
Francis G. McCabe
High-Level
Programmer's
Guide to the
.68000

C. A. R. HOARE SERIES EDITOR

High-Level Programmer's Guide
to the 68000

/

Prentice Hall International Series in Computer Science

C. A. R. Hoare, Series Editor

BACKHOUSE, R. C., Program Construction and Verification
DEBAKKER, J. W., Mathematical Theory of Program Correctness
BARR, M. and WELLS, C., Category Theory for Computing Science
BEN-ARI, M., Principles of Concurrent and Distributed Programming
BIRD,'R. and WADLER, P., Introduction to Functional Programming
BORNAT, R., Programmingfrom First Principles
BUSTARD, D., ELDER, J. and WELSH, J., Concurrent Program Structures
CLARK, K. L. and McCABE, F. G., Micro-Prolog: Programming in logic
CROOKES, D., Introduction to Programming in Prolog
DROMEY, R. G., How to Solve it by Computer
DUNCAN, E., Microprocessor Programming and Software Development
ELDER, J., Construction of Data Processing Software
ELLIOTT, R. J. and HOARE, C. A. R., (eds.), Scientific Applications of Multiprocessors
GOLDSCHLAGER, L. and LISTER, A., Computer Science: A modern introduction (2nd edn).
GORDON, M. J. C., Programming Language Theory and its Implementation
HA YES, I, (ed), Specification Case Studies
HEBNER, E. C. R., The Logic of Programming
HENDERSON, P., Functional Programming: Application and implementation
HOARE, C. A. R., Communicating Sequential Processes
HOARE, C. A. R., and JONES, C. B. (eds), Essays in Computing Science
HOARE, C. A. R., and SHEPHERDSON, J.C. (eds), Mathematica/ Logic and Programming Languages
HUGHES, J. G., Database Technology: A software engineering approach
HUGHES, J. G., Object-oriented Databases
INMOS LTD, Occam2 Reference Manual
JACKSON, M.A., System Development
JOHNSTON, H., Learning to Program
JONES, C. B., Systematic Software Development using VDM (2nd edn)
JONES, C. B. and SHAW, R. C. F. (eds), Case Studies in Systematic Software Development
JONES, G., Programming in occam
JONES, G, and GOLDSMITH, M., Programming in occam 2
JOSEPH, M., PRASAD, V. R. andNATARAJAN, N.,A Multiprocessor Operating System
KALDEWAIJ, A., Programming: The Derivation of Algorithms
KING, P. J.B. Computer and Communication Systems Performance Modelling
LEW, A., Computer Science: A mathematical introduction
MARTIN, J. J., Data Types and Data Structures
McCABE, F. G., High-Level Programmer's Guide to the 68000
MEYER, B., Introduction to the Theory of Programming Languages
MEYER, B., Object-oriented Software Construction
MILNER, R., Communication and Concurrency
MORGAN, C., Programming from Specifications
PEYTON JONES, S. L., The Implementation of Functional Programming Languages
POMBERGER, G., Software Engineering and Modula-2
POTTER, B., SINCLAIR, J., TILL, D., An Introduction to Formal Specification and Z
REYNOLDS, J. C., The Craft of Programming
RYDEHEARD, D. E. and BURST ALL, R. M., Computational Category Theory
SLOMAN, M. and KRAMER, J., Distributed Systems and Computer Networks
SPIVEY, J.M., The Z Notation: A reference manual
TENNENT, R. D., Principles of Programming Languages
TENNENT, R. D., Semannnntics of Programming Languages
WATT, D, A., Programming Language Concepts and Paradigms
WATT, D. A., WICHMANN, B. A., and FINDLAY, W.,)\f>A: Language and methodology
WELSH, J. and ELDER, J., Introduction to Modula 2 ·
WELSH, J. and ELDER, J., Introduction to Pascal (3rd edn)
WELSH, J. ELDER, J. and BUST ARD, D., Sequential Program Structures
WELSH, J. and HAY, A., A Model Implementation of Standard Pascal
WELSH, J. and McKEAG, M., Structured System Programming
WIKSTROM, A., Functional Programming using Standard ML

High-Level Programmer's Guide
tothe68000

Francis G. McCabe

Prentice Hall
New York London Toronto Sydney Tokyo Singapore

First published 1992 by
Prentice Hall International (UK) Ltd
66 Wood Lane End, Heme! Hempstead
Hertfordshire HP2 4RG
A division of
Simon & Schuster International Group

©Francis G. McCabe, 1992

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical,
photocopying, recording or otherwise, without prior
permission in writing, from the publisher.
For permission within the United States of America
contact Prentice Hall Inc., Englewood Cliffs, NJ 07632.

Printed and bound in Great Britain
at Dotesios, Trowbridge, Wiltshire

Library of Congress Cataloguing-in-Publication Data

A CIP catalogue record for this book is
available from the Library of Congress

British Library Cataloguing in Publication Data

McCabe, Francis G.
High-level programmer's guide to the 68000.
I. Title
005.13

ISBN 0-13-388034-6

1 2 3 4 5 96 95 94 93 92

Contents

List of figures ... xi

Aims and objectives ... xv

lntroduction .. 1
1.1 Approach .. 4

1.1. l Structure of the book. .. 5
1.1.2 Exercise ... 7

Bits, bytes and numbers .. 8
2.1 Representing numbers in a machine .. 9
2.2 Arithmetic in fixed length bit strings .. 11

2.2.1 Negative numbers ... 12
2.2.2 Multiplication of binary numbers .. 15

General purpose multiplication ... 16
2.2.3 Division of binary numbers .. 18
2.2.4 Exercises ... 23

2.3 Other kinds of numerals .. 25
2.3.1 Fixed point numbers ... 25

Binary fractions .. 25
Fixed point arithmetic .. 26

2.3.2 Floating point numbers .. 28
Floating point arithmetic ... 31
IEEE Floating point numbers .. 33

2.3.3 Hexadecimal notation ... 33
2.3.4 Exercises ... 34

The 680x0 programmer's model ... 35
3.1 The 680x0 registers ... 36

3.1.1 The condition codes register .. 38
3.2 The 680x0 memory architecture ... 39

v

vi Contents

3.3 Simple assembler programming42
3.3.1 The 680x0 instruction set.. .. 44

The 680x0 addressing modes .. .46
3.3.2 Assembling and running programs .. 46

Symbols, names and assembler directives49
Executing assembler programs51

3.3.3 Exercises ... 52
3.4 Input and output in assembler .. .53

Representing Pascal expressions ... 55
4.1 Scalar values and variables .. 55

4.1.1 Ordinals .. 56
Characters57

4.1.2 Pointers58
4.2 Scalar expressions58

4.2.1 Evaluating complex expressions .. 59
Reverse polish notation ... 60
Evaluating reverse polish form expressions 62
Expression stacks on the 680x0 .. 65
Evaluating an expression using registers 70

4.2.2 Error checking ... 71
4.2.3 Exercises ... 74

Pascal compound structures .. 75
5.1 Records ... 75

5.1.l Assignment of a record variable ... 78
5.1.2 Pointers and pointer manipulation ... 79
5.1.3 The with statement ... 81
5.1.4 Exercises ... 84

5.2 Representing arrays ... 85
5.2.1 Arrays of records .. 89
5.2.2 Arrays of arrays ... 90
5.2.3 Exercises ... 93

Advanced Pascal data structures ... 95
6.1 Packed data structures ... 95
6.2 Representing sets ... 102

6.2.l Set membership and element insertion 103
6.2.2 Set intersection, union and difference 106
6.2.3 Exercises ... 108

Representing Pascal control ... 109
7.1 Simple Pascal control structures ... 110

7.1.1 Conditional if then el.se .. 110
Conjunctions and disjunctions .. 113

Contents vii

7.1.2 Loop control statements ... 115
The repeat loop .. 115
The while loop ... 116

7.1.3 The for loop .. 118
7.1.4 Case statements .. 122
7.1.5 Exercises ... 126

7.2 Coding for performance ... 126

The Pascal procedure ... 130
8.1 Parameters and local variables .. 132

Accessing parameters in a procedure body 134
8.1.1 Local variables .. 136
8.1.2 The procedure epilogue .. 139
8.1.3 A complete Pascal procedure ... 141

8.2 Nested, scoped and global .. 142
8.2.1 Registers and register allocation ... 144
8.2.2 Exercises ... 146

8.3 Functions ... 148
8.4 The qoto statement ... 150

Symbolic programming languages .. 154
9.1 Recursive data structures ... 154
9.2 LISP data structures ... 156

9.2.1 Representing S-expressions ... 158
9.2.2 Representing LISP atoms ... 160

Symbol dictionary .. 161
9.2.3 Numeric atoms .. 162

Big nums in LISP ... 163
9.2.4 CONS pairs, heaps and collecting garbage 166

Garbage collection .. 168
9.3 Executing LISP programs .. 170

9.3.l Evaluating and accessing S-expressions 171
9.3.2 Function application ... 173

Evaluating a function body .. 176
9.3.3 Program sequences .. 180
9.3.4 LISP conditional expressions ... 180

Prolog .. 184
10.1 Prolog data structures ; .. 185

10.1.1 Unification in Prolog .. 190
Compiling unification .. 191

10.2 Controlling a Prolog execution ... 193
10.2.1 The Prolog evaluation stack .. 196
10.2.2 A sample evaluation ... 199

viii Contents

10.3 Using a virtual machine .. 204

Addressing modes for the 680x0 ... 208
A. l Register direct addressing ... 208
A.2 Immediate addressing ... 209
A.3 Absolute addressing .. 210
A.4 Address register indirect... .. 211
A.5 Address register indirect with displacement 212
A.6 Address register indirect with post-increment... 213
A.7 Address register indirect with pre-decrement... 214
A.8 Address register indirect with index .. 215
A.9 Program counter with displacement.. ... 216
A.10 Program counter with index ... 217
A.11 Memory indirect post-indexed .. 218
A.12 Memory indirect pre-indexed ... 219
A.13 Program counter memory indirect with post-indexing 220
A.14 Program counter memory indirect with pre-indexing 221

The 680x0 instructions used in the text : ... 222
add Add source to destination .. 223
adda Add to address register .. 223
addi Add immediate data .. 224
addq Add quick immediate data ... 224
addx Add binary extended .. 225
and AND logical. .. 225
andi AND immediate data .. 226
andi AND immediate to ccr .. 226
as 1 Arithmetic shift left.. ... 227
as r Arithmetic shift right.. .. 228
be c Branch conditionally ... 229
bchg Test a bit and change ... 230
bc1r Test a bit and clear .. 230
bf chg Test bit field and change ... 231
bf c 1 r Clear bit field ... 232
bfexts Signed extraction of a bit field .. .233
bfextu Unsigned extraction of a bit field .. 234
bf ff o Find first one in a bit field .. 235
bf ins Insert a bit field ... 236
bf set Set bit field ... 237
bftst Test bit field ... 238
bra Branch always ... 238
bset Test a bit and set ... 239
b s r Branch to subroutine .. 239
bt st Test a bit ... 240

chk
chk2
clr
cmp
cmpa
cmpi
cm pm
cmp2
dbcc
dbra
divs
di vu
eor
eori
eori
exg
ext
jmp
jsr
lea
link
lsl
lsr
move
move a
move
move
movem
moveq
mu ls
mulu
neg
negx
not
or
ori
ori
pea
rol
ror
roxl
roxr
rtd
rts

Contents ix

Check register against bounds ... 240
Check register against two bounds ... 241
Clear an operand .. 241
Compare ... 242
Compare addresses .. 242
Compare immediate ... 243
Compare memory .. 243
Compare register against bounds ... 244
Test condition, decrement and branch 245
Decrement and branch .. 245
Signed division .. 246
Unsigned division ... 247
Exclusive OR ... 248
Exclusive OR immediate data ... 248
Exclusive OR to condition codes register 249
Exchange registers .. 249
Sign extend data register ... 250
Jump ... 250
Jump to sub-routine .. 251
Load effective address ... 251
Link and allocate .. 251
Logical shift left .. 252
Logical shift right ... 253
Move data .. 254
Move data to address register .. 254
Move from ccr .. 254
Move to ccr .. 255
Move multiple registers to/from memory 255
Move quick immediate data .. 255
Signed multiply .. 256
Unsigned multiply .. 257
Negate operand .. 257
Negate operand with eXtend ... 258
Complement operand .. 258
Inclusive OR ... 259
Inclusive OR with immediate data .. 259
Inclusive OR immediate to ccr ... 260
Push effective address ... 260
Rotate left. .. 261
Rotate right. ... 262
Rotate left with eXtend ... 263
Rotate right with eXtend .. 264
Return and deallocate parameters ... 264
Return from sub-routine ... 265

x Contents

Sec Set according to condition .. 265
sub Subtract source from destination ... 266
sub a Subtract from address register ... 266
subi Subtract immediate data ... 267
subq Subtract quick immediate data .. 267
subx Subtract with extend .. 268
swap Swap register halves .. 268
tst Test an operand .. 268
unl.k Deallocate ... 269

Answers to selected exercises .. 270
Exercises 2.2.4 .. 270
Exercises 2.3.4 .. 273
Exercises 3.3.3 .. 275
Exercises 4.2.3 .. 276
Exercises 5.1.4 .. 279
Exercises 5.2.3 .. , ... 280
Exercises 6.2.3 .. 283
Exercises 7.1.5 .. 285

Index ... 287

•

List of figures

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 2.11
Figure 2.12
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6

Bit strings and binary expansions
Modulus arithmetic on a clock
The multiplication of 5 by 10
The division of 1989 by 16
Fixed point representation of 1990.1018
Floating point representation of 1990.1018
Different floating point representations of 12.34
Normalized representation of 12.34
Floating point zero
A very small floating point number
Floating point number
Guard digits in normalization
Programmer's registers on the 680x0
The 68000 condition codes register
Move the contents of location 1000 to dl
Add the contents of dl to dO
Move the contents of dO to location 10 0 2
A sample listing of an assembled program
Anatomy of a line of listing
Encoding a move instruction
The cmp instruction
The parse tree of (x*y+z**2) I (x-y)
The evaluation of (x*y+z**2) I (x-y)
The system stack as an expression stack
Sources of error in an expression
The layout of a Pascal record in memory
Assigning to a field in a record
Inserting an element into a list
The layout of an array in memory
Assigning an element of an array
The layout of a 2-dimensional array

xi

10
11
17
22
25
28
29
30
30
30
31
32
36
38
43
43
44
47
47
48
49
60
65
66
72
77
78
81
85
89
91

xii List of figures

Figure 5.7 A 2-dimensional array as a vector of vectors
Figure 5.8 Structure of array [1 .. J, 1 .. K, 1 .. L] of
Figure 6.1 The layout of a packed record
Figure 6.2 Masking off unwanted data
Figure 6.3 Perform arithmetic on extracted field
Figure 6.4 Re-align data for packing into record
Figure 6.5 Remove old field value from record
Figure 6.6 Insert new data into packed record
Figure 6.7 Byte and bit offset from element index
Figure 6.8 Bitwise or as set union
Figure 7.1 Structure of a case selection table
Figure 8.1 The system stack after a jsr instruction
Figure 8.2 Parameters on the system stack
Figure 8.3 Allocating space using a link instruction
Figure 8.4 Copying non-scalar parameters on the stack
Figure 8.5 Stack after an unlk instruction
Figure 8.6 Parameters to a function call on the stack
Figure 9.1 A box diagram of a LISP dotted pair
Figure 9.2 A box diagram of a LISP atom

92
integer 93

97
98
99
99

100
100
104
106
123
131
134
137
138
140
149
158
159

Figure 9.3 Box diagram of ((a . 1) (b c d) ((e 23. 3) f))
Figure 9.4 Box diagram of ((a . 1) (b c d) ((e 23. 3) f))

Figure 9.5 The append atom structure

159
159
161

Figure 9.6 Alternative representations of '23'
Figure 9.7 98,537,195,986,590,732,017,237 as a list of digits
Figure 9.8 98,537,195,986,590,732,017,237 in bit strings
Figure 9.9 The free-list of unused list pairs
Figure 9.10 Paths along x
Figure 9.11 Code properties of the append atom
Figure 9.12 Revised layout of code property of append
Figure 9.13 Layout of an undefined function's atom
Figure 9.14 Structure of a variable atom
Figure 9.15 Revised structure of a variable atom
Figure 10.1 Structure of a Prolog cell
Figure 10.2 Box diagram of foo (X, a, bar (X))
Figure 10.3 Box diagram of Prolog term [a, b, a, b]
Figure 10.4 Binding a variable to another variable
Figure 10.5 Binding a shared variable to a term
Figure 10.6 Structure of a call record
Figure 10.7 Argument registers
Figure 10.8 Local variables introduced by a clause
Figure 10.9 Structure of a choice point
Figure 10.10 Initial state of the Prolog stacks
Figure 10.11 Create a call record
Figure 10.12 Bind local variable to argument

162
163
164
167
172
174
175
175
178
178
186
187
188
188
189
196
197
198
198
199
200
200

List of figures xiii

Figure 10.13 A human choice point 201
Figure 10.14 First attempt at finding a greek · 201
Figure 10.15 Attempt a greek solution 202
Figure 10.16 Re-attempt to solve human 202
Figure 10.17 Bind answer to socrates 203
Figure 10.18 The final state of the fallible greek stacks 203
Figure A.1 Register direct addressing 209
Figure A.2 Absolute addressing 210
Figure A.3 Address register indirect addressing 211
Figure A.4 Address register indirect with offset 212
Figure A.5 Address register indirect with post-increment 213
Figure A.6 Address register indirect with pre-decrement 214
Figure A.7 Address register indirect with index 216
Figure A.8 Example of program counter with index 217
Figure A.9 Memory indirect post-indexed address computation 218
Figure A.10 Memory indirect post-indexed addressing 219
Figure A.11 Memory indirect with pre-indexing address computation 220

...

For Mary Ann and Jessica

Aims and objectives

This book arose as a result of frustration in standard assembler course
books which primarily teach assembler as 'yet another programming
language' without adequately relating assembler level features to real
applications.

The overall aim of the book is to allow you to gain an appreciation of
the impact of computer architecture on software. Such an understanding
is important even if you never again write an assembler program after
finishing this course; since with this insight, you can appreciate the impact
of the computer architecture on the programs you may write (or cause to
be written) in other programming languages. On the other hand if you
have a slightly 'queasy' feeling as you write and debug programs in high
level languages this may be because you d9 not feel that you are in full
control of the resources you are using. Such queasy feelings disappear
when programming in assembler (although they may be replaced by ones
of frustration ...)

We specifically do not, however, aim to teach assembler programming
as yet another programming language. This is because very few
applications need to be programmed in assembler, and therefore, few
people program in assembler directly. Of course, in order to gain an
appreciation of something it is necessary to know it at least a little.
Therefore we will be learning about the programming concepts behind
assembler language in general and the 68000 series in particular. The
difference is in the perspective and the approach of this course.

What you should gain as a result of following this book is an
understanding of what is in a modern computer, and how its various
resources are used to implement programs written in modern
programming languages. To this end we will see how data objects of
various kinds are represented in the machine; for example we will see
how various number systems arise and how they are manipulated to
perform arithmetic. We will also see how some of the basic features of

xv

xvi Aims and objectives

'
programs written in Pascal, LISP and Prolog are mapped onto the
computers resources.

Just as we do not aim to teach assembler programming as another
programming lanuage, nor do we aim to teach compiler construction.
Although there is some overlap, in the sense that a compiler construction
course would also cover details of code generation, our objective is to
understand the code that is generated by high quality compilers, not how
the code is actually generated.

CHAPTER ONE

Introduction

A reasonable question to ask at the beginning of this book is why anyone
might ever program in assembler which is after all only a human-readable
version of the computer's own language. Why then, should we be
interested in programming computers in their own language? Most
programs are written in high-level languages, such as 'C', COBOL and
Pascal, which are then compiled down to the machine language by
automatic compilers. High quality compilers exist which will generate
code which is - on average - as good as if not better than the handwritten
code produced by an average programmer in assembler.

On the other hand it is possible to produce programs in assembler that
are faster and more compact than automatically generated code.
Depending on the application it is possible to obtain improvements in
performance compared to the equivalent programs written in Pascal or 'C'
of between 100% to 500%. Whilst for many applications, this performance
penalty is more than compensated for by faster program development, for
some applications the difference can be very important: a classic
application domain where performance is essential rather than desirable is
in real-time control systems such as flight control systems or nuclear
power station control systems. Other examples include language
interpreters, parts of operating systems or some numerical algorithms in
libraries (such as sorting or numerical solution techniques).

A second strong motivation for using assembler language is that it offers
complete control of the machine. This control comes in two flavours.
First, some of the physical resources of a typical computer - such as disk
drives and modems for example - are not directly available in languages
like Pascal. Standard Pascal provides logical input and output, so it is
possible to access files but it does not allow access to specific sectors on
specific tracks on a disk.

Therefore to access the physical level of input/ output it is necessary to
use assembler. This becomes crucial when designing drivers for 1/0
devices in an operating system or when a new type of device is to be added

1

2 Introduction

to an existing system: someone must implement the necessary functions
to allow a computer to access disk drives and keyboards etc. Often, only a
small amount of assembler 'glue' is needed to interface the main
application program to the physical device; the bulk of any application can
remain in Pascal.

The second form of control available to the assembler programmer,
which is not available to the Pascal programmer, arises out of the very
nature of assembler programming. While high-level languages such as
Pascal impose a structure on programming and restrict the nature of
possible programs, there are no 'rules' regarding the structure of an
assembler program.

A classic example of this is the division between programs and data.
Languages like Pascal impose a rigid boundary between programs and data
which it is not possible to break. This is for a good reason - most of the
time programs and data do not mix, and it is a source of errors that they
can be confused. On the other hand, this boundary does not exist in
assembler programs: an assembler program is represented in the computer
as an array of data with a particular format that the computer can interpret
as instructions to execute. The only difference between program memory
and data memory is that the latter is not likely to produce useful results
when executed: logically (and usually also physically) they are the same.

Such flexibility is used all the time in operating systems where, for
example, application programs are loaded off disk into different parts of
memory and then executed. The act of reading a program from a disk and
storing it into memory is possible only by interpreting instructions as data
which can be copied to and fro. The number of times an application
programmer needs to write an operating system are admittedly rare but
the ability to do so is none-the-less crucial to modern computers.

Not all programming languages have such a rigid boundary between
programs and data - one of the reasons that symbolic languages like
Prolog and LISP are so powerful is precisely that they do not have such a
rigid boundary. A LISP program (or a Prolog program) is easily handled as
a standard data object by other LISP programs (or even by itself ...). So, it is
easy, for example, to write a system in LISP (and Prolog) that edits LISP
programs, transforms them in some way, and executes the result all
within the same program.

Assembler programs are harder to build than equivalent programs in
Pascal, COBOL, Prolog or LISP. This is because the programmer has to do
more: there is normally no support in assembler for data structuring,
control flow and other support structures found in a modern
programming language. This extra work means that an assembler
programmer may be some 10-15 times less productive than a 'normal'
programmer. It also means that an application written in assembler will
cost 10-15 times as much to build as one written in Pascal (say). The extra

Introduction 3

cost burden of writing in assembler might never be recovered by the
investor.

A further 'problem' with writing an application in assembler is the
inherent commitment to a single architecture. A program written in
Pascal can be moved from one computer to another simply by recompiling
it. In contrast, porting an assembler program from a 68000 to an 80386 (say)
is almost as expensive as writing it from scratch. This further increases
the cost of developing an application in assembler since the investment
cannot be spread across different machines.

We would therefore argue that the decision to write an application in
assembler is rare in practice and is taken only where the benefits outweigh
the heavy cost penalties.

Whilst few programmers might ever write many programs in assembler
this does not imply that it is not important to know about computer
architectures and assembler programming. All programs in modern
computers are mapped onto the assembler level either via compilers or
interpreters. (A possible exception to this would be neural network
computers which could not be said to be programmed in the normal sense
of the word.) Thus all programs execute in assembler whether they were
programmed originally at that level or not.

Programming languages also reflect the underlying computer
architecture in the sense that constructs in the language reflect what the
computer is capable of. Usually, the simpler an operation is to perform on
a computer, the easier it is to express that operation in the programming
language. Conversely, language designers are reluctant to build into their
languages features which are known to be difficult or expensive to
implement.

A good example of this is the tendency to restrict numbers in application
programs to be fixed in size, say to 32 bits or 15 decimal digits. It is very
easy to support fixed size numbers in a programming language since they
are always directly supported by the computer. On the other hand it is
harder to represent and manipulate numbers of an arbitrary size in the
machine. The net result is that almost every programming language
employs fixed length numbers and very few programming languages even
allow the possibility of arbitrary size numbers. This same constraint
typically propagates to the level of the application program - resulting, for
example, in fixed size fields in databases and limited precision in
spreadsheets.

In summary, an understanding of assembler level programming can
complete the understanding of programming at the application language
level. By seeing the way that programming language constructs are
mapped onto a typical computer, the programmer can gain an insight into
the various resources he is using; how expensive they are and where
optimizations might be fruitful. The prime motivation of this book is

4 Introduction

therefore to increase your understanding of programs and programming
by seeing how a computer is used to implement programs written in
Pascal (say) rather than to teach you how to program in assembler as
though that were yet another programming language.

1 . 1 Approach

Given our motivation for introducing assembler language programming
an obvious approach is to see how a modern programming language is
mapped onto a typical modern processor. We take Pascal as our primary
example of a 'modern' programming language and the 680x0 series of
processors as our modern computer.

Pascal is a reasonable choice as an application language even though it
may not be the most popular programming language for professional
programmers. This is because it contains features which are found in
many other languages - which you are likely to use - such as types,
records, arrays, recursion, scoped procedures etc. It is simple to see how
other programming languages like 'C' are represented by viewing them as
simple modifications to the basic scheme presented for Pascal.

As a target architecture, the 680x0 is appropriate since it is popular in
real computers and it has a clean straightforward architecture. In seeing
how Pascal is mapped to the 680x0 we can appreciate some of the
architectural features that we find in the 680x0 (for example the use of
separate address and data registers in the 680x0 register bank).

There are several models in the 68000 range of processors. Since we are
primarily concerned with the basic instructions common to the whole
range, we shall refer to the 680x0 when we mean any of them. Where a
difference is important (in that it allows us to choose a different
representation of a programming language construct) we will obviously
highlight it. For example if there are restrictions which apply to the 68010
or 68000, or when we want to discuss additional features available on the
68020 or 68030 which are not available on the base 68000 model; in these
circumstances we shall be more explicit.

Note that this is not a book about how to program; and we shall assume
that you are already familiar with, and are reasonably comfortable writing
programs in, Pascal. However, since it would be unnecessarily restrictive
to make the same assumption about the assembler level, we will give a
basic introduction to the architecture of the 680x0 series from a
programmer's point of view. This includes introducing the concepts of
registers, memory and so forth.

However, we will not be going into the details of the architecture of the
68000 that would be necessary for a computer designer. Thus we will not
be dealing with issues relating to interfacing the 68000 to memory; nor will

1.1 Approach 5

we be looking at some of the specialist assembler techniques needed for
handling interrupts and other operating system functions.

There are a number of programming languages which do not fit into the
Pascal mould. In particular symbolic languages such as Prolog and LISP
are so different to Pascal that they require radically different
representations in the machine. Therefore in the latter sections of this
book we explore the features of these languages as well.

What we will do is examine the major components of the Pascal
language and see how they are represented on the 680x0. We will do this
by supposing that we ourselves are a reasonably clever compiler and we
have the job of compiling Pascal programs onto the 680x0. We will often
look at fragments of Pascal programs and see how they are mapped into
the machine.

For example, by the time that we reach the end of Chapter 8, we will be
able to look at the program fragment:

procedure swap(var i,j:integer);
var k:integer;
begin

k:=i;
i:=j;
j: =k;

end;

and we will see how programs like this can be represented by sequences of
680x0 assembler instructions such as:

swap link a6,#-2 ;allocate k
move.! 12(a6),a0
move.w (aO), -2 (a6) ;k:=i
move.! 8(a6),al
move.w (al), (aO) ;i:=j
move.w -2 (a6), (al) ;j:=k
unlk a6 ;deallocate k
rtd #8 ;clean up and return

This is not a compiler construction course: therefore we will not cover at
all such aspects of the compilation process as parsing, dictionaries, type
checking etc. Our interest is in the end product of a compiler, not how the
compiler goes about its business.

1 .1 .1 Structure of the book

This book is intended to be followed sequentially. The early material is
quite basic whereas the latter parts are more advanced. The last two
chapters on LISP and Prolog are optional in the sense that they refer to

6 Introduction

languages which are considerably less widespread in their use than the
mainstream languages which are well represented by Pascal.

Most chapters are accompanied by exercises. These are intended to
deepen your understanding of the text. Some of the exercises lead into
areas which go beyond the scope of the book, and the reader is encouraged
to follow this lead.

Chapter 2 concentrates on the issues involved in representing numbers
in the machine. We look at how integers are represented, and the
fundamental nature of computer arithmetic. We also see how algorithms
for multiplication and division can be implemented. It is important to get
to grips with numbers in computers because they appear extremely
frequently within programs.

Quite apart from their role in application programs, multiplication and
division represent the most complex operations which are necessary to
support features of Pascal itself. Other, more complex operations such as
cosine and square root are important for applications but are not needed to
access and generate data structures.

Chapter 3 introduces the basic structure of the 680x0 series of processors.
The aim of this chapter is to familiarize you with the registers and
operations available to the assembler programmer. We also see exactly
what goes into an assembler program, and how they are assembled.

By the end of Chapters 2 and 3 you should be aware of the major
components of the 680x0 and the kind of data objects that are prevalent in
an assembler program. This provides a base for the following chapters in
which we explore the use of 680x0 features to support Pascal.

Chapter 4 looks at the representation of scalar values and expressions.
Some techniques for implementing expressions are presented based on
converting into reverse polish notation and using the system stack and
registers. We also look at the role of run-time errors in making sure that
programs only execute normally when the arithmetic performed is safe:
i.e. it is within the limits set by the program.

Chapter 5 concentrates on non-scalar or compound data structures. We
cover how records are laid out in memory and how fields of records are
accessed. We also see how arrays are mapped onto the machine and how
array elements are indexed and accessed.

The more advanced Pascal data structures such as packed structures and
sets are covered in Chapter 6. We illustrate the large difference between
accessing normal or unpacked structures and packed structures. In this
case, and generally, we show the instructions necessary to access structures
both in standard 68000 instructions and in 68020/68030 instructions (where
their additional instructions and addressing modes can make the tasks
simpler).

In Chapter 7 we tackle the issues of Pascal's control features. We see
how the various basic control structures such as conditional statements

1.1 Approach 7

and loop statements are supported by the 680x0. We conclude this chapter
with a section on performance oriented assembler programming.

The procedure and function statements merit a separate chapter:
Chapter 8. In this chapter we see how procedures are called, parameters
are passed to them and how local variables are allocated. This chapter also
examines the complexities of scoped procedures and implementing goto
in the context of scoped procedures.

In Chapter 9 we leave Pascal and look at a completely different style of
programming language, namely LISP. Implementing LISP brings
additional complications over Pascal; in particular we look at how
recursive data structures are represented. and garbage collection.

Chapter 10 introduces some of the mechanisms needed to support
Prolog. Pro log and LISP are quite a lot further from the machine's level
than Pascal. This increased gap is reflected in the relatively long sequences
of instructions needed to implement simple LISP and Prolog programs.

The two appendices A and B provide reference material on the 680x0
machine. These are primarily intended to support the text, but should
also be helpful beyond the immediate scope of this book.

Appendix A summarises the addressing modes available on the 680x0
range, and Appendix B lists all the instructions which are referred to in
the text and others which are related. This listing is not a complete listing
of the 680x0 instruction set, however it does include all the instructions
which are likely to be used in applications level programming. (There are
a number of instructions which are primarily of interest to systems
programmers and are not really relevant to normal programming.)

1.1.2 Exercise

1. Please complete the following in ten words or less:

'It is important that I know assembler language programming
because ... '

CHAPTER TWO

Bits, bytes and numbers

It is a common misconception that computers are mostly about numbers.
In fact, they are as much about characters and symbols as they are about
numbers. The most fundamental type of object manipulated by a
computer is the bit pattern. It is our interpretation of the behaviour of the
computer which assigns meaning to the bit patterns as they are
transformed from one form to another. As far as the internal electronic
circuits within the computer are concerned there are only bit patterns,
there are no 'numbers' or 'characters' within the machine's memory.

The interpretation that we associate with a given bit pattern depends on
the context and use that is being made of it: it can be a number, a character,
a program instruction, a set, a packed record: the list of possibilities is
endless. Any particular interpretation of a pattern is primarily in the
mind of the programmer, not within the machine. On the other hand,
since it is always possible to interpret a bit pattern as an integer, we often
use numbers to write down bit patterns even if there is no intention to
denote an integer.

A bit pattern is simply a sequence of ons and offs, 15 and 05 • Most
computers manipulate bit patterns in fixed length chunks - normally they
cannot easily deal with a quantity smaller than a byte. A byte is a sequence
of 8 bits. A byte in memory can be said to have a value - the pattern of the
state of the 8 switches or bits it contains. Some values that a byte might
take on are:

l•lol•lolol•lolol lololololelololol and l•l•l•l•l•l•l•l•I
I

10100100 00001000 11111111

In all, there are 2s or 256 possible patterns that 8 bits can take. By
associating each of these patterns with a number we can represent any one
of 256 different numbers in a byte, usually written as the range 0 ... 255
although the range could be represented by any range of 256 integers:

8

Bits, bytes and numbers 9

-128 ... 127 or even 1012 ... 1267. Although we might present the bit pattern
in a byte as a number it is not to be confused with the number itself: a bit
pattern is just that -: a pattern.

Bytes are a convenient size because we can represent a character from
the ASCII character set (say) easily in a single byte and character processing
applications are extremely common and important in computing. It
should be said that some character sets - especially the Japanese characters
- require two bytes per character.

Larger groupings of bytes are also common: typically a modern
computer will group two bytes together to form a word (sometimes called
a half-word) and two 16 bit words together form a long word. A 16 bit
word can represent up to 216 numbers, for example in the range 0 ... 65535.
A long word is 32 bits long and can represent 232 numbers, for example
integers in the range -2,147,483,648 ... 2,147,483,647.

Having said that the fundamental structure in a computer is a bit
pattern, it is also fair to say that the representation of numbers and of
arithmetic play an extremely important role in computer applications.
This is not simply in obvious areas such as spreadsheet programs and
graphics but also within the execution of any program. For example, each
byte that is held in memory, or on disk, has an address associated with it.
That address is also a number; and address arithmetic is vital in accessing
data within the machine.

So, we shall explore some of the issues involved in the representation
of various kinds of numeric values. In particular we look at integers, how
negative numbers are arrived at and how arithmetic is performed using
strings of bits. We also explore other kinds of number systems such as
fixed point and floating point numbers. In this way, we can prepare
ourselves for the issues of representing data in general in computers.

2.1 Representing numbers in a machine

A number is an abstract mathematical entity which is not tied to a
particular representation or defining instance. Thus a number should not
be confused with written representations of the number. For example, the
following expressions are all equivalent:

sixty five thousand five hundred and thirty six English decimal
6 5 5 3 6 Decimal
$1 O O O O Hexadecimal
1 O O O O O O O O O O O O O o o OB Binary
LXVDXXXVI Roman numerals

10 Bits, bytes and numbers

These expressions are all equivalent in the sense that they denote the
same number: they are numerals. A numeral is an expression which
denotes a number.

The decimal notation that we are familiar with is a shorthand notation
for an expansion into a sum of terms, each of which is a multiple of a
power of 10. Each digit in the numeral corresponds to the factor in a
different term in the expansion; where the position of the digit indicates
which power of 10 is referred to.

For example, we can expand the number 'sixty five thousand five
hundred and thirty six' into a sum of powers of 10; and we can also expand
it as a sum of powers of 16 or 2:

65536 = 6*104+5*103+5*102+3*101+6*100
= 1*164+0*163+0*162+0*161+0*160
= 1*216+0*215+ ... +0*20

All these equations refer to the same number, a slightly different
expansion will give a different number:

65535 = 6*104+5*103+5*102+3*101+5*100
= O*l 64+ 15*163+ 15*162+ 15*161+15*160
= 0*216+1*215+ ... +1*20

The so-called positional notation is used today, in preference over the
Roman system of numbers, because it is useful: we can easily perform
arithmetic on numbers by manipulating their decimal numerals. The
positional notation is so powerful that we can, for example, teach our
children mechanical techniques such as long multiplication and long
division to allow them to multiply and divide numbers beyond the scope
of simple mental recall.

Binary expansion

~ /. I

,~w··>'
I

164 Decimal number

Figure 2.1 Bit strings and binary expansions

2.1 Representing numbers in a machine 11

Each term in a binary expansion of a number is either a 0 or a l; which we
can represent as a switch or a bit (=binary digit). Just as with decimal
notation, the position of a bit in a bit string determines the corresponding
term in the binary expansion. The decimal expansion series notation for
numbers is convenient for ten fingered people, a binary expansion series is
similarly convenient for two fingered computers!

From our perspective, the most important property of binary numbers is
that it is easy to build circuits that can perform arithmetic by using simple
manipulations of the binary bit patterns. These manipulations are
analogous to the manipulations that we make on decimal strings and
which we call (decimal) arithmetic with the added advantage that the
binary versions are often considerably simpler than the familiar decimal
ones. In the rest of this chapter we explore some of basic properties of
binary numbers and see how binary arithmetic can be performed.

2.2 Arithmetic in fixed length bit strings

In a computer with a fixed length word, we do not do normal arithmetic,
instead we do modulo arithmetic. Modulo arithmetic has the property
that the sum of two numbers (or any other arithmetic operation for that
matter) always lies in the same finite range of numbers.

A common example of modulo arithmetic in everyday use is the 12
hour clock. On the 12 hour clock face there are only 12 hours; and
therefore there is no direct equivalent of 13 o'Clock (say): only 1 o'Clock.
In order to perform a calculation in hours, such as adding 3 hours to 10
o'Clock, we perform the calculation in the normal way and then take the
remainder after dividing by 12. 13 remainder 12 is 1, so 10 o'Clock plus 3
hours is 1 o'Clock.

XII

10 o'Clock+ 3 hours= 1 o'Clock

IX

VI

Figure 2.2 Modulus arithmetic on a clock

12 Bits, bytes and numbers

In a byte we can represent 256 numbers, so if we are doing arithmetic
within the space of a byte then the most natural form is arithmetic
modulo 256. Since it is useful to be able to have a zero in our arithmetic,
the range of numbers in modulo 256 is usually described as being from
0 ... 255 rather than from 1...256 as would be analogous to the 12 hour clock.
So, if we add 10 to 20 in byte arithmetic we get the answer 30 as expected;
but if we add 100 to 200 we get 44 rather than 300 because 300 remainder
256 is 44, or

Although modulo arithmetic has a necessarily limited accuracy /range of
representable numbers, it is possible to represent arbitrarily large numbers
(though not infinitely large numbers). This is done by linking together
more than one word/bit pattern to represent the pattern for the whole
number. This form of arithmetic is often called multi-precision or big
num arithmetic. Arithmetic using big nums is much like long arithmetic
as taught in school except that the underlying number system is binary
rather than decimal. We shall return to this topic when we look at LISP
big nums.

2.2.1 Negative numbers

In decimal notation there are several ways that have been used to
represent negative numbers. For example, in accounting practice it is
common to indicate a negative number by enclosing it in parentheses: (10)
is -10 to a bookkeeper. In normal scientific notation we use a special
character, the minus '-' sign, to represent a negative number. We could
also do something similar in binary notation: we could allocate one of the
bits in a bit pattern to signify whether a pattern represents a positive or a
negative number. This bit is called the sign bit. However, for reasons we
shall see below, normally a different notation is used.

There is just one defining property of negative numbers; namely that
adding X and -X gives zero as the result:

x + -x = 0

In modulo N arithmetic all numbers are within the range O ... N-1;
including the negativ~ numbers. This means that negative numbers
appear to map onto positive numbers; for example if we subtract 4 hours
from 2 o'Clock we get 10 o'Clock rather than -2 o'Clock. To form the
negative of a number in modulo arithmetic we subtract it from the

2.2 Arithmetic in fixed length bit strings 13

modulus (12 in this case). For example, to get l-4liz we subtract 4 from 12

which gives 8 as the negative of 4. This is because l4+8=12h2=0.

There are some particular properties of modulo numbers when
combined with a binary representation which make negative values easy
to determine. We saw above that we can represent numbers such as 35 as
expansions of powers of 2:

35 = 0*27+0*26+1*25+0*24+0*23+0*22+1*21+1 *20
= 0010001 lB /o/o/e/o/o/ol•l•I

The negative of 35, l-3512561 is 221, and if we look at the binary expansion
of 221 we get:

221 = 1*27+1*26+0*25+1*24+1*23+1*22+0*21+1*20
= 11011 lOlB l•l•lol•l•l•lol•I

Suppose that instead of binary arithmetic in 8 bits we were to use 9 bits. In
9 bits we can get 512 different numbers, so we use modulo 512 arithmetic.
As before, we can see that 1-351512 is 477, and the expansion of 477 is:

477 = 1*28+1*27+1*26+0*25+1*24+1*23+1*22+0*21+1*20
= 111011101 B l•l•l•lol•l•l•lol•I

This expansion has the same terms as the expansion for 221, except for an
additional term at the beginning. We can repeat this for any number of
terms to get an expansion of -35 in any number of bits, so in 16 bit

arithmetic (i.e. arithmetic modulo 65536), l-35165536 = 65501, and the
expansion for 65501 is:

65501 = 1*215+1*214+ ... +1*26+0*25+1*24+1*23+1*22+0*21+1*20
= 1111111111011101 B l•l•l•l•l•l•l•l•l•l•lol•l•l•lol•I

The rightmost 8 bits are identical in the representations of 65501, 477 and
221. This is true no matter how many bits we choose to represent our
numbers provided that there are sufficient bits to represent them and their
negatives. We would get into trouble, for example, trying to represent -35
in a 6 bit system. In modulo 64 arithmetic, -35 is equivalent to 29, and this
means that we cannot separate the numbers 29 and -35 in a 6 bit system
(just as we cannot distinguish -35 and 221 in an 8 bit system); we would
have to choose which one the pattern represented. But there is not much
point in having a system which allows us to represent -35 but not to

I OoOJ 1

14 Bits, bytes and numbers

represent 29 since 1-29164 = 35. In effect we overflow a 6 bit representation
if we want to represent numbers outside the range -31...31 in 6 bit
arithmetic.

Notice that the bit pattern corresponding to -35 is almost exactly
complementary to the bit pattern for 35 (assuming that we have enough
bits to represent them both faithfully): where there was a 1 we have a 0,
and vice versa. There is, in fact, a simple algorithm for forming the
negative of a number in a binary modulo arithmetic system.

If we look at the binary expansion of a number, complement each of the
factors in the expansion: i.e. if a factor is 1 then set it to 0 and if it is 0 then
set it to 1, and then add 1 to the resulting number then we form the
negative of the original number. So, for example, we can see how to take
the negative of 35:

We complement each of the factors in the expansion to get:

1 *27 +1 *26+0*25+1*24+1*23+1 *22+0*21+0*20

finally we add 1 to the number and we get the new expansion:

1*27+1*26+0*25+1*24+1*23+1*22+0*21+1*20

which is the expansion for 221, which we already know is equivalent to -35
in modulo 256 arithmetic.

A good question to ask is given that we can represent -128, what
happens to 128? In fact the 8 bit pattern for -128 is identical to the pattern
for 128; this means that we cannot represent both in 8 bits. All the
negative numbers in the range -127 ... -1 have the most significant bit set in
their binary numerals, 128 and -128 also have the most significant bit set.
If we choose -128 to be in accord with the other negative numbers, then we
have a simple test for negative numbers: their most significant bit is set.

The signed form of representation is called 2's complement, and
arithmetic using this representation is called 2's complement arithmetic.
Nearly all modern computers use this type of arithmetic as the basic form
of integer arithmetic. Integer arithmetic may be supplemented by some
form of fractional arithmetic, typically floating point, but even that is
sometimes based on 2's complement arithmetic.

Typically, in a computer, we often mix our use of numbers - sometimes
we regard a bit string as representing unsigned numbers, and at other
times it is interpreted as signed. In both forms the interpretation is the
same for positive numbers (i.e. numbers in the range 0 ... 127 for byte
arithmetic). In fact, the operations needed to perform simple arithmetic

2.2 Arithmetic in fixed length bit strings 15

(addition and subtraction) are identical regardless of whether the pattern is
a signed number or an unsigned number. This is useful for computer
designers in that it reduces the complexity of the processor.

2.2.2 Multiplication of binary numbers

After addition and subtraction the most common arithmetic operation
occurring in programs is multiplication. Also, in addition to those
occasions where we explicitly use multiplication, there are other less
obvious situations where multiplications are implied. For example, in
order to access entries in vectors and matrices it is often necessary to
perform a multiplication to convert an index into an offset within the
memory area allocated to the vector or matrix data.

Whilst many micro-processors have a multiplication instruction, some
do not; furthermore general purpose multiplication tends to be one of the
more expensive operations. If we know in advance the multiplier in a
multiplication - as we typically would in an array access - then we can
convert the multiplication into a sequence of simpler operations which
use much faster instructions.

Suppose that we wanted to multiply an unknown number I by a known
multiplier M. We can express this as the product of the binary expansion
for M multiplied by I.

M = mo*20+m1*21+ ... +m0 *2°, where each mi is 0 or 1.

M*I = mo*20*I+m1*21*1+ ... +m0 *2°*1
= mo*1*20+m1*1*21+ ... +m0 *1*2°

In binary arithmetic, we can multiply a number by 2 by shifting its bit
pattern one place to the left. Such an operation is extremely cheap to
compute on a computer since the bit manipulation involved is very
simple. In general, a shift expression such as X<<Y refers to the value X
left shifted by Y places, meaning that the bit pattern which makes up X is
moved Y places to the left and the vacated bits on the right are filled with
zeros. Any bits which 'fall off' the left hand end are lost (except for the last
such bit which is often kept in a special flag).

Using this, we can rewrite the multiplication as a sum of shifts:

M*I = mo*(l<<O)+m1*(1<<1)+ ... +m0 *(I<<n)

In effect, in this breakdown of the multiplication of two numbers, we are
using the bit pattern of the multiplier to control the accumulation of

16 Bits, bytes and numbers

shifted multiplicand terms. For example, if we wanted to represent the
expression: i * 1 O we get:

i*lO = i*8+i*2 since 10=1*23+0*22+1*21+0*20
= i<<3 + i<<l

This expression, involving two shifts and an add, is often twice as fast
compared to using a general purpose multiply instruction to perform the
same multiplication.

General purpose multiplication
We can also see how a general purpose multiplication algorithm can be
constructed from this principle. Notice that in order to multiply I by M we
successively add together terms of the form

l<<k

depending on whether the corresponding term mk in the expansion for M
is a 1 or 0. We can organize a loop whereby in each iteration we form the
next term of the form I<<k+l, and add it to the result so far if the
corresponding IDk+l is a 1. We can find the successive mk's by using a
shift operation on the number M: in each iteration of the loop we divide
the multiplicand by 2. The remainder of this division is either a 1 or 0
depending on the value of the least significant bit:

M+2 = (mo*20+m1*21+ ... +mn*2n)+2
= m1*20+ ... +mn*2n-1 + mo+2

which might be better expressed as

= m1*20+ ... +mn*2n-1 +remainder mo

This amounts to a shift of the multiplier to the right with the remainder
term dropping from the right hand end of the number. We use the
remainder term to decide whether or not to add the current I<<k term to
the result so far. So, each iteration of the loop performs three operations:

1) Divide multiplier by 2, taking the remainder into C:

M: =M+2; c: =remainder;

This can be done in a single step on most computers because a
division by 2 can be achieved with a right shift. The bit pattern in the

2.2 Arithmetic in fixed length bit strings 17

number is shifted one position to the right; the leftmost bit position is
filled with a zero, and the rightmost bit which is lost from the bit
pattern is typically stored in a special 1 bit register or flag. We can test
this C flag and ...

2) if C = 1 then add current multiplicand to answer so far:

A:=A+I;

3) We compute the next multiplicand term I<<k+l by multiplying the
current one by 2, i.e. by shifting it one bit to the left:

I: =I<<l.

We perform this loop for however many significant bits there are in the
expansion of the multiplier; and the algorithm is initialized by setting the
answer A to 0. Figure 2.3 illustrates how the algorithm applies if we let
M=S and 1=10:

M C

[[) D
[]]~I
[]] I
[]] I

I A

1111 11111
1111 1111
1111 + ~1::::::1::::::
11<1=1 11

5*10 ...

DivideMby2

c is 1, so add
Multiply I by 2

[)~0 1111 111 Don'tadd
--=~0-~~1~~.~.~,~,,~+~.~ll~l~A-dd

'------y--'

~ answer= 32+16+2=50

Figure 2.3 The multiplication of 5 by 10

If the numbers involved are 32 bits long (say) then we know that after
doing the loop 32 times there can be no more significant bits in the
multiplier, so the loop is performed no more than 32 times.

In general, the result of the multiplication may have as many significant
bits in it as are in the multiplier and multiplicand together - that is why
the multiply instructions on a processor tend to produce double precision
answers: a 16 bit multiply generates a 32 bit answer.

18 Bits, bytes and numbers

The algorithm as we have stated it is only correct for positive numbers.
However, it is a simple matter to extend it to signed multiplication by
noting the equality:

x*y = sign(x)*sign(y)*abs(x)*abs(y)

We can separately multiply the signs and the absolute quantities of x and
y. The sign multiplication is a simple calculation:

s(x)*s(y) = (s(x)/\ s(y)) v (s(x) /\ s(y))

where s (x) is O if x is positive, and 1 if x is negative. This
multiplication algorithm is the basis for hardware multiplication
instructions.

2.2.3 Division of binary numbers

If we want to see how division is performed in the computer it is useful to
go back to school, and see how long division is done there; for the division
of binary numbers borrows greatly from school level arithmetic. A classic
'sum' that we might do in school is:

1989+16

which, using standard long division has, as its first step, the division of 19
by16:

1
161 1989

16
-3-

The quotient of this division step - 1 - is also the first digit of the quotient
of the whole calculation, and the remainder - 3 - is used in the rest of the
division. The next step in the long division is to divide 38 by 16:

12
161 1989

16
~

32
6

The quotient and remainder of this division - 2 and 6 respectively - form
the next digit of the complete quotient and the new rest-of-dividend. The
calculation continues to remove digits from the dividend until we have

2 .2 Arithmetic in fixed length bit strings 19

run out of digits. The remainder of the last sub-division is the remainder
of the whole division:

124
161 1989

16
~ 1989+16 = 124 remainder 5

32
69
64

5

We can see why long division works by looking at the first step a little
more closely. In particular to divide 1989 by 16 we split it into a most
significant part and a least significant part:

1989+16 = (19+16)*100 + (89+16)

we can now divide 19 by 16 to get

= (1+3+16)*100+(89+16)

because 19+16 = 1 rem 3. Unpacking the expression gives us

= 100 + 300+16+89+16

We can now merge the two divisions

= 100 + 389+ 16

because 300+16+89+16 = (300+89)+16
The most significant decimal digit of 100 - i.e. 1 - is both the quotient of

the sub-division of 19+ 16 and the most significant digit of the full
quotient. As a result of this last step, the whole calculation of 1989+16 is
reduced to the smaller one of 389+16 the quotient of which is guaranteed
to be less than 100.

In general, in each step of the long division, we split the dividend - '1J -
into two parts: the dividend-so-far 'Da and the rest-of-the-dividend 'D6 such
that

for some i, where 'D6<10i

we can choose i so that dividing 'Da by the divisor 'V' results in a single digit
quotient:

20 Bits, bytes and numbers

We can now perform a single step of the long division of 'D+'l/ abstractly:

'D/10i+'J/ + 'D6+'1/

= ('Da div '0*10i + ('Da rem 'J)tlQi + 'D6)+'1/

where 'Da div '1/ refers to the quotient of 'Da + '1/and 'Da rem '1/refers to the
remainder. Referring to our example, we get:

1989+16 = 19*102+16 + 89+16
= 1 *102 + (3*102+89)+ 16

Since ('Darem 'V)<'V, and 'D6<10i, we are guaranteed that
('Da rem 'V*10i + 'D6)+'1/< 1 O i also. Subsequent steps, which involve the term
'Da rem '010i + 'D6, cannot affect the quotient digits calculated so far.

The most significant digit of the full quotient is obtained from this sub
division, and the remainder is used to form the next dividend-so-far 'Da ·

and the next rest-of-dividend 'Dr,~

'Da·= ('Darem '0*10+a
'D6. = 'Dr, rem lQi-1

where a= most significant digit of 'Dr,, and 'Dr,' is the rest of 'Dr,.

When, finally, 'Dr,' becomes zero, and there are no more digits left in the
dividend, then the corresponding 'Da' is the remainder of the whole
division and the quotient can be extracted from the intermediate quotient
digits computed along the way.

In each step of the long division we can concern ourselves with only the
most significant part of the dividend - in particular we can rely on the
property that the quotient of the sub-calculation is a single digit. The full
quotient is calculated one digit at a time. For school children of all ages it
is easier to perform such divisions than full divisions involving multi
digit quotients and this is equally true for computers.

