COMPU::‘"’

wene

&y G v G B 5 B S N W S S

Learmimg

MICROSOFT-

BASIC

for the =

MACINTOSIH

by
David A. Lien

% COMPUSOFT
PUBLISHING

VISION OF COMPUSOFT, INC , SAN DIEGO

Copyright© 1985 by CompuSoft Publishing, A Division of
CompuSoft, Inc. San Diego, CA 92119

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise,
without prior written permission of the publisher. No patent liability
is assumed with respect to the use of the information contained herein.
While every precaution has been taken in the preparation of this book,
the publisher assumes no responsibility for errors or omissions. Neither
is any liability assumed for damages resulting from the use of the
information contained herein. Portions of the material contained herein
were originally created by the author for Radio Shack in support of
the TRS-80 computer.

CompuSoft® is a registered trademark of CompuSoft, Inc.
This book contains official CompuSoft® software.

Microsoft and the Microsoft logo are registered trademarks of Microsoft
Corporation, and MS is a trademark of Microsoft Corporation.

Apple is a registered trademark and Macintosh is a trademark licensed
to Apple Computers, Inc.

International Standard Book Number: 0-932760-34-1

Library of Congress Catalog Card Number: 85-71339

0 9 8 7 6 5 4 3 2 1

Printed in the United States of America.

A Persomal Note
[Fromn The Author

In my note for the first edition, I said the Mac could well be the begin-
ning of a new generation of computers -- a machine that could truly be
called “brand-new.”

Apparently Microsoft agreed. They developed a Version 2.0 BASIC for
the Mac and created a language with features that BASIC never had
before -- features that go hand in hand with the Mac’s innovative
capabilities and user-friendly personality.

Of course, BASIC is still BASIC, an easy to learn and easy to use pro-
gramming language with lots of powerful functions and statements. In
this revised edition, I make sure that learning to do all the “new stuff”
doesn’t interfere with understanding the “basics of BASIC.”

The Mac is easy and non-threatening to use and so is this book. Have
fun with both of them as you learn. Let your imagination wander. I’ll
supply all the facts and techniques we’ll need. Remember, the real
enjoyment begins when your imagination takes over and the computer
becomes a tool under your control. You become the master -- not the
other way around!

Dr. David A. Lien
San Diego -~ 1985

lii

’ | Ackmowledgements

The following played key roles in the creation of this book:

Technical Director: Dave Waterman
Project Coordinator: Inez Goldberg
Technical Researchers:

Dan Gookin

Morgan Davis

Jody Bailey
Editorial Director: Gary Williams
Production Coordinator: Janice Scanlan
Cartoonist: Bob Stevens

Imtroductiomn

Learning Microsoft BASIC for the Macintosh is organized into four major
sections:

A. Fifty-one chapters which teach how to use the many capabilities of your
Macintosh ... in small enough bites so you won’t choke. Many chapters
include check points and examples.

In most chapters there are Exercises. If you’re studying alone, use them
to test yourself and exercise your creativity. If you’re studying with a
class, your instructor may use them to supplement his own.

B. A section with the Answers to the Exercises.

C. A section with Appendices which provide useful reference tables and
charts.

D. An Index, for easy reference after you've learned it all but forgotten where
you learned it.

The Computer helps you to leam ... a sort of “Computer Aided Instruction.”

Table Of Comtemts

A Personal Note From The Author
Acknowledgements
Introduction

Section A: Microsoft BASIC Tutorial

Part 1. Getting Started

HEWII=D

Setting It Up

The Desktop
Computer Etiquette
Using The Editor
Expanded Program

Part 2. BASIC Fundamentals

—
O OO0\

11
12
13
14
15
16
17
18
19

Math Operators

Scientific Notation

Using () And The Order Of Operations
Relational Operators

It Also Talks And Listens
Calculator Or Immediate Mode
SAVEing And LOADing Using Disk
FOR-NEXT Looping

Son Of FOR-NEXT

Formatting With TAB

Grandson Of FOR-NEXT

The INTeger Function

More Branching Statements

Random Numbers

READing Data

v

13
21
26

36

49

65
72
76
86
97
103
109
120
130
141

35

Table of Contents vii

Part 3. Strings | 149
20 Smorgasbord 151
21 The ASCII Set 161
22 Strings In General 168
23 Measuring Strings 173
24 VAL And STR$ 179
25 Having A Ball With String 183
26 TIME$ And DATE$ 195
Part 4. Variable Precision And Math 199
27 What Price Precision? 200
28 Intrinsic Math Functions 209
29 The Trigonometric Functions 218
30 DEFined FuNctions 223
Part 5. Display Formatting 227
31 Video Display Graphics 228
32 Intermediate Graphics 236
33 Formatting With LOCATE 246
34 Graphing Trig Functions 251
35 INKEY$ And INPUT$ 255
36 PRINT USING 263
37 PRINT USING -- Round 2 273
38 Using A Printer 281
Part 6. Arrays 287
39 Arrays 288
40 Search And Sort 302
41 Multi-DIMension Arrays 310
Part 7. Miscellaneous 321
42 PEEK And POKE 322
43 Logical Operators 329
44 A Study Of Obscurities 340
45 Advanced Graphics 350
46 Introduction To Data Processing 357

47 Advanced SAVEing, MERGEing, And CHAINing 367

viii Table of Contents
.]

Part 8. Program Control

48
49
50
51

Flowcharting
Debugging Programs
Chasing Bugs
Chasing The Errors

Section B: Answers To Exercises

Section C: Appendices

Appendix A -- ASCII Chart
Appendix B -- Reserved Words
Appendix C -- Error Messages
Appendix D -- The Apple Menu

Section D: Index

377

378 ,
383 ;
393
397

405
429
430
434
436
442

451

SECTION A

MICROSOFT
BASIC

TUTORIAL

PART 1

GERTTING
STARIIEID

Chapter O

Settimg It Up

efore we begin learning to program in BASIC, it’s necessary to learn
B about a number of the machine’s special features. If you haven’t done
so already, find and install the small plastic programmer’s switch,
labeled “INTERRUPT RESET,” included in the packaging. Install the switch
according to the directions given in Apple’s manual.

A Guided Tour Of Macintosh

For those who are new to Macintosh, a tour of the Computer is in order.
Locate the audio cassette tape and diskette, each named “A Guided Tour of
Macintosh” which came with the Mac. Together, the tape and disk will pro-
vide an excellent introduction to the Computer’s unique features. The tour
guides will explain how to insert the Guided Tour diskette, and how to turn
the Computer ON. They will also talk us through a few examples while the
Mac provides the demonstration. Start the audio tape, and begin the tour at
this time.

The first example the tape refers to is “Mouse Exercises.” When it does, stop
the recorder. The Macintosh should be turned ON. Place the “mouse” on a
clean level surface, and move it around until the little arrow on the screen is
inside the box titled “MOUSING AROUND.” Press the button on the mouse.

When done MOUSING AROUND, take the other trips on the tour.

*** *** ***

Well, that was pretty exciting, and challenging. Don’t try to absorb all the
details at once. Instead, after every few Chapters of this book go back and
replay the “Guided Tour,” and learn a little more. Only a few of the many
mouse and window features are absolutely necessary for learning Microsoft
BASIC on the Macintosh.

6 Chapter O
]

When through with the Guided Tour, select the box with “I’m Ready to Stop,”
and the diskette will be ejected. Remove the Guided Tour disk.

Let’s move on now to Chapter 1 to learn more about our electronic desktop.

Chapter 1

The Deskiop

slot. (We refer to this disk as the Master diskette.) In a few seconds,
the screen will display the Microsoft BASIC window, the Sample Pro-
grams window, the Trash Can icon, the Microsoft BASIC icon in the upper
right corner, and of course, the mouse pointer. This is our “desktop” which
displays the contents of the disk currently in the drive.

I nsert the diskette named MICROSOFT BASIC Interpreter into the

If you’ve been using your Mac and Microsoft BASIC Master disk already, what
appears on your desktop may be different. You may, for example, have other win-
dows opened, or everything, including the Microsoft BASIC and Sample Programs
windows, may be closed. No problem...

To make your window match what we’ve just described, close all windows, then
place the pointer on the Microsoft BASIC icon and click the mouse button twice
(also known as “double-clicking it”). Then move the pointer onto the Sample Pro-
grams icon, and double-click it. Now we all match.

® File Edit Diew Special

Microsoft BASIC
3 items 378K in disk 21K available §

Microsoft EASIC (b) System Folder
3

Micrasoft EASIC (d) Emipty Folder

Sample Programs =————
60K in folder 21K available

K>
m m m™ s m
B OE OB OE OB OE]
Ficture FormsDemo Music Terminal Crossikef Compressor
5

8 Chapter 1
oo e e e e e R R A e B R i R e s L e e i Vo)

Initializing A Diskette

We need to make a copy of this disk, one that we can store our programs
and assignments on, but first, we need to prepare a completely blank diskette
for our copy of the Master diskette. This process is called Initialization, and
it involves putting special magnetic “race tracks” on the disk.

To Initialize a new disk, we’ll need to eject this one. (This one has done its
job for now -- it prepared the Mac for the initialization process we’re about
to carry out.) Move the mouse to the File menu at the top of the screen, hold
down the button, and drag the pointer down to Eject. When Eject is shaded
in black like this:

A]
" & IR edit view Special
UDEI‘I_ Microsoft BASIC G
5itd DupHEate T8I grein gisk 21K available | 8
Get Info &I
Pist Bask
miey Close System Folder
Close All
Prind
v KRR Ers Foder
e Sample Prgm A
11 items 60K in folder 21K available

g O B F E

Picture FormsDemo Music Terminal CrossRef Compressor

4l

...release the button, and the disk will pop out.

Remove this diskette, and set it aside, Now take a new, unused, diskette and
look it over.

WRITE-PROTECT /

LOCKING MECHANISM

The Desktop 9
“

The “write protect” locking mechanism is in the upper left-hand corner. When
the disk is protected (locked), the tab is up and a hole is visible. To allow
the Computer to write to the diskette, the write protect tab should be covering
the hole. Slide the write protect tab downward, then insert the new disk into
the Computer. This dialog box will appear on the screen:

% File Edit View Special

Microsoft BASIC :
378K in disk 21K available |

This disk is unreadable:

Do you want to initialize it?

| Initiaiize]

&
ASIC (d) Ernpty Folder

» Ficture FormsDemo Music

CrossRef Compressor

Move the mouse pointer to the Initialize box, press the button once, and listen
to the Computer hum.

When Macintosh is done, we are asked to name the disk. Any name of up
to 27 characters (except the colon) can be used. With that kind of range, there
should be no trouble choosing names that distinguish one disk from another.
Let’s use the name LEARNING. No need to use the key -- letters are
always capital once we press down the key. Type:

LEARNING

...and click the button inside the OK box (or press on the keyboard).
The dialog box disappears, and the new disk’s icon is placed on the screen
below the Microsoft BASIC icon. Such magic!

DISK DRIVE!

......

.....
aelels

The Desktop 11

Backing Up The Microsoft BASIC Disk

Our next task is to make a backup (safety copy) of the original Microsoft
BASIC diskette. We’ll use the copy as our “working master,” and hide the
original for safe keeping. This precaution may save a long drive down to the
Apple computer store. You are allowed to make as many backup copies of
the Master diskette as needed for your own personal use, subject to any pro-
visions stated in the factory notice.

Move the pointer over the Microsoft BASIC icon, hold down the mouse but-
ton, and drag the icon’s shadow down to the newly created LEARNING disk.
Once the lower icon is shaded in black, release the button. A dialog box will
ask:

"LEARNING" (internal drive) with contents
of "Microsoft BASIC" (not in any drive)?

@ Completely replace contents of

I
|

which freely translated means: “Do you want to make a backup of the Micro-
soft BASIC diskette (which is not in the Computer right now) and put it on
LEARNING (which is inside the Computer)?”

0K Cancel

Respond by clicking the OK box.

Two dialog boxes appear. The top one shows how many files remain to be
copied. The bottom one tells when to switch disks. This swapping process is
slow, but with only one drive, it is necessary. The Macintosh will load some
files from the original disk into temporary memory then eject the disk. When
we insert the new disk, it will “dump” what it has stored onto the new disk,
then ask for more. When the backup is complete, the boxes will disappear,
the drive will stop and we’ll have an exact duplicate of the Microsoft BASIC
disk with enough empty space remaining to hold all our programs. and
exercises.

Eject the Master disk. Then press the RESET button on the programmer’s
switch. Macintosh beeps and clears the screen. Insert the new LEARNING
disk. Observe that an icon of our new disk is displayed. Double-click the
LEARNING disk icon to confirm that all the programs and files from the orig-
inal are present on this backup.

12 Chapter 1

; _
Turning The System Off
It is best to have all files and windows closed and the disk ejected before
RESETing or shutting the power off. Use either the File menu, or press the
Y (Command) and [3 keys at the same time to eject the disk. Then reach
around to the left rear of the computer and turn it off.

It is not always necessary to turn Macintosh off. (It only uses 60 watts of
electricity.) However, if you decide to keep it on for a long time, remember
to turn down the screen brightness. If you don’t, and the machine stays on
for a long time, it could damage the screen by burning an image onto it. The
brightness adjustment is located below the Apple logo under the lower left
front of the computer where you see the [symbol.

Learned In Chapter 1

Miscellaneous Menu

Turning the Computer ON and OFF File

Dialog box Eject (B3)
Command key -)

Initializing a disk

Backing up a disk

Programmer’s switch (RESET)

There is a review summary like this at the end of each chapter to be sure you
didn’t miss anything.

- Chapter 2

o

Computer RBilquette

rom the moment we turn it on, our Macintosh follows a well-defined
F set of rules for coping with us, the “master.” This makes it an excep-
tionally easy computer to use. To a large extent, all we have to do
is say the right thing (via the keyboard or the mouse) at the right time. Of
course, there are lots of “right things” to say; putting them together for a pur-
pose is called programming.

In this Chapter we’ll start a conversation with our Macintosh and teach it some
simple social graces. At the same time, you’ll learn the fundamentals of com-
puter etiquette. You’ll even write your first computer program!

If you turned the Computer OFF, turn it back ON and insert the LEARNING
disk. When the LEARNING window is displayed, you’ll see two Microsoft
BASIC icons in the upper window, Microsoft BASIC (b) and Microsoft
BASIC (d), either of which will teach the Computer to speak BASIC.

For our purpose of learning BASIC, either version could be used. BASIC (b)
is a Binary version while BASIC (d) is a Decimal version. All this means is
that version (b) manipulates numbers in single precision while version (d) uses
double precision. We’ll see what this is all about in Chapter 27.

Move the mouse over the Microsoft BASIC (b) icon, and double-click the
mouse to “load in” BASIC.

We chose Binary BASIC because it occupies a little less memory space and man-
ipulates arithmetic operations a little faster.

13

14 Chapter 2

D T T e P S T P ey e PR oo S o) AR SR
When this screen:

" & File Edit Search Run Windows
Untitled

List

Command -

appears, we’re set to “go.” The blinking vertical bar in the List window is
called the cursor (also referred to as the insertion poinf). The Computer is
saying:

“I'm ready -- it's your turn!”

To make sure we start off with a clean slate -- erasing all traces of prior
programs -- drag the pointer down the File menu, and release the mouse button
when New is outlined in black. The NEW command can also be entered from
the keyboard. Place the pointer anywhere in the Command window at the
bottom of the screen, and click the mouse button. Type NEW, and press

Return}

Reactivate the Command window. Then type PRINT FRE(0) and FERZN.
Note that while this Line appears in the Command window, the result appears
in the Output window once [FIUIL) is pressed. This is a very simple test to
see that the Computer “powered up” properly. The display should read:

21000

Computer Etiquette 15

If the number is not 21000, select Quit from the File menu and when you are back
in the Finder, eject the disk. Tum the Computer OFF, and wait about 10 seconds
before turning it ON again. Repeat the test, and verify that the number is in the
ball park.

What Is A Computer Program?

A program is a sequence of instructions the Computer stores until we com-
mand it to follow (or “execute”) them. Some programs for the Macintosh are
written in a language called Microsoft BASIC, and its very name tells how
easy it is to learn!

Let’s write a simple one-Line program to let the Macintosh introduce us.

We must first place the cursor back in the List window since program Lines
can only be written in this window. Position the pointer inside the List win-
dow, and click the button. Note that the title bar on the List window is high-
lighted and that the flashing cursor has moved to the upper-left corer of this
window.

Type the following Line, exactly as shown:
10 PRINT "YOU ARE A COMPUTER PROGRAMMER."
Do not hit the key yet!

Notice that the program Line is too long to fit inside the List window. To
see the entire Line, place the pointer in the List title bar and double-click the
button. The List window now fills the entire screen. Place the arrow back on
the title bar and double-click again to return the List window to its original
size.

We could have enlarged the window by moving it and using the size box, but
then we would have to resize it each time we type in a longer program Line.
Best to see the entire program at once.

Enlarge the List window again to check your program. Slide the horizontal
scroll bar to the left to see the entire Line.

16 Chapter 2

" & File Edit Search Run Windows N

e Sl==
10 PRINT "YOU ARE A COMPUTER PROGRAMMER | 0]

If you made a typing error, don’t worry. Just use the key. Each
time you press this key, the rightmost character will be erased. If the error
was at the beginning of the Line, erase way back to that point, and then retype
the rest of the Line. (If you hold the key down longer than a
second, it will erase many letters very quickly.)

Study very carefully what you typed:
1. Is everything after the word PRINT enclosed in quotation marks?
2. Are there any extra quotation marks?
If everything’s okay, press GIXUIE. The flashing | cursor will move to the left

edge of the List window, telling us, “I got the message.” The Line you typed
in will be displayed with PRINT in bold type.

If It’s Too Late

If you found an error after pressing [g , the key cannot cor-
rect it. The best way to fix it, for now, is by “pulling down” the File menu
and selecting New. The Computer will ask if you want to save “the current

GO AHEAD, POKE
AWAY - | WON'T
BYTE! "You ARE
A COMPUTER
PROGRAMMER"
2OUNDZ GRATE

.....
........
.....
..........

...........
.......
o

.....
......

......
.......
.........

18 Chapter 2

program” before proceeding. Answer by clicking the No box. When the List
window reappears, type in the one-Line program. In the next Chapter we’ll
learn how to “Edit” out errors instead of retyping entire Lines.

“Allow Me To Introduce You”

Let’s tell the Computer to execute, or RUN, our program. The BASIC com-
mand for this is simple. Move the pointer to the Run menu, hold down the
button, drag down and release the button when Start is outlined in black.

Wow, that was fast! We didn’t have much of a chance to look at the Output
window before it was covered over by the List window. Reduce the size of
the List window by double-clicking the title bar. This time Run the program
by moving the pointer to the Command window, clicking the mouse and typ-
ing:

RUN

You can also RUN the program by pressing the g and [§] keys while in either
the List or Command windows.

Return to the List window by typing:

LIST

in the Command window, selecting Show List from the Windows menu or by
simply pressing E[§.

In the future when you are asked to Run the program, you can either type RUN
in the Command window, press Eor select Start from the Run menu.

If we made no mistakes, the line in the Output window will read:
YOU ARE A COMPUTER PROGRAMMER.

If it doesn’t work, try to Run it again. If Run still doesn’t produce the state-
ment, there’s something wrong in your program. Choose New from the File
menu or type NEW I{j in the Command window to clear it out, then type
it in and Run again.

Computer Etiquette 19
L -~ - -

When selecting New from the File menu (or typing it in the Command window),
the Computer may ask if you want to Save the current program before proceeding.
Select the No box. Later we will start Saving our more important programs.

If it did work -- let out a yell!
“I are now a REAL computer programmer!”

This is very important because you have tasted success with computer pro-
gramming, and it may be the last you are heard from in some time.

In Summary

Note that the word PRINT is not displayed, nor is the Line number nor the
quotation marks. They are part of the BASIC Language program’s instruc-
tions, and we didn’t intend for them to be printed. Everything inside the quote
marks is printed, including blank spaces and the period.

From the Run menu choose Start again.

Run to your heart’s content, watching the magic machine do as it’s told.
When you feel you’ve got the hang of all this, get up and stretch, walk around
the room, look out the window -- the whole act. You’ll soon be absorbed in
programming and won’t have time for such things.

When typing in a program, we can choose direct commands like Start from
the Run menu or we can type them in at the Command window, but remember
to hit to tell the Computer to look at what we fzyped, then act
accordingly.

Quitting BASIC Before Turning Off Mac

If you want to stop here, remember to turn down the brightness control or if
you’re planning a really long break, turn off the Computer completely. First
get out of BASIC by selecting Quit from the File menu. Don’t bother to save
this program. It’s so short, it can easily be retyped when it’s needed. Eject
the disk, and flick the power switch to off.

20 Chapter 2

Learned In Chapter 2

Commands Statements

NEW PRINT
RUN Return
LIST

Miscellaneous Menus

Entering BASIC File
| cursor (inser- New
tion point) Quit
Backspace) s Ry
" quotation marks Start (EJ[X)
List window Windows
Command window Show List (E§[)
Output window
Enlarging the List
window

Commands (like RUN) are executed as soon as we type them in the Command

window and press [SETULY.

Statements (like PRINT) that are typed in the List window are executed only
after we press Eg [3, select Start from the Run menu or type RUN

in the Command window.

always are a few!)

turn it back ON again.

Special message for people who can’t resist the urge to play
around with the Computer and skip around in this book. (There

It is possible to “lose control” of the Computer so it won’t react
to the mouse or keyboard. To regain control, just press |l (Com-
mand-period). If that doesn’t work, push the INTERRUPT button.

If that doesn’t work, turn the Computer OFF for 10 seconds, then

Chapter 3

Using The Bditor

n extraordinarily valuable capability of our BASIC is a feature called
A the Editor. Its purpose is as simple as its name. It lets us “EDIT,”
or make simple changes, in a program.

The Microsoft BASIC Editor gives us the ease and power of using a -“word
processor.” It is so easy to use but so powerful you’ll never again want to
use a computer without one.

We now have a program in the Computer. (If you turned OFF your Computer
at the end of the last Chapter, just retype the one-Line program in Chapter
2.) Enlarge the List window by double-clicking its title bar, and then we’ll
expand the program to read:

10 PRINT "YOU ARE A COMPUTER PROGRAMMER. ARE
YOU IN COMMAND?"

To do this, first place the pointer at the end of the program Line (to the right
of the last quotation mark), and click the button. Notice that the insert bar
is flashing at the end of the Line.

To get rid of the closing quotation mark, simply press like we
did in the last Chapter. Now press the space bar twice, then type in the words:

ARE YOU IN COMMAND?"

This program will run just fine. If, on the other hand, we wish to change the
Line to something like:

10 PRINT "YOU ARE IN COMMAND. YOU ARE THE
COMPUTER PROGRAMMER."

21

22 Chapter 3

then we need to do some Editing to Line 10.

Earlier we would have solved the problem by backspacing through the entire
Line and retyping it, hoping we didn’t make more mistakes than we elimi-
nated. This particular example has so much to change, it might be just as
easy to retype, but our purpose is to “exercise” the Editor.

Since we want the word A to be changed to THE in the sentence YOU ARE
A COMPUTER PROGRAMMER., place the cursor on the right side of the
letter A, and click the mouse. The listing shows:

10 PRINT "YOU ARE A| COMPUTER PROGRAMMER.,
YOU IN COMMAND?"

(If your screen doesn’t look like this, move the cursor again and click until
it does. It takes a steady hand.)

Press once to remove A. We now have to insert the word THE
between ARE and COMPUTER. The insert bar (or insertion point) is already
in position, so all we do is type the letters:

THE

The screen now reads:

10 PRINT "YOU ARE THE| COMPUTER PROGRAMMER.
YOU IN COMMAND?"

Notice that, as you typed in the letters, the remaining Line moved to the right
to make room for the inserted letters.

If it seems we're going slowly, you’re right! The Editor is simple but so
important, we may as well learn to use it right the first time. You know the
old story, “There’s never time to do it right the first time, but always time
to do it over.”

We now have to reverse the words ARE and YOU in the sentence ARE YOU
IN COMMAND?. To do this, we will use the Editor’s Cut and Paste feature.

ARE

ARE

NOW THAT
YOU'VE
LEARNED
0 SPEL—
WHAT 2AY
WE TAKE
UP EDITingZ

o%ete’s

......

OO%

,,,,,,,

......

.....
5

OO0
.......
20 %%

.....
.....
.....

.....

g
.........
..........
.............
.......

..........
...................
.............

...........

..........
......

24 Chapter 3

Position the cursor to the left of the letter I in IN , and click the mouse. The
bar cursor should be flashing on the left side of the word IN. With the cursor
positioned over the bar cursor, press the button and drag left to shade the
word YOU. The Line should show:

10 PRINT "YOU ARE THE COMPUTER PROGRAMMER.
IN COMMAND?"

Position the cursor on the Edit menu, and select Cut. Zap! The shaded text
vanishes, and the rest of the Line slides into its place. The word YOU has
not been entirely removed, just held in an area called the Clipboard, waiting
for us to Paste it back into the program. We can move text to the Clipboard
by either Cutting or Copying text. Once text is placed in the Clipboard, it is
held there until replaced by another Cut or Copy action. (We’ll do some
Copying later.)

Now position the insert bar immediately before the word ARE and select Paste
from the Edit menu. We now have:

10 PRINT "YOU ARE THE COMPUTER PROGRAMMER.
ARE IN COMMAND?"

We’re almost there. All that is remaining is to switch the two sentences. Place
the insert bar between the question mark and the quotation mark, and hit
once to remove the question mark. Now place the cursor over
the insert bar, and shade the entire sentence YOU ARE IN COMMAND. Cut
the text by selecting Cut from the Edit menu. Position the insert bar between
the first quotation mark and the word YOU. Select Paste from the Edit menu
to recall our sentence from the Clipboard. The sentence should now appear:

ARE

YOU |

10 PRINT "YOU ARE IN COMMAND|YOU ARE THE COMPUTER

PROGRAMMER. "

Add the finishing touches to the Line by typing a period and two spaces. Then
move the cursor in front of the last quotation mark, and press to
remove the extra space at the end of the sentence.

Using the EDITor 25

Whew, finally done. But wait -- the insert bar is still sitting inside the pro-
gram Line. Move the cursor directly below the program Line, and click the
mouse. Line 10 is displayed with PRINT in bold type, and the cursor is in
position waiting for us to type in the next Line.

From here on, we should always use the Editor for making changes, especially
in long Lines. Compare the time it would take to change only one character
in a very long and complex Line by retyping it, with the speed of doing it
with the Editor.

EXERCISE 3-1: Choose New from the File menu, then use the Editor
to change:

10 PAINT "WE CAN TAKE CREDIT FOR CONSUMER
PROGRESS."

to:

10 PRINT "WE CAN EDIT COMPUTER PROGRAMS."

Try working this one out on your own. The answers to later Exercises will
be provided in Section B, along with further comments.

Learned In Chapter 3

Menu Miscellaneous
Edit Editing features
Cut (E3X)

Paste (E3\Y)

Chapter 4

Bxpamded Programm

fter doing Exercise 3-1, we still have a program in the Computer. It’s
A only a one-Liner, so let’s expand it by adding a second Line.

One of the features available in this version of Microsoft BASIC which is not
found in most other BASICs is its ability to write program Lines without
assigning a number to every Line. We have the option of identifying program
Lines with numbers or titles, or we can write program Lines leaving off both
numbers and titles. The program’s instructions are executed in order from the
top Line to the bottom without regard to the order in which Lines are num-
bered. Later we will learn how these Line numbers or labels are necessary
when branching from Line to Line within the program.

To help explain what is happening with each program Line used in this book, we
will be assigning Line numbers in most of the examples.

Let’s add the next Line, and leave out the Line number. Type:

PRINT "LINE NUMBERS ARE NOT REQUIRED." [0

You did enlarge the List window, didn’t you?

Check it carefully -- especially the quote marks. The program listing should
show:

10 PRINT "WE CAN EDIT COMPUTER PROGRAMS."
PRINT "LINE NUMBERS ARE NOT REQUIRED."

26

Expanded Program 27

m
Notice how PRINT is again displayed in boldface type. The Computer does
this to help us pick out the BASIC statements, commands and functions from
the other words.

