the stagger slop. When you draw the window, you want the title bar
to be about 10 pixels below the menu bar. This is where the stacking starts.

On line 26 you start drawing 10 pixels over from the left-hand side of
the screen. Then you compute the vertical and horizontal stagger factors
on lines 27 and 28.

On lines 29 and 30 you set the constants for vertical and horizontal to 0.
Line 31 starts a for-loop. You loop through all the windows, starting

with number 1 and incrementing by 1, until you reach the last window.
Lines 33-36 represent the top left position for the new rectangle, which

is equal to the screen rectangle top and screen rectangle left. The bottom
of the rectangle is equal to the screen rectangle top plus 1 pixel and the
screen rectangle left plus 1 pixel.

Line 37 offsets that rectangle by nothing the first time through the loop
because h and v are set to 0. In each successive loop, h and v are
incremented by the stagger factor.

On line 38 you get a variable called tempW. That's the pointer to the
first window in the window list. On line 39 you set the port to that first
window, and you hide that window on line 40.

Then, on lines 41 and 42, you compute two variables called nh and nv,
which are equal to the new rectangle left and the new rectangle top.

The Toolbox routine MoveWindow on line 43 moves the window to
the front and makes it active if the window is TRUE, that is, if it is the last
window on the list. The factors nh and nv are offsets. On line 44, you make
the window visible again.

You compute a new vertical and horizontal on lines 45 and 46 by
adding the stagger factors: 10 pixels down and 10 pixels over. You then
loop through again until you reach the last window.

On line 49 you set the port back to what it was when you started and
fall out of the routine .

...,. Writing Your Own Modal Dialog Routine

The Apple Dialog Manager has a routine in the Toolbox called
ModalDialog that returns the number of the item (such as Fast Save,
Make Backup, Save, Cancel, and so on, in a Save As ... dialog box) when
you press a button. The same routine also handles EditText. It does not,
however, handle updates or maintain the cursor in EditText or in any
Apple modal dialogs. To do this, you have to write your own modal
dialog routine.

.,.. Writing Your Own Modal Dialog Routine 59

~ MyModalDialog.c

The MyModalDialog.c routine shows you how to customize your dialog
box. With this routine you can update, or redraw, your dialog box and
maintain the cursor so that it changes to the appropriate type as it passes
over static and active EditText fields.

MyModalDialog returns the item number of an item requiring a
response. If the item number is negative, it is returned as an event.
Because the event number is always a negative number, it will not be
confused with the item number, which has to be a positive number.

Listing 6-5. Customizing a dialog box

PROCEDURE MyModalDialog(VAR iternHit: INTEGER);

1: /***/
2: void MyModalDialog(short *iternHit)
3: /***/
4:
5:
6:
7:
8:
9:

short
Rect
Handle
EventRecord
short
char
DialogPtr
WindowPtr
char
char

itemType, tempitem;
itemRect;
item;
event;
eventMask;
eventFlag;
theDialog;
theWindow;
click;
dialogEvent;
mouseLoc;

10:
11:
12:
13:
14:
15:
16:

short
eventMask everyEvent;

17: *itemHit = O;
18: theDialog = FrontWindow();
19: for (;;)
20: {
21: if (wEvent)
22: {

/* type of item*/
/* size of user item */

/* not used */
/* Event Stuff */

/* The dialog handle */

23: eventFlag WaitNextEvent(eventMask, &event, 9, 0);
24:
25: else
26:
27: SystemTask();
28: eventFlag = GetNextEvent(eventMask, &event);
29:
30: /* Insert cursor maintenance routine here - see Vol 2 */
31: if (eventFlag)

60 ... Chapter 6 Windows and Dialogs

32:
33: dialogEvent = IsDialogEvent(event);
34: switch (event.what)
35:
36:
37:
38:
39:
40:

41:
42:

43:
44:
45:

46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:

case (nullEvent):
break;

case (mouseDown):
mouseLoc = FindWindow(event.where, &theWindow);
if ((dialogEvent) && (theWindow == theDialog) &&

(mouseLoc == inContent))

click= DialogSelect(&event, theDialog,
*iternHit);

if (click)
{

GetDitem(theDialog, *itemHit, &itemType, &item,
&itemRect);

if ((itemType == 5) I I (itemType == 6))
{

SetCtlValue(item, 1 - GetCtlValue(item));

break;

else

SysBeep(16);

break;
case (mouseUp):

if (dialogEvent)
{

*itemHit = -mouseUp;
break;

case (keyDown):
'if (dialogEvent)
{

*iternHit = -KeyDown;
if (CommandisDown())
{

if (theDialog->editField != 65535)
{

switch (event.message && charCodeMask)

case (Ox5A):
case (0x7A):

/* Undo - Command z */

76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:

100:
101:
102:
103:

104:
105:
106:
107:

108:
109:
110:
111:
112:
113:
114:
115:
116:
117:

118:

.... Writing Your Own Modal Dialog Routine 61

else

break;
case (Ox58) :
case (Ox78):

/* Cut - Corrunand X */

TECut(((DialogPeek)theDialog)->textH);
break;

case (0x43): /* Copy - Corrunand c */
case (0x63):

TECopy(((DialogPeek)theDialog)->textH);
break;

case (Ox56) :
case (0x76):

/* Paste - Corrunand V */

TEPaste(((DialogPeek)theDialog)->textH);
break;

case (0x55): /* Upper - Conmand U */
case (0x75):

TEUpper(((DialogPeek)theDialog)->textH);
break;

case (Ox4C) : /* Lower - Conmand L */
case (0x6C):

TELower(((DialogPeek)theDialog)->textH);
break;

case (Ox52) : /* Chg Case - Conmand R */
case (Ox72) :

TEChgCase(((DialogPeek)theDialog)
- >textH);

break;
case (0x3Bl: /* Caps - Conmand K */
case (Ox6B) :

TECapitalize(((DialogPeek)theDialog)
->textH);

break;
case (Ox41) :
case (0x61):

/* Sel All - Conmand A */

TESelectAll(((DialogPeek)theDialog)
->textH);

break;
default:

break;

continue;

click= DialogSelect(&event, theDialog,
tempitem);

if (click)

62 Chapter 6

119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:

Windows and Dialogs

*iternHit = tempitem;

if (event.message && charCodeMask == OxOD)
{

*iternHit = ((DialogPeek)theDialog)->aDefitem;

break;

case (keyUp):
if (dialogEvent)

*iternHit = -keyUp;
break;

case (autoKey):
if (dialogEvent)
{

*iternHit = -autoKey;
break;

case (updateEvt) :
if (dialogEvent)
{

*iternHit = -updateEvt;
break;

case (diskEvt) :
if (dialogEvent)
{

*iternHit = -diskEvt;
break;

case (activateEvt):
if (dialogEvent)

*iternHit = -activateEvt;
break;

case (abort):
if (dialogEvent)
{

*iternHit = -abort;
break;

case (networkEvt):

166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:

~ Writing Your Own Modal Dialog Routine 63

if (dialogEvent)
{

*iternHit = -networkEvt;
break;

case (driverEvt) :
if (dialogEvent)
{

*iternHit = -driverEvt;
break;

case (applEvt) :
if (dialogEvent)
{

*iternHit = -applEvt;
break;

case (app2Evt):
if (dialogEvent)
{

*iternHit = -app2Evt;
break;

case (app3Evt):
if (dialogEvent)
{

*iternHit = -app3Evt;
break;

case (app4Evt):
if (dialogEvent)
{

*iternHit = -app4Evt;
break;

The large event loop is central to this routine because you are looking
for any event: mouse-down, update, copy, cut, paste, and so on. The
Macintosh Toolbox's version of ModalDialog actually calls a couple of
other routines, IsDialogEvent and DialogSelect, to do the work inside of
ModalDialog. The MyModalDialog routine calls on IsDialogEvent (line
33) and DialogSelect (line 42) as well, but it handles more events than
Apple's ModalDialog.

64 .,.. Chapter 6 Windows and Dialogs

After many lines of declarations, the for-loop begins on line 19. The two
semicolons in parentheses indicate that this is an infinite for-loop, and it
will branch out only when you hit a break statement at the right time.

On lines 21-29, you try to see if there is an event by calling either
WaitNextEvent (line 23) or GetNextEvent (line 28). So, starting with if
(wEvent), you can use WaitNextEvent by setting the flag to 1 or
GetNextEvent by setting the flag to 0. Both routines return information
from the event record when an event occurs.

If you send for the disk that contains the routines in this book, you will
receive an additional routine, MaintainCursor .c which could be inserted
on line 30. MaintainCursor searches for the cursor. If it finds the cursor
over an active edit text field, for example, it will change the cursor to an
I-beam. If it finds the cursor over a static field, it will change the cursor
to an arrow. This all happens while you are still searching for events. If
an event has happened, an event flag will be set on line 31.

Then, on line 33, you call the Toolbox routine IsDialogEvent to tell you
if the event has anything to do with your dialog box. You set a flag called
dialogEvent and pass it the event record.

Now you need to find out what kind of event occurred. Line 34 starts
a switch-statement to check on what the event is. If the event is a null
event, as on line 36, you do nothing. If it's a mouse-down event (line 38),
you first need to call the Toolbox routine FindWindow (line 39) to get the
location of the mouse in the window. Then you set up an if-test (lines 40-
52) that states, "If the window that was returned on line 39 is equal to my
dialog window, and if it's a dialog event, and if the mouse location is
within the content region of the screen, I'm going to continue. If, how
ever, one of those parameters is not true, I'm going to beep (lines 53-57)."

Now go back to line 42 where you see DialogSelect. This routine
handles mouse-down events like inserting and deleting text in an edit
text field and many other chores. Here, DialogSelect returns click, which
says, "If the event is a mouse-down event and if everything on line 40 is
TRUE, then DialogSelect returns click as TRUE. If anything on line 40 is
not TRUE, then click returns as FALSE."

If click returns as TRUE, the code on lines 43-52 performs a toggling
routine to insert or take out click marks in radio buttons and check boxes.
The routine calls GetDitem, passes it the item, and tests on the item type.
If the item type is a 5 (radio button) or a 6 (check box), it will toggle the
value by calling SetCtlValue on line 48, passing it the item handle, and
subtracting the old value (either a 1 or a 0) from 1.

If it's a mouse-up event (line 58) and a dialog event, you set itemHit
equal to a negative mouse-up and break out (lines 59-63).

A key-down event on line 64 works much the same as a mouse-down
event. If you have a key-down event and a dialog event, you first set the

..,. Writing Your Own Modal Dialog Routine 65

item type to negative key-down. Then you find out if the Command key
is down (line 68). If it is, the user may be trying to do a copy, cut, or paste,
which is possible in MyModalDialog. So, on line 70, you have to begin an
if-test that says, "Since all these things that I'm going to be doing deal
with edit text field, if an edit text field does not appear in the dialog box,
forget the whole thing!" If the dialog edit text field is equal to 65535, there
can be no edit text field. If the edit text field is equal to a number smaller
than 65535, an edit text field exists. Suppose, for now, that it does exist.
The switch-statement on line 72 gets an event message, which is a 16-bit
message. You then mask out the upper 8 bits of the event message with
a charCodeMask. From this point, you test to see if the Command key
event is any of the following:

• Undo, lines 74-76
• Cut, lines 77-80
• Copy, lines 81-84
• Paste, lines 85-88
• Upper Case, lines 89-92
• Lower Case, lines 93-96
• Change Case, lines 97-100
• All Caps, lines 101-104
• Select All, lines 105-108

For any Command key event listed above except Undo, you pass in the
text edit record. For any other key-down event, you let DialogSelect
handle the event (lines 111-127). Within this DialogSelect routine is a
code statement that handles a carriage return (line 122). This allows you
to set the itemHit back to the default item (line 124). Pressing the Return
or Enter key is the same as clicking on the OK button.

Skip now to line 129 for a key-up case-statement. Here again, if it's a
key-up event and a dialog event, you set the itemHit to a negative key-up
(lines 130-134). You continue case-statements for a series of events, as
follows:

• Auto-key event, lines 135-140
• Update event, lines 141-146
• Disk-inserted event, lines 147-152
• Activate event, lines 153-158
• Abort, lines 159-164
• Network event, lines 165-170
• Device driver event, lines 171-176
• Four user-definable events, lines 177-200

After looping through to the last possible item, the code branches out
of the routine (lines 201-204).

66 ~ Chapter 6 Windows and Dialogs

.._.. Changing the Default Dialog Font
Usually the font for static and active text fields in a dialog box is Chicago
12-point. There may be times when you want to have another font in one
of those fields for emphasis. Or perhaps you don't like the Chicago font
and you want to change it for purely esthetic reasons.

~ SetDFont.c

This routine shows you how to change a dialog font from the system font
to another font of your choice.

Listing 6-6. Changing the font in a dialog box

PROCEDURE SetDFont(theDialog: DialogPtr, fontName: Str255,
fontSize: INTEGER, fontStyle: INTEGER, copyMode: INTEGER);

1: /**/
2: void SetDFont(DialogPtr theDialog, Str255 fontName,
3: short fon~Size, short fontStyle, short copyMode)
4: /**/
5:
6:
7:
8:

GrafPtr savePort;
short fontNurnber;
GetPort(&savePort);

9: SetPort(theDialog);
10:
11:
12:
13:
14:
15:

GetFNum(fontName, &fontNurnber);
{*((DialogPeek)theDialog)->textH)->txFont
{*({DialogPeek)theDialog)->textH)->txSize
(*({DialogPeek)theDialog)->textH)->txFace
{*{{DialogPeek)theDialog)->textH)->txMode
TextFont{fontNurnber);

16: TextFace{fontStyle);
17: TextMode(copyMode);
18: TextSize(fontSize);
19: SetPort{savePort);
20:

/* Old grafPort */

fontNurnber;
fontSize;
fontStyle;
copyMode;

On lines 2 and 3 SetDFont requires you to pass in the dialog box
pointer; the font name (a Pascal string that might be, for example,
Monaco); the font size (which might be 9-point); the font style (plain,
italic, boldface, and so forth); and copy mode. Copy mode has to do with
how the text you draw interacts with the text and graphics already drawn

..,. Creating a General-Purpose About Dialog Routine 67

on the screen. You can overlay existing text, invert it, blend with it, or
paint over it. Suppose half of your dialog box is on a white background
and the other half is on a black background. You may want the words on
the white background to be black and the words on the black background
to be white, or "reversed out."

After two lines of declarations, you begin the real code on lines 8 and
9, where you save and set the port. Line 10 is a Toolbox routine that
returns a font number when you pass it a font name.

Now you must change the font information both in the TextEditRecord
and in the GrafPort. Each has its own font. If you don't save the new font
information in the GrafPort and you call the QuickDraw routine
DrawString, QuickDraw will draw it in the Chicago font. Lines 11-14,
which exemplify the terseness of C, cast the pointer as a pointer to a true
dialog record and not just as a pointer to a window. That way you can get
the information in a dialog window that a regular window does not have.

On line 11, for example, the statement DialogPeek in front of theDialog
casts theDialog into a true dialog record. The rest of the line gets out the
text font with a pointer. (The handle is now a pointer because you put an
asterisk(*) at the beginning of the line.) In short, all that messiness on line
11 allows you to set the text font. Line 12 sets the size; line 13 the style; and
line 14 the copy mode.

Lines 15-18 are Toolbox routines that affect the GrafPort font, style,
copy mode, and size, respectively.

Line 19 sets and saves the port back to what it was.

~ Creating a General-Purpose About Dialog Routine
An About dialog box displays information about an application and may
be viewed by selecting the About item from the Apple menu. The routine
AboutDialog.c, brings up a dialog box with, typically, the name of the
application, its version number, and the name and logo of the software
developer. Although some developers bring up a copyright notice in the
About box, we prefer to keep such a notice separate for the convenience
of the user. Our copyright dialog routine, described in the next section,
dismisses itself after a few seconds or the moment you click anywhere on
the screen. The About dialog stays up until you dismiss it.

68 ..,_ Chapter 6 Windows and Dialogs

~ AboutDialog.c

This routine gives you the tools to create your own About dialog box.

Listing 6-7. Creating a general-purpose About dialog box

PROCEDURE AboutDialog(theID: INTEGER);

1:

2:
3:
4:
5:
6:
7:
8:
9:

/**/

void AboutDialog(short theID)
/**/

10:
11:
12:

EventRecord
short
char
DialogPtr
short
short
Rect
Handle

event;
eventMask;
eventFlag;
theDialog;
itemHit;
itemType;
itemRect;
itemHandle;

/* Event Stuff */

/* The dialog handle */
/* Item info */

13: char wEvent = true; /* Event type flag */
14: eventMask everyEvent;
15: CenterDialog(theID); /*Open dialog*/
16: OpenStandardDialog(&theDialog, theID);
17: GetDefitem(theDialog, itemH~t); /*if def item a button*/
18: GetDitern(theDialog, itemHit, &iternType, &itemHandle,

&itemRect);
19: switch (itemType)
20:
21:
22:
23:

case (4):
case (132):

FrarneDefitem(theDialog);
24: break;
25: default:
26: break;
27:
28: for (;;)
29:
30: if (wEvent)
31: {

/* Frame it */

32:
33:

eventFlag WaitNextEvent(eventMask, &event, 9, 0);

34: else
35:
3 6: Sys ternTask () ;

..,.. Creating a General-Purpose About Dialog Routine 69

37: eventFlag = GetNextEvent(eventMask, &event);
38:
39: if (eventFlag)
40: {
41: switch (event.what)
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:

case (rnouseDown) :
break;

case (keyDown):
break;

case (updateEvt):
BeginUpdate(theDialog);

UpDialog(theDialog);
EndUpdate(theDialog);
continue;

default:
continue;

55: break;
56:
57:
58: DisposeDialog(theDialog);
59:

Line 2 passes in the ID 300. Let's skip over the declarations and go to
lines 14 and 15 where the two statements say you want the dialog box to
be centered. Line 16 opens the dialog, drawing it on the screen. You need
to know what the default item is, so you use the call GetDefltem on line
17. You pass into this routine your pointer to the dialog box, and back
comes the answer 1. This is always the number of the default item, unless
you have set it specifically.

Now that you have the default item, you need certain information
about it. Line 18 calls GetDitem and passes in the dialog pointer and the
itemHit, which happens to be the default item. We use the term itemHit
because we return something called Item later in this program, and we
want to distinguish it from the item handle. What you get back are the
item type, the item handle, and the item rectangle. For this routine, you
need only the item type.

Lines 19-22 test to see whether item type 4 or item type 132 is present
in the About box. Type 4 is a button, and type 132 is an enabled button.
If either type is there, you give it the distinctive double frame of the
default item on lines 23-27, thus making sure that an OK button in the
About box does indeed look the way a default button should. Any other
type of item, such as a picture, is rightfully ignored.

70 ..,.. Chapter 6 Windows and Dialogs

Line 28 begins an endless for-loop waiting for an event to happen.
Many events-mouse-down, mouse-up, key-down, key-up, as well as
application-specific and network events-can occur in the Macintosh.
When an event happens, the Event Manager returns some information
about the event. A variable, event, is passed into either line 32 or line 37,
depending on a flag, wEvent. The event record has several different
parts, including What, which asks, "What kind of event?" and others that
cover the gamut of when, why, and how.

In this loop, you're interested only in mouse-down (line 43), key-down
(line 45), and update events (line 47). When you get either a mouse-down
or a key-down, you dispose of the dialog. That implements a useful
feature: Click anywhere on the screen or press any key, and the dialog
box disappears. When an update event occurs, a call to the Toolbox
begins the update process. For example, the user might click on an
inactive window to make it active. That requires the portions of the now
active window that were hidden to be redrawn.

Line 58 disposes the dialog box and ends the routine .

...,. The About Example

This section contains a pair of source code listings that demonstrate the
About item in the Apple menu. The pair consists of one file with the
extension .c and another file, containing the resources, with the extension
.R. The two types of files always go together to make up an application .

..,_ AboutExample.c

AboutExample.c brings up the About dialog box and tests the
AboutDialog.c routine.

Listing 6-8. Example of an About dialog box

1:
2:
3:
4:
5:
6:
7:
8:

/**/

void main() /* Routine to test about boxes */
/**/

InitToolBox();
OpenResources("\pAbout.rsrc");
AboutDialog(300);

/* For development */

This main program demonstrates the Toolbox routine InitToolBox
mentioned in Chapter 2. Being a main, it starts executing with the declaration

.... The About Example 71

on line 2 and has only three statements within the pair of braces. The first
statement on line 5 calls the routine to initialize the Toolbox, initializing
its various managers, clearing up the event queue, and so on.

Next comes a routine on line 6 that opens the file About.rsrc and gets
all the resources contained in that file so they are accessible while this
application is open. When developing an application, it's a good practice
to keep the source code in one file and the executable object code, also
called the code resources, in another file. When at last you merge
everything into one application, you delete the OpenResources line from
the code and recompile the file.

The last statement, on line 7, calls the About dialog box and brings it
up on the screen. That's all there is to a routine so important that it
deserves a place in every program.

ABOUT A Dialog Test
Routine

Software
Version 1.0

Developed By

John May
and

Pat Whittle

Figure 6-1. About dialog box created with AboutDialog.c routine

72 .,.. Chapter 6 Windows and Dialogs

...., AboutExample.R

This routine brings up the About box.

Listing 6-9. Resource file for example of an About dialog box

About.rsrc
rsrcRSED

Type DLOG
***About Dialog
About Dialog,300
About Dialog
21 185 317 421
Visible NoGoAway
1
300
300

Type DITL
*** About Dialog
About Dialog,300
1

* 1
Pictitem Enabled
0 0 296 236
300

Type PICT=GNRL
,300
.H
4534 ,, Picture Length
. I

45 475 341 711
.H

;; Bounding Rectangle

In this routine you create a resource, About.rsrc, that contains a dialog
box with the ID 300. This box contains only one item, type 'DITL', item 1,
which is enabled. It has the rectangular coordinates 0 0 296 236. The
figure 300 is the ID in the 'PICT' resources. It identifies the picture you're
going to put into the About box. 'GNRL' is a PICT resource containing the
length of the picture in bytes: 4534. The size of the picture is expressed as
its bounding rectangle.

~ Creating a General-Purpose Copyright Routine 73

Every 8 bits represent a color on the screen. This routine refers to a
screen in which a pixel can have any of 256 colors. Color IDs range from
00 (black) to FF (white}, both of which are reserved by the system.
Numbers in between represent the palette of colors.
· If you wanted the arrow cursor to have rainbow colors, you would add

the following line.

Type crsr=GNRL Rainbow Arrow

....,. Creating a General-Purpose Copyright Routine
The Code of Federal Regulations offers a choice of ways for a software
developer to let users know that the program is copyrighted. The
copyright notice should appear in such manner and location as to give
reasonable notice of the claim of copyright. One popular way is to make
the notice come up on the user's terminal at sign-on.

Bringing up a copyright notice at the start of your application sounds
easy. It usually isn't, but the CopyrightDialog.c routine makes it simple .

...,. CopyrightDialog.c

This routine brings up your copyright notice as a prelude to opening
your application.

Call the CopyrightDialog.c routine, and pass it the ID of the dialog box
you've set up in the resource file. After installing this routine, your
copyright box will come up as soon as your application starts. The box
stays up for the length of time you specify in the constant for delay time,
then dismisses itself. Five to ten seconds should be more than enough.
This feature contrasts with one well-known resource editor whose copy
right graphic never times out. A little jack-in-the-box sticks his head in
and out of the box until the MTBF of the machine expires or you click the
mouse, whichever comes sooner.

To avoid irritating users, the CopyrightDialog.c routine not only
dismisses the copyright notice after a few seconds, but also allows the
user to click the mouse or tap any key to send it away.

The CopyrightDialog.c routine has a lot in common with the routine
AboutDialog.c discussed earlier in this chapter. To cut down on repeti
tion, we talk here about differences between the two. The main difference
is that the CopyrightDialog.c routine automatically brings up the copy
right dialog as soon as an application is opened. The AboutDialog.c
routine lies dormant until the user needs information about the applica
tion and selects the About item in the Apple pull-down menu.

74 ~ Chapter 6 Windows and Dialogs

A fringe benefit of the CopyrightDialog.c routine is that it can warn the
programmer of problems with program development. You may find
that, if something is wrong with the program you're writing, the error
will manifest itself when you call the copyright dialog. One example is
an absent resource file.

Listing 6-10. Bringing up a copyright dialog at the beginning of an
application

PROCEDURE CopyrightDialog(theID: INTEGER);

1:
2:
3:
4:

/**/
void CopyrightDialog(short theID)
/**/

5:
6:
7:
8:
9:

10:
11:
12:
13:
14:

EventRecord
short
char
DialogPtr
long
long
short
short
Rect
Handle

event;
eventMask;
eventFlag;
theDialog;
oldTick;
newTick;
itemHit;
itemTYPe;
itemRect;
itemHandle;

/* Event Stuff */

I* The dialog handle */
/* Ticks */

/* Item info */

15: char wEvent = true; /* Event type flag */
16: long delayTime = 7 * 60; /* In 1/60 of second */
17: eventMask everyEvent;
18: CenterDialog(theID); /*Open dialog*/
19: OpenStandardDialog(&theDialog, theID);
20: GetDefitem(theDialog, itemHit); /*if def item a button*/
21: GetDitem(theDialog, itemHit, &itemTYPe, &itemHandle,

&itemRect);
22: switch (itemTYPe)
23:
24:
25:
26:

case (4):
case (132):

FrameDefitem(theDialog);
27: break;
28: default:
29: break;
30:
31:
32:
33:

oldTick = TickCount();
for (;;)
{

34: newTick TickCount();

/* Frame it */

/* Wait for response */

..,._ Creating a General-Purpose Copyright Routine 75

35: if (newTick - oldTick > delayTime) break;
36: if (wEvent)
37: {
38: eventFlag = WaitNextEvent(eventMask, &event, 9, 0);
39:
40: else
41: {
42: SystemTask();
43: eventFlag = GetNextEvent(eventMask, &event);
44:
45: if (eventFlag)
46: {
47: switch (event.what)
48:
49: case (mouseDown) :
50: break;
51: case (keyDown):
52: break;
53: case (updateEvt):
54: BeginUpdate(theDialog);
55: UpDialog (theDialog);
56: EndUpdate(theDialog);
57: continue;
58: default:
59: continue;
60:
61: break;
62:
63:
64: DisposeDialog(theDialog);
65: FlushEvents(everyEvent, 0);
66:

Line 2 passes in the ID of this dialog. Skip the declarations and go
down to the for-loop on line 32, which starts with a call to a Toolbox
routine called TickCount. This returns the number of ticks that have
occurred since the system started up. Each tick is 1I60 second, so five
seconds would equal 300 ticks and 100 seconds would equal 6000 ticks.
The tick count is likely to be a large number, depending on the time
elapsed since start-up.

Line 34 returns the tick count at the very moment the request is made.
Then you say what amounts to, "If the new tick count minus the old tick
count equals the number I have set as my delay time, wipe the copyright
notice off the screen." In this example, you defined the delay on line 16
as 7 * 60 ticks, or seven seconds. To set a different delay time, change the
first figure in this constant to the desired number of seconds.

76 ..,.. Chapter 6 Windows and Dialogs

During the delay period, you want the user to have the option of
clicking on the screen to get rid of the copyright notice before it times out.
The remainder of the for-loop, which is identical to that in the
AboutDialog.c routine, allows for that. When you get either a mouse
down or a key-down event, you dispose of the dialog. Therefore, you can
click anywhere on the screen or press any key, and the dialog box
disappears. Lines 53-59 take care of an update event by redrawing a
now-active window .

.._.. Summary

This chapter presented routines for

• Creating, opening, positioning, and changing the font in dialog
boxes and windows

• Customizing a modal dialog
• Developing a copyright dialog

You also saw an example of an About box to test the AboutDialog.c
routine and the resource file for that example .

.._.. Recommended Reading
Apple Technical Note No. 203 "Don't Abuse the Managers"
Chor, Jack Edward. "The About Box." (Pascal.) MacTutor-The Macin

tosh Programming Journal, Vol. 7, No. 1, January 1991.
Denny, Bob. "Mac's Window Technology." (C.) The Best of MacTutor

The Macintosh Programming Journal, Vol. 1, 1986.
---. "Window Dynamics." (C.) The Best of MacTutor-The Macintosh

Programming Journal, Vol. 1, 1986.
Gordon, Bob. "Beginning Windows." (C.) The Complete MacTutor-The

Macintosh Programming Journal, Vol. 2, 1987.
---. "Menus and Windows in LightSpeed." (C.) The Complete

MacTutor-The Macintosh Programming Journal, Vol. 2, 1987.
---."Window Structures." (C.) The Best of MacTutor-The Macintosh

Programming Journal, Vol. 5, 1990.
Potts, Paul. "Extending Modal Dialogs." (C.) MacTutor-The Macintosh

Programming Journal, Vol. 6, No. 4, April 1990.
Rausch, William. "Breaking the Four Window Barrier." (C.) The Defini

tive MacTutor-The Macintosh Programming Journal, Vol. 4, 1989.
Wootton, Alan. "Custom Dialog Box for Input." (Pascal.) The Best of

MacTutor-The Macintosh Programming Journal, Vol. 1, 1986.

7 Alerts

...,. Overview of Alerts
Alerts, which are a type of modal dialog box, come in three types-Note,
Caution, and Stop-in increasing order of seriousness. Each escalation is
called a stage.

Deciding when to put an alert into a program and what type of alert
to use is the prerogative of the programmer. Our preference is to use a
Note alert when we want to impart what we consider useful information.
If the user ignores the alert, no harm is done. Say, for example, you're
writing a routine to initialize a disk. The note might say, in effect, "Dear
user, forgive us for pointing out the obvious, but you're initializing an
BOOK disk." The user probably knows that, but you include this gentle
reminder.

A Caution alert says, "Watch it! What you've done isn't drastic yet, but
think of the consequences before you go on." An example would be to
mark a place in the program where the user wishes to initialize a disk, but
to warn that doing so will wipe out all the data on that disk. The
acknowledgment would be to press either the OK button or the Cancel
button.

A Stop alert tells the user, "No! No! Catastrophe looms. Cease and
desist at once!" Imagine a point in the program where the user is
initializing a disk and something nightmarish happens. Instead of a
floppy disk, the hard disk is getting initialized and its data are being
eaten alive. That's when a Stop alert could save what's left.

77

78 ..,. Chapter 7 Alerts

~ A General-Purpose Alert Routine
In this section you'll find general routines for each of the alerts mentioned
in the overview. NoteAlert.c, CautionAlert.c, and StopAlert.c have only
minor differences, which we describe after each routine .

..,. NoteAlert.c

NoteAlert.c opens a Note alert box on the screen. The note offers users
interesting information. Unlike the consequences foretold in a Caution
alert or a Stop alert, no harm befalls the user who disregards your Note alert.

Listing 7-1. Bringing up a Note alert

PROCEDURE Note(theID: INTEGER, theString: Str 255);

1: /**/

2: void Note(short theID, Str255 theString)
3: /**/
4:
5:
6:
7:
8:
9:

10:

short
AlertTHndl
AlertTPtr
Ptr
Rect
short

itemHit;
hALRT;
pALRT;
thePointer;
screenRect;
MenuHeight;

11: short h, v;
12: ErrorSound(O);
13: ParamText(theString, 0, 0, 0);
14: screenRect = screenBits.bounds;
15: MenuHeight = MBarHeight;
16: hALRT = (AlertTHndl)GetResource('ALRT', theID);
17: pALRT = *hALRT;
18: h = -pALRT->boundsRect.left +
19: ((screenRect.right - screenRect.left) -
20: (pALRT->boundsRect.right -
21: pALRT->boundsRect.left)) I 2;
22: v -pALRT->boundsRect.top +

23: (((screenRect.bottom - screenRect.top -
24: MenuHeight) -
25: (pALRT->boundsRect.bottom -
26: pALRT->boundsRect.top)) I 3) + MenuHeight;
27: OffsetRect(&pALRT->boundsRect, h, v);
28: itemHit = NoteAlert(300, 0);
29: ParamText(O, 0, 0, 0);
30:

..,. A General-Purpose Alert Routine 79

To begin the routine, you pass in the resource ID for the Note alert on
line 2. This resource ID (300) is the same for any generic alert.

Line 12 reflects our preference for not allowing the Macintosh to beep
at you when an alert comes up. Beeping can be an annoyance, so it's best
to reserve the sound for other purposes, especially to warn of something
absolutely horrible. Remember the old fable of the boy and the wolf?
Anyway, this call turns off the beep.

Your next call is to a Toolbox routine on line 13. This indicates that you're
selecting only one of four possible text strings to get printed out from the
resource file. The three zeros say, "Forget the other three text strings."

Lines 14-27 have the effect of centering the alert box. Our routine to
esthetically center the dialog is inapplicable here because you want to
dead-center the alert.

Line 28 tells the program to wait for someone to click the OK button.
Line 29 sets all four items of text to 0, meaning there's no parameter

text. This avoids the possibility that text from this routine might appear
later in an alert box of some other program you've written.

~ CautionAlert.c

CautionAlert.c opens a Caution alert box on the screen.

Listing 7-2. Bringing up a Caution alert

PROCEDURE Caution(theID: INTEGER, theString: Str255);

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:

/**/
void Caution(short theID, Str255 theString)
/**/

short itemHit;
AlertTHndl hALRT;
AlertTPtr pALRT;
Ptr thePointer;
Re ct screenRect;
short MenuHeight;
short h,v;

12: ErrorSound(O);
13: ParamText(theString, 0, 0, 0);
14: screenRect = screenBits.bounds;
15: MenuHeight = MBarHeight;
16: hALRT = (AlertTHndl)GetResource('ALRT', theID);
17: pALRT = *hALRT;
18: h = -pALRT->boundsRect.left +
19: ((screenRect.right - screenRect.left) -

80 ~ Chapter 7 Alerts

20: (pALRT->boundsRect.right -
21: pALRT->boundsRect.left)) I 2;
22: v -pALRT->boundsRect.top +
23: (((screenRect.bottom - screenRect.top -
24: MenuHeight) -
25: (pALRT->boundsRect.bottom -
26: pALRT->boundsRect.top)) I 3) + MenuHeight;
27: OffsetRect(&pALRT->boundsRect, h, v);
28: itemHit = CautionAlert(300, 0);
29: ParamText(O, 0, 0, 0);
30:

CautionAlert.c is the same as NoteAlert.c with one exception, which
you'll find on line 28 of the listing. This instruction brings up the Caution
alert icon instead of the Note alert icon. See the "NoteAlert.c" section for
more details .

...,. StopAlert.c

StopAlert.c opens a Stop alert box on the screen. It lets the Macintosh tell
you that, for instance, you're running out of memory or facing some
catastrophe, so you'd better take heed and act without delay.

Listing 7-3. Bringing up a Stop alert

PROCEDURE Stop(theID: INTEGER, theString: Str255);

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:

/**/

void Stop(short theID, Str255 theString)
/**/

short
AlertTHndl
AlertTPtr
Ptr
Rect
short
short
Error Sound (0) ;

itemHit;
hALRT;
pALRT;
thePointer;
screenRect;
MenuHeight;
h, v;

13: ParamText(theString, 0, 0, 0);
14: screenRect = screenBits.bounds;
15: MenuHeight = MBarHeight;
16: hALRT = (AlertTHndl)GetResource("ALRT", theID);
17: pALRT = *hALRT;
18: h = -pALRT->boundsRect.left +

..,.. A Standard Confirmation Alert Routine 81

19: ((screenRect.right - screenRect.left) -
20: (pALRT->boundsRect.right -
21: pALRT->boundsRect.left)) I 2;
22: v -pALRT->boundsRect.top +

23: (((screenRect.bottom - screenRect.top -
24: MenuHeight) -
25: (pALRT->boundsRect.bottom -
26: pALRT->boundsRect.top)) I 3) + MenuHeight;
27: OffsetRect(&pALRT->boundsRect, h, v);
28: itemHit = StopAlert(300, 0);
29: ParamText(O, 0, 0, 0);
30:

StopAlert.c is identical to NoteAlert.c except that the instruction on
line 28 brings up the Stop alert icon instead of the Note alert icon. See the
"NoteAlert.c" section for further explanation of the code.

~ A Standard Confirmation Alert Routine
You can require the user's confirmation of an action in a large variety of
situations. The Save As command is typical. If you request the File
Manager to save a file, and a file of the same name already exists, a
confirmation alert will ask, "Replace existing (file name)?" You then
have the opportunity to select the Yes or the No button. If you select No,
you can cancel out of the Save As command.

The following routine shows you how to build an alert box to call
whenever you want to ask the user a yes-or-no question .

...,.. Confirmation.c

Confirmation.c presents an alert dialog box that requires the user to
confirm a command.

Listing 7-4. Bringing up a standard confirmation alert

FUNCTION Confirmation(theID: INTEGER, theString: Str255): BOOLEAN;
1: /***/

2: char Confirmation(short theID, Str255 theString)
3: /***/

4:
5:
6:
7:

Handle
short
Graf Ptr

theDialog;
itemHit;
savePort; /* Old grafPort *I

82 ..,. Chapter 7 Alerts

8: GetPort(&savePort);
9: CenterDialog(theID);

10: OpenStandardDialog(&theDialog, theID);
11: FnnDefltern(theDialog);
12: ParamText(theString, 0, 0, 0);
13: for(;;)

14: {
15: MyModalDialog(&iternHit);
16: switch (iternHit)
17:
18: case (1):
19: return(true);
20: break;
21: case (2):
22: return(false);
23:
24:

25:

26:
27:

28:
29:

30:

break;
case (-updateEvt):

BeginUpdate(theDialog);
UpDialog(theDialog);
FnnDefltern(theDialog);

EndUpdate(theDialog);
continue;

default:
31: continue;
32:
33: break;
34:
35: DisposeDialog(theDialog);
36: SetPort(savePort);
37:

/* Update events

/* All other events

*/

*I

This routine uses almost the same calls as the alert routines described
earlier in this chapter.

Line 2 declares a function in C that will return a short value. The ID is
the number of the confirmation alert box you want to bring up, and
theString asks the question," Are you sure you want to do this?" The only
contents of the resource are the string, a Yes button, a No button, and the
dialog box outline. This modal dialog insists that the user answers yes or
no; otherwise, it just sits there and stares defiantly.

On lines 9-12, you make three calls to the Toolbox that center the
dialog box, open it, and frame the default button.

~ The Alert Example 83

Next comes a for-loop on lines 13-31 in which you call MyModalDialog
(line15) and wait for a button to be pressed. You set the confirmation to
TRUE if the Yes button is pressed, and to FALSE if the No button is
pressed. Calls to begin and end the update redraw previously hidden
regions of the screen as necessary (lines 25-28).

~ The Alert Example
This section describes a pair of source code listings that demonstrate the
three basic types of alert boxes: Note, Caution, and Stop. The pair consists
of one file with the extension .c and another file, containing the resources,
with the extension .R. The two types of files always go together to make
up an application .

...,. AlertExample.c

AlertExample.c is a demonstration application that brings up the three
basic types of alert boxes, one after another, in which they say what they
are (Figure 7-1).

Listing 7-5. Example of three basic types of alerts

1: /***/

2: void main() /* Routine to test alerts */
3: /***/
4:
5: InitToolBox();
6: OpenResources ("\pAlert. rsrc") ; I* For devel. purposes *I
7: Note ("\pThis is a Note alert.");
8: Caution ("\pThis is a Caution alert.");
9: Stop (" \pThis is a Stop alert. ") ;

10:

This routine begins by initializing the Toolbox and opening the resource
file Alert.rsrc. It uses the routines presented earlier to call the three basic
types of alert and passes into each the text shown in quotation marks.

84 IJll- Chapter 7 Alerts

[Z§J "This is a note alert"

n OK D

Lh "This is a caution alert"

n OK D

"This is a stop alert"

((OK Jj

Figure 7-1. Alert boxes created with AlertExample.c and
AlertExample.R

~ The Alert Example 85

...,. AlertExample.R

AlertExample.R is the resource file that goes with AlertExample.c to
make a demonstration program of the Note, Caution, and Stop alert
boxes.

Listing 7-6. Resource file for AlertExample.c

1: Alert . rsrc
2: rsrcRSED
3:
4: Type ALRT
5: ***Generic Alert
6: '300
7: 50 40 181 401
8: 399
9: 7777

10:
11: Type DITL
12: ***Alert Dialog
13: ,399
14: 2
15:
16: * 1 OKay

17: Btnitem Enabled
18: 85 143 105 213
19: OK

20:
21: * 2 Text
22: StaticText Enabled
23: 16 85 76 333
24: ""0"

; ; Resource ID
;;Top left bottom right
;;ID of item list
;;Stages word

; ; Resource ID
;;Number of controls in list

; ; Push button
;;Top left bottom right
; ;Message

;;Static text
;;Top left bottom right
; ;Message

Line 1 contains the name of a file that you want to create as an output,
a directive to the compiler saying you want the output of the compiled
resource in the file Alert.rsrc. The resource compiler you run this through
is RMaker, and Alert.rsrc is the correct format for the name of an RMaker
file.

Line 2 names the file type and file creator. Every Macintosh file has a
file type and a file creator-for instance, Microsoft Word files have
'wordMSWD'-whose purpose is to start up the application program
automatically when the user double-clicks on the program icon or the file
name in a menu list. The output of this file is something you might look

86 ..,.. Chapter 7 Alerts

at in ResEdit. The ResEdit program edits resources; RMaker creates
resources from a resource file. After you've used RMaker to create a
program, you can use ResEdit to tweak it. Here you use the default file
for ResEdit. ·When you double-click on the file you've created by compil
ing this source code, it automatically runs ResEdit.

Line 4 refers to a generic alert box to which we have given the resource
ID of 300. It resembles the dialog box. After giving the coordinates of the
rectangle, you give the 'DITL' the ID of 399 (line 8).

The number 7777 says you don't wish to include stages in your alert.
Stages are a means of escalating the cautions if the user goes on making
the same mistake. For example, the machine might first beep to say
11 Ahem, you can't do that." The next time the mistake is made, it beeps
again, meaning, "Watch it!" Finally it brings up the alert box, with or
without another beep. Such multistage alerts are uncommon, and this
routine doesn't include them.

Lines 11 and 12 refer to a standard dialog in the 'DITL' resource.
Number 399 in the alert resource calls up this 'DITL'.

The digit 2 (line 14) says you have two items in the 'DITL'. Line 16
denotes the first item, an enabled button containing the text "OK." It is
the default item. Line 21 lists the second item, enabled static text. Line 24
means you're going to be passing in a phrase (identified by the number
0) that gets printed out from a call to a Toolbox routine called ParamText.
The numbers 0 through 4 represent four different pieces of static text, of
which you use only 0.

~ Summary
This chapter provided you with an overview of alerts and showed you
how to create three generic alert boxes as well as an alert that requires
confirmation. It also gave you the source code and resource file to
generate an example of three alert boxes.

~ Recommended Reading
Wootton, Alan. "Custom Dialog Box for Input." (Pascal.) The Best of

MacTutor-The Macintosh Programming Journal, Vol. 1, 1986.

8 Resources

~ Overview of Resources
Resources are little packages of information stored in the file that con
tains your application. When used, they tell your program how to do
certain things such as draw windows or menus. If you look into a typical
file on any IBM PC-compatible computer (which, for convenience' sake
we'll refer to as a PC), you'll find nothing but bytes. It may be an ASCII
file, or it may be an executable file containing the bytes to be executed and
the corresponding instructions. The file may have a header that tells you
the size of the file or some attributes, but the rest of the information is just
what you'd get on the screen when you edit the program.

Look in a Macintosh file and you'll find something different. The first
few bytes also are a header that gives the operating system some
information about the file. Next is a fork consisting of two offsets. The
first, an offset to the data fork of the program, points to the location in
memory where the data of interest begins. For instance, when Microsoft
Word opens a file, it has to go to the place in memory where the data fork
is contained, at the beginning of the file. That place tells Word where to·
look in the data file so that it can find and retrieve the data. Although this
procedure may seem cumbersome, the Macintosh handles it well and
transparently.

The second kind of offset points to the beginning of the resource map,
where it finds another offset that points to the various types of resources
in the map. Having found the right location in the map, the Toolbox then
encounters yet another offset that directs it to the sought-after resource.

87

88 ~ Chapter 8 Resources

If, for example, it is instructed to find a resource called 'DLOG', the
Toolbox uses the three offsets to reach that resource. Then it has to go to
the place in memory where 'DLOG' is stored. Because these steps to a
resource take a little longer than is needed to retrieve data, you wouldn't
dream of storing data in a resource. If you don't want to access a resource,
the resource fork may be zeroed out.

Every resource is identified by a resource type, such as 'DLOG', and an
ID number, such as 300. You can have several 'DLOG' resources, but each
will have its unique ID, so theToolbox won't get them mixed up. Even if
you goof and try to give two 'DLOG's the same ID, ResEdit won't let you.
Another type ofresource, such as 'ICON', can have the ID of 300, but there
won't be any problem, because "ICON 300" and "'DLOG' 300" are
uniquely different.

Resources are nothing more than streams of data bytes stored in
memory. Interestingly, the data fork in the Macintosh is less sophisti
cated than the resource fork, but it still does a good job with the Toolbox
File Manager and the support of certain compilers. You may prefer the
resource fork because it is better for storing window information and so
forth and is easier to use because it has a more convenient interface from
the Toolbox point of view. It has its own Toolbox manager, the Resource
Manager, which has all the tools you need to manipulate the resource
fork. For example, if you want to get the handle to a particular resource,
such as 'DLOG' = 300, you call the GetResource routine. The Toolbox
returns the handle, whereupon you pass in the type 'DLOG' and the ID
of 300.

Now let's compare programming on a Macintosh and programming
in a DOS or OS/2 environment so as to highlight the Macintosh's
advantages of having a resource fork and a data fork. Suppose you've
written and compiled code for a word processing program. On the PC,
the executable code would reside in one file. You might have some
preferences you've created for the program, such as defaults for the word
processing. They might go in another file. Perhaps you got fancy and put
windows and menus into your program. They would go into a third file.
In contrast to the three files on the PC, the Macintosh combines them all
into one file. The code goes into a code resource. The data for the
preferences could be stored in the data fork. Information on the windows
and menus would go into a resource fork.

If you want to make a change in your PC program-increase the size
of a window, maybe-you have to go in and change the program, then
do a recompile. This procedure is fraught with danger. You might mess
up the program and have it abort at run time. Your program might be so
big that when you try to rebuild it you forget and leave out parts. You
might link the wrong routines back in again. Wouldn't it be wonderful

~ Overview of Resources 89

if you had a tool that would let you change just the resource instead of
disturbing the code portion of the program and having to recompile?
Well, the Macintosh provides that tool. With the resources separate from
the program code, you are able to use ResEdit to alter the size of a
window, move an OK button, revise some static text, add a couple of
check boxes, or whatever. You don't have to touch the program code.

Resources are arranged in a hierarchy. It works like this. Suppose you
open the dialog box with the ID of 5000. The Macintosh takes a series of
steps until it finds the dialog. It looks first in the resources your program
contains, then in the files the program has opened. Next it looks through
all the resources the operating system has opened in the Finder and the
System file. In the Macintosh II or later models, the search continues into
the ROM resources.

Another capability of the resource approach comes into play if you
want to customize a font for use in a particular word processing program.
An example would be adding a special character to the 12-point Courier
font for use in Word but not in Word Perfect when you have both
programs on the machine. You create this special font and put it into the
resources of the Word program. Because of the hierarchy, the Resource
Manager would search in the Word program, find the font there, and
look no further. Suppose, instead, you want to use the special font in just
one document. You create the font and put it into the resource map of the
Word file you're going to edit. The Resource Manager would peek into
the Word program. The font would not be there, so the manager would
turn its attention to the file you had opened. Voila!

Source code is a set of ASCII characters. You present that set to a
compiler, which produces machine code. The machine code knows
nothing about routines the source code may have called. The compiler
plucks out of their individual files all the routines you have created. Next
it compiles them into separate object files and links them together,
creating an executable file. One convention in the world of computers is
to give an executable file the file name extender .EXE and an object file the
extender .OBJ.

From this point on in the programming process, the Macintosh stands
apart from most other computers because of its revolutionary feature,
resources. With non-Macintosh machines you can go ahead and execute
your executable file, and that's all there is to it. With the Macintosh one
more step is necessary. Since your executable file is a code resource, you
have to include the resources you've created by means of ResEdit,
RMaker, Rez, or a similar resource editor or compiler. You end up with
your application ready to run.

Figure 8-1 gives you a map of programming steps for creating an
application for the Macintosh.