We can apply the same kind of reasoning to long division using binary
expansions for numbers as well as for decimal expansions. As with binary
multiplication, the use of binary expansions considerably simplifies the
procedures needed to perform long division.

If we know that the quotient of 'Da+'V is a single binary digit - 0 or 1 -
then we also know that

Performing the sub-division 'Da+V amounts to a subtraction: if 'Da-~O then
the quotient of is 1, and it is 0 if 'Da< '1/. Thus at the heart of binary long

2.2 Arithmetic in fixed length bit strings 21

division is a simple subtraction and comparison. The binary version of
our example above is:

1oooosl11111000101s

The very first step in this long division would be to attempt the division:
1+ 1000B, which is, of course, 0. Thus the leading binary digit of the
quotient is 0. The next step would be to add an extra digit from the rest of
the dividend and try again: 11B+1000B, which also has a zero quotient.
The first step which results in a non-zero quotient digit is:

00001
1oooosi11111000101s

10000
1111

In the step that follows this one, we can compute the next dividend-so-far
by left shifting the remainder by one bit. The least significant bit of the
new dividend-so-far can be obtained from the most significant bit of the
rest-of-the-dividend. This is done by shifting the rest-of-the-dividend to
the left and extracting the bit that 'drops off'; this bit is then inserted into
the dividend-so-far as it is shifted to the left. The effect of this bit
twiddling is to bring down the next binary digit from the rest-of-dividend
into the current dividend.

The new dividend looks like:

000010
1oooos\11111000101s

10000
11110

1110

The complete binary division sum looks like:

/final quotient

00001111100
lOOOOB\ 11111000101B

10000
11110

11100
11000

10001

final remainder~ ____!Q_
101

22 Bits, bytes and numbers

We can implement binary long division using bit strings in registers. We
use one register ('!?) to represent the dividend-so-far, which in each step is
compared against the divisor ('0, and a third register holds the rest-of-the
dividend ('D). A left shift of the rest-of-the-dividend into the dividend-so
far mimics the action of moving a digit from the dividend to the right of
the current remainder:

Quotient of

sub-d~Q "-Divi,end~-fa' v 7ivWend
D 111111111.-1111111

If we want to accumulate the digits of the quotient we can do so by setting
the least significant bit of a quotient register to the quotient digit obtained
at each step, and then left shifting it along with the dividend-so-far and
rest-of-dividend between steps. The rest of the complete division, in
terms of comparisons and left shifting can be seen though the sequence:

Divisor

Q~
rn111111111~~111111
~1~

v R D

[IIJ 111111111~~[[[[]
~1~
~;~ 11111111 l~ITIJ

~;~~rn
~;5111111111~0

~11111>~

\

O~ ~Final
remainder is 5

Final quotient is 64+32+16+8+4=124

Figure 2.4 The division of 1989 by 16

2 .2 Arithmetic in fixed length bit strings 23

When the last digit has been shifted out of the the dividend then the
algorithm stops, and the quotient register contains the full quotient, and
the remainder is held in the dividend-so-far register. The complete
division algorithm is:

Set 1(.to zero and set Q,to zero; 'l:Jto dividend and o/to divisor.

Repeat for each bit in the dividend:

1) Left shift 'D by one bit, shifting its most significant bit into X;

Left shift '](_by one bit, shifting X into 'Ks least significant bit.

2) If v.:;1<. then
set X to 1, and subtract 'V from 1(

else
set X to 0.

3) Left shift Qby 1, shifting X into Q'.s least significant bit.

As with binary multiplication, this algorithm is only correct for unsigned
division; in order to perform signed division we can convert it into an
unsigned division together with an appropriate sign calculation.

2.2.4 Exercises

1. a) What is the binary expansion for 1000?

b) What is the value of 1-1000165536?

2. How many bits are needed to faithfully represent all the integers in
the range 20 ... 26?

3. Show how the 2's complement proc~dure of 'complementing bits and
adding 1' for negating numbers can be deduced from the negation
axiom and modulo arithmetic applied to binary numbers.

Hint: Take the binary expansion of an arbitrary number, subtract it from
the binary expansion of the modulus.

4. Show the intermediate products involved in multiplying 35 by 24

24 Bits, bytes and numbers

5. Use the division algorithm to divide 10 by 0. What answer would you
have expected? What happens when you divide 0 by O?

6. If the complexity of a 32 bit addition is 32 (from 32 separate bit-wise
additions plus carry), then the complexity of a 32 bit multiply is
essentially 32 additions, i.e. 322. In general, when counting the
complexity of bits, a multiply of N bits is 0(N2).

We can do rather better than this when multiplying 2n bit numbers.
Suppose we want to multiply a x b each of which is a 2n bit number,
then we can re-express the multiplication as follows:

a= ao + Exa1

and

b=bo+Exb1 where E=2n/2

To multiply a and b then, we can form four separate multiplications
and three additions:

a x b = (ao + Exa1) x Cbo + Exb1)
= aobo + (aob1+a1bo)xE + aib1xE2

Since each of ao, ai, bo and bi have half as many bits as a and b
respectively, the complexity of their multiplication is 0.25x0(n2)
which does not achieve very mucli. since we have four of them to do.
However, we can save one multiplication based on the observation
that

We already need the calculation of aobo and aib1 to compute axb; so
these two sub-multiplications are shared.

Show how to implement a bit-wise multiplication algorithm based on
a recursive version of this split. I.e. at each level of the recursion, split
the numbers, multiply the parts and combine the results.

What is the complexity of the recursive algorithm for multiplication?

2 .3 Other kinds of numerals 25

2.3 Other kinds of numerals

Whilst integers are obviously very important to computer programmers
and users, there are many applications where they are not sufficient. For
their sake we look at numeral systems which allow fractional numbers to
be represented; in particular we are interested in fixed point numbers and
floating point numbers.

2.3.1 Fixed point numbers

Perhaps the simplest extension to integers is the system of so-called fixed
point numbers. As the term suggests, a fixed point number consists of a
number with a fixed position of the binary point within the number; i.e.
with a fixed number of digits allocated to the integral and fractional parts.
For example, we might choose to have a fixed point number with 16 bits
for the integral part and 16 bits for the fractional part:

!0000011111000110,00011010000100001

~1~
binary point

Figure 2.5 Fixed point representation of 1990.1018

The number of bits that we allocate to the integral part of a fixed point
number determines the range of numbers that can be represented; the
number of bits allocated to the fraction part determines the accuracy of the
resulting number. In the example here, where we have allocated 16 bits
for the integral part and 16 bits for the fraction part, we can approximate
numbers in the range -32768 . .32767 with a fraction accuracy of one part in
65536.

Notice that the fixed point concept includes the case of integers: simply
set the number of bits allocated to the fractional part to zero and the result
is an integer.

Binary fractions
Recall that in the standard positional notation for integers, each bit stands
for the coefficient of a power term. The same applies for the fractional part

26 Bits, bytes and numbers

of a number, except that we use negative powers: each successive power
term in the fraction represent a smaller magnitude number rather than a
greater magnitude number. So, for example, the fractional number 0.275
can be expanded:

0.275 = 0*20 + 0*2-1 + 1 *2-2 + 0*2-3 + 1 *2-4

So, the binary expression of 0.275 becomes

0.275 = O.OlOlB

The main difference between expanding integers and expanding fractions
is that many expanding series of fractions are infinite. Worse than this,
some fractions are infinite in binary, even if they are finite in decimal. For
example, the decimal fraction 0.3 becomes, in binary:

0.3 = 0*20 + 0*2-1 + 1 *2-2 + 1 *2-3 + 0*2-4 + 0*2-5 + 1 *2-6 + 1 *2-7 ...
0.011001100110011 ... B

On the other hand, there are no finite binary fractions which cannot be
represented exactly as a finite decimal fraction. (This is because any term
of the form 2-x can be expressed as a finite sum of powers of 10.)

Fixed point arithmetic
We can perform fixed point arithmetic using many of the same operations
that are used when performing integer arithmetic. This is because we can
effectively factor out the existence of the fractional part in the number.

For example, suppose that we wanted to add 12.34 to 5.67 in a system of
decimal fixed points in which we have allocated four digits for the integer
part and two digits to the fraction. Since the decimal point is fixed, we can
re-express these numbers as products of significant integers and a known
power of 10:

12.34

5.67

=

=

1234 * 10-2

567 * 10-2

With this in mind we can perform our fixed point arithmetic separately
on the significant integer and the powers of 10:

12.34 + 5.67 =
=
=

1234*10-2 + 567*10-2
(1234+567)*10-2
1801*10-2
18.01

2.3 Other kinds of numerals 27

Thus, to add two fixed point numbers we can simply add up their bit
patterns as though they represented integers. As we shall see, this
procedure is somewhat simpler than that for adding two floating point
numbers and this simplicity is the reason that fixed point numbers are
computationally efficient.

Multiplying two fixed point numbers is slightly more complicated than
adding them because we are also required to multiply the two powers of
10:

12.34 * 5.67 =

=

1234*10-2 * 567*10-2
(1234*567)*10-4
699678*10-4
69.9678

Since this product has four digits in the fraction and in our fixed point
format we only allow two decimal digits for the fraction, we must adjust
the result. This adjustment is accomplished by dividing the result of the
integer multiplication by 100 and ignoring the remainder. The result of
this division is that we 'lose' the two least significant digits to produce an
answer with the same represented accuracy as the two operands:

12.34 * 5.67 69.96

This loss of accuracy is inevitable with a fixed point number system since
we must always ensure that the result has its decimal point in a fixed
place.

The arithmetic for binary fixed point numbers is exactly the same as for
decimal fixed point numbers; except that in order to adjust the result after
a multiplication (and division) we have to divide by a power of 2 rather
than a power of 10. Such a division is easily achieved on a computer by a
shift instruction.

Fixed point numbers are only slightly more complicated to manipulate
than integers. As a result they are very fast, considerably faster on most
computers than floating point numbers for example. For those
applications where it is relatively easy to .predict the required range of
numbers, and that range is not very great, then fixed point numbers are
very suitable.

There are many applications that fall into that category. For example, in
a real-time radar tracking application, the input data is likely to consist of
pairs of angles and distances. The angular data will consist of numbers in
the range 0 ... 360 and will therefore all be of a similar size. The distance
information is likely to have a larger range but may still be in a relatively
manageable band. The effect of this constraint is that a fixed point system

28 Bits, bytes and numbers

may well be sufficient to represent and manipulate the angle and distance
data.

On the other hand, given the loss of accuracy that results when
multiplying two fixed point numbers together, and given the difficulty of
predicting the suitable allocation of bits to the integer and fraction part of a
fixed point number, few programming languages provide direct support
for fixed point numbers. Instead, effort is concentrated on floating point
numbers which are more stable in their accuracy.

2.3.2 Floating point numbers

We saw above that when two fixed point numbers are multiplied together
(or divided) we lose some digits of accuracy simply because of the fixed
point format. It would only require a few multiplications in succession for
the accuracy of a fixed point calculation to be totally compromised. There
are many applications where that would be unacceptable.

We can partially avoid the problem by storing the position of the
binary I decimal point explicitly along with the significant digits which
make up the number. With this arrangement, it becomes clear what to do
when we multiply two numbers: instead of an artificial division to ensure
the fixed point, the floating point is adjusted instead.

mantissa exponent

0001101000010000

floating point

Figure 2.6 Floating point representation of 1990.1018

We call the string of digits which form the significant digits of the number
the mantissa or fraction and the number which indicates the position of
the floating point the exponent.

One immediate point to notice here is that the binary point need not be
within the mantissa: it can be outside it. That is, we can also represent
very large numbers (by having the pointer to the right of the mantissa)
and numbers which are close to zero (by having the pointer to the left of
the mantissa).

An alternative way of understanding the binary point pointer is that it is
a multiplier: the floating point number is represented as a mantissa
multiplied by a power of 2 (or 10 in the case of decimal floating point

2.3 Other kinds of numerals 29

systems or even 16 in the case of some early floating point systems).
Hence the term exponent for the binary point pointer. A formal way of
describing a floating point number is that it is the value of the expression:

~·P mantissa* 2 e;i;ponent

The exact interpretation of the mantissa varies with different systems.
Some systems, in particular early Burroughs computers, interpret the
mantissa as a 2's complement integer. In this system, an exponent of zero
indicates a normal integer value being held in the floating point number.
This arrangement simplifies the arithmetic and allows an integer to be
physically a subset of a floating point number. However, most floating
point formats, and the IEEE floating point standard in particular, normally
regard the binary I decimal point as being on the left of the mantissa.

In fact, for reasons that we shall see shortly, the standard representation
of the mantissa is 'sign and magnitude': a separate bit is used to represent
the sign of the number and the magnitude of the mantissa is represented
as a positive number. So, the full expression of a floating point number is:

I.'E.'Efp {-lJign* mantissa* 2 ezyonent

If the number of significant digits of a number is less than the supported
accuracy (i.e. less than the number of possible digits in the mantissa) then
there are several configurations possible:

1000123400000000

012340000000000

1000000000001~

Figure 2.7 Different floating point representations of 12. 34

Given that, when multiplying numbers there is a tendency for digits to
grow, it is convenient to arrange to shift the significant digits of a number

30 Bits, bytes and numbers

so that the most significant digit is at one end of the mantissa (usually the
left end). This way we can leave room for the number of digits to expand:

\123400000000000 I

Figure 2.8 Normalized representation of 12. 34

Such numbers, where the leftmost digit of the mantissa is guaranteed to be
non-zero, are called normalized. We can gain a further benefit from
normalizing numbers in a binary system.

Since, in a normalized number, the leading bit in a binary floating point
number is always going to be a '1' then we do not actually need to store
that bit. This has the effect of giving an extra bit of accuracy for 'free' in
our representation, and we can represent twice as many numbers.

The problem of multiple representations of a number is considerably
magnified when it comes to representing floating point zero. Clearly, the
mantissa of zero is also zero; however, the exponent could be any value.
However, to ease comparison it makes obvious sense to standardize on an
exponent of zero. This has the added benefit that integer zero and floating
point zero have the same bit pattern.

The exponent is an unusual number in that a very negative value does
not imply a negative floating point value, but rather a very small one. If
we stored the exponent as a simple number, then small numbers would
look quite different from zero:

!000000000000000 000

Figure 2.9 Floating point zero

looks quite different to:

coooooooo 0~01234000000000001

Figure 2.10 A very small floating point number

2.3 Other kinds of numerals 31

This discontinuity between very small numbers - whose exponents are
very negative - and zero suggests that a smoother system might bias the
exponents by adding a large value to them. If we bias the exponent by an
amount equal to the greatest exponent, then a bit pattern in the exponent
field of zero really represents a very small number, and a value of 128 (say
in a system with an eight bit binary exponent), represents an exponent
multiplier of unity. This system is called biassed exponent for obvious
reasons.

So, the conventional floating point format looks something like:

Isl exp I mantissa

Figure 2.11 Floating point number: {-1)5 x 1.mantissa x 2ezy-6ias

We have a sign bit, an exponent which is biassed by the maximum
possible exponent, and a mantissa which holds the significant digits of the
floating point value. The mantissa is normally adjusted so that the
leading bit is non-zero; a fact that we use to avoid storing that most
significant bit.

Floating point arithmetic
In order to add two floating point numbers together, it is not sufficient to
simply add up their mantissae. We must first adjust them so that their
respective exponents are equal, and only then we can add up the
mantissae. Of course, to maintain the correct value of the floating point
numbers any adjustment of the exponents also involves adjusting the
mantissae. So, adding one to the exponent of a floating point number
would need to be compensated by dividing the mantissa by 10 (or 2 in the
case of binary floating points). Similarly, if we subtracted three from the
exponent, we would need to multiply the mantissa by 103 (or 23).

For example, to add up 0.1234*102 and 0.567*101 we must adjust the
numbers so that their exponents match. We could do this by multiplying
0.1234 by 10 so that the first number becomes 1.234*101; then, since both
exponents would match, the addition would proceed giving 1.801 *101 as
the result. ·

However, multiplying the mantissa by a power of 10 (or by a power of 2
in the case of binary floating points) involves a left shift, and in a fixed
field this left shift is likely to cause the most significant digits of the
mantissa to be shifted out of the number. This would compromise the

32 Bits, bytes and numbers

accuracy of the result. If instead, we divide the smaller of the two
operands by 10 we could also align the numbers:

0.567*101 = 0.0567*102

Now if we add up the numbers we get 0.1801 *102; but, more importantly,
any digits which might be lost by dividing the mantissa by 10 are the least
significant digits from the smaller of the two numbers. This will
minimize any errors arising from the addition.

Many floating point systems further reduce any errors by adding one or
more guard digits. Guard digits are not stored with the number but are
used to collect the last digits that were shifted out of the number as a result
of aligning it in order to perform the addition. These guard digits are used
during the calculation and only afterwards, when the result is stored in
the normal format, are the guard digits finally lost.

After adding the two mantissae, it is possible that the result is no longer
normalized. Therefore, after the addition has taken place the number
must be re-normalized. This could mean that the guard digits reappear if
normalization implies that the mantissa is shifted to the right. If
normalization means that the mantissa must be left shifted - i.e. if the
addition resulted in a carry being generated - then the guard digits are
really lost. That should not concern us so much since we are storing the
result as accurately as possible in the given number of bits.

Floating point multiplication is less complicated than addition since we
do not need to align the numbers before performing the multiplication.
Instead, we can separately multiply the mantissae and add the exponents:

0.1234*102 * 0.567*101 = (0.1234*0.567)*10(2+1)
= 0.0699678 * 103

Again, we potentially need to adjust the result to ensure that it is
normalized, and this may mean a shift to the left (as in this case). If we
had used some guard digits to hold the extra digits generated as a result of
the multiplication then some of these would be shifted back into the
number during normalization:

guard digits

I 0.069~6~• x 10' -10. 69961 x 10'

before normalization after normalization

Figure 2.12 Guard digits in normalization

2 .3 Other kinds of numerals 33

IEEE Floating point numbers
We have mentioned a few times the IEEE floating point standard. This
standard arose out of the proliferation of different methods of
representing floating point numbers (for example where to put the binary
point, how many bits to allocate to the exponent etc.) Unlike 2's
complement arithmetic for integers, there is no particular mathematical
reason for choosing one format over another and this has led to great
variety of formats.

The IEEE standard imposes a particular representation of floating point
numbers. It standardises on the layout, on the number of bits allocated to
the exponent versus the mantissa (or fraction as it is called in the
standard) and on a minimal set of operations that can be performed on
floating point numbers.

Over and above this, it uses some of the bit patterns to represent other
numbers: in particular ±oo and a special type of number called a NaN (or
Not a Number). NaNs serve a special role to indicate that the result of a
computation is not representable as a number, for example dividing any
number by zero will result in a NaN.

NaNs have the peculiar property that any calculation involving a NaN
leaves a NaN as its result. The effect of this is to propagate the error
condition through any calculation that generates the nonsense result. In
particular, if an error occurs deep in a calculation the final result will still
show an error. Using a NaN rather than some apparently correct number
allows the calculation to proceed and yet not result in erroneous results.

2.3.3 Hexadecimal notation

Although the natural system of numbers for a computer is binary, writing
down numbers using only binary digits uses a lot of digits: a 16 bit number
may require up to 16 binary digits even though the same number in
decimal will only require up to 5 digits (possibly plus a sign). A variation
on binary which allows a more compact representation is hexadecimal.
There are 16 digits in hexadecimal arithmetic written as
0,1,2, ... ,9,A,B,C,D,E,F corresponding to the decimal numbers
0,1,2, ... ,9,10,11,12,13,14 and 15 respectively. So, for example, the decimal
number 35 would be 23 in hexadecimal notation. To distinguish between
decimal, binary and hexadecimal numbers we prefix hexadecimal
numbers with an '$' and suffix binary numbers with a 'B'. Another
common convention for hexadecimal numbers is to suffix them with an
'H'. This convention also requires - in many compilers and assemblers -
that the first digit of a hexadecimal number be a decimal digit. If it would

34 Bits, bytes and numbers

normally be a letter, for example decimal 211 is DD in hexadecimal, then a
leading zero is added: ODDH.

Hexadecimal is arguably the most natural number system for assembler
programmers; many assembler level tools - such as debuggers and
monitors - print internal numbers in hexadecimal as the default.

The real reason that hexadecimal is convenient is that a single hex digit
corresponds exactly to 4 binary digits. Thus we can easily convert between
binary and hexadecimal as needed. This is not the case for pure decimal -
there is no easy match between binary digits and decimal digits.
Furthermore two hex digits form a byte which is usually the smallest
addressable unit in the machine.

2.3.4 Exercises

1. Suppose that we had a system of decimal fixed point numbers, with
two digits of accuracy. If we start with an initial value of O . 5 O, it
would take just three successive squares before we ended up with a
value of zero:

2.

3.

o.so 2 => 0.25 no lost digits

0.252 => 0.06 lose '25'

0.062 => 0.00 lose '36'

How many iterations would be required to reduce O. 5 to zero in a
binary fixed point system with 16 bits allocated to the fraction?

If the same 16 bits were used to represent the mantissa in a floating
point system, how many squares would then be needed before the
result degenerated into zero?

Give a simple procedure for performing fixed po\nt division; using as
a basis integer division. What sources of error ar(\introduced by the
fixed point notation?

Prove that any number of the form 2-x - where x is a pOst._tive integer
- can be represented as a finite decimal fraction.

CHAPTER THREE

The 680x0 programmer's model

For us to be able to understand how Pascal programs are implemented on
a real computer it is necessary to establish how it is programmed at its own
level. This involves understanding the kinds of data objects, variables
and statements available to the assembler programmer.

The Pascal programmer has a particular model of the world. This
model consists of the legal types of data that can be described, the legal
types of program that can be constructed and various programming
techniques and algorithms that can be used. Together, these form the
grammar and vocabulary of a language which defines the programs that
can be written. Although this language is limited when compared to a
normal natural language such as English, it is somewhat richer than the
native machine language which assembler directly reflects.

The assembler programmer's view of the world can be expressed in
similar terms to the Pascal programmer's view: there are a fixed number
of global variables called registers and a single array called the memory of
fixed size cells. Unlike Pascal variables, whose names and types are chosen
by the programmer, registers nearly always have a fixed name (something
interesting like AO or CX) and a fixed size. There is also a small collection
of statement types - called instructions - each of which is usually much
simpler than a Pascal statement. A typical processor will have from 100 to
200 different instructions; called collectively the processor's instruction set.

The complete combination of registers, memory and instruction set also
forms a language - assembler language - and it is the task of the compiler
(us in this case) to translate programs expressed in one into the other. All
of the Pascal language constructs must be built from these simple objects.

Registers are an important resource for the assembler programmer; as
well as being involved in arithmetic cakulations, registers are often used
to access the memory array. In addition registers are much faster than
memory: it can be 2-10 times faster to access a quantity held in a register

35

36 The 680x0 programmer's model

compared to memory. For this reason, registers. are also used to hold
frequently accessed values and variables.

Given the fact that there are only a few registers - the 680x0 has 16
general registers, and there are rarely more than 32 - and because registers
can be accessed quickly there is a strong desire to use registers to represent
a Pascal program's variables, these register variables must change their
meaning from time to time within the program. It is one of the assembler
programmer's greatest tasks to keep track of the precise meaning of a
register in the various parts of the program.

3.1 The 680x0 registers

The 680x0 has 16 general purpose registers which are split into two banks -
the data registers (identified as dO through to d7) and the address registers
(aO to a7). All these registers are;32-15It~;Jong: i.e. sufficient to hold a long
word bit pattern. ---·

The 680x0 also has some spec;ial purpose registers; in particular the
program counter (PC) and the condition codes register (CCR). If a floating
point co-processor is attached to the computer, then there are, in addition,
eight floating point registers and a floating point control register. There
are a number of other special registers on the 680x0, particularly in the
68020/68030, but they do not normally affect the way that we write general
purpose programs.

aQ ____ -1 ~o ____ _
al dl ------1------
a~ ____ -I ~2- ___ _
a3 d3 ------1------
a4 d4 as - - - - -1 d.s- - - - - Condition codes register
------1------f---~

a§ ____ -I ~6- ____ XNZVCj
a7 d7 PC j

Address regs Data regs Program counter

Figure 3.1 Programmer's registers on the 6BOxO

The split of the 16 registers into 8 data and 8 address registers roughly
reflects a separation of address and data found in Pascal programs The
data manipulated by an application program falls into two aspects: literal
data values - such as the characters in a string or the numbers in an
expression - and the locations or addresses of those values in memory.
The two types of data require different kinds of operation and that is
reflected in their separation in the 680x0.

3.1 The 680x0 registers 37

The data registers are used to hold the arguments and results of
operations. So, for example nearly every arithmetic operation requires at
least one of the operands to be in a data register; with the other being in
memory or in another data register.

The data registers can be accessed and manipulated as 92 bit registers, or
as ~.!~it rggi§J~I.§,. In the latter cases the least significant 8 or 16 bits of
the data register are used and/ or affected by an operation. This flexibility
reflects the different natures of the data commonly processed: 8 bits are
often used for text processing applications for example.

The address registers are most often referred to in the calculation of
where data is. So we shall see below - as in the various addressing modes
of the 680x0 - that the address registers are often used to establish where
the various values are located in memory. It is as though they form a set
of 8 pointer variables where the data registers are integer variables. The
address registers also have a limited computational power associated with
them: mainly the ability to add and subtract into them.

One of the addres~-~sters - a 7 - has an additional interpretation: it is
the §stem stack pointer!___ It is sometimes also referred to as@ This
pointer is used by the processor as the address to which to save the state of
the machine during certain instructions. All of the address registers can be
used to implement stacks, but a 7 is used by the processor when it needs a
stack.

So, when a subroutine or function is called, the stack pointer register
indicates where to store the address of the next instruction to be executed
so that it can be ret"QJJJ.e<!. tQ .. ':'.Yh.~!)._tJ:.l~ .. su£!:~~!~~!:._ha~.£~1..!1.£1~!~9-....:. We shall
see later that we can use this stack for many other purposes: we can use it
for all_oca_ling._a.p,ac;;~.for,Jocal variables .and..fru:J1alding"te.mpoxatyJ.alu.es
during complex computations. ,----...

The 680x0 also has a special shadow register 2f the (a 7 ~egister. This
shadow a 7 register is used by the operating system as- a second stack
pointer during the processing of special events such as interrupt
processing and virtual memory handling. This allows the operating
system to provide a separate memory area which is guaranteed to be
sufficient to process interrupts and other operating system events without
cluttering up the user's workspace.

In fact, some of the models in the 680x0 range have many other
specialized registers. The 68030 has some 30 odd further registers which
are used to implement operating system functions such as virtual
memory. If a floating point co-processor is attached then there are 8 more
floating point registers and three more control registers making a grand
total of 64 registers in the 68030. However we will only be concerned with
18 of them - the 16 address and data registers, the condition codes register
and the program counter.

38 The· 680x0 programmer's model

It is not logically necessary to split registers into data and address
registers: one could easily imagine a scheme where there were 16 truly
generally purpose registers which did not have a predefined association of
being 'data' or 'address'. Not all applications have such an easy separation
between addresses and values as is typical of Pascal programs. For
example, in language interpreters such as Prolog or LISP interpreters,
addresses are ~he data that is most often being manipulated. For programs
in these languages, the split into two banks of data and address registers
can lead to seemingly awkward programming .

•

3.1.1 The condition codes register

In most modern processors a special register is set aside to hold the
various flags which indicate the state of the machine. In the 680x0 the
condition codes register (CCR) performs this function. The five principal
flags stored in the CCR which are available to the application level
assembler programmer are shown in Fig. 3.2:

•• XNZVC

extended 71 Carry /borrow

Negative Zero

Figure 3.2 The 68000 condition codes register

The Carry flag is set whenever the last arithmetic operation resulted in a
value which could not be correctly represented in 8/16/32 bit modulo
arithmetic (depending on the size of the operation). For example, in 8 bit
arithmetic, if we add 100 to 200, then the result will be 44; this is because
the true answer - 300 - is represented as 44 in modulo 256 arithmetic. The
fact that there was an overflow is signalled by the carry flag being set. The
carry flag is also used in the shift operations where it holds the last bit that
was shifted out.

The overflow flag is set when the last operation resulted in a value that
could not be faithfully represented as a signed number in 2's complement.
For example, if we add 100 to 50 in 8 bit arithmetic then the result will be
150. But this is a negative number in 2's complement and so the overflow
flag is set.

The oVerflow flag is important for calculations involving signed
arithmetic whereas the Carry flag is reflects the result of unsigned
arithmetic.

3.1 The 680x0 registers 39

The Zero flag is set if the last data value processed was zero. This is often
used in comparisons, for example. A comparison is implemented as a
subtraction where the result is used only to set flags. If the result of the
subtraction was zero then the two values were equal.

The Negative flag is set whenever the last value computed was a
negative number in 2's complement. In practice that means that the
Negative flag tracks the most significant bit (i.e. the sign bit) of values
computed in the processor.

The eXtend flag. is similar to the Ca!!}'_ flag e~Cef!LJhat it is used in
implementing multi-precision arithmetic. Therefore it is also input to
certain instructions as well as being generated by them.

The individual flags in the CCR are rarely used on their own. Instead
various combinations of them are used which represent more meaningful
conditions. These are the conditions which are directly available to the
programmer in instructions such as branch conditional (bee) where cc
refers to one of the 16 conditions listed below:

Unsigned
arithmetic
conditions

Signed
arithmetic
conditions

{
~

-<

(

cc carry clear
-

HI> .. i!!W
EQ equal/zero
F false/never
MI minus
vc overflow clear

GE?. greater or eqmd
GT> greater than

cs carry set
LS::; low or same
NE, not equal/non zero
T true/ always
PL plus
vs overflow set
LT ~'.. less than

1:7

LE _<; less or equal

Although nearly all processors have some equivalent to the CCR, an
important feature of the 680x0 is that the flags in the CCR are affected by
some non-arithmetic operations as well as arithmetic ones. In particular
any data transfer to/from memory or a data register will affect them
(except for the move multiple movem instruction which saves/reloads
registers without affecting the flags). This is in contrast with processors
such as the Intel 80x86 series, whose condition codes are set only by
arithmetic operations such as addition or comparison. On the other hand
no transfer to an address register will affect the flags.

3.2 The 680x0 memory architecture

The memory array is the single data structure into which all of the
application program, its data and application variables must be mapped.
As a result of this, it is necessary to attach different meaning to different

•

40 The 680x0 programmer's model

parts of the memory array - some of it contains the code itself, other parts
of it contain the data and still other parts belong to the operating system ...
However, from the point of view of the machine itself, there is only a
single interpretation of the memory - it is an array of fixed length bit
patterns arranged as words or cells.

Each memory cell has an index which we call its address. The address of
a memory cell is not part of the memory cell itself, but it allows us to
uniquely identify the cell.

Addresses, like array indices, are just numbers. Such numbers can be
stored in memory cells just as any numbers can be. This allows us to have
some cells 'point' to other cells by allowing them to contain the number of
the target cell's address:

999
1000 _l.Q.93_

1001

1002

1003

1004

Cell at 1000 contains the
address of the cell at1lOO

\.. -==·

Pascal also has the concept of a pointer. In Pascal a pointer is a variable
which contains the address of a value of a given type, usually a record
structure; in assembler all pointers contain addresses of cells in the
memory.

3.2 The 680x0 memory architecture 41

Addresses and pointers are used rather more often in assembler
programming than in Pascal. For example, in order to map out the
memory array into its different components of program, data etc. the
addresses of these areas will frequently appear in registers of the machine.
In fact, pointers are the data structuring equivalent of the goto statement:
just as compound statements suc~s loop control statements can be built
from simpler statements using~ statements, so most data structures
involve the use of addresses in their implementation.

The memory architecture of the 680x0 consists of an array of bytes. Each
byte in the memory array has a unique address, the 680x0 is therefore
termed a byte-addressed machine. Other machines, especially older
machines such as the CDC6x00 series and modern RISC computers, may be
word addressed. In these machines the memory consists of an array of
words each of which might contain several bytes.

Although the memory of the 680x0 is organized as a collection of bytes,
it can also be addressed as a collection of 16 bit words and 32 bit long words.
Two contiguous bytes in memory might be addressed as a single word and
four contiguous bytes may be addressed as a long word.

On the 68000/008/010 word and long word addresses are restricted to be
even; i.e. it is not permitted to access a word or long word using an address
which is odd. This restriction does not apply to the later models in the
range -the 68020 and 68030. Even so, addressing words on even byte
boundaries is more efficient on these machines also. Furthermore all
instruction words and the system stack must be on even byte boundaries
in all the machines. We will assume that words and long words are
always on even address boundaries.

The address range determines the largest possible physical embodiment
of the memory of a computer; if this number is too small then the
underlying architecture can be overtaken by progress in the technology of
computer memory - on the other hand, if the address range is too large it
may result in an architecture which is un-economic because large
addresses occupy more memory than small addresses.

The 68000 has an address of 16 Megabytes of memory, hence addresses in
this machine are 24 bits long; although an address register is 32 bits long.
Only the lower 24 bits of an address register in the 68000 have any
significance: the upper 8 bits are ignored by the processor when forming an
address. The 68008, which is really an 8 bit version of the 68000, can
address one megabyte, therefore its memory addresses are 20 bits long,
leaving 12 bits unused in the address registers. Some compiler writers
make use of the fact that an address on these processors is shorter than a
full long word to store type information with addresses.

The later models are true 32 bit computers which can theoretically
address 4 Gigabytes (4096 Megabytes) of memory with a full 32 bit address.

42 The 680x0 programmer's model

It is quite rare for a computer to possess 4 Gigabytes of physical memory.
On the other hand, with virtual memory techniques a reasonable
approximation of this much memory is possible.

3.3 Simple assembler programming

An assembler program consists of a sequence of assembler statements,
nearly always one statement per line of source. Most of these statements
represent instructions to be performed by the processor; although a
significant minority are directives such as equates (see below) and define
storage commands.

A single instruction is typically equivalent to much less than a single
statement in a high-level programming language like Pascal. For
example, the simple Pascal statement

a:=a+b*c;

where a, b and c are integer variables, could be represented by the
instructions:

,....._
move .'w)
muls
acid..-~.

;multiply
;add to a

c -c. d. c>

b*c :::: c\ o

The only point to note here is that a single Pascal statement often requires
many assembler instructions to implement. The result is that assembler
programs usually contain many more lines than their Pascal equivalents.

Apart from the difference in the granularity of assembler statements
compared to statements in high-level languages, the other main difference
is the restricted nature of the data that can be manipulated directly. A
Pascal program variable can range in type from a single boolean value to
complex structures such as arrays of records each containing a sub-array ...
By contrast, in an assembler program we are always dealing with the
contents of registers or of individual memory locations.

Perhaps one of the simplest assembler programs we might think of takes
two numbers, adds them together and places the result in a third location.
We could do this with the instructions:

move.w 1000,dl.
add• W dl I d._o •
move. w dO, 1002

.. ~~

The first instruction moves the contents of the word whose loc<;ltion in
memory is l_O O O into the data registef ~q~ The size specifier '. w' which

----:::· ~

3.3 Simple assembler programming 43

we have attached to the move instruction indicates that we ax:eJ..(lterested
in an operation involving a l~pit word. If we had specified :;.i:l instead
then this would indicate a long or 32 bit word operation and ff. we had
specified (:b,. tpen a byte sized move would be indicated. It is important to
understand that this instruction does not put the Y.f\Ju~'iiDto d.l., if
we had intended that we should have used: '

move . w @ ~~.! .. ~2-.
If, just prior to executing this instruction, the memory location at address
1000 had 35 in it, then the dl register will have 35 in it after the move.

move.w 1000,dl

998

1000=:€]
1002
1004 aO dO ,...23'

dl-=~ al
a2 d2
a3 d3
a4 d4 ----- ------as dS ----- ------
a§ _ _ _ _ ~6- ___ _

a7 d7
Address regs Data regs

Figure 3.3 Move the contents of location 1000 to dl

The second instruction adds the contents of data register dl to the register
dO, overwriting it in the process. So, if dO previously contained -23 in it,
then after the add instruction it will contain@:

aO ~o- - - -~~..::: ,
al dl 3S - - - - - ------
a2 d2
a3 d3

add.w dl,dO ----- ------
a4 d4
aS dS ----- ------
a§ _ _ _ _ ~6- ___ _

a7 d7
Address regs Data regs

Figure 3.4 Add the contents of dl to dO

44 The 680x0 programmer's model

Again, the '. w' specifier in the add instruction indicates that we want to
use 16 bit addition. The final !11.C?.Y.!! _instruction overwrites the memory
contents at location 1O02 with the contents of register,_e!O, i.e. with the
result of the addition: -· ···

move.w d0,1002

998
1000 35 35 --

aO dO 12 1002 ?? 12 - - - - - ------
al dl 35

1004 - - - - - ------
a2 d2 - - - - - ------
a3 d3 - - - - - ------
a4 d4 - - - - - ------
as dS - - - - - ------
a§_ - - - d6 ------
a7 d7

before after Address regs Data regs

Figure 3.5 Move the contents of dO to location 1002

3.3.1 The 680x0 instruction set

In all there are ten groups of instructions in the 680x0: data movement,
integer arithmetic, logical, shift and rotate, bit manipulation, bit field
manipulation, binary coded decimal arithmetic, program control, system
control and multi-processor control. The bit field and multi-processor
control instructions are particular to the 68020 and later models.

By far the most important groups of instructions are the data movement
and program control instructions. Together these make up more than
60% of a typical application's code. Generally, we shall introduce an
instruction as and when we need it to implement some feature of Pascal
programming. For a complete list of the instructions used in the text,
together with associated instructions where appropriate, refer to Appendix
B where we list and summarise the 680x0 family instructions.

The operational/ data transfer instructions typically have the format:

~op.s

Operation mnemonic /
Size specifier

source,dest t De~ation operand specifier

Source operand specifier

3.3 Simple assembler programming 45

where op determines the operation performed between source and
dest, leaving any result in dest.

The operation mnemonic indicates what the instruction does. This is
the main keyword by which we identify the statement type, and what the
instruction will do. On most of the instructions which modify or transfer
data there is a size specifier. This is a single letter which indicates the size
of the calculation or data movement to take place. This can either be b, w
or 1 (for byte, word and long word operations respectively). If the size
specifier is omitted from an instruction that requires one then w (i.e. word
length) is assumed.

There is nothing to stop us using different size specifiers in subsequent
instructions - the processor would not notice if we performed a 16 bit
move followed by a 32 bit add for example. It is up to us as programmers
to ensure that the manipulations we perform in our instructions match
the data movements that we have requested. Getting the sizes of operands
'wrong' is a constant source of errors in assembler programs, both those
written by novices and those written by highly experienced professionals.
On the other hand, there are a few occasions when a 32 bit addition
following a 16 bit move is exactly what we want to perform.

There are instructions with zero, one or two operands or address
specifiers. Most of the instructions have one or two operands. In the case
of a zero operand instruction the location of the data or address to be
manipulated is implied or fixed by the instruction. For example the rt s
instruction does not have an explicit operand, instead it takes its data from
the stack which is addressed via the a7 register.

The program control instructions usually have the format:

~op.s label

Operation mnemonic ' \ 'Program label specifier

Branch size specifier

The program control instructions may also have a size specifier, in which
case it specifies whether a short or long jump (goto) is to be taken. The
existence of this specifier allows the programmer to select the size of
instruction needed to encode a particular jump. Since the program
control instructions are extremely frequent in assembler programs most
computer designers attempt to optimise their representation - a short
branch is shorter (occupies less space) than a long one. Some assemblers
can calculate this specifier automatically since the target address or label is
always known; however most assemblers require at least some assistance.

46 The 680x0 programmer's model

The 680x0 addressing modes
An addressing mode is a specification of an operand to an instruction. It
specifies how the operand of the instruction is to be computed. We have
already seen some addressing modes: register direct for example, where
the operand is a data register, absolute address mode, where the operand is
in a fixed location in the memory, and immediate mode, where the
operand is part of the instruction itself.

There are some 10 addressing modes on the 68000 itself with a further
four new addressing modes and four extensions of 68000 addressing
modes on the 68020/68030. This means that in the specification of an
instruction there may be up to 18 ways of determining where an operand
is. However each mode is quite limited and the collection is not nearly as
rich as the essentially unlimited number of ways of specifying data in
Pascal (we can have arrays of records of pointers to arrays etc.).

The richness of a processor's suite of addressing modes governs the
compactness of an application's code: a rich set of addressing modes means
that fewer instruction will be needed to implement complex data
movements. However, rich addressing modes are also complex to
implement and can result in slower processors. The 680x0 range has one
of the richest set of addressing modes of popular processors; but some
trends indicate a return to simpler more efficient instruction sets with
correspondingly simpler addressing modes.

We shall introduce each of these addressing modes as we come across
them in examples of instructions; they are all summarised in Appendix A.

3.3.2 Assembling and running programs

For a sequence of instructions to be executed it is necessary to assemble
them into a sequence of instruction patterns or instruction words -
usually expressed as word-length numbers. These instruction words must
then be loaded into some appropriate part of the memory and then, in
order to execute the program, the program counter of the machine must
be set to point to the portion of memory where it was loaded.

The process of assembling, loading and executing programs written in
assembler is exactly analogous to the process of compiling, linking and
executing Pascal programs. The difference is that each one of our source
statements corresponds to the single machine instruction that we have
specified ourselves, whereas a single Pascal statement may correspond to
an arbitrary number of instructions and the Pascal programmer may not
know what they are.

Like compilers, assemblers can usually be made to generate a listing as
part of the process of assembling the program. In the case of an assembler

3.3 Simple assembler programming 47

program, this listing would not only identify any errors produced, but will
also indicate the actual bit patterns generated for each instruction. Listing
formats vary with different assemblers, however a typical assembler might
generate the following for our simple three line program:

Filename: test.asm Page 1

1:00000000 list 1
2:
3: a sample program
4:
5:00000000 323803E8 move.w 1000,dl
6:00000004 0041 add.w dl,dO
7:00000006 31C003EA move.w d0,1002
B:OOOOOOOA end

Code size = 10
Number of errors = 0, number of warnings = 0

Figure 3.6 A sample listing of an assembled program

If we look at one of the lines in this listing in more detail, we can see what
information the assembler produces:

Source line number Assembled instruction words

\ \
5:00000000 323803E8 move.w

/ !
Address of instruction words opcode mnemonic

/rre ope,and odd~•

10 0 0, dl_. source line

\
destination operand

Figure 3. 7 Anatomy of a line of listing

The original source line echoes the e~act contents of the file being
assembled. This is further identified by the number of the line in the file.

Immediately adjacent to the line number is the address (in hexadecimal)
into which this instruction is being assembled. On a modern computer,
this address is rarely the real address of the instruction in the memory, but
rather its relative location within the program. When the assembled
program is loaded into the machine, these addresses are adjusted to
indicate where it has been loaded into the memory.

The hexadecimal number which follows the instruction address is the
actual instruction word(s) generated by the assembler. This number will

48 The 680x0 programmer's model

be loaded into the memory and executed subsequently by the processor.
This bit pattern encodes the function code (a move instruction), the source
address (in this case the memory contents at location 1 O O O) and the
destination (in this case the data register dO).

The lines in the program which begin with a '; ' are comments and are
not interpreted by the assembler. The detailed syntax of comments varies
with different assemblers, we shall use the convention that the rest of any
line after a semi-colon is treated as a comment.

Since an assembler program is so close to the machine, and since that is
likely to be a much lower level than the programmer's intent, it is quite
important to provide good comments in an assembler program. It is good
practice to include one comment on each line of assembler source. We
suggest, however, that the programmer avoids the classic novitiate
comment of repeating in English the meaning of the assembler statement
itself!

The exact encoding of 680x0 instructions is rather detailed and we do not
really need to elaborate it completely in this book. However, we can get
the principle of instruction encoding by looking at the move instruction in
more detail. The bit pattern which represents an encoded instruction is
like a packed Pascal record, with different bit fields within the instruction
determining its meaning.

001 =data register 1

100000011111010001

11 =word operation 000 =word length address

111 =absolute mode

Figure 3.8 Encoding a move instruction

The first 16 bit word of an instruction determines both the opcode and the
major aspects of operand addressing used in the instruction. In this case,
the two most significant bits of the instruction word are zero, which
indicates a move instruction. The next two bits determine the size of the
move (01 would signify a byte operation, 10 would signify a long
operation and 00 signifies a completely different instruction). The next 6
bits determine the destination of the move - dl here - and the least
significant bits determine that a move from an actual memory location is

3.3 Simple assembler programming 49

specified. The memory address to read from is in the next word of the
instruction.

The length of a 680x0 instruction depends on the complexity of the
addressing being specified: the shortest instructions are one 16 bit word,
whereas the longest instruction on the 68020 occupies 11 words!

Symbols, names and assembler directives
Most assemblers allow us to give names to constants and addresses; this
avoids the continual appearance in our programs of 'magic numbers'
whose meaning tends to become obscured with time. So, for example, the
instruction below compares the lowest byte in register dO with 32, which
also happens to be the code for an ASCII space character:

cmp.b #32,dO

The operand #32 is the source operand and it is an immediate operand
(indicated by the presence of the '#' character in front of the literal
number), and the destination operand - dO - is an example of the register
direct addressing mode.

The effect of executing this cmp instruction is to compare data register
dO with the literal quantity 32. Only the least significant 8 bits in dO take
part in the comparison since the size specifier is ' . b'.

aO
al - - - - -
a2
a3
a4

- - - - -
as
a§_ - - -

~o_ - - ~~
dl ------
d2

d3
d4
dS

cmp.b #32,dO

. Z flag is set if lowest byte in

The other flags will be
set accordingly

h registerdO is an ASCII space

- - - - - - I--~--.'"

~6- - - - - zvc
a7 d7

Figure 3.9 The cmp instruction

If it was our intention to compare the value in dO with a space then
instead of using the number 32 in the cmp instruction, we could have
written:

space equ 32 ; 'declare' space

cmp.b #space,dO

The first of these statements is an assembler directive. A directive is an
assembler statement which provides some information to the assembler

50 The 680x0 programmer's model

itself; some directives also cause some actions to be performed. (Cf. an
instruction statement which represents an individual instruction to the
processor.) The directive that we have here is called an equate; its
function is to declare to the assembler that the name space has a value
32. No 680x0 instructions are generated by an equate but thereafter we can
use space instead of 32 whenever a number is legal in an assembler
statement.

The careful reader might have detected another assembler directive in
the short listing above. The end statement is really a directive informing
the assembler that the source program has ended. The end directive dates
from an era when computers were 'fed' data via decks of 80 column
punched cards and the program to be assembled would be incorporated in
a card deck together with operating system control information. Usually,
assemblers assume that the end of the source is indicated by the end of the
file containing the source.

An assembler will normally also have a syntax for denoting ASCII
characters. This would consist of the characters themselves surrounded by
quotes, e.g. 'a' or "a". So another alternative way of writing the cmp
instruction could have been:

cmp.b #' ',dO

It may also be necessary to allocate parts of memory for variables. Rather
than the programmer being required to assign explicitly where in memory
each variable is, it is possible to inform the assembler that there is such a
location, give it a name and leave it up to the assembler (or even the link
loader) to determine the address of the variable.

This is done with another assembler directive: the define storage
directive: ds. If space for a variable is declared with the define storage
statement the programmer thereafter can refer to the variable by its
symbolic name rather than the numerical value of its address:

store ds.l 1 ; reserve 1 long word

move.l store,d4

The ds . 1 directive does not generate any 680x0 instructions - its function
is to ensure that the assembler reserves some space (one long word in this
case). There is no requirement that this long word in memory has an
initial value. If it is required for a variable to have an initial value, or if it
is necessary to have a constant literal in the assembler program (a literal
with a specific location as well as value) then we use the related directive:
the define constant - de - statement. For example, a statement such as:

3.3 Simple assembler programming 51

space_c dc.b ;constant space

declares a pre-filled byte-sized location with the symbolic name space_ c
with an initial value of 32.

Assemblers lend an additional hand by allowing the programmer to
assign symbolic labels to program addresses. The programmer can then
use symbolic names for subroutines etc. without having to determine in
advance where they lie in memory.

It is good programming practice to avoid the use of explicit numbers
altogether in the main body of an assembler program. In fact, the number
of times a programmer has to use a number for any operand is so rare that
it almost always signals an error in the program!

Executing assembler programs
Since the instructions that we have been discussing are the actual
instructions obeyed by the processor, and since a processor is always
executing one instruction or another, we must also be concerned about
what happens in the machine after it has completed our program. Most
often, an assembler program will be called as part of a larger application
program which is written in another language. In this case, when the
assembler procedure has terminated, control will normally return to the
application program that called it; just as though the program had called a
Pascal procedure. However, it is possible that the entire application
program is written in assembler, in which case we must address what
happens at the end of the program.

In our simple example earlier, we had just three instructions, and we
must ensure that something sensible happens after those three
instructions have been executed. If we assemble our three statements and
execute them, then after performing the addition the processor will
execute whatever follows next in the memory after our three instructions.
It is unlikely that what does follow is particularly meaningful. This is true
whether or not the program is called as a procedure from a Pascal program
or directly as a stand-alone application.

Except in the circumstance when a program is executing on a bare
computer we always run programs in the context of an operating system.
So, when we request the execution of our program the operating system
loads the program instructions into memory and starts executing them.
After the program is complete it is the responsibility of the programmer to
ensure that control is returned to the operating system so that the user can
continue to use the machine.

The exact way in which control is returned to the operating system after
executing an assembler program varies from one operating system to
another. One common convention is for the operating system to call the

52 The 680x0 programmer's model

program as though it were a procedure call. Another common
convention is to provide 'program termination' as one of the standard
services that any operating system offers to a program - so a program
would terminate by requesting termination in a similar manner to which
some input/ output function might be requested.

In this book, we shall assume that the operating system has called our
program, so that all we need to do to ensure a tidy return to the operating
system is to return from a procedure:

move. w 1000, dl
add.w dl, dO
move. w dO, 1002
rts

The rt s instruction would also be used to return to an application
program.

3.3.3 Exercises

1. Explain the difference between the instructions

move.l 10,dO

and

move.l #10,dO

2. What would you expect to be left in register dl after the instructions

move.l #100000,dO
move.l #200000,dl
move . w dO , dl

have been executed?

3. Write a short sequence which has the effect of exchanging the
contents of register dO and dl using a third register.

4. The instruction eor performs an 'exclusive or' operation, as defined
by the truth function:

3.3 Simple assembler programming 53

0€90....+0 lEf>l--+0

lEf>0-..+1 0€91....+1

Write a sequence of instructions which exchanges dO and dl using no
other registers or memory locations.

The exclusive or is sometimes referred to as a 'pre-add' function
since the answer is also the result of adding two bits together. To
construct a full adder, a carry input has to be incorporated and a carry
output generated.

3.4 Input and output in assembler

One feature to notice about our assembler programmer's model is that,
compared with a Pascal programmer's model, or indeed a physical model
of a computer, input and output do not figure all that directly. Although
the assembler programmer generally has comp~ete control of the machine
for normal application code, input and output from an assembler level
program is normally left to the operating system to perform.

In a typical system environment performing input or output may
require hundreds if not thousands of instructions to be executed. In order
to perform an input or output function the assembler programmer
invokes a subroutine either from a library of input/ output functions or
directly from the operating system. By packaging the input/ output
functions in this way its true complexity is largely hidden from the
assembler programmer (and the corresponding burden is removed also).

Of course, there are times when this is not possible. For example, if a
new physical device driver is to be built, then it will almost certainly have
to be built in assembler. Moreover, that driver program will be
performing real input/ output functions. Such a device driver is often to
be found as part of the operating system rather than being embedded in an
application program. In order to build a device driver, the assembler
programmer must know about the characteristics of the device (such as
what sequence of commands the device requires to perform an operation).

Apart from understanding the physical device, complete knowledge is
also required of how the device is logically connected to the computer (for
example, which input/ output ports or memory locations correspond to
the control ports of the device). Given that level of knowledge,
implementing a device driver consists of writing a set of functions to
manipulate those input/ output ports or memory locations to achieve the
required effects.

54 The 680x0 programmer's model

Once embedded into the operating system, a driver can be invoked by
the operating system in order to open the associated peripheral device,
read and write data to it and otherwise control its behaviour. The
connection between the processor and the physical device, be it a printer,
screen or disk drive, is implemented as part of the electronic design of the
computer.

It is beyond the scope of our book to discuss how the physical input and
output are accomplished in computers. On the other hand, the principles
that guide the building of input/ output libraries and device drivers are
not that different from building any other kinds of program.

CHAPTER FOUR

Representing Pascal expressions

Data values in Pascal are built from a set of primitive data types - called
scalar types - and a set of methods for combining and structuring the data.
So we have, for example, integers, 'real' numbers and characters as scalar
types in Pascal. These can be combined into arrays, records and sets or
various combinations of these.

Intimately associated with these data types are the variables which can
have them as values. A Pascal 'variable' is best thought of as a named
location in the computer's memory. The different values that a variable
can take on, through being assigned to, are reflected by the different
contents of the variable's location. Furthermore the structure of a
variable's location will depend on its type.

Apart from simply representing variables and values, it is also necessary
to show how expressions can be computed, how variables can be assigned
to, and how components of complex data structures can be accessed and
updated. In effect, this chapter is concerned with the implementation of a
single type of Pascal statement: the assignment statement; in particular, we
concentrate on expressions involving scalar values and variables.

