

Introduction
to Macintosli
PASCAL

Introduction
to Macintosli
PASCAL

Jonathan D. Simonoii

[{]
Hayden Book Company

A DIVISION OF HAYDEN PUBLISHING COMPANY, INC.
HASBROUCK HEIGHTS, NEW JERSEY I BERKELEY, CALIFORNIA

Apple believes that good books are important to successful com­
puting. The Apple Press imprint is your assurance that this book
has been published with the support and encouragement of
Apple Computer Inc., and is the type of book we would be proud
to publish ourselves.

Composition and production: TECHAlrr, SAN FRANCISCO
Printed and bound by: COMMAND WEB OFFSET, INC.
Cover design: JIM BERNARD
Cover photo: WU ODOR

Library of Congress Cataloging-in-Publication Data

Simonoff, Jonathan D.
Introduction to Macintosh Pascal.

Includes index.
1. Macintosh (Computerl-Programming. 2. PASCAL

(Computer program language) I. Title.
QA76.8.M3S56 1985 005.265 85-24835
ISBN 0-8104-6562-0

Macintosh is a trademark of Macintosh Laboratory, Inc., licensed to Apple Computer
Inc., neither of which is affiliated with Hayden Book Company. Macintosh Pascal is a
trademark of Apple Computer Inc.

Copyright © 1985 by Jonathan D. Simonoff. All rights reserved. No part of this book
may be reprinted, or reproduced, or utilized in any form or by any electronic,
mechanical, or other means, now known or hereafter invented, including
photocopying and recording, or in any information storage and retrieval system,
without permission in writing from the Publisher.

Printed in the United States of America
1 2 3 4 5 6 7 8 9 Printing

85 86 87 88 89 90 91 92 93 Year

Preface

Introduction to Macintosh Pascal was written to provide an
easy-to-follow introduction to programming, to programming
in Pascal, and to programming the Macintosh.

It is based on the idea that programming is learned best by
examining and creating real programs that solve real problems.

Programming is often surrounded with an unnecessary and
misleading sense of mystery. Learning to program is really a skill
on the order of learning how to write a term paper-with the
additional advantage that the computer never writes snide
comments in the margin, and never delivers a grade at the end
of the semester.

Although a book may have a single name on its cover, all
books are the sum of the efforts of many people. I would
especially like to thank Susan Keohan, without whose
encouragement nothing would have been written, and without
whose help nothing would have been finished.

Thanks also to Andrew Singer of Think Tuchnologies; Chris
Espinosa of Apple Computer; and Marjorie Lefkowitz and Eben
Sprinsock for their great help in testing and verifying the book
and its programs.

Thanks for any errors, of course, lie only with myself.

Contents

Chapter 1 Can I Be an Artist if I Can't Draw a Line? 1

Starting Macintosh Pascal 1

Writing a Program 4

Editing a Program 15

Finishing Up 16

Chapter 2 Lining Up 23

Variables and the Mouse 23

Functions 29

Giving Feedback 33

Changing the Mac's Pen 36

Writing Your Own Procedures 37

Writing Your Own Functions 40

TRUE and FALSE Expressions 45

Chapter 3 Rectangles and Ovals 51

Drawing a Rectangle 51
Drawing More Shapes 62
All About the Macintosh Pen 80

Chapter 4 What fype Through Yonder Window Breaks 91

Machintosh Text 91
Fonts 99
Faces 103
Size 108
Transfer Mode 112
A Simple Editor 116
Storing Text 123

Chapter 5 Fielding 139

Developing a One-Field Editor Program 139
Enumerated Data fypes 142
Global and Local Coordinates 143
Creating Onscreen Buttons 145
Defining the Drawing Window 147
Sizing the Editing Field 148
Displaying the Editing Field 150
Edi~ing Procedures 151
Results of Field Editor 160
Developing a Multiple Field Editor 160

Chapter 6 Files: A Piece of Cake 177

File Variables 178
File Procedures 179
Modifying the Multiple Field Editor 182
Creating the Basic Framework 200
Sorting 207

Chapter 7 Sound Synthesis 221

A Little Theory 222
The Practical Side 226
A Simple Program 227
Dialing a Telephone 228
Pointers and Normal Variables 230

Chapter 8 Printing 253

Chapter 9 Advanced QuickDraw 263

Polygons 265
Pictures 268
Regions 273
Cursors 274
Bitmaps 280
Patterns 285

Chapter 10 Macintosh Math 291

Math on the Macintosh 291
The Importance of Data Types 292
Variable and Constants 292
Numbers 2~3
Precision 293
Integer Data Types 293

INTEGER 294
LONG INT 294

Real Data Types
Expressions 298
Operators 299

Unary Numbers 299
Boolean Expressions 300

Relational Operators 301
Relational Expressions and Real Numbers 302
Operator Precedence 304

Functions 305
Standard Functions 306
Fixed Point Functions 315

Chapter 11 Debugging

What is a Bug?
When the Macintosh Catches a Mistake
Programming to Avoid Bugs
Finding Bugs
Machintosh Pascal Debugging Aids

Stepping Through a Program
The Instant Window
Stops
The Observe Window

When You Can't Use the Debugging Aids
General Debugging Hints
Bugs in the Macintosh

Appendices

Appendix A
AppendixB

Index

Everything About Semicolons
Help, Please, My Mac is Burning

319

319
320
321
323
323
323
323
325
32'7
328
329
330

333
339

345

Introduction

The Educated
Macintosh

The subjects covered in this introduction are:
• What Macintosh Pascal is
• What you need to use this book
• How to set up your Macintosh Pascal disk for this book
• How to use this book

What Is Macintosh Pascal?

A computer is a machine for following instructions. When you
give instructions to a computer, the instructions have to be in
terms the computer can understand. When you write out some
instructions for the computer, those instructions are called a
program.

Sets of allowable computer instructions are called
computer languages.

Pascal is one of the most popular computer languages. Pascal
was designed to be easy to learn and to help the programmer to
program well.

The Macintosh Pascal language is a version of Pascal that
includes everything in "standard Pascal;' and also lets you use all
those things that make the Macintosh such a special computer.
In particular, you can use the fast, high quality graphics and the
sound generator.

Introduction to Macintosh Pascal

Tu understand what makes Macintosh Pascal really special,
you have to know what it is like to program in most versions of
Pascal. Usually, you write a program using an editor. When you
are done, you run a program, called a compiler, to translate
your program for the computer. If your program has any
mistakes, the compiler gives you a list of them, and then you run
the editor again, and fix the mistakes. When you compile the
program without mistakes, you run another program, called a
linker, which creates a version the computer can use.

Macintosh Pascal, though, is an interpreter. You write your
program, and then choose a menu command to run it. If you
have a mistake, a little hand points at the line with the mistake.
You can then fix the mistake, and run your program again. If you
want to see the effect of some change, you just make the change,
and you see the effect right away. It is that "instant" quality of
Macintosh Pascal that makes the Macintosh Pascal language an
ideal learning language.

What You Need To Use This Book

To use this book, you must have:

• A disk copy of Macintosh Pascal (This must be an authentic,
authorized copy. Because of the protection scheme used,
"bootleg" copies will fail after a few minutes.)

• An Apple Macintosh or Macintosh XL (or Lisa) with MacWorks
XL

• A blank disk

This book works for any Macintosh. The programs will all
work with 128K of memory (the smallest Macintosh available),
but more memory will make it easier for you to write your own
programs. The book assumes you have a single (internal) disk
drive. A second (external) disk drive also makes things easier, but
it is not necessary.

If you use this book with a Macintosh XL, everything except
for the programs that use the Mac's sound generator (Chapter 6)
will work.

Introduction

Setting Up For This Book

This section assumes that you are familiar with the basic
operation of your Macintosh. You should know:

• How to start your Macintosh

• How to use menus and choose menu commands

• How to use the mouse and mouse button

• How to select, open, and drag icons

• How to select text

• How to use folders

If you don't know how to do these, read the Macintosh
manual, or use the guided tour disk that came with your
Macintosh.

Preparing For This Book

The Macintosh Pascal disk comes with many useful and
interesting programs and much useful information on it. If you
do not have an external disk drive, you need to clear some of that
information off the Macintosh Pascal disk to make room for the
programs created in this book. (If you have an external disk
drive, you can skip this section; just store this book's programs
on another disk.)

If you have only one (internal) disk drive, follow these
directions to make room on the Macintosh Pascal disk for the
programs created in this book:

1. If your Mac is on, eject any disk that is in the drive and
turn the Mac off.

.2. Tuke one of the disks that comes in your Macintosh
Pascal package and put that in the disk drive. (There
should be two identical disks in the package. The second
is there in case something happens to the first.)

3. Put the disk in the drive, and turn your Mac on. After a
few minutes, you should see the Mac's desktop, as shown
in Figure Intro-1.

Introduction to Macintosh Pascal

r s File Edit Uiew Special

Figure Intro-1 Initial Desktop

4. Select the Pascal icon, and choose Open from the File
menu. The icon should open, so that the screen now
looks like Figure Intro-2.

r s File Edit Uiew Special

Pascal

El ~ CJ CJ CJ
Open Me Macintosh Pascal Tools Information Demos

Figure Intro-2 Open Pascal Disk

Introduction

5. Choose the New Folder command from the File menu
to create a new folder. A new folder saying "Empty
Folder" under it appears.

·~~~~~~~~~-N-o~te_s~~~~~~~~~~~~~~~~~~
If you are using a finder earlier than Finder 4.1, there is
no New Folder command. Instead, you create a new
empty folder by duplicating the single Empty Folder
found on each disk.

6. Change the name of the folder from "Empty Folder" to
"Pascal Info Folder". It should now appear as shown in
Figure Intro-3 .

• Pascal Info Folder

Figure Intro-3 New Folder

7. Drag the following icons into that folder:

Open Me

Tuols

Information

Demos

8. Click the mouse on the Pascal disk icon image. Use the
mouse to pull down the File menu and choose Eject. The
Pascal disk pops out of the drive.

9. Insert your blank disk. If you've never used the disk
before, a box appears on the screen that asks you if you
want to eject the disk or initialize it. Click Initialize. If
it isn't a new disk, throw everything that is on it into the
Trash.

Introduction to Macintosh Pascal

10. After a minute or two, you are asked for a name for the
new disk. Type:

Pascal Info

If this isn't a new disk, change its name to "Pascal
Infd' by selecting the old name and typing. You may also
want to throw everything on the disk into the Trash or·
select the new disk (not the Macintosh Pascal disk) and
choose the Erase command. Make sure there isn't
anything important on the disk before you do that.

Click the mouse in the OK box.
After a few seconds, the desktop shows again, with

your blank disk shown underneath the Pascal disk. The
blank disk is labeled "Pascal Info:'

11. Drag the Pascal Info Folder icon to the Pascal Info disk
icon, and let go. It should disappear.

The Macintosh displays a box showing the number
of files that need to be copied, and it asks you to
exchange the disks several times. When it is done, you've
copied everything in the Pascal Info Folder to the Pascal
Info disk.

12. If the Pascal disk is not in the Macintosh, eject the
Release Info disk, and insert the Pascal disk.

13. Drag the Pascal Info Folder into the Trash. You no longer
need it, since you have a copy on your Pascal Info disk.

Your Pascal disk should now look like Figure Intro-4.
Keep the Pascal Info disk. The information on it is

very useful, and the demo programs are fun and well
done. There are also three utility programs in the Tuols
folder that you may use later.

Introduction

Figure Intro-4 Pascal Disk Prepared for Use

How To Use This Book

This book is designed to be used with Macintosh Pascal and your
Macintosh. It isn't hard to learn how to program, but
programming is something you can only learn by doing. You
can't learn how to program without actually programming a
computer any more than you can learn to bicycle without riding
a bicycle.

As you read this book, type the programs from the chapters.
The instructions are laid out so that you can type them with a
minimum of errors. Be careful while you type, though.
Computers are very picky, and every character must be right.
(Nothing terrible will happen if you make a mistake, you'll just
have to find it and fix it.)

Save the programs - they do useful things, and are designed
so that you can use them in programs you write later. Also, some
of the larger programs are built up chapter to chapter.

Feel free to experiment. Modify copies of the programs. The
best way to learn to program is to play and explore. The
programs in this book provide working frameworks for using
your imagination.

Introduction to Macintosh Pascal

Use the Macintosh Pascal Reference Manual. The Reference
Manual fully documents Macintosh Pascal. By the time you've
gone through the first half of the Introduction to Macintosh
Pascal, you will be comfortable with reading and using the
Reference Manual. The second half of this book deal with topics
that are more difficult to understand, and acts as an aide for the
most difficult parts of the Reference Manual.

Cl-IAPTER

~[!]---
Can I Be an Artist if I
Can't Dra"' a Line?

Starting Macintosh Pascal

Welcome to programming your Macintosh. This chapter
shows you how to use your Macintosh to draw a line. It may seem
silly to use a computer to do something so simple, but, once you
understand how to do that, you will be ready to build programs
that do more useful things and use your Mac's abilities.

Before you read this chapter, you should have followed the
instructions in the Introduction for setting up your Pascal disk.

If your Mac is already on, eject any disk that is in the disk
drive, and turn your Mac off.

Insert the Macintosh Pascal disk in the slot in the front of the
Mac, and turn on the Mac. A small Mac with a smiling face
should appear on the screen. (If it doesn't, try looking in
Appendix B, titled "Help, Please, My Mac Is Burning;' in the back
of this book.) After a few seconds, the desktop appears.

Make certain that the Pascal disk icon is selected (indicated
by darkening the icon). You may have to click once on the disk
icon to select it.

1

2 Introduction to Macintosh Pascal

Pull down the File menu and choose Open, as shown in
Figure 1-1. The Pascal icon opens up to show the contents of the
disk.

[~OS(~

[~OS(~ HH
Pr~nt

Eject 8€E

Figure 1 ·1 Open Command

The icon that says Macintosh Pascal under it, the one that
looks like Figure 1-2, represents the Macintosh Pascal applica­
tion. You use the Macintosh Pascal icon to create and run
programs.

~
~

Macintosh Pascal
Figure 1·2 Macintosh Pascal Icon

Use the mouse to click once on the Macintosh Pascal icon, so
that it is selected. Pull down the File menu and choose Open.

3 Chapter 1: Can I Be An Artist If I Can't Draw A Line?

After a few seconds, the screen is divided into three win­
dows, as shown in Figure 1-3. These windows are much like
other windows you have seen on the Macintosh. You can move
them around, change their size, and make them disappear and
reappear. Don't do anything yet, though.

r s File Edit Search Run Windows

D Untitled

program IJ11t 1t 1~.j

: '1'11IW 1j-] .jl ojf 1 l)fl - :

begin
:'.'.-1111 pr 1_1qr.:ir11 - t .:it rri rit - :

end

Te Ht

Drawing

Figure 1-3 Initial Pascal Windows

.,

The leftmost window, the one that says "Untitled" in its title
bar is the programming window. Whatever you type in that
window is an instruction that becomes part of a Pascal program.

The text that is already in the programming window is the
basic skeleton of a program. Notice that all the writing there is
already selected, the way it appears in Figure 1-3.

The text in the window contains the elements that every
Pascal program must have. Figure 1-4 points out the different
elements. Every program begins with the word "program'~ and
contains the words "begin" and "end". The parts within curly
brackets ({})are comments, which are ignored by Pascal. Com­
ments are put in programs for the convenience of people, to
make the programs more clear. Ignoring the comments, this is
the smallest Pascal program you can write. It doesn't, however,
do anything at all. Don't worry about the details of the parts of
this program. They'll all be explained as you proceed through
this chapter and write a short program that actually does
something.

Writing a Program

4 Introduction to Macintosh Pascal

program
name

beginni~g /
of main program Untitled; -

program"' {Vo_ur declarations} - /
beg1n

{Vour program statements}
end.

end of main./
program

Figure 1·4 Parts of the Smallest Program

comments

If the text in the window isn't still highlighted as shown in
Figure 1-3:

1. Position the mouse before the word "program" and hold
the mouse button down .

.2. Keep holding the mouse button down and sweep the mouse
down to below the "end".

3. Let go of the button.

The text should appear the way it does in Figure 1-3. If not,
try these steps again, and be careful to hold the mouse button
down the entire time.

The first thing you need to do is clear the window. The program
skeleton that Macintosh Pascal supplies for you is useful when
you write your own programs, but now it is in the way.

To clear that text out of the way, as long as all the text is still
selected, pull down the Edit menu and choose Cut, as shown in
Figure 1-5.

5 Chapter 1: Can I Be An Artist If I Can't Draw A Line?

Clear
Select Rll 8€R

Figure 1-5 Choosing Cut Command

It is time to stretch your fingers out and begin entering
commands at your keyboard. Start out by confusing Macintosh
Pascal a bit, just to see what it feels like. 'fype:

brandywine

Then press the Return key on the right side of the ke}rboard.
The programming window should now look like Figure 1-6.

D Untitled

brandywine]Q1

JQ
121 ..12 l2J

Figure 1·6 Brandywine

Whenever something is to be typed from this book, it is
printed like that. For the rest of this chapter, <RETURN> is
given at the end of lines to indicate you should press the return
key.

6 Introduction to Macintosh Pascal

Now, tell Macintosh Pascal to act on what you've typed. To do
that, you need to give the Go command, which says to Macintosh
Pascal, "I've finished writing my program. Now see what you can
do with it:'

Pull down the Run menu, and choose Go, as shown in Figure
1-7.

r S File Edit Search IEl!Dll Windows
...

Te Ht 0 Untitle_d Check OO K ~

brandywine R-~-~-~~··· . F]Q=t----------~--
•11 · l!JI

Go··i o
Step OO S
Step- Step

Stops In

Figure 1·7 Choosing Go

H

Drawing

Macintosh Pascal beeps, and gives you an error message
that looks like the one in Figure 1-8. (If you have the sound
turned down on your Mac, the menu bar flashes a couple of
times in place of the beep.)

~ R PROGRAM keyword was not found at the beginning of this
ill program.

Figure 1·8 Error Message

The long, narrow box with a picture of a bug on the left side
is an error message. The message is Pascal's way of saying, "Huh?
I didn't understand that!' The text of an error message tells you
something about the error. This message refers to the fact that
programs must begin with the word "program". To get rid of the
error message, click anywhere in the long narrow box.

7 Chapter 1: Can I Be An Artist If I Can't Draw A Line?

You need to remove the line you just typed in. First, select the
word "brandywine", and then choose the Cut command from the
Edit menu.

Notes

As you get more familiar with how things are done on the
Macintosh, you will learn there are quicker ways to do
things like removing text. If you already know other
methods, feel free to use them.

One thing to remember about using Macintosh Pascal:
whenever you make a mistake, just go back and fix it, by using
the the Cut command or the Backspace key, or any method you
wish. There are several ways you can change what you typed in.
While you use this book, whenever you get an error message
that you weren't expecting, or something doesn't work right,
carefully check what you typed. You may have made a typing
error or misread something. Go back and fix it. Macintosh Pascal
immediately forgets your error. The end of this chapter has a
section on how to change things you've typed.

The word "brandywine" was an error because Pascal
programs are supposed to begin with something that identifies
them as programs. As the error message indicates, programs
begin with the word "program".

8 Introduction to Macintosh Pascal

Notes

Macintosh Pascal often changes the appearance of text,
sometimes to make the program easier for you to read and
sometimes to indicate an error. It displays text that seems to
be wrong in outlined letters. In general this is helpful.
Occasionally, what you type will not appear in normal type
when it should. Unless there is an error in what you've
typed, you can clear up any problems by pressing the Enter
key, which is the key to the right of the space bar. Enter
makes Macintosh Pascal read what you've typed.

Notice the way the word "program" is printed in bold type.
This book prints program that way to indicate the word is one
of a special class of words: it is one of Pascal's reserved words.
There are 36 Pascal reserved words. Reserved words have
special meaning in Pascal, and you can't change their meaning.
Reserved words can be used in programs only in specific ways.
~ program can only be used as the very first word in a

program. It means, "The following is a Pascal program called- ".
Every program has a name. The name must not contain any

spaces, or characters other than numbers, letters, or
underscores. It can be up to 255 characters long. Call this
program "LineDraw" (with no space between the two words).
'fype:

program LineDraw; <RETURN>

The programming window should now look like Figure 1-9.

9 Chapter 1: Can I Be An Artist If I Can't Draw A Line?

D Untitled

progrom LineDraw; ~

]QJ
21 E?l 121
Figure 1 ·9 First Line of a Program

Make sure you typed the semicolon(;). Semicolons are very
important in Pascal, so you have to be careful you put them in
the right places. In general, semicolons separate any two
statements or program parts.

The line containing the word "program" is the first
program part: the program's heading. It must be separated by a
semicolon from whatever follows. (Appendix A describes the use
of semicolons completely. Don't worry about them for now-the
programs in this book always have them where they are needed.)

When you type the semicolon, the word "program"
changes so that it appears in bold, just as it does in this book.
When Macintosh Pascal recognizes a reserved word, it changes
it to bold, lower case characters.

Now type:

begin< RETURN>

begin is another reserved word. There is never a semicolon
after begin. You can think of semicolons in Pascal as something
like periods in English. You put a period at the end of a sentence
in English, and a sentence expresses a complete thought.

L Similarly, you put semicolons between statements in Pascal,
which are complete instructions. begin says in Pascal, "The
beginning of this is - · ~ so you don't follow it with a semicolo~

10 Introduction to Macintosh Pascal

As you know, this program is going to draw a line. All
drawing on the Macintosh is done by an electronic equivalent of
a pen.

The first thing we have to do is move the pen to where we
want it to start drawing.

'fype:

MoveTo(O,O); <RETURN>

The programming window should look as shown in Figure
1-10. Don't forget the semicolon. Make sure you typed two zeros
(0,0) in that line, not two letter O's.

D Untitled

progr11m LineDraw; Ql
begin

MoveTo(O, O);

Q
2I IQ '2l

Figure 1·10 Adding Movero

MoveTo is an order to the Macintosh, but notice that
nothing has happened yet. Macintosh Pascal doesn't do anything
with the orders you type in the programming window until you
tell it to run the program. When you tell Macintosh Pascal to run
a program, it reads the instructions in the program, checks if
they are understandable, and, if they are, carries them out. Until
you give a Run command, the programming window is just a
specialized kind of word processor, like MacWrite, but with
some special features that make it easier to write programs.

11 Chapter 1: Can I Be An Artist If I Can't Draw A Line?

~-Movefo(O,O) tells the Macintosh to move the pen to position
(0,0). (0,0) are the coordinates that identify the upper left
corn~r of the Dra"":ing window((The Drawing window is the
one m the lower right part of tne screen, the one that says
"Drawing" in its title bar.) When you use Macintosh Pascal,
coordinates always give a position in the Drawing window.
l Co~rdinate numbers get larger as you go down and right._)

Imagine that the Drawing window is divided by vertical and
horizontal lines, as shown in Figure 1-11. When you want to
identify a point in the window, you identify the two lines that
cros.s at that point. For example, Figure 1-11 highlights the point
at (10,10). The first number is the distance from the left side of
the window, while the second number is the distance down from
the top of the window.

10
(0,0)

10

Figure 1·11 The Coordinate System

Look closely at your Macintosh screen. Can you see the little
dots? (They are easiest to see in a gray area.) The dots are called
pixels, short for picture elements. Each pixel is equivalent to
one coordinate number. There are 72 pixels per inch on the
Macintosh. When you give a pair of coordinates, you are
identifying a particular pixel.

12 Introduction to Macintosh Pascal

Now type:
LineTo(100,100); <RETURN>

C., Linero, like Movero, is an order to the Macintosh to move its
pen. With Linero, though, the pen draws a line as it moves. The
effect of these lines is to draw a line from the upper left corner,
diagonally across the box to position (100,100).

To finish the program, type: r-'

end .< RETURN>

Notice in figure 1-12 that Macintosh Pascal turned the word
into bold, indicating end is a reserved word. The word "end"
tells Pascal that you have finished some sequence. There is an
end for every begin. Don't forget the period after this end. The
period means you've finished your whole program. Unlike a
human being, Macintosh Pascal won't assume you are done
telling it what to do until you tell it you are finished.

-o Untitled

progrom LineDraw; ~
begin

Mo veTo(O, O);
LineTo(100, 100);

end.

IQJ
2:I J2 Q]

Figure 1-1.2 Finished LineDraw

The period can be understood in terms of English grammar,
like the semicolon. You can have a sentence in English that
consists of a series of statements, each separated from the next
statement by a semicolon. When the entire sequence of
statements is complete, you close the sentence with a period.

In a similar way, a program is a series of statements. At the
end of the series of statements, the end of the program, you give
a period.

13 Chapter 1: Can I Be An Artist If I Can't Draw A Line?

Now run the program. Pull down the Run menu, and choose
Go. (If you made a mistake in typing the program, Macintosh
Pascal may display some of the program's text in outlined type or
give you an error message. Don't panic-just compare your
program to what appears in Figure 1-12 and fix what is wrong.)

After a few seconds a line appears in the Drawing window,
as shown in Figure 1-13.

Drawing

Figure 1-13 The Results of LineDraw

Congratulations. You've written your first Pascal program.
Although this is a small, simple program, it has the essential
features of every Pascal program-a name, a begin, an end,
and a section that does something. Other programs will do more
complex things, but you can always break them down into small
simple actions like the actions in this program. If you can
understand this program, you ean understand any program.

You may have noticed that as you typed the program,
Macintosh Pascal changed the appearance of what you typed.
The type may have moved a bit, it may have changed into bold
type, or, if you typed something incorrectly, the type may have
changed into outlined type.

Whenever you type a semicolon or a <RETURN>,
Macintosh Pascal reads the program and puts all the text into a
particular format, indenting sections of the program so that
they line up correctly. It makes it easier to spot errors and to
understand what a program does.

14 Introduction to Macintosh Pascal

Macintosh Pascal also checks to see if what you typed makes
sense in the Pascal language. If it recognizes a reserved word, it
changes the word to bold. If it recognizes a mistake in the way
you used something, it changes the suspect words to outlined
type.

From now on, this book does not show <RETURN> at the
end of every line. You can type a <RETURN> after every line,
if you want. However, Macintosh Pascal's automatic formatting
puts in <RETURN> for you, as long as you include at least a
space or semicolon.

~~iii~·==t------------N_o_t_e_s __________________________________ _

Blank lines have absolutely no significance in the Pascal
language. Macintosh Pascal ignores them. Similarly,
additional spaces have no meaning. You can almost always
put as many spaces as you like where one is required.

Sometimes when you correct a mistake that Macintosh
Pascal displayed in outlined type, the letters remain in outlined
type, even though they are now correct. lihat is because
Macintosh Pascal checks what you've typed only at certain times,
particularly after you type a <RETURN> or a semicolon. You
can force Macintosh Pascal to check what you've typed and put
it in the correct format by pressing the Enter key, which you can
find to the right of the space bar. \ -----Although Macintosh Pascal recognizes some errors right
after you type them, other errors depend on context. When you
typed "brandywine" earlier in this chapter, you could have built
a program around it so that it made sense. Macintosh Pascal
couldn't tell the word was an error until you asked it to run the
"program:'

Errors are no big deal. Don't worry about hurting Macintosh
Pascal or your Macintosh. There is no way you can do that, short
of physical violence.

Editing a Program

15 Chapter 1: Can I Be An Artist If I Can't Draw A Line?

Macintosh Pascal has many of the same editing capabilities as
MacWrite, and a few additional ones.

You can type in the ordinary way; you can use the Backspace
key to delete text; and, in addition, you can select groups of text
by:

• Clicking and dragging the mouse.

• Double-clicking, which selects the word under the mouse
pointer.

• Triple-clicking, which selects the line under the mouse
pointer.

• Clicking once, letting up the mouse button, moving the
mouse, and holding the Shift key down while you click the
mouse again.

That selects everything between the two mouse clicks.

You can also double-click or triple-click and then hold the
mouse button down while sweeping the mouse across text. That
selects text as whole words or lines.

At any time, there are three possible conditions that change
what happens when you type. They are all indicated by what
you can see on the screen.

• The programming window may have an insertion point.
The insertion point is a blinking vertical bar that indicates
where characters appear when you type on the keyboard.
When you use the Backspace key, characters are removed
starting at the insertion point and moving backwards.

• The programming window may have some text selected. If
you type when text is selected, the text disappears, and
whatever you type replaces it.

• The programming window may not be selected. A window
shows it is selected by the thin lines that appear in the title bar
at the top of the screen. If you type when the programming
window is not selected, nothing is added to the programming
window. Assuming a program is not running, you can select
the programming window by clicking in it. The programming

Finishing Up

16 Introduction to Macintosh Pascal

window may also be hidden. You can bring it back to the
screen and select it by choosing the name of the program
from the Windows menu. (If the program has no name, the
programming window is called Untitled.)

Programs are often long enough so that only part of the
program is visible in the window. If so, it is possible t.hat the
insertion point or a selected block of text may be scrolled out of
the window. If you type, the effect is the same as if the selection
was visible, so you can accidentally delete part of your program
if you are not careful.

Unlike many Macintosh programs, Macintosh Pascal does
not have an Undo command. If you accidentally delete part
of your program, you are out of luck. You can revert to the
last saved version of your program, but that may destroy
other changes you've made.

Before going on, save the LineDraw program, because it is used
in Chapter 2. When you save a program, it is stored on the disk
along with Macintosh Pascal.

To save LineDraw:

1. Pull down the File menu and choose the Save As ...
command, as shown in Figure 1-14. A dialog box like the one
in Figure 1-15 appears.

17 Chapter 1: Can I Be An Artist If I Can't Draw A Line?
~~~~~~~~~~~~ 

Nem 
H~H~n ,,, 
Close 
§(H}(~ 

B~~~H~ ... 
Page Setup ... 
Print ... 
Quit 

Figure 1-14 Choosing Save As ... 

2. 1)'pe: 

LineDraw 

3. Click on the Save button. 

Saue your program as Pascal 

I LineDraw 
[ Eject ] 

[ Saue ~J [ Cancel ] 

Figure 1-15 Save Dialog Box 

Your disk drive hums while Macintosh Pascal saves your 
program. When the Mac is finished, pull down the File menu and 
pick Quit. The Macintosh Pascal windows disappear, and, after 
a few seconds, the desktop reappears. 

There is a new icon next to the Macintosh Pascal icon. That 
icon represents the saved copy of LineDraw. To get LineDraw 
back, click on the LineDraw icon so it is selected, and choose 
Open from the File menu. Macintosh Pascal starts up, and the 
LineDraw programming window replaces the Untitled 
programming window. 



18 Introduction to Macintosh Pascal 

You should never save a program with the name Untitled. If 
you do so, when you start Macintosh Pascal, that Untitled 
program will replace the normal Untitled program 
skeleton. 

To get back to the desktop, choose Quit from the File menu 
again. 

If you want to turn off your Mac: 

1. If Pascal is now running, choose Quit from the File menu. (If 
you aren't sure if Pascal is running, look in the File menu. If 
there is a Quit command in the menu, choose it.) 

2. When the desktop appears, choose Shut Down from the 
Special menu. The Macintosh Pascal disk and any others 
are ejected by the Macintosh, and the Macintosh beeps. You 
can now turn the Macintosh off or boot with another disk. 

(If you have a finder earlier than 4.1, the Special menu has no 
Shut Down command. In that case, when the desktop appears, 
choose Close All from the File menu to close the Macintosh 
Pascal disk window and all other open windows, and then select 
the Macintosh Pascal disk icon and eject it. If you have any other 
disks showing on the desktop, eject them, too. When all disks 
have ejected from their drives, you can turn the Macintosh off.) 

It is not a good practice to turn the Macintosh off when a 
disk is in the drive, and, especially, when Macintosh Pascal or 
some other application is running. If you do, you can damage the 
disk so the Mac won't be able to use it. Serious errors that force 
you to turn the Mac off with a disk in the drive do sometimes 
occur. If that happens, everything will usually be OK. 
Sometimes, though, your disk may need a little first aid. See 
Appendix B for some help. 



. -
~ _) 

19 Chapter 1: Can I Be An Artist If I Can't Draw A Line? 

i 

I 

Do More 

Most chapters end with a Do More section. If you want 
to do more on your own (always a good idea when you are 
learning to program) follow the suggestions in the Do More 
section, or think up some of your own. 

1. Try modifying LineDraw to get it to draw lines between 
different parts of the Drawing window. See if you can 
find exactly where the lower right hand corner of the 
window is located . 

.2. Try drawing several lines to make a shape, such as a box 
or a triangle. What happens to the pen after you draw 
a line? 

3. Move the Drawing window, or make it bigger, and run 
your program. What happens to the coordinates? Does 
that tell you something about how the Macintosh 
handles windows? 

I 



20 Introduction to Macintosh Pascal 

QUICK SUMMARY 

Chapter 1 introduces you to a very simple program that 
draws a line diagonally across the Drawing window. The chapter 
uses the following statements, routines, and concepts: 

begin is a Pascal language reserved word that tells Pascal, "Now do this - ". 
begin is never followed by a semicolon. 

Brandywine as used in this chapter, is used to represent something Macintosh 
Pascal can't understand. Otherwise, it is an alcoholic drink distilled 
from wine, now usually shortened to brandy, or a river in some im­
aginary world. 

Coordinates define a position in the drawing window. 

end is a Pascal language reserved word that tells Pascal, "That's it for this 
sequence:' 

Error message is a message from Macintosh Pascal that attempts to explain why it 
couldn't follow the instructions contained in a program. 

Go is the menu command that tells Macintosh Pascal to carry out the in­
structions contained in the program, or give an error message that 
tells why it can't understand the instructions. 

Insertion point is the place where letters appear when you type on the keyboard. It 
is usually marked on the Macintosh by a blinking vertical line. 

LineDraw is the name of the program produced in this chapter, one of the 
simplest programs you can write in Pascal. There is nothing special 
about this name; you could call the program Harvey if you wanted, 
as long as the name you give contains nothing but letters, numbers, 
or underscores(_), and has no more than 255 characters. 

Linefo(x,y) is a pre-defined order that draws a line from the current pen 
position to the coordinates x and y. 

Movero(x,y) is a pre-defined order that moves the pen to the coordinates x and 
y, without drawing anything. 

Pen is the electronic equivalent of an ink pen that draws in the 
Macintosh Pascal drawing window. 

Period (.) is a Pascal language symbol that tells Pascal that this is the end of the 
program. 

program is a Pascal reserved word that tells Pascal that this is the beginning 
of a program. 



21 Chapter 1: Can I Be An Artist If I Can't Draw A Line? 
~~~~~~~~~~~~~~ 

Reserved words are words that have a special meaning in the Pascal language, and
cannot be used for any other purposes. Macintosh Pascal always
changes the reserved words you type so that they appear in lower
case bold type. Something to remember is that there are words with
special meaning in the Pascal language that are not reserved words.
In those cases, you can redefine those words to mean something
else, although doing so is rarely a good idea. None of those words are
used in this chapter, but they will be in Chapter 2, and the rest of this
book.

Run is the menu that contains the Go command, and a number of other
commands to Macintosh Pascal. The verb "to run;• as in "Run that
program;• means the action of ordering a computer to follow the
instructions in a program.

Save is the menu command asking Macintosh Pascal to make a permanent
copy of your program. The first time you save your program, you
use the Save As command so that you can give the permanent copy
a name. After that, every time you choose Save from the menu, the
program is recorded, so that the changes you've made appear in the
permanent copy. A saved program has an icon that shows up in the
Macintosh Pascal disk directory.

Semicolon is a Pascal language symbol that separates program parts and
complete statements.

CHAPTER

~~---
Lining Up

Variables and the Mouse

The LineDraw program in Chapter 1 is one of the simplest
programs you can write. This chapter shows you how to extend
that program so that it does a bit more.

Macintosh programs in general react to what the user does.
Computers should respond to people.

You usually tell the Macintosh what to do by using the mouse
to point at something on the screen. Your program can find out
where the mouse pointer is located.

You should now have the Mac's desktop displayed. If your
Macintosh is turned off, insert the Macintosh Pascal disk and
turn the Mac on. After a few seconds, the desktop is displayed.

Follow these steps to open program LineDraw:

1. Open the Pascal disk icon by clicking on it and choosing Open
from the File menu.

2. Click on the LineDraw icon.

3. Choose Open from the File menu.

23

24 Introduction to Macintosh Pascal

After a few seconds, the three Macintosh Pascal windows are
displayed, with the LineDraw window on the left.

Follow these steps to alter LineDraw so it uses the mouse:

1. Move the mouse pointer to just before the "I:' in LineTo, as
shown in Figure 2-1.

2. Click the button once, so you get an insertion point just
before the "G.

3. Type:

GetMouse(horizontal, vertical);

_o LineOraw

program LineDraw; !Qi
begin

MoveTo(O, O);
lLineTo(100, 100);
end.

lQJ
IQl IQ ~

Figure 2· 1 Placing Insertion Point

Be careful to include the semicolon. The programming
window should now look like Figure 2-2.

25 Chapter 2: Lining Up

'.'.D LineOraw

program LineDraw; IQ
begin

MoveTo(O, 0);
GetMouse(hori zontal , vertical) ;
LineTo(O, O);

end.

0 I J i!Hi!!i: !W!i!!Hi!i!WH!W!W!HH!!iiU!!i!i!iUirni!irni!!iimirn!UH!iiiii!iH Q 121

Figure .2-.2 Adding GetMouse

L GetMouse, like LineTo and MoveTo, is a special kind of
order in Pascal, called a procedure call. A procedure is
actually a little program by itself, sometimes called a
subprogram, subroutine, or, simply, a routin!tlThere are a
large number of predefined subprograms you can call from
Macintosh Pascal programs. Most (but not all) subprograms have
a set of parentheses following them, in the way MoveTo, LineTo,
and GetMouse do. You give information to the subprogram and
get information back from the subprogram through items you
put in the parentheses. Those items are called the parameters of
the subprogram. Learning how to use a subprogram involves
primarily learning the significance of the parameters of the
subprogram.

GetMouse finds the position of the mouse pointer and
returns it in terms of the number of pixels from the upper left
corner of the Drawing window. In this case, the values come
back to your program filed under the names horizontal and
vertical.

l-Horizontal and vertical are variables. Variables are names
used to represent value~ One of the things that makes a
computer so useful is thafit can compute new values from some
starting place, and then use the new values to continue. In order
to do that, a computer must have a way of referring to those
changing values. Variable names are like names on file

26 Introduction to Macintosh Pascal

drawers-the contents of the drawer may change, but the
drawer's name stays the same. Figure 2-3 shows an imaginary
piece of memory. Although computer memory really looks
nothing like that picture, there is an important concept in the
analogy: the computer has a huge array of memory, and pieces
of the memory can be assigned to variables. Parts of memory
that are not assigned to variables serve many purposes,
including holding the instructions, or code of your program,
and the instructions that make up Macintosh Pascal. This is the
primary limitation on the length of programs: there must be
enough of those "file drawers" to hold the variables your
program requires, your program's code, and Macintosh Pascal's
code.

Rn Imaginary Piece of Memory
Figure 2-3

Lvariables in Macintosh Pascal programs can have names up
to 255 characters long. Names can contain only letters, numbers,
and underscore~JJhe first character must be a letter.JJpu can
use upper or lower case letters, but they don't make a difference
in the Pascal language; VERTICAL is the same as vertical.
Variable names in this book always start with a lower case letter.
You can make up any variable name you want, except that you

27 Chapter 2: Lining Up

can never use the reserved words (the words that Macintosh
Pascal always shows in bold, lower case letters). You can take
advantage of the fact that long variable names are allowed to give
your variables meaningful names, in the way horizontal and
vertical are used in this program to hold the horizontal and
vertical coordinates of the mouse.

(_,Replace the 100,100 in the line:]

LineTo(100,100);

with:

horizontal, vertical

That line should now be:

LineTo(horizontal, vertical);

(There are several ways you can accomplish that replace­
ment. See the editing section at the end of Chapter 1 for some
suggestions, if you need them.)

This new line replaces the old line.
L When you used LineTo before, you gave the actual

coordinates for the end point of the line. You could have used
variables, and the effect would have been the same, as long as
you gave the variables the values 100 and 100.)

GetMouse puts the coordinates of the molise position into
the variables horizontal and vertical. LineTo(horizontal, vertical)
draws a line to that point.

The program isn't finished yet, though. You have to define
variables before you can use them in Pascal programs. Defining
a variable means stating what kind of values it can hold.

(Variables can hold many different kinds of information,
including numbers, letters, and words.~

Mouse positions are given in terms of coordinates in the
drawing window. Those are whole number values: 1, 2, 3, and so
on. A mouse position can never be something like 3.5, or
2.17398. Whole numbers like 1, 2, and 3 are called integers.
Therefore, you have to tell Macintosh Pascal that horizontal·and
vertical can only hold integers.

.28 Introduction to Macintosh Pascal

Move the mouse pointer to just before the word "begin'~ and
click once to get an insertion point, as shown in Figure 2-4. Type:

var

horizontal, vertical: INTEGER;

D line Draw

program LineDraw;
Jbegin

MoveTo(O, 0);
GetMouse(hori zontal , vertical) ;
LineTo(horizontal , vertical);

end .

Figure 2·4 Placing Insertion Point

Notice that there is no semicolon after the word "var'; but
there is one after INTEGER. "var'; which is a reserved word, is
an instruction in the Pascal language meaning, "This program is
going to use the following variables-:•

The word "INTEGER" in the declaration is a predefined data
type. (All predefined data types are capitalized in this book. You
can capitalize your data types or not, as you wish. With data
types, as with all names in the Pascal language, case makes no
difference to the computer.)

Notice that Macintosh Pascal does not change the word
"INTEGER" to bold lower case. That is because INTEGER is not a
reserved word.

Every variable in Pascal has a type which defines what kinds
of values the variable can hold \ !!_itegers c~n have any whole­
number value between -32767 and 32767 '. (Integers can hold
numbers up to that magnitude because of the amount of
memory space Pascal allots for them-the size of an Integer-type
"file-drawer:')

Functions

29 Chapter 2: Lining Up

The advantage of having to define the type of every variable
you use is that Pascal will tell you if you use the variable
incorrectly, or if you try to use the same variable name for a
second variable.

You define variables by giving the variable name, a colon,
and a data type. Every variable definition is ended by a
semicolon, which indicates you are done with the definition.
The format for a variable definition is:

varName: dataType;

There are many data types. You will use others later in this
book.

This program draws a line from the upper left corner of the
Drawing window to the current mouse position. Try running it.
Pull down the Run menu and choose Go. After you choose Go,
quickly move the mouse pointer to somewhere in the Drawing
window. Run the program a few times, just to get a feel for it.
Notice that the line does not appear outside the drawing
window, even if you hold the mouse so the program attempts to
draw a line outside the window. Drawing commands can never
draw outside the Drawing window. Nothing bad happens if you
try, the drawing just doesn't show on the screen.

The LineDraw program is not very sophisticated. It works
because it takes a few seconds for Macintosh Pascal to set up the
program, so there is time for you to move the mouse into the
Drawing window. It would be better if the program waited for
some kind of signal from the user that tells the program it is time
to draw the line. A convenient signal on the Mac is the mouse
button.

You can ask Macintosh Pascal whether the mouse button is
pressed by calling the Button function.

Up to this point you have used the predefined procedures
MoveTo, LineTo, and GetMouse. You gave information to
MoveTo and LineTo, and got information back from GetMouse.
Button also gives you information.

However, MoveTo, LineTo, and GetMouse are procedures,
while Button is a function. All procedures and functions are
subprograms; the difference is that, when you call a procedure,

30 Introduction to Macintosh Pascal

values may (or may not) be returned in the parameters of the
procedure, while, when you call a function, a value is always
returned represented by the function's name.

!_Jf a procedure is a car that goes off and may come back
towing some values, a functiqn is a car that always comes back
with a value in its front seat. ~\

You call a function by givii% its name in almost any place you
can use a value. The function returns the needed value.

Although Button does not have any parameters, functions, in
general, can have parameters in the same way procedures can.

The return value of Button is the answer to a TRUE/FALSE
question: "Is the mouse button pressed?" TRUE means that the
mouse button is pressed; FALSE means that it is not pressed.

Function return values have defined types in the same way
variables have defined types.

The return value of Button is of type BOOLEAN. A
BOOLEAN can only have the values TRUE and FALSE.
BOOLEANs are very useful in making de!Jisions, so that the
computer does something different depending on whether
something is TRUE or FALSE.

So, getting back to the program, rather than drawing a line
to wherever the mouse happens to be, you want the program to
wait to draw the line until the mouse button is pressed. Every
time you call Button, it tells you if the mouse button is down. You
need the program to repeatedly call Button until it returns TRUE
(which means the button is down), and then draw the line. You
can use the repeat/until statement, which lets you repeatedly
check some condition until it is TRUE. repeat/until is one of a
number of statements that sets up a loop: a group of statements
that repeat.

Position the mouse button before GetMouse, and click the
button to get an insertion point. Type:

repeat

\..There is no semicolon after repeat. That is because, like
begin, repeat indicates the beginning of a statement, and is not
a complete statement in itse~fj

Place an insertion point before LineTo and click the button
to get an insertion point. Type:

until Button;

31 Chapter 2: Lining Up

The program should now look like Figure 2-5.

0 LineDraw

program LineDraw;
var

horizontal, vertical : INTEGER;
begin

MoveTo(O, 0);
repeat

GetMouse(horizontal, vert ical);
LineTo(horizontal , vertical);

until But ton;
end.

Ji) Wi!i:J!tlit!mlilillli1! J]Iili!i:l?llii!lli:lliftJ!i!llii!ill Q l2J

Figure 2-5 Button LineDraw

'-LJ'ry running this program. As predicted, the line is not
drawn until you press the mouse button~

Macintosh Pascal can show you how it is repeatedly
executing the GetMouse statement. Pull down the Run menu. Do
you see the Step command? That command tells Macintosh
Pascal to carry out the instructions in the program one line at a
time.

Choose the Step command. A little hand appears on the left
hand side of the programming window, as you can see in Figure
2-6. That hand points at the statement that was just executed. By
repeatedly giving the Step command, you can go through a
program a line at a time. The Button function responds anytime
you press the mouse button, so if you keep on picking the Step
command from the menu, Button returns TRUE the first time
the until is reached, because you must press the mouse button
to pick Step from the menu.

32 Introduction to Macintosh Pascal

D LineDraw

progrom LineDrew;
var

hori zontal , vertica l : INTEGER;
~begin

MoveTo(O, 0);
repeat

GetMouse(hori zontel , vert i eel);
unt i I Button;
Li neTo(hori zonte l , vert ice l);

end.

IQ_[]! :::::;:;, '''"''';;';;;; !!!HU!U:U:U:U!U!!!!i!i!i!H!U!Uii!!! :rnm:mE ~
Figure 2·6 After Step Command

Pull down the Run menu again. Do you see the cloverleaf
sign with a letter next to the Step and Go commands (Figure 2-7)?
The cloverleaf is the command symbol, and represents the
Command key, the key next to the space bar on the left side of
your keyboard. Whenever that symbol appears in a menu, you
don't have to chose the menu command with the mouse every
time you want to give that command. You can hold down the
Command key and type the given letter, instead. (Although the
letter in the menu is usually capitalized, you can always use the
lower or upper case letter.) The Command key combination
always has the same effect as the corresponding menu
command. Many commands have Command key equivalents; the
equivalents always appear in the menu. For example, you can use
Command-Gin place of choosing the Go command from the Run
menu.

Giving Feedback

33 Chapter 2: Lining Up

Reset

Go ~G

Go··· ho
step ~s

Step-Step

Stops In

Figure 2-7 Command Symbols

As you get more comfortable with your Mac, you may find
that using some Command key combinations is easier than
pulling the menu down every time. The Command keys are also
useful in situations like this one where you want to avoid
pressing the mouse button.

The Step command can be given with Command-S. Use the
Command-S combination to step through the program, and see
how it loops and how it responds when you press the mouse
button.

Alternately, you .can use the Step-Step command from the
Run menu. That command automatically executes the Step
command repeatedly. The little hand moves quickly through the
program as each statement is executed.

This program is better to users than the original LineDraw, but
it could be improved. Good programs should give feedback. In
other words, the program should give the user some idea of
what is going on. In this case, it should show what the line would
look like if the user pressed the button at that point.

The most obvious thing to do is to move the LineTo
subprogram into the repeat/until loop.

34 Introduction to Macintosh Pascal

To move that line:

1. Position the mouse pointer over the line:

LineTo(horizontal, vertical);

.2. Click the mouse button three or more times quickly. The
entire line should be selected, as shown in Figure 2-8. If the
line is not selected, try again. (If you selected something else
by mistake, deselect it by clicking the mouse button once
anywhere.)

3. With the line selected, pull down the Edit menu, and choose
Cut. The line disappears.

4. Place an insertion point immediately before the word until

5. Pull down the Edit menu and choose Paste.

LineDraw

program LineDrew;
var

horizontBl , vertiCBl : INTEGER;
begin

MoveTo(O, O);
repeat

GetMouse(hori zonte l , verti CB l);
unt i I But ton ;

end .

:::m:::r:m:::n:::m::m:H!Hi'i'i'i"'"''""'·······.... . . '2l

Figure 2-8 Selecting the Entire Line

Your program should now be as shown in Figure 2-9. (If it
doesn't look right, don't panic. If yoy don't know how to fix it, see
the editing section of Chapter 1 for suggestions.)