90 .,... Chapter 8 Resources

leytheWay 1111-

Source File
Includes Libraries

RMaker
Includes

~ ~ ~ \
ID l l l r·"'
~-.0-.[i]--+8--+l---.8---.~_.~

Compiler Linker _J Resource Application
\..._ _________ V _ Compiler

'""'""'"'"'"™ 0_j
Figure 8-1. Programming steps for creating an application for the
Macintosh

A map at the beginning of your resource file contains offsets to various
resources contained in that file. One of the places to which the offsets
point holds dialogs, which contain all the information on your dialog
boxes; another has your executable source code; yet another has menus.
Each of these is a resource. Just about everything but the kitchen sink is
called a resource on the Macintosh. This feature offers a number of
advantages. One is that whenever you want to make modifications-for
example, suppose you've misspelled a word-you don't have to go back
to the source code, modify it, recompile, relink, and produce an execut
able file. You simply access the resource editor and make the change
there. There's no need to recompile.

The resource feature benefits not only the programmer but also the
power user, who can customize a program. One example is to modify a
font such as Helvetica by putting a slash through the digit 0 so that it
looks different from the letter 0. Without the modification (0), 0 and 0
almost look the same. Most confusing! Until the world of typography
agrees to make every zero have a slash, you have to do it yourself.

~ Overview of Resources 91

Resource names always have four characters. If you see three, the
space counts as the fourth. Every resource should have an ID number.
Apple reserves all IDs up to 127 for its own purposes, so be sure to start
your numbering with 128 or above.

How can you keep track of what resources the IDs signify? The ID
number appears in the Get Information dialog box or the New Dialog
dialog box in ResEdit. Also, you can put your comments in the box to
associate a name with the ID number. When you open the 'DLOG'
resource in ResEdit, you get a scrolling list of each 'DLOG' ID number
and its size. You can enter a name for each ID.

Suppose you lose track and try to give the same ID to a different dialog.
No problem: Up comes an alert. You don't even have to think of an ID,
because ResEdit will give it a number for you, and it has thousands to
choose from.

Use ResEdit to look at what the dialog ('DLOG' resource) contains.
You can select a code presentation or a graphic, just the way it would
come up when your application is running.

The first piece of information is the boundary rectangle, which is the
size of the window. The Macintosh always deals with sizes by describing
the position of the box in terms of its position on the screen with respect
to two corners: upper left and lower right. It assumes that if you go to the
top left, just under the menu bar, the coordinates are 0,0. Position is
reckoned in pixels across and down. Both the Macintosh Plus and the
Macintosh SE computers have nine-inch-diagonal screens, 512 pixels by
342 pixels, bitmapped.

There are two ways to describe a location on the screen. One way is to
specify a pixel point by two numbers. The first number indicates the
number of pixels horizontally from the left; the other number indicates
the number of pixels vertically from the top. Extreme top left is 0,0.
Extreme bottom right is 512,34~ on the standard nine-inch screen and is
indicated by much larger numbers on a bigger screen.

The other way to describe a location is by the four coordinates of a
rectangle. Oddly enough, the convention for this is the reverse of the
point method. In rectangle 50,60, 238,364, the numbers signify that its top
left is 50 pixels down and 60 across, while its bottom right is 238 pixels
down and 364 across.

Every dialog box has a global location and a size. Global location is
where the box is going to open on the desktop. Next, in specifying a
window is a ProcID, short for procedure ID. Each type of window has its
distinctive ID, a simple number, so you don't have to go into a lot of
detail, such as spelling out that you want a title bar with the name of the
dialog and so on.

92 ..,. Chapter 8 Resources

If you want the dialog box to be visible when it first comes up, enable
the True radio button. You may, however, prefer to keep the dialog box
invisible. This preference can be useful if the window has a lot of
information. Things will go more quickly if everything is drawn to the
screen before the dialog box appears so that users will not have to drum
their fingers with impatience.

The next flag is goAwayFlag. It puts a go-away box into the title bar.
If your dialog doesn't have a title bar, a go-away flag has no effect.

Also in the 'DLOG' resource is a refCon. Apple includes refCon for
possible use by a programmer.

Every dialog box has items. ltemsID, which describes the resource ID
of the items, is always stored under 'DITL' .

...,. Resource Compilers

Once you know what resources you want to use, you can create them
through a resource compiler that takes a text description of your re
sources and compiles them into resource files. RMaker and Rez are the
two resource compilers that are most common.

Going back a few years, resources on the Macintosh came into being
on its forerunner, the Lisa computer. The Lisa came with a set of program
development tools that included RMaker. This tool was adapted and
tweaked to run on the Macintosh. The examples in this book use RMaker
to compile resource files.

Rez was created by Apple Computer for their Macintosh Programmer's
Workshop (MPW) development program. Rez is C-oriented and re
sembles UNIX, so a programmer used to UNIX might feel more comfort
able with MPW. Rez is a more recent resource maker than RMaker and
uses a different syntax. Because Rez runs under MPW, you'll need MPW
if you want to use Rez.

Several graphical tools are available under the MPW umbrella. Com
mando is one. It gives you menus from which it generates the necessary
commands. Apple's C Compiler is another MPW tool. In addition,
several proprietary compilers and other tools run under MPW. THINK
C, the popular integrated development environment, runs under Finder,
notMPW .

...,. Resource Editors

Much more interactive than a resource compiler, a resource editor works
on a file containing the resources, changing them graphically. It both
edits and creates resources.

~ RMaker Program Syntax 93

...,. Special-Purpose Editors and· Builders
Many special-purpose resource editors and builders exist in the public
domain; Apple provides others. This kind of tool creates or edits one type
of resource only. Examples are Icon Builder and ICON Designer, which
offer the ability to design icons. Menu Builder does the same for menus,
and Dialog Creator does the same for dialogs. Special-purpose editors
and builders tend to be more powerful and versatile than ResEdit for
such specialized tasks .

...,. Resource Decompiler
This type of tool undoes the work of a resource compiler. It produces a
text description from a compiled resource file. DeRez is the most popular
resource decompiler. It decompiles a resource into a Rez format. REdit is
a public domain decompiler that decompiles a resource into an RMaker
format.

...,. RMaker Program Syntax
An RMaker file can have comments similar to those in other source code
files such as those created with compilers for Pascal, FORTRAN, and C.
Comments are remarks that make code more understandable. Not being
instructions, they are ignored by the program. Think of them as you
would notes handwritten in the margin of a book.

One kind of comment is a single-line comment; the other is a four-line,
or end-of-line, comment. A one-line comment begins with an asterisk, or
star (*); two semicolons (;;) denote an end-of-line comment. In the
RadioButton.R example, whose listing appears later in this chapter, the
"* 1" on line 14 is a one-line comment. RMaker ignores some spaces, such
as the space after the star. You can put them in or leave them out
according to what you think looks better. Some spaces, however, are
essential. One instance is the space in a declaration like Type 'DLOG'.

RMaker files also can include compiler directives. (These use the
forward slash[/]. The backward slash[\] serves a different purpose
for example, with a hexidecimal number to indicate a carriage return.
The two types of slash are not interchangeable.) One compiler directive
is a I Quit. This tells RMaker to quit as soon as it has finished building the
new resource file. Otherwise, you would need to go to the File menu and
select Quit or Open. Another compiler directive is /Noscroll. This
directive speeds up the compiling process. It does so by turning off a
window that scrolls through your code, line by line, as the compiler reads

94 ..,.. Chapter 8 Resources

your code, interprets it, and compiles the resource. Although the scroll
ing offers the benefit of letting you see where you are in the compilation,
the trade-off is a dramatic slowing of the compiler because writing each
line to the screen takes a long time.

The general format of the resources consists of a type definition. The
RadioButton.R example is type 'DLOG'. This is one of only twelve
resource types that RMaker supports. Each is a four-character symbol.
The symbols and what they stand for are listed in Table 8-1.

Table 8-1. The Twelve RMaker Resource Types

Four-character
symbol

ALRT
BNDL
CNTL
DITL
DLOG

FREF
GNRL
MENU
PROC
STR

STR#
WIND

Resource type

Alert
Bundle
Control
Dialog item list
Dialog

File reference
General
Menu
Procedure
String

String number
Window

Notes

Used for a description of the
dialog box

The space after STR is
mandatory

Apple has more than one hundred predefined resources, compared
with a piffling twelve supported by RMaker. In reality, RMaker is more
versatile than it seems. The twelve resources are by far the most popular,
and the 'GNRL' type of resource gives the opportunity to describe more
than the twelve listed.

..,. RMaker Program Syntax 95

...., RadioButton. R

Listing 8-1. RMaker file for a radio button resource

1: RadioButton.rsrc
2: rsrcRSED
3:
4: Type DLOG

5: '300
6: Pop-up Test
7: 50 50 236 372
8: Visible NoGoAway
9: 1

10: 300
11: 300
12:
13 : Type DITL

14: ,300
15: 7

16:
17: * 1
18: Button
19: 150 252 170 312
20: Quit
21:
22: * 2
23: RadioButton
24: 87 14 107 74
25: 80m
26:
27: * 3
28: RadioButton
29: 87 75 107 135
30: 40m
31:
32: * 4
33: RadioButton
34: 87 136 107 196
35: 20m
36:
37: * 5
38: RadioButton
39: 87 197 106 257
40: 15m
41:

96 ~ Chapter 8 Resources

42: * 6
43: RadioButton
44: 87 258 107 318
45: lOm
46:
47: * 7
48: StaticText Disabled
49: 10 9 60 279
50: Radio Button Example\ODby John May and Judy Whittle\OD

Mar91)
51:
52: Type crsr=GNRL
53: Rainbow Arrow,O
54: .H

55: 8001
56: 00000060
57: 00000092
58: 00000000
59: 0000
60: 00000000
61: 00004000 60007000 78007COO 7E007FOO

7F807C00 6C004600 06000300 01000000
62: COOOEOOO FOOOF800 FCOOFEOO FFOOFF80

FFCOFFEO FEOOEFOO CF008780 07800380
63: . I
64: 1 1
65: .H

66: 00000000
67: .L

68: 0
69: .H

70: 00000000
71: 8008
72: . I
73: 0 0 16 16
74: 0
75: 0
76: .H

77: 00000000
78: 00480000
79: 00480000
80: . I
81: 0
82: 4

83: 1
84: 4
85: .H

, , crsrType
, , srsrMap
, , crsrData
, , crsrXData
, , crsrXValid
, , crsrXHandle

, , crsrlData

, , crsrMask

, , crsrHotSpot

, , crsrXTable

, , crsrID

, , BaseAddr
, , rowBytes

, , Bounds
, , pmVersion
, , packType

, , packSize
, , hRes
, , vRes

, , pixel Type
, , pixelSize
, , cmpCounl
, , cmpSize

~ RMaker Program Syntax 97

86: 00000000 '' plane8ytes
87: 00000112

''
pmTable

88: .L
89: 0 '' pmReserved
90: .H
91: 00000000 00000000 01000000 00000000 '' PixOata
92: 01100000 00000000 01210000 00000000
93: 02222000 00000000 02333200 00000000
94: 03333330 00000000 03444445 00000000
95: 04444445 50000000 04445500 00000000
96: 05506600 00000000 05000660 00000000
97: 00000660 00000000 00000066 00000000
98: 00000066 00000000 00000000 00000000
99: 00000000 00000006 OOOOFFFF FFFFFFFF , , CLUT

100: 00010000 08000000 0002FFFF 08000000
101: 0003FFFF 4FOOOOOO 00040800 00000000
102: 00059200 00008000 00060001 0005FFFF

The first two lines of the listing constitute the header. Line 1 is the
name of the compiler output file. Line 2 says the file type is a resource file
and the creator is ResEdit, for which the symbol is 'RSED'. Uppercase and
lowercase are significant. The creator tells the Macintosh what program
to open when you select a file. Actually, the creator in routine
RadioButton.R is RMaker, not ResEdit, but showing 'RSED' as the creator
enables you to double-click on the resource file and bring up ResEdit
automatically.

The comma on line 4 means "null name," signifying that you don't
want to give the dialog a name and ID at this point. If you do, and the
name is, let's say, "Mimosa" with an ID of 567, the line should read as
follows.

4: Mimosa, 567

You could follow this with attributes signifying, for instance, that the
dialog is purgeable. In the absence of specified attributes, the routine
uses default attributes stated on lines 7-10.

The groups of code from line 11 to line 41 constitute what are called the
type-specific data.

Now, on line 41, the \OD is the hexadecimal equivalent of a carriage
return. Thus, this piece of static text appears in three lines as the title of
the radio button dialog box.

On lines 42 and 43, the expression 'GNRL' allows you to create your
own type of resource. Rainbow Arrow is the name of this resource, and

98 ""' Chapter 8 Resources

0 is its ID. One of the Apple resources is the familiar cursor arrow, and
it has the same ID, 0. You want to jazz up this dowdy black arrow by
endowing it with the colors of the rainbow. Here's where the Macintosh's
lookup hierarchy makes it easy. As you read in the "Overview" section
of this chapter, the first place the Macintosh looks for the resource is in
the program. That's where the ID= 0 resides, so up comes the cursor in
rainbow hues. You'll find the rainbow cursor specified for many of the
routines in this book.

Going to line 44, .H signifies that the data following it is going to be
hexadecimal, which is expressed in 16-bit integers. Icons are described as
128 bytes; 32 bits by 32 bits equals 1024 bits, divided by 8 equals 128 bytes.
Double semicolons (;;) mark the end of a line of code and precede a
comment. The program ignores comments, so you're free to enter any
remarks that will make your code listing more understandable.

When you get to the .I on line 55, the code switches from hexadecimal
notation to decimal integers. It reverts to hex at the next .H, on line 57.
Then.Lon line 59 switches from the 16 bits of a hex integer to the 32 bits
of a long integer. Other valid types of statements you can use are .P for
a Pascal string, .S for a regular string, and .R for a file name. A Pascal
string starts with the number of characters in the string, whereas a
regular string contains just the characters. The .R says you want to open
and read data from another file. This statement can be useful if you want
to include a picture consisting of many pixels.

Be sure to enter a blank line at the very end of your program.
Remember, a statement of resource type requires a blank line above and
below it.

~ Resource File Merging and Overwriting
If you put a bang, or exclamation point (!),in front of the first line of
Listing 8-1 so that it reads !RadioButton.rsrc, RMaker would look for an
existing resource file with that name. If it found one, RMaker would
merge the resources created here into that file, overwriting if necessary.
Say, for example, you already had a 'DLOG' resource with the ID 300 in
the file; RMaker would replace it with the new 'DLOG' 300.

Putting an exclamation point in front of the file type and creator has
another effect. The exclamation point makes it unnecessary to specify the
resource type and ID unless you are changing it. For example, you could
leave out lines 3 and 4 and the machine would know you wanted 'DLOG'
300. If you entered "Type DLOG" and ",301" instead, the machine would
replace the resource 'DLOG' 300 with 'DLOG' 301 in your 'RSED'
resource file.

..,.. Recommended Reading 99

Another way to merge resources is to use an include statement. Say
your resource is 'DLOG' 566. You enter "Include DLOG" on one line and
",566" on the next, and RMaker adds 'DLOG' 566 to the resource file .

..,._ Summary

This chapter provided an overview of resources-one of the most impor
tant aspects of programming the Macintosh. This chapter also gave you
a survey of resource compilers and editors, special-purpose editors and
builders, and resource decompilers; a detailed review of RMaker pro
gram syntax; and a discussion of file merging and overwriting .

..,._ Recommended Reading
Alley, Peter and Carolyn Strange. ResEdit Complete. Reading, MA:

Addison-Wesley, 1991.
Andrews, Mark. Programmer's Guide to MPW, Volume 1: Exploring the

Macintosh Programmer's Workshop. Reading, MA: Addison-Wesley,
1990.

Apple Computer. ResEdit Reference, for ResEdit 2.0b2. Cupertino, CA
and Reading, MA: Apple Computer and Addison-Wesley, 1990. APDA
No. MM0015LL/C.

Symantec Corporation. The THINKC User's Manual, Version 4.0.
Cupertino, CA: Symantec Corporation, 1989.

West, Joel. "All About Resource Editors." The Complete MacTutor-The
Macintosh Programming Journal, Vol. 2, 1987.

---."No Rez-ervations Needed!" The Essential MacTutor-The Macin
tosh Programming Journal, Vol. 3, 1988.

---.Programming with Macintosh Programming Workshop. New York:
Bantam Books, 1988.

9 Buttons

...... Overview of Buttons
In the Apple Desktop Interface, buttons are simple little rectangles with
rounded corners and a word or two (a label) inside. They are called
buttons because they resemble the buttons you press on your stereo set,
television, or telephone. The default button is distinguished by its
double-line border. That means you can either click on the button or
press Return or Enter to get the desired action.

Much fancier versions of buttons, such as those in the NeXT computer's
interface, are quite realistic. They not only look more like the real thing,
but they also can be made to respond visually to a mouse click the way
a real button does, appearing to sink down when pressed and pop back
up when let go .

...,. Routine to Draw the Outline of a Default Button

The Macintosh Toolbox contains a routine for drawing standard buttons,
as specified in the Human Interface Guidelines. Surprisingly, though,
the Toolbox doesn't contain a routine for creating a default button.
You're left to figure out how to frame the default item by drawing the
required bold frame outside the skinny one. The routine in this section,
FrmDefltem.c, supplies the missing instructions. Once you keyboard the
code or install it from disk, you only need call the routine by name to have
the default button outline appear.

101

102 ...,. Chapter 9 Buttons

For readers who are not experienced programmers, we use this rou
tine as a tutorial. The review of the source code goes into greater detail
here than in other parts of the book, and the programming principles
apply to all the routines .

...., FrmDefltem.c

This routine puts a double frame around a default button, signaling the
user that pressing the Enter or Return key will have the same effect as
clicking on the double-framed button.

Listing 9-1. Putting a double frame around the default item in a dialog box

PROCEDURE FnnDefitem(theDialog: DialogPtr);

1: /***/
2: void FnnDefitem(DialogPtr theDialog)
3: /***/
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:

short
short
Rect
Handle
PenState
short
Graf Ptr
short
AuxCtlHndl
RGBColor
RGBColor

theitemID; /* Dialog item */
iterrtIYPe; /* Not used */
itemRect; /* Rectangle item */
iternHandle; /* Not used */
penStuff;
curveFactor;
savePort; /* Old grafPort */
hasColor = O;
aUXCtlHndl = NIL;
newRGB;
oldRGB;

16: SysEnvRec sysEnvRec; /* Environment record */
17: #define SysEnvironsTrap OxA090 /* Toolbox traps */
18: #define UnknownTrap OxA89F
19: if ((long)NGetTrapA#ddress(SysEnvironsTrap, OSTrap) !=
20: (long)NGetTrapAddress(UnknownTrap, ToolTrap))
21: {
22: SysEnvirons(l, &sysEnvRec);
23: hasColor = sysEnvRec.hasColorQD;
24:
25: theitemID = ((DialogPeek)theDialog->aDefitem;/* Get def item*/
26: GetPort (&SavePort);
27: SetPort(theDialog);
28: GetPenState(&penStuff);
29: GetDitem(theDialog, theitemID, &iterraype, &iternHandle,

&itemRect);

.,.. Routine to Draw the Outline of a Default Button 103

30:
31:

if (hasColor)
{

32: if (!GetAuxCtl(itemHandle, &auxCtlHndl))
33: {
34: if (GetAuxCtl(O, &auxCtlHndl))
35:
36:
37:
38: newRGB = (*(*auxCtlHndl)->acCTable)-

>CtTable[cFrameColor] .rgb;
39: GetForeColor(&oldRGB);
40: RGBForeColor(&newRGB);
41:
42:
43:

PenNormal();
PenSize(3, 3);

44: InsetRect(&itemRect, -4, -4);

/* Get frame color */

/* Draw Frame */

45: curveFactor = (itemRect.bottom + 8 - itemRect.top) I 2;
46: FrameRoundRect(&itemRect, curveFactor, curveFactor);
47: SetPenState(&penStuff);
48: if (hasColor)
49: {
50: RGBForeColor(&oldRGB);
51:
52: SetPort(savePort);
53:

Call the routine on line 2 and pass it the dialog box that contains the
default item. Every item in the box has a distinct number. The OK button
usually has the number 1, but there can be exceptions. One example is a
confirmation dialog box where you ask the user a question like, "Do you
want to delete this file?" and offer Yes, No, or Cancel as the response
buttons. You might want the No button as the default response.

In the dialog box's record is a constant that tells this program and the
Dialog Manager which item is the default. You could write three rou
tines, one each for the Yes, No, and Cancel responses. That would do it;
but why give yourself extra work? Better to write just one routine that
brings up all three buttons and allows you to change the default item.
You need to pass in only the item number of the button you want
outlined.

Lines 5-18 are declarations that have a global effect on the routine. For
example, they set the values associated with constants, state which data
types are used in the routine, and disclose other fixed information that
remains in effect for the entire routine.

104 ..,. Chapter 9 Buttons

Starting the code listing at line 19, the routine leads off with an if
statement (lines 19-24) to determine whether SysEnvirons is present.
The system environment record is a collection of essential information
about the machine. Is it a Macintosh II, an SE, or a Plus? What's the
version number of the System? What processor? Does it have a floating
point unit? What type of keyboard? Does it have color?

On line 25 you can pass in the item ID and the statement returns the
dialog and the default item.

The statements on lines 26 and 27 refer to the grafPort. Every window
in the Macintosh is known as a grafPort. You can think of a grafPort as a
way to define a graphical environment in which QuickDraw will oper
ate. You tell the machine which grafPort you are going to be in. Say you
want to draw a line in a window. If you don't call SetPort, the Macintosh will
assume you are using the coordinate system of the last window in which
it called SetPort. That window might be down near the bottom right of
the screen, yet the Macintosh will call it 0,0. Any other set of coordinates
you draw will be referenced to the same 0,0. If you want to draw your
new window up near the top of the screen, that also will be 0,0. With the
GetPort call, you tell the Macintosh you are using another grafPort and
its coordinates are 0,0 but you want it drawn higher on the screen.

Getting grafPorts confused is one aspect of the Macintosh that spells
trouble for some programmers. If something strange is going on, the
probability is high that the grafPort isn't set up right. It's painfully easy
to forget to set it.

I .• ~lm_po_rt_a_n_t_..,._~. • ~~ays make sure ~o~ > > .· . . . i

• ~l~ays make sureyo~l\• ·•.·•.•············ ... f~lVhenyou:i:~
• cawtpe rop.tb:\~ GetPott ~()get the old port.

ypp.:lV~t. l'Je)(t use SetPort to set fhings b

Line 28 gets the present state of the pen and stores it away for recall.
The pen can be used several ways in grafPorts. It can be 1, 2, 3, or more
pixels wide. It can draw lines that are solid or patterned. If used to draw
over another graphic, it can erase or not erase. Later, on line 47, you'll
want to set the pen back to what it was. You don't want the pen to be
drawing a line 2 pixels wide, then suddenly switch to 4 pixels wide.

The call on line 29 returns the item and its ID, type, and rectangle.
The if-statement from line 30 to line 41 sets the default color of the

frame. If the user is running the program on a color machine, the routine

..,.. A Simple Button Example 105

will use the same color to frame the button as to draw the button. Frame
color is the same as foreground color. Lines 32-34 return information on
the color table for the control. Lines 38-40 pull out the red, green, and
blue for the frame. Line 39 saves the current foreground color, and line
40 returns the new foreground color. By saving the old foreground color,
you avoid having the wrong color appear when you resume work on
your previous program.

The statement on line 42 sets the pen back to its initial defaults of size,
mode, and pattern. The pen size reverts to 1 pixel vertical, 1 pixel
horizontal. The pen pattern reverts to black, which gives a solid line.
Then line 43 sets the pen size to 3 pixels wide for drawing the vertical
sides of the frame and also to 3 pixels for the top and bottom of the frame.
That width happens to be standard for a default button frame.

The statement on line 44 outsets the rectangle 4 pixels on all sides.
Insetting the rectangle by a negative amount to make it bigger sounds
like a joke, but that is the convention. A negative inset is called an outset.
If you substitute positive 4 for negative 4 on line 44, you shrink the
rectangle 4 pixels, getting a 4-pixel inset.

The code on line 45 is necessary because the corners of a button are
rounded. The Macintosh computes the curve automatically for its stan
dard button resource. Such a curve radius simply would not do for the
default frame, which has to fit outside the regular button. This statement
gives the Macintosh the curve factor needed for its computation.

Line 46 calls the FrameRoundRect routine, passes it the rectangle item
you had outset, and passes it the curve factor. You get a frame 3 pixels
wide around the button rectangle. Frame color has been set to the color
of the button, so the two colors are matched.

Having completed its task of double framing the default button, the
program restores your original settings for the pen, the foreground color
(if color is available), and the grafport. Just to do something as simple as
framing a rectangle, the program has made sixteen different Toolbox
calls and one of our own .

.,... A Simple Button Example

This section contains a pair of source code listings that demonstrate the
Macintosh default button. The pair consists of one file with the extension
.c and another file, containing the resources, with the extension .R. The
two types of files always go together to make up an application.

106 ~ Chapter 9 Buttons

~ ButtonExample.c

The button example tests the routine FrmDefltem.c and produces a Quit
button in a dialog box (see Figure 9-1).

Listing 9-2. Example of a default button

/**/
void main() /* Routine to test button frame */
/**/

DialogPtr
short
InitToolBox () ;

theDialog;
itemHit;

OpenResources("\pButtonExample.rsrc"); /*For development purposes*/
CenterDialog(300);
OpenDialog(&theDialog,300);
FrrnDefitem(theDialog);
for(;;)

{

MyModalDialog(&itemHit);
switch (itemHit)

case (1):
break;

case (-updateEvt):
BeginUpdate(theDialog);

UpDialog(theDialog);
FrmDefitem(theDialog);

EndUpdate(theDialog);
continue;

default:
continue;

break;

DisposeDialog(theDialog);

/* All other events */

..,. A Simple Button Example 107

Button EHample
by John C. May and Judy Whittle
(22Mar91)

n Quit)

Figure 9-1 . Dialog box with example of a default button

~ ButtonExample.R

This section contains the resource file for ButtonExample.

Listing 9-3. Resource file for example of a default button

ButtonExample.rsrc
rsrcRSED

Type DLCX;

,300
Cursor Test
50 50 278 344
Visible NoGoAway
1
1
300

Type DITL
,300
2

, , Message (Title)
,, Rect (T,L,B,R)
, , Flags
, , Proc ID
, , RefCon
,, Resource ID of DITL list

108 ~ Chapter 9 Buttons

183 219 203 279
Quit

* 2
StaticText Disabled

'' Rect (T,L,B,R)
, , Message

10 10 60 280 ;; Rect (T,L,B,R)
Button Example\ODby John C. May and Judy Whittle\0D(22Mar91) ;; Message

..._ Summary

This chapter provided a routine for framing a default button with a
double line, an example of a default button complete with source code,
and an RMaker file containing the resources used .

..._ Recommended Reading
Apple Computer. Inside Macintosh, Vol. 1. Reading, MA: Addison

Wesley, 1985.

10 Check Boxes

..... Overview of Check Boxes
A Macintosh check box is a little square outline sitting in a dialog
window. It can be likened to a latching toggle switch on your stereo set.
The toggle switch gives you two choices: When it sticks out, its function
is off; when it is pressed in, its function is on, and it stays pushed in until
pushed again. When a Macintosh check box is not selected, it is empty.
When you select it by clicking on it, an "X" appears in the box. Unlike
radio buttons, which are mutually exclusive within a functional group
(that is, only one can be selected at one time), check boxes are functionally
independent in that you can have one or more in a group selected at the
same time. A good example is the Preferences item in Microsoft Word's
Edit menu, whose dialog offers a number of check boxes that give you the
option to show hidden text, use picture placeholders, show table gridlines,
and so forth.

..... Getting and Setting the Check Box State
The value 1 or 0 in the check box represents either of two states, selected
(1) or not selected (0). The two routines in this section perform the
function of getting the value in the check box or setting the value in the
check box.

You can write your program so that, for instance, clicking in a check
box sets the value 1 denoting" on" and puts an X in the box. PutCheckBox.c
turns the check boxes on or off to reflect the user's decisions. However,

109

110 Chapter 10 Check Boxes

nothing else happens unless you click on the OK button. As soon as the
user selects OK, the GetCheckBox.c routine gets that value so that your
program can take the desired action .

..,.. PutCheckBox.c

This routine puts a value in a check box, making it on or off. Using a voice
mail program for an example, you might have a check box with which the
user can reply to the question, "Do you want the system to answer the
phone?" The default reply would be yes, turning the box on.

The routine requires you to pass in the item number of the check box
and the value to which you want it set: 0 for off, 1 for on.

Listing 10-1. Setting the value in a check box

PROCEDURE PutCheckBox(theDialog: DialogPtr,itemHit: INTEGER,
value: INTEGER);

1: /**/
2: void PutCheckBox(DialogPtr theDialog, short itemHit, short

value)
3: /**/
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

short
Rect
Handle

itemType;
itemRect;
itemHandle;

GrafPtr savePort;
GetPort(&savePort);
SetPort(theDialog);

/* Not used */
/* Not used */

I* Handle to edit text */
/* Old grafPort */

/* Save old port */

GetDitem(theDialog, itemHit, &itemType,
&itemHandle, &itemRect); /*Get edit text handle*/

if (value)
{

SetCtlValue(itemHandle, 1);

else

SetCtlValue(itemHandle, 0);

21: HiliteControl(itemHandle, 0);
22:
23:

SetPort(savePort); I* Restore old port */

Just as in the corresponding get routine, GetCheckBox.c, described
next, this put routine leads off with getting and setting ports on lines 9

..,.. Getting and Setting the Check Box State 111

and 10. Lines 11 and 12 get the dialog items, ignoring all but the item
handle.

Lines 13-20 do an if-test on the value by calling the SetCtlValue
Toolbox routine, saying, "If the value is true, set the control value equal
to 1; if the value is not greater than 0, set the control value to 0."

The routine uses the call on line 21 to highlight the check box.
Highlighting, or making a control active, is the opposite of giving it the
dim, grayed-out look of an inactive control. To make a control active, you
pass it the value 0, making the reasonable assumption that a programmer
setting a value for a control wants to make it active. If for some reason you
wanted to make it inactive, you could pass it the number 255 instead of
0 on line 21. The number 255 is equivalent to all ones, hex FF. Line 21
would then make the check box inactive.

The last statement, on line 22, sets the port back to its default.

..,_ GetCheckBox.c

GetCheckBox.c has much in common with GetEditShort.c (reviewed in
Chapter 15), which gets a value out of an edit text field. GetCheckBox.c
does the same for a check box.

Listing 10-2. Getting the value from a check box

FUNCTION GetCheckBox(theDialog: DialogPtr,itemHit: INTEGER): INTEGER;
1: /***/
2: short GetCheckBox(DialogPtr theDialog, short itemHit)
3: /***/
4:
5:
6:
7:

8:
9:

10:
11:

short
Re ct
Handle
Graf Ptr

item'fype;
itemRect;
itemHandle;
savePort;

short value;
GetPort(&savePort);
SetPort(theDialog);

12: value = O;
13: GetDitem(theDialog, itemHit,&itemType,

/* Not used */
/* Not used *I

/* Handle to edit text */
I* Old grafPort */

/* Check box value */

I* Save old port */

14: &itemHandle, &itemRect); /*Get edit text handle*/
15: if (GetCtlValue(itemHandle))
16: {
17: value = 1;
18:

112 Chapter 1 O Check Boxes

19:
20:
21:

return (value) ;
SetPort(savePort);

/* Return short value */

/* Restore old port */

After the usual preamble of getting and saving the old gra£Port, then
setting the dialog box needed for your program on lines 10 and 11, the
statement on line 12 sets the check box value to 0. Next, lines 13 and 14
get you the item handle you need.

The if-statement on lines 15-18 say, "If the value is not a 0, then make
it a l." This thinking goes along with the basic idea that the check box is
merely an off or on toggle requiring a value of 0 for off and 1 for on.
GetCtlValue is a Toolbox routine.

What GetCheck-Box.c does is to save a couple of calls to the Toolbox.
Without it, you'd have to call the GetDltem routine to get the handle,
then call to get the value, then figure out whether the value was 0 or 1.

~ Toggling the Check Box State
The first two check box routines in this chapter either get a value from a
check box or put a value into a check box. The following routine handles
the most frequent check box event, toggling, which is a switching back
and forth between off and on. When you point into an empty check box
and click the mouse, you expect an X to appear in the box to indicate that
the function it represents is selected. Conversely, when you click in a box
that has the X, you expect the X to disappear. One of the surprises of the
Macintosh Toolbox is that although it automatically draws the check box
on the screen, it does not automatically draw the X when you click in it.
It will draw the X only if you supply a value of 1.

..,.. ToggleCheckBox.c

ToggleCheckBox.c provides the necessary code to toggle the check box.

Listing 10-3. Toggling the value in a check box

PROCEDURE ToggleCheckBox(theDialog: DialogPtr,itemHit: INTEGER);

1: /**/
2: void ToggleCheckBox(DialogPtr theDialog, short itemHit)
3: /**/
4:

..,.. A Simple Check Box Example 113

5:
6:
7:
8:
9:

10:

short
Rect
Handle
Graf Ptr

itemType;
itemRect;
itemHandle;
savePort;

short value;
GetPort{&savePort);

11: SetPort{theDialog);

/* Not used *I
/* Not used */

/* Handle to edit text */
/* Old grafPort */

/* Save old port */

12: GetDitem{theDialog, itemHit, &itemType,
13: &itemHandle, &itemRect); /*Get edit text handle*/
14: value= 1 - GetCtlValue{itemHandle) /* Toggle */
15: SetCtlValue{itemHandle, value);
16:
17:

SetPort{savePort); /* Restore old port */

This simple routine is similar to the various get and put routines in this
book. After the usual grafPort calls, the routine gets the handle to the
check box on lines 12 and 13. Line 14 says that value, which is a temporary
variable, is equal to 1 minus the control value. You pass it the handle to
the item. Suppose the control value is 0, then 1minus0 equals 1; if the
control value is 1, then 1minus1equals0. What that boils down to is that
the value is going to be either to 0or1. That's the essence of toggling.

Line 15 sets the control value to 0 or 1, as the case may be.
Ending the routine is the customary instruction to set the grafPort back

to its default state .

...,. A Simple Check Box Example

This section contains a pair of source code listings that demonstrate the
GetCheckBox, PutCheckBox, and ToggleCheckBox routines. The pair
consists of one file with the extension .c and another file, containing the
resources, with the extension .R. The two types of files always go together
to make up an application .

...,. CheckBoxExample.c

CheckBoxExample.c produces a dialog box containing two check boxes,
an icon representing a speaker, an icon representing a telephone, static
text, and an OK button (see Figure 10-1).

114 ~ Chapter 10 Check Boxes

Listing l 0-4. Example of a check box

/***/
void main() /* Routine to test check boxes */
/***/

DialogPtr
short

theDialog;
iteml-lit;

Ini tToolBox () ;
OpenResources("\pCheckboxExample.rsrc");
CenterDialog(300);
OpenDialog(&theDialog,300);
FrmDefitem(theDialog);
for(;;)

{

MyModalDialog(&itemHit)
switch (iteml-lit)

case (1):
break;

case (2):
TogCheckBox(theDialog, 4);
continue;

case (3):
TogCheckBox(theDialog, 5);
continue;

case (-updateEvt):
BeginUpdate(theDialog);

UpDialog(theDialog);
FrmDefitem(theDialog);

EndUpdate(theDialog);
continue;

default:
continue;

break;

DisposeDialog(theDialog);

/*For devel purposes */

/* Speaker icon */

/* Telephone icon */

/* All other events */

~ A Simple Check Box Example 115

Playback Through ...

((.. 181 Speaker

W D Telephone

(OK)

Figure 10-1. Dialog box with example of check boxes

..,.. CheckBoxExample.R

This section contains the resource file for CheckBoxExample.c.

Listing 10-5. Resource file for a check box example

CheckBoxExample.rsrc
rsrcRSED

Type ICON=GNRL
,311

.H
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

;; Icon
00000000 003FFEOO OlFFFFCO 03FC1FEO 07EFFBFO 07EFFBF0 07DE3DFO 003BEEOO
00363600 0073E700 OOFC1F80 OOFFFF80 OOFFFF80 OOFFFF80 OOFFFF80 OOE00380
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

,310
.H
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

;; Icon
00000000 00008000 OOOOCOOO 0088EOOO OllOFOOO 0220FEOO 0220FEOO 0220FEOO
0220FEOO 0220FEOO 0220FEOO OllOFOOO 0088EOOO OOOOCOOO 00008000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

116 Chapter 10 Check Boxes

Type DLOG
,300
Playback Setup

''
Message (Title)

34 32 200 248
''

Rect (T,L,B,R)
Visible NoGoAway

''
Flags

1
'' Proc ID

300
'' Ref Con

300
'' Resource ID of DITL list

Type DITL
,300
6

* 1
Button Enabled
129 147 149 202

''
Rect (T,L,B,R)

OK
''

Message

* 2
Iconitem Enabled
46 54 78 86

''
Rect (T,L,B,R)

310
''

ID

* 3
Iconitem Enabled
85 54 117 86

'' Rect (T,L,B,R)
311

'' ID

* 4
CheckBox Enabled
56 90 69 178

'' Rect (T,L,B,R)
Speaker

''
Message

* 5
CheckBox Enabled
96 90 108 186

'' Rect (T,L,B,R)
Telephone

'' Message

* 6
StaticText Enabled
21 16 42 170

'' Rect (T,L,B,R)
Playback Through ...

''
Message

..,.. Summary 117

~ Summary
This chapter provided three routines that help you manipulate the value
in a check box.

• Getting a value from a check box
• Putting a value in a check box
• Toggling the value in a check box

It also gave an example of a check box created with a combination of the
three routines, plus the source code and the resource file for the example.

1 1 Radio Buttons

~ Overview of Radio Buttons
Radio buttons-the little open or bull's-eye circles in a dialog window
got their name because they act like the station selection buttons on a car
radio. They are designed so that only one button in the group can be
active at one time. After all, who would want two or more stations
playing through the same speakers at the same time, even if it were
possible? Until recently, car radio buttons were electromechanical con
traptions, and all buttons in the group were interlocked by a mechanism.
Now the interlock is done with flip-flops and transistor latches, but the
effect is the same.

A radio button in the standard Macintosh graphical interface is a plain
circle that you click on to select. The chosen one shows a solid dot in the
middle, like a small bull's-eye. Microsoft Word's Page Setup item in the
File menu on the Macintosh Plus is a good example. Its dialog has a group
of five radio buttons that allow you to select only one paper format at a
time, such as US Letter or US Legal.

~ Setting the Radio Button State

The routines in this section work a lot like the get and put routines for
check boxes, described in Chapter 10. In fact, a radio button and a check
box are indistinguishable to the Macintosh Toolbox and in the control
definitions written by Apple. Functionality distinguishes one type of
control from the other: Whereas you can have several in a group of check

119

120 ..,.. Chapter 11 Radio Buttons

boxes on at a time, only one radio button in a functional group can be on
at once.

Our radio butfon routines make several assumptions-that the radio
buttons are grouped, that they are numbered contiguously, and that the
selection of one radio button deselects the others. Contiguous number
ing is not essential, but it's strongly recommended. If, for instance, you
numbered four radio buttons 5, 6, 8, and 9 and later gave a different type
of item the number 7, your program would mess up.

All three routines use the familiar calls to save the old port while you
bring up a different one, then restore the old port to its original setting.

~ GetRadioButton.c

This routine gets the value from a radio button, returning the ID of the
radio button that is pressed. First you need to pass in the ID of the first
and last radio buttons in a group. All the ID numbers must be contiguous
for this routine to work right.

Listing 11-l . Getting the value from a radio button

FUNCTION GetRadioButton(theDialog: DialogPtr, firstitem: INTEGER,
lastitem: INTEGER) : INTEGER;

1: /****************~***/

2: short
3:

GetRadioButton
(DialogPtr theDialog, short firstitem, short lastitem)

4: /**/
5:
6:
7:
8:
9:

short item'fype; /* Not used *I

10:
11:
12:
13:

Rect itemRect;
Handle iternHandle;
short value;
Graf Ptr savePort;

GetPort(&savePort);
SetPort(theDialog);

/* Not used */
/* Handle to edit text */
/* Which radio is down */

/* Old grafPort */

/* Save old port */

14: for (value = firstitem;value <= lastitem; value++)
15:
16: GetDitem(theDialog, itemNo, &item'fype,
17: &iternHandle, &itemRect); /*Get edit text handle*/
18: if (GetCtlValue(iternHandle))
19: {

20: return(value);
21: break;
22:
23:
24:
25:

SetPort(savePort);

..,.. Setting the Radio Button State 121

I* Restore old port */

After several lines of declarations and getting and setting the port, line
14 says that this function returns a value denoting that a radio button is
pressed or not pressed.

Like the other routines in the get and put category, this routine
requires the pbinter to the dialog. Unlike the others, is that it also requires
the IDs of the first and last items. With, for example, three radio buttons
numbered 5, 6, and 7, radio button number 5 would be the first and
number 7 the last. So, line 14 says, "For a value equal to the first item, loop
as long as the value is equal to or less than the last item, and increment
this item with each loop." In our example, the looping continues until the
value reaches 8.

Lines 16 and 17 get the handle to the dialog item number, which in our
example is 5.

Lines 18-22 amount to: "If the control value returns any number but
0, the value will be returned, and the break-statement will branch you out
of the for-loop." In the example of radio buttons numbered 5 through 7,
you'll branch out of the loop after one cycle if radio button number 5 is
pressed and after three cycles if number 7 is pressed. If no button is
pressed, the value 8 will be returned after four cycles, whereupon you
branch out of the loop.

The routine assumes that only one radio button is pressed. Don't
worry about what will happen if two or more are pressed.
PushRadioButton.c in this chapter takes care of that eventuality .

...,. PutRadioButton.c

This routine is the put counterpart of GetRadioButton.c just described. It
puts a value in a radio button, making it on or off. The routine requires
you to pass in the item number of the radio button and the value to which
you want it set: 0 for off, 1 for on.

122 ..,_ Chapter 11 Radio Buttons

Listing 11-2. Setting the value in a radio button

PRCX:EDURE PutRadioButton(theDialog: DialogPtr,iternHit: INTEGER,
value: INTEGER);

1: /**/
2: void PutRadioButton(DialogPtr theDialog, short itemHit, short
3: value)
4: /**/

5:
6:
7:
8:

short
Re ct
Handle

i tern'fype;
iternRect;
iternHandle;

9: GrafPtr savePort;
10: GetPort(&savePort);
11: SetPort(theDialog);

/*

12: GetDitern(theDialog, itemHit, &itern'fype,

/* Not used
/* Not used

Handle to edit text
/* Old grafPort

/* Save old port

*I
*/
*/
*/
*/

13: &iternHandle, &iternRect); /*Get edit text handle*/
14: if (value)
15: {
16: SetCtlValue(iternHandle, 1);
17:
18: else
19:
20: SetCtlValue(iternHandle, OJ;
21:
22: HiliteControl(iternHandle, 0);
23:
24:

SetPort(savePort); /* Restore old port */

Just as in the corresponding get routine, GetRadioButton.c, this put
routine leads off with getting and setting ports on lines 10 and 11. Lines
12 and 13 get the dialog items, ignoring all but the item handle.

Lines 14-21 do an if-test on the value by calling the SetCtlValue
Toolbox routine, saying, "If the value is true, set the control value equal
to 1; if the value is not greater than 0, set the control value to 0."

The routine uses the call on line 22 to highlight the radio button.
Highlighting an active control is the opposite of giving it the dim,
grayed-out look of an inactive control. To make a control active, you pass
it the value 0, making the reasonable assumption that a programmer
setting a value for a control wants to make the it active. If for some reason
you wanted to make it inactive, you could pass it the number 255 instead
of 0 on line 22. The number 255 is equivalent to all ones, hex FF. Line 22
would then make the radio button inactive.

The last statement, on line 23, sets the port back to its default.

~ Grouping Radio Buttons 123

....,. Grouping Radio Buttons
Radio buttons must, to comply with the Human Interface Guidelines, be
mutually exclusive within a group. Click on one to select it, and all the
others are deselected .

..,. PushRadioButton.c

This routine, PushRadioButton.c, gives the radio buttons in a group the
necessary attribute of exclusivity.

Listing 11-3. Making radio buttons within a group mutually exclusive

PRCX:EDURE PushRadioButton(theDialog: DialogPtr,itemHit: INTEGER,
firstitem: INTEGER, lastitem: INTEGER);

1: /**/
PushRadioButton 2: void

3:
4:

(DialogPtr theDialog, short itemHit, short firstitem,
short lastitem)

5: /**/
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:

short
Rect
Handle
short

itentrype;
itemRect;
itemHandle;
value;

GrafPtr savePort;
GetPort(&savePort);
SetPort(theDialog);
for (value = f irstitem;

value <= lastitem; value++)

I* Not used */
/* Not used */

I* Handle to edit text */
I* Which radio is down */

/* Old grafPort */
/* Save old port */

/* Reset all buttons */

17: GetDitem(theDialog, value, &iterrtrype, &itemHandle,
&itemRect);

18: SetCtlValue(itemHandle,0);
19:
20:
21:
22:

if ((itemHit < firstitem) 11
(itemHit > lastitem))

23: for (value = firstitem;
24:
25:

value <= lastitem; value++)

/* Is button valid? */

/* Set buttons inactive */

26: GetDitem(theDialog, value, &iterrtrype, &itemHandle,
&itemRect);

124 ~ Chapter 11 Radio Buttons

27: HiliteControl(itemHandle, 255);
28:
29:
30: else
31:
32: for (value = first!tem;
33:
34:

value <= last!tem; value++) /* Set buttons active */

35: GetDitem(theDialog, value, &item'IYPe, &itemHandle,
&itemRect);

36: HiliteControl(itemHandle,0);
37:
38: GetDitem(theDialog, itemHit, &item'IYPe,
39:
40:
41:
42:
43:

&itemHandle, &itemRect);
SetCtlValue(itemHandle, l);

SetPort(savePort);

/* Set the button */

/* Restore old port */

PushRadioButton.c is a subroutine as opposed to a function. As shown
on lines 3 and 4, it requires the dialog pointer, the item representing the
pushed button, and the first and last items in the list of buttons. Assump
tions are that all the items are contiguously numbered radio buttons and
that the button to be pressed is in that group.

After several lines of declarations and getting and saving the port, line
14 starts a for-loop that bumps up the value of the radio button with each
loop. Within the for-loop, lines 17 and 18 reset all the radio buttons to off,
meaning that none is in the pressed condition.

Line 20 starts an if-test that says, "If the item you're going to press is
less than the first item or greater than the last item-in other words, if the
item isn't within the range of contiguous allocated numbers-then go
through the for-loop on lines 23-28, which makes every radio button
inactive."

If, however, the item you press is within the valid range, the routine
does another for-loop on lines 30-37 that is identical to the previous for
loop, except that this one makes all the valid buttons active.

On line 38 you call the Toolbox routine GetDitem and pass it the item
number of the button you want to press.

Line 40 calls the Toolbox routine SetCtlValue. You pass it the handle
of the desired button and pass it the number 1, which says, "Press that
button."

After restoring the port to the old settings on line 42, you finish the
routine. Your radio button group has become mutually exclusive.

...., A Simple Radio Button Example 125

~ A Simple Radio Button Example
This section contains a pair of source code listings that demonstrate the
routine PushRadioButton.c, as seen in Figure 11-1. The pair consists of
one file with the extension .c and another file, containing the resources,
with the extension .R. The two types of files always go together to make
up an application.

~ RadioButtonExample.c

This example tests the routine PushRadioButton.c.

Listing 11-4. Example of radio buttons

/**/
void main() /* Routine to test radio button */
/**/

DialogPtr theDialog;
short itemHit;
InitToolBox();
OpenResources("\pRadioButtonExample.rsrc"); /*For dev purpose*/
CenterDialog(300);
OpenDialog(&theDialog,300);
FrmDefitem(theDialog);
PushRadioButton(theDialog, 2, 2, 6);
for (;;)
{

MyModalDialog(itemHit);
switch (itemHit)

case (1):
break;

case (2):
case (3):
case (4):
case (5):
case (6):

PushRadioButton(theDialog, itemHit, 2, 6);
continue;

case (-updateEvt) ;
BeginUpdate(theDialog);

UpDialog(theDialog);
FrmDefitem(theDialog);

EndUpdate(theDialog);
continue;

126 ..,. Chapter 11 Radio Buttons

default:
continue;

break;

DisposeDialog(theDialog);

Radio Button EHample
by John May and Judy Whittle
(22Mar91)

® 80m O 40m O 20m O 15m O 1 Om

t Quit I

/* All other events */

Figure 11-1. Dialog box with example of radio buttons

...., RadioButtonExample.R

This section contains the resource file for RadioButtonExample.c.

