
NEW MICROSOFT 2.0 VERSION

---MICROSOFT-· --

BASIC
----for the---

by
David A. Lien

~QI) .

Iii COMPUSOFT®
PUBLISHING
A OIV15101'I OF COMPUSOn. INC • SAN DIEGO

Copyright© 1985 by CompuSoft Publishing, A Division of
CompuSoft, Inc. San Diego, CA 92119

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise,
without prior written permission of the publisher. No patent liability
is assumed with respect to the use of the information contained herein.
While every precaution has been taken in the preparation of this book,
the publisher assumes no responsibility for errors or omissions. Neither
is any liability assumed for damages resulting from the use of the
information contained herein. Portions of the material contained herein
were originally created by the author for Radio Shack in support of
the TRS-80 computer.

CompuSoft® is a registered trademark of CompuSoft, Inc.

This book contains official CompuSoft® software.

Microsoft and the Microsoft logo are registered trademarks of Microsoft
Corporation, and MS is a trademark of Microsoft Corporation.

Apple is a registered trademark and Macintosh is a trademark licensed
to Apple Computers, Inc.

International Standard Book Number: 0-932760-34-1

Library of Congress Catalog Card Number: 85-71339

10 9 8 7 6 5 4 3 2 1

Printed in the United States of America.

A IF®IT~®IID~Il W@lt®
JFIT®mID ~Iln® Aunl1Iln®IT

In my note for the first edition, I said the Mac could well be the begin­
ning of a new generation of computers - a machine that could truly be
called "brand-new."

Apparently Microsoft agreed. They developed a Version 2.0 BASIC for
the Mac and created a language with features that BASIC never had
before - features that go hand in band with the Mac's innovative
capabilities and user-friendly personality.

Of course, BASIC is still BASIC, an easy to learn and easy to use pro­
gramming language with lots of powerful functions and statements. In
this revised edition, I make sure that learning to do all the "new stuff'
doesn't interfere with understanding the "ba8ics of BASIC."

The Mac is easy and non-threatening to use and so is this book. Have
fun with both of them as you learn. Let your imagination wander. I'll
supply all the facts and techniques we'll need. Remember, the real
enjoyment begins when your imagination takes over and the computer
becomes a tool under your control. You become the master - not the
other way around!

Dr. David A. Lien
San Diego - 1985

Iii

The following played key roles in the creation of this book:

Technical Director: Dave Waterman
Project Coordinator: Inez Goldberg
Technical Researchers:

Dan Gookin
Morgan Davis
Jody Bailey

Editorial Director: Gary Williams
Production Coordinator: Janice Scanlan
Cartoonist: Bob Stevens

Iv

Learning Microsoft BASIC for the Macintosh is organized into four major
sections:

A. Fifty-one chapters which teach how to use the many capabilities of your
Macintosh ... in small enough bites so you won't choke. Many chapters
include check points and examples.

In most chapters there are Exercises. H you're studying alone, use them
to test yourself and exercise your creativity. H you're studying with a
class, your instructor may use them to supplement his own.

B. A section with the Answers to the Exercises.

C. A section with Appendices which provide useful reference tables and
charts.

D. An Index, for easy reference after you've learned it all but forgotten where
you learned it.

The Computer helps you to learn ... a sort of "Computer Aided Instruction."

v

A Personal Note From The Author iii
Acknowledgements iv
Introduction v

Section A: Microsoft BASIC Tutorial 1

Part 1. Getting Started 3

0 Setting It Up 5
1 The Desktop 7
2 Computer Etiquette 13
3 Using The Editor 21
4 Expanded Program 26

Part 2. BASIC Fundamentals 35

5 Math Operators 36
6 Scientific Notation 46
7 Using () And The Order Of Operations 49
8 Relational Operators 54
9 It Also Talks And Listens 60

10 Calculator Or Immediate Mode 65
11 SAVEing And LOADing Using Disk 72
12 FOR-NEXT Looping 76
13 Son Of FOR-NEXT 86
14 Formatting With TAB 97
15 Grandson Of FOR-NEXT 103
16 The INTeger Function 109
17 More Branching Statements 120
18 Random Numbers 130
19 READing Data 141

vi

Table of Contents vii

Part 3. Strings 149

20 Smorgasbord 151
21 The ASCII Set 161
22 Strings In General 168
23 Measuring Strings 173
24 VAL And STR$ 179
25 Having A Ball With String 183
26 TIME$ And DATE$ 195

Part 4. Variable Precision And Math 199

27 What Price Precision 1 200
28 Intrinsic Math Functions 209
29 The Trigonometric Functions 218
30 DEFined FuNctions 223

Part 5. Display Formatting 227

31 Video Display Graphics 228
32 Intermediate Graphics 236
33 Formatting With LOCATE 246
34 Graphing Trig Functions 251
35 INKEY$ And INPUT$ 255
36 PRINT USING 263
37 PRINT USING •• Round 2 273
38 Using A Printer 281

Part 6. Arrays 287

39 Arrays 288
40 Search And Sort 302
41 Multi·DIMension Arrays 310

Part 7. Miscellaneous 321

42 PEEK And POKE 322
43 Logical Operators 329
44 A Study Of Obscurities 340
45 Advanced Graphics 350
46 Introduction To Data Processing 357
47 Advanced SA VEing, MERGEing, And CHAINing 367

viii Table of Contents

Part 8. Program Control 377

48 Flowcharting 378
49 Debugging Programs 383 '
50 Chasing Bugs 393 :

51 Chasing The Errors 397

Section B: Answers To Exercises 405

Section C: Appendices 429

Appendix A -- ASCII Chart 430
Appendix B -- Reserved Words 434
Appendix C -- Error Messages 436
Appendix D -- The Apple Menu 442

Section D: Index 451

~JECCvrfil@W A

MICROSOFT
BASIC

TUTORIAL

PART I

CG1IR1r'1rll~@r

~1rAIR1'1rlRID)

----------chapter o

efore we begin learning to program in BASIC, it's necessary to learn
about a number of the machine's special features. If you haven't done
so already, find and install the small plastic programmer's switch,

labeled "INTERRUPI' RESET," included in the packaging. Install the switch
according to the directions given in Apple's manual.