35 Chapter 2: Lining Up
~~~~~~~~~~~~~ 

~ s File Edit Seorch Run Windows 

lineDrow 

progrom LineDraw; 
vor 

horizontal, verti cal : INTEGER; 
begin 

MoveTo(O, 0); 
repeot 

GetMouse(hori zonta l , vertical ); 
LineTo(horizontal , verti cal ); 

unt i 1 Button; 
end . 

Figure 2-9 New LineDraw 

<X> ., 

Te Ht 

Drowing 

Run that program. An example of what it produces is in 
Figure 2-9. 

The result is interesting, but the program doesn't do what 
was required. 

Do you see what is wrong? LineTo draws a line from the 
current pen position to the new coordinates. The pen is left at 
the new coordinates, so repeatedly calling LineTo makes the pen 
follow the mouse. 

You need to move the line containing MoveTo(0,0) into the 
loop, so it gets repeated, also. That way, every time the program 
loops, the pen is moved to (0,0) and then draws a line to the 
mouse position. Your program should look like the program in 
Figure 2-10. 



36 Introduction to Macintosh Pascal 

IS File Edit Search Run Windows 

LineDrnw 

progrom LineDraw; 
Yar 

horizontal , vertical : INTEGER; 
begin 
repeat 

MoveTo(O, 0); 
GetMouse(horizontal, vertical); 
LineTo(horizonta l , vertical); 

until Button ; 
end. 

Figure 2-10 New LineDraw 

Te Ht 

Run it a few times. A sample of this program's results is 
shown in Figure 2-10. 

Although LineDraw now shows the results of a line from 
(0,0) to every position the mouse occupies, there is no way to 
distinguish the final line from any of the intermediate lines. You 
need to show what each line looks like, and then erase it. The 
next section shows you how to erase lines. 

Changing the Mac's Pen 

Something rather magical about the Mac's pen is that you can 
change the "ink" by just asking. The pen always starts out 
drawing thin, black lines, but you can change them to white, to 
gray, to thicker lines, or to lines that appear in patterns, like in 
MacPaint. You also can define how the "ink" is transferred to the 
screen. One way to erase a black line is to draw over it in white: 

1. Put an insertion point before the word repeat and type: 

MoveTo(O,O); 

2. Place an insertion point before the second MoveTo and type: 

PenPat(white); 



37 Chapter 2: Lining Up 

3. Replace the second MoveTo with LineTo. 

4. Place an insertion point before the second LineTo and type: 

PenPat(black); 

Your program should now look like the one in Figure 2-11. 
When this program runs, the line is first drawn in black by 
LineTo(horizontal, vertical) and then drawn in white­
effectively erased-by LineTo(0,0). 

~ s File Edit Search Run Windows 

LineDraw 

program LineDrew; 
var 

horizontel , verticel : INTEGER; 
begin 

MoveTo(O, 0); 
repeat 

PenPet(whi te ); 
LineTo(O, O); 
GetMouse(hor'i zonte l , vert ice 1); 
PenPet(bleck); 
Li neTo(hori zonte 1, vert ice l); 

until Button; 
end. 

Figure 2·11 New LineDraw 

Te Ht 

I-

Drawing 

Run this program. A sample of what the program produces 
in the Drawing window is shown in Figure 2-11. 

Writing Your Own Procedures 

The way you can call complicated routines like PenPat, 
MoveTo, LineTo, and Button just by giving their names is an 
incredibly useful feature of the Pascal language. Tuke Button, for 
example. Although it represents a complicated subprogram, it 
has a simple name, and the name tells you very clearly and 
concisely what that routine does. In fact, it would be great if you 



38 Introduction to Macintosh Pascal 

could write LineDraw like that. Imagine if you could make 
LineDraw as simple as (don't type this): 

begin 
LineToMouse; 
end. 

Well, in fact, you can. You can make a procedure 
LineToMouse that goes off and draws the line, in the way that 
the predefined procedures LineTo, MoveTo, and PenPat go off 
and do their jobs. 

Programming in that way, with every part of the program 
clearly and separately defined, is called structured 
programming. Pascal was designed to encourage structured 
programming. 

One of the reasons you should write structured programs is 
that programs are much easier to understand if they are made of 
simple, descriptive words, so that you can just read the program 
and tell what each part is supposed to do. 

First, you need to tell Pascal how to execute the statement 
LineToMouse. In fact, that is what you did before, in the last 
version of LineDraw. All you have to do is redefine what you've 
already typed so that it forms the body of the procedure 
LineToMouse. 

To change your program so that it takes this new form: 

1. Place an insertion point before var, in the second line of 
LineDraw . 

.2. Type: 

procedure LineToMouse; 

3. Replace the period after end with a semicolon. 

4. After you type the semicolon, type: 

begin {main} 
LineToMouse; 
end. 
Be certain you typed the period after the new end. Also, be 

certain you typed curly brackets (the characters over the square 
brackets right of the "P" on your keyboard) around the word 
"main". 



39 Chapter 2: Lining Up 

Your new program should look like the one in Figure 2-12. 

Notes 

D LineDraw 

program LineDrew; IQ1 
procedure LineToMouse ; 

Yar 
horizontel , verticel : INTEGER; 

begin 
MoveTo(O, O); 
repeat 

PenPet(whi te ); 
LineTo(O, 0); 
GetMouse(horizontel, verti eel) ; 
PenPet(bleck); 
LineTo(horizontel , verticel) ; 

until Button ; 
end ; 

begin {mein} 
L ineToMouse; 

end. 

Figure 2-12 LineDraw with Procedure 

All examples in this book include a blank line before every 
subprogram. Those empty lines are there solely for 
readability; blank lines have no meaning in the Pascal 
language. You can put them into your program, if you want, 
or leave them out. 

The word "main" enclosed in curly brackets ( {}) after the 
begin is a comment. You can put comments in your program 
to make the program more understandable. {main} marks 
begin as the start of the main part of the program. The new 
LineDraw works just like the old. Run it a few times to convince 
yourself. Try stepping through the program, either with Step­
Step or with Command-S. 
L The part of the program between begin {main} and the last 

end is called the main program. ~ 



40 Introduction to Macintosh Pascal 

In a well written Pascal program, the main program should 
be as simple and clear as possible. All the difficult and 
complicated parts should be shuffled off to routines. The 
routines themselves should also be as simple and clear as 
possible, with the task ideally broken down into small, separate 
pieces, each of which does one thing. There is no limit to the 
number of routines you can use in a program, and routines can 
contain other routines. 

When you program, you should first break whatever you 
have to do into pieces, and name each separate piece. Those 
pieces become routines that are used in your main program. If 
a piece has to do something complicated, you define the action 
of that piece in the same way, as if it were a main program. 

Writing Your Own Functions 

LineDraw is still pretty limited. It only allows you to draw a 
single line. It would be better if it let you keep drawing lines until 
you didn't want to draw anymore. What you need is a 
TRUE/FALSE answer to the question "Do you want to draw 
another line?" Call the functional part that gives that answer: 
"LineWanted". If LineWanted is TRUE, another line should be 
drawn. If LineWanted is FALSE, the program should end. 

Put an insertion point before LineToMouse in the main 
program (the part following begin {main}) and type: 

while LineWanted do 

Make sure there is no semicolon after the word "do". The 
program should now look like Figure 2-13. 



41 Chapter 2: Lining Up 

D LineDr11w 

progrom LineDraw; ~ 
procedure LineToMouse ; 

Yllr 

horizontal , vertical : INTEGER; 
begin 

MoveTo(O, O); 
repe11t 

PenPat(whi te ); 
LineTo(O, 0); 
GetMouse(hori zontal , vertical) ; 
PenPat(black) ; 
LineTo(horizontal , vertical); 

until But ton; 
end ; 

begin {main} 
while Lin eWanted do 

LineToMouse; 

IQl e~!~ml!i HHHHH!!i!!iHU!Ui!U!lI!li:!Hm : m:!:H!!!!i!! ! !i! !!!t!it!!!!~ 
Figure 2-13 LineDraw with While Statement 

[_ while (condition) do is a statement very much like 
repeat/until (condition) . Both statements produce loops of 
statements that can be executed repeatedly] 

The condition has to be something that is either TRUE or 
FALSE. As long as the condition is TRUE, the statement after the 
do is called repeatedly. As soon as the condition becomes FALSE, 
whatever follows the statement after the do is done. 

In this case, when LineWanted is FALSE, the program stops 
because of the end. Figure 2-14 shows a diagram of what 
happens in this program. 

Figure 2-14 Flow of LineDraw 



42 Introduction to Macintosh Pascal 

;;0 LineDniw 

progrom LineDraw; 
function LineWanted : BOOLEAN; 
var 

theAnswer : CHAR; 
begin 

Write('Draw a line? (y or n) '); 
Read(theAnswer); · 
WriteLn; 
if (theAnswer = 'y') or (theAnswer = 'V') then 

LineWanted :=TRUE 
else 

Linewanted :=FALSE; 
end ; 

:~;~~~:(:O:,~)::::::'."INTEGER, J 
io 1 ] J: ::w::rn:::rn:rn:um:m:::m:::m:m:::m:m:::m:::::::::::rn::::::::::::rn::mrnm:m:::::m::::r:::::::::1' 121 

Figure 2· 15 Function LineWanted 

L The difference between while (condition) do and 
repeat/until (condition) is that the condition is checked at the 
beginning of the while loop, and at the end of the repeat/until 
loop. ' That means a repeat/until loop is always done at least 
onc'e: even if the condition is always FALSE. A while loop is used 
here so that a line is never drawn when one is not wanted. 
(Programs should be obedient, as well as polite.) 

LineWanted must be a function, like Button, because the 
loop depends on checking the value of LineWanted. 

Notice that up to this point I've given no consideration to 
how LineWanted does what it is supposed to do. I just assume 
that LineWanted produces a TRUE when a line is wanted, and a 
FALSE when no more lines are wanted. 

When you design a program, it is best to worry about the 
overall design first and the details later. If you worry about 
details first, programs tend to end up inefficient and 
error-prone. 

It is time to write LineWanted. 
The first thing is to decide how to find out if the program 

user wants another line. One way is to ask the user by printing 
out the question, "Draw a line?" 



43 Chapter 2: Lining Up 

You can begin designing a subprogram like LineWanted by 
outlining what it must do. Here are the steps LineWanted must 
go through: 

1. Ask "Draw a line?" 

.2. Get the answer. 

3. If the answer is yes, set LineWanted to TRUE. 

4. If the answer is no, set LineWanted to FALSE. 

5. If you got some other answer, ask again. 

Put an insertion point before the word "procedure" in the 
second line of the program. Type: 

function LineWanted: BOOLEAN; 

A BOOLEAN has either a TRUE or FALSE value. It can never 
have another value. 

Type: 

var 
theAnswer: CHAR; 

The variable theAnswer can hold single characters. CHAR is 
a predefined type. A CHAR value is any single character, such as 
letters, numbers, or special characters (*!@#$%-&*()_-+={}O 
\ !;:"' <, >.?/). CHAR values are always treated as characters. 
You can put a single digit (0, 1, 2, 3, 4, 5, 6, 7, 8, or 9) into a CHAR 
variable, but you can't do arithmetic with that character, without 
first changing it into an INTEGER or some other numerical type. 

Type: 

begin 
Write ('Draw a line? (y or n) '); 
Read(theAnswer); 
WriteLn; 

Write and WriteLn are predefined procedures that print in 
the Text window. The Text window is the smaller one in the 
upper right corner of the screen. (As with all windows, you can 
move the Tuxt window around the screen, and can make it 
bigger or smaller. In any case, the Tuxt window is the one that 
says "Tuxt" in its title bar.) 



44 Introduction to Macintosh Pascal 

Both Write and WriteLn display whatever is enclosed in 
parentheses. When WriteLn doesn't have any parentheses 
following it, it just moves the pen to the beginning of the next 
line. The "(y or n)" part of the message is to tell the user what 
should be typed in. Notice that the message is enclosed in single 
quotation marks. Macintosh Pascal prints what is within the 
quotes in the Tuxt window. The quotation marks must be single 
quotation marks (' and '), not the double quotation marks 
(" and ") you usually see. 

The Read procedure is a predefined procedure that reads 
something the user types in the Tuxt window. It is impossible to 
type anything in the Tuxt window unless the program first calls 
Read. Read reads enough to fill up whatever variables are in the 
parentheses. 1 In this case, the variable theAnswer is of type 
CHAR, whictt"' can hold one character, so Read gets the one 
character and then returns that character to your program in 
answer.': 

Na~· that you have the user's decision about whether or not 
there should be another line drawn, you have to show the 
program how to deal with it. LineWanted is called as the 
condition in a while loop, so that the value of LineWanted 
determines whether or not the line is drawn. When you are 
inside a function, you give it a value simply by assigning the value 
to the function name, as if it were a variable. (In fact, you must 
assign the function name a value somewhere in every function; 
it is an error if you don't, because the value of the function is 
undefined.) 

You need to tell the program "If theAnswer is Y, then 
LineWanted : = TRUE, otherwise LineWanted : = FALSE:' You use 
a colon and a equals sign, ": = ;• which is typed with the two 
separate characters with no space in between to assign values in 
Pascal programs. It is important to remember that the : = sign 
assigns values, unlike the mathematical= sign which expresses 
equality. You can use the : = for statements like: 

n := n+1 

which adds 1 to the current value of n and assigns the result to 
n. The new value of n is equal to 1 plus the old value of n. 

Before you type the next part of the program, you may want 
to make the programming window (the LineDraw window) a bit 
bigger, because the next line is too big to show entirely in the 



45 Chapter 2: Lining Up 

programming window Macintosh Pascal starts out with. The 
small box in the lower right corner of the window is the size 
control box. Put the pointer in the box and press the mouse 
button, and move the mouse to the right an inch or so. 

Type: 

if (theAnswer = 'y') or (theAnswer= 'Y') then 
LineWanted : = TRUE 
else 
LineWanted : = FALSE; 
end; 

Function LineWanted should now look like the one in 2-15. 
Notice that there is no semicolon after the first three lines 

you just typed. That is because the first four lines are all one 
statement: "If the condition is TRUE, then do this statement, else 
do this statement:' 

Before you run the program, if you enlarged the 
programming window so that it covers the Tuxt and Drawing 
windows, uncover them, either by making the programming 
window smaller again or by clicking once in the Drawing 
window and once in the Text window, which brings them to the 
front. 

Run the program a few times, to get a feel for it. 

TRUE and FALSE Expressions 

Notice the two sets of parentheses on the first line of the last 
section you typed: 

(theAnswer = 'y') or (theAnswer= 'Y') 

That line is a Boolean expression, also called a logical 
expression. BOOLEANs, as you may remember, are 
TRUE/FALSE values. So far, you have seen functions that return 
BOOLEAN values, and you have seen those values used in while 
and repeat/until statements. You can use Boolean expressions 
any place you can use a simple BOOLEAN value. A Boolean 
expression is a set of values that boil down to one TRUE/FALSE 
value. The expression 

theAnswer = 'y' 

is TRUE if the variable theAnswer contains a "y". The "y" given in 



46 Introduction to Macintosh Pascal 

the expression must be in quotation marks so Pascal can tell it is 
not a variable name. Notice that the Boolean expression uses a 
simple " =" sign, not ": = •; which is used when you want to assign 
a value to a variable. The"=" alone means "is equal to;' while the 
":="means "takes the value:• 

The second part of the expression 

theAnswer = 'Y' 

is there because "theAnswer = 'y'" is only TRUE if theAnswer 
contains a lower case "y". The user could easily enter an upper 
case "Y'; as most human beings consider that pretty close to 
equivalent. It is a good practice to teach your Macintosh to 
anticipate the tastes and responses of humans. 

The "or" between the two parenthetical expressions means 
that the value of both together is TRUE if either one or the other 
is TRUE (Figure 2-16). 

D 
THIS IS 
BLOCK 

THIS IS 
BLOCK 

D 
TH IS IS 
BLOCK 

0ITRUEI 

0IFALSEI 

0ITRUEI 

0IFALSEI 

Figure 2-16 Boolean Operations 



4 7 Chapter 2: Lining Up 

The while and ii statements both check a condition and do 
a statement if the condition is TRl)E. ·The while statement 
checks the condition and, if it is TRUE, does the statement after 
the do, and then loops back and checks the condition again. If 
the condition is still TRUE, the statement is done again, and so 
on. It can loop indefinitely, as long as the condition stays TRUE. 

The if statement checks the condition and, if it is TRUE, does 
the statement after the do. Whether the condition was TR.UE or 
FALSE, that statement is never done more than once, and the 
condition is only checked once. 

A second difference between while and if is that if can 
have an else part If the condition is FALSE, the statement 
following the else is executed. 

So, if the user typed a "y" or "Y", LineWanted takes the value 
TRUE. If the user typed something else, LineWanted takes the 
v~ueAAL~. · · 

~~1.1--------------D_o __ l\.1 __ o_r_e ____________________________________ __ 

1. The program has one problem: It ends if the user types 
anything other than a "y" or "Y'; even if it isn't an "n'' or 
"N". Therefore, if the user makes a mistake, and types the 
wrong key, the program ends. That isn't too important in 
this little program, but it is sloppy. It violates the 
"Computers shoulc! be polite" rule. Try modifying 
LineWanted so it returns FALSE only if the user types an 
"n" or "N". Don't go too far in the other direction; a line 
should not be drawn unless the user types "y" or "Y". 

2. Try modifying the program so that the user can type a 
number instead of a "Y'; and then draw that number of 
lines before being asked if they want to draw another. 

3. Computers sometimes seem to be able to think, the way 
a human being thinks. For the most part that is an 
illusion, carried out by clever programming, often using 
BOOLEANs. A Boolean expression allows a computer to 
"make a decision;' based on factors determined by the 
programmer. In Pascal programs, you use if, while, 



48 Introduction to Macintosh Pascal 

repeat, or case (sort of a multi-level if) statements to 
enable the computer to make decisions. 

On paper, write a "pseudo-program" that would allow a 
robot to navigate a maze. (A pseudo-program is written to 
break a problem down into steps like in a program, and to 
follow a logical pattern that would work in a program, but 
without worrying about details of implementation. If you 
want the robot to go forward, for example, just say "-robot 
forward" in the pseudo-program, and don't worry about 
how you would write a program to do that.) 

QUICK SUMMARY 

This chapter expands the LineDraw program produced in 
Chapter 1 so that it is a real program that responds to the user. 
It introduces subprograms, procedures and functions, variables 
and the use of the mouse and mouse button. The following 
routines, statements, commands, data types, and concepts are 
used. 

BOOLEAN is a predefined data type. A BOOLEAN value is either TRUE or 
FALSE. , 

Boolean expression is a sequence of values, variables, functions, and operators that boil 
down to a single BOOLEAN value. 

Button is a predefined function. Button is TRUE when the mouse button is 
pressed. It is FALSE when the mouse button is not pressed. 

Call when referring to a subprogram, involves using the subprogram's 
name in a program. When you do that, the statements in the 
subprogram are executed. 

CHAR is a predefined da~a type. A CHAR value is a single character. 

Command key is the key with a cloverleaf symbol, to the left of the space bar. 

Comment is something enclosed in curly brackets ( {}) in a program. 
Comments in programs are entirely ignored by Macintosh Pascal. 
You use them in programs for your convenience. 



49 Chapter 2: Lining Up 

Data type is a kind of value, such as an INTEGER, or a CHAR. You use data 
types to define the types of values that can be held by variables. 

Function is a subprogram that cari be called by giving its name. A function is 
used in an expression, like a variable or constant, because it returns 
a value that is referenced by the function's name. When you give a 
function's name in a program, the statements in the function are 
executed. 

Integer is a whole number value. 

INTEGER is a predefined data type. An INTEGER value is a whole number 
from - 32767to 32767. Those limits result from the amount of space 
in memory that an INTEGER variable occupies. 

GetMouse is a predefined procedure that returns the coordinates of the mouse 
pointer. 

Parameter is a variable or value passed to or from a subprogram. See Formal 
parameter and Actual parameter in Chapter 3. 

PenPat is a predefined QuickDraw procedure that changes the color, or 
pattern, that the pen draws on the screen. To choose the pattern, 
you give PenPat one of a group of predefined variables: white, black, 
gray, ltGray, or dkGray. You can also define your own patterns. 

Procedure is a subprogram that can be called by giving its name. Calling a 
procedure is exactly equivalent to using the body of the procedure 
in place of the call. See Subprogram. 

Read is a predefined procedure that reads characters typed at the 
keyboard. 

repeat is a Pascal reserved word used to mark the beginning of a 
repeat/until loop. See until for more information. 

Step in reference to a program, is the command that executes one 
statement at a time. 

Step-Step is the command that executes the program by pausing briefly at 
each statement to display a small image of a hand next to the 
statement. 

Subprogram is a procedure or a function, a sequence of statements that can be 
called by giving the name of the subprogram. You can use 
subprograms to save space in programs, by placing sequences of 
statements that are repeated in your program into subprograms. 
You also use subprograms to make your programs readable and 
easier to fix and improve. 

Routine is another name for a subprogram. 



50 Introduction to Macintosh Pascal 

until is a Pascal reserved word that ends a repeat/until statement. until 
is followed by a Boolean expression. A repeat/until statement is a 
looping statement that normally contains other statements between 
repeat and until The enclosed statements are repeated until the 
condition after the until becomes TRUE. Also see while. 

Subroutine is another name for a subprogram. 

Variable is a named item that can hold a value. Before you can use a variable, 
you must declare it and define its type in a var section. 

while is a Pascal reserved word that is used to define a looping statement 
like repeat, except that the condition is tested at the beginning of a 
while loop, and at the end of a repeat loop. 

Write is a predefined procedure that writes in the Thxt window. 

WriteLn is the same as write, except it moves the Tuxt window's pen to the 
beginning of the next line after it prints out whatever is in its 
parameter list. 



Drawing a Rectangle 

CHAPTER 

~~---
Rectangles and 
Ovals 

It is time to abandon LineDraw and go on to two dimensions. 
Most drawing on the Macintosh is done by the QuickDraw 

graphics package. QuickDraw is included in Macintosh Pascal's 
facilities. 

Linelb and Movelb are two of ·the routines defined in 
QuickDraw. QuickDraw provides many other routines, 
variables, and data types you can use in programs to draw in the 
Drawing window. 

In particular, QuickDraw has a set of routines to draw 
various shapes. The most basic shape is a rectangle. 

In QuickDraw, all rectangles are oriented so the top and the 
bottom are parallel to the top and bottom of the screen, and the 
sides are parallel to the sides of the screen. You define a 
rectangle by defining the positions of the four sides of the 
rectangle, as illustrated in Figure 3-1. 

51 



52 Introduction to Macintosh Pascal 

,.. • File Edit Search Run Windows 

~D Drawing 

1 
1 100 

150~ 175 

• 
7 

(150,100) sampleRect 

(250, 175) 

Figure 3-1 Defining a Rectangle 

The first program in this chapter draws a rectangle on the 
screen. It uses the same basic approach as LineDraw. The 
program must: 

1. Wait for the user to press the mouse button, and use that to 
define the top and left sides of the rectangle. 

2. While the mouse button is still down, .use the mouse position 
for the bottom and right sides of the rectangle, and draw the 
rectangle in black, so the user can see what the rectangle 
looks like at that point, and then quickly erases it by drawing 
it in white. 

3. When the user releases the mouse button, draw the final 
rectangle. 

This program gets the positions of the four sides of the 
rectangle from the user by reading the mouse position, as shown 
in Figure 3-2. The program must store those values in variables, 
so the rectangle can be drawn. You need four INTEGER variables 
to hold enough information to draw the rectangle. 



53 Chapter 3: Rectangles and Ovals 

mouse press\ 

......................................................... \ 
mouse release 

Figure 3-2 Defining a Box With the Mouse 

The Pascal language lets you group variables together into 
records. You can think of a record as being a collection of 
variables, in the same way a house is a collection of rooms. 
Suppose a house has a living room, kitchen, and bedroom. All of 
these are in the house, but they are also individual rooms. You 
could identify the rooms like this: 

house.livingRoom 
house.kitchen 
house.bedroom 
The parts of a record are called fields. Each field is a 

variable by itself. A field has a name, just like any variable. You 
generally refer to a field of a record by giving the record's name, 
a period, and the field name (for example, record.field). 

QuickDraw defines a record type called a RECT, which is 
intended for storing the numbers that define a rectangle. A 
RECT has four fields: top, left, bottom, and right, all of which are 
INTEGERs. Suppose, for example, you had a RECT called theBox. 
The four sides of theBox are theBox.top, theBox,left, 
theBox.bottom, and theBox.right. Aside from the fact that the 
four sides of theBox are all conveniently filed under one name, 
they act like other INTEGER variables. Figure 3-3 illustrates this 
idea. 



5 4 Introduction to Macintosh Pascal 

sampleRecord: RECT; 

sempleRect.top: INTEGE ; /-j I 
sempleRect.left: INTEGER; 
sempleRect.bottom: INTEGER~ ~ 
sampleRect.right: INTEGER;~ .________. 

Figure 3·3 A RECT Variable 

QuickDraw provides a number of procedures that let you 
deal with a RECT as a whole. For example, the procedure 
FrameRect takes a RECT variable and draws the outline of the 
rectangle. The procedure EraseRect takes a RECT variable and 
erases everything contained in that area. The procedure 
SetRect takes a RECT variable and four INTEGER values, and 
loads the four values into the RECT as the four sides of the 
rectangle. 

Get a new program screen by: 

• If you still have LineDraw displayed: 

1. Choose Close from the File menu . 

.2. The Mac may beep and ask you if you want to save the 
latest changes. Click the mouse on Save. 

3. When the arrow pointer reappears, choose New from 
the File menu. 

• If you have the desktop displayed, with the Macintosh Pascal 
disk inserted: 

1. Click once on the Macintosh Pascal icon. (You may have 
to open the Pascal disk icon first. See Chapter 1 if you 
don't know how to do that.) 

.2. Choose Open from the File menu. 

3. When the Untitled program window appears, clear the 
program framework out of it as you did in Chapter 1. 



55 Chapter 3: Rectangles and Ovals 
~~~~~~~~~~~~ 

In either case, you should now have a new Untitled Pascal
programming window with nothing written in it.

Before typing anything:

1. Choose Save As from the File menu.

2. When the dialog box appears asking for a new file name,
type:

Shapes

3. Click in the Save button.

The programming window now says "Shapes" instead of
"Untitled" in its title bar. While going through this chapter, if you
want to stop for a while, choose Quit from the File menu. The
Mac asks you if you want to save your changes. Choose Yes.
Then, when you want to come back to where you left off, open
the Shapes icon.

Make the programming window wider. This program has
some lines that are fairly long.

'fype the following program, which follows the steps given
above. The parts in curly brackets ({}); are comments inserted to
make the program more understandable. It is a good idea to
include comments in programs, but they are just for the
convenience of people. The computer ignores them.

Type:

program Shapes;
var
theBox: RECT;
begin {main}
ShowDrawing; {Predefined. Brings Drawing window to front.}
GetTopleft(theBox);
GetBottomRight(theBox);
FrameRect(theBox); {Predefined. Outlines rectangle.}
end.

Don't run this yet. This is the main control structure of
the program - these lines determine the sequence of actions in
the program, but you still have to define GetTopLeft and
GetBottomRight, which actually do the work. Figure 3-4 shows
how the main program uses the plan given at the beginning of
the chapter.

5 6 Introduction to Macintosh Pascal

1) Wait for the user to press the mouse
button, and use that to define the top
and left sides of the rectangle.

2) While the mouse button is sti 11 down,
use the mouse posit i on for the bottom
and right sides of the rectangle, and
draw and then erase the rectangle so
the user can see what the rectang I e
l ooks like et that point.

3) When the user releases the mouse
button , draw the f inal rectangle.

progrom Shapes;
var
theBox: RECT;
begin {main}
ShowDrawi ng;

~GetTopleft(theBox);

~rameRect(theBox);
end.

Figure 3-4 Program Plan and Program Code

ShowDrawing is a predefined routine that moves the
Drawing window to the front . Because you may often enlarge
the programming window to give you room to type your
programs, it is a good idea to begin programs that use the
Drawing window with this procedure call. That way you don't
have to remember to make the Drawing window visible before
you run the program.

The procedure GetTopLeft gets the top and left sides of the
rectangle theBox. In the same way, GetBottomRight gets the
bottom and right sides of the rectangle.

The predefined QuickDraw procedure FrameRect outlines
the rectangle defined by theBox. There is no need to use Moverb
to move the pen before calling FrameRect. The position of the
rectangle on the screen is completely defined by the variable
theBox.

You now need to type the procedures GetTopLeft and
GetBottomRight. These procedures work much like the one used
in procedure LinefoMouse in the LineDraw program.

GetTopLeft must:

57 Chapter 3: Rectangles and Ovals
~~~~~~~~~~~~-

1. Wait for the user to press the mouse button. 

2. Store the mouse position. 

Place an insertion point before the begin. Type: 

procedure GetTopleft(var theBox: RECT); 
begin 
repeat 
until Button; 
GetMouse(theBox.left, theBox.top); {Gets left and top of box.} 
end; 

Look at the first line of the procedure. Following the 
procedure name is a set of parentheses, enclosing the reserved 
word var and a variable declaration: 

procedure GetTopleft(var theBox : RECT); 

That is the formal parameter list of procedure 
GetTupLeft. 

All subprograms, whether procedures or functions, can 
have parameters. The parameters are used to get values from the 
calling program to the subprogram, and to send values back 
from the subprogram to the calling program. That process, of 
sending values to or from the subprogram, is called passing 
values. 

A formal parameter is a variable, that may get an initial value 
passed in when the procedure is called and that may pass its 
value back when the procedure finishes. 

A subprogram can have any number of parameters. You 
declare all the subprogram's parameters in the formal parameter 
list just after the subprogram's name. When you call the 
subprogram, you give a list of variables and values, which are 
called the actual parameters of the subprogram. The actual 
parameters are associated with the formal parameters that are 
in the same position in the formal parameter list. For example: 

Formal parameter list: 

procedure ShowHow(x, y, z : INTEGER); 

Actual parameter list: 

ShowHow(100, 11, anlntVar); 

The formal parameter list appears at the beginning of the 
subprogram itself; an actual parameter list occurs whenever the 
subprogram is called. 



58 Introduction to Macintosh Pascal 

Every parameter declaration in the parameter list must be 
separated from the parameter declaration that follows by a 
semicolon. As with variables, you can declare any number of 
parameters of the same type by giving a list, each one separated 
by a comma. For example: 

procedure ShowHow(x, y, z: INTEGER; var aBool:BOOLEAN); 

Notes 

Macintosh Pascal rearranges all formal parameter lists so 
only one declaration appears on a line. As usual in Pascal 
programs, blank lines and spaces have no meaning, and are 
only for the convenience of human readers. 

There are two kinds of parameters: variable parameters, 
like the one in GetTupLeft, and value parameters. You define 
parameters in the same way you define variables: with the 
parameter's name (or a list of parameter names), a colon(:), and 
a data type. 

Every variable parameter is preceded by the reserved word 
var. Value parameters are not preceded by var. The first 
parameter in this formal list is a variable parameter, while the 
second is a value parameter: 

procedure ShowHow(var x : INTEGER; y : INTEGER); 

In the next example, there are two value parameters, 
followed by two variable parameters: 

procedure ShowHow(x, y : INTEGER; var w, z :INTEGER); 

Within subprograms, variable and value parameters both act 
like ordinary variables. The difference is that a variable 
parameter is actually the same variable as the one given in the 
corresponding position when the subprogram was called, 
although it may have a different name. Whatever you do to the 
value of the variable parameter in the subprogram also changes 
the value of the variable in the calling program. Therefore, you 
use variable parameters when you want to pass a value back to 
the main program. 



___________ 5_SJ_ Chapter 3: Rectangles and Ovals 

With value parameters, an entirely different variable is 
created for the subprogram. The subprogram's value parameter 
variable is initially assigned the value given in the corresponding 
position of the subprogram call. 

Getting back to GetlbpLeft, the procedure loops through the 
repeat/until loop until the user presses the mouse button. The 
mouse position values returned by GetMouse are then shoved 
into the theBox.right and theBox.top. 

You may notice that the same name, theBox, is used for the 
rectangle in the main program and in the procedure GetlbpLeft. 
This is not required. You could just as easily name the rectangle 
anything you like within the procedure GetlbpLeft. 

GetBottomRight uses the same approach, but it needs to do 
a couple of additional steps. It repeats the following until the 
user releases the mouse button: 

1. Get the mouse position . 

.2. Draw the rectangle. 

3. Erase the rectangle. 

These steps are very much like what was used in 
LineTuMouse, except that a rectangle is drawn instead of a single 
line, and you don't need to change the pen pattern because the 
EraseRect routine is available. 

Place an insertion point before begin {main}. Type: 

procedure GetBottomRight(var theBox: RECT); 
begin 
repeat 
GetMouse(theBox.right, theBox.bottom); 
FrameRect(theBox); 
EraseRect(theBox); 
until not Button; 
end; 

The program should look like the one in Figure 3-5. 



60 Introduction to Macintosh Pascal 

prngram Shapes; 
var 

the Box : RECT; 
prncedure GetTopleft (var theBox : RECT); 
begin 
repeat 
until Button; 
GetMouse(theBox.left, theBox.top); {Gets left and top of box.} 

end; 

prncedure GetBottomRight (var theBox: RECT); 
begin 

repeat 
Getmouse(theBox.ri ght, theBox.bot tom); 
FrameRect(theBox); 
EraseRect(theBox); 

unt i1 not Button; 
end; 

begin {main} 
ShowDrawing; {Pre-defined. Brings Drawing window to front.} 
GetTopleft(theBox); 
GetBot tomRi ght(theBox); 
FrameRect(theBox); {Pre-defined. Outlines rectangle.} 

end. 

Figure 3-5 Program Shapes 

One line in that procedure which may look odd to you is: 

until not Button; 

not is a logical operator that reverses the BOOLEAN value of 
whatever follows. In other words, if the statement following is 
TRUE, not makes it FALSE; if the statement following is FALSE, 
not makes it TRUE. repeat/until loops until the condition 
becomes TRUE. In this case, the program must loop until the 
user is no longer holding the mouse button down, i.e., when 
Button returns FALSE. The value of the logical expression 

not Button 

is FALSE when the mouse button is down, and becomes TRUE 
when the mouse button is up. 



61 Chapter 3: Rectangles and Ovals 
~~~~~~~~~~~~ 

Notes

At this point, you can't see all of the text in the program at
once, because the program has too many lines to fit in the
yvindow. You can scroll the window by using the scroll
bar on the right side of the window. Click in the arrows at
the top and bottom of the scroll bar to scroll the window up
and down a line at a time. You can also use the mouse to
click and drag the small rectangle that is inside the scroll
bar. When you move that box, called the elevator, the
document scrolls to the corresponding position. Another
choice is to click in the gray part of the scroll bar. That
scrolls the program to the next full window of text. You can
also change the type size, so that more of the program is
visible in the window. Choose the fype Size ... option from
the Windows menu. (You can also use that option to get
larger type, if you find that the ordinary size strains your
eyes.)

Run the program. To use it, put the mouse pointer
somewhere in the Drawing window, and press the mouse
button. Hold the button down and move the mouse down and to
the right. A shadowy box appears. When you let go of the
button, the box is drawn in solid lines, and the program ends.

Try running it with the Step-Step command from the Run
menu, to see how the program responds to the mouse button.

RECT variables are also used to define ovals. An oval is drawn
so it fits inside the rectangle defined by the RECT, as shown in
Figure 3-6. The FrameOval call works the same as FrameRect.
It has one parameter, like FrameRect, and the parameter must be
a RECT. You can substitute the word FrameOval for FrameRect in
the program, and it will draw ovals in place of rectangles.

62 Introduction to Macintosh Pascal .

top left~
~~-~~·"'-'· · ··········

~defining rect

cesulting ,,.,:;""" -;-, .. -,..,. -.....--~~ -.....,

bottom right

Figure 3-6 Defining an Oval With a RECT

Drawing More Shapes

The rest of this chapter builds the Shapes program into a small
version of MacPaint.

It is easy enough to write little programs that draw one kind
of shape, like the version of Shapes you have already used. It is
not that much harder to make a program that allows the user to
choose which kind of shape is drawn, the kind of lines used to
draw the shape, and the fill pattern.

The hardest part of making this "mini-Paint" program is
finding out what the program user wants to draw.

You have seen, in the last version of LineDraw, how WriteLn
and Read can be used to find out what the user wants. That is
how you normally communicate with the user in Pascal; the
Macintosh is a graphics- and mouse-based computer, though.
When you use MacPaint, you choose what shapes you want to
draw with onscreen buttons. Onscreen buttons are used to
take the place of physical buttons or function keys. When the
program user clicks the mouse button within the borders of an
onscreen button, the program carries out the action
corresponding to that button.

Buttons are small outlined areas on the screen, often
containing some identifying text. When you choose the Save
command, for example, the box that asks you for the new file
name has two buttons: Save and Cancel.

To use on-screen buttons in Shapes the program must:

63 Chapter 3: Rectangles and Ovals
~~~~~~~~~~~~ 

1. Define the sizes and positions of the buttons on the screen, 
and draw them, complete with identifying text . 

.2. Repeat the following until a valid button is chosen. 
a. Wait for the user to press the mouse button. 
b. Get the mouse position. 
c. check each onscreen button to see if the mouse is in that 

button. If the pointer is in a button, invert the image of the 
button. Wait for the mouse button to come up, then restore 
the onscreen button to its original appearance. 

3. When a choice has been made, go off and do it. 
The first improved version of Shapes has only two buttons: 

one that allows you to draw a rectangle, and one that stops the 
program. Later in this chapter the program is expanded so that 
there are a number of other choices. The basic program is the 
same, though. Notice that the program design given above makes 
no mention of a number of allowable choices. It is written to be 
general enough to allow expansion of the resulting program. 

Before you begin typing in the new parts of the program, 
follow these steps to convert the original program Shapes to a 
procedure DrawRectangle: 

1. If you changed the FrameRect calls to FrameOval calls in 
your program, change them back to FrameRect . 

.2. Remove the lines: 

var 
theBox : RECT; 

3. Place an insertion point before begin {main} and type: 

procedure DrawRectangle; 
var 
theBox : RECT; 

4. Remove the comment {main} after begin. 

5. Change the period at the end of the program to a semicolon. 

You should now have three procedures, as shown in Figure 
3-7. These procedures are now ready to be used in a new version 
of Shapes. 



64 Introduction to Macintosh Pascal 

program Shapes; 

procedure GetTopleft (var theBox: RECT); 
begin 
repeat 
until Button; 
GetMouse(theBox.left, theBox.top); {Gets left and top of box.} 

end; 

procedure GetBottomRight (var theBox: RECT); 
begin 
repeat 

GetMouse(theBox.ri ght, theBox.bot tom); 
FrameRect(theBox); 
EraseRect( theBox); 

until not Button; 
end; 

procedure DrawRectangle; 
var 
theBox: RECT; 

begin 
ShowDrawing; {Pre-defined. Brings Drawing window to front.} 
GetT opleft( theBox); 
Get Bot tomRi ght( the Box); 
FrameRect(theBox); {Pre-defined. Outlines rectangle.} 

end; 

Figure 3·7 

This new program produces buttons that are all the same 
size. It is a good practice to collect fixed values, such as the sizes 
of buttons, in the beginning of the program, where they can be 
easily found and changed. Fixed values are called constants. 
Constants can have names that represent them, the same way 
variables have names. Unlike variables, constant values cannot 
change while the program is running. The advantage of using 
named constants instead of using the numbers directly in the 



65 Chapter 3: Rectangles and Ovals 
~~~~~~~~~~~~ 

program is that, if you later want to change the value of some
constant, you don't have to search for every place you used it.

Place an insertion point before procedure GetTupLeft.
Type the following.

con st
NUMBUTS = 2; {The number of buttons.}
BUTHEIGHT=20; {The height of each button, in pixels.}
BUTLEFT = 20; {The left side of all buttons.}
BUTRIGHT = 60; {The right side of all buttons.}
SPACE = 5; {Used to space button labels.}

I capitalize all my named constants everywhere they are
used, so that they stand out. As with variables, you can use
upper or lower case characters in constant names; BUTHEIGHT
is the same as butheight.

The rules for constant names are the same as the rules for
program and variable names: they can contain up to 255 letters,
numbers, and underscores.

The insertion point should now still be just before procedµre
GetTupLeft. Type:

type
choices = array[1 .. NUMBUTS] of RECT; {The limits of each
button.}

The word "type'~ like const and var, names a section of the
program, called a declaration part.

The type declaration part contains definitions of data types.
Up to this point, you have used predefined data types including
the simple types INTEGER, BOOLEAN, and CHAR and the
structured data type RECT. You can declare your own data types
in a huge variety of ways in Pascal programs.

An array, like a record, contains a number of parts, each of
which is a variable by itself. The difference between an array
and a record is that every part of an array has the same data
type, and array parts, called elements, are identified by numbers
in square brackets ([]) instead of field names following a period.
If a record is like a house that contains several rooms, each
identified by a name, an array is like a street lined with identical
houses, each of which is identified by a number.

66 Introduction to Macintosh Pascal
~~~~~~~~~~~~ 

You declare a new type by giving the type name, an equal 
sign, and the type definition. You end the type definition with a 
semicolon. For example: 

showHowType = array[1 .. 10] of INTEGERS; 

The numbers in square brackets define how many elements 
the array has and what their names are. An array of type 
showHowType has ten elements, each of which is an INTEGER. 
No array of this type exists until you declare one in a var 
declaration part or in the formal parameter list of a subprogram. 
Suppose the program's var part contains this declaration: 

showHow : showHowType; 

When the program starts running, an array showHow is 
created according to the plan specified in the declaration of 
showHowType. It has these ten elements: 

showHow[l] 
showHow[2] 
showHow[3] 
showHow[4] 
showHow[5] 
showHow[6] 
showHow[7] 
showHow[8] 
showHow[9] 
showHow[lO] 

The rules for type names are the same as the rules for 
program, variable, and constant names: they can contain up to 
255 letters, numbers, and underscores. 

The type declarations of a program must come before the 
var declarations of the program, if there are any. In any case, the 
type declarations must come before any functions, procedures, 
and the main program. Subprograms can also have their own 
type declarations. 

The const declarations must come before the type and var 
declarations, if there are any, and also before any functions, 
procedures, and the main program. Subprograms can also have 
their own const declarations. 

Once you've defined a data type, you can create a variable of 
that type in the same way you create a variable of a predefined 
type. 



67 Chapter 3: Rectangles and Ovals 
~~~~~~~~~~~~ 

So, Choices is a new data type. It defines a group of RECTu.
Notice the part of the definition [l .. NUMBUTS], which defines
the number of elements in the array. NUMBUTS is the constant
that indicates the number of buttons. At the moment its value is
2. Figure 3-8 gives a representation.of a Choices-type array. Note
that Choices is not a variable, but it is a new type of variable. You
can define a variable of type Choices in the same way you
defined variables of type INTEGER, CHAR, BOOLEAN, or RECT.
Pascal then sets up a storage area for that variable, a set of "file
drawers" fitting the description given in the type definition.

theChoi ces[1]top
theChoi ces[11. left

I
t heCho1ces[1) bot tom
theCho1ces[1) n ght

theCho1 ces[2). top
[1] the Choi ces[2). left

theChoices [2] ---+-theChoi ces [2).bot tom

[3] \ theCho1ces [2] right

theCho1ces[3) top
theCho1 ces[3) left
theChoi ces[3).bot tom
theChoi ces[3). ri ght

Figure 3-8 Choices-type Array

It is now time to define the variables for this program. Place
an insertion point before procedure GetTupLeft and type:

var
theChoices : choices;
stopProgram : BOOLEAN; (When TRUE, the program
stops.)
oldDrawingRect : RECT;
whichBut : INTEGER; (The button that was pressed.)

68 Introduction to Macintosh Pascal

Don't worry about these variables for now. They are
explained later.

The insertion point should still be before GetlbpLeft. Type:

procedure DrawButtons (var theChoices : choices);
var

n: INTEGER;
begin
for n : = 1 to NUMBUTS do

The for statement is a type of looping statement.
So far you have seen the repeat/until and while loops,

which continue looping until some condition becomes FALSE.
There are times, though, when you need to loop a fixed number
of times. In those cases, you use the for statement.

A for statement has an index variable, an initial value for
the index variable, and a final value for the index variable. In the
statement:

for n := 1 to NUMBUT$ do

the index variable is n, the initial value is 1, and the final
value is NUMBUTS.

When the for statement begins, the index variable is set to
the initial value. The statement following the do is executed, and
the index variable's value is increased by one. The value of the
index variable is then compared with the final value. If the index
variable is greater than the final value, the for statement is
finished. Otherwise, the statement after the do is done again,
the index variable's value is increased and compared with the
final value, and so on, until the value of the index variable is
greater than the final value.

This for loop is equivalent to:
n := 1;
while n < = NUMBUTS do
n := n + 1;

The symbols "< =" mean "less than or equal to:'
Very often you need to have more than one statement in a

for loop. Pascal allows you to use a compound statement any
place you can use a single statement. A compound statement is
any group of statements surrounded by begin and end.

69 Chapter 3: Rectangles and Ovals
~~~~~~~~~~~-

The insertion point should be right after the "do" you just 
typed. Type: 

begin 
SetRect(theChoices[n], BUTLEFT,n * BUTHEIGHT, BUTRIGHT, 

(n+1) * BUTHEIGHT); 
FrameRect(theChoices[n]); 
MoveTo(BUTLEFT + SPACE,(n + 1) * BUTHEIGHT-SPACE); 

Those statements draw the buttons on the screen. SetRect, 
as mentioned before, loads a RECT variable with the four sides 
of the rectangle. FrameRect draws that button's outline. Move.cb 
moves the pen into position to write the text that identifies that 
button. 

Notice the way the index variable n is used in those 
statements. The most common use of for loops in Pascal 
programs is to go through an array and do something to each 
element. Suppose you have an array called anArray, which has 
ten elements numbered one through ten. Suppose further that 
you want to assign each element the value 25. You could give ten 
separate statements like this: 

anArray[1) := 25; 
anArray[2) := 25; 

Because array elements are numbered, you can use a for 
loop to repeatedly act on each element. For example: 

for n : = 1 to 10 do 
anArray[n]: = 25; 

The program uses the same same sort of approach. 
You also have to put a piece of text in each button that 

identifies the button. That means you have to do something 
different depending on the value of the index variable n. 

You can do that using if statements (don't type this): 

If (n = 1) then WriteDraw('Box'); 
If (n = 2) then WriteDraw('Stop'); 



70 Introduction to Macintosh Pascal 
~~~~~~~~~~~~ 

(WriteDraw is a predefined procedure much like WriteLn,
except it writes in the Drawing window and is defined in
QuickDraw.) That would be.perfectly fine, but there is an easier
way. Type:

case n of
1: WriteDraw('Box');
2: WriteDraw('Stop');
end; {ends case}
end; {ends for loop}
end; {ends DrawButtons}

The action of a case statement is exactly like a sequence of
if statements, except that it involves less typing.

The case statement compares the value of n, called the
selector to each value given on the left, called case constants.
When a match is found, the statement following the colon (:) is
executed. case statements, like if statements, are used to make
decisions. While an if statement has only two choices (either do
something or don't do it), a case statement can have as many
choices as you like.

The way this procedure is written, when you want to add a
new button, all you have to do is increase the value of NUMBUTS
and add a new case constant for the new button, along with a
WriteDraw statement giving the text that appears in the button.
The button is then drawn automatically.

The next procedure sets up the screen for this program.
This program needs to have the drawing window expanded

so that it fills the whole screen, so that you have room to draw.
Windows are defined in terms of REC'Tu. You can call the
predefined procedure SetDrawingRect to change the Drawing
window to a new size and position. That has the same effect as
changing the size and position of the Drawing window with the
mouse. In this case, the window is expanded to fill the screen.
The predefined procedure GetDrawingRect is also called in this
procedure. That gets the initial size of the Drawing window, so
that you can put it back the way it was it when the program is
finished.

71 Chapter 3: Rectangles and Ovals
~~~~~~~~~~~~ 

The insertion point should still be before procedure 
GetTupLeft. Type: 

procedure SetUp (var oldDrawingRect: RECT; var theChoices: 
choices); 
var 
tempBox: RECT; {Holds new Drawing window size.} 
begin 
GetDrawingRect(oldDrawingRect); 
SetRect(tempBox, 0, 40, 520, 350); 
SetDrawingRect(tempBox); 
ShowDrawing; 
DrawButtons(theChoices); 
end; 

The next procedure waits for the user to "press" a button, 
and returns the number of the button picked. The basis of the 
procedure is a predefined QuickDraw function PtlnRect, which 
returns TRUE if a point in the Drawing window is within a given 
rectangle. You give a variable of type RECT to define the 
rectangle, and a variable of type POINT to define the point on the 
screen. POINT is a QuickDraw-defined record that has two 
INTEGER fields: v, which contains a vertical coordinate and h, 
which contains a horizontal coordinate. The procedure goes 
through the following steps: 

1. Reset the variable whichBut that indicates the choice . 

.2. Wait for the mouse button to be pressed. 

3. Get the mouse position. 

4. Go through the array of buttons (theChoices) with a for 
loop and use .PtlnRect to find out if the mouse pointer is in 
one of the buttons. 

5. If the mouse pointer is in a button, invert the image of the 
button with the QuickDraw procedure InvertRect. That 
procedure makes every black pixel in the RECT white, and 
every white pixel black. Also, set whichBut to the index 
number of the button containing the mouse pointer. Then, 
wait for the user to let go of the mouseButton. When the user 
lets go of the mouse button, call InvertRect again, to restore 
the button to its original appearance, and go on. 

6. When the for loop finishes, this procedure returns to the 
main program. 



72 Introduction to Macintosh Pascal 

If the user clicks the mouse button with the mouse inside a 
button, this procedure returns the index number of that button 
in the array theChoices. If the user clicks the button outside one 
of the buttons, this procedure returns a 0 as the index number. 

The insertion point should still be before procedure-
GetTupLeft. Type: 

procedure PickedOne(var theChoices : choices; var whichBut: 
INTEGER); 
var 
n: INTEGER; 
thePoint: POINT; 
begin 
whichBut:= O; {Resets this value.} 
repeat {Loops here until the mouse button is pressed.} 
until Button; 
GetMouse(thePoint.h, thePoint.v); 
for n : = 1 to NUMBUTS do 
if PtlnRect(thePoint, theChoices[n]) then 
begin 
I nvertRect(theChoices[ n]); 
whichBut : = n; 
repeat 
until not Button; 
I nvertRect(theChoices[ n ]); 
end; {if} 
end; {picked} 

The final part of the program is the main program. 
The main program must: 

1. Set the BOOLEAN stopProgram to FALSE. This is set to TRUE 
when the user picks the Stop button from the screen. 

2. Set up the screen and buttons. (Call procedure Setup.) 

3. Loop through the following until stopProgram is TRUE: 

a. Call PickedOne to get whichBut. 

b. Either do nothing (if whichBut is 0), call DrawRectangle 
(if whichBut is 1) or set stopProgram to TRUE, if 
whichBut is 2. 



73 Chapter 3: Rectangles and Ovals 

4. Finally, after stopProgram becomes TRUE, restore the 
Drawing window to its original size. 

Make an insertion point past the end of the program, after 
the last end (the one for procedure DrawRectangle). Type: 

begin {main} 
stopProgram : = FALSE; 
SetUp(oldDrawingRect, theChoices); 
repeat 
PickedOne(theChoices, whichBut); 
case whichBut of 
O:; {Empty statement.} 
1: DrawRectangle; 
2: stopProgram : = TRUE; 
end; 
until stopProgram; 
SetDrawingRect(oldDrawingRect); 
end. 

Choose Save from the File menu to save this version of the 
program. 

The program should now look like the program in Figure 3-9. 

program Shapes; 
con st 

NUMBUTS = 2; {The number of but tons.} 
BUTHEIGHT = 20; {The height of each button, in pixels.} 
BUTLEFT = 20; {The left side of all buttons.} 
BUTRIGHT = 60; {The right side of all buttons.} 
SPACE = 5; {Used to space button labels.} 

type 
choices = orroy[ 1..NUMBUTS) of RECT; {The 1 i mi ts of each button.} 

YOr 
theChoices : choices; 
stopProgram : BOOLEAN; {When TRUE, the program stops.} 
oldDrawingRect: RECT; 
whichBut: INTEGER; {The button that was pressed.} 

procedure DrawButton~ (vor theChoices: choices); 
YOr 
n: INTEGER; 

begin 
for n := 1 to NUMBUTS do 
begin 



7 4 Introduction to Macintosh Pascal 
~~~~~~~~~~~ 

SetRect(theChoices[n), BUTLEFT, n * BUTHEIGHT, BUTRIGHT, (n + 1) * BUTHEIGHT);
FrameRect(theCh.oi ces[n));
MoveTo(BUTLEFT + SPACE, (n + 1) * BUTHEIGHT - SPACE);
case n of

1:
WriteDraw('Box');

2:
Wri teDraw('Stop');

end; {ends case}
end; {ends for loop}

end; {ends DrawButtons}

procedure Setup (Yar oldDrawingRect: RECT;
Y&r theChoices : choices);

Y8r
tempBox: RECT; {Holds new Drawing window size.}

begin
GetDrawi ngRect(o 1 dDrawi ngRect);
SetRect(tempBox, 0, 40, 520, 350);
SetDrawi ngRect(tempBox);
ShowDrawing;
DrawBut tons(the Choices);

end;

procedure PickedOne (Yar theChoices: choices;
Y&r whichBut: INTEGER);

Y8r
n: INTEGER;
thePoint: POINT;

begin
whichBut := O; {Resets this value.}
repeat {Loops here until the mouse button is pressed.}
untn Button;
GetMouse(thePoint.h, thePoint.v);
for n := 1 to NUMBUTS do
if PtlnRect(thePoint, theChoices[n)) then
begin

I nvertRect(theChoi ces[n));
whichBut := n;
repeat
untn not Button;
I nvertRect(theChoices[n));

end; {if}
end; {pi eked}

7 5 Chapter 3: Rectangles and Ovals
~~~~~~~~~~~-

procedure GetTopLeft (var theBox: RECT); 
begin 
repeat 
until Button; 
GetMouse(theBox.left, theBox.top); {Gets left and top of box.} 

end; 

procedure GetBottomRight (var theBox: RECT); 
begin 
repeat 

Get Mouse( theBox.ri ght, theBox.bot tom); 
FrameRect( theBox); 
EraseRect(theBox); 

unti I not Button; 
end; 

procedure DrawRectangle; 
var 

theBox : RECT; 
begin 

ShowDrawing; {Pre-defined. Brings Drawing window to front.} 
GetT opleft( theBox); 
GetBot tomRi ght( theBox); 
FrameRect(theBox); {Pre-defined. Outlines rectangle.} 

end; 

begin {main} 
stopProgram :=FALSE; 
Setup(o l dDrawi ngRect, theChoi ces); 
repeat 

Pi ckedOne(theChoi ces, whichBut); 
case which But of 
0: 
; {Empty statement.} 

I: 
DrawRectangle; 

2: 
stopProgram := TRUE; 

end; 
until stopProgram; 
SetDrawi ngRect(o 1 dDrawi ngRect); 

end. 

Figure 3-9 



76 Introduction to Macintosh Pascal 

Notice that the first case constant, 0, is followed by a 
semicolon. That creates an empty statement, so nothing is done 
if whichBut is equal to 0. You must have a case constant for every 
value the selector might have. In this program, whichBut can be 
equal to 0, 1, or 2. 

(Actually, although a case constant must. exist for every 
possible value of the selector in a case statement in standard 
Pascal, you can end a case statement in a Macintosh Pascal 
program with a case selector of otherwise, which is chosen if 
none of the case constants match the selector.) 

Run the program a few times. 
Tu use it: 

1. Click in the box button . 

.2. Move the mouse pointer to the place where you want the 
upper left corner of the box to appear. 

3. Press the mouse button, and hold it down while moving the 
mouse down and to the right. 

4. Release the mouse button when you have reached the spot 
you've chosen for the bottom right corner. 

5. Click in a button for another box, or click in the Stop button. 

If you want to add new buttons, all you have to do is : 

1. Increase the value of the constant NUMBUTS . 

.2. Add a new case constant to the case statement in 
DrawButtons with some text for the button. 

3. Write a procedure that does whatever that button is 
supposed to do. 

4. Add a new case constant and procedure call to the case 
statement in the main program. 

The buttons are displayed in numerical order, so that the 
button represented by the case constant 1 (as well as the position 
in the array theChoices(1]) is the top button. If you add a new 
button, you may want to move the Stop button down to the 
bottom, so your new choice is invoked by the case constant 2, 
and stopped by the case constant 3. 

As an example, the following section adds ovals to the shapes 
that can be draw by this program. Follow these steps: 



77 Chapter 3: Rectangles and Ovals 
~~~~~~~~~~~-

1. At the beginning of the program, change the 2 following
NUMBUTS to 3, so that line is:

NUMBUTS = 3; {The number of buttons.}

2. Place an insertion point after the "2:" in procedure
DrawButtons and type:

WriteDraw('Oval ');
3:

3. Place an insertion point before the line begin {main} and
type:

procedure DrawOval;
var
size: RECT;
begin
GetTopLeft(size);
GetBottomRight(size);
FrameOval(size);
end;

4. Place an insertion point after the "2:" in the case statement
in the main program and type:

DrawOval;
3:

5. Choose Save from the File menu.

The program should now look like the one in Figure 3-10.

program Shapes;
canst

NUMBUTS = 3; {The number of buttons.}
BUTHEIGHT = 20; {The height of each button, in pixels.)
BUTLEFT = 20; {The left side of all buttons.}
BUTRIGHT = 60; {The right side of all buttons.}
SPACE = 5; {Used to space button labels.}

type
choices = array[1..NUMBUTS] of RECT; {The 1 i mi ts of each button.)

var
theChoices: choices;
stopProgram : BOOLEAN; {When TRUE, the program stops.)
oldDrawingRect: RECT;
whichBut : INTEGER; {The button that was pressed.)

78 Introduction to Macintosh Pascal

procedure DrawButtons (YBr theChoices: choices);
var
n: INTEGER;

begin
for n := 1 to NUMBUTS do
begin
SetRect(theChoices[n), BUTLEFT, n * BUTHEIGHT, BUTRIGHT, (n + 1) * BUTHEIGHT);
FrameRect(theChoi ces[n]);
MoveTo(BUTLEFT +SPACE, (n + 1) * BUTHEIGHT - SPACE);
case n of
I:
Wri teDraw('Box');

2:
Wri teDraw('Ova 1 ');

3:
Wri teDraw('Stop');

end; {ends case}
end; {ends for loop}

end; {ends DrawButtons}

procedure Setup (var oldDrawingRect: RECT;
var theChoices : choices);

YBr
tempBox: RECT; {Holds new Drawing window size.}

begin
GetDrawi ngRect(o 1 dDrawi ngRect);
SetRect(tempBox, O, 40, 520, 350);
SetDrawi ngRect(tem~Box);

ShowDrawi ng;
DrawBut tons(theChoi ces);

end;

procedure PickedOne (var theChoices: choices;
YBr whichBut: INTEGER);

YBr
n: INTEGER;
thePoint: POINT;

begin
whichBut := O; {Resets this value.}
repeat {Loops here until the mouse button is pressed.}
until Button;
GetMouse(thePoi nt.h, the Point. v);
for n :: I to NUMBUTS do
if Pt I nRect(thePoi nt, theChoi ces[n]) then
begin

79 Chapter 3: Rectangles and Ovals

I nvertRect(theChoi ces[n));
whichBut := n;
repeat
until not Button;
I nvertRect(theChoi ces[n));

end; {if}
end; {picked}

procedure GetTopleft (vor theBox : RECT);
begin
repeat
until Button;
GetMouse(theBox.left, theBox.top); {Gets left and top of box.}

end;

procedure GetBottomRight (vor theBox : RECT);
begin
repeat

GetMouse(theBox.ri ght, theBox.bot tom);
FrameRect(theBox);
EraseRect(theBox);

until not Button;
end;

procedure DrawRectangle;
Hr

theBox: RECT;
begin

ShowDrawing; {Pre-defined. Brings Drawing window to front.}
GetTopLeft(theBox);
GetBot tomRi ght(theBox);
FrameRect(theBox); (Pre-defined. Out 1 i nes rectangle.}

end;

procedure Drawoval;
Yl'lr

size: RECT;
begin
GetTopLeft(si ze);
GetBot tomRi ght(si ze);
Frameova 1 (size);

80 Introduction to Macintosh Pascal
~~~~~~~~~~~~ 

end; 
begin {main} 

stopProgram :=FALSE; 
SetUp(o l dDrawi ngRect, theChoi ces); 
r ·~ peot 

PickedOne(theChoi ce s, which But); 
cose whi chBut of 

0 : 
; {Empty statement.} 

1 : 
DrawRectangl e; 

2 : 
Drawoval ; 

3 : 
stopProgram :=TRUE; 

end; 
unt i I stopProgram; 
SetDrawi ngRect(ol dDrewi ngRect); 

end. 

Figure 3·10 

Notice another advantage of writing small modules that do 
simple things: the DrawOval procedure takes advantage of the 
work you already did writing DrawRectangle, and calls the same 
procedures to get the top left corner and the bottom right 
corner. 

Run the program. This time you are presented with two 
types of shapes that you can draw: ovals and boxes. Use this 
program as you used the last version. 

Shapes is used for the rest of this chapter to explore some of 
the capabilities of QuickDraw. 

All About th e Macintosh Pen 

I mentioned before that you can change the "ink" in the 
Macintosh "pen" by simply asking. The Mac pen has a set of 
characteristics, any of which can be changed. These are stored 
in a record of type PENSTATE. A PENSTATE has the following 
five fields : 

• pnLoc, which is of the type POINT. This holds the location of 
the pen. You change this value by using Move:Ib or Line:Ib, or 
any other procedure that draws on the screen. 



81 Chapter 3: Rectangles and Ovals 
~~~~~~~~~~~~ 

• pnSize, which is also a POINT. This is the height and width of
the pen. Although a POINT is normally used to store a
location, it can actually hold any two INTEGER values. In this
case the two numbers have nothing to do with a position on
the screen, but determine the width and height in pixels of a
line drawn by the pen. You use the procedure PenSize to
change this value.

• pnPat, which is of the type PATTERN. (You don't need to worry
about the details of this QuickDraw data type for now.
Chapter 9 uses it in more detail.) If you have used MacPaint,
you are familiar with a wide variety of pen patterns. Each of
the "paint" choices at the bottom of the screen is actually a
different pen pattern. So far, you have only used the normal
pen pattern, black, in this book. Actually, though, the pen
pattern is a 8-by-8 block of pixels, any of which can be black
or white. When you draw a line, it is drawn using the current
pen pattern. You change the pen pattern with PenPat, as you
did in Chapter 2. You can give one of the standard QuickDraw
patterns (black, white, gray, ltGray, and dkGray) or you can
define your own pattern.

• pnMode, which is an INTEGER. When you draw a line, the
pnMode determines exactly how the pen pattern is appears
on the screen. The normal mode is patCopy, which does the
simplest thing: it copies the pen pattern to the screen. Because
the pen starts out with a black pattern and a mode of patCopy,
you get simple, black lines. In other modes, QuickDraw
compares the pixel that is already on the screen and the
corresponding pixel in the pen pattern. The pen mode
determines a logical operation that is used in comparing the
two pixels. In this logical comparison, a black pixel is
equivalent to TRUE, and a white pixel is equivalent to FALSE.
If the result of the comparison is black, the pixel on the screen
becomes black. Here are descriptions of the three main logical
operations, AND, OR, and XOR. You have seen AND and OR
before, in Chapter 2.

1. (conditionOne AND condition'I\vo) is TRUE only if both
conditions are TRUE. If either is FALSE, the result is FALSE .

.2. (conditionOne OR condition'I\vo) is TRUE if either one is
TRUE or if both are TRUE. The result is FALSE only if both
conditions are FALSE.

82 Introduction to Macintosh Pascal

3. (conditionOne XOR conditio:rffivo) is TRUE if only one of the
conditions is TRUE. If both conditions are TRUE or if both
conditions are FALSE, the result is FALSE. XOR is short for
exclusive or.

Extending that concept to black and white pixels, the result
of pixelOne XOR pixel'I\vo is black if only one of them is black to
begin with. If both are black, the result is white. If both are
white, the result is white. If only one is black, the result is black.
This mode is often used because it is fully reversible. If you use
patXOr on a portion of the screen once, and then on the same
portion again with the same PenPat, the result looks exactly like
it did before you did anything.

There are eight pen modes on the Mac. They are described
in the QuickDraw appendix of the manual that came with
Macintosh Pascal.

You can extend the program Shapes to change any of these
pen characteristics.

The following additions to Shapes add buttons to make the
Pen's line wider or thinner.