Listing 11-5. Resource file for example of radio buttons

RadioButtonExarrple.rsrc
rsrcRSED

Type DI..00
,300
Radio Button Test
50 50 236 372
Visible NoGoAway
1
300
300

Type DITL
,300
7

* 1
Button
150 252 170 312
Quit

* 2
RadioButton
87 14 107 74
80m

* 3
RadioButton
87 75 107 135
40m

* 4
RadioButton
87 136 107 196
20m

* 5
RadioButton
87 197 106 257
15m

* 6
RadioButton
87 258 107 318
lOm

* 7
StaticText Disabled
10 9 60 279

.,.. A Simple Radio Button Example 127

Radio Button Example\ODby John May and Judy Whittle\0D(22Mar91)

128 ~ Chapter 11 Radio Buttons

....,. Summary

This chapter presented three routines for handling radio buttons.

• Getting the value of a radio button
• Setting the value of a radio button
• Making a group of radio buttons mutually exclusive

The chapter also included an example that tests the routine
PushRadioButton.c as well as the source code and resource file for the
example.

12 Icons

...... Overview of Icons
Icons, in the Apple Desktop Interface, typically represent familiar objects
such as disks, folders, applications, documents, and so on. Often these
icons are static, so that when you click on them, they do nothing or, in the
case of an application or document, they open up. However, icons can be
used in dialog boxes as control buttons that, when pressed, perform some
function.

The routines in this chapter deal with two classes of icons: button and
toggle. Real-world buttons can be of the "button" or" toggle" type. When
you push a doorbell button, it goes down; when you release, it pops back.
When you press a latching toggle switch on your stereo set, it stays
pressed until you push it again.

For each button or toggle icon, you actually need two icons. You need
to show a button that is pushed and a button that is not pushed or a toggle
switch that is up or down, or on or off. In this way you can give your
application a little animation, at least two frames of it. Animated icons
can be nice to look at, but they can be overused. You might use an icon
for a Find function, but you would not use one for an Okay function:
What could you illustrate with an icon for an okay? The example in this
chapter uses a toggle icon to represent the on and off positions of a switch
in a dialog box.

129

130 ..,._ Chapter 12 Icons

....,. Using Icons as Control Buttons
The routines in this section provide three capabilities for icon buttons.
The first routine draws the icon, the second handles a mouse-down event
inside the icon, and the third disposes of the icon.

Included as a prologue are some declarations (Listing 12-1) that need
to go into your application globally so that all the routines have access to
them. In C, you put global declarations outside of the curly braces. If you
put them inside the curly braces, they become local declarations for that
routine only.

Listing 12-1. Global code defining the structure for three button icon
routines

1: typedef struct
2: {

3: DialogPtr oDialog;
4: short oitem;
5: Handle switchA;
6: Handle switchB;
7: char inColor;
8: short valueA;
9: short valueB;

10: iconBut, *piconBut, **hiconBut;

This type definition structure creates a variable called an iconBut. The
structure has five items in it: the pointer to the dialog box that contains
the button icon; the item in the dialog box that, when hit, represents the
button icon; two icons-one icon to be drawn when the button is on and
one icon to be drawn when it is off; and information on whether the icon
is in color .

.,... GetButtonlcon.c

GetButtonkon.c draws the button icon on the screen. In order to use
button icons, you have to create in the dialog box an item that is the exact
size of the icon that will be drawn on the screen. The item can be either
a user item or an icon i tern. Normally, icon items inside a dialog box don't
do anything. For example, the icons on alerts are static; you can click on
them, but nothing happens. The icons in these routines perform a
function.

~ Using Icons as Control Buttons 131

Listing 12-2. Drawing a button icon

FUNCTION GetButtonicon (theDialog: DialogPtr, itemHit: INTEGER, iconl:
INTEGER, icon2: INTEGER): hiconBut;

1: /***/
2: hiconBut GetButtonicon (DialogPtr theDialog,
3: short itemHit,short iconl,short icon2)
4: /***/
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:

GrafPtr
SysEnvRec
short
Re ct
Handle
hButtonicon
pButtonicon
#define
#define

savePort;
sysEnvRec;
itemType;
itemRect;
itemHandle;
hButicon;
pButicon;
SysEnvironsTrap OxA090
UnknownTrap OxA89F

16: GetPort(&savePort);
17: SetPort(theDialog);

/* Old grafPort */
/* Environment */

/* Toolbox traps */

18: if ((long)NGetTrapAddress(SysEnvironsTrap, OSTrap) !=
19: (long)NGetTrapAddress(UnknownTrap, ToolTrap))
20: {
21: SysEnvirons(l, &sysEnvRec);
22:
23: hButicon = (hButtonicon)NewHandle (sizeof(iconBut));
24: HLock(hButicon);
25: pButicon = *hButicon;
26: pButicon->oDialog = theDialog;
27: pButicon->oitem = itemHit;
28: pButicon->switchA = nil;
29: pButicon->switchB = nil;
30: if (sysEnvRec.hasColorQD)
31: {
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:

pButicon->switchA
pButicon->switchB
pButicon->inColor

else
{

pButicon->switchA
pButicon->switchB
pButicon->inColor

(Handle)GetCicon(iconl);
(Handle)GetCicon(icon2);
true;

(Handle)Geticon(iconl);
(Handle)Geticon(icon2);
false;

42: GetDitem(theDialog, itemHit, &itemType, &itemHandle,
&itemRect);

132 ~ Chapter 12 Icons

43: pButicon->valueA = true;
44: pButicon->valueB = false;
45: if (pButicon->inColor)
46: {
47: PlotCicon(&itemRect, pButicon->switchA);
48:
49: else
50: {
51: Ploticon(&itemRect, pButicon->switchA);
52:
53: SetDitem(theDialog, itemHit, itemType, pButicon->switchA,
54: &itemRect);
55: HUnlock(hButicon);
56: SetPort(savePort);
57: return (hButicon) ;
58:

To begin, line 2 returns a handle to all the items in the type definition.
When you call the routine, it requires that you pass in a pointer to the
dialog box that contains the icon, the item number for the icon, and the
ID of two icon resources: 'cicn' for a color icon or 'ICON' for a black-and
white icon.

After ten lines of declarations, the first active code on lines 16 and 17
gets, saves, and sets the port.

Lines 18-22 determine if a SysEnvirons record is present and if the
machine has color. (The review of FrmDefltem.c in Chapter 9 includes a
discussion of SysEnvirons.)

Line 23 gets the memory for the items that are stored in the type
definition structure by calling the Toolbox Memory Manager routine
New Handle, which returns a handle to a specified number of bytes of
memory on the heap. If your type definition requires 10 bytes of memory,
that is what the Memory Manager allocates. Also, because the call to
NewHandle returns a generic handle, the statement (hButtonlcon) be
fore NewHandle casts it as a handle to the button icon.

Since the heap moves things around in memory, and the routine does
not want this allocation of memory moved, it locks the handle to the
button icon with the statement on line 24.

Line 25 dereferences the handle and gets a pointer to it. Lines 26-29
store the pointers to the dialog box and the item in the allocated spot in
memory and set the values of the switches to nil.

The if-statement on lines 30-35 says, "If I have color available, then I
want the handles to icons 1 and 2 to be in color." The Toolbox routine
GetCicon does this. However, if color is not available, the else-statement
on lines 36-41 gets handles to black-and-white icons through the Toolbox
routine Getlcon.

~ Using Icons as Control Buttons 133

At this point, the routine has set up the icons, but they have not yet
been drawn on the screen. Line 42 calls the Toolbox routine GetDltem
and passes it the dialog and the item hit. It returns, among other things,
the item rectangle, which is passed into the Toolbox routines PlotCicon
and Plotkon when the icon is drawn (lines 47-51).

The assumption on lines 43 and 44 is that the first icon to be drawn will
be the off-position icon, which is icon A. Line 43 sets the A value to true,
and line 44 sets the B (on-position icon) value to false.

The if-statement on lines 45-52 plots the icon on the screen. The
statement says, "If I have color, then draw icon A in color; if I don't have
color, draw icon A in black-and-white."

The call on line 53 returns the handle to the icon.
To finish the routine, line 55 unlocks the handle to the icon, line 56 sets

the port back to the original position, and line 57 returns the handle to the
structure where all the values were placed.

~ DoButtonlcon.c

Whenever the mouse button is pressed inside of the icon, DoButtonkon.c
performs the required function. If the icon is a push button, which it is in
this particular case, then DoButtonlcon.c changes the button to the on
position. When the mouse button is released, the routine changes the
button back to the off position.

Listing 12-3. Acting on a mouse-down event inside a button icon

PROCEDURE DoButtonicon(hButicon: hiconBut);

1: /***/
2: void DoButtonicon(hButtonicon hButicon)
3: /***/
4:
5:
6:
7:
8:
9:

Graf Ptr
DialogPtr
short
Re ct
Handle

savePort;
theDialog;
iterr!I'ype;
itemRect;
itemHandle;

10: pButtonicon pButicon;
11: short itemHit;
12: HLock (hButicon) ;
13: pButicon = *hButicon;
14: theDialog = pButicon->oDialog;
15: itemHit = pButicon->oltem;
16: GetPort(&savePort);

/* Old grafPort */

134 ..,.. Chapter 12 Icons

17: SetPort(theDialog);
18: GetDitern(theDialog, itemHit, &itemrype,
19: &itemHandle, &itemRect);
20: if (pButicon->valueA)
21: {
22: pButicon->valueA = false;
23: pButicon->valueB = true;
24: if (pButicon->inColor)
25: {
26: PlotCicon(&itemRect, pButicon->switchB);
27: }
28: else
29: {
30: Ploticon(&itemRect, pButicon->switchB);
31:
32: SetDitern(theDialog, itemHit, itemrype,
33: pButicon->switchB, &itemRect);
34: while (Button())
35: {
36: }
37: pButicon->valueA = true;
38: -pButicon->valueB =false;
39: if (pButicon->inColor)
40: {
41: PlotCicon(&itemRect, pButicon->switchA);
42:
43: else
44: {
45: Ploticon(&itemRect, pButicon->switchA);
46:
47: SetDitern(theDialog, itemHit, itemrype,
48: pButicon->switchA, &itemRect);
49:
50: else
51: {
52: pButicon->valueA = true;
53: pButic~n->valueB = false;
54: if (pButicon->inColor)
55: {
56: PlotCicon(&itemRect, pButicon->switchA);
57:
58: else
59: {
60: Ploticon(&itemRect, pButicon->switchA);
61:
62: SetDitern(theDialog, itemHit, itemrype,
63: pButicon->switchA, &itemRect);
64: while (Button ())

65:
66:

., Using Icons as Control Buttons 135

67: pButicon->valueA = false;
68: pButicon->valueB = true;
69: if (pButicon->inColor)
70: {
71: PlotCicon(&itemRect, pButicon->switchB);
72:
73: else
74:
75: Ploticon(&itemRect, pButicon->switchB);
76:
77: SetDitem(theDialog, itemHit, itemType,
78: pButicon->switchB, &itemRect);
79:
80: HUnlock(hButicon);
81: SetPort(savePort);
82:

After several lines of local declarations, the first active code on line 12
locks the handle to the type definition stored in the allocated memory.
Line 13 dereferences it and gets a pointer.

The statements on lines 14 and 15 pull the dialog and the item out of
memory.

Lines 16 and 17 play the get port, save port, and set port game, but, in
this case, the port is set to the dialog.

The call on lines 18 and 19 returns the rectangle, as well as other items
that are not used here.

The if-statement on lines 20-49 simply says, "If icon A is now drawn
on the screen, then draw icon B, wait for the mouse button to come back
up, and redraw icon A."

In the meantime, the while-statement on lines 34-36 (and again on
lines 64-66) comprises a do-nothing loop; that is, while the mouse button
is down, nothing should change. As soon as the mouse button is released,
the routine falls out of that loop.

Lines 37 and 38 set the value of A (off position) to true and value B (on
position) to false. Line 39-49 then plot icon A in either color or black-and
white.

The else-statement on lines 50-79 says that if the reverse is true-that
is, if icon B instead of icon A is drawn on the screen-then draw icon A,
wait for the mouse button to come back up, then redraw icon B.

Line 80 unlocks the handle to the button icon, line 81 resets the port,
and the routine is finished.

136 ..,.. Chapter 12 Icons

~ DispButtonlcon.c

DispButtonlcon.c disposes the button icon after the mouse button has
been released.

Listing 12-4. Disposing the button icon

PROCEDURE DispButtonicon(hButicon: hiconBut);

1: /***/
2: void DispButtonicon(hButicon)
3: /***/
4:
5: DisposHandle(hButicon);
6:

We include this routine to be consistent with the Get-Do-Dispose
sequence, since it is neces~ary to dispose the button icon. Line 5 calls the
Toolbox routine DisposHandle, and it disposes the handle to the button
icon .

...,. Using Icons as Toggle Switches
Instead of using icons as buttons that you press and release with the
mouse, the routines in this section use icons as toggles. You do not release
a toggle icon; once you click the mouse on it, it stays that way until you
click on it again. As with the button icon routines, we've included some
global declarations for your toggle icon routines.

Listing 12-5. Global code defining the structure for five toggle icon
routines

typedef struct
{

DialogPtr oDialog
short oiitern;
Handle switchA;
Handle switchB;
char inColor;

short valueA;
short valueB;
iconTog, *piconTog, **hiconTog;

.,.. Using Icons as Toggle Switches 137

This type definition structure creates a variable called IconTog. Like
the structure for the button icon routines, this has five items in it: the
pointer to the dialog box that contains the toggle icon; the item in the
dialog box that, when hit, represents the toggle icon; two icons-one icon
to be drawn when the toggle is on and one icon to be drawn when it is
off-and information on whether the icon is in color .

..,.. GetTogglelcon.c

GetTogglelcon.c draws the toggle icon on the screen.

Listing 12-6. Drawing a toggle icon

FUNcrION GetToggleicon (theDialog: DialogPtr, itemHit: INTEGER, iconl:
INTEGER, icon2: INTEGER): hiconTog;

1: /***/
2: hToggleicon GetToggleicon (DialogPtr theDialog,
3: short itemHit,short iconl,short icon2)
4: /***/
5:
6:
7:
8:

Graf Ptr
SysEnvRec
short

savePort;
sysEnvRec;

iterrtrype;
9: Rect itemRect;

10: Handle itemHandle;
11: hiconTog hTogicon;
12: piconTog pTogicon;

/* Old grafPort */
/* Environment */

13: #define SysEnvironsTrap OxA090 /* Toolbox traps */
14: #define UnknownTrap OxA89F
15: #define sizeTogiconRecord 28 /* Size of record */
16: GetPort (&savePort);
17: SetPort(theDialog);
18: if ((long) NGetTrapAddress (SysEnvironsTrap, OSTrap) ! =
19: (longJNGetTrapAddress(UnknownTrap, ToolTrap))
20: {
21: SysEnvirons (1, &sysEnvRec) ;
22:
23: hTogicon = (hToggleicon)NewHandle(sizeof(iconTag));
24: HLock (hTogicon) ;
25: pTogicon = *hTogicon;
26: pTogicon->oDialog = theDialog;
27: pTogicon->oitem = itemHit;
28: pTogicon->switchA = nil;
29: pTogicon->switchB = nil;

138 1111- Chapter 12 Icons

30: if (sysEnvRec.hasColorQD)
31: {
32: pTogicon->switchA = (Handle)GetCicon(iconl);
33: pTogicon->switchB = (Handle)GetCicon(icon2);
34: pTogicon->inColor = true;
35:
36: else
37: {
38: pTogicon->switchA = (Handle)Geticon(iconl);
39: pTogicon->switchB = (Handle)Geticon(icon2);
40: pTogicon->inColor = false;
41:
42: GetDitem(theDialog, itemHit, &itemType, &itemHandle,

&itemRect);
43: pTogicon->valueA = true;
44: pTogicon->valueB = false;
45: if (pTogicon->inColor)
46: {
47: PlotCicon(&itemRect, pTogicon->switchA);
48:
49: else
50:
51: Ploticon(&itemRect, pTogicon->switchA);
52:
53: SetDitem(theDialog, itemHit, itemType, pTogicon->switchA,
54: &i temRect) ;
55: HUnlock(hTogicon);
56: SetPort(savePort);
57: return(hTogicon);
58:

The code for GetTogglelcon.c is exactly the same, line for line, as the
code for GetButtonlcon.c. The only difference is in the name of the item:
Substitute "Togglelcon" for "Buttonlcon" in this routine. See the review
of GetButtonlcon.c earlier in this chapter for a detailed discussion of the
source code .

...,.. DoTogglelcon.c

DoTogglelcon.c is a simple version of DoButtonlcon.c. It is far easier to
toggle these icons than it is to await mouse-up events and return the icons
to their original state. This routine changes whatever state the icon is in;
if it is in the off position, the routine turns it to on, and vice versa.

..,. Using Icons as Toggle Switches 139

Listing 12-7. Toggling a toggle icon

PROCEDURE DoToggleicon(hTogicon: hiconTog);

1: /***/
2: void DoToggleicon(hToggleicon hTogicon)
3: /***/
4:
5:
6:
7:
8:
9:

Graf Ptr
DialogPtr
short
Rect
Handle

savePort;
theDialog;
item'fype;
itemRect;
itemHandle;

10: pToggleicon pTogicon;
11: short itemHit;
12: HLock (hTogicon) ;
13: pTogicon = *hTogicon;
14: theDialog = pTogicon->oDialog;
15: itemHit = pTogicon->oitem;
16: GetPort(&savePort);
17: SetPort(theDialog);

/* Old grafPort */

18: GetDitem(theDialog, itemHit, &item'fype, &itemHandle,
&itemRect);

19: if (pTogicon->valueA)
20: {
21: pTogicon->valueA = false;
22: pTogicon->valueB = true;
23: if (pTogicon->inColor)
24: {
25: PlotCicon(&itemRect, pTogicon->switchB);
26:
27: else
28: {
29: Ploticon(&itemRect, pTogicon->switchB);
30:
31: SetDitem(theDialog, itemHit, item'fype, pTogicon->switchB,
32: &itemRect);
33:
34: else
35:
36: pTogicon->valueA = true;
37: pTogicon->valueB = false;
38: if (pTogicon->inColor)
39: {
40: PlotCicon(&itemRect, pTogicon->switchA);
41:
42: else

140 ..,. Chapter 12 Icons

43:
44: Ploticon{&iternRect, pTogicon->switchA);
45:
46: SetDitem{theDialog, itemHit, iterrtrype, pTogicon->switchA,
47: &iternRect);
48:
49: HUnlock(hTogicon);
50: SetPort(savePort);
51:

The first active code on line 12 locks the handle to the toggle icon, and
line 13 dereferences it.

Lines 14 and 15 get the dialog and the item from the structure.
Lines 16 and 17 get and set the port and save it to the dialog box.
The call on line 18 returns the necessary rectangle.
The if-statement on lines 19-48 says: "If the value A is false (that is, if

the icon is in the off position), then plot icon B, which is in the on position.
Also, plot it in color if color is available; otherwise, plot it in black-and
white. On the other hand, if the value Bis true (if the icon is in the on
position), change B to false and A to true (the off position)."

Line 49 unlocks the handle, line 50 resets the port, and the routine is
finished.

~ DispTogglelcon.c

This routine for disposing the toggle icon is functionally the same as the
one for disposing the button icon presented earlier in this chapter. It is
here for the purpose of consistency.

Listing 12-8. Disposing a toggle icon

PROCEDURE DispToggleicon(hTogicon: hiconTog);

1: /**/
2: void DispToggleicon(hToggleicon hTogicon)
3: /**/
4:
5: DisposHandle(hTogicon);
6:

On line 5, the Toolbox routine DisposHandle takes care of disposing
of the toggle icon.

..,.. Using Icons as Toggle Switches 141

~ lconOff.c

Although this routine and its companion IconOn.c strongly resemble the
three toggle icon routines just presented, there is an important difference.
The routine here does not toggle the toggle icon, but rather it assures that the
toggle icon is always set to off, even if it was already in the off position. The
notion comes in handy when you want to make sure that the items in a dialog
box always appear in the same state when they are drawn to the screen.

Listing 12-9. Setting the toggle icon to the off position

PROCEDURE IconOff(hTogicon: hiconTog);

1: /***/
2: void IconOff(hToggleicon hTogicon)
3: /***/
4:
5:
6:
7:
8:
9:

Graf Ptr
DialogPtr
short
Re ct
Handle

savePort;
theDialog;
iternType;
itemRect;
iternHandle;

10: pToggleicon pTogicon;
11: short iternHit;
12: HLock(hTogicon);
13: pTogicon = *hTogicon;
14: theDialog = pTogicon->oDialog;
15: iternHit = pTogicon->oitem;
16: GetPort(&savePort);
17: SetPort(theDialog);
18: GetDitem(theDialog, iternHit, &iternType,
19: &iternHandle, &itemRect);
20: pTogicon->valueA = true;
21: pTogicon->valueB = false;
22: if (pTogicon->inColor)
23: {
24: PlotCicon(&itemRect, pTogicon->switchA);
25:
26: else
27:
28: Ploticon(&itemRect, pTogicon->switchA);
29:
30: SetDitem(theDialog, iternHit, iternType,
31: pTogicon->switchB, &itemRect);
32: HUnlock (hTogicon) ;
33: SetPort(savePort);
34:

/* Old grafPort */

142 ~ Chapter 12 Icons

The first nineteen lines of code for this routine are functionally
identical to DoTogglekon.c. The main difference in the routines appears
here on lines 20 and 21, where the value A is set to true, and the value B
is set to false. Period. The only if-statements in the routine say: "If I have
color available, plot the icon in color. Otherwise, plot it in black-and-white."

Line 32 unlocks the handle, line 33 resets the port, and the routine is
finished .

...,. lconOn.c

This routine is the companion to konOff.c. It sets the toggle icon to the
on position, even if it was already in the on position.

Listing 12-10. Setting the toggle icon to the on position

PROCEDURE IconOn(hTogicon: hiconTog);

1: /***/
2: void IconOn(hToggleicon hTogicon)
3: /***/
4:
5:
6:
7:
8:
9:

Graf Ptr
DialogPtr
short
Re ct
Handle

savePort;
theDialog;
item'fype;
iternRect;
itemHandle;

10: pToggleicon pTogicon;
11: short itemHit;
12: HLock (hTogicon) ;
13: pTogicon = *hTogicon;
14: theDialog = pTogicon->oDialog;
15: itemHit = pTogicon->oitern;
16: GetPort(&savePort);
17: SetPort (t.heDialog);
18: GetDitern(theDialog, itemHit, &itern'JYpe,
19: &itemHandle, &iternRect);
20: pTogicon->valueA = false;
21: pTogicon->valueB = true;
22: if (pTogicon->inColor)
23: {
24: PlotCicon(&iternRect, pTogicon->switchB);
25:
26: else
27:

/* Old grafPort */

.,.. A Simple Icon Example 143

28: Ploticon{&iternRect, pTogicon->switchB);
29:
30: SetDitem{theDialog, itemHit, itentrype,
31: pTogicon->switchB, &iternRect);
32: HUnlock {hTogicon) ;
33: SetPort{savePort);
34:

This routine is the exact opposite of the IconOff .c routine just pre
sented. Instead of setting the value A to true on line 20, it sets it to false;
it also sets value B to true on line 21; and on lines 24 and 28 the switch is
to B instead of A. See the review of IconOff .c for details .

....,. A Simple Icon Example
This section contains a pair of source code listings that demonstrate the
routines GetTogglekon.c, DoTogglekon.c, and DispTogglelcon.c. The
pair consists of one file with the extension .c and another file, containing
the resources, with the extension .R. The two types of files always go
together to make up an application.

~ lconExample.c

This example tests the routines GetTogglekon.c, DoTogglekon.c, and
DispTogglekon.c.

Listing 12-11. Example of a toggle icon

/**/
void main() /* Routine to test Icon Switch */
/**/

DialogPtr theDialog;
short itemHit;
iconTog theSwitch, **hSwitch;
InitToolBox{);
OpenResources{"\piconSwitchExarrple.rsrc"); /*For devel purposes*/
CenterDialog{300);
OpenDialog(&theDialog, 300);
FrmDefitem(theDialog);
hSwitch = {hiconTog)GetTogicon{theDialog, 2, 2000, 2001);
for{;;)
{

144 ..,. Chapter 12 Icons

MyModalDialog(&itemHit};
switch (itemHit)
{

case (1):
break;

case (2):
DoTogicon(hSwitch};
continue;

case (-updateEvt}:
BeginUpdate(theDialog};

UpDialog(theDialog};
FrmDefitern(theDialog};

EndUpdate(theDialog};
continue;

default:
continue;

break;

DispTogicon(hSwitch};
DisposeDialog(theDialog};

Icon Switch EHample
by John c. May and Judy Whittle
(22Mar91)

I
n Quit B

I* Quit */

/* The Switch */

/* Update */

I* All other events */

Figure 12-1. Dialog box with example of a toggle icon

..,.. A Simple Icon Example 145

~ lconExample.R

This section contains the resource file for konExarnple.c.

Listing 12-12. Resource file for example of a toggle icon

IconSwitchExample.rsrc
rsrcRSED

Type DLCXi

,300
Icon Switch Test
50 50 238 364
Visible NoGoAway
·1

300
300

Type DITL
,300
3

* 1
Button
140 233 160 293
Quit

* 2
Iconitem
82 136 114 168
2000

* 3
StaticText Disabled
13 25 63 295
Icon Switch Example\ODby John C. May and Judy Whittle\OD(22Mar91)

146 ..._ Chapter 12 Icons

Type ICON=GNRL
,2000
00000000 00000000 03FFC000 0244COOO 0311COOO 0244COOO 0311COOO 0244C000
0311COOO 0244COOO 0311C000 0244COOO 03FFC000 03002000 03801000 07C00800
OBFFFCOO 17E00400 2BFFFE00 17F00200 2BFFFEOO 17F00200 2BFFFE00 17F00200
2BFFFE00 17F00200 2BFFFE00 17F00200 2BFFFE00 15E00400 OAFFFCOO 00000000

Type ICON=GNRL
,2001
00000000 00000000 03FFC000 03002000 07801000 OBC00800 17FFFC00 2BE00400
17FFFEOO 2BF00200 17FFFE00 2BF00200 17FFFEOO 2BF00200 17FFFE00 2BF00200
17FFFE00 2BF00200 17FFFE00 2AE00400 057FFC00 0244COOO 0311COOO 0244C000
0311COOO 0244COOO 0311COOO 03FFCOOO 03FFC000 00000000 00000000 00000000

Type cicn=GNRL
,2000
00000000 80100000 00000020 00200000 00000000 00000048 00000048 00000000
00040001 00040000 00000000 00000000 00000000 00000004 00000000 00200020
00000000 00040000 00000020 00200000 OOOOFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFOOOO 00000000 000003FF C0000244
C0000311 C0000244 C0000311 C0000244 C0000311 C0000244 C0000311 C0000244
C00003FF C0000300 20000380 100007C0 08000BFF FC0017EO 04002BFF FE0017F0
02002BFF FE0017FO 02002BFF FE0017FO 02002BFF FE0017FO 02002BFF FE0017F0
02002BFF FE0015EO 04000AFF FCOOOOOO 00000000 00000000 00050000 FFFFFFFF
FFFFOOOl 00000000 FFFF0002 A867A7B9 FFFF0003 rx::E4DBC8 DDFF0004 99FF99FF
99FF0005 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00555555 55555500 00000000 00000000 00533333
33335500 00000000 00000000 00533333 33335500 00000000 00000000 00533333
33335500 00000000 00000000 00533333 33335500 00000000 00000000 00533333
33335500 00000000 00000000 00533333 33335500 00000000 00000000 00533333
33335500 00000000 00000000 00533333 33335500 00000000 00000000 00533333
33335500 00000000 00000000 00111111 11111100 00000000 00000000 00112222
22222210 00000000 00000000 00111222 22222221 00000000 00000000 04111122
22222222 10000000 00000000 44111111 11111111 11000000 00000004 44111112
22222222 21000000 00000044 44111111 11111111 11100000 00000044 44111111
22222222 22100000 00000044 44111111 11111111 11100000 00000044 44111111
22222222 22100000 00000044 44111111 11111111 11100000 00000044 44111111
22222222 22100000 00000044 44111111 11111111 11100000 00000044 44111111
22222222 22100000 00000044 44111111 11111111 11100000 00000044 44111111
22222222 22100000 00000044 44111111 11111111 11100000 00000004 44411112
22222222 21000000 00000000 44441111 11111111 11000000 00000000 00000000
00000000 00000000 0000

.....

..,.. Summary 147

Type cicn=GNRL
,2001
00000000 80100000 00000020 00200000 00000000 00000048 00000048 00000000
00040001 00040000 00000000 00000000 00000000 00000004 00000000 00200020
00000000 00040000 00000020 00200000 OOOOFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFOOOO 00000000 000003FF C0000300
20000780 lOOOOBCO 080017FF FC002BEO 040017FF FE002BFO 020017FF FE002BFO
020017FF FE002BFO 020017FF FE002BFO 020017FF FE002BFO 020017FF FE002AE0
0400057F FC000244 C0000311 C0000244 C0000311 C0000244 C0000311 C00003FF
C00003FF COOOOOOO 00000000 00000000 00000000 00000000 00050000 FFFFFFFF
FFFFOOOl 99FF99FF 99FF0002 DCE4DBC8 DDFF0003 A867A7B9 FFFF0004 00000000
FFFF0005 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00444444 44444400 00000000 00000000 00443333
33333340 00000000 00000000 01444333 33333334 00000000 00000000 11444433
33333333 40000000 00000001 11444444 44444444 44000000 00000011 11444443
33333333 34000000 00000011 11444444 44444444 44400000 00000011 11444444
33333333 33400000 00000011 11444444 44444444 44400000 00000011 11444444
33333333 33400000 00000011 11444444 44444444 44400000 00000011 11444444
33333333 33400000 00000011 11444444 44444444 44400000 00000011 11444444
33333333 33400000 00000011 11444444 44444444 44400000 00000011 11444444
33333333 33400000 00000011 11544444 44444444 44400000 00000001 11524443
33333333 34000000 00000000 11522444 44444444 44000000 00000000 00522222
22225500 00000000 00000000 00522222 22225500 00000000 00000000 00522222
22225500 00000000 00000000 00522222 22225500 00000000 00000000 00522222
22225500 00000000 00000000 00522222 22225500 00000000 00000000 00555555
55555500 00000000 00000000 00555555 55555500 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 0000

Summary
This chapter presented eight routines to manipulate icons of the button
and toggle types.

• Three routines-to draw, execute, and dispose button icons
• Three routines-to draw, execute, and dispose toggle icons
• Two routines-to switch icons off and on

It also presented a global definition of the structure for the routines of
each type as well as an icon switch example and the source code and
resource files for the example.

13 Pictures

...,. Overview of Pictures

Picture scripts, commonly referred to as "Picts," come in two types: PICT
files and 'PICT' resources. PICT files store their pictures in the data fork
of the file. We won't cover that type in this book.

The resource 'PICT' contains three different pieces of information:

1. The size of the picture
2. The picture frame or rectangle
3. The picture itself

The picture data contain a set of QuickDraw commands that are executed
each time the picture is drawn, much like record and playback on a tape
recorder .

...,. Drawing a Picture

If you want to enter a picture into a dialog, you can do so through ResEdit
by creating a new dialog item inside of the 'DITL' resource. You create a
Picture item and assign it an ID number. When you pass in the ID
number, ModalDialog draws the picture automatically in your window.

This method sounds simple enough, but there are problems involved
with drawing a picture this way. First, you have to watch out for the
dialog ID number as opposed to the resource ID number of the PICT.

149

150 .,.. Chapter 13 Pictures

For example, an OK button in the dialog will have 1 as the ID, and the
Cancel button will almost always have 2 as the ID. If your resource ID
number is larger than the dialog numbers, ModalDialog draws the PICT
last because it draws from the lowest number to the highest number.
And, to make matters worse, the drawing sequence in ResEdit is the
opposite of what it is in ModalDialog, thereby requiring you to set up
everything backwards in ResEdit.

Suppose you have a picture of a horse, and you want to be able to touch
certain parts of that picture-the head, mane, forelocks, withers, and so
on-with the mouse pointer, click the mouse, and have a box of informa
tion about that particular area appear on the screen. To do this, you have
to create sensitive areas on the picture. Trouble is, if ModalDialog draws
the picture on top of the sensitive areas, then a mouse-down event tells
you that a button has been pressed, but not where on that picture the
button was pressed. You need to draw your picture first, then assign the
sensitive areas on top of it. You can't do this with ModalDialog, but you
can with the DrawPict.c routine in this section.

In addition, ModalDialog does not handle animation. If you want to
have a moving figure in a dialog or a copyright box, you can achieve that
as well with the DrawPict.c routine. To provide animation, you need to
create a PICT file, which needs to contain an 'INFO' resource and a 'PICT'
resource. In the 'PICT' resource, the first picture has to contain the
background; it defines the overall size of the picture for the total anima
tion. Each additional frame contains the animated characters. The 'INFO'
resource has to contain information like whether the picture is in black
and-white or color, its depth, its speed in frames per second-ideally, 30
frames per second-the version number of the PICT file, who created it,
and the size of the largest frame in bytes.

~ DrawPict.c

This routine uses 'PICT' resources, which have a defined format. The first
2 bytes are the link to the overall picture in bytes. The next 8 bytes are the
size of the rectangle of the picture; that is, top left and bottom right. The
rest of the bytes contain the data of the picture, and they may be a
collection of bytes or pixels depending on whether the picture is in black
and-white or color.

You can use a variety of means to develop your picture, such as a draw
or a paint program or a picture that has been scanned into a file. But it has
to be in the PICT format to use it in this routine.

..,. A Simple Picture Example 151

Listing 13-l . Drawing a picture

PRCX::EDURE DrawPict(theID: INTEGER);

1: /**/
2: void DrawPict(short theID)
3: /**/
4:
5: PicHandle hPict;
6: hPict = (PicHandle) GetResource ('PICT' , theID) ;
7: DrawPicture(hPict, &(*hPict)->picFrame);
8:

On line 2 you pass in the resource ID number of the picture that you
want to draw.

Next, on line 6, you call the Toolbox routine GetResource. The resource
type you want is 'PICT'. You pass it the ID number of the picture, and it
returns the handle to the picture. You want to cast that to a PICT handle,
because GetResource returned you a generic handle. You cast it with the
expression (PicHandle).

On line 7 you call the QuickDraw Toolbox routine Draw Picture, pass
it the handle to the picture and the picture frame, which is the rectangle
of the picture, by converting the picture handle into a pointer. It then
draws the picture, and you're through with the routine .

...,. A Simple Picture Example

This section contains a pair of source code listings that demonstrate the
routine Draw Pict.c. The pair consists of one file with the extension .c and
another file, containing the resources, with the extension.R. The two
types of files always go together to make up an application .

..., PictExample.c

This sample routine tests DrawPict.c and produces a picture of a generic
ten-speed bicycle with 25 call-outs in various places along the frame of
the bicycle (see Figure 13-1). Each circle in the.call-out is actually a radio
button. When you click on one of the circles, a box containing the name
of the part and a description of its function appears below the picture of
the bicycle. When you click on another circle, the first description
disappears, and information about the current selection then appears on
the screen.

152 ..,.. Chapter 13 Pictures

21 - Rear Derailleur

Mounted on the right rear dropout just below the
freewheel, this mechanism guides the chain, looped
through a cage of wheels, from cog to cog on the
freewheel.

t auit D
Software Copyright© 1991 John May and Judy Whittle

Figure 13-1. Picture created with the PictExample.c routine

Listing 13-2. Example of a picture created with the routine DrawPict.c

1:
2:
3:
4:
5:
6:
7:
8:
9:

/***/
void main() /* Routine to test PICI'S */
/***/

DialogPtr theDialog;
short itemHit;
Str255 theString;
InitToolBox();
OpenResources("\pPictExample.rsrc"); /* For dev. purposes */

..,.. A Simple Picture Example 153

10: CenterDialog(300);
11: OpenDialog(theDialog,300);
12: FrmDefitem(theDialog);
13: DrawDottedLine(theDialog, 28);
14: DrawPict(300);
15: DrawPict(301);
16: for(;;)
17:
18: MyModalDialog(&itemHit)
19: switch (itemHit)
20:
21: case (1):
22: break;
23: case (2):
24: case (3):
25: case (4):
26: case (5):
27: case (6):
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:

case (7):

case (8):
case (9):
case (10):
case (11):

case (12):
case (13):

case (14) :
case (15):
case (16):
case (17):
case (18):
case (19):
case (20):
case (21) :
case (22):
case (23):
case (24) :
case (25) :
case (26):

GetStrNum(300, itemHit-1, theString);
PutEdString(theDialog, 29, theString);
GetStrNum(301, itemHit-1, theString);
PutEdString(theDialog, 31, theString);

case (-updateEvt):
BeginUpdate(theDialog);

UpDialog(theDialog);

154 ~ Chapter 13 Pictures

FrmDefitem(theDialog);
DrawDottedLine(theDialog, 28);
DrawPict(300);
DrawPict (301);

55:
56:
57:
58:
59:
60:

EndUpdate(theDialog);

61: break;
62:
63: DisposeDialog(theDialog);
64:

After three lines of declarations (lines 5-7), you initialize the Toolbox
on line 8.

Next, on line 10, you center the dialog, and line 11 opens it up. On line
12 you frame the default item, which is the Quit button in the lower right
hand corner of the picture.

You draw in the dotted line with the call on line 13, the picture of the
bicycle (ID 300) on line 14, and the text in the lower right-hand corner (ID
301) on line 15.

Line 16 begins a for-loop, in which you call MyModalDialog (line 18)
and wait for an item to be hit. If the item number hit is 1, that is the Quit
button, and you break.

Line 19 begins a case-statement.
Lines 23-47 contain the item numbers of the names and definitions of

parts of the bicycle. If any of these item numbers is hit, the routine skips
to the GetStrNum call on line 48. When you pass in the ID 300 and the
number of the item hit minus 1, this call gets the name of the item from a
set of strings in the resource file. Note that you pass in the number of the
item hit minus 1 because item number 1 is the Quit button and does not
refer to any of the numbers of the strings in the resource file.

The statement on line 49 places that string in space 29 on the screen.
When you pass in the ID 301 and the number of the item hit minus 1

on line 50, the GetStrNum call returns the definition of the item that was
hit.

The statement on line 51 places that definition string in space 31 on the
screen.

If you have an update event on line 52, the routine updates, frames,
and redraws the picture through the statements on lines 53-59 .

..,. PictExample.R

PictExample.R is the resource file that forms a pair with PictExample.c to
bring up the picture example on the screen.

..,.. A Simple Picture Example 155

Listing 13-3. Resource file for the picture example

Pict.rsrc
rsrcRSED

Type DLOG
,300
New Dialog
82 78 516 522
Visible NoGoAway
1
300
300

Type DITL
,300
30

* 1
Button Enabled
391 378 411 438
Quit

* 2
Useritem Enabled
5 183 25 203

* 3
User Item Enabled
5 205 25 225

* 4
User Item Enabled
5 228 25 248

* 5
User Item Enabled
5 251 25 271

* 6
User Item Enabled
5 287 25 307

''
Message (Title)

'' Re ct (T,L,B,R)

''
Flags

i ; Proc ID

'' Refcon

'' Resource ID of

, , Number of items

, , Rect (T,L,B,R)
, , Message

'' Rect (T,L,B,R)

, , Rect (T,L,B,R)

, , Rect (T,L,B,R)

; ; Rect (T,L,B,R)

'' Rect (T,L,B,R)

DITL list

156 ..,._ Chapter 13 Pictures

* 7
User Item Enabled
4 318 24 338 '' Rect (T,L,B,R)

* 8
User Item Enabled
4 345 24 365 '' Re ct (T,L,B,R)

* 9
User Item Enabled
54 410 74 430 '' Rect (T,L,B,R)

* 10
Useritem Enabled
76 411 96 431

'' Rect (T,L,B,R)

* 11
User Item Enabled
97 411 117 431

'' Rect (T,L,B,R)

* 12
User Item Enabled
119 410 139 430

'' Re ct (T,L,B,R)

* 13
User Item Enabled
230 408 250 428 '' Re ct (T,L,B,R)

* 14
Useritem Enabled
251 407 271 427 '' Rect (T,L,B,R)

* 15
User Item Enabled
262 323 282 343 '' Rect (T,L,B,R)

* 16
User Item Enabled
262 300 282 320

'' Re ct (T,L,B,R)

* 17
User Item Enabled
262 249 282 269

'' Re ct (T,L,B,R)

..,. A Simple Picture Example 157

* 18
User Item Enabled
263 157 283 177 '' Rect (T,L,B,R)

* 19
User Item Enabled
120 184 140 204 ; ; Rect (T,L,B,R)

* 20
User Item Enabled
262 220 282 240 ; ; Rect (T,L,B,R)

* 21
User Item Enabled
263 129 283 149 '' Rect (T,L,B,R)

* 22
User Item Enabled
263 67 283 87 ; ; Re ct (T,L,B,R)

* 23
User Item Enabled
263 40 283 60 ; ; Re ct (T,L,B,R)

* 24
User Item Enabled
264 17 284 37 '' Re ct (T,L,B,R)

* 25
User Item Enabled
55 88 75 108 '' Re ct (T,L,B,R)

* 26
User Item Enabled
100 204 120 224 '' Rect (T,L,B,R)

* 27
StaticText Disabled
327 384 375 425 ; i Re ct (T,L,B,R)

'' Message

* 28
User Item Enabled
296 30 297 425 '' Rect (T,L,B,R)

158 ~ Chapter 13 Pictures

* 29
StaticText Disabled
302 8 323 426
Click on Part Number

* 30
StaticText Disabled
325 8 411 369

Type PICT=GNRL
,300
.H
B454

'' Rect (T,L,B,R)
, , Message

'' Rect (T,L,B,R)
, , Message

(The number of bytes in the 'PICT' resource describing this picture is too
great to print here.)

,301
.H
OC9E

(The number of bytes in the 'PICT' resource describing this picture is too
great to print here.)

Type STR#
,300
25

1 - Top Tube
2 - Right-hand Shift
3 - Left-hand Shift
4 - Expander Bolt
5 - Extension Stem
6 - Handlebars
7 - Brake Levers
8 - Head Tube
9 - Front Reflector

10 - Front Brake
11 - Front Fork
12 - Front Hub
13 - Spokes
14 - Rim

Lever
Lever

15 - Quick Release Lever
16 - Down tube
17 - Chainwheel
18 - Front Derailleur

, , Number of strings

19 - Crankset
20 - Derailleur Cage
21 - Rear Derailleur
22 - Freewheel Cluster
23 - Spoke Protector
24 - Reflector Holder
A - FRAME SIZE

..,. A Simple Picture Example 159

,301
25 ; ; Number of strings

Horizontal tube connecting the tops of the seat and head tubes.

The lever mounted on the right handlebar end that pulls the
cable to operate the gear changes of the rear derailleur.

The lever mounted on the left handlebar end that pulls the
cable to operate the gear changes of the front derailleur.

The bolt found on the top of the handlebars that is used to
adjust their height.

Piece that holds the handlebars and extends into the steering tube.
Made in different sizes of steel or aluminum alloy.

Bars made of steel or aluminum alloy in varying bends that attach
to the stem for steering the bike.

Handlebar-mounted squeeze control for braking.

The tube at the front of the bike between the top tube and the area
where the headset and the steering tube of the fork are mounted.

A plastic reflector that is mounted on the front fork.

A set of pivotal arms that bend around the front tire toward the rim.

The part of the frame that holds the front wheel and that consists of
two blades, the crown, and the steering tube.

The central part of the front wheel including the hub shell, axle,
cones, ball bearings, and either nuts or a quick-release mechanism to
attach the wheel to the frame.

Steel rods that hold the hub centered in the rim.

160 ..,.. Chapter 13 Pictures

Butted spokes are thicker at the ends.

Steel or aluminum alloy hoop that holds the tire and
is attached to the spokes. Alloy rims are lighter than steel rims.

A clamping mechanism to secure the wheel to the frame.
Special parts include a hollow axle, a skewer, a cam lever,
springs, and an adjustable cone nut. This device permits fast
wheel changes without tools.

The tube connecting the head tube and bottom bracket.

The toothed rings attached to the crankset.
The number of teeth determines the gear ratio of the bicycle.

Mounted on the seat tube just above the chainwheel, this device
guides the chain back and forth between the large and small
chainwheels when activated by the gear cable.
Found only on bikes with ten or more gears.

One of a pair of metal arms that connects the pedals to the spindle.

The rear derailleur assembly, which is located inside the
rear wheel spokes.

Mounted on the right rear dropout just below the freewheel,
this mechanism guides the chain, looped through a cage of wheels,
from cog to cog on the freewheel.

The assembly of one to seven cogs (usually five) on the rear
hub with a ratchet mechanism. The ratchet allows the rider to
coast when not pedaling. Freewheel cogs can be changed to
suit the gear ratio needs of the ride~.

A metal disk used to protect the rear derailleur cage from
broken or loose spokes.

A bracket mounted on the rear fork onto which a plastic reflector
may be fitted.

The measurement from the center of the bottom bracket up to
the top of the seat tube.

..,.. Recommended Reading 161

...._ Summary

This chapter presented a routine for drawing pictures stored in a PICT
file. It also gave a sample routine that produces a picture of a bicycle with
various call-outs containing information about the bicycle's parts .

...._ Recommended Reading
Andris, Bob. "MacDraw PICT Files from BASIC." (BASIC.) The Essential

MacTutor-The Macintosh Programming Journal, Vol. 3, No. 10, 1988.
Sheets, Steven. "Animating PICS." (Pascal.) MacTutor-The Macintosh

Programming Journal, Vol. 7, March 1991.

14 _.. Static Text

..... Overview of Static Text
Static text is noneditable text that appears in windows, dialogs, and
alerts. You use static text mostly for titles and messages. Static text is
important in the Macintosh's human interface exchange because it gives
information clearly and quickly. An alert box message that appears on
the screen during a Find function, for example, may tell you that you
have reached the end of the document. The message ensures that you are
not left staring at a blinking cursor, wondering what to do next.

...,. Active and Inactive Static Text

Static text can be either active or inactive. If it's active, it is bright or black.
If it's inactive, it is dim or gray, indicating that the item or function is not
available. For instance, when you open the Spelling function from the
Utilities menu in a word processing program, you see in its window that
the static text on Change and Suggest buttons is gray. Because the routine
has not yet come across a misspelled word, those two functions don't yet
have any meaning and are disabled.

~ ActiveStatic.c

This routine resets inactive static text to active static text, making it
available for selection.

163

164 ..,. Chapter 14 Static Text

Listing 14-1 . Activating a line of static text

PROCEDURE ActiveStatic{theDialog: DialogPtr, itemHit: INTEGER);

1: /***/
2: void ActiveStatic{DialogPtr theDialog, short itemHit)
3: /***/
4:
5:
6:
7:
8:
9:

Graf Ptr
Str255
short
Re ct
Handle

savePort;
theString;
the'Iype;
theRect;
theHdl;

10: GetPort{&savePort);
11: SetPort{theDialog);

I* Old grafPort */

/* Not used */
/* Not used */

/* Item handle */

12: GetDitem{theDialog, itemHit, &the'Iype, &theHdl, &theRect);
13: GetIText {theHdl, theString);
14: SetIText{theHdl, theString);
15: SetPort { savePort) ;
16:

You begin on line 2 by calling ActiveStatic and passing it the dialog
number and the item number of the static text that you want to make active.

After several lines of declarations and two lines in which you get and
set the port, go to line 11, where you call GetDitem. You want to know
how big the rectangle is that holds the static text. GetDitem returns you
the item type, the handle, and the rectangle. You use only the handle out
of this bunch.

Lines 12 and 13 call the Toolbox routines GetIText and SetIText, which
redraw the rectangle to its normal active state.

Reset the port to normal on line 14, and you're finished with the routine .

...,. lnactiveStatic.c

InactiveStatic.c dims or grays static text, indicating that the item is not
available.