Return the List window to its original size by double-clicking its title bar and
Run the program.

If all was correct, the screen will read:

WE CAN EDIT COMPUTER PROGRAMS.
LINE NUMBERS ARE NOT REQUIRED.

Who Goofed?

There are many possible errors you can make while typing in program Lines.
For example, let’s type a temporary Line and deliberately make a spelling
error:

PRIMT "TESTING"
and Run.

The first two program Lines are executed just fine, then the Macintosh
encloses the new Line in a box, beeps a warning and displays this dialog box:

Undefined subprogram i 1] 4]

We deliberately “set you up” to demonstrate the Computer’s error trouble-
shooter. The Mac is smart enough to know when we’ve made a mistake in
telling it what to do, and it PRINTs a clue as to the nature of the error. The
Computer looked for a “subprogram” within this program called PRIMT
“TESTING” and couldn’t find it. Later we will see how smaller subprograms
can be placed within our main program and how these subprograms can be
labeled or assigned Line numbers.

OH, COME NOW. | HATE

TO SEE A GROWN MAN)
CRY.. 20 YOU'EOMB -
ED'— LETZ GIVE T
ANOTHER ZHOT !

Expanded Program 29

To acknowledge the error, move the mouse and click it inside the OK box,
or just hit the UM key.

The dialog box disappeared, but the temporary Line is still in the program,
inside its error box. Click the mouse with the cursor positioned at the left
side of the error box. Use the Editing skills learned in the last Chapter to Cut
away the temporary Line.

And The Program Grows

In most BASICs. where Line numbers are required, it is customary, traditional
(and all that) to space the Lines ten numbers apart to leave room to insert new
Lines between the old ones. Since Microsoft BASIC is not dependent on Line
numbers, we can insert new Lines wherever needed with the Editor. However,
when numbers are assigned to program Lines, we try to follow this rule of
thumb.

Run again, and look at the Video Display. What if we’d rather not have the

two Lines PRINTed so close together, but would like to have a space between
them? Type in the new Line:

20 PRINT
Our program Listing now looks like:
10 PRINT "WE CAN EDIT COMPUTER PROGRAMS."
PRINT "LINE NUMBERS ARE NOT REQUIRED."
20 PRINT
Now Run.
There doesn’t seem to be any additional space PRINTed between the two
lines. What happened? The Computer encountered Line 20 after it had already

PRINTed the first two lines. To further illustrate this point, insert the number
30 at the beginning of the second Line:

10 PRINT "WE CAN EDIT COMPUTER PROGRAMS."

30 Chapter 4

30 PRINT "LINE NUMBERS ARE NOT REQUIRED."
20 PRINT
and Run.

Even though the third PRINT statement has a Line number lower than that
of Line 30, it is executed in order of appearance (from top to bottom).

Now, insert Line 20 between Lines 10 and 30 by Cutting Line 20 and Pasting
it at the beginning of Line 30. Press to move Line 30 to the next Line
so the Listing shows:

10 PRINT "WE CAN EDIT COMPUTER PROGRAMS."
20 PRINT
30 PRINT "LINE NUMBERS ARE NOT REQUIRED."

Then Run.

It now displays:

WE CAN EDIT COMPUTER PROGRAMS.

LINE NUMBERS ARE NOT REQUIRED.

Note: To make this book easier to read, we are using more space between all our
program Lines than you actually see on the screen.

Looks neater, doesn’t it? But what about Line 20? It says PRINT. PRINT
what? PRINT nothing. That’s what followed PRINT, and that’s just what it
PRINTed. Remember, we added Line 20 to keep Lines 10 and 30 from
PRINTing so close together. Well -- in the process of PRINTing nothing, a
space was automatically inserted between the PRINTing ordered in Lines 10
and 30. (Hmmm...so that’s how we space between lines.)

Another important program statement is REM, which stands for REMark. It
is often convenient to insert REMarks into a program.

Expanded Program 31

L. ___________________________-_________]
Why? So you or someone else can refer to them later, to help remember com-
plicated programming details, or even what the program’s for and how to use
it. It’s like having a scratch-pad or notebook built into the program. When
we tell the Computer to execute the program, it skips right over any Line
which begins with a REM. A REM statement has no effect whatsoever on the
program. Insert the following at the beginning of the program:

5 REM *THIS IS MY FIRST COMPUTER PROGRAM*

You might be wondering why the asterisks(*) in Line number 5? The answer is
... they’re just for decoration. Let’s give this operation some class! Remember,
anything on a Line that follows REM is ijgfnored by the Computer.

Then Run.

The “video printout” reads just like the last one, totally unaffected by the pre-
sence of Line 5. Did it work that way for you?

Microsoft BASIC allows us to view two List windows at the same time. We
saw earlier how we can expand the List window to full size by double-clicking
inside the title bar and return it to the original size by double-clicking it
again. Now let’s place a second List window over the first one.

If your List window is full size, return it to its reduced size. Pull down the
Windows menu, and select Show Second List. Notice how nicely the windows
stack on top of each other. This will come in handy when we have a large
program in memory and want to look at different parts of it at the same time.

Each window acts independently of the other. Each can be enlarged to full
size, moved around on the desktop and reshaped to suit our needs. If we com-
pletely remove both List windows from the desktop by clicking the mouse
inside each of their close boxes, we can bring back either the first or second
List window. The first List can be brought back by any one of 3 methods:

1. Select Show List from the Windows menu.
2. Type from the keyboard.

3. Type LIST in the Command window (select Show Command
from the Windows menu, and type LIST UM).

32 Chapter 4

The second List window can only be brought back by selecting Show Second
List from the Windows menu.

Now, with all that information on List windows, experiment on your own.
Learn how they work before continuing.

Where Is The END Of The Program?

The end of a program is, quite naturally, the last statement we want the Com-
puter to execute. Many computers require placing an END statement at this
point so the computer wili know when to stop. But with Microsoft BASIC,
an END statement is optional. Remember though, if you want to Run BASIC
programs on fussier computers, they may need END statements.

When we get into more complex programs, we'll use END statements to force
execution to END at specified points.

Let’s take a closer look at END. By the rules governing its use, most dialects
of BASIC which require END insist that it be the last statement in a program,
telling the computer “That’s all, folks.” By tradition, it is given the number
99, or 999, or 9999 (or larger), depending on the largest number the specific
computer will accept. Macintosh accepts Line numbers up to 65529.

With one List window (default size) displayed, let’s add an END statement
to our program:

Type:

99 END
Then Run.

The sample Run should read:

WE CAN EDIT COMPUTER PROGRAMS.

LINE NUMBERS ARE NOT REQUIRED.

Question: “Why didn’t the word END PRINT?” Answer: Because nothing is
PRINTed unless it is the “object” of a PRINT statement. So, how could we

Expanded Program 33

make the Computer PRINT THE END at the end of the program execution?

Think for a minute before reading on, then insert the next Line between Lines
30 and 99.

98 PRINT "THE END"

...and Run.

This assumes that Line 98 is the last PRINT statement in the program. We now
have an END statement (Line 99) and a PRINT “THE END” statement (Line 98).
98 says it; 99 does it.

Erasing Without Replacing
Just for fun, let’s move the END statement from Line 99 to the largest usable
Line number our Microsoft BASIC will accept, 65529.

Using the Editor, shade the number 99, and Cut it out. Now type in the
- number 65529, move the pointer directly below that Line and click the mouse
button.

The List window should show the program with Lines 5, 10, 20, 30, 98 and
65529. Now Run the program to see if moving the END statement changed
anything. Did it? It shouldn’t have.

Other Uses For END
Using the Editor, move END from number 65529 to Line number 15, then
Run.

What happened? It ENDed the Run after PRINTing Line 10. Run it several
times.

Now move END to Line 8, and Run.
Do you see the effect END has, depending where it is placed (even tempor-

arily) in a program? Feel like you are really gaining control over the machine?
You ain’t seen nothin’ yet!

34 Chapter 4

Learned In Chapter 4

Commands

LIST

Statements

PRINT (Space)
REM
END

Miscellaneous Menu

Error Messages =~ Windows

Line Numbering Show Command
List windows Show List G [@)
Title bar Show Second List

PART 2

. BASIC
FUNDAMENTALS

Chapter 5

B

Matlh Operators

ut Can It Do Math?

Yes, it can. Basic arithmetic is a snap for Microsoft BASIC. So are
highly complex math calculations -- when we write special programs

to perform them -- and we will.

The BASIC Computer language uses the 4 fundamental arithmetic opera-

tions, plus 4 more complex ones which are just modifications of the others:

1.

2.

ADDITION, using the symbol +

SUBTRACTION, using the symbol — (See -- nothing to
this -- just like grade school. I wonder whatever happened to old
Miss... Well, ahem -- anyway...)

. MULTIPLICATION, using the special symbol * (Oh drat,

I knew this was too easy to be true!)

4. DIVISION, using the symbol / (Well, at least it's simpler
than the + symbol.)

and

5. EXPONENTIATION, using " (unveiled in Chapter 28)

6. NEGATION (meaning “multiply times minus one”), using the

— symbol

7. MODulo, of interest primarily to pure math-computer types

8.

(We’ll discuss it in Chapter 28.)

INTEGER DIVISION, using the backslash \ (Taught in
Chapter 16)

36

OH.COME NOW-YOU
CAN LEARN THAT
¥ MEANS "TIMES"
andl/ MEANSG
DIVIZION). ZAY
TO YOUREELF

........
........
.......
......
.......
.....

38 Chapter 5

Of course, we also need that old favorite, the equals sign (=). But wait! The
BASIC language is very particular about how we use this sign! Math expres-
sions (like 1 + 2 * 5) can only go on the right-hand side of the equals sign;
the left-hand side is reserved for the result of the math equation. We say 4
= 2 + 2. (This may seem a little strange, but it’s really quite simple, as
we’ll discover in the next few pages.)

We cannot use an “X” for multiplication. Unfortunately, a long time ago a
mathematician decided to use “X,” which is a letter, to mean multiply. We
use letters for other things, so it’s much less confusing to use a “*.” Con-
fusion is one thing a computer can’t tolerate. To computers, “*” is the only
symbol which means multiply. After using it a while, you too, may feel we
should do away with X as a multiplication symbol. '

Putting all this together in a program is not difficult, so let’s do it. First, we
have to erase the “resident program” from the Computer’s memory.

“Resident program” is computer talk for “what’s already in there.”

Choose New from the File menu, and click the No box. When the Computer
responds with an empty List window, displaying only the cursor. (insertion
point), you’ll know the program is really gone.

Putting The Beast To Work

We’ll now use the Computer for some very simple problem solving. That
means using equations. (Oh - panic.) But then, an equation is just a little
statement that says, “What’s on one side of an equals sign amounts to the
same as what’s on the other side.” That can’t get too bad.

We’ll use that old standby equation,
“Distance traveled equals Rate of travel times Time spent traveling.”

If it’s been a few years, we might want to sit on the end of a log and con-
template that for awhile.

To shorten the equation, let’s choose letters (called variables) to stand for the
3 quantities. Then we can rewrite the equation as a BASIC statement accept-

Math Operators 39

able to the Computer. Type in:

40 D =R % T

Remember, we have to use a * to specify multiplication.

‘What’s that 40 doing in our equation? That’s the program Line Number.
Remember, this version of Microsoft BASIC does not require the use of Line
numbers, but it’s easier to make reference to specific Lines by numbering
them. We chose 40, but any other number would have done just as well.

Here’s what Line 40 means to the Computer: “Take the values of R and T, mul-
tiply them together, and assign the resulting value to the variable D.” So until
further notice, D is equal to the result of R times T.

We could not reverse the equation and write: R*T=D. It has no meaning to the
Computer. Remember, the left-hand side of the equation is reserved for the Line
number and the value we are looking for. The right-hand side is the place to put
the values we know.

Any of the 26 letters from A through Z can be used to identify the values
we know, as well as those we want to figure out. Whenever possible, it’s a
good idea to choose letters that are abbreviations of the things they stand for
-- like the D, R, and T for the Distance, Rate, Time equation.

To complicate this very simple example, there’s an optional way of writing
the equation, using the BASIC statement LET:

40 LET D =R * T

This use of LET reminds us that making D equal R times T was our choice,
rather than an eternal truth like 2 = 1 + 1. Some computers are fussy and
always require the use of LET with programmed equations. Our Macintosh
says, “Whatever you want.”

Okay -- let’s complete the program.

40 Chapter 5

Assume:

Distance (in miles) = Rate (in miles per hour) multiplied by Time
(in hours). How far is it from San Diego to London if a jet plane
traveling at an average speed of 500 miles per hour makes the trip
in 12 hours?

(Yes, I know you can do that one in your head, but that’s not the point!)

Type in the following below Line 40:

10 REM * DISTANCE, RATE, TIME PROBLEM #
20 R = 500
30 T = 12 O

Now use the Editor to Cut and Paste Line 40 to the end of the program where
it belongs. After you have cleaned it up, it should look like:

10 REM % DISTANCEs» RATE: TIME PROBLEM *

20 R = 500
30 T = 12
40 D = R * T

Check the program carefully, then:
Run.
Hum de dum...ho-hum...(this sure is a slow computer).

All it does is clear the screen, then reList the program. The Computer
Doesn’t Work!

Yes, it does. It worked just fine. The Computer multiplied 500 times 12 just
like we told it and came up with the answer of 6000 miles. But we forgot
to tell it to give us the answer. Sorry about that.

Math Operators 41

EXERCISE 5-1: Can you finish this program without help? It only
takes one more Line. Give it a good try before reading on for the
answer. That way, the answer will mean more to you. (Hint: We've
already used PRINT to PRINT messages in quotes. What would
happen if we said S0 PRINT "D"? .. No, we want the value
of D, not *D” itself. Hmmmm, what happens when we get rid of
the quotes?)

Don’t Read Beyond This Point Until You’ve Worked On The Above
Exercise!

Look in Section B of this Manual for an answer to this Exercise.
Well, the answer 6000 is correct, but its “presentation” is no more inspiring

than the readout on a hand calculator. This inevitably leads us back to where
we first started this foray into the unknown -- the PRINT statement.

Did you find out the hard way that a space must be placed between the PRINT
and the variable D? It can’t be eliminated.

Note that we said 50 PRINT D. There were no quotes around the letter D
like we used before. The reason is simple but fairly profound. If we want the
Computer to PRINT the exact words we specify, we enclose them in quotes.
If we want it to PRINT the value of a variable, in this case D, we leave the
quotes off. That simple message is worth serious thought before con-
tinuing on.

Did you think seriously about it? Then on we go!

Now suppose we want to include both the value of something and some exact
words on the same Line. Pay attention, as you will be doing more and more
program designing yourself, and PRINT statements give beginners more
trouble than any other single part of computer programming. Use the Editor

42 Chapter 5

to Cut out Line 50, then type in the following:
90 PRINT "THE DISTANCE (IN MILES) IS".D

Then:
Run.

The Display says:
THE DISTANCE (IN MILES) IS 6000

How about that! The message enclosed in quotes is PRINTed exactly as we
specified, and the letter gave us the value of D. The comma told the Com-
puter that we wanted it to PRINT two separate items on the same line.

With this in mind, see if you can Edit Line 50 so the Computer finishes the
program with the following message:

THE DISTANCE IS 6000 MILES.,

Answer: Break up the message words into two parts, and put the number
variable in between them on the same PRINT Line.

50 PRINT "THE DISTANCE IS",D,"MILES.,"

Why is there all that extra space on both sides of the 5000 in the PRINTout?
When a PRINT statement contains two or more items separated by commas,
the Computer automatically PRINTs them in adjacent PRINT zones. Aufo-
matic zoning is a very convenient method of outputting TABular information,
and we’ll explore the subject in detail later on.

It’s possible to eliminate the extra spaces in the display. Edit the last version
of Line 50, substituting semi-colons (;) for the 2 commas.

(Careful - don’t replace the period with a semi-colon.)

Run.

Math Operators 43

L .- -]
Perfection, at last:

THE DISTANCE IS G000 MILES.

Look carefully at the new Line 50. There is no blank space between the S
in IS, the D, and the M in MILES. But in the display printout, there is a
space between IS and 6000, and another space between 6000 and
MILES. Why?

Reason: When a number is PRINTed (the value of D), leading and trailing
blank spaces are automatically inserted. As we do more programming, this
feature will become very important.

WHEW!

Well, we have already covered more than enough Commands, Statements and
Math Operators to solve a myriad of problems.

Math Operators? They’re the = + - * * / and \ symbols we mentioned earlier.

Now, let’s spend some time actually writing programs to solve problems.
There is no better way to learn than by doing, and everything covered so far
is fundamental to our success in later Chapters. Don’t jump over these exer-
cises! They will plunge you right into the thick of programming, where you
belong. Sample answers are in Section B, along with further comments.

EXERCISE 5-2: Write a program which will find the TIME required
to travel by jet plane from London to San Diego, if the distance
is 6000 miles and the plane travels at 500 MPH.

20 D7 oo
30 K7 s00
a0 keT 1T = D/R o
$o PRINT " The Time R‘?%I}IR:"QCA 33 T3 "houps.’

44 Chapter5

EXERCISE 5-3: If the circumference of a circle is found by multi-
plying its diameter times pi (3.14), write a program which will find
the circumference of a circle with a diameter of 35 feet.

10D = 35

20 CiI 3.4
30LET C 2D * Pl
40 PRINT " The ClRCumferen, of the ¢ Role, ss“;C?r-Feet“

EXERCISE 5-4: If the area of a circle isAfound by multiplying pi

times the square of its radius, write a program to find the area of
a circle with a radius of 5 inches.

as- P = 3.4
3o R =5 _
dJo__ A =€) xR xR

- N\ It «
so PrlyT "The cipcle's aReay 15°¢ A3 ' SQM'

EXERCISE 5-5: Your checkbook balance was $295. You've written
three checks (for $17, $35 and $225) and made two deposits ($40
and $200). Write a program to adjust your old balance based on

checks written and deposits made, and PRINT out your new
balance.

AT B=225-11-35-2a25 + 4o+29
’.?g]y’r A N\\(l Ralanvce (s \\:B

Q:Di/%u»\;r— Bt A wonhsd)

Math Operators 45

Learned In Chapter 5

Math
Statements Operators Miscellaneous
LET (Optional) = ,
; ,Variable Names
/

Remember, we can use any of the 26 letters as variables, not just D, R, and T
(they were just convenient for our problem).

Chapter 6

Scientific Notatiom

A re There More Stars Or Grains Of Sand?

In this mathematical world we are blessed with very large and very
small numbers. Millions of these and billionths of those. To cope with all
this, our Computer uses “exponential notation,” or “standard scientific nota-
tion,” when the number sizes start to get out of hand. The number 5 million
(5,000,000), for example, can be written “SE+06” (E for Exponential), which
means, “the number 5 followed by six zeros.”

Or technically, 5¥10° which is 5 times ten to the sixth power: 5%¥10¥10*10*10*10*
10.

If an answer comes out “SE-06,” that means we must shift the decimal point,
which is after the S, six places to the left, inserting zeros as necessary. Tech-
nically, it means 5 X 10, or 5 millionths (.000,005). ¢

In our BASIC, that’s 5/10/10/10/10/10/10.

It’s really pretty simple once you get the hang of it and makes it very easy
to keep track of the decimal point. Since the Computer insists on using it
with very large and very small numbers, we can just as well get used to it
right now.

Type the following in the Command window:

PRINT 5%10°7 (The caret " is located above the 6 key.)

The answer is:

SE+07

HEY! WHAT 'RE VA
DOINZ I'M GETTING
ACROPHOBIC |

LN

[LOST THE
PECIMAL PT.
-DON'T WHINE! &

o o
DO
DO

.................
.............

.....
......

........

.....

..........

.........................

%%

48 Chapter 6

Select New before performing the following exercises.

EXERCISE 6-1: If 100 million cars drove 10 million miles in a certain
year, how many miles did they drive altogether that year? Write
and run a simple program using zeros (not exponential notation).

Look at Lines 20 and 30. What’re those pound signs (#) doing at the end
of those Lines? It turns out the Mac automatically stores all numbers over
9,999,999 in double precision variables even in Binary BASIC. The pound
sign is a Type Declaration Character that means the number exceeded single
precision. Don’t worry about it! We’ll explain it in Part 4.

EXERCISE 6-2: Change Lines 20 and 30 in the Car Miles Solution
program (from Exercise 6-1) to express the numbers written there
in exponential notation, or SSN (Standard Scientific Notation). Then
RUN it.

Learned in Chapter 6

Miscellaneous

E - notation

Chapter 7

Using () And The
OQrder Of Operations

P

arentheses play an important role in computer programming, just as
in ordinary math. They are used here in the same general way, but
there are important exceptions.

. In BASIC, parentheses can enclose operations to be performed.

Those operations which are within parentheses are performed
before those not in parentheses.

. Operations buried deepest within parentheses (that is, parentheses

inside parentheses) are performed first.

To be sure equations are calculated correctly, use () around the operations which
must be performed first.

3.

When there is a “tie” as to which operation the Computer should
perform after it has solved all problems enclosed in parentheses,

it works its way along the program Line from left to right per-

forming the multiplication and division. It then starts at the left
again and performs the addition and subtraction.

Recall the old memory aid, “My Dear Aunt Sally”? In math we do Multiplication
and Division first (from left to nght), then come back for Addition and Subtraction
(left to right). Microsoft BASIC follows the same sequence.

INT, RND and ABS functions are performed before multiplication and division.
(We haven’t used them yet, but just to be completely accurate...)

4. An operation written as (X)(Y) will not tell the Computer to mul-

tiply. X * Y is the only scheme recognized for multiplication.

49

My DEAR ALUNT
SALLY- | DIDN'T (1w 15 my
KNOW YOUS NEPHEW ¢

WERE PART OF O

Using () And The Order Of Operations 51

EXAMPLE: To convert temperature expressed in degrees Fahrenheit to Celsius
(Centigrade), the following relationship is used:

The Fahrenheit temperature equals 32 degrees plus nine-fifths of the
Celsius temperature. Or, maybe you’re more used to the simple
formula:

9
F=-*C+ 32
5

Assume we have a Celsius temperature of 25. Type in this New
program and Run it:

10 REM * CELSIUS TO FAHRENHEIT CONVERSION *
20 C = 25

30 F = (9/5)*C + 32

40 PRINT Ci"DEGREES (C) ="3iFi"DEGREES (F)."

SAMPLE RUN:

25 DEGREES (C) = 77 DEGREES (F).

Remember what the semi-colons are for?

Notice first that Line 40 consists of a PRINT statement followed by 4 sepa-
rate expressions -- 2 variables and 2 groups of words in quotes called “liter-
als,” or “strings.” Notice also that everything within the quotes (including
spaces) is PRINTed.

Next, note how the parentheses are placed in Line 30. With the 9/5 securely
inside, we can multiply its quotient times C, then add 32.

Now, remove the parentheses in Line 30 and Run again. The answer comes
out the same. Why?

52 Chapter 7

1. On the first pass, the Computer started by solving all problems
within parentheses, in this case just one (9/5). It came up with
(but did not PRINT) 1.8. It then multiplied the 1.8 times the
value of C and added 32.

2. On our next try, without the parentheses, the Computer simply
moved from left to right performing first the division problem
(9 divided by 5), then the multiplication problem (1.8 times C),
then the addition problem (adding 32). The parentheses really
made no difference in this example.

Next, change the +32 to 32+, and move it to the front of the equation in
Line 30 to read:

30 F = 32 + 9/5xC
Run it again.
Did it make a difference in the answer? Why not?
Answer: Execution proceeds from left to right, multiplication and division
first, then returns and performs addition and subtraction. This is why the 32

was not added to the 9 before being divided by 5. Very Important! If they
had been added, we would, of course, have gotten the wrong answer.

EXERCISE 7-1: Write and Run a program which converts 65 degrees
Fahrenheit to Celsius. The rule tells us that “Celsius temperature is
equal to five-ninths times what's left after 32 is subtracted from the
Fahrenheit temperature.”

5
C=F-3)X-
9

Using () And The Order Of Operations 53

EXERCISE 7-2: Remove the first set of parentheses in the Ex. 7-1
answer and Run again.

EXERCISE 7-3: Replace the first set of parentheses in program Line
30 and remove the second pair of parentheses, then Run. Note
how the answer comes out -- corectlyl

EXERCISE 7-4: Insert parentheses in the following equation to make
it correct. Write a program to check it out on the Macintosh.

30-9-8-7-6=28

Learned In Chapter 7

Miscellaneous

()
Order of Operations

Chapter 8

Relational Operators

f you liked the preceding Chapters, then you’re going to love the rest
l of this book!

...because we’re really just getting into the good stuff like IF-THEN
and GOTO statements that let the Computer make decisions and take, um, er,
executive action. But first, a few more operators.

Relational Operators allow the Computer to compare one value with
another. There are only 3:

1. Equals, using the symbol =
2. Is greater than, using the symbol >

3. Is less than, using the symbol <

Combining these 3, we come up with 3 more operators:
4. Is not equal to, using the symbol <>
5. Is less than or equal to, using the symbol <=

6. Is greater than or equal to, using the symbol >=

Example A<B means A is less than B. To help distinguish between < and >,
just remember that the smaller (pointed) part of the < symbol points to the smaller
of the two quantities being compared.

By adding these 6 relational operators to the math operators we already know,
plus new statements called IF-THEN and GOTO, we create a powerful system

of comparing and calculating that becomes the central core of everything that
follows.

54

Relational Operators 55
L
The IF-THEN statement, combined with the 6 relational operators above, gives
us the action part of a system of logic. Enter and Run this New program:

10 A =5

20 IF A = 5 THEN 50

30 PRINT "A DOES NOT EQUAL S."
40 END

90 PRINT "A EQUALS S."

The screen displays:
A EQUALS 5.

This program is an example of using an IF-THEN statement with only the
most fundamental relational operator, the equals sign.

The Autopsy
Let’s examine the program Line by Line.

Line 10 establishes the fact that A has a value of 5.
Line 20 is an IF-THEN statement which directs the Computer to
GOTO Line 50, skipping over whatever might be in between Lines
20 and 50, if the value of A is exactly 5. Since A does equal 5,
the Computer jumps to Line 50 and does as it says, PRINTing A
EQUALS S. Lines 30 and 40 were not used at all.

Now, change Line 10 to read:
10 A =86

...and Run.

The screen says:

A DOES NOT EQUAL 5.

GOTO

i

IF-THEN

SORT OF
LIKE A FAMILY
TREE]

Relational Operators 57
L e

Taking it a Line at a time:
Line 10 establishes the value of A to be 6.

Line 20 tests the value of A. IF A equals S, THEN the Computer
is directed to GOTO Line 50. But “the test fails,” that is, A does
not equal 5, so the Computer proceeds as usual to the next Line,
Line 30.

Line 30 directs the Computer to PRINT the fact that A DOES NOT
EQUAL 5. It does not tell us what the value of A is, only that it
does not equal 5. The Computer proceeds to Line 40.

Line 40 ENDs the program’s execution. Without this statement
separating Lines 30 and 50, the Computer would charge right on to

Line 50 and PRINT its contents, which obviously are in conflict
with the contents of Line 30.

IF-THEN Vs. GOTO
IF-THEN is what is known as a conditional branching statement. The program

will “branch” to another part of the program on the condition that it passes
the IF-THEN test. If it fails the test, program execution simply passes to the
next Line.

GOTO is an unconditional branching statement. If we were to replace Line
40 with:

40 GOTO 99
and add Line 99:
99 END

...whenever the Computer hit Line 40 it would unconditionally follow orders
and GOTO 99, ENDing the Run. Change Line 40 as discussed above, and
add Line 99 to the end of the program so the entire program appears as:

10 A =8

58 Chapter 8

20 IF A = 5 THEN 50

30 PRINT "A DOES NOT EQUAL S5.*
40 GOTO 99

S0 PRINT "A EQUALS S5."

89 END

...and Run.

Did the program work OK as changed? Did you try it with several values of
A? Be sure you do! We will find many uses for the GOTO statement in the
future.