Although we will look in later chapters at the explicit control aspect of
programs, it is fair to say that we are also interested in control in this
chapter. On the whole though, the control referred to whilst accessing
data is automatic: i.e. it is only indirectly specified by the programmer
through the use of expressions.

4.1 Scalar values and variables

A primitive or scalar value is one which has no discernible internal
structure. For example, in Pascal, integers and reals are scalar; of course we
have seen that the representation of numbers is not trivial in a computer:
a word which hold integers does indeed have a structure - the bit pattern
corresponding to the binary expansion of the integer. However, on the
whole, the internal structure of integers is not seen by the programmer.

55

56 Representing Pascal expressions

From the point of view of the Pascal and assembler programmer a scalar
quantity is also treated as a whole and its structure is not normally
inspected. In practice a stricter interpretation of scalar is also used in
computing - a scalar quantity is one which can reside in a machine
register. This is a more restricted view than the mathematical definition;
for example, the set of integers has infinitely many elements, but a 680x0
register can only handle integers in the range -2,147,483,648 ... 2,147,483,647;
which though it is large it is not an infinite range: larger numbers have to
be constructed from sequences of integers within the range that can be
handled directly.

There are three different types of scalar in the Pascal language - ordinals
which includes sub-ranges of the integers, characters and booleans;
pointers; and the real numbers.

In fact, computer 'real' numbers are not Real but floating point numbers
which are really fractions. There are an uncountably infinite number of
reals, most of which would require an infinitely large amount of
computer storage to represent - just one real number 7t has infinitely
many digits in its decimal (or binary) expansion. Therefore it is not really
practical to have real real numbers!

However reals are a primitive type in Pascal and are treated as scalar. In
assembler, floating point numbers are not primitive as they have an
internal structure consisting of exponent, mantissa and sign bit.

4.1.1 Ordinals

An ordinal scalar type expresses a sub-range of some other (possibly
infinite) type. The most fundamental example of this is the type
consisting of the representable integers;· other examples include the
characters and the enumerated types. Although intended for different
uses, the different types of ordinal types are handled by Pascal programs in
similar ways and can all be represented in the machine using common
techniques.

These are some example Pascal definitions of ordinal types, together
with the typical number of bits required to represent values in them:

boolean = (false,true)
byte = 0 .. 255
signed_byte = -128 .. 127
weekday = (monday, tuesday, ... , sunday)
word = -32768 .. 32767
integer = -maxint .. maxint

1 bit }
8 bits }
8 bits }
3 bits }
16 bits }
? bits }

maxint is a system defined constant in Pascal which denotes the largest
integer that can be represented in a variable of type integer. -maxint,

4.1 Scalar values and variables 57

which is not strictly legal Pascal, is intended to denote the most negative
integer.

Since the smallest addressable quantity in the 680x0 is a byte, it is
convenient to allocate space for variables in multiples of bytes. If a scalar
value requires less than 8 bits to represent it then a byte is used none-the
less. If a scalar requires between 8 and 16 bits to represent it then a 16 bit
word will be used. For example, a number of the sub-range type -512 . .512
occupies the same space as a number of sub-range type -32768 .. 32767.
Similarly if a scalar quantity needs more than 16 bits then the whole 32 bits
are used to represent values of that type.

Later we shall investigate packed data structures where it is essential to
use the least possible amount of space. In a packed structure we make an
effort to use only the absolute minimum number of bits needed to
represent each value; for example, if data items of a particular type only
need 9 bits to represent it then 9 bits are used. This will mean that there
may be more than one data item represented within a word, and even that
an individual item may be spread across word boundaries. However,
since the processor does not easily access such odd size quantities there is a
consequent increase in complexity in accessing packed data.

Characters
Logically the character scalar type is also a sub-range: characters from
systems such as the ASCII characters form a subset of all the possible
characters. There are several different character sets in common use
including ASCII, EBCDIC and the various Japanese Katakana/Kanji
character sets; some of these character sets are more common than others.

There are 128 characters in the standard ASCII character set, including 32
control characters. Since we can represent 128 patterns in 7 bits we
typically use a single byte to represent a given character. There are some
variations on the 7 bit ASCII character set: for example there is an 8 bit
ASCII character set, the IBM PC character set and the Apple Macintosh®
character set.

Character processing is extremely important in computing. Characters
and the ability to manipulate them are essential in applications ranging
from word processing to databases. It can be argued that the primary
motivation to have a byte oriented memory structure in processors such
as the 680x0 is the desire to optimise character and string processing.

® IBM PC and Macintosh are trademarks of IBM and Apple respectively.

58 · Representing Pascal expressions

4.1.2 Pointers

A pointer is a quantity which is a reference to another value. We would
call it a scalar value since it has no internal structure even though we can
use a pointer to access the value identified by it. Pointers are also very
important in programming; although a major desire in the design of
programming languages is to make them either transparent - in the case
of LISP and Prolog - or to make their definition and use disciplined - as is
attempt~d in Pascal.

On a computer such as the 680x0 a pointer is represented as a memory
address; which is of course a number which can be placed into an address
register. The effective size of this number is different in the 68000 and in
the 68020 and 68030 (24 bits and 32 bits respectively). However, most
compilers devote a full 32 bit long word for a ppinter whether the target
machine is a 68000 or a 68020.

4.2 Scalar expressions

One of the earliest 'features' ever introduced into a high-level
programming language was the expression or formula: Fortran (which is
an acronym for FORmula TRANslation) was the first programming
language which had expressions and it was first introduced in the 1950's.
Expressions are a key component of modern high level languages: they
can appear in many different places, for example expressions appear in
assignments, as arguments to procedures and functions and in array access
computations. However there is no direct support for evaluating an
arbitrary expression in the 680x0 instruction set; this means that we must
be able to implement an arbitrary expression as a sequence of 680x0
instructions.

Possibly the single most common assignment statement ever found in
Pascal programs - or any programming language for that matter - is
something like:

x := x+l;

where x is an integer variable. We can implement this Pascal statement
with a single 680x0 instruction:

The add instruction adds the integers in its source and destination - 1
and it. respectively - and stores the result in the destination - it.- The effect

4.2 Scalar expressions 59

of this instruction is to increment ~by 1. The . w size specifier indicates
that we want a 16 bit addition to be performed.

Notice that we have used the original variable name ~in our assembler
instruction. We cannot use this instruction as written. Before it can be
assembled and executed ~ must be resolved to one of the standard
addressing modes available on the 680x0. On the other hand, we cannot
do that until we know where ~is located. If, ultimately, we resolve ~to be
located in the data register"d_'Z) (say), then the instruction needed to
implement the Pascal assignment is:

a.dd . w # 1 , d 7
' --'-· -i)

CJ'}"'' i /{.. •'

In general, it may require additional instructions to address a variable.
Later on we shall examine more closely the allocation of variables -

how they are assigned to registers and/or memory. For the moment,
however, whenever we have a reference to a variable we shall use the
name of the variable in our assembler instructions. This is in full
knowledge of the fact that they may not be complete, but we shall use. this
'shorthand' whilst we look at other aspects of Pascal programs. To
emphasise the fact that we sometimes write partially specified
instructions, we use a different font to denote such variables.

4.2.1 Evaluating complex expressions

Normally expressions are too complicated to implement in a single
instruction. In particular, unlike arithmetic operators in Pascal, the
operands of an individual assembler instruction must be numeric. This
rules out, for example, implementing any kind of nested expressions
using just one instruction. If we have to evaluate a complex expression
then we must arrange the execution of instructions so that each operator is
applied to numeric values rather than arbitrary expressions. We require a
systematic method for arranging the evaluation of expressions to ensure
that each operator is applied to numeric values.

For example, the Pascal statement:

x:=(x*y+z**2)/(x-y);

where x, y and z are integer variables, is much too complicated fo
implement as a single 680x0 instruction. (We have taken the liberty of
using a non-standard Pascal operator * * here. An expression of the form
u * *v is intended to mean 'u raised to the power v' .)

60 Representing Pascal expressions

~
These are intermediate
expressions which do not
correspond to variables in the
Pascal source

Figure 4.1 The parse tree of (x*y+z**2) I (x-y)

The parse tree shown in Figure 4.1 highlights the dependencies between
the various parts of the expression and the variables and constants
involved. It also shows where there are intermediate points within the
expression which are not directly associated with a variable or numeric
value. We shall see that although these points have no identifiers
associated with them in the Pascal expression, we do have to explicitly
identify them when we come to map the expression into assembler
instructions.

Reverse polish notation
There is a way of writing expressions which has the crucial property that
we can easily evaluate them in such a way that as we apply each operator
the operands have already been evaluated. This is the so-called reverse
polish form. In this notation we write the .operator of an expression after
writing the operands. So, for example, the expression

x+y*z

becomes in reverse polish form:

~ z *+I

The meaning of this expression is

'apply *toy and z, and apply+ to the result of that and x'

More complicated reverse polish form expressions often have several
operators in sequence being applied to larger and larger sub-expressions.
Our initial expression would be written in reverse polish form as:

Ix y * z 2 ** + x y - 11

4.2 Scalar expressions 61

Another important observation to make about this form of expression is
that there are no parentheses: the relative priorities of sub-expressions is
guided entirely by the ordering of operators.

It can take some adjustment to become fluent in reading reverse polish
form expressions, however they are often used as the main way of writing
expressions. Indeed some calculators use reverse polish form to enter
calculations.

It is relatively simple to convert from the normal infix form of an
expression to its reverse polish form. The process involves recursively
moving the operator of an expression to the right of its sub-expressions,
after applying the conversion to each of the sub-expressions. So, for
example, the expression

x+y

is converted to: ~_±]
A more complex expression is converted recursively, by first converting

sub-expressions:

u * v + x * y
=> r:.;--;---;i + x * y

=> lu v *I + Ix y *I
=> ~ * x y * +I

I.e. for any expression of the form:

L op R

we recursively map L to~' and we map R to~ and then move the

operator to the end to get IL R opl.
If we apply the conversion to our original expression we get the

transformations:

(x*y+z**2)/(x-y)
=> <Ix y *I + z**2)/(x-y)
=> <Ix y *I + lz 2 **I> I (x-y)
=> <Ix Y *I + I z 2 **I> 11 x Y -I
=> Ix y * z 2 ~/Ix y -]
=> Ix y * z 2 ** + x y - 11

Any rules that we have regarding associative operators must be followed
during this conversion process. For example, if we want to convert the
expression

62 Representing Pascal expressions

x-y-z

we have first to decide whether this refers to

(x-y) -z

or

x-(y-z)

Both interpretations are possible, though they lead to different, non
equivalent, reverse polish forms:

Ix y - z -I
and

Ix y z - -I

Evaluating reverse polish form expressions
We can evaluate reverse polish form expressions with the aid of an
expression stack. This stack is used to hold the temporary intermediate
values generated during the evaluation and as a source of operands for the
arithmetic operators.

First free
location in
expression stack

~ ,.
Value-2
Value-1
Value-0

""""'
Top element in
expression stack

In order to evaluate an expression in reverse polish form we follow a
simple rule: proceeding from left to right, we examine each symbol, and

a) if we encounter a constant literal or a variable we push its value onto
the stack and continue to the next symbol in the expression;

I .. i
... 4 4 ...

t t

4.2 Scalar expressions 63

b) if we encounter a binary operator (such as +) we remove its two
operands from the expression stack, apply the operator to them and
place the result back on to the expression stack. We then continue to
the next symbol.

..
* * ... I

+
c) In general, on encountering an n-ary operator, we remove n operands

from the stack, apply the operator and place the result back on the
stack.

d) After the last symbol in the expression has been processed, the
expression stack contains a single value: the value of the expression as
a whole.

D .. 20

... * I ... * I

+ +
Most arithmetic operators are binary - they take two arguments - but
some are unary - square root for example - and there may even be some
ternary operators such as if-then-else (though not in standard
Pascal).

Using our procedure, we can see how to evaluate the simple expression

Ix y +I
Proceeding from left to right we push x onto the stack,

64 Representing Pascal expressions

D
Ix Y +I
t

.. n
bd

Ix Y +I
t

and then push y on to the expression stack,

Ix Y +I Ix Y +I
t t

On reaching the + symbol, we take the top two items from the stack, add
them together and put the result back on the stack. This is the last symbol
in the expression so the single value remaining is the value of the
expression .

Ix Y +I
t

.. n
~

Ix Y +I
t

[lllili> x+y

Ix Y +I
t

The only difference, in principle, between a simple expression and a
complex one is that the stack gets a little deeper when evaluating the
complex expression:

4.2 Scalar expressions 65

y * z 2 ** + x y - I

x x*y
x-y (x*y+z**2)

x*y+z** /(x-y)

-.1
The value of the expression
is left on the stack

Figure 4.2 The evaluation of (x*y+z**2) I (x-y)

If there are insufficient operands on the stack to apply an operator, or if
there is more than one value left on the expression stack at the end of the
evaluation, then the reverse polish expression was not well-formed.
Since we are primarily interested in the reverse polish form to aid the
evaluation of complex expressions that we already know to be well
formed we regard it to be beyond the scope of this book to explore ill
formed expressions in general.

Expression stacks on the 680x0
The 680x0 has good support for expression stacks, indeed it has special
purpose addressing modes which can be used for pushing items onto
stacks and popping them off again. An expression stack can be involved as
the source or destination (but not both) of any arithmetic instruction.

We can model an expression stack by allocating an array of memory to
it, and using a pointer variab}e within the array to address the top of the
stack. Conventionally, stacks 'grow' downwards in memory; that is, as a
new element is pushed onto the stack, the stack pointer is decremented
and the new memory location is used to place the value on the top of the
stack:

66 Representing Pascal expressions

998

1000
~~~'<! 

1002 .......,._. ............ 

aO dO 
al dl , ------- ----- ---
a2 d2 
a3 d3 
a4 d4 
as d5 ------- ------ --

Stack pointer 
before pushing 
1234 

d6 
d7 

Stack pointer 
after pushing 
1234 

998 

Figure 4.3 The system stack as an expression stack 

It is quite convenient to use the S!:f.Stem stack (which is addressed by the 
a 7 register) as our expression stack when processing a reverse polish 
expression. In order to push a constant literal or the value of a variable 
onto the system stack we use an instruction similar to the 

instructions. 

move. w # const, 
~~. 

a 7 )' or move.w var, - (a 7) 
~ , ..__...,..,_. 

The addressing mode we have used here .:.,.. a7. - is the ~r 
itJA.ftg£t wi.th_ rzre-decrement mode._ In this mode, the address register is 
decremented and the value contained in the address register is then used 
as the address of the operand. The amount that the address register is 
decremented depends on the size of the data transfer; in this case it is two 
since the . w specifier indicates a word length transfer. The aim behind the 
pre-decrement addressing mode is to always ensure that the stack pointer 
is in an appropriate place to place new values on the stack. Without this 
addressing mode we would have to adjust the stack pointer explicitly with 
extra instructions. 

The pre-decrement mode can be used to specify either a source operand 
or, as in this case, a destination operand, i.e. where to store the var on the 
expression stack. If var was identified with the data register dO, we could 
implement a push onto the expression stack with ~ 

move.w dO, -(a7) --



4.2 Scalar expressions 67 

which would save the lower word contents of data register dO on the 
system stack. 

Every time we encounter a binary operator in our processing of a 
reverse polish expression we are required to take off two operands from 
the stack, apply the operator and replace the result onto the stack. In order 
to take an entry off the system stack we use an instruction such as: 

move. w (a 7) +, dO 

Here we have used address register indirect with post-increment 
addressing mode as the source operand of the move instruction. This 
addressing mode is analogous to the pre-decrement mode except that the 
address register is incremented after it is used to determine the address of 
the operand. Again, since a word length move is specified, a 7 is 
incremented by 2. 

With these two addressing modes we can construct the sequence of 
instructions to evaluate the complete reverse polish form expression: 

r~\'\ ~ 
::;i\- -----

1· ~" (. 
Ix y +I 

for which we can use the instruction sequence: 
~-r-/-

move.w ;v-(a7) 
move. w y, ·:..(a7) 
move. w (a7 )-+~;::dO; 
add. w .· ca-7)~, do 
move . w (d"Q:-.:: -~C17) 

'-'•f . 

; push .('; on the stack I if\_N 

; push I/ on the stack "! '1 '.i" 
;pop off y '-'] -> a o 
;pop ~ & add to y ""-rf' c.::~ a 
;place result on stack t '"_,. o ·· 

The instruction sequence for our simple expression is somewhat more 
clumsy than the single instruction that we used to implement x : =x+ 1 ; 
however the procedure we have followed to generate it is guaranteed to be 
able to implement any expression. 

We can, in fact, take advantage another of the 68000's addressing modes 
and shorten the sequence to: 

move.w ;v-(a7) 
move.w y,dO 
add.w dO., (a7) 

; push ~ as before '/'- -) I u u ...., 

; pick up y into dO Y -) cJ o 

; add and replace lj + x ~J 1 i.; f.) 1~ 

This relies on the fact that we can add 'into memory' with the add 
instruction using the address register indirect addressing mode. This 
mode, which is written as (an) where an is an address register, uses the 
contents of an address register as the address of the operand without 
changing the value in the address register. So, the instruction: 

add.w dO, (a7) 



68 Representing Pascal expressions 

adds the lower 16 bit contents of dO, together with the 16 bit word 
addressed by a7 (which is x in this case), and replaces the word in memory 
by the result. In effect we have replaced the old copy of x on the stack with 
x+y in a single 680x0 instruction. 

Notice that if we knew more about where the variables x and y were 
located in memory, if either was in a data register for example, then the 
code sequence could be further shortened to a single instruction: 

add.w vY 

Finally, we are now in a position to convert our original expression -
using the same minor optimizations - into 680x0 instructions. If we do, 
then we get the sequence of instructions: 

move .w -t,, - (a7) 
move.w y,dO 
muls.w (a7)+,d0 
move . w dO, - (a 7) 
move . w z; - (a 7) 
move. w # 2, - (a 7) 
<ezyonentiate> 
move . w (a 7) +, dO 
add. w dO, (~7_}~ 
move.w v -(a7) 
sub.w y, (a7) 
move . w (a 7) +, dO 
move.w (a7)+,dl 
ext .1 dl 
divs .w dO, dl 
move . w dl, - (a 7) 
move . w (a 7) +, -t. 

; y - ) :\ . .::; 

; x * y ')1: .Z'.~_i.J -)c <) Co:;.~1 '"·~-
;replace ~c ( 

) .( :) P-) /'. .. ~ •_) •,,'.A 

;x*y+z**2 

;x-y 

; (x*y+z**2) I. 
(x-y) 

; x: = ... 

This rather long sequence of instructions illustrates graphically the 
difference in granularity and detail between a simple Pascal statement and 
the machine instructions needed to implement it. 

The third instruction in the sequence is a signed multiply instruction: 
muls. This instruction is unusual in that the destination (which must be 
a data register) is different in size to the source. In general multiplication 
can double the number of significant digits; for example, multiplying 
75x45 is 3375 which has twice the number of digits of either operand. The 
same applies to binary multiplication which is why the muls instruction 
takes two 16 bit operands and returns a 32 bit answer. However, we are 
only saving 16 bits of the result in this sequence so we run a risk of 
generating erroneous results. 

On the other hand, division has the opposite phenomenon to 
multiplication: generally the number of significant digits is reduced by a 



4.2 Scalar expressions 69 

division. Thus the di vs instruction accepts a 32 bit dividend and a 16 bit 
divisor to generate a 16 bit quotient and 16 bit remainder (the 68020 and 
68030 also have long forms of multiplication and division which accept 
and generate 32 bit operands). It is for this reason that we inserted an 
ext. 1 instruction, which extends a 16 bit number into a 32 bit number, 
just prior to the division. We could, of course, have preserved the full 32 
bit result from the multiplication and possibly gained some accuracy in the 
process. The 32 bit result would then be already formatted for the 
subsequent division. 

We have so far omitted the code fragment for exponentiation. Since 
there is no direct exponentiation instruction on the 680x0, we have two 
choices to implement the operator: we can call a sub-routine which will 
perform the exponentiation, or we can insert a loop into the code sequence 
which will implement exponentiation directly: 

move.w (a7)+,dl ;# of times to multiply 
sub.w #1,dl ;,1=2-1 
move.w (a7),d0 ; z 

@1 muls.w (a7),d0 ;dO .- dO*z 
sub.w #1,dl ;dl:=dl-1 
bne.s @1 ;done multiplying? 
move.w dO, (a7) ;push result back 

The bne instruction that we have used here is a program control 
instruction, and its effect is to branch to the label @ 1 if the result of the last 
operation - sub. w # 1, dl - was non-zero. Register dl will be zero 
when the last multiplication has taken place, in other words, when we 
have decremented the exponent counter to zero. In effect we have 
implemented exponentiation by repeated multiplication and we use the 
power to raise z by as the control variable in the loop. 

Notice that we have used a label with a rather strange syntax: @1. This 
is an example of a local label . Local labels are a feature found in many 
assemblers which allow the programmer to economise on the invention 
of meaningful names. A typical assembler program will have hundreds if 
not thousands of labels simply because it is much lower level - and hence 
has a finer level of detail - than Pascal. Making sure that all these labels 
are unique is a considerable chore for the assembler programmer. A local 
label has a limited scope - it is only valid between two 'meaningful' labels. 
Two local labels which are separated by an ordinary label are logically 
different even if they look the same; so the programmer can re-use the 
same local labels again and again. The syntax of a local label may vary, 
here we assume that a local label is of the form @nnn where nnn is a 
number. 

Since the power to which we are raising z is a constant known at 
compile time, we have an alternative to building in a loop to implement 
the exponentiation: we can 'unfold' the loop into an explicit sequence. 



70 Representing Pascal expressions 

Doing this unfolding nearly always results in faster program execution but 
it can lead to greatly expanded code. In this case the saving in instructions 
executed is spectacular; the loop and the initial stack pushes can be 
replaced by the sequence: 

move. w z, dO 
muls. w dO, dO 
move. w dO, - (a 7) 

Notice that when we implemented our stack moves - stack pushes and 
stack pops - we used pre-decrement addressing as the destination when 
pushing a value onto the stack, and post-increment addressing as the 
source when popping a value from the stack. This results in a downwards 
growing stack: that is the stack's address register decreases in value as more 
is pushed onto the stack. 

We could just as easily use post-increment as the destination and pre~ 
decrement as the source; in which case the resulting stack would be an 
'upwards growing stack' - with increasing memory addresses as more is 
pushed onto it. However the system stack - as addressed by a 7 - is 
assumed to be a 'down' stack by the processor; and therefore it would be 
extremely unwise to use a7 to construct an upward stack. 

We can use the pre-decrementing and post-incrementing addressing 
modes with any of the 680xO's address registers; this means that we can 
have stacks pointed at by any address register. It is possible, for example, to 
have more than one expression stack - the a 7 register points to the system 
stack and we could use a4 (say) to point to a different stack. 

One limitation of implementing stacks in the way that we have, is that 
there is no bounds checking. Unless extra checking instructions are used 
to make sure that the stack pointer remains within the memory allocated 
to the expression stack there is a danger of stack overflow or underflow. 
Not unusually for assembler programming it is the responsibility of the 
programmer to ensure that stacks do not stray outside their allocated space 
and overwrite neighbouring areas of memory; this is usually achieved by 
allocating a large enough space for the stack and hoping that it will never 
overflow when running the application. 

Evaluating an expression using registers 
Just as we can unfold a bounded loop into a sequence of its bodies, so we 
can unfold the various stack operations - instead of using the system stack 
for intermediate results we can simulate a stack by using data registers. 

In such a scheme we might use d7 for the first stack push; and if there is 
a second stack push without there being a stack pop first then we use 
register d6 for the second level of the stack. We can use d5 for the third 
level of the stack and so on down to d3 (say). Provided that the data 
registers d3 to d 7 are not needed for other purposes this technique would 



4.2 Scalar expressions 71 

allow us to simulate a stack with 5 levels; this is enough for most of the 
expressions that are likely to be encountered in a Pascal pi:ogram. 

Using the data registers to simulate a stack allows further scope for 
optimization - we can eliminate some of the stack movement 
instructions altogether since data registers can be used directly as the 
source/ destination for arithmetic instructions. Instead of a sequence such 
as: 

move. w 't,, - (a7) 
move.w y,dO 
muls.w (a7)+,d0 
move . w dO , - (a 7) 

;x 
; y 
;x*y 

to implement the sub-expression x*y, we would use: 

move .w 't,, d7 
muls.w y,d7 

Applying this technique to the whole expression gives a somewhat shorter 
and more efficient sequence than we had before: 

move.w 't,, d7 ; x 
muls.w y,d7 ;x*y 
move.w z, d6 ; z 
muls.w d6,d6 ;z**2 
add.w d6,d7 ;x*y+z**2 
move.w 't,, d6 
sub.w y, d6 ;x-y 
ext.l d7 
divs d6,d7 ;value in d7 
move.w d7, '\:. 

4.2.2 Error checking 

A Pascal programmer has a safety net that is not available directly to the 
assembler programmer - the Pascal compiler/run-time system makes sure 
that the expressions computed during the execution of a program are 
valid. This is different to type checking which is generally a static 
verification of the program that the types of data being processed are 
consistent. A run-time test is used to verify that correct values are being 
computed. 

For example if a division is to be performed then the compiler will 
ensure that the divisor is non-zero; if it is then an error is signalled to the 
programmer when the program is executed. The purpose of error 



72 Representing Pascal expressions 

checking is to pin-point errors in the program as closely as possible to the 
statement(s) that generated the erroneous value. 

It should be pointed out that, in current compiler technology, the most 
that automatic error detection can achieve is to make sure that the ·values 
computed in a program statement, or the result of an expression, can be 
faithfully represented in the computer. No compiler can make sure that 
an expression or statement is an accurate reflection of the programmer's 
intention. 

The 'detectable errors' are mainly range errors - attempting to put an 
out-of-range value into a variable for example, overflow errors arising 
from adding too large numbers together for examp~e, and arithmetic 
errors - as in dividing by zero. These errors are detected by the compiler 
inserting checking instructions at suitable points in the evaluation of 
expressions. 

If we look at our original statement there are a number of places within 
it where an error can be generated: 

P~ible out-o~ ?ide by ITm ~' 

.,., •• ~-y), 

Possible arithmetic overflow error 

Figure 4.4 Sources of error in an expression 

If we are to correctly implement the assignment statement then we must 
insert extra instructions to check that the calculation is proceeding withill" 
bounds. So, for example, instead of simply having the pair of instructions: 

move. w ;i:, d7 
muls.w y,d7 

to represent the sub-expression x*y, we should add an instruction which 
checks the state of the flags in the condition codes register and reports an 
error if a problem arises: 

move. w ;i:, d7 
muls.w y,d7 
bvs overflow line xxx 

The bvs instruction checks the ccr register for the overflow condition, 
and if the multiply resulted in an overflow then the branch is taken. The 
bvs (and the bne) instructions are special cases of the bee instruction 



4.2 Scalar expressions 73 

which branches on any of the test conditions. See Appendix B for a more 
detailed description of bee. 

The label overflow_line_xxx is at some suitable place in the 
program which would contain the necessary instructions to report the 
error and allow the programmer to be aware that an overflow error 
occurred at line xxx of the Pascal program. If we repeat this exercise for 
the whole statement we see that some 50% of the instructions are error 
checking code! 

move.w ~' d7 ; x 
muls.w y,d7 ;x*y 
bvs overflow xxx 
move.w z, d6 ; z 
muls.w d6,d6 ;z**2 
bvs overflow xxx 
add.w d6,d7 ;x*y+z**2 
bvs overflow xxx 
move.w ~, d6 
sub.w y, d6 ;x-y 
bvs overflow xxx 
beq zero divide xxx 
ext.l d7 
divs d6,d7 ;value in d7 
bvs overflow xxx 
cmp.w #max for _x,d1 ;x in range? -bgt range_error_ xxx 
cmp.w #min for x,d7 - -blt range_error_ xxx 
move.w d7,~ 

The last four instructions prior to the final move instruction implement a 
range check - they test that the value of the expression is in the type range 
of the variable ~· We can slightly optimise this sequence on the 
68020 I 68030 by using a single instruction to perform both comparisons for 
x during the assignment. We can use the cmp2 instruction which 
compares a register against two quantities: 

cmp2. w x_bnd, d7 
bes range_error_xxx 

x bnd dc.w 
dc.w 

min for x 
max-for-x 

The two literal constants min for x and max for x define the 
minimum and maximum values- that d7 is to be compa-;ed with. The 
cmp2 instruction compares its destination operand with both bounds and 

, if the number is out of range than the Carry flag is set - hence the b cs 



74 Representing Pascal expressions 

instruction. The constants min_for_x and max for x can be located 
elsewhere within the program. 

In practice it may be possible, by using 32 bit arithmetic instead of 16 bit 
arithmetic, to reduce the error checking instructions inserted. For 
example, if two single precision numbers are added together they might 
overflow the single precision; if they are converted to double precision 
and added we can guarantee that the double precision calculation cannot 
overflow. This allows us to delay testing for overflow, possibly until the 
assignment has to be executed; thus eliminating many of the test 
instructions. Some compilers automatically perform all expression 
evaluation in double precision. However it may not always be possible to 
double the precision of the arithmetic; for example when the original type 
is already 32 bit. 

4.2.3 Exercises 

1. Given that the Pascal variables u, v, w, x and y are 16 bit integers, 
show the reverse polish form of the expression 

u-v-w+x-y 

assuming that '-'and'+' are left associative: i.e. that 

a-b-c = (a-b) -c 
a+b+c = (a+b) +c 

Show a sequence of 680x0 instructions that implements this 
expression using the system stack. 

2. a) Given that the Pascal variables u and v are 16 bit integers show 
the reverse polish form of the expression: 

(u+v)/(u-15) 

b) Show the 680x0 instructions that implement this expression 
using the system stack. 

c) Show what instructions would be needed if registers d7, d6 and 
d5 were available to simulate a stack. 

3. Assuming that w is an unsigned 8 bit quantity, and that u and v are 16 
bit quantities, generate the instruction sequence (including error 
checking code) to evaluate the expression: 

((u*32)+(u/v))**w 



CHAPTER FIVE 

Pascal compound structures 

In Pascal structured data, such as vectors, matrices, stacks and queues, are 
primarily represented using combinations of records and arrays; in LISP 
and Prolog compound structures are formed, in a higher level way, using 
lists and trees. Here, it is our intention to examine the representation and 
manipulation of Pascal compound structures such as records, arrays and 
sets. 

The 680x0 is, like most conventional processors, a fundamentally scalar 
machine: an individual instruction can only manipulate scalar quantities: 
bytes, words and long words. The largest objects routinely handled by 
processors as scalar objects are typically floating point numbers; even here 
the main 680x0 processor does not have any specific floating point 
instructions - instead a co-processor is linked to perform floating point 
arithmetic. 

The key to handling compound structures in the 680x0 is the 
observation that they are nearly always represented - in memory - as 
collections of bytes and words. Although the 680x0 cannot deal directly 
with a compound structure as a single entity we will see that we can 
manipulate expressions involving them a 'piece at a time'. 

5.1 Records 

A Pascal record cannot be held entirely in a single 680x0 register. Record 
values are represented only in memory: as a collection of bytes - in fact as 
a contiguous concatenation of the component parts of the record. 

Each component part of a record has a size: this size is pre-determined 
for scalar types (i.e. the number of bytes needed to represent the scalar 
variable) and the size of a compound structure is found by adding up the 
sizes of each of the component parts of the structure: 

75 



76 Pascal compound structures 

foobar = record 
foo:integer; 
bar:record 

a:integer; 
b:char; 

end; 
foop:"foobar; 
end; 

fb:foobar; 

{2 bytes} 

{2 bytes} 
{l byte} 
{a filler byte} 
{4 bytes} 
{total: 10 bytes} 

{variable uses 10 bytes} 

The total space occupied by a value of type foobar is 10 bytes, therefore 
any variable of that type - including fb - will also occupy 10 bytes. 

Notice that we have indicated a byte-sized filler - which holds no data -
immediately after the byte sized field bar. b. We use a filler because we 
want to ensure that the pointer field foop is always on an even address 
boundary. With the filler, if the record as a whole starts on an even 
boundary then each word or long word length field in the record is also on 
an even address boundary. This is required for the 68000, but even on the 
68020/68030 it is advisable since it is more efficient to access words and 
long words on even boundaries. 

Knowing the sizes of each of the component parts of a record, we can 
determine the offset of each component from the start of the record: 

foo equ 0 ;the 0th byte 
bar equ foo+2 ;the 2nd byte 
bar a equ bar ; 0 th within bar 
bar b equ bar+2 ; 2nd within bar 
foop equ bar+6 ;last entry 
foo len equ foop+4 ;total length 

Notice that we have set up the equates to refer to symbolic values defined 
in earlier equates. Each equate only had to 'know' the size of the previous 
element in the record description. Putting the equates in this form makes 
the layout of complex records more manageable. 

Since we can't access a record structure directly in a 680x0 register we 
have to do so indirectly through the memory. This means that in order to 
access or modify a component of a record we establish a pointer to the 
record in an address register, and then we can use offsets from that address 
to access the record's fields. 



aO dO -------------
al dl 

a2 d2 -------------
a~--~OQ~ d~~~-=-=-~-~-=-=1-~~~--
a4 d4 -------------as dS 

a6 d6 -------------
a7 d7 

foobar = record 
foo:integer; 
bar:record 

a:integer; 
b:char; 

end; 
foop: ... foobar; 

end; 

5 .1 Records 77 

999 
1000 
1001 - - - -
1002 
1003 
1004 - - - -
1005 

- - - -
1006 

- - - -
1007 

- - - -
1008 - - - -

- - - - 1009 
1010 

Figure 5.1 The layout of a Pascal record in memory 

A typical Pascal statement which involves accessing a variable of type 
foobar might be: 

fb . bar . b : = ' 9 ' ; 

For us to be able to implement a statement like this we must first 
determine where the variable fb is in the memory. However, for the 
moment, we shall assume that we have already done this, and that 
address register a3 has been loaded with the address of fb. To store the 
character ' 9 ' into fb we use this register as a base, and we add the pre
determined offset bar_b which gives us the location of bar. b within 
fb. The 680x0 provides us with a convenient way of doing this with the 
address register indirect with displacement addressing mode: 

move.b #'9',bar_b(a3) 

In general, the address register indirect addressing mode is written as 
Off (an) or (Off, an), where the offset Off is a number in the range 
-32768 ... 32767. This addressing mode uses the value contained in the 
address register added together with Off as the address of the operand. 
So, in this case, the contents of a3 (i.e. 1000) is added to the offset ( which 
is 4 since bar_ b has been equated to 4) to form the address of fb . bar . b 
as being 1004: 



78 Pascal compound structures 

aO dO 
- - - - - - - - - - -

al dl 
- - - - - - - - - - -

a2 d2 
- - - - - - - - - - -

a3 1000 d3 
- - - - - - - - - -

a4 d4 
- - - - - - - - - - -

as dS 
- - - - - - - - - fb 

a_§ - - - - ~~ - - - -
a7 d7 

ASCII' 9' is 57 ~:::: :::: :::: 

move.b 

~ 57 

#'9',4(a3)_/ 

Figure 5.2 Assigning to a field in a record 

5.1.1 Assignment of a record variable 

999 
1000 
1001 
1002 
1003 
1004 
1005 
1006 
1007 
1008 
1009 
1010 

We have seen that we can assign a scalar variable with essentially a single 
instruction. We may need several instructions to compute the value to be 
assigned, and we will often also need extra instructions to compute exactly 
where the scalar variable is located in memory so that we can update it, 
but the assignment itself can be performed in a single instruction. 

In the case of a record variable, like the fb variable above, we cannot 
assign to the whole variable in one instruction because it is 10 bytes long 
which is larger than the contents of an individual register. We can assign 
to components of fb but not the whole of fb itself in a single instruction. 
If we want to assign a record variable as a whole, then we will need to use 
several instructions. 

jb:foobar; another foobar variable} 

jb:=fb; assign a whole record } 

This assignment will require three instructions to implement. If we can 
again assume that register a3 has been set up to point to the fb variable, 
and if we can also assume that address register a2 has been set to point to 
jb then the assignment can be implemented as three move instructions: 



move.! O(a3),0(a2) 
move.! 4(a3),4(a2) 
move.w 8(a3),8(a2) 

5.1 Records 79 

Notice that we can use these three instructions no matter how many fields 
there were in foobar providing that its length was still 10 bytes. The 
sequence of move instructions in the assignment does not relate to the 
individual fields in the records but rather to the total number of bytes 
needed to be moved. Indeed in this case one of the fields - foop - is 
moved in two pieces across· the second and third instructions. We can do 
this because assignment is an atomic action from the point of view of the 
Pascal programmer and the state of the memory is consistent both before 
and after the assignment sequence (although not necessarily during it). 

If the record is very large then the iterated sequence of move 
instructions might lead to a large number of instructions. We could, 
instead, implement the record assignment as a loop: 

@0 
move.w 
move.b 
dbra 

#foo len-1,dO 
(a3)+, (a2)+ 
d0,@0 

; record size 
;byte transfer 

Here we are using a byte sized transfer together with the post-increment 
addressing mode to copy the record across. The address registers a3 and 
a2 are successively incremented in each pass of the loop so that they are 
always pointing at the next byte to copy. At the end of the loop, when all 
the bytes have been copied, a3 and a2 will point to the first byte after the 
fb and jb variables respectively. In practice of course, we wouldn't use a 
byte transfer - we would probably use a word or long word transfer - and 
have fewer passes round the copying loop. 

The dbra instruction decrements the bottom half of the data register dO 
and if the result is -1 then the loop terminates and execution continues 
with the next instruction. Otherwise, the processor jumps to the label @ 0 
and the loop is re-entered. Since the loop finishes when dO reaches -1 
we have initialized the counter dO with one less than the length of the 
record. 

5.1.2 Pointers and pointer manipulation 

In Pascal, records and record variables are often associated with pointers. 
A pointer is a scalar quantity which can address a variable of its associated 
type which may or may not be scalar. So, for example, this statement 
declares two pointers to foobar records: 

fbp,jbp:"foobar; 



80 Pascal compound structures 

and we might use the jbp variable to update a component in the record 
addressed by fbp: 

fbp".foop:=jbp; 

Notice that while fbp is a scalar variable, fbp" is a record variable which 
would have to be manipulated via its address - but we can obtain that 
from the scalar fbp. The record element fbp". foop is once again a 
scalar that can be processed directly. As we come to implement this Pascal 
statement we no longer need to assume that fbp" has somehow been 
loaded into a3 - we can do this directly by loading it from the fbp 
variable: 

move. 1 f6p, a3 ; a3 is fbp" 
move. 1 j6p, foop (a3) 

There are a number of programming cliches which are commonly used in 
pointer manipulation algorithms; two of which are pointer following and 
pointer exchange. A typical pointer following loop is: 

while fbp".foop<>nil do 
fbp:=fbp".foop; 

The pointer assignment within this loop can be implemented in a fairly 
short sequence of instructions: 

move.l 
move.l 
cmp.l 
beq 
move.l 

f6p, aO ;pick up fbp 
foop(aO),aO ;fbp".foop 
#nil, aO ; valid pointer? 
access nil line xxxx 
a0,f6p ;assign 

;continue 

A pointer exchange operation is used, for example, when a linked list is 
updated to add a new element - identified, in this example, by the n w 

variable: 



nw:~ foo: 
bar: a: 

b: 

foop: 

5.1 Records 81 

fbp:) fbpA . foop: =nw; nwA.foop:=fbpA.foop; 

(1-foo-: ~~ foo: 
bar: a: 

b: 
bar: a: 

b: 

foop: ~~f_o_o_p_=~~~~ 
Figure 5.3 Inserting an element into a list 

The old value in fbp"'. foop is copied to the new element's foop, before 
being updated to point to the new element: 

nw"'.foop:=fbp"'.foop; 
fbp"'.foop:=nw; 

We can implement this fragment with the sequence: 

move. 1 f6p, aO 
move. 1 nw, al 
move.1 foop(aO),foop(al) 
move.1 al,foop(aO) 

5.1.3 The with statement 

The with statement is used in Pascal to temporarily 'declare' the 
components of a record variable within its scope. For example, if we had 
to update all of the values of some record which is addressed by a pointer 
we could do so with the Pascal fragment: 

nw"'.foo:=lO; 
nw"'.bar.a:=nw"'.foo*23; 
nw"'.bar.b:='O'; 
nw"'.foop:=nil; 

In these statements there are many occurrences of the sub-expression nw"'. 
This is both ugly and can easily lead to less than optimal code. We can use 
a with statement to find a neater way of expressing these separate 
assignments to the same record. The with statement temporarily declares 



82 Pascal compound structures 

the components of the records nw" and nw" . bar to be in scope, in effect 
defining new variables: 

with nw" , bar do 
begin 

foo:=lO; 
a:=foo*23; 
b: =I 0 I; 
foop:=nil; 

end; 

If we were a naive compiler, then the first set of statements would involve 
repeatedly computing the address fbp" as we accessed and stored values 
into the record. However in the second formulation, we can take the hint 
of the with statement and allocate an address register a3 (say) to 
temporarily hold the addresses of fbp" and fbp". bar. If we do this, 
then when we map the statement sequence, we can assume that we know 
where the variables foo, a, band foop are in relation to a3: 

move .1 nw, a3 ; the with 
move.w #10,foo(a3) 
move.w foo(a3) ,dO 
muls. w #23, dO ; foo*23 
move. w dO, bar a (a3) 
move. b #' O', bar b (a3) ; b: =' o' 
move.l #nil,foop(a3) 

After the completion of the with statement then we can 'release' the 
address register a3 for other roles. 

Recall that we constructed the assembler symbols for the offsets of the 
elements of the foobar record by means of a series of equates. With a 
large program it is quite possible to accumulate large numbers of equates 
relating to the various records and other constants. Unless carefully 
managed, this can result in some confusion, especially if there are records 
with duplicate field names in . them. A few assemblers have a more 
elaborate way of declaring record layouts which reduces this problem by 
isolating each record description. The technique is reminiscent of 
declaring storage: 

barr 
a 
b 

record 
ds.w 
ds.b 
endr 

incr 
1 
1 

; integer word 
;character byte 

together with a similar declaration for foobar itself: 



5.1 Records 83 

foobar record 
foo ds.w 
bar ds 

incr 
1 
barr 
1 

; foo is an integer 
; the bar record 

foop ds.l 
length equ 

endr 
* 

; long word foop 
, - size of record 

The ds . w statements within the record/ endr statements do not define 
storage: they simply define some symbolic names; it is as though we had 
the equ statements: 

barr.a equ 0 
barr.b equ 2 

foobar.foo equ 0 
foobar.bar.a equ 2 
foobar.bar.b equ 4 
foobar.foop equ 6 
foobar.length equ 10 

The symbolic names that are introduced with this notation can be used 
instead of offsets; so for example, a Pascal statement such as 

fbp".foop:=nil; 

can be written in assembler as the instruction: 

move .1 /Gp, a3 
move.l #nil,foobar.foop(a3) 

The main advantage of using such record descriptors in assembler 
programs is that the names which are declared within the record are not 
global: a normal equate directive would declare a symbol for the whole of 
the remainder of the source file. With record declarations, we could 
describe several records, with possibly overlapping field names, and 
reduce the risk of confusion. 

The record descriptions can be used to give a similar kind of support to 
the assembler programmer as Pascal does with the with statement. The 
assembler with directive 'declares' that the symbols within a record 
description are made directly available. Using field names within the 
scope of an assembler with directive would be automatically converted 
into the appropriate offset values. The scope is terminated by a matching 
endwi th directive. 

It is still however the programmer's responsibility to ensure that an 
address register has been appropriately loaded with the base address of the 
record. Our original initializing sequence can now be expressed as: 



84 Pascal compound structures 

with foobar ;assembler with 
move.l nw,a3 ;the 'real' with 
move.w #10,foo(a3) ;foe within nw 
move.w foo(a3),d0 
muls.w #23,dO ;foo*23 
lea bar(a3),a2 
with barr ;nested with 
move.w d0,a(a2) 
move.b #'0',b(a2) ;b:='O' 
endwith ;end nested with 
move.l #nil,foop(a3) 
endwith ;end outer with 

We also have a new instruction here: the load effective address - lea -
instruction. This is an interesting and important instruction which loads 
the address of an operand into an address register rather than the value 
addressed by the operand. In this case the instruction 

lea bar(a3),a2 

is equivalent to the pair of instructions: 

move. 1 a3, a2 
add. l #bar, a2 

We can use any memory addressing mode as the source of this instruction 
- there is no numeric value for the address of a register however, so it is 
not possible to load its effective address! 

The add instruction above is really an adda . 1 instruction which is a 
version of add which adds to an address register as opposed to a data 
register, but most assemblers automatically substitute adda for add when 
the destination is an address register. 

5.1.4 Exercises 

1. To delete the element identified by the expression: fbp". foop from 
a list, we would use the Pascal statement: 

Assuming that fbp is a pointer variable to a foobar record as seen 
above, show the sequence of 680x0 instructions which implements 
this assignment. 



5 .1 Records 85 

2. Show the sizes of the record types below, and determine the 
numerical offsets of the components: 

d entry = record 
- mark:boolean; 

and 

t:(a tag,b tag); 
n:"d-entryT 
end;-

e entry = record 
- mark:boolean; 

n:"e entry; 
t: (a -tag, b tag); 
end;- -

Which record occupies less space? Why? Would you recommend 
that a compiler performed an automatic optimization of one to the 
other? 

5.2 Representing arrays 

Like records, arrays are not scalar objects, and therefore cannot be 
processed other than as structures in memory. Generally the elements of 
an array are laid out consecutively with the first element followed by the 
second and so on. For example, if we had the array declaration: 

ai:array[l .. 10] 6f integer; 

then the array ai would be laid out in memory as: 

ai[l] ai[2] ai[9] ai[lO] 

Figure 5.4 The layout of an array in memory 

In order to access an element of an array we need to be able to convert the 
index of the element into an address in memory. This is done by 
computing the element's offset from the base of the array and adding in 
the array's base address. 

There are three aspects to computing the offset of an array element: we 
need to ensure that the index is valid, i.e. that it is within the bounds of 



86 Pascal compound structures 

the array; we need to map the index into a new range so that the first index 
is mapped to the first element of the array - which is always at offset 0 -
and then we need, in general, to multiply the shifted index by the size of 
each element of the array: 

Range of indices 
of array 

---->1)1ii..~ [m .. n] 

~ shift range to start at O 

[O •• n-m] 

I * Size of element 

' ~ Range of byte offsets into 
[0 .. (n-m) *SJ array memory structure 

F~r example, if each element of an array occupies 10 bytes then the 3rd 
element in the array is 2*10 bytes from the beginning of it. 

In the ai array above, each element is an integer, which we are 
assuming to be a 16 bit integer. Thus in order to convert an index into an 
offset we need to multiply the index by 2. For example, the Pascal 
assignment statement: 

ai[x]:=32; 

where xis an integer variable, can be mapped to the instruction sequence: 

lea 
move.w 
sub.w 
muls.w 
add.l 
move.l 
move.w 

ai, a2 
-t_,dO 
#1,dO 
#2,dO 
a2,d0 
dO,aO 
#32, (aO) 

; array starts at 1 
; convert to offset 
; add in offset 

;the 

Here we have assumed, as we did with record variables, that we do not yet 
know where ai is or how to find its address; so we have assumed that 
register a2 can be set to the base of the array using some kind of operation 
similar to the lea instruction. This may indeed be a lea instruction, 
however it will not always be so. We shall be better placed to determine 
how to find this base address when we look at procedures and variable 
allocation within them. 

As with scalar expressions, it is our responsibility to ensure that the 
expressions that we use to access array elements are within the bounds of 
the array itself: it is meaningless to access the moth element of an array 
that only has 30 elements. In principle, checking for array bounds is the 



5.2 Representing arrays 87 

same as range checking for scalar expressions: to check that the value of 
the index expression is within the range of indices of the array we compare 
the index value against the minimum and maximum values permitted 
for the index: 

lea 
move.w 
sub.w 
blt 
cmp 
bgt 
muls.w 
add.l 
move.! 
move.w 

ai, a2 
~' dO 
#1, dO ; array starts at 1 
array bounds error 
#9 I dO- ; array bounds: [1 .. 10] 
array bounds error 
#2 I dO- . ; convert to offset 
a2, dO ; add in offset 
dO,aO 
#32, (aO) ;the .-

We can use another of the 68000's addressing modes, the address register 
indirect with index addressing mode to optimise array access. The index 
addressing mode combines the use of an address register (which points to 
the base of the array), a second register (to provide the index) and a 
displacement. 

An operand using this mode is written: O f f ( ax , r y . s ) or 
(Off, axr ry. s) where ax is the address register, ry is the index register 
which can be either an address register or more typically a data register, s 
is the size of the index ( . w for word length or . 1 for long word length) 
and Off is a displacement or offset in the range -128 .. 127. 

The size specifier determines how much of the index register is to be 
used for the index size. In our case, since ai occupies less than 64 Kbytes, 
the indices into ai are integer or word length and so our index variables 
are also word length. 

Using the indexed addressing mode we can shorten the sequence of 
instructions above by eliminating one add and one move: 

lea 
move.w 
sub.w 
blt 
cmp 
bgt 
muls.w 
move.w 

ai, a2 
~' dO 
# 1, dO ; array starts 
array bounds error 
#9,dO- -
array bounds error 
#2,dO- -
#32,0(a2,d0.w) 

at 1 

We can further reduce the instructions by making use of the displacement 
to take into account the fact that the first index of the array is 1 not 0. If we 
use a negative offset (-2) for the final move we can eliminate the 
subtraction from the index calculation. This is only possible if the 
maximum offset is in the range -128 .. 127 bytes, otherwise we shall still 



88 Pascal compound structures 

have to perform an explicit subtraction. We can also replace the 
multiplication by 2 by an add which is a much cheaper operation: 

lea 
move.w 
cmp 
blt 
cmp 
bgt 
add.w 
move.w 

ai, a2 
x,dO 
#1,dO 
array bounds error 
#9,dO- -
array bounds error 
dO,dO- -
#32,-2(a2,d0.w) 

We can compute the initial or base offset for the general case by calculating 
the size of the 'array' fragment from the first index to 0. This will be a 
negative amount if the first index is positive and positive if the first index 
is negative. The base offset can be expressed as the value of the expression: 

-Ost index*size of array element) 

If we had an array whose first index was negative, as in: 

cha:array[-10 .. 10] of char; 

then the offset is found by multiplying the first index (which is -10) by the 
size of an element (which is 1 byte) and negating it, giving us an offset of 
10 bytes - implying that the offset required to access an element of this 
array is 10. Only arrays whose first index is 0 use the address of the array 
without offsets to access elements in it. 

The 68020 and 68030 offer a further enhancement to the indexed 
addressing mode: it is possible to scale the index. The scale factor is the 
number by which the index is multiplied before use in the address 
computation. The scale factor can be 1, 2, 4 or 8, corresponding to arrays 
whose elements are byte sized, word sized, long word or double long word 
sized. In our case, ai is an array of words, and so we can use a scale factor 
of 2. (The 68020/68030 also allows displacements to be 16 bit as opposed to 
just 8 bit on the 68000.) 

If we also use the more advanced double comparison instruction cmp2 
available on the 68020/68030 then we get the sequence: 



ai, a2 
~, dO 

5.2 Representing arrays 89 

lea 
move.w 
cmp2 
bes 
move.w 

ai bnds,dO 
array bounds error 
#32,-2(a2,d0~w*2) 

ai bnds: 
dc.w 
dc.w 

1 
10 

aO dO x ------------
dl 
d2 
d3 
d4 ------------
dS 

d7 

ai[l] ai[2] 

; lower bound of ai 
; upper bound 

move.w #32,-2(a2,d0.w*2) 

32 

ai[x] ai [10] 

Figure 5.5 Assigning an element of an array 

5.2.1 Arrays of records 

Apart from simple vectors, like ai, we can also have arrays of records 
such as: 

foobarray=array[l .. 10] of foobar; 

fba:foobarray; 

Since the size of each element of fba is 10 bytes, we cannot avoid the use 
of an explicit multiplication when we need to compute the offsets of 
elements within the array: the scale factor of the 68020's indexed 
addressing mode cannot help us. So if we had to implement an 
assignment statement which stored into the xth element of fba such as 
the assignment: 

fba[x] .bar.a:=y; 



90 Pascal compound structures 

we should have to use an instruction sequence like: 

with foobar 
move .w ~, dO 
cmp . w # 1, dO ; check lower bound 
blt array bounds error 
cmp . w # 10 , dO ; Check upper bound 
bgt array bounds error 
mulu.w #length,dO -
lea f6a, a2 
move.w y,bar.a-length(a2,d0.w) 
endwith 

In the last move instruction, the expression bar. a-length refers to the 
initial base offset (which is -1 * length of a foobar record) but then we 
add an offset to address the field bar. a within the foobar record. 

The most expensive operation here is the multiplication of the index by 
10 which is the length of a foobarray entry. Earlier, in Chapter 2, we 
saw that it is possible, given that we know the multiplier involved in the 
calculation, to transform the multiplication into a series of 'shifts and 
adds'. In this case, the size of each entry in the array is 10, therefore we can 
perform a multiplication by ten by performing the simpler calculation: 

x<<l+x<<3 

We need only four 68000 instructions to implement this (assuming that x 
is already in dO): 

lsl.w 
move.w 
lsl.w 
add.w 

#1,dO ;x<<l 
dO,dl 
#2,dO ;x<<(2+1) 
dl,dO 

The lsl instruction performs a logical shift to the left of a given number 
of bits. On average, the 68020 these four instructions execute in 12 cycles, 
compared to 29 cycles for the mul u instruction. 

5. 2. 2 Arrays of arrays 

In Pascal it is possible to have 2-dimensional (or even n-dimensional) 
matrices; for example, the declaration: 

bi:array[O .. 20,1 .. lO]of integer; 

declares a 2-dimensional array of integers. As with a I-dimensional array, 
or vector, the array bi is laid out in memory as consecutive integer cells. 



5.2 Representing arrays 91 

In this case however it must first be mapped into a I-dimensional vector 
since memory itself is I-dimensional: 

bi[O] bi[l] bi[20] 

fi?irr?a IT?u 

.il / \ 1>11
•
1

•
1 

J ... 11f 
bi[20,10] 

bi[0,10] 

Figure 5.6 The layout of a 2-dimensional array 

Each row of the 2-dimensional array/matrix is laid out as a normal vector; 
the vector of rows is then laid out contiguously. We can reduce any n
dimensional array into a single dimensional vector in the same way: lay 
out the various n-I dimensional components of the array in a contiguous 
sequence. This is repeated recursively until you reach the oth dimension: 
the individual elements of the array. 

Accessing an entry in a 2-D matrix involves two multiplications: the 
first is by the size of an individual row in the matrix, which comp'l.tes 
where the required row is relative to the base of the array, and the s , md 
is needed to access the required element in the row. So the Pascal 
assignment: 

bi[x,y] :=z;. 

is mapped to the sequence of 680x0 instructions: 

move.w vdO ;first row off set 
mulu.w #10*2,dO ;could expand this 
move.w y,dl ;next column offset 
mulu.w #2,dl •* size of integer I 

add.w dl,dO ;comple~e off set 
lea 6i, aO ;where is bi? 
move.w z,-2(a0,d0.w) 

In this case the advanced versions of the indexed addressing mode (with 
the scale factor built in) on the 68020 / 68030 can only help marginally with 
the final index: it cannot remove the first multiplication. With higher
dimensional arrays it is even more important that the multiplications 
involved be as fast as is possible. 



92 Pascal compound structures 

The multiplications involved in accessing a higher dimensional array 
can be avoided by using an alternative method for laying out arrays. If we 
take the case of a 2-dimensional array, we can observe that each row is a 
vector. Instead of simply laying out the rows of the array contiguously as 
we did above, we can have a vector of pointers to the base of each row. 

"bi[O] lbi [0, 1] lbi[0,2] I ... . .. lbi[0,10] 
"bi[l] 

lbi [1, 1] lbi [1, 2] I ... ... lbi [1, 10] 

"bi [20] bi[20,1] bi[20,2] ... ... bi[20,10] 

Figure 5.7 A 2-dimensional array as a vector of vectors 

In order to access an element of this array, we look up the row address 
vector to get the address of the appropriate row, and then access the 
element within that row as we would for a normal vector. This is a 
matter of following pointers rather than computing offsets, which is 
potentially much faster. 

The code for our previous assignment becomes the simpler sequence: 

lea 
move.w 
asl.w 
move.l 
move.w 
asl.w 
move.w 

6i, aO ; where is bi? 
~, dO ; first row offset 
#2, dO ;pointers are 4 bytes 
O(aO,dO.w),aO ;qet row address 
y, dl ; next column offset 
#1, dl ; * size of integer 
z,-2(a0,d0.w) ;store z 

We are using here the asl (arithmetic shift left) instruction to implement 
a multiplication by four and by two. The first is needed because a pointer 
occupies four bytes, and the vector of row addresses is in effect a vector of 
pointers. Using the scale factors available on the 68020/68030 we can 
eliminate the left shifts: 

lea 6i, aO ;where is bi? 
move . w ~, dO ; first row offset 
move .1 0 (aO, dO. w*4), aO ; qet row address 
move. w y, dl ; next column offset 
move.w z,-2(a0,d0.w*2) ;store z 



5.2 Representing arrays 93 

This instruction sequence is typically twice as fast as the original sequence 
(assuming that one of the multiplications is actually replaced by a left 
shift). For this reason, this form of addressing higher dimensional arrays 
is used as standard by many 'C' compilers. 

We can also use the same technique for implementing 3-dimensional 
arrays, or higher dimensional arrays: 

vector of row address vectors 

\~/ 
"bk [1] 
"bk[2] 

address vectors 

bk[l,1,1] ...... bk[l,1,L] 

lbk[l,2,lJI ...... lbk[l,2,L] I 

lbk[l,K,1] 1 ...... lbk[l,K,L] I 

lbk[J,l,l] 1 ...... lbk[J,l,L] I 

lbk[J,2,1]1 ...... lbk[J,2,L] 

lbk[J,K,l] 1 ...... lbk[J,K,L] I 

Figure 5.8 Structure of array [ 1 . . J, 1 . . K, 1 . . LJ of integer 

However, this technique for representing matrices does have an extra cost: 
for each row in the matrix there is an overhead consisting of a pointer to 
it. Similarly, for each plane in a 3-dimensional matrix, there is a pointer 
to it. For certain shapes of arrays (such as those which have many short 
rows) the memory overhead of row address vectors may be greater than 
the memory required for the array itself. Furthermore, the vector must be 
initialized when an array is created. This is itself an expensive operation. 

5.2.3 Exercises 

1. Given the following type and variable declarations: 



94 Pascal compound structures 

jamjar=record 
jam:integer; {16 bit integers} 
jar:array[l .. 10] of Ajamjar; 
end; 

jjp:Aarray[l .. 5] of jamjar; 
jjn:Ajamjar; 

Write down the sequence of 680x0 instructions which is needed to 
implement the assignment statement: 

j jpA [x] . jar [y] : =j jn; 

assuming that x and y are 16 bit integers. You should ensure that the 
array index variables, x and y, do not exceed the bounds of the 
various arrays involved. 

2. Although on many occasions breaking up the multiplication into 
adds and shifts results in faster code, this is not always so. Assuming 
that the add and a 1s1 instruction take 3 cycles each, and that the 
general purpose multiply instruction takes 29 cycles for any value of 
operands, under what circumstances is it better to use the mu1u 
instruction? 

3. In the 'row address vector' method of representing higher 
dimensional arrays, there is an overhead of creating the row address 
vector each time the array variable is initialised. This could become a 
problem where the array is declared in a local procedure which is 
called often or even recursively. A normal contiguous array would 
not have this initialisation overhead. 

We can eliminate both the initialisation overhead, and most of the 
space overhead for each higher dimensional array variable, by creating 
a single standard vector of row offsets rather than row addresses. This 
vector is constant and could be kept with the program code: perhaps 
associated with the code for the program in which the array type is 
declared. It would contain offsets to the rows in an array; these rows 
are themselves laid out contiguously as a normal array. 

Show how an array of this type can be accessed, and show the 
instruction sequence needed to implement the assignment: 

bi [ x ' y ] : =bi [ y ' x ] ; 

using this strategy. 



CHAPTER SIX 

Advanced Pascal data structures 

In this chapter we look at two related concepts in the representation of 
Pascal data: packed structures and sets. When the programmer indicates a 
packed data .structure, be it an array or a record, then we must make every 
effort to use the fewest possible number of bits to represent the data 
structures. Packed data objects are important for two quite separate 
reasons: space efficiency and external interfacing. 

Sets are used in Pascal where bit strings are used in other programming 
languages. Their implementation closely resembles the implementation 
of packed arrays of boolean. 

6.1 Packed data structures 

In many applications there tend to be a few data structures which are 
much more numerous and important than others. For example, in an 
accounting system there may be thousands of entries relating to various 
accounting events; each event would have an associated date component. 
A small change in the size that is needed to represent a date could have a 
significant effect on the maximum number of audit entries that the 
accounting system can handle. 

On the other hand, since a packed structure will often not fit within 
convenient addressing boundaries, access tq packed structures can be more 
complex and time-consuming than for a normally structured data object. 
Taken to excess - if all data objects were packed, for example - this can 
markedly reduce the overall performance of any application. 

Another important justification for packed objects is access to external -
i.e. non-Pascal generated - data. In a real-world computer system it is 
unlikely that a Pascal compiler can have the luxury of being the sole 
programming system used. Much more likely is the possibility of many 
languages being used, each for their intended class of applications - 'C', 

95 



96 Advanced Pascal data structures 

Cobol, Fortran and even LISP or Prolog! Moreover, it is somewhat 
unlikely that other languages will structure their data objects in an 
identical way to Pascal. 

A further important source of non-Pascal generated data is from 
physical input and output. 1/0 devices are quite likely to generate data 
which is not in a standard Pascal format. For example, a credit card reader, 
which is used to read the magnetic stripe on the back of credit cards, will 
read and write data which concerns a particular credit card. This data is 
highly compressed due to the fact that only a limited number of bits are 
available on the magnetic stripe. 

In this multi-lingual context it is important for a Pascal program to be able 
to access data structures generated under different language systems. The 
only 'safe' way of being able to guarantee access to other structures relies 
on a minimality assumption: if a programmer can predict exactly the 
number of bits a given Pascal data structure will occupy then it is possible 
to design them to match the characteristics of a data object from another 
language. 

It must also be said that perhaps not too many Pascal compilers 
completely minimize the number of bits in a packed structure. For 
example, it would be reasonable to assume that a typical compiler will 
allocate 32 bits to pointers even though that 'wastes' 8 bits on a 68000 since 
it only needs 24 bits for an address. 

Perhaps the most common packed structure that a Pascal programmer is 
likely to encounter regularly is the string which can be described with 
the declaration: 

string=packed array[O .. 255] of char; 

or sometimes a different formulation is used: 

string=packed record 
length:byte; 
c: packed array [ 1 .. 255] of char; 

end; 

Notice that in the second definition of string we had to indicate that 
both the whole record and the array of characters within it is to be packed. 



6.1 Packed data structures 97 

If we had not said that c was packed then each entry in the array would 
probably have taken a 16 bit word on the 68000 and the whole record 
would be nearly twice the size! (In fact the outer packed declaration 
would have been meaningless.) 

A typical example of a packed structure with more than one field packed 
into a word is: • 

date format=(american,british,other); 
month= ( january, february, ...... , december); 

p date = packed record 
- valid:boolean; 

d f:date format; 
mon:montii; 
day:l .. 31; 
year:0 .. 2100; 

end; 

date:p_date; 

{l bit} 
{2 bits} 
{4 bits} 
{5 bits} 
{12 bits} 
{24 bits} 

{long word} 

{2 bits} 
{4 bits} 

If we declare a variable in our program of type p_date, then we will 
devote a long word to the variable, even though only 24 bits of the 
variable are used. The remaining 8 bits are unused: 

valid 

Unused ~ d f mon day year 

31 23 21 17 12 0 

Figure 6.1 The layout of a packed record 

However, if we had a packed array of p_dates then each record would be 
packed regardless of word boundaries: there would be no unused bits. 
(This also makes access to fields within the array even more complicated!) 

In this example we have assumed that the packed record is packed from 
the right - from the least significant bit. This is a purely arbitrary decision, 
we might just as well pack the fields from the left or most significant bit. 
In any case the exact format of a packed record is not defined by the Pascal 
standard - each installation may have a different method. This variation 
is something that the Pascal programmer needs to be aware of when using 
packed data for applications involving access to non-Pascal data structures. 

Recall that in a normal - unpacked - record each field rests on an 
appropriate addressing boundary of the machine. In a packed record the 
fields do not rest on byte boundaries; indeed a field might be spread over a 



98 Advanced Pascal data structures 

byte or word boundary. For example, the day field (which occupies bits 12 
through 16) straddles a byte boundary within the record. The lack of a 
regular addressing discipline means that we have to use more exotic 
methods for accessing and updating fields in a packed record. 

Suppose that we had to change the day of the month in our date 
variable, we might do so with an assignment such as: 

date.day:=date.day+l; 

In order for us to be able to perform this assignment we have to extract the 
relevant bit field from the long word, increment its value, and replace the 
field into the variable - without altering any of the other fields in the 
record. 

In order to extract the day field from the whole date record, we first of 
all 'mask off' all the other fields of' the long word of the record by using an 
and instruction: 

move.l 
and.l 

aate, dO 
#$1FOOO,d0 

The number $1FOOO we used here is obtained from the bit pattern which 
has a 1 in every bit which belongs to the day field, and a 0 elsewhere. 
Where there is a 0 in the mask number the and instruction will clear the 
corresponding bit in dO, and where there is a 1 in the mask the original bit 
pattern will be preserved. This masking of unwanted bit patterns relies on 
the equations: 

where B represents a bit from the data record. 

and.l #$1F~lllllllllllllll•llllllllllll 

Figure 6.2 Masking off unwanted data 

Having masked off the other fields, we now convert the day field into a 
normal number by shifting it to the right so that it is moved to the least 



6.1 Packed data structures 99 

significant position. This is so that we can perform normal arithmetic on 
the number in the day field. 

lsr.l 
lsr.l 
add.w 
cmp.w 
bge 

#8,dO 
#4,dO 
#1,dO 
#32,dO ;range error? 
range_error_yyy 

The lsr instruction implements a logical shift to the right. The left hand 
bits are filled with 0 as the pattern is shifted to the right, and the last bit 
which is shifted off the right hand end of the register is collected in the c 
flag in the condition codes register. We have seen the lsl instruction 
which has the effect of multiplying a number by 2 for every bit shifted; the 
lsr instruction can be used to divide a positive number by 2 for every bit 
shifted. The lsr instruction is complemented by the asr instruction 
which preserves the sign of the number as it is shifted. 

The maximum number of bits that can be specified as immediate data to 
the lsl/lsr instructions is 8: hence in order to shift by 12 bits we have to 
use two instructions and break the 12 bit shift into two shifts. 

Figure 6.3 Perform arithmetic on extracted field 

After the arithmetic operation we shift the answer back to the correct 
position in the long word for the day field with a logical left shift: 

Figure 6.4 Re-align data for packing into record 



100 Advanced Pascal data structures 

Normally we would also have to use the day mask again on the result of 
the calculation, to make sure that no overflow in the calculation could 
contaminate the other fields. In this case the mask operation is not 
necessary since we abort the calculation and report an error if there is an 
overflow on the arithmetic. 

Having performed the calculation on the day field we have to re-insert 
it into the original pattern for the record. We do this by first removing the 
existing day field from the date variable, with another and instruction: 

move.! 
and.l 

aate, dl 
#$FFFEOFFF,dl 