A Guided Tour Of Macintosh
For those who are new to Macintosh, a tour of the Computer is in order.
Locate the audio cassette tape and diskette, each named "A Guided Tour of
Macintosh" which came with the Mac. Together, the tape and disk will pro­
vide an excellent introduction to the· Computer's unique features. The tour
guides will explain how to insert the Guided Tour diskette, and how to tum
the Computer ON. They will also talk us through a few examples while the
Mac provides the demonstration. Start the audio tape, and begin the tour at
this time.

The first example the tape refers to is "Mouse Exercises." When it does, stop
the recorder. The Macintosh should be turned ON. Place the "mouse" on a
clean level surface, and move it around until the little arrow on the screen is
inside the box titled ''MOUSING AROUND." Press the button on the mouse.

When done MOUSING AROUND, take the other trips on the tour.

Well, that was pretty exciting, and challenging. Don't try to absorb all the
details at once. Instead, after every few Chapters of this book go back and
replay the "Guided Tour," and learn a little more. Only a few of the many
mouse and window features are absolutely necessary for learning Microsoft
BASIC on the Macintosh.

5

6 Chapter 0

When through with the Guided Tour, select the box with "I'm Ready to Stop,"
and the diskette will be ejected. Remove the Guided Tour disk.

Let's move on now to Chapter 1 to learn more about our electronic desktop.

--------------------chapter I

ITJ nsert the diskette named MICROSOFf BASIC Interpreter into the
slot. (We refer to this disk as the Master diskette.) In a few seconds,
the screen will display the Microsoft BASIC window, the Sample Pro­

grams window, the Trash Can icon, the Microsoft BASIC icon in the upper
right comer, and of course, the mouse pointer. This is our "desktop" which
displays the contents of the disk currently in the drive.

,.. •

If you've been using your Mac and Microsoft BASIC Master disk already, what
appears on your desktop may be different. You may, for example, have other win­
dows opened, or everything, including the Microsoft BASIC and Sample Programs
windows, may be closed. No problem ...

To make your window match what we've just described, close all windows, then
place the pointer on the Microsoft BASIC icon and click the mouse button twice
(also known as "double-clicking it"). Then move the pointer onto the Sample Pro­
grams icon, and double-click it. Now we all match.

file Edit Uiew Special

Mic:rosoft BRSIC
5 items 378K in disk

~ CJ
r1krosoft BASIC (b) Sample Pt-oi}l"ams S·~ item Folder

[&1 CJ
Microsoft B~SIC (d) Empty F o Ider

~D Sample Programs
11 items 60K in fo Ider

[Ji] [El [Ji] [Ji] [Ji] [Ji]
Picture FormsC1em0 Music Terminal CrossRef

7

,

8 Chapter 1

Initializing A Diskette
We need to make a copy of this disk, one that we can store our programs
and assignments on, but first, we need to prepare a completely blank diskette
for our copy of the Master diskette. This process is called Initialization, and
it involves putting special magnetic "race tracks" on the disk.

To Initialize a new disk, we'll need to eject this one. (This one has done its
job for now - it prepared the Mac for the initialization process we're about
to carry out.) Move the mouse to the File menu at the top of the screen, hold
down the button, and drag the pointer down to Eject. When Eject is shaded
in black like this:

Close
Close Rll

11 ittms

l.liew Special

Microsoft BASIC
:Jr:O 378K in disk
~I t=========================;r==

0
Empt~ F o ldtr

Programs
60K in foldtr

fJ fJ fJ [EJ fJ fJ
Pictur• F orms~mo MIJsic T mninal CrossRef Compressor

... release the button, and the disk will pop out.

,

Remove this diskette, and set it aside. Now take a new, unused, diskette and
look it over.

WRITE-PROTECT /
WCKING MECHANISM

The Desktop 9

The "write protect" locking mechanism is in the upper left-hand corner. When
the disk is protected (locked), the tab is up and a hole is visible. To allow
the Computer to write to the diskette, the write protect tab should be covering
the hole. Slide the write protect tab downward, then insert the new disk into
the Computer. This dialog box will appear on the screen:

r 9 file Edit lliem Spetiat

Microsoft BRSIC
378K in disk

This disk is unreadable:

Do you wont to initialize it1

Eject

Microsoft BASIC (d) Empty Folder

Sample Pro

11 ittms 60K in foldtf"

I I I I I I
Picture Forms[>emo Mu~. ic Terminal CrossRef C'.ompressor

Move the mouse pointer to the Initialize box, press the button once, and listen
to the Computer hum.

When Macintosh is done, we are asked to name the disk. Any name of up
to 27 characters (except the colon) can be used. With that kind of range, there
should be no trouble choosing names that distinguish one disk from another.
Let's use the name LEARNING. No need to use the [SllJIIl key -- letters are
always capital once we press down the L!Eieti'H.t33 key. Type:

LEARNING

... and click the button inside the OK box (or press l;AllO.! on the keyboard).
The dialog box disappears, and the new disk's icon is placed on the screen
below the Microsoft BASIC icon. Such magic!

DISK DR\VE I
~ .

The Desktop 11

Backing Up The Microsoft BASIC. Disk
Our next task is to make a backup (safety copy) of the original Microsoft
BASIC diskette. We'll use the copy as our ''working master," and hide the
original for safe keeping. This precaution may save a long drive down to the
Apple computer store. You are allowed to make as many backup copies of
the Master diskette as needed for your own personal use, subject to any pro­
visions stated in the factory notice.

Move the pointer over the Microsoft BASIC icon, hold down the mouse but­
ton, and drag the icon's shadow down to the newly created LEARNING disk.
Once the lower icon is shaded in black, release the button. A dialog box will
ask:

Completely replace contents of
"LEARNING" (internal driue) with contents
of "Microsoft BASIC" (not in any driue)?