Optional THEN With GOTO

When the IF-THEN statement is used with a GOTO statement, either THEN
or GOTO or both can be used. This can be useful in long program Lines. For
example, either of these Lines will work in place of Line 20 in our program:

20 IF A 5 THEN GOTO S0

or

20 IF A

5 GOTO S0

EXERCISE 8-1: Change the value of A in Line 10 back to 5 then
rewrite the resident program using a “does-not-equal” sign in Line
20 instead of the equals sign. Change other Lines as necessary, sO
the same results are achieved with your program as with the one
in the example.

Relational Operators 59

EXERCISE 8-2: Change Line 10 to give A the value of 6. Leave the
other four Lines from Exercise 8-1 as shown. Add more program
Lines as necessary so the program will tell us whether A is larger
or smaller than 5 and Run.

EXERCISE 8-3: Change the value of A in Line 10 at least three more
times, Running after each change to ensure that your new program
works correctly.

No sample answers are given since you are choosing your own values of A. It
will be obvious whether or not you are getting the right answer.

Learned In Chapter 8

Relational
Statements Operators Miscellaneous
IF-THEN Conditional branching
GOTO Unconditional branching

VAAAV
\%

Chapter 9
It Also Talks

And Listemns

y now you have probably become tired of having to Edit Line 10
B each time you wish to change the value of A. The INPUT statement
is a simple, fast and more convenient way to accomplish the same
thing. It’s a biggie, so don’t miss any points.

Enter this New program:

10 PRINT "THE VALUE I WISH TO GIVE A IS"
20 INPUT A
30 PRINT "A ="jA

...and Run.
The Computer prints:

THE VALUE I WISH TO GIVE A IS
?

See the question mark on the screen? It means, “It’s your turn -- and I'm
waiting...”

Type in a number, and press to see what happens. The program
responds exactly the same way as when we changed values within a program
Line. Run several more times to get the feel of the INPUT statement.

Pretty powerful, isn’t it?

Let’s add a touch of class to the INPUT process by changing Line 10 as
follows:

10 PRINT "THE VALUE I WISH TO GIVE A IS"}j
60

It Also Talks And Listens 61
S

Look at that Line very carefully. Do you see how it differs from the earlier
Line 10? It is different -- a semi-colon was added at the end.

Think back a bit. We used semi-colons before in PRINT statements, but only
in the middle, to hook several together to PRINT them on the same line. In
this case, we put a semi-colon at the end, so the question mark from the Line
10 will PRINT on the same display line rather than on a second line. After
changing Line 10 as above, Run. It should read:

THE VALUE I WISH TO GIVE A IS?

We cannot use a semi-colon indiscriminately at the end of a PRINT state-
ment. It is only meant to hook two lines together, both of which will PRINT
something. The INPUT Line PRINTSs a question mark. We will later connect
two long Lines starting with PRINT by a “trailing semicolon” so as to PRINT
everything on the same line.

The Microsoft BASIC interpreter speaks “The King’s BASIC” as well as a
variety of dialects. The first of the many “short-cuts” we will learn combines
PRINT and INPUT into one statement.

INTERPRETER -- is the program we loaded in from disk which allows us to “rap”
with the Computer in the English language. The program is called BASIC, which
stands for Beginners All-purpose Symbolic Instruction Code.

Sometimes the word “dialect” is used when talking about the different variations
of a computer language. Just as with dialects in “human” languages, there are dif-
ferences in the way different computers use BASIC words. That’s why I wrote
The BASIC Handbook, Encyclopedia of the BASIC Language available at better
Computer and Bookstores everywhere in English, and translated into French, Ger-
man, Swedish, NoerEian, Dutch, Italian, Spanish and Hebrew.

Change Line 10 to read:
10 INPUT "TYPE IN A VALUE FOR A"iA

delete Line 20 by cutting it out with the Editor
...and Run.
The results come out exactly the same, don’t they? Here is what we did:

1. Changed PRINT to INPUT

62 Chapter 9

-]
2. Placed both statements on the same Line

3. Eliminated an unnecessary Line

In the long programs which we will be writing, Running and converting, this
shortcut will be valuable.

Endless Love

Up to now, all our programs have been strictly one-shot affairs. You Run it;
the Computer executes it, PRINTS the results (if any), and comes back with
a flashing cursor in the List window. To repeat the program, we have to Run
it again. Can you think of another way to make the Computer execute a pro-
gram two or more times?

No -- don’t enlarge the program by repeating its Lines over and over again --
that’s not very creative!

We’ll answer that question by upgrading our Celsius-to-Fahrenheit conversion
program (Chapter 7). If you think GOTO is a powerful statement in everyday
life, wait ‘til you see what it does for a computer program!

Select New and type the following:

10 REM * IMPROVED (C) TO (F) CONV., PROGRAM =*
20 INPUT "WHAT IS THE TEMP IN DEGREES (C)"iC
30 F = (9/5)*C + 32

40 PRINT C3i"DEGREES (C) ="3iFi"DEGREES (F)."
50 GOTO 20

...and Run.

Use 3 to exit the program loop, and to List the program.

The Computer will keep asking for more until we get tired, and stop it or the
power goes off (or some other event beyond its control). This is the kind of

'H- KEEP AcK-
IN' FOR MORE
UNTIL- YOUHIT

Y GEOR&E !
1 THINK I'VE
GoT 1Tl

64 Chapter 9

thing a computer is best at — doing the same thing over and over. Modify
some of the other programs to make them self-repeating. They’re often much
more useful this way.

These have been 4 long and “meaty” lessons, so go back and review them
all, repeating those assignments where you feel weak. We are moving out
into progressively deeper water, and complete mastery of these fundamentals
is your only life preserver.

Learned In Chapter 9

Statements Miscellaneous
INPUT and ; Trailing semi-colon

INPUT with built-in PRINT

Chapter 10
Calculator O
Imamaediate Mode

wo Easy Features

T Before continuing exploration of the nooks and crannies of the Com-
puter acting as a computer, we should be aware that it also works
well as a calculator. If we enter the Command window by either selecting it
from the Windows menu or by clicking inside the Command window, the
Computer will execute certain statements and commands and display the
answer on the screen. What’s more, it will work as a calculator even when
another computer program is loaded, without disturbing that program. All we
need, to be in the calculator mode, is to be in the Command window with
the flashing cursor.

We won’t be using the List window for these examples so remove it by clicking
in the List window close box.

EXAMPLE: How much is 3 times 4? With the flashing cursor in the Com-
mand window, type in:

CLS
PRINT 3 * 4

...the answer comes back in the Output window:
12

CLS CLears the Output window. It is a very unfussy statement which you
will want to use to make room for new output. Later you’ll see how using
CLS will make your displays neat and impressive.

EXAMPLE: How much is 345 divided by 123?

65

66 Chapter 10

Type:
PRINT 345/123

...the answer is:
2.804878

Spend a few minutes making up routine arithmetic problems of your own, and
use the calculator mode to solve them. Any arithmetic expression which can
be used in a program can also be evaluated in the calculator mode This
includes parentheses and chain calculations like A*B*C.

Try the following:

PRINT (2/3)%(3/2)

The answer is:

Calculator Mode For Troubleshooting

Suppose a program isn’t giving the answers we expect. How can we trou-
bleshoot it? One way is to ask the Computer to tell us what it knows about
the variables used in the resident program.

EXAMPLE: If our program uses the variable X, we can ask the Computer to:

PRINT X

The Computer will PRINT the present value of X.

Keep this handy tip in mind as you get into more complex programs.

Y'KNOW,
ALL THIS 1<
UNNECESSARY
FOR TRCOUBLE
Z2HOOTING !

A\
! '

P e
o ana ulolenes

68 Chapter 10

Another thought: Something is stored in every memory cell (even if you have
not put anything there). Enter this instruction in the immediate (calculator)
mode:

PRINT AsBsCsDIEsFsGrH»I 2 JsK L oMsN+sOsPsQsR1S»T
UsVsl XY 22

What gives? Only five values were PRINTed! We asked for 26! It appears
that we can print right off the edge of the Computer’s screen. Luckily, there
is a command that allows us to set the screen width so we don’t lose any
characters. Type:

WIDTH 70
and
PRINT AsBsCs...22

Ah, much better! After the first five values, the rest seem to “wraparound”
the display window.

The answers you got depend on the values last given those variables — even from
much earlier programs. If we turn the Computer off, then on again, all variables
will be reset to 0. Selecting Start or typing RUN also “initializes” all variables to
0.

Screen WIDTH Control

When the Computer enters BASIC, the screen width is set at its maximum
width of 255. This “normal” screen width can be changed to any value from
1 to 255 with the WIDTH command.

WIDTH also lets us change the size of the PRINT zones. The default zone
width is 14, but can be set to any value between 1 and 255. A good com-
bination which provides 5 equal width zones is a screen width of 60 with
PRINT zones of 12. Try it by typing the following in the Command window:

WIDTH 6012

Calculator Or Inmediate Mode 69
“

Now test it by typing a Line containing more than 60 characters. Notice how
the Computer refuses to display a line longer than 60 columns? Reset the
WIDTH to the default (maximum) size by typing:

WIDTH 255 Return

The FRE(0) Function

Since programs do occupy space in the Computer’s memory and program size
is limited to how much memory is installed, it may be important to know how
much memory is left. That’s what the FRE(0) Function is for.

In a “128K” computer there are about 128,000 different memory locations
available to store and process programs. “128K” is just a shortcut phrase for
the exact amount of memory, which is 131072.

This manual is meant to be for the computer operator and programmer, so we are
studiously avoiding computer electronics theory -- when possible. -

The Computer uses some of the memory for program control. To see the
actual amount of memory available for our use, type NEW in the Command
window or select New from the File menu. Then activate the Command win-
dow, and type:

PRINT FRE(OQ) Return

0 is a “dummy” value used with FRE. Any number or letter can be used.

...and the answer is:
21000

With no program loaded, it means there are 21000 memory locations available
for use. The difference in memory space between 21000 and 131072 is used
by the BASIC language interpreter and overall management and “monitoring”
of what the Computer is doing.

70 Chapter 10

Activate the List window, and type in this simple program:

10 A = 25

then measure the memory remaining by entering the Command window and
typing:

PRINT FRE(0)

The answer is:

20884

The program we entered took 21000 - 20984 = 16 bytes of space. Here is
how we account for it:

1. Each Line number and the space following it (regardless of how small or
large that Line number is) occupies 6 bytes. The “carriage return” at the
end of the Line takes 4 more bytes, even though it does not print on the
display. Thus, memory “overhead” for each Line, short or long, is 10

bytes.

2. In the above program, 10 A = 25 takes a total of 16 bytes. That’s 10
bytes for overhead plus 6 bytes for the characters (10 + 6 =
16 bytes).

BYTE -- is the basic unit of storage for the Macintosh and most other microcom-
puters. In the Macintosh it is a string of sixteen binary digits (bits). Thus a byte
= 16 bits.

We will be studying memory requirements in more detail later.

Obviously, the short learning programs we have written so far are not taking
up much memory space. This changes quickly, however, as we move to more
sophisticated programming. Make a habit of typing PRINT FRE(0) when
completing a program to develop a sense of its size and memory
requirements.

Calculator Or Inémediate Mode 71

Learned In Chapter 10

Functions : Commands Miscellaneous
FRE(0) WIDTH Calculator (Direct
Command) Mode
Memory

Byte

Chapter 11

SAVEIng And LOADING
Using Disk

big advantage of having disk drives is that programs can be SAVEd
A on or Opened (LOADed) from disk very quickly and reliably.

With a one-drive system, programs are automatically SAVEd on the diskette
inside the Macintosh, unless the disk is locked (write-protected). With a two-
drive system, the diskette inside the Macintosh serves as an application disk
(i.e. has BASIC on it) and the one in the external drive serves as the data
disk to which information would be written.

The Macintosh can have 2 drives; a second external drive or a high speed internal
“hard disk” drive can be added.

Type in this short New BASIC program:

10 REM * SAVE THIS PROGRAM *
20 PRINT "HELLO THERE.» DISKETTE!"
98 END

then, Save it on disk As:
PROGRAM1

by selecting Save As from the File menu, typing PROGRAM1 when the dialog
box appears, and clicking the pointer in the Save box (or simply pressing

Return))

Don’t confuse Save As with the Save option. Save is used when saving a program
with the same name that is shown on the Title Bar (no, “Untitled” should not be
used).

72

SAVEing And LOADing Using Disk 73

Well, something seemed to happen. Our little program is now Saved on the
disk under the name PROGRAM1.

Now, let’s recall the program from the disk. First, from the File menu, choose
New to clear the program out of memory.

Notice that no trace remains in the List window. Good thing we Saved it on
diskette. Hope it’s really there.

To see what is on the disk, display the disk FILES. Select Show Command
from the Windows menu, and simply type:

FILES

Yes, there it is, the last program listed.

Programs can also be SAVEd from the keyboard by simply entering the Com-
mand window, and typing:

SAVE "prodram name"

Quotation marks are required around file names only when SAVEing or
LOADing a file from the keyboard. If they’re omitted, a “Type mismatch”
error results.

To copy the program from the diskette back into memory, choose Open...
from the File menu, click the mouse over the file name PROGRAMI, then
click in the Open box.

Programs can also be opened by double-clicking on the program name.

and in it comes.

To LOAD a program from the keyboard, just enter the Command window,
and type:

LOAD "prodram name"

Don’t forget the quotation marks.

WELL, OU/R SANINGS

PROGRAM DOESC AVO7
INCLUDE Pk /

SAVEing And LOADIng Using Disk 75
L - -

File names can contain as few a 1 character or as many as 63. They can
include any characters (even blank spaces) except the colon and quotation
marks.

While we’re on the subject, you can Save a program to a different disk by
selecting the Eject box in the Save As... dialog box. The Computer ejects the
diskette, and after you insert another and click the Save box, it prompts you
to swap disks until the program is Saved.

There are three format options available at the bottom of the Save As...
box. The Computer normally Saves programs in the Compressed mode to con-
serve disk space. There are times when we will sacrifice a little disk space
for the luxury of Saving a program “character for character” by selecting the
Text format, or what is often referred to as the “ASCII format.”

Programs must be Save in the ASCII format if they are to be used with other
application software. Later we will MERGE programs that have been Saved
in ASCII format.

The third format option allows us to Protect the program. By selecting this
option, the program cannot be LISTed or RUN. Doesn’t leave much for us
to do with it except to Trash it.

Learned In Chapter 11

Commands Miscellaneous Menu
LOAD File names File

FILES Text format Save As...
SAVE Compressed format Save

Protected programs Open...

Chapter 12

FOR-NEXT Loopimg

major difference between a Computer and a calculator is the Com-
A puter’s ability to do the same thing over and over an outrageous
number of times! This single capability (plus, a larger display) more
than any other feature distinguishes between the two.

The FOR-NEXT loop is of such overwhelming importance in putting our Com-
puter to work that few of the programming areas we explore from here on
will exclude it. Its simplicity and variations are the heart of its effectiveness,
and its power is truly staggering.

Type NEW in the Command window and then type the following program in
the List window:

20 PRINT "HELP! MY COMPUTER 1S5 BERSERK!"
40 GOTO 20

...and Run.

The Computer is PRINTing:
HELP! MY COMPUTER IS BERSERK!

and will do so indefinitely, until we tell it to STOP. When you have seen
enough, Stop (EJM). This “breaks” the program Run. Now, List (EJ@) the
program.

Endless Loop

We created what is called an “endless loop.” Remember our earlier programs
which kept coming back for more INPUT? They were in a very similar
Stloop.'”

76

FOR-NEXT Looping 77

Line 40 is an unconditional GOTO statement which causes the Computer to
cycle back and forth (“loop”) between Lines 20 and 40 forever, if not halted.
This idea has great potential if we can harness it.

Modify the program to read:

10 FOR N =1 TO 5

20 PRINT "HELP! MY COMPUTER IS BERSERK!"
40 NEXT N

60 PRINT "NO --- IT’S UNDER CONTROL."

...and Run it.

The line:

HELP! MY COMPUTER IS BERSERK!
was PRINTed 5 times, then:

NO --- IT’S UNDER CONTROL.

The FOR-NEXT loop created in Lines 10 and 40 caused the Computer to
cycle through Lines 10, 20, and 40 exactly 5 times, then continue through the
rest of the program. Each time the Computer hit Line 40, it saw “NEXT N.”
The word NEXT caused the value of N to increase (or STEP) by exactly 1.
The Computer “conditionally” went back to the FOR N = statement that began
the loop.

Execution of the NEXT statement is “conditional” on N being less than or
equal to 5 because Line 10 says FOR N = 1 TO 5. After the 5th pass through
the loop, the built-in test fails, the loop is broken and program execu-
tion moves on. The FOR-NEXT statement harnessed the endless loop!

NOW THAT'S (7
A0\ WHAT | cALL
=2 AN ENDLESS

78 Chapter 12

L]
The Step Function
There are times when it is desirable to increment the FOR-NEXT loop by

some value other than 1. The STEP function allows it. Change Line 10 to
read:

10 FOR N = 1 TO 5 STEP 2

...and Run.

Line 20 was PRINTed only 3 times (when N=1, N=3, and N=5). On the
first pass through the program, when NEXT N was hit, it was incremented
(or STEPped) by the value of 2, instead of the default value of 1. On the
second pass through the loop, N equaled 3. On the third pass N equaled 5.

FOR-NEXT loops can be STEPped by any decimal number, even negative
numbers. Why we would want to STEP with negative numbers might seem
vague at this time, but that too will be understood with time. Meanwhile,
change the following Line:

10 FOR N = 5 TO 1 STEP -1

...and Run,

Five passeé through the loop stepping down from 5 to 1 is exactly the same
as stepping up from 1 to 5. Line 20 was still PRINTed 5 times. Change the
STEP from -1 to -2.5 and Run again.

Amazing! It PRINTed exactly twice. Smart Computer. Change the STEP
back to -1.

Modifying The FOR-NEXT Loop

Suppose we want to PRINT both Lines 20 and 60 five times, alternating
between them. How will you change the program to accomplish it? Go ahead
and make the change.

HINT: If you can’t figure it out, try moving the NEXT N Line to another
position.

HELP! MY COMPUTER
1S BERSERK ! HELP!
MY COMPUTER 15
))—. BERZERK! UELP!
Y= MY COMPUTER I5
Re BERZERK! HELP!
MY COMPUTER 15
BERAERK ! HELP!
MY cOMPUITER 12
BERAERK! HELP!
MY COMPUTER

|5 BERZERK!

HECP! MY
COMPUTER

........
.........

.....

80 Chapter 12
. -]}

Right -- we moved Line 40 to Line 70, and the screen reads:

HELP! MY COMPUTER IS BERSERK!
NO --- IT’S UNDER CONTROL.
HELP! MY COMPUTER IS BERSERK!
NO --- IT’S UNDER CONTROL.

...etc., 3 more times.

How would you modify the program so Line 20 is PRINTed 5 times, then
Line 60 is PRINTed 3 times? Make the changes, and Run.

The New program might read:

10 FOR N =1 TO O

20 PRINT "HELP! MY COMPUTER IS BERSERK!"
40 NEXT N

°0 FOR M = 1 T0 3

60 PRINT "NO --- IT’S UNDER CONTROL."

70 NEXT M

We now have a program with two controlled loops, sometimes called DO-
loops. The first do-loop DOes something S times; the second one DOes some-
thing 3 times. We used the letter N for the first loop and M for the second,
but any letters can be used. In fact, since the two loops are totally separate
we could have used the letter N for both of them -- not an uncommon practice
in large programs where many of the letters are needed as variables.

Run the program. Be sure you understand the fundamental principles and the
variations. Then Save on disk As DOLoor.

Incremental Looping
There is nothing magic about the FOR-NEXT loop; in fact, you may have
already thought of another (longer) way to accomplish the same thing by using

FOR-NEXT Looping 81
e

features we learned earlier. Stop now, and see if you can figure out a way -
to construct a workable do-loop substituting something else in place of the
FOR-NEXT statement.

Answer:

10 N = 1

20 PRINT "HELP! MY COMPUTER IS BERSERK!"
30 N =N+1

40 IF N < 6 THEN 20

60 PRINT "NO --- IT’S UNDER CONTROL."

Line 10 initializes the value of N, giving it an initial, or beginning, value of
1. Without initializing, N could have been any number from a previous pro-
gram or program Line. Note that selecting Run, or typing RUN, automatically
resets all variables back to 0 before the program executes.

Initialize: initially, or at the beginning, establishes the value of a variable.

Line 30 increments it by 1, making N one more than whatever it was before.
Line 40 uses one relational operator, <, to check that the new value of N
is within the bounds we have established. If not, the test fails and the program
continues.

Increments: STEPs (increases or decreases) values by specific amounts: by 1’s,
3’s, 5’s, or whatever.

Note that in this system of incrementing and testing we do not send the pro-
gram back to Line 10 as was the case with FOR-NEXT. What would happen
if we did?

Answer: We would keep re-initializing the value of N to equal 1 and would
again form an endless loop.

82 Chapter 12
.]

The opposite of incrementing is decrementing. Change the program so Line
30 reads:

30 N =N-1

To decrement is to make smaller.

...then make other changes as needed to make the program work.
The changed Lines read: |
10 N 6

30 N N -1
40 IF N>1 THEN 20

Putting FOR-NEXT To Work

It isn’t very exciting just seeing or doing the same thing over and over. The
FOR-NEXT loop has to have a more noble purpose. It has many, and we will
be learning new ones for a long time.

Suppose we want to PRINT out a chart showing how the time it takes to fly
from London to San Diego varies with the speed at which we fly. (Remember,
the formula is D = R*T.) Let’s PRINT out the flight time required for each
speed between 100 mph and 1000 mph, in increments of 100 mph. The pro-
gram might look like this:

10 REM * TIME VS8 RATE FLIGHT CHART #*
20 D = B00O

30 PRINT " LONDON TO S5AN DIEGO"

40 PRINT " DISTANCE ="3D3i"(MILES)"
50 PRINT "RATE (MPH)":"TIME (HOURS)"
60 PRINT

70 FOR R=100 TO 1000 STEP 100

FOR-NEXT Looping 83
L

80 T = D/R
80 PRINT R»T
100 NEXT R

Type in the program, select Show Output from Windows menu to remove the
List window from the display, then Run.

How about that...? Try doing that one on the old slide rule or hand calculator!

It is really solving the D = R*T problem 10 times in a row, for different
values and PRINTing out the result. The screen should look like this:

LONDON TO SAN DIEGOD
DISTANCE = G000 (MILES)

RATE (MPH) TIME (HOURS)
100 60

200 30

300 20

400 15

500 12

600 10

700 ' 8.571428
800 7.5

800 6.666667
1000 e

Analyzing The Program
Press E2[M, and look through the program. Observe these many features before
we do some exercises to change it:

1. The REM statement identifies the program for future use.

84 Chapter 12

2.

Line 20 initializes the value of D. D will remain at its initial-
ized value.

. Lines 30 through 60 PRINT the chart heading.

Line 50 uses automatic zone spacing (the comma) to place those
column headings, and Line 60 PRINTs a blank line.

Remember zone spacing? The comma (,) in a PRINT statement automatically starts
the PRINTing in the next PRINT zone. We define the WIDTH of that zone. It
is the second value in the WIDTH command, i.e., in WIDTH 60,12, 60 is the
screen width, and 12 is the zone width.

The WIDTH command can be built right into a program. Try adding:
15 WIDTH 30,10

...and RUN. Then:

15 WIDTH 79,35

Experiment with different values, ending up with:
15 WIDTH 62,12

. Line 70 established the FOR-NEXT loop complete with a STEP.

It says, “Initialize the rate (R) at 100 mph, and make passes
through the ‘do-loop’ with values of R incremented by values of
100 mph until a final value of 1000 mph is reached.” Line 100
is the other half of the loop.

. Line 80 contains the actual formula which calculates the answer.

. Line 90 PRINTs the two values. They are positioned under

their headings by automatic zone spacing (the commas).

. Lines 80 and 90 are indented from the rest of the program text.

This is a simple programming technique which highlights the do-
loop and makes reading and troubleshooting easier. Try to adopt
good programming practices like this as you do the exercises.
Indenting does take up a little memory space and, on long pro-
grams, is sometimes omitted.

FOR-NEXT Looping 85
e A

Take a deep breath, and go back over any points you might have missed in
this lesson. Save the program onto disk As LONDON1 because we will use
it in the next Chapter, continuing our study of FOR-NEXT loops.

Learned In Chapter 12

Statements Miscellaneous Menu
FOR-NEXT Increment Windows
STEP Decrement Show Output
Initialize
“Do-Loop”

Indenting program Lines

Chapter 13

Som Of FOR=NEXT

his is heady stuff. If you turned the Computer off between Chapters,
I LOAD in the i ONDON1 program which we SAVEd in the last
Chapter.

Modify the program so the rate and time are calculated and PRINTed for every
50 mph increment instead of the 100 mph increment presently in the program.

...and Run.

Answer: 70 FOR R 100 TO 1000 STEP 50

Trouble In The Old Corral

What a revolting development! The PRINTout goes so fast we can’t read it,
and by the time it stops, the top part is cut off. Aught’a known you can’t
trust these computers!

Solutions For Sale

Several solutions are available:

1. Placing the pointer on the Edit, Run or Windows menu and
pressing the mouse button will stop the execution of a program
or the listing of files until the button is released.

2. Choosing Suspend from the Run menu (or pressing the
and the §] keys at the same time) will halt program execution or
LISTing. Pressing almost any other key will start it again. Run
the program several times, and practice stopping and starting
using this method.

86

Son Of FOR-NEXT 87

L,

There’s another solution we must try. While the program is RUNning, -- choose
Stop (or press the EJand [l keys) from the Run menu. While Suspend (E§§) can
be thought of as just pressing in the clutch, a Stop (E3Jll) is more like turning
off the engine.

To restart execution after a Stop, either select Start from the Run menu (or type
RUN in the Command window) to start all over again from the beginning, or
choose Continue to continue execution from the “break-point.” Choosing Continue
(or typing CONT in the Command window) does not reset all variables back to
zero, which can be an important consideration.

3. For a classy display we can build a “pause” into the program.
The screen will fill, pause a moment, then automatically con-
tinue if we don’t interrupt execution.

The Timing Loop
It takes time to do everything. Even Macintosh takes time to do some things,
though we may be awed by its speed.

We are going to write and experiment with a timing program using Lines 1-9
without erasing the one already resident. The new one must END without
plowing ahead into the LONDONI1 program, thus, Line 9. Insert the cursor
at the front of Line 10, and type Lines 1-9 hitting at the end of each.

1 REM * TIMER PROGRAM +*
4 PRINT "DON’'T GO AMWAY"
S FOR X = 1 TO 22000
6 NEXT X
7 PRINT "TIMER PROGRAM ENDED."
9 END
...and Run.

Remember back when we learned not to do this (number Lines in tight sequence)?
Well ... if we hadn’t followed that rule with our LONDON1 program, we
wouldn’t have this nice space to demonstrate the point.

How long did it take? Well, it did take time, didn’t it? About 10 seconds

SHHH K
DON'T DISTURE
'IM!' HEZ IN
THE MIDDLE

Son Of FOR-NEXT 89
S e

from the time the Computer displayed DON‘T GO AWAY until it displayed
TIMER PROGRAM ENDED. Microsoft BASIC can execute approximately
2200 FOR-NEXT loops per second. That means, by specifying the number of
loops, we can build in as long a time-delay as we wish.

Change the program to create a 30-second delay. Time it against your watch
or clock to see how accurate it is.

Answer: 3 FOR X = 1 TO 66000

EXERCISE 13-1: Using the space in Lines 1 through 7, design and
Run a program which:

1) Asks us how many seconds delay we wish, allows us to
enter a number, then executes the delay and reports back
at the end that the delay is over and how many seconds it
took. A sample answer is in Section B.

How To Handle Long Program LISTings

We now have two programs in the Computer. Double click inside the List
window title bar to enlarge the List window to full size. My, my -- the pro-
gram fills the entire List window, and the last Lines of the second program
are chopped off. Now what do we do?

Rather than wring our hands about the problem, try each of the following
solutions and watch the screen very carefully as each does its thing.

To LIST a program beginning with a specific Line:
Type LIST and the Line number in the Command window. The
program, beginning with the specified Line number, will appear
in the List window. (This LISTing can be done without
activating the List window.)