~~~112:1111™111111111111 

and.l #$FF~ 11111

Figure 6.5 Remove old field value from record

Note that $FFFEOFFF is the complement of the mask we used for day:
each bit in the mask is changed from a 0 to a 1 and vice-versa. Finally, we
or the two patterns from the new day field and the rest of the date
record, to get the final result and replace the new bit pattern into the date
variable:

or .1 dO, dl
move . 1 dl' aate

; mix in new field value
; replace new record

~,J;J I
or.l dO,dl

~~1llllOllllllllllllll
Figure 6.6 Insert new data into packed record

This assignment to the day field requires 13 instructions on the 68000 to
perform; this should be compared to 5 instructions for an equivalent
assignment if date were an unpacked record:

move.w
add.w
cmp.w
bge
move.w

tfate. day, dO
#1,dO
#32,dO

6.1 Packed data structures 101

range error yyy
dO, tfat"i". day -

Furthermore, the packed version executes approximately three times as
slowly as the unpacked one. Clearly, accessing and updating packed
records can be a lot more expensive than their unpacked equivalents.

The 68020/68030 processors have a number of special instructions which
make access to bit fields within packed records somewhat easier. The
main instructions we need here are the bit field extract instructions
(bfextu and bfexts for unsigned and signed extraction respectively)
and the bit field insert instruction (bfins). The first instruction extracts a
string of bits of a given length from a source long word and places the
result in a data register. So, our first group of instructions can be replaced
by:

bfexts tfate{ 15: 5}, dO

which extracts the day field, and shifts it into position for an arithmetic
operation, into the data register dO. The number 15 referred to in the
instruction is the bit offset from the address date (counting from the left)
where the day field starts, and 5 is the width of the field (5 bits), Both the
offset and the width components of this instruction can be specified in a
data register. If the offset is specified explicitly, as an immediate operand,
then the offset is the range o .. 31, otherwise, if the offset is in a data
register, then the offset can be up to ±2,147,483,647 bits! The maximum
field size, whether specified in a data register or as part of the instruction,
is 32 bits.

0 15

The complete assignment sequence is the same length as the unpacked
assignment, though it uses different, more expensive, instructions:

102 Advanced Pascal data structures

bfexts
add.w
cmp.w
bge
bf ins

aate{ 15: 5}, dO
#1,dO
#32,dO
range error yyy
dO, aate{ 15: 5 }-

The bf ins instruction puts the low order 5 bits from d O into the
appropriate part of the date record.

6.2 Representing sets

A Pascal set is a different kind of data value than a simple scalar or array.
A variable of type 'set of integer' for example, has values which are
sub-sets of the integers - the set [1, 34, 100] could be a value of such a
variable. Expressions and assignments over sets usually involve
operations such as element insertion and set intersection rather than
addition and multiplication which are typical expressions over integers.

Many Pascal compilers do not allow the programmer to have a variable
of such a large type as a set of integer: usually the compiler imposes
a limit on the number of elements in the base type of a set variable; this in
turn allows the compiler to use an efficient representation for set
variables. The limit on the size of a set is not defined by the Pascal
standard but we often see limits such as 32 and 256. The limit of 32 is
'defensible' on the grounds that a long word can hold 32 bits and therefore
sets of up to 32 elements are easy to implement. On the other hand it can
be argued that a set limit of at least 256 allows the programmer to construct
a set of char which can be an extremely convenient data type.

There is no good reason why, for example, a declaration of the form:

i set:set of 0 .. 1023;

should not be accepted by every Pascal compiler.
A set can be represented, in memory, as a (possibly packed) array of

booleans: each index in the boolean array corresponds to an element in the
base set. So, the i_set declaration might be implemented as though it
were:

i_array:packed array[O .. 1023] of boolean;

Given a particular value of the variable i_set, an element I in the range
o .. 1023 might be said to be 'in i_set' if the corresponding array entry
i_array[I] istrue.

6.2 Representing sets 103

6.2.1 Set membership and element insertion

Perhaps the most basic operation on a set variable is to insert an element
into the set held by it. We would do this with a Pascal assignment
statement such as:

i set:=i_set+[I];

If we interpret i _set as an array of booleans, then this element insertion
is 'equivalent' to the assignment:

i_array[I] :=true;

Since we would want to use a packed structure to represent the set/array
and since this set, at least, is too large to fit into a single long word (1024
bits needs 128 bytes), we have to be able to compute which bit in the array
of 128 bytes is required to be switched on as a result of this assignment.
This involves finding the appropriate byte and the appropriate bit within
that byte.

To compute the appropriate byte offset within the array we divide I by 8
which is the number of set elements we can represent in a byte. The
quotient of this division gives us the offset of the byte within the array,
and the remainder gives us the position of a bit within the byte that
corresponds to the element.

Since 8 is 23, we can divide the index by 8 very easily by right shifting the
index by 3 bits. We can also, as a separate operation, take the remainder by
masking off all except the lower 3 bits of the index. These two operations
give us the offset of the byte in which the bit representing element I is
held, and the bit position within that byte which represents I itself. All
this requires just four 68000 instructions:

move.w J,dO
lsr.w #3,dO
move.w J,dl
and.w #7,dl

; index ~ 8

; remainder by 8

104 Advanced Pascal data structures

lsr.w #3,dO

10 bit index

and.w #7,dl

Byte offset
within array

Bit offset
within byte

Figure 6.7 Byte and bit offset from element index

We use the number 7 in the mask to extract the bit offset due to the fact
that 7, being of the form 2n-1, has all l's in its binary expansion: in fact

7=0111 B. Once we have calculated the byte offset we can insert the
element by turning on the required bit in the relevant byte. We do this
using the bset instruction:

lea
bset

i_set,aO ;base of set
dl,O(aO,dO.w) ;turn on element

The bset instruction sets the bit indicated by its source in the memory
byte indicated by its destination. In this case, the bit position to set is
indicated by the contents of dl. If the destination were a data register then
any of the 32 bits in the data register can be set by this instruction, however
in the case of a memory address only bits within a single byte can be set.
Notice that we have once again used the address register indirect with
indexing addressing mode, this time to address the required byte in our
packed array.

If we had wanted to delete the element [I] from the set then instead of
setting the bit we would have cleared it with a bclr instruction:

lea
bclr

i_set, aO ; base of set
dl,O(aO,dO.w)

We can also test to see if an element is in the set in a similar manner;
except that instead of setting or clearing the bit we test it, using the btst
instruction. This instruction sets the z flag in the condition codes register

6.2 Representing sets 105

(leaving the other flags alone) according to the value of the bit that is
tested:

lea
btst

i_set, aO ;base of set
dl,O(aO,dO.w)

The z flag is set by the btst instruction if the bit tested is zero, i.e. if the
element is not present in the set. If the element is present in the set then
z will be cleared.

Having tested for the existence of an element, the next step depends on
what context the test occurs in. If we wanted to set a boolean variable to
true if the element I is in i_set, which we might do with a Pascal
assignment like:

bool var: =I in i_set;

then we have to convert the state of the flags, in particular the z flag, into
a truth value which can be stored in a Pascal boolean variable. The 68000
has a·special instruction: sne which sets the lowest byte of a data register
to all l's if the z flag is cleared, and to all O's if not (in fact, there is a whole
class of instructions of the form sec where cc is one of the conditions such
as eq, lt etc. which convert conditions into truth values). We can use
the sne instruction to move the state of the z flag to a data register, and
then to a Pascal variable; however, we must first reformat the 68000's
notion of true to be consistent with Pascal's notion of true.

In Pascal, the boolean type is an enumerated type:

boolean=(false,t~ue);

Under the normal convention for enumerated types, false is a constant
with ordinality 0, and true is a constant with ordinality 1. Normally a
value of an enumerated type is represented by its ordinality; and so,
false is represented by 0, and true is represented by 1.

To convert the result of the sne instruction, which sets the whole byte
to 1 's or O's, into a boolean, we must follow it by a suitable and instruction
to mask off all but the least bit. This gives us the means of assigning the
boolean variable:

sne dO ; state of z flag
and. b # 1, dO ; extract all but 1
move . b dO, 6oo{_var

106 Advanced Pascal data structures

The other context in which a set membership test often occurs is in the
condition part of a conditional statement (i.e. if-then-else). In this
case the state of the z flag is sufficient to guide the rest of the execution.
The use of conditions to control execution is explored in Chapter 7.

6.2.2 Set intersection, union and difference

Other common operations on set variables include the formation of set
unions, intersections and differences. These operations, which involve
manipulations of the sets as a whole, are somewhat similar to
assignments involving complete arrays, since they typically have to be
processed piece-meal: byte by byte or long word by long word.

A typical Pascal statement to form the union of two sets i_set and
j_ set (say) would be written as:

j_set:=i_set+j_set;

We can compute the union of two sets represented as packed arrays of
booleans by using the or instruction to union groups of bits together. We
can see this clearly in the case of the union of two simple sets (i _ s and
j_s) each of which has up to 16 elements:

i s = [1,4,6]

j_s = [2 I 4]

then the union of these sets is [1 , 2 , 4 , 6] :

Figure 6.8 Bitwise or as set union

This union can be formed using the bitwise or instruction:

move. w i_s, dO
or.w dO,j_s

6.2 Representing sets 107

The extra work needed to union the larger sets with 1024 elements
involves orring each of the 32 long words/128 bytes of the sets in turn;
typically we would perform this using a loop:

move.w #31,dO ; 32 long words to do
lea i_set, aO
lea }_set, al

@l move.! (aO)+,dl
or.l dl, (al)+ ; union 32 bits
dbra dO,@l

Recall that the dbra instruction will decrement the data register, and loop
round to the label until the data register becomes -1. That is why the loop
counter is set to one less than the number of iterations needed.

If we had wanted to perform a set intersection it would be essentially the
same as set union, except that instead of orring the bit patterns of the two
sets together we and them:

@l

move.w
lea
lea
move.!
and.!
dbra

#31,dO
i_set, aO
}_set, al
(aO)+,dl
dl,(al)+
dO,@l

;intersection

and set difference is also similar, except that in this case there is no single
bit-wise manipulation corresponding to set difference. However we can
observe that set difference can be re-expressed in terms of intersection and
complement:

A-B Arl-B

where -B is the complement of B. Thus we can implement the set
difference of j_set and i_set as:

move.w #31,dO
lea i_set, aO
lea }_set, al

@l move.! (aO)+,dl
not.! dl ;-i set -and.! dl, (al)+
dbra dO,@l

108 Advanced Pascal data structures

6.2.3 Exercises

1. Show how to use the bfset instruction (which sets all the bits in a
bit field to l's) to implement set element insertion more succinctly
than using bset. The bf set instruction (which is not available on
the 68000) is similar in format to the bfins instruction except that it
has only one operand.

2. Show how to implement, in 68000 instructions, the Pascal
assignment:

bool_var:=i_set<=j_set;

where <= means sub-set and i _set and j_ set are sets of sub-range
type: O .. 1O2 3. Note that there is no direct 68000 instruction to
perform sub-set test, but it can be re-expressed as a combination of
intersection and equality.

3. Assuming that the variables x and y are integers and z is of type:

z:set of 0 .. 1023;

show the sequence of 68000 instructions needed to implement the
assignment:

z: =z+ [x* (y+l)];

you may assume that address register al contains the base address of
the set variable z.

Ensure that the value of the variable z is faithfully represented in
the machine.

CHAPTER SEVEN

Representing Pascal control

The process of constructing a program involves specifying not simply the
data that is to be manipulated but also the actions to be performed over the
data objects. We have seen that Pascal has a highly developed suite of
mechanisms which can be used to specify data structures and expressions.
It is now our intention to see how the control aspect of a Pascal program is
mapped onto the computer.

The program control primitives define the combinations of actions
which are legal in the language. They are chosen at least as carefully as the
primitives for specifying data - based on experience of trying to build large
programs.

Pascal has a simple collection of basic statement types; one of which -
the assignment statement - we have already looked at in some detail. The
other basic statement types are the conditional (if-then-else), the
various loop statements: fo.r, while and repeat, the case selection
statement and the goto statement.

Together with these simple statements are the methods for grouping
statements together into larger units. Of primary interest to us are the
procedure/function definitions - with their corresponding call statements
- and the compound statement. The procedure declaration is used, in
Pascal, both as a way of grouping statements together and as a way of
specifying the scope of variables; other languages, notably 'C' and Algol,
separate out these aspects of procedures and blocks. It is when we see how
procedures are implemented that we can finally see how tQ. map variables
to their proper place in the machine.

However, it should be pointed out that the most fundamental feature of
programming in Pascal - the single locus of control or 'moving finger'
which moves about the program text and which indicates which
statement is being executed at any given time - is reflected at a very deep
level in the machine: namely the program counter or PC. The program
counter points to the currently executing instruction - which, we

109

110 Representing Pascal control

presume, is part of a sequence derived as a result of mapping Pascal
statements to the assembler instructions.

Obviously this moving finger jumps around the program a great deal
during execution but the default action on the completion of an
instruction is to execute the next one in memory. This default is reflected
in the most common and fundamental statement operator in Pascal: the ';'
statement separator, which has the equivalent meaning of continuing
execution with the following statements.

7 .1 Simple Pascal control structures

As we noted above, Pascal has a range of simple control structures or
methods of combining statements together. These are mainly derived
from the structured programming methodology and correspond to
segments of flow charts each of which have a single entry point and a
single exit point.

7 .1.1 Conditional if then else

The most basic type of control statement, after assignment, is the
conditional statement. There are two forms of the conditional statement
which have the corresponding syntaxes:

if <test> then <S>
and

if <test> then <Sl> else <S2>

Whichever branch is taken - the then branch or the else branch -
execution (normally) continues with the statement following the
conditional. When a conditional statement is executed as 680x0
instructions the test or predicate part is evaluated first. The result of the
test is usually to set some flags in the condition codes register in order to
represent some condition; whereupon we can use a conditional branch
instruction (bee) to select the then block of instructions or the else
block.

We can describe the general structure of a sequence of 680x0 instructions
which implements a conditional statement as:

@0
@1

<compute test antf set cotfes>

bee @0 ;select branch
<tlien instructions>
bra @1 ;exit conditional
<efse instructions>

;continue

7.1 Simple Pascal control structures 111

Normally, the test in a conditional involves accessing one or more
variables or values and performing a comparison. The result of the
comparison is reflected in the state of the flags in the condition codes
register. The conditional branch instruction used selects the sense of the
comparison based on the test in the Pascal program. So, we might, for
example, wish to test a list of integers to see that the first element is greater
than 20:

if fbp<>nil then
if fbp". foo>20 then

<sl>
else

<s2>

Here we have a nested conditional statement: the outer one controlling
the inner conditional statement which is executed only if the fbp pointer
is valid (not equal to nil at least). The inner conditional also has an
else clause which results in <s2> being executed if the first list element
is less than or equal to 20. This complete conditional statement can be
mapped to the sequence of 680x0 instructions:

move.! f6p, aO
cmp.l #nil,aO ;outer test
beq @0
move.w foo(aO),dO ;inner test
cmp.w #20,dO ;>20?
ble @l
<sl> ;then branch
bra @0

@l <s2> ;else branch
@0 ;continue

The first cmp instruction is actually a cmpa instruction, which is a
comparison instruction specialized to comparing against address registers.
However, most assemblers allow the programmer to use the cmp
mnemonic, and substitute cmpa for it, when the destination addressing
mode is address register direct.

We should, at this point, look a little more closely at the conditional
branch instruction, of which we have already· seen some examples. The
instruction:

cmp.w #20,dO

compares the lower half of dO with the literal number 20. It does this by
subtracting 20 from the lower half of dO, without updating it. If dO was
greater than 20 then the condition codes would be set by the cmp
instruction so that a subsequent bgt instruction would take the branch

112 Representing Pascal control

given by its label. In this case we only want to execute the e1se statement
(<s2>) if dO (which contains fbp"'. foo) is less than or equal to 20. We
can specify this using the same comparison followed by a b1e instruction:

cmp.w
ble

#20,dO
@1

which will branch to @ 1 if dO is less than or equal to 20. Altogether, there
are 16 versions of the branch conditional instruction - corresponding to
the 16 testable states of the condition codes register identified in Chapter 3.

The label operand of the ble instruction is an example of the program
counter relative addressing mode. If the gap - in bytes - between the start
of this instruction and the label @1 was 10 bytes (say) then we could
equally have written:

ble *+10

where '*+10' means 'add 10 to the program counter'. In order to take the
branch - i.e. to go to the program instructions at @1 - all that is required is
to add 10 to the program counter. This is true no matter where in
memory the two instructions - the branch and the target - are located, so
long as they are 10 bytes apart. This, in effect, means that the program
fragment is position independent; and that in turn means that we can
change its position, i.e. move the program, dynamically without changing
its meaning.

Having said that the bra instruction uses program counter relative
addressing, we should also point out that this is the only addressing mode
that bra can use: therefore it is slightly disingenuous to suggest that it has
an addressing mode at all!

The 680x0 has good support for constructing position independent
programs. So much so, that at least one operating system - the Apple
Macintosh OS - requires that all programs are position independent. This
is because the Macintosh OS does not guarantee where a particular
program will be loaded into memory, which in turn allows a
simplification of the hardware requirements for a Macintosh computer.

If a program could rely on being located in a fixed place in the
computer's memory, then, in order to allow more than one program in
the memory at a time, a hardware mapping unit - called a memory
management unit - must be used to map logical addresses within an
executing program to physical addresses in the machine; since it is certain
that two co-resident programs will be in different places in the memory! It
must also be said that enforcing a position independent discipline incurs a
small overhead in the performance of an application.

7.1 Simple Pascal control structures 113

The program counter relative addressing mode is available for other
instructions, including move instructions. This allows us to have an
instruction such as:

move. w *+30, dO

for example, which will load the word located 30 bytes from the start of
this move instruction into dO. Some assemblers will always use program
counter relative addressing when the programmer uses a symbolic label
and the label can be determined to be in the program, as in the instruction:

move.w v_loc,dO

where v _ loc is declared using a define storage directive:

v loc ds. w 1

Conjunctions and disjunctions
The test predicate in a Pascal conditional statement can be quite complex;
in particular the condition can involve conjunctions and disjunctions. In
standard Pascal, if we have a conditional test of the form:

if (fbp<>nil)and(fbpA.foo<20) then

both of the arms of the conjunction may be evaluated; in much the same
way as they would be had the test been written as:

bool varl
bool-var2
bool-var

.- fbp<>nil;

.- fbpA.foo<20;
. - bool varl and

if boo! var then-
bool_var2;

To implement this form of conditional test we have to be able to
remember the boolean values of the arms of the conjunction and
explicitly 'and' them together. Recall that we can use the sec instructions
(such as s 1 t and sge) to extract conditions from the condition codes
register. We use a sne instruction now to store the result of comparing
fbp and nil prior to comparing fbpA. foo and 20:

114 Representing Pascal control

@0
@1

move.l
cmp.l
sne
move.w
cmp.w
slt
and.b
beq
<sl>
bra
<s2>

f6p, aO
#nil,aO ;fbp<>nil?
dl ;dl:=fbp<>nil
foo(aO),dO
#20,dO ;fbpA.foo<20?
dO ;dO:=fbpA.foo<20
d 0 , d 1 ; ... and ...
@0 ;false->else

@1

;continue

This definition of conjunction - and its corresponding version for
disjunction - can lead to a number of seemingly unnecessary run-time
errors since, as in this case, the validity of the second arm of the
conjunction may depend on the truth of the first. For example, if fbp was
equal to nil then it makes no sense to evaluate fbpA. foo<20 since
trying to should result in a run-time error. In Pascal we would get an
error even though the conjunction is false anyway from the first conjunct.

The original Pascal standard required that both tests be performed and
the programmer had to make sure that all tests were valid. This is a
frequent cause for frustration, especially amongst new Pascal
programmers. The ISO standard is vaguer: it permits a compiler to test
both arms of conjunctions and disjunctions fully, but does not enforce it.

Some Pascal compilers implement a second form of conjunction called
the 'conditional conjunction'. In a conditional conjunction (and the
corresponding conditional disjunction) the right hand arm is only
evaluated if the left hand evaluates to true (false in the case of
disjunction), otherwise the conditional conjunction is false. Our
example test on the list element fbpA would be written:

if (fbp<>nil)&&(fbpA.foo<20) then
<sl>

else
<s2>

where & & indicates the conditional conjunction. Such a statement can be
expressed in standard Pascal as the nested conditional statement:

if fbp<>nil then
if fbpA. foo<20 then

<sl>
else

<s2>
else

<s2>

7.1 Simple Pascal control structures 115

although in practice the else statement <s2> would not be expanded
twice. We could also use I I to indicate conditional disjunction.

The conditional forms of conjunctions and disjunction are much kinder
to programmers and lead to fewer run-time errors than the standard
forms. This is because it is natural for the programmer to write tests
which are themselves conditionally valid. We can implement the
conditional conjunction with a series of conditional branches:

@0
@1

move.l
cmp.l
beq
move.w
cmp.w
bge
<sl>
bra
<s2>

f6p, aO
#nil,aO
@0
foo(aO),dO
#20,dO
@0

@1

;fbp = nil?
; skip out if nil
; fbp is valid now
;fbp".foo<20?
; skip out again
;then case

;else case

While this form of conjunction is not available in all Pascal compilers, it
is available as standard in some other programming languages, including
'C'.

7.1.2 Loop control statements

There are three types of loop control statements in Pascal - the while
loop, the repeat loop and the for loop. A relatively simple processor
like the 680x0 does not have direct support for the while and repeat
loop structures (although there is some support for the for loop) so we
have to build them with simpler instructions.

The repeat loop
The simplest type of loop statement in Pascal is the repeat statement.
The body of this loop is always executed at least once, and the condition is
used to decide if the loop should be re-entered. A skeleton of a repeat
loop's construction:

repeat
<Statement>

until <Test>;

becomes, in 680x0 instructions, the structure:

@0 <Statement>
<'Test>
bee @0

;execute statement
;evaluate test
;loop around?

I

\

116 Representing Pascal control

So, we might have a simple repeat loop such as:

repeat
i:=i+l

until ai[i]>lO;

which we can implement with the instruction sequence:

@0 add.w
lea
move.w
add.w
move.w
cmp.w
ble

#1, i
ai, aO
i, dO

;i:=i+l
;test ai[i)

dO,dO ;68000 version
-2(a0,d0.w),d0 ;ai[) start
#10,dO ;ai[i)~lO?

@0

The code that we have generated to implement this loop is not especially
efficient since we are having to re-compute an array access for every test,
whereas in fact, we know that in each iteration of the loop the array
element being tested is actually the next one along.

If could take advantage of this fact, then a much more efficient loop code
can be constructed which simply moves a pointer along the array:

@0

lea
move.w
lea
add.w
move.w
cmp.w
ble

ai, aO ;point to first ai [i)
i, dO
-2(a0,d0.w),a0
#1,i ;i:=i+l
(aO)+,dO ;pick up next element
#10,dO ;ai[i]~lO?

@0

It requires a very sophisticated compiler to generate this kind of sequence
of instructions from the Pascal original. Furthermore, it is not all that
clear how the knowledgeable Pascal programmer could write the loop so
that a normal compiler could generate this code since the basic action of
incrementing a pointer is not legal in Pascal. Later on, in Section 7.2, we
look at some loop optimization techniques that a programmer or a
compiler might employ.

The while loop
A while loop, which has the general form:

while <test> do <Statement>

can be implemented with the structure of 680x0 instructions:

@0 <test>
bee @l
<Statement>
bra @0

@l

7.1 Simple Pascal control structures 117

; exit from l.oop?

;l.oop round
;continue

where <test> is implemented in the same way that we implement the
conditional tests in conditional statements. The body of the loop -
represented by <Statement> - is executed only if and while the
condition holds. The only normal exit from this code is for the test to
succeed and for the conditional branch to be taken to the continuation
instruction.

As this loop is constructed, there is always at least one branch
instruction in the loop body; with possibly a conditional branch out of the
loop. We can save one of these instructions by organizing the code in a
similar way to a repeat loop; but with an initial branch around the body
to the code for the test:

bra @0 ;jump to test
@1 <Statement>
@0 <test>

bee @1 ;exit from l.oop?
;continue

Such a saving may be important if the body of the loop only consists of a
few instructions and the loop is executed frequently. We might have a
whil.e loop such as:

whil.e ai[i]<ai[j] do
i:=i+l;

in which case we can implement this loop using the sequence of 680x0
instructions:

bra @1 ;initial. jump

@0 add.w #1, i ;increment i
@1 l.ea ai, aO ;where is ai?

move.w i, dO ;pick up ai[i]
add.w dO,dO ;68000 version
move.w -2(a0,d0.w),dl
move.w j, dO ;68020 version
cmp.w -2(a0,d0.w*2),dl
bqt @0 ;exit?

I

\

118 Representing Pascal control

7 .1.3 The for loop

A for loop is, in principle, similar to a while loop with a fixed type of
conditional test and an extra control variable associated with it.

The existence of the for loop's control variable is usually taken as a
hint to the compiler that it should be located in a data register - although
it is not essential to do so. The general framework of a for loop such as:

for <cont>: =<start> to <limit> do
<statement>;

can be realized in the structure of 680x0 instructions:

move . w start, contra{
bra @1 ; jump to test

@0 Statement
add. w #1, contra{ ;increment control

@ 1 contro{>fimit?

bee @0

In practice, for loops are often used in array processing; any operation
(other than assignment) to a whole array requires a for loop to specify an
iteration over the elements of the array, as in this example of summing
two vectors:

for i:=l to 10 do
ai[i] :=ai[i]+bi[i];

which we can implement in the 68000 sequence:

@0

@1

move.w
bra
lea
lea
move.w
add.w
move.w
add.w
add.w
cmp.w
ble

#1,d7
@1
ai, aO
6i, al
d7,d0

; we assume d7=i
; jump to test
; ai [..... .
; bi [..... .
;offset into ai/bi

dO,dO
-2(al,d0.w),dl
dl,-2(a0,d0.w) ;ai[i] :=--
#1,d7 ;increment control
#10,d7 ;i>lO?
@0

;continue

7.1 Simple Pascal control structures 119

Of course a for loop need not have fixed bounds: either or both the initial
value and the limit values can be specified through expressions (although
it is undefined - in standard Pascal - what is meant if the expression
governing the limit value changes in value during the body of the for
loop). A more complex loop, to transpose a square matrix, might be:

for i:=l to 10 do
for j: =i+l to 10 do
beqin

e: =m [i, j] ;
m[i, j] :=m[j, i];
m [j, i] : =e;

end;

Although in practice programmers may tend to prefer for loops which
are incrementing, it is possible to have a decrementing loop in Pascal.
Such a loop would be written using the downto keyword as in:

for j: =10 downto i+l do
beqin

e:=m[i,j];
m[i, j] :=m[j, i];
m [j, i] : =e;

end;

The implementation of a decrementing loop is much the same as for an
incrementing loop, except that we decrement the control variable and exit
when it is less than the limit. This for loop has the implementation:

move.w #10,d6 ;assume j=d6
bra @1

@0 lea m,ao ; m [......
move.w d6,d0
mulu.w #10,dO ;each row has 10 els
add.w i, dO ;column
add.w dO,dO ;multiply by 2
move.w -22(a0,d0.w),dl ;e :=
move.w i, d2 ;other off set
mulu.w #10,d2
add.w d6,d2
add.w d2,d2
move.w -22(a0,d2.w),-22(a0,d0.w)
move.w dl,-22(a0,d2.w) ;m[i,j]:= e
sub.w #l,d6 ;downto step

@1 move.w i, dO ;test limit
add.w #1,dO
cmp.w d0,d6 ;i+l<j?
bqe @0 ;if so then exit

120 .Representing Pascal control

For certain kinds of decrementing loop, where the terminator is 0, the
680x0 has a special instruction - dbra - which combines the decrement of
a control variable (which must be located in a data register) and the branch
around the loop. The dbra has two operands: the data register and the
label which is specified using the program counter relative addressing
mode. It decrements the lower half of the data register and if it becomes -1
(i.e. if it was 0 to start with) then execution 'falls through' to the next
instruction, otherwise the branch to the label is taken. So, if we had the
for loop:

for j : =i+l downto 0 do
ai [j] : =ai [j] +k;

then we could implement it with the 68020 sequence:

move.w i, d7 ;j=:d7
add.w #1,d7 ;i+l
blt @1 ;early exit if

@0 lea ai, aO ; ai [......
move.w k,. dO
add.w d0,-2(a0,d7.w*2) ;68020
dbra d7,@0

@1 ;continue

j<O

Notice that, in standard Pascal, the control variable may be undefined at
the end of a for loop. This allows us to omit updating i with the final
value of the control register d7.

The dbra instruction is a special case of the dbcc instruction, where cc
can be any of the testable conditions. The condition cc is tested first, and if
it is true then the loop will terminate and execution continues with the
next instruction. Otherwise, dbcc acts like dbra: the control register is
decremented and if it does not become equal to -1 the branch to the label is
taken (presumably to the start of the loop body).

We can use a dbcc instruction to implement a string comparison in
Pascal. Recall that a string is actually a packed array of char in
Pascal, so a control expression of the form:

if A<"foobar" then ...

(where A is a variable of the appropriate type) could be compiled to:

@0

@1

7.1 Simple Pascal control structures 121

move. w # 6, dO
lea 5'l, aO ; address of A string

;address of "foobar"
; branch to l.oop test

lea @0,al
bra. s @ 1

dc.b

cmp.b
dbge
bge

"foobar"

(aO)+, (al)+;compare bytes
@ 1 ; continue l.ooping end
@efse ;A is not < "foobar"

; then part of code

Apart from string comparison, Pascal does not often afford us an
opportunity to use the general form of the dbcc instruction; but, if we
could extend the for loop to add a whil.e clause (as is seen in Simula 67
and 'C' for example) then we might have a statement like:

for j : =i downto 0 whil.e ai [j] >k do
ai[j] :=k;

and we could then use the dbge instruction to implement the loop
controlling branch:

@0
@1

@2

move.w i,d7
blt @2
lea ai, aO
bra @1

; use d7 as loop variabl.e
; j al.ready <0?
; keep pointer to ai
; branch to the l.oop test

move.w
move.w
cmp.w
dbge

/00(a0,d7.w*2) ;loop body: ai[j] :=k
O(a0,d7.w*2),d0
10 dO ; ai [j] ~k?
d7,@0

; d7 is invalid

The dbge instruction first of all tests the ge condition. If it is true - i.e. if
the condition codes register matches it - then execution continues with
the following instruction and the loop terminates. If the condition is false
then the dbge instruction is equivalent to a dbra instruction: it
decrements the loop counter register and branches to the label if it was not
0.

Because of the complexity of this instruction, in particular because we
cannot predict the state of the loop control register, we have to assume
that it is invalid after the completion of the loop: the programmer cannot
rely on its value.

In practice it may be quite rare for a Pascal compiler to generate such
instructions from a for loop in the program since most programmers

122 Representing Pascal control

write their for loops in increasing order rather than decreasing order.
However, an important use for the dbcc instructions is to implement the
'hidden loops' generated automatically by the compiler to implement
whole array or record assignments or string comparisons - in such a
situation the compiler 'knows' the whole loop and it is easy to arrange it to
make best use of the dbcc instructions.

7 .1 .4 Case statements

A Pascal case statement is used as a way of specifying a multi-way branch:
it is often used when the different possible values of an expression can
determine one of several actions to take. A classic example of this might
be in a 'calculator' program which reads in expressions and evaluates
them, by reading in a character and performing a case analysis on the
character:

case ch of
IQ I•• I 9 I:

I+ I:
' - ':

'Q':
end;

{ read a digit }
{ add two numbers }
{ subtract }

{ stop }

Such a case statement is logically equivalent to a nested if-then-else
structure:

if ch in [IQ I•• I 9 I) then ... else
if ch = '+' then else
if ch = 1 _I then else

if ch = 'Q' then else
{report an error}

While it is possible that some compilers might generate instructions
equivalent to a nested conditional for a case statement (this might be
especially true if there are only few cases) on the whole we would expect a
compiler to optimise the selection so that at least each alternative could be
reached with the same effort.

One common way of achieving this is to build - in the instruction
stream - a case selection table of addresses of the sections of code which
correspond to the alternative branches. This table is then indexed, using
the value of the case expression, in the same way that an array is
indexed, but instead of retrieving data the address of the appropriate
section of code corresponding to the selected case is found.

7.1 Simple Pascal control structures 123

<Sl>; goto @1
1---.----==t--~ <S2>; goto @1

<Case select error>

@1: <continue>

Figure 7.1 Structure of a case selection table

The main code for a case statement consists of computing the value of the
expression and using this value to index the table. The table would
normally consist of offsets to instructions rather than addresses:

@0

@1

@2

@99

<compute
cmp.w
blt
cmp.w
bqt
add.w
move.w
jmp
dc.w
dc.w

dc.w

<Sl>
bra
<S2>
bra

ezy>, dO ; case exp. into
#mincase,dO ;min>label?
error case select
#maxcase, dO ; label>max?
error case select
dO, dO- ; index
@O(dO.w),dO ;get offset
@0 (dO .w)
@1-@0
@2-@0

;offset to
;offset to

@1
@2

error case_select-@0

@99

@99

; 1st statement
;exit case
;2nd statement
; exit case

;continue

dO

We have used a new instruction and a new addressing mode in this
sequence of instructions. The instruction:

move. w @0 (dO. w) , dO ; get offset

uses the program counter indirect with indexing addressing mode. This is
similar to the other indexed addressing modes except that here we are

124 Representing Pascal control

using the program counter instead of an address register. In effect the
program counter is used as the base address of an array from which we
make an indexed access. The offset, in this case, is used to allow for the
gap between the table and the start of the move instruction.

On the 68000 (as opposed to the 68020 I 68030) the offset must be in the
range -127 .. 127, so the table of offsets to labels must be close by. As with the
normal indexing modes, there is a version of this addressing mode on the
68020/68030 which allows a scale factor to be used with the index.

We have also seen a new type of jump instruction:

jmp @O(dO.w)

which is also using the program counter indexed addressing mode with an
offset to @0. The jmp instruction is similar to the bra instruction except
that the normal addressing modes are available to specify the target
address - except for the register direct and immediate modes. This means,
for example, that we can specify a jump to the contents of an address
register:

jmp (aO)

which jumps to the program whose address is in aO. This instruction will
be used again when we look at the structure of code which implements
Pascal procedures.

Notice that the addressing mode used in the jmp instruction is not to be
confused with the 'address register indirect with displacement' addressing
mode which would be written

jmp 0 (an)

If an address register is to be used as an index, then the form:

jmp *+O (ax. w)

is to be preferred.
The third new aspect of the code fragment for case selection is the use

of label subtraction in the definition of the offsets in the table. A directive
such as:

dc.w @2-@0 ; offset to @2

causes the assembler to store in the word the difference between the
addresses @2 and @0. Provided that both @2 and @0 don't move relative
to each other, this difference is a fixed number which the assembler can
determine even without knowing where they are in absolute terms.

7.1 Simple Pascal control structures 125

An alternative method to implement a case selection table which is
sometimes useful is to build the table from instructions - in particular
jmp instructions - rather than label offsets. On the 680x0 certain forms of
the jmp instruction occupy exactly four bytes; we can use this fact to build
a 'jump table':

@0 jmp
jmp

@1
@2

jmp error case select

and we index into the correct jmp instruction as though we were accessing
a table of long words:

compute
cmp.w
blt
cmp.w
bgt
jmp

ezy,dO ;case expression
#mincase,dO ;label<min?
error case select
#maxcase, dO ; max< label?
error case select
@0 (dO:-w*4) ; 68020 only

The 'indexed jump' selects one of the jmp instructions to execute, executes
it, which then causes a jump to the instructions for the selected case. If we
are prepared to risk the possibility that an expression might be out of
range, and not do the bounds check, then the index selection becomes
quite short:

compute
jmp

ezy, dO
@O(d0.w*4) ;68020 only

which is somewhat faster than a series of if-then-else statements.
In general, case labels in a case statement are not complete: there will

be holes in the range of labels between the minimum label and the
maximum label for which there is no case defined. For each of these holes
in the table we insert a jump to the error reporting routine (or an offset to
it in the case of a table of offsets). If there are too many holes in the range
then it may not be worth constructing a table and an if-then-else
construction might be more economical. Alternatively, if the case labels
split into disjoint segments which are far apart then an if-then-else
form might be used to select from two or more tables; each of which
implements a segment of the case statement.

126 Representing Pascal control

7 .1.5 Exercises

1. Show the instructions needed to implement the fragment of Pascal
control statements:

whi1e i>j do
begin

if 2*i = j I I j>lO then
ai[i]:=j

e1se
ai[j] :=i;

i:=i-1;
end;

2. The sea-brigade of the Pascal standard block has decreed that there
should be an extension to the language: the conditional expression.
An example of the use of this expression might be:

i: = if i<j then j else i;

Sketch out how you would compile such an expression, and give the
exact instructions for the statement:

whi1e ai[if i<j then i else j]<lO do
i:=ai[i];

7. 2 Coding for performance

Once of the explicit motivations for writing programs in assembler is to
gain an efficiency advantage. Although modern compilers often generate
very good code (i.e. sequences of instructions which, are nearly optimal in
their use of resources) it is still the case that a human programmer can
often generate faster code sequences than can an automatic compiler.

There are a number of reasons for this - a human programmer often
has a better grasp of the intentions behind a particular fragment of code
and can therefore use this additional knowledge to produce a more
specialized translation. A good example of this would be represented in
the case of a multiplication by a power of 2: we know that if we are going
to multiply by a power of 2 we can use a left shift operation instead of a
general purpose multiplication instruction. A compiler could only

7.2 Coding for performance 127

perform this substitution if, in each multiplication, the multiplier was
known.

Another reason why automatic compilers may not be so efficient is that
it is hard for a compiler to have a global grasp of the program. Typically a
compiler will translate sections of programs on a piece meal basis - each
structural component of the Pascal original would be matched with a
corresponding section of generated instructions. This leads to a
fragmentary style of code generation.

We can see the cost of this in many loops, particularly when combined
with arrays. For example, the loop:

for i: = S to E do
fab[i] .foo .- fab[i] .foo+jab[i] .foo;

where fab and jab are foobarrays, would often be implemented in a
fairly literal manner:

move.w S,d7 ; d7=i
bra @2 ;go to end of the loop

@1 lea jab,aO
move.w d7,d0
asl.w #1,dO
move.w dO,dl
asl.w #2,dO
add.w dl,dO ;i*lO
move.w foo-length(a0,d0.w),d2 ; jab [i] . f o o

lea fab,aO
move.w d7,d0
asl.w #1,dO
move.w dO,dl
asl.w #2,dO
add.w dl,dO ;i*lO
add.w d2,foo-length(a0,d0.w)

add.w #1,d7 ;increment control var

@2 cmp.w E,d7
ble @1 ;end of loop?

A single pass through this loop involves executing 17 instructions. This
code sequence has several deficiencies which are obvious to a human
programmer. First of all, the offset into the fab and jab arrays are
computed twice, even though that is not necessary. Eliminating this
would save 5 instructions from the loop.