(OK J (Cancel)

which freely translated means: "'Do you want to make a backup of the Micro­
soft BASIC diskette (which is not in the Computer right now) and put it on
LEARNING (which is inside the Computer)?''

Respond by clicking the OK box.

Two dialog boxes appear. The top one shows how many files remain to be
copied. The bottom one tells when to switch disks. This swapping process is
slow, but with only one drive, it is necessary. The Macintosh will load some
files from the original disk into temporary memory then eject the disk. When
we insert the new disk, it will "dump" what it has stored onto the new disk,
then ask for more. When the backup is complete, the boxes will disappear,
the drive will stop and we'll have an exact duplicate of the Microsoft BASIC
disk with enough empty space remaining to hold all our programs. and
exercises.

Eject the Master disk. Then press the RESET button on the programmer's
switch. Macintosh beeps and clears the screen. Insert the new LEARNING
disk. Observe that an icon of our new disk is displayed. Double-click the
LEARNING disk icon to confirm that all the programs and files from the orig­
inal are present on this backup.

12 Chapter 1

Turning The System OtT
It is best to have all files and windows closed and the disk ejected before
RESETing or shutting the power off. Use either the File menu, or press the
IB (Command) and 1!1 keys at the same time to eject the disk. Then reach
around to the left rear of the computer and tum it off.

It is not always necessary to tum Macintosh off. (It only uses 60 watts of
electricity.) However, if you decide to keep it on for a long time, remember
to tum down the screen brightness. If you don't, and the machine stays on
for a long time, it could damage the screen by burning an image onto it. The
brightness adjustment is located below the Apple logo under the lower left
front of the computer where you see the 1Q1 symbol.

Learned In Chapter 1

Miscellaneous

Turning the Computer ON and OFF
Dialog box
Command key • I! <111!)
Initializing a disk
Backing up a disk
Programmer's switch (RESET)

Menu

File
Eject <Bl!)

There is a review summary like this at the end of each chapter to be sure you
didn't miss anything.

----------chapter 2

rom the moment we tum it on, our Macintosh follows a well-defined
set of rules for coping with us, the "master." This makes it an excep­
tionally easy computer to use. To a large extent, all we have to do

is say the right thing (via the keyboard or the mouse) at the right time. Of
course, there are lots of "right things" to say; putting them together for a pur­
pose is called programming.

In this Chapter we'll start a conversation with our Macintosh and teach it some
simple social graces. At the same time, you'll learn the fundamentals of com·
puter etiquette. You'll even write your first computer program!

If you turned the Computer OFF, tum it back ON and insert the LEARNING
disk. When the LEARNING window is displayed, you'll see two Microsoft
BASIC icons in the upper window, Microsoft BASIC (b) and Microsoft
BASIC (d), either of which will teach the Computer to speak BASIC.

For our purpose of learning BASIC, either version could be used. BASIC (b)
is a Binary version while BASIC (d) is a Decimal version. All this means is
that version (b) manipulates numbers in single precision while version (d) uses
double precision. We'll see what this is all about in Chapter 27.

Move the mouse over the Microsoft BASIC (b) icon, and double-click the
mouse to "load in" BASIC.

We chose Binary BASIC because it occupies a little less memory space and man­
ipulates arithmetic operations a little faster.

13

14 Chapter 2

When this screen:

r s File Edit Search Run Windows
,

Untitled

~o List

tr

'!ii

I y

Command ·

appears, we're set to "go." The blinking vertical bar in the List window is
called the cursor (also referred to as the insertion point). The Computer is
saying:

"I'm ready -- it's your tum!"

To make sure we start off with a clean slate - erasing all traces of prior
programs -- drag the pointer down the File menu, and release the mouse button
when New is outlined. in black. The NEW command can also be entered from
the keyboard. Place the pointer anywhere in the Command window at the
bottom of the screen, and click the mouse button. Type NEW, and press
1;m1111e1.

Reactivate the Command window. Then type PRINT FRE(O) and l;Aliiid,
Note that while this Line appears in the Command window, the result appears
in the Output window once lmmliel is pressed. This is a very simple test to
see that the Computer "powered up" properly. The display should read:

21000

Computer Etiquette 15

If the number is not 21000, select Quit from the File menu and when you are back
in the Fmder, eject the disk. Tum the Computer OFF, and wait about 10 seconds
befme turning it ON again. Repeat the test, and verify that the number is in the
ball park.

What Is A Computer Program?
A program is a sequence of instructions the Computer stores until we com­
mand it to follow (~r "execute") them. Some programs for the Macintosh are
written in a language called Microsoft BASIC, and its very name tells how
easy it is to learn!

Let's write a simple one-Line program to let the Macintosh introduce us.

We must first place the cursor back in the List window since program Lines
can only be written in this window. Position the pointer inside the List win­
dow, and click the button. Note that the title bar on the List window is high­
lighted and that the flashing cursor has moved to the upper-left corner of this
window.

Type the following Line, exactly as shown:

10 PRINT "YOU ARE A COMPUTER PROGRAMMER,"

Do not hit the 1;p1111e1 key yet!

Notice that the program Line is too long to fit inside the List window. To
see the entire Line, place the pointer in the List title bar and double-click the
button. The List window now tills the entire screen. Place the arrow back on
the title bar and double-click again to return the List window to its original
size.

We could have enlarged the window by moving it and using the size box, but
then we would have to resize it each time we type in a longer program Line.
Best to see the entire program at once.

Enlarge the List window again to check your program. Slide the horizontal
scroll bar to the left to see the entire Line.

16 Chapter 2

,. s File Edit Search Run Windows

;O List
10 PRINT "VOU ARE A COMPUTER PROGRAMMER.'1

.,

If you made a typing error, don't worry. Just use the l:QiUM•bill§ key. Each
time you press this key, the rightmost character will be erased. If the error
was at the beginning of the Line, erase way back to that point, and then retype
the rest of the Line. (If you hold the !:tm1Ji•6194 key down longer than a
second, it will erase many letters very quickly.)