To LIST a particular portion of the window:
Point to the scroll box, hold down the button and drag the scroll

90 Chapter 13

e

box down (or up). When you release the button, a portion of the
program will pop into view. Scrolling the box toward the top,
center, or bottom of the scroll bar will LIST respectively the top,
center, or bottom portion of the program.

To scroll the LISTing one Line at a time:
Move the pointer to and click the down arrow. The program will
scroll upwards one Line at a time. Click the up arrow to scroll
the program downwards.

Is There No End To This Magic?

To RUN the first program resident in the Computer -- we just type RUN. To
RUN the second one we have a variation of RUN called:

RUN ###

The #’s represent the number of the Line we want the RUN to start with.

...and as you might suspect, it is similar to LIST ###. To RUN the program
starting with Line 10, select Show Command window, and type:

RUN 10

...and that’s just what happens.

Don’t forget the space between RUN and 10. The Macintosh is fussy about some
of these thingi

Will wonders never cease? If there are 20 or 30 programs in the Computer
at the same time, we can RUN just the one we want, provided we know its
starting Line number. What’s more, we can start any program in the middle
(or elsewhere) for purposes of troubleshooting -- something we will do as our
programs get longer and more complicated.

Son Of FOR-NEXT 91

Remember: Using RUN reinitializes all variables to zero. If you want to preserve
the current values, use GOTO ###.

Meanwhile, Back At The Ranch

We got into this whole messy business trying to find a way to slow down our
RUN on the flight times from London to San Diego. In the process we found
out a lot more about the Computer and learned to build a timer loop. Now
let’s see if we can build a pause right into the Distance program. First, erase
the test program by typing the command:

DELETE 1-89

Don’t forget the space after DELETE.

Wow! How’s that for power? It DELETEd those Lines, without having to cut
out each individual Line Number with the Editor.

Wrong Way Computer
One way to STOP the fast parade of information is to put in a STOP. Insert:

75 IF R 600 THEN STOP

...and Run.

We know R is going to increment from 100 to 1000. 600 is a little more than
half the way to the end. See how the chart PRINTed out to 550 mph, then
hit the STOP as 600 came racing down to Line 75? The Output window dis-
plays the first half of the chart, then the Computer beeps, flashes:

Prodram stoprpred (in the upper right)

and draws a block around the contents of Line 75. This means the program
is STOPped, or broken, in Line 75. To restart the program merely choose

92 Chapter 13

Continue (from the Run menu) or enter the Command window and type:

CONT

It automatically picks up where it left off and PRINTs the rest of the chart,
or executes until it hits another STOP.

It may be desirable to change the size of the Command window and the Output
window a bit to make the Londonl desktop as large as possible.

At Last

The ultimate plan is to build a timer into the program so as not to completely
STOP execution, but merely delay it for study.

Insert:

73 IF R <> 800 THEN 80
74 FOR X =1 T0 11000
75 NEXT X

Be sure to Cut out the old Line 75.

...and Run.

Hey! It really works! As long as R does not equal 600, the program skips
over the delay loop in Lines 74 and 75. When R does equal 600, the test
“falls through” and Lines 74 and 75 “play catch” 11000 times, delaying the
program’s execution for about 5 seconds.

Time For A Cool One

It’s been a long and tortuous route with numerous scenic side trips, but we
finally made it. You picked up so many smarts in these 2 lessons on FOR-
NEXT, that it’s your turn to put them to work.

Son Of FOR-NEXT 93
L

EXERCISE 13-2: Modify the resident program so that in this head-
ing, (MPH) appears below RATE, and (HOURS) appears below
TIME. This one should be a breeze.

EXERCISE 13-3: Design, write and Run a program which will cal-
culate and PRINT income at yearly, monthly, weekly and daily rates,
based on a 40-hour week, a 1/12th-year month, and a 52-week
year. Do this for yearly incomes between $5,000 and $20,000 in
$1,000 increments. Document your program with REM statements
to explain the equations you create.

Some of the exercise programs are becoming too long to leave work space for
your ideas. From now on, use a pad of paper for working up the answers.

EXERCISE 13-4: Here's an old chestnut that the Computer really
eats up: Design, write and Run a program which tells how many
days we have to work, starting at a penny a day, so if our salary
doubles each day, we know which day we eam at least a million
dollars. Include columns which show each day’s number, its daily
rate, and the total income to-date. Make the program stop after
PRINTing the first day our daily rate is a million dollars or more.
(After that ... who cares?)

Answers to these exercises are found in Section B.

The “Brute Force” Method

(Subtitled: Get A Bigger Hammer)

Much to the consternation of some teachers, a great value of the Computer
is its ability to do the tedious work involved in the “cut and try,” “hunt and
peck” or other less respectable methods of finding an answer (or attempting
to prove the correctness of a theory, theorem or principle). This method
involves trying many possible solutions to see if one fits, or to find the closest
one, or establish a trend. Beyond that, it can be a powerful learning tool by
providing reams of data in chart or graph form which would simply take too

94 Chapter 13

long to generate by hand. For example:

EXERCISE 13-5: You have a 1000 foot roll of fencing wire and
want to make a rectangular pasture.

Using all of the wire, determine what length and width dimensions
will allow you to enclose the maximum number of square feet?
Use the brute force method; let the Computer try different values
for L and W and PRINT out the Area fenced by each pair of L and
W.

The formula for area is Area = Length times Width, or A=L*W.

EXERCISE 13-6: Extra credit problem for ‘electronics types”

As a further example (more complex and tends to prove the point
better) try this final (optional) assignment. It involves a problem
confronted by every electricity student who has studied SOURCES
(batteries, generators) and LOADS (lights, resistors).

The Maximum D.C. Power Transfer Theorem states,
“Maximum DC power is delivered to an electrical load when the

resistance of that load is equal in value to the intemal resistance
of the source.”

And then the arguments begin...

“Use a HIGH resistance load because it will drop more voltage
and accept more power.” (P=V#R)

*No, use a LOW resistance load so it will draw more current
and accept more power.” (P=I*R)

‘Use a load value somewhere in between.” (P=I*V)

Don't necessarily shy away from this problem if electricity doesn’t
happen to be your bag. Enough information is given to write the
program. The principle, the optimizing of a value, is applicable to
many fields of endeavor and is little short of profound.

Son Of FOR-NEXT 95
e —

With the values given in the schematic, design, write and Run a
program which will try out values of load resistance ranging from
1 to 20 ohms, in 1 ohm increments, and PRINT the answers to the
following:

1. Value of Load Resistance (from 1 to 20 ohms)

Q. Total circuit power (circuit cumrent squared, times circuit
resistance) = I * (10 + R)

3. Power lost in source (circuit cument squared, times source
resistance) = I * 10

4. Power delivered to load (circuit current squared, times load
resistance) = I * R

Note: Circuit current is found by dividing source voltage (120 volts)
by total circuit resistance (load resistance + 10 ohms source resist-
tance). Everything follows Ohms Law (V=*R) and Watts Law (P=|*
W.

GQOD LUCK! Don't look at the answer until you've got it whipped.

120 VOLTS

==
|

< Load
Resistance
" R
10
OHMS |
—_—— J

96 Chapter 13

Learned In Chapter 13

Commands Miscellaneous Menu

LIST ### Timer Loop Run

RUN ### “Brute Force” method Suspend (E§8)
DELETE ### Stop (E3)

CONT Continue

Chapter 14

Formattimg Withh TABR

q fter those last few Chapters, it’s time for an easy one.

We already know 3 ways to set up our output PRINT format.
We can:

1. Enclose what we want to say in quotes, inserting blank spaces
as necessary.

2. Separate the objects of the PRINT statement with semi-colons
so as to PRINT them tightly together on the same line.

3. Separate the objects of the PRINT statement with commas to
PRINT them on the same line in the different PRINT “zones.”

Macintosh will default to 5 PRINT zones unless reset using the WIDTH statement.

A 4th way is by using the TAB function, which is similar to the TAB on a
regular typewriter. TAB is especially useful when the output consists of col-
umns of numbers with headings. Type in the following NEW program and
Run:

10 PRINT TAB(S)i"THE"ITAB(20)3§"TOTAL"S
TAB(353) i "SPENT"

20 PRINT TAB(S)i"BUDGET"SiTAB(20)3i"YEAR'S" S
TAB(33) i"THIS"

30 PRINT TAB(S)i"CATEGORY"STAB(20)3i"BUDGET"S
TAB(35) i "MONTH"

97

98 Chapter 14
—]

The Run should appear:

THE TOTAL SPENT
BUDGET YEAR'S THIS
CATEGORY BUDGET MONTH

EXERCISE 14-1: EDIT the above program using the 3 ways we

know (so far) to format PRINTing. Here is a start:

10 PRINT"THE TOTAL SPENT"

20 PRINT"BUDGET" »"YEAR'’S" »"THIS"

30 PRINT TAB()3S"CATEGORY"STAB()3
"BUDGET"STAB() i"MONTH"

Use ordinary spacing for the first Line of the heading, zone spacing
for the second Line and TABbing for the third Lline.

A semi-colon is traditionally used following TAB, as shown above. Most newer
BASIC interpreters permit a blank, quote marks or even no symbol, instead.

10 PRINT TAB(10) "OOPS, NO SEMICOLON!®

Runs just fine, but leave out semi-colons at your own peril.

The Computer will start PRINTing TAB(##) spaces to the right of the left
margin. It is important to remember when using TABs that whenever numbers
or numeric variables are PRINTed, the Computer inserts one additional space
to the left of the number to allow for the — or + sign.

Type this NEW program:

10 A = 3
20B = O
30 C=A+0B

HEV! THE MAN
JUST 2AID TO
TAKE IT EAGY-
LETZ NOT GO
OVERBOARD |

DO
........
.........
. 0 0

OO0
.....
BOOO
......

...........

‘‘‘‘‘‘‘‘‘‘‘‘
..........

......

......
Wty

100 Chapter 14
-]

40 PRINT TAB(10)3i"A"3STAB(20)3"B"3iTAB(30);i"C"
50 PRINT TAB(10)3ASTAB(20)3iB3ITAB(30)iC

...and Run.

The results...

A B c
3 S5 8

The numbers are indented one space beyond the TAB(##). Keep this in mind
when lining up (or indenting) headings and answers.

Change Line 20 to read:
20 B = -5

...and Run.
See why numbers indent one space?

Whole numbers are most commonly used as TAB values, but on those rare
occasions when a fraction is used, the Computer rounds the fraction to the
nearest whole number before TABbing.

All of the rules we have seen so far for TABbing apply whether the TAB
value is an actual number or a numeric variable.

The Long Lines Division

Have you ever wondered what would happen if we had to PRINT a great
number of headings or answers on the same line -- but didn’t have enough
room on the program Line to neatly hold all the TAB statements? You have?
Really? You’re in luck because it’s easy. Type and Run the following New
program. It stretches the “leaving out of semi-colons” to the limits of
prudence.

10 A =0

Formatting With TAB 101
“

20
30
40
S0
60 =

70 =6

80 PRINT "A"TAB(10)"B"TAB(20)"C"TAB(30)"D"3
80 PRINT TAB(40)"E"TAB(SO)"F"TAB(BO)"G"

100 PRINT ASTAB(10)BITAB(20)C3ITAB(30)D3

110 PRINT TAB(40)ESTAB(SO)FIiTAB(B0)G

G Mm Mmoo
"
U B W N -

The trailing semi-colons (;) in Lines 80 and 100 do the trick. They make the
end of one PRINT Line continue right on to the next PRINT Line without
activating a carriage return. The combination of TAB and trailing semi-colon
allows us almost infinite flexibility in formatting the output.

Finally, to see the program crash when one too many liberties are taken with
semicolons, remove the last one in Line 110 and Run. '

The program Runs fine until the Computer encounters the second TAB instruc-
tion in Line 110. The Computer stops and displays the error message:

Subscript out of rande

Click the OK box, and insert a semicolon before the last TAB in Line 110.
Run again to make sure that fixed the problem.

POS(N) |

An additional and sometimes useful statement allows the Computer to report
back the horizontal POSition of the cursor. This simple New program exer-
cises the POS function.

S WIDTH 60

102 Chapter 14
- "]

10 INPUT "ANY NUMBER BETWEEN -9 AND 43"3A
20 PRINT TAB(10 + A)

30 PRINT POS(0)3

40 PRINT " IS NUMBER OF NEXT PRINT COLUMN"

...and RUN.
Line 5 sets the screen WIDTH to 60 characters.
Line 20 just TABs the cursor over 10 places from A.
Line 30, containing POS, is the key. The O inside the brackets is
just a “dummy.” Most any other number or variable would work as

well -- but something has to be placed there. POS reports back the
horizontal cursor POSition on the screen.

Remember, most Macintosh fonts are proportionally spaced. Characters may not
always line up properly unless the monospace “Monaco” font is specified.

That’s enough fooling around with Mother Nature.

EXERCISE 14-2: Rework the answer to Exercise 13-3 to include the
hourly rate of pay in the PRINTout. Use the TAB Function to have
the chart display all 5 columns side by side.

Learned In Chapter 14

Statements Print Modifiers Miscellaneous

POS TAB Trailing semi-colon

Chapter 15

Gramdsom Of RFOR-NEXT

he FOR-NEXT loop didn’t go away for long. It returns here more
l powerful than ever. Type this New program:

10 FOR A = 1 TO 3

20 PRINT "A LOOP"

30 FOR B = 1 70 2
40 PRINT "B LOOP"
20 NEXT B

60 NEXT A

...and Run.

For good program readability, add 2 blank spaces in Line 20 before PRINT, 3 in
Line 30 before FOR, 4 in 40 before PRINT, and 3 in 50 before NEXT.

The result is:

A LOOP
B LOOP
B LOOP
A LOOP
B LOOP
B LOOP
A LOOP
B LOOP
B LOOP

103

104 Chapter 15

-]
This display vividly demonstrates operation of the nested FOR-NEXT loop.
“Nesting” is used in the same sense that drinking glasses are “nested” when
stored to save space. Certain types of portable chairs, empty cardboard boxes,
etc. can be nested. They fit one inside the other for easy stacking.

Let’s analyze the program a Line at a time:

Line 10 establishes the first FOR-NEXT loop, called A, and directs
that it be executed 3 times.

Line 20 PRINTs A LOOP so we will know where it came from in
the program. See how this program Line is indented to make it
stand out as being nested in the “A loop”?

Line 30 establishes the second loop, called B, and directs that it be
executed twice. It is indented even more so we can instantly see
that it is buried even deeper in the “A” loop.

Line 40 PRINTs two items: “nothing” in the 1st PRINT zone, then
the comma kicks us into the 2nd PRINT zone where B LOOP is
PRINTed. Makes for a clear distinction on the screen between A
loop and B loop, eh?

Line 50 completes the “B” loop and returns control to Line 30 for
as many executions of the “B” loop as Line 30 directs. (So far we
have PRINTed one “A” and one “B.”)

Line 60 ends the first pass through the “A” loop and sends control
back to Line 10, the beginning of the A loop. The A loop has to
be executed 3 times before the program RUN is complete,
PRINTing “A” 3 times and “B” six times (3 times 2).

Study the program and the explanation until you completely comprehend. It’s
simple but powerful magic.

Okay, to get a better “feel” for this nested loop (or loop within a loop) busi-
ness, let’s play with the program. Change Line 10 to read:

10 FOR A =1 T0O S

...and Run.

AR

NOW HE'e \
INTO NEST- .

54
te -.. N .
. ..0
C.‘
B
. <
o " 0 7
) . . =
s . * Ed .
.. o
. .
. e
“?.«0. A
L Rsewrar ke
Ppecs wdeek
T . g
PETOOR D04 ”
e .
13\ .

106 Chapter 15

Right! A was PRINTed 5 times, meaning the “A” loop was executed 5 times,
and B was PRINTed 10 times -- twice for each pass of the “A” loop. Now
change Line 30 to read:

30 FOR B =1 70 4

...and Run.

Nothing to it! A was PRINTed 5 times, and B PRINTed 20 times. Do you
remember what to do if the A’s and B’s whiz by too fast? Press the or
choose Suspend from the Control menu to temporarily freeze the display.
Press most any other key to continue.

How To Goof-Up Nested FOR-NEXT Loops

The most common error beginning programmers make with nested loops is
improper nesting. Change these Lines:

50 NEXT A
680 NEXT B

...and Run.

The Computer displays a dialog box saying:
NEXT without FOR

and blocks Line 10.

Looking at the program, we quickly see that the B loop is not nested within
the A loop. The FOR part of the B loop is inside the A loop, but the NEXT
part is outside it. That doesn’t work! A later chapter deals with something
called “flow charting,” a means of helping us plan programs to avoid this type
of problem. Meanwhile, we just have to be careful.

Breaking Out Of Loops
Improper nesting is illegal, but breaking out of a loop when a desired con-

Grandson Of FOR-NEXT 107

dition has been met is OK. Click the OK box, then add and change these
Lines:

50 NEXT B

5 IF A = 2 GOTO 100

B0 NEXT A

88 END

100 PRINT "A EQUALED 2. RUN ENDED."

...and Run.

As the screen shows, we “bailed out” of the A loop when A equaled 2 and
hit the Test Line at 55. The END in Line 99 is just a precautionary block
set up to STOP the Computer from executing into Line 100 unless specifically
directed to go there. That would never happen in this simple program, but we
will use protective ENDs from time to time to remind us that Lines which
should be reached only by specific GOTO or IF-THEN statements must be
protected against accidental “hits.”

We’ll be seeing a lot of the nested FOR-NEXT loop now that we know what
it is and can put it to use.

EXERCISE 15-1: Re-enter the original program found at the begin-
ning of this Chapter. It contains a B loop nested within the A
loop. Make the necessary additions to this program so a new loop
called “C” will be nested within the B loop and will PRINT °C
LOOP” 4 times for each pass of the B loop.

EXERCISE 15-2: Use the program which is the answer to Exercise
15-1. Make the necessary additions to this program so a new loop
called "D” will be nested within the C loop and will PRINT ‘D
LOOP” 5 times for each pass of the C loop.

WHILE - WEND

A more obscure variation on the FOR-NEXT idea is the WHILE-WEND state-
ment. WHILE is the beginning statement in a series which is executed
repeatedly until a certain WHILE condition becomes false.

108 Chapter 15
.]

The loop which begins with WHILE must be closed by a WEND. Type in
this NEW program:

When writing programs, be sure to indent Lines to highlight nesting or program
flow. It helps when reading them - and is a great aid when debugging (trou-
bleshmﬁ@ problems. End of message.

10 X = 1

20 WHILE X<>0

30 INPUT X

40 § =86 + X

20 WEND

60 PRINT "SUM ="iS5
...and Run,
INPUT several non-zero numbers, then INPUT a 0. As long as X does not
= 0, WEND keeps returning execution to WHILE. When X is INPUT as 0,
the WHILE statement in Line 20 interprets the 0 as its “bail-out” cue and
exits the loop via WEND. Line 60 PRINTS the sum of the numbers INPUT,
And with that, let’s WEND our way towards the next Chapter.

Learned In Chapter 15

Statements Miscellaneous
WHILE-WEND Nested FOR-NEXT loops

Protective END blocks

Chapter 16

The INTeger Functiomn

nteger? “I can’t even pronounce it, let alone understand it.” Oh,
I come, come. Don’t let old nightmares of being trapped in Algebra
class stop you now. It’s pronounced (IN-teh-jur) and simply means a
whole number like -5, 0, or 3, etc. How difficult can that be? Come to think
of it, some folks make a whole career of complicating simple ideas. We try
to do just the opposite.

The INTeger function, INT(X), allows us to “round off” any number, large
or small, positive or negative, into an INTeger, or whole number.

Careful -- we’re not talking about ordinary rounding. Ordinary rounding gives us
the closest whole number, whether it’s larger or smaller than X. INT(X), on the
other hand, gives us the largest whole number which is less than or equal to
X. As you’ll see in this Chapter, this is a very versatile form of rounding -~ in
fact, we can use it to produce the other “ordinary” kind of rounding.

Select New from the File menu to clear out any old programs, then type:

i0 X 3.14159
20 Y INT(X)
S0 PRINT "Y ="3Y

...and Run.

The display reads:

Y = 3

109

110 Chapter 16
.]

Oh -- success is so sweet! It rounded 3.14159 off to the whole number 3.
Change Line 10 to read:

10 X = -3.14159

...and Run.

Good Grief! It rounded the answer down to read:
Y = -4

What kind of rounding is this? Easy. The INT function always rounds down
to the next lowest whole number. Pretty hard to get that confused! It makes
a positive number less positive and makes a negative number more negative
(same thing as less positive). At least it’s consistent.

Taking it a Line at a time:

Line 10 set the value of X (or any of our other alphabet-soup vari-
ables) equal to the value we specified, in this case pi.

Line 20 found the INTeger value of X and assigned it to a variable
name. We chose Y.

Line 50 PRINTed an identification label (Y =) followed by the
value of Y.

Not Content To Leave Well Enough Alone
We can do some foxy things by combining a FOR-NEXT loop with the
INTeger function.

Change the program to read:

10 X = 3.14159
20 Y = INT(X)
30 2 = X - Y

40 PRINT "X ="3X

The INTeger Function 111
—

50 PRINT "Y ="jY
B0 PRINT "Z ="3z

Save As INTEGER1 ... and Run.

AHA! T don’t know what we’ve discovered, but it must be good for some-
thing. It reads:

X = 3.14158
Y =3
Z = +1415901

We’ve split the value of X into its INTeger (whole number) value (calling it
Y) and its decimal part (calling it Z).

Lines 40, 50, and 60 merely PRINTed the results.

Hold The Phone
Oh - oh! Why doesn’t Z equal the exact difference between X and Y? Where
did that “01” in the decimal value come from? What gives?

The slight difference has nothing to do with the INT function. You have dis-
covered the Computer’s limit of accuracy. Just like a calculator (or a person),
a computer can never be perfectly accurate all the time. For short arithmetic
expressions, the Mac is accurate to six digits. In longer, more complex
expressions, such a minute error in the sixth digit can be magnified to where
it becoms significant. All programmers have to cope with this kind of built-in
error.

There is a way to control the accuracy of our results. It involves artificially
rounding the fraction to the desired number of decimal places and then forcing
the Computer to PRINT out only those digits which are “properly rounded.”

For example, suppose we need pi accurate to only 3 decimal places. (Of

course, we can specify it as 3.142, but that’s not the point.) Select New, then
enter and Run the following program:

10 X = 3.14158

112 Chapter 16
T T T T e T e T S e e e S G T e e e R S ey PR R S

20 X = X + ,0003
30 X = INT(X * 1000)/1000
40 PRINT X

Adding .0005 in Line 20 gives our fraction a “push in the right direction.” If
this fraction has a digit greater than 4 in its 10-thousandths-place, then adding
.0005 will effectively increase the thousandths-place digit by 1. Otherwise,
the added .0005 will have no effect on the final result. This results in what’s
called “4/5 rounding.”

1'M ROUNIDING
OFF A NUMBeR!

_/

Try using other values than pi for X (just make sure X*1000 isn’t too large
for the INT function to handle).

It’s easy to change the program to round accurately to a number of decimal
places. For example, to round X off at the hundredths-place (2 digits to the
right of the decimal point), change Lines 20 and 30 to read:

20 X = X + ,00D
30 X INT(X * 100)/100

...and Run, using several values for X.

This trick is very useful when PRINTing out dollars-and-cents. It prevents $39.995
type prices.

HMMMM!!!

Do you suppose there is any way to separate each of the digits in 3.14159,
or in any other number? Do you suppose we would have brought it up if
there wasn’t? After all (mumble, mumble).

The INTeger Function 113
“

It’s really your turn to do some creative thinking, but we’ll get it started and

see if you can finish this idea. First, wipe out the resident program and
reOpen INTEGER1.

Now, if we multiply Z by 10, then Z will become a whole number plus a
decimal part: 1.4159. We can then take its INTeger value and strip off the
decimal part, leaving the left hand digit standing alone. Let’s label the Left-
hand digit L. and see what happens. Enter:

702 =2 % 10
80 L = INT(2)
90 PRINT "L ="jL

...and Run.

Hmmm! It reads:

3.14159
q _
+1415801
1

mr N < X
"

We peeled off the leftmost digit in the decimal. Can you think of a way we
might use a FOR-NEXT loop in order to strip off the rest?

Time Out For Creative Thinking!

.A g (...brief interlude of recorded music...) g v

After all, these digits might not be just an accurate value of pi, but a coded mes-
sage from a cereal box. If you don’t have the decoder ring, it’s tough luck, Charlie
-- unless you have a computer!

‘k ’h (...more recorded music...) oh 'b

" TIME QUT ma
Qﬁgﬁ\ TivVE %W«%%gi’%ﬁ"

Il|\|’,'ltl ll\\\\\

‘.
%

The INTeger Function 115
Enough thinking there on company time! Add these Lines:

75 FOR A =1 TO S
100 2 =2 - L
110 2 = Z % 10
120 NEXT A

Save As INTEGERZ2 and Run.
VOILA! The “PRINTout” reads:
3.14159

= 3

+1415901
1

u n
0o U = b

rrrrrnN<=x
u

Let’s analyze the program,

Line 75 began a FOR-NEXT loop with 5 passes, one for each of
the S digits right of the decimal.

Line 100 creates a new decimal value of Z by stripping off the
INTeger part. (Plugging in the values, Z = 14159 - 1 =
415901.)

Line 110 does the same as Line 70 did, multiplying the new
decimal value times 10 so as to make the left-hand digit an INTeger
and vulnerable to being snatched away by the INT function.

(Z = .415901 * 10 = 4.15901.)

Line 120 sends control back to Line 75 for another pass through
-the clipping program, and the rest is history.

116 Chapter 16

Is This Too Hard To Follow?

No -- it isn’t hard to follow, and we could go through and calculate every
intermediate value just like I did before, and it would be perfectly clear (to
coin a phrase). Let’s instead learn a way to let the Computer help us under-
stand what it is doing.

We can insert temporary PRINT Lines anywhere in any program to follow
every step in its execution. The Computer can actually overwhelm us with
data. By carefully indicating exactly what we want to know, it will display
the inner details of any process. Start by adding this Line:

72 PRINT "#72 Z ="3iZ

...and Run.
The essentials of this “test” or “debugging” or “flag” Line are:
1. It PRINTs something.

2. The PRINT tells the Line number for analysis and easy location
for later erasure.

3. It tells the name of the variable we are watching at that point
in the program.

4. It gives the value of that variable at that point.

This “flagging” is such a wonderful tool for troubleshooting stubborn programs
that you will want to make a habit of never forgetting to use it when the going
gets_tough.

It can be very helpful when inserted in FOR-NEXT loops -- so:
77 PRINT "#77 A ="iA

...and Run.

Wow! The information comes thick and fast! It tells what is happening during

The INTeger Function 117

cach pass of the loop. Hard to keep track of so much, and we’ve barely
begun. Is there some way to make it more readable?

Yes, there are lots of ways. Indenting is one simple way to separate the
answers from the troubleshooting data. Change Lines 72 and 77 as follows:

72 PRINT "#72 2 ="32
77 PRINT »4+"2#77 A ="3A
...and Run.

Ahh. How sweet it is. That is so easy to read, let’s monitor one more point
in the program. Type in:

105 PRINT »++"#105 Z ="32

Save As INTEGER3 ... and Run.
Very nice.

Well, there it is. All the data we can handle (and then some). By using Sus-
pend or the B 8 keys to temporarily halt execution, we can study the data
at every step to understand how the program works (or doesn’t). Do it.
Understand this program and all its little lessons completely. When you are
satisfied, go back and erase the “flags.”

INTeger Division

And if that isn’t quite enough to keep the mind reeling, there is another way
to get the INTeger value of the result of an equation without using the INT
function! It is called “INTeger division,” and instead of using the normal slash
/, we use a backslash \.

Choose New. Then enter this example:

10 X 23.887
20 Y 2567
30 PRINT "X/Y ="3X/Y

118 Chapter 16

e

40 PRINT "INT(X/Y) ="3INT(X/Y)
50 PRINT "X\Y ="iX\Y

...and RUN. It should produce:

X/Y = 8.344371
INT(X/Y) = 8
X\Y = 8

8? Is that right? Yep. INTeger division actually modifies the value of each
variable in the equation before the calculation is made. In this case, both X
and Y are rounded to the nearest whole numbers, 24 and 3, then division is
performed producing the INTeger value of 8. Hmmm, did that sink in?