However, more radical savings are possible from this program.
Consider the successive values of the offsets into fab and jab arrays in
successive iterations of the loop. The first access is to the elements

128 Representing Pascal control

fab[S] and jab[S]

The next iteration of the loop will involve accessing the elements:

fab[S+l] and jab[S+l]

In general, in subsequent iterations of the loop, we know that we will be
accessing fab[i+l] and jab[i+l] respectively. If we already have the
addresses of f ab [i] and jab [i] then computing the addresses of
fab[i+l] and jab[i+l] is trivial: we simply add the length of a
foobar record to each address. If we can do that instead of recalculating
the offset each time then we could save many instructions.

So, a more efficient way of implementing the loop is to establish two
extra pointer variables (a2 and a3 say) which will step through the fab
and jab arrays as the loop progresses. We initialise these variables by
setting them to the first accessed elements. The reformulated loop is:

@l

move.w

move.w
asl.w
move.w
asl.w
add.w

lea
lea

lea
lea

bra

move.w
add.w

S,d7

d7,d0
#1,dO
dO,dl
#2,dO
dl,dO ;S*lO

fab,aO
-length(a0,d0.w),a2

jab,aO
-length(a0,d0.w),a3

@2

foo(a3),d0
d0,foo(a2)

; jab [i]
;fab[i] :=

;a2=fab[S]

;a3=jab[S]

... + ...

lea length(a2),a2 ;a2=fab[i+l]

lea length (a3) , a3 ; a3=jab [i+l]

add.w #l,d7

@ 2 cmp . w E , d 7
ble @l

In this version of the loop, only seven instructions are executed in each
iteration (although more are executed during the loop set up).

7.2 Coding for performance 129

Furthermore, the instructions are also cheaper (there is no indexed
addressing for example). In all, the body will execute 100% faster than the
original.

This kind of manipulation of programs is called strength reduction.
Strength reduction relies on being able to determine the relationship
between successive iterations of loops and substituting 'recurrence
relationship' code for the original.

While some compilers do regularly employ strength reduction
techniques they are quite expensive in compiler time, and problematic to
implement correctly (i.e. without changing the meaning of the original in
some subtle way). On the other hand, it is an obvious technique to the
assembler programmer and it becomes second nature to program in this
way directly.

Some languages - most notably 'C' - have taken a different approach to
the problem of strength reduction. Instead of relying on the compiler, 'C'
provides sufficient hooks to allow programmers to implement it
themselves. A 'C' equivalent of the strength reduced program would be:

fp = &fab [i];
jp = &jab [i];

for (i=S; i<=E; i++)
fp++ -> foo += jp++ -> foo;

It is precisely because it is so easy to code like this in 'C' that it is a popular
language with many programmers. The drawback of providing these
hooks is that they are easily abused, and it is unfortunately easy to make
undetected mistakes. In this case, for example, it would be very hard to
ensure that the array accesses represented by the statement

fp++ -> foo += jp++ -> foo;

are within bounds.

CHAPTER EIGHT

The Pascal procedure

Procedures and functions are used in most programming languages as a
means of structuring programs on a larger scale than individual
statements. A procedure allows logically related groups of actions to be
given a name and to be invoked in a single step. Procedures are especially
important in Pascal as they are also used to establish the scoping of
variables.

So, as we come to examine procedures (and functions) we look at a
number of issues such as how arguments are passed to procedures, how
variables are allocated and referenced, how a lexically scoped recursive
language like Pascal can be supported and how the machine registers are
'conserved' in the environment of multiple procedures. We shall also see
that the 680x0 is particularly well suited to the implementation of Pascal's
procedures with its special mechanisms to support variable allocation and
parameter passing.

The most fundamental requirement of an implementation scheme for
procedures is the ability to call a procedure and subsequently return to
where we called it from once the procedure has completed. Since Pascal
allows procedures to be called recursively, any procedure calling
mechanism for Pascal must also be able to separate multiple invocations
of the same procedure.

The 680x0 has a 'procedure call' instruction - jsr - which allows for
this. A call to a Pascal procedure with no parameters:

procedure proc;
begin

end;

proc;

can be implemented with a simple jsr instruction:

130

The Pascal procedure 131

proc ; body of proc
rts

j s r proc ; call proc

The effect of the j s r instruction is to push the return address (i.e. the
address of the instruction which follows the jsr instruction) onto the
system stack, and then cause a jump to the program address specified by
the operand of the j sr:

aO ------
al
a2 ------
a3

Before
a4
as ------
a§ - - - - -

<ret>

jsr proc

Figure 8.1 The system stack after a jsr instruction

<ret> is the return address left on the stack by the jsr instruction - it is
the address of the instruction which follows the jsr.

At the end of the instruction sequence which implements the called
procedure proc we insert a rts (return from subroutine) instruction.
This 'undoes' the effect of the j s r instruction: it 'pops off' the address
from the system stack and~ count~ i.e. continues
execution from the point after the call. -- ---

This simple mechanism allows us to have an arbitrary depth of
procedure calls - including recursive calls - since we are using a memory
stack to keep track of which procedure calls are in force and where to
return to for each separate invocation.

Although a primary function of the system stack is to keep track of
which procedures have been called, and from where, it is not the only role
that it plays (we have already seen that it is used in the evaluation of
expressions, for example). As programmers, it is our responsibility to
ensure that the system stack is balanced - that after executing a return to a
calling procedure, the stack is returned to the same height/place as before
the j s r instruction. It is a rather common error for assembler
programmers in particular to fail to ensure this simple condition; this
leads, at times, to some spectacular behaviour from our programs.

132 The Pascal procedure

8.1 Parameters and local variables

In practice there are few procedures which have neither arguments nor
local variables. Since a procedure can have either or both and since we
have to be able to separate out the various invocations of a procedure, our
concern with parameter passing is to ensure that we have a consistent
mechanism - bearing in mind that a Pascal procedure can be recursive.

It is rather unlikely that a compiler can have access to both a procedure
definition and all of its calls simultaneously. For example, a procedure
which has been prepared for insertion into a library will be compiled quite
apart from any potential calls to it. This means that when we compile a
procedure we cannot rely on knowledge about calls to it, and similarly we
cannot necessarily 'know' how a procedure is defined when we compile
calls to it.

For this reason, a major concern in handling procedures with
parameters, is to have a consistent and predictable mechanism for passing
and accessing parameters to procedures.

So, we achieve this by using a standard parameter passing convention
for all procedures; even if this may lead to some slight inefficiencies for
some procedures. Such a convention consists of arranging for the
parameters of a call to be put into a specific place where the procedure can
access them during its execution. We explore two choices for locating
parameters: the system stack and the machine registers, but first we shall
look at the stack method.

In Pascal, there are fundamentally two classes of parameter that can be
passed to a procedure: scalar .~nd non-scalar; and there are two ways that a
parameter can be speclJied: calfJJ)l-value and call-by-reference. For
example, with a procedure template such as:

procedure qs(fab:foobarray;
f:integer;var t:integer);

and with a call statement such as:

qs(fab,i+l,j);

we can see the some of the possible combinations of parameter types -
fab is a non-scalar passed by value, f is a scalar also passed by value and t
is a scalar is passed by reference.

The semantics of call-by-value are such that we have to compute the
value of any scalar expression such as i + 1 that appear in the call
statement before entering the procedure. If we use the system stack to pass
parameters then all that we need to do is evaluate the expression - for

8.1 Parameters and local variables 133

example by using the techniques described in Chapter 4 - and leave its
value on the stack:

move.w i,dO
add.w #1,dO
move . w dO, - (a 7)

;i+l

If a scalar parameter is to be passed by reference, i.e. if it is a var parameter
as in the case of t above, then it must also be the case that the argument to
the call is a variable reference. (The address of an expression such as i+l
has no particular meaning.) W_g_pass a var para~eter by leaying the
address of the variable on the stack ralhei'tlian1ts value:· .. · . .
~~:-----·-·,-----.-- ---,·- .. -------------------- ... ---·--.... --·-· -----. --·---------------

lea j, aO ; j is a var parameter
move.! a0,-(a7)

=
The 680x0 has a shorthand for this construction - the pea (push effective
address) instruction:

pea j

The pea instruction pushes the address specified by its operand onto the
system stack as opposed to the value of the operand. Of course, for us to be
able to use pea here, it must have been the case that we could specify
where the variable j is via a standard addressing mode. For example, it
may be that j was a field in the j_r variable which is a j_rec record
(say), in which case to pass the j parameter we would have:

lea j_r, aO ;where j_r is
pea j_rec.j(aO)

where j rec. j is the offset of the j field in the j r record variable.
If a no;_-scalar is passed as a var parameter then-a pointer to it is passed \/

in the same way that we would for a scalar var parameter. On the other
hand if a non-scalar object is passed by value to a procedure then it must
be copied in order to prevent any assignment to the non-scalar affecting
the original.

Before we can copy a non-scalar, we must find space for it somewhere.
This space - which is usually on the system stack - could be allocated
either during the parameter passing sequence or it can be copied later by
the called procedure. Given the possibility that the non-scalar may be very
large (an array for example), it would be advantageous to avoid
unnecessary copying. In particular it may be that, for example, we can
determine that the non-scalar is never updated by the called procedure. If
this were true, then copying the structure would be wasted effort.