Study very carefu.lly what you typed:

1. Is everything after the word PRINT enclosed in quotation marks?

2. Are there any extra quotation marks?

If everything's okay, press !;GOH!!. The flashing I curs~r will move to the left
edge of the List window, telling us, "I got the message." The Line you typed
in will be displayed with PR I NT in bold type.

If It's Too Late
If you found an error after pressing i;Ai!iiel, the l:lif4M•6194 key cannot cor­
rect it. The best way to fix it, for now, is by "pulling down" the File menu
and selecting New. The Computer will ask if you want to save ''the current

GO Al-l~D, POKE?
AWAY- l WON'T
BY IE::! "YOU ARE
ACOMPUTEF<
PR061J:2AMME:R•
40UNDt; ~i<tt"I E _I

~ .:~{::~
~~:::=·:.··.:.-<:::::~

:l'=a,·~ .. jl.l!ll!l!l!!!l!!!ll!i!!ill'

18 Chapter2

program" before proceeding. Answer by clicking the No box. When the List
window reappears, type in the one-Line program. In the next Chapter we'll
learn how to "Edit" out errors instead of retyping entire Lines.

"Allow Me To Introduce You"
Let's tell the Computer to execute, or RUN, our program. The BASIC com­
mand for this is simple. Move the pointer to the Run menu, hold down the
button, drag down and release the button when Start is outlined in black.

Wow, that was fast! We didn't have much of a chance to look at the Output
window before it was covered over by the List window. Reduce the size of
the List window by double-clicking the title bar. This time Run the program
by moving the pointer to the Command window, clicking the mouse and typ­
ing:

RUN lm1iiliei

You can also RUN the program by pressing the Bl and lil keys while in either
the List or Command windows.

Return to the List window by typing:

LIST 1mm11e1

in the Command window, selecting Show List from the Windows menu or by
simply pressing 19 [!.

In the future when you are asked to Run the program, you can either type RUN
in the Command window, press Ifill lil or select Start from the Run menu.

If we made no mistakes, the line in the Output window will read:

YOU ARE A COMPUTER PROGRAMMER.

If it doesn't work, try to Run it again. If Run still doesn't produce the state­
ment, there's something wrong in your program. Choose New from the File
menu or type NEW lm10!iel in the Command window to clear it out, then type
it in and Run again.

Computer Etiquette 19

When selecting New from the File menu (or typing it in the Command window),
the Computer may ask if you want to Save the current program before proceeding.
Select the No box. Later we will start Saving our more important programs.

If it did work •• let out a yell!

"/ are now a REAL computer programmer!"

This is very important because you have tasted success with computer ~
gramming, and it may be the last you are heard from in some time.

In Summary
Note that the word PRINT is not displayed, nor is the Line number nor the
quotation marks. They are part of the BASIC Language program's instruc·
tions, and we didn't intend for them to be printed. Everything inside the quote
marks is printed, including blank spaces and the period.

From the Run menu choose Start again.

Run to your heart's content, watching the magic machine do as it's told.
When you feel you've got the hang of all this, get up and stretch, walk around
the room, look out the window •• the whole act. You'll soon be absorbed in
programming and won't have time for such things.

When typing in a program, we can choose direct commands like Start from
the Run menu or we can type them in at the Command window, but remember
to hit lmmiih to tell the Computer to look at what we typed, then act
accordingly.

Quitting BASIC Before Turning Off Mac
If you want to stop here, remember to turn down the brightness control or if
you're planning a really long break, turn off the Computer completely. First
get out of BASIC by selecting Quit from the File menu. Don't bother to save
this program. It's so short, it can easily be retyped when it's needed. Eject
the disk, and flick the power switch to off.

20 Chapter 2

Learned In Chapter 2

Commands

NEW
RUN
LIST

Statements

PRINT
1;m1111n

Miscellaneous Menus

Entering BASIC File
I cursor (inser- New

tion point) Quit
l:&S@161i4 key Run

11 11 quotation marks Start <II Ii])
List window Windows
Command window Show List (~ [!)
Output window
Enlarging the List

window

Commands (like RUN) are executed as soon as we type them in the Command
window and press l;Aliihl.

Statements (like PRINT) that are typed in the List ·window are executed only
after we press • [i], select Start from the Run menu or type RUN lmu!Hel
in the Command window.

Special message for people who can't resist the urge to play
around with the Computer and skip around in this book. (There
always are a few!)

It is possible to "lose ·control" of the Computer so it won't react
to the mouse or keyboard. To regain control, just press • B (Com­
mand-period). If that doesn't work, push the INTERRUPT button.
If that doesn't work, turn the Computer OFF for 10 seconds, then
turn it back ON again.

----------chapter 3

n extraordinarily valuable capability of our BASIC is a feature called
the Editor. Its purpose is as simple as its name. It lets us ''EDIT,"
or make simple changes, in a program. ·

The Microsoft BASIC Editor gives us the ease and power of using a ."word
processor." It is so easy to use but so powerful you'll never again want to
use a computer without one.

We now have a program in the Computer. (If you turned OFF your Computer
at the end of the last Chapter, just retype the one-Line program in Chapter
2.) Enlarge the List window by double-clicking its title bar, and then we'll
expand the program to read:

10 PRINT "YOU ARE A COMPUTER PROGRAMMER. ARE
YOU IN COMMAND?"

To do this, first place the pointer at the end of the program Line (to the right
of the last quotation mark), and click the button. Notice that the insert bar
is flashing at the end of the Line.

To get rid of the closing quotation mark, simply press !:Bi1@•M94 like we
did in the last Chapter. Now press the space bar twice, then type in the words:

ARE YOU IN COMMAND?" 1;m1111n

This program will run just fine. If, on the other hand, we wish to change the
Line to something like:

10 PRINT "YOU ARE IN COMMAND. YOU ARE THE
COMPUTER PROGRAMMER."

21

22 Chapter 3

then we need to do some Editing to Line 10.

Earlier we would have solved the problem by backspacing through the entire
Line and retyping it, hoping we didn't make more mistakes than we elimi·
nated. This particular example has so much to change, it might be just as
easy to retype, but our purpose is to "exercise" the Editor.