1. Change the number following NUMBUTS to 5. That line
should now be:

NUMBUTS = 5; {The number of buttons.}

.2. Place an insertion point after the "3:" in procedure
DrawButtons and type:

WriteDraw('Thick');
4: WriteDraw('Thin');
5:

3. Place an insertion point before begin {main} and type:

procedure DemoPen;
var
tempBox : RECT;
begin
SetRect(tempBox, BUTLEFT, (NUMBUTS+2)*BUTHEIGHT,

BUTRIGHT, (NUMBUTS+4)*BUTHEIGHT);
EraseRect(tempBox);
FrameRect(tempBox);
end;

83 Chapter 3: Rectangles and Ovals
~~~~~~~~~~~-

This procedure demonstrates the way the pen is currently 
set. One of the rules of good Macintosh programming is that you 
should always let your user know what is going on. This 
procedure draws a little sample below the buttons, so that user 
can see the current pen size. It begins by creating a RECT that is 
calculated to fall below all of the buttons. It then calls the 
QuickDraw procedure EraseRect to erase that section of the 
screen, so that whatever is there already is removed. Then an 
oval is drawn. 

4. 1Jpe the routine that makes the line thicker. It gets the 
current pen state by calling the predefined procedure 
GetPenState, and then adds one pixel to the pen's width and 
height. It then calls PenSize to change the pen's size. 

Place an insertion point before begin {main} and type: 

procedure Thickline; 
var 
oldState : PENSTATE; 
width, height: INTEGER; 
begin 
GetPenState(oldState); 
width:= oldState.pnSize.h + 1; {Thickens pen 1 pixel in width.} 
height:= oldState.pnSize.v + 1; {Thickens 1 pixel in height.} 
PenSize(width, height); 
DemoPen; 
end; 

5. 1Jpe the routine that makes the line thinner. It uses the same 
kind of logic as ThickLine. 

The insertion point should still be right before begin 
{main}. Type: 

procedure Thinline; 
var 
oldState: PENSTATE; 
width, height : INTEGER; 
begin 
GetPenState(oldState); 
width:= oldState.pnSize.h - 1; 
height : = oldState.pnSize.v - 1; 
PenSize(width, height); 
DemoPen; 
end; 



84 Introduction to Macintosh Pascal 

6. Alter the main program to use the new routines. 
Place an insertion point before the repeat and type: 

DemoPen; 

Place an insertion point after the "3 :" and type: 

Thickline; 
4 : Thinline; 
5: 

7. Choose Save from the File menu to save the current version 
of this program. 

The three new procedures and the altered main program 
are shown in Figure 3-11. 

procedure DemoPen; 
var 

tempBox : RECT; 
begin 
SetRect(tempBox, BUTLEFT, (NUMBUTS + 2) * BUTHEIGHT, BUTRIGHT, (NUMBUTS + 4) * 

BUT HEIGHT); . 
EraseRect(tempBox); 
FrameRect(tempBox); 

end; 

procedure Thickline; 
var 
oldState: PENSTATE; 
width, height : INTEGER; 

begin 
GetPenState(o 1 dState); 
width:= oldState.pnSize.h + 1; {Thickens pen 1 pixel in width.} 
height:= oldState.pnSize.v + 1; {Thickens 1 pixel in height.} 
PenSi ze(wi dth, height); 
DemoPen; 

end; 

procedure Thinline; 
var 

oldState: PENSTATE; 
width, height: INTEGER; 



85 Chapter 3: Rectangles and Ovals 
~~~~~~~~~~~-

begin
GetPenState(ol dState);
width:= oldState.pnSize.h - 1;
height:= oldState.pnSize.v - 1;
PenSi ze(width, height);
DemoPen;

end;

begin {main}
stopProgram :=FALSE;
SetUp(ol dDrawi ngRect, theChoi ces);
DemoPen;
repeat

Pi ckedOne(theChoi ces, whi chBut);
case whichBut of
0:
; {Empty statement.}

1:
DrawRectangl e;

2:
Drawoval;

3:
Thickline;

4:
Thinline;

5:
stopProgram := TRUE;

end;
until stopProgram;
SetDrawi ngRect(ol dDrawi ngRect);

end.

Figure 3·11

Run this program.
You use the program in a way much like the way you used

the previous versions of Shapes. You can now change the
thickness of the lines that are drawn by using the Thick and
Thin buttons. Click on the Thick buttons a couple of times. Then
click in one of the shape buttons (box or oval) and draw a shape.

You might want to try drawing something-a face for
example.

. -a:

~
I

86 Introduction to Macintosh Pascal

Do More

When you make the changes suggested in this section, you
may need help getting your program to run. Problems in
programs are called "bugs;' and the process of finding the
bugs and fixing them is called "debugging:' Macintosh
Pascal gives you some capabilities that make debugging
pretty easy. If you need help debugging your program, read
the debugging chapter of this book.

1. 'fry adding a new button to change the pen mode. Use
the PenMode QuickDraw procedure to change the
mode.

You call PenMode like this:

PenMode(theMode);

The value theMode given above should be one of
these mode constants:

• patCopy, which is the normal mode. The pattern is
copied directly to the screen.

• patXOr, which performs an exclusive OR operation on
the pixels in the pattern and on the screen. If both are
black or white, the resulting pixel is white. If one pixel is
black and one is white, the resulting pixel is black.

• patOr, which performs an OR operation on the pixels in
the pattern and on the screen. If one or both of the pixels
is black, the resulting pixel is black.

• patBic turns all pixels that are black in the pattern
white on the screen. This is essentially erase mode.

You can also add the prefix "not" to each of these, to
form one word. These four additional modes are:
notPatCopy, notPatOr, notPatXOr, and notPatBic.
These reverse all the pixels in the pattern, and then
perform the transfer operation.

87 Chapter 3: Rectangles and Ovals

2. Add another button that changes the pen pattern. Use
the PenPat procedure to change the pen pattern. Call
PenPat like this:

PenPat(thePattern);

The placeholder thePattern can be one of the
predefined pattern variables: white, black, gray, ltGray,
or dkGray. You can also create your own patterns. The
way to do that is described in Chapter 9, Advanced
QuickDraw.

You should show some feedback so that the user
can see the state of the pen. Change DemoPen so it
demonstrates the pen's mode as well as its pattern and
thickness. You should call DemoPen after changing the
pen, so the new pen settings are demonstrated.

3. Try altering your pen mode or pen pattern button so a
single button can handle all the possible choices. You
can have the choice determined by how long the mouse
button is held down, or by how many mouse clicks
there are, or by which part of the button the mouse is
in when it is clicked.

4. Try adding some MacPaint features, such as mirrors,
which creates a mirror image of what the user is
drawing.

88 Introduction to Macintosh Pascal

QUICK SUMMARY

Chapter 3 explores the QuickDraw graphics package. It
discusses how to draw rectangles and ovals, the details of the
Macintosh's electronic pen, and how to use onscreen buttons to
get information from the program user. It also discusses arrays,
case statements, and how good program structure makes a
program easy to understand and easy to improve or extend. The
following statements, routines, and concepts are introduced.

Actual parameter is a value or variable given in a call to a subprogram.

array is a reserved word used to define a variable made up of a numbered
set of identical elements. You define an array by giving the limits of
the indexes of the array, enclosed in square brackets and separated
by two periods. You refer to a specific element of the array by giving
the array name, followed by the element number enclosed in square
brackets.

case is a reserved word used for a compound statement that takes
different actions based on the value of a selector. The case
statement has a list of case constants. When the value of the selector
matches the value of one of the case constants, the statement
following that case constant is executed.

const is a reserved word used in a program or subprogram to name the
declaration part that defines named constants. The const
declaration part must come before the var, type, procedure, and
function declarations, and before the main statement part of the
program.

Field of a record is one of the parts of the record. See record in this
section for more information.

for is a reserved word used to create a loop that loops for a specified
number of times. An index variable is updated every time the loop
loops.

Formal parameter is a special kind of variable that is defined in the first line of a
subprogram. There are two kinds of formal parameters: value
parameters and variable parameters. You give the reserved word var
before declaring a variable parameter. Use variable parameters
when you want to pass a value back to the calling program.

not is a reserved word used as a logical operator that reverses the
BOOLEAN value of the following Boolean expression.

89 Chapter 3: Rectangles and Ovals
~~~~~~~~~~~~~-

Parameter of a subprogram is a variable used to get information when the 
subprogram is called, or to give information back when the 
subprogram finishes. There are two kinds of parameters: value 
parameters and variable parameters. A value parameter cannot pass 
values back to the calling program, while a variable parameter 
always does. 

PenMode is a QuickDraw procedure that changes the way the current pen 
pattern is transferred to the screen. 

POINT is a QuickDraw record data type that defines a point of the screen. 
A POINT has two INTEGER fields: v and h. 

QuickDraw is a library of graphics subprograms that are used to draw lines, 
shapes, and text on the Macintosh screen. Although you can call it 
from Pascal programs, it is written in Assembler, the basic 
instruction code of the Mac's processor, and thus works very quickly 
and efficiently. QuickDraw is documented in the Macintosh Pascal 
Technical Appendix. 

record is a reserved word used to define a variable that is a collection of 
other variables, each of which has a field name. You refer to a field 
by giving the record name, a period, and the field name. The fields 
of records can be of any type. Although Macintosh Pascal itself does 
not contain any predefined record types, the QuickDraw package 
defines POINT and RECT. 

RECT is a QuickDraw record data type. A RECT has INTEGER fields for the 
four sides of a rectangle: top, left, bottom, and right. You can also 
access the RECT through fields that define the top left and bottom 
right corners or the rectangle: topLeft and botRight. 

Rectangle is the basic shape for much of QuickDraw's drawing. A rectangle can 
be defined by the predefined type RECT. 

type is a reserved word used in a program or subprogram to name the 
declaration part that defines new data types. The type declaration 
part must appear before the var declaration part and statement 
part of the program. 



Macintosh 'Thxt 

CHAPTER 

~~=== 
What Type 
Through Yonder 
Windo"' Breaks 

A picture may be worth a thousand words, but you more 
often need to store words in your computer. 

This chapter shows you how to get text from here to there 
and back again. More particularly, it shows how to get text to the 
Macintosh screen, and how to make it look the way you want it 
to look. 

Programs in this chapter print text in the Drawing window 
rather than in the Tuxt window. The reason is that you have a 
great deal of control over the way text shows in the Drawing 
window and very little over how it appears in the Tuxt window. 
The Tuxt window always prints in fixed, evenly spaced lines. 
Figure 4-1 gives a sample of text in the Tuxt window. 

91 



9.2 Introduction to Macintosh Pascal 

D Te Ht 
This is a samp le of te xt w ndow output. lQ 
This is a sample of te xt w ndow output. 
Th s s a sample of te xt w ndow output. 
Th s s a sample of text w ndow output. 
Th s s a sample of te xt w ndow output. 
Th s s a sa mple of te xt w ndow output. 
Th s s a sample of te xt w ndow output. 
Th s s a sample of text w ndow output. 
Th s s a sample of te xt w ndow output. 
Th s s a sa mple of text w ndow output. 

Figure 4·1 Sample Tuxt Window 'I)'pe 

In the Drawing window, on the other hand, you have almost 
total control over the appearance of text. 

Tuxt on the Macintosh has the following characteristics. You 
can change any of them when you draw text in the Drawing 
window. 

• Font. A font is a set of type defining what each letter, number, 
and character looks like in a particular style. Macintosh Pascal 
uses the Geneva font by default, but the Macintosh has a 
number of other fonts . There are four on the Macintosh 
Pascal disk. Fonts generally contain the different styles of 
normal English characters, but they actually can contain any 
set of images. The Macintosh Cairo font is an example of a 
non-character font. Figure 4-2 shows some sample fonts . 

• Face. The font characters can be modified with a set of face 
characteristics: bold, italic, underline, outline, and shadow, all 
of which may be familiar to you if you've used MacWrite or 
MacPaint. There are also two rarely used characteristics: 
condense and extend. All of these are described more fully in 
the section on face characteristics later in this chapter. Figure 
4-3 demonstrates the effect of the face characteristics on the 
Geneva font. 



9 3 Chapter 4: What Type Through Yonder Window Breaks 
~~~~~~~~~-

Chicago font
Geneva font
New York font
Veni.<:e font (14 point)
• P[-il•!f} t!f}\J.i (Ca1ro font, 1 a po1nt)

Figure 4·2 Sample Fonts

• Size. Standard type size on the Macintosh is 12 points. A
point is a typographic measurement that is about 1/72 of an
inch, about the size of a pixel. You can tell the Mac to draw
characters of any size. Figure 4·4 shows the Geneva font in a
few different styles.

Plain type
Bold type
lb1//c t,.1 .. pe
Underlined tY-.Qe
OIUlfr.~ ~ 1n1 ;di fr. YIPll

lh1d1w1d typ1
Extended type

Condensed type

Figure 4·3 Face Characteristics

94 Introduction to Macintosh Pascal

9 point type

1 0 point type
12 po1 nt t!.lpe

14 point type

18 point type
24 point type

36 point type

48 point type

72 point ty~
Figure 4·4 Sample 1}'pe Sizes

• 'Iransfer Mode. Drawing text in QuickDraw is the same as
drawing anything. You can set a transfer mode that compares
what is already on the screen with what you are drawing on
the screen, and uses some logical operation to determine
what is actually drawn. That way, for example, you can make
sure text is still visible even though part of the screen is
already painted black. Figure 4-5 demonstates the three text
modes.

95 Chapter 4: What Type Through Yonder Window Breaks

Normol (srcOr) mode ol
Normol

srcXOr mode reverses
srcXOr

Figure 4-5 Tuxt Modes

At any time, each of these characteristics has one setting.
You can change the settings by using calls to QuickDraw.

In certain applications, such as MacPaint and MacWrite, you
can change some of these characteristics (font, face, and size)
with menu commands. Actually, those applications call
QuickDraw to change the settings.

When you tell QuickDraw to print text, it uses the current
settings to determine how to draw the text.

The program Shapes, produced in the last chapter, has a fine
skeleton for trying out text characteristics. This chapter begins
with a section on each characteristic given above. Later on, the
chapter goes into how you get text from the user, rather than
what it looks like. The next chapter shows the various things you
can do with text once you've collected it.

Before you go through these sections, you should prepare a
special stripped-down version of program Shapes, which is used
in the following sections to explore QuickDraw's type
capabilities.

1. Open program Shapes, if it is not already opened.

2. Choose Save As ... from the File menu.

3. When you are asked "Save your program as;' type:

Explore Text

96 Introduction to Macintosh Pascal

4. Click in the Save button.

5. Change the name of the program, the word after program,
to Explorelext. That line should now be:

program ExploreText;

Note there is no space between Explore and Tuxt.

6. Change NUMBUTS to 1. That line should now be:

NUMBUTS = 1; {The number of buttons.}

7. Change BUTRIGHT to 85. That line should now be:

BUTRIGHT = 85; {The right side of all buttons.}

8. Remove everything from just after the end of procedure
PickedOne (the beginning of procedure GetTupLeft) to just
before begin {main}.

9. Delete the body of the case statement in procedure
DrawButtons except for the "1 :" and "WriteDraw('Stop');".
The case statement in DrawButtons should look like:

case n of
1:
WriteDraw('Stop');
end;

10. In the case statement in the main program, remove
everything between "1:" and "stopProgram: = TRUE;". The
case statement in the main program should look like:

case n of
O:
; {Empty Statement.}
1:
stopProgram : = TRUE;
end;

11. From the main program, delete the line:

DemoPen;

97 Chapter 4: What Type Through Yonder Window Breaks

12. Place an insertion point before begin {main} and type:

procedure WriteSample;
var
h, v : INTEGER;
begin
repeat
until Button;
GetMouse(h, v);
MoveTo(h, v);
WriteDraw('A rose is a rose');
end;

This procedure places a sample string of text at the
position where you press the mouse button. It is called to
demonstrate text after you have used the onscreen buttons
to change text characteristics.

13. Place an insertion point after "O:"in the main program and
type:

WriteSample

14. Remove the comment:

{Empty statement.}

15. Choose Save from the File menu.

The program should now look like the program in Figure
4-6.

program ExploreText;
const

NUMBUTS = 1; {The number of buttons.}
BUTHEIGHT = 20; {The height of each button, in pixels.}
BUTLEFT = 20; {The left side of all buttons.}
BUTRIGHT = 85; {The right side of all buttons.}
SPACE= 5; {Used to space button labels.}

type
choices =array[1 .. NUMBUTS) of RECT; {The limits of each button.}

var
theChoices: choices;
stopProgram : BOOLEAN; {When TRUE, the program stops.}
oldDrawingRect: RECT;
whichBut: INTEGER; {The button that was pressed.}

98 Introduction to Macintosh Pascal

procedure DrawButtons (var theChoices : choices);
YBr
n: INTEGER;

begin
for n := 1 to NUMBUTS do
begin
SetRect(theChoices[n], BUTLEFT, n * BUTHEIGHT, BUTRIGHT, (n + 1) * BUTHEIGHT);
FrameRect(the Choi ces[n]);
MoveTo(BUTLEFT +SPACE, (n + 1) * BUTHEIGHT - SPACE);
case n of

1:
Wri teDraw('Stop');

end; {ends case}
end; {ends for loop}

end; {ends DrawButtons}

procedure Setup (var oldDrawingRect: RECT;
var theChoices: choices);

var
tempBox: RECT; {Holds new Drawing window size.}

begin
GetDrawi ngRect(o 1 dDrawi ngRect);
SetRect(tempBox, O, 40, 520, 350);
SetDrawi ngRect(tempBox);
ShowDrawi ng;
DrawBut tons(theChoi ces);

end;
procedure PickedOne (var theChoices: choices;

var whichBut: INTEGER);
YBr
n: INTEGER;
thePoint: POINT;

begin
whichBut := O; {Resets this value.}
repeat {Loops here until the mouse button is pressed.}
until Button;
Get Mouse(thePoi nt.h, thePoi nt. v);
for n := 1 to NUMBUTS do
if PtlnRect(thePoint, theChoices[n)) then

begin
I nvertRect(theChoi ces[n));
whichBut := n;
repeat
until not Button;
I nvertRect(theChoi ces[n));

end; {if}

Fonts

99 Chapter 4: What Type Through Yonder Window Breaks

end; {picked}

procedure WriteSample;
var

h, v : INTEGER;
begin
repeat
unt ii But ton;
GetMouse(h, v);
MoveTo(h, v);
WriteDraw('A rose is a rose ');

end;

begin {main}
stopProgram := FALSE;
SetUp(o l dDrawi ngRect, theChoi ces);
repeat

Pi ckedOne(theChoi ces, whi chBut) ;
case which But of
0:

Wri teSamp le;
1 :
stopProgram :=TRUE;

end;
until stopProgram;
SetDrawi ngRect(o l dDrawi ngRect);

end.

Figure 4-6

Every character in any book, magazine, or newspaper, or on any
computer screen, has been designed by somebody. Generally, an
entire set of type, covering every letter, number, and character
is designed at once. That set of characters is normally in a single
style, so that it provides a pleasing, or at least coherent,
appearance.

In the world of typography, a font generally has a fixed size
and face. On the Macintosh, though, a font is simply a set of type
in one style, and the size and face characteristics can change.
Figure 4-2 shows some sample fonts.

100 Introduction to Macintosh Pascal
~~~~~~~~~~~~ 

On the Macintosh, the fonts are usually identified by the 
names of cities. Macintosh Pascal displays programs with the 
Geneva font. System information, such as menus and window 
titles, use the Chicago font. 

Macintosh Pascal, though, does not use the font names. 
Instead, it uses identifying numbers. "O" identifies the system 
font. The other integers identify the fonts on that disk. You can 
add or remove fonts with the Font Mover utility, which you 
should have on the system disk that came with your Macintosh. 
Tu change the fonts on the Pascal disk, copy the Font Mover to 
that disk, and run it. You may have to experiment to find the 
identification numbers for the fonts you've added. 

Fonts are set with the QuickDraw TuxtFont procedure. Tu 
create the Explore Fonts program: 

1. Open the Explore Tuxt program if it is not already open. 

2. Choose Save As ... from the File menu. 

3. 1)'pe "Explore Fonts" as the file name. 

4. Click in the Save button. 

5. Change the value of NUMBUTS to 10. That line should now 
be: 

NUMBUTS = 10; {The number of buttons.} 

6. Place an insertion point before the case statement in 
procedure DrawButtons and type: 

if (n < 10) then 
WriteDraw(n-1 :1) 
else 

7. Still in procedure Draw Buttons, delete the two lines: 

case n of 
1 : 

The line: 

WriteDraw('Stop'); 

should follow the word else. (Notice there is no semicolon 
between else and WriteDraw.) 

8. Still in procedure DrawButtons, delete: 

end; {ends case} 



101 Chapter 4: What Type Through Yonder Window Breaks 
~~~~~~~~~~~-

(If you didn't type the comment, just remove an end
statement and a semicolon from the end of procedure
Draw Buttons.)

Procedure DrawButtons should now look like Figure 4·7.

procedure DrawButtons (var theChoices: choices);
Yltr

n: INTEGER;
begin
for n := 1 to NUMBUTS do
begin

SetRect(theChoices[n), BUTLEFT, n * BUTHEIGHT, BUTRIGHT, (n + 1) * BUTHEIGHT);
FrameRect(theChoi ces[n));
MoveTo(BUTLEFT +SPACE, (n + 1) * BUTHEIGHT - SPACE);
if (n < 10) then

Wri teDraw(n - 1 : 1)
else

Wri teDraw('Stop');
end; {ends for loop}

end; {ends DrawButtons}

Figure 4·7

The effect of this addition is to print a font number in
each button except the last. Stop is printed in the last button.
Look at the first line:

if (n<10) then

The symbol "< " means "less than:• This statement
checks the value of the for loop's index variable n. When n
is less than 10, the statement following is executed. That
statement prints the value of n in the button. When the value
of n is equal to 10, "Stop'' is printed in the button.

The statement that prints the button numbers needs
some explanation. Look at it again:

WriteDraw(n-1:1)

The first part inside the parentheses, "n-1;• subtracts 1
from the index variable to get the number of the font that
will be used when this button is pressed. The second part,
":1;• indicates a minimum field width. The field width
tells WriteDraw how many characters to expect. When

102 Introduction to Macintosh Pascal

printing INTEGER values, if you specify a minimum field
width, the number is printed starting at the current pen
position. Additional characters are printed to the right. If you
do not give a minimum field width, the number is printed
centered a few pixels to the right of the pen position.

9. Place an insertion point before the case statement in the
main program and type:

if (whichBut>O) and (whichBut<10) then
TextFont(whichBut-1)
else

10. In the case statement in the main program, change the
line:

1 :
to:
10:

The main program should now look like Figure 4-8.

11. Choose Save from the File menu.

begin {main}
stopProgram :=FALSE;
SetUp(o 1 dDrawi ngRect, theChoi ces);
repeat

PickedOne(theChoices, whichBut);
if (whichBut > 0) and (whichBut < 1 O) then
TextFont(whichBut - 1)

else
case whi chBut of
0:
WriteSamp 1 e;

10:
stopProgram := TRUE;

end;
unt i 1 stopProgram;
SetDrawi ngRect(o 1 dDrawi ngRect);

end.
Figure 4-8

103 Chapter 4: What Type Through Yonder Window Breaks
~~~~~~~~~~~~ 

Faces 

Run this program. Whenever you click in a button with the 
mouse, you change the font to the font number indicated. Then, 
when you click anywhere in the Drawing window, the sample 
string of text is printed in the current font. 

Notice that several different font numbers produce the same 
characters. That is because you do not have nine fonts on the 
Macintosh Pascal disk, unless you put them there with the Font 
Mover. When you try to set the font to a number that doesn't 
exist, the Geneva font is displayed. 

You can use any of these fonts in any program simply by 
calling TuxtFont, and giving the number of the font you want to 
use. 

Aside from a font's basic style, any font can have a set of 
characteristics imposed on it. Face characteristics don't change 
the basic design of the font. They change the appearance of the 
characters in other ways. 

The available characteristics are: 

• Bold. In this style, characters are repeated an 
appropriate number of times slightly offset, so that 
they appear darker than normal. 

• Italic. In this style, the characters are skewed so that they have 
a distinct slant. 

• Underline. Tu underline characters, you give the underline 

characteristic. Then they appear with a line beneath them. 

• Omilliime. Owtllfume cllDsnrac1iell'a &'IJ?ll)ellD!' wMiln m dlamllc cdmie llil!ldl llnollllcw cemteir : 

• SllD.11Clow. SllD.11illloweCl cllD.u11cteirs ue Olllltnimi.eCl, &llll.Cl llllso 
llD.11ve tllD.e 01111tllillll.e tllll.11clke111leCl to tllD.e !bottom. daDll.t. 

• Condense. When you condense text, the spaces between characters are 
made smaller by an appropriate amount. The characters themselves are not 
changed. 

• Extend. When you extend text, the spaces between 
characters are made larger by an appropriate 
amount. The characters themselves are not 
changed. 



1041 Introduction to Macintosh Pascal 

All of these face characteristics are shown in Figure 4-3. You 
can combine any or all of these characteristics. However, 
condense and extend cancel each other out, and outline adds 
nothing to shadow. For example, type can be bold, italic, 
shadowed and extended, all at the same time. 

Alter Explort!Iext to use these characteristics. If the Explore 
Fonts program is now displayed, choose Close from the File 
menu. 

1. Open the Explore Tuxt file. 

2. Choose Save As ... from the File menu. 

3. 'fype "Explore Faces" as the new file name. 

4. Click in the Save button. 

S. Change NUMBUTS to 81 so that line is: 

NUMBUTS =8; {The number of buttons.} 

6. Place an insertion point after the "1:" in the case statement 
in procedure DrawButtons. 'fype: 

WriteDraw('Plain'); 
2 : WriteDraw('Bold'); 
3 : WrlteDraw('ltalic'); 
4 : WriteDraw('Outline'); 
5 : WriteDraw('Shadow'); 
6 : WriteDraw('Condense'); 
7 : WriteDraw('Expand'); 
8: 

7. Place an insertion point after the "1:" in the case statement 
in the main program. 'fype: 

TextFace([]); 
2 : TextFace([BOLD]) 
3 : TextFace([ITALIC]); 
4: TextFace([OUTLINE]);. 
5 : TextFace([SHADOW]); 
6 : TextFace([CONDENSE]); 
7: TextFace([EXTEND]); 
8: 

s. Choose Save from the File menu. The program should now 
look like ~re 4-9. 



105 Chapter 4: What Type Through Yonder Window Breaks 

program ExploreText; 
const 

NUMBUTS = 6; {The number of buttons.} 
BUTHEIGHT = 20; {The height of each button, in pixels.} 
BUTLEFT = 20; {The left side of all buttons.} 
BUTRIGHT = 65; {The right side of all buttons.} 
SPACE= 5; {Used to space button labels.} 

type 
choices = array[ 1..NUMBUTS] of RECT; {The 1 i mi ts of each button.} 

YBr 
theChoices : choices; 
stopProgram : BOOLEAN; {When TRUE, the program stops.} 
oldDrawingRect: RECT; 
whichBut : INTEGER; {The button that was pressed.} 

procedure DrawButtons (var theChoices: choices); 
YBr 
n: INTEGER; 

begin 
for n := 1 to NUMBUTS do 
begin 
SetRect(theChoices[n], BUTLEFT, n * BUTHEIGHT, BUTRIGHT, (n + 1) * BUTHEIGHT); 
FrameRect( theChoi ces[n]); 
MoveTo(BUTLEFT + SPACE, (n + 1) * BUTHEIGHT - SPACE); 
case n of 

1: 
Wri teDraw('Pl ai n'); 

2: 
Wri teDraw('Bo 1 d'); 

3: 
Wri teDraw(' I ta 1 i c'); 

4: 
WriteDraw('Outline '); 

5: 
Wri teDraw('Shadow'); 

6: 
Wri teDraw('Condense'); 

7: 
Wri teDraw('Expand'); 

6: 
Wri teDraw('Stop'); 

end; {ends case} 
end; {ends for loop} 



106 Introduction to Macintosh Pascal 

end; {ends DrawButtons} 

procedure Setup (var oldDrawingRect: RECT; 
var theChoices: choices); 

var 
tempBox: RECT; {Holds new Drawing window size.} 

begin 
GetDrawi ngRect(o l dDrawi ngRect); 
SetRect(tempBox, o, 40, 520, 350); 
SetDrawi ngRect( tempBox); 
ShowDrawing; 
DrawBut tons( theChoi ces); 

end; 

procedure PickedOne (Hr theChoices: choices; 
Hr whichBut: INTEGER); 

var 
n: INTEGER; 
thePoint: POINT; 

begin 
whichBut := O; {Resets this value.} 
repeat {Loops here until the mouse button is pressed.} 
until Button; 
GetMouse(thePoi nt.h, thePoi nt.v); 
for n := I to NUMBUTS do 
if PtlnRect(thePoint, theChoices[n)) then 
begin 

I nvertRect( the Choi ces[n)); 
whichBut := n; 
repeat 
until not Button; 
I nvertRect( theChoi ces[n)); 

end; {if} 
end; {picked} 

procedure WriteSample; 
Y8r 

h, v: INTEGER; 
begin 
repeat 
until Button; 
GetMouse(h, v); 
MoveTo(h, v); 



11/)7 Chapter 4: What Type Through Yonder Window Breaks 

WriteDraw('A rose is a rose'); 
end; 

begin {main} 
stopProgram :=FALSE; 
SetUp(oldDrawingRect, the Choices); 
repeat 

PickedOne(theChoi ces, whi chBut); 
case whichBut of 
0: 

Writesample; 
1: 
TextF ace([]); 

2: 
TextF ace([BOLD)); 

3: 
TextFace([IT ALIC]); 

4: 
TextF ace([OUTL I NE)); 

5: 
TextF ace([ SHADOW]); 

6: 
TextFace([CONDENSE)); 

7: 
TextF ace([EXTEND]); 

8: 
stopProgram := TRUE; 

end; 
until stopProgram; 
SetDrawi ngRect(o 1 dDrawi ngRect); 

end. 

Figure 4-9 

Run this program. When you choose a button, the text face 
is changed to the one given on that button. Then, when you click 
anywhere in the window, the sample text is printed with the new 
face characteristic. Click in the Stop button when you are done. 

The words "[BOLD];' "[ITALIC];' "[OUTLINE];' "[SHADOW];' 
"[CONDENSE];' and "[EXTEND]" are used by the Mac to 
determine which face characteristics should be set. They appear 
in square brackets because they are members of a set. A set is 
a kind of data type that can hold a group of values. In this case, 
the parameter list of TuxtFace can hold any or all of the style 



108 Introduction to Macintosh Pascal 
~~~~~~~~~~~~-

Size

characteristics. If you want to set more than one characteristic at
a time, you should list them all in square brackets, separated by
commas. For example, to set bold and italic at the same time:

TextFace((BOLD, ITALIC]);

Every time you write characters to the Drawing window, the
characters print with the current text face characteristics.

Always separate each characteristic by a comma, and always
put all characteristics within the same set of square brackets.

You can set any size that can be held in an INTEGER variable
(that is, up to 32767), although, in practice, you can only see sizes
from 3 or 4 points to around 300. A point is about one seventy­
second of an inch, about the size of a pixel.

Figure 4-4 shows samples of different type sizes.
To experiment with the QuickDraw procedure TextSize,

which changes the current text size, follow the following steps.
First, if you still have ExploreFaces or some other program
showing, close that file .

1. Open the Exploreiext program if it is not already opened.

2. Choose Save As ... from the File menu.

3. 'fype "ExploreSizes" as the file name.

4. Click in the Save button.

5. Change the value of NUMBUTS to 5, so that line is:

NUMBUTS = 5; {The number of buttons.}

6. In procedure DrawButtons, place an insertion point after the
"1:" in the case statement and type:

WriteDraw('3 point');
2 : WriteDraw('12 point');
3 : WriteDraw('48 point');
4 : WriteDraw('300 point');
5:

109 Chapter 4: What Type Through Yonder Window Breaks
~~~~~~~~~~~ 

7. In the main program, place an insertion point after the "1:11 in 
the case statement in the main program and type: 

TextSize(3); 
2 : TextSize(12); 
3 : TextSize(48); 
4 : TextSize(300); 
5: 

8. Choose Save from the File menu. 
The program should now look like Figure 4-10. 

progr11m ExploreText; 
con st 

NUMBUTS = 5; {The number of buttons.} 
BUTHEIGHT = 20; {The height of eBCh button, In pixels.} 
BUTLEFT = 20; {The left side of Bil buttons.} 
BUTRIGHT = 85; {The right side of Bil buttons.} 
SPACE = 5; {Used to spBce button IBbels.} 

type 
chol ces = 11rr11yl 1 .. NUMBUTS) of RECT; {The 11 mi ts of eBch but ton.} 

VDr 
theChoices: choices; 
stopProgrBm : BOOLEAN; {When TRUE, the progrBm stops.} 
oldDrBwlngRect: RECT; 
whlchBut: INTEGER; {The button thBt WBS pressed.} 

procedure DrBwButtons (VDr theChoices : choices); 
VDr 
n: INTEGER; 

beg1n 
for n := 1 to NUMBUTS do 

beg1n 
· SetRect( theChoi ces[n), BUTLEFT, n * BUT HEIGHT, BUTR I GHT, (n + 1) * BUT HEIGHT); 
FrBmeRect(theChoi ces[n)); 
MoveTo(BUTLEFT +SPACE, (n + 1) * BUTHEIGHT - SPACE); 
cDSe n of 

1: 
WriteDrBw('3 point'); 

2: 
WrlteDrBw(' 12 point'); 

3: 
WriteDrBw('48 point'); 

4: 
Wri teDrBw('300 point'); 



110 Introduction to Macintosh Pascal 
~~~~~~~~~~~-

5:
Wri teDraw('Stop');

end; {ends case}
end; {ends for loop}

end; {ends DrawButtons}

procedure Setup (YBr oldDrawingRect : RECT;
YBr theChoices: choices);

var
tempBox: RECT; {Holds new Drawing window size.}

begin
GetDrawi ngRect(o 1 dDrawi ngRect);
SetRect(tempBox, 0, 40, 520, 350);
SetDrawi ngRect(tempBox);
ShowDrawing;
DrawBut tons(theChoi ces);

end;

procedure PickedOne (vi'lr theChoices: choices;
var whichBut : INTEGER);

var
n: INTEGER;
thePoint: POINT;

begin
whichBut := O; {Resets this value.}
repeat {Loops here until the mouse button is pressed.}
until Button;
GetMouse(thePoint.h, thePoint.v);
for n := 1 to NUMBUTS do
if PtlnRect(thePoint, theChoices[n)) then
begin

I nvertRect(theChoi ces[n));
whichBut := n;
repeat
until not Button;
I nvertRect(theChoi ces[n));

end; {if}
end; {picked}

procedure WriteSample;
YBr

h, v: INTEGER;

111 Chapter 4: What Type Through Yonder Window Breaks

begin
repeot
until Button;
GetMouse(h, v);
MoveTo(h, v);
WriteDraw('A rose is a rose');

end;

begin {main}
stopProgram := FALSE;
Setup(o 1 dDrawi ngRect, theChoi ces);
repeat

Pi ckedOne(theChoi ces, whi chBut);
case whichBut of
0:

WriteSample;
1:

' TextSize(3);
2:
TextSize(12);

3:
Text Si ze(48);

4:
TextSize(300);

5:
stopProgram := TRUE;

end;
until stopProgram;
SetDrawi ngRect(o 1 dDrawi ngRect);

end.

Figure 4·10

Run this program.
Tuxt looks best if the disk you are using has a font of the

given size. A number of the font styles on the Macintosh are
available in different sizes; the basic style is the same, only the
size is different. If the current font is not available in the size you
request, QuickDraw takes the version of the current font closest
to that size and shrinks or enlarges the characters to the
required size. That process is called scaling. The result is often
choppy, as you can discover by running this program and
choosing 300. In addition, if the requested size is not a whole­
number multiple of the available size, the result looks even

'Irans:fer Mode

112 Introduction to Macintosh Pascal

worse. This program uses size 48 instead of size 50 because fonts
are most commonly available in size 12. You can check which
size fonts are on your disk with the Font/DA Mover or FontMover
utility. If you use FontMover, you must copy FontMover from
your system disk to your Pascal disk to examine the Pascal fonts .

Experiment some more with text size by changing the
numbers in the TuxtSize calls to different values.

The current text size is used whenever you draw text in the
drawing window. You can call TextSize at any time in your
programs to change the size of text that you subsequently print.

If you use a text size of 0, the size is automatically changed
to the default, 12 points.

QuickDraw uses a transfer mode whenever you draw to the
screen, whether you are drawing lines, boxes, text, or whatever.
Tuxt has its own mode setting, controlled by the QuickDraw
procedure TuxtMode.

There are three modes for drawing text:

• srcOr always draws black characters. If the background is
black, the characters are not visible. This is the initial mode.

• srcXOr draws black characters on white background, and
white characters on a black background. Each pixel of the
character is drawn by reversing the color of the pixel that
occupies its destination on the screen, so that characters may
be drawn partly black and partly white.

• srcBic always draws white characters. If the background is
white, the characters are not visible.

The modes are demonstrated in Figure 4-5.
Tu try out the modes, follow these instructions. First, if you

still have ExploreSizes or some other program showing, close
that file.

1. Open the Explort!Iext program if it is not already opened .

.2. Choose Save As ... from the File menu.

3. fype "ExploreModes" as the file name.

4. Click in the Save button.

113 Chapter 4: What Type Through Yonder Window Breaks

5. Change the value of NUMBUTS to 4, so that line of the
program is:

NUMBUTS = 4; {The number of buttons.}

6. Change the value of BUTRIGHT to 60, so that line of the
program is:

BUTRIGHT = 60; {The right side of all buttons.}

7. In procedure Draw Buttons, place an insertion point after the
"1:" in the case statement and type:

WriteDraw('Or');
2 : WriteDraw('XOr');
3 : WriteDraw('Bic');
4:

8. In the main program, place an insertion point before the
repeat statement and type:

PaintRect(100, 100, 200, 200);

9. In the main program, place an insertion point after the "1:" in
the case statement and type:

TextMode(srcOr);
2 : TextMode(srcXOr);
3 : TextMode(srcBic);
4:

10. Choose Save from the File menu.

The main program should now look like Figure 4-11.

program ExploreText;
const .

NUMBUTS = 4; {The number of buttons.)
BUTHEIGHT = 20; {The height of each button, in pixels.)
BUTLEFT = 20; {The left side of all buttons.)
BUTRIGHT = 60; {The right side of all buttons.)
SPACE= 5; {Used to space button labels.)

type
choices= array[1 .. NUMBUTS] of RECT; {The limits of each button.)

var
theChoices: choices;
stopProgram : BOOLEAN; {When TRUE, the program stops.)
oldDrawingRect : RECT;
whichBut : INTEGER; {The button that was pressed.)

1 14 Introduction to Macintosh Pascal

procedure DrawButtons (var theChoices: choices);
Hr
n: INTEGER;

begfn
for n := 1 to NUMBUTS do
begin
SetRect(theChoi ces[n], BUTLEFT, n * BUT HEIGHT, BUTR I GHT, (n + 1) * BUT HEIGHT);
FrameRect(theChoi ces[n));
MoveTo(BUTLEFT +SPACE, (n + 1) * BUTHEIGHT - SPACE);
case n of

1:
WriteDraw('Or');

2:
Wri teDraw('XOr');

3:
Wri teDraw('Bi c');

4:
Wri teDri;,w('Stop');

end; {ends case}
end; {ends for loop}

end; {ends DrawBut tons}

procedure Setup (var oldDrawingRect: RECT;
var theChoices: choices);

var
tempBox: RECT; {Holds new Drawing window size.}

begin
Getorawi ngRect(o 1 dDrawi ngRect);
SetRect(tempBox, 0, 40, 520, 350);
SetDrawi ngRect(tempBox);
ShowDrawing;
DrawBut tons(theChoi ces);

end;

procedure PickedOne (var theChoices : choices;
var whichBut: INTEGER);

Yar
n: INTEGER;
thePoint: POINT;

begin
whichBut := O; {Resets this value.}
repeat {Loops here until the mouse button is pressed.}
until Button;
GetMouse(thePoi nt.h, the Point. v);
for n := 1 to NUMBUTS do
if Pt I nRect(the Point, theChoi ces[n)) then

115 Chapter 4: What Type Through Yonder Window Breaks

begin
I nvertRect(theChoi ces[n]);
whichBut := n;
repeat
until not Button;
I nvertRect(theChoi ces[n]);

end; {if}
end; {picked}

procedure WriteSample;
Yar

h, v : INTEGER;
begin
repeat
until Button;
GetMouse(h, v);
MoveTo(h, v);
WriteDraw('A rose is a rose');

end;

begin {main}
stopProgram :=FALSE;
SetUp(o 1 dDrawi ngRect, theChoi ces);
PaintRect(100, 100, 200, 200);
repeat
Pi ckedOne(theChoices, whi chBut);
case whi chBut of
0:
WriteSample;

1:
TextMode(srcOr);

2:
TextMode(srcXOr);

3:
TextMode(srcBi c);

4:
stopProgram := TRUE;

end;
unt i I stopProgram;
SetDrawi ngRect(o 1 dDrawi ngRect);

end.

Figure 4·11

A Simple Editor

116 Introduction to Macintosh Pascal

Run this program. Notice the way the text in the different
modes look in the black box and on white areas of the screen.

You can use any mode in your programs by calling TuxtMode.
As with the other text characteristics, the most recently set value
is the one used. You usually need to use text modes to make text
visible on complicated or dark backgrounds. The default mode,
srcOr, is fine for drawing on white backgrounds.

This section shows you how to handle text in your program: how
to get it and how to store it.

If you haven't used MacWrite yet, please do, or, if you don't
have that, run the text editor that came on your Macintosh
Pascal disk. (You can find it in the Tuols folder.)

Those programs do the basic things that an editor needs to
do. They allow the user to type in a natural (that is, typewriter­
like) way: allowing backspaces that do what you expect, carriage
returns that do what you expect, and so on.

The editor created in this chapter is not as complicated as
MacWrite or the Pascal text editor. For one thing, it does not
handle more than a few lines. If you need to enter that much
text, you can use MacWrite or the text editor.

What we will create is a small, flexible editor. It will allow a
few short lines, enough for an address, for example.

Our editor should accept typing, including backspaces and
carriage returns, until the user is done.

Nothing happens automatically when you type on a
computer's keyboard. When you hit a key on a manual
typewriter, a mechanical linkage moves a lever which moves one
of the strikers which hits the ribbon, and a character is printed.
When you hit the Backspace key, the carriage moves back one
space. When you hit the Return bar, you mechanically move the
platen so that you can continue typing at the beginning of the
next line.

A computer is nothing like that. When you hit one of the
keys, a small processor in the keyboard (actually a little
computer in itself) figures out which key was hit, and sends a
code to the Macintosh. What happens next depends on what the

11 7 Chapter 4: What Type Through Yonder Window Breaks
~~~~~~~~~~~-

Mac is programmed to do at that moment. Hitting the Return 
key, for example, does not move typing to the next line unless the 
computer is programmed to do that. 

The simplest way to get the characters that the user types is 
with the Pascal Read procedure, which you used in Chapter 2. 

Get a new programming screen. 
'!Ype the following program: 

program TryEditing; 
var 
aChar : CHAR; 
begin 
ShowDrawing; 
MoveTo (15,15); 
repeat 
Read(aChar); 
WriteDraw(aChar); 
until FALSE; 
end. 

The body of this program is surrounded by a repeat/until 
loop, with the until condition FALSE. That sets up an infinite 
loop: this program loops until you stop it with the Halt 
command in the Pause menu. (If you stop the program and want 
to start it again, choose Reset from the Run menu before giving 
the Go command. If you don't give the Reset command first, the 
program resumes running from where it was when you stopped 
it.) 

Run this program, and type on the keyboard. The program 
reads characters from the keyboard, and prints them in the 
Drawing window. Letters, numbers, and other characters work 
perfectly well, but notice what happens if you press the 
Backspace or Return keys. The box that is printed when you 
enter a Backspace indicates that there is no symbol for that key 
in the font. Read gives you the character the user typed. The 
line: 

WriteDraw(aChar); 

tells Macintosh Pascal to draw the character. A Backspace is a 
non-printing character. Macintosh Pascal won't automatically 
erase the previous character in the Drawing window, as you'd 
expect a Backspace to do. You will later alter the program to 
erase characters in response to a Backspace. 



118 Introduction to Macintosh Pascal 

You might expect to get a similar box when you press the 
Return key, but instead you get a space. The Read statement 
translates Returns into spaces. This is a serious problem in 
constructing an editor, because we can't find out when the user 
enters a Return. Read does too much processing before giving 
the characters to the program. 

When you type a character or press the mouse button, that 
action creates an event for the Macintosh. An event is some 
occurrence requiring the attention of the Mac's processor. 
Events can come from the keyboard, the mouse, the disk drive, 
or from several other sources. 

You can intercept events from a Macintosh JPascal program. 
When you do that, you get the events in a fairly "raw" state; that 
is, the Mac hasn't processed the information very much. You get 
the exact characters the user typed on the keyboard, and can 
even find out if the Option, Command, or Shift keys were 
pressed. 

lll~ll----------w--a_rn_i_n_g ________ o_· __________ ~------~ 
Macintosh Pascal normally gets events for you and checks 
if the event is a pressing of the mouse button in the Pause 
menu or the menu bar (which halts the program). When 
your program asks for events, though, Macintosh Pascal no 
longer gets them. That means the Pause menu does not 
work. If you use events in a program like the 'fryEditing 
program, programs that can't be stopped except through 
the Pause menu, the only way to stop the program is to turn 
off your Macintosh. So, whenever you use events, make 
certain there is a way for your program to end. 

You use the GetNextEvent Macintosh Pascal function to get 
Mac events. When you call GetNextEvent, you specify the kind of 
events you want. If an event of that type is waiting, GetNextEvent 
becomes TRUE, and the event is returned. An event is returned 
in a data record of type EVENTRECORD, which has fields giving 
the event, its time, its location, and some other information. 
Unlike Read, GetNextEvent does not wait for an event before 



ll19 Chapter 4: What Type Through Yonder' 

returning to your program. It simply chec 
see if there is an event of the type you've re 
event of that type, it returns FALSE. 

You generally use a repeat or " 
GetNextEvent repeatedly until you get the , 

Th alter Ti'yEditing so that it uses event -----
1. Place an insertion point before aChar in the line: 

aChar : CHAR; 

and type: 

event: EVENTRECORD; 

2. Replace the line: 

Read(aChar); 

with: 

repeat 

\ 

until GetNextEvent(mDownMask + keyDownMask, event); 
if (event.what < > MOUSEDOWN) then begin 
aCh~r: = Chr(event.message mod 256); 

The two symbols"<" and">" when typed together, with no 
intervening space, mean "not equal to:' 

3. Place an insertion point after WriteDraw(aChar); and type: 

end; 

4. Replace the word FALSE in the line "until FALSE;" with: 

event.what = MOUSEDOWN 

The program should now look like Figure 4-12. 

program TryEditing; 
Yllr 

event : EVENTRECORD; 
aChar : CHAR; 

begin 
Showorawing; 
MoveTo( 15, 15); 
repeat 
repeat 
until GetNextEvent(mDownMask + keyDownMask, event); 
if (event.what <> MOUSEDOWN) then 



120 Introduction to Macintosh Pascal 

begin 
aChar := Chr(event.message mod 256); 
Wri teDraw(aChar); 

end; 
until event.what= MOUSEDOWN; 

end. 

Figure 4·12 

mDownMask and keyDownMask are predefined _values that 
tell the Event Manager, the part of the Macintosh that controls 
events, that you are interested in finding out when the mouse 
button is pressed and when keys are typed. GetNextEvent 
returns FALSE until there is an event of one of the types you've 
asked for. The line: 
if event.what < > MOUSEDOWN 

checks the what field of the event record. The event.what field 
contains a predefined constant that indicates the type of event 
returned. MOUSEDOWN indicates a "mouse-button-down" 
event, that is, a pressing down of the mouse button. 

The next line: 

aChar : = Chr(event.message mod 256); 

requires some explanation. 

Everything on a computer is represented by numbers. Every 
character has a code that represents that charactE'.r. When a 
value is stored in a character variable, Pascal automatically 
interprets the number that is in that variable's "file drawer" as a 
character. The Chr function converts a number to the character 
that has the corresponding code. The number representing the 
key that was pressed is returned in event.message. There is also 
some other information there. To get the character code, you 
must find the remainder of the division of event.message by 256. 
The mod operator, short for modulus, finds the remainder of 
the division of the two operands. (Modulus, in this case, means 
the same as remainder.) 

Here are some samples of results of the mod operator. 



121 Chapter 4: What Type Through Yonder Window Breaks 
~~~~~~~~~~~-

5 mod 2is 1
4 mod 2 is O
101 mod 50 is 1
101mod2 is 1
101 mod 102 is 101

Run this new version of the program. Notice that it has the
same response as the version using Read, except that now
nothing, not even a space, shows when you enter a Return. The
character is there, but, because it is non-printing, nothing shows
up on the screen.

Tu stop the program, just click the mouse button. You don't
have to use the Pause menu. (In fact, as mentioned before, the
Pause menu won't work while you're using events.)

It is fairly easy to modify this program so that it handles
Returns. First, you must add some constants.

1. Place an insertion point before var, and type:

con st
CR = 13; {The character code for Return.}
LINEHEIGHT = 15;
BASE= 10;

.2. Place before the first begin, two lines after var and type:

currentline : INTEGER;

3. Remove the line:

MoveTo(15, 15);

and replace it with:

MoveTo(BASE, LINEHEIGHT);

4. Place an insertion point before the first repeat and type:

currentline : = 1;

5. Place an insertion point before WriteDraw and type:

if aChar = Chr(CR) then
begin
currentline : = currentline+ 1;
MoveTo(BASE, currentline*LINEHEIGHT);
end
else

The program should now be as shown in Figure 4-13.

1.2.2 Introduction to Macintosh Pascal

progrom TryEditing;
const

CR= 13;
LINEHEIGHT = 15;
BASE= 10;

YBr
event:EVENTRECORD;
aChar : CHAR;
currentline: INTEGER;

begin
ShowDrawing;
MoveTo(BASE, LINEHEIGHT);
currentli ne := 1;
repeot
repeot
until GetNextEvent(mDownMask + keyDownMask, event);
if (event.what <> MOUSEDOWN) then
begin

aChar := Chr(event.message mod 256);
if aChar = Chr(CR) then
begin
currentline := currentline + 1;
MoveTo(BASE, currentline * LINEHEIGHT);

end
else

Wri teDraw(aChar);
end;

until event.what= MOUSEDOWN;
end.

Figure 4-13

Notice that there is no semicolon after the end or else. It is
an error if you have one in either place, because these are really
in the middle of the compound if statement.

With these additions, whenever the character typed on the
keyboard is equal to Chr(13), nothing is printed in the Drawing
window. Instead, the pen is moved to the beginning of the next
line. Chr(13), of course, is a Return. The position of the next line
is defined by the constant LINEHEIGHT. If you wanted to double­
space the lines, you would simply change LINEHEIGHT to 30.

You could deal with a Backspace in a similar way, but it
would be repetitive here. Instead, discard this program, and go
on to the Simple Editor, a program which also stores the
characters the user types.

123 Chapter 4: What Type Through Yonder Window Breaks
~~~~~~~~~~~~-

Storing Text 

So far, the only way you have seen to store characters on the 
computer is with the CHAR data type. That only holds a single 
character, so it is not very good for most uses. What if you want 
to store a whole word, or even a sentence? You could create an 
array of type CHAR. In fact, that is the standard Pascal way to 
store groups, or strings of characters. 

Most versions of Pascal, including Macintosh Pascal, define a 
special data type just for holding strings of characters, called the 
string data type. You can define variables of type string. In 
addition, any character or group of characters enclosed in single 
quote marks is a string. For example: 

'This is a string: 
A string can hold up to 255 characters. Within that limit, the 

size of the string automatically varies to hold the number of 
characters you need. (Arrays are always of a fixed size: if you 
define an array of 255 characters, it will always contain 255 
characters, even if most of them are blanks or undefined.) As 
with arrays, you can access each character in the string by 
number. For example, the first character of the string thisString 
is thisString[l), the second is thisString[2), and so on. 

There is a special set of predefined string functions and 
procedures that help you manipulate strings. Those functions 
are: 

• The Length function, which returns the current number of 
characters in a string. 

• The Pas function, which searches a string and returns the 
position of the first occurrence of some sequence of 
characters. 

• The Concat function, which attaches some number of strings 
together, and returns the result. 

• The Copy function, which copies some range of characters 
from a string and returns it. 

• The Delete procedure, which removes some range of 
characters from a string. 

• The Omit function, which returns a string minus some range 
of characters. This is the same as Delete, except that the 
original string is not changed. 



124 Introduction to Macintosh Pascal 

• The Insert procedure, which inserts characters into a string 
at a given place. 

• The Include function, which returns a string with some 
characters inserted at a given place. This is the same as Insert, 
except that the original string is not changed. 

• The StringWidth function, which returns the size, in pixels, of 
a string in the current font, size, and face. This is a QuickDraw 
function. There is also a related function, CharWidth, that 
returns the pixel size of a character in the current font, size, 
and face. 

~~i-------------N-o--te_s ____________________________ , __________ __ 

Although strings are not part of Standard Pascal, most 
versions of Pascal have a string type and string 
subprograms similar or identical to those used in 
Macintosh Pascal. 

Close TryEditing (you can throw out TryEditing, if you want) 
and get a new programming window. 

Choose Save As ... from the File menu. When you are asked 
for a file name, type "Simple Editor". Click in the Save button. 

'fype: 

program Simple_Editor; 
con st 
CR = 13; {Character code for Return .} 
BS = 8; {Character code for Backspace.} 
LINEHEIGHT = 15; {The distance between lines in pixels.} 
BASE = 15; {The beginning of each line.} 
ENDSTR = 256; {Guaranteed to be past the end of the string.} 
var 
theString : string; 
begin {main} 
ShowDrawing; 
theString := "; {Two single quote marks. Initializes string} 

{to empty.} 
ShowString(theString); 
DoEditing(theString); 
end. 



125 Chapter 4: What Type Through Yonder Window Breaks 

That is the main program. 
The constant BASE defines the distance of the beginning of 

each line from the left edge of the Drawing window, in pixels. 
ENDSTR has a value one above the maximum number of 

characters that can be in a string. It is used to find a position past 
the end of any string, and to find out when the string is full. 

The main program has only one variable theString which 
holds the characters typed by the user. 

Show Drawing is called at the beginning of the main program 
to make certain the Drawing window is visible. 

The line 

theString := "; 

makes theString an empty string, which simply means that 
theString contains nothing. 

Notes 

As always in Pascal, the characters " are two single 
quotation marks (' and ') not one double quotation mark ("). 
Please make certain you typed two single quote marks, or 
the program won't work. 

Although you might think that theString would contain 
nothing anyway at this point, that is not necessarily true. When 
you define a variable, Pascal allocates some space for the 
variable. That space is simply a part of memory that Pascal 
allows you to refer to by the variable name. That part of memory 
might have been used for something else at an earlier time and 
still contain other values. Nothing is done to make certain the 
memory contains something appropriate; new variables are said 
to be undefined until you assign them some value. You could 
just as easily give theString some other initial value, such as: 

theString : = 'An initial string.' 
The line 
ShowString(theString); 



126 Introduction to Macintosh Pascal 

calls the procedure ShowString, written later in this chapter, to 
display the string. Although this may seem unnecessary given 
that theString contains nothing, calling ShowString here allows 
you to give theString another initial value with no change to the 
program. (In a later version of this program, you will use values 
stored on disk to give theString an initial value.) In addition, 
ShowString places the pen in a position to begin writing 
characters to the Drawing window as they are typed. 

The line 

DoEditing(theString); 

calls the procedure DoEditing. That procedure, which you will 
define in the next few pages, does most of the editing work of the 
program. It does all the editing of the string. When editing is 
finished, DoEditing stops, and the main program again takes 
over. 

Now, define procedure ShowString. Place an insertion point 
before begin { J:?ain} and type: 

procedure ShowString (theString : string); 
var 
n, currentline : INTEGER; 
begin 
MoveTo(BASE, LINEHEIGHT); 
currentline : = 1; 
for n : = 1 to Length(theString) do 
if theString[n] = chr(CR) then 
begin 
currentline : = currentline + 1; 
MoveTo(BASE, currentline * LINEHEIGHT); 
end 
else 
DrawChar(theString[n]); {Predefined.} 
end; 

This procedure depends on theString containing ordinary 
characters and Returns. It uses the loop 

for n : = 1 to Length(theString) do 

to scan through the string a character at a time. If the character 
is a Return (that is, if theString [n] = Chr(CR)) the pen is moved to 
the beginning of the next line. Otherwise, the QuickDraw 
procedure DrawChar is used to draw the character. 



12 7 Chapter 4: What Type Through Yonder Window Breaks 
~~~~~~~~~~~-

Notice the way theString is defined in the parameter list for
procedure ShowString.

procedure ShowString (theString :string);

theString is not defined as a var parameter. That is because
ShowString does not change the value of theString. A
programmer looking at the definition of the procedure would
know that fact simply from the parameter list: if ShowString
does change the value of theString, those changes are not passed
back to the main program, because theString is not defined to be
a var parameter. As a general rule of good programming, any
possible effects of a routine should be clear from the routine's
parameter list. Otherwise you have to examine the routine to see
exactly what variables it changes.

Now, for the heart of the program. Place an insertion point
before the line begin {main} and type:

procedure DoEditing (var theString : string);
var
event : EVENTRECORD;
typedChar: CHAR;
begin
while (event.what < > MOUSEDOWN) do
begin
repeat
until GetNextEvent(mDownMask + keyDownMask, event);
if (event.what < > MOUSEDOWN) then
begin
typedChar := Chr(event.message mod 256);
ShowNewChar(typedChar, theString);
AddChai(typedChar, theString);
end; {if}
end; {while}
end; {DoEditing}

Notice that theString is a var parameter for DoEditing,
because this routine does modify the value of theString.

The loop:

repeat
until GetNextEvent(mDownMask + keyDownMask, event);

is identical to the equivalent loop in TtyEditing. It waits until the
user types a key or presses the mouse button.

ll28 Introduction to Macintosh Pascal

The resulting event is tested by the if statement to see if it is
a MOUSEDOWN, which indicates that the mouse button has
been pressed. If it is not a MOUSEDOWN, then it is a typing
event, and the following sequence of statements is executed:

typedChar := Chr(event.message mod 256);
ShowNewChar(typedChar, theString);
AddChar(typedChar, theString);

The first line should look familiar, as it uses the same method
used in Ti'yEditing. The procedure ShowNewChar, which you
will define later in this chapter, displays the new character.
AddChar adds the character to the string. You could add the
character first, and then call ShowString to display the entire
string. However, one of the realities of computing is that screen
display is always relatively slow. If you redisplayed the entire
string every time a character is typed, even a relatively slow
typist would have to wait to see the characters on the screen. It
is much quicker to define a special procedure that just displays
the typed character, only drawing the entire string when
necessary.

Finally, the while loop and DoEditing end when the mouse
button is pressed.