Listing 14-2. Dimming a line of static text

PROCEDURE InactiveStatic(theDialog: DialogPtr, itemHit: INTEGER);

1: /***/
2: void InactiveStatic{DialogPtr theDialog, short itemHit)
3: /***/
4:

5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

..., A Simple Static Text Example 165

short theType;
Rect theRect;
Handle theHdl;
Graf Ptr savePort;
PenState penStuff;
GetPort(&savePort);
SetPort(theDialog);
GetDitem(theDialog, itemHit,
GetPenState(&penStuff);
PenPat (gray);
PenMode(patBic);
PaintRect(&theRect);
SetPenState(&penStuff);
SetPort(savePort);

/* Not used *I
/* Static text rect */

/* Not used *I
/* Old grafPort */

&theType, &theHdl, &theRect);

On line 2 you call InactiveStatic and pass it the dialog and the item
number of the static text that you want to make inactive.

After several lines of declarations and two lines in which you get and
set the port, go to line 12, where you call GetDltem. You want to know
how big the rectangle is that holds the static text. GetDltem returns you
the item type, the handle, and the rectangle. Here, you use only the
rectangle.

On line 13 you save the pen state; on line 14 you set the pen pattern to
gray. This gray pattern is 50 percent white and 50 percent black.

On line 15 patBic determines that wherever there is a white back
ground, nothing will be done, but wherever there is a black background,
every other bit will be replaced with black. This gives the gray pattern to
the text.

On line 16 you call the Toolbox routine PaintRect and pass it the
rectangle so that it can paint the new rectangle.

After setting the pen state and the port back to normal, you branch out
of the routine .

...,_ A Simple Static Text Example

This section contains a pair of source code listings that demonstrate the
routines ActiveStatic.c and InactiveStatic.c. The pair consists of one file
with the extension .c and another file, containing the resources, with the
extension .R. The two types of files always go together to make up an
application.

166 ..,.. Chapter 14 Static Text

...., StaticTextExample.c

This example tests the routines ActiveStatic.c and InactiveStatic.c (see
Figure 14-1).

Listing 14-3. Example of active and inactive static text

/**/
void main() /* Routine to test static text */
/**/

DialogPtr theDialog;
short iternHit;
InitToolBox () ;
OpenResources("\pStaticTextExarnple.rsrc"); /*For devel purposes */

CenterDialog(300);
OpenDialog(&theDialog, 300);
FrmDefitern(theDialog);
PushRadioButton(theDialog, 2, 2, 3);
for(;;)
{

MyModalDialog(&iternHit);
switch (iternHit)
{

case (1):
break;

case (2):
PushRadioButton(theDialog, 2, 2, 3);
ActiveStatic(theDialog, 4);
continue;

case (3):
PushRadioButton(theDialog, 3, 2, 3);
InactiveStatic(theDialog, 4);
continue;

case (-updateEvt):
BeginUpdate(theDialog);

UpDialog(theDialog);
FrmDefitern(theDialog);
if (GetRadioButton(theDialog, 2, 3) 3)

{

InactiveStatic(theDialog, 4);

EndUpdate(theDialog);
continue;

default:
continue;

/* All other events */

..,,. A Simple Static Text Example 167

break;

DisposeDialog(theDialog);

Static TeHt [Hample
by John May and Judy Whittle
(22Mar91)

O Rctiue

® lnactiue

n Quit)

Figure 14-1 . A dialog with active and inactive static text

~ StaticTextExample.R

StaticTextExample.R is the resource file that forms a pair with
StaticTextExample.c to bring up the example of active and inactive static
text on the screen.

Listing 14-4. Resource file for a static text example

StaticTextExample.rsrc
rsrcRSED

Type oux;
,300
StaticText Example
50 50 236 372
Visible NoGoAway

168 ~ Chapter 14 Static Text

1
300
300

'Type DITL
,300
4

* 1
Button
150 252 170 312
Quit

* 2
RadioButton
87 14 107 74
Active

* 3
RadioButton
87 75 107 135
Inactive

* 4
StaticText
87 136 107 196
The Text

~ Summary

, , Quit button

; ; "Active" button

, , "Inactive" button

, , The static text

This chapter presented two routines to brighten or dim static text in a
window or dialog box. In addition, this chapter gave an example of
activating and inactivating static text, along with the source code and the
resource file for the example.

~ Recommended Reading
Gordon, Bob. "Text Display from QuickDraw ."The Complete MacTutor

The Macintosh Programming Journal, Vol. 2, 1987.

15 Edit Text

...._ Overview of Edit Text

Edit text fields are essential features of dialog boxes. A dialog box comes
up on the screen when you issue a command that doesn't give the
Macintosh enough information to complete the command. Select the
Print command, and up pops a window with several user-interactive
items. They include small rectangles, known as text fields, in which you
type the missing details: starting page number, ending page number, and
the number of copies. Edit text field is the name for any field in which you
type. This term makes it clear that these are not static text fields, which
are uneditable titles and labels.

All of the entries in a dialog box-buttons, radio buttons, check boxes,
static text, and edit text fields-make up the dialog record.

To understand edit text, you need to think of a dialog box as a word
processing screen covered by a mask with a peephole cut in it. The
peephole is the edit text field. If you type more characters than the field
has room for, the field scrolls horizontally. The older text disappears at
the left. If you go on typing, the text wraps onto the next line and the field
jumps down to follow. You could type a whole document through the
edit text field, though there wouldn't be much point in doing so.

Some dialogs have one edit text field. Save As is an example, and the
edit text field is where you enter the file name. Dialogs with multiple edit
text fields are especially useful when the window represents a form for
data entry. For instance, a physician's patient record form would have
fields for the patient's name, address, birth date, insurance carrier, and
so forth.

169

170 ~ Chapter 15 Edit Text

Only one edit text field at a time should be active in a dialog box. You
can tell which is active because that's the one with the blinking cursor and
the only one in which text appears as you type .

....,. Active Edit Text Fields
The two routines that follow allow you to get active text for a dialog box
that has, for example, one edit text field that is always active, or to get or
set the active text in a dialog box that has two or more edit text fields .

...,. GetActiveEditText.c

GetActiveEditText.c lets an application make use of the active text.

Listing 15-1. Getting active edit text

POCCEaJRE GetActiveEditText (theDialcg: DialcgPtr, VAA itemtit: INI'EGER);

1: /***/
2: void GetActiveEditText(DialogPtr theDialog, short *itemHit)
3: /***/
4:
5: GrafPtr savePort; /* Old grafPort */
6: GetPort(&savePort);
7: SetPort(theDialog);
8: if (((WindowPeek) theDialog) ->windowKind == dialogKind)
9: {

10: if (((DialogPeek)theDialog)->editField != -1)
11: {
12: *itemHit = ((DialogPeek)theDialog)->editField + 1;
13:
14:
15: SetPort(savePort);
16:

GetActiveEditText.c requires a pointer to the dialog box. In line 2 you
pass in the pointer and say which edit text field is active. The routine
returns a short variable, which is the active edit text field (skip down to
line 12 for a moment).

Back at line 6, you get and save the current GrafPort so that you can
revert to it at the end of the routine. Line 7 sets the port to the dialog.
These two lines, strictly speaking, are not necessary unless you are going

..,.. Active Edit Text Fields 171

to do something with QuickDraw and you don't want to set the wrong
port. It's worth including them habitually so you don't forget them in
routines where they matter. If they add a little execution time, that
amount is unnoticeable against the slowness of the human operator.

Now you use a couple of if-tests, lines 8-14, to make sure that you're
working on the right type of window. You want a dialog box type of
window, which not only has one or more edit text fields but also contains
the other entries of the dialog record. This test makes use of a variable,
called windowKind, within the window record (line 8).

In line 10 you ask whether the edit text field is equal to -1. If it is -1,
either no edit text fields exist in the window or there are no active edit text
fields and you do nothing. If it is not -1, there is an edit text field and in
line 12 you set the variable theDialog equal to the value stored in the edit
text field part of the dialog record plus 1, taking into account that this
number would otherwise be off by 1.

Finally you fall out of both if-loops and set the port back to its original
state .

...,. SetActiveEditText.c

Depending on your application, you might have a dialog box with one
edit text field that is always active. Your application might, instead, have
an edit text field that the user has the choice of making inactive or active.
Another possibility is two or more fields of which the user can make one
active or inactive. In every instance the assumption, in conformity with
the Human Interface Guidelines, is that no more than one field is allowed
to be active at a given time. A typical use for this routine is to make one
edit text field active when the user takes appropriate action. The action
can be an event such as clicking on a radio button or pressing the Tab key.

In the Introduction, we mentioned that Apple recommends using calls
to the Toolbox whenever possible. Following that rule pretty much
guarantees freedom from compatibility problems when the operating
system is upgraded. We also said that innovative and creative program
ming often justifies breaking the rule by using low-memory global
variables or going directly into the dialog record and changing or getting
variables. This routine, SetActiveEditText.c, adheres to the rule com
pletely by using only Toolbox calls.

172 .,.. Chapter 15 Edit Text

Listing 15-2. Setting active edit text

PROCEDURE SetAcciveEditText{theDialog: DialogPtr,itemHit: INTEGER);

1:
2:
3:
4:
5:
6:
7:
8:
9:

/***/
void SetActiveEditText{DialogPtr theDialog, short itemHit)
/***/

10:
11:

GrafPtr savePort;
short itemType;
Handle item;
Rect itemRect;
short theLength;
Str255 theString;
GetPort(&savePort);

12: SetPort(theDialog);

I* Old grafPort */

13: GetDitem(theDialog, itemHit, &itemType, &item, &itemRect);
14: GetIText(item, theString);
15: theLength = theString(OJ;
16: SelIText(theDialog, itemHit, theLength);
17: SetPort(savePort);
18:

This routine generally resembles GetActiveEditText.c, but the few
differences are significant. SetActiveEditText.c requires the dialog pointer
and an itemHit for the item you're going to set. In the get routine, itemHit
is a variable because you set its value. In the set routine, itemHit is not a
variable because you don't set it; you just use it.

It's a good idea to include the get port and save port calls, as discussed
in the review of GetActiveEditText.c.

Line 12 is a Toolbox routine. You pass in theDialog and itemHit, and the
procedure returns the item type, the item handle, and the item rectangle.
Line 13 gets the item text by taking the handle to the edit text field and
returning the associated string. As a result, you find out how long it is.
In line 14 you're dealing with a Pascal string, so the first character of the
string, 0, is its length.

In line 15 you call the select item text routine, which does a couple of
things for you. It changes your edit text field to active, and it places the
blinking cursor at the end of the text. Having the cursor at the end of the
field is convenient for a user who wants to add to the edit text. If there
isn't any text, the cursor sits at the beginning of the field, waiting for text
to be entered.

..,. Input and Output Routines for Integers 173

Another approach to cursor positioning would be to select the entire
range of the field string by changing the select item text line of code to
SelIText(theDialog, itemHit, 0, 32767). This approach might be prefer
able if you think that users would want to delete the contents of the field
and type in some new text. Either way, it's your judgment call.

The edit text field is active at this stage in the program. All that remains
is to set the port back to the original state (line 16), and you're through
with this routine .

....,. Input and Output Routines for Integers

The following eight routines handle short and long integers in decimal
and hexadecimal notation. Integers are the natural numbers 1, 2, 3, and
so on; that is, they have no decimal points or fractions.

Four of the routines convert an input string into a number; the other
four do the opposite, converting an output string into a number. Prob
ably their most important use is enabling the Macintosh to recognize
numbers when the user enters them in an edit text field of a dialog. A
good example is the standard Print dialog. It invites you to enter the page
range in a From edit text field box and a To box. You press the From radio
button to enter a value in the box. If you ignore the invitation, the All
radio button stays pressed, and the Macintosh defaults to printing the
whole document when you press the OK button.

Without number-handling routines the Macintosh is faced with a
string of ASCII digits it doesn't understand. The routines enable it to pick
out an integer number and check that the number is valid. You would
want it, for instance, to accept an entered nu'mber of 23 as valid but refuse
to be fooled if someone typed XY. Recognizing that XY is not a decimal
number, your Macintosh would call the routine lnputShort.c. The rou
tine would not find a number there and would realize that iGoof is high.
It could put in a number, or it could delete what was in the field and
return the cursor to the beginning of the field, depending on what you
wanted. To put a number in there, you would need to take the default
such as the number of pages-and put it back in the edit text field. At this
point you'd have the number there, but it would not be an ASCII string.
To get an ASCII string, you would call the routine OutputShort.c to
convert the number to an ASCII string and enter it into the field.

You'll find these eight integer-handling routines used repeatedly in
this book. Two similar routines that handle floating-point numbers are
listed in the next section of this chapter. (As you will see, the ten are
among the few routines that use no Toolbox calls.) The routines allow

174 ..._ Chapter 15 Edit Text

number entry in several different formats. For example, you could enter
30000 just as it is in fixed notation, or as 3 x 104 in scientific notation, or
as 30E3 in engineering notation, or as 30K. Programming languages
usually can't cope with superscripts, so you could enter 3.0E4.

Shown in the listing for each integer-handling routine is its Pascal
calling sequence. The sequence is included because the Macintosh and its
Toolbox are programmed in Pascal; also, the sequence closely matches
what the reference books Inside Macintosh show. Although the routines
are in the C language, they follow the Pascal sequence. If you want them
in Pascal, all you have to do is declare them Pascal. The C compiler will
then treat them as Pascal routines.

~ lnputShort.c

This routine passes in a Pascal string of characters and returns the
corresponding short integer number if one exists. A short number here
is one that is 16 bits in lengt):l..

Listing 15-3. Inputting a short integer

PRCX:::EDURE InputShort(inch: Str255,VAR column: short, VAR
shortNumber: short, VAR iGoof: short);

1: /***/
Input Short 2: void

3: (Str255 inch, short *column, short *shortNumber, short
*iGoof)

4:
5:
6:
7:
8:
9:

/***/

10:
11:
12:
13:
14:

short
short
short
short
short
*iGoof = false;
*shortNumber = O;
sign = l;
lastColumn =inch [OJ;

15: foundinteger = false;

i· '
lastColumn;
foundinteger;
foundDigit;
sign;

/* Get line length */

16: for (*column = *column; *column <= lastColumn; (*column)++)
17: {
18:
19:

foundDigit = false;
if (inch [*column) == '-') /* Is number negative? */

~ Input and Output Routines for Integers 175

20:
21: sign = -1;
22: foundinteger = true;
23: foundDigit = true;
24: continue;
25:
26:
27:

for (i = O; i <= 9; i++)
{

/* Is an ASCII number? */

28: if ((inch) [*column] != i + '0') continue;
29: *shortNurnber = 10 * (*shortNumber) + i;/*Found ASCII no. */
30: foundinteger = true;
31: foundDigit = true;
32: break;
33:
34: if (foundDigit) continue;
3 5: if (foundinteger)
36: {
37:
38:

break;

39: else
40:
41:
42:
43:

continue;

44: if (foundinteger == 0) *iGoof true;

/* Got a number */

/* Look for a number */

45: *shortNumber = (*shortNumber) * sign; /* Take care of sign */
46:

This routine operates on an array of characters called inch, which is an
abbreviation of input characters. The entity inch is a var Pascal string.
Other vars in this routine are the column number, short, and iGoof. Var is
Pascal terminology meaning that you have to pass in a pointer to a
variable that is going to be moved. Starting at some column number in
the array or the line of characters, the routine goes through the characters
looking for an integer number. When it finds that number, the routine
sets a variable called shortNumber to the number. It also sets the column
number to the next position in the array. For instance, you call InputShort,
and pass in the inch and column 1; it returns the number 123. lnputShort
starts at column 1 and finds the integer 123, and it sets the column
number to 4. It also passes in another variable, iGoof, which is an error
flag. If no integer number is found, it sets iGoofto true, or some number
greater than 0.

176, Chapter 15 Edit Text

After several declarations, the first real code on line 11 states that the
iGoof flag is equal to false. Then line 12 says, "If you don't find a number,
return a 0." The number may be negative, but for now assume it's
positive, as stated on line 13.

This and other routines in this chapter call the index to the string a
column. Line 14 gets the last character in the string, and line 15 says you
haven't found an integer yet.

Line 16 is a for-loop. The first declaration, which shows just how
cryptic C can be, is redundant. It is included because close adherence to
the proper C syntax is a worthwhile habit to adopt. At worst, redundant
statements like this one do no harm. At best, they help you avoid leaving
out something vital. It is good to have them there if you wa~t to modify
the routine later. The next expression says you want to do this loop as
long as the column point number is not greater than that of the last
column. The last expression is a C way of stating that column equals
column plus 1.

The expression on line 18 is included because you haven't started
looking for a digit yet. Note that a number and a digit are not the same;
a digit is only one part of a number.

Line 19 says that if the next character is a minus sign, the routine will
perform the if-test on lines 20-25. The if-test amounts to this: "If I find a
negative number, set the sign to minus 1, say that I found an integer, and
say that I found a digit. Continue by jumping up to the top of the for-loop
and cycling the loop one more time."

Line 26 presents a second for-loop that states: "For i equal to 0, and if
i is less than or equal to 9, do this loop. Each time I branch to the loop,
increment i by l." This loop tests each character to figure out whether it
is 0-9.

The body of this internal for-loop (lines 27-33) starts out with another
if-test that says: "If the character in inch to which column points is equal
to i plus the ASCII number 48, then proceed with the if-test; else branch
to the bottom of the for-loop and branch back up to the top of that loop."
After you begin with i equal to 0, i changes to 1, and you go through the
loop again. The statement then works its way through the remaining
values of i equals 2, 3, and so on up to 9 until it checks the final number.
To give an example, say you want to enter the number 123. You ask, "Is
it a O?" No, so branch back up. "Is it a 1 ?"Yes, indeed. Take that number
1, add it to the product of 10 times the old value of shortNumber, and put
it in your new value of shortNumber. Since shortNumber equals 0, 10 times
0 is 0. Add 0 to the 1 you just read in.

1111- Input and Output Routines for Integers 177

Several ways to proceed from this point are possible. One way is to
read in all the. characters of number 123, putting 1 in the hundreds
column, 2 in the tens column, and 3 in the ones column. This method is
the same as saying 1times100, plus 2 times 10, plus 3 times 1. You would
have to read in the entire number and figure out the columns.

We've found our routine to be a better method. It is an algebraic
manipulation called Homer's rule. Take each digit as it comes in, and
multiply the old number by 10. Then add the number you just read in and
put it back in the new number. shortNumber is equal to the number 1. You
found an integer, so you set the foundlnteger flag to true. Now break.
Having found a number, you fall out of the for-loop.

If you found a digit, you would want to continue, so jump back to the
beginning of the outer for-loop (line 16). The column number gets
incremented, and you're pointing to the next column in inch, which
happens to be the number 2 of the 123 you're reading in. Go down to the
interior for-loop again (line 26) and play the same game. "Is inch equal
to O?" No, it isn't. "Equal to 1 ?"No. "Equal to 2?" Yes! So you fall through
the if-test in the for-loop. Take shortNumber, which is equal to 1. Multiply
by 10, so now it's equal to 10. Add 2 to get 12, and put 12 in shortNumber.
Reset found! nteger and foundDigit. Then branch to the top of the outer for
loop.

Repeat the outer for-loop. Multiplying by 10 yields 120. Add 3 to get
123, the number you' re looking for. Set short Number to 123, setfoundlnteger
to true, setfoundDigit to true. Break. Ask, "Have I found a digit?" Yes. Go
back to the top of the for-loop. You're now pointing to something other
than a number-say, a space-but the routine doesn't care. That's the
end of it.

Go down to the for-loop on line 26. Looping through, ask whether
you've found a digit. This time you go through the entire for-loop
without finding a digit, meaning there isn't a number there at all. Ask
whether you've found an integer. Yes, you have. Break to the outer for
loop. Go down to the brace on line 43 and fall through to an if-test (line
44). If you found an integer equal to 0, meaning, "No, I didn't find an
integer," you'd set iGoof equal to true. But you did find an integer.
Instead of setting iGoof to true, you fall through to line 45. Here you might
need to read in a sign for a number. Since the variable sign is going to
equal a positive 1, you multiply the number you found by the sign, so 123
equals 123.

Summing up this review, what you have is a free-form routine that
works quickly with a number such as 123 or -123 or 123-. The number
cannot exceed 16 bits.

178 ..,. Chapter 15 Edit Text

~ lnputlong.c

With InputLong.c you pass in a Pascal character string and get back a
32-bit number, a long integer.

Listing 15-4. Inputting a long integer

PROCEDURE InputLong(inch: Str255,VAR colUI!Il'l: short, VAR
longNumber: long, VAR iGoof: short);

1: /***/
2: void Inputlong
3: (Str255 inch, short *colUI!Il'l, long *longNumber, short *iGoof)
4: /***************~***/

5:
6:
7:
8:
9:

10:
11:

short
short
short
short
short
*iGoof = false;

i;
lastColUI!Il'l;
foundinteger;
foundDigit;
sign;

12: *longNumber = O;
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:

sign = 1;
lastColUim1 =inch [OJ; /* Get line length */
foundinteger = false;
for (*colUim1 *colUim1; *colUI!Il'l <= lastColUI!Il'l; (*colUI!Il'l)++)
{

foundDigit false;
if (inch[*colUim1] • - •)
{

sign = -1;
foundinteger = true;
foundDigit true;
continue;

for (i = O; i <= 9; i++)
{

/* Is number negative? */

/* Is an ASCII number? */

if (inch [*colUI!Il'l] != i + '0') continue;
*longNumber = 10 * (*longNumber) + i; /* Found ASCII no. */

foundinteger = true;
foundDigit = true;
break;

..,.. Input and Output Routines for Integers 179

34: if (foundDigit) continue;
35: if (foundinteger)
36: {
37:
38:

break;

39: else
40:
41:
42:
43:

continue;

44: if (foundinteger == 0) *iGoof = true;
45:
46:

*longNumber = (*longNumber) * sign;

I* Got a number */

/* Look for a number */

/* Take care of sign */

The lnputLong.c routine works exactly like lnputShort.c except that
you declare a long number instead ofa short number. See the lnputShort.c
routine, just described at some length, for more details.

~ lnputHexShort.c

lnputHexShort.c handles hexadecimal numbers, which can be 1-9 and A-F.

Listing 15-5. Inputting a short hexadecimal number

PROCEDURE InputHexShort(inch: Str255,VAR column: short, VAR
shortNumber: short, VAR iGoof: short);

1: /***/
2: void InputHexShort
3: (Str255 inch, short *column, short *shortNumber, short

*iGoof}
4: /***/

5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:

short
short
short
short

i;
lastColumn;
foundinteger;
foundDigit;

short sign;
*iGoof = false;
*shortNumber = O;
sign = 1;
lastColumn =inch [0];
foundinteger = false;

/* Get line length */

180 ~ Chapter 15

16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:

Edit Text

for (*column= *column; *column<= lastColumn; (*column)++}
{

foundDigit = false;
if (inch[*column] '-'}
{

sign = -1;
foundinteger = true;
foundDigit = true;
continue;

for (i = O; i <= 9; i++}

/* Is number negative? */

/* Is an ASCII number? */

28: if (inch [*column] != i + '0') continue;
29: *shortNumber = 16 * (*shortNumber) + i;/* Found ASCII no.*/
30: foundinteger = true;
31: foundDigit = true;
32: break;
33:
34:
35:

for (i = O; i <= 5; i++}
{

/* Is an ASCII letter? */

36: if (inch [*column] != i + 'A') continue;
37: i = i + 10; /* Found an ASCII letter */
38: *shortNumber = 16 * (*shortNumber} + i;
39: foundinteger = true;
40: foundDigit = true;
41: break;
42:
43: if (foundDigit} continue;
44: if (foundinteger}
45: {
46:
47:

break;

48: else
49:

/* Got a number */

50: continue; /* Look for a number */
51:
52:
53: if (foundinteger == 0) *iGoof true;
54:
55:

*shortNumber = (*shortNumber) * sign; /* Take care of sign */

Compare this routine with InputShort.c. The main difference is that
InputHexShort.c contains two interior for-loops, one below the other. In
the first for-loop, which includes lines 26-33, you ask, "Have I found an

..,,. Input and Output Routines for Integers 181

ASCII number?" On line 29, note the number 16, which reflects the hex
notation, instead of the number 10 for decimal notation.

The second for-loop (lines 34-42) is required because hex has a gap
between 9 and A in the series 1 through F. If A were equivalent to 10, there
would be no problem; but A is equal to a value of 65. Between 9 and A are
fifty-six miscellaneous characters that are of no interest in this routine. F
equals a value of 70. This for-loop asks, "Is the character you're reading
in the ASCII letter A?" If the answer is no, the next question is, "Well then,
is it the ASCII letter B?" This question-and-answer session goes on until
the answer is, "Yes, it is!" Meanwhile, the routine has zipped through the
fifty-six characters in the gap.

On line 38 you need to figure out what to make i equal to so that you
can add it to the product of 16 times shortN umber. Here, i is going to equal
0, 1, 2, 3, 4, or 5, corresponding to A, B, C, D, E, or F. A is 10 in decimal
notation, B is 11, and so on. If you read in an ASCII B at this point, i will
be equal to 1. You will therefore need to add 10 to the 1 to make it a B .

..,.. lnputHexlong.c

InputHexLong.c is identical to InputHexShort.c with one exception:
You're reading in a 32-bit, not a 16-bit, number as a hexadecimal. You
would use InputHexLong.c if, for instance, you wanted to read in the hex
number FFFFFFFF. That would be too long for the short routine, whereas
hex number FFFF would be just fine.

Listing 15-6. Inputting a long hexadecimal number

PROCEDURE InputHexLong(inch: Str255,VAR column: short, VAR
longNurnber: long, VAR iGoof: short);

1: /***/
2 : void InputHexLong
3: (Str255 inch, short *column, long *longNurnber, short *iGoof)
4: /***/
5:
6:
7:
8:
9:

10:
11:
12:

short
short
short
short
short
*iGoof = false;
*longNurnber = O;

i;
lastColumn;
foundinteger;
foundDigit;
sign;

182 ..,.. Chapter 15

13:
14:
15:

Edit Text

sign = 1;
lastColumn =inch [OJ;
found!nteger = false;

/* Get line length */

16: for (*column = *column; *column <= lastColumn; (*column)++)
17: {

foundDigit = false;
if (inch [*column]
{

sign = -1;
foundinteger = true;
foundDigit true;
continue;

,_,)

for (i = O; i <= 9; i++)
{

/* Is number negative? */

I* Is an ASCII number? */

18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:

if (inch[*column] != i + '0') continue;
*longNumber = 16 * (*longNumber) + i; /* Found an ASCII

number */
30: foundinteger = true;
31: foundDigit true;
32: break;
33:

for (i = O; i <= 5; i++)
{

I* Is an ASCII letter? */ 34:
35:
36:
37:
38:
39:
40:
41:
42:

if (inch[*column] != i + 'A') continue;
i = i +10; /* Found an ASCII letter */
*LongNumber = 16 * (*LongNumber) + i;

43:
44:
45:
46:
47:

foundinteger = true;
foundDigit = true;
break;

if (foundDigit) continue;
if (foundinteger)
{

break;

48: else
49:
50:
51:
52:

continue;

53: if (foundinteger == 0) *iGoof = true;
54:
55:

*longNumber = (*longNumber) * sign;

I* Got a number */

I* Look for number *I

/* Take care of sign */

~ Input and Output Routines for Integers 183

The code for this routine is similar to that of lnputHexShort.c except
that the number you're reading in from the hexadecimal string is placed
into a long value, so a long number rather than a short number is
returned. See the brief review of the lnputHexShort.c routine for further
explanation of the code.

~ OutputShort.c

This routine does the opposite of lnputShort.c, in that it takes a number
such as 123 and puts it into a character array equal to the characters 123.

Listing 15-7. Outputting a short integer

PROCEDURE OUtputShort(inch: Str255,VAR column: short,
shortNumber: short, Vl>J?.. iGoof: short)

1: /***/
OUtputShort 2: void

3: (Str255 *outch, short *column, short *shortNumber,
4: short *iGoof)
5: /***/
6:
7:
8:
9:

buffer;
temporaryinteger;
nextTemporary;
digit;
i, j;

10:
11:
12:

Str255
short
short
short
short
#define abs(a) ((a)<O?-(a): (a)) /*Abs macro function*/

13: *iGoof = false;
14: temporaryinteger = abs(*shortNumber);
15:
16:

for (i = 1; i <= 10; i++)
{

/* Break into digits */

17: nextTemporary = temporaryinteger I 10;
18: digit = temporary!nteger - nextTemporary * 10;
19: temporaryinteger = nextTemporary;
20: buffer[i] =digit+ '0';
21: if (nextTemporary <= 0) break;
22:
23: j = i;
24:
25:
26:

if {*shortNumber < 0)
{

outch [*column] = '-';

/* Check for negative */

184 ..,.. Chapter 15 EditText

27: *colUI1U1 = *colUI!U1 + l;
28:
29: for (*colUI!U1 = *colUI1U1; *colUI1U1 <= *column + i-1;

*(colUI1U1)++)
30:
31: outch [*colUI!U1] ~ buffer[j];
32: j = j - l;
33:
34: *colUI1U1 = *colUI!U1 + 1;
35: outch [OJ = *colUI1U1 - 1;
36:

Call this routine with the character string you want to put the charac
ters in, and call it with the column number you want the first character
to start in. In the example of 123, say you want the 1 to begin in column
22. In lines 2-4 you pass the column number 22, then the number 1,
followed by the flag iGoof. Here, iGoofis a useful redundancy. The routine
doesn't need it, but it's included for consistency of syntax. Some routines
in this group of number-handlers use iGoof; some don't. Having it handy
could save time and frustration later if you decide to modify the routine.

Jumping down past several declarations, you'll come to a statement on
line 12 that relates to the preprocessor built into C. The macro define
translates something before compiling. Certain functions, including
"take the absolute value of a number," are not built into C. This macro
supplies that function.

Line 13 is the redundant flag just mentioned. Setting it to 0 keeps it
from having any effect.

The statement on line 14 computes the absolute value of the number.
You make the temporary integer, which in our example is 123, equal to
the absolute value of the short number that you want to output to the
character string.

Now comes a for-loop (lines 15-20) that says, essentially, i goes from
1to10 and the number can't be greater than ten.

First you set i equal to 1, then you keep doing the loop as long as i is
less than or equal to 10, incrementing i by 1 at each loop. In line 17,
nextTemporary is just a local value. You set it equal to the number divided
by 10. So, with 123, temporarylnteger divided by 10 is 12.3. Since integer
arithmetic is at work here, the decimal 3 is dropped, leaving the truncated
integer 12. Multiply by 10 to get 120, then subtract 120 from
temporarylnteger 123 to leave the digit 3 (line 18). Add the 3 to an ASCII

..,.. Input and Output Routines for Integers 185

0 to get 3. Put that into buffer 1 indexed by i (line 20). Because i is equal
to 1, buffer[i] is equal to 3.

Loop through and do the same again, except this time temporary Integer
is going to equal 12. Divide 12 by 10 and come up with 1.2, which
truncated yields 1. Put the 1 in nextTemporary and multiply by 10, giving
you 10. Subtract 10 from temporarylnteger 12 to get the digit 2. Convert
that into an ASCII number and put it into buffer 2. ,

Loop through once more for the number 1. Divide 1by10; integer
arithmetic reduces the number to 0. Multiply 0 by 10, which gives you 0.
Subtract 0 from 1, leaving 1 to go into buffer 3.

Line 21 is an if-test, from which you fall out, since nextTemporary is 0
and you don't want to loop forever.

At this point you have all the digits broken down into buffers in ASCII
digits: buffer 1contains3, buffer 2 contains 2, and buffer 3 contains 1.

You set the variable on line 23. Then you reach the statements on lines
24-28, which lead off by saying, "If shortNumber is less than 0-in other
words, if it is negative-put a minus sign in outch." Line 27 moves the
column over one space to make room for the negative sign. Although
outch sounds like the response to chomping on a cherry pit, it's our
abbreviation name for an array of output characters.

The for-loop in line 29 takes the digits from the buffers and puts them
back into outch in reverse order. You subtract 1 from i to do a calculation
akin to the old fence-post problem: How many posts do I need for a sixty
foot fence with one post every six feet? You need eleven, not ten. Same
goes for the number of columns in this routine. In line 31 the outch,
pointed to by column, is filled up with buffer, which is decremented each
time through the loop. Buffer 1, which contains 3, is put in last; buffer 2,
containing 2, is put in the middle; and buffer 3, containing 1, goes in first.
This procedure reverses the sequence 321 to give you 123, so now outch
contains your number 123. If the number had been negative, outch would
contain -123.

The last segments of code (lines 34-36) take care of two final chores.
First, because you need the column number to point to the next column
space, the first statement increments the column number by 1, in the
example giving 4. Second, since 123 is a Pascal string and you need to
keep track of how long it is, the second statement sets the length to the
column number less 1, in this example giving 3.

186 ..,.. Chapter 15 Edit Text

~ Outputlong.c

OutputLong.c differs from OutputShort.c in only one detail: OutputLong.c
outputs a 32-bit number instead of a short 16-bit number. Local variables
temporarylnteger, nextTemporary, and digit are changed to long values.

Listing 15-8. Outputting a long integer

PRCX:EDURE OUtputLong(inch: Str255,VAR column: short,
longNumber: long, VAR iGoof: short);

1: /***/
OUtputLong 2: void

3:
4:

(Str255 outch, short *column, long *longNumber,
short *iGoof)

5: /***/
6:
7:
8:
9:

buffer;
temporaryinteger;
nextTemporary;
digit;
i I j;

10:
11:
12:

Str255
long
long
long
short
#define abs(a) ((a)<O?-(a): (a)) /*Abs macro function*/

13: *iGoof = false;
14: temporaryinteger=abs(*longNumber);
15:
16:

for (i = l; i <= 10; i++)
{

/* Break into digits */

17: next Temporary = temporaryinteger I 10;
18: digit = temporaryinteger - nextTemporary * 10;
19: temporaryinteger = nextTemporary;
20: buffer[i] =digit+ '0';
21: if (nextTemporary <= 0) break;
22:
23: j = i;
24:
25:
26:

if (*longNurnber < 0)
{

outch [*column] - 1_1.

- '
27: *column= *column+ l;
28:

/* Check for negative */

29: for (*column = *column; *column <= *column + i - l;
*(column)++)

30:
31: outch [*column] = buffer[j];
32: j = j - l;
33:

~ Input and Output Routines for Integers 187

34: *column= *column+ l;
35: outch[O] = *column - 1;
36:

OutputLong.c is the same as OutputShort.c except that local variables
that have shortNumber in the short routine have longNumber in the long
counterpart. See OutputShort.c for a detailed review of the code .

...,. OutputHexShort.c

This routine outputs an unsigned short hexadecimal number.

Listing 15-9. Outputting a short hexadecimal number

PROCEDURE OUtputHexShort(outch: Str255,VAR column: short,
shortNurnber: short, VAR iGoof: short);

1: /***/
2: void OUtputHexShort
3: (Str255 outch, short *column, unsigned short

*shortNurnber,
4: short *iGoof)
5: /***/
6:
7:
8:
9:

10:
11:
12:

Str255
unsigned short
unsigned short
unsigned short
unsigned short
#define

13: *iGoof = false;

buffer;
temporaryinteger;
nextTemporary;
digit;
i, j;
abs (a) ((a) <0?- (a) : (a))

function */

14: temporaryinteger abs(*shortNurnber);

/* Abs macro

15:
16:

for (i = l; i <= 10; i++)
{

/* Break into digits */

17: next Temporary = temporaryinteger I 16;
18: digit = temporaryinteger - nextTemporary * 16;
19: terrporaryinteger = nextTemporary;
20: if ((digit >= 0) && (digit <= 9))
21: {
22:
23:

buffer[i]

24: else

digit+ '0';

188 ..,. Chapter 15 Edit Text

25:
26: buffer[i] = (digit-10) + 'A';
27:
28: if (nextTemporary <= 0) break;
29:
30: j = i;
31: for (*column = *column; *column <= *column + i - 1;

*(column)++)
32:
33: outch [*column] = buffer[j];
34: j = j - 1;
35:
36: *column = *column + 1;
37: outch [OJ = *column - 1;
38:

OutputHexShort.c closely resembles OutputShort.c. The essential dif
ference is that the hex routine outputs an unsigned short hexadecimal
number. In line 17, instead of dividing temporary Integer by 10, you divide
by 16. If you compare line 18 with its counterpart in the OutputShort.c
routine, you'll see that you multiply by 16 instead of 10. Skip down to the
first if-test on line 20. This says, "If the digit is greater than or equal to 0
and less than or equal to 9, then it is a digit between 0 and 9." Next, line
22 makes the buffer equal to the digit plus the ASCII number 0.

If the digit is not between 0 and 9, you do the statement on line 26 to
deal with a hex number A through F, corresponding to the decimal
numbers 10-15. Subtract 10 from that digit and add it to an ASCII A to
make A through F in the buffer.

Another way in which this routine differs f.rom OutputShort.c is that
OutputHexShort.c does not make provision for a negative sign. Look in
the function declaration at the top of the listing on line 3. You'll see
unsignedshort, which declares that the routine does not handle negative
numbers. Negative hex numbers are not likely to b~ needed. If you want
that capability, you can easily add the appropriate lines of code, using
OutputShort.c as a guide.

~ OutputHexLong.c

This routine handles unsigned long hexadecimal numbers. It is in all
other respects the same as OutputHexShort.c.

..,.. Input and Output Routines for Floating-Point Numbers 189

Listing 15-10. Outputting a long hexadecimal number

PROCEDURE OutputHexLong(outch: Str255,VAR column: short,
longNurnber: long, VAR iGoof: short);

1: /***/
2: void OutputHexLong
3: (Str255 outch, short *column, unsigned long *longNurnber,
4: short *iGoof)
5: /**/
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:

Str255
unsigned long
unsigned long
unsigned long
unsigned long
#define abs (a)
*iGoof = false;

buffer;
temporaryinteger;
nextTemporary;
digit;
i, j;

((a) <0?- (a) : (a))

temporaryinteger = abs(*longNurnber);
for (i = 1; i <= 10; i++)
{

/* Abs macro function */

/* Break into digits */

17: nextTemporary = temporaryinteger I 16;
18: digit = temporaryinteger - nextTemporary * 16;
19: temporaryinteger = nextTemporary;
20: if ((digit <= 0) && (digit >= 9))
21: {
22: buffer[i] =digit+ '0';
23:
24: else
25:
26: buffer[i] =(digit - 10) + 'A';
27:
28: if (nextTemporary <= 0) break;
29:
30: j i;
31: for (*column = *column; *column <= *column + i - 1;

32:
33:
34:
35:

*(column)++)

outch [*column]
j = j - 1;

buffer[j];

36: *column *column + 1;
37: outch [OJ = *column - 1;
38:

See the review of OutputHexShort.c for an explanation of the code.

190 ~ Chapter 15 Edit Text

..,.. Input and Output Routines for Floating-Point
Numbers
This section contains two routines to input and output floating-point
numbers, which are the same as real numbers. Engineers and scientists
use them a lot. Floating-point numbers are one of two types of numbers
containing a decimal point; the other type is the fixed-point number, which
is uncommon in computer programs, but which we will discuss briefly.

To understand fixed-point numbers, let's talk first about binary num
bers. A binary number can't contain a decimal point, but it can contain a
binary point, which appears anywhere between two binary numbers. In
fixed-point arithmetic, that binary point never moves; it stays where it is,
usually at the beginning or the end of the number. In floating-point
arithmetic, the decimal point moves around for various reasons, such as
how many leading digits you have in the number.

Floating-point arithmetic offers the advantage of a more accurate
representation of a number; however, fixed-point arithmetic is much
faster. But accuracy and speed here are not important. Since a computer
uses what are called finite numbers, there may be no way for it to
represent a floating-point number precisely. Suppose, for example, your
computer has a 32-bit number to handle all possible floating-point
numbers. The universe of floating-point numbers is infinite, whereas the
32 bits can represent only 232 combinations. Computers partly overcome
this restriction by means of a range-with a minimum and a maximum
value-placed on the numbers. Also, the numbers are quantized; that is,
they are discrete. If you change 1 bit, the computer may not increment or
decrement that number the way you would expect.

Most computers, including the Macintosh, have two types of floating
point numbers. One type is referred to in C as standard float, or single
precision, which is a 32-bit number in the Macintosh. The second type is
known as double precision in some languages and just plain double in
others. Double precision enables you to gain greater precision by increas
ing the number of decimal places. To some extent, this feature compen
sates for the computer's truncating numbers too big to be accommo
dated.

Scientific notation, also known as standard notation, a mathematical
system that allows you to represent a number large or small as a number
between 1and9.99 recurring, multiplied by a power of ten. One example
of a large number is 8,620,000, which can be written as 8.62 x 106• An
example of a small number is .00862, written as 8.62 x 10-3 in scientific
notation. The raised number, or superscript, is called the exponent in
mathematical terms.

Ill- Input and Output Routines for Floating-Point Numbers 191

Trouble is, most computers have no provision for superscripts in
printouts or screen displays. In word processing applications, they do;
but in number crunching, they don't. Programmers figured out a way
around this barrier several decades ago with the advent of the FORTRAN
language. Consider the examples just given. FORTRAN programmers
would write 8.62 x 106 as 8.62E6, and 8.62 x 10-3 as 8.62E-3. That conven
tion is now standard practice, as you'll see in the following routines.

You may also come across the use of the letter D instead of E, for
example, 8.62D6. The D signifies double precision. If you've declared the
variable that you are reading the number into as double precision,
double precision is what the program will give you. If you've not
declared double precision, you'll get single precision.

Engineering notation also can be used in computing. You'll find it in
the OutputFloat.c routine. Engineering notation is similar to scientific
notation, with one exception-the exponent is always a power of three:

100 1E3
1,000 l.OE3

10,000 10E3
100,000 100E3

That isn't all. There's fixed notation. Not to be confused with fixed
point arithmetic, fixed notation allows computers to handle numbers of
limited length. For instance, imagine that you allocate space on your
screen for only ten digits. You also specify that only two digits following
a decimal point can be displayed. Now suppose you have the number
1,000. Fixed point displays that as 1000.00 with room to spare. Suppose
you want to display the number 100,000,000.00. This has eleven digits,
more than the field can hold. What happens to the overflow? The
program automatically converts the number into scientific notation and
displays it as l.OOE8.

These various notations will be familiar if you've used Hewlett
Packard and similar calculators. Scientific notation and fixed notation
are built into most programming languages, including C, but engineer
ing notation is not. FORTRAN is an accommodating language, as sug
gested by the origin of its name: FORmula TRANslator. It was meant for
scientists and engineers who wanted to do calculations. Even so, a major
difficulty with FORTRAN, C, and other programming languages is that
in order to write a floating-point number you have to visualize what it is
going to look like-how big, how many decimal places, and so on.

Now that the terminology is clarified, let's proceed with the InputFloat.c
routine.

192 .,.. Chapter 15 Edit Text

...., lnputFloat.c

lnputFloat.c reads in single-precision numbers. With this routine, enter
ing a real number into an edit text field is as easy as it is on a calculator.
The review of the code takes you through the listing with three examples:
1.23E3 (scientific notation for 1,230); lOK (10,000); and numbers such as
1.23M (1,230,000), that is, numbers with exponents other than K.

Listing 15-11. Inputting a floating-point number

:mxmJRE InpJ.tFlc:at (inch: Str255; VAR colurm.: INI'EGER; VAR realNurrter:
Fl.OAT; VAR iGoof: INIEGER);

1: /**/
2: void InputReal
3: (Str255 inch, short *column, float *realNumber, short

*iGoof)
4: /**/
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:

short
short
short

lastColumn;
foundDecimalPoint;
signOfExponent;

short exponent;
short foundSign;
float sign;
short foundNumber;
float digit;
float multiplier;
multiplier =. 1.0;
foundDecimalPoint = false;

17: *realNurnber = 0.0;
18: signOfExponent = O;
19: exponent = O;
20: sign = 1.0;
21: foundNumber = false;
22: foundSign = false;

I* Init */

23: lastColumn =inch [OJ; /*Get line length*/
24: for (*column= *column; *column<= lastColumn; (*column)++)
25: {
26: switch (inch[*column])
27: {
28: case ('0'):
29: case ('l'):
30: case ('2'):
31: case ('3'):

32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:

45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:

58:
59:
60:
61:
62:
63:
64:

~ Input and Output Routines for Floating-Point Numbers 193

case ('4'):

case ('5'):

case ('6'):
case ('7'):

case ('8'):

case ('9'):
foundNumber = true;
digit= (float)inch[*column] - '0';
if (foundDecimalPoint)
{

multiplier = multiplier I 10.0;
*realNumber = *realNumber + digit * multiplier;

else

*realNumber

continue;
case ('+'):

*realNumber * 10.0 + digit;

foundNumber = true;
if ((*realNumber ! = O. 0) I I (foundSign))

{

break;

foundSign true;
sign= 1.0;
continue;

case (' - '):
foundNumber = true;
if ((*realNumber != 0.0) 11 (foundSign))

{

break;

65: foundSign = true;
66: sign = -1.0;
67: continue;
68: case ('E'):
69: case ('e'):
70: case ('D'):
71 : case (' d ') :
72: foundNumber = true;
73: signOfExponent = 1;
74: if (inch [*column+ 1] != '-')
75: {

76: if (inch [*column + 1] != '+')
77:

194 ..,.. Chapter 15

78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:

Edit Text

*column *column + 1;

else

*column *column + 2;

else

*column = *column + 2;
signOfExponent = -1;

InputShort(inch, column, &exponent, &iGoof);
if (*iGoof)
{

return;

95: break;
96: case ('P'):
97 : case ('p') :
98: foundNumber = true;
99: signOfExponent = -1;

100: exponent = 12;
101: *column = *column + 1;
102: break;
103: case ('N'):
104: case ('n'):
105: foundNumber = true;
106: signOfExponent = -1;
107: exponent = 9;
108: *column = *column + 1;
109: break;
110: case ('U'):
111: case ('u'):
112: foundNumber = true;
113: signOfExponent = -1;
114: exponent = 6;
115: *column = *column + 1;
116: break;
11 7 : case (' T ') :
118: case ('t'):
119: foundNumber = true;
12 O: signOfExponent = 1;
121: exponent = 12;
122: *column = *column + 1;
123: break;

..,.. Input and Output Routines for Floating-Point Numbers 195

124: case ('K'):
125: case ('k'):
126: foundNumber = true;
127: signOfExponent = 1;
128: exponent = 3;
129: *column = *column + 1;
130: break;
131: case ('M'):
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:

case ('m'):
foundNumber = true;
if ((inch[*column + 1]

(inch[*column + 1]

signOfExponent = 1;
exponent = 6;
*column = *column + 3;
break;

142: else
143:
144: signOfExponent = -1;
145: exponent = 3;
146: *column = *column + 1;
147: break;
148:
149: case ('G'):
150: case ('g'):

151: foundNumber = true;
152: signOfExponent = 1;
153: exponent = 9;
154: *column = *column + 1;
155: break;
156: case('.'):
157: if (foundDecimalPoint)
158: {
159: *iGoof = true;
160: return;
161:
162: else
163:

'E' l 11
'e') l

164:
165:
166:

foundDecimalPoint true;
continue;

167: default:
168: if (foundNumber)
169: {

196 ..,. Chapter 15 Edit Text

170: break;
171:
172: continue;
173:
174: break;
175:
176: *realNurnber
177: *realNurnber * sign * power(lO.O, (signOfExponent *

exponent)) ;
178: *iGoof = false;
179:

Entering the Floating-Point Number l .23E3
Starting at the very top of the listing, you'll see that you pass in several
variables. The first variable is the array called inch. Next comes column,
a column number that specifies where to start the search for the floating
point number. When you've finished reading in that number, column will
point to the column immediately following the number. The routine returns
the floating-point number you were searching for in the variable realNumber.
If an error occurs during the search, the routine sets the iGoof flag.

After the declarations, the first real code is on line 15. Various
initializations follow on lines 16-23. Line 24 begins a looping process to
examine every character in the inch variable. As an example, assume
your real number, or floating-point number, to be l.23E3. That is scien
tific notation for 1,230, where the letter E stands for "exponent." The
characters in your array are 1, the decimal point, 2, 3, E, and 3.

Let's see what happens when you enter the first character, 1. The case
statement on lines 26-37 says, "If inch-that is, input character-is equal
to any ASCII character between and including 0 through 9, go to line 38
and execute it." You've entered 1, so you set that flag equal to true. Next,
line 39 converts the ASCII floating number 1 to a natural number by
subtracting an ASCII number 0. At this point, digit equals 1.0.