Since we want the word A to be changed to THE in the sentence YOU ARE
A COMPUTER PROGRAMMER•, place the cursor on the right side of the
letter A, and click the mouse. The listing shows:

10 PRINT "YOU ARE Al COMPUTER PROGRAMMER. ARE
YOU IN COMMAND?"

(If your screen doesn't look like this, move the cursor again and click until
it does. It takes a steady hand.)

Press 1:15f4@•Mll4 once to remove A. We now have to insert the word THE
between ARE and COMPUTER. The insert bar (or insertion point) is already
in position, so all we do is type the letters:

THE

The screen now reads:

10 PRINT "YOU ARE THEI COMPUTER PROGRAMMER. ARE
YOU IN COMMAND?"

Notice that, as you typed in the letters, the remaining Line moved to the right
to make room for the inserted letters.

If it seems we're going slowly, you're right! The Editor is simple but so
important, we may as well learn to use it right the first time. You know the
old story, "There's never time to do it right the first time, but always time
to do it over."

We now have to reverse the words ARE and Y 0 U in the sentence ARE Y 0 U
IN COMMAND?. To do this, we will use the Editor's Cut and Paste feature.

((

NOW\1--\AT
YOU'VE

L-E=ARNED
10 ~PEL..­
W~ATC?AV
Wf; \A~E:
UP EDITln9f

24 Chapter 3

Position the cursor to the left of the letter I in I N , and click the mouse. The
bar cursor should be flashing on the left side of the word I N. With the cursor
positioned over the bar cursor, press the button and drag left to shade the
word YOU. The Line should show:

10 PRINT "YOU ARE THE COMPUTER PROGRAMMER. ARE
d1IM1 N COMMAND?"

Position the cursor on the Edit menu, and select Cut. Zap! The shaded text
vanishes, and the rest of the Line slides into its place. The word Y 0 U has
not been entirely removed, just held in an area called the Clipboard, waiting
for us to Paste it back into the program. We can move text to the Clipboard
by either Cutting or Copying text. Once text is placed in the Clipboard, it is
held there until replaced by another Cut or Copy action. (We'll do some
Copying later.)

Now position the insert bar immediately before the word ARE and select Paste
from the Edit menu. We now have:

10 PRINT "YOU ARE THE COMPUTER PROGRAMMER. YOU 1
ARE IN COMMAND?"

We're almost there. All that is remaining is to switch the two sentences. Place
the insert bar between the question mark and the quotation mark, and hit
l:f5AJ1•14114 once to remove the question mark. Now place the cursor over
the insert bar, and shade the entire sentence Y 0 U ARE I N C 0 MM AND. Cut
the text by selecting Cut from the Edit menu. Position the insert bar between
the first quotation mark and the word Y 0 U. Select Paste from the Edit menu
to recall our sentence from the Clipboard. The sentence should now appear:

10 PRINT "YOU ARE IN COMMANDjYOU ARE THE COMPUTER
PROGRAMMER. II

Add the finishing touches to the Line by typing a period and two spaces. Then
move the cursor in front of the last quotation mark, and press l:l'Alfi•fi'i§ to
remove the extra space at the end of the sentence.

Using the EDITor 25

Whew, finally done. But wait - the insert bar is still sitting inside the pro­
gram Line. Move the cursor directly below the program Line, and click the
mouse. Line 10 is displayed with PRINT in bold type, and the cursor is in
position waiting for us to type in the next Line.

From here on, we should always use the Editor for making changes, especially
in long Lines. Compare the time it would take to change only one character
in a very long and complex Line by retyping it, with the speed of doing it
with the Editor.

EXERCISE 3·1: Choose New from the File menu, then use the Editor
to change:

10 PAINT "WE CAN TAKE CREDIT FOR CONSUMER
PROGRESS•"

to:

10 PRINT "WE CAN EDIT COMPUTER PROGRAMS."

Try working this one out on your own. The answers to later Exercises will
be provided in Section B, along with further comments.

Learned In Chapter 3

Menu

Edit
Cut <•t:t>
Paste <Iii>

Miscellaneous

Editing features

Chapter 4----------

W fter doing Exercise 3-1, we still have a program in the Computer. It's
~only a one-Liner, so let's expand it by adding a second Line.

One of the features available in this version of Microsoft BASIC which is not
found in most other BASICs is its ability to write program Lines without
assigning a number to every Line. We have the option of identifying program
Lines with numbers or titles, or we can write program Lines leaving off both
numbers and titles. The program's instructions are executed in order from the
top Line to the bottom without regard to the order in which Lines are num­
bered. Later we will learn how these Line numbers or labels are necessary
when branching from Lme to Line within the program.

To help explain what is happening with each program Line used in this book, we
will be assigning Line numbers in most of the examples.

Let's add the next Line, and leave out the Line number. Type:

PRINT "LINE NUMBERS ARE NOT REQUIRED." lmlli!ili

You did enlarge the List window, didn't you?

Check it carefully -- especially the quote marks. The program listing should
show:

10 PRINT "WE CAN EDIT COMPUTER PROGRAMS."
PRINT "LINE NUMBERS ARE NOT REQUIRED."

26

Expanded Program 27

Notice how PR I NT is again displayed in boldface type. The Computer does
this to help us pick out the BASIC statements, commands and functions from
the other words.

Return the List window to its original size by double-clicking its title bar and
Run the program.

If all was correct, the screen will read:

WE CAN EDIT COMPUTER PROGRAMS.
LINE NUMBERS ARE NOT REQUIRED.

Who Goofed?
There are many possible errors you can make while typing in program Lines.
For example, let's type a temporary Line and deliberately make a spelling
error:

PRIMT "TESTING" 1m1ii11e1

and Run.