Here is the procedure that displays the new character. Place
an insertion point before procedure DoEditing and type:

procedure ShowNewChar (typedChar: CHAR; theString: string);
var
lastChar : CHAR;
len : INTEGER;
begin
len : = length(theString);
if len >0 then
lastChar : = theString[len];
case Ord(typedChar) of
BS:
if theString< >"then {Note: two single quote marks.}
if lastChar = chr(CR) then
ShowString(Omit(theString, len, 1))
else
begin
Move(-CharWidth(lastChar), O);
TextMode(srcXOr);

129 Chapter 4: What Type Through Yonder Window Breaks

DrawChar(lastChar);
TextMode(srcOr);
Move(-CharWidth(lastChar), O);
end;
CR:
if len + 1 < ENDSTR then
ShowString(Concat(theString, Chr(CR)));
otherwise
if len+ 1 < ENDSTR then
DrawChar(typedChar);
end;
end;

This is the most complicated procedure in the program. It is
built around a case statement that uses the Ord of the
typedChar as the case constants. Ord is a predefined Pascal
procedure that returns the code for a character. It is the opposite
of Chr. There are three possible situations that must be dealt
with:

1. typedChar is a Backspace, in which case the program must
erase the previous character, and reposition the pen.

2. typedChar is a Return, in which case the program must move
the pen to the beginning of the next line.

3. typedChar is an ordinary character, in which case it needs to
be drawn on the screen at the current pen position.

The first case is the most complicated. Characters on the
Macintosh do not fit neatly into little boxes. They are of different
widths and heights, depending on the character, the font, and
the size. You can't even depend on the character ending at the
current line, because many characters (such as "y;' "j;' and "p")
drop below the line. The easiest way to erase the previous
character is to look in the string to find out what it is, back the
pen up so that it is in a position to draw the character, set the pen
to srcXOr mode, which is the text mode that draws white on
black, and draw the character, which neatly erases it without
changing anything else. Then, the pen must be backed up once
more, to position it for drawing the next character. Before doing
that, however, ShowNewChar:

13 O Introduction to Macintosh Pascal

• Must check to make certain the string is not empty, in which
case trying to find the previous character would be an error,
and

• Must find out if the previous character is a Return.

If the character is a Return the pen must be moved to the end
of the previous line. The program would run more quickly if you
wrote a routine that figured out the position of the end of the
previous line, but it turns out that, as this situation is relatively
infrequent, the program works acceptably if you call
ShowString to display the string without the final Return. That
positions the pen correctly. Notice that the backspaced
character is not actually removed from the string in
ShowNewChar. ShowNewChar only displays the new character,
and does not change theString, as can be seen from the
parameter list of ShowNewChar.

When typedChar is a Return, ShowNewChar calls
ShowString with the new Return added on the end with the
predefined function Concat. Once again, it would be faster to
define a procedure that calculated the new pen position, and
simply move the pen, but Returns are sufficiently infrequent
that the program's performance is acceptable. Very often
performance and program complexity are trade-offs, and you
need to use your judgment to decide if some improvement is
worth the effort.

The final procedure is the only one that actually changes the
. value of theString. Place an insertion point before procedure
DoEditing and type:

procedure AddChar (typedChar : CHAR;
var theString : string);
begin
if typedChar = Chr(BS) then {This is a Backspace.}
Delete(theString, length(theString), 1)
else if Length(theString) + 1 < ENDSTR then {Forward typing.}
lnsert(typedChar, theString, ENDSTR);
end;

I'll let you figure this one out yourself.
Choose Save from the File menu.
The program should now be as shown in Figure 4-14.

131 Chapter 4: What Type Through Yonder Window Breaks
~~~~~~~~~~~-

program Simple_Editor; 
con st 

CR = 13; {Character code for <RETURN>.} 
BS = 6; {Character code for backspace.} 
LINEHEIGHT = 15; {The distance between lines in pixels.} 
BASE = 15; {The beginning of each 1 i ne.} 
ENDSTR = 256; {Guaranteed to be the past end of the string.} 

var 
theString: string; 

procedure ShowString (theString: string); 
Hr 

n, currentline : INTEGER; 
begin 

MoveTo(BASE, LINEHEIGHT); 
currentline := 1; 
for n := 1 to Length(theString) do 
if theString[n) = chr(CR) then 
begin 
currentline := currentline + 1; 
MoveTo(BASE, currentline * LINEHEIGHT); 

end 
else 

DrawChar( theStri ng[n)); {Pre-defined.} 
end; 

procedure ShowNewChar (typedChar: CHAR; 
theString : string); 

Hr 
1 astChar : CHAR; 
len: INTEGER; 

begin 
len := length(theString); 
if len > 0 then 

1 astChar := theStri ng[l en); 
case Ord(typedChar) of 
BS: 
if theString <>"then {Note: two single quote marks.} 
if 1 astChar = chr(CR) then 
ShowString(Omit(theString, len, I)) 

else 
begin 
Move(-CharWi dth(l astChar), O); 



]_ 32 Introduction to Macintosh Pascal 

CR: 

TextMode(srcXOr); 
DrawChar(l astChar); 
TextMode(srcOr); 
Move(-CharWi dth(l astChar), O); 

end; 

if len + 1 < ENDSTR then 
ShowStri ng(Concat(theStri ng, Chr(CR))); 

otherwise 
if len + 1 < ENDSTR then 
DrawChar(typedChar); 

end; 
end; 

procedure AddChar (typedChar: CHAR; 
ver theString : string); 

begin 
if typedChar = Chr(BS) then {This is a backspace.} 
Delete(theString, length(theString), 1) 

else if Length(theString) + 1 < ENDSTR then {Forward typing.} 
lnsert(typedChar, theString, ENDSTR); 

end; 

procedure DoEditing (var theString: string); 
Y&r 

event:EVENTRECORD; 
typedChar : CHAR; 

begin 
while (event.what<> MOUSEDOWN) do 
begin 
repeat 
until GetNextEvent(mDownMask + keyDownMask, event); 
if (event.what<> MOUSEDOWN) then 
begin 
typedChar := Chr(event.message mod 256); 
ShowNewChar( typedChar, theStri ng); 
AddChar( typedChar, theStri ng); 

end 
end; 

end; 

begin (main} 
ShowDrawing; 



133 Chapter 4: What Type Through Yonder Window Breaks 
~~~~~~~~~~~-

-

theString := " ; {Two single quote merks. lnitielizes string}
{to empty.}

ShowStri ng(theStri ng);
Do Editing(theStri ng);

end.

Figure 4·14

Run this program. Notice the way it responds to Backspaces,
Returns and ordinary typing.

Do More

1. Write a routine PenToEnd that moves the pen to the
end of a given string so that you can replace the two
calls to ShowString in ShowNewChar with:

PenToEnd (Omit(theString, Length(theString), 1))
PenToEnd (Concat(theString, chr(CR)));

.2. The event record also specifies whether the Shift,
Option, Caps Lock, and Command keys are pressed. You
can find out the state of those keys by examining the
modifiers field of the event record.

The value of event.modifiers depends on which of
the modifier keys are pressed. A set of constants is
defined to help you decode event.modifiers. The
constants and their values are:

CMDKEY = 256
SHIFTKEY = 512
ALPHALOCK = 1024
OPTIONKEY = 2056

In effect, each of these values is added to the value
df event.modifiers if that particular key was down
when the event occurred.

The following program fragment shows one way to
decode event.modifiers into a set of TRUE/FALSE
values, one each for the Option, Caps Lock, Shift, and
Command keys. Opt, lock, shift, and cmd are defined as
BOOLEANs.

I

134 Introduction to Macintosh Pascal

opt : = event.modifiers > = OPTION KEY;
if opt then
event.modifiers:= event.modifiers - OPT~ONKEY;
lock:= event.modifiers > = ALPHALOCK;
if lock then
event.modifiers:= event.modifiers - ALPHALOCK;
shift:= event.modifiers > = SHIFTKEY;
if shift then
event.modifiers:= event.modifiers - SHIFTKEY;
cmd : = event.modifiers > = CMDKEY;

Notice that a Boolean expression is used in each
case to set the value of the key's BOOLEAN.

Is it necessary to initialize the BOOLEANs?
Notice, also, that the check begins with the greatest

value, OPTIONKEY (which equals 2048). Do you
understand why?

How would you decode event.modifiers if you only
wanted to know if the Command key was pressed?

3. Use event.modifiers for some new kind of action in the
program. For example, when you receive a Backspace,
check to see if the Option key is also pressed. If it is,
delete the entire previous word. Do that by deleting
characters backwards in the string until you reach a
space or a Return.

QUICK SUMMARY

This chapter explores what you can do with text on the
Macintosh. It shows how a modularized program, such as
Shapes, can be converted to other uses. It discusses and uses
strings and string functions and procedures. Events are
explained and used. It then develops a simple text editor that
solves the problem of what to do with Backspaces and Returns.
The following routines, operators, and concepts are introduced.

CharWidth is a QuickDraw function that returns the width in pixels of a
character in the current font, face, and size.

135 Chapter 4: What Type Through Yonder Window Breaks
~~~~~~~~~~~~~~ 

Concat is a predefined string function that attaches two or several strings 
together into one string. 

Copy is a predefined string function that copies some range of characters 
from a string and returns,it. 

Delete is a predefined string procedure that removes some range of 
characters from a string. 

Editor is a program that allows you to change text in a way similar to the 
way you type on a typewriter. 

Empty string is a string with no characters in it; that is, with a Length of zero. 

Event is an occurrence that requires the attention of the Macintosh's 
processor. More formally, an event is a data record of type 
EVENTRECORD, which contains a record of such an occurrence. 
Every keystroke causes an event, as does pressing the mouse button. 
Many events come from other parts of the computer, such as the 
disk drive. 

Face in relation to type is a characteristic that may be added to any font . 
There are seven face characteristics: bold, italic, underline, outline, 
shadow, condense, and extend. 

Field width is an optional parameter to the Write, WriteLn, and WriteDraw 
predefined procedures which helps determine the way the printed 
text appears. You specify the field with with a colon and a number 
following the printing item. 

Font is a set of characters in a single style. There are many thousands of 
fonts in the world. The Mac has less than a dozen, although it is 
likely that more will become available as time goes on. On the Mac, 
a font is defined as a set of images stored on the disk. Outside the 
Macintosh world, a particular font has a fixed size, but the 
Macintosh can scale a font to be of any size. 

GetNextEvent is a predefined function that returns TRUE when an event of a type 
you've requested occurs, and also returns an event of a type you've 
requested, if there is one of that type. If there is no event of the type 
you've requested, GetNextEvent returns FALSE. You give one or a 
number of masks to specify the events you want. Caution: when you 
use this call, the Pause menu does not work. 

Include is a predefined string function that returns a string with some 
c~aracters inserted at a given place. 

Infinite loop is a loop that has no way to end. It will run until you somehow 
intervene to stop it, such as by using the Pause menu or turning off 
your Macintosh. 



136 Introduction to Macintosh Pascal 

Insert is a predefined string procedure that inserts characters into a string 
in a given place. 

keyDownMask is the event mask that specifies a keystroke event. See GetNextEvent. 

Length is a predefined string function that returns the number of 
characters in a string. 

Mask is a value whose pattern of bits has special meaning. In general, you 
can add masks together to indicate that all the masks separately 
should be in effect. See GetNextEvent. 

mDownMask is the event mask that specifies mouse down events. See 
GetNextEvent. 

Mode see 'Iransfer mode. 

mod is a reserved word used as an operator that produces the remainder 
of the division of its two operands. 

MOUSEDOWN is the value of event.where in a mouse-down event. One mouse­
down event is produced each time you press the mouse button. 

Omit is a predefined string function that returns a string minus some 
range of characters. 

Point is a unit of text measurement. About 1172 of an inch. 

Pos is a predefined string function that searches a string and returns the 
position of the beginning of the first occurrence of a given group of 
characters. 

Remainder is what is left over when you divide one number into another a 
whole number of times. In other words, the remainder is the 
dividend minus the quotient times the divisor. 

Scaling is the process of enlarging or shrinking a character or picture. You 
can specify any type size, and the Macintosh automatically scales the 
information that it has so that the characters appear in the desired 
size. 

Size in relation to type is the average size of each character, expressed in 
points. A point is about 1172 of an inch, about the size of a pixel. The 
Mac will scale type to any size; however, it looks best when displayed 
in a size that is actually stored on the disk. 

srcBic see 'Iransfer mode. 

srcOr see 'Iransfer mode. 

srcXOr see 'Iransfer mode. 



137 Chapter 4: What Type Through Yonder Window Breaks 
~~~~~~~~~~~~~-

string is a reserved word used to define a data type that can hold from O
to 255 characters. A string automatically changes size to hold the
required number of characters. Every element of a string is of type
CHAR, and can be accessed with an element number as if the string
were an array. Unlike most other reserved words, string is not
included in all other versions of the Pascal language.

String is a group of characters. See string.

StringWidth is a QuickDraw function which returns the size in pixels of a given
string in the current font face, and size.

System font the font used to print system information, such as menu titles and
menu commands.

TuxtFace is a QuickDraw procedure that changes the text face setting.

TuxtFont is a QuickDraw procedure that changes the text font setting.

TuxtMode is a QuickDraw procedure that changes the text mode setting.

TuxtSize is a QuickDraw procedure that changes the text size setting.

Transfer mode determines the relationship between the pixel image defined for
whatever is to be drawn and what actually appears on the screen.
When drawing text, the mode must be one of the three allowable
text modes: srcOr, which prints black type; srcXOr, which reverses
what is on the screen; and srcBic, which draws white characters.

CHAPTER

~~---
Fielding

This chapter takes methods developed for the Simple Editor
and generalizes them, so you can edit text inside a box of any size
located anywhere on the screen. That program is then extended
so that you can edit in any number of boxes simultaneously.

This chapter's program is built in stages. The first stage is a
one-field editor that allows you to create a record, edit it, and
stop the program. The next chapter shows you how to store the
edited text on disk, so you have a permanent copy.

Developing a One-field Editor Program

You could use this editor to keep a telephone book, a list of
recipes, or any other set of information. Information collected
together is referred to as a data base.

The main program goes through the following steps.
First, in the initial stage it:

1. Sets up the display.

2. Gets the size and location of the editing box from the user.

3. Draws the editing box.

139

140 Introduction to Macintosh Pascal

Then, there is a loop based around a case statement. The
value of the case variable depends on the position of the mouse
button press-that is, where the mouse button is pressed. There
are three possibilities:

1. The mouse was in the editing field .

.2. The mouse was in the Stop button.

3. The mouse was in neither.

Initially, the case selector, choice, is set to indicate the third
choice. When choice is set to that value, the program waits for
another mouse button press. When one is received, the program
drops through to the end of the case statement, and the Picked
procedure is called. Picked figures out where the mouse was
when the button was pressed, and sets choice accordingly. If the
mouse was in the Stop button, the program then stops.
Otherwise, it loops back, and the case statement is executed
with the new value of choice.

When the mouse is pressed in the editing field, the value of
choice causes the DoEditing function to begin execution.
DoEditing executes until the mouse button is pressed again, at
which point the program again drops through the case
statement and calls Picked with the new mouse position.

Here is the main program. Get a new programming window
and type:

program Field_Editor;
con st
CR = 13; {Character code for Return.}
BS = 8; {Character code for Backspace.}
LINEHEIGHT = 15; {The distance between lines in pixels.}
ENDSTR = 256; {Guaranteed to be past the end of the string.}
SPACE= 3;
BUTHEIGHT = 20;
BUTLEFT = 20;
BUTWIDTH = 40;
type
stringRec = record
wPos : POINT;
theString : string;
itsRect : RECT;
end;
butType = record

141 Chapter 5: Fielding

stop: RECT;
end;
choiceType = (STOPIT, AFIELD, NOTHING);
var
choice : choiceType;
aRecord : stringRec;
buttons: butType;
drawingRect : RECT;
event: EVENTRECORD;
begin {main} HideAll;
SetUpDisplay(drawingRect);
{Preceding line expands the Drawing window to full screen.}
ChangeTheBox(aRecord);
DrawScreen(aRecord, buttons);
choice:= NOTHING;
repeat
case choice of
AFIELD:
begin
ShowCell(aRecord, TRUE);
DoEditing(aRecord, event);
ShowCell(aRecord, FALSE);
end;
NOTHING:
begin
repeat
until GetNextEvent(mDownMask, event);
GlobalTolocal(event.where);
end
end;
Picked(choice, aRecord, event.where, buttons);
until choice = stoplt;
SetRect(drawingRect, 293, 124, 508, 339);
SetDrawingRect(drawingRect); {Restores drawing window.}
end.

The predefined HideAll procedure removes the Tuxt,
Drawing, and programming windows from the display. Doing
that clears up some space in memory for the program. It is a
good idea to use the HideAll call in any sizable program,
particularly if you have a 128K Macintosh. After the program
finishes running, however, the programming window remains
hidden. Use the Windows menu to redisplay it.

142 Introduction to Macintosh Pascal

The new data type but'fype is used to store the RECT of the
onscreen button, Stop, that is used in this program. This uses a
record, rather than a simple variable, so that other buttons can
be easily added.

Enumerated Data fypes

The data type definition:

choiceType = (STOPIT, AFIELD, NOTHING);

needs special mention. This is an enumerated type. That is a
long word for a simple concept. An enumerated type is a Pascal
type whose values are defined by the programmer. A variable of
an enumerated type can only take on the values defined for that
type. In other words, you can make the following assignments to
the variable choice, defined to be of the type choicefype:

choice : = STOP IT;
choice : = AFIELD;
choice : = NOTHING;

You can't assign the variable choice any other value.
Enumerated types are also ordinal types. Other ordinal

types are INTEGER and CHAR. An ordinal type's possible values
have a sequential order. You can see how that is with INTEGERs:
the order of the set of INTEGERs is simply the normal counting
system -1 is less than 2 which is less that 3, and so on. CHAR
values have their order determined by the numerical order of
the character's codes: A is less than B which is less than Ci and
so on.

Enumerated types have their order set by the type
definition. The first identifier in the type's list of identifiers has

' the lowest value, and the last identifier has the highest value.
Given the definition of choicefype given in the program, the
following logical expressions are all TRUE.

STOPIT < NOTHING
AFIELD > STOPIT
NOTHING > STOPIT

143 Chapter 5: Fielding

The identifiers NOTHING, STOPIT, and AFIELD are the
constants of choicefype, just as "e'; "a'; and "g" are three of the
constants of type CHAR, and 3, 3200, and -256 are three
constants of type INTEGER. Notice that the values of choicefype
are used in the case statement and in the if statement in the
main program, in the same way constants of any type can be
used.

You could define choice as an INTEGER, and let the case
statement branch on INTEGER values. An enumerated type is
used because it is clearer.

Global and Local Coordinates

Towards the end of the main program are the lines:

repeat
until GetNextEvent(mDownMask, event);
GlobalTolocal(event.where);

You have seen GetNextEvent used before. In this case,
though, the most important question is where the event took
place. The where field of the event (in this case, event.where)
always contains the position of the mouse at the time of the
event.

However, the Event Manager returns the mouse position in
pixels measured from the top left corner of the screen, rather
than the top left corner of the Drawing window. Such
coordinates are referred to as global coordinates .
QuickDraw generally (but not always) uses coordinates relative
to a single window. Those coordinates are referred to as local
coordinates. The QuickDraw procedure GlobalToLocal
converts a point from global coordinates to the current local
coordinates. When you use Macintosh Pascal, the local
coordinates are almost always relative to the Drawing window,
so that the upper left corner of the Drawing window is (0,0) .
(The only way you can change the local coordinate system is by
using the QuickDraw grafport subprograms, which are not
used in this book. See the QuickDraw appendix of the Macintosh
Pascal Technical Appendix for more information.) There is a
corresponding QuickDraw procedure LocalToGlobal, which
converts a point from local coordinates to global coordinates.

144 Introduction to Macintosh Pascal

Figure 5-1 illustrates the difference between global and local
coordinates. Notice that any point can be expressed in global or
local coordinates. You just have to know which system you are
using.

Top of Screen
-46 locol
o global

Top of Drawing
Window
O local

46 global

Left of
Screen

-78 locol
O globol

,. •

left of
Drawing
Window
O local

78 global

File Edit

Figure 5-1 Global and Local Coordinates

The adjectives global and local, which are used in in many
different contexts, refer to points of view which are more or less
general than each other. A global point of view might look at the
way something changes the entire world, while a local point of
view looks at how it affects a single village, as if the outside
world didn't exist. A common use of the terms concerns
variables. Variables defined in a program's var section are global
to the program; they can be referred to from any procedure or
function anywhere in the program. Variables defined in a
procedure or function's var section, in contrast, are local to the
procedure or function; they are meaningless outside the
procedure or function. When you are inside the procedure or
function, you usually_ cannot tell whether a variable is global or
local. (An important exception concerns for loop index
variables. Those must be local; they must be defined in the part
of the program that uses them.) One important point: you can
use the same names to define global variables and local
variables. When there is a local variable of a given name, it is as
if the global variable of the same name does not exist. Many

145 Chapter 5: Fielding
~~~~~~~~~~~~ 

programs use global variables to make variables available to 
procedures and functions without passing the variables to the 
subprograms as parameters. Although that is very easy and 
tempting, it is generally not advisable. 

When a subprogram modifies a global variable, that action is 
called a side-effect. The problem is that it is then difficult to 
find all subprograms that change a given variable. If, for 
example, the value of the global variable is mistakenly changed in 
a procedure, that error may be very difficult to find. 

The rest of the main program is explained in connection 
with the corresponding subprograms. 

Creating Onscreen Buttons 

The action of the program turns on the procedure Picked, so 
that is defined first. 

Place an insertion point before begin {main} and type: 

procedure Picked (var choice : choiceType; 
aRecord : stringRec; 
mouse : POINT; 
buttons : butType); 
function ButtonPressed (whichButton : RECT; 
mouse: POINT): BOOLEAN; 
begin 
Button Pressed : = FALSE; 
if PtlnRect(mouse, whichButton) then 
begin 
lnvertRoundRect(whichButton, 6, 6); {QuickDraw procedure.} 
Button Pressed : = TRUE; 
end; 
end; 
begin {Picked} 
choice:= NOTHING; 
if PtlnRect(mouse, aRecord .itsRect) then 
choice:= AFIELD 
else if ButtonPressed(buttons.stop, mouse) then 
choice : = STOP IT 
end; 



146 Introduction to Macintosh Pascal 

The first thing in this procedure is a function that checks the 
special case of an onscreen button. At this point, the only 
onscreen button is the Stop button, whose RECT is stored in 
buttons.stop. 

A subprogram that is enclosed in another procedure or 
function in that way is called a local subprogram. It cannot be 
called from outside the procedure or function that contains it. 

ButtonPressed is a separate function for two reasons: first, 
for clarity, so that the procedure Picked is clearer; second, for 
generality. Although this program has only one button, it is not 
hard to add others. ButtonPressed can check any button, as long 
as you pass it the button's RECT. 

Notice that InvertRoundRect is used here in place of 
InvertRect. The onscreen buttons in this program are drawn as 
round-cornered rectangles, because they look better that way. 
The two 6's in the InvertRoundRect call define the size of the 
curves drawn at each corner of the round rectangle. 

The next two procedures define the button. These are 
capable of handling more than the one button . used in this 
program; the same procedures are also used later when more 
buttons are added. 

Place an insertion point before the words "procedure 
Picked" and type: 

procedure DrawButton (var butName : RECT; 
vertBase : INTEGER; thelabel : string); 
begin 
SetRect(butName, BUTLEFT, vertBase, BUTLEFT + 
BUTWIDTH, vertBase + BUTHEIGHT); 
FillRoundRect(butName, 6, 6, white); 
FrameRoundRect(butName, 6, 6); 
MoveTo(BUTLEFT + SPACE, vertBase + 14); 
TextFont(O); 
WriteDraw(thelabel); 
TextFont(1); 
end; 
procedure DrawScreen(aRecord: stringRec; var buttons : 
butType); 
begin 
FillRect(drawingRect, gray); 
DrawButton(buttons.stop, 310, 'Stop'); 
ShowCell(aRecord, FALSE); 
end; 



147 Chapter 5: Fielding 

These procedures are straightforward. Notice that the font 
is changed to the system font (font 0) before the button's label is 
drawn. That makes the text in the buttons look like the text in 
menus. 

Notice also that, because a record is used to store the RECT 
of the Stop button, you won't have to change the parameter list 
of DrawScreen when you add more buttons. 

Defining the Drawing Window 

The following procedure sets up the display. Place an insertion 
point before the words "procedure Picked" and type: 

procedure SetUpDisplay (var drawingRect: RECT); 
begin 
SetRect(drawingRect, 0, 0, 532, 358); 
SetDrawingRect(drawingRect); 
ShowDrawing; 
FillRect(drawingRect,gray); 
end; 

This procedure uses global coordinates: the RECT that 
defines the Drawing window must be defined in terms of the 
entire screen. The predefined procedure SetDrawingRect 
changes the Drawing window to the given RECT. The variable 
drawingRect is set by the line: 

SetRect(drawingRect, 0, 0, 532, 358); 

The dimensions given there define a rectangle somewhat 
larger than the screen. After the line: 

SetDrawingRect(drawingRect); 

is executed, the Drawing window fills the entire screen. In fact, 
it is slightly larger than the screen so that the borders of the 
window are hidden. This is a cosmetic touch, so that this 
program can use the entire Macintosh screen. (You cannot draw 
outside the Drawing window, remember.) Notice there is no way 
to reach the mouse controls of the Drawing window after it is 
enlarged by this procedure. The last two lines in the main 
program are: 

SetRect(drawingRect, 293, 124, 508, 339); 
SetDrawingRect(drawingRect); 



148 Introduction to Macintosh Pascal 

which resets the Drawing window to its size when Macintosh 
Pascal first starts. If, by some chance, your program halts before 
executing that last statement, the Drawing window will be stuck 
in its expanded state. You can restore it to its original size by 
quitting Macintosh Pascal, and then restarting it, or you can wait 
until you run this program again. (It is not a serious problem if 
the Drawing window is stuck in its expanded state. As usual, you 
can display the programming window by picking the program's 
same from the Windows menu.) 

Sizing the Editing Field 

The following procedure is called to set the size of the editing 
field. 

Place an insertion point before begin {main} and type: 

procedure ChangeTheBox (var aRecord : stringRec); 
var 
event : EVENTRECORD; 
begin 
Pen Mode(patXOr); 
with aRecord do 
begin 
repeat 
repeat 
until GetNextEvent(mDownMask, event); 
GlobalTolocal( event.where); 
itsRect.topleft : = event.where; 
repeat 
GetMouse(itsRect.right, itsRect.bottom); 
FrameRect(itsRect); 
FrameRect(itsRect); 
until not Button; 
until not EmptyRect(itsRect); 
Pen Normal; 
SetPt(wPos, itsRect.left + SPACE, itsRect.top + 

LINEHEIGHT); 
end; 
end; 



149 Chapter 5: Fielding 

If that procedure looks familiar, it should. It is essentially the 
DrawRectangle procedure used in Chapter 3. In that chapter, 
this procedure is broken down into three smaller procedures, 
one to get the top left corner, one to get the bottom right, and 
one that calls the other two. That is actually a better way to write 
the procedure. In this case they have been combined to save 
some space. The final program developed by this chapter fills up 
a 128K Mac. One way to make programs smaller is to eliminate 
procedures that are only called once. Good programming style 
and program size are sometimes trade-offs. In general, it is 
better to ignore the size problem as long as you can. In this case, 
the resulting procedure is still fairly small and understandable, 
so little is lost. 

Another difference between this routine and the ones in 
Chapter 3 is that, instead of drawing the box with FrameRect and 
immediately erasing it with EraseRect, the pen mode is set to 
srcXOr, and then the box is framed twice. When the pen is in 
srcXOr mode, all pixels are reversed. Drawing the same object 
twice in srcXOr mode leaves the screen in its original state. That 
has a great advantage over simply drawing and erasing the box: 
any drawing that was originally in that part of the screen is not 
changed. Therefore, srcXOr mode is a good choice in giving 
feedback when there is already some drawing on the screen. 

The with statement actually contains the entire body of this 
procedure, because the rest of the procedure is enclosed by 
begin and end statements. The with statement is a 
convenience for use with records. Within a with statement, 
every variable name is checked to see if it is a field of the given 
record. Therefore, as the procedure begins with: 

with aRecord do 

every name is checked to see if it is a field of aRecord. For 
example, the lines: 

with aRecord do 
FrameRect(itsRect); 

are exactly equivalent to: 

FrameRect(aRecord.itsRect); 

with has no other effect; its sole purpose is to save you from 
having to keep typing the record's name. Using it can make your 
program smaller. 



150 Introduction to Macintosh Pascal 

Displaying the Editing Field 

The following procedure may be the most difficult in this 
chapter. It displays the editing field, along with the text in the 
field. 

The next procedure, ShowCell is called from DrawScreen. 
You must define procedures before you use them. 

Notes 

There is a reserved word, forward, which can be used so 
that you can call a subprogram before it is defined. This 
reserved word is not used in this book because you rarely 
need forward. The most common situation where it is 
used is where two subprograms call each other. If you need 
to use forward, read about it in Chapter 7 of the Macintosh 
Pascal Reference Manual. 

Place an insertion point before the words "procedure 
DrawScreen" and type: 

procedure ShowCell (aRecord: stringRec; 
highlight: BOOLEAN); 
var 
n, currentline : INTEGER; 
begin 
with aRecord do 
begin 
ClipRect(itsRect); 
if highlight then 
PenSize(3, 3); 
FillRect(itsRect, white); 
FrameRect(itsRect); 
Pen Normal; 
if highlight then 
lnsetRect(itsRect, 3, 3); 
ClipRect(itsRect); 
MoveTo(wPos.h, wPos.v); 



151 Chapter 5: Fielding 
~~~~~~~~~~~~ 

Editing Procedures

currentLine : = O;
for n : = 1 to Length(theString) do
if theString[n] = Chr(CR) then
begin
currentLine : = currentLine + 1;
MoveTo(wPos.h, wPos.v + currentLine * LINEHEIGHT);
end
else
DrawChar(theString(n]); {Predefined.}
end;
if not highlight then
ClipRect(drawingRect);
end;

Notice that neither of the parameters are var parameters.
This procedure does not alter values; it only changes the
appearance of the screen.

The highlight parameter changes the way the field is
displayed. In general on the Macintosh, when something is
selected, it is highlighted in some way, to draw attention to it.
When the editing field is selected, ShowCell highlights it by
drawing a thick border around it. When highlight is FALSE, a
thin border is drawn around the editing field .

The predefined procedure ClipRect is called several times in
ShowCell. ClipRect tells QuickDraw not to draw outside the
given rectangle. The drawing is clipped outside the given
rectangle. You can still order drawing anywhere-but what you
draw is cut off and not displayed outside the ClipRect. It is this
facility that makes the illusion of windows possible, because it
preserves the borders of the windows.

The rest of the procedure ShowCell is much like procedure
ShowString, used in Simple Editor.

The following procedure is essentially the same as the two
procedures AddChar and ShowNewChar in Simple Editor. They
have been combined here to make the program a bit smaller.

Place an insertion point before begin {main} and type:

152 Introduction to Macintosh Pascal

procedure AddChar (typedChar : CHAR;
var aRecord : stringRec);
var
len : INTEGER;
lastChar : CHAR;
begin
with aRecord do
begin
len : = Length(theString);
if len > O then
lastChar : = theString[len];
case Ord(typedChar) of
BS:
if theString < > "then {Note: two single quote marks.}
if lastChar = Chr(CR) then
begin
Delete(theString, len, 1);
ShowCell(aRecord, TRUE);
end
else
begin
Move(-CharWidth(lastChar), O);
TextMode(srcXOr);
DrawChar(lastChar);
TextMode(srcOr);
Move(-CharWidth(lastChar), O);
Delete(theString, len, 1)
end;
CR:
if len + 1 < ENDSTR then
begin
lnsert(typedChar, theString, ENDSTR);
ShowCell(aRecord, TRUE);
end;
otherwise
if len + 1 < ENDSTR then
begin
DrawChar(typedChar);
lnsert(typedChar, theString, ENDSTR);
end;
{if}
end;
{case}

153 Chapter 5: Fielding
~~~~~~~~~~~ 

end; 
{with} 
end; 
{AcldChar} 

One important point about AddChar is that it is so much like 
the equivalent procedures in Simple Editor. It works on a string 
in a general way. It does not deal with absolute screen positions, 
but only relative screen positions. Therefore, AddChar works no 
matter whether the editing occurs in the full Drawing window, 
as with Simple Editor, or in a field that may move around the 
screen, as with Field Editor. The only difference is tJ:!at Add~har 
in Field Editor calls ShowCell, rather than ShowString, and 
passes ShowCell a stringRec, instead of a simple string. 

The final piece of the program is also nearly identical to a 
function used in Simple Editor. DoEditing is called when the 
field is selected by the user. As long as the user types, DoEditing 
continues executing. 

The most important difference between this procedure and 
the DoEditing procedure in Simple Editor is that this one passes 
the event record back to the main program. It does that so that 
Picked can find out where the mouse was when the button was 
pressed. 

When the user clicks the mouse button, DoEditing finishes, 
execution returns to the main program just after the DoEditing 
call, and control falls through to procedure Picked, which 
figures out the position of the mouse button press. 

Place an insertion point before begin {main} and type: 

procedure DoEditing (var aRecord : stringRec; 
var event : EVENTRECORD); 
begin 
repeat 
repeat 
until GetNextEvent(mDownMask + keyDownMask, event); 
if event.what < > MOUSEDOWN then 
AcldChar(Chr(event.message mod 256), aRecord) 
until event.what = MOUSEDOWN; 
GlobalToLocal(event.where); 
end; 

That is the entire program. It should now look like Figure 
5-2. 



154 Introduction to Macintosh Pascal 

program FielLEditor; 
const 

CR = 13; {Character code for <RETURN>.} 
BS = 8; {Character code for backspace.} 
LINEHEIGHT = 15; {The distance between lines in pixels.} 
ENDSTR = 256; {Guaranteed to be the past end of the string.} 
SPACE= 3; 
BUTHEIGHT = 20; 
BUT LEFT = 20; 
BUTWIDTH = 40; 

type 
stri ngRec = record 

wPos: POINT; 
theString : string; 
i tsRect : RECT; 

end; 
butType = record 

stop: RECT; 
end; 

choiceType =(STOP IT, AFIELD, NOTHING); 
var 
choice : choiceType; 
aRecord : stringRec; 
buttons : butType; 
drawi ngRect : RECT; 
n: INTEGER; 
event: EVENTRECORD; 

procedure DrawButton (Yor butName: RECT; 
vertBase : INTEGER; 
theLabel : string); 

begin 
SetRect(butName, BUTLEFT, vertBase, BUTLEFT + BUTWIDTH, vertBase + BUTHEIGHT); 
FillRoundRect(butName, 6, 6, white); 
FrameRoundRect(butName, 6, 6); 
MoveTo(BUTLEFT +SPACE, vertBase + 14); 
TextFont(O); 
Wri teDraw( theLabe 1); 
TextFont( 1 ); 

end; 

procedure ShowCell (aRecord: stringRec; 
highlight: BOOLEAN); 



155 Chapter 5: Fielding 
~~~~~~~~~~~ 

var
n, currentline : INTEGER;

begin
with aRecord do
begin

Cl i pRect(i tsRect);
if highlight then

PenSize(3, 3);
FillRect(i tsRect, white);
FrameRect(i tsRect);
PenNormal;
if highlight then

lnsetRect(itsRect, 3, 3);
Cl i pRect(i tsRect);
MoveTo(wPos.h, wPos.v);
currentL i ne := O;
for n := 1 to Length(theString) do
if theString[n] = Chr(CR) then
begin
currentline := currentline + 1;
MoveTo(wPos.h, wPos.v + currentline * LINEHEIGHT);

end
else
DrawCh6r(theStri ng[n]); {Pre-defined.}

end;
if not highlight then

Cl i pRect(drawi ngRect);
end;

procedure DrawScreen (aRecord : stringRec;
var buttons : butType);

begin
Fi 11 Rect(drawi ngRect, gray);
DrawBut ton(but tons.stop, 31 o, 'Stop');
ShowCe 11 (aRecord, FALSE);

end;

procedure SetupDisplay (var drawingRect: RECT);
begin
SetRect(drawingRect, o, o, 532, 356);
SetDrawi ngRect(drawi ngRect);
ShowDrawing;
FillRect(drawingRect, gray);

156 Introduction to Macintosh Pascal

end;

procedure Picked (var choice: choiceType;
aRecord : stringRec;
mouse: POINT;
buttons: butType);

YBr
n: INTEGER;

function ButtonPressed (whichButton: RECT;
mouse: POINT): BOOLEAN;

begin
ButtonPressed := FALSE;
if PtlnRect(mouse, whichButton) then

begin
lnvertRoundRect(whichButton, 6, 6); {QuickDraw procedure.}
But tonPressed := TRUE;

end;
end;

begin {Picked}
choice:= NOTHING;
if PtlnRect(mouse, aRecord.itsRect) then

choice:= AFIELD
else if ButtonPressed(buttons.stop, mouse) then
choice:: STOPIT

end;

procedure AddChar (typedChar: CHAR;
YBr aRecord: stringRec);

YBr
len: INTEGER;
lastChar: CHAR;

begin
with aRecord do
begin

len := Length(theString);
if len > 0 then

1 astChar := theString[l en);
case Ord(typedChar) of

BS:
if theString <>"then {Note: two single quote marks.}
if 1 astChar = Chr(CR) then

157 Chapter 5: Fielding
~~~~~~~~~~~ 

begin 
DeJete(theString, Jen, 1); 
ShowCeJl(aRecord, TRUE); 

end 
else 
begin 

Move(-CharWi dth(I astChar), O); 
TextMode(srcXOr); . 
DrawChar(I astChar); 
TextMode(srcOr); 
Move(-CharWi dth(I astChar), O); 
DeJete(theString, Jen, 1) 

end; 
CR: 
if Jen + 1 < ENDSTR then 

begin 
Insert( typedChar, theStri ng, ENDSTR); 
Showce J J (aRecord, TRUE); 

end; 
otherwise 
if Jen+ 1 < ENDSTR then 

begin 
DrawChar( typed Char); 
lnsert(typedChar, theString, ENDSTR); 

end; {if} 
end; {case} 

end; {with} 
end; {AddChar} 

procedure DoEditing (var aRecord: stringRec; 
Yar event: EVENTRECORD); 

begin 
repeat 
repeat 
until GetNextEvent(mDownMask + keyDownMask, event); 
if event.what<> MOUSEDOWN then 

AddChar(Chr(event.message mod. 256), aRecord) 
until event.what= MOUSEDOWN; 
Gl oba lToLocal (event. where); 

end; 

procedure ChangeTheBox (Hr aRecord: stringRec); 
Hr 



158 Introduction to Macintosh Pascal 

event: EVENTRECORD; 
begin 

PenMode(patXOr); 
with aRecord do 
begin 
repeat 
repeat 
until GetNextEvent(mDownMask, event); 
GlobalTolocal(event.where); 
itsRect.topleft := event.where; 
repeat 

Get Mouse( i tsRect.ri ght, i tsRect.bot tom); 
FrameRect( i tsRect); 
FrameRect( i tsRect); 

until not Button; 
until not EmptyRect(itsRect); 
PenNormal; 
SetPt(wPos, itsRect.left + SPACE, itsRect.top + LINEHEIGHT); 

end; 
end; 

begin {main} 
HideAll; 
SetupDi sp I ay(drawi ngRect); 

{Preceding line expands the drawing window to full screen.} 
ChangeTheBox(aRecord); 
DrawScreen(aRecord, but tons); 
choice := NOTHING; 
repeat 
case choice of 

AFIELD: 
begin 

ShowCell(aRecord, TRUE); 
DoEditing(aRecord, event); 
Showce 11 (aRecord, FALSE); 

end; 
NOTHING: 
begin 
repeat 
unt i 1 GetNextEvent(mDownMask, event); 
Gl oba IToloca 1 (event. where); 

end 
end; 



159 Chapter 5: Fielding 

Pi cked(choi ce, aRecord, event. where, buttons); 
unt i I choice = stop It; 
SetRect(drawingRect, 293, 124, 508, 339); 
SetDrawi ngRect(drawi ngRect); {Restores drawing window.} 

end. 

Figure 5-2 

Choose Save from the File menu, and type "Field Editor" as 
the program name. 

Run the program. When the program begins, it waits for you 
to draw a box on the screen. Do that the way you have before: 
hold the mouse button down and move the mouse down and to 
the right. The ChangeBox procedure rejects any "boxes" that 
don't enclose any space by using the EmptyRect routine. You can 
create an empty box accidentally by clicking the mouse button, 
instead of holding the button down and moving the mouse, or by 
moving the mouse to the left or up, instead of right and down. If 
you do that, ChangeBox loops back and waits for you to draw 
another box. Figure 5-3 shows a sample of what you can produce 
with this program. 

Perhaps we do not always 
sufficiently consider that 
thought is successive, not 
through some accident or 
weakness of our subj ecti v 
operations but because the 
operations of nature ere 

Figure 5-3 



160 Introduction to Macintosh Pascal 

'fype in the box, and notice how the typing that would otherwise 
show up outside the borders of the box is hidden by clipping. 
Notice that, as long as the ClipRect is set correctly, your program 
does not have to worry about whether or not it is drawing 
outside the "window." QuickDraw does that for you, 
automatically. It will even cut letters in pieces, so only a fraction 
of the letter is visible. 

Click in the background and in the box again, to see how the 
box is selected and deselected. Notice that typing has no effect 
when the box is not selected. 

When you are done, click in the Stop box. 
Field Editor is easy to convert so that it can handle as many 

fields as you can fit into your Mac's memory. 

Developing a Multiple Field Editor 

Follow these steps to convert your program to the Multiple Field 
Editor: 

1. Choose Save As from the file menu. 

2. 'fype "Multiple Field Editor" as the new file name. 

3. Click in the Save button. 

4. Replace the first line of the program with: 

program Multiple_Field_Editor; 

Make sure you typed the underscores(_}- that is the key to 
the right of the 0 (zero) key, with the Shift key depressed. 
Underscore characters are allowed as separators in any Pascal 
name. 

5. Place an insertion point before the "CR =13;"in the third line 
of the program and type: 

NUMRECS = 3; {The number of separate records in an entry.} 

Each field is stored as a stringRec-type record. NUMRECS is 
the number that can be on the screen at one time-in this case, 
it is set to 3. There is nothing about this program that limits 



161 Chapter 5: Fielding 

NUMRECS to 3. The only limit is the amount of memory in your 
Mac. If you, like me, have a 128K Macintosh, you won't be able to 
have much more than three records. If you have a 512K Mac, you 
can have many more. NUMRECS records are grouped together 
in an "entry:• The final version of this program will store entries 
in a disk file, so that you can have a huge number of entries 
stored away. 

6. In the type declaration part of the program, place an 
insertion point after the word "stop" and before the colon(:) 
in the line: 

butType = record 
stop: RECT; 

and type: 

,new, box 

That line should now be: 

stop, new, box : RECT; 

7. Add the words: 

CHANGEBOX,NEWENTR~ 

to the choicefype declaration. That line should now be: 

choiceType = (STOPIT,AFIELD,CHANGEBOX,NEWEN 
TRY, NOTHING); 

8. Place an insertion point before the first appearance of var 
(just after the last declaration in the type part) and type: 

entryType = array[1..NUMRECS] of stringRec; 

The constant NUMRECS is used whenever the number of 
records in an entry is needed. This way, all you need to do to 
change the number of records in an entry is to change the 
value of NUMRECS. 

9. Place an insertion point before the first declaration in the 
var part, "choice : choicefype;' and type: 

anEntry: entryType; 
therelsAnEntry: BOOLEAN; 
which, n : INTEGER; 



162 Introduction to Macintosh Pascal 

10. Change the following parameter definition in the 
parameter list of procedure DrawScreen: 

aRecord: stringRec; 

to: 

anEntry: entryType; therelsAnEntry: BOOLEAN; 

11. Place an insertion point before the begin statement of 
procedure DrawScreen and type: 

var 
n: INTEGER; 

1.2. In procedure DrawScreen, place an insertion point after 
the line that calls DrawButton and type: 

DrawButton(buttons.new, 280,'New'); 
DrawButton(buttons.box,250,'Box'); 

13. Remove the following line from procedure DrawScreen: 

ShowCell(aRecord, FALSE); 

Replace it with: 

if therelsAnEntry then 
for n:= 1 to NUMRECS do 
ShowCell(anEntry[n], FALSE); 

14. In the parameter list of procedure Picked, replace the 
words: 

aRecord : stringRec; 

with: 

anEntry: entryType; 
var which : INTEGER; therelsAnEntry : BOOLEAN; 

The parameter list of Picked now should be: 

procedure Picked (var choice : choiceType; 
anEntry: EntryType; 
var which : INTEGER; 
therelsAnEntry : BOOLEAN; 
mouse : POINT; 
buttons : butType); 



163 Chapter 5: Fielding 

lS. Place an insertion point before the words "ButtonPressed" 
and type: 

var 
n: INTEGER; 

16. In procedure Picked, replace the lines: 

if PtlnRect(mouse, aRecord.itsRect) then 
choice : = a Field 

with: 

if therelsAnEntry then 
for n := 1 to NUMRECS do 
if PtlnRect(mouse, anEntry[n].itsRect) then 
begin 
choice : = AFIELD; 
which:= n; 
end; 

17. After typing the above lines, without moving the insertion 
point, type: 

if ButtonPressed(buttons.new, mouse) then 
choice : = NEWENTRY 
else if ButtonPressed(buttons.box, mouse) thenchoice:= 
CHANGEBOX 

Procedure Picked should now be as shown in Figure 
5-4. 

18. In the main program, remove the lines: 

ChangeTheBox(aRecord); 
DrawScreen(aRecord, buttons); 

and replace them with: 

therelsAnEntry := FALSE; 
which:= 1; 
DrawScreen(anEntry, therelsAnEntry, buttons); 

19. Place an insertion point after AFIELD: and type: 

if therelsAnEntry then 



ll 64 Introduction to Macintosh Pascal 

20. In the following lines in the main program: 

ShowCell(aRecord, TRUE); 
DoEditing(aRecord, event); 
ShowCell(aRecord, FALSE); 

replace the variable name aRecord with: 

anEntry[which] 

procedure Picked (var choice: choiceType; 
anEntry : entryType; 

var 

var which: INTEGER; 
there I sAnEntry : BOOLEAN; 
mouse: POINT; 
buttons: butType); 

n: INTEGER; 

function ButtonPressed (whichButton: RECT; 
mouse: POINT): BOOLEAN; 

begin 
ButtonPressed :=FALSE; 
if PtlnRect(mouse, whichButton) then 
begin 

lnvertRoundRect(whichButton, 6, 6); {QuickDraw procedure.} 
ButtonPressed := TRUE; 

end; 
end; 

begin {Pi eked} 
choice:: NOTHING; 
if there I sAnEntry then 
for n := 1 to NUMRECS do 
if Pt I nRect(mouse, anEntry[n). i tsRect) then 
begin 
choice:= AFIELD; 
which:= n 

end; 
if But tonPressed(but tons.new, mouse) then 

choice:= NEWENTRV 
else if ButtonPressed(buttons.box, mouse) then 

choice := CHANGEBOX 
else if ButtonPressed(buttons.stop, mouse) then 
choice:= STOPIT 

end; 

Figure 5·4 



165 Chapter 5: Fielding 

.21. Place an insertion point before "NOTHING:" and type: 

NEWENTRY: 
begin 
for n := 1 to NUMRECS do 
begin 
anEntry[n].theString: = "; {Two single quote marks.} 
if not therelsAnEntry then 
begin 
ChangeTheBox(anEntry[n]); 
ShowCell(anEntry[n], FALSE); 
end; 
end; 
event.where:= anEntry[1].wPos; 
therelsAnEntry: = TRUE; 
DrawScreen(anEntry, therelsAnEntry, buttons); 
end; 
CHANGEBOX: 
begin 
if therelsAnEntry then 
begin 
ChangeTheBox(anEntry[which]); 
event.where:= anEntry[which].itsRect.topleft; 
end 
else 
SetPt(event.where, 999,999); 
DrawScreen(anEntry, therelsAnEntry, buttons); 
end; 

.22. Change the line that calls procedure Picked to: 

Picked(choice, anEntry, which, therelsAnEntry, 
event.where, buttons); 

.23. Choose Save from the File menu. 



166 Introduction to Macintosh Pascal 

program MultipleJielcLEditor; 
const 

NUMRECS = 3; {The number of separate records in an entry.} 
CR= 13; {Character code for <RETURN>.} 
BS = 8; {Character code for backspace.} 
LINEHEIGHT = 15; {The distance between lines in pixels.} 
ENDSTR = 256; {Guaranteed to be the past end of the string.} 
SPACE= 3; 
BUTHEIGHT = 20; 
BUTLEFT = 20; 
BUTWIDTH = 40; 

type 
stringRec =record 

wPos: POINT; 
theString : string; 
itsRect: RECT; 

end; 
butType = record 

stop, new, box: RECT; 
end; 

choiceType = (STOPIT, AFIELD, CHANGEBOX, NEWENTRV, NOTHINGj; 
entryType = array[ 1 .. NUMRECS) of stringRec; 

var 
anEntry : entryType; 
therelsAnEntry: BOOLEAN; 
which, n: INTEGER; 
choice: choiceType; 
aRecord : stringRec; 
buttons : butType; 
drawingRect: RECT; 
event:EVENTRECORD; 

procedure DrawButton (var butName: RECT; 
vertBase : INTEGER; 
theLabel : string); 

begin 
SetRect(butName, BUTLEFT, vertBase, BUTLEFT + BUTWIDTH, vertBase + BUTHEIGHT); 
FillRoundRect(butName, 6, 6, white); 
FrameRoundRect(butName, 6, 6); 
MoveTo(BUTLEFT +SPACE, vertBase + 14); 
TextFont(O); 
Wri teDraw( theLabe 1); 
TextFont( 1 ); 



167 Chapter 5: Fielding 
~~~~~~~~~~~ 

end;

procedure ShowCell (aRecord : stringRec;
highlight: BOOLEAN);

var
n, currentline: INTEGER;

begin
with aRecord do
begin

Cl i pRect(i tsRect);
if highlight ~hen
PenSize(3, 3);

Fill Rect(i tsRect, white);
FrameRect(i tsRect);
PenNormal;
if highlight then

lnsetRect(itsRect, 3, 3);
Cli pRect(i tsRect);
MoveTo(wPos.h, wPos.v);
currentL i ne := o;
for n := 1 to Length(theString) do
if theString[nl = Chr(CR) then
begin
currentli ne := currentli ne + 1 ;
MoveTo(wPos.h, wPos.v + currentline * LINEHEIGHT);

end
else
DrawChar(theStri ng[n]); {Pre-defined.}

end;
if not highlight then

Cl i pRect(drawi ngRect);
end;

procedure Drawscreen (anEntry: entryType;
therelsAnEntry : BOOLEAN;
var buttons: butType);

var
n: INTEGER;

begin
FillRect(drawingRect, gray);
DrawButton(buttons.stop, 31 O, 'Stop');
DrawButton(buttons.new, 260, 'New');
DrawButton(buttons.box, 250, 'Box');

168 Introduction to Macintosh Pascal

if there I sAnEntry then
for n := 1 to NUMRECS do
ShowCell(anEntry[n], FALSE);

end;

procedure SetupDisplay (var drawingRect: RECT);
begin

SetRect(drawingRect, 0, 0, 532, 35B);
SetDrawi ngRect(drawi ngRect);
ShowDrawing;
Fi 11 Rect(drawi ngRect, gray);

end;

procedure Picked (var choice: choiceType;
anEntry : entryType;

var

var which: INTEGER;
therelsAnEntry: BOOLEAN;
mouse: POINT;
buttons : butType);

n: INTEGER;

function ButtonPressed (whichButton: RECT;
mouse: POINT): BOOLEAN;

begin
ButtonPressed := FALSE;
if PtlnRect(mouse, whichButton) then
begin

lnvertRoundRect(whichButton, 6, 6); {QuickDraw procedure.}
But tonPressed := TRUE;

end;
end;

begin {Picked}
choice:: NOTHING;
if there I sAnEntry then
for n :: 1 to NUMRECS do
if PtlnRect(mouse, anEntry[n).itsRect) then
begin
choice:= AFIELD;
which:= n

end;
if But tonPressed(but tons.new, mouse) then

169 Chapter 5: Fielding
~~~~~~~~~~~ 

choice := NEWENTRV 
else if ButtonPressed(buttons.box, mouse) then 
choice:: CHANGEBOX 

else if ButtonPressed(buttons.stop, mouse) then 
choice:= STOPIT 

end; 

procedure AddChar (typedChar: CHAR; 
YDr aRecord: stringRec); 

Yllr 
1 en : INTEGER; 
lastChar: CHAR; 

begin 
with aRecord do 
begin 

len := Length(theString); 
if len > O then 
lastChar := theString[lenl; 

C&se Ord(typedChar) of 
BS: 
if theString <>"then {Note: two single quote marks.} 
if lastChar = Chr(CR) then 
begin 
Delete(theString, len, 1); 
ShowCell(aRecord, TRUE); 

end 
else 
begin 

Move(-CharWi dth(l astChar), o); 
TextMode(srcXOr); 
DrawChar(l astChar); 
TextMode(srcOr); 
Move(-CharWi dth(l astChar), o); 
Delete(theString, len, 1) 

end; 
CR: 
if len + 1 < ENDSTR then 

begin 
lnsert(typedChar, theString, ENDSTR); 
Showce 11 (aRecord, TRUE); 

end; 
otherwise 
if len + 1 < ENDSTR then 



170 Introduction to Macintosh Pascal 

begin 
DrawChar( typedChar); 
lnsert(typedChar, theString, ENDSTR); 

end; {if} 
end; {case} 

end; {with} 
end; {AddChar} 

procedure DoEditing (var aRecord: stringRec; 
Yllr event : EVENTRECORD); 

begin 
repent 

repent 
until GetNextEvent(mDownMask + keyDownMask, event); 
if event.what<> MOUSEDOWN then 

AddChar(Chr(event.message mod 256), aRecord) 
until event.what = MOUSEDOWN; 
Gl obalToLocal (event.where); 

end; 

procedure ChangeTheBox (var aRecord: strin.gRec); 
YBr 
event : EVENTRECORD; 

begin 
PenMode(patXOr); 
with aRecord do 
begin 
repent 
repent 
until GetNextEvent(mDownMask, event); 
Gl oba lToLoca 1 (event. where); 
i tsRect. topleft := event. where; 
repent 
GetMouse(itsRect.right, i tsRect.bot tom); 
FrameRect(i tsRect); 
FrameRect(i tsRect); 

until not Button; 
until not EmptyRect(itsRect); 
PenNormal; 
SetPt(wPos, itsRecUeft +SPACE, itsRect.top + LINEHEIGHT); 

end; 
end; 



171 Chapter 5: Fielding 

begin {main} 
HideAll; 
SetupDi sp 1 ay(drawi ngRect); 

{Preceding line expands the drawing window to full screen.} 
therelsAnEntry :=FALSE; 
which:= I; 
DrawScreen(anEntry, there I sAnEntry, buttons); 
choice:= NOTHING; 
repeat 
case choice of 

AFIELD: 
if therelsAnEntry then 
begin 

ShowCell (anEntry[whi ch). TRUE); 
DoEdi ti ng(anEntry[whi ch). event); 
ShowCell(anEntry[which). FALSE); 

end; 
NEWENTRV: 
begin 
for n := 1 to NUMRECS do 
begin 
anEntry(n].theString := "; {Two single quote marks.} 
if not therelsAnEntry then 
begin 
ChangeTheBox(anEntry[n)); 
ShowCel l(anEntry[n]. FALSE); 

end; 
end; 

event.where := anEntry[ 1 ).wPos; 
therelsAnEntry :=TRUE; 
DrawScreen(anEntry, there I sAnEntry, but tons); 

end; 
CHANGEBOX: 
begin 
if therelsAnEntry then 
begin 

ChangeTheBox(anEntry[ which)); 
event. where := anEntry[ which). i tsRect.topLef t; 

end 
else 
SetPt(event.where, 999, 999); 

DrawScreen(anEntry, there I sAnEntry, but tons); 
end; 



172 Introduction to Macintosh Pascal 

NOTHING: 
begin 
repent 
until GetNextEvent(mDownMask, event); 
Gl oba lToLocal (event. where); 

end 
end; 
Picked(choice, anEntry, which, therelsAnEntry, event.where, buttons); 

until choice= stoplt; 
SetRect(drawingRect, 293, 124, 508, 339); 
Setorawi ngRect(drawi ngRect); {Restores drawing wi ngow.} 

end. 

Figure 5-5 

The Multiple Field Editor should now look like Figure 5-4. 
Click in the Close box at the top left corner of the 

programming window to hide the window. (That frees up some 
memory space. This program otherwise runs out of room before 
reaching the HideAll call.) 

Run the program. 
Unlike the Field Editor program, Multiple Field Editor begins 

by waiting for a mouse button press to tell it what to do. The only 
meaningful action is pressing the New button. Then, the 
program waits for you to draw the required number of boxes, in 
this case, three. If you click the mouse in one of the boxes, that 
box is marked as "selected'~ and you can type in it. The Box 
button invokes the ChangeBox procedure, which then allows you 
to change the size and location of the most recently selected box. 
When you pick New, the boxes you drew before are redisplayed, 
with the text cleared out of them. When you click in the 
background, any highlighted box has the highlighting removed, 
and typing does nothing. 

'fry changing the number of boxes to some larger number­
but be aware that, if you run out of memory, you may be forced 
to leave Pascal, so make sure you've saved the most recent 
version of your program. 



173 Chapter 5: Fielding 

It is a good idea to save any program in Macintosh Pascal 
before running it. The program may have an error that 
leaves you unable to save it later. 

One frustrating thing about the Multiple Field Editor is that 
it just throws away the boxes you create and the text you type. 
Fortunately, it is pretty easy to save those entries on disk. The 
next chapter shows you how to do that. 

1. Most word processors have a feature called "word­
wrap:' When a line is filled, the next word automatically 
moves to the next line. That is usually done by moving 
the first full word that can't all fit on the line. 

'Try adding that feature. (Hint: You can draw the 
character, then find the pen position with GetMouse, 
and then use PtlnRect to find if the pen is in the cell.) If 
the word won't fit in the current editing box, go back in 
the string to the last space and replace it with a CR. 
Then use ShowCell to redisplay the text. 

2. Allow the user to change the font by pressing the 
Command key along with the < and > characters. (See 
the Do More section of Chapter 4 to see how you can 
test for the Command key.) 

3. Can you think of ways to modify the program so that 
cells can contain more than 255 characters? 



17 4 Introduction to Macintosh Pascal 

QUICK SUMMARY 

This chapter develops a "field editor;' which allows you to 
edit text in boxes on the screen. You can use the modules 
from this chapter for any programs that need to get text in 
a flexible way. The following routines, statements, and 
concepts are introduced. 

Clipping is when graphic information outside a given area is automatically 
blocked from being drawn. You can see clipping in operation any 
time you use a window on the Macintosh. 

Data base is a set of related information. 

Enumerated type is a programmer-defined type that can only take on certain the 
values listed by the programmer. 

forward is a reserved word that lets you call a procedure or function before 
you define it. You give the formal parameter list for the subprogram, 
followed by the word forward, but without giving the body of the 
subprogram. You can then define the body later. This is most often 
used when two subprograms call each other. 

Global coordinates in Macintosh Pascal, refers to coordinates expressed in terms of the 
upper left corner of the screen. The point (0,0) in global coordinates 
is always the upper left corner of the screen, and never moves. 

GlobalTuLocal is a QuickDraw procedure that converts global coordinates to local 
coordinates. In Macintosh Pascal, this generally means converting 
from coordinates where the upper left corner of the screen is (0,0) 
to coordinates where the upper left corner of the Drawing window 
is (0,0) . Note that the point doesn't move-the values used to refer to 
the point change. 

HideAll is a predefined procedure that hides all of Macintosh Pascal's 
windows. 

InvertRoundRect is a QuickDraw procedure that inverts a round-cornered rectangle. 

Local coordinates refers to coordinates expressed in terms of the current coordinate 
system. The position of (0,0) can move. In Macintosh Pascal, local 
coordinates usually are values where the upper left corner of the 
Drawing window is (0,0). 

Local subprogram is a subprogram that is defined within another subprogram, and can 
therefore only be called from within that subprogram. 



175 Chapter 5: Fielding 

LocalTuGlobal is a QuickDraw procedure that converts local coordinates to global 
coordinates. I.n. Macintosh Pascal, this generally means converting 
from coordinates where the upper left corner of the Drawing 
window is (0,0) to co9rdinates where the upper left corner of the 
screen is (0,0) . Note that the point doesn't move-the values used to 
refer to the point change. 

Ordinal type is a typ~ whose possi).:>le values are of a limited, ordered set. 

Side effect is when a procedure or function changes the value of a variable that 
is not in the procedure or function's parameter list, and is not local 
to the procedure. (A subprogram's local variables are defined within 
the subprogram, and cannot be referenced outside the 
subprogram.) Side effects are considered bad programming style 
because they can create errors that are difficult to trace. It is much 
easier to find errors if every subprogram that modifies a variable 
declares that it does so by having that variable as one of its 
parameters. 

with is a reserved word used for a statement that lets you operate on 
fields of a record without writing the record's name every time. 
Every variable name within the with statement is checked to see if 
it is a field of the record. 



CHAPTER 

~~---
Files: A Piece of 
Cake 

Data is stored on disk in files. Every program you write is 
stored in a file; Macintosh Pascal itself is stored in a file. 

Disk files on any computer consist, on their most basic level, 
of a sequence of bytes. Pascal, though, imposes a few more 
restrictions. In Pascal, a file consists of a sequence of 
components, each of which is of the same data type. 

A file can be filled with components of any data type. For 
example, you could fill a file with all INTEGER components, or all 
CHAR components, or all entryiype components. 

Every component has a sequence number. The first 
component in the file is numbered O (zero) . Yoq cannot read part 
of a component; you must read an entire component at a time. 
You can use the Read and Write predefined procedures to read 
from and write to files. 

177 



File Variables 

178 Introduction to Macintosh Pascal 

A file is represented in Pascal by a variable, called a file 
variable. You define a type for the file variable in the same way 
you define a type for any variable. For example: 

fileType = file of entryType; 

creates a new file type which has components of the type 
entryfype. Once you've created your file type, you can create a 
variable of the file type. For example: 

fVar : fileType; 

defines a file variable for a file filled with entryfype components. 
There is also a special predefined file type, called TEXT. 

TEXT in Macintosh Pascal is equivalent to file of CHAR. You 
define a TEXT file variable like this: 

myFile: TEXT; 

Macintosh Pascal program files are of type TEXT, as are 
MacWrite files. 

File variables are unusual variables. Like all variables, the 
value of a file variable is initially undefined. You give a file 
variable an initial value by opening a file, including the file 
variable in the call that opens the file . 

You then can use the file variable in calls to Read and/or 
Write, to get components from the file or put components into 
the file. The file variable always points to the current component 
of the file. It is automatically moved to the next component when 
you read or write to the file . 

Every file can only have one variable at a time, and only one 
current component. For that reason, you must pass file variables 
as var parameters, and you cannot assign the value of a file 
variable to another variable, even one of the same type. 

The file variable is actually a kind of "window" on the file, 
through which you can see one component at a time, as 
illustrated in Figure 6-1. You can get that component directly by 
using a caret ( ~) following the file variable's name. For example: 

anEntry := fVar-; 



File Procedures 

1 79 Chapter 6: Files: A Piece of Cake 

( file variable) 

v 

0 1 2 3 4 5 6 7 

Figure 6· 1 File Variables 

8 9 I+-
end 
of file 

You can move the file variable to the next component with 
the predefined Get procedure: 

Get(Nar); 

The predefined Read procedure combines the action of the 
above two statements: 

Read(Nar, anEntry); 

That call places the current component in anEntry and 
moves the file variable so that it looks at the next component. In 
either case, the file itself is not changed; the component is 
merely copied to the variable anEntry. 

If there are no more components, however, the value of fVar 
is undefined. It is therefore an error to try to call Read on the 
file, or to try to assign the value of fVar ~ to another variable. The 
predefined EOF function returns TRUE if you have reached the 
end of the file. If is often used like this: 

If not EOF(Nar) then 
Read(Nar, anEntry); 

You can put new components in the file in a similar way. For 
example: 

Nar ~ [ = an Entry; 
Put(fVar); 

which is equivalent to: 

Write(Nar, anEntry); 



180 Introduction to Macintosh Pascal 

2 

The Put and Write procedures move the file variable to the 
next component, if there is one, or to the end of the file, if there 
are no more components. There is always room to put a new 
component in a file; the file is automatically expanded to make 
room for it. If EDF is TRUE (that is, you are at the end of the file) 
the new component is added onto the end of the file. Otherwise, 
the new component replaces the current component. 

You can also find out the component number of the current 
component with the FilePos function, and move to a particular 
component with the Seek procedure. 

When using Read and Write with files of type TEXT, you can 
give any number of variables, or, in the case of Write, constants. 
For example, assume that next is a file variable of type TEXT. 
The following call is legal: 

Write(tText, aNumber, aletter, 'T.S.Eliot','Ezra Pound'); 

Notice that this writes twenty-one components to the file, 
assuming that aNumber and aLetter each hold a single 
character. Figure 6·2 illustrates what the file might contain after 
this call, assuming that aNumber contains a '2' and aLetter 
contains a 'B'. Because this is a Write call, next is positioned past 
the last character written, at the end of the file. Also, notice that 
the file only contains one space-the one between Ezra and 
Pound. Spaces are not automatically written into the file. You 
have to include them yourself. 

B T s ' E I i 0 t E z r a p 

Figure 6·2 File After Write 

0 u n 

flext) 
--r--l, 
d I+-

end 
of 
file 



181 Chapter 6: Files: A Piece of Cake 
~~~~~~~~~~~~ 

There are also two procedures and a function that can be
used only with files of type TEXT. They are:

• The WriteLn procedure, which acts exactly like Write, except
that it puts an end-of-line character in the file after writing all
the data contained in the WriteLn call. An end-of-line
character is a non-printing character like the Backspace
character or the Return character, except that it indicates the
end of a line.