Because you've found a digit, the routine says: "Great! Let's look in the
next column." It executes an if-test on lines 40-44. The if-test ascertains
whether you've found a decimal point. You haven't yet, so you execute
the else-statement of the if-test on lines 45-48. Here you say, "My real
number is equal to my old real number times 10, plus the digit." You set
the old real number to 0 earlier in the code; hence, 10 times 0 gives 0, add
the digit 1, and you get 1.0.

You then reach the continue-statement on line 49 to begin another
iteration of the for-loop (line 24). The column number is incremented and
now points to the decimal point.

..,.. Input and Output Routines for Floating-Point Numbers 197

You drop down, almost to the bottom of the listing, to lines 156-161.
In colloquial English, this code would say: "If I found a decimal point
earlier and now find another one, that's a no-no. I can't have more than
one decimal point in the number I'm entering. So I'll set the iGoof error
flag to true, meaning I goofed. I'll then return to the calling routine."

In this example, where you're reading in 1.23£3, you haven't found a
decimal point yet, so you go to the "else" portion of the if-statement on
lines 162-164 and setfoundDecimalPoint to true. You then continue (line
165), branching to the next part of the for-loop, up near the top of the
listing on line 24. The column number is incremented again, and on line
26 the inch of column number is now the number 2. You reach the case
statement on line 30, then go down to line 38 where you setfoundNumber
to true because you have indeed found the number 2. You also get the
digit, just as you did before, except that it is now equal to 2.

Once again, you go to the if-statement on line 40, which asks whether
you have found a decimal point. On your first go-around with the if
statement you hadn't found a decimal point. This time you have, so you
go right to the statement on line 42. The multiplier originally was going
to be equal to 1.0; however, divided by 10 it is now 0.1. Line 43 says that
the real number now equals the real number 1.0 plus 2, then multiplied
by 0.1, which yields 0.2; so the real number is now 1.2. You're getting
closer.

On line 49 the continue-statement prompts you to do another loop.
You've already found the decimal point. Now you get the number 3 and
divide the multiplier by 10 to come up with the new multiplier 0.01.
Multiply 0.01 by the digit 3, add it to the real number, and obtain 1.23.

The continue-statement directs you back to line 24, where the column
number is incremented, making the character E the next object of the
code's scrutiny. Branch down to line 68, which contains the case-state
ment for the case 'E', and on line 72 set the foundNumber flag equal to true,
although it is already true. On line 73, set signOfExponent equal to 1
assuming it's going to be positive. Then with line 74, you say, "If the next
character is not a minus sign, I'll do the next piece of code." Line 76 differs
only in the sign, which is positive.

Lines 73-89 allow several variations on entering exponents in scien
tific notation. In the example 1,230, you could type 1.23£3 or l.23E+3. To
enter the number .00123 in scientific notation, you would type a negative
exponent as follows: l.23E-3. If there isn't a plus sign, you increment the
column number by 1, so the column number is going to point to the input
character 3. If there is a plus sign, you increment the column number by
2, moving the column number over two places and skipping over the

198 .,.. Chapter 15 Edit Text

sign. If there's a negative sign, you increment the column number by 2
and set the sign of the exponent to -1.

The next step is to input the integer 3 by calling our lnputShort routine
on line 90. If there is no number or sign following the exponent letter E
or D, the iGoof flag is set.

At this time you have the exponent 3, completing the character string
consisting of the real number 1.23 and the exponent E3. You then jump
to the break-statement on line 174, just below the closing brace of the
case-statement.

After falling out of the for-loop, you execute the statement on lines 176
and 177, which says, "The real number is now equal to the real number
1.23, times the sign 1.0, times 10 to the sign of the exponent 1, times the
exponent power 3." The solution to this equation, in our example, is 1.23
times 10 to the third power. That's your real number.

Finally, set the iGoof flag to false and fall out of the last brace. You've
read in the number l.23E3.

Entering the Floating-Point Number l OK
Now consider the code for reading in a number in a different format.
Suppose you enter lOK, representing the value of a 10,000-ohm resistor
in an electronic circuit. As you walk through this code, refer to the
previous example (l.23E3) and note the differences.

Skip down to the for-loop on line 24. Your first character is going to be
the number l. Branch down to lines 38-48. On line 39 you pull out the
digit l. You haven't found a decimal point yet, so realNumber is equal to
the real number times 10 plus 1.0 (line 47). Back on line 24 you increment
the column number, making it point to the character 0 inside of inch. Hit
the case-statements on lines 28 and 38. This time the digit is going to be
the number 0. You haven't found a decimal point yet, so you say on line
47 the real number is equal to the real number times 10 plus the digit.
Since the real number equals 1, the real number now is going to be equal
to 10 plus 0, or simply 10.

The column number next points to the character K in inch, so branch
down to line 124. Set the foundNumber flag on line 126 to true. Assume the
sign of the exponent is 1 and positive. Set the exponent equal to 3 on line
128. Bump the column number by 1 on line 129. The break-statement on
line 130 jumps you to the break-statement on line 174. Lines 176 and 177
amount to, "The real number is equal to 10, the sign is equal to 1.0, the
power is evaluated as 10 times the sign of the exponent 1 times 3, so you
get lOK."

lill-- Input and Output Routines for Floating-Point Numbers 199

Entering Floating-Point Numbers with Exponent Letters
Other Than K
As you look through the case statements in lines 96-155, you'll find that,
in addition to the Kin the last example, there are the letters P or p for pico
(10 -12), Norn for nano (10-9), U or u for micro (10-6), Tort for tera (1012),

and G or g for giga (109). The routine makes these letter symbols case
insensitive to allow for flexibility.

M and m get special treatment so as to avoid confusion. If the user
enters M or m alone, the routine assumes that the quantity is milli (10-3)

and sets the sign of the exponent equal to -1 and the exponent equal to 3.
However, if the user enters ME, Me, mE, or me, the routine bumps the
column number 3 spaces to allow for the abbreviation meg for mega (106).

In this case, the sign of the exponent is 1 and the exponent is equal to 6.
The symbol for one-millionth (micro) isµ, the Greek letter mu. Because

the character µ is rarely available on typewriters, the custom in the
technical world is to type a lowercase u instead. The Apple menu item
KeyCaps on the Macintosh shows that in most fonts you can print µby
pressing Option-M, but the plain u is fine for most purposes, and that's
what this routine offers.

With these additional symbols used for exponents in the internation
ally recognized SI system for expressing scientific quantities, you have
the capability of reading in such numbers as l .23G instead of 1,230,000,000.

~ OutputFloat. c

The purpose of the OutputFloat.c routine is to output a floating-point
number by converting it into a string. Like its opposite InputFloat.c, you
can use it for fixed, engineering, or scientific notation.

Listing 15-12. Outputting a floating-point number

PRCX::EDURE OutputFloat(VAR outch: Str255; VAR colllllU1:
INTEGER;realNurnber: FIDAT; VAR iGoof: INTEGER);

1: /**/
2: void
3:

OutputFloat
(Str255 outch, short *colllllU1, float *realNurnber,

4: short notation, short fieldLength, short *iGoof)
5: /**/
6:
7: float mantissa;
8: short temporaryNotation;

200 .,.. Chapter 15 Edit Text

9: short fractionLength;
10: short exponent;
11: short integerLength;
12: short totalDigits;
13: short roundedDigit;
14: short decimalLocation;
15: short absExponent;
16: short exponentDigit;
17: short digit [20];
18: char exponentBuffer[2];
19: short i;
20: enum
21:
22: fixed,
23: scientific,
24: engineering
25: } ;
26: terrporaryNotation = notation;
27: if (*realNurnber < 0.0) /* Check for negative number */
28: {
29: outch[*column] = '-';
30: *column = *column + 1;
31:
32: for {;;)
33: {
34: exponent = O;
35: fractionLength = fieldLength;
36: integerLength = 1;
37: mantissa = abs (*realNurnber) ;
38: if (mantissa != 0.0) /* Make mantissa greater than or */
39: { /* equal to one and less than */
40:
41:
42:
43:
44:

while (mantissa < 1.0)
{

mantissa
exponent

mantissa * 10.0;
exponent - 1;

45: while (mantissa > 10.0)
46: {
47:
48:
49:
50:

mantissa
exponent

mantissa I 10.0;
exponent + 1;

/* ten */

51: if (terrporaryNotation fixed) /* Separate number */
52: { /* into individual digits */
53: if {{exponent> 10) II

~ Input and Output Routines for Floating-Point Numbers 201

54: ((exponent< 0) && (abs(exponent) > fractionLength)))
55: {
56: temporaryNotation = scientific;
57: continue;
58:
59: if (exponent > 0)
60: {
61: integerLength = exponent + 1;
62:
63: if (integerLength + fractionLength > 10)
64: {
65: fractionLength = 10 - integerLength;
66:
67: if (exponent < 0)
68: {
69: mantissa= mantissa* power(lO.O, exponent);
70:
71:
72: totalDigits = integerLength + fractionLength; ·
73: for (i = 1; i < totalDigits; i++)
74: {
75:
76:
77:

digit[i]
mantissa

(short)mantissa;
(mantissa - (float)digit[i]) * 10.0;

78: roundedDigit = totalDigits + 1; /* Round off number */
79: digit[roundedDigit] = (short)mantissa;
80: if (digit [roundedDigit] > 5)
81: {
82: for (i = totalDigits; i >= l; i-)
83: {
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:

digit[i] = digit[i] + 1;
if (digit[i] < 10)
{

break;

digit[i] = O;
if (i == 1)
{

for (i = totalDigits; i >= 1; i-)
{

digit[i + 1] = digit[i];

digit[2] = O;
digit[l] = 1;
exponent = exponent + 1;

202 ..,.. Chapter 15 Edit Text

100:
101: if { {temporaryNotation == fixed) && {exponent > 10))
102: {
103: temporaryNotation = scientific;
104: continue;
105:
106:
107: break;
108:
109:
110:

if {temporaryNotation
{

engineering) /* Handle eng. notn */

111: if {exponent < 0)
112: {
113: switch {Mod{exponent, - 3))
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:

case (0):
break;

case (-1):
integerLength = 3;
exponent = exponent - 2;
fractionLength = fractionLength - 2;

case (-2):
integerLength = 2;
exponent = exponent - 1;
fractionLength = fractionLength - 1;

127: else
128:
129: switch (Mod(exponent, 3))
130: {
131: case (0):
132: break;
133: case (1):
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:

integerLength = 2;
exponent = exponent - 1;
fractionLength = fractionLength - l;

case (2):
integerLength = 3;
exponent = exponent - 2;
fractionLength = fractionLength - 2;

144: for (i = 1; i > integerLength; i++) /* Place most
significant */

~ Input and Output Routines for Floating-Point Numbers 203

145: /* digits in outch */
146: outch [*column] = digit[i] + '0';
147: *column = *column + 1;
148:
149: decimalLocation = *column; /* Place dee. point in outch */
150: outch [decimalLocation] = '.';
151: *column = *colUI1U1 + l;
152: for (i = l; i <= fractionLength; i++)/* Place fraction in

153:
154:
155:
156:
157:

outch *I

if (fractionLength
{

return;

0)

158: outch [*colUITU1] = digit[i + integerLength] + '0';
159: *column = *column + 1;
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:

if (ternporaryNotation
{

return;

outch [*column] 'E';
*colUI1U1 = *colUITU1 + l;
if (exponent < 0)
{

outch [*colUITU1] I_ I;

170: *column = *column + 1;
171:
172: exponentBuffer[l] = '0';
173: exponentBuffer[2] = '0';

fixed)

17 4: absExponent = abs (exponent) ;
175: for (i = 1; i <= 2; i++)
176:

/* Put exponent in outch *I

177: exponentDigit = absExponent - (absExponent I 10) * 10;
178: absExponent = absExponent I 10;
179: exponentBuffer[i] = exponentDigit + '0';
180: if (absExponent < 0)
181: {
182: break;
183:
184:
185: outch [*column] = exponentBuffer [2] ;
186: *colUI1U1 = *colUI1U1 + 1;
187: outch [*column] = exponentBuffer[l];
188:

204 ..,.. Chapter 15 Edit Text

On lines 2-4, you call the routine and pass it the outch string, which is
the output character string into which you want to place the number. The
column number should point to the column where you want the number
to begin; next comes the real number you want to output; then the type
of notation-scientific, engineering, or standard-you plan to use; next
the number of digits past the decimal point; and finally the error flag.

As an example of a number to be outputted, let's use 1,000-to be
outputted in scientific notation-with a field length of 2. Set the notation
flag equal to scientific before calling the routine. The starting column will
be the number l, so outch will contain the number 1.00E03 when you're
done.

Just after the declarations, you'll find a statement on lines 20-25. This
enumeration-statement, built into C, initializes whatever you place
within the braces. In addition to, or in place of, those listed here you could
enter as many variable names as you wanted. The statement converts
each name into a number-0 for fixed, 1 for scientific, and so on-and
initializes them to those values.

The first line of real code on line 26 creates a temporary variable that
allows for changing the notation type without going back into the routine
that called this program.

Next is the if-statement on lines 27-31. This code says, "If the real
number is less than0.0, put a negative signinoutch and bump the column
number 1 place."

You now come to an infinite for-loop, "infinite" meaning it goes on
looping forever unless you hit a branch-statement that gets you out of it.
Lines 32-37 initialize several variables. You set the exponent equal to 0.
Fraction length and field length are the same thing, but fraction Length on
line 35 serves as a local variable that enables you to change the length
without changing the original field length. Integer length is set to 1 for a
reason discussed later in the review. The absolute value of the real
number is put into a variable, mantissa, to get rid of the sign.

At this point, on lines 38-40, the comment in the listing summarizes
the purpose of the next-if test: "Make the mantissa greater than or equal
to 1 and less than 10." You do this by bumping the exponent and
adjusting the mantissa, using a couple of while-loops on lines 40-50. If
the mantissa is not equal to 0 and is less than 1, keep multiplying it by 10
and subtracting 1 from the exponent until the mantissa is greater than 1.
If the mantissa is greater than 10, keep dividing it by 10 and incrementing
the exponent by 1 until the mantissa is less than 10.

...,. Input and Output Routines for Floating-Point Numbers 205

At this stage, you have accomplished three things: put a minus sign
into the string if the number is negative, adjusted the mantissa to lie
between 1and10, and set the proper exponent. For our example of 1,000,
the mantissa would be 1 and the exponent 3.

For now, skip the if-test on lines 51-71 because you're dealing with
scientific, not fixed, notation in our example.

Go down the listing to lines 72-79. With an integer length of 1 and a
fraction length of 2, the total number of digits is 3. The for-loop says: "For
i equal to 1, as long as i is less than the total number of digits, increment
i each time through the loop. Continue by converting the mantissa, which
is 1.0, to a short number, 1. Put the 1 into digit. Subtract digit from the
mantissa and multiply by 10." The net result is that the mantissa contains
0 and the first digit contains the number 1. After the remaining two loops,
the second digit contains 0, the third digit contains 0, and you fall out of
this for-loop.

Because you're rounding to two places of decimals, roundedDigit (line
78) is set to the total number of digits plus 1, making it the fourth digit;
also, it is equal to the short mantissa, which is equal to 0.

Next is an if-test on lines 80-100, which takes into account the display
of only 2 digits after the decimal point and the need to do something
about the unwanted digit. It says: "If the extra digit is less than 5, don't
do any rounding off-just break out of the if-test. If the extra digit is
greater than 5, round the second digit upward by adding l."

Let's try to clarify this explanation with an example. Suppose you
want to output the number 1.254 to two places of decimals. That means
getting rid of the last digit, 4. Following the convention for rounding off,
the code would simply lop off the 4, leaving 1.25. Now suppose the
number to be outputted is 1.256. The code would round upward, lopping
off the 6 and adding 1 to the last digit, displaying 1.26.

Below that infinite for-loop you come to another lengthy if-test start
ing with line 109. Ignore it, because at this time in the walk-through
you're considering only scientific notation.

Drop down to lines 144-160, where you begin to place the digits in
outch. At this time the mantissa is equal to 1, the digit equal to 1.00, and
the exponent equal to 3. The for-loop adds an ASCII 0 to the digits and
puts them in outch. The term integerLength is the length of the digits in
front of the decimal point. In this example, where the string to be
outputted is 1.00£03, integerLength is 1. Set the decimal location equal to
the column number and put a period in outch at that location to be the
decimal point. You now have "l." in outch.

206 ~ Chapter 15 Edit Text

Go through the for-loop that begins on line 152. The loop puts into
outch the digits-0 and 0-that are stored in digit, added to an ASCII 0 in
outch.

Since you're dealing with scientific notation, you don't return in the
statement on line 163. Instead, execute the coqe on lines 165-171 to put
into outch the character E, which stands for "exponent." Bump the
column number, then check to see whether the exponent is less than 0. If
it is, put in a minus sign and bump the column number again.

Lines 172 and 173 put the character 0 into each buffer.
Take the absolute value of the exponent (line 174), because you've

already taken care of the sign, and go through the for-loop on lines 175-
184. This section of code breaks down the exponent number and puts it
into the exponentBuffer backwards. (As to why it is backwards, see the
explanation of the routine OutputShort.c earlier in this chapter.)

Lines l85-l89puttheexponentBufferintooutch. You now have03 as the
exponent. Note, the maximum exponent value allowed is 99.

After all this rigamarole, you have succeeded in outputting the num
ber 1,000 in scientific notation as 1.00E03 .

...,. Get and Put Routines for Edit Text

Get and put routines in edit text do exactly that: They either get a value
out of an edit text field or they put a value into the edit text field. You use
the get routines when the OK button is clicked on in a dialog box. You
want to get the value out of the edit text field and set some constants in
your program. In the familiar Print dialog, for example, you might enter
3 in the Copies field. To go ahead with printing 3 copies, you click on the
OK button or press the carriage return. That sets a value of 3 in the
program, and the printer knows it has to print each page three times.

Conversely, you use put routines when you want to display a value in
a dialog box. Suppose, for instance, you're programming a voice-mail
package. You have an edit text field into which the user enters the
number of times the phone is allowed to ring before being answered. You
have either a default value for the number of rings or a value that the user
will have typed in. You want to put the value into the edit text field so that
the user can see it and leave it as is or change it.

..._ Get and Put Routines for Edit Text 207

...,. GetEditShort.c

This routine gets a value from an edit text field. You can also use it to get
a value out of a static text field, but such a function is rare. The routine
requires that you pass in the pointer to the dialog box that contains both
the item number and the edit text from which you want to retrieve the
value.

All items in a dialog box have ID numbers. By programming conven
tion, the OK button is item number 1. It is also the default button, which
means you can either click on the button or press the carriage return to
say okay. Also by convention, the Cancel button usually is number 2. The
edit text also has an item ID.

Listing 15-13. Getting a short integer from an edit text field

FUNCTION GetEditShort(theDialog: DialogPtr,itemHit: INTEGER): INTEGER;

1: /***/
2: short GetEditShort(DialogPtr theDialog, short itemHit)
3: /***/
4:
5:
6:
7:

8:
9:

10:
11:

short
Rect
Handle
Str255
short
short
short

itern'fype;
iternRect;
itemHandle;
inch;
value;
column;
iGoof;

12: GrafPtr savePort;
13: GetPort(&savePort);
14: SetPort(theDialog);

/*

I*

15: GetDitem(theDialog, itemHit, &item'IYPe,

/* Not used */
/* Not used */

Handle to edit text */
/* Edit text string */

/* Final value *I
First column of inch */

I* Error flag */
/* Old grafPort *I

/* Save old port */

16: &itemHandle, &iternRect); /*Get edit text handle*/
17: GetIText(itemHandle, inch); /*Get edit text string*/
18: column = 1; /* Search for number */
19: InputShort(inch, &column, &value, &iGoof);
20:
21:
22:

return (value);
SetPort(savePort);

/* Return short value */
/* Restore old port */

208 ~ Chapter 15 Edit Text

Note that the statement on line 2 begins with "short," not "void." The
absence of "void" tells the C compiler that this program is a function, not
a subroutine. Subroutines do not return values. With "short" you say,
"some value is equal to this routine's name," and you pass it parameters.

The routine proper starts with line 13 and ends with line 21. The
constructs therein are used in many of the routines. They set aside the
current, or old, window description while the routine does its work; then
they make sure that the old window is restored.

Your call on lines 15 and 16 gets the item handle. It also gets the dialog
and so forth, but does nothing with them. If getting all these goodies and
tossing all but one aside looks like a waste of effort, think of it in terms
of convenience. This call to get the dialog item is used in many routines.
You can use it as is without having to worry about syntax. Simply copy
it into your application and make use of whatever item attribute you
need.

You could, if you wished, use &item Type to check thatthe information
being returned was edit or static text, rather than a check box, radio
button, or something else. You could also use &itemRect to make sure
that the rectangle was big enough or properly positioned. Such precau
tions could be construed as going overboard on error checking, so the
routine leaves them out.

Line 17 passes the item handle to another Toolbox routine, GetIText,
or "get item text." It requires itemHandle as input. It also requires a
character string, inch, into which it places the characters from the edit text
field.

Line 18 sets the column in which you're going to start searching for the
number retrieved by GetlText.

Next, the InputShort call on line 19 requires the inch string and the
column number, and returns a value and an error flag. The error flag is
ignored, again in the interest of not going overboard on error checking.
You could put the flag to use by bringing up an alert.

Line 20 returns the value of the integer that is in the edit text field .

..,.. PutEditShort.c

This is a void routine for putting a short integer into an edit text field. You
call it and put the value of a short number into the edit text item.

..., Get and Put Routines for Edit Text 209

Listing 15-14. Putting a short integer into an edit text field

PROCEDURE PutEditShort(theDialog: DialogPtr,itemHit: INTEGER,
value: INTEGER);

1: /***/
2: void PutEditShort(DialogPtr theDialog, short itemHit, short

value)
3: /*******************~***/

4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

short
Re ct
Handle
short
short
Str255

iternType;
itemRect;
itemHandle;
column;
iGoof;
outch;

GrafPtr savePort;
GetPort(&savePort);
SetPort(theDialog);

/* Not used */
/* Not used */

/* Handle to edit text */
/* First column of outch */

I* Error flag */
/* String for edit text */

/* Old grafPort */
/* Save old port */

GetDitern(theDialog, itemHit, &iternType,
&itemHandle, &itemRect); /*Get edit text handle*/

column = 1; I* Put number in string *I
OutputShort(outch, &column, value, &iGoof);
SetIText (itemHandle, outch); /* Put in edit text *I
SetPort(savePort); /*Restore old port*/

Just as in GetEditShort.c, you're interested only in getting the item
handle out of the call on lines 14 and 15.

Line 16 places the number in column 1, at the beginning of the string.
Make the call on line 17 and pass it the column number and the value.

The iGoof flag is not used here.
After computing the string, put it into the edit text field with the line

18 call that passes both the handle to the item and the string to be inserted.
The various calls to get, set, and save the port are probably familiar to

you by now, since they are widely used in the routines in this book. They
have the effect of stashing away the old window for safekeeping while
you call a new window. Then, when you're through with the new
routine, they restore the settings of the old window.

210 ~ Chapter 15 Edit Text

.,... GetEditlong.c

This routine does with long integers what GetEditShort.c does with short
integers.

Listing 15-15. Getting a long integer from an edit text field

FUNCTION GetEditLong(theDialog: DialogPtr,itemHit: INI'EGER): l.ONGINT;

1:
2:
3:
4:
5:

·6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

/***/
long GetEditLong(DialogPtr theDialog, short itemHit)
/***/

short i terrtfype;
Rect itemRect;
Handle itemHandle;
Str255 inch;
long value;
short colUI!U1;
short iGoof;
GrafPtr savePort;
GetPort(&savePort);
SetPort(theDialog);

/* Not used */
/* Not used *I

/* Handle to edit text */
/* The edit text string */

/* The final value */
I* First colUI!U1 of inch */

/* Error flag */
/* Old grafPort */

/* Save old port */

GetDitem(theDialog, itemHit, &iterrtrype,
&itemHandle, &itemRect); /*Get edit text handle*/

GetIText(itemHandle,inch); /*Get edit text string*/
colUI!U1 = 1; /* Search for number */
InputLong(inch, &colUI!U1, &value, &iGoof);
return(value); /*Return short value*/
SetPort(savePort); /*Restore old port*/

GetEditLong.c bears a close resemblance to GetEditShort.c. Look at the
review of GetEditShort.c and make allowance for the slight differences .

.,... PutEditlong.c

This routine puts long integers into an edit text field.

~ Get and Put Routines for Edit Text 211

Listing 15-16. Putting a long integer into an edit text field

PROCEDURE PutEditLong(theDialog: DialogPtr,itemHit: INTEGER,
value: I.ONGINT);

1: /***/
2: void PutEditLong(DialogPtr theDialog, short itemHit, long

value)
3: /***/
4:
5: /* Not used */
6: /* Not used */
7: /* Handle to edit text */
8: /* First column of outch */
9: /* Error flag *I

10: /* String for edit text */
11: GrafPtr savePort; /* Old grafPort */
12: GetPort(&savePort); /*Save old port*/
13: SetPort(theDialog);
14: GetDitem(theDialog, itemHit, &itemType,
15: &itemHandle, &iternRect); /*Get edit text handle*/
16: column = l; /* Put number in string */
17: OutputLong(outch, &column, value, &iGoof);
18: SetIText (itemHandle, outch) ; /* Put in edit text *I
19: SetPort(savePort); /*Restore old port*/
20:

See the review of PutEditShort.c for details. PutEditLong.c simply
substitutes long for short variables as appropriate.

~ GetEditFloat.c

This routine gets a floating-point value from an edit text field.

Listing 15-17. Getting a floating-point value from an edit text field

1: /***/
2: float GetEditFloat(DialogPtr theDialog,short itemHit)
3: /***/
4:
5:
6:
7:

short
Rect
Handle

item'I'ype;
iternRect;
itemHandle;

/* Not used */
/* Not used */

/* Handle to edit text */

212 ..,. Chapter 15 Edit Text

8: Str255 inch; /* The edit text string *I
9: float value; /* The final value *I

10: short column; I* First column of inch */

11: short iGoof; I* Error flag */

12: Graf Ptr savePort; /* Old grafPort */

13: GetPort(&savePort); I* Save old port */

14: SetPort(theDialog);
15: GetDitem(theDialog, itemHit, &itemType,
16: &itemHandle, &itemRect); /* Get edit text handle *I
17: GetIText(itemHandle, inch); /* Get edit text string */

18: column = 1; /* Search for number */

19: InputFloat(inch, &column, &value, &iGoof);
20: return(value); /* Return short value *I
21: SetPort(savePort); /* Restore old port *I
22:

On line 9 you declare value to be a floating-point value. The only
difference between GetEditFloat.c and GetEditShort.c is that you call
GetEditFloat.c and read a number into value, a floating-point variable, by
the statement on line 19 .

..,_ PutEditFloat.c

The function PutEditFloat.c puts a floating-point value into an edit text
field. It is almost identical to PutEditShort.c, which we described earlier
in this chapter.

Listing 15-18. Putting a floating-point value into an edit text field

1: /***/
2: void PutEditFloat(DialogPtr theDialog, short itemHit,

float value,
3: short notation, short fieldLength)
4: /***/
5:
6:
7:
8:
9:

10:
11:

short
Rect
Handle
short
short
Str255

itemType;
itemRect;
itemHandle;
column;
iGoof;
outch;

/* Not used */
I* Not used *I

/* Handle to edit text */
I* First column of outch */

/* Error flag *I
/* String for edit text */

~ Displaying Strings 213

12: Graf Ptr savePort; I* Old graf Port *!
13: GetPort(&savePort); !* Save old port *I
14: SetPort(theDialog);
15: GetDitem(theDialog, itemHit, &itemType,
16: &itemHandle, &iternRect); !* Get edit text handle *!
17: column = 1; /* Put number in string *!
18: OutputFloat(outch, &column, value, notation, fieldLength,

&iGoof);
19: SetIText(itemHandle, outch); /* Put in edit text */
20: SetPort(savePort); !* Restore old port */

21:

In the function declaration at the top of this listing (line 2), value is
declared as a FLOAT. Compared with PutEditShort.c, this function has
two additional variables, notation and JieldLength, that are passed in.

The statement on line 18 calls the OutputFloat.c routine and passes it
the output value, notation, and field length. See PutEditShort.c for more
details .

....., Displaying Strings
The following two routines deal with ASCII strings of numbers, that is,
groups of alphanumeric data treated as a single unit of data. Here again,
you want to either get a string from an edit text field or put a string into
the field .

..,. GetEditString.c

Compared to GetEditShort.c and GetEditLong.c, this routine gets an
ASCII string, as opposed to a number, from an edit text field. It requires
the following: a dialog pointer; a short variable, which is the item from
which you want to get the string; and the string itself.

GetEditString.c is a little different from the other two in that it is a
subroutine, not a function, so it does not return a value. Trying to get a
value for a string would be tricky, indeed, because a string isn't a single
value. What the routine does, instead, is to pass in the string as one of the
variables on the variable list.

214 ~ Chapter 15 Edit Text

Listing 15-19. Getting an ASCII character string from an edit text field

PROCEDURE GetEditString(theDialog: DialogPtr,itemHit: INTEGER,
VPUZ theString: Str255);

1: /***/
2: void GetEditString
3: (DialogPtr theDialog, short itemHit, Str255 theString)
4: /***/
5:
6:
7:
8:
9:

short iternType; I* Not used */
Re ct itemRect; I* Not used*/
Handle itemHandle; /* Handle to edit text */
Graf Ptr savePort; /* Old grafPort */
GetPort(&savePort); /* Save old port */
SetPort(theDialog);
GetDitern(theDialog, itemHit ,&iternType,

10:
11:
12:
13:
14:
15:
16:

&itemHandle, &itemRect); /*
GetIText(itemHandle, theString);
SetPort(savePort);

Get edit text handle */
/* Get the string */

/* Restore old port */

As in the other get and put routines, start by taking care of the graphics
port situation. Next, get the item handle, then the item text, which is the
ASCII string you want. Finally, set the port to the one that you saved at
the beginning of the routine .

..,.. PutEditString.c

This routine is the put companion of GetEditString.c.

Listing 15-20. Putting an ASCII character string into an edit text field

PROCEDURE PutEditString(theDialog: DialogPtr,itemHit: INTEGER,
theString: Str255);

1: /***/
2: void PutEditString
3: (DialogPtr theDialog, short itemHit, Str255 theString)
4: /***/
5:
6:
7:
8:
9:

10:
11:

short
Rect
Handle
Str255
short
Graf Ptr

iternType;
itemRect;
itemHandle;
tempStr;
i· ,
savePort;

I* Not used *I
/* The size of the item *I

I* Handle to edit text */
/* Temporary string */

/* Index */
/* Old grafPort */

..,.. Text Edit Routines 215

12:
13:
14:
15:
16:
17:

GetPort(&savePort);
SetPort(theDialog);
for (i = 1; i <= theString [OJ;i++)
{

tempStr[i] = theString [i];

18: GetDitem(theDialog, itemHit, &itemType,

/* Save old port */

/* Copy string */

19: &itemHandle, &itemRect); /*Get edit text handle*/
20: FitString(tempStr, itemRect.right - itemRect.left);
21: SetIText(itemHandle, &tempStr); /*Put in edit text*/
22: SetPort (savePort); /* Restore old port *I
23:

The PutEditString.c routine requires the dialog pointer, the item, and
the string.

A for-loop on lines 14-17 copies the string into a temporary array in
memory, ready for manipulation.

Your call on line 18 gets the item handle.
Next, you put the temporary string into the field. Finally, you set the

port back to what it was before .

...,._ Text Edit Routines
TextEdit, which is a manager within the ROM, takes care of almost any
text formatting and editing capability a Macintosh application may
require. Every Macintosh user knows the familiar copy, cut, and paste
routines, which are developed from TextEdit. However, many program
mers have found out the hard way that without a specific original
routine, they have to make several calls to the Toolbox just to copy a piece
of text from the edit text field to a private, or text edit, scrap and then to
the public Clipboard. The Macintosh Toolbox does not have one routine
to do this.

Our text edit routines enable you to manipulate the edit text in various
convenient ways. The text edit cut and copy routines put selected text
onto a private clipboard within your application. The private clipboard
is distinct from what you might call the public clipboard used for general
Macintosh cutting, copying, and pasting. Known as private scrap, the
private clipboard is a portion of memory. You will see the words TEScrp
and ZeroScrap in the source code. Expressions with "Scrp" in them refer
to the private scrap, and expressions with "Scrap" in them refer to the
public Clipboard. To avoid confusion, our descriptions of the routines
differentiate between the two. Visualize, if you will, a box for internal
mail within a company. That's the private scrap. Compare it with a
United States Postal Service mailbox. That's the public Clipboard.

216 ..,_ Chapter 15 Edit Text

Something to remember about any clipboard is that it holds one piece
of cut or copied text at a time. As soon as you do another cut or copy, the
contents of the clipboard get bumped into oblivion. Also, like anything
else in RAM, it's volatile and goes "poof" if power fails or if you turn the
Macintosh off.

The first step in using TextEditis to call the TEinit routine. This routine
is part oflnitToolbox.c, described in Chapter 2. When you call the routine
InitToolbox.c routine, TextEdit will be initialized automatically.

TextEdit incorporates a record on which it does most of its operations.
The record is quite complex. It includes a lot of variables, such as the
handle to the text you're going to manipulate, as well as variables that
describe the font, the mode that copies the font to the screen, and the
boldface, italic, or other type style. Also included is some arcane data
used by the Macintosh-data that Apple prefers you to leave alone-that
keeps track of cursor location in the edit text field.

All three of our text edit routines for cut, copy, and paste require a
handle to the scrap. You'll find it in line 9 (or line 8) of the listings, and
you'll see that it is a global variable. Now, it so happens that Apple
strongly recommends doing your programming through the Toolbox to
help ensure compatibility with new versions of the operating system. In
programming steps where you can't use the Toolbox, Apple suggests
that you use what they call low-memory global variables. The cut, copy, and
paste routines in this book use a low-memory global variable to get the
handle to the text edit scrap.

The statement on line 10 in the copy and cut routines is necessary to
lock down the scrap handle, because certain operations can dereference
it so that it no longer functions as the handle to what your application
needs. If that happens, your program won't work.

We included a short routine for the select all function, but we did not
include a routine for clear, one of the typical items in the Edit menu, since
the Toolbox already has a delete function for that purpose. You call
TextEditDelete and pass it the handle to the text edit record. That gets rid
of the selected edit text.

.... TECopy.c

TECopy.c leaves the edit text the way it is but copies the selected portion
to the text edit scrap. It sits there until you copy or cut some other edit
text, at which time it is discarded. While it's in the scrap, you can paste
it any number of times. Like other data in RAM, it is lost when you turn
off the machine.

Note that TECopy is a Toolbox routine provided by Apple, whereas
TECopy.c is an original C routine.

..,.. Text Edit Routines 217

Listing 15-21. Copying selected edit text to the text edit scrap

PROCEDURE TECopy(hTE:TEHandle);

1: /***/
2: void TECopyC(TEHandle hTE)
3: /***/
4:
5: short length;
6: Handle theHandle;
7: long dUil'ill'\Y;
8: TECopy(hTE);
9: theHandle = TEScrpHandle;

10: HLock(theHandle);
11: length = TEScrpLength;
12: ZeroScrap();
13: dUil'ill'\Y = PutScrap(length, 'TEXT', theHandle);
14: HUnlock(theHandle);
15:

The first real code on lines 8-10 is explained in the introduction to this
group of text edit routines.

On line 11 the routine gets the length of the text edit scrap, that is, the
number of characters it contains. The length is equal to hex edit scrap
length, another global variable.

The statement on line 12 refers to the main scrap, the public clipboard,
and is included to wipe out anything remaining on that clipboard. You
don't want to paste from the wrong scrap when you're working with
TextEdit.

In the statement on line 13, dummy is a dummy variable that you're not
using. Oh? Then why include it? Well, the previous statement is sup
posed to initialize the text edit scrap as well as cleaning it out. You can
be pretty certain it will do so; but if, for some reason, the initialization
failed, an error code would be returned. Perhaps you might want to
devise a suitable alert and modify the code appropriately. From the
standpoint of simplicity, however, such a precaution might be taking
error checking further than necessary.

Still on line 13, PutScrap places the copied edit text on the public
clipboard. PutScrap is a function to which you pass the length of the
scrap and the type of data you're putting in. 'TEXT' says that the type of
data to be copied to the private scrap is text. Elsewhere in your applica
tion you might be using other data types such as 'PICT', meaning a
graphic, or maybe even your initials representing your own particular
data type. This function recognizes only text as valid for copying.

Line 14 unlocks the scrap handle and finishes the routine.

218 ..,. Chapter 15 Edit Text

..... TECut.c

TECut.c removes the selected text from the edit text field and places it in
the private scrap. The cut text is then placed on the Clipboard, where it
remains until you replace it by cutting or copying other text. While it's
there, you can paste it as many times as you like. Anything in the scrap
or the Clipboard evaporates when the machine is turned off.

Listing 15-22. Cutting edit text and placing it in the Clipboard

PROCEDURE TECut(hTE:TEHandle);

1: /***/
2: void TECutC (TEHandle hTE)
3: /***************~***/

4:
5: short length;
6: Handle theHandle;
7 : long dummy;
8: TECut (hTE) ;
9: theHandle = TEScrpHandle;

10: HLock(theHandle);
11: length = TEScrpLength;
12: ZeroScrap();
13: dummy= PutScrap(length, 'TEXT', theHandle);
14: HUnlock(theHandle);
15:

This routine is almost the same as TECopy.c. Only the statement on
line 8 is different. Whereas the copy routine leaves the selected edit text
in place but copies it to the private scrap, the cut routine deletes the text
from the edit text field and places it in the scrap .

.,... TEPaste.c

TEPaste.c is the counterpart of TECopy.c and TECut.c. It gets the copied
or cut edit text from the Clipboard and inserts it in the edit text field
marked by the cursor.

~ Lowercase, Uppercase, Capitalize, and Change Case 219

Listing 15-23. Pasting edit text from the Clipboard

PROCEDURE TEPaste{hTE:TEHandle);

1: /***/
2: void TEPasteC(TEHandle hTE)
3: /***/
4:
5: short length;
6: Handle theHandle;
7: long offset;
8: theHandle = TEScrpHandle;
9: length= GetScrap{theHandle, 'TEXT', &offset);

10: TEScrpHandle = theHandle;
11: if (length > 0)
12: {
13: TEScrpLength = length;
14: TEPaste(hTE);
15:
16:

The statement on line 8 gets the handle to the private scrap, which has
already been initialized by the Toolbox TEinit routine.

The statement on line 9 gets the length of the edit text in the Clipboard.
You then pass the handle to GetScrap. Next, pass it 'TEXT' to get the edit
text from the Clipboard and put it in the scrap. You ignore &offset.

What happens if you say "paste" and there's nothing to paste? An if
test on lines 11-15 takes care of that possibility. The test amounts to this:
"If the text length is 0, there's no data of the type requested on the
Clipboard, so I return an error code (a negative number) and do nothing.
If the text is longer than 0, there's something to paste, so I set the length
of the scrap equal to the length in the Clipboard. Then I call for TEPaste
to place the text in the edit text field and update the screen."

..._ TESelectAll.c

TESelectAll.c selects all the edit text, not merely any that is highlighted.

220 ..,.. Chapter 15 Edit Text

Listing 15-24. Selecting all the edit text in the edit text field

PROCEDURE TESelectAll(hTE:TEHandle);

1: /**/
2: void TESelectAll(TEHandlehTE)
3: /**/
4:
5: TESetSelect(O, 65535, hTE);
6:

This short routine consists of a call to the TESetSelect Toolbox routine.
All you do is pass the selection range and the handle to the TextEdit
record. Because the TextEdit record has a limit of 32,000 characters, the
range from 0 to 65,535 is wide enough to select all the edit text. The
number 65535 is the largest unsigned fixed-point integer you can have in
2 bytes .

...,.. Lowercase, Uppercase, Capitalize,
and Change Case
The four routines in this section alter case designation within the edit text
field. You might use these routines in, for example, data entry forms that
require text to be entered in a tightly defined format.

~ TELower.c

TELower .c changes the selected edit text to lowercase; for example,
"Take Heed" becomes "take heed," and "TAKE HEED" also becomes "take
heed."

Listing 15-25. Lowercasing edit text

PROCEDURE TELower(hTE:TEHandle);

1: /***/
2: void TELower (TEHandle hTE)
3: /***/
4:
5:
6:
7:
8:

TEPtr pTE;
CharsHandle hText;
CharsPtr pText;
short i;

/* Ptr to TE record */

/* Hdl to real text */
/* Ptr to real text */

/* Index */

..,.. Lowercase, Uppercase, Capitalize, and Change Case 221

9:
10:

pTE = *hTE;
hText = TEX3etText(hTE);

/* Get TE pointer */
/* Get text handle *I

11: pText = *hText; /* Get text pointer */
12: for (i = pTE->selStart; i > pTE->selEnd - 1; i++)
13: { /* Make lowercase */
14: if ((pText [i] >= Ox41) && (pText [i] <= Ox5A))
15: {
16: pText[i] = pText[i] + Ox20;
17:
18:
19:
20:

TEUpdate(&pTE->selRect, hTE); I* Update display */

You begin TELower.c by passing in a handle to the TextEdit record.
The first active code is on line 9. This statement dereferences the

handle to the TextEdit record and creates a pointer.
Line 10 makes a call to the Toolbox routine TEGetText, which requires

a handle to the TextEdit record and returns a handle to the actual text.
Line 11 dereferences a handle to the actual text and creates a pointer.
Then, the statement on line 12, which is the first line of a for-loop,

makes i equal to the first character of the selected text and loops
(incrementing i by 1 each time) until it reaches the last selected character.

On line 14 the if-test says, "If the text is between A and Z, I'll do
something with it." Then, line 16 converts the text to lowercase by adding
20 (that's the difference between the ASCII value of an a and an A).

Finally, line 19 redraws the selected text showing the conversion to
.lowercase.

..... TEUpper.c

TEUpper.c changes the selected edit text to uppercase; for instance,
"upper" or "Upper" becomes "UPPER."

Listing 15-26. Uppercasing edit text

PROCEDURE TEUpper(hTE:TEHandle);

1: /***/
2: void TEUpper(TEHandle hTE)
3: /**~/

4:
5:
6:

TEPtr pTE;
CharsHandle hText;

/* Ptr to TE record */
/* Hell to real text */

222 ~ Chapter 15

7:
8:
9:

10:

Edit Text

CharsPtr pText;
short i;
pTE = *hTE;
hText = TEGetText(hTE);

/* Ptr to real text */
/* Index*/

/* Get TE pointer */
I* Get text handle */

11: pText = *hText; /*Get text pointer */
12: for (i = pTE->selStart; i > pTE->selEnd - l; i++)
13: { /*Make uppercase*/
14: if ((pText[i) >= Ox61) && (pText[i) <= Ox7A))
15: {
16: pText[i) = pText[i) - Ox20;
17:
18:
19:
20:

TEUpdate(&pTE->selRect, hTE); I* Update display */

TEUpper closely resembles TELower. In line 14 of TEUpper you test
to see if the number is between Ox61 and Ox7 A (ASCII a and z, respec
tively), and then in line 16 you subtract 20, an action that performs the
conversion to uppercase. To understand TEUpper look at the review of
TELower and make allowance for the slight differences .

...._ TECapitalize.c

TECapitalize.c gives an initial capital letter to every word in the selected
edit text, as in, for instance, "Preview Your Program."

Listing 15-27. Initial capping edit text

PROCEDURE TECapitalize(hTE:TEHandle);

1:
2:
3:
4:

/***/
void TECapitalize(TEHandle hTE)
/***/

5: TEPtr pTE;
6: CharsHandle hText;
7:

8:
9:

10:
11:
12:
13:
14:
15:

CharsPtr pText;
short i;
pTE = *hTE;
hText = TEGetText(hTE);
pText = *hText;
for (i = pTE->selStart;
{

if (i == 0)

{

i > pTE->selEnd

/* Ptr to TE record */
/* Hdl to real text */
/* Ptr to real text */

/* Index *I
/* Get TE pointer */

/* Get text handle */
/* Get text pointer *I

- 1; i++)
/* Capitalize */

..,. Lowercase, Uppercase, Capitalize, and Change Case 223

16: if ((pText [i] >= Ox61) && (pText [i] <= Ox7A))
17: {
18: pText[i] = pText[i] - Ox20;
19:
20:
21: else
22: {
23: if ((pText[i-1] = Ox20) 11 (pText[i-1] = Ox09))
24: {
25: if ((pText[i] >= Ox61) && (pText[i] <= Ox7A))
26: {
27: pText[i] = pText[i] - Ox20;
28:
29:
30:
31:
32:
33:

TEUpdate(&pTE->selRect, hTE); /* Update display */

TECapitalize also closely resembles TELower. In TECapitalize, lines
14-28 state that if the selected character is the first character, or if it is
preceded by a space or a tab, then that character will be converted to
uppercase. For a line-by-line description, see the review for TELower
and adjust for the minor changes .

...,. TEChgCase.c

TEChgCase.c toggles the selected edit text between uppercase and
lowercase; for example," computer" becomes "COMPUTER," and "COM
PUTER" becomes "computer."

Listing 15-28. Toggling between uppercase and lowercase

PROCEDURE TEChgCase(hTE:TEHandle);

1: /***/
2: void TEChgCase (TEHandle hTE)
3: /***/
4:
5:
6:
7:
8:

TEPtr pTE;
CharsHandle hText;
CharsPtr pText;
short i;

/* Ptr to TE record */

/* Hdl to real text */

/* Ptr to real text */
/* Index */

224 ~ Chapter 15 Edit Text

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

pTE = *hTE;
hText = TEGetText {hTE);
pText = *hText;

/* Get TE pointer */
/* Get text handle */

/* Get text pointer */
i > pTE->selEnd - 1; i++) for {i = pTE->selStart;

{ /* Change case */
if {{pText[i] >= Ox61) && {pText[i] <= Ox7A))
{

pText[iJ = pText[i) - Ox20;

else

20: if { {pText [i] >= Ox41) && {pText [i] <= Ox5A))
21: {
22: pText[iJ = pText[iJ + Ox20;
23:
24:
25:
26:
27:

TEUpdate{&pTE->selRect, hTE); /* Update display *I

TEChgCase works almost the same way as TELower. In TEChgCase,
lines 14-24 state that if the selected text is between a and z, the text will
change to between A and Z, and vice versa. For more details, see the
review of TELower and adjust for minor changes .

....,. A Simple Edit Text Example
This section contains a pair of source code listings that demonstrate a
simple edit text routine. The pair consists of one file with the extension
.c and another file, containing the resources, with the extension .R. The
two types of files always go together to make up an application .

...., EditTextExample.c

This example contains portions of a number of routines that you can
perform in edit text. As you see in Figure 15-1, the example contains one
active edit text field and three static text fields, two of which have pop
up menus. The static text windows change as you choose items from the
pop-up menus; you can see the results of your changes in active and static
edit text in the top left text field.

..,. A Simple Edit Text Example 225

Listing 15-29. Example of a dialog box created with edit text routines

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:

/***/
void main() /* Routine to test edit text */

/***/

Ptr
short

theDialog;
itemHit;

short
short
float

notation; /* Fixed, scientific, or engineering */
fieldLength; /* Number of displayed digits *I
val;

long
long
val=4.0*

rnenuHandlel;
rnenuHandle2;
ATan(l.0);

notation = -1;
fieldLength = 2;
InitToolBox () ;
CenterDialog(300);
OpenStandardDialog(&theDialog, 300);
PutEditReal(theDialog, 2, val, notation, fieldLength);
PutEditReal(theDialog, 8, val, notation, fieldLength);
F:rmDefitern(theDialog);
notation = notation + 2;
DrawPopUp(theDialog, 4, 300, &rnenuHandlel, notation);
notation = notation - 2;
DrawPopUp(theDialog, 6, 301, &rnenuHandle2, fieldLength);
ThickFrarne(theDialog, 8);
for (;;)
{

MyModalDialog(&itemHit);
switch (itemHit)

case (1):
break;

case (3):
val= GetEd.Real(theDialog,2);

/* Quit */

PutEditReal(theDialog, 8, val, notation, fieldLength);
continue;

case (4):
case (5):

notation = notation + 2;

/* Notation pop-up */

DoPopUp(theDialog, 4, 300, rnenuHandlel, notation);
notation = notation - 2;
PutEd.Real(theDialog, 8, val, notation, fieldLength);
continue;

case (6): I* Length pop-up *I

226 ..,.. Chapter 15 Edit Text

45: case (7):
46: DoPopUp(theDialog, 6, 301, menuHandle2, fieldLength);
47: PutEdReal(theDialog, 8, val, notation, fieldLength);
48: continue;
49: case (-updateEvt) : /* Update events *I
50: BeginUpdate(theDialog);
51: UpDialog(theDialog);
52: UpPopUp(theDialog, 4, menuHandlel, notation);
53: UpPopUp(theDialog, 6, menuHandle2, fieldLength);
54: ThickFrame(theDialog, 8);
55: FnnDefitem(theDialog);
56: EndUpdate(theDialog);
57:
58:

continue;
default:

59: continue;
60:
61: break;
62:
63: DisposeDialog(theDialog);
64:

13.14

Enter Number:

._I 3._14 ___ ___..l 8

/* All other events */

Notation: I FiHed

:::====~
Length ... 12 _____ _.

n ouit D

Figure 15-1. Example of a dialog box created with edit text routines

...,. EditTextExample.R

This section contains the resource file for EditTextExample.c.