The first two program Lines are executed just fine, then the Macintosh
encloses the new Line in a box, beeps a warning and displays this dialog box:

II Undefined subprogr11m

We deliberately "set you up" to demonstrate the Computer's error trouble­
shooter. The Mac is smart enough to know when we've made a mistake in
telling it what to do, and it PRINTs a clue as to the nature of the error. The
Computer looked for a "subprogram" within this program called PRIMT
"TESTING" and couldn't find it. Later we will see how smaller subprograms
can be placed within our main program and how these subprograms can be
labeled or assigned Line numbers.

o,_., COMG NOW. I HATE:
10~~ A GKOWN ~
CK.Y ... ~o YOU' E?OMB­
E===D' -- L-J;:.T~ G l vi:= lT
AtJOTHER ~HOT!

Expanded Program 29

To acknowledge the error, move the mouse and click it inside the OK box,
or just hit the !;Ai!ihi key.

The dialog box disappeared, but the temporary Line is still in the program,
inside its error box. Click the mouse with the cursor positioned at the left
side of the error box. Use the Editing skills learned in the last Chapter to Cut
away the temporary Line.

And The Program Grows
In most BASICs. where Line numbers are required, it is customary, traditional
(and all that) to space the Lines ten numbers apart to leave room to insert new
Lines between the old ones. Since Microsoft BASIC is not dependent on Line
numbers, we can insert new Lines wherever needed with the Editor. However,
when numbers are assigned to program Lines, we try to follow this rule of
thumb.

Run again, and look at the Video Display. What if we'd rather not have the
two Lines PRINTed so close together, but would like to have a space between
them? Type in the new Line:

20 PRINT 1;m111a,1

Our program Listing now looks like:

10 PRINT "WE CAN EDIT COMPUTER PROGRAMS.~

PRINT "LINE NUMBERS ARE NOT REQUIRED.ft
20 PRINT

Now Run.

There doesn't seem to be any additional space PRINTed between the two
lines. What happened? The Computer encountered Line 20 after it had already
PRINTed the first two lines. To further illustrate this point, insert the number
30 at the beginning of the second Line:

10 PRINT "WE CAN EDIT COMPUTER PROGRAMS.ft

30 Chapter 4

30 PRINT "LINE NUMBERS ARE NOT REQUIRED."
20 PRINT

and Run.

Even though the third PRINT statement has a Line number lower than that
of Line 30, it is executed in order of appearance (from top to bottom).

Now, insert Line 20 between Lines 10 and 30 by Cutting Line 20 and Pasting
it at the beginning of Line 30. Press !;AllllU to move Line 30 to the next Line
so the Listing shows:

10 PRINT "WE CAN EDIT COMPUTER PROGRAMS."
20 PRINT
30 PRINT "LINE NUMBERS ARE NOT REQUIRED."

Then Run.

It now displays:

WE CAN EDIT COMPUTER PROGRAMS.

LINE NUMBERS ARE NOT REQUIRED.

Note: To make this book easier to read, we are using more space between all our
program Lines than you actually see on the screen.

Looks neater, doesn't it? But what about Line 20? It says PR I NT. PRINT
what? PRINT nothing. That's what followed PR I NT, and that's just what it
PRINTed. Remember, we added Line 20 to keep Lines 10 and 30 from
PRINTing so close together. Well - in the process of PRINTing nothing, a
space was automatically inserted between the PRINTing ordered in Lines 10
and 30. (Hmmm ... so that's how we space between lines.)

Another important program statement is REM, which stands for REMark. It
is often convenient to insert REMarks into a program.

Expanded Program 31

Why? So you or someone else can refer to them later, to help remember com­
plicated programming details, or even what the program's for and how to use
it. It's like having a scratch-pad or notebook built into the program. When
we tell the Computer to execute the program, it skips right over any Line
which begins with a REM. A REM statement has no effect whatsoever on the
program. Insert the following at the beginning of the program:

5 REM *THIS IS MY FIRST COMPUTER PROGRAM* l;Alliili

You might be wondering why the asterisks(*) in Line number 5? The answer is
•.. they're just for decoration. Let's give this operation some class! Remember,
anything on a Line that follows REM is ignored by the Computer.

Then Run.

The ''video printout" reads just like the last one, totally unaffected by the pre­
sence of Line 5. Did it work that way for you?

Microsoft BASIC allows us to view two List windows at the same time. We
saw earlier how we can expand the List window to full size by double-clicking
inside the title bar and return it to the original size by double-clicking it
again. Now let's place a second List window over the first one.

If your List window is full size, return it to its reduced size. Pull down the
Windows menu, and select Show Second List. Notice how nicely the windows
stack on top of each other. This will come in handy when we have a large
program in memory and want to look at different parts of it at the same time.

Each window acts independently of the other. Each can be enlarged to full
size, moved around on the desktop and reshaped to suit our needs. If we com­
pletely remove both List windows from the desktop by clicking the mouse
inside each of their close boxes, we can bring back either the first or second
List window. The first List can be brought back by any one of 3 methods:

1. Select Show List from the Windows menu.

2. Type II I! from the keyboard.

3. Type LIST in the Command window (select Show Command
from the Windows menu, and type LI ST !;Alim!).

32 Chapter 4

The second List window can only be brought back by selecting Show Second
List from the Windows menu.

Now, with all that information on List windows, experiment on your own.
Learn how they work before continuing.

Where Is The END Of The Program?
The end of a program is, quite naturally, the last statement we want the Com­
puter to execute. Many computers require placing an END statement at this
point so the computer will know when to stop. But with Microsoft BASIC,
an END statement is optional. Remember though, if you want to Run BASIC
programs on fussier computers, they may need END statements.

When we get into more complex programs, we'll use END statements to force
execution to END at specified points.

Let's take a closer look at END. By the rules governing its use, most dialects
of BASIC which require END insist that it be the last statement in a program,
telling the computer "That's all, folks." By tradition, it is given the number
99, or 999, or 9999 (or larger), depending on the largest number the specific
computer will accept. Macintosh accepts Line numbers up to 65529.

With one List window (default size) displayed, let's add an END statement
to our program:

Type:

98 END 1;r:1110.1

Then Run.

The sample Run should read:

WE CAN EDIT COMPUTER PROGRAMS.