134 The Pascal procedure

For this reason then, and because it simplifies variable allocation, we
~~~-~ poi~t~! to a_ no~-sc~!'!!r evep if the parameter is a vahle 
parameter. If tfie compiler (whic:O,-yoUWnl recall, is us) recognizes that a 
copy of a non-scalar is needed, then a copy is constructed during the initial 
entry into the procedure rather than during the call sequence. Another 
way to interpret this is that it is as though we had declared the parameter 
as a var parameter but included a local copy of it too: 

procedure qs(var fabl:foobarray; 
, f:inteqer;var t:inteqer); 

~ar fab: foobarray; { local copy of parameter } 
begin 

fab: =fabl; { copy fabl into local var} 

All the parameters, whether they are var or value parameters, are pushed 
onto the system stack just ~~-~.11 ~e_m:ocedure. The calling 
sequence for the complete call: 

qs (fa, i+l, j); 

involves, in order, pushing the address of fa, computing and pushing 
i+l, pushing the address of j and then entering the qs procedure's 
instructions: 

pea fa fa:foobarray 

move.w i,dO 

add.w #1,dO 1002 Before 
move.w d0,-(a7) 998 "fa - - - - -

i+l - - - - -pea j 996 
__ " j __ "'II( j : integer 

--..;=-..,;. _<_!='~t_? -~a7 
After 984 

Figure 8.2 Parameters on the system stack 

Accessing parameters in a procedure body 
The observant reader will notice that the parameters of the call are laid out 
on the system stack in much the same way as a record - except that instead 
of being addressed by a Pascal pointer variable, it is addressed by the system 



8.1 Parameters and local variables 135 

sta~Et--a.!!9---tb~r~_is_a.~()tl1e:r_fj_ele_ ~-11-!?Il1_ati_~ally __ $enerated by the 
machine: the return address. --- · ·- ·--
.IfweOOUiaretyon-a? being predictable (which infact we can't) during 

\.......---..~---- ··--

the execution of qs, then we could access the parameters of qs by using 
offsets from a 7. For example, the f ab parameter is located at 1 O (a 7) ; 
and this allows us to identify and access fab from within the procedure. 
Given an expression in qs that involved accessing an element of f ab 
such as: 

______ f ab [ f ] . f o o --· --· 

we can generate the exact instructions needed to access this element: 

move .1 10 (a7), aO ; fab [ ... 
move . w 8 (a 7) , dO ; f ... 
mulu #10,dO 
with foobar ; foe & length in scope 
move.w foo-length(aO,dO.w),dl 
endwith 

instead of the somewhat under-specified: 

lea fa6, aO ; fab [ ... 
move.w f,dO ;f ... 
mulu #10,dO 
with foobar ; foo & length in scope 
move.w foo-length(aO,dO.w),dl 
endwith 

which we have used so far. We might also, as assembler programmers, 
prefer to use symbolic names - qs. fab and qs. f - as offsets, instead of 
the magic numbers 10 and 8 respectively. 

Recall that if a parameter is passed as a var parameter then its address is 
passed rather than its value; this complicates access to the value of such a 
parameter. For example, in the expression: 

... f+t ... 

the variable f is passed by value, so to access it requires a simple move 
instruction: 

move.w qs.f(a7), ...... 

However, the t parameter is a var parameter; this implies that to access 
its value we must first access its address and then access its value: 

move.l qs.t(a7),a0 
move . w (a 0 ) , ..... . 



136 The Pascal procedure 

This would be normal for a non-scalar variable, which is always accessed 
via its address, but we have not seen it for scalar variables. 

One problem with our technique for accessing parameters through 
offsets to the system stack is that we cannot always predict where it is going 
to be, relative to its position at the start of the procedure. Furthermore, 
this method does not allow for access to the parameters of a procedure 
from sub-procedures which are defined within its scope - it may not be 
possible to access the parameters of an outer procedure since we cannot 
predict how many other procedures have been invoked. We can solve 
this problem, and also see how to allocate local variables, by using another 
680x0 mechanism - the link and unlk instructions. 

8.1.1 Local variables 

In general, a procedure is likely to have local variables which will also 
need to be allocated space. We do this on entry to the procedure since we 
need to create a ~~~~_l_l<:)Ca!io1l_ ()f the local variables_£,~ 
i!l:Y~~ti~~ of t-~~ pi::pc~dure in order to separate out the different calls: 
each time ·a-procedure is called it starts out with 'fresh' variables. We 
already allocate space for parameters on the system stack - during the pre
amble to the procedure call - so it seems reasonable to allocate space for 
variables on the system stack also. 

The 680x0 has a mechanism which can be used to implement this quite 
neatly: the function of the 1 ink instruction is to reserve space on the 
system stack and to leave an address register pointing at the reserved area. 
A link instruction which reserves 16 bytes, addressed by a6, would be: 

link a6,#-16 

This instruction performs three actions to reserve the 16 bytes: the current 
value of the address register - a6 - is pushed onto the system stack, the 
stack pointer ::.-eJ. - is then moved to a6, and finally 16 is subtracted from 
a 7. This last step ensures that there are 16 bytes on the stack which will 
not be overwritten should ther_e be a subsequent stack push. The 
instruction semantics is to add the amount to the system stack pointer, 
which is why we specify a negative amount to add! 



8.1 Parameters and local variables 137 

<link> is the 

/

old value~o-f_a_4-~ 
aO - - - - -
al 1004 Before 

- - - - -
1000 <link> a2 

996 
~;- - - - - - - -

a3 

~ 
984 $'5' 

~~-=--- - - -
a4 
a5 

980 After a6 - - - - -
!i a7 

link a4,#-16 

Figure 8.3 Allocating space using a link instruction 

We can express the effect of a link instruction in terms of other, simpler, 
instructions: 

move .1 a6, - (a7) 
-Jnove. 1 a 7' a6 .. - . 
add. l #-16, a7 

; save old l~_nk r~gister 
; establish new link 
; reserve .. 16 bytes . 

The fact that the 'free space' is below a6 - which does not directly point to 
the allocated block - is largely immaterial: we simply use a negative offset 
from a6 when we wish to refer to a location within the free space. The 
amount of space that we need to allocate is found by counting the space 
needed for each of the local variables and adding to it any space needed for 
local copies of non-scalar parameters which have been passed by value. In 
the case of qs, the full declaration of the procedure may look like: 

procedure qs(fab:foobarray; 
f:integer;var t:integer); 

var i,j:integer; 
begin 

in which case we need four bytes for the local variables i and j, and 100 
bytes for the copy of fab (assuming that it is an array of 10 foobar 
records, each of which is 10 bytes long): 

qs link a6,#-104 

After the link instruction has been executed, and after copying non
scalars which have been passed by value, we have a complete stack frame 
in which we can execute the newly entered procedure: 



138 The Pascal procedure 

• fa: foobarray 

1002 

998 "fa j:inteqer 

996 i+l 

992 aO 

jsr qs 988 al 

p~~ 
982 i .. . - - - -

qs link a6,#-104 980 __ :!_ __ 

a2 ------
a3 
a4 ------as 

~ 
local copy of fab 880 

- After -878 

a6 ------
a7 

Jj. 

Figure 8.4 Copying non-scalar parameters on the stack 

We can view the set of local variables as being part of a record: the 
difference between this record and a normal data record is that the offsets 
are negative, but we can assign symbolic names to them all the same: 

qs.i equ 
qs. j equ 
qs.fab 

-2 
-4 
equ -104 

In an assembler which allows record definitions, this might be done via 
the declaration: 

qs record deer ;negative off sets 
i ds.w 1 
j ds.w 1 
fab ds.b 100 ;100 bytes for copy 

endr 

If we need to assign a local variable within the body of the procedure we 
now know where it is: 

becomes 

i:=i+j; 

move . w qs . j (a 6) , dO 
add.w d0,qs.i(a6) 



8.1 Parameters and local variables 139 

In fact, we can also use the link register to gain access to the parameters of 
the call: whilst a negative offset is needed to access a local variable, an 
appropriate positive offset will access the parameters of the call. The long 
words at the link register (offset 0) and immediately above (offset 4) are 
occupied by the previous link address and the return address respectively, 
but above that - from offset 8 upwards - are the parameters of the call. 

The link register is fixed, and therefore offsets from it are valid, 
throughout the execution of the procedure body; unlike the system stack 
pointer which can vary considerably. This applies even if there are 
procedures which are called from within the body: provided that the link 
register is preserved across a call. (This is why the link instruction saves 
the old link register.) 

So, we can now completely determine where all local variables and 
parameters to a procedure are located: they are accessed via offsets to a link 
register which is established on entry to the procedure. In particular, we 
can now completely specify all our assembler instructions. 

8.1.2 The procedure epilogue 

The 'epilogue' of a procedure must now perform other duties apart from 
simply returning to the caller. The allocated space must be 'returned' to 
the stack, the parameters which have been pushed onto the stack must be 
cleared off and only then can execution continue with the caller. 

The complement of the link instruction is unlk. This instruction 
resets the system stack to its state to just before the link: the old value of 
the link register is restored and the system stack is cleared of all allocated 
space. In fact, the instruction 

unlk a6 

is equivalent to the two instructions: 

move . 1 a 6 , a 7 
move.l (a7)+,a6 

;release reserved space 
;restore link register 

The fact that the link instruction preserves the old link value, and the 
unlk restores it, allows us to support local variables and parameters 
within recursive procedures. A new invocation of the same procedure 
will re-use a6 to access its own lm::als and parameters; when the recursive 
call is completed the unlk instruction restores the previous environment 
so that access can be made to its locals and parameters. We can re-use the 
link register again in this way because we never need, in a recursive call, 
access to the local variables for both the recursive calls at the same time. 



140 The Pascal procedure 

Having cleared the local variables with the unlk instruction, it remains 
to clear the parameters from the stack and to return to the caller. After the 
local variables have been de-allocated a typical stack frame still has the 
return address 'on top of' the parameters: 

1002 Before 

998 "fa 

996 i+l 

992 "j aO 

jsr 988 ret> 

984 After 
al 
a2 

JJ, a3 
a4 ------
a5 

qs link a6,#-104 ------

unlk a6 

Figure 8.5 Stack after an unlk instruction 

There are two possible ways to clear the parameters: we can immediately 
execute a rt s instruction (since the top of the stack now contains the 
return address left by the j sr instruction), and let the caller remove the 
arguments that it has stacked; or we can remove them before returning to 
the caller. 

The first method can be done using a stack adjustment after the j s r 
instruction: 

jsr 
add.l 

qs 
#l0,a7 ;adjust stack 

We 'drop' parameters from the stack simply by adding a number to the a7 
register! 

The disadvantage of this approach is that the stack adjustment must be 
replicated for each call and this means that compiled programs are larger; 
but perhaps more seriously it makes certain optimizations harder - in 
particular tail recursion is not possible. Tail recursion occurs when the 
last statement in a procedure body (or function body) is a call to another 
procedure. In such a situation we can normally reclaim the space occupied 
by the calling procedure before entering the new call - this means that 
certain programs will only use a bounded amount of space on the stack. 
Tail recursion is an important optimization, especially for symbolic 
languages. 



8.1 Parameters and local variables 141 

In order for us to clear the stack before the return we have to perform 
some shuffling: 

move.! (a7)+,a0 
add. 1 # 10, a 7 
jmp (aO) 

;return address 
;drop parameters 

Notice that we have, in effect, split the sub-routine return operation into 
two parts and inserted the stack adjustment into the middle. Although 
this sequence of instructions is longer than the first one, it executes in the 
same amount of time on the 68000: demonstrating that rts is a relatively 
expensive operation. 

The 68010/68020/68030 processors have an instruction which simplifies 
the stack adjustment somewhat. The rtd instruction combines the effect 
of a sub-routine return with the corresponding stack adjustment; we can 
return and clean up the parameters from the qs program with the single 
instruction: 

rtd #10 

8.1.3 A complete Pascal procedure 

We are now in a position to see how a complete Pascal procedure can be 
implemented as a .series of 680x0 instructions. Recall that in the 
introduction we promised that we would be able to translate the Pascal 
procedure: 

procedure swap(var i,j:integer); 
var k: integer; 
begin 

k:=i; 
i:=j; 
j: =k; 

end; 

This procedure has two var parameters: i and j, and one local variable k 
which occupies two bytes. If we use the register a6 as our link register, we 
can access the local variable k with the negative offset -2, and the two var 
parameters i and j have positive offsets of 8 and 12 respectively. 

The assignment 

k:=i; 



142 The Pascal procedure 

involves accessing the variable i, via a single indirection because it is a 
var parameter, and the local variable k. We can therefore implement 
this assignment with two instructions: 

move .,,i 12 (a6) ,_A.(}_ ;aO = "i 
move.w (a0),-2(a6);k .- i 

-- _ _,r-----

The complete swap procedure becomes: 

swap link 
move.! 
move.w 
move.! 
move.w 
move.w 
unlk 

'l rtd 

a6,#-2 ;allocate k 
12(a6),a0 
(aO), -2 (a6) ;k:=i 
8(a6),al 
(al),(aO) ;i:=j 
- 2 (a 6) , (a 1) ; j : =k 
a6 ;deallocate k 
# 8 ; clean up and return 

In our mapping of this program we have assumed that the compiler is 
clever enough to detect that the address registers aO and al only need to 
be loaded once with the addresses of the variable i and j respectively. 

8.2 Nested, scoped and global 

Pascal allows procedures and functions to be locally scoped: i.e. a procedure 
can be declared to be local to or within the scope of another one. In fact the 
whole program can be viewed as a large procedure whose outer context is 
the operating system. 

A procedure can access variables, parameters and procedures which are 
either defined within its scope or are part of the context in which the 
procedure itself is embedded. This can mean, for example, that a variable 
reference in a procedure body can be local, from an enclosing scope, or 
even a variable defined at the program scope level: i.e. a global variable. 
In general, a particular procedure may have access variables from several 
scopes. That in turn means that our scheme for accessing variables must 
be elaborated slightly. 
vwe can do this quite simply by using a different address register as the 
link register for each scope or lexical level. For example, we might say that 
all the global variables in the program are accessed via address register a6, 
then all first level procedures defined at the global level use as. This 
allows a first level procedure simultaneous access to its own variables -
via as - and to the global variables - via a6. Similarly a second level 
procedure - one which is defined locally to a first level procedure - might 
use a4 for its local variables and parameters whilst maintaining access to 
outer scope variables through as and a6. Thus a second level procedure 



8.2 Nested, scoped and global 143 

can access its own variables, those of its enclosing procedure and the global 
variables. 

In practice we might not have such complete freedom to choose link 
registers. For example, the Macintosh 0 /S requires that register as is used 
for global variables. We can still use a6 for the 1st level, and a4 for the 
2nd level and so on. The exact order or register usage is not important so 
long as the compiler is consistent. 

We can use the same address register for all of the procedures at a given 
lexical level because although a procedure can access variables in outer 
procedures, under the scoping rules it _c.?l_nnot access variables at the same 
qr ~i:_lexical scope. Similarly, recursion can be safely implemented 
because a resursive cc1ll is simply a call to a procedure at the same lexical' 
level as the-caller! -.-- ··· ··· · · 

-In th~--Pascal program below we need to support three lexical levels, the 
program level and two inner levels: 

program pr; 
var a: integer; 

procedure r; 
begin 

a:=2; 
end; 

{lexical level 0} 

{lexical level 1} 

procedure p; {lexical level 1} 
var b: integer; 

procedure q; {lexical level 2} 
var c:integer; 
begin 

r; 
c:=a+b; 

end; 
begin{p} 

q; 
end; 

begin{main program} 
a:=3; 
p; 

end. 

which we can do using a6 for the globals, as for the variables within the · 
level 1 procedures p and r, and a4 for procedure q which is at lexical level 
2. Notice that the global variables are allocated using a link instruction; 
just as we do for the other procedures. This allows us to consider that the 
operating system can call our program just as though it were another 
procedure! 



144 The Pascal procedure 

r link aS,#0 ;no vars, level 1 
move.w #2,pr.a(a6);a:=2; 

p.b 
p 

q.c 
q 

unlk as 
rts 

equ -2 
link aS,#-2 
jsr q 
unlk as 
rts 

equ -2 
link a4,#-2 
jsr r 

;b in p 
;level 1 
;call q 

;c in q 
;level 2 
;call Ll 

move.w pr.a(a6),d0;a 
add.w p.b(aS),dO ;a+b 
move.w d0,q.c(a4) ;c:=a+b 
unlk a4 
rts 

main program 

pr.a equ -2 

pr 

pr link a6, #-2 ;global var 
move.w #3,pr.a(a6);a:=3; 
jsr p 
unlk a6 
rts ; to O/S ..... . 

There are 8 address registers which, in principle, can all be used as link 
registers; however, a 7 is already in use as the system stack pointer, and if 
we wish to be able to implement indirect access to variables then we need 
at least one, and preferably two, address registers for use in intermediate 
calculations. This leaves 5 address registers that we can potentially use, 
and that in turn means that we can support procedures up to five lexical 
levels deep. This should support all practical examples of Pascal programs; 
however if a deeper level is necessary then we can re-use some of the 
registers and provide extra links to the missing lexical levels. 

8.2.1 Registers and register allocation 

So far, we have seen that we can allocate variables to locations on the 
system stack. An assembler programmer would probably not use memory 
- system stack or otherwise - for all the variables in the program; instead a 
typical programmer would try to put the most important variables in 
registers. This would be to gain the extra performance that registers give 



8.2 Nested, scoped and global 145 

over memory (after all, one of the motivations for using an assembler is to 
gain increased speed). 

Some compilers also attempt to use the registers for holding program 
variables as opposed to using them as pointers to memory locations which 
themselves contain the variables. Typically, reflecting the different 
capabilities of the two register banks on the 680x0, we might use data 
registers to hold numeric or character values and address registers to hold 
pointer variables. 

Obviously, the scope for using registers to hold variables is limited by 
the fact that there are only a fixed number of registers and the compiler 
must use some of them to support other necessary features. However, we 
do not need all 16 registers to support Pascal and and so some can be used 
to hold users' variables. 

If some of the registers are to be used to hold variables, then we must 
ensure that their validity is maintained; if a procedure calls another one 
then any variables which are in registers must either be preserved by the 
calling procedure, so that they can be restored when the procedure returns, 
or the callee can save any registers that it uses and restore them before 
returning. 

In either case, the likelihood is that several registers will need to be 
saved and restored on either side of a call. The 680x0 has an instruction -
the movem move multiple instruction - which simplifies the process of 
saving and restoring groups of registers. This instruction has two forms, 
the first is used when saving registers and the second when restoring. 

In order to save all the data registers except d3, and address registers a2 
and a4, on the system stack we would use: 

movem.l d0-d2/d4-d7/a2/a4,-(a7) 

The specification of the registers to be movemed allows any or all of the 
data and address registers to be saved in a single instruction. The same 
registers can be restored from the system stack using the instruction: 

movem.1 (a7)+,d0-d2/d4-d7/a2/a4 

The decision as to whether a given variable is allocated on the system 
stack, or in a register, depends on the complexity of access to it - whether 
the variable in question can be accessed from an inner scope or not - and 
the use to which it is put. 

As we observed earlier, a compiler might make an effort to put integer 
variables into a data register if the variable is used as the control variable 
in a for loop. A pointer variable might be allocated into an address 
register if it is used frequently in pointer manipulations. 

There are many competing uses for the registers - link registers, control 
variables, with statements, user variables and intermediate values in 



146 The Pascal procedure 

expressions. The use to which the registers are put depends on a balance 
chosen by the compiler writer. In many situations it is possible that all the 
requirements can be met without compromise. 

For example, provided that they are preserved prior to their use, the 
address registers which are needed to support higher lexical levels can be 
made available to the lower lexical level procedures for use in with 
statements. 

8.2.2 Exercises 

1. Given the Pascal program below, show the complete sequence of 680x0 
instructions that would implement the program. You may assume 
that address registers a4 through a6 are available as link registers, 
although you should indicate which you intend to use for a given 
lexical level: 

program telephone sort; 
{ sorts a list of telephone airectory entries on the extension number } 
con st 

number of entries = 30; 
max array - = number of entries + 1; 
max -length = 30; - -

type -

var 

entry = record 
extn no: integer; 
name:packed array[l .. max length] of 

char; -
end; 

dir = array[O .. max_array] of entry; 

count: integer; 
directory: dir; 



8.2 Nested, scoped and global 147 

procedure quicksort(var d:dir; first,last: 
integer) ; 
var 

middle: integer; 

procedure split(var greater: integer); 
var 

less, ref val: integer; 

procedure swap ( i, j : integer) ; 
var 

temp: entry; 
begin 

temp: =d [ i] ; d [ i] : =d [ j] ; 
d[j] :=temp; 

end; 

begin {split} 
· less .- first; 

greater . - last + 1; 
ref val .- d[less] .extn_no; 
repeat 

repeat 
less := less + 1; 

until(d[less] .extn no>=ref val); 
repeat - -

greater : = greater - 1; 
until 

d[greater] .extn no<=ref val; 
if less < greater then -

swap(less, greater); 
until (less >= greater); 
swap(first, greater); 

end;{split} 

begin 
if 

{quicksort} 
first < last then 

end; 

begin 
split(middle); 
quicksort(d,first,middle-1); 
quicksort(d,middle+l,last); 

end; 
{quicksort} 



148 The Pascal procedure 

begin{main} 
directory[O] .extn_no .- -1; 
directory[max array] .extn no .- MAXINT; 
for count . - -1 to number of entries do 

with directory[count] -do 
readln(extn_no,name); 

quicksort(directory,l,number_of_entries); 

for count : = 1 to number of entries do 
with directory[count] -do 

writeln(extn no 8, ',name); 
end. {main} -

Using a suitable program development system, attempt to assemble, 
run and test your program. 

2. Translate your answer to Question 6 in Exercise 2.2.4 into the 
appropriate sequence of 680x0 instructions. 

3. Using a language of your choice, implement a Pascal compiler using 
the techniques outlined in this book. 

8.3 Functions 

In Pascal, functions can be viewed as being procedures with an extra 
argument which is represented as the result variable. A function call is 
implemented in the same way as a procedure call except that it always 
takes place in the context of an expression evaluation: 

i:=max(j,k)+l; 

The extra, hidden, parameter to the function call is filled in when the 
function variable is assigned in the body of the function: 

function max(i,j:integer) :integer; 
begin 

if i<j then 
max:=j 

else 
max:=i; 

end{max}; 

{assign result var} 

{here too} 

We can incorporate the hidden argument by passing an initially blank 
value on to the stack as the 'first' parameter: - -----·-- --



,/ 
'{fl.. 

0 
Cl" C..· 

, >'\fV move . w 
'-'1"' r") move . w 

'_move .w 
jsr 

8.3 Functions 149 

#0,-(a7) ;result 
p.j(a6),-(a7) ;j of context p 
q.k(aS), -(a7) ;k of context q 
max ; call max 

On entry to the function the space_JQ!>t.he-res.ult is-above the normal 
ar~:m~:i!sJ~~-~~ct~~ ~11 th~- stack: · - ·· · .. · - · ·----

' 
aO ------

1002 Before al ------- - - - - a2 
1000 <result> ------- - - - - a3 

998 ;! ____ ------
a4 

996 k ------
- - - - - a5 

992 <ret> ------
- - - - -

990 After 

~ 

Figure 8.6 Parameters to a function call on the stack 

When the function max has returned, the result of the function ,_w:i-11.l>e--' 
~ugh the arguments j and k will have been cleared. 
This allows us to use the value of the function in an expression in the 
normal way: 

j s r max ; call max 
move.w (a7)+,d0 
add.w #1,dO ;max()+l 
move.w dO,p.i(a~);i:= ..... . 

"'"--_...-...__...-.H .. ,' -·--

The body of a function is compiled in exactly the same way as a procedure 
body, except that whenever an assignment to the function variable is 
indicated, then the 'hid~en:. __ s.p._a.ca above the arguments to the call is 
assigned: "- .- ---

move.w 8(a5),12(a5) ;max:=j 

Apart from that, we allocate local variables on the stack in the same way as 
we do for procedures. The complete max function can be implemented as 
the sequence of instructions: 



150 The Pascal procedure 

max.i equ 
max. j equ 
maxrx equ 

10 
8 
12 

; parameter i 
;parameter j 
;result parameter 

max link aS,#0 ;no locals. 

@0 
@1 

move.w 
cmp.w 
bge 
move.w 
bra 
move.w 
unlk 
rtd 

max.i(a5),d0 ;i<j? 
max.j(a5),d0 
@0 
max.j(a5),maxrx(a5) ;max:=j 
@1 
max.i(a5),maxrx(a5) ;max:=i 
a5 
#4 ;clear i & j 

Notice that even if there are no local variables we still use a 1 ink 
instruction - with an allocation of zero bytes - to establish a convenient 
pointer to the parameters of the procedure or function. 

This scheme of implementing function calls fits in very well with our 
method for implementing expressions using the system stack for 
intermediate results. A function call simply leaves its result on the stack 
as its contribution to the value of the expression. 

However, we can also combine function calls with a register based 
scheme for expression evaluation provided that we preserve the 
intermediate registers prior to making the call, and restore them 
afterwards. In this kind of system, we would also use a data register - dO 
(say) - to return the value of the function, rather than using the stack. 

8.4 The goto statement 

The goto statement is almost redundant in Pascal; its function is largely 
replaced by the structured control statements such as while loops and 
if-then-else conditionals. However, there are a number of situations 
where a goto can be much more expressive and economical than the 
standard control structures; a classic example of this is in the early exit of a 
loop: 

10: 

while fbpA.foo<lO do 
begin 

fbp:=fbp".next; 
if fbp=nil then goto 10; 

end; 

For simple situations like this, the goto statement is easily mapped to a 
jmp instruction: 



8.4 The goto statement 151 

@0 
bra @1 

move.! 
move.! 
move.! 
cmp.l 
beq 

p.fbp(a6),a0 ;fbp in 
next(aO),aO 
a0,p.fbp(a6) 
#nil,aO ;fbp=nil? 
@10 ;goto 10 

scope p 

@1 move.! 
cmp.w 
blt 

p.fbp(a6),a0 
#10,foo(aO) 
@0 

;fbp".foo<lO? 

@10 

Complications can arise, however, when the goto statement results in a 
transfer out of a procedure. This can occur when we jump from a nested 
procedure to a label in an outer scope, as in this example: 

procedure a; 
label 10; 

procedure b; 
begin 

goto 10; 

end; 

begin 
a; 

10: ... 
end; 

In such a circumstance, we have to be careful to restore the system stack 
and various link registers to their correct state appropriate to the outer 
scope. A simple jmp instruction from a procedure to a point in the calling 
procedure potentially leaves the stack in a disordered state. Without 
adjustment the stack would still reflect the position within the called 
procedure - it would be unbalanced. However we can readjust the stack to 
take into account the goto. 

Since the target label must be in an outer scope to the procedure with 
the goto statement it must also be the case that the link register for that 
lexical level is still in force, similarly for the lexical levels which are below 
it. It is not permissible, in Pascal, for a goto statement to exit to a 
procedure at the same or higher lexical level. We could take advantage of 
this and simply do nothing - we could ignore the space allocated on the 
stack. 



152 The Pascal procedure 

When the 'target' procedure finally exits, it will execute an unlk 
instruction to clean up the stack in the normal way. This also has the 
effect of cleaning up the stack from the goto procedure as well; and it 
does not really matter that the stack was unbalanced: it becomes rebalanced 
after the unlk instruction. 

However, it may still be important to clean up immediately after a goto 
because we cannot predict when the target procedure will finally exit; and 
until it does the stack will have some garbage on it. If the target procedure 
never exits, then this garbage is never reclaimed. Repeated occurrences of 
this could lead into problems of overflowing the system stack. We should 
therefore clean up after a goto by readjusting the system stack to 
eliminate the garbage. 

The appropriate adjustment to the system stack would be to set it, at the 
point of the label, to the value it would normally have at the label had 
there been no call or subsequent goto. Generally, this involves setting 
the system stack to the same value as it had after the local variables were 
allocated - with a link instruction - at the beginning of the procedure. 

So, a label in a procedure may not be simply a point within the program, 
but it may be translated into code which adjusts the stack. This code could 
also be executed for a normal 'flow through' the label not as a result of a 
goto. In this case the adjustment should have no effect. We can perform 
the adjustment using the lea instruction: 

@10 lea -locals(ax),a7 

where ax is the appropriate link register, and locals represents the 
amount of space required for the local variables in the target procedure; i.e. 
it is the value used in the procedure's initial link instruction. 

Notice that if a register saving scheme is in place then we must also 
make sure that we restore any registers that were saved prior to actually 
executing the jump. For example, if the end sequence of a procedure 
contained the sequence 

movem.l 
rts 

(a7)+,d3-d5/a2-a4 

then a goto out of this procedure would also have to restore these 
registers: 

movem.l (a7)+,d3-d5/a2-a4 
jmp {afJe{ 

Apart from the data registers, it is vital that any frame registers that may 
have been used are restored prior to the jump. This includes the local 
variables allocated by the exiting procedure. 



8.4 The goto statement 153 

In the case of a jump out of more than one lexical level it is often 
impossible to predict which frame registers have been used and need to be 
restored. In this case it becomes necessary to force the execution of the exit 
sequences of the procedures that the goto is passing through before 
jumping to the appropriate label in the target procedure. This can be done 
by patching return addresses on the stack, but this is a complex operation. 
In general, using a goto to exit a procedure is not to be recommended, 
and some languages (such as 'C') do not permit non-local gotos. 



CHAPTER NINE 

Symbolic programming languages 

The symbolic programming languages - such as LISP and Prolog - tend to 
be quite different to the 'literal' programming languages such as Pascal. 
The difference arises primarily from the different motivations in the 
designs of the languages. Pascal is a relatively rigid type of language with 
very precise and tight rules about the legal data and program structures. 
On the other hand symbolic languages like Prolog, and especially LISP, are 
much 'looser' programming languages. 

There is less discipline in the use of data and control in LISP and Prolog, 
which in turn frees the programmer from many detailed constraints. 
Symbolic languages are also much higher level and richer than Pascal. A 
typical LISP language system has literally thousands of library functions 
available to the programmer. The aim of such language systems is to take 
more care of the programmer and allow for greater productivity in the 
programming process. 

On the other hand, the extra discipline imposed by writing programs in 
Pascal means that it is easier for the compiler to generate faster and more 
compact code from Pascal programs than it is possible from LISP and 
Prolog programs. Programs written in Pascal are often correspondingly 
faster than their equivalents in symbolic languages. 

9. 1 Recursive data structures 

The differences between the symbolic languages and the engineering 
languages are reflected both in the data structuring features and in the 
control features. The dominant hallmark of symbolic languages is the 
liberal use of recursion: both data structures and control structures are 
recursively defined. 

Symbolic languages are typically 'pointer free'. Instead of using pointers 
as addresses to records or arrays these languages use recursive data 
structures. A recursive data structure is defined in terms of itself. For 

154 



9.1 Recursive data structures 155 

example, a Pascal list of integers would normally be defined using a type 
declaration similar to: 

i list=record 
i:integer; 
next:"i list; 

end; -

The declaration of the component next within i_list is as a pointer to 
another i _list record. The scalar property of Pascal pointers allows us 
to predict exactly the size of an individual i_list record, even though 
we might not be able to predict the size of a whole list. 

Because Pascal has the separate notions of variable and pointers to 
variables, access to a variable is written differently depending on whether 
it is through a pointer or directly. If we want to check that the next entry 
in a list is less than 20 (say) then we write: 

if ip" . next"" . i<2 0 then ... 

The distinction between records and pointers to records disappears in a 
language with recursive data structures; instead, pointers are handled 
automatically. If Pascal were to have recursive data structures (which it 
doesn't) then the above declaration might be: 

i list=record 
i:integer; 
next:i list; 

end; -
{ recursive reference} 

Our test on the first list element would now be expressed as: 

if ip. next. i<20 then ... 

which is the exact expression we might use if there were no pointers 
involved in the original i_list data structures. 

The i list data structure is recursive since it seems to include itself in 
its own definition. If we implemented the record according to the normal 
rules for allocating space for records, a· single i_list record would 
occupy an infinite amount of space. In a language which supports 
recursive data structures the next sub-record would be implemented by a 
pointer to it; although this pointer would be transparent - it would be 
invisible to the programmer. By using a pointer, as would be explicitly 
necessary in a legal Pascal structure, the record becomes finite in size. 

The fact that there are pointers in the expression above is hidden from 
the programmer. Instead, the pointers involved in the implementation of 
recursive data structures must be handled automatically by the language 
system. Recursive data structures are a more high-level way of describing 



156 Symbolic programming languages 

data objects since the programmer does not need to be concerned with the 
fiddly details of using pointers. 

Since pointers are no longer explicit in a system with recursive data 
structures, it follows that the programmer has less control over them. In 
Pascal, when we assign a record variable ip (say) to another record 
variable jp (say), we can choose whether to change the pointer to the 
record or the contents of the record itself: 

ip .- jp; { pointer assignment 

versus 

ip" : = jp"; record assignment 

In a language with recursive data types we cannot easily manipulate 
pointers - so the first statement is not part of the language - and the 
second statement is usually implemented as though it were the first; i.e. 
record assignment is performed in terms of pointer assignment. 

If we don't maintain a distinction between pointers and records, and in 
particular if record assignment is implemented using pointer assignment, 
then the programmer also loses control over which individual data 
objects are in use and which are not. For example, when the jp variable 
'goes out of scope', we cannot free the space used by the record addressed by 
jp because ip may still be referring to it. It is very difficult to predict just 
when the structure pointed at by jp can finally be reclaimed. 

Typically a garbage collector is needed to clear up discarded data objects. 
This can lead to greater overheads both in execution time and in the 
memory needed for representing data objects. 

9.2 LISP data structures 

LISP was invented in 1957 by John McCarthy and his fellow workers in 
order to be able to implement artificial intelligence. It was obvious to 
them that FORTRAN was not a powerful enough programming language 
to make it practical to use for such an advanced objective. Many of the 
attributes of LISP arise from the basic requirement of being able to support 
the complex algorithms used to model intelligent behaviour. 

Like FORTRAN, LISP represented a significant step in the use of 
mathematical concepts - in this case the notion of an abstract function - in 
the design of a programming language. In terms of the techniques 
invented to represent data, LISP was a great achievement and it has 
become an important vehicle for much of the artificial intelligence work 
carried out since that ,time. LISP is also a very powerful applications 



9.2 LISP data structures 157 

language. LISP is undoubtedly the simplest and most popular symbolic 
language in common usage. 

Fundamentally, LISP has just two data types: the atom and the list pair. 
The LISP atom concept is more general than the Pascal notion of 
constants. As well as numeric constants, a LISP program can also have 
uninterpreted symbols as constants. This means that we can have, as a 
data item in our program, a symbol such as fred. This symbol need not 
be the name of anything - it needn't stand for a number or character as 
would be necessary in Pascal. Logically, an atom is simply an 
uninterpreted symbol: it always stands for itself. 

Some examples of LISP atoms are: 

123.4 fred nil 'john doe' 

LISP also has a method for combining data: the dotted pair or CONS pair. 
A CONS pair is simply a combination of two LISP objects (each of which 
might be a dotted pair also). We write the dotted pair of A and Bas: 

(A . B) 

where A is referred to as the CAR of the pair and B is the CDR. The terms 
CAR and CDR are used for historical reasons: the earliest implementations 
of LISP were on the IBM 709 computer. This machine had two registers 
called the current Address Register and the current Decrement Register. A 
frequent operation in LISP is to build the two components of the CONS 
pair; so they were typically loaded into the Address register and Decrement 
register prior to building the pair in one step. 

Where the CDR of a dotted pair is another dotted pair then we can use 
an alternative notation: the list notation. This is similar to the dotted pair 
except that instead of writing: 

(A (B . C)) 

we can write: 

(A B . C) 

There is a special case where the 'last' element is the special atom () or 
nil or *nil* - depending on the version of LISP. In this case the final 
dot is omitted, this allows us to write lists in a natural way: 

(1 2 3 4 5) 

instead of 

(1 (2 . (3 . (4 (5 . nil))))) 



158 Symbolic programming languages 

There is no restriction on the form of the individual elements of a list: 
they can be other lists for example. This is heavily used in LISP 
applications and it often leads to deeply nested list structures with many 
levels of parentheses: 

((a . 1) (b c d) ((e 23.3) f)) 

Note that the fractional number 23. 3 is differentiated from a dotted pair 
by the absence of spaces around the dot. 

This notation for describing data structures is called the S-expression 
notation. The S-expression notation is a fully recursive language for 
describing tree-like data objects. It is quite possible to program in LISP 
without any understanding of how S-expressions are implemented. The 
language of S-expressions is suffident as a tool for 'thinking' about data. 
This is the second great achievement underlying the LISP language. 

LISP programs are also valid data objects which are written as lists: 

(defun app (x 
(cond 

y) 
( (ni1p x) y) 
(T (cons (car x) 

(app (cdr x) y) ) ) ) ) 

The fact that LISP programs are also S-expressions is simultaneously a 
source of frustration and pleasure for LISP programmers. Frustration 
because the restricted form of the syntax often leads to deeply nested 
structures with a correspondingly large number of parentheses. On the 
other hand, the fact that programs are data makes some very powerful 
programming techniques possible. 

9.2.1 Representing 5-expressions 

As we have noted, we cannot directly represent a recursive data structure 
such as a S-expression using a record. Instead, we have to represent the S
expression using a collection of records with pointers linking them 
together to represent its structure. 

We can visualise this collection of records and pointers more easily by 
using so-called box diagrams. Each dotted pair is represented by a box with 
two compartments: the CAR and the CDR: 

Figure 9.1 A box diagram of a LISP dotted pair 



9.2 LISP data structures 159 

The lines coming out of the box indicate pointers to the CAR and CDR of 
the dotted pair. We can represent an atom as another kind of box: 

I "frederick the qreat" I 

Figure 9.2 A box diagram of a LISP atom 

Each box corresponds to a record in the memory of the computer and each 
pointer is represented by the address of the box pointed at. Box diagrams 
can easily become quite complicated: 

Figure 9.3 Box diagram of ((a . 1) (b c d) ( (e 23. 3) f)) 

The box corresponding to the nil atom tends to have a large number of 
references. To simplify our later box diagrams we will use the special box 

~to denote pointers to nil as in Figure 9.4: 

Figure 9.4 Box diagram of ((a . 1) (b c d) ((e 23. 3) f)) 

A principal requirement of any data structure used to represent $
expressions is the ability to distinguish the two main cases - atom and 
dotted pair. One way of differentiating them is to include a tag with every 
$-expression's record which indicates what kind of structure it is. We 
could do this with the equivalent of the Pascal declaration: 



160 Symbolic programming languages 

tg=(atom,dotted); 

s exp=record 
- case tag: tg of 

atom:__ see below for atoms 
dotted: (car,cdr:As exp); 

end; -

This scheme, which is fundamentally that used in early LISP systems, is 
called the tagged record representation, since each S-expression record has 
its type embedded in it. The other method, the tagged pointer architecture, 
associates with each pointer the type of object that it is pointing at. So, 
under this scheme, pointers are formed into cells, each consisting of a 
pointer and a tag, and a dotted pair is an array of cells: 

cell=record 
case tag: tg of 

atom: ...... 
dotted: (ptr: Apair) ; 

end; 

pair=array[car .. cdr]of cell; 

This representation, which is the basis of many modern LISP and Prolog 
systems, is used because it reduces the overheads for some common types 
of atoms: notably integers. Some LISP systems have additional methods 
for structuring data: vectors for example, and the tagged pointer scheme 
makes this easier. 

9.2.2 Representing LISP atoms 

Paradoxically, the data structures needed to represent atoms are much 
more complex than those used for lists. This is because we need to 
remember much more about a LISP atom than we do about a Pascal 
constant. For example, the print name of an atom (the sequence of letters 
that are used to identify it) must be preserved by the LISP language system 
because it is a requirement that S-expressions can be printed as well as read 
in. There is no such requirement in Pascal, and so the Pascal compiler can 
'forget' the names of constants declared by the programmer. (Of course, a 
Pascal symbolic debugger might choose to remember constants in order to 
aid the programmer.) 

Furthermore, in LISP, atoms may have a number of properties 
associated with them - for example the program 'text' of a function is 
associated with the atom corresponding to its name. By accessing this text 
(which is represented using an S-expression) the programmer can inspect 



9.2 LISP data structures 161 

and modify the definition of functions in the system. This allows 
function definitions to be edited and the functions to be redefined which is 
also a fundamental requirement of any LISP system. 

An atom can have other properties associated with it such as which 
module the symbol was defined in, a current 'value' and so on. LISP has a 
general mechanism which allows programmers to associate any kind of 
property with a LISP atom. All this means that the structure needed to 
represent an atom can be itself a complex example of an S-expression: 

appe~ / tag=atom 

-~~~Other ,. ~ L.n-:::i properties ... 

l~"code"I ~-~p-- ... 
instructions ~ ~ 
for append ~ 5J j "pname"j "a" "p" function... . . 

Figure 9.5 The append atom structure 

Notice that the structure for an atom itself uses dotted pairs extensively. 
The distinguishing feature of an atom structure and a normal S
expression is that the tag field of the 'top-most' record is set to atom 
rather than dotted. Below this top-level dotted pair the structure of an 
atom is a normal S-expression albeit in a particular format. Standard 
access functions which operate over S-expressions also operate over the 
internal structure of an atom. 

Another feature of the atom structure is that the print name of an atom 
can be arbitrarily long, since it is represented by a list of characters. (This 
would have been a relief for FORTRAN programmers in the 1950' s used 
to identifiers being restricted to only 6 significant letters.) It is important to 
be able to 'hold' all of the characters that make up a name since we need to 
be able to read, print and re-read any S-expression. Unless all the letters in 
a print name are remembered there would be a risk of two atoms printing 
the same way, and hence being confused when the S-expression is re-read. 

Symbol dictionary 
Finally, especially given the complexity of an atom's structure, we make 
some effort to share the memory occupied by it. In particular, all 
references to an atom, in all S-expressions, are resolved to a single copy of 
the atom's structure in memory. This includes references from within 
programs and from within the system stack. This is done using a special 



162 Symbolic programming languages 

symbol dictionary - traditionally called the OBLIST - which is used to 
keep track of all the atoms in the system. 

Whenever an atom is read in, the dictionary is searched for one of the 
same name, and only if the atom is not already in the dictionary is a new 
atom structure created; otherwise a reference to the pre-existing atom 
structure is used. This ensures that all occurrences of atoms in S
expressions 'point' to the same object in memory and there is the added 
bonus that, once an atom has been read in, comparing with it another can 
be achieved by comparing addresses only. This is in contrast with Pascal 
strings where each occurrence of a string would be represented by a 
separate copy of the characters in the string and string comparison is 
implemented as a loop which compares the individual characters of the 
strings. 

Having a unique location for each atom in turn means that certain 
crucial operations - such as finding the definition of a program - can be 
efficiently implemented. 

9.2.3 Numeric atoms 

In principle, the structure of an atom applies as much to numbers as it 
does to symbols. However, most LISP systems distinguish internally 
numeric atoms from other types in order to allow more efficient 
arithmetic manipulations. If we apply some restrictions to numeric 
atoms, such as not permitting them to have properties, we can simplify 
their representation considerably: 

/g=integer tag=atom 

[ill 

~ 
Other properties ... 

bit pattern for 23 

Figure 9.6 Alternative representations of '23' 

Other possible special cases of atoms which would benefit from specialised 
representations include floating point numbers, single character symbols 
and 'special' system pointers (such as nil). 



9.2 LISP data structures 163 

Big nums in LISP 
Given that computers are often perceived to be almost wholly concerned 
with numbers and numeric calculations, it is perhaps a little ironic that 
very few programming languages implement arbitrary precision 
arithmetic. They often don't even allow the programmer to implement 
arbitrary size numbers. This is in spite of the fact that most processors give 
quite good support for multiple precision arithmetic. One exception to 
this is LISP which has 'big nums'. 

A big num is a large number - one that cannot fit into a single machine 
register. So, in terms of computers, big nums are not scalar although 
mathematically they are. Big nums can be quite large: in certain 
mathematical theorem proving and algebra packages, implemented in 
LISP, a 'small' big num might have 80 decimal digits in it, whereas large 
big nums are measured in 'screen-fulls' and may have thousands of digits 
in them. Clearly arithmetic on such numbers is not as straightforward as 
32 bit arithmetic, and therefore may well be slower; however, slower is 
better than not at all. 

We need to consider two aspects of the representation and 
manipulation of big nums: the data structures needed to represent a 
number with an arbitrary number of digits (binary or otherwise) and the 
algorithms needed to perform arithmetic. We shall see that the latter tend 
to be reminiscent of long-hand arithmetic. 

The simplest structure for a big num is a list of all the digits that make 
up the number: 

~ ...... ~ 

~ ~ ~~'m 
Figure 9.7 98,537, 195,986,590, 732,017,237 as a list of digits 

However, this could be quite expensive in space: each dotted pair (and so 
each digit in the big num) occupies 10 bytes (say); whereas a single byte can 
hold the equivalent of over two decimal digits: a big num represented in 
this way would be 20-25 times as expensive as a regular number. More 
economically, we can split the binary expansion of the number into 32 bit 
chunks: 



164 Symbolic programming languages 

00000000000000000001010011011101 

10110110010011000000110101011101 

01101011010101100101111001010101 

Figure 9.8 98,537, 195,986,590,732,017,237 in bit strings 

This representation is only 2-3 times larger than the space needed to 
represent the pure bit string itself. 

If we are to perform arithmetic on such numbers then we have to do it 
on a piece-meal basis also - preferably in 32 bit chunks. This means that 
we need to see how multi-word arithmetic can be done in a fixed word 
machine. 

Suppose that we were to add the numbers 120 and 150 in 8 bit 
arithmetic. The 680x0 processor allows us to do so, using the add. b 
instruction: 

move. b #120, dO 
add. b #150, dO 

The result of this addition is 14 (since I 270I2s6=14), but the processor also 
sets the carry flag to 1 to indicate that the result overflowed the ability of 8 
bits to represent the result. It is also true that the binary expansion of 270 
consists of a leading 1 (the carry bit) followed by the binary expansion of 
14: 

270 = 1 *28+0*27+0*26+0*25+0*24+1 *23+1 *22+1 *21+0*20 

We can use this fact to implement multi-precision arithmetic. Suppose 
that we wanted to perform the calculation 1000+2000 in a system which 
only allowed 8 bit arithmetic. The numbers 1000 and 2000 are 
00000011111010008 and 00000111110100008 in binary respectively, which, 
split into 8 bit 'chunks' form the numbers: 

1000 = 00000011B*256 + 111010008 = 3*256 + 232 

2000 = 00000111B*256 + 110100008 = 7*256 + 208 



9.2 LISP data structures 165 

If we wish to add 1000 and 2000 we can do this in chunks also: 

1000+2000 = 3*256 + 232 + 7*256 + 208 

= (3+7)*256 + (232+208) 

If we add the numbers corresponding to the lower halves in 8 bit 

arithmetic we get 184 with the Carry flag set since 1232+208 = 440l2s6=184. 
This means that the sum can also be expressed as: 

= (3+7+1)*256+184 

= 11*256+184 

We can perform this kind of multi-precision arithmetic just as easily on 
the 680x0. The extend flag is used on the 680x0 in preference to the carry 
flag to implement multi-precision arithmetic. The extend flag is 
generated in a similar way to the carry flag, but it may also be used as 
input to some specialized arithmetic instructions. 

The normal add instruction only adds two integers, it will generate a 
valid carry (and extend) flag but it does not use it for input. The addx 
instruction on the other hand is an extended addition - it adds its 
operands in the same way as add, except that it also adds in the extend 
flag as well as generating the next one. So, we could have added 1000 and 
2000 in 8 bit chunks on the 680x0 using the instructions: 

move.b #232,dO ;lower half of 1000 
add.b #208,dO ;lower half of 2000 
move.b #3,dl ;upper half of 1000 
move.b #7,d2 ;upper half of 2000 
addx.b d2,dl ;d1=3+7+X=ll 

The result is held in the registers dl and dO, and corresponds to the final 
answer of 11*256+184=3000. The addx instruction, unlike the add 
instruction, requires that both its operands be in data registers, or they can 
both be address register indirect with pre-decrement operands. The same 
applies to the analogous instruction subx. 

Clearly we would not normally go to the trouble of performing 16 bit 
arithmetic in this way since the 680x0 has perfectly adequate 16 and 32 bit 
addition instructions. However, we have to use techniques like these to 
add 70 bit numbers or 2000 bit numbers. The big num algorithms for 
addition, subtraction and multiplication etc. do precisely this, for numbers 
represented as lists of 32 bit chunks. These algorithms will also have to 



166 Symbolic programming languages 

ta'ke care of factors such as aligning the lists of chunks together, and 
performing mixed arithmetic between normal numbers and big nums. 

9.2.4 CONS pairs, heaps and collecting garbage 

One rather common and fundamental expression found in LISP programs 
involves the CONS function. The value of a cons expression: 

(cons a b) 

is a dotted pair, whose car is the value of a and whose cdr is the value 
of b. Thus, assuming that there is no conflict with side effects, we have 
the equivalence: 

(car (cons a b)) - a 

and 

(cdr (cons a b)) = b 

To implement cons requires us to create a new dotted pair which is 
represented, as we have seen, by a record structure. The space for this 
record has to be found dynamically since the cons structure is the result 
of a dynamic evaluation. All the space which is used for creating dotted 
pairs is found from a heap. The heap forms a central data structure which 
is as important to LISP as the system stack is to Pascal (although it, too, is 
important to LISP). The organization of heaps is a critical issue to the 
implementer of LISP systems - an error here can cause great problems 
which are often hard to to detect. 

One simple method of organizing a heap involves allocated a region in 
the memory and linking all the unused records into a free list. We can 
take advantage of the fact that each dotted pair must have room for two 
pointers: one for the car field and one for the cdr field. Since these 
fields are by. definition unused for records in the free list, we can use one 
of them to build the free list itself. Also, since all S-expressions have the 
same size record structure, we do not have to search for a block of the 
correct size: the first block in the free list is guaranteed to be the correct size 
for the cons pair. 



9.2 LISP data structures 167 

Free list 

End of the 
\ 

Figure 9.9 The free-list of unused list pairs 

A typical LISP program might, on average, 'consume' one dotted pair from 
the free list every other expression/statement which is executed. Clearly, 
since it is a frequently accessed data structure, it would a good idea to 
reserve a register a6 (say) to point to the head of the free list. 

To implement a cons expression involves extracting a dotted pair 
record from the free list, updating a6 to point to the remainder of the free 
list and filling in the car and cdr fields of the new record (the tag field 
of each record in the free-list would normally already be pre-set to 
dotted): 

cmp.l #nil,a6 ;end of free list? 
beq garbage_ collect 
move.! a6,a0 ;get pair 
move.! cdr(a6),a6 ;step over 
move.! (a7)+,cdr(a0) ;fill in 
move.! (a7)+,car(a0) ;from stack 
move.! a0,-(a7) ;return pair 

The free list will become empty - at regular intervals - when all the pairs 
in the heap have been allocated. At this point we have two choices - we 
can try to increase the size of the heap or we can invoke a garbage collector. 
Since no physical computer has an infinite capacity, at some point the first 
option becomes impossible, in which case we must investigate collecting 
the S-expressions which are no longer in use. 



168 Symbolic programming languages 

Garbage collection 
As we noted above, in a language with recursive data types, it is difficult 
for the programmer to keep track of which structures are in use at any one 
time. Although it is clear from the text of a LISP program when new 
cons pairs are created, it is less obvious when a cons pair is no longer 
needed. Sometimes it is obvious, as can be seen in the (rather 
tautologous) expression: 

(car (cons a b)) 

After evaluating the car, the newly generated cons pair can be discarded. 
However, most cons pairs have a longer, unpredictable, lifetime than 
this. It is theoretically impossible to automatically predict when a given 
cons pair will become garbage. 

In any case it is tedious to have to do so, and if the system can 
automatically keep track of which data objects are in use, and which are 
not, then this removes a burden from the programmer. It is the task of 
the garbage collector to clear up those data objects which have been created 
but which are no longer in use. 

There are many possible schemes for garbage collection, but they are all 
based on the principle of identifying those objects which are still in use 
(the mark phase) and removing the rest (the collect phase). Some garbage 
collection systems have additional constraints over and above the basic 
one of collecting all the unused space - for instance a real time garbage 
collector is required to be as fast as possible (with the possibility of not 
necessarily collecting all the space at once for example); other systems are 
required to execute in minimal space and yet other garbage collectors have 
to be able to deal with objects of different sizes. We will look at one simple 
scheme - stop, mark and collect. We stop when we run out of records in 
the free list, mark the objects which are in use and collect the rest into the 
free list. 

The mark phase of a garbage collector examines all of the data objects -
S-expressions in our case - that are in use and sets a special marked flag 
on them. This marked flag appears as a boolean field in the S-expression 
record: 

s exp=record 
- marked: boolean; {true if S-exp is in use} 

case tag: tg of 
atom: ..... . 
dotted: (car,cdr:As exp); 

end; -

The collect phase involves trawling over the whole of the space allocated 
to the heap and collecting up - into the free list - all those records which 



9.2 LISP data structures 169 

are not in use (i.e. not marked during the mark phase). The collect phase 
usually also un-marks those records which are in use. 

There are many marking algorithms, many of which attempt to run in 
the least possible amount of space. (Recall that the garbage collector is only 
called when we have run out of space, therefore it is reasonable to assume 
that there is not much space for the garbage collector itself to run in.) 
However, the basic marking algorithm is quite simple: if we have a 
pointer to a structure which we know is in use, then either it is already 
marked, in which case we do nothing, or we mark it and we recursively 
mark the car and cdr fields: 

procedure mark(m:As_exp); 
begin 

if not mA .marked then 
begin 

mA.marked:=true; 
mark(mA.car); 
mark(mA.cdr); 

end; 
end; 

Notice that we must mark a dotted pair before marking the car and cdr 
fields to prevent looping in the case that a structure is circular, which 
frequently happens in a LISP system. 

There are only a few places from which ultimately all the structures in 
use can be reached. If a given S-expression is not referenced from either 
the currently executing LISP program (in which case the reference would 
originate from a value on the expression stack) or from the atom 
dictionary (which leads in turn to the defined LISP functions) then it is not 
possible to access the S-expression and therefore it must be garbage. Thus, 
it is relatively simple for the LISP system to ensure that the mark 
procedure can access all of the objects in use. 

The collect phase of the garbage collector involves going through the 
heap space and examining every record in it. It is at this point that we can 
appreciate some of the beauty of LISP data structures: since every S
expression is ultimately built from the same dotted pair record it is a 
simple matter for the collector to recognize valid from invalid data, 
simply from the mark flag: 



170 Symbolic programming languages 

procedure collect; 
var p:"s exp; 
begin -

p:=start of heap; 
repeat - -

if not p". marked then 
begin 

p".cdr:=free list; 
free list:=p7 

end; -
p".marked:=false; 
p:=succ(p); 

until p=end_of_heap; 
end; 

{trawl the heap } 

{in use? } 

{put in free list} 

{clear mark 
{go to next 

flag} 
S-exp} 

This pseudo-Pascal procedure sketches out the main aspects of the 
collection phase of the garbage collector. If the collect phase fails to find 
any garbage, then the evaluation of the LISP program must terminate and 
return some kind of error condition to the user. 

9.3 Executing LISP programs 

Functions are tied in to LISP at a rather deeper level than in Pascal. 
Whereas in Pascal, functions and procedures are seen as ways of collecting 
together sets of simpler statements, in LISP a program is better seen as a 
composition of functions. 

One of the fundamental differences between LISP and Pascal that 
explains many of the surface differences is that LISP is its own meta
language. In a meta-language, program structures can be represented and 
manipulated as data objects and in the same context these data structures 
can be executed as normal object-level programs. So, LISP programs are 
also examples of LISP data structures and many LISP programs represent, 
manipulate and execute other LISP programs. 

The fact that LISP is its own meta-language brings great power to the 
language - for example, it is relatively easy to extend LISP by adding extra 
syntactic forms which are themselves implemented as normal LISP 
programs. However, it also means that it is harder to implement LISP as 
efficiently as we can implement Pascal, because we can make fewer 
assumptions about the exact nature of a LISP program. 

Because of the complexity of implementing LISP, early LISP systems 
were nearly always based on interpreters: a LISP program was not 
compiled in the same way that we have seen that Pascal programs are 
compiled; instead a special interpreter program was used which 
interpreted S-expressions to produce values. LISP compilers are relatively 



9.3 Executing LISP programs 171 

modern, and although nowadays few LISP systems are not compiler based, 
they also contain - as a library function - an interpreter for LISP programs. 

LISP execution can be seen as a two-phase activity: expression 
evaluation and function application. Evaluating expressions is the 
primary way in which we initiate a LISP execution and function 
application is the method used to help expression evaluation. 

There are, in fact, three types of expression in LISP: function and 
primitive operator application, program sequences and special forms, 
which include conditional expressions. 

9.3.1 Evaluating and accessing 5-expressions 

For the most part, the same techniques that we explored in Pascal 
expressions also apply to evaluating LISP expressions. In LISP we have a 
richer collection of expressions - not just arithmetic expressions but also 
expressions involving accessing and building S-expressions. 

S-expressions are accessed through the special access functions CAR and 
CDR. The value of the expression 

(car x) 

is the S-expression contained in the car field of the S-expression 
identified by the variable x, and 

(cdr x) 

refers to the cdr field of x. Since, by Pascal standards, all S-expressions are 
non-scalar, all LISP variables contain addresses of values rather than 
values directly. The address contained in a variable is usually of an object 
which is in the heap. This means that accessing the value of a variable -
such as x here - involves at least one memory indirection. The cdr 
expression, for example, is compiled into code which picks up x's contents, 
checks that the address contained refers to a dotted pair and then accesses 
the cdr field of that pair: 

move.l. ;r_, aO ;x is an address 
cmp.b #dotted,tag(aO) ;pair? 
bne cdr error ;il.l.egal. access 
move.l. cdr(aO), ... ;cdr is a pointer 

Lists are dominant in a LISP system and accessing list structures is always 
performed using the car and cdr access functions. To simplify accessing 
structures, particularly when the sequence of cars and cdrs is known 
already (such as when the programmer wants to access the third element 



172 Symbolic programming languages 

of a list) LISP has a suite of path access functions, based on car and cdr. 
For example, the expression 

(caddr x) 

is equivalent to the expression 

(car (cdr (cdr x))) 

It specifies a path along a S-expression tree: 

(cdddr x) 

Figure 9.10 Paths along x 

An added advantage of path access functions is that it is easier to compile 
expressions involving them more efficiently. The caddr expression is 
implemented with a sequence such as: 

move.l x,ao ; x 
cmp.b #dotted,tag(aO) ;dotted pair? 
bne cdr error 
move.l cdr(aO),aO ; (cdr x) 
cmp.b #dotted,tag(aO) ;dotted pair? 
bne cdr error 
move.l cdr(aO),aO ; (cddr x) 
cmp.b #dotted,tag(aO) ;dotted pair? 
bne cdr error 
move.l car(aO), ... ; (caddr x) 

This might be compared with the analogous Pascal expression to access the 
second integer along in a list of integers: 

with its corresponding expansion into 680x0 instructions: 



move.! 
cmp.l 
beq 
move.l 
cmp.l 
beq 
move.! 
cmp.l 
beq 
move.! 

~' aO 
#nil,aO 
nil error 
next(aO),aO 
#nil,aO 
nil error 
next(aO),aO 
#nil,aO 
nil error 
i(aO), ... 

9.3 Executing LISP programs 173 

; x". next ... 

; ... next" . next 

; next". i ... 

Although these expressions are based on completely different language 
paradigms, the code sequences are remarkably similar. 

9.3.2 Function application 

A LISP function application, such as in the expression: 

(append X Y) 

is implemented in a similar way to a Pascal function call. We have to 
place the arguments of the function x and Y in a standard place, which is 
usually the system stack, and invoke the append function via a jsr. The 
call sequence for this call would be something like: 

move. 1 X, - (a 7) 
move . 1 y, - (a 7 ) 
j s r appe11d 

Notice that we do not pass a hidden 'space' parameter for the result of the 
function as we did for Pascal functions. This is because there is no 
possibility of a LISP function assigning its value before returning to the 
caller: in Pascal, a function's value is set by assigning the function variable 
which could be any time within the execution of the function. When a 
LISP function returns, the values on the stack are replaced by the value of 
the function which is the value of the outermost expression in the LISP 
function's body. 

LISP has only one mode for passing arguments to a function: we pass 
the value of the argument. However, since all values in LISP are S
expressions, and since we can't pass an arbitrary S-expression in a fixed 
length register, we pass the address of the value of the argument rather 
than the value itself. So, in Pascal's terms, LISP is neither call-by-value 
nor call-by-reference, but something in between. It is possible, for example 
by using an S-expression overwriting primitive such as replaca, to 
change the value of an argument to a function. 



174 Symbolic programming languages 

LISP has traditionally always been an incremental programming 
language (which is another point of difference with Pascal). The effect of 
this is that functions can be defined and redefined, at will, during an 
interactive session with the LISP system. A LISP function can be 
(re-)defined at any time, including during and as a result of the execution 
of a LISP program itself. 

Furthermore, it is quite likely that during program development some 
functions are not yet defined, and yet we can still start the execution of the 
LISP program. In contrast, a Pascal program cannot start executing until 
all of the referenced procedures and functions are defined and 
implemented at least to the extent of a stub being written. Of course, when 
we come to enter a LISP function we cannot proceed if it is not defined, but 
even then, some program development systems allow the programmer to 
furnish the missing definition on the spot. 

Whilst being able to define and redefine a function interactively is 
undoubtedly a powerful facility for programmers, it has the effect that we 
cannot predict where the code for the append function (say) is going to be 
before we start executing a LISP program that calls it. In particular, when 
we compile any LISP function which calls append, we cannot insert the 
address of the instructions for append into the operand of the j s r 
instruction; instead we have to first of all check that there is a function to 
execute! 

appe~ / tag=atom 

~~Other 
~IT] properties ... 

l'~'code"I ~-~ps- ... 
instructions ~ ~ 
for append ~ 5J I "pname"j "a" "p" function... . _ 

Figure 9.11 Code properties of the append atom 

Although the address of the append function's code may not be fixed, we 
can fix the address of the append atom. Once an atom has been read into 
the system its address does not change; we can use this fact to locate the 
code of the append function. Recall that the structure of a LISP atom 
includes, as a property, the defining program for any function associated 
with the atom. 

Given the address of the append atom, we can implement our entry 
into the append program by searching its property list for the code: 



@0 

@1 

move.l 
move.l 
cmp.l 
beq 
move.l 
cmp.l 
beq 
bra 

move.l 
jsr 

appena, aO 
car(aO),al 
#coae, car (al) 
@1 
cdr(aO),aO 
#nil,aO 
un defined 
@0-

cdr(al),aO 
(aO) 

9.3 Executing LISP programs 175 

; code property 
; found it! 

;last property? 
; append is undefined 
; try next property 

;qet code 
; start append code 

A more sophisticated approach, which avoids searching on every function 
call, is to associate a code sequence with every atom, and to reorganize the 
atom's structure so that this code is always at the top: 

·11-:::1--_..._,..--,---:i--- Other 
properties ... 

~fun·~~~ti:.~ ~~- -~~ 
con ... ~ , __ ~-

l"pname"I I "a"J I "p"I "d" 

Figure 9.12 Revised layout of code property of append 

Notice that if every atom has a code property in the same place, then we 
do not need to identify it explicitly; we can assert that the first entry in the 
atom structure is always the code for the atom: 

Other properties ... 

::.::- -rt.~~ 
procedure ... ~ ~ ~ ~ 

l"pname"i l"f"I l"o"I l"o"I 
Figure 9.13 Layout of an undefined function's atom 



176 Symbolic programming languages 

If a given atom has no function associated with it, then it still has an 
address of valid code to execute - it is simply the address of a standard 
error reporting procedure. 

With this structure for atoms, we are guaranteed that there is always 
something to execute, even if it is only an error procedure; and that, in 
turn, means that we don't need to check for valid code. Furthermore, by 
fixing the location of the defining code, we can eliminate the search 
through the atom's property list and use instead a simple indirection: 

move.1 
move.1 
jsr 

appena, aO 
car(aO),aO 
(aO) 

The indirection is essential, because we cannot be certain that append is 
not going to be redefined. Redefining a function is implemented by 