Take a breather. You have learned quite enough in this Chapter.

EXERCISE 16-1: Enter this straightforward New program for finding
the area of a circle.

10 P = 3.,14159

20 PRINT "RADIUS": "AREA"
30 PRINT

40 FOR R=1 TO 10

590 A =P *R *R

B0 PRINT R»A

70 NEXT R

..and Run.

Area equals pi times the radius squared (that is, the radius times
itself).

Pretty routine stuff — huh? Problem is, who needs all those little
numbers to the far right of the decimal point. Oh, you do? Well,
there’s one in every crowd. The rest of us can do without them.
Modify the resident program to suppress all the numbers to the
right of the decimal point.

The INTeger Function 119
L

EXERCISE 16-2: Now, knowing just enough to be dangerous, and
in need of a Iot of humility, change Line 55 so that each value of
area is rounded (down) to be accurate to one decimal place. For

example:
RADIUS AREA
1 3.1

EXERCISE 16-3: Canying the above Exercise one step further,
modify the program Line 55 to round (down) the value of area to
be accurate to 2 decimal places.

Learned In Chapter 16

Math
Functions Operators Miscellaneous
INT(X) \ Flags

INTeger Division

Chapter 17

More Branching Statements

I

10
20
30
40
S50
60
70
80
80

100

110
120
130
140
150
160
170
180

INPUT
IF N
IF N
IF N
IF N
IF N
PRINT
PRINT
END
PRINT
END
PRINT
END
PRINT
END
PRINT
END
PRINT

1
2
3
4
o

|lN

llN

IIN

”N

llN

Enter this New program:

"TYPE A

GOTO
GOTO
GOTO
GOTO
GOTO

lll

2"

3"

4"

5“

t Went That-A-Way

NUMBER BETWEEN 1 AND 5"jiN
100
120
140
160
180

"THE NUMBER YOU TYPED WAS"
"NOT BETWEEN 1 AND S!"

120

More Branching Statements 121
C...___ e

Save As ONGOTO1 and Run it a few times to feel comfortable and to be sure
it is “debugged.” Be sure to try numbers outside the range of 1-5, including
0 and a negative number.

Debugged is an old Latin word which, freely translated, means “getting all the
errors out of a computer progmm.”

This program works fine for examining the value of a variable, N, and sending
the Computer off to a certain Line number to do what it says there. If there
are lots of possible directions in which to branch, however, we will want to
use a greatly improved test called ON-GOTO which cuts out lots of Lines of

programming.

DELETE Lines 20, 30, 40, 50 and 60. Remember how? (Type DELETE 20-
60 in the Command window.) '

Enter this new Line:

20 ON N GOTO 100+120,+140,160,180
Save As ONGOTO2 and Run a few times, as before.
Works fine until a negative number or a number greater than 255 is entered.
Then the Mac responds with an “Illegal function call” error and blocks the
contents of Line 20.

Using the ON-GOTO statement is really pretty simple, though it looks hard.
Line 20 says:

IF the “rounded” value of N is 1, THEN GOTO Line 100.
IF the “rounded” value of N is 2, THEN GOTO Line 120.
IF the “rounded” value of N is 3, THEN GOTO Line 140.
IF the “rounded” value of N is 4, THEN GOTO Line 160.

IF the “rounded” value of N is 5, THEN GOTO Line 180.

AW, LETZ
NOT DRAG
ouT THAT oL’
CHESTNUT

X)) FOR"DE-

Bue-/e-m@ el

More Branching Statements 123

IF the “rounded” value of N is not one of the numbers Listed
above, THEN move on to the next Line, Line 70.

The ON-GOTO statement has a built-in standard rounding system. If the
number INPUT is less than halfway between 2 INTegers, rounding is down-

ward to the Jower INTeger. If it is halfway or larger, rounding is to the next
higher INTeger.

Run again, and type in the following values of N to prove the point:

2.4
1.5
3.7
4.5001
4.5
0.6

Get the picture?

Variations On A Theme

Lots of tricks can be played to milk the most from ON-GOTO. For example,
if we wanted to branch out to 15 different locations but didn’t want to type
that many different numbers on a single ON-GOTO Line, we could use several
Lines, like this (don’t bother to do it):

20 ON N GOTOD 100,120,140,160,180
30 ON N-5 GOTO 200.,220,240,2B0,280
40 ON N-10 GOTO 300,320,340:360,380

and, of course, fill in the proper responses at those Line numbers.

In Line 30, it was necessary to subtract 5 from the number being INPUT as
N, since each new ON-GOTO Line starts counting again from the number 1.

In Line 40, since we had already provided for INPUTSs between 1 and 10, we
subtract 10 from N to cover the range from 11 through 15.

124 Chapter 17

We could have used any letter after “ON,” not just N. N can be the value
of a letter variable or a complete expression, either calculated in place or cal-
culated in a previous Line.

Give Me A SGN(X)

Using ON-GOTO along with a new function called SGN (it’s pronounced
“sign”) plus a modest amount of imagination produces a useful little routine.
But first, let’s learn about SGN.

The SGN function examines any number to see whether it is negative, zero,
or positive. It tells us the number is negative by giving us a (—1). (In com-
puter language, “it returns a —1.”) If the number is zero, it returns a (0). If
positive, it returns a (+1). SGN is a very simple function.

In order to sneak easily into the next concept, we will simulate the built-in
SGN function with a SUBROUTINE.

So What Is A Subroutine?

Funny you should ask. A subroutine is a short but very specialized program
(or routine) which is built into a large program to meet a specialized need.
The BASIC interpreter incorporates many of them which we never see.

As an example of how to create functions that are not included in our BASIC,
we will use a 5-Line subroutine instead of the “SGN” function to accomplish
the same thing. (Even though Microsoft BASIC has its own “SGN” function,
you should complete this Chapter to be sure you learn about subroutines. We
don’t want to turn out computer illiterates, you know.)

Until now we have assigned a number to each program Line to help identify
them for later study. Let’s try typing in this program without Line numbers.
“Scratch” the program now in memory by choosing New, then -- very care-
fully, type in this SGN subroutine:

END

SIGN:
REM * SGN(X) #* INPUT X» OUTPUT T=-1,0, OR +1
IF X< OTHEN T = -1
IF X =0 THEN T = 0

More Branching Statements 125
L ___

IF X > 0 THEN T = +1
RETURN

SIGN: is the label assigned to the subroutine, and it must be followed by
a colon (:). We indented the program’s Lines to help them stand out from the
other Lines. Remember, indenting isn’t mandatory, just a way to make pro-
grams easier to read.

We can assign any name we want to the routine as long as we do not use
a name that is reserved for use as a BASIC statement, command or function.
The label can contain any combination of letters and numbers, although it
must begin with a letter and cannot be more than 40 characters long.

A list of reserved words can be found in Appendix B.

“CALLING” A Subroutine

(Sort of like calling hogs...)

GOSUB directs the Computer to go to a Line number or a subprogram label,
execute what it says there and in the Lines following, and when done,
RETURN back to the Line containing that GOSUB statement. The RETURN
statement is always at the end of a subroutine.

RETURN is to GOSUB what NEXT is to FOR.

One advantage to writing subroutines (or subprograms) without Line numbers
is that the subroutine can be placed anywhere within the main program without
interfering with the existing Line numbering sequence. Notice that we placed
a protective END block in the first Line before our subroutine so the Computer
doesn’t come crashing into it. Of course, this won’t be necessary if the routine
happened to be placed ahead of the main program.

Getting Down To Business
Okay, now let’s combine GOSUB with the SGN subroutine to see what all
this fuss is about. Add:

10 INPUT "TYPE ANY NUMBER" X

126 Chapter 17
.}

20 GOSUB SIGN

30 ON T+2 GOTO 50.:70,80

40 END

50 PRINT "THE NUMBER IS NEGATIVE."
60 END

70 PRINT "THE NUMBER IS ZERO."

80 END

80 PRINT "THE NUMBER IS POSITIVE."

...and Run.

Try entering negative, zero and positive numbers to be sure it works. Most
of the program workings are obvious, but here is an analysis:

Line 10 INPUTs any number.

Line 20 sends the Computer to the subroutine labeled SIGN via a
GOSUB statement. This is different from an ordinary GOTO, since
a GOSUB will return control to the originating Line like a boo-
merang when the Computer hits a RETURN. The call to GOSUB
is not complete and will not move on to the next program Line
until a RETURN is found.

Three Lines in the subroutine contain the simple logic routine.

The last Line in the subroutine holds RETURN, which sends control
back to Line 20, which silently acknowledges the return and allows
execution to move to the next Line.

Line 30 is an ordinary ON-GOTO statement, but adds 2 to the value
of its variable, in this case T. Line 30 really says,

“If T is -1, THEN GOTO Line 50. If it is zero, THEN GOTO
Line 70, and if it is +1, GOTO Line 90.”

By adding 2 to each of the values from SGN, we “matched” them
up with the 1, 2, and 3 series which is built into the ON-GOTO
statement.

More Branching Statements 127
L.]

Lines 40, 60, and 80 are routine protective END blocks.

By the way, many subroutines are not this simple -- as a matter of fact, they often
contain very hairy mathematical derivations. We won’t bother trying to explain
any of them -- if you're heavily into Math, you go right ahead and play with the
numbers.

ON-GOSUB

ON-GOSUB is a variation on the ON-GOTO and GOSUB schemes. It allows
branching to a variety of subroutines from a single GOSUB statement. If we
had 3 subroutines and had to choose which one to use based on the value of
X, here is how the program might be structured. (Don’t bother to type it in.)

10 INPUT X

20 ON X GOSUB 1000,2000,3000

30 REM - CALCULATIONS HERE

60 REM - PRINT RESULTS HERE

98 END

1000 REM - 18T ROUTINE GOES HERE.
1088 RETURN

2000 REM - 2ND ROUTINE GOES HERE.
2098 RETURN

3000 REM - 3RD ROUTINE GOES HERE.
3099 RETURN

Or with labels:

10 INPUT X

20 ON X GOSUB FIRSTSECONDTHIRD
30 REM - CALCULATIONS HERE

40 REM - PRINT RESULTS HERE

899 END

128 Chapter 17
e]

FIRST: REM - 1ST ROUTINE GOES HERE.

RETURN

SECOND: REM - 2ZND ROUTINE GOES HERE.
RETURN _

THIRD: REM - 3RD ROUTINE GOES HERE.
RETURN

Preview Of Coming Attractions?

Like so much of what we are learning, this is just the tip of the iceberg. The
ON-GOTO and ON-GOSUB statements have many more clever applications,
and they will evolve as we need them. As a hint for restless minds, note that
the value of X (which we INPUT) was not used, but it didn’t go away. All
we did was find its SGN. Hmmm...

Routines Vs. Subroutines

In this Chapter we studied a special-purpose routine used as a SUBroutine. It
was easy to understand. All routines, understandable or not, can be built
directly into any program instead of being set aside and “called” as sub-
routines. The main value of subroutines is that they can be “called” repeatedly
from different parts of a program, which is often desirable. Ordinary routines
are usually only used once, so use of GOSUB and RETURN with them often
doesn’t make good programming sense.

One value of using routines as subroutines is that some are exceedingly com-
plex to type without error, and if each is typed once and SAVEd on disk, it
can be quickly and accurately LOADed back into the Computer as the first
step in creating a new program, or added to an existing one.

We’ll have more to say in a later Chapter. When you see just how powerful sub-
routines are, you’ll feel like your Macintosh is even smarter than it thinks it is.

Now, it’s your turn.

EXERCISE 17-1: Remove all traces of the subroutine from the resi-
dent program. Use the SGN function to accomplish the same thing
we have been doing with a subroutine. Hint: T = SGN(X)

More Branching Statements 129

Learned In Chapter 17

Functions Statements Miscellaneous
SGN(X) ON-GOTO Debugging
GOSUB Calling a subroutine
ON-GOSUB Routines

RETURN Labels

Chapter 18

Randomn Numbers

t RANDOM
A A random number is one with a value which is unpredictable. A
“Random Number Generator” is a device which pulls random numbers
“out of a hat.” Our Computer has an RND generator, and it works this way:

N = RND(X)

where N is the random number.
RND is the symbol for RaNDom Function.

X is a dummy value, either negative, zero, or positive, which can
be either placed between the parentheses or brought in as a variable
from elsewhere in the program.

Type this NEW program:

20 FOR N = 1 TO 10
30 PRINT RND(1)
40 NEXT N

...and Run. Did you observe:

1. A different number appeared each time?
2. All numbers were between 0 and 1?
3. Very small numbers were expressed in Exponential notation?

RND behaves exactly the same as RND(X), when X is a positive number.

Since this is almost always how it is used, we almost always omit (X). Put
a semi-colon behind the PRINT statement and increase the FOR-NEXT loop

130

Random Numbers 131

to 40 passes to put more numbers on the screen at one time. Line 10 is added
to keep the printout from running off the display.

10 WIDTH B0

20 FOR N = 1 TO 40
30 PRINT RND3S

40 NEXT N

Close the List window to get it out of the way and Run.

The Computer uses an internal “seed number” to produce a “random number”
series. The seed for RND is always the same. '

You get the idea.

Now bring back the List window (EJ[), and add:

50 PRINT RND(O)

Close the List window again and Run.
The last RaNDom number PRINTed is repeated. Hmmm...
This Is Fairly Exciting!

Well, maybe so, but you ain’t seen nothin’ yet! Virtually all computer games
are based on RND(X), and we’ll soon play and design our own.

RND With Racing Stripes

In most real-life cases we need a Random INTeger, not a Random Number
between 0-1. To create numbers larger than 1, we have to resort to mathemat-
ical chicanery.

Remove Line 50, and change Line 30 to read:

30 PRINT INT(RND # 15 + 1)3

...and Run.

132 Chapter 18

Wow! That’s more like it -- real live random INTegers. They all have values
between 1 and 15. Figured out the scheme? Pretty simple, isn’t it?

This equation specifies the range of INTegers RND will output:
R = INT(RND * (B-A+1) + A)

where R = the RaNDom number,
B = the largest INTeger and
A = the smallest INTeger.

Pseudo-Random

Random numbers are unpredictable, properly functioning computers are not.
So how do we get truly random numbers from the Computer? We usually
don’t; we get pseudo-random numbers.

Run the program several times, and study the screen. The numbers from each
Run are the same as from the previous Run! They may be random, but are
certainly predictable!

Change Line 30, and Run several times using negative seed numbers, like:
30 PRINT RND(-20)3

We get a different set of numbers with each seed -- but all the numbers in
any one set have the same value. Running again, the numbers are
unchanged. Using a different negative seed with RND produces a similar
result, but the value will be changed.

When Running game programs using RND, it’s a good idea to set the seed
to an unpredictable value. To ensure that a different pseudo-random number
sequence is used each time the Computer uses RND(X), we need to find a
source of unpredictable numbers somewhere in the Computer.

Enter the Command window, and type the following:

CLS
PRINT TIME$

Random Numbers 133

Hmmm, that’s interesting. If we could somehow separate the seconds from
the rest of the time, we would have essentially unpredictable numbers between
0 and 59. That would give us 60 different seed numbers. Here’s how to do it:

PRINT VAL(RIGHT#(TIME%$.:2))

The mechanics of that statement will be covered in detail in a later Chapter,
but for those too curious to wait here is a short analysis: RIGHT$(TIMES,2)
means, “Peel off the 2 right-most characters from TIMES$.” VAL means,
“Make sure those 2 characters are numbers so we can use them in a numeric
variable.”

We now have the tools to write a subroutine for “randomizing” the INPUT
to RND. Type the following:

10 GOSUB 10000 (to our own Randomizer)
20 FOR N = 1 TO 10

30 PRINT RND3

40 NEXT N

99 END

10000 5§ = VAL(RIGHT%(TIME®:2))
10010 FOR N = 1 TO S

10020 D = RND

10030 NEXT N

10040 RETURN

and here’s how it works:
Line 10000 picks off a number between 0-59.

Lines 10010-10030 “burn off” the first “S” numbers in the RND
series.

Line 10040 RETURNs execution to the main program where:

134 Chapter 18
. __]

Line 30 continues RND and PRINTSs the next 10 numbers.

If you don’t believe any of this, insert a temporary Line:
10005 8§ = 25

which sets the number of burn-offs to a specific value. Then Run
several times. The same 10 numbers appear each time, so it must be
working.

Remove Line 10005, and Run a few more times. Ahhh! Now we’ve
got it. Instead of only one, we now have 60 versions. We have
developed a viable RANDOMIZER routine.

Randomizer
With a RANDOMIZE statement at the beginning of the program, the Com-
puter will “shuffle,” or “reseed,” the series of random numbers. Type this

New program:

10 RANDOMIZE

20 WIDTH 60

30 FOR N = 1 TO 10
40 PRINT RNDj3

90 NEXT N

...and Run.

Oh, Oh! More decisions needed. RANDOMIZE allows the selection of 65536
different seed values. Even so, whoever picks the seed controls the numbers
series.

Variable Randomizer

To increase the possibility that a different seed number will be selected each
time RANDOMIZE is encountered, we can let the Computer make that selec-
tion for us. The RANDOMIZE statement can be followed by a variable or
numeric constant between —32768 and +32767.

Random Numbers 135

Let’s use a close relative to the TIMES function. Enter the Command window
and type:

CLS
PRINT TIMER

The number displayed is the number of seconds that have elapsed since mid-
night. (Just what we wanted to know!) We can use TIMER to set the random
seed. Type in this short New program:

10 RANDOMIZE TIMER
20 FOR R =1 70 10
30 PRINT RND3

40 NEXT R

...and Run
...and Run again.

We get different numbers each time! But what if the value of TIMER is
greater than 32767 (which it would be if it were after nine o’clock in the
morning)? We would surely get an error if we used, say a constant of 35000,
as a RANDOMIZE seed value. It turns out that the Macintosh does some
tricky internal manipulation of the TIMER value so that Microsoft BASIC does
not “crash” on us.

The “randomness” of this scheme is based on the unpredictability of the
number of seconds that have passed since midnight. Care to guess that value
after glancing at your watch?

The Old Coin Toss Gambit

We could toss a thousand heads in a row, and the odds on the next toss are
exactly 50/50 that a head will come up next. The outcome of every toss is
totally independent of what happened before. It is too!

In the long run, however, the number of heads and tails should be exactly the
same. (Casinos live off people who go broke waiting for their particular

136 Chapter 18

e
scheme to pay off ... “in the long run.”) The Computer can provide an edu-
cation in “odds” and various games of chance and allow us to prove or dis-
prove many ideas involving probability. This is known as computer “model-
ing,” or “simulation.”

Type in this coin toss simulation:

10 RANDOMIZE

20 INPUT "NUMBER OF COIN FLIPS";F

30 PRINT "STAND BY WHILE I‘M FLIPPING."

40 FOR N=1 TO F

50 X = INT(RND * 2 + 1)

BO ON X GOTD 90,110

70 PRINT "WAS NEITHER A HEADS NOR TAILS,"

80 END

90 H=H+ 1

100 GOTO 120

110 T =T + 1

120 NEXT N

130 PRINT "HEADS" "TAILS","TOTAL FLIPS"

140 PRINT HsTsF

150 PRINT INT(100%H/F)3i"%" ;INT(100%T/F)5"%",
"100%"

...and Run.

Seed the generator with the number 1, and “Flip the coin” 100 times. Run
a number of times, changing the seed. When it’s time for lunch, try 25,000
flips or more.

Line

10 establishes a Random seed value.

Line 20 INPUTSs the number of flips desired.

Line 30 Prints a “Standby” statement.

Random Numbers 137

Line 40 begins a FOR-NEXT loop that Runs “F” times.

Line 50 is the RND generator. We told it to generate INTegers
between 1 and 2, and that restricts it to just the numbers 1 and
2. Heads is “1,” and Tails is “2.”

Line 60 has an ON-GOTO test sending X=1 to Line 90 where the
“Heads” are counted and X=2 to Line 110 where the “Tails” are
counted.

Lines 70 is the default Line. If X = other than 1 or 2, the error
message will be PRINTed and execution will END. It will never
happen, but here is the proof.

Line 90 sets up H as a counter. Each time the ON-GOTO tests
sends control to this Line because X=1, H is incremented by one
and keeps count of the “Heads.”

Line 100 sends control to Line 120 where NEXT N is executed.
When the N Loop has gone through all “F” number of passes, con-
trol drops to Line 130.

Until then, Line 50 generates another RaNDom number (1 or 2). If
the next X = 2,...

Line 60 sends control to Line 110.

Line 110 keeps track of the “Tails.”

Line 130 PRINTs the Headings.

Line 140 PRINTs the values of H, T and F.

Line 150 calculates and PRINTSs the percentage of heads and per-
centage of tails.

Save this program As COINTOSS.

More Than One Generator At A Time

It is possible to generate more than one random number in a program by using
more than one generator. This has special value when the ranges of the
generators are different, but is helpful even if their ranges are the same.

| GUESS | CAN'T
COMPLAIN — |

ALGKED FOR
RANDOM NUMBERS)
&,

. Random Numbers 139
L -~~~ -~ - Y

It could also be done with a single generator, but that wouldn’t make the point.

To make the point, we will simulate the game of “Craps” -- where 2 dice are
“rolled.” Each “die” has six sides, and each side has 1,2,3,4,5 or 6 dots.
When the 2 dice are rolled, the number of dots showing on their top sides
are added. That sum is important to the game. Obviously, the lowest number
that can be rolled is 2, and the highest number is 12. We will set up a sepa-
rate Random Number Generator for each die, give each a range from 1 to 6,
and call them die “A” and die “B.”

Type NEW, then the following:

10 A = INT(RND*B+1)
20 B = INT(RND*B6+1)
30 N =A+B
40 PRINT N
50 GOTO 10

...Run.

Each number PRINTed falls between 2 and 12. We only need to PRINT N
since the dice are both thrown at the same time, and only the sum of the 2
is what counts.

Remember to SS to stop the Computer.
pre P p

Why would the following by wrong? It creates numbers between 2 and 12.

10 PRINT INT(RND*11+2)

Answer: Adding random numbers created by two generators, each picking
numbers between 1 and 6, will create many more sums which equal
3,4,5,6,7,8,9,10 and 11 than a single generator which picks an equal amount
of numbers O through 10, to which we add 2, to make the range 2 through
12. To simulate 2 dies, the generator range must be 1-6, twice.

140 Chapter 18
Rules Of The Game

In its simplest form, the game goes like this:

1.

The player rolls the two dice. If the sum is 2 (called “snake
eyes”), a 3 (“cock-eyes”), or a 12 (“boxcars”) on the first roll,
he loses, and the game is over. That’s “craps.”

v
SNAKE EYES! YH7l)

((

2. If the player rolls 7 or 11 on the first throw (called “a natural”),

he wins, and the game is over.

. If any other number is rolled, it becomes the player’s “point.”

He must keep rolling until he either “makes his point” by getting
the same number again to win or rolls a 7 and loses.

EXERCISE 18-1: You already know more than enough to complete
this program. Do it. Put in all the tests, PRINT Lines, etc. to meet
the rules of the game and tell the player what is going on. It will
take you awhile to finish, but give it your best before tuming to
Section B for a sample solution. Good luck!

Learned In Chapter 18

Functions Miscellaneous
RNDX) Seed numbers
RANDOMIZE R Pseudo-random
TIMES$

TIMER

Chapter 19

READING DATA

e have learned how to insert numeric values into programs by two
w different methods. The first is by building them into the program:

10 A =5

The second is by using an INPUT statement to enter them through the
keyboard:

10 INPUT A

The third principal method uses the DATA statement.

Type in this New program:

10 DATA 1:2:3+4,+5
20 READ A+B.C,DE
30 PRINT ASBiIiC3D3E

...and Run.

The DATA statement is in some ways similar to the first method in that a
Line holding the values is part of the program. It’s different, however, since
each DATA Line can contain many numbers, or pieces of data, each separated
by a comma. Each piece of DATA must be read by a READ statement. Each
READ Line can hold a number of READ statements, each separated by a
comma.

The display shows that all 5 pieces of DATA in Line 10, the values 1,2,3,4
and 5, were READ by Line 20, assigned to variables A through E, and
PRINTed by Line 30.

141

142 Chapter 19

Keep in mind these important distinctions: DATA Lines can be read only by
READ statements. If more than one piece of DATA is placed on a DATA Line,
they must be separated by commas. INPUT statements are used to enter data
directly from the keyboard.

DATA Lines are always read from left to right by READ statements; the first
DATA Line first (when there is more than one), and it does not matter where
they are in the program. This may seem startling, but do the following and
see: :

1. Move the DATA Line between Lines 20 and 30 (don’t bother to
change Line numbers), and Run. No change in the PRINTout,
right?

2. Move the DATA Line to the end of the program. Same thing --
no change in the PRINTout.

DATA Line(s) can be placed anywhere in the program.

This fact leads different programmers to use different styles. Some place all
DATA Lines at the beginning of a program so they can be read first in a
LISTing and found quickly, to change the DATA.

Others place all DATA Lines at a program’s end where they are out of the
way. Still others scatter the DATA Lines throughout the program, next to the
READ Lines. The style you select is of little consequence -- but consistency
is comfortable.

The Plot Thickens

Since we now know all about FOR-NEXT loops, let us see what happens
when a DATA Line is placed in the middle of a loop. Erase the old program
by selecting New, and type in this program:

DATA 1:2:3:4,5

10 FOR N = 1 TO S
20 READ A

30 PRINT Aj

Y'KNOW ZOMETHIN'
FRIEND 4 YOU'RE
NOT HALF AL
SCARY AS IN) THE
BEaINNING .

RATS ! MY
COVER'S

144 Chapter 19
O

40 NEXT N

...and Run.

That DATA Line is outside the loop. Now move it between Lines 10 and 20
and Run. What happened?

Nothing different! It is important to absorb this fact, or we wouldn’t have
gone to the trouble to prove it. We went through the N loop 5 times, READ
the letter A 5 times, and the PRINT statement PRINTed A 5 times, but A’s
value was different each time. Its value was what it last READ from the
DATA Line. The reason -- each piece of data in a DATA Line can only be
read once each time the program is RUN. The next time a READ statement
requests a piece of data, it will read the NEXT piece of data in the DATA
Line or if that Line is all “used up,” move on to the next DATA Line and
begin READing it.

Change Line 10 in the program to read:

10 FOR N =1 TO 6

...and Run.

The READ statement was instructed to read 6 pieces of DATA, but there
were only 5. An error statement caught it, as the dialog box shows.

Out of DATA

and READ A is boxed.

Click the OK box, then change Line 10 so the number of READ:s is less than
the DATA available.

10 FOR N =1 TO 4

...and Run.

No problem. It works just fine even if we don’t use all the available data. The
point is, each piece of data in a DATA statement can only be READ once
during each Run. :

READing Data 145

Exceptions, Exceptions!

Because it is sometimes necessary to read the same DATA more than once
without RUNning the complete program over, a statement called RESTORE
is available. Whenever the program comes across a RESTORE, all DATA
Lines are RESTOREA to their original “unread” condition, both those that have
been READ and those that have not, and all are available for reading again.
Change Line 10 back to:

10 FOR N =1 T0O 5
and insert:
25 RESTORE

...and Run.

Oh-oh! The screen PRINTed five 1’s instead of 1 2 3 4 5. Can you figure
out why?

Line 20 READ A as 1, but Line 25 immediately RESTOREd the
DATA Line to its original unREAD condition. When the FOR-
NEXT loop brought the READ Line around for the next pass, it
again read the first piece of data, which was that same 1. Same
thing happened with the remaining passes.

READ and DATA statements are extremely common. RESTORE is used less
often.

Do you begin to see some distant glimmer involving the storing of business or
technical DATA in DATA Lines where it’s easily changed or updated without
affecting the rest of the program or its formulas?

String Variables

Who knows where some of these seemingly unrelated words come from? If
they weren’t so important, we could ignore them. We have been using the
letters A through Z to hold number values. They are called numeric variables.
We can use the same 26 letters to hold string variables by just adding a “$.”