LINE NUMBERS ARE NOT REQUIRED.

Question: "Why didn't the word END PRINT?" Answer: Because nothing is
PRINTed unless it is the "object" of a PRINT statement. So, how could we

Expanded Program 33

make the Computer PRINT THE END at the end of the program execution?
Think for a minute before reading on, then insert the next Line between Lines
30 and 99.

98 PRINT "THE END" 1;m1111u

... and Run.

This assumes that Line 98 is the last PRINT statement in the program. We now
have an END statement (Line 99) and a PRINT ''THE END" statement (Line 98).
98 says it; 99 does it.

Erasing Without Replacing
Just for fun, let's move the END statement from Line 99 to the largest usable
Line number our Microsoft BASIC will accept, 65529.

Using the Editor, shade the number 99, and Cut it out. Now type in the
number 65529, move the pointer directly below that Line and click the mouse
button.

The List window should show the program with Lines 5, 10, 20, 30, 98 and
65529. Now Run the program to see if moving the END statement changed
anything. Did it? It shouldn't have.

Other Uses For END
Using the Editor, move END from number 65529 to Line number 15, then
Run.

What happened? It ENDed the Run after PRINTing Line 10. Run it several
times.

Now move END to Line 8, and Run.

Do you see the effect END has, depending where it is placed (even tempor­
arily) in a program? Feel like you are really gaining control over the machine?
You ain't seen nothin' yet!

34 Chapter 4

Learned In Chapter 4

Commands Statements Miscellaneous Menu

UST PRINT (Space) Error Messages Windows
REM Line Numbering Show Command
END List windows Show List (BJ [!)

Title bar Show Second List

PART2

IB3~IlCC
IFllJ)N]])&EJITIE~1r&JL~

Chapter 5----------

ut Can It Do Math?
Yes, it can. Basic arithmetic is a snap for Microsoft BASIC. So are
highly complex math calculations -- when we write special programs

to perform them -- and we will.

The BASIC Computer language uses the 4 fundamental arithmetic opera­
tions, plus 4 more complex ones which are just modifications of the others:

1. ADDffiON, using the symbol +

2. SUBTRACTION, using the symbol (See -- nothing to
this -- just like grade school. I wonder whatever happened to old
Miss ... Well, ahem -- anyway ...)

3. MULTIPLICATION, using the special symbol *
I knew this was too easy to be true!)

(Oh drat,

4. DMSION, using the symbol I
than the + symbol.)

(Well, at least it's simpler

and

5. EXPONENTIATION, using" (unveiled in Chapter 28)

6. NEGATION (meaning "multiply times minus one"), using the
- symbol

7. MODulo, of interest primarily to pure math-computer types
(We'll discuss it in Chapter 28.)

8. INTEGER DMSION, using the backslash \ (Taught in
Chapter 16)

36

01-1,COME; ~OW-YOU
CAN L-E;ARf\111-tAT
* MEAN~ 11 TIME?~"

IWlcl/ M~A~LJ
DlVl~IOI\.). ~AV
iO YOU~4t;;LF

I WlLL.

~=":

38 Chapter 5

Of course, we also need that old favorite, the equals sign (=). But wait! The
BASIC language is very particular about how we use this sign! Math expres­
sions (like 1 + 2 * 5) can only go on the right-hand side of the equals sign;
the left-hand side is reserved for the result of the math equation. We say 4
= 2 + 2. (This may seem a little strange, but it's really quite simple, as
we'll discover in the next few pages.)

We cannot use an "X" for multiplication. Unfortunately, a long time ago a
mathematician decided to use "X," which is a letter, to mean multiply. We
use letters for other things, so it's much less confusing to use a "* ." Con­
fusion is one thing a computer can't tolerate. To computers, "*" is the only
symbol which means multiply. After using it a while, you too, may feel we
should do away with X as a multiplication symbol. ·

Putting all this together in a program is not difficult, so let's do it. First, we
have to erase the "resident program" from the Computer's memory.

"Resident program" is computer talk for "what's already in there."

Choose New from the File menu, and click the No bo~. When the Computer
responds with an empty List window, displaying only the cursor (insertion
point), you'll know the program is really gone.

Putting The Beast To Work
We'll now use the Computer for some very simple problem solving. That
means using equations. (Oh - panic.) But then, an equation is just a little
statement that says, "What's on one side of an equals sign amounts to the
same as what's on the other side." That can't get too bad.

We'll use that old standby equation,

"Distance traveled equals Rate of travel times Time spent traveling."

If it's been a few years, we might want to sit on the end of a log and con­
template that for awhile.

To shorten the equation, let's choose letters (called variables) to stand for the
3 quantities. Then we can rewrite the equation as a BASIC statement accept-

Math Operators 39

able to the Computer. Type in:

40 D = R * T t;f41111H

Remember, we have to use a * to specify multiplication.

What's that 40 doing in our equation? That's the program Line Number.
Remember, this version of Microsoft BASIC does not require the use of Line
numbers, but it's easier to make reference to specific Lines by numbering
them. We chose 40, but any other number would have done just as well.

Here's what Line 40 means to the Computer: "Take the values of R and T, mul·
tiply them together, and assign the resulting value to the variable D." So until
further notice, D is equal to the result of R times T.

We could not reverse the equation and write: R*T=D. It has no meaning to the
Computer. Remember, the left·hand side of the equation is reserved for the Line
number and the value we are looking for. The right·hand side is the place to put
the values we know.

Any of the 26 letters from A through Z can be used to identify the values
we know, as well as those we want to figure out. Whenever possible, it's a
good idea to choose letters that are abbreviations of the things they stand for
•• like the D, R, and T for the Distance, Rate, Time equation.

To complicate this vecy simple example, there's an optional way of writing
the equation, using the BASIC statement LET:

40 LET D = R * T

This use of LET reminds us that making D equal R times T was our choice,
rather than an eternal truth like 2 = 1 + 1. Some computers are fussy and
always require the use of LET with programmed equations. Our Macintosh
says, "Whatever you want."

Okay •• let's complete the program.