overwriting the car field in the top-level record in the structure of its 
name atom. 

When a function returns, the arguments to the function will have been 
removed from the stack and the value of the function is left on the stack 
in their place. Thus, just as with Pascal functions, we can use the returned 
value either as the argument to yet another function application or we can 
use it in a primitive operation. For example, the expression: 

(car (append X Y)) 

would be implemented with a sequence such as: 

move. 1 X, - (a 7) 
move . 1 '.)'", - (a 7) 
move.1 
move.1 
jsr 
move.! 
move.1 

appena, aO 
car(aO),aO 
(aO) ; (append X Y) 
(a7)+,ao 
car (aO), ... ; (car (append ... 

Evaluating a function body 
Once we have entered a function body then we have to consider the 
treatment of variables introduced by the function and the evaluation of 
the body proper. A LISP function is defined using a template such as: 

(defun function-name parameters 6oay) 

The list of atoms in parameters is the list of parameters to the function. 
(LISP has a separate mechanism - the prog feature - which can be used to 
introduce local variables.) The way that parameters are handled in LISP is 



9.3 Executing LISP programs 177 

quite different to a Pascal procedure's local variables and parameters. The 
6ody of the function template is the expression to evaluate on entry to the 
function and the value of this expression is also the value of the function. 

LISP is a dynamically scoped language; in contrast to Pascal and other 
modern variants of LISP, such as SCHEME, which are lexically scoped 
languages. What this means is that, when a function is entered, the 
variables introduced by its template are 'in scope' - i.e. they can be 
referenced - for the whole of the execution of its body. In a lexically or 
statically scoped language, the variables can only be referenced by 
expressions which are textually within the function template itself. 

For example, in the function bar below, the reference to the variable x 
would be illegal in a lexically scoped language since it is not declared (or 
bound) within the declaration of bar (there is a definition of x in foo 
though): 

(defun foo (X Y) (bar Y)) 

(defun bar (Z) (times Z X)) 

In a dynamically scoped language, an expression such as: 

(foo 2 3) 

is implemented by applying foo to arguments 2 and 3, this results in the 
call to bar: 

(bar 3) 

and this results in the call to times: 

(times 3 X) 

Since bar has been invoked within the dynamic scope of foo, the value 
of x which is available to bar is 2; so the expression that is to be evaluated 
is: 

(times 3 2) 

It is perfectly possible to construct programs which give one answer if a 
dynamic scoping assumption is made and another if lexical scoping is 
assumed. 

This difference is crucial both to the programmer and to the 
implementation of variables in LISP. In particular, in a dynamically 
scoped language, we have to be able to refer to the names of the 
parameters of a function during the execution of the function body 
including any functions which are called within it. A variable reference in 



178 Symbolic programming languages 

a function body cannot be implemented as an offset within a block of data 
allocated with a link instruction since we cannot determine the offset (or 
which link register) at the time that we compile a function. 

The difference between lexically scoped variables and dynamically 
scoped variables was not properly understood when LISP was invented in 
1957. Unfortunately, as often happens, many LISP programmers have 
exploited the features of dynamic scoping and are unwilling to change, 
hence even modern versions of LISP (such as Common LISP) must at least 
support it. 

We can implement dynamic binding of variables to values using a 
technique called shallow binding. For each variable, we associate with its 
name (which is an atom) a property which contains the value of the 
variable. 

x~ 
~Other 

not defined 

reporting 

procedure ... 

~ properties ... 

~lueofX~ 
I "value" I l"pname" I l"x"I 

Figure 9.14 Structure of a variable atom 

Since we are likely to refer to the value of an atom more frequently than 
we call its program, we can optimise access slightly by rearranging the 
atom structure so that the first two entries in the property list are always 
predefined (which also means that we do not need explicit property 
identifiers) and that the value is the first entry in the structure and the 
function code is the second: 

x~ 
~~..--=:i---~other r ' . -- properties ... 

Value ofX not defined 

reporting 

procedure ... 

l"pname"I 

Figure 9.15 Revised structure of a variable atom 



9.3 Executing LISP programs 179 

To take into account the fact that the atom's value is now at the top of its 
structure, the sequence to enter a function must have an additional cdr to 
step over the atom's value. 

So, as we enter a function body, our first action is to assign the 
parameters to their new values; however, because a parameter atom may 
already have a value associated with it (from an outer execution scope), we 
must save its old value; which we can do by saving it onto the system 
stack when we assign the variable. 

The prologue of a function steps through each argument, saving the old 
value of the parameter variable, and assigning it to its new value. The 
space used on the stack for the arguments of the function is used to keep 
the old value of the parameters while the function is executing: 

move .1 X, al 
move.! car(al),aO 
move .1 8 (a7), car (al) 
move.! a0,8(a7) 

; assign parameter X 

;get parameter 
; save old value 

Notice that we can use the absolute addressing mode, in the 680x0 
instruction which accesses x, to refer to the address of X's atom structure. 
This is because the address of an atom is fixed once it has been entered into 
atom dictionary. The complete prologue sequence for append becomes: 

move.! Y,al ;assign parameter y 

move.! car(al),aO 
move.! 4(a7),car(al) ;get parameter 
move.l a0,4(a7) ;save old value of y 

move.l X,al ;assign parameter x 
move.! car(al),aO 
move.! 8 (a7), car (al) ;get parameter 
move.l a0,8(a7) ;save old value of x 

Accessing a parameter's value within the body of a function becomes an 
indirection through the atom address of the parameter: 

move.! X,al 
move .1 car (al), ... ;value of X 

Once we have set up the parameters to a function we execute the body 
proper. As we noted above, this consists of an expression which might be 
another function application, or it may be a prog sequence or a special 
form such as a conditional expression. 



180 Symbolic programming languages 

9.3.3 Program sequences 

Program sequences specify a list of expressions to be evaluated in sequence. 
At its most simple level, a prog expression has the structure: 

(prog (var1 ... varn) 
exp1 

where var1 ... varn are variables which are declared to be in scope 
during the execution of the prog, and exp1, ... , expm are the 
expressions to evaluate. Some of these expressions may be atoms, in 
which case they are not evaluated but are interpreted as labels. 

The entry to a prog sequence is similar to the prologue for a function: 
we have to save the old values of the new variables - which we can do on 
the system stack. When we exit the expression these variables are restored 
using the values saved on the system stack. 

Two special functions, go and return are used also within prog 
expressions. The return function evaluates its argument and that value 
becomes the value of the whole prog - thus causing it to exit also. The 
go function is the LISP equivalent of goto, it is used to jump to another 
point within the prog sequence: a label is indicated by an atom in the 
prog sequence as opposed to a normal function application. Jumps out of 
the current prog are not permitted in LISP, which considerably simplifies 
its implementation. 

Clearly, implementing a prog sequence is not all that different to 
implementing a single expression. We evaluate the expressions in turn, 
pushing arguments to functions etc, and calling the indicated functions. 
However, since the values of the expressions are disregarded - by 
dropping the results from the stack as soon as the invoked functions 
return - it must be the case that they 'operate' by performing side-effects, 
such as assigning a value to a variable. 

9.3.4 LISP conditional expressions 

The cond expression is LISP's fundamental form of conditional 
expression. This has a similar role to the Pascal if - then - e 1 s e 
statement; although instead of selecting one of two sets of statements to 
execute, the cond expression can select from a number of expressions. 
The basic form of cond is: 



(cond (Pred1 Val1) 
(Pred2 Val2) 

9.3 Executing LISP programs 181 

(Predn Valn) ) 

Each pair of items (Predi Vali) forms an arm of the conditional. The 
value of the cond expression is the value of the first of the expressions 
Vali whose corresponding test expression Predi evaluates to true, 
which in LISP is any non-nil value. 

The implementation of a cond expression in 680x0 instructions is 
similar to the implementation of a Pascal if-then-else. Each test 
predicate P redi is evaluated, and after it returns the returned value is 
compared against nil. If it is equal to nil then the next test is tried, 
otherwise the value expression is evaluated and the value of that is the 
value of the cond as a whole: 

@i pusfi args to Predi 
j s r Predi 
cmp.l #nil, (a7)+ 
beq @i+l 
pusfi args to '1/a{i 
j s r '1/afi 

@i+l 

;evaluate test 
;answer=nil? 
; next pair 

; compute vali 
; exit cond 
;next conditional 

There are a number of primitive predicate functions, for example the eq 
function which compares two S-expressions for equality (strictly, eq tests 
for pointer equality rather than structural equality). Just as with ordinary 
function application, when the test part of a conditional arm is a primitive 
predicate the compiler may insert more specific instructions to evaluate 
such tests. For example, in the conditional arm: 

(cond ( (eq X nil) 

We can implement the test for x being equal to nil quite cheaply: 

move.l 
cmp.l 
bne 

x,ao 
#nil,car(aO) 

If none of the conditional arms of a cond expression succeeds then an 
error must be reported. However, a common LISP idiom is to make the 
predicate in the last conditional arm the atom T (i.e. true). This ensures 
that the last arm will be taken in the event of the previous conditional 
arms failing, and the fact that it is constant enables us to have a slightly 
better code sequence for the cond expression as a whole. In addition, 



182 Symbolic programming languages 

some LISP systems use a different version of cond which is more like the 
Pascal if-then-else statement. 

We can now see the complete set of instructions needed to implement 
the simple LISP function for append below: 

(de fun append (X Y) 
(cond ( (eq X nil) Y) 

(T (cons (car X) 
(append (cdr X) ) ) ) ) 

which in 680x0 instructions becomes: 

append: 
move.! Y,al ;assign parameter y 

move.! car(al),aO 
move.! 4(a7),car(al) ;get parameter 
move.! a0,4(a7) ;save old value of y 

move.! X,al ;assign parameter x 
move.! car(al),aO 
move.! 8(a7),car(al) ;get parameter 
move.! a0,8(a7) ;save old value of x 
move.! X,al ;X=nil? 
cmp.l #nil,car(al) 
bne @1 
move.! Y,al ;return y as val 
move.! car(al),-(a7) 
bra @2 ;go to epilogue 

@1 move.! X,al ; (car X) 
move.! car(al),al ;value of x 
move.! car(al),-(a7) ;save (car X) 
move.! cdr(al),-(a7) ; (cdr X) 
move.! Y,al ;access y 

move.! car(al),-(a7) 
jsr append ;call append 
cmp.l #nil,a6 ; (cons 
beq garbage_collect 
move.! a6,a0 
move.! cdr(a6),a6 ;collect pair 
move.! (a7)+,cdr(a0) 
move.! (a7)+,car(a0) 
move.! a0,-(a7) ;result is pair 

@2 move.! (a7) +, dO ;result off stack 
move.! (a7)+,a0 ;return address 
move.! Y,al ;undo y 

move.! (a7)+,car(al) 
move.! X,al ;undo x 
move.! (a7)+,car(al) 
move.! d0,-(a7) ;push return value 
jmp (aO) ;exit append 



9.3 Executing LISP programs 183 

Notice that we do not have to perform any indirections in order to 
perform a recursive call to append; instead we can use a jsr instruction 
to a fixed label. If the append function were to be deleted (just prior to its 
redefinition for example) then the recursive call would disappear also. 



CHAPTER TEN 

Pro log 

Prolog's heritage is a combination of predicate logic and advanced 
grammars. A 'pure' Prolog program can be identified with a logical view 
as statements (axioms or clauses) which the programmer asserts to be true 
of the world. This is quite different to a Pascal program which is 
essentially a machine or mechanism which is constructed to behave in a 
certain way: the fact that the materials that make up a Pascal program are 
abstract entities in the memory of the computer does not detract from this 
basic view. 

Execution in Prolog also has a logical perspective: the execution of a 
Prolog query is an attempt to prove that it follows from the true 
statements in the program. This mirrors, to some extent, the 
mathematical basis of LISP - a 'pure' LISP program consists of a set of 
function definitions and a LISP execution consists of evaluating an 
expression. 

However important logic is, of equal importance to understanding 
Prolog's history is the language processing work carried out in the late 60's 
and early 70's - in particular the automatic compiler construction systems 
or compiler-compilers that were being designed then. Work on grammar 
formalisms led to systems which could use a suitable definition of a 
language to automatically parse examples of the language. It is also the 
case that language processing is one of Prolog's more natural application 
domains. 

In 1971 the two worlds of logic and automatic parsing came together and 
invented (between them) Prolog: Robert Kowalski realized that predicate 
logic could be the basis of a programming language rather than simply a 
problem expression language and Alain Colmereaur extended and applied 
the algorithms used for automatic parsing to the problem of performing 
logical inferences. This pioneering work was then followed in 1975 by 
David Warren who developed the world's first Prolog compiler and made 
it a practical programming language. 

184 



10.1 Prolog data structures 185 

10.1 Prolog data structures 

Prolog is, like LISP, a language which has recursive data structures. In fad 
there is much in common between the two languages in terms of the 
mechanisms needed to support data; however Prolog's terms are more 
complex than LISP' s $-expressions. 

A Prolog term can be an atom, which has similar characteristics to a LISP 
atom, it can be a variable or it can be a compound term. Prolog atoms are 
written as sequences of letters or graphic characters; the first letter of an 
alphanumeric atom must be lower case: 

fred uPjohn $&& 'a quoted atom' 

The representation of a Prolog atom is much the same as for a LISP atom. 
However there is no tradition, in Prolog systems, for an atom to have 
associated properties in the way that a LISP atom can have. This means 
that a Prolog atom is somewhat simpler to implement than a LISP atom. 

The 'new' data types in Prolog, compared to LISP, are the logical variable 
and the compound term. A variable is written in a similar manner to an 
alphanumeric atom except that the first character must be uppercase or 
underscore: 

Var x variable 1 

The compound terms are the Prolog equivalent of dotted pairs; except that 
we can construct arbitrary tuples not just pairs: 

tree(left(nil), label(X), tree(right,20,X)) 

Prolog also has a list notation, which is analogous to LISP's list notation 
with a little more punctuation: 

[1, 2, 3] which is equivalent to (1 2 3) in LISP 

[XI Y] which is equivalent to (X . Y) in LISP. 

Prolog lists are just special cases of compound terms whose name is '. '. 
We could assume that they were implemented in the same way as other 
compound structures, but in practice many Prolog systems optimize lists 
and use structures which are similar to LISP cons pairs to represent them. 

The most interesting difference between Prolog and LISP data structures 
relates to the logical variable. Uniquely amongst programming languages, 
a Prolog variable is a true place holder: it stands for any - as yet unknown 



186 Prolog 

- term and can be substituted for by any Prolog term. In particular, a 
Prolog variable need not be instantiated, ever. So, if we have a Prolog 
term such as: 

foo(X, a, bar(X)) 

then this is a perfectly valid structure and we do not need to know more 
about X: it may remain unbound or uninstantiated. It is also possible to 
make two variables the same. A Prolog goal (which is analogous to the 
Pascal procedure call and the LISP function call) such as: 

... , X=Y, ... 

effectively aliases the variables x and Y, and so all occurrences of both 
variables are identified with each other. A subsequent goal might bind 
one of the variables, in which case they are both bound simultaneously. 
Aliased variables are very common in Prolog programs, although the 
number of times we make explicit use of aliasing is rare. 

In order to be able to implement an arbitrary Prolog term as a structure 
in memory we have to use a mechanism similar to the LISP dotted pair; 
however in the case of Prolog, with its more complex terms, we no longer 
have the luxury of having the same size of record for each type of data. 

A Prolog term is built from components which differ in size: variables, 
atoms and the different size compound terms. We can, however, use the 
tagged pointer style of representation to represent Prolog terms. A Prolog 
tagged pointer cell might be described using the Pascal declaration: 

tags=(variable,atom,number,list,compound); 

cell=record 
marked:boolean; {for garbage collection} 
case tag: tags of 

atom:...... {atom structure} 
number: (i:integer); 
variable, 
compound: (ptr:Acell); 

end; 

·~ 
tag 

Figure 10.1 Structure of a Prolog cell 



10.1 Prolog data structures 187 

A cell is sufficient to capture a scalar such as an integer or atom, but a 
compound term is represented by aggregating arrays of cells together. So, 
for example, the compound term: 

foo( ... , ... , ... ) 

is represented by a sequence of four contiguous cells which respectively 
hold the function symbol (foo) and the three arguments. If they are scalar 
arguments then they will be held directly in the cells composing the array; 
if an argument is compound then the corresponding cell will effectively be 
a pointer to the sub-term's structure: 

"foo/3" 

' 'foo/3' indicates 
a compound term 
of 3 elements 

Figure 10.2 Box diagram of foo (X, a, bar (X)) 

An unbound variable - i.e. one which is still uninstantiated - is 
represented by the pointer in its cell pointing to itself. 

The aggregations of cells which we use to represent terms are not 
normal arrays in the usual sense because we allow pointers 'into' the 
arrays, as in the case of the variable references above. 

Although list pairs are logically another type of compound term, they 
are sufficiently common that a special form for them is justified. This is 
represented by a separate list tag value. A cell of 'type' list consists of 
a pointer to two adjacent cells: the first forming to the head (or car) of the 
list pair, and the second forming the tail (or cdr) of the list pair. 



188 Prolog 

A A L A L 

Figure 10.3 Box diagram of Prolog term [a, b, a, b J 

Since every variable could be bound to another variable, or to another 
term, it is possible for 'binding chains' to develop. If, in our example term 
above, we allow x to become bound to a variable Y, we would implement 
this by changing the self reference in the x cell to point to Y: 

A 

"foo/3" 

y 

Figure 10.4 Binding a variable to another variable 

At some later point Y may become bound to gar (U) in which case both x 
and Y become bound to gar (U). Since it is impractical to physically 
replace each occurrence of X and Y by their new values, we implement this 
shared binding by relying on the variable-variable bindings that we made 
from x to Y, and then the binding from Y to gar (U): we determine the 
value of x indirectly via a chain of variable links. The new picture for the 
term is: 



10.1 Prolog data structures 189 

J"foo/3"/ 

Y is bound to gar (U) ----------4~[ 

1---------

Figure 10.5 Binding a shared variable to a term 

An immediate consequence of this scenario is that every time we access 
any term we must check for, and dereference, any variable-variable links. 
If we are looking for the value of the first argument of foo (say) which is 
x, then we must dereference first of all from the first cell in the f o o 
compound term to the master location for x, and then to the location for Y 

and finally through Y onto the true value of x which is gar (U). 
The process which does this dereferencing is crucially important to the 

performance of a complete Prolog system even if most of the time not 
much dereferencing is done. A standard algorithm for dereferencing, 
based on the cell declaration above, could be expressed as the Pascal loop: 

while (pA.tag=variable) and (pA.ptr<>p) do 
p:=pA.ptr; 

which, in assembler, could be implemented relatively straightforwardly: 

move.! p,ao 
@1 cmp.b #variable,tag(aO) 

bne @2 ;p a variable? 
cmp.l ptr(aO),aO 
beq @2 ;self reference? 
move.! ptr(aO),aO ;p:=pA.ptr 
bra @1 

@2 ;p left in aO 

Although Prolog terms are more complex than LISP S-expressions, the 
major difference between the languages lies in the way that data is accessed 



190 Prolog 

and manipulated in Prolog; in which, Prolog is quite different to most 
other programming languages. We have already seen that a LISP S
expression is accessed via the various selector functions: car, cdr, cadr 
etc. In Prolog a different mechanism based on unification is used. 

10.1.1 Unification in Prolog 

Unification is a form of pattern matching where both patterns to be 
matched may become instantiated. For example, in the clause head: 

foo(f(X,g(Y))) :- ..... . 

the term f (X, g (Y)) is a template which must match the corresponding 
term in a call to foo. The nature of this matching may be quite complex, 
involving variables in both the head and the call being instantiated. A 
typical call to foo might be: 

... ,foo(f(U,U)), ... 

In order for these templates to match we need to bind the variable x to the 
variable u - i.e. establish a variable link between them - and also to bind u 
to the term g (Y) with the result that both X and u become bound to the 
same term. 

Unification can be used for accessing data as well as constructing it; it is 
used to pass data into a procedure and to return results out of a procedure. 
In this case, the variable x which is local to the clause, is bound to a 
component of its incoming data and u which occurs in the call is bound to 
the term g (Y). A further difference between Prolog unification and LISP 
selector functions is that unification can fail: a match between terms might 
not succeed as in: 

bar(A,g(G)) and bar(2,h(X)) 

This unification fails because g (G) is not unifiable with h (X). Failure in 
Prolog unification leads to the system backtracking and some earlier choice 
of rule is abandoned (together with all the consequent execution) and 
another rule is tried. We shall see that in order to be able to backtrack to 
try another alternative rule, we need to build a data structure in which to 
record sufficient information to allow the system to try the alternative. 
These records are called choice points to indicate that they represent a 
possible choice in the execution of the Prolog program. 

All this means that the support needed to support Prolog's data 
structures is somewhat more complex than Pascal's or LISP's data 
structures. 



10.1 Prolog data structures 191 

Compiling unification 
Normally, a Prolog compiler arranges its data management by 'compiling' 
the terms in the head of a clause into a sequence of instructions whose 
function it is to unify the appropriate terms in the call. 

For example, in the Prolog clause: 

append([EIX], Y, [EIZ]) :- append(X, Y, Z). 

the term [EI X] is compiled into instructions which check that the first 
argument of a call to append is a non-empty list. If it is, then the local 
variables E and X are bound to the head and tail - i.e. the car and the cdr 
- of the list pair. 

The first step in this unification involves some instructions which 
make sure that the first argument of the append call can be coerced into a 
list pair: 

@1 

@2 

@3 
@4 

move.! 
cmp.b 
bne 
cmp.l 
beq 
move.! 
bra 
cmp.b 
bne 

argl, aO ; access 1st argument 
#variable,tag(aO);dereference it 
@2 
ptr(aO),aO 
@3 
ptr(aO),aO 
@1 
#list,tag(aO) 
fail ; not a dotted pair 

;we know its a pair 
bra @4 

;we know its a var 
;continue with next 

There are three possible situations that can arise here: the first argument 
may (after following variable links) already be a list pair, or it may be an 
unbound variable or it may a different kind of term altogether, in which 
case the unification fails. 

If the term is a list pair then the required action is to assign the local 
variables E and x to the head and tail of the list; something which is easily 
accomplished by a series of moves. 

The most complex case is when the term to be unified is an unbound 
variable; in this circumstance a new list pair must be created and bound to 
the variable. The space for this new list pair is allocated out of a heap (just 
as the LISP cons function found space for list pairs out of its heap). 
However, Prolog's heap is not organised in the same way as LISP's heap 
and a better term for it would be the constructed term stack. This stack is 
not normally structured around a free-list but instead a pointer to the next 
free location is maintained: 



192 Prolog 

Top of cons~ 
term stack 

The reason for using a stack like this is that when the system backtracks a 
previous choice of clause which was made to solve a call is undone, and 
all of the terms which have been constructed since then are no longer 
needed and can be removed. This garbage can be removed by a simple 
adjustment of the top of the constructed term stack. This is a much 
simpler operation compared to a full mark and collect style garbage 
collection needed to clear up discarded S-expressions in LISP. It is still the 
case, however, that a garbage collector is needed to clear the constructed 
term stack, and this needs to be more sophisticated than a LISP garbage 
collector. 

As with LISP's free-list, we would normally dedicate an address register 
(a 6 say) to point to the next free location in the constructed term stack, 
constructing a new list pair consists simply of incrementing the top of the 
stack and assigning the old top as the address of the list pair: 

move.! a6,ptr(a0) 
move.b #list,tag(aO) 
add.l #2*cell,a6 

;bind variable 
; list pair 
;adjust c.t.s. 

We also need to initialise the head and tail of the new list pair to unbound 
variables and to bind the local variables E and x to them, just as we would 
for an incoming list pair: 

move.l ptr(aO),aO 
move.b #variable,tag(aO) 
move.l aO,ptr(aO) ;new unbound 
move.! aO,ptr('.E) ;bind E 
move.b #variable,tag('.E) 
lea cell(aO),aO ;next cell 
move.b #variable,tag(aO) 
move.! aO,ptr(aO) ;new unbound 
move.! aO, ptr (X) ;bind x 
move.b #variable, tag (X) 

Since we have bound a variable from outside the clause in this step - by 
assigning it to a list pair - we require a little further housekeeping. It may 
be that the variable that we are assigning is older than - i.e. created before 
- the most recent choice point. This is because the variable was in the call, 



10.1 Prolog data structures 193 

and allowing for the possibility of variable-variable links, we cannot 
predict where the variable that was bound originated. 

In the case that the newly bound variable is older, we must also record 
the fact that we have bound it. This allows the system to undo the binding 
- by clearing the variable to unbound - should this or a later unification 
fail. That in turn would allow a subsequent choice of clause, with its 
attendant unification, to result in the variable having a different value. 
This record of the variable being bound is maintained in a simple list of 
addresses, called the trail. 

The complexity of Prolog's data management sometimes leads to a 
slower performance than the equivalent LISP or Pascal program. 
However, it is also the case that a Prolog program is somewhat more 
succinct and high-level than a LISP or Pascal program; and this allows the 
programmer to be more productive. 

10.2 Controlling a Prolog execution 

A Prolog execution is logically equivalent to a mathematical proof. One 
immediate consequence of this is that we have the notion of success and 
failure in terms of the success or failure to find a successful proof of a 
hypothesis or query. The 'proofs' and 'hypotheses' that we speak of are 
extremely simple - a Prolog system is not itself intelligent, it is merely a 
programming language based on mathematical notions of truth and proof. 

We can illustrate Prolog's proof methods using the fallible greek 
syllogism which we can express using the set of Prolog clauses: 

fallible (H) : -human (H) . 

human(turing). 
human(socrates). 

greek(socrates). '1(4 

together with the standard 'hypothesis' or top-level query to prove that 
there is a fallible greek: 

:-fallible(X),greek(X). 

A Prolog program 'solves' this problem by solving, in turn, the sub
queries: 

fallible (X) , ... 

and, for the same X: 



194 Prolog 

... , greek (X) 

In other words, after the goal fallible (X) has been called, and is 
successfully completed, then the next goal greek (X) is called. If it also 
succeeds, then the whole query terminates successfully. 

In order to solve the first goal we attempt to reduce it into simpler sub
goals by using one of the clauses in the Prolog program - in this case the 
only clause that might work is the single fallible rule '1(_1. To use a 
clause to reduce a goal we have to match (i.e. unify) the head clause with 
the goal. 

This step also involves introducing any new local variables which are 
associated with the clause. In the case of unifying the head of '1(_1 with the 
fallible goal we introduce the new variable H, and we bind it to the 
variable x from the goal. As a result of using the rule, the original 
problem is reduced to showing that there is a human greek: 

: -I human (X) l'.1(11 greek (X) 

The next step for the Prolog evaluator is to solve the newly introduced 
human goal. There are two clauses which can potentially be used to 
reduce it: '1(_2 and 'R} (both of which happen to be atomic facts with no sub
goals or pre-conditions associated with them). 

In the face of a choice of clauses to apply, Prolog tries the first one but 
records the fact that there are one or more alternatives which will be tried, 
if necessary, later on. Apart from the recognizing the choice point, 
reducing the human goal using '1(_2 is essentially the same as before: we are 
required to unify the goal: 

... , human ( X) , ... 

with the head of 'R.J,: 

human (turing) : - ... 

This time there are no local variables to introduce, though we do make a 
binding: we bind X to the atom turing. Since there are no preconditions 
in the '1(_2 clause, there are no new sub-goals introduced in this step. Using 
an atomic fact is the main way that a goal is eliminated from an 
evaluation as opposed to being simply replaced by other sub-goals. The 
next goal to solve now is: 

:-greek(turing). 



10.2 Controlling a Prolog execution 195 

As before, we try to solve this goal by finding a clause in the program 
which we can use to reduce it. The only clause for greek in the program 
is 1{.4; attempting to use it involves unifying 

... , greek (turing), ... 

with 

greek (socrates): - ... 

But this is impossible - because turing and socrates do not match -
and so the unification fails. At this point the Prolog system must go back 
to a previous point where there was a choice and try again. Prolog always 
goes back to the most recent choice point, as in when we selected the first 
of two human clauses. So, the Prolog system backtracks, undoing the effect 
of any steps subsequent to the choice point, and tries again. 

Recall that, when we used 'R.J, to reduce the human goal, we bound x to 
turing. Since this binding was made after the choice point, i.e. after we 
selected the first rule for human, the binding to x must be undone, 
restoring it to unbound. Notice that, since we bound H in the head of the 
fallible rule to x in the goal prior to making the choice, the binding 
for H stands. If we had to backtrack again then this binding too would 
disappear. 

In effect, after backtracking, we are back to trying to solve the query: 

: -I human (X) l!l{J, greek (X) 

but this time we cannot use the first clause for human. Instead we use the 
second; which results in binding x to socrates and the next query is: 

:-greek(socrates) 

Since the second rule for human was also the last one we did not need to 
record a choice point this time, and if this new query were to fail then the 
whole top-level query would fail also. However, it does not fail because 
this goal matches with ~4. After solving the greek sub-goal there are no 
further goals to solve. The 'answer' socrates may then be displayed as 
the proof that there is a fallible greek. 

In practice, in a Prolog system, the real top-level query is one which is 
not seen by the programmer and it never terminates. This query invokes 
a special read-evaluate-print program whose function is to continually 
read a query from the terminal, evaluate it and print out an answer if it is 
true and print a message if not. After completing one query the loop 
carries on for more queries. 



196 Prolog 

Although we have used the language of problems to be solved and 
methods for solving them (rules and reducing goals etc.) Prolog is not a 
problem solving system. Viewed as an problem solving strategy, Prolog's 
execution mechanism is rather inadequate. For example, it is quick to fall 
into endless loops which a better problem solver would avoid. However, 
viewed as a programming mechanism, and assuming that the 
programmer is fully aware of Prolog's procedures, it offers a powerful 
built-in search mechanism that allows a rather high-level style of 
programming. In particular, the pattern directed style of program 
invocation is a powerful and high-level paradigm for supporting 
programming. 

Rules, in conjunction with a rule application mechanism, are 
commonly used in expert systems for example, where they fit quite 
naturally into the style of programming for cases. Each case that an expert 
system has to deal with can be expressed using a set of rules whose 
patterns express the situations that the rules can be applied to. Similarly, 
language processing based on grammars is also a natural application 
domain. The fragments of the grammar are rules which can be used to 
parse fragments of the language being processed. 

10.2.1 The Prolog evaluation stack 

As with Pascal and LISP, a Prolog system uses an evaluation stack to record 
the progress of an evaluation of a query. This stack is somewhat more 
complex than a Pascal stack and it has different entries in it corresponding 
to the various activities that we have seen above. 

In order to record the entry of the evaluation into a sub-goal, we have a 
'call record'. This record, like the call frame for a Pascal procedure, records 
the environment of the caller - the return address corresponds to the next 
goal to solve, and it also points to the caller's local variables. The call 
record also has an entry for the calling or 'parent' call record; this is 
necessary because, unlike Pascal, it is not always the case that the parent of 
a procedure call is immediately above the call record. 

~parent 'par~' I """" . 
b 1 next sub-goal variables 

su -goa to solve 

Figure 10.6 Structure of a call record 

Arguments to a Prolog goal are not normally passed via the evaluation 
stack. Instead they are placed in a series of 'argument registers'. These are 



10.2 Controlling a Prolog execution 197 

usually fixed global locations within the memory, although some Prolog 
compilers may use one or more 680x0 registers to hold Prolog arguments. 
Using argument registers to pass parameters is analogous to using 680x0 
machine registers to pass parameters to a Pascal procedure. However, the 
principal role of an argument register is to hold the argument during 
unification. Once the unification is completed then the contents of the 
argument registers will have been 'read' and either recorded in local 
variables or matched against some structure in the head of the clause. In 
either case the contents of the argument registers are no longer needed. 
This is in contrast with Pascal arguments which can be accessed from any 
point within the body of the procedure, or even from within procedures 
declared locally to it. 

As with the 680x0, a Prolog system usually has a fixed number of these 
argument registers, setting an upper limit on the number of arguments a 
goal may have. However, 32 seems to be a reasonable limit as there are 
few Prolog goals with more than 32 arguments. 

51.rgl 5l.rg2 

T T 

Figure 10. 7 Argument registers 

Each argument register is logically a cell with a tag and a value part; i.e. an 
argument register can 'hold' any term. If the argument register is an 
integer then the value part will be the integer, otherwise it will be a 
pointer to some other structure. The only restriction normally imposed is 
that an argument register cannot be an unbound variable: it must always 
point to a location within the evaluation stack proper or on the 
constructed term stack. An argument register containing an unbound 
variable is represented by a variable-variable link to an unbound cell on 
the evaluation stack or constructed term stack. 

The local variables introduced by a clause when it is used to reduce a 
goal are also kept on the evaluation stack. As with Pascal, these variables 
are accessed via offsets from a base pointer, usually an address register; 
however, unlike Pascal, we are not able to use the simple link and unlk 
mechanism to allocate and deallocate space for them. 

Each variable 'slot' is, like an argument register, a single cell and can 
hold any term. Some Prolog systems initialize variables as they are 
allocated to be unbound, others do not. Initializing variables reduces the 
performance (since the effort to initialize the variables might be 



198 Prolog 

redundant) but it makes implementing a garbage collector somewhat 
simpler. 

V•riabl.,,; B 
of clause~ 

Figure 10.8 Local variables introduced by a clause 

The third type of entry in the evaluation stack is the choice point record. 
This is used when there is a choice of clause in reducing a goal. In the 
choice point record are kept sufficient details to allow us to restore the 
evaluation stack to the state just before the choice point record is created. 
This allows us to backtrack and to make another choice as necessary. 

The Prolog argument registers are also saved as part of the choice point 
record. The motivation for saving them is the same as saving registers in 
a Pascal procedure: they will be needed again to participate in another 
unification; furthermore, the arguments are only needed again in the 
event that the system backtracks. 

Saved argument 

registers~ 

Top sub-goal 

Trail 

Jil~~~--.:Topof 
~ constructed term 

stack 

Next clause 
to try 

Figure 10.9 Structure of a choice point 

The trail is used to record those variables which have been bound since a 
choice point is created. This is generally kept as a separate data structure to 
the main evaluation stack although logically it is part of the choice point 
record's function to record the bound variables. 

It is not necessary to record every binding in the trail; we only need to 
record bindings to those variables which will survive a backtrack. When 
the system backtracks all the variables created after the choice point will 
automatically disappear - their creation will itself be undone - therefore it 
is not necessary to record the fact that such variables have been bound. 
We only need to create entries in the trail for variables which are older 



10.2 Controlling a Prolog execution 199 

than the most recent choice point, and which therefore will still be present 
after backtracking albeit with possibly different values. 

The final data structure is one we have already seen: the constructed 
term stack. Like the LISP heap this is used to record terms which have 
been dynamically created during a Prolog evaluation. However, we 
organize it like a stack to facilitate backtracking. The constructed term 
stack grows as new terms are created during unification, and shrinks as 
part of backtracking. One of the fields in the choice point record indicates 
the stack top at the point that the choice point is created. 

Any terms created after the choice point are placed above this marker; 
and so, when the system backtracks all the terms above the marker can be 
discarded. This form of garbage collection is so powerful that it can 
remove the need for many, if not most, calls to the garbage collector -
indeed early Prolog systems did not have a garbage collector. However, a 
real garbage collector is still needed for those programs which do not 
backtrack. 

10.2.2 A sample evaluation 

We can chart the progress of our fallible greek query in terms of the state 
of the evaluation stack system at various points. Initially, the stacks are 
empty, and the Prolog 'moving finger' indicates a point just before the first 
goal in the query: 

Trail 

51.rgl 

v 

x from top-level 
query 

~I 
Constructed 
Term Stack 

Evaluation 
Stack 

. /Prolog's moving 

~ finger 

:-fallible(X),greek(X) 

fallible(H) :-human(H). 

human(turing). 

human(socrates). 

greek(socrates). 

Figure 10.10 Initial state of the Prolog stacks 

We have arbitrarily put the only variable so far in the system - X - in the 
constructed term stack (C.T.S.) for convenience. In practice, we cannot 
easily predict where this variable would be located. 



200 Prolog 

The first step that the evaluator makes is to enter the fallible 
program. This involves setting the first argument register to point to x 
and to create a call record indicating that there is another goal to solve 
after the human goal: 

!Jl.rgl 

v 
:-fallible(X),greek(X) 

~ 
fallible(H) :-human(H). 

human (turing) •. 

human(socrates). 

greek(socrates). 

Figure 10.11 Create a call record 

We now have to unify the head of the fallible clause with the goal. 
We must also create a new local variable - H - which is introduced as a 
result of using the fa 11ib1 e clause and which is allocated on the 
evaluation stack. 

As a result of unifying the head and goal we bind H to the first argument 
register - which is itself bound to the top-level goal variable: 

!Jl.rgl 

v 
:-fallible(X),greek(X) 

fallible(H) :-human(H). 

~human(turing). 
~human (socrates) . 

greek(socrates). 

Figure 10.12 Bind local variable to argument 

We now enter the human procedure. Since this is the last sub-goal in the 
rule for fallible we do not need to create a call record here; however, 



10.2 Controlling a Prolog execution 201 

since there are two clauses for human we do need to create a choice point 
record (sometimes we might need both a call record and a choice point 
record). In the choice point record are recorded the current goal, a pointer 
to the constructed term stack, the trail and the previous choice point 
record. We also record the argument registers. To avoid overly cluttering, 
up our diagram we only show some of these pointers emanating from the 
choice point record: 

ftrgl 

v 
Saved argument 
register 

:-fallible(X),greek(X) 

fallible(B) :-human(B). 

~human (turing) . 
human(socrates). 

greek(socrates). 

Figure 10.13 A human choice point 

Having created a choice point, we unify the head of the human clause with 
the goal. This involves binding the goal variable x to the constant 
turing; and an entry is created in the trail because the goal variable is 
older than the choice point we have just created. After performing the 
unification the next step is to attempt to solve the greek goal: 

ftrgl 

v ~ 
:-fallible(X),greek(X) 

fallible(B) :-human(B). 

human(turing). 
human(socrates). 

greek(socrates). 

Figure 10.14 First attempt at finding a greek 



202 Prolog 

Solving the greek goal involves using the only clause there is for 
greek. As we enter the greek goal, the first argument register is loaded 
with the value of x, which is turing. In this case it happens that the first 
argument register has not changed much in value; however with deeper 
computations we would certainly expect the argument registers to be 
constantly changing: 

5trgl 

v 
:-fallible(X),greek(X) 

fallible(H) :-human(H). 

human(turing). 

human(socrates). 

~greek(socrates). 

Figure 10.15 Attempt a greek solution 

This unification attempt - in which we try to match greek and turing 
- fails, therefore we are required to backtrack. This involves clearing the 
most recent choice point, undoing any bindings done since it was created, 
and resetting the various argument registers. All of which leaves us with 
the stacks in the state: 

5trgl 

v 
:-fallible(X),greek(X) 

~ 
fallible(H) :-human(H). 

human(turing). 

human(socrates). 

greek(socrates). 

Figure 10.16 Re-attempt to solve human 



10.2 Controlling a Prolog execution 203 

We are back in the state where we needed to solve the human goal, 
although the first human clause has been tried, and therefore we must try 
the second one. We can now proceed to use the second human clause, 
which this time succeeds by binding x to the greek socrates: 

.9lrgl 

v 
:-fallible(X),greek(X) 

fallible(H) :-human(H). 

human (turing) . ~ 
human (socrates) . 

greek(socrates). 

Figure 10.17 Bind answer to socrates 

Notice that, since there is no choice point in the way, we did not need to 
create an entry in the trail when we bound x this time. 

We can now move on to the final state, where the greek goal has been 
entered and completed - and x is bound to the compatible socrates. 
Since there are no more goals to solve, and there are no choice points 
'protecting' the call record for fallible, most Prolog systems optimise 
the stack by removing the call record from the stack: 

.9lrgl 

v 

socrates 

~ 
:-fallible(X),greek(X) 

fallible(H) :-human(H). 

human(turing). 
human(socrates). 

greek(socrates). 

Figure 10.18 The final state of the fallible greek stacks 



204 Prolog 

10.3 Using a virtual machine 

Recall that a small Prolog fragment which represented a list pair needed a 
large number of 680x0 instructions to fully implement unification with it. 
It is clear that the 680x0 is not perfectly adapted to the execution of Prolog 
programs. This is not the case for Pascal, where we could justifiably argue 
that the 680x0 is an almost perfect Pascal machine. Unfortunately, when it 
comes to Prolog there is a large gap between the facilities offered by the 
680x0 and the requirements of the language. 

One consequence of this, is that compiled Prolog programs tend to be 
quite large: a compiled program may be 20-50 times larger compared to the 
original Prolog source. This should be compared with Pascal where it is 
not uncommon for a compiled Pascal program to be smaller than its 
source version. 

In order to avoid having large bulky sequences of instructions to 
implement a Prolog program, we often use a virtual machine as a layer 
between the Prolog source and the underlying 680x0. A virtual machine is 
an abstract machine that is designed to be well suited to the execution of 
Prolog. A Prolog compiler would compile instructions for the virtual 
machine rather than the 680x0 directly and a special purpose emulator 
running on the 680x0 emulates the virtual machine instructions 
generated by the Prolog compiler. 

The advantage of a virtual machine is that the compiler can 'target' a 
more suitable vehicle for the programming language than the raw 
machine; resulting in more compact compiled programs. Similar 
techniques have been used to implement systems for other languages: at 
least one early Pascal compiler was based on the use of the virtual 
machine concept: UCSD Pascal. In that case the motivation was portability 
as well as compactness of compiled programs. 

emulator 
for 

1-~-~I Virtual machine ~-1-~ 
680x0 

There are a number of virtual machine designs suitable for Prolog; the 
most famous is the Warren Abstract Machine (WAM). In the WAM, 
instead of our long instruction sequence for unifying a list pair we have 
just three W AM instructions: 



10.3 Using a virtual machine 205 

get list 
unify var 
unify:var 

Argl 
Arg4 
Argl 

where Argl and Arg4 refer to argument registers 1 and 4 respectively. 
Of course, the emulator must still be able to implement these W AM 

instructions, and to do so will require essentially the same instructions 
that we saw above for unifying a list pair. We have gained a considerable 
space advantage because the operation 'unify against a list', for example, is 
implemented only once within the W AM emulator instead of for each list 
pair in the program. However, there is likely to be a performance penalty 
in using an emulator rather than compiling directly to 680x0 instructions. 

One key overhead in the use of a virtual machine emulator is the 
interpretation and decoding of W AM instructions. One simple way of 
implementing such an instruction decoder could be realized in the 
pseudo-Pascal fragment: 

repeat 
case pc" of 

get_list: 

unify var: 
end; -
pc:=pc+l; 

until false; 

We can use the same implementation technique which we saw in 
Chapter 7 for case statements to implement this fragment: 

dcode move.! pc, aO 
move.w (aO),dO ;pc" 
cmp.w #min_opcode,dO 
blt case error 
cmp.w #max:opcode,dO 
bgt case error ;WAM opcode legal? 
add.w dO,dO 
move.w @O(dO.w),dO 
jmp @O(dO.w) 

@0 dc.w get_ list-@0 

dc.w unify_ var-@0 
get_ list: 

;implement get_ list 
bra exit 

exit add.! #1, pc ;adjust virtual pc 
bra dcode 



206 Prolog 

The result is a code sequence which involves executing 9 instructions in 
order to simply start executing the 'real' code for an instruction; together 
with a further two instructions to increment the virtual program counter 
and to branch back to the decode cycle. 

On the other hand, it may only require a small number of instructions 
to implement a given virtual machine instruction; the 
unify_var Argl instruction, for example, can be implemented in just 
three instructions: 

move.b 
move.l 
add.l 

tag ('I) ,tag (Jil.rgl) 
ptr('I) ,ptr(Jil.rgl) 
#cell,'T 

where 'Tis an internal register to the W AM. The 'T register is used during 
unification as a pointer which follows the internal structure of lists and 
compound terms. Each unify_ instruction leaves '!'pointing at the next 
argument of a compound term. 

Thus, for three instructions which implement the 'meat' of the 
unify_var virtual machine instruction, we have 12 'overhead' 
instructions. It is quite important to try to optimize the implementation 
of the decode instruction loop: in general a single extra instruction in the 
decode loop can result in a performance degradation of 10-20%. 

If we arrange the decoding of virtual machine instructions more 
carefully, then we can optimise the decoding of instructions considerably. 
For example, we can eliminate the error checking in the case statement 
code: all we need to ensure is that the Prolog compiler generates correct 
virtual machine instructions. 

A further optimisation could be to use the scaled addressing modes 
available on the 68020 and 68030. This would allow us to eliminate an 
instruction from the decode cycle: 

add.w dO, dO 

Furthermore, we can increment the virtual machine's program counter at 
the same time as accessing the opcode; and we could allocate an address 
register (a4 say) to be the program counter. Together, these optimisations 
give the instruction decoding sequence of: 

move . w ( a4) +, dO 
move.w @O(d0.w*2),d0 
jmp @O(dO.w) 

which, together with a jmp instruction at the end of the 680x0 instructions 
used to implement each virtual machine instruction, gives us four 680x0 
instructions to decode a virtual machine instruction. 



10.3 Using a virtual machine 207 

We can improve this still further if, instead of using arbitrary numbers 
to represent virtual machine instructions, we use 680x0 addresses as the 
opcodes: a virtual machine opcode is also the address of the 680x0 
instructions which implement it. Each opcode now occupies 4 bytes 
instead of 2, which is still far short of the space needed for the instructions. 
This allows us to reduce the instruction decode and increment cycle to just 
two 680x0 instructions: 

move.! 
jmp 

(a4)+,a0 
(aO) 

These instructions can be duplicated at the end of each implementation of 
a virtual machine instruction, eliminating a jmp to a central decode loop. 
The complete instructions used to implement the unify_ var 
instruction are now: 

unify var: 
-move.! 

move.b 
move.! 
lea 
move.! 
jmp 

(a4) +, aO ; acquire Argn 
tag(a2),tag(aO);use a2 for 'I 
ptr(a2),ptr(a0) 
cell (a2) , a2 ;'I is incremented 
( a4) +, aO ; decode next ins. 
(aO) 

In this regime, for this virtual machine instruction, the overhead for 
instruction decode is reduced from 300% to 25%. 

The exercise that we have just gone through of optimising a crucial 
section of code, is a good example of one of the prime motivations for 
programming directly in assembler. We have gained a considerable 
performance benefit which it is extremely unlikely that a Pascal compiler 
could generate - it simply requires too many assumptions which we, as 
programmers, could make but a compiler could not. 

There are many other aspects which are related to the implementation 
of Prolog which we have not covered in this chapter. To fully cover the 
techniques needed to implement a Prolog system would justify a book in 
its own right! It has been our intention to outline some of the more 
interesting aspects of implementing Prolog rather than providing a 
complete guide to its implementation. 



APPENDIX A 

Addressing modes for the 680x0 

An addressing mode is a specification of an operand to an instruction. It 
specifies how the operand of the instruction is to be computed. There are 
some ten addressing modes on the 68000 itself with a further eight or so 
on the 68020/68030. This means that in the specification of an 
instruction's operand there may be up to 18 ways of determining the kind 
of operand it is. 

A.1 Register direct addressing 

Register direct addressing refers to the operand being in one of the 
registers. There are two versions of register direct addressing - data 
register (written as d0 ) and address register (written as a 0 ). If an operand 
is specified using either mode then the data to be manipulated, or the 
location for the result of the operation to be stored, is one of the registers. 
For example, the instruction · 

move.w a0,d3 

uses register direct addressing for both the source and destination operand. 
The effect of this instruction is to move the word length contents of 
address register aO to data register d3. 

When a data register is addressed as a word length quantity, as in this 
case, only the lower half of the register is involved. So, for this instruction 
only the lower half of d3 would be affected, and the upper half of the 
register remains intact. When a data register is addressed as a byte quantity 
then only the lowest quarter of the register takes part in the instruction. 

208 



A. Addressing modes for the 680x0 209 

move.w a0,d3 

al dl 
a2 d2 ------- - - - - - - - ·----a3 <!3 _ X~~X_¥~_¥ 
a4 d4 -------
as dS yyyy replaced by 1003 

-------
a6 d6 
a7 d7 

Figure A.1 Register direct addressing 

In contrast to the situation with data registers, whenever an address 
register is the destination the whole of the register is always affected. If a 
word length quantity is moved into an address register then it is sign 
extended - the upper half of the address register is set to all ls or all Os 
depending on the value of the most significant bit of the lower word. 

An address register cannot be manipulated as a byte quantity - only 
word and long word widths are available. 

A.2 Immediate addressing 

Immediate addressing is used when the operand value of an instruction is 
fixed. It is useful for putting constant values into registers or for 
comparing variable quantities against a known value. 

In the instruction 

cmp.b #32,dO 

the operand #32 is the source operand and it is an immediate operand 
(indicated by the presence of the '#' character in front of the literal 
number). This instruction compares the lowest byte in register dO with 32, 
which also happens to be the code for an ASCII space character. 

Immediate addressing only makes sense in the case of a source operand. 
Since the data is actually part of the instruction, using immediate 
addressing for the destination would amount to allowing program 
instructions to modify themselves. An ability for programs to modify 
themselves is important to have, on a theoretical level, but it is not 
obviously useful for an addressing mode. 



210 A. Addressing modes for the 680x0 

A.3 Absolute addressing 

In absolute addressing the operand of the instruction has built into it the 
address in memory of the data/ operand. Either the source or the 
destination (or both in some cases) may be specified absolutely (written as 
the address without a preceding'#' character). 

Absolute addressing is used when memory locations are referred to 
specifically, for example, a memory location might represent a specific 
variable or it may be necessary to jump to a specific program in a particular 
place in memory. 

For example, the instruction 

move .1 1000, d4 

moves the long word at address 1 O O O into data register d4 overwriting 
the whole of its contents. 

move.1 1000,d4 

996 

1000 12345678 aO dO 

1004 al dl 
a2 d2 
a3 d3 
a4 d4 12345678 ------- --------
as dS 
a6 d6 
a7 d7 

Figure A.2 Absolute addressing 

Absolute addressing is also used for many program control instructions; 
for example, a jmp to a specific address is a case where the address of the 
operand (i.e. where to continue execution) is part of the instruction. 

There are, in fact, two forms of absolute addressing: word and long 
word. These forms refer to the size of the address itself rather than the 
data object being addressed. The word form addresses the first 32K bytes 
and the last 32K bytes of the address space. This form is useful for low 
memory programs and variables. The long form can address any memory 
location in the address space. Normally the correct form of an absolute 
address is determined automatically by the assembler, however the 
programmer can specify it by suffixing a . w or . 1 in the address: 



A. Addressing modes for the 680x0 211 

move . w dO, 10 O 0 . w 
move.w dl,1234.1 

; a word length address 
; a long address 

A.4 Address register indirect 

The address register indirect addressing mode which is written 

uses an address register to specify the address of the operand. The specified 
register contains the address in memory of the data value for the 
instruction or where to place the result. In register direct addressing the 
data value to be manipulated is in a register whereas in register indirect 
addressing the register contains the address of the data. 

Address register indirect is often used for pointer following - where the 
memory is loaded from some variable into an address register and then 
dereferenced and for storing into records via a pointer. 
In the instruction 

move .1 dO, (a6) 

the long word value of dO (i.e. the whole of dO) is written out to the 
address referred to in register a6. 

move.l dO, (a6).~---~ 

aO _____ _?O_ ]:2~4~6-
al dl -----------
a2 d2 
a3 d3 
a4 d4 -----------as dS 

a6 ___ lQ_OQ_ _?~ ___ _ 
a7 d7 

996 uu 
1000 vv 
1004 WW 

Memory 
before 

WW 

Memory 
after 

Figure A.3 Address register indirect addressing 



212 A. Addressing modes for the 680x0 

A.5 Address register indirect with displacement 

The address register indirect with displacement addressing mode, which is 
written as 

or 

where the offset o is a 16 bit number in the range -32768 ... 32767, is a 
variation on address register indirect. In this case the address contained in 
the address register is offset by means of a fixed displacement in order to 
determine the final address of the operand. 

The address register indirect with displacement mode is extremely 
useful in accessing elements in records and in accessing local variables 
within a Pascal procedure or function. 

We can load the value which is addressed as being offset four bytes from 
a2 into dO with the instruction: 

move . w 4 ( a2) , dO 

1-~o_ - - - - - dO xxxxyyyy -------
1-~l_ - - - - - dl -------
t-~2- ___ 1.Q~O d2 -------
1-~3_ - - - - - c_p_ _____ 
a4 d4 1-------- -------

998 as dS 
1234 

1-·- - - - - - - -------
1000 a6 d6 1-------- -------
1002 5678 a7 d7 Before 
1004 9012 move.w 4(a2),d0 
1006 

1-~o_ - - - - - QO_ ~x~~9.Q1:_2 
~l_ - - - - - dl -------

t-~2- __ ~Q_O_p d2 -------
1-~3_ - - - - - Q~-----
a4 d4 ------- -------
as dS 1-------- -------
a6 d6 ------- -------
a7 d7 After 

Figure A.4 Address register indirect with offset 



A. Addressing modes for the 680x0 213 

A.6 Address register indirect with post-increment 

This addressing mode which is written as: 

is a variation on address register indirect, except that the address register in 
question is incremented after the address is calculated. The amount that 
the address register is incremented depends on the size specifier of the 
instruction: for a byte size transfer 1 is added, for a word size operation 2 is 
added and 4 is added for a long operation. 

For example, the instruction 

move.w (a3)+,d0 

moves the word pointed at by address register a3 into the lower half of dO 
and adds 2 to a3: 

998 

1000 

1002 

1234 

5678 

1004 9012 

1006 

~o_ - - - - -
1-'~1_ - - - - -
~2 ____ 1~q__o 

~3- - - - - -
a4 
as -------
a6 

QO_ ~x~~YX"!!._Y 
dl -------
QZ_ ____ _ 
Q3 _____ _ 
d4 -------
dS -------
d6 -------

._a_7 ____ _._d_7 ___ ___, Before 
move.w (a2)+,d0 

~o_ - - - - -
~1_ - - - - -
~2_ - - _!~0_? 

~3_ - - - - -
a4 
as -------
a6 

dO xxxx1234 -------
dl -------
d2 -------
d3 -------
d4 -------
dS -------
d6 

r a1- - - - - - d1- - - - - - After 

Figure A.5 Address register indirect with post-increment 

It is not permissible for the system stack to be on an odd boundary; 
therefore if an instruction specifies a single byte transfer with post
increment mode involving a 7, then a byte transfer takes place but the 
stack pointer in incremented by two. This avoids the system stack pointer 
being on an odd byte boundary. 



214 A. Addressing modes for the 680x0 

The post-increment addressing mode can be used to implement block 
moves and, in conjunction with the pre-decrement addressing mode, is 
also used to implement expression stacks. For example, a string copy can 
be implemented with this addressing mode: 

loop: move.b (aO)+, (al)+ ;move 1 byte 
;until end dbra dO, loop 

A. 7 Address register indirect with pre-decrement 

This addressing mode is similar to the previous one, except that the 
address register is first decremented by an amount depending on the size 
specifier of the instruction. A pre-decrement operand is written as 

The instruction: 

move. w dO, - (a 7) ;push dO 

saves the word contents of data register dO on the system stack: 

a_O _____ _ 
a_l _____ _ 
a2 -------
a3 
a4 

f{Q - - _1_2~-! 
fl! _____ _ 
~~-----
d3 --------
d4 --------
dS Ci6 _____ _ 
Ci?- - - - - -

Before 

After 

move.w d0,-(a7) 

998 uu 

1000 >----'-vv~---1 

1002 l--'-'ww-"-------1 

1004 

uu 
1234 

WW 

Figure A.6 Address register indirect with pre-decrement 

In order to pop dO back off the stack we would use the instruction: 

move.w (a7)+,d0 

Again, as with address register indirect with post-increment, if a byte sized 
transfer is specified using the system stack, then the a 7 register is 



A. Addressing modes for the 680x0 215 

decremented by two to avoid it being on an odd byte boundary. The 
contents of the extra byte are undefined. However, a push of a byte-sized 
quantity onto the system stack can be safely followed by a similar sized 
pop. 

A.8 Address register indirect with index 

The address register indirect with index addressing mode combines the 
use of an address register, a second register (to provide the index) and a 
displacement. It is most applicable to accessing elements of arrays (the 
index into the array will often be held as a data register and the array itself 
in an address register). 

An operand using this mode is written: 

Off(ax,ry.w*s) or (Off,ax,ry.w*s) 

where ax is the address register and ry is the index register - it can be 
either an address register or more typically a data register - w is the width 
specifier, s is an optional scale factor and Off is a displacement or offset. 

The width specifier determines how much of the index register is to be 
used for the index width: it can be word or long. Typically, a programmer 
might use word length integers for the index of a small array which is less 
than 32 Kbytes long for example. By specifying a word length width on the 
index register the programmer does not need to ensure that the upper half 
of the index register has valid information in it. A long index uses the 
whole of the data register for computing the index. 

The scale factor is the number by which the index is multiplied before 
use in the address computation. The scale factor can be 1, 2, 4 or 8. If the 
scale factor is missing then a factor of 1 is implied. The scale factor makes 
the implementation of certain arrays simpler: an entry in an array of long 
words, for example, can be indexed with a value which corresponds to the 
logical index of the entry within the array rather than its relative position 
in the array expressed as a byte offset. The scale factor is not available on 
the 68000/008/010 models. 

The displacement is a quantity which is added to the address register 
base and the index offset. As with the address register indirect with 
displacement addressing mode this displacement makes access of arrays of 
records simpler. 

The instruction: 

move. 1 dO, 0 ( a2, dl. w* 4) 

stores the contents of dO into the small array of long words based at a 2 
and indexed through dl: 



216 A. Addressing modes for the 680x0 

a_O _____ _ 

a4 -------as -------

9-Q - - - '.l2~~ 
9'.!: - - - - ..?~ 
~-----
~~-----
d4 --------
dS --------

998 uu uu 

vv 1234 ------- -------
a6 d6 d.7- - - - - - 1002 WW WW 

a7 

Before After 

900+25*4+0=1000 
move.w d0,0(a2,dl.w*4) 

Figure A. 7 Address register indirect with index 

The form of this addressing mode is somewhat restricted on the 68000 
compared to the later models: the scale factor is set to 1, and the 
displacement is restricted to the range -128 ... 127 bytes. 

On the 68020 it is possible to suppress one or more of the components. 
In particular it is possible to suppress the address register specification; if 
this is done then zero is assumed as the base address. The effect of this is 
to allow a 'data register indirect' addressing mode even though this is not 
specifically permitted. 

A.9 Program counter with displacement 

This addressing mode - often called program counter relative on other 
machines - uses the program counter instead of an address register but 
otherwise it is the same as address register indirect with displacement. 

It is most often used in specifying sub-programs within a larger program 
but it can also be used for data transfer. The instruction 

jmp 36(PC) 

would, in effect, add 36 to the program counter and cause a jump to that 
new address. The instruction 

move.w *+10,d3 

uses an alternative notation for this addressing mode. The effect of this 
instruction would be to move the word which is 10 bytes further on from 
the start of this instruction into d3. It is up to the programmer, of course, 



A. Addressing modes for the 680x0 217 

to ensure that this address contains something meaningful - it is quite 
liable to contain program instruction words! Many assemblers generate 
this addressing mode automatically in preference to absolute addressing 
for variables which have been declared using the define storage directive 
ds. 

A.10 Program counter with index 

This addressing mode is analogous to address register indirect with index, 
except that the program counter is used rather than an address register. It 
is written as: 

Off (PC, rn. w*s), (Off, PC, rn. w*s) or *+Off (rn. w*s) 

or just 

label(rn.w*s) 

As with normal indexing the width of the index is specified with the index 
register and there is an optional scale factor (on the 68020). 

The instruction 

move.! charray(d0.w*4),dl 

moves a long word from a table built into the program (at relative address 
charray) into dl: 

charray: de .1 ... 

32*4+PC+charray: dc.1 12345678 

c:tO_ _ _ _ _ _ ~0- ~0_9~2 

c:tl_ - - - - -
~2- - - - - -
a3 
a4 -------as -------
a6 
a7 

~1- !2_3~~618 

~-----
d3 -------
d4 -------
dS -------
d6 
- - - - - - - +------I 
d7 PC 

Figure A.8 Example of program counter with index 



218 A. Addressing modes for the 680x0 

As with the address register indexing mode the form of program counter 
relative indexing is restricted on the 68000 compared to the 68020/68030. 
In the 68000/68010 the displacement can only be short, i.e. in the range 
-128 ... 127 bytes, and the scale factor is restricted to being just 1. 

A.11 Memory indirect post-indexed 

The memory indirect post-indexed addressing mode is a combination of 
address register indirect (with displacement) and indexing, except that the 
indexing is performed after accessing a value in memory specified by the 
address register. 

It is written as 

The operand address is computed by first finding out the address 
[Oi, an], which is obtained in the same way as address register indirect 
with displacement, then taking the long word which is stored at this 
address, and using it with the appropriately scaled indexing register and 
the outer displacement Od. 

an Memory address 

Oi sign-extended displacement 1--------1 .. 

Intermediate address 

r .Size Sign-extended index intermediate value 
m 

scale I Scale factor: 1,2,4 or 8 f-. ~ + 

od I Sign extended displacement 11--.... 1 

operand address 

Figure A.9 Memory indirect post-indexed address computation 



A. Addressing modes for the 680x0 219 

For example, the instruction 

move.w ([6,a2],d0.w*4,0),dl 

accesses the long word at 6 (a 2 ) , adds it to the contents of register d O 
(scaled to be a long word index) and the final offset of zero to compute the 
actual address: 

---- a2+6=804 

~o _____ ~0 _____ 2.? 
~1- - - - -
~2- - - - ~9_8 
a3 
a4 -------as 
a6 
a7 

1000 

1002 

move.w ([6,a2],d0.w*4,0),dl 

uu 

1234 

xx 

Figure A.1 O Memory indirect post-indexed addressing 

This addressing mode is not available on the 68000 I 008 I 010 models. 

A.12 Memory indirect pre-indexed 

This addressing mode is similar to the memory indirect post-indexed 
mode except that the indexing is performed first. So, if the operand is 
specified as: 

then the final value is obtained by computing the address at 
(Oi, an, rm. w* s) as with the address register indirect indexing mode. 
The long word at this address is then added to the outer displacement Od 
to get the final address of the operand. 



220 A. Addressing modes for the 680x0 

an I Memory address 1-I ------~ 

Oi I sign-extended displacement 1-I --~1 

r .Size Sign-extended index 
m 

scale Scale factor: 1,2,4 or 8 

Intermediate address 

intermediate value 

o d J Sign extended displacement 1-J ---1~1 

operand address 

Figure A.11 Memory indirect with pre-indexing address computation 

One possible application of this addressing mode is with arrays of pointers 
to records. The array would be indexed though the indexing component 
and the field in the record would be accessed via the memory indirection. 

This addressing mode is not available on the 68000/008/010 models. 

A.13 Program counter memory indirect 
with post-indexing 

This addressing mode is similar to memory indirect with post-indexing; 
except that the program counter is used instead of an address register. 

The syntax for this mode is: 

([Oi,PC],rn.w*s,Od) 

This addressing mode is not available on the 68000/010/008 models. 



A. Addressing modes for the 680x0 221 

A.14 Program counter memory indirect 
with pre-indexing 

This addressing mode is similar to memory indirect with pre-indexing; 
except that the program counter is used instead of an address register. 

The syntax for this mode is: 

([Oi,PC,rn.w*s],Od) 

We can use this indexing mode to implement a single instruction case 
switch statement. 

Assuming that the index value is in dO, and that the index table is a 
table of addresses, then the instruction: 

@0 
jmp 
de.I 
de.I 

de.I 

([@0,PC,d0.w*4] ,0) 
lab1 
lab2 

labn 

will cause a switch to one of labels lab1, ... ,labn depending on the value 
of dO. 

This addressing mode is not available on the 68000/010/008 models. 



APPENDIX B 

The 680x0 instructions used in 
the text 

Below are listed the instructions which are actually referred to in the main 
text. Where appropriate, related instructions are also listed. 

The exact Motorol!l mnemonics are given - in many cases, we can use a 
generic mnemonic and allow the assembler to choose the correct one. For 
example, the adda instruction is a special case of add which adds to an 
address register; many assemblers automatically substitute for the correct 
mnemonics as necessary. 

The list is not intended as a complete reference to all the 680x0 
instructions; however the main instructions that application assembler 
programmers use are all covered; the omitted instructions tend to be for 