AS$, for example, is called “A String.” String variables can be assigned to
indicate letters, words and/or combinations of letters, numbers, spaces and

146 Chapter 19

other characters. Choose New, then type in:

10 INPUT "WHAT IS YOUR NAME" A%
20 PRINT "HELLO THERE: "iA%

...and Run.

Hey-hey! How’s that for a grabber? If that, along with what we have learned
in earlier Chapters doesn’t make the creative juices flow, nothing will.

That’s Two....

We now know two ways to PRINT words. The first, learned long ago, is to
imbed words in PRINT statements (and is called “PRINTing a string”). The
second is to bring word(s) through an INPUT statement (called “INPUTting
a string”). If you can’t think of the third way, go back and check the title
at the top of this Chapter.

Select New, and type in this program:

10 READ A%
20 DATA APPLE MACINTOSH COMPUTER
30 PRINT "SEE MY "iA$

...and Run.
SEE MY APPLE MACINTOSH COMPUTER

Let’s use 2 string variables to accomplish the same thing, seeing how they
work with each other. Reword the program to read:

10 READ A%

15 READ B#%

20 DATA APPLE,» MACINTOSH COMPUTER
30 PRINT "SEE MY "3jA%$3i" "iB%$

...and Run.

READing Data 147
Analyzing the program:
Line 20 contains two pieces of string Data, separated by a comma.
Line 10 READs the first one.
Line 15 READs the second one.
Line 30 contains 4 PRINT expressions:
The first one PRINTs “SEE MY ”, leaving a space behind the
“Y” since, unlike numeric variables, string variables do not insert

leading and trailing spaces. This gives excellent control over
PRINT spacing.

The second PRINT expression is A$, and it prints “APPLE”.
The third inserts the space which is enclosed in quotes.

The fourth PRINT expression is B$ which PRINTs “MAC-
INTOSH COMPUTER”.

Together, they PRINT the entire message on the same line.

A semi-colon between STRING variables does not cause a space to be PRINTed
between them. We have to insert a space using " " marks.

Learned In Chapter 19

Statements Miscellaneous
READ String Variables A$, BS,...
DATA Numeric Variables

RESTORE

PART 3

STRINGS

Imtermediate BASIC

I

ntermediate Features Of Microsoft
BASIC for the Apple Macintosh
Now that we’ve learned the rudiments of “Elementary” BASIC, we

can get serious about “Intermediate” BASIC. The next Chapter is sort of a
“catch up” and “catch all,” explaining a lot of little unrelated features that
didn’t find convenient homes in the previous Chapters. Study each of them,
do the sample programs and think about them. Each one is brief but
important.

Chapter 20

Smorgaslhord

BASIC allows more than one consecutive statement on each program
Line, separated by a colon (:). For example, a timer loop such as:

M ultiple Statement Lines : (Now he tells us!)

100 FOR N = 1 TO 500
110 NEXT N
can become...
100 FOR N = 1 TO 500 : NEXT N

Caveat Emptor (Don’t buy a used computer from a stranger.)

Control yourself! It’s easy to get carried away with this exciting feature.
While we will use multiple statement Lines often from here on, you will
quickly find that it’s possible to pack the information so tightly it becomes
hard to read, and also very hard to modify.

More Caveat (or is it more Emptor?)

Multiple statement Lines require careful understanding. Especially critical are
statements of the IF-THEN variety.

Enter the following incorrect program:
10 INPUT "TYPE IN A NUMBER" X
20 IF X = 3 THEN 50 : GOTO 70

30 PRINT "HOW DID YOU GET HERE®?"
40 END

151

152 Chapter 20

50 PRINT "X=3"
60 END
70 PRINT "CAN'T GET FROM THERE TO HERE."

...and Run it several times with different INPUT values, including 3.

Line 20 has an error in logic. If the IF-THEN test passes, control moves
to Line 50. That’s OK.

If the test fails, however, control drops to the next Line in the program --
Line 30, not to the 2nd statement in Line 20. There is no way the 2nd state-
ment in Line 20 (GOTO 70) can ever be executed.

The Message -- if you put an IF-THEN (or ON-GOTO) type-test in a multiple
statement Line, it must be the last statement in that Line.

Next Message -- we cannot send control TO any point in a multiple statement
Line except to its FIRST statement. Look at Line 20. There is no way to
address the GOTO 70 portion. It shares the same Line number as the first
statement in the same Line. Only the first statement is addressable by a GOTO
or IF-THEN. Other statements in a Line are accessed in sequence, IF each
prior test is passed.

Searching The Program
Now that we are beginning to develop larger and more complex programs, it
becomes more difficult to find something buried deep within the program.

The Search menu has several methods that can be used to Search for individual
characters, text or the cursor. It’s also possible to Search for a letter or text
and replace it with something else. This is useful when changing a name or
variable used throughout a program to a different name or variable. For exam-
ple, let’s use the Search feature to find the location of each variable X in our
resident program.

Place the cursor at the beginning of the program and select Find... from the
Search menu or press EJ[§. A dialog box appears with the cursor flashing in
the Find next box. Type in the letter X (upper or lower case -- it isn’t fussy),
and click the OK box or press I

The Computer found the first X in Line 10 and pointed it out by reversing
the letter.

Smorgasbord 153

To Find the Next letter X, press Eg [N (or select Find Next from the Search
menu). Continue pressing E§ [, and notice that after the last X is found, the
Computer returns to the first one in Line 10.

Now let’s change variable X to Y.

Place the pointer at the beginning of the program, and click the mouse. This
sets the letters to the normal font and places the cursor at the beginning of
the program.

Select Replace... from the Search menu. Another dialog box appears. It looks
like the Find dialog box except in this box we can specify a Replace-
ment for what is listed in the Find next box.

The letter X is still sitting in the Find next box. Let’s leave it there, and
place a Y in the Replace with box. Position the pointer inside the Replace
with box and click. Type the letter Y (use upper case -- it matters this time),
but don’t hit TN

We also have the options of “Verifying before replacing” and “Replacing all
occurrences.” In this example, we want to change all X variables, so click
the box for “Replace all occurrences.” Then click the box for “Verify before
replacing” so we can monitor the action. Your dialog box should look like
this:

Find next H
Replace with |¥
Verify before replacing
Replace all occurrences

Select OK. The Computer should have found the first X in Line 10 and dis-
played the Replace verify box in the upper right-hand corner. Click Yes for
the three occurrences of the variable X in the program. As long as the Verify
box is present, there are more X’s to be replaced.

Selective Searching
As with most other features in our Mac, there is a short cut to selecting and
Searching text.

154 Chapter 20

Place the cursor to the right of the 70 in Line 20. Press the mouse button and
drag to the left until the number 7 and O are reversed. Be careful not to select
more than the two numbers, then release the button. Now select Find Selected
Text from the Search menu, and bingo, the Computer found the 70 in Line 70.

In a very large program, a GOTO or GOSUB Statement may be specifying
a Line number or Label that is residing far down the program. With the Find
Selected Text feature we can easily select any portion of text by shading it
with the mouse and find other occurrences of it in the program.

Try finding other selected text such as the PRINT statements or the value 3
in Lines 20 and 50 until you get a handle on all the Search features.

After we have written a program that has more Lines than the screen can
hold, we can use the Search menu to Find the Cursor. Selecting the Find the
Cursor option causes the Computer to scroll down the program and display
the program starting with the Line where the cursor is positioned. Again, these
are features that will come in handy when working with very long programs.

New Numeric Variables
We know we can use the 26 letters of the alphabet as names for variables. We
can also use the numbers O through 9 in conjunction with these letters:

A3 = B
F8 37

etc.
Although the 26 letter variables are usually enough, addition of the numbers
give us an additional 26*10 = 260. They can be very handy, particularly if

we want to label a number of “sub” variables (D1,D2,D3,etc.) which combine
to make a grand total which we can just call D.

PI = 3.141589

C = PI*D (Circumference = 3.14159 * Diameter)

In addition, we can use any combination of upper- and lowercase letters, num-

Smorgasbord 155

bers and decimal points (or periods) for a name, up to 40 characters long. For
example:

LEARNING.MICROSOFT.BASIC = 18.85

Now that really looks valuable.

If that doesn’t provide enough variables to solve your problems, nothing will.

New String Variables
So far we’ve used only A$ and B$ as string variables. We actually have all
the letters of the alphabet available for strings. And the numbers O through
9 too, plus any letter-number combination. These are valid string names:
X$
D8$
PI$
WHAT.A.GREAT.BOOK$
etc.
As with numeric variables, string variables can have any combination of up

to 40 letters (upper- or lowercase), numbers and decimal points (periods) fol-
lowed by the $ sign.

Upper- and lowercase letters can be used in both numeric and string variable names
although the Computer cannot distinguish between the two. For example, Pi and
PI would be treated as the same variable, as would x2$ and X2$.

Shorthand
There are several little “shorthand” tricks available.

156 Chapter 20

The first is the use of ? in place of the very common word, PRINT. Select
New, then type this Line:

10 ?"QUESTION MARK" [Return|

Awwk! The pumpkin turned into a coach. The Computer rewrote it to read:
10 PRINT"QUESTION MARK"

It also works at the command level. Enter the Command window and try:
?3%4 and we get:
12

Try PFRE(OQ).
The ‘ is shorthand for REM and is especially nice when documenting the

purpose of a Line. It makes program Lines into multiple statement Lines
as in /' = :REM.

50 X = Z*C/4 + 33 ‘THE SECRET EQUATION

The only place ’ can’t be used unaided is in a DATA Line, and that problem
can be overcome by actually adding a :.

1000 DATA 102:3+9,105,10,1 : ‘DATA IS IN
1010 DATA 108+7+3+111,68+1 : ‘SEQUENCE

Use Of Quotes

Technically, it is not necessary to use quotes to close off many PRINT state-
ments, or LOADs and SAVEs.

10 PRINT "WHERE IS THE END QUOTE®?

Note lack of second ".

Smorgasbord 157

Runs just fine, but leave it off at your own peril.

A BASIC interpreter that is “too forgiving” is like an airplane that is “too for-
giving.” It allows us to become sloppy, and when we need all the skill we
can muster, it is gone from the lack of practice. You are strongly encouraged
not to take these and other “cheap” short-cuts.

INPUT

It’s possible to INPUT several variables with a single INPUT statement. Type
this program and respond with a cluster of 3 numbers separated by commas. It
will “swallow” them all in one gulp.

10 INPUT AsBC

...and Run.

However, if we fail to INPUT them all, separated by commas, the error:

?Redo from start
2

points out that more DATA must be INPUT. To see the Error Message, Run
again, but only INPUT one number, GIJUI], then type EJIM to bail out.
Run again and try to INPUT letters instead of numbers. Same Error Message.
There is extensive information in Appendix C dealing with Error Messages.

Most often, Redo reminds us that we can’t INPUT a string variable into a
request for a numeric variable.

Optional NEXT
FOR-NEXT loops don’t always have to specify which FOR we are NEXTing.
This can be useful when dealing with nested loops.

Type this New program:

10 FOR A =1 TO 2 : PRINT A
20 FOR B =1 TO 3 : PRINT B

HE JLST WORKED 3 HRZ
ON A PROGRAM mnd.
THE COMPUTER SA\D:

- v0y

¢ fedo from start

Smorgasbord 159
.- -~ -~ " -]

30 FOR C = 1 TO 4 ¢ PRINT ..C
40 NEXT : NEXT : NEXT

Run it several times to get the flavor. (Note how commas were used to place
PRINTing in different zones.)

This method of NEXTing should not be used if the program contains tests
which might allow a loop to be broken out of. Better then to be specific, or
use this little short-cut:

40 NEXT C+B»A

IF-THEN-ELSE

ELSE is an interesting addition to our stable of conditional branching state<
ments. It allows an option other than dropping to the next Line if a test fails.
Try this New one:

10 INPUT "ENTER A NUMBER"IN
20 IF N=0 THEN PRINT "O" ELSE PRINT "NOT O"

...and Run.

255 Characters Per Line
Microsoft BASIC permits up to 255 characters in a single program Line.

(Don’t ask me to debug such a Line!)

Another Way Of Leaving BASIC

In the past, whenever we wanted to leave BASIC to return to the Finder, we
pulled the File menu down and selected Quit. As you may have discovered,
QUIT will not work from the keyboard. Instead, we need to use the SYSTEM
command.

160 Chapter 20
Learned In Chapter 20

Commands Statements Miscellaneous Menu

SYSTEM IF-THEN-ELSE Multiple statement Lines Search
Variable Names Find... E3[§)
Some Shorthand Find Next (E30])
Quotes Find Selected Text
Multiple INPUTting Find the Cursor
Optional NEXT Replace...

String Variables

Chapter 21

The ASCII Set

he purpose of this Chapter is to learn how to use ASC and CHRS.
I Before doing so, however, we must learn about something called “the
ASCIHI set.”

ASCII is pronounced (ASK’-EE) and stands for American Standard Code for
Information Interchange. Since a computer stores and processes only numbers,
not letters or punctuation, it’s important that there be some sort of uniform
system to specify which numbers represent which letters and symbols. The
ASCII Chart in Appendix A shows the relationship between the number system
and symbols as used in the Macintosh. Take a minute to review the chart.

Type in this New program:

10 FOR N = 32 TO 217

20 PRINT "ASCII NUMBER" N3

30 PRINT "STANDS FOR" 3§ sCHR$(N)
40 FOR T = 1 TO 500 3 NEXT T
50 NEXT N

Save As ASCII ... and Run.

Observe that the characters between ASCII code numbers 97 and 122 are
lowercase duplicates of ASCII numbers 65 to 90. Numbers 128 to 217 call
forth special graphics and foreign language characters.

The [T Key

We can use the keyboard to enter all those special characters by using the
key. (There are two of them, one below each key.) To use the
key, hold it down while pressing another key on the keyboard, in the
same manner as we would use the Egkey.

162 Chapter 21

Instead of “poking around in the dark” to find out which sequences
produce the different characters, there is a desktop accessory called “Key
Caps” in the ‘ Menu. Use the mouse to pull down the 6 menu, and select
Key Caps.

Like all windows, we can move it around the desk top by pointing at the title
bar while dragging the mouse.

With the key released, hold down the key and notice the
screen change. The two keys are darkened, the lowercase letters are
replaced with uppercase and the number keys are replaced by the special
characters.

With the key off, hold down the [f:T{Y)] key. Aha! There are
some of the special characters and their keyboard placement. Note that some
are blank ((J). Now, while holding down [eJJifsY)], press Sl The rest of
the special characters are then displayed.

Above its picture of the keyboard, Key Caps has a small window available
for displaying anything we type on our keyboard. Choose some of the special
characters, and enter them. Use the key to clear the window.

After experimenting with Key Caps for a while, click the close box (small
white box) on the title bar to remove it from the desk top.

Note that we can select Key Caps for more experimentation at any time, even
during INPUT while Running a program. And if we feel really lazy, we can
even use the mouse to click the keys on Key Caps keyboard!

ASCII Chart
Some of the ASCII numbers between 0 and 31 are used by the Macintosh for
special control purposes:

Code Function

7 Beep
8 Backspace and erase current character
9 TAB(9,17,25...)
10 Move cursor to beginning of next Line
12 Clear screen
13 Move cursor to beginning of next Line (Return)

The ASCIl Set 163
L]

Change Line 10 to read:
10 FOR N = 1 TO 31

and Run again.

There is very little uniformity internationally (or even within the U.S.) in the
assignment of ASCII code numbers, except those used for the “Roman” letters
and numbers. Fortunately, they handle most of our everyday needs. If we
contemplate the problems faced by users of other languages which need special
letters and characters, it’s easy to see how good use can be found for the
ASCII values between 128 and 216.

So What Is CHR$(N)?

We have used CHR$ (pronounced Character String) without describing it, but
you undoubtedly figured it out anyway. CHR$(N) produces the ASCII
character (or control action) specified by the code number N. It is a one-way
converter from the ASCII code number to the ASCII character and allows us
to throw characters around with the ease of throwing around numbers. The
word “string” refers to any character or mixture of characters (letters, numbers
or punctuation).

Enter this simple New program:

10 INPUT "TYPE ANY NUMBER (33-217)"iN
20 PRINT CHR%(N)
30 PRINT : GOTO 10

...and Run.

Don’t forget to press £ Il or select Stop from the Run menu to break out of the
loop.

Almost all of our activity with ASCII numbers will be confined to this range.

164 Chapter 21

EXERCISE 21-1: Using the ASCII chart (Appendix A) and the CHR$
function, create a program which will PRINT the name: MACINTOSH.

ASCII Applications

If we end up in the Big House serving time for computer fraud, the following
little program will make up our license plate combinations, putting CHR$ to
good use.

Enter this New program:

10 REM * LICENSE PLATE NUMBER GENERATOR #*
20 FOR N=1 TO 3 = PRINT INT(RND*10)3

30 NEXT N = PRINT " "3
40 FOR N=1 TO 3
50 PRINT CHR$(INT(RND*2B8) + B35)3i" "3j

60 NEXT N : PRINT : GOTO 20

Save As LICPLATE‘ ... and Run.

The RND generator in Line 20 PRINTs numbers between 0 and 9. Line 50
PRINTSs those characters whose ASCII number falls between 65 and 90 by
producing a RaNDom INTeger between 0 and 25 and then adding 65 to it.
What do we see on the ASCII conversion chart between 65 and 90?
Hmmmm???

What Then Is ASC($)?
ASC is the exact opposite of CHR$(N). ASC is a one-way converter from the
ASCII character to its corresponding ASCII number.

Select New and type:

10 INPUT "TYPE NEARLY ANY CHARACTER" iA%
20 PRINT "ITS ASCII NUMBER IS"3ASC(A%)
30 PRINT : GOTO 10

...and Run.

NOW, WHATZ ALL
THIS BABBLING ABOUT
"CHR < (N) and, ASC($)7 "

166 Chapter 21

It will PRINT the ASCII number of almost all characters. (Try lower case
letters and special code characters which use the key, too.) It doesn’t
work with the comma (,), the quotation mark (“), the space bar, and some
others, but then strings can be a real mystery at times, as we will see.

To get around this and other problems, we use an advanced form of INPUT
called LINE INPUT. LINE INPUT allows us to INPUT any character (that
is assigned an ASCII code) as a string. Notice that the Computer will not
insert a question mark when it asks for the text.

Change Line 10 to:
10 LINE INPUT "TYPE IN ANYTHING "iA%

...and Run. Check comma, quote, space bar, etc.

An obscure way to use ASC is to imbed the character within quotes, thus:

10 PRINT ASC("A")

but this latter method is rarely convenient.

Home Base

So far we have talked exclusively about decimal numbers, since most of us
have just 10 fingers. But the Macintosh has two intrinsic functions which con-
vert decimal numbers to numbers with Hexadecimal and Octal Bases. Whereas
the Decimal system is built on the base 10 (10 digits, 0-9), Octal is base 8
(8 digits, 0-7), and Hexadecimal is base 16 (16 digits, 0-9 and A-F). We’ll
leave the mechanics of using other bases to other CompuSoft books, but just
to be complete, select New, and type in this New program:

10 LINE INPUT "TYPE ANY LETTER,» NUMBER OR
CHARACTER: "iA%$

20 A = ABC(A%) : PRINT

30 PRINT "ITS ASCII NUMBER IS"3ASC(A%$)

40 PRINTA."DECIMAL"

The ASCIl Set 167

50 PRINT HEX$(A) »"HEXADECIMAL"
60 PRINTOCT#(A) »"OCTAL"
70 PRINT : GOTO 10

Save As BASECONV ... and Run.

Before we can really understand the importance of CHR$ and ASC, we must
learn a lot more about strings. Before we could learn about strings, we had
to learn something about ASCII. It’s like “catch Macintosh.”

EXERCISE 21-2: Input a single character from the keyboard, and
test its ASCIl value to determine IF it is @ number. If not, retum
program control to the INPUT statement. Hint: use two IF statements
and ASC.

Learned In Chapter 21

Functions Statements Miscellaneous Menu
CHR$ LINE INPUT ASCII Codes (3

ASC Optionf. G Key Caps
HEX$ Special characters

OCT$

Chapter 22

Strimgs Im Gemeral

but we really can’t understand how strings work without first under-
standing the ASCII concept of numbers standing for letters, numbers
and other characters and controls.

I t was not our intention to “string you along” in the previous Chapter,

Comparing Strings

One of the most powerful string handling capabilities is the ability to compare
them. We compare the values of numeric variables all the time. How can we
compare strings of letters or words? Well, why do you suppose we put the
ASCII Chapter just before this one? Right! The Computer can compare the
ASCII code numbers of letters and other characters. The net result is a com-
parison of what’s in the corresponding strings.

Type in this New program:

10 INPUT "WHAT IS YOUR NAME"iA$
20 IF A% "ISHKIBIBBLE" THEN 50
30 PRINT "SORRY. WRONG NAME!"

40 END

50 PRINT "FINALLY GOT IT!"

...and Run.

If the Computer can compare A$ against that name, it should be able to com-
pare anything!

During the process of comparing what you enter as A$ in Line 10 to what’s
already in quotes in Line 20, the ASCII code numbers of each letter found
in one string are compared, letter for letter, from left to right with those in
the other. Every one must match, or the test fails.

168

Strings In General 169

A

Strings and “quotes” are inseparable. You know this from earlier Chapters
where every PRINT “XXX” has its string enclosed in quotes.

PRINT “XXX” is called a striniconstant. A$ is a string variable.

Run the above program again, this time answering the question with
“ISHKIBIBBLE,” but enclosed in quotes.

Sure - it ran OK.

READing Strings

A string can be INPUT with or without quotes. BASIC has become increas-
ingly lenient about this matter, but every once in a while the rules come up
from behind and bite us if we play fast and loose with them.

If we READ a string from a DATA Line, and it has no commas, semi-colons,
leading or trailing spaces in it, we don’t have to enclose it in quotes. We will
never go wrong by always enclosing strings in quotes, but that can be a
nuisance.

EXERCISE 22-1: Write a program that will compare two strings
entered from the keyboard. PRINT them in alphabetical order.

Erase the resident program, and type in this next one, which READs string
data from a DATA Line.

10 READ A%,B%.,C%

20 PRINT A%

30 PRINT Bs%

40 PRINT C%

100 DATA COMPUSOFT,» SAN DIEGO, CA,» 92118

...and Run.

ZEE YOU'RE
INTO STRINGS
NOW, OL’ BOY.

Strings In General 171

Look carefully at the results. The screen shows:

COMPUSOFT
SAN DIEGO
cA

That’s nice, but where is the ZIP Code? And why weren’t SAN DIEGO and
CA PRINTed on the same line? The answer, my friend, is blowing in the
... €r, in the commas.

Because of the commas in the DATA Line, the READ statement sees 4 pieces
of DATA, but only READs 3 of them. What do we have to do in order to
PRINT a comma as part of a string? Right - enclose it, or the string con-
taining it, in quotes.

Change Line 100 to read:
100 DATA COMPUSOFT» "SAN DIEGO,» CA"» 892118

...and Run.

Aaaah! That’s more like it. Notice that we didn’t have to enclose all pieces
of string DATA in separate quotes, but could have.

What would happen if we also enclosed the entire DATA Line in quotes,
leaving the existing quotes in there? (Think about it, then try it. Every ques-
tion raised has a specific purpose.)

Our Editor is so easy to use; let’s make it read:
100 DATA "COMPUSOFT» "SAN DIEGO.» CA", 82119

...and Run.

Awwk! Disaster. A “Type mismatch™ error in Line 10? Yes, there is no
straight-forward way to READ quotes as part of a string, even by enclosing
them inside another pair of quotes. The Computer just isn’t smart enough to
figure out which quote mark is which, The usual way to overcome this BASIC

172 Chapter 22

language deficiency is to substitute ’ for each " imbedded inside other
quotes. Let’s try it:

100 DATA "COMPUSOFT,» ‘SAN DIEGOs CA’,» 92118°"

...and Run.

Ooops, “Out of DATA”? Of course. With quotes surrounding the whole
works there is now just one piece of DATA, and we are trying to read 3
pieces. Change Line 10 to just read one piece:

10 READ A%

...and Run.

B$ and C$ are PRINTed as “blanks” since they are empty.

There we go. Might look a little strange, but it demonstrates the point and
warns us a little about the “touchiness” of strings.

Learned In Chapter 22

Miscellaneous

String comparison
INPUTting strings
READing strings

Chapter 23

Measuring Strings

ne of the most frequently needed facts about a string is its length.
O Fortunately, the LEN function makes it easy to find. Type:

10 INPUT "ENTER A STRING OF CHARACTERS"iA%
20 L = LEN(AS%)

30 PRINT A%3" HAS"IiL3i"CHARACTERS"

80 FOR X 1 TO 8000 : NEXT X : RUN

See how Run can be used inside a BASIC program? The delay loop in Line 90
gives us a chance to read the display before the Computer clears the screen at the
next Run.

Enter your name and other combinations of letters and numbers. Try entering
your name, last name first, with a comma after your last name.

AHA! Can’t INPUT a comma. How about if we put it all in quotes? Try
again.

Yep. Just like it said in the last Chapter.

LEN has only one significant variation, and it’s not all that useful -- unless
it’s really needed. Change Lines 10-30 to read:

10 INPUT "ENTER A NUMBER" A
20 L = LEN(A)
30 PRINT A3" HAS"IL3i"CHARACTERS"

...and Run, entering any number.

173

174 Chapter 23

Crash time again! “Type mismatch” means we tried to INPUT a number into
LEN -- but it requires a string.

Letters cause a “?Redo from start” since they need to be INPUT by an A$
or equivalent. Run again, and INPUT a letter. Is there no justice here? OK,
let’s change LEN to make it a string:

20 L = LEN("A")

...and Run, entering a Number. Then try bigger numbers.

Hmmm. Doesn’t seem to matter what number we INPUT, it always comes
back saying that we have only 1 character.

The answer is, LEN evaluates the LENgth of what is actually between its
parentheses (or quotes). At first we brought in a string from the “outside” and
measured its length. That worked fine. We are now measuring the length of
what’s actually between the quotes, and that length doesn’t change with the
value of A. We are using A as a “literal string constant,” not a variable string.

Like we said, this second way to use LEN has its limitations, but don’t lose
any sleep over it. (Change the resident program back to the way it appears
at the beginning of the Chapter.)

DEFSTR -- For Thrill Seekers

Those among us who attract trouble will love this next one. As if handling
strings isn’t complex enough, this very powerful statement looks nice and
clean but in long and complex programs can be the greatest source of
heartburn since the horseradish pizza.

DEFSTR (pronounced “DEFine STRing”) allows us to define which variables
are to be string variables, so we don’t have to use the $ any more. (Hmm
... Uncle Sam could put some of this DEFSTR business to good use.) Add
this Line:

o DEFSTR A

and change Lines 10 and 20 to:

10 INPUT "ENTER A STRING"3A

Measuring Strings 175

20 L = LEN(A)

Then Run.

Works fine, doesn’t it. A was declared by Line 5 to be a string variable. So
what’s all the fuss about?

Well, this is a very simple program, but let’s change 5 to read:
o DEFSTR A-Z

which makes all letters string variables.
...and Run, entering any character(s).

Crasho again! We got a “Type mismatch.” Too much of a good thing.
Because of Line 5, the L in Line 20 is now also a string. Since LEN gives
us the length of a string as a number, it doesn’t set at all well with L (really
L string). Imagine the fun this can create in a long program.

Good thini we can learn by our errors!

DEFSTR is best used to define individual variables. For example:
DEFSTR AsNZ

defines only A, N and Z as string variables. Rework Line 5 back to read:
o DEFSTR A

...and Run.

That’s a short course in what DEFSTR is all about.

Concatenation
Concatenation? Concatenation??? Now what is that supposed to mean? Did
you ever wonder who pays whom to sit around and think up such nondescrip-

CONCATENATION 2
CONECATENATION Z2

e
WEBSTERS, PAL..

‘T thAN : r
U \\

ST
%

FEice T

|

..............
ondmdiaty, %2

.........
R -
. . .
..............
0 ’

......
.......

......
.........

..............
.........
...........

Measuring Strings 177

tive words? It must have been done on a government grant. Wait till Senator
Proxmire hears about it.