• The ReadLn procedure, which reads from the current
component to the next end-of-line character, or the end of the
file.

• The EOLN function, which returns TRUE when the file
variable is at an end-of-line character.

Reading or writing with a file of type TEXT is just like
reading or writing the Tuxt window. In fact, the Tuxt window is
a file of type TEXT to Pascal.

There are two distinct classes of files in Macintosh Pascal:
normal files and anonymous files. Normal files have
names, and appear in the disk directory. They have icons
associated with them, so you can copy them to other disks, or do
anything else you can do with Macintosh files. Anonymous files
do not have names, and are only temporary. When your
program ends, they are destroyed, and any data in them is lost.

You cannot delete normal files in Macintosh Pascal. The only
way to get rid of one is to dump its icon into the Trash. You also
cannot delete individual components. You can, though,
completely erase a normal file, and remove all of its components.

You begin using a file by opening it. There are three
predefined procedures that open files. They are:

• Reset. After you open a file with Reset, you can read from a
file, but you can't write to it. You can use the Read or Get
procedures.

• Rewrite. After you open a file with Rewrite, its previous
contents are erased, and you can only write to the file. You
cannot read from it. You can use the Write or Put procedures.

• 0 pen After you call Open, you can read from or write to a
file. You can use the Read, Write, Put, or Get procedures.

182 Introduction to Macintosh Pascal

You can also call Reset or Rewrite for a file that is already
open. If the file was originally opened with Reset or Rewrite, the
effect is the same as if the file is first closed and then newly
opened with the Reset or Rewrite procedure you just called. If
the file was originally opened with Open, Reset brings you back
the beginning of the file, and allows you to continue writing or
reading components. Rewrite erases the entire file, but as long
as you originally opened the file with Open, you can still read
components from the file after you've written them.

You can also call the Close procedure, which closes the file.
After that, the file variable is again undefined. You can then call
Reset, Open, or Rewrite, which all act as if the file had never
been opened.

You can call Open or Rewrite for a file that does not yet exist.
The file is automatically created.

You must supply a file name when you open a normal file.
(You do not give a name when you open an anonymous file.)

There are two routines to get file names from the user:

• OldFileName displays the same dialog box you get when you
choose Open from the Macintosh Pascal File menu. It displays
all the files on the disk, and lets you choose one, also letting
you eject the disk and put in a new one. The name you choose
is passed back to the program, and can then be used in a call
to Open, Rewrite, or Reset.

• NewFileName displays the same dialog box you get when you
choose Save As from the file menu. It allows the user to type
in a file name, and returns that name to your program for use
in Open, Rewrite, or Reset.

Modifying the Multiple Field Editor

The following steps alter the Multiple Field Editor so that it saves
each entry in a file.

The program begins by getting a file name from the user. It
first displays the OldFileName dialog box, showing the files on
your disk.

183 Chapter 6: Files: A Piece of Cake

Warning

The results of opening a file that does not have components
of the expected type are uncertain; Macintosh Pascal will
open the file, and will interpret the bytes in the file as if
they formed components of the file variable's type. If the
components are not actually of that type, the results could
make Macintosh Pascal crash. If you tried to write to the
file, you could destroy the file .

If the user selects the Cancel button, the NewFileName
dialog box is displayed, and the user can type in a new file name.

Whether it is an old or new file, the program opens it. The
program then tries to get the first component in the file. If there
aren't any components, the program waits for a mouse button
press. When you press the New button, a new entry is created.

If the file existed before and has components, the first
component is read and displayed. Clicking in the background, so
that Picked returns a choicefype of NOTHING, causes the next
component to be read. When the end of the file is reached, the
file is reset so that it loops around and displays the first record
again.

As an additional feature, there is a Clean button, which
"cleans up" the file by removing blank entries.

That covers the basic methodology of these changes. The
specifics are explained along with the changes. Follow these
steps:

1. Add the word CLEANUP to the definition of choicefype so
that definition looks like:

choiceType = (STOPIT, NEWENTRY, AFIELD, CLEANUP,
CHANGEBOX, NOTHING);

In this case, the order of the choicefype constants is
unimportant. In general, though, the order of enumerated
type constants can be significant.

2. Place an insertion point before the first var. 'fype:

fileType = file of entryType;

184 Introduction to Macintosh Pascal

3. Add the name "clean" to the list of RECTu defined in the
but'fype record type at the beginning of the program, so that
the list looks like:

stop, new, clean, box: RECT;

The order is unimportant.

4. Place an insertion point before procedure DrawButton.
Type:

fVar: fileType;
aNewEntry: BOOLEAN;
procedure GetFileName (var fVar : fileType);
var
fileName : string;
begin
repeat
fileName : = OldFileName('Choose Cancel if for a new file.');
if fileName = " then {Two single quote marks}
fileName : = NewFileName('Give a new file name.');
until fileName < > "; {Two single quote marks}
Open(fVar, fileName);
end;

The text strings contained in the calls to the predefined
functions OldFileName and NewFileName are displayed on
the screen in the corresponding dialog boxes, to tell the user
what is wanted.

5. Place the insertion point in procedure DrawScreen, before
the if. Type:

DrawButton(buttons.clean, 220, 'Clean');

6. In procedure Picked, place an insertion point before any one
of the else words and type:

else if ButtonPressed(buttons.clean, mouse) then
choice:= CLEANUP

185 Chapter 6: Files: A Piece of Cake

7. Place an insertion point before begin {main} and type:

procedure SaveEntry (therelsAnEntry, aNewEntry :
BOOLEAN;

anEntry: entryType; var Nar: fileType);
begin
if therelsAnEntry then
begin
if aNewEntry then
Seek(Nar, MAXINT)
else
Seek(Nar, FilePos(Nar) - 1);
Write(Nar, anEntry);
end;
end;

This procedure is called to save the current entry before
a new entry is displayed on the screen. The predefined Seek
procedure moves the file variable to a specific component.
Note that if you write to a component that already exists, the
existing one is destroyed, and replaced by the one you just
wrote. If this is a new entry, the only place you can put it
without destroying another entry is at the end of the file. You
can always find the end of the file by Seek-ing a component
that is beyond the end. MAXINT, a predefined constant that
holds the largest INTEGER value, is 32767. Chances are that
Seek-ing MAXINT puts you at the end of the file.

If the entry is not new, it should be placed back where it
came from, so that the old copy is replaced by the new copy.
Every time you read from or write to a file, the file variable
is moved so it points to the next component. Tu put a
component back where it came from, you need to move the
file variable back one. The predefined procedure FilePos
finds the component number of the component at which the
file variable is pointing. Putting all that together, the line:

Seek(Nar, FilePos(Nar) - 1);

moves the file variable !Var back one.

186 Introduction to Macintosh Pascal
~~~~~~~~~~~-

8. Leave the insertion point where it is (before begin {main}) 
and type: 

procedure GetNe:xtEntry (var anEntry : entryType; 
var Nar : fileType; 
var therelsAnEntry : BOOLEAN); 
var 
n: INTEGER; 
begin 
if EOF(fVar) then 
Reset(Nar); 
if EOF(fVar) then 
therelsAnEntry : = FALSE 
else 
begin 
therelsAnEntry : = TRUE; 
Read(Nar, anEntry); 
end; 
end; 

This procedure is called whenever you click the mouse 
button in the background, which results in 
"choice:= NOTHING". It gets the next entry in the file, if there 
is one. 

The predefined function EOF is TRUE when the file 
va':'iable is past the last component in the file. If EOF is TRUE, 
Reset is used to move the file variable to the beginning of the 
file, component 0. If EOF is still TRUE, .that means the file is 
empty, and there are no components. · The variable 
therelsAnEntry is set to FALSE to communicate that fact 
back to the main program. Otherwise, the next component is 
re~. . 

Note that there is no need to explicitly move the, file 
variable to the next component. Whenever you Read from 
the file or Write to the file, the file va·riable is moved so it 
points to the next component. 



187 Chapter 6: Files: A Piece of Cake 

9. Leave the insertion point where it is (before begin {main}) 
and type: 

procedure CleanUpFile (var tvar : fileType); 
var 
tempFile : fileType; 
transferEntry : entryType; , 
function BlankEntry (anEntry: entryType): BOOLEAN; 
var 
blank : BOOLEAN; 
n: INTEGER; 
begin 
blank : = TRUE; 
for n := 1 to NUMRECS do 
blank:= (anEntry[n].theString = ")and blank; 
BlankEntry: = blank;. 
end; 
begin 
Rewrite(tempFile); 
Reset(tvar); 
while not EOF(fVar) do 
begin 
Read(fVar, transferEntry); 
if not BlankEntry(transferEntry) then 
Write(tempFile, transferEntry); 
end; 
Reset(tempFile); 
Rewrite(fVar); 
while not EOF(tempFile) do 
begin 
Read(tempFile, transferEntry); 
Write(tvar, transferEntry); 
end; 
Reset(tvar); 
end; 

This procedure removes blank entries from the file. An 
important reason for including this subprogram is that, if 
you are allowing the user to store data permanently in a file, 
you should provide some way to delete file entries. In this 
case, if the strings in an entry are all blank, it is assumed that 
the user wants that entry removed. 



188 Introduction to Macintosh Pascal 

An anonymous file is used as an intermediary for 
cleaning up the original file. An anonymous file, you may 
remember, is not permanent, but exists only while it is used. 
The entries in the original file are each examined. As long as 
at least one of the strings in an entry contains something, the 
entry is written to the anonymous file. If any entry contains 
only blank strings, it is not copied. When the end of the file 
is reached, Rewrite is called for the original file. Rewrite 
erases the file, and sets /Var to component 0, the beginning 
of the file. The last part of Clean Up copies the contents of the 
anonymous file back to the permanent file. Reset, called 
several times in Cleanup, brings the file variable back to ~he 
beginning of the file. It has the same effect as: 

Seek(fVar,O); 

10. Place an insertion point after the line: 

HideAll; 

and type: 

GetFileName(fVar); 

11. Place an insertion point after the lines: 

NEWENTRY: 
begin 

and type: 

SaveEntry(therelsAnEntry, aNewEntry, anEntry, 
fVar); 

12. In the main program, place an insertion point after the line: 

event.where : = anEntry[1].wPos; 

and type: 

aNewEntry :=TRUE; 



189 Chapter 6: Files: A Piece of Cake 
~~~~~~~~~~~ 

13. In the main program, place an insertion point before the
line "NOTHING :" anti type:

CLEANUP:
begin
SaveEntry(therelsAnEntry, aNewEntry, anEntry, fVar);
CleanUpFile(fVar);
GetNextEntry(anEntry, fVar, therelsAnEntry);
DrawScreen(anEntry, therelsAnEntry, buttons);
event.where : = anEntry[1].wPos;
end;

14. In the main program, place an insertion point after the
lines:

NOTHING:
begin

and type:

SaveEntry(therelsAnEntry, aNewEntry, anEntry, fVar);
GetNextEntry(anEntry, fVar, therelsAnEntry);
aNewEntry : = FALSE;
DrawScreen(anEntry, therelsAnEntry, buttons);

Notice that, because therelsAnEntry is passed to
DrawScreen, the program displays the cells only if an entry
was found by GetNextEntry.

15. Place an insertion point after the line:

until choice = STOPIT;

and type:

SaveEntry(therelsAnEntry, aNewEntry, anEntry,
fVar);Close(fVar);

18. Choose Save from the File menu.
The program should now look like Figure 6-3.

190 Introduction to Macintosh Pascal
~~~~~~~~~~~-

program Multiple_Field_Editor; 
con st 

NUMRECS = 3; {The number of separate records in an entry.} 
CR = 13; {Character code for <RETURN>.} 
BS = 8; {Character code for backspace.} 
LINEHEIGHT = 15; {The distance between lines in pixels.} 
ENDSTR = 256; {Guaranteed to be the past end of the string.} 
SPACE= 4; 
BUTHEIGHT = 20; 
BUTLEFT = 20; 
BUTWIDTH = 40; 

type 
stringRec =record 

wPos: POINT; 
theString: string; 
i tsRect : RECT; 

end; 
butType = record 

stop, new, clean, box: RECT; 
end; 

choiceType = (STOPIT, NEWENTRV, AFIELD, CLEANUP, CHANGEBOX, NOTHING); 
entryType = array[l..NUMRECS] of stringRec; 
fileType =file of entryType; 

var 
anEntry : entryType; 
there I sAnEntry : BOOLEAN; 
which, n : INTEGER; 
choice: choiceType; 
aRecord : stringRec; 
buttons: butType; 
drawingRect: RECT; 
event : EVENTRECORD; 
fVar: fileType; 
aNewEntry : BOOLEAN; 

procedure GetFileName (var fVar: fileType); 
vur 
fi l eName : string; 

begin 
repeat 
fileName := OldFileName('Choose Cancel if for a new file.'); 
if fil eName = " then 

fileName := NewFileName('Give a new file name.'); 
until fileName <> "; 



191 Chapter 6: Files: A Piece of Cake 

Open( fVar, fi 1 eName); 
end; 

procedure DrawButton (var butName: RECT; 
vertBase : INTEGER; 
thelabel : string); 

begin 
SetRect(butName, BUTLEFT, vertBase, BUTLEFT + BUTWIDTH, vertBase + BUTHEIGHT); 
Fi11RoundRect(butName, 6, 6, white); 
FrameRoundRect(butName, 6, 6); 
MoveTo(BUTLEFT +SPACE, vertBase + 14); 
TextFont(O); 
Wri teDraw(thelabel); 
TextFont( 1); 

end; 

procedure ShowCell (aRecord: stringRec; 
highlight: BOOLEAN); 

var 
n, currentline : INTEGER; 

begin 
with aRecord do 
begin 

Cl i pRect(i tsRect); 
if highlight then 

PenSi ze(3, 3); 
Fi 11 Rect(i tsRect, white); 
FrameRect(i tsRect); 
PenNormal; 
if highlight then 

lnsetRect(itsRect, 3, 3); 
Cl i pRect(i tsRect); 
MoveTo(wPos.h, wPos.v); 
currentL i ne := O; 
for n := 1 to Length(theString) do 
if theStri ng[n] = Chr(CR) then 
begin 

currentl i ne := currentl i ne + 1; 
MoveTo(wPos.h, wPos.v + currentline * LINEHEIGHT); 

end 
else 

DrawChar( theStri ng[n]); {Pre-defined} 
end; 



___________ 1-'9'--2--'- Introduction to Macintosh Pascal 

if not highlight then 
Cl i pRect(drawi ngRect); 

end; 

procedure DrawScreen (BnEntry: entryType; 
there I sAnEntry : BOOLEAN; 
vor buttons : butType); 

vor 
n : INTEGER; 

begin 
FillRect(drawi ngRect, gray); 
DrawButton(but tons.stop, 31 O, 'Stop'); 
DrawBut ton(but tons .new, 280, 'New'); 
DrawBut ton(buttons.box, 250, 'Box'); 
DrawBut ton(buttons.c lean, 220, 'Clean'); 
if therelsAnEntry then 
for n := 1 to NUMRECS do 

ShowCel l (anEntry[n], FALSE) ; 
end; 

procedure SetUpDisplay (vor drawingRect : RECT) ; 
begin 

SetRect(drawingRect , O, 0, 532, 358); 
SetDrawi ngRect(drawi ngRect); 
ShowDrawi ng; 
Fi 11 Rect(drawi ngRect, gray); 

end; 

procedure Picked (vor choice : choiceType ; 
anEntry : entryType; 

vor 

vor which: iNTEGER; 
there I sAnEntry : BOOLEAN; 
mouse : POINT; 
buttons : butType); 

n: INTEGER; 

function ButtonPressed (whichButton: RECT; 
mouse : PO I NT) : BOOLEAN; 

begin 
ButtonPressed := FALSE; 
if Pt I nRect(mouse, whi chButton) then 



193 Chapter 6: Files: A Piece of Cake 

begin 

I nvertRoundRect( which Button, 6, 6); {Qui ckDraw procedure.} 
ButtonPressed := TRUE; 

end; 
end; 

begin {Picked} 
choice:: NOTHING; 
if therelsAnEntry then 

for n := 1 to NUMRECS do 
if PtlnRect(mouse, anEntry[n).itsRect) then 

begin 
choice:= AFIELD; 
which:= n 

end; 
if ButtonPressed(buttons.new, mouse) then 

choice :: NEWENTRV 
else if ButtonPressed(buttons.box, mouse) then 

choice:= CHANGEBOX 
else if ButtonPressed(buttons.clean, mouse) then 

choice:: CLEANUP 
else if ButtonPressed(buttons.stop, mouse) then 
choice:= STOPIT 

end; 

procedure AddChar (typedChar: CHAR; 
var aRecord : stringRec); 

var 
1 en : INTEGER; 
1 astChar : CHAR; 

begin 
with aRecord do 

begin 
len := Length(theString); 
if len > 0 then 

1 astChar := theStri ng[l en); 
case Ord(typedChar) of 

BS: 
if theStri ng <> " then {Note: two single quote marks.} 
if lastChar = Chr(CR) then 

begin 
Delete(theString, len, 1 ); 
ShowCell(aRecord, TRUE); 

end 



194 Introduction to Macintosh Pascal 

else 
begin 

Move(-CharWi dth(l astChar), O); 
TextMode(srcXOr); 
DrawChar(l astChar); 
TextMode(srcOr); 
Move(-CharWi dth(l astChar), 0); 
Delete(theString, len, 1) 

end; 
CR: 
if len + 1 < ENDSTR then 

begin 
Insert( typedChar, theStri ng, ENDSTR); 
ShowCe 11 (aRecord, TRUE); 

end; 
otherwise 
if len + 1 < ENDSTR then 
begin 

DrawChar( typedChar); 
lnsert(typedChar, theString, ENDSTR); 

end; {if} 
end; {case} 

end; {with} 
end; {AddChar} 

procedure DoEditing (var aRecord: stringRec; 
var event: EVENTRECORD); 

begin 
repeat 
repeat 
until GetNextEvent(mDownMask + keyDownMask, event); 
if event.what<> MOUSEDOWN then 

AddChar(Chr(event.message mod 256), aRecord) 
until event.what= MOUSEDOWN; 
Gl oba lToLoca l (event. where); 

end; 

procedure ChangeTheBox (YBr aRecord: stringRec); 
YBr 

event:EVENTRECORD; 
begin 

PenMode(patXOr); 
with aRecord do 



195 Chapter 6: Files: A Piece of Cake 

begin 
repeat 
repeat 
unt i 1 GetNextEvent(mDownMask, event); 
Gl oba lToLoca 1 (event. where); 
i tsRect. topLeft := event. where; 
repeat 

Get Mouse( i tsRect.ri ght, i tsRect.bot tom); 
FrameRect(i tsRect); 
FrameRect(i tsRect); 

until not Button; 
until not EmptyRect(itsRect); 
PenNormal; 
SetPt(wPos, itsRect.left +SPACE, itsRect.top + LINEHEIGHT); 

end; 
end; 

procedure SaveEntry (therelsAnEntry, aNewEntry: BOOLEAN; 
anEntry : entryType; 
var fVar: fileType); 

begin 
if therelsAnEntry then 
begin 
if aNewEntry then 
Seek(fVar, MAXINT) 

else 
Seek(fVar, FilePos(fVar) - 1 ); 

Write(fVar, anEntry); 
end; 

end; 

procedure GetNextEntry (var anEntry : entryType; 
var fVar: fileType; 
var therelsAnEntry: BOOLEAN); 

var 
n: INTEGER; 

begin 
if EOF(fVar) then 

Reset( fVar); 
if EOF(fVar) then 
therelsAnEntry :=FALSE 

else 
begin 



1916 Introduction to Macintosh Pascal 

therelsAnEntry :=TRUE; 
Read(fVar, anEntry); 

end; 
end; 

procedure CleanUpFile (var fVar: fileType); 
YBr 
tempFile: fileType; 
transferEntry : entryType; 

function BlankEntry (anEntry: entryType): BOOLEAN; 
var 
blank: BOOLEAN; 
n: INTEGER; 

begin 
blank:: TRUE; 
for n := I to NUMRECS do 
blank:= (anEntry[n).theString =")and blank; 

BlankEntry :=blank; 
end; 

begin 
Rewrite( tempFi 1 e); 
Reset( fVar); 
while not EOF(fVar) do 
begin 
Read(fVar, transferEntry); 
if not BlankEntry(transferEntry) then 

Wri te(tempFi 1 e, transferEntry); 
end; 

Reset( tempFi 1 e); 
Rewrite( fVar); 
while not EOF(tempFile) do 
begin 
Read(tempFile, transferEntry); 
Write(fVar, transferEntry); 

end; 
Reset( fVar); 

end; 

begin {main} 
HideA11; 
GetFi 1 eName( fVar); 



197 Chapter 6: Files: A Piece of Cake 

SetUpDi spl ay(drawi ngRect) ; 
{Preceding line expands the drawing window to full screen.} 

therelsAnEntry :=FALSE; 
which := 1; 
DrawScreen(anEntry, there I sAnEntry, but tons); 
choice := NOTH I NG; 
repeat 

cose cho ice of 
AFIELD : 
if therel sAnEntry then 

begin 
Showce l l (anEntry[ which], TRUE); 
Do Edit i ng(anEntry[ whi chi, event); 
ShowCe l l (anEntry[ whi ch], FALSE); 

end; 
NEWENTRV: 
begin 

SaveEntry(therelsAnEntry, aNewEntry, anEntry, fVar); 
for n = 1 to NUMRECS do 
begin 

anEntry[n].theString := "; {Two single quote marks.} 
if not there I sAnEntry then 

begin 
Ch an g e The Box (an Entry [ n J) ; 
ShowCel l (anEn try [n], FALSE); 

end; 
end; 

event.where := anEntry[ 1 J.wPos; 
aNewEntry :=TRUE; 
there I sAnEn try :=TRUE; 
DrawScreen(anEntry, there I sAnEntry, but tons); 

end; 
CHANGEBOX: 

begin 
if there lsAnEntry then 
begin 

ChangeTheBox(anEntry[whi ch]); 
event.where := anEntry[whi chl.i tsRect.topLeft ; 

end 
else 

SetPt(event.where, 999, 999); 
DrawScreen(anEntry, there I sAnEntry, but tons); 

end; 



198 Introduction to Macintosh Pascal 

CLEANUP : 
begin 

SeveEntry( there I sAnEntry, eNewEntry, enEntry, fVer); 
Cl eenUpFi l e(fVer); 
GetNextEntry(enEntry, fVer, there I sAnEntry); 
DrewScreen(enEntry, there I sAnEntry, but tons); 
event.where •= enEntry[ 1 ].wPos; 

end; 
NOTHING : 

begin 
SeveEntry( there I sAnEntry, eNewEntry, enEntry, fVer); 
GetNextEntry(enEntry, fVer, there I sAnEntry); 
eNewEntry := FALSE; 
DrewScreen(enEntry, there I sAnEntry, but tons) ; 
repeot 
unt i I GetNextEvent(mDownMesk, event); 
Globe lT oLoce I (event. where); 

end 
end; 
Pi cked(choi ce, enEntry, which, there I sAnEntry, event. where, buttons); 

unt i I choice = stop It ; 
SeveEntry( there I sAnEntry, eNewEntry, enEntry, fVer); 
Close( fVer) ; 
SetRect(drewingRect, 293, 124, SOB, 339); 
SetDrewi ngRect(drewi ngRect); {Restores drewing window.} 

end. 

Figure 6-3 

Before you run the program, check the value of NUMRECS, 
at the beginning of the program. It should be 3. A 128K Mac will 
not be able to run the program with more records in an entry. 
You can always use a smaller number. You can also use a larger 
number if you have a 512K Mac, but use 3 for the moment. 

Also, click in the Close box in the upper left corner of the 
program window. This program is so big that Macintosh Pascal 
runs out of room before it gets to the HideAll statement at the 
beginning of the program. 

Run the program. The first time you run it, you have no files 
on your disk of the right type, so you should press the Cancel 
button when you are asked to pick an existing file . You are then 
asked for a new file name. 'fype- in some name that you'll 
associate with this program. 



199 Chapter 6: Files: A Piece of Cake 
~~~~~~~~~~~~ 

Like the previous version, this program begins by waiting for
you to choose a button. Choose New. Draw three boxes. 'fype
something in at least one of the boxes. Choose New again. Notice
that the new record has the same box sizes and positions as the
last record. You may have heard a quick hum from your disk
drive when you clicked on New the second time. That was the
sound of the Mac storing the first entry. 'fype something in one
of the second entry's fields. Click on New a third time, but don't
type anything in any of that entry's fields. Now click in the Clean
button.

The disk drive will hum for a few seconds, and then the first
record in the file will be displayed.

If you click in the background, with the mouse on the gray
part of the window, the next record is displayed. If you click once
more, the first record is again displayed.

The blank record has been deleted.
Select one of the fields. Click on the Box button. The Mac is

now waiting for you to specify a new box. Draw one in the usual
way: by holding the mouse button down and moving it down and
to the right. When you let go of the mouse button the screen is
redisplayed with the selected field shown with its new size.The
new size will be stored away, and that record will always appear
with that new size.

You now have a simple data base system working on your
Mac. You can save as many records as will fit on a disk, and you
can customize the appearance of the screen as you desire.

The last section in this chapter shows you how to make a
module that sorts your records in order. The next chapter shows
you how to use this program to create a telephone book, and
then use the Mac's sound generator to produce telephone dialing
tones.

If you want to set up your telephone book now, make sure
you only have one telephone number to a box. The dialing
program will dial all numbers in a single box. If you have two
numbers in a box, the dialing program will try to dial both.

200 Introduction to Macintosh Pascal

----i mll..------------""--a_rn __ in_g __________________________________ __.

If you create a large data file, you may run out of space on
your disk. You may want to move some of the programs on
your Pascal disk to another disk before creating a large data
base.

The next section creates the framework that will be used for
the sorting and dialing programs.

Creating the Basic Framework

Although the program you just created allows you to make your
own data base, it doesn't really do very much. The problem is
that the Mac's memory limits how much can be done by a single
program.

The solution is to create a set of compatible "modules" that
can process the data base. This section shows you how to strip
down the Multiple Field Editor program so that it provides a
framework for all the modules. The framework will be able to
open a file and read records from it.

The next section shows how to create a sorting module and
how to add it to the framework. Chapter 7 shows how to create
a module that dials a telephone using numbers stored in the data
base. Chapter 8 shows how to print the contents of the data base.

Notes

If you have a Macintosh with 512K or more of memory, you
can combine these modules together into a single program
that does everything.

.201 Chapter 6: Files: A Piece of Cake
~~~~~~~~~~~-

First, make sure you have saved the last version of the 
Multiple Field Editor. 

You should have the Multiple Field Editor program displayed 
in the Macintosh Pascal programming window. 

1. Choose Save As ... from the File menu . 

.2. 1)'pe "Database Framework" as the new file name, and click 
in the Save button. 

3. Change the program name in the first line of the program to: 

Database_Framework 

4. Remove the following from the list of RECTS defined in the 
definition of but1)'pe in the first type section: 

,new, clean, box 

That line should now be: 

stop: RECT; 

5. Remove the following from the definition of choicerype: 

NEWENTRY, 

Also remove the following from choicerype: 

CLEANUP, CHANGEBOX, 

The definition of choicefype should now be: 

choiceType = (STOPIT, AFIELD, NOTHING); 

6. Remove the following definition from the variables defined 
in the first var section: 

aNewEntry: BOOLEAN; 

7. In procedure GetFileName, remove the line within the 
parentheses in the call to OldFileName: 

'Choose Cancel if for a new file.' 

and replace it with: 

'Choose a file.' 

8. Remove the following lines from procedure GetFileName: 

if fileName = " then 
file Name : = NewFileName('Give a new file name.'); 



202 Introduction to Macintosh Pascal 
--..,.~~--..,.~--..,.~~~-'-'-=----

9. Remove the following from lines from procedure 
DrawScreen: 

DrawButton(buttons.new, 280, 'New'); 
DrawButton(buttons.box, 250, 'Box'); 
DrawButton(buttons.clean, 220, 'Clean1; 

10. Delete the entire procedure AddChar. 

11. Delete the entire procedure DoEditing. 

12. Delete the entire procedure ChangeI'heBox. 

13. Delete the entire procedure SaveEntry. 

14. Delete the entire procedure CleanUpFile, including the 
function BlankEntry. 

15. Remove the following from procedure Picked: 

If ButtonPressed(buttons.new, mouse) then 
choice : = NEWENTRY 
else If ButtonPressed(buttons.box, mouse) then 
choice : = CHANGEBOX; 
else If ButtonPressed(buttons.clean, mouse) then 
choice : = CLEANUPelse 

16. Remove the following case constants and all of their 
associated statements from the case statement in the main 
program: 

NEWENTRY: 
CHANGEBOX: 
CLEANUP: 

(AFIELD and NOfHING should be the only case 
constants remaining.) 

17. Replace the following line in the compound statement 
following the case constant AFIELD: 

DoEditing(anEntry[which], event); 

with: 

repeat 
until GetNextEvent(mDownMask, event); 
GlobalTolocal(event.where); 



203 Chapter 6: Files: A Piece of Cake 
~~~~~~~~~~~-

18. Remove the following line from the two places it appears in
the main program, where it follows the NOTHING case
constant, and as the fourth line from the end:

SaveEntry(therelsAnEntry, aNewEntry, anEntry, Nar);

19. Remove the line in the section following the case constant
NOTHING that refers to aNewEntry .

.20. Choose Save from the File menu.

The program should now be as shown in Figure 6-4.

program Database_Framework;
const

NUMRECS = 3; {The number of separate records in an entry.}
CR = 13; {Character code for <RETURN>.}
BS = 8; {Character code for backspace.}
LINEHEIGHT = 15; {The distance between lines in pixels.}
ENDSTR = 256; {Guaranteed to be the past end of the string.}
SPACE= 3;
BUTHEIGHT = 20;
BUTLEFT = 20;
BUTWIDTH = 40;

type
stri ngRec = record

wPos: POINT;
theString: string;
i tsRect : RECT;

end;
butType = record

stop: RECT;
end;

choiceType = (STOPIT, AFIELD, NOTHING); .
entryType =array[1 .. NUMRECSJ of stringRec;
fileType =file of entryType;

var
anEntry : entryType;
therelsAnEntry : BOOLEAN;
which, n: INTEGER;
choice: choiceType;
aRecord: stringRec;
buttons: butType;
drawingRect: RECT;
event:EVENTRECORD;
fVar: fileType;

204 Introduction to Macintosh Pascal

procedure GetFileName (var fVar : fileType);
var

fileName : string;
begin
repeat

fileName := OldFileName('Choose e file.');
until fileNeme <> ";
Open(fVar, fileName);

end;
procedure DrawButton (var butName : RECT;

ver:tBase : INTEGER;
thelabel : string);

begin
SetRect(butName, BUTLEFT, vertBese, BUTLEFT + BUTWIDTH, vertBese + BUTHEIGHT);
Fi 11 RoundRect(butName, 6, 6, white) ;
FremeRoundRect(butName, 6, 6);
MoveTo(BUTLEFT +SPACE, vertBase + 14);
TextFont(O);
Wri teDraw(theLabel) ;
TextFont(1);

end;

procedure ShowCell (aRecord : stringRec;
highlight : BOOLEAN);

var
n, currentline : INTEGER;

begin
with eRecord do

begin
Cl i pRect(itsRect);
if highlight then

PenSi ze(3, 3);
FillRect(itsRect , white);
FrameRect(i tsRect);
PenNormel ;
if highlight then

lnsetRect(itsRect, 3, 3);
Cl i pRect(i t sRect);
MoveTo(wPos.h, wPos v) ;
currentl i ne := O;
for n = 1 to Length(theString) do
if theStri ng[n] = Chr(CR) then

begin
currentl i ne •= currentl i ne + 1;
MoveTo(wPos.h, wPos.v + currentline * LINEHEIGHT);

end

.205 Chapter 6: Files: A Piece of Cake

else
DrawChar(theStr1 ng[n]); {Pre-def1 ned.}

end;
if not h1ghl1ght then

Cl 1 pRect(draw1 ngRect);
end;

procedure DrawScreen (anEntry : entryType;
therelsAnEntry: BOOLEAN;
Yar buttons: butType);

Yar
n: INTEGER;

begin
F111 Rect(draw1 ngRect, gray);
DrawButton(buttons.stop, 31 o, 'Stop');
1f therelsAnEntry then

for n :: 1 to NUMRECS do
ShowCel l(anEntry[nl, FALSE);

end;

procedure SetupD1splay (Yar drawingRect: RECT);
begin

SetRect(draw1ngRect, O, O, 532, 358);
SetDraw1 ngRect(draw1 ngRect);
ShowDraw1ng;
Fi 11 Rect(drawi ngRect, gray);

end;

procedure Picked (var choice: cho1ceType;
anEntry : entryType;

Y&r

Y&r Which: INTEGER;
therelsAnEntry: BOOLEAN;
mouse: POINT;
buttons: butType);

n: INTEGER;

function ButtonPressed (whichButton: RECT;
mouse: POINT): BOOLEAN;

begin
ButtonPressed :=FALSE;
if PtlnRect(mouse, whichButton) then

begin
lnvertRoundRect(whichButton, 6, 6); {QuickDraw procedure.}
ButtonPressed := TRUE;

end;
end;

206 Introduction to Macintosh Pascal

begin {Picked}
choice:= NOTHING;
if therelsAnEntry then
for n := 1 to NUMRECS do
if PtlnRect(mouse, enEntry[n).itsRect) then
begin
choice:= AFIELD;
which:= n

end;
if ButtonPressed(buttons.stop, mouse) then

choice := STOPIT
end;

procedure GetNextEntry (var enEntry : entryT1Jpe;
YBr fVer: fileType;
var therelsAnEntry : BOOLEAN);

var
n: INTEGER;

begin
if EOF(fVer) then
Reset(fVer);

if EOF(fVer) then
therelsAnEntry :=FALSE

else
begin

therelsAnEntry :=TRUE;
Reeci(fVer, anEntry);

end;
end;

begin {main}
HideAll;
GetFi 1 eNeme(fVer);
SetUpDi sp 1 ey(drewi ngRect);

{Preceding line expends the drawing window to full screen.}
therelsAnEntry :=FALSE;
which:= 1;
DrewScreen(enEntry, there I sAnEntry, but tons);
choice:= NOTHING;
repeat

case choice of
AFIELD:
if therelsAnEntry then

207 Chapter 6: Files: A Piece of Cake
~~~~~~~~~~~--'-"""-=-

Sorting 

begin 
ShowCel l(anEntry[whi ch], TRUE); 
repeBt 
unt i1 GetNextEvent(mDownMask, event); 
Gl obalT oloca l (event. where); 
ShowCell(anEntry[whichl, FALSE); 

end; 
NOTHING : 

begin 
GetNextEntry(anEntry, fv >J ;', there I sAnEnt ry ); 
DrawScreen(anEntry, there I sAnEntry, but tons); 
repeBt 
unt i 1 GetNextEvent(mDownMask, event); 
Gl oba lT oLoca l (event. where); 

end 
end; 
Pi cked(choi ce, anEntry, which, there I sAnEntry, event. where, buttons); 

until choice= stoplt ; 
Close(fVar); 
SetRect(drawi ngRect, 293, 124, 50B, 339); 
SetDrawi ngRect(drawi ngRect); {Res tores drawing window.} 

end . 

Figure 6-4 

You can run this program, if you want, but it won't do 
anything except display the contents of files created with the 
Multiple Field Editor. 

Sorting is the process of putting a set of items into some 
particular order. When you alphabetize a list, for example, you 
sort. the list in alphabetical order. 

This section adds a very simple sorting mechanism to 
Database Framework. The sorting added here allows you to sort 
the records based on any one field in the entries. 

To add sorting to the framework: 

1. Make sure that the Database Framework program is 
displayed in the programming window. 

2. Choose Save As ... from the File menu. 



208 Introduction to Macintosh Pascal 

3. When you are asked for a new file name, type: 

Sort Program 

Click in the Save button. 

4. Change the name of the program in the first line to: 

Sort__Program 

S. Add the following to the list of button REC'IS defined in the 
definition of but1Jpe in the type part of the program: 

sort, 

That line should now be: 

sort, stop : RECT; 

The order is unimportant. 

6. Add the following to the definition of choicE!fype: 

SORTIHEM, 

That line should now be: 

choiceType = (STOPIT, AFIELD, SORTIHEM, NOTHING); 

The order is unimportant in this case. 

'1. Add the following line to procedure DrawScreen, after the 
call to DrawButton: 

DrawButton(buttons.sort, 280, 'Sort'); 

8. Add the following to procedure Picked immediately before 
the end of the procedure: 

else if ButtonPressed(buttons.sort, mouse) then 
choice:= SORTIHEM; 

If you added a semicolon after the word "STOPIT" in the 
preceding line, remove it now. 



209 Chapter 6: Files: A Piece of Cake 

9. Place an insertion point before begin {main} and type: 

procedure Sort (var Nar : fileType; 
which : INTEGER); 
var 
n, j : INTEGER; 
numEntries : LONGINT; 
firstEntry, secondEntry : entryType; 
procedure Exchange (var Nar: fileType; 
firstEntry, secondEntry : entryType); 
begin 
Seek(fVar, filePos(fVar) - 2); 
Write(Nar, secondEntry, firstEntry); 
end; 
begin 
See(Nar, MAXLONGINT); 
numEntries : = filePos(fVar) - 1; 
for n : = numEntries downto 1 do 
for j : = O to n - 1 do 
begin 
Seek(Nar, j); 
Read(Nar, firstEntry); 
Read(Nar, secondEntry); 
if firstEntry[which].theString > secondEntry[which].theString 
then 
Exchange(Nar, firstEntry, secondEntry); 
end; 
Reset(Nar); 
end; 

10. Add the following to the case statement in the main 
program before AFIELD: 

SORTTHEM: 
begin 
Sort(Nar, which); 
GetNextEntry(anEntry, Nar, therelsAnEntry); 
DrawScreen(anEntry, therelsAnEntry, buttons); 
event.where:= anEntry[which].wPos; 
end; 

11. Choose Save from the File menu. 

The program should now be as shown in Figure 6-5. 



210 Introduction to Macintosh Pascal 

program SorLProgram; 
con st 

NUMRECS = 3; {The number of separate records in an entry.} 
CR = 13; {Character code for <RETURN>.} 
BS = 6; {Character code for backspace.} 
LINEHEIGHT = 15; {The distance between lines in pixels.} 
ENDSTR = 256; {Guaranteed to be the past end of the string.} 
SPACE= 3; 
BUTHEIGHT = 20; 
BUTLEFT = 20; 
BUTWIDTH = 40; 

type 
strlngRec =record 

wPos: POINT; 
theStr1ng : string; 
itsRect: RECT; 

end; 
butType = record 

sort, stop : RECT; 
end; 

choiceType = (STOPIT, AFIELD, SORTTHEM, NOTHING); 
entryType =array[ 1 .. NUMRECS) of stringRec; 
fileType = file of entryType; 

var 
anEntry : entryType; 
there I sAnEntry ;. BOOLEAN; 
which, n: INTEGER; 
choice: choiceType; 
aRecord: stringRec; 
buttons: butType; 
drawi ngRect : RECT; 
event:EVENTRECORD; 
fVar: fileType; 

procedure GetFileName (var fVar: fileType); 
var 
fileName: string; 

begin 
repeat 

fileName := OldFileName('Choose a file.'); 
untn fileName <> "; 
Open(fVar, fileName); 

end; 



2 l_ l. Chapter 6: Files: A Piece of Cake 

procedure DrewButton (vor butNeme: RECT; 
vertBese : INTEGER; 
theLebel : string); 

begin 
SetRect(butNeme, BUTLEFT, vertBese, BUTLEFT + BUTWIDTH, vertBese + BUTHEIGHT); 
FillRoundRect(butNeme, 6, 6, white); 
FremeRoundRect(butNeme, 6, 6); 
MoveTo(BUTLEFT +SPACE, vertBese + 14); 
TextFont(O); 
Wri teDrew(theLebel); 
TextFont( 1); 

end; 

procedure ShowCell (eRecord: stringRec; 
highlight: BOOLEAN); 

Y8r 
n, currentLine: INTEGER; 

begin 
with eRecord do 
begin 

Cl ipRect(itsRect); 
if highlight then 

PenSi ze(3, 3); 
FillRect(itsRect, white); 
FremeRect(i tsRect); 
PenNormel; 
if highlight then 

lnsetRect(itsRect, 3, 3); 
Cl i pRect(i tsRect); 
MoveTo(wPos.h, wPos.v); 
currentLine := O; 
for n := 1 to Length(theString) do 
if theStri ng[n) = Chr(CR) then 
begin 
currentLine := currentLine + 1; 
MoveTo(wPos.h, wPos.v + currentLine * LINEHEIGHT); 

end 
else 
DrewCher(theStri ng[n)); {Pre-defined.} 

end; 
if not highlight then 

Cl i pRect(drewi ngRect); 



212 Introduction to Macintosh Pascal 

end; 

procedure DrawScreen (anEntry: entryType; 
therelsAnEntry: BOOLEAN; 
YBr buttons: butType); 

var 
n: INTEGER; 

begin 
F111 Rect(draw1 ngRect, gray); 
DrawButton(buttons.stop, 31 o, 'Stop'); 
DrawButton(buttons.sort, 260, 'Sort'); 
If therelsAnEntry than 
for n :: 1 to NUMRECS do 

ShowCell(anEntry[n), FALSE); 
and; 

procedure SetUpD1splay (var draw1ngRect: RECT); 
begin 
SetRect(drawingRect, 0, 0, 532, 356); 
Set Drawl ngRect(draw1 ngRect); 
ShowDraw1 ng; 
Fi 11 Rect(drawi ngRect, gray); 

end; 

procedure P1cked (var choice: choiceType; 
anEntry : entryType; 

var 

var wh1ch: INTEGER; 
therelsAnEntry : BOOLEAN; 
mouse: POINT; 
buttons : butType); 

n: INTEGER; 

function ButtonPressed (wh1chButton: RECT; 
mouse: POINT): BOOLEAN; 

begin 
ButtonPressed := FALSE; 
if PtlnRect(mouse, wh1chButton) then 
begin 

lnvertRoundRect(whichButton, 6, 6); {Qu1ckDraw procedure.} 
ButtonPressed := TRUE; 

and; 
end; 



2 ]_ 3 Chapter 6: Files: A Piece of Cake 

begin {Picked} 
choice := NOTHING; 
if therelsAnEntry then 
for n := 1 to NUMRECS do 
if PtlnRect(mouse, anEntry[n].itsRect) then 

begin 
choice:= AFIELD; 
which := n 

end; 
if ButtonPressed(buttons.stop, mouse) then 

choice:= STOPIT 
else if ButtonPressed(buttons.sort, mouse) then 

choice:= SORTTHEM; 
end; 

procedure GetNextEntry (var anEntry : entryTy~f·.: 
YOr fVar: fileType; 
YOr there I sAnEntry : BOOLEAN); 

var 
n : INTEGER; 

begin 
if EOF(fVar) then 

Reset(fVar); 
if EOF(fVar) then 

therelsAnEntry :=FALSE 
else 
begin 

therelsAnEntry :=TRUE; 
Read(fVar, anEntry); 

end; 
end; 

procedure Sort (var fVar: fileType; 
which: INTEGER); 

var 
n, j : INTEGER; 
numEntries: LONGINT; 
firstEntry, secondEntry: entryType; 

procedure Exchange (var fVar: fileType; 
firstEntry, secondEntry: entryType); 

begin 
Seek(fVar, filePos(fVar) - 2); 



2 :0. 4 Introduction to Macintosh Pascal 

Write(fVar, secondEntry, firstEntry); 
end; 

begin 
Seek(fVar, MAXLONGINT); 
numEntries := filePos(fVar) - 1; 
for n := numEntries downto 1 do 
for j :=Oto n - 1 do 
begin 

Seek(fVar, j); 
Read(fVar, firstEntry); 
Read(fVar, secondEntry); 
if FirstEntry[which).theString > secondEntry[which).theString then 

Exchange(fVar, firstEntry, secondEntry); 
end; 

Reset( fVar); 
end; 

begin {main} 
HideAll; 
GetFi 1 eName(fVar); 
SetupDi sp 1 ay(drawi ngRect); 

{Preceding line expands the drawing window to full screen.} 
therelsAnEntry :=FALSE; 
Which:: 1; 
DrawScreen(anEntry, there I sAnEntry, but tons); 
choice:= NOTHING; 
repeat 
case choice of 

SORTTHEM: 
begin 
Sort(fVar, which); 
GetNextEntry(anEntry, fVar, there I sAnEntry); 
DrawScreen(anEntry, there I sAnEntry, but tons); 
event.where:= anEntry[which).wPos; 

end; 
AFIELD: 
if therelsAnEntry then 
begin 

ShowCell(anEntry[which), TRUE); 
repeat 
unt i 1 GetNextEvent(mDownMask, event); 
Gl oba 1T oLoca 1 (event. where); 
Showce 11 (anEntry[ whi chi. FALSE); 

end; 



215 Chapter 6: Files: A Piece of Cake 

NOTHING: 
begin 

GetNextEntry(anEntry, fVar, th&r'l I sAnEntry); 
DrawScreen(anEntry, ther~, ;AnEntry, buttons); 
repeat 
until GetNextEvent(mDownMask, event); 
Gl oba 1T oloca 1 (event. where); 

end 
end; 
Picked(choice, anEntry, which, therelsAnEntry, event.where, buttons); 

until choice= stoplt; 
Cl ose(fVar); 
SetRect(drawingRect, 293, 124, 506, 339); 
SetDrawi ngRect(drawi ngRect); {Restores drawing window.} 

end. 

Figure 6-5 

Sort implements a bubble sort. A bubble sort is the simplest 
kind of sorting method. It has that name because components 
rise to the top like bubbles in a glass of sparkling water. You can 
use it to sort just about anything: the basic point is to compare 
two components, and exchange them if they are in the wrong 
order. 

downto is an alternate keyword for use in a for statement. 
When dowliIO is used, the loop variable's value moves down 
instead of up. 

Click in the Close box in the upper left corner of the 
programming window to hide the window. 

Run this program. Note that you must choose a file that was 
created with the Multiple Field Editor when the Sort program 
asks you for a file name. If you don't have a file of the right type, 
choose any file, and when the buttons appear, click in the Stop 
button. When the program stops, close the Sort program, open 
Multiple Field Editor and run it. (Don't forget to click in the Close 
box of the programmiri'.g window to hide that window.) Create 
some entries for the file. Then choose Stop, close Multiple Field 
Editor, open the Sort program, and run that program. 

When you have a file displayed, click on one of the fields, and 
choose Sort. 



-

216 Introduction to Macintosh Pascal 

Warning 

The bubble sort method used in this program can be quite 
slow with more than a few records. When you run a sort, 
be patient. 

Check to see that the records are now in sorted order. Click 
in another field, and click Sort again. The records are now 
sorted according to the field you just choose. 

Do More 

When doing the changes suggested in this section, if you 
have a 128K Mac, be careful to save your changes before 
trying to run your program. Otherwise you may lose your 
work. 

1. There is a problem with the sort algorithm given in this 
chapter: the strings are sorted in character code order, 
and not in alphabetical order. In character code order, 
all lower case letters are greater than any upper case 
letters. For example, 'aaa' appears after'ZZZ'. One way to 
get around that limitation is to convert everything to 
upper or lower case before sorting. You can convert a 
lower case letter to upper case by subtracting 32 from 
the Ord of the character. (That trick works because of 
the way the character codes are arranged.) Before 
doing that, you must check each character to see if it is 
a lower case letter. Change the Sort procedure to do 
that. 

2. Write the Sort procedure described in Item 1 above, but 
do it so that the characters in the file are kept in their 
original state, although they are converted for the 
purpose of the sort. 



217 Chapter 6: Files: A Piece of Cake 

3. You can use the Multiple Field Editor to store any kind 
of data. Use it to create an appointment calender that 
automatically tells you when you have an appointment. 
You can get the current date and time from the 
Macintosh with the GetTime procedure. GetTime 
returns a record of type DaterimeRec (a predefined 
data type). The definition of a DateI'imeRec is: 

record 
Year, Month, Day, Hour, Minute, Second, 
DayOfWeek: INTEGER 

end; 

Th give the alarm, use the SysBeep procedure, 
which is discussed further in the next chapter. You give 
SysBeep an integer value which determines the length 
of the beep in .022 second increments. For example: 

SysBeep(45) 

produces a tone about a second long. 
Hints: This program is fairly difficult. The simplest 

way is to have only one alarm active at a time. Write a 
routine that checks the current record for an entry 
marked with a certain character, such as an @. When 
an@ is found, the text following it should be of the form 
MM/DD HH:MM. (That is, month/day hour:minute.) 

Programming this will be much easier if you 
restrict your date and time entries to a given format and 
mark it in this way. Write the routine that converts the 
text into conventional month, day, hour, and minute 
format as a separate procedure. Then, you can go back 
later and make it capable of handling less standard 

_g_ntries, such as one with the month written out (for 
example, November or December). 



218 Introduction to Macintosh Pascal 

Tu convert text to integers, use the Ord function 
(which can find the character code of a character) and 
subtract 48 from the result. For example: 

(Ord('3')-48) 

produces the INTEGER value 3. 
Convert the characters one at a time, and add the 

pairs together, taking care to multiply the character in 
the ten1s position by ten. For example: 

Day : = (Ord(firstChar)-48)*10+(0rd(secondChar)-48) 

You can put a call to the routine that checks the time 
in the repeat/until loop that waits for a mouse event. 
For example: 

repeat 
CheckAlarm(anEntry); 
until GetNextEvent(mDownMask, event); 

Once you have this working, modify it so it checks 
all entries in the file in turn. That way you can have 
several alarms active at a time. In the best situation, 
CheckAlarm checks a single entry, then returns to see 
if there is a mouse event, and then, the next time 
CheckAlarm is called, the next entry is checked. 
Otherwise, CheckAlarm would have control for long 
periods, preventing the program user from stopping 
the program. 

QUICK SUMMARY 

This chapter shows how to use disk files, so you can save 
information permanently. It includes a sorting module, to 
sort file records into character code order. The following 
routines and concepts were introduced. 

Anonymous file is a temporary file that is opened with no name. It ceases to exist 
when the program stops or when the file is closed. 

Bubble sort is a common method of sorting where components rise to their 
places in the list like bubbles in a glass of water. It is easy to 
implement and fairly simple, but takes a long time to sort large lists. 



219 Chapter 6: Files: A Piece of Cake 

Character code order is the sorting order defined by the character code used in the 
Macintosh. Every character has a numerical code assigned to it that 
is used internally to represent the character. The Ord function 
returns the character code of a character. This is not the same as 
alphabetical order because upper and lower case characters are 
sorted separately. 

Close is a predefined procedure that closes a file. 

File variable is a variable that is used to identify a file in Pascal. When a file is 
open, the file's file variable points to the current component of the 
file, or the the end of the file. 

downTo is a reserved word that can be used in a for statement in place of to 
so that for counts down instead of up. 

EOF is a predefined Boolean function that tells if the file variable points 
to the end of the file. 

EOLN is a predefined Boolean function that tells if the file variable points 
at an end-of-line character. 

FilePos is a predefined procedure whose return value is the component 
number of the component to which the file variable points. 

Get is a predefined procedure that gets the next component of the file. 
It does not actually read a component into a variable-it just moves 
the file variable so it points at the next component. You can then 
access the component by using fileVar± , where fileVar is name of 
the file variable. It is an error if the file was at the end of file before 
the Get call. See Read. 

MAXINT is a predefined constant that holds the largest INTEGER value, 
32767. 

NewFileName is a predefined function that lets the user enter a new file name and 
choose Open or Cancel. The file name entered, if any, is the return 
value of this function. The file is not actually opened by this 
function, even if the user chooses Open. 

Normal file is a file with a name and a desktop document icon. See Anonymous 
file. 

OldFileName is a predefined function that displays the standard file dialog box 
that Jets you choose from files on any disk and choose Open or 
Cancel. Only files of type TEXT (which include Macintosh Pascal 
files and files created by MacWrite and saved with the text-only 
option) are shown. The name of the file chosen is the return value 
of this function. The file is not actually opened by this function, even 
if the user chooses Open. 



220 Introduction to Macintosh Pascal 

Open is a predefined procedure that opens a file for reading and/or 
writing. 

Put is a predefined procedure that places a new component into a file 
and moves the file variable so it points at the next component (or at 
the end of the file, if there is no next component) . If the file was at 
the end of file before the Put call the new component is appended 
to the file; otherwise the current component is replaced. See Write. 

Read is a predefined procedure that can read from a file. Read(fileVar, 
aVar) is equivalent to: aVar: =fileVar± ; Get(fileVar). 

ReadLn is a predefined procedure like Read, except it can only be used with 
a file of type TEXT and it reads to the next end-of-line character or 
until the end of the file, whichever comes first. 

Reset is a predefined procedure that opens a file for reading only, if the 
file was closed. If the file was already open, Reset moves the file 
variable to the beginning of the file. If the file was already open 
when you called Reset and it was opened with Open, you can still 
read from or write to the file . 

Rewrite is a predefined procedure that erases the contents (if any) of a file 
and opens it for writing. If the file was already open, its contents are 
erased, but, if the fil~ was opened with Open, you can still read from 
or write to the file. 

Seek is a predefined procedure that moves the file variable to a specified 
component of the file. You can only use this with files opened with 
Open.Sorting is the process of putting a list of items into a particular 
order. 

TEXT when used to define a file variable, defines a special type of file. In 
Macintosh Pascal, a TEXT file is the same as a file of CHAR, but, in 
other versions of Pascal a file of type TEXT is a unique type. There 
are certain file handling routines that can only be used with a TEXT 
file . 

Write is a predefined procedure that places a component into the file at 
the current file position. If the file variable points to the end of the 
file, the new components are appended to the file . If the file variable 
points elsewhere, the current component is replaced with the new 
component. Write(fileVar, a Var) is equivalent to: file Var±:= a Var; 
Put(fileVar). 

Writeln is a predefined procedure that is like Write, except it can only be 
used with a TEXT file and it adds an end-of-line character after it 
completes writing its parameters into the file. 



CHAPTER 

~[!]---
Sound Synthesis 

One thing that separates the Mac from most computers is 
that it can make complicated sounds, with up to four different 
tones at a time. In fact, a Mac makes a pretty good music 
synthesizer, and can even be programmed to speak. (You can buy 
speech software for your Mac. Speech involves very complex 
sounds, which are outside the scope of this book.) 

This chapter shows you how to get your Mac to make the 
sounds produced by a tone-dialing phone. Once you know how 
to produce those sounds, you can use similar methods to make 
whatever sounds you want. You are only limited by your 
imagination and your musical knowledge. 

This chapter develops a module that can be combined with 
the editing program produced by the last three chapters. You 
will be able to use the editing program to create a telephone 
book, and use the new module to dial your phone. 

You may want to add an extension speaker to your Mac. 
There is a socket on the back, near the On/off Switch on the 
bottom row, with an image of a musical note above it. 

221 



A Little Theory 

222 Introduction to Macintosh Pascal 

You can plug a speaker into that socket. It takes a miniature 
monaural plug of the size used for the tiny walk-about 
cassette/radio systems. You can get one at an electronics store. 
An external speaker will produce a louder, clearer sound than 
the speaker inside the Mac's case. You need to add a speaker if 
you want to dial your phone with the program in this chapter. 
The Mac's internal speaker is not loud enough to operate a 
telephone. 

You also need to have a telephone line that can handle pulse­
tone dialing. If you do not know if your line can, ask your local 
telephone company. 

The next part of this chapter gives some theoretical 
background for understanding how the Mac's sound generator 
works. It is not necessary to understand all of what is in this 
section. It is here because you may, at some time, want to go back 
and figure out where the numbers used in this chapter come 
from. If you don't care to go too deeply into it, you can skip to the 
following section, which is about the practical side of sound 
generation. 

Sound is made up of waves moving through the air, in much the 
same way as waves move through water. You may have seen a 
graph of a wave before. Figure 7-1 shows one. A complete 
waveform like this is one cycle of the wave. A sound consists of 
a waveform like this one repeated many times a second. 



223 Chapter 7: Sound Synthesis 

!\ 
Figure 7-1 A Sine Wave 

The pitch of the sound- how high or low it is- is 
determined by the numbers of cycles per second, which is the 
frequency of the waves. If there are more waves each second, 
the sound is higher pitched (Figure 7-2); if there are fewer waves 
each second, the sound is lower pitched (Figure 7-3). 

Figure 7-2 Higher-Pitched Wave 

Figure 7 -3 Lower-Pitched Wave 

The quality of the sound is also changed by the shape of the 
wave. A wave can start at a low amplitude, rise slowly to its 
highest point and then fall slowly back to a low amplitude. These 
may be sine waves, which sound fairly smooth and flute-like 
(Figure 7-1). Other sounds may rise abruptly to full amplitude, 
and then fall just as abruptly to zero before the next cycle comes 
along. Those are called square waves, which sound rather 
abrupt and mechanical, like the sound of an organ (Figure 7-4). 
The shape of the wave determines the character of the sound. 



224 Introduction to Macintosh Pascal 

111 ~ 
Figure 7-4 A Square Wave 

Dialing tones consist of two separate frequencies at a time. 
When the switching computer in the telephone company's office 
detects the correct combination of tones, it interprets the tones 
as dialing commands. If the frequencies are not correct, or do 
not occur in the correct combinations, the switching computer 
ignores them. 

The Mac has three built-in sound "synthesizers!' The 
simplest is the square-wave synthesizer. The square-wave 
synthesizer always produces sounds with square waves-so that 
the sound is fairly mechanical and sharp. Only one square wave 
can be produced at a time-but you can change the frequency 
as often as you want. 

You use the Mac's four-tone synthesizer to produce up to 
four different sounds at a time. Each of the four tones can have 
its own waveform and frequency. You generally define a single 
complete wave for each sound. The number of times the wave is 
repeated each second is the frequency of the sound. 

Alternately, you can define a more complicated waveform. 
When you need that much control over the shape of the 
waveform, you use the free-form synthesizer. The free-form 
synthesizer can only produce one tone at a time, but the tone 
can change as much as you like. 

With the free-form and four-tone synthesizers, you define a 
waveform by defining an array of values. The array contains 256 
elements for the four-tone synthesizer, and 3000 elements for 
the free-form synthesizer. You then give a rate that determines 
how quickly the Mac goes through the waveform. Therefore, the 
frequency of the sound produced depends both on the rate and 
on the shape of the waveform. 

With the free-form synthesizer, although the rate is fixed for 
the entire 3000 bytes of the wave, you can vary the shape of the 
wave so that the frequency changes. With the square-wave 
synthesizer, the shape of the wave is defined for you, but you can 
change the rate, and therefore the frequency, of the sound, as 
ofteri as sixty times a second. 



225 Chapter 7: Sound Synthesis 
~~~~~~~~~~~~ 