special system purposes and are often not available to the application 
programmer. The format of each description is: 

name Title of the instruction 

syntax name[.bwl] <ea>1,<ea>2 instruction format 

description: Description of the effects of the instruction, together with 
possible restrictions to note. 

note: <ea> means one of the addressing modes as described in 
Appendix A. If the instruction has a size specifier associated 
with it then it may be one of byte , word or long word. 

ccr: How each flag in the condition code register is affected.· 

see: A section in the main text which uses this instruction in an 
example, or explains it more fully 

222 



B. The 680x0 instructions used in the text 223 

add Add source to destination 

syntax: add [. bwl] <ea>, dn. 

add[ .bwl] d 0 , <ea> 

description: Add the source to the destination using binary arithmetic. 

ccr: 

see: 

adda 

syntax: 

The size of the operation can be byte, word or long. 

N set if result negative, cleared otherwise 
Z set if result zero, cleared otherwise 
V set if overflow is generated, cleared otherwise 
C set if carry is generated, cleared otherwise 
X set as carry bit. 

Section 4.2 

Add to address register 

adda[.wl] <ea>,an 

description: Add source to destination address register. Operation can be 
word or long, in the case of word the entire destination is 
always used. 

ccr: 

Some assemblers automatically generate this instruction 
from the add mnemonic if the destination is an address 
register. 

not affected 



224 B. The 680x0 instructions used in the text 

addi Add immediate data 

syntax: addi[.bwl] #<data>,<ea> 

description: Add immediate data to destination. This instruction is used 
when immediate data is specified with the add mnemonic. 

ccr: 

see: 

addq 

syntax: 

N set if result negative, cleared otherwise 
Z set if result zero, cleared otherwise 
V set if overflow is generated, cleared otherwise 
C set if carry is generated, cleared otherwise 
X set as carry bit. 

Section 4.2 

Add quick immediate data 

addq[.bwl] #<data>,<ea> 

description: Add immediate data to destination. Data is in the range 1 to 
8. This instruction is the one actually used when immediate 
data in the range 1..8 is specified with the add mnemonic. 

ccr: N set if result negative, cleared otherwise 
Z set if result zero, cleared otherwise 
V set if overflow is generated, cleared otherwise 
C set if carry is generated, cleared otherwise 
X set as carry bit. 



addx 

syntax: 

B. The 680x0 instructions used in the text 225 

Add binary extended 

addx [. bwl] dy, dx 

addx[.bwl] -(ay),-(ax) 

description: Add source to destination along with the extend bit. This 
instruction is used to implement multi-word arithmetic. 

Note the restrictions in the allowed addressing modes: either 
both operands are data registers or they are both address 
register predecrement. 

ccr: N set if result negative, cleared otherwise 
Z set if result zero, cleared otherwise 
V set if overflow is generated, cleared otherwise 
C set if carry is generated, cleared otherwise 
X set as carry bit. 

see: Section 9.2 

and AND logical 

syntax: and[.bwl] <ea>,dn 

and[ .bwl] dn, <ea> 

description: Logically 'and' the bit pattern in the source with that of the 
destination. Each bit in the destination is formed by and-ing 
it with the corresponding bit of the source operand. 

note: Address register direct addressing is not permitted with this 
instruction. 

ccr: N set to most significant bit of result. 
Z set if result is zero, cleared otherwise 
V always cleared 
C always cleared 
X not affected. 

see: Section 6.1,6.2 



226 B. The 680x0 instructions used in the text 

andi AND immediate data 

syntax: andi[.bwl] #data,<ea> 

description: Logically 'and' the bit pattern in the immediate data with that 
of the destination. This instruction is used with the and 
instruction when the source operand is a literal value. 

note: 

ccr: 

andi 

syntax: 

Address register direct addressing is not permitted with this 
instruction. 

N set to most significant bit of result. 
Z set if result is zero, cleared otherwise 
V always cleared 
C always cleared 
X not affected. 

AND immediate to ccr 

andi #data,ccr 

description: Logically 'and' the bit pattern in the immediate data with the 
condition code register. In effect this is used to mask out 
certain flags in the ccr. 

ccr: N cleared if bit 3 of data is zero, unaffected otherwise 
Z cleared if bit 2 of data is zero, unaffected otherwise 
V cleared if bit 1 of data is zero, unaffected otherwise 
C cleared if bit 0 of data is zero, unaffected otherwise 
X cleared if bit 4 of data is zero, unaffected otherwise. 



B. The 680x0 instructions used in the text 227 

as 1 Arithmetic shift left 

syntax: asl[.bwl] dx,dy 

asl[.bwl] #<data>,dx 

asl <ea> 

description: The destination is left shifted by <count> bits. The 
rightmost bit is replaced by 0. 

In the case of a register count, amount of shift is the contents 
of the register, modulo 64. 

In the case of an immediate count, range of shifts is 1 to 8. 

In the case of a memory instruction the operation is limited 
to word length and shifts of one bit only. 

ccr: N is set to most significant bit of result 
Z is set if result is zero, cleared otherwise 
V is set if the most significant bit is changed at any time 
during the shift operation, cleared otherwise. 
C set to the last bit shifted out of the operand. Cleared for a 
zero shift count. 
X set to the last bit shifted out of the operand. Unaffected for 
a zero shift count. 

see: Section 5.2, 6.1 



228 B. The 680x0 instructions used in the text 

as r Arithmetic shift right 

syntax: asr[.bwl] 

as~[.bwl] 

asr <ea> 

dx,dy 

#<data>,dx 

description: The destination is right shifted by <count> bits. The 
leftmost (i.e. most significant) bit is duplicated. In effect this 
instruction implements a division by a power of 2. 

In the case of a register count, amount of the shift is the 
contents of the register, modulo 64. 

In the case of an immediate count, range of shifts is 1-8. 

In the case of a memory instruction the operation is limited 
to word length and shifts of one bit only. 

ccr: N is set to most significant bit of result 
Z is set if result is zero, cleared otherwise 
V is set if the most significant bit is changed at any time 
during the shift operation, cleared otherwise. 
C set to the last bit shifted out of the operand. Cleared for a 
zero shift count. 
X set to the last bit shifted out of the operand. Unaffected for 
a zero shift count. 

see: Section 6.1 



B. The 680x0 instructions used in the text 229 

bee Branch conditionally 

syntax: bee [. swl] label 

description: If the specified condition is met then program execution 
continues at label. There are three forms of this 
instruction: short (or byte), word and long. (Long format is 
not available on the 68000/008/010.) These refer to the length 
of displacement of the instruction and therefore to the 
distance of the label from the instruction. A short 
displacement is ±127 bytes from the instruction, a word 
displacement is ±32,767 bytes from the instruction and a long 
displacement is ±2,147,483,647 bytes. 

ccr: 

note: 

see: 

The branch is taken if the condition cc is satisfied. The 
available conditions are: 

_ C:~-=--:: ~~~ry_c}e_a_r ______ 5 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ~~-=--:: ~~i:_ry_s_e! _________ C: ____________ _ 
_ ~9_-::--: ~q\lalj_z_e!() ______ :z; _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ~~ ::-::-\l!t.eq\l~V-~o_~ ~~r_o_ _ ~'?-- __________ _ 
_ lvH_-::-:_ I?..il_l~~ __________ l'-1 _________________ _P_~-=--:: P!l!~ ____________ ::'!'l: __________ _ 
VC - overflow clear ~v VS - overflow set V 

- - - - - - - - -- - - - - - - - -- - - - - - - - - - - - - - -- - - - -- ----------------- ----- - - - -- - - - - --- -

-<??_-::-:_ ~:e_a_te_: ?: e_g~~~ - _1'-l~Y~~l':!~--:-Y -------- LT-less than N•~V+~N•V 

_ '?!_-=--:: ~:e_a_te_: ~~a_~ _____ --:'~~l'J_•y_+_-._~•--._N•-,y __ 
HI - high --ChZ LS-low or same C+Z 

condition codes are not affected. 

A short branch to the immediately following instruction 
cannot be formed as that code is reserved for word branch. 

Section 7.1 



230 B. The 680x0 instructions used in the text 

bchg Test a bit and change 

syntax: bchg dn, <ea> 

bchg #<data>,<ea> 

description: A bit in the destination is tested, complemented and copied 
to the Z flag in the ccr. The complemented bit is returned to 
the destination. If the destination is a data register then the 
numbering of the bits is modulo 32 which allows any bit in 
the register to be manipulated; if the destination is memory 
then the numbering is modulo 8 and it is a byte operation. 

ccr: 

bclr 

syntax: 

The least significant bit of the byte or long word is bit 0. 

Z is set to the new value of the corresponding bit. All other 
flags are unaffected. 

Test a bit and clear 

bclr dn, <ea> 

bclr #<data>,<ea> 

description: A bit in the destination is tested and copied to the Z flag in 
the ccr. The corresponding bit in the destination is then 
zeroed. If the destination is a data register then the 
numbering of the bits is modulo 32 which allows any bit in 
the register to be manipulated; if the destination is memory 
then the numbering is modulo 8 and it is a byte operation. 

A 0 bit refers to the least significant bit of the byte or word. 

ccr: Z is set if the old value of the corresponding bit was zero, 
reset otherwise. All other flags are unaffected. 

see: Section 6.2 



B. The 680x0 instructions used in the text 231 

bf chg Test bit field and change 

syntax: bfchg <ea>{offset:width} 

description: Sets the condition codes depending on the specified bit field 
and then complements the bit field. 

The offset indicates the number of bits from the effective 
address to the start of the bit field, and the offset is the size 
of the field. 

The offset to the bit field can be either given as a literal 
number in the range 0 .. 31 bits, or it can be specified as the 
contents of a data register, in which case the offset range is 
-231 .. 231 bits. 

The width field can also be specified as a literal in the range 
0 .. 31, or through a data register in which case the contents of 
the data register are used modulo 32, with 0 meaning 32 bits. 

ccr: N is set if the most significant bit of the field is 1, cleared 
otherwise; Z is set if the bit field is all O's and is cleared 
otherwise; V and C are cleared and X is unaffected. 

note: The address register direct, pre-decrement and post
increment addressing modes are not available for this 
instruction. 

This instruction is not available on 68000/008/010 processors. 



232 B. The 680x0 instructions used in the text 

bf clr Clear bit field 

syntax: bfclr <ea>{offset:width} 

description: Sets the condition codes depending on the specified bit field 
and then zeroes the bit field. 

The offset indicates the number of bits from the effective 
address to the start of the bit field, and the offset is the size 
of the field. 

The offset to the bit field can be either given as a literal 
number in the range 0 .. 31 bits, or it can be specified as the 
contents of a data register, in which case the offset range is 
-231 .. 231 bits. 

The width field can also be specified as a literal in the range 
0 .. 31, or through a data register in which case the contents of 
the data register are used modulo 32, with 0 meaning 32 bits. 

ccr: N is set if the most significant bit of the field is 1, cleared 
otherwise; Z is set if the bit field is all O's and is cleared 
otherwise; V and C are cleared and X is unaffected. 

note: The address register direct, pre-decrement and post
increment addressing modes are not available for this 
instruction. 

This instruction is not available on 68000/008/010 processors. 



B. The 680x0 instructions used in the text 233 

bfexts Signed extraction of a bit field 

syntax: bfexts <ea>{offset:width},dn 

description: Sets the condition codes depending on the specified bit field 
and extracts the bit field extended to a 32 bit signed number 
into the data register. 

The offset indicates the number of bits from the effective 
address to the start of the bit field, and the offset is the size 
of the field. 

The offset to the bit field can be either given as a literal 
number in the range 0 .. 31 bits, or it can be specified as the 
contents of a data register, in which case the offset range is 
-231 .. 231 bits. 

The width field can also be specified as a literal in the range 
0 . .31, or through a data register in which case the contents of 
the data register are used modulo 32, with 0 meaning 32 bits. 

ccr: N is set if the most significant bit of the field is 1, cleared 
otherwise; Z is set if the bit field is all O's and is cleared 
otherwise; V and C are cleared and X is unaffected. 

note: The address register direct, pre-decrement and post
increment addressing modes are not available for this 
instruction. 

This instruction is not available on 68000/008/010 processors. 

see: Section 6.1 



234 B. The 680x0 instructions used in the text 

bfextu Unsigned extraction of a bit field 

syntax: bfextu <ea>{offset:width},dn 

description: Sets the condition codes depending on the specified bit field 
and extracts the bit field as a zero-extended 32 bit unsigned 
number into the data register. 

The offset indicates the number of bits from the effective 
address to the start of the bit field, and the offset is the size 
of the field. · 

The offset to the bit field can be either given as a literal 
number in the range 0 .. 31 bits, or it can be specified as the 
contents of a data register, in which case the offset range is 
-231 .. 231 bits. 

The width field can also be specified as a literal in the range 
0 .. 31, or through a data register in which case the contents of 
the data register are used modulo 32, with 0 meaning 32 bits. 

ccr: N is set if the most significant bit of the field is 1, cleared 
otherwise; Z is set if the bit field is all O's and is cleared 
otherwise; V and C are cleared and X is unaffected. 

note: The address register direct, pre-decrement and post
increment addressing modes are not available for this 
instruction. 

This instruction is not available on 68000/008/010 processors. 

see: Section 6.1 



B. The 680x0 instructions used in the text 235 

bfffo Find first one in a bit field 

syntax: bfffo <ea>{offset:width},dn 

description: Searches the bit field for a 1 bit. The bit offset of that bit (i.e. 
the bit offset given in the instruction plus the offset within 
the field) is placed into the data register. If no 1 bit is found 
then the data register is loaded with the offset plus field 
width. The instruction also sets the condition codes 
depending on the specified bit field. 

The offset indicates the number of bits from the effective 
address to the start of the bit field, and the offset is the size 
of the field. 

The offset to the bit field can be either given as a literal 
number in the range 0 .. 31 bits, or it can be specified as the 
contents of a data register, in which case the offset range is 
-231 .. 231 bits. 

The width field can also be specified as a literal in the range 
0 .. 31, or through a data register in which case the contents of 
the data register are used modulo 32, with 0 meaning 32 bits. 

ccr: N is set if the most significant bit of the field is 1, cleared 
otherwise; Z is set if the bit field is all O's and is cleared 
otherwise; V and C are cleared and X is unaffected. 

note: The address register direct, pre-decrement and post
increment addressing modes are not available for this 
instruction. 

This instruction is not available on 68000/008/010 processors. 



236 B. The 680x0 instructions used in the text 

bf ins Insert a bit field 

syntax: bf ins dn,<ea>{offset:width} 

description: Inserts the value contained in the bottom width bits of the 
data register into the specified bit field. It also sets the 
condition codes depending on the inserted value of the bit 
field. 

The offset indicates the number of bits from the effective 
address to the start of the bit field, and the offset is the size 
of the field. 

The offset to the bit field can be either given as a literal 
number in the range 0 .. 31 bits, or it can be specified as the 
contents of a data register, in which case the offset range is 
-231 .. 231 bits. 

The width field can also be specified as a literal in the range 
0 .. 31, or through a data register in which case the contents of 
the data register are used modulo 32, with 0 meaning 32 bits. 

ccr: N is set if the most significant bit of the field is 1, cleared 
otherwise; Z is set if the bit field is all O's and is cleared 
otherwise; V and C are cleared and X is unaffected. 

note: The address register direct, pre-decrement and post
increment addressing modes are not available for this 
instruction. 

This instruction is not available on 68000/008/010 processors. 

see: Section 6.1 



B. The 680x0 instructions used in the text 237 

bf set Set bit field 

syntax: bfset <ea>{offset:width} 

description: Sets the condition codes depending on the specified bit field 
and then sets the bits in the bit field to all ones. 

The offset indicates the number of bits from the effective 
address to the start of the bit field, and the offset is the size 
of the field. 

The offset to the bit field can be either given as a literal 
number in the range 0 .. 31 bits, or it can be specified as the 
contents of a data register, in which case the offset range is 
-231 .. 231 bits. 

The width field can also be specified as a literal in the range 
0 .. 31, or through a data register in which case the contents of 
the data register are used modulo 32, with 0 meaning 32 bits. 

ccr: N is set if the most significant bit of the field was 1, cleared 
otherwise; Z is set if the bit field was all O's and is cleared 
otherwise; V and Care cleared and Xis unaffected. 

note: The address register direct, pre-decrement and post
increment addressing modes are not available for this 
instruction. 

This instruction is not available on 68000/008/010 processors. 



238 B. The 680x0 instructions used in the text 

bftst Test bit field 

syntax: bftst <ea>{offset:width} 

description: Sets the condition codes depending on the specified bit field. 

The offset indicates the number of bits from the effective 
address to the start of the bit field, and the offset is the size 
of the field. 

The offset to the bit field can be either given as a literal 
number in the range 0 .. 31 bits, or it can be specified as the 
contents of a data register, in which case the offset range is 
-231 .. 231 bits. 

The width field can also be specified as a literal in the range 
0 .. 31, or through a data register in which case the contents of 
the data register are used modulo 32, with 0 meaning 32 bits. 

ccr: N is set if the most significant bit of the field is 1, cleared 
otherwise; Z is set if the bit field is all O's and is cleared 
otherwise; V and C are cleared and X is unaffected. 

note: The address register direct, pre-decrement and post
increment addressing modes are not available for this 
instruction. 

This instruction is not available on 68000/008/010 processors. 

bra Branch always 

syntax: bra[.swl] <label> 

description: Program execution continues at <label>. The offset from 
the current program counter and the <label> must be 
within ±127 bytes for the short version of the instruction, and 
±32767 bytes for the long version. 

note: A short branch to the immediately following instruction (i.e. 
with offset 0) is not possible since offset 0 indicates a long 
branch. 

see: Section 7.1 



B. The 680x0 instructions used in the text 239 

bset Test a bit and set 

syntax: bset dn, <ea> 

bset #<data>,<ea> 

description: A bit in the destination is tested and reflected in the state of 
the Z flag in the cc r. The corresponding bit in the 
destination is set to one. If the destination is a data register 
then the numbering of the bits is modulo 32, if the 
destination is memory then the numbering is modulo 8 and 
it is a byte operation. 

ccr: Z is set if the old value of the corresponding bit was zero, 
reset otherwise. All other flags are unaffected. 

see: Section 6.2 

b s r Branch to subroutine 

syntax: bsr[.swl] <label> 

description: The long word address of the immediately following 
instruction is saved on the system stack (a 7 ). Program 
execution continues at <label>. The offset from the 
current program counter and the <label> must be within 
±127 bytes for the short version of the instruction, and ±32767 
bytes for the long version. 

note: A short subroutine branch to the immediately following 
instruction (i.e. with offset 0) is not possible since offset 0 
indicates a long subroutine branch. 



240 B. The 680x0 instructions used in the text 

btst Test a bit 

syntax: btst d 0 , <ea> 

btst #<data>,<ea> 

description: A bit in the destination is tested and its state is reflected in the 
Z flag in the ccr. If the destination is a data register then the 
numbering of the bits is modulo 32, if the destination is 
memory then the numbering is modulo 8 and it is a byte 
operation. 

ccr: Z is set if the value of the corresponding bit was zero, reset 
otherwise. All other flags are unaffected. 

see: Section 6.2 

chk Check register against bounds 

syntax: chk[.wl] <ea>,dn 

description: Check the value of the data register dn against the operand 
specified in <ea>. If d 0 <0, or is greater than the source 
operand (i.e. <ea> ) then issue a TRAP which results in 
exception processing. The comparison is signed 

ccr: N is set if d 0 <0, cleared if d 0 >source, else is undefined. 
Z is undefined. 
V is undefined. 
C is undefined. 
X is unaffected. 



B. The 680x0 instructions used in the text 241 

chk2 Check register against two bounds 

syntax: chk2[.bwl] <ea>,rn 

description: Check the value of the register r 0 against the bounds pair 
stored at location <ea>. The lower bound is the first byte, 
word or long word (depending on the size of the operation) 
and the upper bound is the second location. 

If the checked register is a data register, and the operation is 
byte or word then the appropriate lower part of the register is 
checked. If the checked register is an address register then the 
bounds are sign extended to 32 bits in order to make the 
comparison. 

If r 0 is outside the bounds then issue a TRAP. 

ccr: N is undefined. 
Z is set if rn is equal to either bound, cleared otherwise 
V is undefined. 
c is set if rn is out of bounds, cleared otherwise 
Xis unaffected. 

note: Not available on the 68000/008/010 processors 

c 1 r Clear an operand 

syntax: clr [ . bwl] <ea> 

description: Clear the destination to all zeroes 

ccr: Z is set, X is unaffected and all other flags are cleared. 



242 B. The 680x0 instructions used in the text 

cmp Compare 

syntax: cmp[.bw1] <ea>,dn 

description: Subtract the source from the destination, using binary 
arithmetic, only setting the flags in the condition codes 
register. The size of the operation can be byte, word or long. 

ccr: N set if result negative, cleared otherwise 
Z set if result zero, cleared otherwise 
V set if overflow is generated, cleared otherwise 
C set if borrow is generated, cleared otherwise 
X not affected. 

see: Sections 4.2, 7.1 

cmpa Compare addresses 

syntax: cmpa[.w1] <ea>,an 

description: Subtract the source from the destination address register, 
using binary arithmetic, but just set the flags in the condition 
codes register. The size of the operation can be word or long. 

ccr: 

This instruction is often generated by the assembler for the 
cmp instruction when the destination is an address register. 

N set if result negative, cleared otherwise 
Z set if result zero, cleared otherwise 
V set if overflow is generated, cleared otherwise 
C set if borrow is generated, cleared otherwise 
X not affected. 



B. The 680x0 instructions used in the text 243 

cmpi Compare immediate 

syntax: cmpi[.bwl] #data,<ea> 

description: Subtract the immediate data from the destination using 
binary arithmetic. Just set the flags in the condition codes 
register. The size of the operation can be byte, word or long . 

ccr: 

cm pm 

syntax: 

. This instruction is often generated by the assembler for the 
cmp instruction when the source is immediate data. Note 
that this can be used to compare any destination, compared to 
just registers for cmp and cmpa. 

N set if result negative, cleared otherwise 
Z set if result zero, cleared otherwise 
V set if overflow is generated, cleared otherwise 
C set if borrow is generated, cleared otherwise 
X not affected. 

Compare memory 

cmpm [. bwl] (Ay)+, (Ax)+ 

description: Subtract the memory location addressed by Ay from the 
memory location addressed by Ax - incrementing both 
registers as for post-increment addressing - using binary 
arithmetic. Just set the flags in the condition codes register. 
The size of the operation can be byte, word or long. 

ccr: 

This instruction is often used, as part of a loop, when 
performing a string comparison. 

N set if result negative, cleared otherwise 
Z set if result zero, cleared otherwise 
V set if overflow is generated, cleared otherwise 
C set if borrow is generated, cleared otherwise 
X not affected. 



244 B. The 680x0 instructions used in the text 

cmp2 Compare register against bounds 

syntax: cmp2[.bwl] <ea>,rn 

description: Compare the register rn (it can be a data or address register) 
against the values stored successively at <ea>. The size of 
these bounding values depends on the size of the operation 
of the instruction: a word bounds check requires two word 
values. The first location contains the lower bound, and the 
second contains the upper bound. 

ccr: 

The condition codes are set by this comparison as follows: 

N Undefined 
Z set if rn is equal to either bound, cleared otherwise 
V Undefined 
C set if rn is out of bounds, cleared otherwise 
X not affected. 

note: Not available on the 68000/008/010 processors 

see: Section 4.2 



B. The 680x0 instructions used in the text 245 

dbcc Test condition, decrement and branch 

syntax: dbcc dn, label 

description: If the condition cc is satisfied then continue with the next 
instruction; otherwise decrement the register dn (lower half 
only) and if the register is -::F -1 then branch to the label else 
continue. 

The condition cc can be any of 

_ C::S:_-=-:: ~~r_ry_c!e_a_r ______ 5 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ~~-=-:: ~ar_ry_s_e! _________ C:: ____________ _ 
_ ~9.-=--:: ~g1:ulij_z_e!() _____ -~ _________________ ~~.:-=-11!1~911~~/_n_on_ ~~i:o __ -:?-___________ _ 
-~I_-=-:: i_n_illll~ - - - - - - - - - -~- - - - - - - - - - - - - - - - - !'_L_-=-:: P!~~ ------------::'~ -----------
VC - overflow clear ~v VS - overflow set V 

--------------------------------------- -----------------------------------
_s;?_-=-::~~e_a_te_r_ ?~ e_g11aI __ -~·y_+_-,_N~-::'Y ________ LT-Ies~-t~~ll- ________ ~·_-,_\.'°t:-::'~~y ___ _ 
_ s;:r_-=-:: ~~ea_te_r_ !~a_n_ ____ .,_z~ ~ ~ y+_-,_2_•_-,_~ ~-::'Y_ _ _L_E_-=-:: Jes~ _o_r_e_q_u_a! ______ ?'.:t'.'J: ~~\T'.-::'~ • V 
HI - high --C•~Z LS - low or same C+Z 

ccr: Not affected 

see: Sections 5.1, 7.1.3 

dbra Decrement and branch 

syntax: dbra dn,label 

description: Decrement the register (as a word value) and if the register is 
-::F -1 then branch to the label. 

ccr: Not affected 

see: Sections 5.1, 7.1 



246 B. The 680x0 instructions used in the text 

divs 

syntax: 

Signed division 

di vs . w <ea>, dn 

divs .1 <ea>, dq 

divs.! <ea>,dr:dq 

divsl.l <ea>,dr:dq 

32/16---716r: 16q 

32/32---732q 

64/32---732r: 32q 

32/32---732r: 32q 

description: Divide the destination data register(s) by the source. There 
are several forms of this instruction: 

1) • Signed divide of a 32 bit data register by a 16 bit source, giving 
the quotient as a 16 bit quantity in the lower part of the result 
data register, and the remainder in the upper 16 bits. This is 
the only form available on the 68000/008/010. 

2) Signed divide of a 32 bit destination by a 32 bit source. The 
remainder is discarded and the destination replaced by the 
quotient. 

3) Signed divide of a 64 bit number - represented by two data 
registers dr/ dq - by a 32 bit source. The 32 bit quotient is 
placed in dq and the 32 bit remainder in dr. 

4) Signed divide of a 32 bit number in dr by a 32 bit source; the 
quotient is left in dq and the remainder in dr. 

If a division by zero is attempted then a trap occurs, otherwise 
the condition codes are set by this comparison as follows: 

ccr: N set if quotient is negative, cleared otherwise. Undefined if 
divide by zero or overflow. 
Z set if quotient is zero, cleared otherwise. Undefined if 
divide by zero or overflow. 
V set if overflow occurred and/or the quotient is> 16/32 bits. 
C always cleared 
X not affected. 

see: Section 4.2 



di vu 

syntax: 

B. The 680x0 instructions used in the text 247 

Unsigned division 

di vu. w <ea>, dn 

di vu . 1 <ea>, dq 

divu.l <ea>,dr:dq 

divul <ea>,dr:dq 

32/16~16r: 16q 

32/32~32q 

64/32~32r: 32q 

32/32~32r: 32q 

description: Divide the destination data register(s) by the source. There 
are several forms of this instruction: 

1) 

2) 

3) 

4) 

Unsigned divide 32 bit data register by a 16 bit source, giving 
the quotient as a 16 bit quantity in the lower part of the result 
data register, and the remainder in the upper 16 bits. 

This is the only form available on the 68000. 

Unsigned divide of a 32 bit destination by a 32 bit source. The 
remainder is discarded and the destination replaced by the 
quotient. 

Unsigned divide of a 64 bit number - represented by two data 
registers dr/dq - by a 32 bit source. The quotient is placed in 
dq and the remainder in dr. 

Unsigned divide of a 32 bit number in dr by a 32 bit source; 
the quotient is left in dq and the remainder in dr . 

If a division by zero is attempted then a trap occurs, otherwise 
the condition codes are set by this comparison as follows: 

ccr: N set if quotient is negative, cleared otherwise. Undefined if 
divide by zero or overflow. 
Z set if quotient is zero, cleared otherwise. Undefined if 
divide by zero or overflow. 
V set if overflow occurred and/or the quotient is> 16/32 bits. 
C always cleared 
X not affected. 



248 B. The 680x0 instructions used in the text 

eor Exclusive OR 

syntax: eor [ .bwl] d 0 , <ea> 

description: Logically 'exclusive or' the bit pattern in the source with that 
of the destination. Each bit in the destination is formed by 
exclusive or-ing it with the corresponding bit of the source 
data register. 

Note: The source of the instruction must be a data register. Address 
register direct addressing is not permitted with this 
instruction. 

ccr: N set to most significant bit of result. 
Z set if result is zero, cleared otherwise 
V always cleared 
C always cleared 
X not affected. 

eori Exclusive OR immediate data 

syntax: eori[.bwl] #data,<ea> 

description: Logically 'exclusive or' the bit pattern in the immediate data 
with that of the destination. This instruction is used in place 
of the eor mnemonic when the source operand is a literal 
value. 

ccr: N set to most significant bit of result. 
Z set if result is zero, cleared otherwise 
V always cleared 
C always cleared 
X not affected. 



B. The 680x0 instructions used in the text 249 

eo~i Exclusive OR to condition codes register 

syntax: eori #data,ccr 

description: Logically 'exclusive or' the bit pattern in the immediate data 
with the condition code register. In effect this is used to 
complement certain flags in the ccr. 

ccr: 

exg 

syntax: 

N changed if bit 3 of data is one, unaffected otherwise 
Z changed if bit 2 of data is one, unaffected otherwise 
V changed if bit 1 of data is one, unaffected otherwise 
C changed if bit 0 of data is one, unaffected otherwise 
X changed if bit 4 of data is one, unaffected otherwise. 

Exchange registers 

exg rx, ry 

description: Exchange the 32 bit registers rx and ry (which can be either 
address or data). 

ccr: Not affected. 



250 B. The 680x0 instructions used in the text 

ext Sign extend data register 

syntax: ext [ .wl] dn 

extb.l dn 

description: Sign extend the lower byte (or word) in the data register to a 
valid word (or long word) quantity. This involves replicating 
the most significant bit in the byte (or word) throughout the 
upper byte (or word) of the register. 

The extb . 1 instruction extends a byte quantity into a long 
word quantity. 

ccr: N set if result is negative, cleared otherwise. 
Z set if result is zero, cleared otherwise 
V always cleared 
C always cleared 
X not affected. 

see: Section 4.2 

jmp Jump 

syntax: jmp <ea> 

description: Program execution address continues at <ea> 

note: Only memory addressing is allowed for this instruction. 

ccr: Not affected. 

see: Section 7.2 



B. The 680x0 instructions used in the text 251 

j s r Jump to sub-routine 

syntax: jsr <ea> 

description: Call sub-routine located at <ea>; this involves pushing the 
address of the following instruction and subsequent program 
execution address continues at <ea>. 

note: Only memory addressing modes are allowed for <ea>. 

ccr: Not affected. 

see: Chapter 8 

lea Load effective address 

syntax: lea <ea>, an 

description: Load the memory address specified by <ea> into address 
register an. This in contrast with the move instruction 
which would move the contents of the memory location. 

note: Only memory addressing modes are valid for <ea>. 

ccr: Not affected. 

see: Section 5.1, 5.2 

link Link and allocate 

syntax: link 

description: Allocate space on the system stack and link address register 
an to it. This involves pushing the old value of an onto the 
stack, setting an to point to its old value on the stack, and 
adding #data to the system stack. (Data is normally 
negative.) 

ccr: Not affected. 

see: Section 8.1 



252 B. The 680x0 instructions used in the text 

ls l Logical shift left 

syntax: lsl [. bwl] 

lsl [ .bwl] 

lsl <ea> 

dx,dy 

#<data>,dy 

description: The destination is left shifted by count bits where count is either 
#data or the least significant 6 bits of dx. The rightmost bits 
are replaced by 0, and the leftmost bit shifted out is placed 
into the extend and Carry flags. 

In the case of a register count, amount of shift is modulo 64. 

In the case of an immediate count, range of shifts is 1-8. 

In the case of a memory instruction the operation is limited 
to word length and shifts of one bit only. 

ccr: N is set to most significant bit of result 
Z is set if result is zero, cleared otherwise 
V is set if the most significant bit is changed at any time 
during the shift operation, cleared otherwise. 
C set to the last bit shifted out of the operand. Cleared for a 
zero shift count. 
X set to the last bit shifted out of the operand. Unaffected for 
a zero shift count. 



B. The 680x0 instructions used in the text 253 

1 s r Logical shift right 

syntax: lsr [. bwl] 

lsr[.bwl] 

lsr <ea> 

dx,dy 

#<data>,dx 

description: The destination is right shifted by count bits where count is 
either #data or the least significant 6 bits of dx. The 
leftmost bits are replaced by 0, and the rightmost bit shifted 
out is placed into the extend and Carry flags. 

In the case of a register count, amount of shift is modulo 64. 

In the case of an immediate count, range of shifts is 1-8. 

In the case of a memory instruction the operation is limited 
to word length and shifts of one bit only. 

ccr: N is set to most significant bit of result 
Z is set if result is zero, cleared otherwise 
V is set if the most significant bit is changed at any time 
during the shift 'operation, cleared otherwise. 
C set to the last bit shifted out of the operand. Cleared for a 
zero shift count. 
X set to the last bit shifted out of the operand. Unaffected for 
a zero shift count. 



254 B. The 680x0 instructions used in the text 

move Move data 

syntax: move[.bwl] <ea>1,<ea>2 

description: Move the quantity indicated by <ea>1 to the address 
indicated by <ea>2. If the destination is a data register or 
memory then the condition codes are set accordingly; if the 
destination is an address register then they are not affected. 

ccr: N set if result is negative, cleared otherwise. 
Z set if result is zero, cleared otherwise 
V always cleared 
C always cleared 
X not affected. 

movea Move data to address register 

syntax: move[.wl] <ea>,an 

description: Move the quantity indicated by <ea> to the address register. 
This instruction is normally automatically generated by the 
assembler in place of a move instruction where the 
destination is an address register. 

ccr: Not affected. 

move Move from ccr 

syntax: move ccr,<ea> 

description: Moves the ccr (zero extended to 16 bits) to <ea>. 

ccr: Not affected. 



B. The 680x0 instructions used in the text 255 

move Move to ccr 

syntax: move <ea>, ccr 

description: Moves the least significant byte at <ea> to the ccr. 

ccr: 

movem 

syntax: 

N set to bit 3 of data in <ea> 
Z set to bit 2 of data in <ea> · 
V set to bit 1 of data in <ea> 
C set to bit 0 of data in <ea> 
X set to bit 4 of data in <ea>. 

Move multiple registers to/from memory 

movem[ .wl] <ea>, reqister list 

movem[.wl] reqister list,<ea> 

description: Move the registers in the list to memory or from memory. 

ccr: 

see: 

moveq 

syntax: 

The <ea> specifies the starting address in memory for the 
transfer of the registers. 

Not affected. 

Section 8.2 

Move quick immediate data 

moveq #<data>,dn 

description: Moves a long immediate data to destination. <data> is in 
the range 1 to 8. This instruction is the one actually used 
when immediate data in the range 1..8 is specified with the 
move mnemonic. 

ccr: N set if result negative, cleared otherwise 
Z set if result zero, cleared otherwise 
V always cleared 
C always cleared 
X not affected 
X set as carry bit. 



256 B. The 680x0 instructions used in the text 

mu ls 

syntax: 

Signed multiply 

muls. w <ea>, dn 

muls.l <ea>,dn 

muls.l <ea>,db:di 

16X16~32 

32X32~32 

32X32~64 

description: Multiply two signed quantities, giving a signed result. There 
are three forms of this instruction: 

1) A 16 bit multiplication, giving a 32 bit result. This is the only 
form on the 68000. 

2) A 32 bit multiplication, giving a 32 bit result. 

3) A 32 bit multiplication - <ea>xdi - giving a 64 bit result in 
dh and di. 

ccr: N set if result is negative, cleared otherwise. 
Z set if result is zero, cleared otherwise 
V always cleared 
C always cleared 
X not affected. 

see: Section 4.2 



mulu 

syntax: 

B. The 680x0 instructions used in the text 257 

Unsigned multiply · 

mulu.w <ea>,dn 

mulu .1 <ea>, dn 

mulu.l <ea>,dh:d1 

16X16~32. 

32x32~32 

32X32~64 

description: Multiply two unsigned quantities, giving an unsigned result. 
There are three forms of this instruction: 

1) A 16 bit multiplication, giving a 32 bit result. This is the only 
form on the 68000. 

2) A 32 bit multiplication, giving a 32 bit result. 

3) A 32 bit multiplication --: <ea>Xd1 - giving a 64 bit result. 

ccr: N set if result is negative, cleared otherwise. 
Z set if result is zero, cleared otherwise 
V always cleared 
C always cleared 
X not affected. 

neg Negate operand 

syntax: neg [ . bwl] <ea> 

description: Negate the operand specified in <ea>. This is the 2's 
complement of the number; equivalent to subtracting it from 
0. 

ccr: N set if result is negative, cleared otherwise. 
Z set if result is zero, cleared otherwise 
V always cleared 
C always cleared 
X not affected. 

/ 



258 B. The 680x0 instructions used in the text 

neqx Negate operand with extend 

syntax: negx[.bwl] <ea> 

description: Negate the operand specified in <ea>. This involves 
subtracting it from 0 and also subtracting the extend flag 
value. 

ccr: N set if result is negative, cleared otherwise. 
Z set if result is zero, cleared otherwise 
V always cleared 
C always cleared 
X not affected. 

not Complement operand 

syntax: not[.bwl] <ea> 

description: Complement the operand specified in <ea>. This involves 
complementing each bit in <ea>. 

ccr: N set if result is negative, cleared otherwise. 
Z set if result is zero, cleared otherwise 
V always cleared 
C always cleared 
X not affected. 



B. The 680x0 instructions used in the text 259 

or Inclusive OR 

syntax: or[.bwl] <ea>,dn 

or [ .bwl] d 0 , <ea> 

description: Logically OR the bit pattern in the source with that of the 
destination. Each bit in the destination is formed by or-ing it 
with the corresponding bit of the source operand. 

Note: 

ccr: 

see: 

ori 

syntax: 

Address register direct addressing is not permitted with this 
instruction. 

N set to most significant bit of result. 
Z set if result is zero, cleared otherwise 
V always cleared 
C always cleared 
X not affected. 

Section 6.1, 6.2 

Inclusive OR with immediate data 

ori[.bwl] #data,<ea> 

description: Logically OR the bit pattern in the immediate data with that 
of the destination. This instruction is used with the or 
instruction when the source operand is a literal value. 

ccr: N set to most significant bit of result. 
Z set if result is zero, cleared otherwise 
V always cleared 
C always cleared 
X not affected. 



260 B. The 680x0 instructions used in the text 

ori Inclusive OR immediate to ccr 

syntax: ori #data,ccr 

description: Logically OR the bit pattern in the immediate data with the 
condition code register. In effect this is used to set certain 
flags in the ccr. 

ccr: 

pea 

syntax: 

N set if bit 3 of data is one, unaffected otherwise 
Z set if bit 2 of data is one, unaffected otherwise 
V set if bit I of data is one, unaffected otherwise 
C set if bit 0 of data is one, unaffected otherwise 
X set if bit 4 of data is one, unaffected otherwise. 

Push effective address 

pea <ea> 

description: Push the memory address specified by <ea> onto the system 
stack. This in contrast with the lea instruction which would 
load the address into a address register. 

ccr: Not affected. 

see: Section 8.1 



B. The 680x0 instructions used in the text 261 

rol Rotate left 

syntax: rol[.bwl] 

rol [ .bwl] 

rol <ea> 

dx,dy 

#<data>,dy 

description: The destination is rotated left by by count bits where count is 
either #data or the least significant 6 bits of dx. The 
leftmost bits are inserted into the rightmost bit positions, and 
the leftmost bit shifted out is placed into the carry flag. 

In the case of a register count, amount of shift is modulo 64. 

In the case of an immediate count, range of shifts is 1-8. 

In the case of a memory instruction the operation is limited 
to word length and shifts of one bit only. 

ccr: N is set to most significant bit of result 
Z is set if result is zero, cleared otherwise 
V always cleared. 
C set to the last bit shifted out of the operand. Cleared for a 
zero shift count. 
X not affected 



262 B. The 680x0 instructions used in the text 

ror Rotate right 

syntax: ror[.bwl.] 

ror[.bwl] 

ror <ea> 

dx,dy 

#<data>,dy 

description: The destination is rotated to the right by by count bits where 
count is either #data or the least significant 6 bits of dx. The 
rightmost bits are inserted into the leftmost bit positions, and 
the rightmost bit shifted out is placed into the Carry flag. 

In the case of a register count, amount of shift is modulo 64. 

In the case of an immediate count, range of shifts is 1-8. 

In the case of a memory instruction the operation is limited 
to word length and shifts of one bit only. 

ccr: N is set to most significant bit of result 
Z is set if result is zero, cleared otherwise 
V always cleared. 
C set to the last bit shifted out of the operand. Cleared for a 
zero shift count. 
X not affected 



roxl 

syntax: 

B. The 680x0 instructions used in the text 263 

Rotate left with extend 

roxl [ .bwl] 

roxl [ .bwl] 

roxl <ea> 

dx,dy 

#<data>,dx 

description: The destination is rotated left by count bits, where count is 
either #data or the least significant 6 bits of dx, through the 
extend flag. As each bit is rotated, the extend flag is shifted 
into the rightmost bit of the destination, and the leftmost bit 
is shifted into the extend flag. The last bit shifted out is 
placed into the Carry flag. 

In the case of a register count, amount of shift is modulo 64. 

In the case of an immediate count, range of shifts is 1-8. 

In the case of a memory instruction the operation is limited 
to word length and shifts of one bit only. 

ccr: N is set to most significant bit of result 
Z is set if result is zero, cleared otherwise 
V always cleared. 
C set to the last bit rotated out of the operand. Set to the 
value of the eXtend flag for a zero shift count. 
X Set according to the last bit rotated out of the operand; not 
affected for a zero rotate count. 



264 B. The 680x0 instructions used in the text 

roxr 

syntax: 

Rotate right with extend 

roxr [ .bwl] 

roxr[ .bwl] 

roxr <ea> 

dx,dy 

#<data>,dy 

description: The destination is rotated right by count bits, where count is 
either #data or the least significant 6 bits of dx, through the 
extend flag. As each bit is rotated, the extend flag is shifted 
into the leftmost bit of the destination, and the rightmost bit 
is shifted into the extend flag. The last bit shifted out is 
placed into the Carry flag. 

ccr: 

rtd 

syntax: 

In the case of a register count, amount of shift is modulo 64. 

In the case of an immediate count, range of shifts is 1-8. 

In the case of a memory instruction the operation is limited 
to word length and shifts of one bit only, 

N is set to most significant bit of result 
Z is set if result is zero, cleared otherwise 
V always cleared. 
C set to the last bit rotated out of the operand. Set to the 
value of the eXtend flag for a zero shift count. 
X Set according to the last bit rotated out of the operand; not 
affected for a zero rotate count 

Return and deallocate parameters 

rtd #displacement 

description: Return from subroutine and adjust system stack, by adding 
displacement to the a7 register after popping the return 
address, to deallocate parameters. 

ccr: Not affected. 

Note: Not available on the 68000/008/010 processors. 

see: Section 8.1 



B. The 680x0 instructions used in the text 265 

rts Return from sub-routine 

syntax: rts 

description: Return from subroutine. 

ccr: Not affected. 

see: Section 8.1 

sec Set according to condition 

syntax: Sec <ea> 

description: If the condition is satisfied then set byte value at <ea> to true: 
all ones; otherwise set byte at <ea> to false: all zeroes. 

ccr: 

see: 

The condition cc can be any of 

_ ':=~--=--:: ~~rry_c!:~r __ 
_ ~Q_-::-:: egual/_z~!o __ 
MI-minus 

-<:: 
z 
N 

------------------- -------------------

_c:s -=--:: carry_ s_e! _ c 
~~ ~11!1~91J~l/ no~ ~i:ro _ •Z _ _ _ _ ______ _ 

!'_~-::--:: pll!s_ ------- ------:'~ - ----- --- --
vc - overflow clear •V VS- overflow set V 

- - - - - - - - - - - - - - - - - - - - - - - - - - .. - - - - - - - - - - - - - - - - . - - - - - - -

_ G_E_-=--:: ~~e_a_t:~ ?~ :g1_:1~~ __ ]'J~Y:_t_:-'_~~'":'Y _ _ _ _ _ _ _ _ !-_T_-=--:: le_ss _tha1_1 _________ ~·_-,_'v'f-'":'l'J~Y- __ _ 
_ <.:;!_-=--:: ~~e_a_t:~ ~~a_n_ ____ -·~~l'J~Y_+_-,_~•_-,_]'J~·Y ___ L_E_-=--:: !e_s~ _o_r_e_q_u_a! ______ ?'.:_t!'J.~-:Yf-'":'1'.'f_•:': _ 
HI-high .c-.z LS-low or same C+Z 

Not affected 

Section 6.2, 7.1 



266 B. The 680x0 instructions used in the text 

sub Subtract source from destination 

syntax: sub[.bwl] <ea>,dn 

sub [ . bw 1 ] dn , <ea> 

description: Subtract the source from the destination using binary 
arithmetic. The size of the operation can be byte, word or 
long. 

ccr: 

see: 

sub a 

syntax: 

N set if result negative, cleared otherwise 
Z set if result zero, cleared otherwise 
V set if overflow is generated, cleared otherwise 
C set if borrow is generated, cleared otherwise 
X set as carry bit. 

Section 4.2 

Subtract from address register 

suba[.wl] <ea>,an 

description: Subtract source from a destination address register. The 
operation can be word or long; in the case of word, the source 
operand is sign extended to 32 bits prior to subtracting from 
the destination register. 

ccr: 

Some assemblers automatically generate this instruction 
from the sub mnemonic if the destination is an address 
register. 

not affected 



B. The 680x0 instructions used in the text 267 

subi Subtract immediate data 

syntax: subi[.bwl] #<data>,<ea> 

description: Subtract immediate data from destination. This instruction 
is the one actually used when immediate data is specified 
with the sub mnemonic. 

ccr: 

subq 

syntax: 

N set if result negative, cleared otherwise 
Z set if result zero, cleared otherwise 
V set if overflow is generated, cleared otherwise 
C set if borrow is generated, cleared otherwise 
X set as carry bit. 

Subtract quick immediate data 

subq[.bwl] #<data>,<ea> 

description: Sub immediate data from destination. data is in the range 1 
to 8. This instruction is the one actually used when 
immediate data in the range 1..8 is specified with the sub 
mnemonic. 

ccr: N set if result negative, cleared otherwise 
Z set if result zero, cleared otherwise 
V set if overflow is generated, cleared otherwise 
C set if borrow is generated, cleared otherwise 
X set as carry bit. 



268 B. The 680x0 instructions used in the text 

subx Subtract with extend 

syntax: subx[ .bwl] dy, dx 

subx[ .bwl] - (ay), - (ax) 

description: Sub source from destination along with the extend bit. This 
instruction is used to implement multi-word arithmetic. 

ccr: 

swap 

syntax: 

Note the restrictions in the allowed addressing modes: either 
both operands are data registers or they are both address 
register predecrement. 

N set if result negative, cleared otherwise 
Z set if result zero, cleared otherwise 
V set if overflow is generated, cleared otherwise 
C set if borrow is generated, cleared otherwise 
X set as carry bit. 

Swap register halves 

swap 

description: Swap upper half of data register d 0 with its lower half. 

ccr: 

tst 

syntax: 

N set if result negative, cleared otherwise 
Z set if result zero, cleared otherwise 
V always cleared 
C always cleared 
X not affected. 

Test an operand 

tst <ea> 

description: Test the operand and set condition codes accordingly 

ccr: N set if result negative, cleared otherwise 
Z set if result zero, cleared otherwise 
V always cleared 
C always cleared 
X not affected. 



B. The 680x0 instructions used in the text 269 

unlk Deallocate 

syntax: unlk 

description: Unlink address register an and deallocate space from stack. 
This involves setting the system stack pointer to an and 
popping into it its old value of the register from the stack. 

ccr: Not affected. 

see: Section 8.2 



APPENDIX C 

Answers to selected exercises 

Exercises 2.2.4 

1. a) 1000 = 1*512+1*256+1*128+1*64+1*32+1 *8 

b) \-1000 \ 65536 = 65536-1000 = 64536 

2. There are 7 numbers in the range 20 ... 26. The fewest number of bits 
that can represent 7 numbers is 3 bits (which can represent up to 8 
numbers). 

3. Let M=2m be the modulus, a power of 2. The binary expansion of M is: 

M = 1*2m+o*2m-l+0*2m-2+ ... +0*20 

= 1*2m-1+1*2m-2+ ... +1*20 + 1 

Let A, an arbitrary number in the range 0 ... 2m-1, be represented by the 
expansion: 

where each ai is either O or 1. If we subtract A from M we get: 

270 



C. Answers to selected exercises 271 

M-A = 1*2m-1+1*2m-2+ ... +1*20 + 1- (am-1*2m-l+am-2*2m-2+ ... +ao*20) 

= (l-am-1)*2m-l+(l-am-2)*2m-2+ ... +(1-ao)*20 + 1 

Where each term of the form (1-ai) is actually the complement of ai: if 
ai=O then (1-ai)=l, and if ai=l then (1-ai)=O. Finally the +1 term at the 
end signifies that we must add 1 after complementing the individual 
terms in the expansion. 

6. Our solution is written as a Pascal program; although considering the 
extent of bit manipulations involved an assembler program might be 
clearer! mu1 t is a recursive function with declaration: 

function mult(a,b,n:inteqer) :integer; 
var aO,bO,al,bl,temp,aObO,albl,nO,n2:inteqer; 

The base case of the recursion involves multiplying two 1 bit 
numbers, which is the same as 'and': 

OXO=O OXl=O 

lXO=O lXl=l 

This can be expressed as the Pascal code fragment: 

if n=l then 
mu1t := a & b 

else ... 

otherwise, for the recursive case we have to split our two numbers, 
recurse and then recombine. Splitting can t>e done by a mask and shift 
operation. In standard Pascal this appears to be quite expensive since 
it involves a multiplication in its own right; however if we 
temporarily borrow some 'C' notation we can express it more directly: 



272 C. Answers to selected exercises 

begin 
n2 :=n/2; mask .- (l<<n2)-l 
aO .- (a & mask); al .- a >> n2; 
bO := (b & mask); bl .- b >> n2; 
aObO := mu1t(a0,b0,n2); 
albl .- mu1t(al,bl,n2); 
temp := mu1t(aO+al,bO+bl,n2) 

-aObO-albl; 
mu1t:=aObO+(temp<<n2)+(albl<<n); 

end; 

Actually, there are some extra complications regarding the generation 
of carries in the partial additions aO+al and bO+bl; therefore a more 
correct program is 

begin 
if odd (n) then { make sure n is even } 

n := n + l; 
n2 := n>>l; 
mask := (l<<n2) 
aO := a & mask; 
bO := b & mask; 
aObO .- mu1t(a0, 
albl .- mu1t(al, 
if ((aO +al) & 

( (bO+bl) & 

no .- n2+2 

- l; 
al := a>>n2; 

bl := b>>n2; 
bO, n2); 
bl, n2); 

mask) <> aO+al) 
mask) <> bO+bl) 

or 
then 

e1se 
no 

temp 
. - n2; { adjust for carry 

mu1t 
end; 

.- mu1t(aO+al,bO+bl,n0) 
aObO - albl; 

. - aObO + temp<<n2 + albl<<n; 

In each pass of this algorithm there are three recursive calls to mu1 t. 
On the other hand, the size of the subsidiary problems is half the 
number of bits. Therefore, the average depth of recursion will be 
log2N for an N-bit multiplication. The complexity of this algorithm 
is, then, O(NlogzN) which is less than O(N2) for the conventional 
multiplication algorithm. However, this algorithm is considerably 
more complex to implement and it would require very careful coding 
or implementation in silicon to achieve a speed-up. 



C. Answers to selected exercises 273 

Exercises 2.3.4 

l. In a binary system, O . 5 would be represented as 
0. lOOOOOOOOOOOOOOOB. The sequence of squares that we get in 
binary are: 

0.10000000000000002 = 

0.01000000000000002 = 

0. 00010000000000002 = 

0.00000001000000002 = 

0.0100000000000000 

0.0001000000000000 

0.0000000100000000 

0.0000000000000000 

Therefore, we have lost the significant digit by the fourth successive 
square. 

In a floating point system, the sequence would be represented as 

(0.1000 ... x 20)2 = 0.1000 ... x 2-1 

(0.1000 ... x2-1)2 = 0.1000 ... x 2-3 

(0.1000 ... x 2-3)2 0.1000 ... x 2-7 

The sequence would only end when we could no longer represent a 
sufficiently small exponent. If we had 9 bits to represent the exponent 
then the smallest power of 2 would be: 

0.1000 ... x 2-255 

We would get to this number in two further steps. Continuing the 
squaring after this would lead to the same degeneration of the result 
as with a fixed point number. 



274 C. Answers to selected exercises 

2. If we are to divide two fixed point numbers, a and 6 (say) with a fixed 
point at /(_bits, then we can express the numbers as: 

a= J'l.*2-k. 

and 

Dividing a by 6 gives us: 

Thus we can divide the integer part of a by the integer part of 6, and 
divide that by 2-t to give us the correct result with a fixed binary point 
at !(, Dividing a number by 2-tamounts to a left shift of k bits: 

a+-6 = ((5l+~)<<K)*~ 

As with fixed point multiplication, this left shift may lose significant 
bits from the answer. In this case however, any bits that we lose are 
liable to be the most significant bits rather than the least significant 
bits that we lose in multiplication. 

3. We can 'convert' the problem of representing a number of the form 
2-x into one of representing numbers of the form sx as follows: 

= (1QX/2X)XlQ-X 

= sxx10-x 

Clearly, sx is representable finitely in decimal numbers and a 
multiplication by 10-x is simply a 'right shift' of the decimal number 
byxplaces. 

(This solution was suggested to the author by K.Broda and G. 
Ringwood in private communications.) 



C. Answers to selected exercises 275 

Exercises 3.3.3 

2. The decimal number 1OO0 o 0 is 18 6AO in hexadecimal, whereas 
200000 is 30040 in hexadecimal. The third move instruction only 
moves the least significant 16 bits of dO into the least significant 16 
bits of dl, the remaining bits of dl are untouched. Therefore, dl is 
left with $386AO in it, which is 231072. 

3. We shall use d2 as the third register: 

'°' \ J move . 1 dO, d2 
move. 1 1-~d,l, dOZA 
move. 1 d2, d~ 

I 0 'tfl 

4. The key observation here is that exclusive or is its own inverse, i.e. 
that 

X© YEE> X = Y 

So, we can swap x and '.)'"as follows: 

X:=X© '.)'" X = Xo©Yo 

'.)'":= X© y Y= (Xo©Yo)©Yo = Xo 

X:= X© Y X = (Xo©Yo)Xo = Yo 

The instructions to do this are: 

eor.l dO,dl 
eor.l dl,dO 
eor.l dO,dl 

The execution time for these three instructions is the same as for the 
three move instructions in the previous exercise. 



276 C. Answers to selected exercises 

Exercises 4.2.3 

1. u-v-w+x-y 

~ ju v -I - w + x - y 

~ ju v - w -I+ x - y 

~ ju v - w - x +I - y 

~ ju v - w - x + Y.. -I 
The instructions which implement this sequence are: 

2. a) 

move.w u,-(a7) 
move.w v, dO 
sub.w dO, (a 7) 
move.w w,dO 
sub.w dO, (a 7) 
move.w i\.r dO 
add.w dO, (a 7) 
move.w y, dO 
sub.w dO, (a 7) 

(u+v)/(u-15) 

~ lu v +j/ju 15 -I 

~ !u v + u 15 - !I 

;subtract v from 

;subtract w from 

;add x to u-v-w 

;subtract y 

u 

u-v 



C. Answers to selected exercises 277 

b) Instructions implementing the expression using the system stack: 

move.w 
move.w 
add.w 
bov 
move.w 
move.w 
sub.w 
bov 
beq 
move.w 
move.w 
ext.! 
divs.w 
bov 
move.w 

u, - (a7) 
v,dO 
d0,(a7) 
overflow error 
u,-(a7) 
#15,dO 
dO, (a7) 
overflow error 
divide zero error 
(a7)+,cil 
(a7)+,d0 
dO 
dl,dO 
overflow error 
d0,-(a7) 

c) Instructions using data registers to simulate a stack: 

move.w 
add.w 
bov 
move.w 
sub.w 
bov 
beq 
ext.! 
divs.w 
bov 

u,d7 
v,d7 
overflow error 
u,d6 
#15,d6 
overflow error 
divide zero error 
d7 
d6,d7 
overflow error 

3. The expression converted into reverse polish form is: 

lu 32 * u v I + w **I 

We shall use registers d7, d6 and dS to simulate an expression stack. 
The basic code, without error checking is: 



278 C. Answers to selected exercises 

move.w 
move.w 
mu ls 
move.w 
move.w 
ext.l 
divs 
add.w 
move.b 
move.! 
cmp.b 
beq.s 

@1 mu ls 
sub.w 
bne.s 

@2 move.! 

u,d7 
#32,d6 
d6,d7 
u, d6 
v, dS 
d6 
d5,d6 
d6,d7 
w,d6 
#1,dO 
#0,d6 
@2 
d7,d0 
#1,d6 
@1 
d0,d7 

;u 32 * 

;extend 
;u v I 
;u 32 * 
;start 
;compute 
; end. of 

dividend 

u v I + 
exponentiation 

exp. into dO 
loop 

;multiply 

; store final answer 

With error checking, the code is somewhat longer: 

@1 

@2 

move.w 
move.w 
mu ls 
bov 

u, d7 
#32,d6 
d6,d7 ;u 32 * 
overflow error 

move.w u,d6 
move.w 
ext.l 
beq 
divs 
bov 
add.w 
bov 
move.b 
move.! 
cmp.b 
beq.s 
mu ls 
bov 
sub.w 
bne.s 
move.! 

v, dS 
d6 ;extend dividend 
zero divide 
dS,d6 ;u v I 
overflow error 
d6, d7 ;u 32 * u v I + 
overflow error 
w, d6 - ; start 
#1,dO ;compute 

exponentiation 
exp. into dO 

loop #0, d6 ;end of 
@2 
d7,d0 ;multiply 
overflow error 
#l,d6 
@1 
d0,d7 ;store final answer 



C. Answers to selected exercises 279 

Exercises 5.1.4 

1. We can implement 

in three instructions: 

move. 1 f6p, aO 
move.! foop(aO),al 
move.! foop(al),foop(aO) 

2. The first record: 

d entry = record 
- mark:boolean; 

t:(a tag,b tag); 
n: "d-entry T 

end; -

{ 1 byte } 
{ 1 byte } 
{ 4 bytes } 

requires 6 bytes, but the second record requires up to two filler bytes: 

e entry = record 
- mark:boolean; 

n:"e entry; 
t: ca:tag,b_tag); 

end; 

{ 1 byte } 
{ filler } 
{ 4 bytes } 
{ 1 byte } 
{ filler } 
{ 8 bytes } 

Whether the compiler should automatically substitute one for the 
other is mostly a philosophical point. By performing the replacement 
a 25% saving in space can be achieved; furthermore, since the 
compiler is left to allocate space as it pleases (unlike a packed record), 
it may be assumed that the compiler could optimise the 
representation if it saw the opportunity. Certainly, a substitution of a 
code sequence by an equivalent optimized code sequence would be 
perfectly permissible. 

However, if this record is used in the definition of a file, as in: 

f:file of d_entry; 



280 C. Answers to selected exercises 

then the data in the record file may be accessible from outside the 
system: the program containing this definition may access data from 
other programs or even other operating systems. These other 
programs may be compiled using compilers which did not make the 
same optimizations, therefore the program may not operate correctly 
over the data file. 

Perhaps an appropriate solution would be for the Pascal compiler to 
inform the programmer that a small reorganization of the record 
would yield the improvement: this leaves the actual decision to the 
programmer. 

Exercises 5.2.3 

1. The assignment: 

jjp" [x]. jar[y] :=jjn; 

involves two array accesses. 

move.w 
cmp.w 
blt 
cmp.w 
bgt 
move.! 
sub.w 
mulu 
lea 
move.w 
cmp.w 
blt 
cmp.w 
bgt 
add.w 
move.w 

"-' dO 
#1,dO ;l<x? 
array error 
#5, dO- ; S>x? 
array error 
jjp, aO -

# 1, dO ; cant use offset 
#42, dO ; size of a jamjar 
jar(aO,dO.w),aO 
y, dO 
#1,dO ;l<y? 
array error 
#10 I dO ; lO>y? 
array error 
dO,dO- ;*2 
jjn,-2(a0,d0.w) ; ... :=jjn 



C. Answers to selected exercises 281 

2. The shift'n add style of multiplying by a constant depends on the 
breakdown of a number into its binary expansion. So if we want to 
multiply an unknown M by a known I, then we examine the binary 
expansion for I: 

assuming that I is a positive number number less then 2n+ I. To 
multiply Afby I results in the expansion: 

f*M = '7vf* Io+ (Af<<l)* Ii + ... + (Af<<n)* In 

There is a significant term in this expansion for every non-zero bit in 
the binary expansion for I. So, to determine the effectiveness of using 
the shift'n add style, we have to count the number of bits in I. For 
each non-zero bit in I, there is a shift and an add instruction; so the 
total cost of the multiplication sequence is 

6*'B1 

where 'B1 is the number of non-zero bits in /. For the code to be faster 
than the general purpose mulu instruction, this must be less than 29, 
i.e.: 

or 'B J<4.8333333333 

If there are more than four significant bits in I then we are better to 
use the mulu instruction. Note that this restriction does not refer to 
the size of I; if we are multiplying by 32 then there is only one non
zero bit in I, but if we want to multiply by 31 then there are five ncm
zero bits in I and it would be better to use mul u. 

3. Suppose that we wanted to access the two-dimensional array: 

bi:array[O .. 20,1 .. 10] of integer; 

using this technique. We would have a table of offsets to rows in the 
array bi defined somewhere within our program. In fact each entry 
in the offset table would consist of the length of the array so far: 



282 C. Answers to selected exercises 

bioff dc.w 
dc.w 
dc.w 

dc.w 

0 
20 
2.0*2 

20*20 

; first row at offset 0 
; each row is 20 bytes 
; larqer arrays miqht 
; need lonq offsets 

; the 21st row 

Access to the element of the array involves accessing this table as well 
as the array itself. 

base address of bi 
0 

length of bi [ O] 

bi[l] j 20*length of bi [O] 

table of offsets to rows within bi 

11 ... 1ff?Tl I I ... I I 

bi[O,( I '\ ~lO] 
bi[l,l] 

bi[0,10] 

bi~l] \ 

bi[20,10] 

To implement bi [x, y] : =bi [y, x]; we would use the sequence: 

lea 
move.w 
move.w 
lea 
lea 
move.w 
move.w 

move.w 
move.w 
lea 
lea 
move.w 
move.w 

bi off, al ; table of row offsets 
y,dO ;bi[y,x] ... 
O(al,d0.w*2) ,dO ;68020 code 
6i, aO ;base of bi 
O(aO,dO.w),aO ;add row offset 
;r, dO ; column x 
-2(a0,d0.w*2),dl ;dl= bi[y,x] 

;r,dO ;start bi[x,y] 
O(al,d0.w*2),d0 ;offset to bi[x,] 
6i, aO 
O(aO,dO.w),aO ;add row of~set 
y, dO ; column y 
dl,-2(a0,d0.w*2) ; ... :=bi[y,x] 



C. Answers to selected exercises 283 

Exercises 6.2.3 

1. Suppose that we wanted to implement the assignment: 

i_set:=i_set+[I]; 

then we could use the bf set instruction directly, without needing to 
calculate byte offsets, because the bit field offset can be specified in a 
data register: 

move.w J,dO 
ext . 1 d 0 ; convert to long 
bfset i_set{dO:l} 

This sets a bit field - of width 1 - to l's. We need to convert the word 
length index I to a long value because the bfset instruction uses a 
long value to specify the bit field's offset. We can also set a sub-range 
of the set in one instruction also: 

i_set:=i_set+[I .. I+4]; 

becomes 

move.w 
ext.l 
bf set 

I, dO 
dO 
i_set{ dO : 5} 

; convert to long 

2. A subset test, such as }::>I can be re-expressed as follows: 

}::>I~ InJ=I 

So, in 68000 instructions, when testing a large set such as i_set, each 
segment of the test becomes: 

move.l 
and.l 
cmp.l 
bne 

(aO),dO 
(al), dO 
(aO),dO 
not subset 

;I fragment 
;I II J 

;=? 



284 C. Answers to selected exercises 

3. 

and the complete test is implemented using a loop: 

@1 

lea 
lea 
move.w 
move.! 
and.l 
cmp.l 
bne 
dbra 

i_set, aO 
j set,al 
#31,dl 
(aO),dO 
(al)+,dO 
(aO)+,dO 
not subset 
dl,@1 

;I fragment 
;I n J 
;=? 

;yes, i_set<=j_set 

i) The expression can be converted to reverse polish form as 
follows: 

x*(y+l) 
x * IY 1 +I 
Ix y 1 + *I 

=> 
=> 

ii) z:=z+[x*(y+l)]; 

using a 7 as an expression stack: 

move.w 
move.w 
move.w 
add.w 
bov 
mu ls 
bov 
cmp.w 
blt 
cmp.w 
bg~ 
move.w 
lsr.w 
bset 

y, - (a7) 
#1,-(a7) 
(a7)+,d0 
(a7)+,d0 
overflow line xxx 
x,dO 
overflow line xxx 
#0, dO ; range check 
range error xxx 
#1023-;-do -
range error xxx 
dO,dl- -
#3, dl ; compute byte offset 
dO,O(al,dl) 



C. Answers to selected exercises 285 

Exercises 7 .1.5 

1. The instructions needed to implement this while loop are: 

bra @4 ;go round body 
@0 move.w i, dO 

add.w dO,dO ;2*i 
cmp.w j, dO ;2*i>j? 
bgt @1 ;yes, early exit 
cmp.w #10 ,j ;j>lO? 
ble @2 

@1 lea ai, aO 
move.w i, dO 
add.w dO,dO 
move.w j, -2 (aO, dO .w) 
bra @3 

@2 lea ai, aO 
move.w j, dO 
add.w dO,dO 
move.w i, -2 (aO, dO .w) 

@3 sub.w #1, i. 
@4 move.w i, dO 

cmp.w j, dO ;i>j? 
bgt @0 

2. To implement conditional expressions is simply a matter of 
evaluating the conditional part of the expression within a normal 
expression calculation as opposed to within a conditional or loop 
construct. The branches of the conditional are expressions rather than 
statements, but otherwise their implementation is the same as 
conditionals. 



286 c. Answers to selected exercises 

bra @1 
@0 lea ai, aO 

move.w i, dO 
add.w dO,dO 
move.w -2(a0,d0.w),i 

@1 move.w i, dO 
cmp.w j, dO ;i<j? 
blt @2 
move.w j, dO 

@2 add.w dO,dO ;dO = i or j 
lea ai, aO 
cmp.w #10,-2(a0,d0.w) 
blt @0 



Index 

12 hour clock 11 
2's complement arithmetic 14 
absolute addressing mode 179, 210 
add instruction 42, 58, 84, 164, 165, 

223 
adda instruction 84, 222, 223 
addi instruction 224 
addq instruction 224 
address40 
address boundaries 41 
address range 41 
address register 36, 39, 41, 58, 70, 76, 

79,82,83,84,209 
address register indirect 67, 211 

with displacement 77, 212, 215 
with index 87, 104, 215, 217 
with post-increment 67, 213 
with pre-decrement 66, 214 

addx instruction 165, 225 
and instruction 225 
andi instruction 226 
append 

atom 174 
clauses 191 
code 179, 182 
function 173, 174 

arbitrary precision arithmetic 163 
argument registers 196 
arithmetic error 72 
ASCII 57 
asl instruction 92, 227 
asr instruction 99, 228 
assembler directive 49 

287 

assignment 
record 78 
scalar 58 

atom 161, 185 
backtracking 190, 195 
bee instruction 110, 229 
bchg instruction 230 
bclr instruction 104, 230 
bfchg instruction 231 
bfclr instruction 232 
bfexts instruction 101, 233 
bfextu instruction 101, 234 
bfffo instruction 235 
bf ins instruction 101, 102, 108, 236 
bfset instruction 108, 237, 283 
bftst instruction 238 
big num 12, 163 
binary expansion 11, 13, 14, 15, 20, 55, 

104, 163, 164 
binary fractions 25 
binding chains 188 
bit pattern 8 
bne instruction 69 
bounds checking 70 
box diagrams 158 
bra instruction 112, 238 
branch conditional 39 
bset instruction 104, 239 
bsr instruction 239 
btst instruction 104, 240 
byte8 
c 1,4, 93, 95 
call record 196 



288 Index 

call-by-reference 132, 133 
call-by-value 132 
calling sequence 134 
CAR & CDR 157, 158 
Carry flag 38, 73, 164, 165, 252, 253, 

261,262,263,264 
case selection table 122, 125 
case statement 122 
chk instruction 240 
chk2 instruction 241 
choice point 190 

record 198 
clr instruction 241 
cmp instruction 49, 50, 111, 242 
cmp2 instruction 73, 88, 244 
cmpa instruction 111, 242 
cmpi instruction 243 
cmpm instruction 243 
complex expressions 59 
compound term 185 
cond expression 180 
condition codes register 36, 38 
conditional branch 111 
conditional conjunction 114 
conditional disjunction 114 
conditional expression 126 
conditions 39 
conjunctions and disjunctions 113 
CONS 157, 166 
constructed term stack 191, 199 
control variable 118, 120 
data register indirect 216 
data registers 36, 70, 145, 152, 165 
dbcc instruction 120, 245 
dbqe instruction 121 
dbra instruction 79, 107, 120, 121, 

245 
directive 50 

define constant 50, 124 · 
define storage 50, 113 
equate 50, 83 
with 83 

division 
binary 20 
long 18 

divs instruction 69, 246 
di vu instruction 247 

dotted 161 
dotted pair 157 
downto keyword 119 
downwards growing stack 70 
else statement 115 
emulatqr 204 
eor instruction 248 
eori instruction 248, 249 
error checking 71 
exq instruction 249 
exponent 28 
exponentiation 69 
expressions 58 

evaluation 150 
stacks 62, 65 

ext instruction 69, 250 
extend flag 39, 165 
filler byte 76 
fixed point 

arithmetic 26 
numbers 25 

for loop 115, 118, 119, 120, 145 
Fortran 58, 96 
free list 166 
function symbol 187 
garbage collector 156, 167 

collect phase 169 
mark phase 168 

global variable 142 
qo function 180 
goto statement 109, 150, 151 
grammar formalisms 184 
guard digits 32 
heap 

LISP 166 
Prolog 199 

hexadecimal notation 33 
if-then-else statement 110, 125 
immediate addressing 209 
immediate operand 49 
incremental programming 174 
input and output 53 
instruction 

decoding 205 
encoding 48 
set35 
words46 



interpreter 170 
jmp instruction 124, 125, 150, 151, 

206, 210, 250 
jsr instruction 130, 131, 140, 174, 

251 
label subtraction 124 
lea instruction 86, 152, 251 
link instruction 5, 136, 137, 139, 

143, 150, 152, 178, 197,251 
link register 139 
LISP 38, 154 

atom 157 
execution 171 
expression 171 
heap 166 
list pair 157 
numbers 162 
prog feature 176 

LISP function 
application 173 
entry 174 
parameters 176 

local label 69 
local variables 136, 142, 197 
locus of control 109 
logical variable 185 
long word 9 
lsl instruction 90, 99, 252 
lsr instruction 99, 253 
mantissa 28 
marking algorithm 169 
memory 35 
memory architecture 41 
memory indirect 

post-indexed 218 
pre-indexed 219 

memory management unit 112 
meta-language 170 
mnemonic 45 
modulo arithmetic 11 
move instruction 5, 42, 48, 67, 73, 78, 

90, 113, 124, 135, 191, 254, 255, 
275 

movea instruction 254 
movem instruction 145, 255 
moveq instruction 255 
muls instruction 42, 68, 256 

Index 289 

multi-precision arithmetic 164 
multi-way branch 122 
multi p lica ti on 

binary 15 
fixed point 27 
floating point 31 
instruction 68 

mulu instruction 90, 94, 257, 281 
neg instruction 257 
Negative flag 39 
negative numbers 12 
negx instruction 258 
nil 157, 159, 162 
non-scalar parameter 133 
not instruction 258 
number 9 
numeral 10 
object-level 170 
OBLIST 162 
or instruction 259 
ordinals 56 
ori instruction 259, 260 
overflow 14 

error 72 
o Verflow flag 38 
packed data structure 57, 95 
parameter passing 132 
Pascal function 130, 148 
Pascal record 75 
Pascal set 102 
pea instruction 133, 260 
pointer 40 

exchange 80 
following 80 

positional notation 10 
predicate logic 184 
primitive predicate functions 181 
procedure 5, 130 

epilogue 139 
prog sequence 179 
program counter 36, 109 

indirect with index 123 
memory indirect post-indexing 220 
memory indirect pre-indexing 221 
relative 112, 216 
with displacement 216 
with index 217 



.,..-

290 Index 

Prolog38 
execution 193 

properties 160 
property list 174 
range error 72 
record declaration 83 
recursion 131, 290 
recursive data structures 154, 185 
register allocation 144 
register direct addressing 49, 208 
registers 35 
repeat loop 115, 116, 117 
replaca 173 
return from subroutine 131 
return function 180 
reverse polish form 60 
rol instruction 261 
ror instruction 262 
roxl instruction 263 
roxr instruction 264 
rtd instruction 5, 141, 264 
rts instruction 52, 131, 140, 265 
S-expression notation 158 
scalar expression 132 
scalar types 55 
scalar value 55 
scale factor 215 
Sec instruction 105, 265 
scoped procedures 142 
set difference 107 
set intersection 107 
set union 106 
shadow register 37 
shallow binding 178 
sign bit 12 
sign extended 209 
size specifier 45, 59 
sne instruction 105, 113 
stack adjustment 140 
statement 

case 122 
conditional statement 110 
forloop 118 
procedure 130 
repeat 115 
separator 110 
while 116 

strength reduction 129 
string 96 

comparison 120 
sub instruction 266 
suba instruction 266 
subi instruction 267 
subq instruction 267 
subx instruction 165, 268 
swap instruction 268 
symbol 157 

dictionary 162 
symbolic labels 51 
syntax50 
system stack 66, 131 
system stack pointer 37 
tag159 
tagged pointer 160, 186 
tagged record 160 
top-level query 193, 195 
trail 193, 198 
tst instruction 268 
unification 190 
unlk instruction 5, 136, 139, 140, 152, 

197,269 
upwards growing stack 70 
value parameter 134 
var parameter 133, 135, 141, 142 
variable 55, 185 
variable-variable binding 188 
variables 

allocation of 59 
dynamically scoped 177 
lexically scoped 177 

virtual machine 204 
Warren Abstract Machine 204 
whil.e clause 121 
while loop 115, 116, 150 
with directive 83 
with statement 145 
word9 
Zero flag39 
zero operand instruction 45 





· 1~1imn1mmr1111~ ·1 
3 9358 00893694 7 