..,.. A Simple Edit Text Example 227

Listing 15-30. Resource file for example of edit text

EditTextExample.rsrc
rsrcRSED

'fype MENU
,300
Notation
Fixed
Scientific
Engineering

,301
Length
1
2
3
4
5
6
7
8
9

'fype DLOG
EditText Dialog,300
Edit Text
50 50 222 462
Visible NoGoAway
1
300
300

'fype DITL
EditText Items, 300
9

* 1
Button Enabled
131 340 151 400
Quit

* 2
EditText Enabled
127 16 150 149

228 ..,. Chapter 15 Edit Text

* 3
Button Enabled
124 155 153 190
Set

* 4
User Item Enabled
21 298 37 402

* 5
StaticText Enabled
21 213 37 298

Notation:

* 6
User Item Enabled
45 298 61 402

* 7
StaticText Enabled
45 213 61 298

Length:

* 8
StaticText Enabled
27 16 49 175
The Number

* 9
StaticText Disabled
100 4 121 106
Enter Number:

~ Summary

You've covered a lot of territory in this chapter on edit text, including
twenty-eight routines and one example. Everything in this chapter
involves manipulating strings, whether it's saving to the Clipboard or
changing the base of a number. Most of the routines apply to static text
as well as to edit text.

You can use all of these routines as templates for your own applica
tions. You also can modify them for octal notations if you wish.

..,. Recommended Reading 229

...._ Recommended Reading
We recommend the following articles and technical notes for further
discussion of EditText.

For copies of the Apple Technical Notes listed below, call Apple
Professional Developers Association, (408) 974-4897.

Apple Technical Note No. 82 "TextEdit: Advice & Descent"
Apple Technical Note No. 203 "Don't Abuse the Managers"
Apple Technical Note No. 207 "Styled TextEdit Changes in System

6.0"
Apple Technical Note No. 237 "TextEdit Record Size Limitations

Revisited"
Magree, Melvyn D. "Implementing Undo for Text Edit." (Pascal.) The

Essential MacTutor-The Macintosh Programming Journal,Vol. 3, 1988.
McKenzie, Robert. "Sub and Superscripting with TE." (C.) The Best of

MacTutor-The Macintosh Programming Journal, Vol. 5, 1990.
Nedrud, Bradley W. "Extending TextEdit to Handle Tabs." (Pascal.) The

Complete MacTutor-The Macintosh Programming Journal, Vol. 2, 1987.
Olsen, John D. "Looking at Text from a Different Angle." (Assembly and

Pascal.) The Definitive MacTutor-The Macintosh Programming Journal,
Vol. 4, 1989.

16 ~ Lines

...... Overview of Lines
Programmers for the Macintosh usually use lines in menus and dialog
boxes, to set off groups of similar types or functions. You can draw dotted
lines or solid lines of any thickness from 1 pixel on up, although it is
unlikely that you would want a dotted line more than 1 or 2 pixels wide
or a solid line more than 10 pixels wide.

...... Drawing Dotted and Solid Lines
The two routines in this chapter show you how to create dotted and solid
lines, and the example tests the routines. The two routines need to be
called twice: the first time to draw the line and the second time to redraw
for an update event.

...,_ DrawDottedline.c

Dotted lines are a useful way to segregate groups of buttons, radio
buttons, check boxes, and other items in a dialog box, yet the Macintosh
Toolbox does not contain a routine for drawing a dotted line. This routine
fills that gap.

231

232 ..,.. Chapter 16 Lines

Listing 16-1. Drawing a dotted line

PROCEDURE DrawDottedLine{theDialog: DialogPtr,theitem: INTffiER)

1: 1***/
2: void DrawDottedLine{DialogPtr theDialog, short theitem)
3: /***/
4:
5:
6:
7:
8:
9:

10:

Graf Ptr
short
Re ct
Handl~

PenState
short

savePort; /* Old grafPort */

the'Type; · ·;* Not used */

theRect; /* Size of user· item */

theHdl; /* Not used */

penStuff;
v,h;

11: Pattern thePattern = {0xAA,Ox55,0xAA,Ox55,0xAA,Ox55,0xAA,
Ox55};

12: GetPort{&savePort);
13: SetPort{theDialog);
14: GetPenState{&penStuff);
15: GetDitem{theDialog, theitem, &the'Type, &theHdl, &theRect);
16: PenNormal{);
17: PenPat{thePattern);
18: v = theRect.top;
19 : h = theRect. left;
20: MoveTo{h,v);
21 : h = theRect. right;
22: LineTo {h, v) ;
23: SetPeI).State{&penStuff);
24: SetPort{savePort);
25:

Skip all the definitions and declarations and go down to line 12. This
statement gets the current gra£Port and saves it. The statement on line 13
sets the gra£Port to the dialog box you're in. It's easy to get into trouble
if you don't set the port properly. Note that the last call (line 24) restores
the port to its original settings.

Line 14 gets the current pen settings. Its countermanding statement on
line 23 restores them. Both your port call and your pen call help prevent
sudden and undesired changes occurring in your carefully calculated
box positions or line widths.

The statement on line 15 accomplishes a number of tasks. GetDitem
returns information about a particular dialog item that's on the screen.
You pass into that Toolbox routine the pointer and the item number to the

..,.. Drawing Dotted and Solid Lines 233

dialog box you're talking about. The routine then returns the type of item
and a handle-a kind of pointer-to the item. It also returns the size of
the item, expressed in the coordinates of the rectangle. What you're
interested in here is only the size. You don't use the other variables for
this example, but you have to pass them in. You need the coordinates of
the rectangle to draw the dotted line.

Line 16 restores the pen to its default settings.
The statement on line 17 changes the default pattern, which is solid,

into dots. You do this with the definition statement on line 2. Line 11 tells
the Macintosh that this variable, the Pattern, is going to be 8 bytes long and
puts values inside the variable, thePattern. To create the dotted line, you
resort to something a little tricky. You set up a dual-purpose checker
board pattern. Here's how to go about it. The letter A in binary is the
hexadecimal constant 1010, or 1 pixel on, 1 pixel off, 1 pixel on, 1 pixel off;
so AA is 10101010. There's your dotted line. Similarly, the digit 5 is 0101,
so 55 is 01010101. By staggering these rows of dots, you create a check
erboard pattern. A single row can be selected for a dotted line, whereas
a succession of rows gives you a paint pattern that you can use to fill areas
with 1-pixel dots and 1-pixel spaces.

Next you need to get to the position where you want to put the pen
down and start drawing the dotted line. You do this with the three
statements on lines 18-20. The first two statements give the vertical and
horizontal coordinates for the starting point of the line, referring to the
rectangle that was returned from the dialog item. The third statement
places the pen on that point.

To draw the line, you use the statements on lines 21 and 22 to set its
finishing point and to draw as far as that point. Since the line is horizon
tal, the same vertical coordinate remains valid.

Line 23 restores the pen state back to where it was before you started
this routine, and line 24 resets the QuickDraw port.

~ Drawline.c

DrawLine.c draws a line from the top left to the top right of a user item
in a dialog box. You'll find it useful if you want to segment the box.

234 ~ Chapter 16 Lines

Listing 16-2. Drawing a line along the top of a user item in a dialog box

PROCEDURE DrawLine(theDialog: DialogPtr,the!tem: INTEGER, pen: INTE
GER);

1: /***/
2: void DrawLine(DialogPtr theDialog, short theitem, short pen)
3: /***/

4:
5:
6:
7:
8:
9:

Graf Ptr
short
Re ct
Handle
PenState

savePort;
the'IYPe;
theRect;
theHdl;
penStuff;

10: short v,h;
11: GetPort(&savePort);
12: SetPort(theDialog);
13: GetPenState(&penStuff);

/* Old grafPort */
/*Not used */

I* Size of user item */
/* Not used */

14: GetDitem(theDialog, theitem, &the'IYPe, &theHdl, &theRect);
15: PenNorrnal();
16: PenSize(pen, pen);
17: v = theRect. top;
18: h = theRect.left;
19: MoveTo (h, v);
20: h = theRect.right;
21: LineTo (h, v);
22: SetPenState(&penStuff);
23: SetPort(savePort);
24:

This routine has much in common with DrawDottedLine.c. Refer to
that review for details not given below.

Starting with line 2, you pass in the pointer to the dialog. You also pass
in the dialog item from which you get the coordinates to draw the desired
line width, and you add a parameter giving it the ability to draw solid
lines of different widths.

Skip down to line 16. When you call PenSize, you need to say how wide
the pen should be. You pass it the vertical and horizontal pen size on lines
17 and 18. The Macintosh has the ability to draw vertical and horizontal
lines of different widths. Interestingly, if you tell it to draw diagonally,
it splits the difference between the two widths. Having set the pen width,
you move the pen to the appropriate coordinates and draw the line (lines
19-21). That' sit.All thatremainsistosetboth the pen and theQuickDraw
port back to what they were, then branch out of the routine.

..,. A Simple Line Example 235

....,. A Simple Line Example

This section contains a pair of source code listings that demonstrate the
line-drawing routines in this chapter. The pair consists of one file with
the extension .c and another file, containing the resources, with the
extension .R. The two types of files always go together to make up an
application.

~ LineExample.c

This demonstration program opens up a dialog box, centers it on the
screen, and draws a stack of progressively wider lines, plus a default Quit
button. See Figure 16-1.

Listing 16-3. Example of dotted and solid lines

1:
2:
3:
4:
5:
6:
7:
8:
9:

/***/
void main() I* Routine to test lines */
/***/

10:
11:

Ptr theDialog;
short itemHit;
InitToolBox();
OpenResources ("Line. rsrc") ;
CenterDialog(300);
OpenStandardDialog(&theDialog,
FnnDefitern(theDialog);

12: DrawDottedLine(theDialog, 3);
13: DrawLine(theDialog, 4, 1);
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:

DrawLine(theDialog, 5, 2);
DrawLine(theDialog, 6, 3);
DrawLine(theDialog, 7, 4);

DrawLine(theDialog, 8, 5) ;

DrawLine(theDialog, 9, 6);

DrawLine(theDialog, 10, 7);

DrawLine{theDialog, 11, 8);

DrawLine(theDialog, 12, 9) ;

for { ; ;)

{

MyModalDialog{&itemHit);
switch {itemHit)

case (1):
break;

case {-updateEvt):

/* For development purposes */

300);

/* Quit */

/* Update events */

236 Chapter 16

30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:

Lines

BeginUpdate(theDialog);
UpDialog(theDialog);
F:rmDefitem(theDialog);
DrawDottedLine(theDialog, 3);
DrawLine(theDialog, 4, 1);
DrawLine(theDialog, 5, 2);
DrawLine(theDialog, 6, 3);
DrawLine(theDialog, 7, 4);
DrawLine(theDialog, 8, 5);
DrawLine(theDialog, 9, 6);
DrawLine(theDialog, 10, 7);
DrawLine(theDialog, 11, 8);
DrawLine(theDialog, 12, 9);

EndUpdate(theDialog);
continue;
default:

46: continue;
47:
48: break;
49:
50: DisposeDialog(theDialog);
51:

/* All other events */

After bringing up a dialog box in the center of the screen, drawing a
stack of lines, each thicker than the one before, and putting in a default
Quit button, the routine just hangs there. It waits for something to
interrupt the infinite event loop represented by all the indented lines of
code between line 22 and line 47. If, for example, the Quit button is
pressed, you branch out of the loop, get rid of the dialog box, and branch
out of the routine. The event loop is included merely for the convenience
of this demonstration routine; it has no instructional merit, so please
ignore that section of code.

The call on line 7 initializes the Toolbox and the routine is described in
Chapter 2. Think of it as a macro that saves you a lot of key-in effort. It
takes care of several things Apple requires you to do in anticipation of
putting the Toolbox to work.

Line 8 follows the standard practice of keeping the resources in a
separate file-here Line.rsrc-until the programming is complete. Then
you use this call to insert all the resources into the program.

The routine on line 9 is described in Chapter 6. The ID of 300 is the
resource ID under Type 'DLOG' as described in line 3 of the file
LineExample.R. The routine changes the coordinates at run time to those
indicating where that dialog box is going to be (in the center of the
screen).

..,.. A Simple Line Example 237

Line EHample
by John C. May and Pat Whittle

(Quit)

Figure 16-1 . Dialog box with lines of various widths

Line 10 opens the dialog box. Several parameters are passed in. First
is a pointer to the position of the dialog box in memory, which returns a
value to reference that box from now on. The 300 is the ID of the dialog
box you're opening.

Line 11 puts a frame around the default item, in this case a button
named Quit.

Line 12 draws a dotted line. You pass in the dialog pointer and the ID
of the user item that has the relevant coordinates. If you look at file
LineExample.R (lines 22-24), you'll see that item 3 spells out the coordi
nates 80 50 81 250 of the dotted line to be drawn 1 pixel wide.

Lines 13-21 draw a stack of nine solid lines. They range from 1 pixel
wide at the top to 9 pixels wide at the bottom.

Skipping most of the event loop, go down to line 43, which brings this
series of update events to a successful conclusion. Forgetting to include
that statement is a common Toolbox programming error. It is not enough
to begin an update; you have to tell the Macintosh when to stop updating.

238 ..,.. Chapter 16 Lines

Important..,..

This mistake can make a big mess of the program, and tracking down the
error can be frustrating. A useful memory jogger is to indent all the lines
of code between the .begin update statement and the end update state
ment, as shown on lines 31-42.

Lines 44-46 are included because, without them, you'd loop around
until you got an update event, whereupon you'd fall through and close
the program. If you got an event or an item hit for which the routine did
not have a case-statement, the compiler would be likely to get nasty. You
don't want that to happen, so you include default in this routine to take
care of this by looping around again.

Line 49 concludes the case-statement that began with line 25. Line 50
removes the dialog from the screen and deletes any other records no
longer needed, thus freeing up memory.

~ LineExample.R

LineExample.R is the resource file that goes with LineExample.c in the
demonstration program showing how to draw lines of various thick
nesses on the screen.

Listing 16-4. Resource file for example of dotted and solid lines

1: Line.rsrc
2: rsrcRSED

3: Type DLOG
4: Line Test,300
5: Line Test
6: 50 50 346 406
7: Visible NoGoAway
8: 1
9: 300

10: 300

~ A Simple Line Example 239

11: 'fype DITL
12: Line Test,300
13: 12

14: * 1
15: Button Enabled
16: 258 288 278 348
17: Quit

18: * 2
19: StaticText Disabled
20: 13 25 63 295
21: Line Example\ODby John c. May and Pat Whittle

22: * 3
23: Useritem Enabled
24: 80 50 81 250

25: * 4
26: Useritem Enabled
27: 100 50 101 250

28: * 5
29: User Item Enabled
30: 120 50 121 250

31: * 6
32: User Item Enabled
33: 140 50 141 250

34: * 7
35: User Item Enabled
36: 160 50 161 250

37: * 8
38: User Item Enabled
39: 180 50 181 250

40: * 9
41: User Item Enabled
42: 200 50 201 250

43: * 10
44: User Item Enabled
45: 220 50 221 250

240 ~ Chapter 16 Lines

Important...,

46: * 11
47: User Item Enabled
48: 240 50 241 250

49: * 12
50: User Item Enabled
51: 260 50 261 250

The first line of this routine contains a file that you want to create as
an output, a directive to the compiler saying you want to put the output
of the compiled resource into the file Line.rsrc. The name of the resource
compiler you run this through is RMaker, and Line.rsrc is the format for
an RMaker file.

The file type and file creator are 'rsrc' and 'RSED', as shown on line 2.
Every file in a Macintosh has a file type and a file creator. For instance,
a Microsoft Word file is 'wordMSWD'. Among the purposes of the file
type and creator is to start up the application program automatically
when the user clicks on a file or document icon or name in an Open dialog
window. Line.rsrc is set up to look like one that was created with
RMaker, so you can look at it in ResEdit. ResEdit is a program that edits
resources; RMaker is a program that creates resources from a resource
file. After you've used RMaker to create a program, you can use ResEdit
to tweak it. Here you use the default file for ResEdit; so, when you
double-click on the file you've created by compiling this source code, it
automatically runs ResEdit.

Type 'DLOG' on line 3 tells the resource compiler that you're about to
create a dialog resource. Line Test (on line 4) is the name you give to the
resource, and 300 is its resource ID number.

Line Test on line 5 is the (here invisible) title of the dialog box. If the
dialog box were of the type with a title bar across the top, that title would
appear there.

The numbers on line 6 represent the top left and bottom right coordi
nates of the rectangle. They describe both the size and the default
position of the dialog box: 50 pixels down and 50 across, 346 pixels down
and 406 across.

..., A Simple Line Example 241

Line 7 states that you want the dialog box to be visible and not have a
go-away box. The type ofbox in this routine is modal. It has a Quit button.
Since it doesn't have a title bar, trying to give it a go-away box would be
a waste of time.

The Macintosh offers six types of windows.

• ID= 0-a standard document window. It has a shadow at the
bottom and on the right-hand side, a title bar at the top, and, if you
say so, a go-away box.

• ID= 1-an alert box (as used in this example). It has a plain box
with a double frame around it.

• ID= 2-a plain box with a thin line around it. It has no framing,
shadows, or titles.

• ID= 3-a plain box like ID= 2 but with a shadow at the bottom and
on the right-hand side.

• ID= 4-a document window with a title bar at the top and a grow
icon (size box) at the bottom right to make the window smaller or
larger.

• ID= 16-a window that resembles ID= 4 but has rounded corners
and does not have horizontal lines in the title bar. This rare type
usually is reserved for desk accessories such as the Calculator.

On line 8, 1 is a window definition ID. It tells the Window Manager the
resource ID of the window definition function you want to use-in short,
what type of window you want to draw on the screen. The definition of
windows and how they are drawn is also stored in a resource in the
System file. All windows have the default ID = 0. To select a particular
type of window, you pass one of six variation codes. This example uses
ID= 1 for an alert box; so, when you call up the Window Manager, you're
saying you want to use window resource ID = 1 to draw your window.

Line 9, which contains the number 300, was originally allocated by
Apple as a refCon, short for reference control. Apple no longer gives it a
role in the Toolbox, so feel free to use it for anything appropriate. We
have repeated the dialog ID number 300, just to fill the blank.

The number 300 on line 10 has much more significance. It tells the
program that the 'DITL' resource ID 300 describes the items contained in
'DLOG' 300.

On line 11 Type 'DITL', pronounced "<little," stands for dialog items
list. It tells the compiler which type of resource you're going to be
describing. Its ID doesn't have to be the same as the dialog ID, but this
routine follows the convention and uses the same number, 300, to help
keep track.

Line Test, on line 12 is the name of the resource, and 300 is its ID.

242 ~ Chapter 16 Lines

The number 12 on line 13 tells the resource compiler that you're going
to have twelve items in the dialog box.

The item number 1 on line 14 is the first of the twelve dialog items.
Anytime you see an asterisk (a* star) in the resource compiler code, it
stands for a comment. Dialog item 1, as shown on line 15, is an enabled
button. The four numbers on line 16 are the pixel coordinates of the
rectangle forming the button: top left, bottom right. They specify where
the button is going to sit in the window. Quit, on line 17, is the label that
goes in the button.

"Enabled" places in a user item an attribute requiring the Toolbox
ModalDialog routine to recognize when the user item has been pressed.
The routine then instructs the Dialog Manager to report the mouse-down
so that the item does what it's supposed to do: print, save, not save,
dismiss the window, or whatever. The ModalDialog routine handles
everything that goes on in the button. "Disabled" has the opposite effect.
A disabled item simply ignores mouse-downs.

The expression on lines 18-20 says that dialog item 2 at the given
rectangle coordinates is a piece of static text that will do nothing if
pressed. Users don't want to be bothered with being told that they have
accidentally clicked on it.

Line 21 gives the wording of the static text. Each \OD signifies a
carriage return-OD being a hexadecimal constant-so the text appears
on the screen in two lines, one above the other.

Lines 22-24 contain a set of coordinates referring to the top left of the
screen. The first is 80 pixels down and 50 pixels in from the left; the
second is 81 pixels down and 250 pixels in from the left. As you can see
from Figure 16-1, what they amount to is a straight line, 1 pixel wide.

The statements for the user items 4 through 12 on lines 24-51 are
similar to the one for user item 3 except that the rectangles are referenced
by different coordinates corresponding to the appropriate positions on
the screen .

...., Summary

This chapter presented a routine for drawing dotted lines and a routine
for drawing lines of various widths, as well as an example to show how
these routines work. In addition, this chapter gave the resource code for
the example and a full explanation of the resource file.

17 Rectangles

~ Overview of Rectangles
Rectangles have enormous importance in the Macintosh's human inter
face structure. They define active areas of the screen and designate
locations and sizes for QuickDraw commands. Graphics programs use
them as map coordinates, and in Macintosh lexicon, that is exactly what
they are: two points on the coordinate plane that identify the upper left
hand corner and the lower right-hand corner of a box.

~ Drawing Rectangles in Various Styles
The four rectangle routines in this section are useful both for esthetics
and for clarity of intent. You can take your pick of frames.

• Plain-drawn 1 pixel wide
• Thick-drawn 2 or more pixels wide
• Double-drawn with one framing line outside another
• Shadow-drawn to give a three-dimensional effect

For esthetics, the routines let you use your artistic sense to make a dialog
look better. For clarity, they make it easy to put rectangular boxes, or
frames, around groups of controls that perform related functions. Espe
cially on a crowded screen, grouping can help to avoid confusion. All
four rectangle routines need to be called twice: the first time to draw the
rectangle and the second time to redraw for an update event.

243

244 ..,.. Chapter 17 Rectangles

...,. PlainFrame.c

PlainFrame.c is the simplest of the four framing routines. It draws what
you might call your basic box with a thin line for a frame.

Listing 17-1. Drawing a plain frame

PROCEDURE PlainFrame(theDialog: DialogPtr,theitemID: INTEGER);

1: /***/
2: void PlainFrame(DialogPtr theDialog, short theitemID)
3: /***/
4:
5:
6:
7:
8:
9:

Graf Ptr
short
Rect
Handle
PenState

savePort;
iternType;
itemRect;
item;
penStuff;

10: short CurveFactor;
11: GetPort(&savePort);
12: SetPort(theDialog);
13: GetPenState (&penStuff);

/* Old grafPort */

/* Not used */
/* Size of user item */

/* Not used */

14: GetDitem(theDialog, theltemID, &iternType, &item,
&itemRect);

15: PenNonnal () ;
16: if ((iternType && Ox007F) == 16)
17: {
18: InsetRect(&itemRect, -2, -2);
19:
20: InsetRect(&itemRect, -1, -1);
21: FrameRect(&itemRect);
22: SetPenState(&penStuff);
23: SetPort(savePort);
24:

First you pass to the routine the name and ID of the dialog you want
to draw the box around. Then you proceed with a syntax quite similar to
that of the DrawLine.c routine in Chapter 16.

After several lines of declarations you reach the statements on lines 11
and 12 and the arguments on lines 13 and 15, which are explained more
fully in the review of the FrmDefltem.c routine in Chapter 9. In brief, they

~ Drawing Rectangles in Various Styles 245

save the current grafPort and pen settings for later recall and they
substitute the ones you want for this particular dialog. The normal pen
defaults to a solid line, 1 pixel wide. ·

Line 14 has the potential for doing a lot of things, but you are interested
only in item rectangles.

The code on lines 16-19 is an example of how convoluted the instruc
tions can be to accomplish something that looks simple. This piece of
hocus-pocus first determines whether the dialog item you're drawing a
box around is an edit text box. Then it puts a frame around the box. Note
that the rectangle routines can draw a frame in any of the four styles
around anything. It doesn't have to be a user item.

The Macintosh automatically draws a box around an edit text item,
and that box is 3 pixels out from the rectangular area you specified. This
routine covers up the Macintosh box and draws one a little bigger.

To identify the edit text as a user item, the routine masks with a Ox007F
the item type that comes back. You want to get rid of the first bit of the
type returned. The first bit can be a 0ora1. If it's a 1, the item on the screen
is enabled. The attribute of enabled or disabled can be important else
where, but in this instance you don't care: You just want to know the item
type. To mask out everything but the first bit, which is the enabled or
disabled flag, you AND it with a Ox007F, which stands for
0000000001111111. You take only the last 7 bits of this 16-bit word. If the
number were to represent a control, it would be 4, a button 0, a check box
1, a radio button 2, a static text 8, an edit text 16, or an icon item 32. In this
example, you have the number 16, an edit text box. You make this
rectangle 2 pixels bigger with the instructions on line 18. Remember, a
negative inset expands the box. A positive inset shrinks the box.

·What you have just done is to replace the Macintosh's user item box
with one that is 2 pixels larger, but only if the box is for edittext. You then
use the statement on line 20 to expand the box 1 more pixel. Doing the
expansion in two steps gives the routine greater flexibility. You want 3
pixels of space around the rectangular area of edit text, but only 1 pixel
for all other items you wish to frame.

So far, you haven't drawn a frame; you've merely defined the bounds
of the rectangle. Your final call on line 21 draws the box with the default
pen, after which (in lines 22 and 23) you restore the settings for the pen
and the grafPort to what you had before starting the routine.

246 ..,.. Chapter 17 Rectangles

~ ThickFrame.c

This routine draws a thick frame around your box.

Listing 17-2. Drawing a thick frame

PROCEDURE ThickFrarne(theDialog: DialogPtr,theitemID: INTEGER);

1: /***/
2: void ThickFrarne(DialogPtr theDialog, short theitemID)
3: /***/
4:
5:
6:
7:
8:
9:

10:

Graf Ptr
short

savePort;
itemType;

Rect itemRect;
Handle item;
PenState penStuff;
GetPort(&savePort);

11: SetPort(theDialog);
12: GetPenState(&penStuff);

/* Old grafPort */

I* Not used */
/* Size of user item */

/* Not used *I

13: GetDitem(theDialog, theitemID, &iterrflYpe, &item,
&itemRect);

14: PenNonnal();
15: if ((item'I'ype && Ox007F) == 16)
16: {
17: InsetRect(&itemRect, -2, -2);
18:
19: PenSize(2, 2);
20: InsetRect(&itemRect, -2, -2);
21: FrarneRect(&itemRect);
22: SetPenState(&penStuff);
23: SetPort(savePort);
24:

ThickFrame.c is almost identical to PlainFrame.c, just described. The
only difference is that you can set the pen to draw a frame 2 or more pixels
wide instead of a skinny 1 pixel wide. You can modify the routine
ThickFrame.c to make the width a variable that is passed in instead of
being fixed.

~ Drawing Rectangles In Various Styles 247

...,. DoubleFrame.c

DoubleFrame.c draws a double-line frame around a box.

Listing 17-3. Drawing a double frame

PROCEDURE DoubleFrame (theDialog: DialogPtr, theitemID: INTmER) ;

1: /***/
2: void DoubleFrame(DialogPtr theDialog, short theitemID)
3: /***/
4:
5:
6:
7:
8:
9:

Graf ptr
short
Rect
Handle
PenState

savePort;
iterrtrype;
itemRect;
item;
penStuff;

10: short CurveFactor;
11: GetPort(&savePort);
12: SetPort (theDialog);
13: GetPenState(&penStuff);

I* Old grafPort */
I* Not used *I

I* Size of user item */
/* Not used */

14: GetDitem(theDialog, theitemID, &iterrtrype, &item,
&itemRect);

15: PenNormal();
16: if ((iterrtrype && Ox007F) == 16)
17: {
18: InsetRect(&itemRect, -2, -2);
19:
20: PenSize(2, 2);
21: InsetRect(&itemRect, -2, -2);
22: FrameRect(&itemRect);
23: PenSize(l, 1);
24: InsetRect(&itemRect, -3, -3);
25: FrameRect(&itemRect);
26: SetPenState(&penStuff);
27: Set Port (savePort) ;
28:

This routine, again, is almost identical to the routine for drawing a
plain frame. A double frame consists of one rectangular box outside
another. On lines 20-25 you substitute instructions that set the pen size
to 2 pixels, outset the rectangle 2 pixels, frame the rectangle, change the
pen size to 1 pixel, outset the rectangle 3 more pixels, and draw another
frame.

248 ..,. Chapter 17 Rectangles

..._ ShadowFrame.c

The fourth in this quartet of framing routines gives a three-dimensional
look to a box by drawing a shadow. You'll see that the routine is not very
different from the other three.

Listing 17-4. Drawing a shadow frame

PROCEDURE ShadowFrarne{theDialog: DialogPtr,theitemID: INTEGER);

1: /***/
2: void ShadowFrarne{DialogPtr theDialog, short theitemID)
3: /***/
4:
5:
6:
7:
8:
9:

10:

Graf Ptr
short
Re ct
Handle
PenState
short

savePort;
itemType;
itemRect;
item;
penStuff;
v,h;

11: GetPort{&savePort);
12: SetPort{theDialog);
13: GetPenState{&penStuff);

I* Old graf Port
/* Not used

/* Size of user item
/* Not used

14: GetDitem{theDialog, theitemID, &itemType, &item,
&itemRect);

15: PenNonnal{);
16: if {{iterrflYpe && Ox007F) == 16)
17: {
18: InsetRect{&itemRect, -2, -2);
19:
20: InsetRect{&itemRect, -1, -1);
21: FrarneRect{&itemRect);
22: PenSize{2, 2);
23: InsetRect{&itemRect, l, l);
24: OffsetRect{&itemRect, 1, 1);
25: v = itemRect.left;
26: h = itemRect.bottom;
27: MoveTo{v, h);
28: v = itemRect.right;
29: LineTo{v, h);
30: h = itemRect.top;
31: LineTo{v, h);
32: SetPenState{&penStuff);
33: SetPort{savePort);
34:

*/

*I
*I
*/

..,_ A Simple Rectangle Example 249

Call the routine with the pointer and with the item you want to d,raw
the frame around. Moving down to the program itself, you make special
allowance if the item is edit text (line 16). On lines 20-22 you outset the
rectangle by 1 pixel, draw a frame around it, and set the pen size to 2
pixels. Then on lines 23 and 24 you inset the rectangle by 1 pixel and offset
it 1 pixel to the right and 1 pixel down. Lines 25-27 get the vertical and
horizontal coordinates of the point where you want to put the pen down
and move to that position. Lines 28-31 draw a line to form the bottom
shadow of the box and, without picking the pen up, form the right-hand
shadow by drawing another line from the bottom right to the top right.

Moving and line drawing are built-in capabilities of the Toolbox, but
you're on your own if you want a shadow box. That's why we wrote this
routine .

....,. A Simple Rectangle Example
This section contains a pair of source code listings that demonstrate the
four routines in this chapter. The pair consists of one file with the
extension .c and another file, containing the resources, with the extension
.R. The two types of files always go together to make up an application .

...,_ RectExample.c

This program is so similar to LineExample.c, reviewed in Chapter 16,
that we will not describe it here in as much detail. RectExample.c draws
four rectangular boxes, each with a different kind of frame (see Figure 17-
1), whereas LineExample.c draws nine thicknesses of line.

Listing 17-5. Example rectangular frames

/**/
void main() /* Routine to test rects */
/**/

Ptr
short
InitToolBox () ;

theDialog;
itemHit;

OpenResources ("Rect. rsrc") ; I* For development purposes *I
CenterDialog(300);
OpenStandardDialog(&theDialog, 300);
FrmDefitem(theDialog);
PlainFrame(theDialog, 3);

250 ..,.. Chapter 17 Rectangles

DoubleFrame(theDialog, 4);
ThickFrame(theDialog, 5);
ShadowFrame(theDialog, 6);
for (;;)
{

MyModalDialog(&iternHit);
switch (iternHit)

case (1):
break;

case (-updateEvt):
BeginUpdate(theDialog);

UpDialog(theDialog);
FrmDefitem(theDialog);
PlainFrame(theDialog, 3);
DoubleFrame(theDialog, 4);
ThickFrame(theDialog, 5);
ShadowFrame(theDialog, 6);

EndUpdate(theDialog);
continue;

default:
continue;

break;

DisposeDialog(theDialog);

Hect EHample
by John C. May and Pat Whittle

BB
BEJ n ouit u

Figure 17-1. Examples of rectangular frames

/* Quit */

/* Update events */

/* All other events */

.- A Simple Rectangle Example 251

You start with a call to initialize the Toolbox and follow with a call to
open resources file Rect.rsrc, which is the output of the compiler. The
next calls open and center the dialog, and you pass them the ID 300. A call
to the modal dialog begins an endless for-loop, waiting for someone to
press the Quit button or for an update event to occur. Next you draw the
default item-the Quit button-with a double frame, and then draw the
four different styles of boxes. Finally, you dispose of the dialog and
branch out of the program .

...., RectExample.R

RectExample.R is the resource file that forms a pair with RectExample.c
in a demonstration application that draws four types of rectangular
frames on the screen.

Listing 17-6. Resource file for example of rectangular frames

Rect.rsrc
rsrcRSED

Type DLOG
Rect Test,300
Rect Test
50 50 346 406
Visible NoGoAway
1
300
300

Type DITL

Rect Test, 300
10

* 1
Button Enabled
258 288 278 348
Quit

* 2
StaticText Disabled
13 25 63 295
Rect Example\ODby John C. May and Pat WhiLLlc

252 .,.. Chapter 17 Rectangles

* 3
User Item Enabled
80 50 160 130

* 4
User Item Enabled
200 50 280 130

* 5
Useritem Enabled
80 170 160 250

* 6
User Item Enabled
200 170 280 250

* 7
StaticText Disabled
110 73 130 112
Plain

* 8
StaticText Disabled
110 194 130 234
Thick

* 9
StaticText Disabled
230 68 250 115
Double

* 10
StaticText Disabled
230 184 250 240
Shadow

The opening statement, Rect.rsrc, tells the compiler where to put the
output. The name of the file being created is rsrcRSED.

Type 'DLOG' is a type statement. Rect Test is the name and 300 the ID
of the dialog box. The other lines in that group give further details, such
as coordinates.

Type 'DITL', short for dialog items list, enumerates the ten items
appearing in the dialog. Item 1 is the Quit button. It is enabled, meaning
that it will execute a Quit when pressed. If it were disabled, pressing it

...,.. Recommended Reading 253

would do nothing except exercise your index finger. Item 2 comprises
two lines of static text with the name of the dialog and the programmers
who devised it. Items 3 through 6 are the four types of box-plain, thick,
double, and shadow-and items 7 through 10 are the static text labels
placed inside each box to identify its type .

.,... Summary
This chapter presented four rectangle routines that you can use for
esthetics and clarity to draw plain, thick, double, and shadow frames
around dialogs, alert boxes, and user items. Once you understand these
routines, you can use your artistic sense to develop boxes in your own
style .

.,... Recommended Reading
Apple Computer. Inside Macintosh, Vol. 1. Reading, MA: Addison

Wesley, 1985.

18 ~ Scrolling Lists

..... Overview of Scrolling Lists
Probably the most familiar example of a scrolling list is the alphabetical
list of files that appears in a dialog box when you select the Open
command from the File menu. If there are too many file names to view in the
box at the same time, you can see the hidden ones by using the scroll bar.
Click in the gray area of the bar, or drag the scroll box, or click the up or down
scroll arrow, or type the first letter of the file name. If the files are so few that
they all fit in the box, the scroll bar is unshaded and inoperative.

You can use scrolling lists for many different character strings, not just
for file names. The routines in this chapter offer a suite of tools for
handling scrolling lists. They all make use of the List Manager, which
implements scrolling lists. You won't find List Manager in the Toolbox
of the original Macintosh. If early users of the Macintosh wanted scroll
ing lists, they had to write their own scrolling list routines from scratch.
Early examples of such homespun scrolling lists appear in the get file and
put file routines still seen at work in the familiar Open and Save
commands of the File menu. They were created without the help of List
Manager, which was not included in the Toolbox until Volume 4 of Inside
Macintosh came out around the same time as the Macintosh Plus in the
mid-1980s.

Apple took a somewhat unusual approach when it introduced List
Manager on the newer machines. Apple called the List Manager a
"package" and placed it as a resource, 'PACK', with an ID of 0, in the
System file. When you call up packages, including the List Manager, they

255

256 .,.. Chapter 18 Scrolling Lists

j By the Way ~ j

all have the same trap number. They also have an additional variable
that's passed into this Toolbox trap to indicate which routine within the
package needs to be executed. Symantec's THINK Chas a transparent
procedure for handling List Manager packages. Some other compilers do
not, so look in your manual for guidance if you're not using THINK C.

A list is just a set of strings in a matrix. The strings associated with the
Open and Save commands of the File menu are in a single column that
moves one way only, up or down. List Manager provides the capability
of using both horizontal and vertical scrolling in the same array. The
scrolling list routines in this chapter are devised for vertical scrolling,
which is the most common and most useful one-dimensional arrangement.

List Manager is much like Microsoft's spreadsheet application Excel in
its use of cells. Each string in the scrolling list goes into a cell, and the cells
in these routines are stacked in a vertical column. Despite the resem
blance to Excel, however, List Manager is not a spreadsheet program, just
as TextEdit is not a word processor.

Associated with every list you create is a list record. The record
contains some useful constants. For example, a program may be such that
you can select only one item in a list; that is, you can't hold down the Shift
key and select multiple items. If you want that capability, there's a flag
you can set.

Each routine in this chapter can be split into four main parts.

Initialize Draws the scrolling list on the screen. Resets variables to

Do

Update
Dispose

their starting value.
Does what the user wants when he or she presses a key or
clicks the mouse.
Updates the screen when an update event occurs.
Gets rid of temporary variables and settings that have
served their purpose, so are no longer needed, when you're
through.

All the routines and functions in this chapter work in concert to bring
up a scrolling list on the screen, allow the user to select an item, and tell
other parts of the program what's going on so that the user's instructions
are acted upon.

~ Drawing a Scrolling List 257

The scrolling list routines and functions in this chapter use several List
Manager routines summarized in Table 18-1.

Table 18-1. List Manager Routines Used in This Chapter

Routines

LAddRow
LC lick
LDoDraw
LDraw
LGetCell
LLastClick
LNew
LSetCell
LUpdate

Description

Adds a row to a list
Returns true if double-click in cell
Sets List Manager to drawing mode
Draws cell after entry or selection
Returns copy of cell's contents
Returns coordinates of clicked cell
Creates a new list
Modifies cell contents
Redraws visible cells

....,. Drawing a Scrolling List
The first step in creating a scrolling list is to draw it on the screen and
initialize it. That's the purpose of DrawScrollList.c. When the screen
needs to be redrawn in an update, call UpScrollList.c, described later in
this chapter. No dispose routines are necessary in this group, because the
scrolling lists fit into dialog boxes, which do their own disposing.

.... DrawScrolllist.c

This routine draws the scrolling list on the screen and takes care of any
needed initialization.

Listing 18-l . Drawing a scrolling list

PROCEDURE DraWScrollList(theDialog: DialogPtr; theltem: Integer;
theListHandle: ListHandle);

1: /***/
2: void DrawScrollList(DialogPtr theDialog, short theitem,
3: ListHandle* theListHandle}
4: /***/
5:

258 ..., Chapter 18

6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

Scrolling Lists

short
Rect
Handle
Rect

itemType;
itemRect;
item;
dataBounds;

/* Not used *I
I* Not used */

/* Handle to edit text */

Point cSize;
GrafPtr savePort; /* Old grafPort */
GetPort(&savePort); /*Save old port*/
SetPort(theDialog);
GetDitem(theDialog, theitem, &itemType,

&item, &itemRect); /*Get user item handle*/
itemRect.right = itemRect.right - 15;
InsetRect(&itemRect, -1, -1);
FrameRect(&itemRect);
InsetRect(&itemRect, +l, +l);
SetRect(&dataBounds, 0, 0, 1, 0);
SetPt(&cSize, 0, 0);

/* Room for scroll */
/* Set for framing */

/* Frame it */
/* Restore *I

/* Set list up */
/* Set cell size */

*theListHandle = LNew(&itemRect, &dataBounds,&cSize, 0,
theDialog, true, false, false, true); /*Make the list*/
LDoDraw(true, *theListHandle); /*Draw it*/
SetPort(savePort); /*Restore old port*/

DrawScrollList.c requires you to pass in a pointer to the dialog box;
also required is the item number of a user item you've created in ResEdit,
plus a handle to the list record. The user item is simply a rectangle drawn
within the dialog box to contain the scrolling list. This rectangle lets you
know how big the list has to be. What is returned is a list handle.

After the customary getting and setting the port, the statement on line
14 returns several variables, of which the only one you use is the item
rectangle. This tells you where to draw the scrolling list and how big it's
going to be.

The next three statements on lines 16-18 manipulate the rectangle in
several desirable ways. Reducing the rectangle by 15 pixels provides
space for a vertical scroll bar that's going to be placed on the right-hand
side of the list. Increasing the whole rectangle by 1 pixel makes room for
a frame to be drawn around the rectangle. Up to this point, the rectangle
is merely an area defined by a set of coordinates. Framing the rectangle
draws a box around the area so that it presents the familiar appearance
of a scrolling list.

..,.. Handling the Scrolling List 259

Now that you're through with drawing the box, shrink it by 1 pixel to
its original size with the statement on line 19.

Next, make the Toolbox call on line 20 to set a new rectangle, dataBounds,
with the values representing the screen coordinates top left 0, left 0,
bottom 1, and bottom right 0. These values tell the List Manager that the
first cell is 0, 0 and the next cell is 1, 0.

The statement on line 21 makes another Toolbox call, into which you
pass the cell size of your pixels. List Manager then does a good job of
calculating the cell size, taking into account such factors as font type and
font size.

Lines 22 and 23 call a Toolbox List Manager routine named LNew,
which creates the empty list. Pass it the variables &itemRect, &data Bounds,
and &cSize. Following &cSize is a procedure pointer that plays no part in
this routine, so pass it 0. The last fragments in the statement are four flags
that need to be passed into the list. They are, in order, drawlt, hasGrow,
scrollHoriz, and scrollVert. Assign the value true to drawlt because you
want to draw the box now; false to hasGrow because the scrolling list
doesn't have a size box; false to scrollHoriz because you don't want a
horizontal scroll bar; and true to scrollVert because you do want a vertical
scroll bar. One variation you might want to consider is to set the drawlt
flag to false to save a little processing time if you have an exceptionally
long list.

Call the List Manager routine LDoDraw with the statement on line 24
to make sure the draw It flag is true. It's worthwhile taking this precaution
against the possibility that the List Manager routine has automatically
set the flag to false. A true flag here is also needed if you've set the draw It
flag to false in the previous statement for the sake of speed.

After setting the grafPort back to its original value, you're done.
You've drawn the box on the screen, inserted an empty list, and added
a scroll bar on the right side of the box. Also, you have a pointer to the list
record .

....,. Handling the Scrolling List

Once you have drawn a scrolling list and put it into your program, you
need a means of handling whichever item on the list the user selects. The
routine in this section gives you the means of handling that list.

260 ..,. Chapter 18 Scrolling Lists

...,. DoScrolllist.c

When a user double-clicks on an item in a scrolling list, this routine
more properly a function because it returns a value-takes the appropri
ate action.

Listing 18-2. Handling the selection of an item in a scrolling list

FUNCTION DoScrollList(theListHandle: ListHandle) :BOOLEAN;

1: /***/
2: char DoScrollList(ListHandle theListHandle)
3: /***/
4:
5: short modifier;
6 : Point where;
7: char status;
8: GetMouse (&where) ;
9: modifier=O;

10: if (OptionisDown()) modifier= modifier+ 2048;
11: if (CapsLockisDown()) modifier= modifier+ 1024;
12: if (ShiftisDown()) modifier= modifier+ 512;
13: if (CommandisDown()) modifier= modifier+ 256;
14: if (!Button()) modifier= modifier+ 128;
15: status= LClick(where, modifier, theListHandle);
16: return(status);
17:

This function requires only the handle to the list. When you click
inside a cell of the scrolling list, the function returns a TRUE.

Skip down to the statement on line 15. This calls a Toolbox routine that
responds to several events, such as a mouse click in what Apple calls the
destination rectangle in the scroll bar of the list. The LClick routine
requires you to pass information-where the mouse was clicked and the
modifier flag-that can sometimes be hard to get, especially from a
dialog box. If you're writing your own event loop, both pieces of
information are readily available from the event record; however, in a
dialog box using the routine ModalDialog that's built into the Dialog
Manager, the information isn't easily obtained. It isn't global, so you
have to reconstruct both the where and the modifiervariables.

You start by calling the Toolbox routine GetMouse on line 8. It returns
where, which is the variable telling where in the dialog box the mouse was
pressed.

..,. Updating a Scrolling List 261

Getting the modifier is not as straightforward. The modifier flag
contains quite a lot of information stuffed into 2 bytes, or 16 bits. Is the
Option key down? Is Caps Lock down? Is Shift down? Is the Command
key (sg) down? Is the mouse button down? In all these instances, no is
0 and yes is 1. Also included in the modifier flag is a 0 or a 1 denoting
whether a window is being activated or inactivated. DoScrollList.c
doesn't need that information, so the function ignores it.

The statement on line 9 sets the modifier to 0. Then the if-tests on lines
10-14 build the 2-byte modifier flag. If the Option key is down, set bit 11
to 1, equivalent to the constant 2048; if Caps Lock is down, set bit 10 to 1
by adding 1024 to that constant; and so on. Line 14 is a little different from
the other if-tests. It says: "If the mouse button is not pressed, set bit 7 to
0. The modifier is then equal to the modifier plus 128."

Returning to the routine LClick on line 15, you pass it the variable
indicating where the mouse was pushed, the modifier flag, and the
handle to the list. What you get returned is a status report, telling you
whether the user double-clicked on a particular cell. You then pass the
status back to the calling routine .

...,. Updating a Scrolling List
After you have handled the item on the scrolling list, you need to update,
or redraw, the list.

~ UpScrolllist.c

UpScrollList.c redraws the scrolling list at the time of an update.

Listing 18-3. Updating a scrolling list

PRCX::EDURE UpScrollList(theDialog: DialogPtr; theListHandle:
ListHandle);

1: /***/
2: void UpScrollList(DialogPtr theDialog,ListHandle

theListHandle)
3: /***/
4:
5:
6:
7:
8:

Rect terrpRect;
GrafPtr savePort;
GetPort(&savePort);
SetPort(theDialog);

/* Old grafPort */

/* Save old port */

262 ..,.. Chapter 18 Scrolling Lists

9: LUpDate(theDialog->visRgn, theListHandle);
10: DrawControls(theDialog);
11: tempRect = (*theListHandle)->rView;
12: InsetRect (·&tempRect, -1, -1);
13: FrameRect(&tempRect);
14:
15:

SetPort(savePort); /* Restore old port */

This routine requires you to pass in the dialog box pointer and the
handle to the list you want updated.

After saving the old port and getting the new port, you call the List
Manager routine LUpDate with the statement on line 9 to pass in the
visible region of the window, which is part of the information in the
dialog record. LUpDate updates the scrolling list, but not the scroll bar
controls. To redraw all the controls in the dialog window, call the routine
DrawControls on line 10 and pass it the dialog.

The code on lines 11 and 12 digs out the size of the scrolling list
rectangle from the list record and increases the dimensions by 1 pixel on
all four sides to make room for the frame. Your call to FrameRect on line
13 redraws the frame around the scrolling list.

All that remains is to set the grafPort back to the original values,
completing the update .

...,. Setting the Cells of the Scrolling List
As you may have read earlier in this chapter, each string in a scrolling list
fits into its own cell. Individual cells are numbered in the same manner
as pixels. The first, up in the top left corner, is 00. Next in the horizontal
direction is 10, then comes 20, and so on. Going down vertically from cell
00, you have 01, 02, 03, and so on. The routines in this book are one
dimensional (up and down) so they follow the 01 sequence .