The sound generator uses a bit of memory left over at the
end of each line of the screen. The sound is generated every time
the Mac finishes scanning a video line, at intervals of 44.93 -
µ.5-secs. A -µ.5-sec, pronounced micro-second, or mu-second, is a
millionth of a second. That means that the Mac generates the
sound over 20,000 times a second.

When you use the four-tone or free-form synthesizers, you
define a waveform and a rate.

The scanning interval, 44.93 ·Jl.5-sec, relates the waveform,
the rate, and the frequency. The rate is the number of values of
the waveform that are played each time the Mac finishes
displaying a video line.

The rate uses a data type you may not have seen before: a
fixed-point number. A fixed-point number takes up four
bytes in memory. The upper two bytes contain the integer part
of the number. The lower two bytes contain the fractional part
of the number. For example, if the number is 1234.5678, the
upper two bytes contain 1234 while the lower two contain 5678.

There is a set of routines, described in Chapter 10 in the
Macintosh Pascal manual, for manipulating fixed-point
numbers. FixRatio, which is used in this chapter, returns the
dividend of its two parameters, both of which must be
INTEGERs.

When using the four-tone synthesizer, FixRatio can be used
to divide the frequency by 87, to obtain the rate. The divisor 87
is derived from the fact that the wave contains 256 elements and
the Mac scans the wave every 44.93 -µ,5-secs. Every time the
wave is scanned, the number of bytes of the wave indicated by
the rate is loaded into the four-tone generator. (There can be a
separate rate and waveform for each of the four tones. All tone
generators are loaded simultaneously.)

The frequency is in cycles per second. There are one million
-µ5-secs in a second. The Mac therefore scans the wave
22256.84398 times a second. As there are.256 bytes in the wave,
a number of bytes from the waveform equal to the rate is loaded
into the synthesizer 86.9407968 times a second, which is close
enough to 87 for our purposes. That means that, to produce a
sound of a given frequency, you must give a rate which is the
frequency divided by 87.

The whole number 87 is used in place of 86.9407968
because both factors in FixRatio must be INTEGER values.

226 Introduction to Macintosh Pascal
~~~~~~~~~~~~-

The Practical Side 

~~iii~·==t--~~~~~N~o-te_s~~~~~~~~~~~~~~~~~....; 
Before going on to the programs in this chapter, you need 
to make some extra room on your Pascal disk, if you haven't 
already done so. Move every program except for the last 
version of the Multiple Field Editor (the one with filing), the 
Sort program, and the Database Framework to another 
disk. (There should be plenty of room on the disk you used 
for information and programs removed from the release 
disk.) 

There are three separate procedures that make sounds on 
the Mac: 

• StartSound. You use StartSound if you want to use the 
square-wave, four-tone, or free-form synthesizers. You pass it 
different values depending on which synthesizer you use. 

• SysBeep. You use the SysBeep procedure when you need the 
tone the Mac makes when it first turns on. With Sysbeep, you 
can only control the length of the sound. The waveform and 
frequency are fixed. 

• Note. You use the Note procedure to produce a simple square­
wave tone of a given frequency, volume, and duration. 



22 7 Chapter 7: Sound Synthesis 
~~~~~~~~~~~~ 

A Simple Program

The following program is a short introduction to sound on the
Mac. Get a new programming window and type:

program Notes;
con st
BASE = 11;
var
event : EVENTRECORD;
key, quit : INTEGER;
begin
quit : = (Ord(') - 32);
repeat
repeat
until GetNextEvent(keyDownMask, event);
key : = (event.message mod 256) - 32;
if key > 0 then
Note(key * BASE, 255, 5);
until key = quit;
end.

Choose Save As ... from the File menu, and type "Notes" as the
program name. Click in the Save button.

Run the program. Whenever you type a key, a note is played.
Tu stop the program, type the - key, which is the key at the upper
left corner of your keyboard. (You have to hold the Shift key
down to get the - character.)

The predefined Note procedure is the heart of this program.
The first parameter to Note is a frequency, in cycles per
second. (A cycle per second is also called a hertz.) The second
parameter is the volume, and can be a number from 0 to 255.
The third parameter is a duration, in 60ths of a second. The
Note procedure always produces square waves, and can only
produce one frequency at a time. Iry changing the duration.
The tones produced are always multiples of the BASE value.

228 Introduction to Macintosh Pascal
~~~~~~~~~~~~ 

Dialing a Tulephone 

This program has a very simple method for converting the 
key values to notes: it uses a multiple of a value derived from the 
character code for the character produced by the key. A 
disadvantage of this method is that the keys on the keyboard are 
not in character code order, so the notes don't rise in a regular 
fashion as you move across the keyboard. You may want to 
rewrite this program, using a case statement to define the 
frequencies produced by each key, so that you can play the Mac's 
keyboard as if it were an instrument. 

Save the program as Notes, and get a new programming 
window before going on to the next section. 

The rest of this chapter shows how to use the four-tone 
synthesizer to dial a telephone. 

Get a new programming window and type: 

program Dialer; 
var 
dTones: FTSYNTHREC; 
begin {main} 
SetU pSou nd( dTones ); 
Dial(dTones, '555-1234'); 
Dispose(dTones.sndRec~ sound1Wave); 
Dispose( dTones.sndRec); 
end. 

Choose Save As ... from the file menu. 'fype "Dialer" as the 
program name, and click in the Save button. 

The number given in the call to Dial, which is a procedure 
defined within the next few pages, is the one tnat is dialed. You 
can change 555-1234 to any number you wish. 

The variable dibnes is the heart of the program. It is a 
FTSYNTHREC (short for four-tone synthesizer record), which is 
a special type defined just for the four-tone sythesizer. 1\vo parts 
of the FTSYNTHREC are special variables called pointers. 

To understand pointers, you have to know something about 
how a computer's memory works. Memory on any computer is 
numbered so that you can refer to any byte by its unique 
number. (A byte is the smallest part of memory you can directly 
refer to.) These numbers are called addresses. · 



229 Chapter 7: Sound Synthesis 
~~~~~~~~~~~~ 

When you define a variable, Pascal assigns, or allocates,
some space in memory for the variable. When you use the
variable's name, Pascal looks up the address of that variable's
space in memory, and does whatever is required to the data at
that address. This happens automatically, so you can consider a
variable's name and its address to be the same thing for most
purposes. The value of an ordinary variable is the value
contained in the variable's address space.

A pointer is a special type of variable whose value is an
address in memory. The pointer is said to point to, or
reference, that address. You refer to the data contained at the
location to which the pointer points by giving the caret symbol
" - " , after the name of the pointer. The difference is illustrated
in Figure 7-5.

var
aPoint: ·1NTEGER;
anlnt: INTEGER;

begin
New(aPofnt);
aPo1nt":= 100;
an Int:= 100;

end.

anlnt ~ 100

eddress aPoint ~ -aPoint ..

Figure 7-5

230 Introduction to Macintosh Pascal

Pointers and Normal Variables

For example, suppose you have a pointer variable called
aPointer. If you want to change the value at the part of memory
to which aPointer points, you could use a statement like this:

aPointe(:= 509;

If you want to change the value of aPointer itself, so that it
points to a different piece of memory, you would not use the
caret O. For example, suppose you had another pointer called
otherPointer. Tu make aPointer point at the same piece of
memory as otherPointer, you would use this statement:

aPointer : = otherPointer;

Notice that no carets are used. On the other hand, if you
want to copy the value that is in otherPointer's space to
aPointer's space:

aPointer' := otherPointer~;

Every pointer is defined to point to a particular data type.
For example:

aPointer : ~INTEGER;

defines aPointer to be a pointer to an INTEGER. You can define
a pointer to any data type in the same way.

When you first begin your program, your pointer variables,
like all variables, are undefined. Tu use a pointer, you must first
give it an address to point to. If you want that to be a new piece
of memory, as you often do, you call the predefined New
procedure to allocate a piece of memory for the pointer's use.
When you execute this statement:

New(aPointer);

space is allocated for an INTEGER (assuming aPointer is an
INTEGER pointer, as defined above), and the address of that
space is placed in aPointer.

When you are finished with a pointer, you call the
predefined Dispose procedure to free the space used by the
pointer. If you don't dispose of the pointer, the pointer's space is
locked up until yourestart Macintosh Pascal, and your program
may eventually run out of space. The statement:

231 Chapter 7: Sound Synthesis
~~~~~~~~~~~-

Dispose(aPointer); 

frees or deallocates the space pointed to by aPointer. In the 
program, the statement: 

Dispose(dTones.sndReC.sound1Wave); 

frees the space pointed to by the pointer sound1Wave. The 
pointer sound1 Wave is itself stored in a part of memory reached 
by the pointer sndRec. The statement: 

Dispose(dTones.sndRec); 

frees the space pointed to by sndRec. You must free the space 
pointed to by sound1 Wave before you free the space pointed to 
by sndRec. If you called Dispose for sndRec first, you wouldn't be 
able to dispose of the space pointed to by sound1 Wave, because, 
if you destroy sndRec first, there is no way to reach sound1 Wave, 
and no way to release its space. 

Place an insertion point before begin {main} and type: 

procedure SetUpSound (var dTones : FTSYNTHREC); 
var 
n: INTEGER; 
begin 
NEW(dTones.sndRec); 
NEW(dTones.sndRecA.sound1Wave); 
forn:=Oto125do 
dTones.sndRecA.sound1Wave A [n] : = 255; 
for n := 126 to 255 do 
dTones.sndRec.sound1WaveA[n] := O; 
~Tones.sndRec.sound2Wave := dTones.sndRec.sound1Wave; 
dTones.sndRecA.sound1Phase := O; 
dTones.sndRec.sound2Phase := O; 
dTones.mode : = FTMODE; 
end; 



232 Introduction to Macintosh Pascal 

An ITSYNTHREC has two fields: mode and sndRec. The 
mode tells the Mac which synthesizer you are using. 
FTMODE is a predefined constant that indicates you want to 
use the four-tone synthesizer. 

The statements: 

for n : = O to 125 do 
dTones.sndRec~.sound1Wave~[n] := 255; 
for n := 126 to 255 do 
dTones.sndRec.sound1Wave~[n] := O; 

place a square wave in the part of memory pointed to by 
sound1Wave. A four-tone synthesizer wave is an array of 256 
values. These values are byte-sized values. A byte is the 
smallest part of memory you can directly refer to. An 
INTEGER takes up two bytes in memory. A single byte can 
take any whole-number value from 0 to 255. The value of 
each byte in the wave array determines the amplitude of the 
wave at that point. The beginning of this array has the 
maximum amplitude available , while the second half of the 
array has the minimum value available, resulting in a square 
wave. By placing different values in the wave's elements, you 
can shape the wave any way you like. 

The pointer sound2 Wave is assigned the value of 
sound1Wave:rhat means that sound2Wave points to the 
same part of memory as sound1 Wave, and therefore 
sound1Wave~and sound2Wave~have the same value. 

The phase values determine where in the wave the 
sound begins. You generally want a phase of 0 (zero), which 
means that sound is generated beginning at the beginning of 
the wave you've defined. 

When you are using the four-tone synthesizer, the 
sndRec contains a wave, rate, and phase for each of the four 
available tones. This program uses only two of those tones, 
but you can use the other two tones in the same way. 

The rate is defined in the MakeSound procedure, which 
is presented shortly. 



233 Chapter 7: Sound Synthesis 
~~~~~~~~~~~ 

First, place an insertion point before begin {main} and
type:

procedure Dial (dTones: FTSYNTHREC;
number : string);
var
freq1, freq2, n ,oldlevel: INTEGER;
begin {Dial}
GetSoundVol(oldlevel); {Gets current volume setting.}
SetSoundVol(7); {Sets volume to highest.}
for n : = 1 to Length(number) do
if number[n] in ['O' .. '9', '*', '#']
then
begin
GetFreqs(number[n], freq1, freq2);
MakeSound(dTones, freq1, freq2);
end;
SetSoundVol(oldlevel); {Resets volume. }end;

This procedure creates the sound. The main part of it
receives the number from the main program, and checks
each character in it to see if it is a character that can be in a
telephone number. The statement fragment:

If number[n] In ['O' .. '9', '*', '#']

checks if the character in the number string is a
telephone character. The operator in returns TRUE if the
first operand (in this case, number[n]) is in the set that
follows.

A set is any group of values of a single ordinal type. You
can definfi" a set by listing values inside square brackets
explicitly, or with a range as is done here. (You can also define
a set-type in the type declaration part of a program.) The
range part of the set:

'0' . .'9'

is equivalent to listing all the values in that range as part
of the set.

Getting back to the if statement, if number[n] is not
found in the set of values, in returns FALSE. The effect of
that fragment is to check number[n], and see if it is a dialable

234 Introduction to Macintosh Pascal

character. If it is, the character is dialed. Otherwise, the for
statement loops around, and the next character is checked,
until there are no more characters in the number.

Finally, GetSoundVol finds the current setting of the
volume control, while SetSoundVol changes that setting. The
volume level is a value from zero to seven. The volume is set
to seven before dialing because a telephone requires a rather
loud tone to work. Changing the level with the SetSoundVol
procedure has exactly the same effect as setting the volume
with the volume control in the Mac's control panel. The old
level is restored because it is impolite to change something in
the control panel and not put it back the way it was.

The following procedure gets the correct frequencies for
the given number. Place an insertion point before begin
{dial} and type:

procedure GetFreqs (number : CHAR;
var freq1, freq2 : INTEGER);
begin
case number of
'1', '2', '3':
freq1 : = 697;
'4', '5', '6':
treq1 := no;
'7', '8', '9' :
freq1 : = 852;
'*', 'O', ' #' :

freq1 : = 941
end; {first case}
case number of
'1', '4', '7', '*' :
freq2 : = 1209;
'2', '5', '8', 'O':
freq2 : = 1336;
'3', '6', '9', '#':

treq2 := 14n
end; {second case}
end;

'

Tone telephones produce two frequencies each time a key is
pressed. The frequencies are shown in Figure 7-6. This
procedure uses two case statements to find the frequencies for
each key.

235 Chapter 7: Sound Synthesis

1209 1336 1477

697 rJ ~ ~

770 ~ en

852 (} ID

941 0 #

Figure 7-6 Matrix of Telephone Frequencies-

The following procedure does the work of this program. Leave
the insertion point where it is, before begin {dial}, and type:

Procedure MakeSound (dTones : FTSYNTHREC;
freq1, freq2: INTEGER);
begin
with dTones.sndRec" do begin
duration:= 3; {length of sound}
sound1Rate : = FixRatio(freq1, 87);
sound2Rate := FixRatio(freq2, 87);
end;
StartSound(@dTones, sizeOf(dTones), pointer(-1));
end;

Choose Save from the File menu.

The program should look like Figure 7-7.

236 Introduction to Macintosh Pascal

program Dialer;
YOr

dTones .: FTSVNTHREC;
procedure SetUpSound (var dTones: FTSynthRec);

Yar
n: INTEGER;

begin
NEW(dTones.sndRec);
NEW(dTones.sndRec·.sound 1 Wave);
forn := 0 to 125 do

dTones.sndRec·.sound 1 Wave1nl := 255;
for n := 126 to 255 do

dTones.sndRec·.sound 1 Wave·[n) := O;
dTones.sndRec·.sound2Wave := dTones.sndRec·.sound 1 Wave;
dTones.sndRec·.sound 1 Phase := 0;
dTones.sndRec·.sound2Phase := O;
dTones.mode := FTmode;

end;
procedure Dial (dTones: FTSynthRec;

number: string);
Yar
freql, freq2, n, oldlevel: INTEGER;

procedure GetFreqs (number : CHAR;
var freq 1, freq2 : INTEGER);

begin
case number of
'1', '2', '3':
freq 1 := 697;

'4', '5', '6':
freq 1 := 770;

'7', 'B', ·9·:
freq 1 := B52;

'*', 'O', '"':
freq 1 := 941

end; {first case}
case number of

'1', '4', '7', '*':
freq2 := 1209;

·2" '5', 'B', ·o· :
freq2 := 1336;

'3', '6', '9', '#':

freq2 := 1477
end; {second case)

237 Chapter 7: Sound Synthesis
~~~~~~~~~~~-

end; 
procedure MakeSound (dTones: FTSynthRec; 

freq 1, freq2 : INTEGER); 
begin 
with dTones.sndRec" do 
begin 

duration:= 3; {length of sound} 
sound 1 Rate:= FixRatio(freq 1, 67); 
sound2Rate := FixRatio(freq2, 67); 

end; 
StartSound(@dTones, sizeOf(dTones), pointer(-1)); 

end; 
begin {Dial} 

GetSoundVol(oldLevel); {Gets current volume setting.} 
SetSoundVo1(7); {Sets volume to highest.} 
for n := 1 to Length(number) do 
if number[n] in 1·0· .. ·g·, '*','"'']then 
begin 
GetFreqs(number[n], freq 1, freq2); 
MakeSound(dTones, freq 1, freq2); 

end; 
SetSoundVol(oldLevel); {Resets volume.} 

end; 
begin {main} 

SetUpSound(dTones); 
Di a 1 (dTones, '555-1234'); 
Dispose(dTones.sndRec".sound 1 Wave); 
Di spose(dTones.sndRec); 

end. 
Figure 7·7 

The duration is the length of the sound, in 60ths of a second. 
A duration of 3 should work, but if this program won't dial your 
phone when you use it later, you can try increasing this value to 
give longer tones. 

The FixRatio function and the calculation of the rate are 
explained in the theory section in this chapter. 

Look again at the call to StartSound: 

StartSound(@dTones, SizeOf(dTones), pointer(-1)); 



238 Introduction to Macintosh Pascal 
~~~~~~~~~~~~ 

StartSound requires the following three parameters, in this
order:

1. A pointer to a synthesizer record .

.2. The size, in bytes, of the synthesizer record.

3. A pointer to a procedure that is called after StartSound.

All of the procedures you've used so far go off and do their
work, and then, when they are finished, return to your
program.

StartSound starts the sound going, but doesn't have to wait
for the sound to finish before returning to your program. There
are three possibilities for what you give for this parameter. You
can give the address of a procedure that you want called after
StartSound starts the sound going. Doing so would, however,
alter the flow of your program, and is not recommended. You
can give the nil reserved word. nil is a special type of pointer
value which points to nothing. When StartSound finds a value of
nil as its third parameter, it returns to your program as soon as
the sound begins. The third possibility is to give Pointer(-1),
which causes StartSound to wait until the sound is finished
before returning to your program. This is used in this program,
and is explained below.

One problem is initially apparent: although the first
parameter to StartSound must be a pointer to the synthesizer
record, the variable d1bnes, which contains the synthesizer
record, is not a pointer. The @ operator fixes that problem. The
@ operator (pronounced '"'at") returns the address of the
variable that follows it. The value of a pointer is an address, so
giving @d'lbnes is equivalent to giving a pointer to d1bnes. The
value of the expression @d'lbnes is the address of the storage
space assigned to d1bnes.

The predefined SizeOf function returns the size of a
variable, so Size0f(d1bnes) produces the second required
parameter.

Pointer(-1) is given as the third parameter. The predefined
Pointer function converts a number to an address. When
StartSound finds an address of -1, it doesn't return until it is
finished generating the sound.Run the program. If you have an
external speaker, a telephone near your Mac, and a telephone
line that can handle tone dialing, you can use this program to dial

239 Chapter 7: Sound Synthesis
~~~~~~~~~~~~-

your telephone. Put any number you like in place of 555-1234. 
The procedures in this program can be combined with the 

Database Framework to produce the Dialing program. With this new 
program, you can dial numbers stored in a database produced by the 
Multiple Field Editor. Follow these steps: 

1. Place an insertion point immediately before procedure 
SetUpSound. 

2. Scroll the screen until you can see begin {main}. 

3. Place the mouse pointer before begin {main}, hold down the 
Shift key, and press the mouse button. All three procedures in the 
program should now be selected. 

4. Choose Copy from the Edit menu. 

5. Open the Scrapbook by choosing Scrapbook from the Apple menu 
(the one on the leftmost edge of the menu bar). 

6. Choose Paste from the Edit menu. The three procedures should 
now appear in the Scrapbook. (You will only be able to see the 
beginning of the first procedure. 

'1. Choose Close from the File menu to get rid of the Dialer program, 
If Macintosh Pascal asks you if you want to save the changes to 
your program, click in the Save button. 

8. Choose Open ... from the File menu. 

9. Choose Database Framework from the file dialog box, and click in 
the Open button. (You probably will only be able to see part of the 
program's name: 

Da~abase_Fra ... ) 

10. Choose Save As ... from the File menu. When you are asked 
for a new file name, type "Dialing Program'~ and click in the 
Save button. 

11. Change the program name in the first line of the program 
to: 

Dialing_Program 

12. Open the Scrapbook by choosing the Scrapbook command 
from the Apple menu. Unless you've added something to the 
Scrapbook, the Dial procedure should show in the 
Scrapbook's window. (If you have added something else to 
the Scrapbook, click in the Scrapbook's scroll bar until 
procedure SetUpSound is visible.) Choose Copy from the 



240 Introduction to Macintosh Pascal 

File menu. (It is not necessary to explicitly select something 
from the Scrapbook to copy it. When the Scrapbook is 
displayed, the page that shows is always automatically 
selected.) 

13. Click in the Close box in the upper left corner of the 
Scrapbook. 

14. Place an insertion point in the program before begin 
{main}. Choose Paste from the Edit menu. l"he dialing 
procedures should now appear in your program. 

lo. In the type section of the program, insert the following into 
the list of button REC'IS in buffype: 

dial, 

That line should now be: 

dial, stop : RECT; 

The order is unimportant. 

18. In the type section of the program, insert the following into 
the definition of choicefype: 

, DIALPHONE 

The definition of choicefype should now be: 

choiceType = (STOPIT, AFIELD, DIALPHONE, NOTHING); 

The order is. unimportant in this case. 

1 '1. Add the following to the list of variables defined in the first 
var section in the program: 

d1bnes: FI'SYNTHREC; 

18. Add the following lines to procedure DrawScreen, 
immediately before the if statement: 

DrawButton(buttons.dial, 280, 'Dial'); 

19. Add the following to procedure Picked immediately before 
the end of the procedure: 

else if ButtonPressed(buttons.dial, event) then 
choice:= DIALPHONE; 

(If you added a semicolon after the word S10PIT in that 
procedure, you must remove it.) 



241 Chapter 7: Sound Synthesis 
~~~~~~~~~~~ 

20. In the main program, add the following line after the call to
SetUpDisplay:

SetUpSound(dTones);

21. In the main program, add the following to the case
statement before AFIELD:

DIALPHONE:
begin
Dial(dTones, anEntry[which].theString);
DrawScreen(anEntry, therelsAnEntry, buttons);
event.where : = anEntry[which].wPos;
end;

22. Choose Save from the File menu.
The program should now look like Figure 7-8.

program Dialing_Program;
con st

NUMRECS = 3; {The number of separate records in an entry.}
CR= 13; {Character code for <RETURN>.}
BS = B; {Character code for backspace.}
LINEHEIGHT = 15; {The distance between lines in pixels.)
ENDSTR = 256; {Guaranteed to be the past end of the string.}
SPACE= 3;
BUT HEIGHT = 20;
BUTLEFT = 20;
BUTWIDTH = 40;

type
stringRec =record

wPos: POINT;
theString: string;
itsRect: RECT;

end;
butType = record

dial, stop: RECT;
end;

choiceType = (STOPIT, AFIELD, DIALPHONE, NOTHING);
entryType =array[1 .. NUMRECS] of stringRec;
fileType =me of entryType;

var
dTones: FTSVNTHREC;
anEntry : entryType;
therelsAnEntry: BOOLEAN;
which, n: INTEGER;
choice: choiceType;

2412 Introduction to Macintosh Pascal

aRecord : stringRec;
buttons: butType;
drawi ngRect : RECT;
event: EVENTRECORD;
fVar: fileType;

procedure GetFileName (var fVar: flleType);
Yllr
fi l eName : string;

begin
repeat

fileName := OldFileName('Choose a file.');
until fileName <> ";
Open(fVar, fileName);

end;

procedure DrawButton (var butName: RECT;
vertBase : INTEGER;
thelabel : string);

begin
SetRect(butName, BUTLEFT, vertBase, BUTLEFT + BUTWIDTH, vertBase + BUTHEIGHT);
FillRoundRect(butName, 6, 6, white);
FrameRoundRect(butName, 6, 6);
MoveTo(BUTLEFT + SPACE, vertBase + 14);
TextF ant(o);
Wri teDraw(thelabe l);
TextFont(1);

end;

procedure ShowCell (aRecord: stringRec;
highlight : BOOLEAN);

Y8r
n, currentline: INTEGER;

begin
with aRecord do
begin

Cl i pRect(i tsRect);
1f highlight then

PenSize(3, 3);
FillRect(itsRect, white);
FrameRect(i tsRect);
PenNormal;
if highlight then

lnsetRect(itsRect, 3, 3);
Cl i pRect(i tsRect);

2413 Chapter 7: Sound Synthesis
~~~~~~~~~~~ 

MoveTo(wPos.h, wPos.v); 
currentline := O; 
for n := 1 to Length(theString) do 
if theString!nl = Chr(CR) then 
begin 
currentli ne := currentli ne + I; 
MoveTo(wPos.h, wPos.v + currentline * LINEHEIGHT); 

end 
else 

DrawChar( theStri ng[n]); {Pre-defined.} 
end; 

if not highlight then 
Cl i pRect(drawi ngRect); 

end; 

procedure DrawScreen (anEntry: entryType; 
therelsAnEntry: BOOLEAN; 
YBr buttons : butType); 

YBr 
n: INTEGER; 

begin 
FillRect(drawingRect, gray); 
DrawButton(buttons.stop, 31 O, 'Stop'); 
DrawButton(buttons.dial, 280, 'Dial'); 
if therelsAnEntry then 
for n := I to NUMRECS do 
ShowCell(anEntry[n], FALSE); 

end; 

procedure SetUpDisplay (Yar drawingRect: RECT); 
begin 
SetRect(drawingRect, O, O, 532, 358); 
Setorawi ngRect(drawi ngRect); 
ShowDrawing; 
Fi 11 Rect(drawi ngRect, gray); 

end; 

procedure Picked (Yar choice: choiceType; 
anEntry : entryType; 

YBr 

Y8r which: INTEGER; 
therelsAnEntry: BOOLEAN; 
mouse: POINT; 
buttons : butType); 

n: INTEGER; 



2441, Introduction to Macintosh Pascal 

function ButtonPressed (whichButton: RECT; 
mouse: POINT): BOOLEAN; 

begin 
ButtonPressed := FALSE; 
if PtlnRect(mouse, whichButton) then 
begtn 

I nvertRoundRect( whi chBut ton, 6, 6); {Qui ckDraw procedure.} 
ButtonPressed :=TRUE; 

end; 
end; 

begin {Picked} 
choice:= NOTHING; 
if therelsAnEntry then 
for n := 1 to NUMRECS do 
if PtlnRect(mouse, anEntry[n).itsRect) then 
begtn 
choice:= AFIELD; 
which:= n 

end; 
if ButtonPressed(buttons.stop, mouse) then 
choice:= STOPIT 

else if ButtonPressed(buttons.dial, mouse) then 
choice := DI ALP HONE; 

end; 

procedure GetNextEntry (Hr anEntry : entryType; 
Hr fVar: fileType; 
Y&r therelsAnEntry: BOOLEAN); 

var 
n: INTEGER; 

begin 
if EOF(fVar) then 
Reset( fVar); 

if EOF(fVar) then 
therelsAnEntry :=FALSE 

else 
begin 
therelsAnEntry :=TRUE; 
Read(fVar, an Entry); 

end; 
end; 

procedure SetupSound (var dTones: FTSynthRec); 
var 
n: INTEGER; 



245 Chapter 7: Sound Synthesis 
~~~~~~~~~~~-

begin
NEW(dTones.sndRec);
NEW(dTones.sndRec·.sound 1 Wave);
for n := O to 125 do

dTones.sndRec·.sound 1 Wave·[n) := 255;
for n := 126 to 255 do

dTones.sndRec·.sound 1 Wave·[n) := O;
dTones.sndRec·.sound2Wave := dTones.sndRec·.sound 1 Wave;
dTones.sndRec·.sound 1 Phase := O;
dTones.sndRec·.sound2Phase := O;
dTones.mode := FTmode;

end;

procedure Dial (dTones: FTSynthRec;
number: string);

var
freq 1, freq2, n, oldLevel : INTEGER;

procedure GetFreqs (number : CHAR;
var freq 1, freq2 : INTEGER);

begin
case number of

·1·. ·2·. '3':
freq 1 := 697;

·4·, ·5·, '6':
freq 1 := 770;

'7', 'B', ·9·:
freq 1 := 652;

'*', ·o·, '"':
freq1 := 941

end; {first case}
case number of

freq2 := 1209;
·2·. ·5·, ·e·. ·o·:

freq2 := 1336;
'3', '6', '9', '#':

freq2 := 1477
end; {second case}

end;

procedure MakeSound (dTones : FTSynthRec;
freq 1, freq2 : I NT EGER);

begin
w1th dTones.sndRec· do

246 Introduction to Macintosh Pascal
~~~~~~~~~~~ 

begin 
duration:= 3; {length of sound} 
sound 1 Rate := Fi xRat i o( freq 1, 67); 
sound2Rate := FixRatio(freq2, 67); 

end; 
StartSound(@dTones, si zeOf(dTones), poi nter(-1)); 

end; 

begin {Dial} 
GetSoundVol(oldLevel); {Gets current volume setting.} 
SetSoundVo1(7); {Sets volume to highest.} 
for n := 1 to Length(number) do 
if numberlnl in ['0' . .'9', '*','#')then 

begin 
GetFreqs(numberlnL freq 1, freq2); 
MakeSound(dTones, freq 1, freq2); 

end; 
SetSoundVol(oldLevel); {Resets volume.} 

end; 

begin {main} 
HideAll; 
GetFi 1 eName( fVar); 
SetUpDi spl ay(drawi ngRect); 

{Preced1ng line expands the drawing window to full screen.} 
SetUpSound(dTones); 
therelsAnEntry :=FALSE; 
which:= 1; 
DrawScreen(anEntry, there I sAnEntry, but tons); 
choice:= NOTHING; 

·repeat 
case choice of 

DIALPHONE: 
begin 

Di a 1 (dTones, anEntry[whi ch). theStri ng); 
DrawScreen(anEntry, there I sAnEntry, but tons); 
event.where:= anEntry[which).wPos; 

end; 
AFIELD: 
if therelsAnEntry then 

begin 
ShowCe 11 (anEntry[ which], TRUE); 
repeat 
until GetNextEvent(mDownMask, event); 
Gl oba 1T oLoca 1 (event. where); 
ShowCe 11 (anEntry[ which], FALSE); 



24 7 Chapter 7: Sound Synthesis 
~~~~~~~~~~~-

end;
NOTHING:
begin

GetNextEntry(anEntry, fVar, therelsAnEntry);
DrawScreen(anEntry, there I sAnEntry, buttons);
repeot
unt i 1 GetNextEvent(mDownMask, event);
Gl obalToLocal (event. where);

end
end·
Picked(choice, anEntry, which, therelsAnEntry, event.where, buttons);

unti1 choice= stoplt;
Close(fVar);
SetRect(drawingRect, 293, 124, 508, 339);
SetDrawingRect(drawingRect); {Restores drawing window.}

end.

Figure 7-S

If you've already used the Multiple Field Editor to save some
telephone numbers in a file, you can skip the next group of steps.
Otherwise:

1. Choose Close from the File menu .

.2. Choose Open ... from the File menu.

3. Select Multiple Field Editor, and click in the Open button.

4. Click in the Close box for the programming window to hide
it.

5. Run the program.

6. Click in the Cancel button when you are asked to choose an
existing file.

7. 'fype in "Tulephone Book" as the new file name.

s. Draw some boxes you like, and type in a few records with
telephone numbers. One restriction: all fields with telephone
numbers should contain no other numbers. You can, though,
have identifying words using characters that are not part of
the set of dialing characters, such as:

home: 555-1234

or

work: 555-1235

248 Introduction to Macintosh Pascal
~~~~~~~~~~~-

The important point is that all telephone characters (1, 2, 3, 
4, 5, 6, 7, 8, 9, 0, #, *)in a single window should belong to the 
number. The dialing program dials all the numbers in a window 
at a time, so you can't have more than one telephone number in 
a single window. 

When you are done entering numbers, click in the Stop 
button. 

9. Choose Close from the File menu. 

IO.Choose Open from the File menu. 

11. Select the Dialing Program, and r.lick in the Open button. 

You should now have the Dialing Program displayed, and you 
should have a data file with telephone numbers stored on your 
disk. Click in the Close box in the upper left corner of the 
programming window to hide the window. Run the program. 

It asks you for a file name. If, by some chance, you don't have 
a file of the right type, you must choose any file, and then choose 
the Stop button. This program should not damage any files, as it 
never changes any data, but it will not work properly unless you 
give it a file created with a version of Multiple Field Editor that 
has the same number of fields. 

You can now click in any field with a telephone number, in 
order to select it, and then click in the Dial button. The program 
produces tones for any numbers (or # or *) that appear in the 
selected field. 

You cannot edit the records without running Multiple Field 
Editor. If you have a 512K Mac, you may want to add dialing 
capabilities to the full Multiple Field Editor program, rather than 
stripping out editing and sorting capabilities first. 



249 Chapter 7: Sound Synthesis 

1. Some long distance services require you to dial a phone 
number, pause until the service answers, dial a set of 
numbers, pause, and then dial the phone number you want 
to reach. Modify the program to be able to handle that. Do it 
by defining a new character which specifies a pause. For 
example, if"#" is the pause sign, the following might be such 
a sequence: 

555-1234-09876543-555-5678 

You can use the TickCount function to implement a 
pause. TickCount returns a LONGINT value giving the 
elapsed time since the system was last started, in 60ths of a 
second. You can have your pause procedure check the value 
of TickCount, and keep on checking the value until the value 
increases by a given amount. (Hint: Store the initial value of 
TickCount, and use a repeat/until statement.) You may 
need to experiment to decide how long the pause must be. 
Alternately, you can use the GetTime procedure to find the 
current time, and keep checking the time value until it 
increases by a given amount . 

.2. You can't detect the telephone's response to your call without 
special equipment, but suppose you had a way of detecting if 
the phone rings or if there is a busy signal. If you could do 
that, you might want the program to retry a busy call until 
the phone rings. Rewrite the program so that a mouse click 
in a certain interval after dialing indicates a busy signal, and 
have your program redial. Don't forget to have the program 
hang up first. (The Mac can't actually hang up, of course, so 
have it tell you to hang up.) 



250 Introduction to Macintosh Pascal 

QUICK SUMMARY 

This chapter shows how to use the sound synthesizers on 
the Macintosh. You first created a program that 
demonstrated some sounds, and then wrote a module that 
produced two simultaneous tones that could be used to dial 
a phone. You used the following new statements, roupnes, 
and concepts. 

Address is a location in a computer's memory. 

Cycle of a wave is one complete wave. 

Dispose is a predefined procedure that frees space pointed to by a pointer. 
This is the inverse of the New procedure. 

Fixed-point number in mathematics is a number where the decimal point is in a fixed 
position. In Macintosh Pascal, a fixed-point number is one where the 
whole number part and the fractional part are stored separately. 
You must use a special set of routines to do arithmetic with these 
numbers. 

Four-tone synthesizer is one of the three sound synthesizers available on the Macintosh. 
You can use this synthesizer to produce up to four tones at a time. 
(This synthesizer is used to produce the two simultaneous sounds 
needed for dialing a phone.) 

Free-form synthesizer is one of the three sound synthesizers available on the Macinotosh. 
You can use this to produce a complicated sound, such as speech. 
The free-form synthesizer can only produce one sound at a time. 

Frequency of a wave is the number of cycles per second, usually expressed in 
hertz or cycles per second. 

GetSoundVol is a predefined procedure that returns the current sound volume 
setting. 

Hertz is the number of cycles per second. 

Microsecond is a millionth of a second, orµb5-second . 

New is a predefined procedure that allocates space for a variable and 
returns the address of that variable in the given pointer. 

nil is a pointer-type value which points at nothing. It is used because 
you can test for it, while you cannot otherwise test a pointer that 
points at nothing. 



251 Chapter 7: Sound Synthesis 
~~~~~~~~~~~~~~ 

Note is a predefined procedure that produces a square-wave tone of a
given frequency, volume, and duration.

Pitch of a sound is how high or low the sound is.

Pointer is a type of variable whose value is an address in memory. A pointer
points to an identified variable, which can be a variable of any data
type. You access values in the pointer's identified variable by giving
a caret("') after the name of the pointer.

Pointer is a predefined function that converts an INTEGER or LONGINT
value into a pointer-type value.

Rate is the value given to the four-tone and free-form synthesizers that
determines how quickly the Macintosh moves through the
waveform you've defined. The shape of the waveform and the rate
together determine the frequency of the wave, which determines
the pitch.

SetSoundVol is a predefined procedure which sets the volume of sound proceded
by the Macintosh.

Sine wave is a common type of wave, which sounds fairly smooth and flute-like.

Square wave is a common type of wave, which sounds relatively abrupt and
mechanical, like an organ.

Square wave synthesizer is one of the three sound synthesizers built into the Macintosh. It is
easy to use, but always produces square waves, and only produces
one tone at a time.

StartSound is a predefined procedure that starts sound when you use the
square-wave, four-tone, or free-form synthesizers.

SysBeep is a predefined procedure that produces the tone the Macintosh
makes when it first turns on.

Waveform is a set of values that determine the form of a wave. The waveform
and the rate determine how the sound produced.

CHAPTER

~~---
Printing

Computers are wonderful for manipulating information, but
when it comes to carrying something around, paper works
much better. You can have as much information as you like typed
into a computerized database, but if you can't print it out when
you need to, it isn't going to be much help.

When you follow these steps, you will have a program that
allows you to look at a data file and decide whether to print it.

· You can start printing at any entry, and all the entries are
printed. A line is skipped between each entry.

1. Open the file Database Framework.

2. Choose Save As.. . from the File menu. 'fype "Printing
Program" as the new file name, and click in the Save button.

3. Change the name of the program on the first line to:

Printing_Program.

253

254 Introduction to Macintosh Pascal
~~~~~~~~~~~ 

4. In the type section of the program, add the following to the 
list of REC'IS in the definition of but'!ype: 

print, 

That line should now be: 

print, stop: RECT; 

The order is unimportant. 

5. Add the following to the definition of choicefype: 

PRINTFILE, 

The definition of choicefype shouid now be: 

choiceType = (STOPIT, AFIELD, PRINTFILE, NOTHING); 

The order is unimportant in this case. 

6. In procedure DrawScreen, place an insertion point before 
the if and type: 

DrawButton(buttons.print, 280,'Print'); 

7. In procedure Picked, place an insertion point before the end 
and type: 

else if ButtonPressed(buttons.print, mouse) thenchoice 
PRINTFILE; 

If you put a semicolon after S1UPIT, remove it. 

8. Place an insertion point before begin {main} and type: 

procedure Print (var Nar : fileType; 
var anEntry: entryType); 
var 
printer : TEX'T; 
stopHere : LONGINT; 
n: INTEGER; 
therelsAnEntry: BOOLEAN; 
procedure PrintString (var printer : TEX'T; theString : string); 
var 
toPrint : string; 
n: INTEGER; 
begin 
toPrint : = "; {Two single quote marks.} 
for n : = 1 to length(theString) do 
if theString[n] < > chr(GR) then 
lnsert(theString[n], toPrint, ENDSTR) 
else 



__________ 2_5_5 Chapter 8: Printing 

begin 
Writeln(printer, toPrint); 
toPrint := "; {Two single quote marks.} 
end; 
if toPrint < > " then 
Writeln(printer, toPrint); 
end; 
begin {Print} 
ReWrite(printer, 'PRINTER:'); 
stopHere : = filePos(fVar); 
repeat 
for n := 1 to NUMRECS do 
PrintString(printer, anEntry[n].theString); 
Writeln(printer, "); {To get blank line between entries.} 
GetNextEntry(anEntry, fVar, therelsAnEntry); 
until (filePos(fVar) = stopHere) or (not therelsAnEntry); 
Writeln(printer, chr(12)); 
Close(printer); 
end; 

In this procedure, the line: 

Writeln(printer, chr(12)); 

sends a control code to the printer. The character 
represented by the character code 12 is a non-printing 
character, that tells the printer to perform a form feed. The 
manual that comes with your printer details the control 
codes available. You can do all sorts of fancy printing using 
control codes, including printing any graphics that can be 
drawn on the Macintosh screen. 

9. In the case statement in the main program, place an 
insertion point before the word "AFIELD" and type: 

PRINTFILE: 
begin 
Print(fVar, anEntry); 
DrawScreen(an Entry, therelsAn Entry, buttons); 
event.where : = anEntry[which].wpos; 
end; 



256 Introduction to Macintosh Pascal 

10.Choose Save from the File menu. 

The program should like Figure 8-1. 
Using this program, you should be able to print any file 

created with the Multiple Field Editor. It starts printing with the 
record that is currently displayed on the screen.As with the 
Dialing program, if you change the number of records in an 
entry (NUMRECS) in the Multiple Field Editor, you should 
change the value of NUMRECS in the printing program before 
trying to open files that use that program. 

This program will not allow you to stop without first picking 
a file. If you realize after you run the program that you don't 
have a file of the right type, choose any file, and then 
immediately choose Stop. 

program Prlnting_Progrem; 
const 

NUMRECS = 3; {The number of seperete records In en entry.} 
CR = 13; {Cherecter code for <RETURN>.} 
BS = 8; {Cherecter code for beckspece.} 
LINEHEIGHT = 15; {The dlstence between lines In pixels.} 
ENDSTR = 256; {Guerenteed to be the pest end of the string.} 
SPACE= 3; 
BUTHEIGHT = 20; 
BUTLEFT = 20; 
BUTWIDTH = 40; 

type 
stringRec =record 

wPos: POINT; 
theStrlng : string; 
1 tsRect : RECT; 

end; 
butType = record 

print, stop: RECT; 
end; 

choiceType = (STOPIT, AFIELD, PRINTFILE, NOTHING); 
entryType = 1rr1y[1..NUMRECS) of stringRec; 
fileType = file of entryType; 



25 7 Chapter 8: Printing 

var 
anEntry : entryType; 
therelsAnEntry : BOOLEAN; 
which, n: INTEGER; 
choice: choiceType; 
aRecord: stringRec; 
buttons : butType; 
drawi ngRect : RECT; 
event : EVENTRECORD; 
fVar: fileType; 

procedure GetFileName (var fVar: fileType); 
var 
fil eName : string; 

begin 
repeat 

fileName := OldFileName('Choose a file.'); 
until fileName <> "; 
Open(fVar, fileName); 

end; 
procedure DrawButton (var butName: RECT; 

vertBase: INTEGER; 
theLabel : string); 

begin 
SetRect(butName, BUTLEFT, vertBase, BUTLEFT + BUTWIDTH, vertBase + BUTHEIGHT); 
FillRoundRect(butName, 6, 6, white); 
FrameRoundRect(butName, 6, 6); 
MoveTo(BUTLEFT + SPACE, vertBase + 14); 
TextFont(O); 
Wri teDraw( theLabe l); 
TextFont( 1); 

end; 

procedure ShowCell (aRecord: stringRec; 
highlight : BOOLEAN); 

var 
n, currentLine: INTEGER; 

begin 
with aRecord do 
begin 

Cl ipRect(i tsRect); 
if highlight then 
PenSize(3, 3); 

FillRect(itsRect, while); 



258 Introduction to Macintosh Pascal 
~~~~~~~~~~~-

FrameRect(i tsRect);
PenNormal;
if highlight then

lnsetRect(itsRect, 3, 3);
ClipRect(itsRect);
MoveTo(wPos.h, wPos.v);
currentLine := O;
for n := 1 to Length(theString) do
if theString[n] = Chr(CR) then

begin
currentline := currentLine + 1;
MoveTo(wPos.h, wPos.v + currentline * LINEHEIGHT);

end
else
DrawChar(theStri ng[n]); {Pre-defined.}

end;
if not highlight then

Cl ipRect(drawi ngRect);
end;

procedure DrawScreen (anEntry : entryType;
therelsAnEntry: BOOLEAN;
var buttons : butType);

var
n: INTEGER;

begin
Fi 11 Rect(drawi ngRect, gray);
DrawButton(buttons.stop, 310, 'Stop');
DrawButton(buttons.pri nt, 280, 'Print');
if therelsAnEntry then

for n := 1 to NUMRECS do
ShowCell(anEntry[n], FALSE);

end;

procedure SetUpDisplay (var drawingRect: RECT);
begin
SetRect(drawingRect, 0, O, 532, 358);
SetDrawi ngRect(drawi ngRect);
ShowDrawing;
FillRect(drawingRect, gray);

end;

259 Chapter 8: Printing
~~~~~~~~~~~-

procedure Picked (var choice: choiceType; 
anEntry : entryType; 

var 

var which: INTEGER; 
therelsAnEntry: BOOLEAN; 
mouse: POINT; 
but tons : butType); 

n : INTEGER; 

function ButtonPressed (whichButton : RECT; 
mouse: POINT): BOOLEAN; 

begin 
ButtonPressed :=FALSE; 
if Pt I nRect(mouse, wh i chButton) then 

begin 
I nvertRoundRect(whi chBut ton, 6, 6); {Qui ckDraw procedure.} 
ButtonPressed := TRUE; 

end; 
end; 

begin {Pi eked} 
choice := NOTH I NG; 
if there I sAnEntry then 
for n := 1 to NUMRECS do 
if Pt I nRect(mouse, anEntry[n]. i tsRect) then 

begin 
choice := AF I ELD; 
which := n 

end; 
if But tonPressed(buttons.stop, mouse) then 
choice := STOP IT 

else if ButtonPressed(buttons.print, mouse) then 
choice:= PRINTFILE; 

end; 

procedure GetNextEntry (var anEntry : entryType; 
var fVar : fi l eType; 
var therelsAnEntry : BOOLEAN); 

var 
n : INTEGER; 

begin 
if EOF(fVar) then 

Reset( fVar) ; 
if EOF(fVar) then 

there I sAnEntry := FALSE 
else 



260 Introduction to Macintosh Pascal 

begin 
therelsAnEntry :=TRUE; 
Read(fVar, anEntry); 

end; 
end; 

procedure Print (var fVar : fileType; 
vor anEntry : entryType); 

var 
printer : TEXT; 
stopHere : LONG I NT; 
n: INTEGER; 
there I sAnEntry : BOOLEAN; 

procedure Pri ntStri ng (var printer : TEXT; 
theStri ng : string); 

var 
toPrint : string; 
n : INTEGER; 

begin 
toPrint := "; {Two single quote marks.} 
for n := 1 to length(theString) do 
if theString[n] <> chr(CR) then 

lnsert(theString[n], toPrint, ENDSTR) 
else 
begin 

Wri teLn(pri nter, toPri nt); 
toPrint := "; {Two single quote marks.} 

end; 
if toPrint <> "then 

Wri teLn(pri nter, toPri nt); 
end; 

begin {Print} 
ReWri te(pri nter, 'PRINTER:'); 
stopHere := fi1 ePos( fVar); 
repeat 

for n := 1 to NUMRECS do 
Pri ntStri ng(pri nter, anEntry[n].theStri ng); 

WriteLn(printer, "); {To get blank line between entries.} 
GetNextEntry(anEntry, fVar, there I sAnEntry); 

until ( fi 1 ePos( fVar) = stopHere) or (not there I sAnEntry); 
Wri teLn(pri nter, chr( 12)); 
Cl ose(pri nter); 

end; 



26 :l Chapter 8: Printing 
~~~~~~~~~~~ 

begin {main}
HideAll;
GetFi I eName(fVar);
SetUpDi sp I ay(drawi ngRect);

{Preceding line expands the drawing window to full screen.}
therelsAnEntry :=FALSE;
which:= 1;
Drawscreen(anEntry, therelsAnEntry, buttons);
choice:= NOTHING;
repeat

case choice of
PRINTFILE:
begin

Print(fVar, anEntry);
DrawScreen(anEntry, there I sAnEntry, buttons);
event.where:= anEntry[whichl.wpos;

end;
AFIELD:
if therelsAnEntry then
begin

Showce 11 (anEntry[whi chi, TRUE);
repeat
unt i 1 GetNextEvent(mDownMask, event);
GI obalToLocal (event. where);
ShowCe 11 (an Entry[whi chi, FALSE);

end;
NOTHING:
begin
GetNextEntry(anEntry, fVar, there I sAnEntry);
DrawScreen(anEntry, therelsAnEntry, buttons);
repeat
unt i 1 GetNextEvent(mDownMask, event);
GI oba IToLoca I (event. where);

end
end;
Picked(choice, anEntry, which, therelsAnEntry, event.where, buttons);

until choice= stoplt;
Close(fVar);
SetRect(drawingRect, 293, 124, 506, 339);
SetorawingRect(drawingRect); {Restores drawing window.}

end.

CHAPTER

§~---
Advanced
QuickDraur

Advanced QuickDraWfhe QuickDraw graphics package is a
large part of what makes the Mac the visually exciting and
interactive computer that it is. QuickDraw draws simple and
complex shapes, handles text, and also lets you find out
information about points and shapes-such as whether a point
is inside or outside some area.