Concatenation (pronounced con-cat-uh-na’shun) is a national debt-sized word
which means ADD, as in “add strings together.” It’s easier to do than to
pronounce.

Type this New program:

10 FOR N =1 TO 11

20 READ A% : B% = B$ + A%

30 PRINT B#%

40 NEXT N

DATA ALPHA:BRAVO:CHARLIE DELTA
DATA ECHO,FOXTROT »GOLF »HOTEL
DATA INDIA,JULIETTE.KILO

Check it carefully, but don’t RUN it yet. The key Line is 20, which simply
says B$ (a new variable) equals the old B$ (which starts out as nothing) plus
whatever is in AS$. The program cycles around and keeps adding what is in
B$ to what is READ from DATA as A$. Now close the List window, and
Run.

Anyhoo, the point of all this is concatenation. Line 20 just did it, and that’s
about all there is to it. We added strings together.

EXERCISE 23-1: Use the LEN function to check the length of a
string INPUTted from the keyboard. PRINT a message telling us if
the string exceeded 10 characters.

EXERCISE 23-2: INPUT a word from the keyboard, and compare
it to a secret password. If there is @ match, PRINT “CORRECT PASS-
WORD; YOU MAY ENTER.” If not, PRINT “WRONG PASSWORD. TRY
AGAINI" Store the ASCII number for each letter of the password
in a DATA Line. READ each value, and use CHR$ to build (concate-
nate) the password string.

178 Chapter 23

Learned In Chapter 23

Statements Functions Miscellaneous

DEFSTR LEN Concatenation (+)

Chapter 24

VAL And STRS

he “hassle factor” can be very high when converting back and forth
I between strings and numerics.

By definition, if we convert a numeric variable (can hold only a number) to
a string variable (can hold almost anything), the contents of that new string
is still the original number. No letters or other characters were converted (ex-
cept for a leading space) since they weren’t in the numeric variable to start
with.

Conversely, if we change a string variable to a numeric variable, we can’t
change any letters or other characters to numbers. Only the numbers in a
string can be converted to a numeric variable. (Don’t confuse this with ASCII
conversions.)

If you’ll keep the two previous paragraphs in mind, it’ll save an awful lot of
grief in dealing with strings.

VAL

Let’s give string-to-numeric conversion a shot. The VAL function converts a
string variable holding a number into a number, if the number is at the begin-
ning of the string. Try this VAL program:

10 INPUT "ENTER A STRING " iA$

20 A = VAL(AS%)

30 PRINT"THE NUMERIC VALUE OF "§A%i" IS"iA
80 PRINT : GOTO 10

...and Run

179

180 Chapter 24

Try lots of different INPUTS, such as:

12345

ASDF

123ASD

ASD123

1:2,3

AB,C
and the same ones over again, but enclosed in quotes.
The screen tells all.
Use Stop from the Run menu or press EJ [l to break out of the program, then
take the $ out of Lines 10, 20, and 30 and Run, INPUTting both numbers
and letters.
What you're seeing is typical of the frustrations that bedevil string users who
don’t follow the rules. VAL only evaluates STRINGs, and we’ve put A, a
numeric value, in where a string belongs. Does this remind you of the prob-
lems in the last Chapter with LEN?

Let’s put that A in quotes and see what happens.
20 A = VAL("A")

...and Run.

No help at all! The rule remains unchanged.

Properly used, VAL converts a string holding a number into that number.

Looking at the screen you can see all the other uses we are finding for VAL
are just not in the cards. Remember this irritating frustration and “The Rule”
when you get in the thick of debugging a nasty string-loaded program.

......

VAL %22

sTR § (22)

NOW HOW ABOUT

GIVING ME THAT
weesTeERs 2

182 Chapter 24
STRS$

Now let’s try the opposite, converting a numeric variable to a string variable.
Change the program to read:

10 INPUT "NUMBER TO CONVERT TO STRING"S3A
20 A% = STR$(A)

30 PRINT"THE STRING VALUE OF"3AS"IS" iA%
80 PRINT : GOTO 10 '

...and Run, using the same INPUTs we used when wringing out VAL.

There it is. A short but very important Chapter. Spend as much time on this
one as any other Chapter. The time spent learning to avoid the pitfalls sur-
rounding these two powerful functions will come back manyfold in future
debugging time. VAL and STR$ have very specific, but narrow abilities.

EXERCISE 24-1: INPUT your street address (e.g. 24923 LA PALMA).
Use VAL to extract the street number. Add the number 4 to the
street number, and report this new number as your neighbor’s
street number.

EXERCISE 24-2: \Write a program using STR$ to PRINT the following
90 store item stock numbers: 101WT, 102WT, 103WT,...120WT.
Hint: Looks like a natural for a FOR-NEXT loop.

Learned In Chapter 24

Functions

VAL
STR$

L

Chapter 25

Having A RBall
With Strimg

EFT$, RIGHT$, MID$

Three different, yet very similar, functions are used for playing pow-
erful games with strings. They are LEFT$, RIGHT$ and MIDS. Let’s

start with this program:

10 8¢ = "KILROY WAS HERE"
40 PRINT LEFT$(5%.6)
S50 PRINT MID%$(S%:8:3)
60 PRINT RIGHT#(5%.4)

...and Run.

The screen says:

KILROY WAS HERE

(How about that one, nostalgia buffs?)

Learning to use these string functions is exceedingly simple. Study the pro-
gram slowly and carefully as we go thru what happened.

LEFT$ PRINTed the LEFTmost 6 characters in the string named
S$.

MID$ PRINTed 3 characters in the string named S$, starting with
the 8th character from the left. (Count ‘em.)

RIGHT$ PRINTed the 4 RIGHTmost characters in the string named
S$.

183

184 Chapter 25

REMEMBER ME

r\ _ALLYou VETSZ
@)

The commas after Lines 40 and 50 are to PRINT everything on the same line.

Save this program As KILROY, then let’s move some Lines around to exer-
cise our new-found power. Move Line 50 to Line 30:

30 PRINT MID%(S%:8,3)
Run ... and we get:
WAS KILROY HERE
Now move Line 60 to Line 20 and add a trailing comma.
20 PRINT RIGHT#(S%:4)»
Run ... and we get:
HERE WAS ~ KILROY

These 3 functions can really do wonders with strings. Use Cut and Paste to
Edit the resident program to read:

10 5% = "KILROY WAS HERE"
20 FOR N = 1 TO 15

30 PRINT "N ="3iN»

40 PRINT LEFT$(S%:N)

80 NEXT

...and Run.

The picture tells it faster than words. LEFT$ picks off “N” letters from the

Having A Ball With String 185
L A —

LEFT side of S string. See how this string function could be used to strip off
_ only the first 3 digits of a phone number or the first letter of a name when
searching and sorting?

Change Line 20 to read:
20 FOR N = 1 TO 20

Save As LEFT ... and Run.

Even though there are only 15 characters in the string, the overRUN is
ignored. Change Line 20 back to N = 1 TO 185.

RIGHT$ works the same way, but from the RIGHT:

Change Line 40 to read:
40 PRINT RIGHT$(5%:N)

Save As RIGHT ... and Run.
It’s the mirror image of LEFT$.

Now let’s exercise MID$ and see where it goes. Change Line 40 to:
40 PRINT MID$(S$:N»1)

Save As MID ... and Run.

It very methodically scanned the string, from left to right, picking out and
PRINTing one letter at a time. Slow it down with a delay loop if the action
is too fast to follow.

With only a slight change, MID$ can act like LEFT$. Change Line 40 to:
40 PRINT MID$(S%:1:N)

...and Run.

It PRINTed N characters, counting from number 1 on the left.

25 CHAPTER2
dud ALL YOU CAN
DIZPLAY |5

L KILROY WAS

AW, WE
WERE YUST

FOOLWIN'’
AROUND.

Having A Ball With String 187

MID$ can also simulate RIGHT$. Change Line 40:
40 PRINT MID$(S$:+16-NsN)

...and Run.

Would you believe RIGHT$ backwards, one at a time?
40 PRINT MID$(S%:16-N»1)

...and Run.

How about a sort of “histogram” type graph:
40 PRINT MID%$(S%sNsN)

...and Run.

Make notes for future reference. If all these examples don’t spark some ideas for
your future use, I give up.

Suppose we want to PRINT the character in a specific position in the smng.
Make the program read:

10 8¢ = "KILROY WAS HERE"
20 INPUT "CHARACTER # TO PRINT"IN
30 PRINT MID$(S$:N»1)

...and Run.

If it’s not obvious, we can assign any of these statements to a variable. That
variable can in turn be used in tests against other variables. Change:

30 V& = MIDH(S$sN»1)
40 PRINT Vs

...and Run.

188 Chapter 25

A short book could be written about these three powerful functions, but I think
the point’s been made. They are used very frequently in complex sort and
select routines. If we dissect them into these simple components, they are easy
to keep track of. The next section has some good examples.

EXERCISE 25-1: \Write a program that asks the question, “ISN'T THIS
A SMART COMPUTER” Input @ YES or NO answer. If the first
character in the answer is a ¥, PRINT “AFFIRMATIVE.” If the first
character is an N, PRINT “NEGATIVE.” Otherwise PRINT “THIS IS A
YES OR NO QUESTION,” and send control back to the INPUT
statement.

EXERCISE 25-2: READ in the following part numbers: N106WT,
A208FM, AND Z154DX. Use MID$ to find the numbers. PRINT the
number with the largest value.

Searching With INSTR

INSTR (pronounced, “In-string”) is a function that can be of value when
searching for a needle in a haystack. It compares one string against another
to see if they have anything in common.

Suppose we have a list of names and want to see if another name (or part
of that name) is in our list. It’s the “part of” which makes this operation very
different from a straight comparison of name-against-name, which we already
know how to do using ordinary string-against-string comparisons. Here we
learn how to locate a name (and similar names) by asking for just a small part
of it. :

Start the New program by entering this list of Names:

DATA SMITH, JONES, FAHRQUART:» BROWN

DATA JOHNSON, SCHWARTZs» FINKELSTEIN

DATA BAILEY: SNOOPY, JOE BFTSPLK» %
That was the easy part.

How do we READ these names, one at a time, and compare them, or parts

Having A Ball With String 189

of them, with the name or part of a name which we INPUT? Add these Lines:

10 INPUT "WHAT LETTER(S) IS WANTED" iN$
20 PRINT

30 READ D%

40 IF D% = "*" THEN GOTO 99

90 IF INSTR(1.:D%$,N%$) = 0 THEN 30

60 PRINT +N%$3i" IS PART OF "iD%

70 GOTO 30

98 PRINT : PRINT "END OF SEARCH"™ : END

Save this program As INSTR. We’ll be needing it later.
Now this takes a bit of explaining: A

Line 10 INPUTs the name or part of the name we are trying to
locate.

Line 20 PRINTs a blank space for easier reading to help give this
book some class.

Line 30 READs a single name from the DATA file.

Line 40 tests to see if D$ is READing the last item in the DATA
file; IF so, execution branches to Line 99.

Line 50 uses the INSTRing to do all the searching. INSTR looks
at D$, starting with the 1st character, to see if the characters INPUT
in N$ match characters in D$. If INSTR returns the value of 0, it
means there is no “match,” and the program should READ the next
piece of DATA. If there is a match, INSTR returns a number which
is the number of characters it counted in N$ before a match was
found. Since this number is not 0, execution drops to:

Line 60 which PRINTSs both what we’re looking for and the match.

Line 70 starts the process over again.

190 Chapter 25

Run, trying various letters, names and parts of names to get the hang of what’s
going on. It’s pretty impressive!.

Now that wasn’t too bad, was it? (‘Twarnt nothin’, really.) It doesn’t matter how
hard a program seems; when broken down to its individual parts, it isn’t very hard.
Like we’ve pointed out before, “The BASICs Are Everything.” A little time beside
the pool reﬂecting on the logic will do wonders.

For those with only a silver fingerbowl, but no pool, these changes will show
the inner machinations of INSTR.

90 L = INSTR(1D%sN%$)
99 IF L = 0 THEN 30
60 PRINT sN&3" IS CHARACTER#"iL3i"IN "3iD%

Run it through a number of times trying different letters. It really does make
sense!

To see the effect the starting number following INSTR has on our program,
change Line 50 to:

90 L = INSTR(2:D%sN%)

'INSTR now looks at D$, starting with the 2nd character.

Run and type in the letter S. See how it skipped SMITH, SCHWARTZ and
SNOOPY? Play around with the starting number in INSTR until you have a
good handle on what it does.

Having A Ball With String 191

EXERCISE 25-3: ReLOAD the “INSTR® program, and change the
DATA Lines to:

DATA P-RUTH, OF-MANTLE,» SB-MORGAN
DATA SS-LEOTHELIP,» P-KOUFAX
DATA C-CAMPANELLA» P-FELLER »%

What string would we enter to LIST the pitchers only?

AP

B. PITCHER

C. P-

D. None of the above

Save As BASEBALL and Run. Practice sorting by team positions.

Snarled STRING

In the last Chapter we learned about STRS$, which lets us convert a numeric
variable to a string variable. For the purpose of confusion (no doubt), there
is another “string-string” that does something completely different. For-
tunately, it is written differently.

STRINGS$(N,A) is a specialized PRINT modifier which allows us to PRINT
a single ASCII character, represented by A, a total of N times. Quite simple,
really, and very useful.

Select New and type:

10 PRINT STRING$(23:42)3%
20 PRINT "STRING$ FUNCTION"S
30 PRINT STRING$(23.:42)

...and Run.

Wow! That really moves. It PRINTed ASCII character 42, which is a *, 23
times, then PRINTed the phrase STRING$ FUNCTION, then PRINTed * 23
more times. This just has to have some good applications.

192 Chapter 25

Suppose we need to type a “header” across the top of a report -- let’s say
the first line of it is to be solid dashes. What is the ASCII code for a dash?
Forgot? Me too. Everybody back to Appendix A to find the code number.

45 it is. We want to PRINT, 70 times, the character represented by ASCII
code 45. That will print dashes across the full width of our screen. The New
program should look something like:

20 PRINT STRING$(70,43)

...Run it.

An even easier way to use STRING$ is to replace the ASCII code of the
character we wish to PRINT with the actual character itself. (It must be
enclosed in quotes.) This works fine with characters that really PRINT, such
as letters, numbers and punctuation marks. Change Line 20 so the program
reads:

20 PRINT STRING%(70,"-")

...and Run.
Works nice, doesn’t it, and we didn’t have to look up the ASCII code.

We can bring in a single string character via a string variable. This simple
New program shows a variation on the theme and may trigger some ideas:

10 INPUT "ANY LETTERs» NUMBER OR SYMBOL"iA%
20 PRINT STRING%(70:A%)
30 PRINT : GOTO 10

Play around with STRINGS$ a while. It’s really very helpful when needed,
particularly for giving display PRINTouts some class. An obvious advantage
is its ability to do a lot of PRINTing with very little programming.

EXERCISE 25-4: Print a string of 30 asterisks centered at the top
of the screen. '

Having A Ball With String 193

L _______________________________—__ — -

SPACE$ And SPC

The SPACES$ allows us to print from 0 to 255 proportionally-spaced blank
spaces. For example:

PRINT "A"3iSPACE#(20)i"B"

will print A and B with 20 spaces between them.

SPC is almost the same function as SPACES, but it doesn’t use proportional
spacing. Example:

PRINT "A"3iSPC(20)i"B"

prints 20 non-proportional blank spaces between A and B.

On The Lighter Side

The specialized string functions enable us to do all sorts of exotic things. Here
is the beginning of a simple but fun New program which uses LEN and
MID$. You can easily figure it out, especially after you’ve seen it Run.

Enter:

10 REM * TIMES SQUARE BILLBOARD *
20 CLS : N=0 : PRINT : READ A%

30 L=LEN(A%) : F=1

40 IF L>N THEN L=N+2Z

50 B% MID$ (A% +F L)

80 PRINT TAB(B4-N) iB%

70 FOR T=1 TO 200 : NEXT T

80 IF N=B3 GOTO 100

90 N=N+1 : IF N<B3 GOTO 120

100 L=L-1 : F=F+1 : IF L<O THEN L=0
110 IF L=30 GOTO 20

120 CLS : GOTO 40

194 Chapter 25
.]

500 DATA "LUCKY LINDY HAS LANDED IN PARIS +¢e"
510 DATA "... MET BY CROWD AT LEBOURGET AIRPORT®
...and Run.
Your assignment, if you choose to accept it, is to complete the program so

it repeats, ends, or otherwise does not crash.
Good luck!.

........ eeerensreces FISSSSS!

Learned In Chapter 25

Functions Miscellaneous

LEFT$ INSTRing routine
MID$

RIGHT$

INSTR

STRINGS

SPACE$

SPC

Chapter 26

TIMES And DATES

H ow about a short and simple Chapter?

Wouldn’t it be nice to be able to use time and date information in
a BASIC program? We can, and it’s as easy as A$, B$, C$,...

All we have to do is enter the Command window and type:

PRINT TIMES
and TIME is displayed.

The DATE can also be displayed by typing:

PRINT DATE$

Setting The Clock And Calendar From BASIC
The DATE is set by typing:

DATE$ = "12-12-85"
or
DATE$ = "12/12/85"

The Computer places the date into the Operating System. Verify it by typing:

PRINT DATE$
12-12-1985

195

AT THE TONE...

!

TIME$ And DATE$ 197

To set the time from BASIC, type:

TIME® = "19:06:30"
Type:
PRINT TIME$

to verify. Depending on how fast a typist you are, several seconds will have
elapsed.

All of the string operators we learned about in the previous Chapters can be

used to manipulate these two strings. For example, to PRINT only the day
and month from DATES$, return to the List window and type:

10 DAYS% = MID$(DATE$:4:2)

20 MONTH$ = LEFT$(DATE%$:2)

30 PRINT "THIS IS DAY #"3iDAY%S

40 PRINT " IN MONTH #" SMONTH%
Save As DATE ... and Run.

Note carefully that DATE$ and TIMES$ are built into the Macintosh, but
DAY$ and MONTHS are simply string variables we created.

Type in this New program:

180 PRINT DATE%,» TIMES
20 GOTO 10

...and Run.

How’s that for cheap and dirty? There are an endless number of much more
sophisticated ways to display time and date. Any ideas?

EXERCISE 26-1: Write a program which continuously displays the
time and date neatly on the screen.

198 Chapter 26
L]

Keyboard Buffer
You may have noticed that the Computer seems to remember what we have
typed on the keyboard even when it is busy performing some other task.

An area in memory is set aside to be a Keyboard Buffer. That buffer stores
our keystrokes until the Computer is ready to accept them. We can easily
“type ahead” of the Computer while it is busy performing such tasks as
reading the FILES, printing information on the screen or printer, performing
large calculations, executing FOR-NEXT loops, etc.

The Keyboard Buffer can store up to 31 key strokes.

When the buffer is overloaded, it will signal you. If the sound has not been turned
off, Macintosh will BEEP. If it has been tumed off, the Menu bar will flash.

Enter this delay loop program.

10 PRINT "TYPE CHARACTERS UNTIL I BEEP."
20 FOR N 1 TO 30000 : NEXT

30 INPUT "PRESS [Returnl"iAs

40 PRINT A%

As soon as you Run the program, type any group of letters or numbers until
the Computer beeps and wait. When program execution is finished, the key-
strokes are displayed. Press to satisfy the INPUT statement.

For fast typists, this is a real time-saver.

Learned In Chapter 26

Statements Miscellaneous
TIME$ Keyboard buffer

DATE$

VAIRIAIBILIE

PART 4

PJRE@HSH@N

1D MIATCIE

Chapter 27

What Price Precisiom?

he two versions of Microsoft BASIC, BASIC(b) and BASIC(d), store
T and display numbers with different accuracy. When BASIC(b) is
selected, 7 digits are displayed, though only 6 will be accurate. This
is called “single precision” accuracy and is more than adequate for most appli-
cations.

The old slide rule was accurate to only 3 dlgts

For large business or special scientific applications, however, greater accuracy
is needed. With Microsoft BASIC, we have a capability called “double pre-
cision.” When BASIC(d) is selected, the Computer stores numbers accurate
to 14 digits and PRINTSs them out accurate to 13. However, we pay a price
for this precision both in the additional memory it takes to store and process
long numbers and in the extra time required to process them.

We could use either version of BASIC to learn about single and double pre-
cision numbers since both versions can convert numbers to either precision.
However, since up to this point, we have been using BASIC(b) to write our
programs, it’s best to continue using it. Programs written in one version of
BASIC cannot be loaded into memory when using the other version.

If you’re not in BASIC(b) or are not sure which version of BASIC is loaded
in the Computer, select Quit from the File menu and return to the Finder.
Now, double-click the BASIC(b) icon. When BASIC(b) is loaded, enter this

program:

10 X = 1234567890887654321 (Check ‘em.)
20 Y = ,000000000123456789 (Check ‘em.)
30 2 = X % Y

200

What Price Precision? 201
.]

40 PRINT X3"TIMES"3Y
50 PRINT "EQUALS"3Z

Note that the number values in Lines 10 and 20 have been converted to Expo-
nential Double Precision. That’s what the “D’s” in those Lines stand. for.

Now Run.

1.,234568E+18 TIMES 1.234568E-10
EQUALS 1.52415BE+08

Ummm-hmmm. A very large number times a very small number and the
answer -- all expressed in Exponential notation. That’s what the “E’s” stand
for, and each number has been clipped to 7 significant digits. (The ‘E’ desig-
nates Exponential notation. E+ 18 means the number before it times 10 to the
+18th power. E—10 means the number ahead of it times 10 to the —10th

power.)

Double Precision
We can easily convert storage, processing and printing of X, Y and Z to
double precision. The BASIC Statement is an easy one:

o DEFDBL A-Z

DEFDBL stands for “DEFine as DouBLe precision,” and A-Z means “every
variable from A through Z.”

Insert the Line and RUN.

1.234567890987654D+18 TIMES 1.23456788D-10
EQUALS 152415787.8238378

Quite a difference, eh? Those lost significant digits in the answer came back
from the hinterland and expanded our printout from 7 places to 16.

202 Chapter 27

Such precision is usually wasteful of memory space and time except in short
programs; but fortunately only a few variables ever need to be so precise.

Since we are of)ly using 3 variables, X, Y, and Z, there is really no point
in DEFining more than them to double precision. We can tell the Computer
to handle only those as double precision and leave any other variables (of
which there are none, right now) alone. Change Line 5 to:

o DEFDBL X-Z

...and Run.

Same results.

Overruled!

There are times when we will want to temporarily override the DEFDBL
declaration, converting a number or answer back to single precision. Suppose
we want Z to be printed as single precision. We can override the Line 5 decla-
ration by changing only those Lines which contain Z. Do it:

30 Z! = X % Y
90 PRINT "EQUALS"3Z!

...and Run.

1.234567890987654D+18 TIMES 1.23456788D-10
EQUALS 1.524158BE+08

Our “raw” data and the calculating was done in double precision, but our final
answer is printed out with only single-precision accuracy -- just what we asked
for. A specific declaration (like the ! which stands for “single precision”)
always takes precedence over a global declaration like Line 5. (Global means
“valid for the entire program,” not just one character or one Line.)

DouBLe Precision -- Simplified

There’s another way to calculate with high (double) precision but print the
answer in single precision. Since single precision is the “default” mode, we

What Price Precision? 203

L]
can simply not include Z in Line 5.

Change Lines 5, 30 and 50 and Run.

5 DEFDBL X»Y (or DEFDBL X-Y)
30 2 = X % Y
50 PRINT "EQUALS"3Z

Same results.

Global Override

It is possible to override the “global” DEFDBL declaration with a global single
precision declaration. DEFSNG will change everything back to single
precision. Let’s try it by adding these Lines:

B0 DEFSNG X-Y
70 PRINT XS"TIMES"3iYS"EQUALS"3Z
...and Run.

Good Grief -- our “single-precision” numbers turned to zeros, but the Z answer
is correct!

Well, it turns out that X DouBLe precision is a completely separate variable
from X SiNGle precision. It’s as different from X as is Y, or any other vari-
able. If we want to use X and Y again as single-precision numbers, we have
to go back and assign them values after declaring them to be single pre-
cision. Hnmmm. This is getting complicated.

A cheap and dirty way to show the point is to change Line 70 to:
70 GOTO 10

...and Run -- choosing Stop or hitting the EJ [l keys after both double and
single precision versions are printed in Lines 40 and 50.

Line 60 reDEFines X and Y as single precision, then control returns to Line

904 Chapter 27 _
.]
10, and the calculations are performed again. (Fortunately, there is rarely
reason to reDEFine a variable within a program. If necessary, we can do it
with conventional string techniques.)

DouBLe Precision, Another Way
Instead of a “global” declaration of accuracy, we can do it one variable at a
time. Change the resident program to read:

10 X# = 1234567890887654321
20 Y# = ,000000000123456789
30 Z# = X8 * Y&

40 PRINT X#3i"TIMES"iY#
50 PRINT "EQUALS"iZ#

...and Run.

Same results as before. The # sign declares that the variable letter preceding
it is to be handled as DouBLe precision, overriding the normal presumption
that it is SiNGle precision.

Remember, X# is not the same as X. It is an entirely different variable.
Same with Y# and Z#. To nail this point down, add:

o X = 4,321
60 PRINT "X ="3iX

...and Run.

The values of X and X# had no effect on each other, did they?

INTeger Precision

In those frequent cases where the numbers used are integers (and in the range
between -32768 and +32767), execution can be speeded up by declaring them
to be INTegers with the % sign or the DEFINT statement. Type this NEW

program:

20 PRINT "START"

What Price Precision? 205

30 FOR N = 1 TO 22000
40 NEXT N
90 PRINT "STOP"

Using a stopwatch or clock with a second hand, measure the time it takes for
the 22000 passes thru the FOR-NEXT Loop ... and Run.

Should be around 10 seconds. By default, the Macintosh processed the values
of N in single precision.

Now, let’s declare N to be an INTeger (which is all the accuracy we need),
and time it again. Insert:

10 DEFINT N

...and Run.
Aha! It took only about 5 seconds. Cut the processing time in half.

We can accomplish the same thing using specific declarations instead of the
global DEFINT. Delete Line 10, and change the program to read:

30 FOR NZ = 1 TO 10000
40 NEXT NZ%

...and Run.

Same fast results.

One More Way

The conversion functions CSNG(#), CDBL(#) and CINT(#) provide 3 addi-
tional ways to declare numbers as SiNGle, DouBLe or INTeger precision.
Enter this NEW test program:

10 X = 12345.6789
20 PRINT X
30 PRINT CSNG(X)

206 Chapter 27
—

40 PRINT CDBL(X)
90 PRINT CINT(X)

...and Run.

It tells the whole sordid story:

12345.68
12345.68
12345.8787108375
12346

Line 10 changes to 10 X = 12345,68788# indicating the
number was so long that it could not be held in single precision.

Line 20 PRINTed the value of X accurate to 7 digits.

Line 30 PRINTed the SiNGle precision value of X -- the same value
as PRINTed by Line 20.

Line 40 PRINTed the DouBLe precision value of X, but it sure
isn’t a duplicate of what we specified as X in Line 10! The problem
is, we only input the number in single precision (by default).
PRINTing it out in double precision requires the Computer to just
“make up” numbers to fill out the places.

Don’t try to be more accurate than what you begin with. It’s the
programmer who’s supposed to be creative, not the Computer!

Line 50 PRINTed the INTeger value of X. This works slightly dif-
ferent than INT(X). CINT(X) “rounds off” the fractional part.

Let’s make the value of X negative and see what happens. Change Line 10 to:
10 X = -12345.6789%

...and Run.

What Price Precision? 207

No surprises. CINT acted just like INT does, rounding downward to arrive at
-12346.

DouBLe The Trouble -- DouBLe The Fun

Now let’s go back and declare the value of X to be DouBLe precision, change
it to a positive number and do all our PRINTing in DouBLe precision. The
edited program will read: '

10 X# = 12345.67889
20 PRINT X

30 PRINT CSNG(X#)
40 PRINT CDBL (X#)
90 PRINT CINT(X#)

...then Run,

and the display reads:

12345.6788
12345.68
12345.68789
12346

All makes sense, and all quite predictable, isn’t it?