...,. AddCell.c

Suppose you already have a scrolling list and you want to insert a new
string. This is the routine to call.

~ Setting the Cells of the Scrolling List 263

Listing 18-4. Adding a cell to a scrolling list

PR~EDURE AddCell(theString: Str255; theListHandle: ListHandle);

1: /***/
2: void AddCell(Str255 theString, ListHandle theListHandle)
3: /***/
4:
5: short row;
6: row= LAddRow(l, 1, theListHandle);
7: SetCell(row, theString, theListHandle);
8: }

Pass in the Pascal string you want to add to your scrolling list, and pass
in a handle to your list. Call the Toolbox routine LAddRow on line 6. Pass
in the row number 1, 1 and the list handle.

An extra cell is then appended to your scrolling list, and LAddRow
returns the number of the added row. Pass that row number to the
SetCell.c routine, which follows. Also pass in both the string you want
put into the cell and the list handle.

~ SetCell.c

SetCell.c takes a string, a cell number, and a handle to a list, then puts the
string inside the cell.

Listing 18-5. Setting the contents of a cell in a scrolling list

PR~EDURE SetCell(theitem: Integer; theString: Str255;
theListHandle: ListHandle);

1: /***/
2: void SetCell(short item,Str255 theString, ListHandle

theListHandle)
3: /***/
4:
5:
6:

short
Cell

theLength;
theCell;

7: SetPt(&theCell, 0, item);
8: theLength = theString [0 l ;
9: LSetCell(&theString[l], theLength, theCell, theListHandle);

10: LDraw(theCell, theListHandle);
11:

264 ..,.. Chapter 18 Scrolling Lists

SetCell.c requires the string and the handle to the list. As with the other
routines and functions in this group, the assumption is that the scrolling
list has only a vertical dimension. You want to distinguish the cell,
named theCell, from the string, named item. Each cell needs both a
horizontal and a vertical coordinate, but the strings are simply numbered
in sequence from the top of the scrolling list.

Convert the item number to a cell by calling the Toolbox routine SetPt
with the statement on line 7. The 0, which is the number of the first
column, is the first coordinate of the cell, and the item number is the other
coordinate.

Line 8 states a well-known fact about Pascal strings: The first byte of
the string is its length.

Call the List Manager routine LSetCell with the statement on line 9.
Strange to say, this Apple routine does not accept a Pascal string. Not
only do you have to pass in a pointer to the string, but you must also pass
in the length of the string as a separate variable.

Now that the cell is set, the time has come to redraw the string on the
screen. Call the List Manager routine LDraw with the statement on line
10. Pass it the cell you want redrawn and the handle to the list. That's all
there is to this routine .

...,. Getting the Cells of the Scrolling List
Often you will want to get the contents of a cell that has been selected and
have it give you the Pascal string so that you can manipulate that string.
You may also want to know if the user has double-clicked on a cell. The
two routines in this section will help you accomplish these aims .

...,.. GetCell.c

This routine gets a string from a cell and is therefore the opposite of
SetCell.c, which puts a string into a cell.

Listing 18-6. Getting the contents of a cell in a scrolling list

PROCEDURE GetCell(theitem: Integer; VAR theString: Str255;
theListHandle: ListHandle);

1: /***/
2: void GetCell(short item, Str255 theString, ListHandle

theListHandle)
3: /***/
4:

5:
6:

short
Cell

7: if (item> 0)
8: {

..., Getting the Cells of the Scrolling List 265

theLength;
theCell;

9: SetPt(&theCell, 0, item);
10: theLength = theString[OJ;
11: LGetCell(&theString[lJ, theLength, theCell,

12:
13:

theListHandle);

As a preliminary to this code review, please read the description of
SetCell.c, just described. GetCell.c requires the item (the vertical compo
nent of the cell}, the Pascal string that it's going to be returning, and the
handle to the list.

The if-test on line 7 says that if the item number is greater than 0, call
the Toolbox routine, SetPt on line 9 which sets the cell equal to 0 followed
by the item number; for example, 0, 4 if the item is the fourth string in the
list.

Line 10 returns the string length, which is required by the next
statement, on line 11. Pass in a pointer to the string, the length, the
number of the cell from which you want to get the string, and the handle
to the list.

Back comes the string, and the routine is complete .

...,. GetlistString.c

A function rather than a routine, GetListString.c returns a value: the
string on which the user has double-clicked in a scrolling list.

Listing 18-7. Getting the double-clicked string in a scrolling list

FUNCTION GetListString(VAR theString: Str255;
theListHandle: ListHandle):BOOLEAN;

1: /***/
2: char GetListString(Str255 theString, ListHandle

theListHandle)
3: /***/
4:
5: char status = false;
6: Cell theCell;
7: if (DoScrollList(theListHandle))
a: {

266 ~ Chapter 18 Scrolling Lists

9: theCell = LLastClick(theListHandle);
10: GetCell(theCell.v, &theString, theListHandle);
11: status = true;
12:
13: return(status);
14:

This function consists largely of an if-test (line 7) that determines
whether the user has double-clicked on a scrolling list item. DoScrollList
is a List Manager routine.

On line 10 you call GetCell.c and pass it the vertical component of the
desired cell in the scrolling list. The assumption is that the list has only
one scrolling dimension-up and down-the conventional direction of
a scrolling list. You pass it the handle to the list, and it returns the string.
If the user has indeed double-clicked on the string, the value TRUE is
returned; otherwise, the returned value is FALSE.

~ Selecting and Unselecting Cells in a Scrolling List
If you have developed a scrolling list and you want to have a particular
item already selected-say, the first item or an often-selected item
when the list appears on the screen, then you need a routine that will
perform that function. It does not happen automatically. At the same
time, if the user selects another item on the list, you need a means of
unselecting the item you had preselected. The two routines in this section
accomplish these functions for you .

.,.. SelectCell.c

SelectCell.c does what its name implies: It enables you to select a
particular cell in the scrolling list and highlight that cell.

Listing 18-8. Selecting a cell in a scrolling list

PROCEDURE SelectCell(theitem: Integer; theListHandle: ListHandle);

1: /***/
2: void SelectCell(short item, ListHandle theListHandle)
3: /***/
4:
5: Cell theCell;
6: SetPt(&theCell, 0, item);
7: LSetSelect(true, theCell, theListHandle);
8:

..,. Setting the Cells from a String List Resource 267

Call the routine. Pass it the item, which is the vertical component of the
cell. Together with the 0 representing the horizontal component, that is
enough information to identify the cell. (Look at SetCell.c, reviewed
earlier in this chapter, for more details.)

Call the List Manager routine LSetSelect. Pass it true, meaning you
want to make that cell selected. Pass it the handle to the list containing the
desired cell. LSetSelect does the highlighting for you .

..,.. UnselectCell.c

UnselectCell.c does the opposite of SelectCell.c by giving you the means
to unselect a cell.

Listing 18-9. Unselecting a cell in a scrolling list

PROCEDURE UnselectCell(theitem: Integer; theListHandle: ListHandle);

1: /***/
2: void UnselectCell(short item, ListHandle theListHandle)
3: /***/
4:
5: Cell theCell;
6: SetPt(&theCell, 0, item);
7: LSetSelect(false, theCell, theListHandle);
8:

The code for this routine is the same as in SelectCell.c, except that you
pass false to the List Manager routine LSetSelect.

~ Setting the Cells of the Scrolling List
from a String List Resource
The first routine described in this chapter, DrawScrollList.c, took care of
drawing a dialog box containing an empty scrolling list with a vertical
scroll bar. Since empty scrolling lists are of pathetic value, you need a
routine that will put names or other information into your empty list.
GetStringList.c does just that.

268 ..,.. Chapter 18 Scrolling Lists

~ GetStringlist.c

GetStringList.c goes into the resource that holds your string list, retrieves
the strings, and fills in the empty cells of the scrolling list.

Listing 18-10. Getting strings from a resource to fill a scrolling list

PROCEDURE GetStringList(theID: Integer; theListHandle: ListHandle);

1:
2:
3:
4:

/***/
void GetStringList(short theID, ListHandle theListHandle)
/***/

5:
6:
7:
8:
9:

10:

Handle
Ptr
short
short
char
Str255

theHandle;
thePointer;
i, j;
nurnStrings;
stringLen;
theString;

11: short row;
12: theHandle = GetResource('STR#', theID);
13: HLock(theHandle);
14: thePointer = *theHandle;
15: nurnStrings = *thePointer;
16: row= LAddRow(nurnStrings, l, theListHandle);
17: thePointer = thePointer + 2;
18: for (i = l; i<= nurnStrings; i++)
19: {
20: stringLen = *thePointer;
21: thePointer = thePointer + l;
22: if (stringLen > 0)
23: {
24: for (j = l; j <= stringLen; j++)
25: {
26: theString[j] *thePointer;
27: thePointer = thePointer + l;
28:
29: SetCell(i-1, theString, theListHandle);
30:
31:
32: HUnlock(theHandle);
33:

..,. Setting the Cells of the Scrolling List from a String List Resource 269

In the function definition at the top of the listing, short theID is the
number of the resource containing your string list; theListHandle is the
handle to that string list.

The first active code on line 12 gets a handle to a string list resource,
'STR#', whose ID number you pass in. Having got the handle, lock it
down with the statement on line 13 so the data it points to won't get
moved. If the data were moved, the pointer would still point to the same
place in memory, but that memory space would contain garbage.

On line 14 dereference the handle to convert it to a pointer. Determine
the number of strings with the statement on line 15, which says, "The
number of strings in your string list resource equals the information to
which the pointer points."

Use the statement on line 16 to call the List Manager routine LAddRow,
and pass in the number of rows you want to add after and including row 1.

The data representing the number of strings was only 2 bytes long.
Now is the time to bump the pointer 2 bytes over so that it points to data
in the next two places in memory (line 17).

A for-loop on line 18 says, "For i equal to 1, as long as i is less than or
equal to the number of strings, keep looping." Since all the strings in your
scrolling list are in Pascal and the first byte of a Pascal string is the length
of the string, the statement on line 20 affirms that the string length is
equal to the value pointed to.

Bump the pointer by 1 byte on line 21 so that it points to the first
character in your first string.

The if-test on line 22 says, "If the string length is greater than 0,
signifying that I have an actual string, do the following for-loop." The
interior for-loop on lines 23-28 states, "For j equal to 1, and as long as j
is equal to. or less than the string length, keep looping, bumping j with
each loop." The upshot is that you're moving a copy of the first string,
character by character, from the string resource into a temporary vari
able, theString. When you're done with the first for-loop, you have the
first of your strings in the temporary variable.

Call SetCell.c on line 29. This routine requires you to enter the cell
number, which you'll recall is 0, for the top left of the box. Subtract 1 to
get cell number 0, because strings begin with 1 and cells begin with 0.

The first time through this loop, i is equal to 1. Pass it the Pascal string
and the handle to the List Manager. Up to this point you have only blank
cells. These steps fill in the first blank cell with your first string.

Do another for-loop, putting the next string into the temporary vari
able theString and calling SetCell.c to fill in the second blank cell. Loop
until all your strings reside in your scrolling list.

Finally, unlock the handle to the string resource.

270 • Chapter 18 Scrolling Lists

I By the Way ..,. I

.,... A Simple Scrolling List Example
This section contains a pair of source code listings that demonstrate the
scrolling list routines in this chapter. The pair consists of one file with the
extension .c and another file, containing the resources, with the extension
.R. The two types of files always go together to make up an application.

~ ScrollinglistExample.c

The following example uses four of the routines in this chapter to
produce a scrolling list containing the names of ancient Greek cities (see
Figure 18-1).

Listing 18-11. Example of a scrolling list

/**/
void main() /* Routine to test scrolling list */
/**/

Ptr
short
ListHandle
Str255
InitToolBox();
CenterDialog(300);

theDialog;
itemHit;
theListHandle;
theString;

OpenStandardDialog(&theDialog, 300);
DraWSList(theDialog, 3, &theListHandle);
GetStringList(300, &theListHandle);
PutEditString(theDialog, 2, "\pAncient Greek City");
FrrnDefitem(theDialog);
ShadowFrame(theDialog, 3);
for (;;)
{

MyModalDialog(&itemHit);
switch (itemHit)

..,.. A Simple Scrolling List Example 271

case (1):
break;

case (3):
if (GetListString(theString, theListHandle))

{

PutEdString(theDialog, 2, theString);

continue;

/* Quit */

case (-updateEvt): I* Update events */
BeginUpdate(theDialog);

UpDialog(theDialog);
UpSList(theDialog, theListHandle);
FrmDefitem(theDialog);
ShadowFrame(theDialog, 3);

EndUpdate(theDialog);
continue;

default
continue;

break;

DisposeDialog(theDialog);

Scrolling List EHample
by John c. May and Pat Whittle

I Ancient Greek City

lolkos ~
Orchomenos

I Gia
Mycenae
Tiryns

(

/* All other events */

I

Quit ,
Figure 18-1. Dialog box with an example of a scrolling list

272 ..,. Chapter 18 Scrolling Lists

~ ScrollinglistExample.R

This section contains the resource file for the scrolling list example.

Listing 18-12. Resource file for example of a scrolling list

ScrollListExarnple.rsrc
rsrcRSED

'fype DLOG
,300

Untitledl
50 120 288 492
Visible NoGoAway
1
1

300

'fype DITL
,300

4

* 1
Btnitern Enabled
207 292 227 362
Quit

* 2
EditText Enabled
84 168 105 295

* 3
Useritern Enabled
112 168 192 295

* 4
StatText Disabled
16 66 66 336

; ; Resource ID
; ;Dialog title
; ;Top Left Bottom Right
; ; Visible GoAway
;;ProcID, dialog def ID
; ; Ref con, reference value
;;ID of item list

; ; Resource ID

Scrolling List Exarnple\ODby John c. May and Pat Whittle

'fype STR#
,300

25
Iolkos
Orchornenos

.....

...,. Recommended Reading 273

Gla
Mycenae
Tiryns
Sparta
Pylos
Thebes
Cydonia
Amnisos
Knossos
Phaestos
Mil et us
Ilios
Lernnos
Assuwa
Hapalla
Arzawa
Halicarnassos
Kos
Chios
Lesbos
Lernnos
Athens
Kef tiu

Summary
This chapter presented ten routines that draw, handle, and update
scrolling lists and their cells, as well as an example of a scrolling list and
a brief overview of List Manager. Remember that you can use scrolling
lists for many different types of character strings, not just for file names.

..... Recommended Reading
For a copy of the Apple Technical Note listed below, call Apple Profes
sional Developers Association, (408)-974-4897.

Apple Technical Note No. 203 "Don't Abuse the Managers"
Cameron, Ray A. "Font Dialog Box Using List Manager." (Assembly.)

The Definitive MacTutor-The Macintosh Programming Journal, Vol. 4,
1989.

Rausch, William. "List Manager Inspires Help Function Solution." (C.)
The Essential MacTutor-The Macintosh Programming Journal, Vol. 3,
1988.

274 ..,._ Chapter 18 Scrolling Lists

Waters, Bryan. "How to Write a Spreadsheet in LS C." (C.) The Best of
MacTutor-The Macintosh Programming Journal, Vol. 5, 1990.

Wilcox, David. "Editable List & User Items." (Pascal.) MacTutor-The
Macintosh Programming Journal, Vol. 6, No. 4, April 1990.

19 Pop-up Menus

...... Overview of Pop-up Menus
Pop-up menus do not appear in the menu, but they show up elsewhere
on the screen, usually in a dialog box. They can be used to set values or
to select an item from a list of related items.

Pop-up menus are always characterized by a pop-up box with a
shadow frame, so the user knows a menu lurks behind. The pop-up box
usually sits to the right of the prompt box. The prompt box contains the
menu title; the "box" is invisible so that only static text appears. When the
user clicks on the prompt box or the pop-up box, the menu pops out with
the current value in the list checked and highlighted. While the mouse
button is down, the user can move about inside the pop-up menu and
select another item, which then becomes the current value and appears
in the pop-up box when the mouse button is released.

The color (or black or white value) of the menu title in the prompt box
and the current value on the pop-up menu list always appear highlighted
when the mouse button is down.

...... Drawing a Pop-up Menu
As with many of the series of routines in this book, the routine~ in this
chapter that help you construct pop-up menus require that you first
draw the menu, then handle the mouse-down event, and finally update
the menu on the screen. The "Scrolling Lists" series in Chapter 18 follows
the same pattern.

275

276 ..,. Chapter 19 Pop-up Menus

For the following routines, the resource file contains a user item, a
menu resource, and static text. In our example-or in your application
they all come together to make the pop-up menu work.

.,.. DrawPopUp.c

This routine draws the dialog box to contain a pop-up menu. It comes
complete with static text, a Quit button, a prompt box, and a pop-up box.

Listing 19-l . Drawing a pop-up menu in a dialog box

PROCEDURE DrawPopUp(theDialog: DialogPtr, itemHit: INTEGER, popMenuID:
INTEGER, VAR popMenu: MenuHandle, choice: INTEGER);

1: /**/
2: void DrawPopUp(DialogPtr theDialog, short itemHit,
3: short popMenuID, MenuHandle* popMenu, short choice)
4: /**/
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

SysEnvRec
char
Graf Ptr
PenState
RGBColor
RGBColor
RGBColor
RGBColor
short
short
Style
short
short
Rect
Handle
short
Str255
short
MCEntryPtr
#define

sysEnv;
hasColor;
savePort;
penStuff;
oldBackColor;
oldForeColor;
newBackColor;
newForeColor;
saveFont;
saveSize;
saveFace;
saveMode;
theType;
theRect;
theHdl;
i;
theString;
h, v;

pMCEntry;
SysEnvironsTrap OxA090
Unknown Trap
SetRGBColor(rgb,r,g,b)

#define
#define

(rgb)
#define
#define

>green=: (g); (rgb)->blue =
leftSlop 13
bottomSlop 5

/* Old grafPort */

/* Old and new colors */

I* Font stuff */

/* Not used */
/* Size of user item */

/* Not used */
I* Loop index */

I* Temporary strings */
/* Offsets */

/* Toolbox traps */
OxA89F

{(rgb)->red = (r);
(b) i}

.,.. Drawing a Pop-up Menu 277

31: hasColor = false; /* Test for color */
32: if ((long)NGetTrapAddress(SysEnvironsTrap, OSTrap) !=
33: (long)NGetTrapAddress(Unknown.Trap, ToolTrap))
34:
35:
36:
37:
38:
39:
40:
41:
42:

SysEnvirons (1, &sysEnv);
hasColor = sysEnv.hasColorQD;

GetPort(&savePort);
SetPort(theDialog);
GetPenState(&penStuff);
if (hasColor)
{

43: GetForeColor(&oldForeColor);
44: GetBackColor(&oldBackColor);
45:
46: saveFont theDialog->txFont;
47: saveSize theDialog->txSize;
48: saveFace theDialog->txFace;
49: saveMode theDialog->txMode;
50: TextSize(12);
51: TextFont(systemFont);
52: TextMode (srcOr);
53: TextFace(O);
54: PenNonnal () ;

/* Init port, pen, font */

55: *popMenu = GetMenu(popMenuID); /* Get menu handle */
56: for (i = 1; i <= CountMitems(popMenu); i++) /* Uncheck all*/
57: {
58: Checkitem(popMenu, i, false);
59:
60: Checkitem(popMenu, choice, true);
61: Getitem(popMenu, choice, theString); /*Check the choice*/
62: GetDitem(theDialog, itemHit, /* Draw the popup */
63: &theType, &theHdl, &theRect);
64 : InsetRect (&theRect, -1, -1) ;
65: FitString(theString,
66: theRect.right - theRect.left);
67: if (hasColor)
68: {
69: SetRGBColor(&newForeColor, OxOOOO, OxOOOO, OxOOOO);
70: SetRGBColor(&newBackColor, OxFFFF, OxFFFF, OxFFFF);
71: RGBForeColor(&newForeColor);
72: RGBBackColor(&newBackColor);
73:
74: ShadowFrame(theDialog, itemHit);
75: if (hasColor)
76: {
77: pMCEnt:ry = GetMCEnt:ry(popMenuID, 0);

278 ..,. Chapter 19 Pop-up Menus

78: if (pMCEnt:ry != NIL)
79: {
80: newBackColor = pMCEnt:ry->mctRGB4;
81: newForeColor = pMCEnt:ry->mctRGBl;
82: RGBForeColor(&newForeColor);
83: RGBBackColor(&newBackColor);
84:
85:
86: InsetRect(&theRect, 1, l);
87: EraseRect(&theRect);
88: v = theRect.left + leftSlop;
89: h = theRect.bottom - bottomSlop;
90:
91:
92:
93:

MoveTo(v, hl;
DrawString(theString);
if (hasColor)
{

94: pMCEnt:ry = GetMCEnt:ry (popMenuID' 0) ;
95: if (pMCEnt:ry != NIL)
96: {
97: newForeColor = pMCEnt:ry->mctRGB3;
98: RGBForeColor(&newForeColor);
99: RGBBackColor(&newBackColor);

100:
101: }
102: GetDitem(theDialog, itemHit + 1,
103: &theType, &theHdl, &theRect);
104: GetIText(theHdl, theString);
105: v theRect.top +

/* Draw the title */

106: (*{((DialogPeek)theDialog)->textH))->fontAscent;
107: h theRect.left + l;
108: MoveTo (h, v) ;
109: DrawString(theString);
110: TextFont(saveFont); /*Return old settings*/
111: TextSize(saveSize);
112: TextFace(saveFace);
113: TextMode(saveMode);
114: SetPenState(&penStuff);
115: if (hasColor)
116: {
117: RGBForeColor(&oldForeColor);
118: RGBBackColor(&oldBackColor);
119:
120: SetPort (savePort);
121:

On lines 2 and 3, when you call the routine, you must pass it four items:
a pointer to the dialog box; the user item number that the pop-up is going

~ Drawing a Pop-up Menu 279

to be put in (the routine makes an assumption that the static text is going
to be the user item number plus 1); the pop-up menu ID number; and a
choice-that is, the menu item that you want to have checkmarked. The
routine returns a handle to the menu.

Skip the declarations on lines 6-30. Lines 31-37 find out if color is
available and, if so, set the color flag.

Lines 38-54 initialize by saving and setting the port, saving the pen
and setting it back to normal, saving the font information-name, size,
face, and mode-and resetting that information to something known.
Lines 43 and 44 save the foreground and background colors if the routine
is running on a color machine.

The statement on line 55 gets a handle to the pop-up menu.
Lines 56-59 uncheck all of the items in the menu, and the statement on line

60 puts a check mark next to the item choice that was passed in on line 3.
After you pass it the handle to the menu and the choice on line 61, the

Menu Manager routine Getltem returns the string of the item (static text)
that will appear in the prompt box.

After you pass in the item hit, the call on lines 62 and 63 returns, among
other items, the rectangle for the pop-up box.

You inset the rectangle by a negative 1 on line 64.
The routine FitString on lines 65 and 66 determines whether the string

of the checkmarked menu item will fit in the rectangle of the pop-up box.
If it is too long, the routine automatically shortens it and adds an ellipsis
(...) to indicate that there is more to the item. FitString is one of our
routines. You will find the source code for it in Appendix B.

The if-statement on lines 67-73 sets the foreground color to black and
the background color to white.

Then, on line 74, you call another one of our routines: Shadow Frame.
This routine, found in Chapter 17, draws the shadow frame around the
pop-up box.

Lines 75-85 get the color out of the color menu table, if color exists.
They set the background color of the pop-up box to the background color
of the pop-up menu, and the color of the pop-up box's foreground to the
color of the text.

You inset the pop-up box rectangle by a positive 1 on line 86, thereby
returning it to its original size, and you erase the rectangle on line 87. The
effect is to fill the pop-up box rectangle with the color of the background
of the menu.

The statements on lines 88-91 draw the text inside of the pop-up box
after computing the vertical and horizontal offsets.

280 ..,. Chapter 19 Pop-up Menus

The if-statement on lines 92-101 gets colors, if they are available, for
the prompt box, which contains the pop-up menu title.

On lines 102 and 103, you call GetDitem and pass it the number of the
item hit plus 1; it returns the rectangle for the prompt box. You then get
the text for the prompt box with the Dialog Manager routine on line 104.

You want to redraw the static text in the box if color is available, so the
code on lines 105-109 computes the vertical and horizontal offset, moves
to that offset, and redraws the string in the box.

Lines 110-120 return the font, pen, colors, and port to their original
settings .

...,. Handling a Pop-up Menu
Once you have drawn the pop-up menu to the screen, you must have a
routine that will change the choice on the menu when a user clicks on a
new item in the list. The routine in this section checkmarks the new item
and moves the rectangle containing the list of items accordingly. It also
redraws the pop-up box with the new item chosen from the pop-up
menu .

...., DoPopUp.c

This routine handles the mouse-down event inside the pop-up menu.

Listing 19-2. Handling a mouse-down event in a pop-up menu

PROCEDURE DoPopUp(theDialog: DialogPtr, itemHit: INTEGER, popMenuID:
INTEGER, popMenu: MenuHandle, choice: INTEGER);

1: /**/
2: void DoPopUp(DialogPtr theDialog, short itemHit, short

popMenuID,
3: MenuHandle popMenu, short choice)
4: /**/
5:
6:
7:
8:
9:

10:
11:
12:

SysEnvRec
char
Graf Ptr
PenState
RGBColor
RGBColor
RGBColor

sysEnv;
hasColor;
savePort; /* Old grafPort */
penStuff;
oldBackColor; I* Old and new colors */
oldForeColor;
newBackColor;

..,. Handling a Pop-up Menu 281

RGBColor
RGBColor
RGBColor
short
short
Style
short
Point
Point
short
Re ct
Rect
Handle
short
MCEntryPtr
Str255
short

newForeColor;
oldHiliteRGB;
newHiliteRGB;
saveFont;
saveSize;
saveFace;
saveMode;
mouseLoc;
popLoc;
theType;
popUpBox;
promptBox;
theHdl;
h, v;
pMCEntry;
theString;
chosen;

I* Font stuff */

/* Not used *I
/* Size of user item */

/* Not used *I
/* Offsets */

37: hasColor false; /* Test for color */
38: if ((long)NGetTrapAddress(SysEnvironsTrap, OSTrap) !=
39: (long)NGetTrapAddress(UnknownTrap, ToolTrap))
40:
41: SysEnvirons(l, &sysEnv);
42: hasColor = sysEnv.hasColorQD;
43:
44:
45:
46:
47:
48:
49:

GetPort(&savePort);
SetPort(theDialog);
GetPenState(&penStuff);
if (hasColor)
{

GetForeColor(&oldForeColor);
50: GetBackColor(&oldBackColor);
51:
52: saveFont theDialog->txFont;
53: saveSize theDialog->txSize;
54: saveFace theDialog->txFace;
55: saveMode theDialog->txMode;
56: TextSize (12) ;
57: TextFont(systemFont);
58: TextMode (srcOr) ;
59: TextFace (0) ;

/* Init port, pen, font */

282 ..,.. Chapter 19 Pop-up Menus

60: PenNorrnal ();
61: GetMouse(&mouseLoc);
62: GetDitem(theDialog, itemHit, &the'JYpe, &theHdl, &popUpBox);
63: GetDitem(theDialog, itemHit, &the'JYpe, &theHdl,

&promptBox);
64: if (hasColor)
65: {
66: oldHiliteRGB = HiliteRGB;
67: pMCEntry = GetMCEntry(popMenuID, 0);
68: if (pMCEntry != NIL)
69: {
70: newHiliteRGB = pMCEntry->mctRGB3;
71: newForeColor = pMCEntry->mctRGB2;
72: HiliteRGB = newHiliteRGB;
73: BitClr(HiliteMode, pHiliteBit);
74: InvertRect (&promptBox) ;
75: HiliteRGB = oldHiliteRGB;
76: RGBForeColor(&newForeColor);
77: RGBBackColor(&oldBackColor);
78: v = promptBox. top + (* (((DialogPeek)
79: theDialog)->textH))->fontAscent;
80: h = promptBox.left + 1;
81: MoveTo (h, v) ;
82: DrawString(theString);
83:
84: else
85:
86: BitClr(HiliteMode, pHiliteBit);
87: InvertRect(&promptBox);
88:
89:
90: else
91: {
92: InvertRect{&promptBox);
93:
94:
95:
96:
97:
98:

InsertMenu(popMenu, -1);
popLoc.v = popUpBox.top;
popLoc.h = popUpBox.left;
LocalToGlobal(&popLoc);
CalcMenuSize(popMenu);

99: v = popLoc.v;
100: h = popLoc.h;

/* Work around Menu Mgr bug */

101: chosen= PopUpMenuSelect(popMenu, v, h, choice);
102: if (hasColor)
103: {
104: oldHiliteRGB HiliteRGB;

..., Handling a Pop-up Menu 283

105: pMCEntry = GetMCEntry (popMenuID, 0) ;
106: if (pMCEntry != NIL)
107: {
108: newHiliteRGB = pMCEntry->mctRGB3;
109: newForeColor = pMCEntry->mctRGB3;
110: HiliteRGB = newHiliteRGB;
111: BitClr(HiliteMode, pHiliteBit);
112: InvertRect (&promptBox);
113: HiliteRGB = oldHiliteRGB;
114: RGBForeColor(&newForeColor);
115: RGBBackColor(&oldBackColor);
116: v = promptBox.top + {*(((DialogPeek)
117: theDialog)->textH))->fontAscent;
118: h = promptBox.left + 1;
119: MoveTo (h, v);
120: DrawString(theString);
121:
122: else
123:
124:
125:
126:
127:
128: else
129:

BitClr(HiliteMode, pHiliteBit);
InvertRect(&promptBox);

130: InvertRect(&promptBox);
131:
132: DeleteMenu(popMenuID);
133: if (chosen ! = 0)
134: {
135: neV..Choice = LoWord(chosen);
136: if (newChoice != choice)
137: {
138: Checkitem(popMenu, choice, false);
139: Checkitem(popMenu, newChoice, true);
140: choice = newChoice;
141: Getitem(popMenu, choice, theString);
142: InsetRect(&popUpBox, -1, -1);
143: FitString(theString, popUpBox.right - popUpBox.left);
144: if (hasColor)
145: {
146: SetRGBColor(&newForeColor, OxOOOO, OxOOOO, OxOOOO);
147: SetRGBColor(&newBackColor, OxFFFF, OxFFFF, OxFFFF);
148: RGBForeColor(&newForeColor);
149: RGBBackColor(&newBackColor);
150:

284 IJll.. Chapter 19 Pop-up Menus

Important .,..

151 : ShadowFrarne(theDialog , itemHit) ;
152 : if (hasColor)
153 : {
154 : pMCEntry = GetMCEntry(popMenuID , 0) ;
155 : if (pMCEntry ! = NIL)
156 : {
157 : newBackColor = pMCEntry->mctRGB4;
158 : newForeColor = pMCEntry->mctRGBl;
159 : RGBForeColor(&newForeColor) ;
160 : RGBBackColor (&newBackColor) ;
161:
162:
163 : InsetRect(&popUpBox , 1, 1) ;
164 : EraseRect(&popUpBox) ;
165 : v = popUpBox . left + leftSlop ;
166 : h = popUpBox .bottom - bottomSlop ;
167 : MoveTo(v , h) ;
168 : Drawstring (theString) ;
169 :
170 :
171 : TextFont(saveFont) ; /* Return old settings * /
172 : TextSize(saveSize) ;
173 : TextFace (saveFace) ;
174 : TextMode(saveMode) ;
175 : SetPenSt ate(&penStuff) ;
176 : if (hasColor)
177 : {
178 : RGBForeColor(&oldForeCol or) ;
179 : RGBBackColor(&oldBackColor);
180 :
181: SetPort (savePort) ;
182:
183 :
184 : extern RGBColor HiliteRGB : OxDAO ;

Lines 33 and 34 contain a macro. Because of its length, we have put it
on two lin_es ~ this book. However, when you u~~1this r~~~~ ~ ,
your application, be sure to put all of the macro on one lifie ohly; G
will not tolerate a carriage return inside of a macro.

The first part of this routine is very similar to DrawPopUp.c. See the
review of DrawPopUp.c earlier in this chapter for a detailed discussion
of the code.

The notable difference between the two routines starts at line 61 of
DoPopUp.c, where the call gets the location of the mouse. Then lines 62
and 63 get the pop-up and prompt boxes.

..,_ Handling a Pop-up Menu 285

The code on lines 64-93 highlights the pop-up and prompt boxes in
color, if it is available, or in black-and-white. See the review of
DrawPopUp.c for a discussion of foreground and background colors.
Here, when an item is highlighted, the colors switch. Note the statements
on lines 86 and 87. Assuming that color is available, you call the Toolbox
routine BitClr and pass it the global variable HiliteMode (defined in a
THINK C Include file) and the constant pHiliteBit. With this call you say,
"If I clear a bit inside of the HiliteMode variable, then the next time I say
'Invert the rectangle,' I don't really invert the colors; instead I switch the
foreground and background colors."

However, if the routine is not running on a color machine, the state
ment on line 92 will invert the black and the white values.

Up to this point, you have determined that a mouse button has been
pressed, and you have highlighted the static text in the pop-up box and
in the prompt box. Now, on line 94, you bring up the pop-up menu with
the Toolbox call InsertMenu. Pass it the handle to the pop-up menu and
a negative l.

Lines 95 and 96 compute the location for the pop-up menu by getting
the point at which the top left-hand corner of the menu box will appear.

Line 97 converts that location to global coordinates.
On line 98 you work around a bug in the Menu Manager by calling

CalcMenuSize and passing it the handle to the pop-up menu. (This is
recommended by the Macintosh Development Technical Services at
Apple.) The call doesn't have any visual effect, but it takes care of some
internal problem that you will definitely notice if you leave the call out.

Lines 99 and 100 break out the pop-up location point into separate
vertical and horizontal numbers.

Line 101 contains the meat of this routine by bringing the pop-up
menu to the screen. You call PopUpMenuSelect, pass it the handle to the
menu, and the vertical and horizontal coordinates of where you want the
menu to be drawn. PopUpMenuSelect returns the choice (the item
selected) and takes over. It handles the dragging up and down of the
menu as the item selected changes.

Lines 102-131 do the reverse of the procedure for highlighting the
prompt box and the selected item in the pop-up menu.

Now that the menu item has been selected and checkmarked, you
delete the pop-up menu with the statement on line 132.

The code on lines 133-170 redraws the pop-up box and the string in the
box. See the review of DrawPopUp.c earlier in this chapter (lines 60-91)
for details of the drawing procedure.

Lines 171-182 return the font, pen, colors, and port back to their
original states.

286 .,.. Chapter 19 Pop-up Menus

The statement on line 184 is a C command that externalizes HiliteRGB.
That is a low-memory global variable that was not set up by THINK C,
but was set up by hand for this routine. The command sets it outside of
the program space .

...._ Updating a Pop-up Menu

After a mouse-down event inside of the pop-up menu, you need to
update and redraw the shadow-frame pop-up box and redraw the
prompt box.

~ UpPopUp.c

This routine updates and redraws the pop-up menu on the screen, then,
once the pop-up menu has left the screen, redraws the prompt box and
the pop-up box.

Listing 19-3. Updating the pop-up menu

PROCEDURE UpPopUp(theDialog: DialogPtr, itemHit: INTEGER, popMenuID:
INI'EGER, popMenu: MenuHandle, choice: INTEGER);

/* Font stuff */

/* Not used */
/* Size of user item */

I* Not used */
/* Loop index */

.,.. Updating a Pop-up Menu 287

23: Str255 theString; /* Temporary strings */
24: short h, v; /* Offsets */
25: MCEntryPtr pMCEntry;
26: #define SysEnvironsTrap OxA090 /* Toolbox traps */
27: #define UnknownTrap OxA89F
28: #define SetRGBColor(rgb,r,g,b) { (rgb)->red (r);
29: (rgb)->green = (g); (rgb)->blue = (b);}
30: #define leftSlop 13
31: #define bottomSlop 5
32: hasColor false; /* Test for color */
33: if ((long)NGetTrapAddress(SysEnvironsTrap, OSTrap) !=
34: (long)NGetTrapAddress(UnknownTrap, ToolTrap))
35:
36: SysEnvirons(l, &sysEnv);
37: hasColor = sysEnv.hasColorQD;
38:
39:
40:
41:
42:
43:

GetPort(&savePort);
SetPort(theDialog);
GetPenState(&penStuff);
if (hasColor)
{

44: GetForeColor(&oldForeColor);
45: GetBackColor(&oldBackColor);
46:
47: saveFont theDialog->txFont;
48: saveSize theDialog->txSize;
49: saveFace theDialog->txFace;
50: saveMode theDialog->txMode;
51: TextSize(l2);
52: TextFont(systemFont);
53: TextMode (srcOr);
54 : TextFace (0) ;
55: PenNormal();

/* Init port, pen, font */

56: Getitem(popMenu, choice, theString); /*Check the choice*/
57: GetDitem(theDialog, itemHit, /* Draw the popup */
58: &theType, &theHdl, &popUpBox);
59: InsetRect(&promptBox, -1, -1);
60: FitString(theString, promptBox.right - promptBox.left);
61: if (hasColor)
62: {
63: SetRGBColor(&newForeColor, OxOOOO, OxOOOO, OxOOOO);
64: SetRGBColor(&newBackColor, OxFFFF, OxFFFF, OxFFFF);
65: RGBForeColor(&newForeColor);
66: RGBBackColor(&newBackColor);
67:
68:
69:
70:

ShadowFrame(theDialog, itemHit);
if (hasColor)
{

/* Draw the title */

288 1111- Chapter 19 Pop-up Menus

71: pMCEntry = GetMCEntry(popMenuID, 0);
72: if (pMCEntry != NIL)
73: {
74: newForeColor = pMCEntry->mctRGB3;
75: RGBForeColor(&newForeColor);
76: RGBBackColor(&oldBackColor);
77:
78:
79: GetDitem(theDialog, itemHit + l,
80: &theType, &theHdl, &promptBox);
81: GetIText (theHdl, theString);
82 : v = promptBox. top + (* (((Dialog Peek)
83: theDialog)->textH))->fontAscent;
84: h = promptBox.left + l;
85: MoveTo (h, v) ;
86: Drawstring (theString) ;
87: if (hasColor)
88: {
89: pMCEntry = GetMCEntry(popMenuID, 0);
90: if (pMCEntry != NIL)
91: {
92: newBackColor = pMCEntry->mctRGB4;
93: newForeColor = pMCEntry->mctRGBl;
94: RGBForeColor(&newForeColor);
95: RGBBackColor(&newBackColor);
96: } .
97:
98: InsetRect(&popUpBox, 1, l);
99: EraseRect (&popUpBox);

100: v = popUpBox.left + leftSlop;
101: h = popUpBox.bottom - bottomSlop;
102: MoveTo(v, h);
103: DrawString(theString);
104:
105:

TextFont(saveFont);
TextSize(saveSize);

106: TextFace(saveFace);
107: TextMode(saveMode);
108: SetPenState(&penStuff);
109: if (hasColor)
110: {
111: RGBForeColor(&oldForeColor);
112: RGBBackColor(&oldBackColor);
113:
114: SetPort(savePort);
115:

!* Return old settings */

This routine closely resembles DrawPopUp.c, discussed at the begin
ning of this chapter. See the review of that routine for details of the code.

..,.. A Simple Pop-up Menu Example 289

~ A Simple Pop-up Menu Example
The following source code and RMaker resource file together create a
simple pop-up menu example, complete with static text, prompt box,
shadow-frame pop-up box, menu items, and Quit button. The .c and .R
files always go together to make up an application .

...,. PopUpExample.c

This listing contains the source code for the pop-up menu example. See
Figure 19-1 for a picture of the pop-up menu created with this file.

Listing 19-4. Example of a pop-up menu

/**/

void main() /* Routine to test Popups */
/**/

DialogPtr
short
short
MenuHandle

theDialog;
itemHit;
choice;
hMenu;

InitToolBox () ;
OpenResources("\pPopUpExarnple.rsrc");

CenterDialog(300);
OpenDialog(&theDialog, 300);
FnnDefitern(theDialog);
choice = 2;

/* For devel purposes */

DrawPopUp(theDialog, 2, 128, &hMenu, choice);
for(;;)

{

MyModalDialog(&itemHit)
switch (itemHit)

case (1):
break;

case (2):
case (3):

DoPopUp(theDialog, 2, 128, hMenu, choice);
continue;

case (-updateEvt):
BeginUpdate(theDialog);

UpDialog(theDialog);
UpPopUp(theDialog, 2, hMenu, choice);
FnnDefitern(theDialog);

290 ..,. Chapter 19 Pop-up Menus

EndUpdate{theDialog);
continue;

default:
continue;

break;

DisposeDialog{theDialog);

Pop-up Menu EHample
By John C. May and Judy Whittle
(22Mar91)

Herakles
Priam

Quit

Figure 19-1. Dialog box showing a pop-up menu created with
PopUpExample.c

1111>- PopUpExample.R

PopUpExample.R is the resource file that forms a pair with
PopUpExample.c in a demonstration application that draws a pop-up
menu on the screen.

~ A Simple Pop-up Menu Example 291

Listing 19-5. Resource file for example of a pop-up menu

PopupExample.rsrc
rsrcRSED

Type DI.00
,300
Pop-up Test
50 50 204 332
Visible NoGoAway
1
1
300

Type DITL
,300.
4

* 1
Button
110 210 130 270
Quit

* 2
Useritem
70 106 86 210

* 3
StaticText
70 20 86 105

Greek Hero:

* 4
StaticText Disabled
10 10 60 280
Pop-up Menu Exanple\0Dby John C. May and Judy Whittle\0D(22Mar91)

Type MENU
,128
Greeks
Hector
Agamemnon
Odysseus
Achilles
Herakles
Priam

292 1111- Chapter 19 Pop-up Menus

..,.. Summary

This chapter presented three routines to handle pop-up menus.

• The first draws a pop-up menu in a dialog box
• The second handles a mouse-down event when a user clicks on an

item in the pop-up menu
• The third redraws the dialog box when the mouse button is

released

The chapter also provided a pop-up menu example along with the source
code and resource file used to create the example.

20 Putting It All Together

~ A Comprehensive Example
As mentioned in the Introduction, the routines in this book are immedi
ately workable. You can incorporate any of them into your application,
and they will do the job. To give you an idea of how to combine them,
we've created the following example, which is, as shown in Figure 20-1,
a control panel at the helm of an intergalactic space ship .

...., Kit and Caboodle.c

Kit and Caboodle combines nineteen of our routines, which in turn
incorporate dozens of Toolbox routines. The nineteen routines are as
follows.

lnitT oolbox.c
CenterDialog.c
Disp Togglelcon.c
DoPopUp.c
DoTogglelcon.c
DrawDottedLine.c
DrawPopUp.c
DrawScrollList.c
FrmDefltem.c
GetListString.c
GetStringList.c
GetT ogglelcon.c

Chapter 3
Chapter 6
Chapter 12
Chapter 19
Chapter 12
Chapter 16
Chapter 19
Chapter 18
Chapter 9
Chapter 18
Chapter 18
Chapter 12

293

294 ..,.. Chapter 20 Putting It All Together

MyModalDialog.c
OpenDialog.c
PushRadioButton.c
ShadowFrame.c
UpDialog.c
UpPopUp.c
UpScrollList.c

Chapter 6
Chapter 6
Chapter 11
Chapter 17
Chapter 6
Chapter 19
Chapter 18

Listing 20-1. A comprehensive example

1:
2:
3:
4:
5:
6:
7:
8:
9:

/***/

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:

void main{) /* Kit and Caboodle example */
/***/

theDialog;
itemHit;
choice;

DialogPtr
short
short
MenuHandle
ListHandle
Str255

hMenu;
theListHandle;

iconTog
iconTog
iconTog

theString;
theSwitchl,
theSwitch2,
theSwitch3,

InitToolBox {) ;
CenterDialog(128);
OpenDialog(&theDialog,128);
FrmDefitem(theDialog);
choice = 3;

**hSwitchl;
**hSwitch2;
**hSwitch3;

DrawPopUp(theDialog, 3, 128, &hMenu, choice);
DrawSList(theDialog, 6, &theListHandle);
GetStringList(128, theListHandle);
ShadowFrame (theDialog, 6) ;
PushRadioButton(theDialog, 7, 7, 10);
DrawDottedLine(theDialog, 23);
DrawDottedLine(theDialog, 24);
hSwitchl (hiconTog)GetTogicon(theDialog, 16, 2000, 2001)
hSwitch2 (hiconTog)GetTogicon(theDialog, 17, 2030, 2031)
hSwitch3 (hiconTog)GetTogicon(theDialog, 18, 2020, 2021)
for(;;)

{

MyModalDialog(&itemHit)
switch (itemHit)
{

case (1):
break;

/* OK */

36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:

..,. A Comprehensive Example 295

case (2):
break;

case (3):
case (4):

/* Cancel */

/* Planets popup prompt */
/* Planets popup menu */

DoPopUp(theDialog, 3, 128, hMenu, choice);
continue;

case (6):
if (GetListString(theString,

{

/* Constellations list */
theListHandle))

}

continue;
case (7):
case (8):
case (9):

case (10):
PushRadioButton(theDialog,

continue;
case (11):

continue;
case (12):

continue;
case (13):

continue;
case (14):

continue;
case (16):

DoTogicon(hSwitchl);
continue;

case (17):

DoTogicon(hSwitch2);
continue;

case (18):
DoTogicon(hSwitch3);
continue;

/* Horizon radio button *I
/* Equator radio button */

/* Ecliptic radio button */
I* Galactic radio button */

itemHit, 7, 10);

/* Right Ascension */

/* Declination */

I* Distance */

I* Proper Motion */

I* Red switch *I

/* Green switch */

/* Blue switch */

case (-updateEvt): /* Update event */
BeginUpdate(theDialog);

UpDialog(theDialog);
UpPopUp(theDialog, 3, hMenu, choice);
UpSList(theDialog, theListHandle);
FrmDefitem(theDialog);
ShadowFrame(theDialog, 6);
DrawDottedLine(theDialog, 23);
DrawDottedLine(theDialog, 24);

EndUpdate(theDialog);
continue;

default:

296 ..,.. Chapter 20 Putting It All Together

82: continue;
83:
84: break;
85:
86: DispTogicon(hSWitchl);
87: DispTogicon (hSWitch2) ;
88: DispTogicon(hSWitch3);
89: DisposeDialog(theDialog);
90:

Kit and Caboodle EHample
by John C. May and Judy Whittle
(22Mar91)

@Horizon
Planet: I Earth I 0 Equator

Constellations 0 Ecliptic
Mensa

I
0 Galactic

Microscopium ..
Monoceros Spectral Filter
Musca
Norma Red Green Blue
Octans I I I Ophiuchus

I Orion ..
Pauo (Cancel)
1:8] Right Rscension D Distance (, Quit
D Declination D Proper Motion

Figure 20-1. Comprehensive example created with Kit and
Caboodle.c

Given that the example is utter nonsense, it still looks credible. The
radio buttons, check boxes, toggle icons, default button, scrolling list,
and pop-up menu are all drawn to conform with Apple's Human
Interface Guidelines.

A quick walk through the code shows that after several lines of
declarations and the initialization of the Toolbox, the first active code on
line 15 centers the dialog box. The statements on lines 16 and 17 open the
dialog box and frame the default item (Quit button).

..., A Comprehensive Example 297

On line 19 you draw the pop-up menu, which contains the names of
the nine solar system planets and the asteroid Ceres. On line 20 you draw
the scrolling list.

Line 21 gets the string list for the scrolling list. This list contains the
names of eighty-seven constellations.

The statement on line 22 draws the shadow frame for the pop-up box.
Line 23 selects the radio button.
Now, looking at the right-hand side of Figure 20-1, you can see that the

code on lines 24-28 draws the two dotted lines and the three toggle icons.
The for-loop incorporating MyModalDialog on lines 29-69 draws all

of the static text on the dialog box. Then, on lines 70-85, all of the update
events take place.

Lines 86-90 dispose of the three toggle icons and the dialog box .

..,_ Kit and Caboodle.R

Kit and Caboodle.R is the resource file that forms a pair with the file Kit
and Caboodle.c to bring up Figure 20-1 on the screen.