Macintosh Pascal divides QuickDraw into two parts,
QuickDrawl and QuickDraw2. All of the QuickDraw routines
used so far in this book have been in QuickDrawl. The routines
in QuickDrawl are, with a few exceptions, straightforward.
QuickDraw2 contains routines that are also basically simple and
straightforward, although they are occasionally sufficiently
clever that it is a bit hard to understand how to use them. This
chapter shows how to use the main routines in the five basic
areas in QuickDraw2. These areas are:

• Polygons, which are closed figures with as many sides as
you want.·

263

264 Introduction to Macintosh Pascal
~~~~~~~~~~~ 

• Pictures, which are sequences of QuickDraw drawing calls 
saved and. played back later. 

• Regions, which are closed figures that can be of any shape. 
Regions can consist of several separate, unconnected areas, all 
of which together make a single region. 

• Cursor, which is the figure that appears on the screen to 
show the position of the mouse. You can define your own 
cursor shapes and use them in your programs. 

• Bitmaps, which are special variables that represent groups 
of pixels. A bitmap may be displayed on the screen, or it may 
be stored in memory. You can copy sections of the screen into 
a bitmap, copy bitmaps to the screen, and change the shape or 
contents of bitmaps. 

This chapter has a section on each of these areas, each with 
a sample program showing you how to use that part of 
QuickDraw. 

All of QuickDraw, including some parts that are not included 
in this book, is described in an appendix of the Macintosh Pascal 
manual. At the end of that appendix is a copy of the code that 
defines the QuickDraw routines. That code is called the 
QuickDraw interface. There is a number 1 or 2 next to each 
routine in the left column of the interface. A "1" indicates that 
the routine is contained in QuickDrawl and "2" indicates that it 
is in QuickDraw 2. You don't have to do anything special to use 
the QuickDrawl routines. 1b use the QuickDraw2 routines, 
insert the following line in your program immediately after the 
program statement: 

uses QuickDraw2; 

This statement orders Macintosh Pascal to load 
QuickDraw2 into memory when it runs your program. 
Unfortunately, QuickDraw2 takes up a considerable amount 
of space, so do not use it unless you really need it. 



Polygons 

265 Chapter 9: Advanced QuickDraw 

A polygon is any multi-sided shape. In QuickDraw, you can use 
any group of line drawing statements to define a polygon. 
Polygons are always closed shapes, though, which means that 
the lines that make up a polygon must come together, so that 
there is no part of the polygon that doesn't enclose something. 
Figure 9-1 shows some possible QuickDraw polygons. Notice that 
they can be complicated shapes. The lines that make up the 
polygon can cross, however, no lines that make up a polygon can 
just end in space. In fact, if you try to create a polygon that is not 
a closed space, QuickDraw closes up the polygon for you, which 
may result in a shape different from what you intended. Notice 
that QuickDraw polygons are not exactly the same as polygons 
you can draw in MacPaint and MacDraw. Those polygons can 
have '"'sides" that fail to enclose space. 

D 

Figure 9-1 Sample Polygons 

Once you have a polygon, you can do most of the things with 
it that you can do with a rectangle. You can frame the polygon or 
fill it with different colors, you can invert the polygon, and you 
can change the size of the polygon. 



266 Introduction to Macintosh Pascal 

The main difference between a polygon and a rectangle is 
that a polygon can have any number of sides. For that reason, 
QuickDraw must be able to store the definition of the polygon in 
a different way from the way it stores the definition of a 
rectangle. Ordinary variables, such as RECTu, are of a fixed size. 
Once you define the type of a variable, the amount of memory 
that that variable can occupy is fixed, and, therefore, the amount 
of information that that variable can hold is fixed. With a 
polygon, though, you may not know how many sides the polygon 
will have, and you cannot, therefore, know how much space will 
be needed to store the information that defines the polygon. 

The way around that limitation is to use pointers to memory. 
A pointer gets around Pascal's otherwise strict requirement that 
you define the size of variables before your program starts 
running. Because a pointer points directly at a place in memorY., 
Pascal does not necessarily know how big a chunk of memory 
you are using. (That freedom can create lots of problems if you 
are not very careful, because you can accidentally destroy 
something in memory that is vital to the operation of the 
computer. If you do, rebooting can usually restore whatever was 
destroyed.) 

Polygons are defined by a special kind of pointer called a 
handle. A handle is a pointer that points to another pointer, 
which points to the part of memory holding the data. These 
"double-indirect" pointers are used so that the Macintosh system 
can manage memory more easily. The fact that these are handles 
and not ordinary pointers should make no difference to your 
program. In fact, that these are pointers at all should make little 
difference to you. You refer to polygons by using the handle's 
name as if it were an ordinary variable. The polygon routines 
expect to receive a handle, and not direct data. 

The other sections of this chapter also use handles. 
When you define a polygon, you call a function to create the 

handle for your polygon, then you call line drawing routines 
until you have defined the entire polygon, and then you call a 
procedure that tells QuickDraw you have defined the entire 
polygon. 

Here is a procedure that defines a polygon. You always 
define polygons like this. If you want to define your own 
polygon, just place your own line drawing calls between the 
OpenPoly and ClosePoly calls. 



267 Chapter 9: Advanced QuickDraw 
~~~~~~~~~~~ 

Get a new programming screen and type:

procedure CreateShape (var polygon : polyHandle);
begin
polygon:= OpenPoly;
Drawline(O, 60, 160, 60);
LineTo{13, 160);
LineTo(80, O);
LineTo{133, 160);
LineTo{O, 60);
Close Poly;
end;

You can use LineTu, Line, or DrawLine to define polygon
sides. Rectangle, arc, or oval drawing routines have no effect on
your polygon definition.

The call to OpenPoly hides the pen, so that the drawing does
not show on the screen until the ClosePoly call is executed. If you
want the drawing to show while you are defining the polygon,
you can call ShowPen.

Tu use the polygon, first place an insertion point before the
beginning of the routine you just entered and type:

program Polygons;
uses
QuickDraw2;
var
polygon : polyHandle;
box1, box2 : RECT;

Now, place an insertion point past the end; and type:

begin {main}
SetRect(box1, O, O, 160, 160);
box2 : = box1;
ShowDrawing;
Creat-rShape(polygon);
FramePoly(polygon);
repeat
lnsetRect(box2, 1, 1);
MapPoly(polygon, box1, box2);
EraseRect(box1);
FramePoly{polygon);
until Button;
KillPoly(polygon);
end.

Pictures

268 Introduction to Macintosh Pascal

Notice the call to MapPoly. That routine changes the shape of
the polygon so that it fits in box2. You use MapPoly to move
polygons around. In that case, the second RECT would enclose
the space where you want the polygon to apear. MapPoly
changes the definition of the polygon so that it always appears in
the new place. The first RECT, boxl, is used for reference.

Also, notice the call to KillPoly. That routine frees the part of
memory taken up by the polygon. You should always free up the
space you use when you create a handle or a pointer. After you
do so, the handle is invalid, and you get an error if you try to use
it.

Run this program. It keeps on running until you hold the
mouse button down long enough for the program to reach the
Button routine.

Look in the QuickDraw interface at the end of the
QuickDraw appendix of the Macintosh Pascal manual to see a list
of all the polygon routines.

A QuickDraw picture is a "recording" of a group of QuickDraw
drawing calls. A picture is much like a polygon in that way.
However, with a picture, you can use any routine that draws on
the screen, and the shape does not have to be closed. A picture,
in fact, can be as complicated or as simple as you like, anywhere
from a single straight line to a diagram of the New York City bus
system, and beyond those limits.

Like polygons, pictures are stored in memory space reached
by handles. You define pictures in much the same way you
define polygons. The most important difference is that when
you define a polygon, the calls that make up the polygon's
definition also define where the polygon appears. With pictures,
you give a RECT when you define the picture. That RECT defines
the original size of the picture. When you draw the picture, you
give another RECT, which defines the size, shape, and location
the picture will have when it appears on the screen. The RECT
you give when you define the picture does not have to enclose
the entire picture. It is merely for reference-it defines the scale
of the picture. When you ask QuickDraw to draw the picture,

269 Chapter 9: Advanced QuickDraw
~~~~~~~~~~~ 

the RECT you give when you define the picture is scaled to fit the 
RECT you give in the DrawPicture call, and the picture is scaled 
by the same amount. 

The following program u~es two pictures to simulate a 
square panel spinning through space. The panel has two sides, 
each of which is defined as a picture. First, one picture is 
displayed. The destination RECT is moved across the screen and 
squeezed as if the box were moving through space and turning. 
When the panel is flattened until it is apparently edge-on, the 
destination RECT encloses no space. At that point, the pictures 
are switched, and the back side of the panel is drawn. The 
destination RECT gradually grows to full size, and then shrinks 
again. 

Here is the routine that defines the pictures. Don't type this. 

procedure DefinePics (var pic1, pic2 : PICHANDLE; var box : 
RECT); 
begin 

SetRect(box, 10, 10, 10 + 2 * 
HALFWIDTH,10+2*HALFWIDTH); 

pic1 : = OpenPicture(box); 
with box do 

Drawline(left, top, right, bottom); 
FrameR~ct(box); 
ClosePicture; 
pic2 : = OpenPicture(box); 
PaintRect(box); 
FrameRect(box); 
ClosePicture; 

end; 

You can insert any drawing calls between the OpenPicture 
and ClosePicture calls. You should never call OpenPicture a 
second time before calling ClosePicture. When you are done 
with a picture, you should always use the predefined KillPicture 
procedure to free the memory space used to store the picture. 

Get a new programming window and type: 

program Twirl_Box; 
uses 
QuickDraw2; 
constHALFWIDTH = 10; 
var 
box, drawingRect : RECT; 



270 Introduction to Macintosh Pascal 

velX, velY : INTEGER; 
pic1, pic2: PICHANDLE; 
procedure DrawBox (pic1, pic2: PICHANDLE;switch: 
BOOLEAN); 
begin 
if switch then 
DrawPicture(pic1, box) 
else 
DrawPicture(pic2, box) 
end; 
procedure Bounce (var velX, velY : INTEGER); 
begin 
if (drawingRect.top > box.top) or (drawingRect.bottom < 
box.bottom) then 
velY : = -velY; 
if (drawingRect.left > box.left) or (drawingRect.right < 
box.right) then 
velX : = -velX; 

end; 
procedure SetUp (var drawingRect : RECT; 
var velX, velY : INTEGER); 
begin 
velX := 1;velY := 1; 
ShowDrawing; 
GetDrawingRect(drawingRect); 
GlobalToLocal(drawingRect.topLeft); 
GlobalToLocal(drawingRect.botRight); 
drawingRect.right : = drawingRect.right - 16; {The -16 is for the 
width of the scroll bar.} 
drawingRect.bottom : = drawingRect.bottom - 16; 
PenMode(patXOr); 
end; 
procedure DefinePics (var pic1, pic2 : PICHANDLE; 
var box : RECT); 
begin 

You define regions in much the same way as you define 
polygons and pictures: you call OpenRgn, make some drawing 
calls, and then call CloseRgn. There are some differences: you 
create a region handle first, before calling OpenRgn, and you 
give the handle when you close the region. 



271 Chapter 9: Advanced QuickDraw 

Another important difference is that you can change the 
shape of an existing region. You can do that by adding two 
regions together, subtracting one region from another, or 
finding the intersection of two regions. You can also expand or 
contract a region. When you define a picture or a polygon, 
that picture or polygon has a definition that remains the same 
until you kill the picture or polygon. 

The following program creates a region that consists of a 
few separate shapes. The program then allows you to move 
the shape around by using the mouse. Here is the part of the 
program that defines the region. Don't type this. 

region:= NewRgn; 
OpenRgn; 
SetRect(tempRect, 20, 20, 50, 50); 
FrameOval(tempRect); 
SetRect(tempRect, 100, 70, 120, 80); 
FrameRect(tempRect); 
SetRect(tempRect, 80, 20, 110, 50); 
FrameOval(tempRect); 
Line(100, 100); 
CloseRgn(region); 

The variable region is defined as a RGNHANDLE. You can use 
line drawing calls in defining a region. However, the calls must 
result in a closed space in order to be added to the region. As 
with other handles, you should call DisposeRgn to free the part 
of memory that stores the region's definition. 

Get a new programming screen and type: 

program regions; 
uses 
QuickDraw2; 
var 
region : RgnHandle; 
mouse: POINT; 
procedure CreateShape (var region : RgnHandle); 
var 
tempRect : Rect; 
begin 
region:= NewRgn; 
OpenRgn; 
SetRect(tempRect, 20, 20, 50, 50); 
FrameOval(tempRect); 
SetRect(tempRect, 100, 70, 120, 80); 
FraineRect(tempRect); 



2 7 2 Introduction to Macintosh Pascal 

SetRect(tempRect, 80, 20, 110, 50); 
FrameOval(tempRect); 
Line(100, 100); 
CloseRgn(region); 
end; 
procedure MoveRegion (var region : RgnHandle; mouse : 
POINT); 
var 
lastMouse : POIN"T; 
begin 
EraseRgn(region); 
SetRect(box, 10, 10, 10 + 2 * 
HALFWIDTH,10+2*HALFWIDTH); 
pic1 : = OpenPicture(box); 
with box do 
Drawline(left, top, right, bottom); 
FrameRect(box); 
Close Picture; 
pic2 : = OpenPicture(box); 
PaintRect(box); 
FrameRect(box); 
ClosePicture; 
end; 
procedure Display (pic1, pic2: PICHANDLE; 
velX, velY : INTEGER; var box, drawingRect : RECT); 
var 
switch: BOOLEAN; 
n, changer : INTEGER; 
begin 
changer : = 1; 
repeat 
for n := 1 to HALFWIDTH do 
begin 
lnsetRect(box, changer, O); 
OffsetRect(box, velX, velY); 
DrawBox(pic1, pic2, switch); 
Bounce(velX, velY); 
DrawBox(pic1, pic2, switch); 
end; 
if EmptyRect(box) then 
switch : = not switch; 
changer : = -changer; 
until Button; 
end; 



Regions 

273 Chapter 9: Advanced QuickDraw 

begin {main} 
SetUp(drawingRect, velX, velY); 
DefinePics(pic1, pic2, box); 
Display(pic1, pic2, velX, velY, box, drawingRect); 
Ki11Picture(pic1); 
Ki11Picture(pic2); 
end. 

Regions, like pictures and polygons, are arbitrarily large 
descriptions of shapes. Like polygons, and unlike pictures, 
regions must be closed; there can be no part of a region that 
does not enclose something. Regions, in fact, are all border. 
Like polygons, you can frame, paint, or fill regions. You can 
also combine regions together, find out things about regions 
(such as whether a given point or rectangle is within the 
region) and more regions around. Regions, generally, define 
areas of the screen. In fact, the QuickDraw appendix says that 
a region divides the screen into two parts: the part that is in 
the region and the part that is not in the region. One thing to 
keep in mind, though, is that a region does not have to be 
contiguous: it can consist of several pieces spread over 
different parts of the screen. Figure 9-2 shows some possible 
regions. The most important point about regions is that they 
can contain any number of parts of the screen, and the parts 
can have any shape, as long as the shape is two-dimensional 
(that is, as long as the shape encloses some space). 

A region in one 
contiguous piece 

A region in 
several pieces 

Figure 9·2 Possible Regions 



Cursors 

2 7 4 Introduction to Macintosh Pascal 

Pen Mode(patXOr); 
repeatlastMouse : = mouse; 
GetMouse(mouse.h, mouse.v); 
SubPt(mouse, lastMouse); 
OffSetRgn(region, -lastMouse.h, -lastMouse.v); 
FrameRgn(region); 
FrameRgn(region); 
until not Button; 
Pen Normal; 
PaintRgn(region); 
end; 
begin {main} 
ShowDrawing; 
CreateShape(region); 
PaintRgn(region); 
repeat 
begin 
repeat 
until Button; 
GetMouse(mouse.h, mouse.v); 
if PtlnRgn(mouse, region) then 
MoveRegion(region, mouse); 
end; 
until FALSE; 
DisposeRgn(region); 
end. 

Run the program. You can move the region by placing the 
mouse pointer somewhere in some part of the region, and 
pressing the mouse button. 

You must use the Pause menu to stop this program. 

The little picture on the screen that moves in concert with the 
mouse is properly called a pointer. QuickDraw calls it a cursor to 
avoid confusion with the data type pointer, which has nothing to 
do with the little picture that appears on the screen. 

You probably have noticed that the cursor has different 
shapes at different times. Sometimes it is an arrow, sometimes it 
is a cross, sometimes it is an I-beam. Those are predefined 
shapes the system uses. You can define your own cursors, as long 
as they form a 16-by-16 grid. 



275 Chapter 9: Advanced QuickDraw 

Pixels are defined by bits. A bit is the lowest level of 
information on a computer. A bit can have a value of 1 or 0. You 
can also think of that as On or Off. (The numbers 1 and 0 and the 
notions of On and Off are so entangled in the computer world 
that when the designers of the Macintosh wanted a way of 
labeling the On/off switch on the back of the Macintosh that 
wouldn't have to be translated into other languages, they chose 
1and0.) 

When a bit that corresponds with a pixel on the screen has 
a value of 0, the pixel is white. When the bit has a value of 1, the 
pixel is black. Tu define a cursor, you need to give the computer 
a bunch of l's and O's. Tuke a piece of graph paper, count out a 
16-by-16 grid, and decide which boxes should be black and 
which should be white. The black boxes require a bit value of 1, 
and the white boxes require a value of 0. 

Here is the complication: You cannot deal directly with bits 
in Pascal. 

Although computers ultimately deal with nothing but bits 
(l's and O's), those bits are always grouped together and 
translated into a more compact form, hexadecimal numbers, 
also called base 16. 

Ordinary numbers, the ones you learned to count in, are in 
the decimal system, or base 10. That means that there are 10 
digits: 0,1,2,3,4,5,6,7,8, and 9. Notice that the number 10, for 
which the system is named, is not a digit, but a combination of 
two digits. 

Bits are in the binary numbering system, or base 2. Base 2 
has only two digits: 0 and 1. The biggest problem with base 2, 
aside from the fact that people have trouble dealing with it, is 
that numbers take up a lot of space. The decimal number 100, 
for example is 1100100 in base 2. Decimal 1000 is 1111101000 in 
base 2. 

The hexadecimal numbering system, base 16, is used mostly 
because it is more compact than base 2, and it is relatively easy 
to convert numbers from base 2 to base 16 and back. There are 
16 hexadecimal digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F. 

It isn't hard to convert small decimal numbers to 
hexadecimal: decimal 3 is a 3 in hexadecimal, and 9 is a 9 in both 
systems. A decimal 10 is an A in hexadecimal, a decimal 11 is a B, 
decimal 12 is C, decimal 13 is D, decimal 14 is E, and decimal 15 
is E in hexadecimal. After that, you may find it more confusing. 



276 Introduction to Macintosh Pascal 

Decimal 16 is 10 in hexadecimal. In every numbering system, 10 
is the number that occurs when you run out of single digits. 10 
in base 2 is equivalent to a 2 in base 10. What do you think the 
value of 10 in base 50 is in base 10? That's right, the value is a 
decimal 50. 

When you define a cursor, you must give the cursor's 
definition (the data that says which pixels are On and which are 
Off) as a string of hexadecimal digits, so you need to know how 
to convert the binary digits you got from your graph paper into 
hexadecimal digits. , 

It is relatively easy to convert from binary to hexadecimal 
because each hexadecimal digit corresponds to four binary 
digits. Tuke the following four digits: 

1111 

The way you convert from one system to another is to find 
out the value of each digit that appears in the number you are 
trying to convert, change that value to the new numbering 
system, and add all of those together. 

Tu make this easier, think back to your early days of learning 
addition. Each place in a number has a name. In the decimal 
system, the place on the right end is the ones' place, the next 
over is the tens' place, the next over is the hundreds' place, and 
so on. Look at this decimal number: 

1111 

Think of that as one thousand, one hundred, and eleven. Tu 
arrive at that value, you unconsciously multiplied the digit at 
that place by the base value of the place, and then added the 
result together. 

(1 *1) 

+ (1 * 10) 
+ (1 * 100) 
+ (1 * 1000) 

Tuke another number: 

5785 



277 Chapter 9: Advanced QuickDraw 
~~~~~~~~~~~ 

Tu read the value of that, you unconsciously add:

(5*1)
+ (8* 10)
+ (7* 100)
+ (5* 1000)

You do exactly the same thing with a number in a different
numbering system, except that the value of the places change. Tu
convert the number 1111 from binary to decimal add:

(1 *1)
+ (1 * 2)
+ (1 * 4)
+ (1 * 8)

The value of binary 1111 is therefore decimal 15. Notice that
15 is the largest single digit that can be expressed in base 16: F.
1111 is the largest binary number that can fit in four spaces, and
corresponds to the largest hexadecimal number that can fit in a
single space.

Suppose you had a string of binary digits like this:
1001011110011011011110111111000000110001
Tu convert that to the equivalent list of hexadecimal digits,

first break it down into groups of four, like this:
1001 011110011011011110111111 0000 0011 0001
Now, you can convert each group of four into the equivalent

hexadecimal digit by using the method just shown. 'Il'y it
yourself before looking at the answer. Remember that the
hexadecimal digits A, B, C, D, E, and F are equivalent to the
decimal numbers from 10 to 15.

Here is the answer:
9 7 E B 7 9 F Q 3 1

1001 011111011011 011110111111 0000 0011 0001
Figure 9-3 has a chart showing all the conversions for all of

the 16 possible combinations of four binary digits. You can use
that chart to convert any picture from pixels to hexadecimal
digits. ·

278 Introduction to Macintosh Pascal

binary heH decimal

0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 R 10
1011 B 11
1100 c 12
1101 D 13
1110 E 14
1111 F 15

Figure 9·3 Binary, Hexadecimal, Decimal

Once you have your picture converted from pixels to a string
of hexadecimal digits, you must get those digits into the Mac's
memory in some way. You can't just put them into a string
variable, because Macintosh Pascal then treats them like
characters, and makes a conversion before storing them in its
internal representation. You can't assign them to a numeric
variable, because Pascal again makes a conversion before storing
them. Pascal does a wonderful job of separating you from the
internal workings of the computer, to such an extent that it can
get in your way at times. Fortunately, QuickDraw provides a way
of shoving a string of hexadecimal values into memory directly,
with no conversion, by using the StuffHex procedure. One
danger with StuffHex is that it totally avoids Pascal's protection;
you must be careful where you point that procedure, and you
also must be careful you don't use it to write more than its target
can hold.

Cursors are not defined with handles, but with an ordinary
variable of a special, predefined type called a CURSOR. That
variable can hold 64 hexadecimal digits, exactly enough to define
the 16-by-16 grid that makes up a cursor. StuffHex places the
string of hexadecimal digits at a place in memory. You can use

279 Chapter 9: Advanced QuickDraw

the @ operator (which is not part of standard Pascal) to get the
address of a variable. Here is the line that is used in the following
program:

StuffHex(@face,'07800FC0303060186018CCCC8CC48004400
843883450186007C0038000000000');

The variable face is of type CURSOR. The string defines a
small, bearded face. Notice that the rows are all ignored.
QuickDraw knows to divide that string up into groups of four
hexadecimal digits, each of which defines a line of the picture.
There are 16 lines altogether.

A CURSOR is a record, with the following definition:

CURSOR= record
data: array [0 .. 15) of INTEGER;
mask : array [0 .. 15) of INTEGER;
hotspot : POINT

end;

The data is the list of pixel values you just defined. (You don't
have to name the field face.data in the call to StuffHex because
data is the first field in the record.)

The mask determines the way the cursor image appears on
the screen. You can define a mask with as much detail as the
cursor image itself. The easiest thing to do is to set each integer
of the mask to O, which sets all bits of the mask to 0. If you do
that, drawing under the cursor image can be seen through the
cursor. The I-beam cursor used in MacWrite has all mask bits set
to 0. If you set all the bits in the mask to 1, the cursor is opaque.
The arrow cursor you often see on the Macintosh screen has the
part of the mask corresponding to the body of the arrow filled
with l's, along with a narrow border around the arrow, while
the rest of the cursor mask is filled with O's. That is why the
cursor box is invisible, but a small border shows around the
arrow when you move it over black backgrounds.

The hotspot is the part of the cursor that determines the
location returned when you ask for the position of the mouse.
The arrow cursor, for example, has a hotspot of (0,0), which is
the upper left corner of the cursor, while the cross-bar cursor
has a hotspot of (8,8), which is the center of the cursor.

Once you define a cursor variable, you display it on the
screen by calling SetCursor.

Bitmaps

280 Introduction to Macintosh Pascal

Here is the sample program. Get a new programming screen,
and type:

program Cursor_Face;
var
face : CURSOR;
procedure SetUpCursor;
var
n: integer;
begin
StuffHex(@face,'07800FC0303060186018CCCC8CC48004400
843883450186007C0038000000000');
for n : = 0 to 15 do
face.mask[n) := O;
face.hotSpot.v : = 16;
face.hotSpot.h : = O;
end;
begin
SetupCursor;
SetCursor(face);
repeat
until button;
end.

The program runs until you press the mouse button.

The entire Macintosh screen is defined in the way you define a
cursor: by strings of l's and O's. You can directly change those
onscreen values, or you can create pictures with strings of
values off the screen, and then display them on the screen later.
Those strings of l's and O's that correspond to images that may
or may not actually be displayed, are called bit images. A bit
image is a string of bits that may be mapped (transferred and
translated) to the screen.

At its most basic level, the Macintosh always deals with the
screen in terms of bit images. All the other drawing is done using
bit images. Bit images, therefore, are the most basic and most
flexible way of dealing with the screen. On the other hand, they
are also the most difficult.

281 Chapter 9: Advanced QuickDraw
~~~~~~~~~~~~ 

When you create a bit image, you can use the StuffHex 
procedure you used in the section on cursors to put hexadecimal 
values into some part of memory. (If you don't know what 
hexadecimal values have to do with pictures, read the section on 
cursors in this chapter.) The hexadecimal values alone don't 
really contain enough information for the QuickDraw to turn 
those bits into a picture for the screen. You need to tell 
QuickDraw how long each row is, and how big the resulting 
picture should be. When a bit image is combined with those 
values, the row width and a RECT that defines the size of the 
picture's boundaries, it is a bitmap. 

You use the QuickDraw type BITMAP to create variables to 
store bitmaps. A BITMAP is a record. Here is the definition: 

BITMAP = record 
baseAddr: QDPTR; {QuickDraw pointer type.} 
rowBytes: INTEGER; 
bounds: RECT; 

end; 

You put the address of the string of hexadecimal characters 
in the baseAddr field. You put a number in rowBytes that 
indicates the number of bytes in each row of the final picture. 
You then place a RECT that defines the size of the picture. The 
bit image begins at bounds.upperLeft, and each rowBytes bytes 
of the hexadecimal string is aligned with the left edge. 

One point you may find confusing is that the bounds field 
does not change the size of the picture. Each bit of the string 
defines one pixel. The bounds can cut the picture down, so that 
parts of it are ignored. There are two reasons to do this: one is 
that a bit image may be used for several bitmaps, and the 
bitmaps may use different bounds (or even different rowBytes) 
to change the resulting picture. The other reason is illustrated in 
the sample program for this section: 

Each row of a bitmap must contain an even number of bytes. 
An INTEGER variable takes up two bytes, so you are always 

safe if you use INTEGER arrays for your strings. The proportions 
of the picture may work out so that you only need an odd 
number of bytes in each row. In that case, you must still use the 



.28.2 Introduction to Macintosh Pascal 
~~~~~~~~~~~~-

extra byte in each row, but you can adjust the bounds so that
that byte is ignored in assembling the final picture.

In addition, the address of the bit image must be even. That
shouldn't be a problem as long as you assign @variableName as
the baseAddr. If you assign a baseAddr in another way, be
careful that the resulting address is always an even number.

Once you have a bitmap defined, you can use the QuickDraw
procedure CopyBits to display it. CopyBits copies bits from one
bitmap to another. The screen is just another bitmap. The
current screen image is stored in a special variable maintained
by the Macintosh system: grafFor{.portBits. You can access
portBits directly, as if it were any other bitmap. You can use
CopyBits to copy bits from portBits to your own bitmap, or to
copy a section of the screen from one part of the screen to
another.

The most common situation, though, is copying from your
own bitmap to portBits. When you call Copy Bits, you give a RECT
in your bitmap and a RECT in portBits. The section of your
bitmap specified by the first RECT is enlarged or shrunk, if
necessary, to fit the RECT in portBits . If you give
yourBitmap.bounds as the first RECT, the entire picture is
transferred to the screen, and enlarged or shrunken, if
necessary, to fit in the destination rectangle.

CopyBits also can take a transfer mode, of the type you've
used before. The transfer mode determines the way the bitmap
changes whatever is already on the screen. If you use a transfer
mode of srcCopy, the bitmap completely replaces whatever was
already in the destination rectangle.

In addition, CopyBits takes a handle for a mask region. Give
nil for that field, unless you need to hide part of the bitmap.

Here is a program that demonstrates the use of a bitmap. It
creates a small, 24-by-24 pixel image, and displays it on the
screen. The method used is similar to the method used to create
a new cursor. One difference is that a two-dimensional array is
used to store the string of hexadecimal digits. This is done for
purely human reasons: it is easier to get it right when you can
think of the picture a row at a time, instead of as one long string
of bytes.

In Pascal, a two-dimensional array can be an array of
another array. Any array in Pascal has the elements of the array
lined up in memory, one after another.

283 Chapter 9: Advanced QuickDraw

It takes up some extra space to use a two-dimensional array,
and only gains you a little bit in comprehensibility, so, if you
write a program that uses bitmaps, and you find that you are
running out of space, you can load the entire string with one
StuffHex call and change your array to a one-dimensional array.

Notice that each row contains two integers, and there are 24
rows. How does that result in a 24-by-24 picture? Each integer
has two bytes, or 16 bits. The bounds field of the bitmap is set to
a 24-by-24 rectangle, so the rightmost eight bits in each row are
ignored. Notice that the rowBytes figure is 4, which is an even
number, as required, even though the picture only requires
three bytes (24 bits).

Get a new programming screen and type:

program Sherlock;
uses
QuickDraw2;
type
rows = array[1 .. 2] of INTEGER;
imageType = array[1..24] of rows;
var
image : imageType;
map: BITMAP;
displayRect : RECT;
n: INTEGER;
procedure Stufflmage (var image : imageType);
var
n: INTEGER;
begin
StuffHex(@image[1][1],
'01 E0000003D8000005BEOOOOOA780000');
StuffHex(@image[5][1],
'ODBF00001 EODF8001 FFFF0001 FF 8000');
StuffHex(@image[9][1],
'17538000160800001 ADC40003F3EEOOO');
StuffHex(@i mage[13][1],
'7BFCOOOOEFFF00008EFFCOOOOB1 F6000');
StuffHex(@i mage[17] [1],
'06CE6E0006CFFC0007D21 C0003EBECOO');
StuffHex(@i mage[21][1],
'OFE7FOOOOFE3F00017C3F0001 FC3FOOO');
end;
procedure PrepareMap (var image : imageType;
var map : BITMAP);

284 Introduction to Macintosh Pascal

begin
map.baseAddr : = @image;
map.rowBytes := 4;
SetRect(map.bounds, 0, 0, 24, 24);
end;
begin
ShowDrawing;
Stufflmage(image);
PrepareMap(image, map);
SetRect(displayRect, 256, 171, 280, 195);
forn := 1 to100do
begin
CopyBits(map, thePort± .portBits, map.bounds, displayRect,
srcCopy, nil);
OffSetRect(displayRect, Random div 600, Random div 600);
end;
end.

Before you run the program, enlarge the Drawing window
so it fills most of the window. Now run the program.

The main program displays the bitmap 100 times at
randomly selected locations. The QuickDraw Random function
returns a random number between -32767 and 32 767. Dividing
Random by 600 assures a random value from -5 to 5. The
OffSetRect routine changes the definition of the RECT given by
adding the two values given to the top, bottom, left, and right
values of the RECT, so that the rectangle is shifted without its
size changing.

The picture shown is a small head of Sherlock Holmes. I got
the values for that picture by tracing the original using some
transparent graph paper from an arts supply store. That process
is referred to as digitizing a picture. You lay the graph paper
over the original and decide which boxes should be black and
which should be white. That is essentially what is done by a
digitizing camera, such as the ones you can buy that can put
pictures in MacPaint format.

The main problem with bitmaps is that they take up a lot of
space in memory. The Macintosh screen takes up 21,888 bytes.
You cannot store many large pictures in memory. Bitll\aps are
most useful for creating small images, such as game pieces.

285 Chapter 9: Advanced QuickDraw
~~~~~~~~~~~~ 

Patterns 

You can also use the QuickDraw ScrollRect procedure to 
scroll bitmaps, in the way the windows are scrolled on the 
Macintosh. See the QuickDraw appendix of the Macintosh Pascal 
Technical Appendix for details of that procedure. 

When you draw with the pen, the current pen pattern is used 
(along with the current mode) to determine exactly which pixels 
are turned black and which are turned white. 

You have seen how you can set the pattern to the predefined 
patterns: black, gray, ltGray, dkGray, and white. 

You can also define your own patterns. 
A pattern is an 8-by-8 bit image. You can use the predefined 

type PATTERN to store a pattern. You define the pattern the way 
you define cursors and bit images: with a string of hexadecimal 
digits. This program sets the pattern to a boomerang form: 

program New Pattern; 
var 
pat: PATTERN; 
x, y : INTEGER; 
begin 
StuffHex(@pat, 'E01COE07070E1CEO'); 
GetMouse{x, y); 
MoveTo(x, y); 
PenPat(pat); 
PenSize{B, 8); 
repeat 
until Button; 
while Button do 
begin 
GetMouse(x, y); 
LineTo{x, y); 
end; 
end. 

Run the program. When you move the mouse pointer into 
the Drawing window and press the mouse button, you can draw 
lines with the new pattern. When you let the button up, the 
program stops. A sample of the program's output is given in 
Figure 9-4. 



-

286 Introduction to Macintosh Pascal 

Drawing 

J>">Y>J 

i~d ~~~ 
~~ ~ 

~~~< ~~ 
~~~. ~?> 

< '>'> ~:>~ 

Figure 9·4 Sample Pattern 

One point about the program: notice that the pen size is 
increased to show the pattern. The width of the line drawn is 
independent from the current pattern. 

Notice that the patterns produced are fully lined up. 
Drawing with a pattern is like scraping off the white of the 
screen to reveal the pattern laid underneath, rather than 
painting a pattern that is laid down wherever the pen goes. In 
other words, the pattern is fixed to the Drawing window, not to 
the pen. 

Do More 

1. You can do most of the operations with regions that you 
can do with RECTs, including framing (FrameRgn), 
erasing (EraseRgn), testing (PtlnRgn) and clipping 
(SetClip). Try modifying the Field Editor so the user can 
draw a field of any shape and edit within it. (If you have 
a 512K Macintosh, you can try to make these changes to 
the Multiple Field Editor, otherwise, use the simpler 
Field Editor.) 



287 Chapter 9: Advanced QuickDraw 

2. Create a digitized image for use as a game piece by 
using a bitmap. 'Iry creating a similar image using a 
picture and display both with the same program. 
Which is faster? 

3. Use a series of pictures or bitmaps or a routine using 
several pictures or bitmaps to simulate an explosion of 
some simple shape, like an oval or a polygon. If you use 
bitmaps and you have a 128K Macintosh, make the 
images small. 

4. Create a simple game using the advanced QuickDraw 
functions. You could make a game using the exploding 
image you created from the previous suggestion, by 
creating a cursor that constantly changes shape, 
pointing in different directions. When the user presses 
the mouse button, have a dot move across the screen. 
When the dot hits the target, the game piece blows up. 
Better yet, make up your own game. 

Hints for the suggested game: 
Create the changing cursors so they are arrows, with the 

hotspot at the tip of the arrow. Have a POINT value associated 
with each cursor that defines the movement of a projectile fired 
with that cursor. For example, if the cursor points towards the 
lower right, the POINT value is (1 ,1). When the user presses the 
mouse button, use GetMouse to find the mouse position (or use 
an event) and add the POINT value to it repeatedly. Store each 
cursor and its POINT value together in a record, and store all the 
records in an array. Use the Random function to choose cursors 
from the array. 

Keep testing if the projectile is still on the screen by using 
PtlnRect, and if it has hit the target by using PtlnRgn. You can 
create a region for any shape by calling OpenRgn before 
drawing, and CloseRgn after. Also, call ShowPen if you want to 
actually draw on the screen after calling OpenRgn, because 
OpenRgn hides the pen. 



Binary number 

Bit 

Bit image 

Bitmap 

ClosePicture 

ClosePoly 

CloseRgn 

Copy Bits 

Cursors 

Decimal number 

Digitizing 

DisposeRgn 

288 Introduction to Macintosh Pascal 

QUICK SUMMARY 

This chapter explores most of the capabilities of 
QuickDraw not covered in other chapters. Along the way, it 
explains binary and hexadecimal numbers. The following 
routines and concepts were introduced. 

is a number in base 2. 

is the smallest piece of information that exists on a computer. A bit 
has a value of 1 or 0. 

is a collection of bits in memory that can be divided on even byte 
boundaries into rows that can be combined to form a picture. The 
screen is an example of a bit image that is automatically displayed by 
the Macintosh's hardware. Generally, you display a bit image by 
using bitmap routines. 

is a type of variable that combines a bit image with a coordinate 
system. A bitmap tells QuickDraw exactly how to display the 
sequence of bits that are defined by a bit image. 

is a predefined procedure that stops recording of drawing calls for 
a picture. The definition of the picture is fixed after this call. 

is a predefined procedure that stops recording of line-drawing calls 
for a polygon. The definition of the polygon is fixed after this call, 
except the polygon may be scaled and moved with MapPoly. 

is a predefined procedure that stops recording of the borders of a 
region and saves the region using a given region handle. The region 
handle must have been created with NewRgn. 

is a predefined procedure that copies bits from one bitmap to 
another. It is often used to display bitmaps on the screen. 

are the little images, usually called pointers, that indicate the 
current mouse position. 

is a number in base 10, which is the commonly used numbering 
system. 

is the process of converting information, often pictures, from 
continuously varying values to on/off values. Computers generally 
can only handle digital values. Continuously varying values are 
called analog values. 

frees a region's handle. 



Draw Picture 

EraseRgn 

FramePoly 

FrameRgn 

Handle 

Hexadecimal number 

hotspot 

Interface 

KillPoly 

KillPicture 

Map Poly 

Mask 

NewRgn 

OpenPicture 

OpenPoly 

289 Chapter 9: Advanced QuickDraw 

is a predefined procedure that displays a picture. It takes a picture 
handle and a RECT as arguments. The RECT is compared with the 
RECT given in the original call to OpenPicture to find the position 
and size of the displayed image. 

is a predefined procedure that erases everything in a given region. 

is a predefined procedure that draws a polygon. 

is a predefined procedure that draws a region. 

is a special kind of pointer that points to another pointer. Handles 
are used so that Macintosh can move variables around in memory 
more easily, thus allowing memory to be used more efficiently. 

is a number in base 16. 

is the part of the definition of a cursor that defines the point 
considered the mouse position. 

is what defines how you access a routine. Collections of routines, 
like QuickDraw, generally have an interface 1mit that gives the 
formal parameter lists for all of the routines. The routines are 
actually implemented in an implementation unit. This kind of 
division has many advantages - including allowing the interface to 
be in Pascal while the implementation is in more efficient assembler 
code. 

is a predefined procedure that frees a polygon's handle. 

is a predefined procedure that frees a picture's handle. 

is a predefined procedure used to move polygons around. It moves 
and scales a polygon so it fits in a given box. It takes two RECTu, the 
first of which must be a RECT containing the polygon. The polygon 
is scaled and moved so it keeps a relatively similar position in the 
second RECT. 

is the part of the definition of a cursor that defines how a cursor 
appears when it crosses images on the screen. 

is a predefined function that returns a handle for a region. It does 
not begin recording drawing for a region. See OpenRgn. 

is a predefined function that returns a picture handle and starts 
recording drawing calls for the picture. It takes a RECT argument 
that defines the scale of the picture. 

is a predefined function that returns a handle for a polygon and 
begins recording line drawing calls for the polygon's borders. 



290 Introduction to Macintosh Pascal 

OpenRgn is a predefined procedure that begins recording drawing calls for 
the borders of a region. It does not take any arguments, and the 
region handle used for the region is not determined until CloseRgn 
is called. 

PaintRgn is a predefined procedure that fills a given region with the current 
pen pattern. 

Pattern is an 8-by-8 pattern of bits used in drawing on the screen. The pen 
repeatedly uses the pattern when drawing lines or shapes. 

Pictures are sequences of QuickDraw drawing calls which can be played 
back as a unit. 

Polygons are closed shapes with any number of sides. 

PtinRgn is a predefined Boolean function that tells if a point is in a given 
region. 

QuickDraw2 is the part of QuickDraw that contains most of the advanced 
functions. Tu use these, you must include the lines: 

uses 
QuickDraw2 

at the beginning of your program, immediately after the program 
statement. 

Regions are arbitrarily shaped, closed figures. A region consists only of a 
border edge, and can be made of any number of unconnected parts. 

Scaling is when an image is made larger or smaller, but the proportions are 
kept the same. 

SetCursor is a predefined procedure that changes the current cursor to the 
given cursor. 

StuffHex is a predefined procedure that places a string of hexadecimal 
numbers at a location in memory. 



CHAPTER 

~1101====== 
Macintosh Math 

Math on the Macintosh 

Wen you get down to basics, the business of a computer is 
doing math. All the rest-word processing, sound generation, 
graphics, whatever-is built on a mathematic foundation. This 
chapter discusses math on the Macintosh. 

It begins by explaining the significance of the different 
numeric data types. The chapter discusses integer- and real-type 
numbers, and the data types used to store those numbers. 

The chapter then describes and what a mathematical 
expression is. Expressions are made up of operators and 
operands. 

Operators are symbols that let you do addition, subtraction, 
multiplication, division, and a couple of other operations. 

Operands can be values or names that represent values 
(variables and named constants) or functions, which are 
subprograms that may do complicated tasks, such as finding the 
trigonometic sine of a given angle. 

291 



292 Introduction to Macintosh Pascal 

The Importance of Data fypes 

Nearly all numbers used in this book are integers. An integer is 
a whole number value, such as 1,3,5, or 32776. 

Many operations, however, result in values that are not 
whole numbers. In those cases, you must use one of a group of 
data types that can hold fractional values. 

Those types are called real-types. A real-type might be 
3.14959, 1.0000, .5, or 32766.99. 

You can assign an integer-type (INTEGER and LONGINT) to a 
real-type variable. You cannot, however, do the reverse. 1\.vo of 
the Pascal standard functions described in this chapter, Trunc 
and Round, convert real values to integer values. For example, 
AReal : = Anlnt is legal, but Anlnt : = AReal is always illegal. 
Anlnt : = TRUNC(AReal) is legal, however. 

Variables and Constants 

Constants are either: 

• Values that appear explicitly in the program, such as 
numbers. 

• Named constants, which are defined in the const section of 
the program. These look like variables, but their values cannot 
be changed during the executation of the program. 

Variables are named items which have values. Using the 
name of the variable is generally equivalent to giving a constant 
with the same value in that place. 

The most important difference between variables and 
constants is that you can change the value of a variable, and you 
can't change the value of a constant. Both constants and 
variables can appear on the right side of the ": =" in a statement, 
but only variables can appear on the left side of the ": = ". 



Numbers 

Precision 

Integer Data 'JYpes 

293 Chapter 10: Macintosh Math 

There are two basic groups of numerical values commonly used 
in programs: real-type numbers and integer-type numbers. 
Numeric variables acquire a type when they are defined; 
numeric constants also have types. A constant's type is the type 
of a variable that can hold it. In general, if the number has a 
decimal point, it is a real-type number, otherwise it is an integer­
type number. 

Integer-type numbers have whole-number values, as 
described before. Real-type variables can hold real 
numbers-numbers that may not be whole numbers. For 
exampl~, 3.14 is a real number. The following two sections have 
discussions of INTEGERs, LONGINTu, and real-type numbers. 

Mathematical operations often result in values that -are not 
whole numbers. For example, 5 divided by 2 is 2.5. 100 divided 
by 3 is 33 and one third, or, approximately 33.33333. Tu express 
33 and one third exactly as a decimal number, you would have to 
keep writing 3's forever. At some point, you need to decide that 
you have defined 100/3 precisely enough. 

In Pascal, different data types allow you to specify a number 
with different levels of precision. 

The precision of each data type is discussed along with the 
description of the data type later in this chapter. Precision means 
the number of separate digits that you can use in a number. 

The two integer data types hold only whole number values. 
When you divide 100 by 3, for example, and put the result in an 
integer-type variable, the result is 33. The difference between 
the two integer data types is simply the magnitude of the largest 
number a variable of each type can hold. 



294 Introduction to Macintosh Pascal 

INTEGER 

INTEGER is a predefined data type that is used to represent 
whole-number numeric data. The value of an INTEGER can 
range from - MAXINT to MAXINT, where MAXINT is a 
predefined constant equal to 32767. 

~--------------N __ o_t_e_s ________________________________________ __ 

You cannot give commas in numbers in Pascal. The commas 
are given here for clarity. 

The fact that you cannot have an INTEGER outside that 
range means that you can't, for example, have an INTEGER with 
a value of 1000000. The fact that all INTEGERs have whole­
number values means that you can't, for example, have an 
integer with a value of 1/2. 

The fact that INTEGERs can only take whole-number values 
also implies that INTEGER is an ordinal type, meaning that every 
value is part of an ordered, limited set. 

There are two difficulties that result from INTEGER's 
limitations: 

• INTEGERs outside the range -bl-32727 cannot exist. 

• INTEGERs with fractional values cannot exist. 

If you need to represent integer values outside the range 
± MAXINT, use the LONG INT data type. (You can also use the 
COMPUTATIONAL data type, which is a special real-type which 
can only hold integer values.) 

If you need to represent values that are not whole numbers, 
use one of the real data types. 

WNGINT 

LONGINT is an extension of the type INTEGER. An INTEGER 
takes up two bytes, or 16-bits, of space in memory. The value of 
MAXINT results from that space limitation. A LONGINT takes up 
four bytes, or 32 bits, of memory space. That results in the value 



295 Chapter 10: Macintosh Math 
~~~~~~~~~~~~ 

Real Data 'fypes

for MAXLONGINT, the largest long integer, of 2147483647. A
LONG INT can hold any value from - MAXLONGINT .to
+ MAXLONGINT.

You can use LONGINTs almost anywhere you can use
INTEGERs. You can even give a LONGINT in place of an INTEGER
as a parameter to a subprogram that requires an INTEGER
parameter-as long as the value of the LONGINT is in the range
±MAXINT.

LONGINT, like INTEGER, is an ordinal type. That means that
the number of values is limited. You could list all the LONGINT
values, if you wanted. (Although that would mean listing over
four billion values.)

In mathematics, the set of real numbers is the set of all numbers
that can exist. That includes fractional values. These are
examples of real numbers:

3.14159
0.0000000000000000000000
11812389872.95
100.0

There are a number of data types that are capable of
representing a subset of real numbers.

There are an infinite number of real numbers. Suppose, for
example, you divided 1 by 2, resulting in .5. You could then divide
.5 by 2, resulting in .25. You could then divide .25 by 2, resulting
in .125. You could keep on dividing by 2 forever, and, eventually,
the string of numbers needed to specify the result would be so
long that it wouldn't fit in this book, or in an entire library. A
computer cannot represent values with that many digits. Every
real data type has a limitation on the number of digits and on the
magnitude of numbers that can be stored in variables of that
type.

When you give a real constant in a program, you must have
at least one digit to the left and one digit to the right of the
decimal point.

Either or both of those digits can be 0. For example, 0.0 is a
legal real number, but 0. and .0 are not.

296 Introduction to Macintosh Pascal
~~~~~~~~~~~~ 

Notes 

You can also use integer numbers where real-type values are 
expected. However, if you use a decimal point, there must be at 
least one digit to the right and one to the left of the decimal 
point. 

Real numbers are normally represented in Pascal in 
floating-point notation, also called scientific notation. 
Here is an example of floating-point notation: 

1.2E3 

The "E" means "10 to the power of:' That expression can be 
read as "1.2 times 10 to the power of 3". 

A "power" is a number multiplied by itself the p<;>wer 
number of times. For example, 10 to the power of 3 is: 

10 * 10 * 10 

which equals 1000. 

The value of l.2E3 is 1200.0. 
What makes floating-point notation convenient is that you 

can achieve the same result by moving the decimal point three 
places to the right. 

1.2E3 = 12.0E2 = 120.0E1 = 1200.0 

The number following · the "e" is called the exponent, or 
order of magnitude of the floating-point number. 

Floating-point notation is quite compact when dealing with 
large numbers. For example: 

5.6E35 

is equivalent to: 

560,000,000,000,000,000,000,000,000,000,000,000.0 

A " +" sign is often given before the exponent, to indicate it is 
a positive exponent. (If no sign is given, the exponent is positive, 
anyway.) For example: 

5.6E+35 



297 Chapter 10: Macintosh Math 

When the exponent is negative, the number has a magnitude 
less than 1. For example: 

4.67E-3 

is equal to: 

0.00467 

When a negative sign precedes the whole number, the 
number is negative. For example: 

-1.0E-20 

is equal to: 

-0.00000000000000000001 

There are two issues involved in the size of the numbers: 
range and precision. 

Range is maximum size of the number following the "e". 
Precision is determined by the number of digits that can be 

in the multiplier part of the number. 
The real data types are REAL, DOUBLE, EXTENDED, and 

COMPUTATIONAL. The difference between REAL, DOUBLE, 
and EXTENDED types is the amount of storage space allocated 
for the number, and therefore the range and precision that can 
be achieved. COMPUTATIONAL is a special case, and is discussed 
below. 

A REAL variable (the only one of these three defined in 
standard Pascal) has four bytes of storage. It can hold values 
from 1.5E-45 to 3.4E+38. It can have up to 7 or 8 digits. 

A DOUBLE variable has eight bytes of storage. It can hold 
values from 5.0El0-324to1.7E+308. It can have up to 15or16 
digits. 

An EXTENDED variable has ten bytes of storage. It can hold 
values from 1.9E-4951 to 1.1E4932. It can have up to 19 or 20 
digits. 

As you can see, the real-types, especially DOUBLE and 
EXTENDED, can hold far larger and far smaller values than 
integer-types. They also take up much more room in memory. 

COMPUTATIONAL is a special real-type that can only hold 
whole-number values. A COMPUTATIONAL variable can hold 
values in the approximate range ±9.2E18. You can have 
meaningful digits in all nineteen places. 



.298 Introduction to Macintosh Pascal 
~~~~~~~~~~~~-

Expressions

All real-type values are converted to EXTENDED before any
expressions are evaluated, and the result of all real operations is
an EXTENDED value. You can always assign the results to
DOUBLE, REAL, or EXTENDED variables, as long as the result is
within the range of the target type.

An expression is any group of variables, constants, operators,
and functions that result in a single value. The following are all
examples of expressions:

thisVar-454+(123-15)*thatVar div (thisVar mod thatVar)
3.5/15
3 div15
Sin(thisVar)
that Var
5
-123

An expression can range from a single constant to a long
group containing many elements.

In general, expressions are made up of operators and
operands.

Operands can be constants (that is, regular numbers),
variables, and functions. All operands must have definite values
when an expression is executed. Operators are described in the
next section.

Note that functions, constants, and variables can appear in
expressions, but you can only assign the value of an expression
to a variable, or use the expression in a subprogram call. A single
value appears on the left side of a ": =" assignment. Whatever is
on the right side of the ": = " is an expression.

299 Chapter 10: Macintosh Math
~~~~~~~~~~~~ 

Operators 

Operators define the relationship of the operands. That is rather 
formal language for something you have seen since elementary 
school. Operators include the familiar" +" and" - 11 symbols, used 
for addition and subtraction. The multiplication operator, "* ·~ 
may look a bit odd, but it works like the familiar "X11 you used in 
4th grade. 

Division gets a bit more complicated. There are two division 
operators: "/11 and div. The div operator is used to divide 
INTEGERS and LONGINTu. The remainder is always dropped in 
integer division. The remainder is also called the modulus. For 
example, when you divide 5 by 2, there is a modulus of 1. The 
result of: 

5div2 

is 2. For that reason, a special operator is provided that 
produces only the modulus. It is the mod operator. The result 
of: 

5mod2 

is 1. 
When you are working with real numbers, you use the "/11 

operator, which results in an exact answer. The result of 

5.0/2.0 

is 2.5. 
Tu summarize, the following are the arithmetic operators: 
+, -, *,div,/, and mod 

Unary Operators 

There are three operators that work on a single operand, which 
are therefore called unary operators. These work much like 
functions, in that they can change the value of their operand in 
some way. 

Two of these unary operators are "+ 11 and " - ·~ which, as you 
have seen are also binary operators (that is, operators that take 



3((}(()) Introduction to Macintosh Pascal 
~~~~~~~~~~~~ 

two operands). When you use"+" and"-" as unary operators,
they simply express sign, as they do in normal arithmetic. Here
are examples of the use of unary operators:

+5
-3.3
-thisVar

The"+" operator has no real effect. +5 and 5 are equal
representations. The " - " operator usually indicates a negative
number-a number whose value is less than 0. It can also
reverse the sign of a negative number. For exariiple, 'the value of:

-thisVar

is positive if thisVar has a negative value.
The third unary operator is the"@" operator. The value of an

"@"followed by a variable is the variable's address. An address is
a pointer-type value. Suppose a program contains the
following declarations:

thisVar : INTEGER;
thisPointer : INTEGER;

The following statement is valid:

thisPointer : = @thisVar;

This statement is invalid:

thisVar := @thePointer;

Although an address is a whole number value, it is not an
integer value, and cannot be assigned to an integer-type variable.

You can use the Ord function to convert a pointer-type value
to an integer. You can use the Pointer function to convert an
integer to a pointer-type value.

The"@" operator is not a standard part of Pascal, and you
should be careful if you use it. In general, you should use it only
when you need to pass a pointer-type to a library routine, as is
done in Chapter 7 of this book when using the sound generator.

Boolean Expressions

You have used Boolean, or logical, expressions in previous
chapters. In particular, the Boolean operators and, or, and not
were explained in Chapters 2 and 3.

301 Chapter 10: Macintosh Math
~~~~~~~~~~~~-

Relational Operators 

This section explains how to use relational operators to form 
Boolean expressions. 

A Boolean expression, like a numeric expression, is a 
sequence of values connected by operators. With a Boolean 
expression, however, the result of each sub-expression and the 
overall expression must be a value of TRUE or FALSE. 

You produce TRUE/FALSE values either with Boolean 
functions, such as the Button function, or by using relational 
operators on pairs of numeric or string expressions. 

A relational operator tests the relationship between two values, 
and returns TRUE or FALSE depending on the operator and the 
values. 

There are seven relational operators. Here are six of them, 
along with the relationship that they test for. (The seventh 
operator is quite different and is discussed below.) 

< less than 
< = less than or equal to 
< > not equal > =greater than or equal to 
> greater than 
= equal to 
(Note that you have to type two characters for "< = '~ " > = 11 

and " < > 11
.) 

You may have run across symbols and concepts like these in 
your math Classes. Some of the symbols are different; "< > 11 is 
used for not equal in Pascal, instead of the more usual " =f. 11

• 

You can use any of these operators between two values. The 
two values generally have to be of the same type. (You can 
compare real-type and integer-type values, however.) 

Pascal checks the relationship, and gives the expression a 
value of TRUE if the given relation is TRUE, and FALSE if the 
given relation is FALSE. For example, all these expressions are 
TRUE: 

5 > 3 
5<>3 
(3+2) = 5 
'Yeats' < > 'Eliot' 
'Me'= 'Me' 
'ME'<> 'me' 



302 Introduction to Macintosh Pascal 
~~~~~~~~~~~~ 

All of these expressions are FALSE:

5<3
5 = 3
3>5
~ > 'B'

When you compare character or string values, the character
codes are compared. In general, with ordinal types (the group
that includes INTEGERs, CHARs, BOOLEANs, pointers, and user­
defined ordinal types) the Ord of the values are compared.

Note that although an expression like:

X>Y>Z

was allowable in math class, you cannot have more than two
elements in a relational expression in Pascal. You can, though,
use the Boolean operators and and or to combine relational
expressions and achieve the same effect. For example:

(x > y) and (y > z)

You can use mathematical expressions within relational
expressions. The mathematical expression is fully evaluated, and
the resulting value is used for comparison. For example:

(thisVar-5+0rd(~)) > (thatVar*Trunc(aReal))

is perfectly legal. The mathematical expressions are
surrounded by parentheses for the sake of clarity. In general,
mathematical operations are evaluated before _relational
operations, but you can use parentheses to make any expression
more clear. See the operator precedence section in this chapter
for an explanation of the effect of parentheses.

The seventh relational operator is in. The in operator is
used to check if a value is in a set. For example:

Eliot in [Eliot, Pound, Yeats]

is TRUE, while:

Williams in [Eliot, Pound, Yeats]

is FALSE.

Relational Expressions and Real Numbers

Consider the expression:

1.22222222 = 1.222222221

303 Chapter 10: Macintosh Math

The value of that is FALSE, as it should be. Suppose, though,
that you had a program that began the following way:

var
aReal : REAL;
anExtended : EXTENDED;

begin
aReal := 10/3;
anExtended := 10/3;

What do you think happens if you compare the values of
aReal and anExtended? For example:

aReal = anExtended

returns FALSE. Why? Because an EXTENDED variable has more
digits than a REAL variable, and therefore has a greater value in
this case.

The message here is that relational operators are not well
suited for real-type numbers, because the values of reals are
generally approximations. For example, given the same program
beginning given above:

(aReal * 3) = 10

is FALSE. While:

(anExtended * 3) = 10

is TRUE. That is because the value stored in aReal is 3.333333,
while the value in anExtended is 3.333333333333333333. Notice
that in ordinary arithmetic, three times either value is less than
10, but the value of 3*anExtended is close enough that
Macintosh Pascal can't tell the difference.