Caveat

Degrees of precision may not be the most inspiring subject, nor always seem
to be the most consistent. But, if we’re at least aware of the differences in
precision, we’ll not be caught off guard and be deceived by numbers that
never were.

908 Chapter 27
.]

Learned In Chapter 27

Statements Functions Miscellaneous
DEFDBL CDBL Double precision (#)
DEFSNG CSNG Single precision (!)

DEFINT CINT Integer precision (%)

Chapter 28

Imtrinsic Math Functions

These math functions are all very straightforward and easy to use, but
if your math skills are a bit rusty, you will want to refresh them to
fully understand what we’re doing. We’ll keep everything here at the 9th-
grade Algebra level so there’s no need to panic (unless maybe you’re in the
6th grade ... but even so, just hang on and you’ll be OK).

T he BASIC language includes a number of mathematical functions.

INT(N)
We have studied the INTeger function in some detail in earlier Chapters so
we won’t cover that ground again. INT stores and executes numbers in single
precision.

FIX(N)
FIX is just like INT, but instead of rounding negative numbers downward, it
simply chops off everything to the right of the decimal point.

Try this simple test in the Command window:
PRINT INT(-12345.67)
produces -12346.
PRINT FIX(-12345.67)

produces -12345.

The one we use depends on what we want.

209

210 Chapter 28

SQR(N)

The SQuare Root function is simple to use.

Type this New program in the List window:

10 INPUT "THE SQUARE ROOT OF" 3N
20 PRINT "IS"3iS8QR(N)
30 PRINT : GOTO 10

...and Run some familiar numbers.

Another way to find the square (or any) root of a number is by using the *
(caret). The caret is produced by pressing the and [§ keys at the same
time. It means “raised to the power.” Finding the square root of a number is
the same as raising it to the 1/2 power. Change Line 20 to:

20 PRINT "IS "iN"(1/2)

...and Run some familiar numbers.

The same logic which allows us to find the square root with the * will let
us find any other root. (Even the thought of doing that in pre-computer days
drove men mad.) Out of the sheer arrogance of power, let’s find the 21st root -
of any number. Change the first two Lines:

10 INPUT "THE TWENTY-FIRST ROOT OF" N
20 PRINT "IS "iN"(1/21)

...and Run.

Now there is real horsepower! Problem is, how can we be sure that the
answers are right? Well, it’s easy enough to add a few Lines that will take
the root and raise it back to the 21st power to find out. Let’s change the
program to make it read:

10 INPUT "THE TWENTY-FIRST ROOT OF" N
20 R = N"(1/21)

Intrinsic Math Functions 211

30 PRINT "IS"iR

40 PRINT

50 PRINT R3"TO THE 218T POWER ="3iR"21
60 PRINT : GOTO 10

...and Run.
The INPUT and output numbers check out pretty close, don’t they? This

“proof” process might not stand up under rigorous scrutiny, but the answers
are correct.

EXERCISE 28-1: Pythagoras discovered that the sides of a right
triangle always obey the rule:

C=A+8

where C is the longest side (hypotenuse). Stated another way: “The
length of side C equals the square root of the sum of the squares
of sides A and B (C = VA® + BY)”

If side A = 5 and side B = 12, write a program to calculate the
length of side C.

ABS(N)

ABSolute value has a lot to do with signs, or without them. The absolute
value of any number is the number without a sign. If you’ve forgotten, this
program will quickly refresh your memory:

10 INPUT "ENTER ANY NUMBER" 3N
20 A = ABS(N)

30 PRINT A

40 PRINT : GOTO 10

...and Run.

Respond with various large and small, positive and negative numbers, and
Zero.

212 Chapter 28

They all come out as they went in, didn’t they, except the sign is miséing?

MOD

No, not the Music. MOD isn’t really a math Function; it’s more of a Math
Operator. MOD returns the remainder when one number is divided into
another number. For example:

PRINT 17 MOD 4

returns a 1 since 17/4 is 4 with a remainder of 1.
Other examples to try:

8 or 16 or 24 MOD 8 each equals 0. (There’s 0 remainder when
any of them are divided by 8.)

9 or 17 or 25 MOD 8 each equals 1. (There’s 1 remainder after
any of them are divided by 8.)

10 or 18 or 26 MOD 8 each equals 2. (There’s 2 remainder after
any of them are divided by 8.)

15 or 23 or 31 MOD 8 each equals 7. (There’s 7 remainder after
any of them are divided by 8.)

LOG(N)

No, a LOG isn’t what they build cabins with, but even the swiftest among
us have to refresh our memory from time to time to keep the details straight.

A LOG (logarithm) is an exponent. Exponent of what? The exponent of a
base. What’s a base? A base is the number that a given number system is
built on. Aren’t all number systems built on 10? ’Fraid not.
10° = 1000
10 is the BASE.
3 is the LOG(exponent), and

1000 is the answer.

Intrinsic Math Functions 213

NOW THAT'S WHAT | CALL A
LOGARITHM v

Think it has something to do with “new math,” but I was too old to take it, too
young to teach it, and grateful for not learning it from those who didn’t under-
stand it.

As if life weren’t complicated enough, the LOGarithm system is centered
around what are called natural logs. Exactly what that means is the subject
of another discussion, but we’re stuck with it anyway. Natural logs use the
number 2.718282 as their base. (Really makes your day, doesn’t it!) Some
BASIC interpreters provide a second LOG option using 10 as the base, as in
our decimal system, but making the conversion isn’t too bad -- and we do
have to live with it.

Type this New ‘program:

10 INPUT "ENTER ANY POSITIVE NUMBER"3IN
20 PRINT L = LOG(N)

30 PRINT "THE LOG OF"3iN3

40 PRINT "TO THE NATURAL BASE ="iL

50 PRINT : GOTO 10

The LOG function is not valid for negative numbers or zero.

...and Run.

Ummm Hmmm. Can’t relate to the conclusion? Respond with the number
100, and you should get the answer 4.60517. What it means is, 2.718282 to
the 4.60517 power = 100. Lay that one on them at the next meeting of the
Audubon Society, and they’ll know you’re weird for sure.

Let’s jack this thing around to where the vast majority of us who have to
work with LOGs can use it ... into the decimal system.

LET ME GUESG —-
NEW COMPUTERZ

intrinsic Math Functions 215

Decimal-based LOGs are called “common,” or “base 10,” Logs. Insert these
Lines:

45 PRINT "THE LOG OF"3N3

47 PRINT "TO THE BASE 10 ="3iL%*.,43423945

...and Run, using 100 as the number.

Ahhh! That’s more like it. We can all see that 10 to the 2nd power equals
100. It’s good to be back on relatively solid ground.

The magic conversion rules are:

To convert a natural log to a common log, multiply the natural log
by .4342945.

To convert a common log to a natural log, multiply the common
log by 2.3026.

And that’s the name of that tune.

This final New program scoops it up and spreads it out:

10 REM # LOGARITHM DEMO #*

20 INPUT "ENTER A POSITIVE NUMBER" SN
30 PRINT

40 PRINT "THE NUMBER" »"NATURAL LOG",
50 PRINT "COMMON LOG*

60 PRINT N/ LOG(N) LOG(N)*.,4342845

70 PRINT & GOTO 20

Wring it out until you’re comfortable with the concept.

EXP(N)
EXP is sort of the opposite of LOG. EXP computes the value of the answer,
given the EXPonent of a natural log. (Another winner.)

216 Chapter 28
L..___]

2.718282 raised to the EXP power = the answer.

Type in this New program:

10 INPUT "ENTER A NUMBER" N

20 A = EXP(N)

30 PRINT "2.,718282 RAISED TO THE" N3
40 PRINT "POMWER ="3iA

50 PRINT : GOTO 10

...and Run.

We’re entering the EXPonent now, so it’s easy to INPUT a number that is
too big for the Computer and will cause it to overflow.

As a benchmark against which to test the program, enter this number:
4,6051702

The BASE of the natural log system raised to this power should equal 100
(or something very close).

Being this far into logs, you can create your own advanced test programs, and
check the results against a LOG table. And if you're not too comfortable with
all this ... try making a log cabin with the remainders!

EXERCISE 28-2: (For math fans only) Convince yourself that LOG
and EXP functions are inverses of each other (hint: LOG(EXP(N)) =
N). Try putting the two functions together in the opposite order
using both positive and negative values for N. Why do the negative
values create havoc?

Intrinsic Math Functions 217

Learned In Chapter 28

Math
Functions Operators Miscellaneous

INT " (caret) Natural Logs
FIX Common Logs
SQR

ABS

MOD

LOG

EXP

Chapter 29

The Trigonemetric Functions

ince this is about as deep as we’ll get into mathematics, I have to
S assume you know something about elementary -trig.

Trigonometry, of course, deals with triangles, their angles, and the ratios
between the lengths of their sides. In the triangle below, the Sine (abbreviated
SIN) of angle A is defined as the ratio (what we get after dividing) of the
length of side a to the length of side c. COSine and TANgent are defined
similarly:

B
SIN A=alc e .
COS A=blc
TAN A=ab < = c

From these relationships, we can find any ratio if we know the corresponding
angle. Let’s try this simple New program:

10 INPUT "ENTER AN ANGLE (0-80 DEGREES)"iA
20 § = SIN(A*.,0174533)

30 PRINT "THE SIN OF A"§A"DEGREE ANGLE IS"iS
40 PRINT : GOTO 10

...and Run.

It really works! Try the old “standard” angles like 45°, 30°, 60°, 90°, 0°, etc.
Unless you’re right up to snuff on trig, Line 20 undoubtedly looks strange.
Well, it turns out that most computers think in radians, not degrees (always

has to be some nasty twist, doesn’t there...!). A radian is a unit of measure-
ment equal to approximately 57 degrees. In order to convert from degrees

218

The Trigonometric Functions 219

(which most of us use) to radians, we changed the INPUT from degrees to
radians. The SIN function will not work correctly without this conversion.

To convert angles from degrees to radians, multiply the degrees by
0.0174533. y

To convert angles from radians to degrees, multiply the radians by
57.29578.

Failure to make these conversions correctly is by far the biggest source of
computer users’ problems with the trig functions.

COSine and TANgent work the same way. Change the resident program to:

10 INPUT "ENTER AN ANGLE (0-90 DEGREES)"iA

20 C = CO5(A*,0174533)

30 PRINT "THE COS OF A"5AI"DEGREE ANGLE IS"3C
40 PRINT : GOTO 10

...and Run.

We know that COS(90°) should be 0. Unfortunately, the Computer is slightly
off because it calculates these functions by approximation. It’s doing the best
that it can ... honest!

For TANgent, Run this program:

10 INPUT "ENTER AN ANGLE (0-30 DEGREES)"JA
20 T = TAN(A*,0174333)

30 PRINT "TAN OF A" iAI"DEGREE ANGLE IS"S§T
40 PRINT : GOTO 10

The TAN function is not even defined for 90°, though Microsoft BASIC will #ry
to calculate it.

This next New program displays all 3 major trig functions at the same time.

NO,NO,NO! apyane

HASN'T GOT ANYTHING
TO DO WITH ATOMIC
ENERGY /

The Trigonometric Functions 221
.]

Note that in Line 20 we divide our incoming angle by 57.29578 instead of
multiplying it by 0.0174533. The results are the same.

10 INPUT "ENTER AN ANGLE (0-80 DEGREES)"S3A
20 A A/57.28578 ¢ PRINT

30 PRINT "SIN ="3iSIN(A)

40 PRINT "COS ="3iCOS(A)

50 PRINT "TAN ="3iTAN(A)

Inverse Trig Functions

The opposite of finding a ratio between two sides of a triangle when an angle
is known, is finding an angle when the ratio of two sides is known. There
are 3 trig functions available to do it, but most computers only make provi-
sions for one, called ATN (Arc of the TaNgent).

The following simple program takes the angle we INPUT, converts it to
radians, computes and PRINTs its TANgent. Then, as a “proof check,” it
takes that TANgent value and reverses the process by computing its arc
(angle). The letter “I” is used in the program since the arctangent is also
known as the “Inverse” (sort of the “opposite”) of the TANgent.

10 REM * ATN DEMO *

20 INPUT "ENTER AN ANGLE (0-90 DEGREES)"iA

30 T = TAN(A/S57.29578) : PRINT

40 PRINT "TANGENT ="3T

S0 I = ATN(T) * 57.289578

60 PRINT "ARC OF THE TANGENT ="31
If you’re one of those rare types who is very familiar with trig, you can prob-
ably throw numbers around in such a fashion that the other 2 “inverse” trig
functions, ARCSIN and ARCCOS, are not needed. But for those of us who
get confused when we run out of fingers, the last 2 functions are built into

this simple New program by way of special routines. The accuracy is close
enough for “government” work. Give it a try:

10 REM % INVERSE FUNCTION ROUTINES DEMO %

299 Chapter 29

20 INPUT "ENTER THE RATIO OF 2 SIDES"IR

30 CLS : PRINT

40 ARS=2*ATN(R/(1+SUR(ABS(1-R*R)))) * 57,2958
50 AC=90 - ARS : PRINT v

60 PRINT "RATIOD" »"ARCSIN" »"ARCCOS" »"ARCTAN"
70 PRINT "(NUMBER)" »"(DEGREES)" »" (DEGREES) "
80 PRINT "(DEGREES)" : IF ABS(R)2>1 THEN 110
90 PRINT RsARS,ACATN(R)*57,2858

100 PRINT : GOTO 20

110 PRINT R»"U"»"U"»ATN(R)*57.,2858

120 PRINT : GOTO 20

Remember, while the TANgent can be any number, when our ratio moves
outside the range of —1 to 1, SIN and COS are both mathematically “Unde-
fined.” Also, ARCTAN and ARCSIN produce angle measures between —90
and 90 degrees, but ARCCOS has a range between 0 and 180 degrees.

Learned In Chapter 29

Functions Miscellaneous
SIN Degrees

COS Radians

TAN

ATN

Chapter 30

DEFRIned RFuNctions

his Chapter is for advanced math types. If that isn’t your bag, skim
I it lightly, and move on down the road.

In addition to the intrinsic (built-in) Functions, Microsoft BASIC allows us to
define our own Functions. .

In what kind of situation would we want to do that? Repetition of formulas
and simple operations that are used repeatedly can be greatly shortened by
building a custom Function. They won’t operate as fast as the other, factory
built-in Functions, but like subroutines, they greatly simplify BASIC

programming.
The Format for defining a Function is:
DEF FN name(vl,v2,...) = formula
where:
name is the Function name, and
vl, v2, ... are dummy variables that represent the values the Func-
tion will act on. Name and vI, v2 ... can be any valid variable
names.
formula is the expression where the calculations are carried out.
Let’s create a Function to do MODular arithmetic. MOD is one of our math

operators, but we’ll use it to demonstrate the technique DEFined FuNction.
Try this on for size:

10 INPUT "ENTER X" X
20 INPUT "ENTER Y"3iY

223

1 DUNNO, YOU
MIGHT GIVE THE
CHAPTER A SHOT...

DEFined FuNctions 2925

30 DEF FNC(X»Y) = INT(X-Y # INT(X/Y))
40 REM C = FUNCTION NAME/X»Y THE NUMBERS
90 PRINT X3i"MOD"3Yi"="3iFNC(X»Y)

...and Run.
The variables X and Y used in defining the Function in Line 30 are really

“dummy arguments.” They only show the Computer how to perform the cal-
culations. Change Line 30 to:

30 DEF FNC(AsB) = INT(A-B * INT(A/B))

...and Run,

Same results? You betcha. In fact, we could even use A and B elsewhere in
- the program; Line 30 won’t effect their values at all.

The FuNction variable can be INTeger, Single, or Double precision or even
a string variable. The value returned to the program is determined by the type
of variable. Try this NEW sample with a string:

10 DEF FNZ$(A$) = "-" + A$ + ".»
20 PRINT FNZ$("FUNCTION")

...and Run,
Functions are very powerful when used for repetitive calculations. How about

the distance between two coordinate points in a plane, (X1,Y1) and (X2,Y2),
Use:

10 DEF FND#(X1,Y1+X2:Y2) = SQR((X1-X2)%(X1-X2)

+ (Y1-Y2)%(Y1-Y2))
20 PRINT "DISTANCE IS"§ FND#(-1+3+2+7)

Note: Line 10 is shown on two lines to fit the book. The Computer displays it
on one line.

2926 Chapter 30

]
...and Run.

NOTE that D# is a double precision variable.

And it is even possible to come up with a Function that uses no variables at
all:

10 DEF FNA = 1 + INT(RND#%35)
20 PRINT FNA

Learned In Chapter 30

Statement

DEF FN

PART 5

IDISIPILAYY
IROQOIRMATTING

Chapfer 31

Video Display Graphics

nd It Draws Pictures Too!
A Our Macintosh can draw an endless variety of pictures on the Video
Display. We will learn some of the basic procedures and capabilities
in this Chapter. After that, what you create is limited only by your own imag-
ination. Who knows...you may write a graphic program artistically equivalent
to the Mona Lisa. ‘

Now, the 2 most basic of the 4 graphic commands:
PSET turns on (darkens) a particular section or point on the screen.
PRESET turns off (lightens) a particular point.

For graphic use, the screen is divided into a large number of sections or

“pixels.” Each pixel is a rectangular block, and each pixel has its own “ad-
dress.”

The letter “O” occupies a space that is 9 pixels hijgh by 6 pixels wide.

For example:

PSET (55,32)

means —~ “turn on the light” at the junction of 55th “H” Street and 32nd “V”
Avenue.

H is the horizontal address, counting across from the left-hand side of the
screen. V is the vertical address, counting down from the top of the screen.
All “street addresses” start counting from the upper left-hand corner. H and
V as used here are the same as X and Y used in the first quadrant of

228

Video Display Graphics 229

L. - ____________________ -]
mathematical coordinate grid systems. H and V are more descriptive and
easier to work with while learning.
Type in:

10 PSET(35:32)

...and RUN.

Look carefully for the dot because it is very tiny (there are approximately 74
dots per inch).

Careful now, don’t mess up the screen. Open the Command window and type:
PRESET(55:32)

How about that? We found the ON-OFF switch!

Want to really press you luck? Try darkening two pixels. That’s right; add
this Line:

20 PSET(55:33)

...and RUN.

We now have 2 pixels light, one on top of the other. Let’s turn the upper
pixel off by RUNning our program with this additional Line:

30 PRESET(3535:32)

The point of all this obviously is that we can control whether each pixel on
the screen is dark or light (on or off) by “talking” to it at its individual address
with PSET and PRESET statements.

Flying Saucers Or Lightning Bugs?
If one has an ON-OFF switch, what does one do with it? With a little
imagination, we could create pixels that go ON and OFF, to attract attention...

230 Chapter 31

by blinking. This simple program shows how to set up a “blinker.” Run it:

10 H 100

20 V 100

30 PSET(HV)
40 PRESET(H V)
50 GOTO 30

Simple FOR-NEXT loops at 35 and 45 could be used to control the blinking rate.

Once Again, More Heavily

In the Horizontal direction, there are 32768 addresses, numbered 0 to 32767.
0 is at the far left, 245 is near the middle, 490 is at the far right of the visible
screen, and 32767 is at the extreme right, off the screen.

In the Vertical direction, there are also 32768 pixel addresses; O is at the top,
300 is at the bottom of the screen (with the Command window closed) and
32767 is at the very bottom, off the screen.

The statement “PSET(H,V)” darkens the pixel which is the Hth pixel from the
left in the horizontal direction and the Vth one down from the top in the ver-
tical direction. And, you’ve figured out that PRESET works in the same way
except that it lightens the pixel.

Let’s exercise PSET more aggressively. This NEW program will darken any
one pixel of your choosing. Type:

10 INPUT "HORIZONTAL (0 TO 480)"3iH
20 INPUT "VERTICAL (0 TO 300)"35V
30 CLS

40 PSET(H»V)

...and RUN a number of times using various values of H and V.

Video Display Graphics 231
.]

You may have noticed that if a pixel is lit in the area of the List window,
it is covered over when the program ends. Try H = 330 and V = 150. We
can avoid this problem by either closing the List window before Running or
by not returning control to the prompt - by adding:

98 GOTO 98

This Line locks the Computer in an endless loop. Add Line 99, and Run the
program trying values of H = 300 and V = 100. To break the loop, press
A or select Stop from the Run menu.

CLS is a single statement which PRESETS every pixel on the screen to “OFF”
in one operation; we don’t have a similar statement to turn them all “ON.”

However, we can easily write a program that “darkens,” or “paints,” the entire
screen. It uses one CLS (not really a must, but always a good habit to use
in graphics programs), two FOR-NEXT loops and one endless “locking
loop.” Type this:

10 FOR H = 0 TO 480
20 FOR V = 0 TO 300
30 PSET(H V)

40 NEXT V

50 NEXT H

89 GOTO 88

...and RUN.

The program fills the display from left to right. Redesign it so it starts at the
top and fills to the bottom.

Answer

10 FOR V 0 TO 300
20 FOR H = 0 TO 480

232 Chapter 31

30 PSET(H V)
40 NEXT H
50 NEXT V
889 GOTO 99

Next, rewrite it so it starts painting at the bottom and fills to the top.

Answer

10 FOR V = 300 TO O STEP -1
20 FOR H = 0 TO 490

30 PSET(H V)

40 NEXT H

50 NEXT V

8989 GOTO &8

Did you forget FOR-NEXT could STEP backwards?

Rewrite it so it starts painting at the upper right-hand side and fills to the
lower left-hand side.

Answer

10 FOR H = 490 TO 0 STEP -1
20 FOR V = 0 TO 300

30 PSET(H V)

40 NEXT V

50 NEXT H

88 GOTO 88

Just for practice, Run the program using other positive and negative STEP
increments...

Fantastic -- now we can paint the old barn at least four ways!

Video Display Graphics 233

EXERCISE 31-1: Write a program which will allow the painting of
only a small part of the display (you determine which part). Allow
keyboard INPUT to determine the starting and ending pixel numbers
in both the horizontal and vertical directions.

Getting the hang of it? Great! Enough playing with blocks ... let’s draw some
lines. Erase the resident program.

You haven’t forgotten how to do that, have you! Select Erase...no, no! Select
New from the File menu.

We’ll start our artistry with a straight line. This program PSETSs a straight
horizontal line across the entire display. Type:

10 INPUT "VERTICAL ADDRESS (0 TO 300)"iV
20 CLS

30 FOR H = 0 TO 490

40 PSET(H:V)

50 NEXT H

88 GOTO 88

...and RUN several times.

We can just as easily create a straight vertical line. Try this.

10 INPUT "HORIZONTAL ADDRESS (0 TO 480)"iH
20 CLS

30 FOR V = 0 TO 300

40 PSET(H»V)

90 NEXT V

89 GOTO 89

...and RUN a number of times.

Now, let’s see if we can modify this last program to allow us to INPUT both

234 Chapter 31

the starting vertical address and the length (in pixels):

12 INPUT "VERTICAL STARTING ADDRESS # (0 TO
300) "3V

14 INPUT "NUMBER OF VERTICAL PIXELS"3iN

16 IF V + N < 301 GOTO 20

18 PRINT "TOO MANY VERTICAL PIXELS!"

19 END

30 FOR V=V TO V + N

Now that we can draw straight lines, we can form figures -- like squares and
rectangles. This program forms a rectangle. After selecting New, type:

10 INPUT "HORIZONTAL STARTING ADDRESS (0
TO 490)"3H

20 INPUT "VERTICAL STARTING ADDRESS (0
TO 300)";V |

30 INPUT "LENGTH OF EACH SIDE (IN PIXELS) ==
(0 TO 300)";8S

40 CLS

50 FORL =HTOH+ S

B0 PSET(L V)

70 PSET(L sV+S)

80 NEXT L

90 FOR M =V TOV + §

100 PSET(H M)

110 PSET(H+S M)

120 NEXT M

999 GOTO 999

...and RUN.

Video Display Graphics 235

You may want to come back later for some heavier study.

A Little Diversion

All our graphics work so far has been drawing dark lines on the light display.
We can do just the reverse by painting the display dark first, then lightening
the desired areas with PRESET. This New program draws a white horizontal
line on a black background. To save time, we will only darken part of the

screen. Type:

10 INPUT "VERTICAL POSITION (O TO 150)"35V
20 CLS

30 FOR H = 0 TO 120
40 FOR J = 0 TO 150
20 PSET(H»J)

60 NEXT J

70 NEXT H

80 FOR H = 0 TO 120
80 PRESET(H»V)

100 NEXT H

899 GOTO 989

...and RUN.

If you’re interested, go back and try similar easy modifications to other
demonstration programs and have fun with these reverse (or “negative”) dis-

plays.

Learned In Chapter 31

Statements Miscellaneous
PSET Pixel

PRESET

Chapter 32

Imtermediate Graphics

e can draw other straight (more or less) lines by just changing H and
w V addresses of PSET in the FOR-NEXT loop. Try this New program
to draw a diagonal line:

10 INPUT "HORIZONTAL STARTING ADDRESS
(0 TO 490)"3H

20 INPUT "VERTICAL STARTING ADDRESS
(0 TO 300)"35V

30 INPUT "DIAGONAL LENGTH"3D

40 CLS

50 FOR L =0 TOD - 1

60 PSET(H+L »V+L)

70 NEXT L

89 GOTO 88

Once we have the diagonal line, we can form a right triangle by making these
changes and additions:

70 PSET(H»V+L)
80 PSET(H+L ,V+D)
90 NEXT L

or

70 PSET(H+D:V+L)

236

Intermediate Graphics 237

80 PSET(H+L V)
80 NEXT L

Try them both.
Question: What is the difference in the displays?

Answer: They are inverted, mirror images of each other.

Broken Lines

In every prior graphics program, we could have made the lines “broken” by
introducing a STEP other than “1” in the FOR-NEXT loops. For example, try
drawing a broken horizontal line with this New program:

10 INPUT "VERTICAL ADDRESS (1 TO 300)"3iV
20 INPUT "STEP SIZE" i8S

30 CLS

40 FOR H = 0 TO 490 STEP §

50 PSET(H»V)

60 NEXT H

88 GOTO 88

Run this program with various values of S. Note that as you increase S, the
line is drawn much faster (since the Computer has less work to do). In fact,
for S = 10 or more, we can hardly see the line being drawn. This is how
a TV picture is created -- since it too is drawn one unit at a time (but so fast
we don’t notice the “drawing time”).

Insert the following Lines into the resident program:

5 REM * V MUST BE LARGER THAN 0 *
55 PRESET(H:V-1)

70V =V + 1

80 IF V < 301 GOTO 40

238 Chapter 32

L]
If S is small, we can see each line being drawn and cleared. But if S is fairly
large (try 20), the line seems to move in somewhat “old-time-movie” fashion.
This is the way the illusion of motion is created on a TV set and in some
of the popular video games.

Try this New program. It paints a dot on the display and moves it down.

10 INPUT "HORIZONTAL STARTING ADDRESS
(0 TO 480)"3H

20 INPUT "VERTICAL STARTING ADDRESS
(1 TO 300)"35V

30 CLS

40 PRESET(HV-1)

90 PSET(H»V)

BOV=V+1

70 IF V < 301 GOTO 40

89 GOTO 88

Having problems spotting the dot? Don’t worry, it isn’t your eyes. The action
is so fast and the pixel is so small that it’s difficult to spot it. The PRESET
statement simply followed along behind and erased the dot from the last PSET.

What happens if you omit PRESET? When you try it, remember to change
Line 70 to GOTO 50.

One Minor Detail
If a negative coordinate is used with PRESET and PSET, the line will begin
off the screen. Take a look at Line 40:

40 PRESET(HV-1)

If you INPUT V equal to —100, then the V address really becomes —101.
The line won’t appear until V is increased in value to O.

Intermediate Graphics 239

More Of The Good Stuff

We can just as easily move a point to the right by substituting these Lines:

10

20

30
40
50
60
70
a8

INPUT

"HORIZONTAL STARTING ADDRESS

(1 TO 490)"3§H

INPUT

"VERTICAL STARTING ADDRESS

(0 TO 300)"3V

CLS

PRESET(H-1.,V)
PSET(H V)
H=H+1

IF H K

491 GOTO 40

GOTO 99

EXERCISE 32-1: Change the last two programs so t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>