Listing 20-2. Resource file for comprehensive example

Kit and Caboodle.rsrc
rsrcRSED

'fype DLOG
Kit and Caboodle, 128
Pop-up Test
30 18 329 453
Visible NoGoAway
1
1
128

'fype DITL
Kit and Caboodle, 128
24

* 1
Button Enabled
273 316 293 401
Quit

''
Message (Title)

'' Rect (T,L,B,R)

'' Flags

'' Proc ID

'' Ref Con

'' Resource ID of

,, Rect (T, L, B, R)
, , Message

DITL list

298 ~ Chapter 20 Putting It All Together

* 2
Button Enabled
243 316 263 401
Cancel

* 3
Useritem Enabled
63 137 79 241

* 4
StaticText Enabled
63 51 79 137

Planet:

* 5
StaticText Disabled
5 10 55 280

'' Rect (T,L,B,R}
, , Message

'' Rect (T,L,B,R}

; ; Rect (T,L,B,R)
, , Message

'' Rect (T,L,B,R}
Kit and Caboodle Exarrple , , Message
by John C. May and Judy Whittle
(22Mar91}

* 6
User Item Disabled
100 13 255 283

* 7
RadioButton Enabled
50 303 68 409
Horizon

* 8
RadioButton Enabled
70 303 88 409
Equator

* 9
RadioButton Enabled
90 303 108 409
Ecliptic

* 10
RadioButton Enabled
109 303 127 409
Galactic

'' Rect (T,L,B,R}

'' Rect (T,L,B,R}
, , Message

'' Rect (T,L,B,R}
, , Message

; ; Rect (T,L,B,R}
, , Message

'' Rect (T,L,B,R)
, , Message

1111- A Comprehensive Example 299

* 11
CheckBox Enabled
260 13 279 147 , , Rect {T,L,B,R)
Right Ascension '' Message

* 12
CheckBox Enabled
280 12 298 146 i; Re ct {T,L,B,R)
Declination ;; Message

* 13
<;::heckBox Enabled
260 155 278 277 '' Re ct (T,L,B,R)
Distance , ' Message

* 14
CheckBox Enabled
279 155 298 277 ; ; Re ct {T,L,B,R)
Proper Motion '' Message

* 15
StaticText Disabled
83 8 99 102 '' Re ct (T,L,B,R)
Constellations ; i Message

* 16
Iconitern Disabled
184 302 216 334 i; Re ct (T,L,B,R)
2000 , , ID

* 17
Iconitern Disabled
184 346 216 378 ;; Rect (T,L,B,R)
2030 , , ID

* 18
Iconitern Disabled
184 390 216 422 , , Re ct (T,L,B,R)
2020 ; i ID

* 19
StaticText Disabled
165 304 181 332 , , Re ct (T,L,B,R)
Red , , Message

300 ..,.. Chapter 20 Putting It All Together

* 20
StaticText Disabled
165 343 181 383 '' Rect (T,L,B,R)
Green '' Message

* 21
StaticText Disabled
165 390 181 422

'' Re ct (T,L,B,R)
Blue '' Message

* 22
StaticText Disabled
142 315 157 413 '' Rect (T,L,B,R)
Spectral Filter '' Message

* 23
User Item Disabled
132 288 137 431

'' Rect (T,L,B,R)

* 24
User Item Disabled
226 287 231 430

''
Rect (T,L,B,R)

Type MENU
Planets,128
Planets
Mercury
Venus
Earth
Mars
(Ceres)
Jupiter
Saturn
Uranus
Neptune
Pluto

Type STR#
Constellations,128
87

'' Number of strings
Andromeda
Antlia
A pus
Aquarius

Aquila
Ara
Aries
Auriga
Boot es
Caelum
Carnelopardus
Cancer
Canes Venatici
Canis Major
Canis Minor
Capricornus
Carina
Cassiopeia
Centaurus
Cephus
Cetus
Charnaeleon
Circinus
Columba
Coma Berenices
Corona Australis
Corona Borealis
Corvus
Crater
Crux
Cygnus
Delphinus
Dorado
Draco
Equuleus
Eridanus
Fornax
Gemini
Grus
Hercules
Horologium
Hydra
Hydrus
Indus
Lacerta
Leo
Leo Minor
Lepus
Libra

..,.. A Comprehensive Example 301

302 ""' Chapter 20 Putting It All Together

Lupus
Lynx
Mensa
Microscopium
Monoceros
Musca
Norma
Octans
Ophiuchus
Orion
Pavo
Pegasus
Perseus
Phoenix
Pieter
Pisces
Piscis Austrinus
Puppis
Pyxis
Reticulum
Sagitta
Sagittarius
Scorpius
Sculptor
Seu tum
Serpens
Sextans
Taurus
Telescopium
Triangulum
Triangulum Australe
Tucana
Ursa Major
Ursa Minor
Vela
Virgo
Vol ans
Vulpecula

* These ICONs can be replaced with cicn's for color machines.

..,. A Comprehensive Example 303

Type ICON=GNRL
,2000
00000000 00000000 03FFCOOO 0244COOO 0311COOO 0244COOO 0311COOO 0244COOO

0311COOO 0244COOO 0311C000 0244COOO 03FFCOOO 03002000 03801000 07C00800

OBFFFCOO 17E00400 2BFFFEOO 17F00200 2BFFFE00 17F00200 2BFFFEOO 17F00200

2BFFFEOO 17F00200 2BFFFEOO 17F00200 2BFFFEOO 15E00400 OAFFFCOO 00000000

Type ICON=GNRL
,2001
00000000 00000000 03FFCOOO 03002000 07801000 OBC00800 17FFFCOO 2BE00400

17FFFE00 2BF00200 17FFFE00 2BF00200 17FFFEOO 2BF00200 17FFFEOO 2BF00200

17FFFEOO 2BF00200 17FFFEOO 2AE00400 057FFCOO 0244COOO 0311COOO 0244COOO

0311COOO 0244COOO 0311COOO 03FFCOOO 03FFCOOO 00000000 00000000 00000000

Type ICON=GNRL
,2020
00000000 00000000 03FFC000 0244COOO 0311COOO 0244COOO 0311C000 0244COOO

0311COOO 0244COOO 0311COOO 0244COOO 03FFCOOO 03002000 03801000 07C00800

OBFFFCOO 17E00400 2BFFFEOO 17F00200 2BFFFEOO 17F00200 2BFFFE00 17F00200

2BFFFEOO 17F00200 2BFFFEOO 17F00200 2BFFFEOO 15E00400 OAFFFCOO 00000000

T'ype ICON=GNRL
,2021
00000000 00000000 03FFC000 03002000 07801000 OBC00800 17FFFCOO 2BE00400

17FFFE00 2BF00200 17FFFEOO 2BF00200 17FFFEOO 2BF00200 17FFFEOO 2BF00200

17FFFEOO 2BF00200 17FFFEOO 2AE00400 057FFCOO 0244COOO 0311COOO 0244COOO

0311COOO 0244COOO 0311COOO 03FFCOOO 03FFCOOO 00000000 00000000 00000000

304 ~ Chapter 20 Putting It All Together

Type ICON=GNRL
,2030
00000000 00000000 03FFCOOO 0244COOO 0311COOO 0244COOO 0311COOO 0244C000

0311COOO 0244COOO 0311COOO 0244COOO 03FFCOOO 03002000 03801000 07C00800

OBFFFCOO 17E00400 2BFFFEOO 17F00200 2BFFFEOO 17F00200 2BFFFEOO 17F00200

2BFFFEOO 17F00200 2BFFFEOO 17F00200 2BFFFEOO 15E00400 OAFFFCOO 00000000

Type ICON=GNRL
,2031
00000000 00000000 03FFCOOO 03002000 07801000 OBC00800 17FFFCOO 2BE00400

17FFFE00 2BF00200 17FFFEOO 2BF00200 17FFFEOO 2BF00200 17FFFEOO 2BF00200

17FFFEOO 2BF00200 17FFFEOO 2AE00400 057FFCOO 0244COOO 0311COOO 0244COOO

0311COOO 0244COOO 0311COOO 03FFCOOO 03FFC000 00000000 00000000 00000000

Appendix A

Glossary

ampersand &

active window

argument

bitmap

brackets []

branch

call

compiler

Character in C that denotes a var and must pre
cede it in the code.

The window that is in front of all other windows
on the desktop.

Roughly equivalent to an operand; defines the
scope of an activity.

A set of bits representing a corresponding set of
items. In QuickDraw, a bit map is a pointer to a bit
image, its row width, and its boundary rectangle.

Used for subscripting an array.

Instruction telling the Mac to jump to another
place in the program instead of following the
normal sequence by executing the next instruction.

Instruction that passes control to a different part of
the program or subroutine. A call executes other
programs or parts of programs as though they
were written in at the point where the call occurs.

Utility that translates the source code from a high
level programming language, C, into the object
code used in running the machine. See linker.

305

306 ..,.. Appendix A

curly braces { }

declaration

dialog

dialog box

event loop

Also called braces, used in C to enclose executable
statements.

Statement of values and data types having a glo
bal influence on a program.

"Conversation" between you and the Mac when
the Mac asks for, and receives, information it
needs to obey your instructions.

Window through which you interface with the
Mac in a dialog.

A loop that repeatedly calls the Toolbox Event
Manager to get events and act upon them.

executable statement Statement that will perform a machine language

function

handle

heap

highlight

initialize

integer

invert

instruction.

Equivalent to a subroutine or function in FOR
TRAN or a procedure in Pascal, a function is a
basic operational entity of any C program. A
function encapsulates a series of computations in
a black box, which you can then use without
worrying about what is inside. With properly
designed functions, you can ignore how a job is
done and concentrate on what is done.

Pointer to a master pointer.

Area of memory where space is allocated and
released on demand via the Memory Manager.

To display an object on a screen in a uniquely
distinctive way.

To set each variable to its starting value in a
program. Essential first step in every program.

Whole number; that is, containing no fractions or
decimal points.

To highlight by changing white pixels to black
pixels and vice versa, a foreground color to a
background color and vice versa, or a foreground
color to a highlight color.

linker

lock

long

master pointer

object code

operand

operator

parameter

parenthesis ()

pattern

picture

pixel

pointer

Res Edit

~ Glossary 307

Utility that links individual object-coded modules
produced by a compiler into a complete machine
language program ready for execution.

To temporarily prevent a movable block of memory
from being moved during a heap operation.

Variable with a data length of 4 bytes.

Pointer to a pointer. Master pointers enable the
Memory Manager to keep track of memory
locations that it has relocated.

Machine language produced by compilation of
the source code.

In an instruction, the part that is acted on; for
instance, "hair cut" in "Get your hair cut."

In an instruction, the part that acts; for instance,
"Get" in "Get your hair cut."

Item of information needed to control a program.

In C, a pair of parentheses encloses a variable in a
statement. If no variable is to be passed in, nothing
goes between the parentheses, but they are still
required by C syntax.

An eight-by-eight bit image that is used to repeat
a design or tone, such as a plaid or a value of gray.

The format of a picture is defined by QuickDraw
as a record of the series of operations necessary to
regenerate the image on the screen.

Short for picture element, it is a dot on a display
screen.

Memory address containing a data item used in
running a program.

Popular resource editor provided free of charge
by Apple and commonly available through bulletin
boards.

308 Appendix A

Resource

returned value

Rez

RMaker

short

source code

structure

system font

system font size

trap

var

variable

void function

Data unit representing a dialog box, menu, alert,
icon or other element of the Apple graphical
interface.

A value that is returned by a function.

Resource editor more recent than ResEdit, incor
porating certain enhancements, but available only
within the Macintosh Programmer's Workshop
environment.

Apple program that creates resources.

Variable with the default length of 2 bytes in C.

Statements in a programming language.

Logical arrangement of a program.

The font (Chicago) that the system uses in menus,
dialog boxes, window title bars, and other desktop
interfaces.

The size of text drawn in the system font (Chicago),
normally 12 points.

A call to the Macintosh Toolbox or Operating
System.

Var is Pascal terminology for a variable to which
you have to pass a pointer.

Value that changes with program dynamics and is
written to or read from memory as required.

Indicates to the Mac that there is no value to return
for a particular function.

Appendix B

Modules Developed
in This Book

The functions in this appendix appear in routines in the book. However,
they are not reviewed or described in the text. We include them here so
that you can keyboard them for inclusion in your own programs .

..._. FitString.c

FitString.c determines whether the string of the checkmarked menu item
will fit in the rectangle in a dialog box. If it is too long, the routine
automatically shortens it and adds a elipsis to indicate that there is more
to the item.

/***/
void FitString(Str255 theString, short spaceForString)
/***/

short
short

strPixels;
strLenth;

if (spaceForString <= 0)
{

spaceForString O;
theString[OJ = '\0';

strPixels = StringWidth(theString);
if (strPixels > spaceForString)
{

/* Space for string? */

/* No. *I
/* Make string an empty */

309

310 Appendix B

strLenth = theString[OJ;
spaceForString = spaceForString - CharWidth (' ... ') ;
if (spaceForString <= 0)
{

spaceForString O;
theString[OJ '\0';

else

for (strLenth = theString[O];
strLenth && strPixels >= spaceForString; -strLenth)

strPixels = strPixels - CharWidth(theString[strLenthJ);

strLenth = strLenth + l;
theString[strLenth] = ' ... ';
theString[OJ = (unsigned char)strLenth;

...., GetStrNum.c

GetStrNum.c gets a particular string out of a STR# resource.

/***/
void GetStrNurn(short theID, short theStringNurn, Str255 theString)
/***/

typedef struct
{

short nurnStrings;
char theStrings[J;
StrList, *StrListPtr, **StrListHandle;

StrListHandle TheHandle;
short
short
short
short
theHandle
the Index = 1;

thelndex;
i, j;

nurnStrings;
stringLen;

(StrListHandle)GetResource ("STR#", theID);

for (i = 1; i <= (*theHandle)->nurnStrings; i++)
{

stringLen theStrings[theindex];
if (i == theStringNurn)

..,.. Modules Developed in This Book 311

if (stringLen > 0)
{

for (j = l; j <= stringLen; j++)
{

theString[j] = theStrings[theindex];
thelndex = thelndex + l;

break;

else

the Index
continue;

theindex + stringLen + l;

~ OpenResources.c

OpenResources.c is a routine a programmer can use during the develop
ment stage of an application to separate code resources from all other
resources.

/***/
void OpenResources (Str255 file)
/***/

short fRefNum;

fRefNum = OpenResFile(file);
if (fRefNum < 0)
{

SysBeep(20);
Stop;

Bibliography

1. Allen, Daniel K. On Macintosh Programming: Advanced Techniques.
Reading, MA: Addison-Wesley, 1990.

2. Beekman, George and Michael Johnson. Oh! Macintosh Pascal. New·
York, NY: W.W. Norton and Company, 1986.

3. Chernicoff, Stephen. Macintosh Revealed, Volume I-Unlocking The
Toolbox. Hasbrouck Heights, NJ: Hayden, 1985.

4. Chernicoff, Stephen. Macintosh Revealed, Volume II-Programming with
the Toolbox. Hasbrouck Heights, NJ: Hayden, 1985.

5. Chernicoff, Stephen. Macintosh Revealed, Volume III-Mastering the
Toolbox. Indianapolis, IN: Hayden, 1989.

6. Chernicoff, Stephen. Macintosh Revealed, Volume IV-Expanding the
Toolbox. Carmel, IN: Hayden, 1990.

7. Coan, James S. and Louisa Coan. Basic Microsoft Basic for the Macintosh.
Hasbrouck Heights, NJ: Hayden, 1985.

8. Crandall, Richard E. and Marianne M. Colgrove. Scientific Program
ming with Macintosh Pascal. New York, NY: John Wiley & Sons, 1986.

9. DeFuria, Steve and Joe Scacciaferro. MIDI Programming for the Macin
tosh. Redwood City, CA: M & T Books, 1988.

10. Hogan, Thom. The Programmer's Apple Mac Sourcebook. Redmond,
WA: Microsoft Press, 1989.

11. Human Interface Guidelines: The Apple Desktop Interface. Reading, MA:
Addison-Wesley, 1987.

313

314 ..,. Bibliography

12. Huxham, Fred A., David Burnard and Jim Takatsuka. Using the
Macintosh Toolbox with C (Second Edition). San Francisco, CA: Sybex,
1989.

13. Inside Macintosh, volumes 1, 2, and 3. Apple Technical Series. Reading,
MA: Addison-Wesley, 1985.

14. Inside Macintosh, volume 4. Apple Technical Series. Reading, MA:
Addison-Wesley, 1986.

15. Inside Macintosh, volume 5. Apple Technical Series. Reading, MA:
Addison-Wesley, 1988.

16. Inside Macintosh X-Ref Apple Technical Series. Reading, MA: Addison
Wesley, 1988.

17. Kernighan, Brian W. and Dennis M. Ritchie. The C Programming
Language. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978.

18. Knaster, Scott. How to Write Macintosh Software. Indianapolis, IN:
Hayden Books, 1986.

19. Knaster, Scott. Macintosh Programming Secrets. Reading, MA: Addison
Wesley, 1988.

20. Krantz, Donald and James Stanley. 68000 Assembly Language. Reading,
MA: Addison-Wesley, 1986.

21. Lewis, Greg A. One Flew Over the Quickdraw's Nest. Montreal, Que.:
Valuable Information Press, 1985.

22. MC68020, 32-Bit Microprocessor User's Manual, Second Edition.
Englewood Cliffs, NJ: Prentice-Hall,1985.

23. M68000, 8-/16-/32-Bit Microprocessor Programmer's Reference Manual,
Fifth Edition. Englewood Cliffs, NJ: Prentice-Hall,1986.

24. Mark, Dave and Cartwright Reed. Macintosh C Programming Primer,
volume I. Reading, MA: Addison-Wesley, 1989.

25. Mark, Dave. Macintosh C Programming Primer, volume II. Reading, MA:
Addison-Wesley, 1990.

26. Mark, Dave and Cartwright Reed. Macintosh Pascal Programming
Primer, volume I. Reading, MA: Addison-Wesley, 1991.

27. Mathews, Keith. Assembly Language Primer for the Macintosh. New York,
NY: The Waite Group, 1985.

28. Mathews, Keith and Jay Friedland. Encyclopedia MAC® ROM. New York,
NY: Brady, 1988.

29. Mednieks, Zigurd R. and Terry M. Schilke. C Programming Techniques
for the Macintosh. Indianapolis, IN: Howard W. Sams, 1987.

..,.. Bibliography 315

30. Morgan, Christopher L. Hidden Powers of the Macintosh. New York, NY:
The Waite Group, 1985.

31. Peatroy, David B. and DATATECH Publications. Mastering the
Macintosh Toolbox. Berkeley, CA: Osborne McGraw-Hill, 1986.

32. Programmers Introduction to the Macintosh Family. Apple Technical
Series. Reading, MA: Addison-Wesley, 1988.

33. ResEdit Reference. Reading, MA: Addison-Wesley, 1990. (An Apple®
development document.)

34. Rosenzweig, Edwin and Harland Harrison. Programming the 68000-
Macintosh Assembly Language. Hasbrouck Heights, NJ: Hayden, 1986.

35. Shafer, Dan. Games and Utilities for the Macintosh. New York, NY: The
Waite Group,1985.

36. Simonoff, Jonathan D. Introduction to Macintosh Pascal. Hasbrouck
Heights, NJ: Hayden, 1985.

37. Smith, David E., ed. The Best of MacTutor-The Macintosh Programming
Journal, volume I. Anaheim, CA: MacTutor, 1986.

38. Smith, David E., ed. The Complete MacTutor-The Macintosh Program
ming Journal, volume II. Anaheim, CA: MacTutor, 1987.

39. Smith, David E., ed. The Essential MacTutor-The Macintosh Program
ming Journal, volume III. Anaheim, CA: MacTutor, 1988.

40. Smith, David E., ed. The Definitive MacTutor-The Macintosh Program
ming Journal, volume IV. Anaheim, CA: MacTutor, 1989.

41. Smith, David E. and Kirk Chase, eds. The Best of MacTutor-The
Macintosh Programming Journal, volume V. Anaheim, CA: MacTutor,
1990.

42. Smith, David E. and Kirk Chase, eds. The Best of MacTutor-The
Macintosh Programming Journal, volume VI. Anaheim, CA: MacTutor,
1991.

43. Technical Introduction to the Macintosh Family. Apple Technical Series.
Reading, MA: Addison-Wesley, 1987.

44. THINK C User's Manual. Cupertino, CA: Symantec, 1989.
45. Traister, Robert J. Mastering C Pointers. San Diego, CA: Academic Press,

1990.
46. Twitty, William B. The Magic of Macintosh, Programming Graphics and

Sound. Glenview, IL: Scott, Foresman and Company, 1986.
47. Twitty, William B. Programming the Macintosh, an Advanced Guide.

Glenview, IL: Scott, Foresman and Company, 1986.

316 ~ Bibliography

48. West, Joel. Programming with Macintosh Programmer's Workshop. Ont.:
Canada: Bantam Books, 1988.

49. Weston, Dan. The Complete Book of Macintosh Assembly Language Pro
gramming, Glenview, IL: Scott, Foresman and Company, 1986.

50. Weston, Dan. The Complete Book of Macintosh Assembly Language Pro
gramming, volume 2. Glenview, IL: Scott, Foresman and Company,
1987.

51. Wilson, David A. Programming the Macintosh II. Palo Alto, CA: Per
sonal Concepts, 1987.

52. Wilson, David A. Macintosh Programming-An Introduction. Palo Alto,
CA: Personal Concepts,1988.

53. Wilson, David A., Larry S. Rosenstein and Dan Shafer. Programming
with MacApp. Addison-Wesley, 1990.

Index

; (semicolon), 2, 8, 10, 16, 93, 98
! (exclamation point), 98
"" (quotation marks), 83
+ (plus sign), 9
*(asterisk), 9, 93
* (star), 16, 93
\ (backward slash), 93
I (forward slash), 16, 93
"#define" statements, 11
& (ampersand), 17, 53, 259, 305
&cSize variable, 259
&DataBounds variable, 259
&ItemRect variable, 259

A
Abort command, 65
AboutDialog.c routine, 67-70, 73
AboutExample.c routine, 70-71
AboutExample.R routine, 72-73
ActiveStatic.c routine, 163-64,

165, 166
AddCell.c routine, 262-63
AddResMenu routine, 23, 34
AddResourceMenu routine, 33
AlertExample.c routine, 83-84, 85
AlertExample.R routine, 84, 85-86
Alerts, 77-86

All Caps command, 65
ALRT resource, 94
Apple Desktop Interface, 101, 129
Argument, definition of, 305
Arithmetic Operators Rule, 9
Array, keymap, 30
Arrow cursor, 37, 38, 40, 41
ASCII, 87, 89, 173, 176, 181, 184-

85, 188, 196,221
and scrolling lists, 270
strings, of numbers, 213-15

Auto-key events, 65

B
BitClr routine, 285
Bit map, definition of, 305
BitTst routine, 29
Black-and-white

cursors,37-38,39,40,41
icons, 132, 135
menus,285
pictures, 150

BNDL resource, 94
Booleans, 29
Brace Rule I (separate lines), 6-7
Brace Rule 2 (if and else), 7-8
Brackets, definition of, 305

317

318 Index

Branch, definition of, 305
Builders, 93
Button(s), 101-8

control, use of icons as,
130-36

default, 238, 196
and dialog records, 169
radio, 119-28, 169, 173,296
real-world, 129

ButtonExample.c routine, 106-7
ButtonExample.R routine, 107-8

c
CalcMenuSize call, 285
Call, definition of, 305
Capitalization, 2, 10-11, 16, 97,

220-24
CapsLocklsDown.c routine, 28,

30-31
Case statements, 5-6, 65
CautionAlert.c routine, 78, 79-80
CenterDialog function, 2, 293
CenterDialog.c routine, 52-54, 55
CenterWindow.c routine, 54-56
Change Case command, 65, 220
CharCodeMask variable, 65
Check boxes, 109-17, 169, 296
CheckBoxExample.c routine,

113-15
CheckBoxExample.R routine,

115-16
Chooser,34
Clipboard, 17, 215, 217-19, 228
CNTL resource, 94
Color, 11, 50

cursors, 37-38, 39, 40-41, 48
default, 104-5
icons, 132, 133, 135
and menus, 275, 279, 280,

285,286
pictures, 150

programs, and memory
consumption, 18-19

QuickDraw, 40
CommandISDown.c routine, 28,

29-30, 32
Command key, 28, 29, 65, 261
Command-P, 49
Commas Rule, 9
Comments, 93
Compiler, 92, 208, 251, 305
Confirmation.c routine, 81-83
Constants, 285
ControllsDown.c routine, 28, 31
Control Panel, 34
Copying, 65, 66-67, 216, 217
CopyrightDialog.c routine, 73-76
Copyright routine, 73-76
CountMltems routine, 26
C programming, 3, 208

and edit text fields, 176, 184
and enumeration-state

ments, 204
and floating-point

numbers, 191
global declarations in, 130
and macros, 284
and menus, 286
and Rez, 92
and RMaker, 93
standards, l, 5-11
and TECopy.c, 216

Crosshairs cursor, 37
Curly braces, 5, 306
CursorExample.c routine, 41-43
CursorExample.R routine, 43-47
Cursors, 1, 37-47

arrow, 37, 38, 40, 41
black-and-white, 37-38, 39,

40,41
color,37-38,39,40-41,48
crosshairs, 37

ID numbers of, 38, 39, 40, 41
plus sign, 37
positioning of, and Edit text

fields, 172-73
wristwatch, 37-38

Cutting, 65, 216

D
DablMenultems.c routine, 24-25
DAllMenultems.c routine, 25-26,

27
Declarations

definition of, 306
global, 130

Desk accessories, 34
Device driver event, 65
Dialog(s), 1, 49-77

creation of, 51-52
Creator, 93
default, font, 66-67
definition of, 306
Event routine, 64
modal, 57-65. See also Alerts
Peek,67
position, 52-54
Print, 206
records, 12,50-51, 169
Select routine, 63, 64, 65
and resources, 90. See also

Dialog box(es); Dialog
Manager

Dialog box(es), 89, 296-97
and buttons, 102-5
and check boxes, 109
definition of, 306
and edit text fields, 169. See

also Edit text fields
and resources, 91-92

Dialog Manager, 50, 103, 242
and initialization, 17-18
and modal dialogs, 57
routines, 280

Digit variable, 205

Index 319

Disk-inserted events, 65
DisposCursor routine, 41
DisposHandle routine, 136, 140,

143
DispTogglelcon.c routine, 140,

293
DITL resource, 72, 86, 94, 149,

241,252
DLOG resource, 88, 91-94, 98-99,

236,240,252
DoAppleMenu.c routine, 23-24
DoButtonlcon.c routine, 133-36
DoPopUp.c routine, 280-86, 293
DoScrollList.c routine, 260-61
DoTogglelcon.c routine, 138-40,

142, 143,293
DoubleFrame.c routine, 247
Double precision number, 190
DrawControls routine, 262
DrawDottedLine.c routine, 231-

33, 234, 293
Drawlt variable, 259
DrawLine.c routine, 233-34, 244
DrawMBar.c routine, 21, 33-34
DrawMenuBar routine, 23, 32
DrawPict.c routine, 150-51, 152-

54
DrawPop.c routine, 276-80
DrawPopUp.c routine, 284, 285,

289,293
DrawScollList.c routine, 257-59,

267,293
Drawstring routine, 67
DRVR resource, 23
DRVR string, 34
DStorage variable, 51
Dummy variable, 217

E
EablMenultem.c routine, 25
EAllMenultems.c routine, 26-27
EditOpen variable, 51
Editors, 92, 93

320 Index

EditText, 58-59
EditTextExample.c routine, 224-

26
EditTextExample.c routine, 226-

28
Edit text fields, 169-229

active, 170-73
and displaying strings, 213-

15
and floating-point num

bers, 190-206
get and put routines for,

206-13
and text edit routines, 215-

20
Errors, 12, 16, 237
Event loop, definition of, 306
Event Manager, 70
Event variable, 70
Every Event variable, 19
Excel, 256
Executable statement, definition

of, 306
Exponent, 190
ExponentBuffer variable, 206

F
FetchCursor.c routine, 38-41
FieldLength variable, 213
File extensions, 83, 89, 105, 113,

151, 165,270
File Manager, 81
File menu, 255, 256
Finder, 17, 89, 92
Find function, 129
FindWindow routine, 64
FitString.c routine, 279, 309-10
FlushEvents, 19
Font

Chicago, 28, 66, 67
Courier, 3, 89
default dialog, 66-67
Helvetica, 90

Manager, 17
and menus, 286
and monochrome monitors,

50
monospace, 3
size, definition of, 308
system, 17, 308

Forks,87,88
FORTRAN, 93, 190
FoundDigit variable, 177
Foundlnteger variable, 177
FoundNumber variable, 197, 198
FractionLength variable, 204
FrameRoundRect routine, 105
FREF resource, 94
FrmDefltem.c routine, 3, 101,

102-5, 106, 244
FrmDefltem function, 3, 293
Function(s)

G

CenterDialog, 2, 293
definition of, 306, 308
Find, 129
FrmDefltem, 3, 293
names of, and capital let-

ters, 2
PutScrap, 217
Spelling, 163

GetActiveEditText.c routine, 170-
71, 172

GetButtonkon. c routine, 130-33
GetCell.c routine, 264-65
GetCheckBox.c routine, 111-12,

113
GetCicon routine, 132
GetCtlValue routine, 112
GetCursor routine, 41
GetDefltem call, 69
GetDitem routine, 64, 112, 124,

133, 165,232,280
Get-Do-Dispose sequence, 136
GetEditFloat.c routine, 211-12

GetEditLong.c routine, 210, 213
GetEditShort.c routine, 111, 207-

8, 210, 213
GetEditString.c routine, 213-14
Get Information dialog box, 91
Getltem routine, 279
GetIText routine, 164, 208
GetKeys routine, 29
GetListString.c routine, 265-66,

293
GetMenu routine, 22, 24, 25
GetMouse routine, 260
GetNewDialog routine, 51
GetNExtEvent, 64
GetRadioButton.c routine, 120-

21, 122
GetResource routine, 53, 151
GetStringList.c routine, 267-70,

293
GetStrNum.c routine, 154, 310-11
GetTogglelcon.c routine, 137-38,

143,293
Global

code, and toggle icon rou-
tines, 136-37

declarations, 130
locations, 91
variables, 12, 17, 216-17,

285,286
GNRL resource, 72, 94
GrafPort, 67, 104-5, 112-13, 170,

232,245,262

H
Handles, definition of, 306
HasColor variable, 40
HasGrow variable, 259
Heap, definition of, 306
Highlight, definition of, 306
HiliteMode variable, 285
Human Interface Guidelines, 1,

101, 123, 171,296

Index 321

Icon(s), 81, 85, 129-47
Builder, 93
Designer, 93
resource, 88
toggle, 136-43, 296
use of, as control buttons,

130-36
IconBut variable, 130
IconExample.c routine, 143-47
IconExample.R routine, 145-47
IconOff.c routine, 141-42, 143
IconOn.c routine, 142-43
Icon Tog variable, 137
Ictb resources, 50
ID numbers, 88, 91-92, 97-98,

149, 150-51,240-41,255
for alerts, 79, 82, 86
forcursors,38,39,40,41
for dialogs, 51, 72, 73, 252
and drawing rectangles, 244
and edit text fields, 207
and menus, 22, 23, 24, 26,

27, 33
and pictures, 149, 154
and pop-up menus, 279
procedure (ProcID), 91
for radio buttons, 120, 121
and string lists, 269

IdspButtonlcon.c routine, 136
!Goof, 173, 175, 176, 177, 184, 196-

98, 209
Image Writer, 49
InactiveStatic.c routine, 164-65,

166
Inch variable, 196, 197, 198, 208
Include statements, 3
INFO resource, 150
InitCursor routine, 40, 41
Initialization, 15-19, 77, 217, 296

definition of, 306
and pop-up menus, 279

322 Index

and scrolling lists, 256, 257-
59

InitMenu.c routine, 21, 22-23
InitToolBox routine, 2-3, 15-19,

28,70,216,293
InputFloat.c routine, 191, 192-96
InputHexLong.c routine, 181-83
InputHexShort.c routine, 179-81,

183
InputLong c. routine, 178-79
InputShort.c routine, 173, 174-77
InsertMenu routine, 22, 285
Inside Macintosh, 174, 255
Integers

definition of, 306
input and output regimes

for, 173-206
IntegerLength variable, 205
Invert, definition of, 306
IsDialogEvent routine, 63
ltemHandle variable, 208
ltemHit variable, 64, 69, 172

K
Keyboard, testing of, 28-32, 36
Kit and Caboodle.c routine,

293-97
Kit and Caboodle.R routine,

297-304

L
LAddRow routine, 257, 269
LDoDraw routine, 257, 259
LDraw routine, 257, 264
LineExample.c routine, 235-38,

249
LineExample.R routine, 236, 237,

238-42
Lines, 231-42
Linker, definition of, 307
List Manager, 255-57, 259, 262,

264,267,269,273
LNew routine, 257, 259

Lock, definition of, 307
Long, definition of, 307
LongNumber variable, 187
Lowercase,65,220-21
LSetCell routine, 257, 264
LSetSelect routine, 267
LUpDate routine, 257, 262

M
Macintosh Programmer's Work-

shop (MPW), 92
Macros, 11-12,284
MaintainCursor.c routine, 64
Manager(s)

Dialog, 17-18, 50, 57, 103,
242,280

Event, 70
File, 81
Font, 17
List, 255-57, 259, 262, 264,

267,269,273
Menu, 17, 21, 23, 32, 132,

276,279,285
Resource, 38, 89
Text Edit, 38, 89
Window, 17, 37, 241

Mantissa variable, 204-5
Map coordinates, 243
MarkMenuitem.c routine, 27-28
Master pointers, 18-19
MBAR resource, 21, 32-34
Memory

and initialization, 18, 19
low-, global variables, 12,

216
menu list area of, 33
and resources, 88, 89
as segmented, 18
and system font, 17
and Text edit routines, 215,

216
type definitions stored in,

135

Menu Manager, 21, 23, 32, 279,
285

and initialization, 17
resources, 276
routines, 132

MenuExample.c, 34-35
MenuExample.R, 35-36
ME:N"lJresource,22,94
Menus, 1,3,21-36,73,255-56

building of, 21-23, 93
and fonts, 17
items, routines involving,

24-28
pop-up, 21, 275-92, 296
testing of, 28-32. See also

Menu Manager
Microsoft Word, 85, 87, 89, 109,

119,240,256
ModalDialog routine, 63, 149,

150,242,260
Modifier flag, 28
Modifier variable, 260
Monochrome monitors, 39, 48, 50
MoreMasters() statements, 18-19
Mouse, 19,28,70,260

-down events, in icons, 130,
133-35,150,275,280-86,
292

-up events, 64, 138
and windows, 64

Move Window routine, 58
MultiFinder, 17
MyModalDialog.c routine, 32,

49,59-65,83,154,294,297

N
:N"etwork events, 65
:N" ew Dialog dialog box, 91
:N"ew Handle routine, 132
:N"eXT computer, 101
:N"extTemporary variable, 184-85,

186
:N"IL macro, 11, 12

Index 323

:N"otation, engineering, 191, 199
fixed,191,199
octal,228
standard, 190, 204
variable, 213

:N"oteAlert.c routine, 78-79, 80, 81
:N"umbers

0

floating-point, 190-206
hexadecimal, 179-83, 187-

89. See also ID numbers

OffsetRect routine, 54
Open command, 255, 256
OpenDialog.c routine, 51-52, 294
Open File command, 255
OpenResources.c routine, 311
Operand, definition of, 307
Operator, definition of, 307
OptionlsDown.c routine, 28,

31-32
Outch string, 204, 205-6
OutputFloat.c routine, 12, 199-

206, 213
OutputHexLong.c routine, 188-89
OutputHexShort.c routine, 187-

88
OutputLong.c routine, 186-87
OutputShort.c routine, 173, 183-

85

p
PACK resource, 255
PaintRect routine, 165
Parameter, definition of, 307
Parentheses,8-9,307
Pascal, 17, 29, 53, 93, 98. See also

Pascal strings
Pascal strings, 172, 174, 175, 178,

185,269
and scrolling lists, 262, 264,

270
Paste command, 65

324 Index

PatBic variable, 165
Pattern, definition of, 307
PenSize call, 234
PICT

data type, 217
files, 149
handles, 151
resource,72, 149-51, 161

PictExample.c routine, 151-54
PictExample.R routine, 154-60
Pictures, 149-61, 307
Pixels, 91, 104, 105, 150

definition of, 307
and lines, 231, 233, 237, 240,

242
and rectangles, 243, 245, 249
and scrolling lists, 258, 262

PlainFrame.c routine, 244-45, 246
PlotCicon routine, 133
Plotlcon routine, 133
Plus sign cursor, 37
Pointers, 41, 132

definition of, 307
and dialogs, 53, 213-14
and lines, 232-33
master, 18-19, 307
and string lists, 269
window,57

PopUpExample.c routine, 289-90
PopUpExample.R routine, 290-92
PopUpMenuSelect call, 285
Preferences Item, 109
Print dialog, 173, 206
Printing, 49-50
Private scrap, 215
PROC resource, 94
PushRadioButton.c routine, 123-

24, 125, 128,294
PutCheckBox.c routine, 109-11,

113
PutEditFloat.c routine, 212-13
PutEditLong.c routine, 210-11

PutEditShort.c routine, 208-9,
211,212,213

PutEditString.c routine, 214-15
PutRadioButton.c routine, 121-22
PutScrap function, 217

Q
QuickDraw, 104, 149

color, 40

R

and dialog boxes, 52
Draw Picture routine, 151
and edit text fields, 171
and lines, 233, 234
and the menu bar, 33
and rectangles, 243
routines, 16-17, 67

RadioButtonExample.c routine,
125-26

RadioButtonExample.R routine,
126-27

RealNumber variable, 196, 198
Rectangles, 243-53, 256, 258, 279
RectExample.c routine, 249-51
RectExample.R routine, 251-53
REdit, 93
RefCon,92
ResEdit, 86, 93

definition of, 307
drawing sequence in, 150
and lines, 240
and resources, 88, 89, 91, 97
and scrolling lists, 258

Resource(s), 1, 87-99
definition of, 87, 308
editors, 92
Manager, 38, 89
maps, 87-88. See also spe

cific resources
Rez,89,92,93,308

~aker,3,85-86,89,92,98,99
definition of, 308
and lines, 240
and menus, 289
program syntax, 93-98
and resources, 108

RoundedDigit variable, 205
Routines

and default buttons, 101-5
five is-down, 28-32. See also

specific routines
RSED resource, 98

s
Save As command, 81
Savecommand,255,256
Scrapbook, 17
ScreenRect variable, 2, 53
ScrollHoriz variable, 259
ScrollingListExample.c routine,

270-71
ScrollingListExample.R routine,

272-73
Scrolling lists, 91, 255-74, 275, 296
ScrollVert variable, 259
Select All command, 65
SelectCell.c routine, 266-67
SetActiveEditText.c routine, 171-

73
SetCell.c routine, 263-64, 269
SetCtlValue routine, 64, 122, 124
SetCursor routine, 41
SetDFont.c routine, 66-67
SetltemMark routine, 28
SetIText routine, 164
ShadowFrame.c routine, 248-49,

279,294
ShiftlsDown.c routine, 28, 32
Short, definition of, 308
ShortNumber variable, 175, 176,

177, 181, 185, 187
Short variable, 175
ShowWindow routine, 52

Index 325

Single precision number, 190
Slop, 57, 58
Spelling function, 163
StackWindow.c routine, 56-58
Standard float number, 190
Statements

case, 5-6, 65
enumeration-statements,

204
executable, 306
include, 3
MoreMasters(), 18-19
void, 16

Static text, 163-68, 169
StaticTextExample.c routine, 166-

67
StaticTextExample.R routine,

167-68
StopAlert.c routine, 78, 80-81
STR# resource, 94, 269, 310
String(s)

ASCII, 213-15
display of, 213-15
DRVR,34
and edit text fields, 213-15
inch,208-9
lists, 256, 267-73
outch, 204, 205-6. See also

Pascal strings
Structure, definition of, 308
SysEnvirons, 40, 104, 132
System file, 255

T
TECapitalize.c routine, 222-23
TEChgCase.c routine, 223-24
TECopy.c routine, 216-18
TECut.c routine, 218
TEGetText routine, 221
TEinit routine, 216, 219
TeLower.c routine, 220-21, 223,

224
Template handles, 53-54

326 Index

Temporarylnteger variable, 184-
85, 186, 188

TempW variable, 58
TEPaste.c routine, 218-19
TERecord routine, 50
TEScrap routine, 17, 215
TESelectAll.c routine, 219-20
TEUpper.c routine, 221-22
TEXT data type, 217
TextEdit, 67, 215, 216, 221

Manager, 17
record, limit, 220
routines, 215-20
scrap, and initialization, 17

Text fields, 169
TheDialog variable, 52, 67, 171,

172
TheHandle variable, 53
ThePattern variable, 233
ThePort variable, 17
TheRect variable, 54
TheString variable, 82, 269
ThickFrame.c routine, 246
THINK C, 1, 3, 11, 92, 256, 286
TickCount routine, 75
To box, 173
Toggle

icons, 136-43, 296
switches, 109, 112-13, 117,

136-43
ToggleCheckBox.c routine, 112-

13
ToolboxSysEnvirons routine, 40
Trap

definition of, 308
dispatchers, 11

TRUE/FALSE status, 29, 64, 83,
260,266

u
Undo command, 65
Update events, 65
Uppercase, 65, 220, 221-22

UpPopUp.c routine, 286-89, 294
UpScrollList.c routine, 257, 261-

62, 294

v
Values, 12-13, 308
Value variable, 212, 213
Var, definition of, 308
Var variable, 175
Variables, 1, 17

definition of, 308
global, 12, 17, 216, 217, 285,

286. See also specific vari
ables

Viruses, 90
"Void" statements, 16

w
WDEF virus, 90
Where variable, 260
WIND resource, 94
Window(s) 49-77

active, definition of, 305
Color Table resource

('wctb'), 37
and lines, 241
Manager, 17,37,241
positioning, 54-56
specification of, 91
stacking, 56-58
titles, 17

WindowKind variable, 171
Window List, 57
Word Perfect, 89
Wristwatch cursor, 37, 38

X, Y,Z
Yes-or-no question, 81, 82

Extending the Macintosh® Toolbox
Programming Menus, Windows, Dialogs, and More:

The Disk!

The disk contains the 104 routines and examples in this book, plus additional routines,
updates, enhancements, and debugs. The routines can be copied into and used immedi
ately for the applications you are writing. If you would like a complete set of source
codes, projects, and resources from Extending the Macintosh Toolbox:

Extending
the Macintosh
Toolbox

Here's my $35!

• 1. Fill out the coupon. Print clearly.

2. Attach a check or money order for $35. If
you want the disk C.O.D., add $5.50. Make
the check out to Extending the Toolbox.
Make sure that the check is in U.S. dollars,
drawn on a U.S. or Canadian bank. If you
would like the disk shipped outside the
United States, please add $5.

3. Send the check (or money order) and the
coupon to:

Extending the Toolbox
822 Hartz Way, Suite 392
Danville, CA 94526

Send me Extending the Macintosh Toolbox Disk 1
right away! Mail the disk to:

Company _________________ _

Address------------------

City ________ State __ Zip _____ _

California residents, add 7% sales tax.

No credit cards, please.

Titles in the Macintosh Inside Out Series

... Extending the Macintosh® Toolbox
Programming Menus, Windows, Dialogs, and More
John C. May and Judy B. Whittle
A complete guide to programming the Macintosh interface.
352 pages, $24.95, paperback, order #57722

... Programming QuickDraw™
Includes Color QuickDraw and 32-Bit QuickDraw
David A. Surovell, Fred M. Hall, and Konstantin Othmer
The first in-depth reference to the Macintosh graphics system.
352 pages, $24.95, paperback, order #57019

... Programming for System 7
Gary Little and Tim Swihart
A complete programmer's handbook to the newest version of the Macintosh system software.
400 pages, $26.95, paperback, order #56770

... Programming with AppleTalk®
Michael Peirce
An accessible guide to creating applications that run with AppleTalk.
352 pages, $24.95, paperback, order #57780

... The A!UX® 2.0 Handbook
Jan L. Harrington
A complete and up-to-date introduction to UNIX on the Macintosh.
448 pages, $26.95, paperback, order #56784

... System 7 Revealed
Anthony Meadow
A first look inside the important new Macintosh system software from Apple.
368 pages, $22.95, paperback, order #55040

... ResEdit™ Complete
Peter Alley and Carolyn Strange
Contains the popular ResEdit software and complete information on how to use it.
576 pages, $29.95, book/ disk, order #55075

... The Complete Book of HyperTalk® 2
Dan Shafer
Practical guide to HyperTalk 2.0 commands, operators, and functions.
480 pages, $24.95, paperback, order #57082

... Programming the LaserWriter®
David A. Holzgang
Now Macintosh programmers can unlock the full power of the LaserWriter.
480 pages, $24.95, paperback, order #57068

... Debugging Macintosh® Software with MacsBug
Includes MacsBug 6.2
Konstantin Othmer and Jim Straus
Everything a programmer needs to start debugging Macintosh software.
576 pages, $34.95, book/ disk, order #57049

"' Developing Object-Oriented Software for the Macintosh®
Analysis, Design, and Programming
Neal Goldstein and Jeff Alger
An in-depth look at object-oriented programming on the Macintosh.
352 pages, $24.95, paperback, order #57065

"' Writing Localizable Software for the Macintosh®
Daniel R. Carter
A step-by-step guide which opens up international markets to Macintosh software developers.
352 pages, $24.95, paperback, order #57013

"' Programmer's Guide to MPW®, Volume I
Exploring the Macintosh® Programmer's Workshop
Mark Andrews
Essential guide and reference to the standard Macintosh software development system, MPW.
608 pages, $26.95, paperback, order #57011

"' Elements of C++ Macintosh® Programming
Dan Weston
Teaches the basic elements of C++ programming, concentrating on object-oriented style and syntax.
512 pages, $22.95, paperback, order #55025

"' Programming with MacApp®
David A. Wilson, Larry S. Rosenstein, and Dan Shafer
Hands-on tutorial on everything you need to know about MacApp.
576 pages, $24.95, paperback, order #09784
576 pages, $34.95, book/ disk, order #55062

"' C++ Programming with MacApp®
David A. Wilson, Larry S. Rosenstein, and Dan Shafer
Learn the secrets to unlocking the power of MacApp and C ++.
624 pages, $24.95, paperback, order #57020
624 pages, $34.95, book/ disk, order #57021

Order Number Quantity Price Total
Name

-- -- -- Address

-- -- --

-- -- -- City /State/Zip

-- -- -- Signature (required)

TOTAL ORDER _Visa

Shipping and state sales tax will be added
Account#

_MasterCard

automatically. Addison-Wesley Publishing Company
Order Department Credit card orders only please.
Route 128

Offer good in USA only. Prices and avail- Reading, MA 01867
ability subject to change without notice. To order by phone, call (617) 944-3700

_Am Ex

Exp. Date

Macintosh Programming

Extending the
Macintosli Toolbox

JOHN C. MAY

JUDY B

The Macintosh® interface presents a
sophisticated and complex challenge to
all Macintosh programmers. Its
intuitive system of icons, menus, scroll
bars, and dialog boxes can be much
more difficult to program than it is to
use. The Macintosh Toolbox, the set of
programming tools incorporated into
all Macintosh computers, is the key to
programming the interface.

Extending the Macintosh Toolbox
is a comprehensive, hands-on guide to
working with the Toolbox. It provides a
practical set of routines designed to
speed up development of applications.
The book begins with the basics of
initializing the Toolbox, building
menus, creating dialogs and windows,
and handling cursors and icons. The
book then covers more advanced topics
in depth, i?cluding picts, resources,
Edit te:i¢, an,d popup menus. The
book also contains ·an, extensive library
of valuable routines to allow you to
create and customize Macintosh
interfaces for your applic;:ation.

You will also learn how to:
• Draw rectangles and scrolling lists
• create buttons, radio buttons,

and icon~

Cover design .by Ronn Campisi

Addison-Wesley Publishing Company, Inc.

WHITTLE

• Develop complex dialog boxes
• significantly reduce the time

required to develop a fully
functional application

and much more.

In addition, appendices provide a
helpful glossary and a thorough
bibliography. This complete coverage
of vital Toolbox concepts and features
makes Extending the
Macintosh Toolbox an
essential guide for all
Macintosh programmers.

John C. May is a
computer consultant
and programmer
specializing in creating
and adapting Macintosh
software.

Judy B. Whittle is an
experienced technical
writer.

9 7 80201 57722'8

52495>

I SBN 0-201-57722-4
57722