If you need to test the value of a real number, you should
allow it to be within some range of the target value. Suppose
aRange is the range you've decided on. You could use an
expression like the following:

Abs(anExtended - aReal) < aRange

The function Abs (described later in this chapter) makes
certain the result of the first expression is a positive number. As
long as anExtended and aReal are close enough together, this
expression returns TRUE.

304 Introduction to Macintosh Pascal
~~~~~~~~~~~~ 

Operator Precedence 
What is the value of the following expression? 

3-2*2 

Although you might have come up with a 2, Pascal produces 
a -1. 

The reason is that Pascal evaluates operators in a certain 
order, referred to as the order of precedence. Pascal does 
multiplication before subtraction, even if the subtraction comes 
first, as it does in the expression given above. 

You can put sub-expressions in parentheses to · force 
evaluation in a different order. For example, the value of: 

(3-2)*2 

is 2. 
Here is a chart of operator precedence. The operators on 

higher. lines are evaluated before operators on lower lines. 

unary + unary - not 

* I div mod and 

+ - or 

all relational operations 

All operators on a given line have the same level of 
precedence. If there is more than one operator in a given level, 
they are evaluated from left to right. 

Once again, everything in parentheses is done first. If there 
are several operators in a given set of parentheses, they are 
evaluated in the normal order of precedence. 



Functions 

305 Chapter 10: Macintosh Math 

One of the rules of good programming style can be summed up 
by two words: 

"Be lazy:' 
Not always, you understand. But, when someone has already 

done work for you, use that work rather than redoing it. In 
particular, you should know and use the built-in functions. 

There are three groups of functions in Macintosh Pascal. 

• The standard functions. These are functions that exist in all 
versions of Pascal, and are the ones you will probably use the 
most. 

• The Macintosh Pascal extensions. These are functions that are 
not part of every version of Pascal, but which are part of this 
version. The arithmetic functions of this group are 
documented in one of the following sections. There is also a 
group of string functions which are documented in Chapter 
4. Many of these functions are similar or identical to 
extensions that exist in most other versions of Pascal. 

• The SANE (Standard Apple Numerics Environment) 
extensions. You have to include the line 

uses SANE; 

at the beginning of your program (on the line after the 
program name) to use these functi9ns. They are generally for 
use in advanced numerics applications; most programmers 
will have no need for them. For that reason, they are not 
covered in this book. See the SANE appendix of the Macintosh 
Pascal Tuchnical Appendix for a description of the SANE 
package. (Note: the text of that appendix describes the SANE 
package in a general way that applies to all versions of SANE, 
including those on other computers. Following the text is a 
summary of the Macintosh SANE package that shows the 
parameter lists of all the functions and procedures included.) 



306 Introduction to Macintosh Pascal 
~~~~~~~~~~~~-

Notes

QuickDraw contains a number of functions and
procedures that perform arithmetic operations on POINTs
and RECTs. Those are not covered in this book. See the
QuickDraw appendix of the Macintosh Pascal Thchnical
Appendix for information about those subprograms.

Standard Functions

One of the original purposes of Pascal was to create a
standardized language that could be used on a wide variety of
computers. In practice, most versions of Pascal include
"extensions" -additional capabilities that are not included in
standard Pascal. Although there are other differences, what
most differentiates Macintosh Pascal from standard Pascal is the
addition of many built-in functions and procedures. The
functions in this sections are the only ones that are part of
standard Pascal. Every other procedure and function you've
used is an extension.

Many of these "standard functions" differ from the standard
versions in one way: when the result type of the standard
version is an INTEGER, the result type of the Macintosh version
is LONGINT, similarly, when the result type of the standard
version is a REAL, the result of the Macintosh version is
EXTENDED. LONGINT and EXTENDED are not part of Standard
Pascal. Within the range of the types INTEGER and REAL, these
functions are equivalent to the standard versions. As usual, you
can assign the result of the functions to an INTEGER or REAL
variable as long is the value is within the range ± MAXINT, or
within the range of the REAL data type.

• Abs
The Abs function produces the absolute value of its
parameter. The absolute value is the unsigned, or positive,
value. In other words, given:

Abs(aNumber)

the result is -aNumber if aNumber is less than O; the result is
aNumber if aNumber is greater than or equal to 0.

307 Chapter 10: Macintosh Math
~~~~~~~~~~~~ 

For example: 

Abs(-123) 

produces 123. 

Abs(10) 

produces 10. 
You can use an integer- or real-type parameter. For 

example: 

Abs(-1.5) 

produces 1.5. 
The result is of type LONGINT if the parameter is of an 

integer-type, and of type EXTENDED if the parameter is of a 
real-type. 

• Arctan 
The Arctan function produces the arctangent of a numeric 
value. The arctangent is the angle whose tangent is the given 
value. (Tungent is a trigonomeric value equal to sine/cosine.) 

The parameter must be greater than or equal to O, and can 
be an integer or real number. The result is an EXTENDED 
value, expressing an angle in radians. (There are 211' radians or 
360 degrees in a circle. Therefore, for example, 11' 

(pronounced like pie) radians equals 180 degrees. The value of 
11' is approximately 3.14159.) 

• Chr 
The Chr function returns the character whose code is 

given as the parameter. The parameter must be an integer­
type value in the range Oto 255 . 

The result type is CHAR. 
For example, 

Chr(65) 

produces 'N.. 

Chr(13) 

is equivalent to a Return. 
The Ord function is the inverse of Chr. In other words: 

Ord(Chr(13)) 

produces the integer value 13. 



308 Introduction to Macintosh Pascal 

• Cos 
The Cos function produces the trigonomeric cosine of the 

parameter. The parameter is an angle expressed in radians. 

• Exp 
The Exp function returns the natural exponential of its 

parameter. Given the function call: 

Exp(x) 

the return value is equal to "e"'. "e" is the base of the 
natural logarithm. The value of "e" is 2. 718281828 ... (The 
ellipses (. .. ) indicate that "e" is a repeating fraction: the digits, 
"1828'~ repeat infinitely.) 

Notes 

The "e" which is the base of natural logarithms has 
nothing to do with the "E" which is used in floating-point 
notation. 

Exp is the inverse of the LN (natural log) function . 
The result is of type EXTENDED. The parameter can be a 

real- or integer-type value. 
• LN 

The LN function returns the natural logarithm of its 
parameter. The expression: 

LN(x) 

is equivalent to the mathematical expression: 

logn(x) 

The base of natural logarithms is "e' ~ which has the value 
"2 . 718281828 .. :' (Again the digits, "1828", repeat infinitely.) 
This is the inverse of the Exp function. 

The result is of type EXTENDED. The parameter can be an 
integer- or real-type value which is greater than 0. 



309 Chapter 10: Macintosh Math 
~~~~~~~~~~~ 

•Odd
The Odd function returns TRUE of its parameter is an odd

number, FALSE if the parameter is an even number.
For example:

Odd(2)

is FALSE.

Odd(1111)

is TRUE.

• Ord
The Ord function returns the ordinal number of its

parameter.
The result is of type LONGINT.
As usual, you can assign the result of Ord to an INTEGER

variable as long is the value is within the range ± MAXINT.
The parameter must be of an ordinal type, such as

INTEGER, LONGINT, CHAR, BOOLEAN, an enumerated-type,
or a pointer-type. For all ordinal types except INTEGER and
LONGINT, the ordinal number is the sequential position of the
value in its set of values.

For example:

Ord(~)

produces 65.
With integer values, the Ord of the value is the value itself.

Ord(-112)

produces -112.
It is an error to use Ord on a non-ordinal value. Ord(l.2)

for example, is illegal.
Ord can be used on enumerated or set types. For example,

where a program contains the following definition:

fruits: set of (APPLE, ORANGE, KIWI);

the value of:

Ord(KIWI)

is 2. The ordinal numbers of all ordinal types except for
integer types begin at 0.

Ord is most often used to obtain the character code of a
character. The Chr function, in those cases, is the inverse of

310 Introduction to Macintosh Pascal

Ord. Ord(aVaJue) produces the character whose character
code is aValue.

The Pointer function (described in the Macintosh Pascal
extensions section) is the inverse of the Ord of a pointer-type
value.

The parameter can be any ordinal type. The result is of
type LONGINT.

• Pred
The Pred function takes an ordinal-type value as a

parameter, and returns the preceding value in that ordinal
type. For example:

Pred(10)

returns 9.
You can apply this to any ordinal type. For example:

Pred('B')

returns "N'.
The ordinal type can be programmer-defined. For

example, suppose your program contains the following type
definition:

poets = (WILLIAMS, LAWRENCE, POUND);

The following call:

Pred(LAWRENCE)

returns the value WILLIAMS.
The type of the result is the same as the type of the

parameter. The parameter must be an ordinal-type. (You
cannot, for example, use Pred with a real-type value.)

311 Chapter 10: Macintosh Math

• Round
Round converts a real-type value to a LONGINT value by

rounding the real-type value to the nearest integer. For
example: '

Round(1.9999999999999)

produces 2.

Round(1.4999999999999)

produces 1.

Round(1.5)

produces 2.
Use 'Irunc when you want to truncate the value to the

next lowest (or highest, if the number is negative) integer.

• Sin
The Sin function produces the trigonomeric sine of the

parameter. The parameter is an angle expressed in radians.

• Sqr
The Sqr function returns the square of its parameter. The

square of a number is the number multiplied by itself. For
example:

Sqr(2)

produces 4.

Sqr(-12)

produces 144.
The result of Sqr is always positive.The result is a

LONGINT value if the parameter is of an integer-type. The
result is an EXTENDED value if the parameter is of a real-type.

• Sqrt
The Sqrt function returns the square root of its

parameter. The square root is the number which, when
multiplied by itself, produces the parameter. For example:

Sqrt(4)

returns 2.0

Sqrt(144)

returns 12.0.

312 Introduction to Macintosh Pascal
~~~~~~~~~~~-

The parameter can be a real-type or integer-type value, 
but must be greater than or equal to zero. 

The result is of type EXTENDED. If you need an integer 
result, you must use one of the conversion functions, 'Irunc or 
Round, to convert the result of Sqrt. 

• Succ 
The Succ function takes an ordinal-type value as a 

parameter, and returns the next value in that ordinal type. For 
example: 

Succ(10) 

returns 11. 
You can apply this to any ordinal type. For example: 

Succ('B') 

returns "C". 
The ordinal type can be programmer-defined. For 

example, suppose your program contains the following type 
definition: 

poets = (WILLIAMS, LAWRENCE, POUND); 

The following call: 

Pred(LAWRENCE) 

returns the value POUND. 
The type of the result is the same as the type of the 

parameter. The parameter must be an ordinal-type. (You 
cannot, for example, use Succ with a real-type value.) 

• 'Irunc 
'Irunc, short for truncate, converts a real-type value to a 

WNGINT value by cutting off the fractional part. For 
example: 

Trunc(1.9999999999999) 

produces the LONGINT value 1. 
If the number is positive, the result of 'Irunc(number) is 

always less than the number. If the number is negative, the 
result of 'Irunc(number) is always greater than the number. 

Use Round when you want to round a real value to the 
nearest integer, instead of truncating to the next lowest (or 
highest, if the number is negative) integer. 



313 Chapter 10: Macintosh Math 

Macintosh Pascal Extensions 

The functions described in this section give you a few more 
useful resources. You do not have to do anything special to use 
these functions. You use them just as you would use the standard 
functions. 

• FixRound 
The FixRound function takes a parameter of type FIXED 

and rounds it to the nearest INTEGER value. 

• HiWord 
The HiWord function takes a LONGINT or FIXED value 

(which takes up four bytes of memory) and returns the value 
in the top two bytes as an INTEGER value. For example: 

H iWord(1000000) 

returns 15. 
The LoWord function returns the value of the lower two 

bytes. 

• LoWord 
The LoWord function takes a LONGINT or FIXED value 

(which takes up four bytes of memory) and returns the value 
in the bottom two bytes as an INTEGER value. For example: 

LoWord(1000000) 

returns 16960. 
The HiWord function returns the value of the upper two 

bytes. 

• Ord4 
This function acts in exactly the same way as Ord. See Ord 

in the standard functions section for more information. 

• Pointer 
The Pointer function converts an integer-type value to a 

pointer-type value. A pointer-type value is an address. You can 
assign the result of the Pointer function to any pointer-type 
variable. Notice that this avoids Pascal's normal type-checking, 
and must be used with great care. 

This function is the inverse of Ord and Ord4 when they 
are used on pointer-type values. 



3 :n_ 4 Introduction to Macintosh Pascal 

• Random 
The Random function returns a pseudo-random number 

from -32767 to 32767. 
A random number is a number chosen at random, in the 

way a pair of dice chooses a random number from 2 to 12. 
A pseudo-random number is a simulated random number. 

It is not truly random, but you would have trouble telling the 
difference. 

In this case, the value returned depends on the system 
global variable randSeed, which is initialized to 1 when 
Macintosh Pascal starts. The value of randseed changes 
whenever you call Random. 

If you need to repeat a sequence of pseudo-random 
numbers, such as when you are testing a program, you can set 
randSeed to some particular value. Whenever you reset 
randSeed, it produces the same sequence of numbers. 

The fact that randSeed is a system global variable means 
you don't have to do anything special to access it. You can use 
its name in your program as if it were defined in your 
program's var part. 

The result is an integer-type value. Random takes no 
parameters.(Random is actually a QuickDraw function. That 
fact makes no difference.) 

• SizeOf 
The SizeOf function returns the number of bytes 

occupied by the variable or type which is given as its 
parameter. For example: 

SizeOf(INTEGER) 

returns 2. 

SizeOf(LONGINT) 

returns 4. 



315 Chapter 10: Macintosh Math 

Warning 

Although SizeOf should be able to operate when given 
a data type as a parameter1 as of Release Version 1.0 it must 
be given a variable as a parameter. In other words1 in order 
to find out the size taken up by variables of a particular 
type, you must create a variable of that type and give the 
variable name to SizeOf. Doing this will not change the 
value of the variable in any way. 

Fixed Point Functions 

The following functions are used for arithmetic with fixed-point 
numbers. A fixed-point number is a four-byte number with the 
whole-number portion in the upper two bytes and the fractional 
part in the lower two bytes. They are primarily used as 
parameters to some Macintosh subprograms, such as 
StartSound. 

Although a fixed-point number holds real number values, 
the type FIXED is defined to be equivalent to the integer-type 
LONGINT. A LONGINT takes four types of storage. 

• FixRatio 
The FixRatio function returns the product of the division 

of two INTEGER values. The return value is of type FIXED. 
Note that unlike the integer division operator div, the FixRatio 
function produces an exact result. For example: 

FixRatio(7,2) 

returns an fixed-point number with 3 in the upper two 
bytes and 5 in the lower two bytes. 

• FixMul 
The FixMul function multiplies two values of type FIXED. 

The result is of type FIXED. 



316 Introduction to Macintosh Pascal 

~--------------n--o_M: __ o_r_e ______________________________________ ___ 

1. You can use the information given in the explanation of 
hexadecimals and the value of bits in the cursor section 
of Chapter 9 to demonstrate to yourself why 16 bits 
leads to a MAXINT value of 32767. (A clue-one bit is 
needed for the sign.) 

2. Use the button framework used to explore text in 
Chapter 4 to create a calculator that lets you use some 
of the mathematical functions and procedures 
provided by Macintosh Pascal. 

3. A spreadsheet program is one of the most common and 
useful types of computer programs. A spreadsheet is 
made up of cells which can be connected using 
formulas. For example, two cells might be multiplied 
together, with the result deposited in a third cell. 

Create a mini-spreadsheet, using the Database 
Framework program. Use only three cells and use buttons 
to create the formula. You can use this method to create a 
checkbook balancer, for example. 



Expressions 

31 7 Chapter 10: Macintosh Math 

QUICK SUMMARY 

This chapter describes how to do arithmetic on the 
Macintosh. It discusses what expressions are, the important 
points about numbers, the significance of the difference 
mathematical data types, the difference between variables and 
constants, operators, and the mathematical functions available. 

Because this chapter consists largely of simple descriptions 
of functions and data types, those are not included in this 
summary. The following concepts were introduced. 

are collections of operators and operands that produce a single 
value. 

Floating-point notation is a way of writing a number so it consists of a number multiplied by 
a power of ten. The first number is normally between 1 and 10. 

Functions 

Operands 

Operators 

Order of magnitude of a 
number 

Modulus 

Order of precedence 

Precision 

Range 

Scientific notation 

are possibly complicated routines that produce a single value. 
Functions can be used as operands in expressions. 

are values used in expressions. An operand can be an explicit value 
(a number), a named constant, a variable, or a function. 

are symbols that let you do addition, subtraction, multiplication, 
division, and some other operations. Operators act on or combine 
operands in expressions. 

is the power of ten used for that number when written in floating. 
point notation. 

is the remainder of a division operation, which is produced by the 
mod operator. 

is the order in which operations in expressions are performed. 

of a data type is how many characters can be given, and therefore 
how exact a value a variable of that type can hold. 

of a data type is the size of the largest number a variable of that type 
can hold. 

See Floating-point notation. 



What is a Bug? 

CHAPTER 

~1111------
Debuggjng 

The story goes that, back at Harvard in the 1940's, the early 
days of electronic computers, one of those huge, multi-room­
sized computers with thousands of tubes (there weren't 
transistors in those days, let alone chips) stopped working. When 
that happened, someone had to crawl inside and check every 
single tube to find which one was no longer working. Well, they 
looked and looked and couldn't find anything. Finally, someone 
reached in and found a cockroach that had crawled into the 
computer and ended its life _ _by shorting a circuit. 

Problems in computers and computer programs have been 
called "bugs" ever since. 

There are two distinct kinds of bugs: 

• A mistake in the way something is used. This is sometimes 
called a syntax error, because it is like a grammatical 
mistake in English. Macintosh Pascal usually catches these 
errors either after you type them, or when you try to run the 
program. Occasionally, though, you will use something in a 

319 



320 Introduction to Macintosh Pascal 

way that is subtly wrong, so Macintosh Pascal doesn't catch 
you. Errors like that sometimes cause your program to crash, 
that is, to stop running . 

• A logical mistake in program construction. These bugs are 
far more difficult to find, partly because Macintosh Pascal 
rarely catches them. How do you know you have a logical bug? 
Well, either the program simply doesn't work, or it doesn't 
work the way it is supposed to. Sometimes, a logical bug 
causes a crash, too. That might be because a mistake in the 
logic of your program makes some value get out of range, or 
makes something else illegal happen. 

In summary, a syntax error is a mistake in the way some 
particular statement is written, while a logical error involves a 
mistake in the idea governing some sequence of statements. 

Logical errors can be much harder to find, because there 
often is no single culprit that can be located. The best defence is 
good preparation: good program design helps prevent logical 
errors. Read the section of this chapter on programming to avoid 
bugs. 

But, bugs do attack everyone on occasion. Macintosh Pascal 
is well suited to the task of finding and exterminating bugs- the 
process called debugging. The rest of this chapter explores the 
various techniques for debugging. 

When the Macintosh Catches a Mistake 

One of the problems that computers and humans have getting 
along is that computers do not tolerate mistakes, and humans 
make them all the time. Actually, human beings are very good at 
understanding things even when there are mistakes. That is 
what makes proofreading so difficult. For example: 

April is said to be the 
the cruelest month. 
You have no trouble understanding that sentence, and may 

even have to read it twice to see the error. Pascal, though, could 
not accept: 

if x > y then 
then write('X is greater'); 



321 Chapter 11: Debugging 

Computers have almost no tolerance for mistakes. 
Macintosh Pascal checks for errors at two separate times: 

1. When it reads something you've typed. When Macintosh 
Pascal reads what you've typed, which it does when you 
enter a Return, press the Enter key, or type a semicolon, it 
puts the words in proper format, puts reserved words in 
bold type, moves comments to the end of each line, and 
outlines anything it doesn't understand. You can correct 
whatever is wrong. Hit Enter to get Macintosh Pascal to read 
it, and see if the outlining remains. If it does, there is still 
something wrong. 

2. When you run the program. Whether you give the Run or 
Step command, Pascal does a syntax check before running 
the program. (It also does a syntax check if you choose the 
check command.) If it finds an error, it stops checking and 
displays a message that attempts to describe the er ror. Pascal 
error messages in general are notoriously misleading. 
Macintosh Pascal error messages are pretty good, but 
missing semicolons can often mislead Macintosh Pascal. 
Check the lines around the one that Macintosh Pascal points 
at as having the error. 

Also, the program stops checking when it finds one error. It 
may save you time if you look for similar mistakes after 
correcting one mistake. 

Programming to Avoid Bugs 

The best advice about bugs is like the best advice about colds: 
"Don't get them". 
Good as that advice is, it is easier said than done. Bugs are 

like colds in that even with the best intentions and being as 
careful as possible, you still come down with one every now and 
then. Just as you can take steps to minimize the number of days 
you are sick, though, you can write your programs to minimize 
the amount of time you'll have to spend finding out why they 
don't work. 



322 Introduction to Macintosh Pascal 
~~~~~~~~~~~ 

The trick is in avoiding the worst bugs.
The bugs that are hardest to find are logical, or design,

mistakes.
You can write your programs in such a way that design bugs

are less likely, and the others that occur are easier to find.
Here is the first rule of programming to avoid bugs:
Begin programming on paper.
The most common and most difficult to fix bugs come from

poor program design. Good advance planning can save you time,
work, and energy.

When you want to design a program, begin by stating clearly
and simply what the program is going to do. Do that in general
terms. For example, the purpose of the database program (the
Multiple Field Editor) produced in this book is:

A program that creates and stores records constructed of
editable fields.

Then break the task down into pieces. For example, for the
same database program:

1. Get a file name.

2. Display screen.

3. Wait for command.

4. Do command.

s. Go back to step 3.

Continue this process of breaking the problem down into
pieces, as if you were writing an outline for an essay. Eventually,
when the pieces are small enough that each one represents a
subprogram, or, better yet, each piece represents a statement,
you can start actually writing the Pascal code.

Ideally, a single subprogram should do one kind of thing. If,
for example, your program doesn't display things correctly on
the screen, you only have to check the subprograms that write
to the screen. If every subprogram does onscreen drawing, it
will be much harder to find the culprit.

Ideally, your program should be written in independent
modules. If you can, do this. It simplifies debugging if you get a
small part of the program working correctly, and then add
functions to it, testing along the way, until the entire program is
finished. You should still write an initial plan that covers the
whole program, and follow it as you add the pieces.

323 Chapter 11: Debugging
~~~~~~~~~~~~-

Finding Bugs 

Finally, don't be afraid to rewrite. Writing a program is like 
writing anything: you often do a better job when you do it over. 
'Treat your original program design with skepticism. 

One of the great advantages of an interpreted language like 
Macintosh Pascal is that it is far easier and faster to find bugs 
than with a compiler. You can make changes in your program 
and immediately run it and see their effect. 

Aside from that natural advantage of interpreters, 
Macintosh Pascal has a number of built-in debugging facilities. 

Macintosh Pascal Debugging Aids 

There are four debugging aids built into Macintosh Pascal. They 
are: 

• Step and Step-Step. 

• The Instant window. 

• Stops. 

• The Observe window. 

The following sections discuss these features. 

Stepping Through A Program 

Aside from examining a printed copy of a program, the most 
useful debugging technique is to step through the program. 

You were introduced to the Step command in Chapter 2 of 
this book. 

You can run a program up to a certain place, halt it with the 
Halt command or with a Stop (discussed below), and then step 
through a suspect section. Very often, just seeing the flow of 
commands reveals the error. 

The Instant Window 

The Instant window allows you to run statements separately 
from your program any time a program is not running. 



324 Introduction to Macintosh Pascal 

Choose Instant from the Windows menu to see the Instant 
window. It first appears as a small box, but, like most windows, 
you can expand it by grabbing the size control box in the lower 
right corner of the window. Figure 11-1 shows the Instant 
window. Notice that the Thxt window displays the result of a 
calculation from the Instant window. 

~ s Fiie Edit Search Run Windows 
., 

Untitled TeHt 

program Untitled; 97 

{Vour declarations} 
begin 

i-{Vour program statements} 
end. I Drawl'!.!! 

m Instant 

L!!WJ ~ 
Writeln(Ord('a')) 

~ 
01 ~12 

Figure 11-1 Instant Window 

You can type and edit statements in the Instant window just 
as you do in the programming window. When you click the 
mouse in the Do It button, the statements are run. 

There is an important restriction for the Instant window, 
however: You can't have anything other than statements. In 
particular, you can't define variables, types, or named constants. 

You can use functions, and expressions of any kind. 
If you halt your program (using the Halt command in the 

Pause menu) you can use the Instant window to examine the 
values of variables, and change them. This is a very powerful 
debugging tool. If you think that your program's problems result 
from a variable having the wrong value, you can stop your 
program with the Halt command, change the value of the 
variable with the Instant window, and restart your program by 
choosing Go again. 



325 Chapter 11: Debugging 

Tu hide the Instant window, click in the Close box in the 
upper left corner of that window, or click in your programming 
window, which will bring the programming window to the 
front. 

The Instant window isn't merely a debugging aid. You may 
often use it when writing programs, to check if you can use 
some statement in a certain way, or to find out the result of some 
operation, without having to run an entire program. 

Stops 

Look at the Run menu, as shown in Figure 11-2. The last 
command in the menu is the Stops In command. 

Check 8€K 
Reset 

Go 8€6 
(~o···t;o 

Step 8€S 
Step-Step 

Stops In 

Figure 11-2 The Stops In Command 

Choose the Stops In command. 
A new column appears on the left side of the window, as 

shown in Figure 11-3. There is a small Stop sign at the bottom of 
the column. Move the mouse pointer into that column. A Stop 
sign follows the mouse. Move the mouse so that it is next to a 
program statement, and click the mouse button. When you 
move the mouse away, you will have left a Stop sign behind, as 
shown in Figure 11-4. If you choose Go, the program runs until 
it reaches the line with the Stop sign, and then halts. A small 
hand shows the statement where the program halted. 



326 Introduction to Macintosh Pascal 

Stops 
Column 

'-

D 

Stop ~ 

D Untitled 

progrom U11t1tle•j 
:·."01ir 1ji=-c1.:ir.:it1011:: 

begin 
:\'011r pr-oqr-.:irr1 : t.:if e111erit:: 

end 

Figure 11·3 With Stops In 

Untitled 

program Unt1tle1j. 
: \lour· 1jec l .:ir·.:it 1 on·:.: 

begin 
:vour· pr·c11~1-.:irn ·:.t.:iternent·:.: 

end 

Figure 11·4 A Stop on the First Program Line 

The effect of the Stop sign is the same as choosing the Halt 
command, except that the program stops at the place you've 
marked. 

You can use Stops to stop the program at a place where you 
suspect there may be a problem. For example, if your program 
crashes (stops running) you can determine exactly where in your 
program the crash occurs with the use of Stops. 

You can also use the Instant window to change or examine 
the value of a variable. 



327 Chapter 11: Debugging 

In addition, Stops are very useful with the Observe window, 
which is described below. 

To remove a Stop, place the Stop sign cursor over the stop 
and click the button. The Stop is removed. 

To remove the Stops column and all Stops, choose the Stops 
Out command from the Run menu. That command appears in 
place of Stops In whenever the Stops column is displayed. 

The Observe Window 

You can automate the process of checking the values of variables 
by using the Observe window. 

Reveal the Observe window by choosing Observe from the 
Windows menu. The window is shown in Figure 11-5. You can 
type any expression in the right hand part of the window, where 
there is an insertion point blinking. The expression usually 
includes variables from your program. When you run your 
program, the expression is evaluated whenever your program 
halts. 

'" s File Edit Search Run Windows 

Untitled _j_ y, _J 
D Obserue 

program Untitled; Enter an expressi onj JQl {Your declarations} 
begin I ~ {Yo ur program statements} 

kF-1, lQ l2J end . U' '.:!._ 

~ 

Figure 11-5 The Observe Window 



328 Introduction to Macintosh Pascal 

You can type a number of expressions in the right hand 
columns. Expand the Observer window as you expand any 
window. 

You can halt the program with the Halt command, or you can 
use the Stops In command, and place Stops in your program. 

If you want, you can run your program with the Go-Go 
command from the Run menu. If you do, the program pauses 
when it hits a Stop, updates any expressions in the Observe 
window, and continues. 

When You Can't Use the Debugging Aids 

Unfortunately, none of the debugging aids given above can be 
used with a program that is too large or that takes over the entire 
screen. 

When you have a program like that, you are best off 
developing it in smaller modules that can be debugged with the 
aids Macintosh Pascal provides. 

If you have no choice, see the following suggestions for help. 

1. Use Write and WriteLn. Print the values of variables or 
expressions you think might be causing problems. If your 
program takes over the entire screen, and you can't see the 
Text window, you can use Write or Writeln to write to a disk 
file. Then, when your program finishes, you can examine the 
disk file . If you make your debugging file of type TEXT, you 
can use the Browse program that is in the Tuols folder that 
came on your Pascal disk to look at the file . You can use the 
Print program from the same folder to print your debugging 
file . 

.2. Walk through your program by hand. This can be done 
much more easily on paper. Get a printout, and go through 
the program, figuring out what each statement does. This 
kind of thing is much easier to do if your program is written 
in distinct, separate modules and if the program is well 
commented. That way, you can decide which modules might 
be causing the problem, and which must be innocent. One 
piece of advice-be suspicious. Everyone overlooks things. 
Be particularly watchful for global variables that are 
accidentally modified where they should not be. 



329 Chapter 11: Debugging 

3. Redesign. Sorry, you may not consider this to be a very 
helpful suggestion. But, if you have a large program that you 
can't break into pieces and that just won't work right, go 
back to your original design and look for problems or, better 
yet, start all over again-assume you've learned from writing 
the first version and are now a better programmer. 

General Debugging Hints 

Here is some collected wisdom about bugs. 

1. Bugs travel in groups. It is not unusual for one problem to 
result from several mistakes, each of which contributes to 
the problem. For that reason, it is better to go after bugs in 
a systematic rather than an ad hoc fashion: figure out 
whether or not something is wrong, don't just change things 
randomly and see if the program runs. 

2. Bugs are easier to find in smaller programs. This may seem 
obvious, but it indicates a larger point: design your program 
to solve the entire problem, but implement your program in 
stages. Debug the smallest version that can run, then add 
another function, debug that version, and so on until you 
have the whole thing running correctly. 

3. Many bugs result from the difference between variable and 
value parameters of subprograms. Be aware of the fact that 
when something is a value parameter, any changes made in 
the subprogram are not passed back to the main program. In 
an early version of the Field Editor program, the button 
RECTu, which were supposed to be passed from DrawButton 
back to the main program, were defined as value parameters 
in DrawButton. The Picked procedure therefore never 
reported a click in one of the buttons. 

4. Be careful that you initialize variables before they are used in 
expressions. A variable has an undefined value before you 
assign something to it. 

5. Be aware that all local variables are reallocated each time you 
call a subprogram. Don't count on values being where you 
left them. 



330 Introduction to Macintosh Pascal 

6. Watch for boundary conditions. Problems tend to happen at 
the edges of things. Very often, you may think that 
something starts at 1, when it actually starts at 0, or the 
other way around. 

Bugs in the Macintosh 

Finally, although the possibility is relatively remote, you may run 
across a bug in Macintosh Pascal, or in the Macintosh system. 

Simonoff's first rule: 
"Finishing anything completely takes forever". 
(That is, every program has at least one bug.) 
If you find some feature of Pascal that just won't work the 

way it should, and you are sure your program is OK, try writing 
a small program that uses only that feature. It is easier to be sure 
there isn't some other problem when you write a small program. 
If the problem is still there, you may have found a bug in the 
Macintosh Pascal program. 

Quick Summary 

This chapter discusses how to find mistakes, called bugs, in 
programs. The following concepts, commands, and 
features of Macintosh Pascal were introduced. 

Boundary conditions are the conditions near the edges of your program's algorithm. For 
example, if your program is supposed to work on Oto 1000 items, the 
boundary conditions would occur when you have no items and 
when you have 1000 items. 

Bug is a problem or mistake in a program. Anything that doesn't work 
right is a bug. 

Crash is when a program stops running because of some error, or 
sometimes because of some hardware problem. 

Debugging is the process of finding and fixing bugs. 

Instant window is the window that lets you enter programming statements for 
immediate execution. The statements are not connected to your 



331 Chapter 11: Debugging 
~~~~~~~~~~~~~~ 

program, except that you can alter the values of your program's
variables.

Logical bug is a mistake in the way a program is constructed. Even programs
where all the programming statements are written correctly may
have logical bugs.

Observe window is the window that allows you to enter expressions which are
evaluated whenever the current program pauses. See Run-Run in
this chapter and Step-Step in Chapter 2.

Run-Run is the menu command that runs a program so that the program
pauses briefly at every Stop to update the Observe window.
Execution continues once the Observe window is updated.

Stop is a small symbol, a Stop sign, you can put next to any statement
which makes the program stop when that statement is reached.
When the Run-Run command is used, the program pauses to update
the Observe window, and then continues immediately. You must use
the Stops In menu command before you can enter Stops.

Stops In see Stop.

Syntax error is a mistake in the way a programming statement is used. This is
similar to a grammatical mistake in speech or writing, except that,
while people usually can figure out what you mean, a computer
cannot.

APPENDIX

~~---
Everything
Seillicolons

About

Many people find the use of semicolons in Pascal confusing.
Don't worry about it; you'll get used to them. The programs in
this book always include the semicolons in the places you need
them. Besides, Macintosh Pascal will usually catch you if you
make a mistake.

Actually, there are two rules governing the user of
semicolons, and they both look simple:

• A semicolon is required after any variable, type,
constant, or label definition.

333

334
Introduction to Macintosh Pascal

Labels are declared symbols used for the Pascal goto
statement. This book does not use labels or goto, because
their use can make programs confusing.

Whenever you define any variable, type, label, or
named constant, you end the definition with a semicolon.
For example:

x: INTEGER;
y: BOOLEAN;

or:

writerType = (ELIOT, STEINBECK, JOYCE);

The only complication is when you define a record. In
that case, every field definition is separated from the next
field definition by a semicolon. Therefore, the last field
definition does not have to be followed by a semicolon:

poem = record
author: string;
poem : array (1 .. LEN] of string
end;

Putting the semicolon after the last field definition does not
do any harm, however, and may prevent errors. (If you add
another field, it is very easy to forget to add the additional
semicolon.) For that reason, that extra semicolon is usually
included in this book.

Notice that the entire record definition must be concluded
with a semicolon, like any other definition.

• A semicolon separates any two statements or parts of a
program.

The most important and easily ignored word in this
definition is "separates:' A semicolon does not mark the end or
begining of a statement, instead it comes between two
statements, parts, or declarations.

335 Appendix A: Everything About Semicolons

Here are the three types of constructs that must be
separated by semicolons:

1. Any two declarations are separated by a semicolon. This is
an example of a declaration separator:

procedure April;
begin
end; {This semicolon separates two procedure declarations.}
procedure Spring;

.2. Any two parts of a program are separated by a semicolon.

There are three program parts:

• The program heading. This contains the word
"program" and the program's name.

• The declaration part, which can contain the uses, label
(not used in this book), const, type, var, and
subprogram declarations.

• The statement part (that is, the main program).

llere is the interface between two parts:

procedure Spring;
begin
end; {This semicolon marks the end of the declaration part.}
begin {main} {The beginning of the statement part.}

Notice that the semicolon isn't required after the
procedure declaration, but it is required between the
procedure declaration, which is the last declaration in the
declaration part, and the begin. That distinction makes little
difference in practice.

Figure A-1 has a diagram of the parts of a program. A
subprogram has a similar structure.

3 3 6 Introduction to Macintosh Pascal

11 program nam•

I label declaration

I constant decloratlon

I typt! Cleelaratlon

I variable doelaratlon

I subprogram Cleelaratlon

}nuremneme

program
black

Figure A·l Overall Program Structure

Sections of a program can be members of several parts;
the var part of a procedure, for example, is:

• Part of the declaration part of the procedure.

• Part of the body of the procedure, called the procedure's
block.

• Part of the declaration part of the main program.

• Part of the block of the main program.

3. You must have a semicolon between two consecutive
statements. Here is a simple case:

x:=100;
y:=50

Statements can be contained within other statements,
and you still have to have separators between the contained
statements:

If Button then
begin
x:=100;
y:=50
end

337 Appendix A: Everything About Semicolons

Notice that there is no semicolon between begin and the
statement following it, or between end and the statement
preceding it. Neither begin nor end is a statement. This is also
true of repeat, of, do, else, and then, which are parts of the
repeat/until, case, while, for, with, and if statements.
Because those reserved words are parts of statements, they are
never followed by a semicolon, although they all are usually
followed by a statement. The statement following the repeat,
of, do, else, or then is part of the repeat/until, case, while,
with, for, or if statement.

end, however, often marks the end of a compound
statement, and hence is usually followed by a semicolon. You do
not have to put a semicolon before any end. Although you must
put semicolons between any two consecutive statements, you do
not need semicolons between a statement and one that encloses
it, because that statement is actually part of the enclosing
statement. Any particular program line can be part of several
statements, as well as being a statement in itself.

In general, if you follow begin, repeat, of, do, else, or
then with a semicolon, or give a semicolon before an end, you
create an empty statement. In the cases of do, of, else, and
then the empty statement is definitely unwanted, because it
displaces the statement that should be there. For example:

if condition then

There is nothing illegal about that statement. However, when
the condition is TRUE, nothing special is done, because the
statement following the then is empty.

Another important point is that do, of, else, and then
cannot be preceded by semicolons. In all cases, you would have
a statement separator in the middle of a statement, which is
clearly illegal.

Although you do not have to put a semicolon before any
end, empty statements before an end rarely have any bad
effects. In fact, this book usually has semicolons before an end
because doing so prevents errors; there is a tendency to forget to
add the semicolon if you add another statement before the end.

General Advice

APPENDIX

§~
Help, Please, My
Mac is Burning

1. Install the Programmer's Switch that came with your Mac.
That is a small, gray piece of plastic. You install it by inserting
it in the second slot from the bottom, all the way toward the
back on the left side of your Mac. (See the Macintosh manual
for more information.) To reboot, rather than using the
power switch, press the front part of the Programmer's
Switch. (Very rarely, a problem occurs which is not cleared
up by rebooting with the Programmer's Switch, but it is by
rebooting with the On/off Switch.)

2. If you try the methods in the appendix and can't fix your
problem, you may have a hardware problem - something
wrong with the Mac itself. Tulk to your computer store.

339

Disk Problems

340 Introduction to Macintosh Pascal

Disk insertion causes system crash

1. There is a file on each disk which records information about
the disk. That file can get damaged if a disk is not ejected
properly. Fortunately, the file can be rebuilt. Hold down the
Command and Option keys while inserting the disk. You may
have to try this several times. If that doesn't work, turn off
your Mac and boot it with the bad disk (even if the disk is not
bootable), holding down the Command and Option keys
while the disk starts booting. Either of these methods
destroys all folders, but your files should be unharmed.
Unfortunately, these methods do not always work.

2. If the disk contains documents that you need to save, run the
application that uses those documents, close the Untitled
document that first opens up, and choose the Open
command from the File menu. When the dialog box that lets
you choose from files on the disk shows, eject that disk and
put in the one that gives you trouble. If you are in luck, you
will be able to see your documents. Open one of them, and
use Save As ... to save that file on another disk. Repeat for
each document you need to save.

Attempting to boot bootable disk causes unhappy
Mac icon

1. The disk may not actually be bootable. Boot a disk that you
know is OK, then eject that disk, and insert the suspect one.
If that causes a system crash, see the next section.
Otherwise, check if it has system files on it.

2. There is a file on each disk which records information about
the disk. That file can get damaged if a disk is not ejected
properly. Fortunately, the file can be rebuilt. Hold down the
Command and Option keys while booting with the disk. You
may have to try this several times. This method destroys all
folders, but your files should be unharmed. This method
doesn't always work, unfortunately.

Display Problems

341 Appendix B: Help, Please, My Mac is Burning

Disk drive keeps running and won't stop

1. Wait patiently for a while-a half hour, for example. If it still
hasn't stopped press the rear part of the Programmer's
Switch to cause an error, which stops the drive, and then
press the front part of the switch to reboot. Otherwise, turn
off your Mac, and turn it back on. Rebooting should
eliminate the problem.

Can't eject disk

1. Is the disk selected when you choose Eject? The disk is
selected if its image is darkened .

.2. If the Macintosh system is running, press Command + Shift
+ 1 to eject the internal disk; Command + shift + 2 ejects the
external disk.

3. Reboot, either with the Programmer's Switch or with the
On/off Switch, while holding down the mouse button. The
disk should pop out.

4. Unbend a paper clip and poke one end firmly into the hole
just outside the lower right corner of the disk slot.

Screen has strange lines across it

1. Stop the running program if you can. In any case, turn your
Mac off, and turn it on again, or reboot with the
Programmer's switch. Rebooting should eliminate the
problem.

Screen stays dark

1. Try turning the brightness knob, which is under the left side
of the Mac, above the little sun symbol.

.2. Check power cord and plug.

Printing Problems

342 Introduction to Macintosh Pascal

Not enough room to print

1. A disk needs as much as 34K of free space to print a file. Try
removing some documents from the disk. (If you have a two­
disk system, the one with the application is the one that
needs the extra space.)

Can't print

1. Check cables. You should tighten the screws at the ends of
the cable, so the cable is firmly connected to the printer and
the Macintosh. (You need a small screwdriver to do this
properly on the Imagewriter side of the cable.)

2. Check printer lights. Assuming you are using an
lmagewriter, there should be two green lights. If there is only
one, press the Select button on the Imagewriter, and try
printing again. If there are no lights, check the power switch
and the power cord.

3. If running on a Macintosh XL (or Lisa), make sure you are
plugged into the right port. That is the port all the way to the
right, looking at the back of the XL. Also, if you are using an
ordinary RS-232 cable, you may need a modem eliminator
(sometimes called a null modem) to make the connection
properly. If you are using a parallel printer (the Imagewriter
is a serial printer, but some older Apple printers are parallel)
you need to run the Install Parallel Printer application to use
the parallel printer with the Macintosh Pascal disk. That
application is on your Macintosh XL system disk.

4. Depending on what program is trying to print, you may need
an Imagewriter file on the disk that contains the application.
Check in the System Folder to see if there is one. If not, copy
one from another disk.

Every page starts at the wrong place

1. Use the knob on the side of the printer to position the paper
to the top of the page. Press the Select button on the printer
to deselect the printer. (If an Imagewriter, the light next to

Memory Problems

343 Appendix B: Help, Please, My Mac is Burning

the Select button should turn off.) Press the Form Feed
button. The printer should stop at the top of the next page.
If it doesn't, turn the knob to position the paper, and try
again .

.2. Turn the printer off, and turn it on again.

3. Turn your Mac off (eject any disk first) and boot it again.

Printing looks wrong

1. Turn the printer off, and turn it on again .

.2. Turn your Mac off (eject any disk first) and boot it again.

Draft Mode Doesn't Work Right

1. I don't think it does, either. 'Iry using Standard mode. It is
nearly as fast, and looks much better, anyway.

Out of Memory Error in Pascal

1. Hide the programming window by clicking in the window's
Close box. That helps you when there is not enough memory
to reach a HideAll call in yciur program .

.2. Look for sections of code that can be replaced with calls to
predefined procedures.

3. Look for identical sections of code and replace them with
procedure or function calls.

4. Avoid using QuickDraw2 or, especially, SANE. Both take up
quite a bit of space.

5. Use events in your program. If you do so, Macintosh Pascal
drops some of the code it uses to handle events, giving you
more room.

6. Shorten the names of variables that are used often.
7. Shorten the names of subprograms that are called often.

8. Eliminate subprograms that are only called once.

9. 'Iry to reuse pointers and handles, instead of reallocating
them. The Dispose and DisposeHandle procedures do not
properly free space in Release Version 1.0.

__________ _,3"'-4~4 Introduction to Macintosh Pascal

Mouse Problems

Mouse pointer doesn't move

1. Check cable. Unscrew it, and screw it back in carefully and
evenly.

2. Try cleaning the mouse. (See the Macintosh manual.)

3. Reboot. The problem may be related to insufficient electrical
power. Try isolating the Mac as much as possible, so that as
few other appliances as possible are on the same electrical
line.

Mouse only moves in one direction (usually up
and down)

1. The cable is probably not fully in its socket. Unscrew the
connection on the back of your Mac, and screw it back in
carefully and evenly.Other Nothing seems to be happening 1.
Try holding the Command key down and pressing the
period. This cancels many actions.

2. Check the mouse plug. If the mouse won't move, try giving a
menu command with a key combination.

3. Wait a few minutes.
4. Turn off your Mac and reboot.

Burning Macintosh

1. Pull the plug. Use a fire extinguisher to put out the fire.
2. If no extinguisher is available, try baking soda.

a. Use water as a last resort.

Index

Abs, 303
Abs function, 306
absolute value, 306
actual parameter, 57, 88
AddChar, 128
address, 228, 250
alarm, 217
alphabetize, 207
ALPHALOCK, 133
amplitude, 223
anExtended, 303
anonymous file, 181, 218
Arctan function, 307
arctangent, 307
aReal, 303
array, 65, 69, 88, 123
assign values, 44

BASE, 125
begin, 3, 9, 20
binary numbers, 275, 278,

288
bit, 275, 288
bit image, 280, 288
bitmaps, 264, 280, 288
black, 87, 285

345

blank line, 14, 39
bold, 103
BOOLEAN, 30, 45, 48, 300
boundary conditions, 330
bounds, 281
brackets C{ }l, 3, 39, 55, 65
bubble sort, 215, 218
bug,6,86,319,330
button,48
Button function, 29
byte, 228

call, 48
case, 88
case constants, 70, 76
case statement, 70, 140
CHAR values, 43, 48
character code order, 219
characters, 43
CharWidth, 134
CheckAlarm, 218
Chr function, 120, 307
clipping, 17 4
Close procedure, 182, 219
ClosePicture, 269, 288
ClosePoly, 266, 288
CloseRgn, 270, 288

cloverleaf sign, 32
CMDKEY, 133
colon, 29
Command key, 32, 48
command symbol, 32
comment, 3, 39, 48, 55
components, 177

346

Compound statement, 68
COMPUTATIONAL data type, 294
COMPUTATIONAL variable, 297
Concatfunction, 123, 135
condense text, 103
const, 66, 88, 292
constants, 64, 292
control code, 255
control structure, 55
coordinates, 11, 27, 143, 174
Copy function, 123, 135
CopyBits, 282, 288
Cos function, 308
crash, 330
currentLine, 121
cursor, 264, 274, 288
cycle, 222, 250
cycles per second, 223

data base, 139, 174
data type, 28, 49, 142
date, 217
debugging,86,320,323,330
decimal number, 278, 288
declaration part, 65
Delete procedure, 123, 135
dialing a telephone, 221, 228
dialing tones, 224
digitizing,284,288
displaying, 150
dispose, 250
DisposeRgn, 271, 288
div operator, 299
division, 299
dkGray, 87, 285
do, 41
do/while statement, 41
DoEditing, 126
DOUBLE variable, 297
double-indirect pointers, 266
DownMask, 119

Index

dowrilb,215,219
DrawButton, 184
Drawing window, 11
DrawPicture, 289
dTunes, 228
duration, 227, 237

editing, 15, 151
editor, 135, 139
elements, 65
elevator, 61
else, 47
empty string, 125, 135
end,3,20
ENDSTR, 125
Enter key, 8, 14
enumerated data types, 142,

174
EOF function, 179, 219
EOLN function, 181, 219
equals sign, 44
EraseRect, 54
EraseRgn, 289
error message, 6, 20
errors, 319
event, 118, 135
event.modifiers, 133
EVENTRECORD, 118
Exp function, 308
exponent, 296
expressions, 298, 317
extend text, 103
EXTENDED variable, 297
external speaker, 222

face, 92, 103, 135
feedback, 33
field, 53, 88
field width, 101, 135
file of CHAR, 178
file variable, 178, 219
FilePosfunction, 180, 185,219
files, 177
finder, 18
fixed point functions, 315
fixed-point number, 225, 250
FixMul fdnction, 315
FixRatio function, 225, 237, 315

FixRound function, 313
floating-point notation, 296,

317
font, 92, 99, 135
Font/DA Mover, 112

FontMover, 100, 112
for statement, 68, 88, 215,

219
formal parameter, 57, 88
forward, 150, 174
four-tone synthesizer, 224,

250
FrameOval, 61
FramePoly, 289
FrameRect, 54
FrameRgn, 289
free-form synthesizer, 224,

250
frequency, 223, 227, 250
functions, 29, 40, 49, 291,

305,317

game, 287
Get procedure, 179, 219
GetBottomRight, 55
GetDrawingRect, 70
GetFreqs, 233
GetMouse, 25, 49
GetNextEvent, 118, 135
GetPenState, 83
GetSoundVol, 233, 250
GetTime procedure, 217
GetTupLeft, 55
global coordinates, 143, 174
GlobalTuLocal, 143, 174
Go command, 6, 13, 20, 21
grafport subprograms, 143
gray, 87, 285

Halt command, 117, 323
handle, 266, 289
hertz, 227, 250
hexadecimal numbers, 275, 278,

289
HideAllprocedure, 141, 174, 188
HiWord function, 313
horizontal, 25
hotspot, 279, 289

if statement, 47
Include function, 124, 135
indenting sections, 13
index number, 72
infinite loop, 117, 135
Insert procedure, 124, 136
insertion point, 15, 20
Instant window, 323, 330
integer, 27, 28, 49, 294
integer data types, 293
interface, 289
InvertRect, 146
InvertRoundRect, 146, 174
italic, 103

keyDownl\1ask, 120, 136
KillPicture, 289
KillPoly, 268, 289

Length function, 123, 136
LINEHEIGHT, 121, 122
LinE!R>, 12, 20
LlneWanted, 44
LN function, 308
local coordinates, 143, 174
local subprogram, 17 4
LocalTuGlobal, 143, 175
logical bug, 331
logical expression, 45
logical mistake, 320
WNGINT, 294, 249
loop, 30, 41, 68
LoWord function, 313
ltGray, 87, 285

main program, 38, 39
MakeSound, 233
MapPoly, 268, 289
mask, 136, 279, 289
mathematical expression, 291
MAXINT, 219, 294
mDownl\1ask, 120, 136
memory, 266, 228, 343
memory limits, 200
micro-second,225,250
mod operator, 120, 136, 299
mode, 136
modules, 200

347 Index

modulus, 120, 317
mouse positions, 27
MOUSEDOWN, 119, 136
MovE!R>, 10, 20
multiple field editor, 160

natural logarithm, 308
new, 250
NewFileName, 182, 219
NewRgn, 289
nil,250
normal file, 181, 219
not, 60, 86, 88
Note, 226, 251
NUMBUTS, 100

Observe window, 327, 331
Odd function, 309
OffSetRect, 284
OldFileName, 182, 219
omit, 136
Omit function, 123
one-field editor, 139
onscreen buttons, 62, 145
Open, 181, 182,220
OpenPicture, 269, 289
OpenPoly, 266, 289
OpenRgn, 270, 290
operand~291,298,317

operator precedence, 304
operators, 291, 298, 299, 317
OPTIONKEY, 133
or, 46
Ordfunction,300,309
Ord4, 313
order of magnitude, 296, 317
order of precedence, 304, 317
ordinal type, 142, 175
ordinal-type value, 312
otherwise, 76
outlined characters, 103
ovals, 61

PaintRect, 113
PaintRgn, 290
parameter, 25, 49, 58, 89
passing values, 57
patBic, 86

patCopy, 81, 86
patOr, 86
pattern, 285,290
patXOr, 82, 86
Pause menu, 117
pen,20
pen pattern, 285
PenMode, 86, 89
PenPat, 36, 49
PENSTATE, 80
PerUbEnd, 133
period, 12, 20
phase, 232
pictures, 264, 268, 290
pitch, 223, 251
pixels, 11, 275
pnLoc, 80
pnMode, 81
pnPat, 81
pnSize, 81
point, 71, 89, 136
Pointer function, 313
pointer variable, 230
pointer-type value, 300
pointers, 228, 251, 266
points, 93
polygons, 263, 265, 290
Pos function, 123, 136
power, 296
precision, 293, 297, 317
Pred function, 310
PrepareMap, 284
printing, 253
problem, 339
procedure, 37, 49
procedure call, 25, 56
program, 20
program name, 8
Programmer's Switch, 339
programming window, 3
pseudo-program, 48
pseudo-random number, 314
PtlnRect, 71, 173
PtlnRgn, 290
Put, 180, 220

QuickDraw, 51, 89, 95, 263
QuickDraw2, 290

Quit, 17
quotation marks, 125

Random function, 314
randSeed, 314
range, 297, 317
rate, 251

348

Read procedure, 44, 49, 179, 220
ReadLn, 220
real data types, 295
real numbers, 293, 302
REAL variable, 297
real-type numbers, 293
_records, 53, 89
RECT variables, 53, 61, 89
rectangle, 89
regions, 264, 273, 290
relational expressions, 302
relational operators, 301
remainder, 120, 136
repeat, 49
repeat/until, 30
reserved words, 8, 14, 21
Reset, 181, 182, 220
reverse, 86
Rewrite, 181, 182, 220
RGNHANDLE, 2 71
round, 311
routine, 25, 49
Run,21
Run menu, 6
Run-Run, 331

SANE, 305
Save, 16, 21
scaling, 111, 136, 290
scientific notation, 296, 317
scroll, 61
ScrollRect procedure, 285
Seek procedure, 180, 185, 220
selector, 70
semicolon, 9, 21, 333
sequence number, 177
set, 107
SetCursor, 279, 290
SetDrawingRect, 70, 147
SetRect, 54, 147
SetSoundVol, 233, 251

Index

SetupCursor, 280
SHIFI'KEY, 133
ShowDrawing, 56
ShowHow, 57
ShowNewChar, 130
ShowString, 126, 130
Shut down, 18
side effect, 145, 175
Sin function, 311
sine wave, 223, 251
size, 136
SizeOf function, 238, 314
sizing, 148
sorting, 207
sound, 221
sound generator, 225
sound waves, 222
spaces, 14
speaker, 221
Special menu, 18
speech software, 221
spreadsheet program, 316
Sqr function, 311
Sqrt function, 311
square of a number, 311
square root, 311
square wave, 223, 251
square wave synthesizer, 224, 251
srcBic, 136
srcOr, 136
srcXOr, 136
Standard Apple Numerics

Environment, 305
standard functions, 306
StartSound, 226, 238, 251
Step command, 31, 49
Step-Step command, 33, 49
Stop, 323, 331
Stop sign, 326
Stops In command, 325, 331
string, 137
string data type, 123
string type, 124
strings of characters, 123
stringWidth, 137
StringWidth function, 124
structured programming, 38
StuffHex procedure, 278, 290

Stufflmage, 284
subprogram, 25,49, 146, 322
subroutine, 25, 50
Succ function, 312
syntax error, 319, 331
synthesizers, 224
SysBeepprocedure, 217, 226, 251
system font, 137

telephone, 224
telephone frequencies, 235
TEXT, 220
text, 91
TEXT file variable, 178
text modes, 95
Tuxt window, 43
TuxtFace, 104, 137
TuxtFont, 137
TuxtFont procedure, 100
TuxtMode, 137
TuxtSize, 108, 137
theBox, 53
TickCountfunction,249
time, 217
tone-dialing, 221
transfer mode, 94, 112, 137
TRUE/FALSE expressions, 30, 45
'!rune, 311, 312
truncate, 311, 312
type, 65, 89
type declarations, 65, 66
type size, 93, 108
'fypeSize ... , 61

unary operators, 299
underline characters, 103
Undo command, 16
until, 30, 50

value parameters, 58
var declarations, 28, 66
var parameters, 178
variable parameters, 58
variables, 23, 25, 50, 292
vertical, 25
volume, 227

waveform, 222, 251
while, 41, 50
while loop, 42
white, 87, 285
width, 101
window, 3, 327
Windows menu, 327
with statement, 149, 175
word-wrap, 173
Write, 43, 50, 180, 220
WriteDraw, 70, 97

349

WriteLn procedure, 43, 50, 18~,
220

writing a program, 4

Index

6562-0

H A Y 0 E

Introduction to
Macintosfi Pascal

Learn to create and design Macintosh Pascal pro­
grams easily and instantly. Build your program­
ming skills with practical desktop applications such
as creating an address book and telephone dialer.

Introduction to Macintosh Pasca4 by Apple
documentation writer and Pascal expert Jonathan
D. Simonoff, emphasizes the complete capabilities
of Pascal for the Macintosh, beginning with a
solid foundation of pro­
gram design conc;epts,
and proceeding through
graphics, text editing and
files, handling sound,
and using math operators
and functions. Featuring
many program examples

About the Author ...
Jonathan Simonoff has
been affiliated with the
Macintosh and Lisa pro­
jects at Apple Computer Inc., writing manuals on
how to program computers. He has worked as a
programmer and technical writing consultant for
many computer companies and institutions, in-

and screen illustrations, the book covers program- ·
ming and line drawing; using subprograms,
procedures, and functions; using the mouse as an
input device; exploring the capabilities of Quick­
Draw; editing text; handling files; generating
sound and music synthesis programs, calculating
standard functions and using Pascal Macintosh
extensions; and debugging programs.

Introduction to Mac­
intosh Pascal is one of
several Apple Press titles
in the popular Hayden
Macintosh Library, which
also includes Macintosh
Revealed, Volumes One
and 'lltJo.

eluding Wang Laborator­
ies, Apollo Computers,
Fortune Systems, and the

Massachusetts Institute of Technology. A graduate
of M. I. T. , Simon off is a principal of Ink Company,
a San Francisco-based technical publications
company.

[lJ
Hayden Book Company

A DIVISION OF HAYDEN PUBLISHING COMPANY, INC .
HASBROUCK HEIGHTS, NEW JERSEY I BERKELEY, CALIFORNIA

ISBN 0-8104-6562-0