40 Chapter 5

Assume:

Distance (in miles) = Rate (in miles per hour) multiplied by Time
(in hours). How far is it from San Diego to London if a jet plane
traveling at an average speed of 500 miles per hour makes the trip
in 12 hours?

(Yes, I know you can do that one in your head, but that's not the point!)

Type in the following below Line 40:

10 REM * DISTANCEt RATEt TIME PROBLEM *
20 R = 500 !iGHl!iel

30 T = 12 l;Aiiiiel

l;Aii!Ui

Now use the Editor to Cut and Paste Line 40 to the end of the program where
it belongs. After you have cleaned it up, it should look like:

10 REM * DISTANCEt RATE, TIME PROBLEM *
20 R = 500
30 T = 12
40 D = R * T

Check the program carefully, then:

Run.

Hum de dum ... ho-hum ... (this sure is a slow computer).

All it does is clear the screen, then reList the program. The Computer
Doesn't Work!

Yes, it does. It worked just fine. The Computer multiplied 500 times 12 just
like we told it and came up with the answer of 6000 miles. But we forgot
to tell it to give us the answer. Sorry about that.

Math Operators 41

EXERCISE 5-1: Can you finish this program without help? It only
takes one more Line. Give it a good try before reading on for the
answer. That way, the answer will mean more to you. (Hint: We've
already used PRINT to PRINT messages in quotes. What would
happen if we said 5 O PR I NT 11 D 11 ? ... No, we want the value
of D, not ·o" itself. Hmmmm, what happens when we get rid of
the quotes?)

Don't Read Beyond This Point Until You've Worked On The Above
Exercise!

Look in Section B of this Manual for an answer to this Exercise.

Well, the answer 6000 is correct, but its "presentation" is no more inspiring
than the readout on a hand calculator. This inevitably leads us back to where
we first started this foray into the unknown - the PRINT statement.

Did you fmd out the hard way that a space must be placed between the PRINT
and the variable D? It can't be eliminated.

Note that we said 50 PR I NT 0. There were no quotes around the letter D
like we used before. The reason is simple but fairly profound. Jf we want th~

Computer to PRINT the exact words we specify, we enclose them in quotes.
If we want it to PRINT the value of a variable, in this case D, we leave the
_guotes off. That simple message is worth serious thought before con­
tinuing on.

Did you think seriously about it? Then on we go!

Now suppose we want to include both the value of something and some exact
words on the same Line. Pay attention, as you will be doing more and more
program designing yourself, and PRINT statements give beginners more
trouble than any other single part of computer programming. Use the Editor

42 Chapter 5

to Cut out Line 50, then type in the following:

50 PRINT "THE DISTANCE <IN MILES> IS"tD

Then:

Run.

The Display says:

THE DISTANCE <IN MILES> IS 6000

How about that! The message enclosed in quotes is PRINTed exactly as we
specified, and the letter gave us the value of D. The comma told the Com­
puter that we wanted it to PRINT two separate items on the same line.

With this in mind, see if you can Edit Line 50 so the Computer finishes the
program with the following message:

THE DISTANCE IS 6000 MILES.

Answer: Break up the message words into two parts, and put the number
variable in between them on the same PRINT Line.

50 PRINT "THE DISTANCE IS"tDt"MILES."

Why is there all that extra space on both sides of the 6 0 0 0 in the PRINTout?
When a PRINT statement contains two or more items separated by commas,
the Computer automatically PRiNTs them in adjacent PRINT zones. Auto­
matic zoning is a very convenient method of outputting T ABular information,
and we'll explore the subject in detail later on.

It's possible to eliminate the extra spaces in the display. Edit the last version
of Line 50, substituting semi-colons (;) for the 2 commas.

(Careful -- don't replace the period with a semi-colon.)

Run.

Math Operators 43

Perfection, at last:

THE DISTANCE IS 6000 MILES.

Look carefully at the new Line 50. There is no blank space between the S
in I S, the D, and the M in M I LES. But in the display printout, there is a
space between I S and 6 0 0 0, and another space between 6 0 0 0 and
MILES. Why?

Reason: When a number is PRINTed (the value of D), leading and trailing
blank spaces are automatically inserted. As we do more programming, this
feature will become very important.

WHEW!

Well, we have already covered more than enough Commands, Statements and
Math Operators to solve a myriad of problems.

Math Operators? They're the = + - * A I and \ symbols we mentioned earlier.

Now, let's spend some time actually writing programs to solve problems.
There is no better way to learn than by doing, and everything covered so far
is fundamental to our success in later Chapters. Don't jump over these exer­
cises! They will plunge you right into the thick of programming, where you
belong. Sample answers are in Section B, along with further comments.

EXERCISE 5-1: Write a program which will find the TIME required
to travel by jet plane from London to San Diego, if the distance
is 6000 miles and the plane travels at 500 MPH.

·J.o V ~ (q o--o <.)

30 R - s-o o
t.10 l.e.T T = D /R

I/ I . ,,
l\01te5.

44 Chapter 5

EXERCISE 5-3: If the circumference of a circle is found by multi­
plying its diameter times pi (3.14), write a program which will find
the circumference of a circle with a diameter of 35 feet

EXERCISE 5-4: If the area of a circle is found by multiplying pi
times the square of its radius, write a program to find the area of
a circle with a radius of 5 inches.

;16 - P1 :: 3 . i~

a.10 A -::. P \ x R >< R

EXERCISE 5-5: Your checkbook balance was $225. You've written
three checks (for $17, $35 and $225) and made two deposits ($40
and $200). Write a program to adjust your old balance based on
checks written and deposits made, and PRINT out your new
balance.

1'-e-r B =-.225"-11-3s-11s: t 40-+2dd
"":(s 1 ,,, I .n M \I ~a I 9 "' c Q. 1 $. .t 'j :B

(:D~ii= - ~ ;tr (A)t;;fuC{ ~ ")

Learned In Chapter 5

Statements

LET (Optional)

Math
operators

=
+

*
I

Math Operators 45

Miscellaneous

Variable Names

Remember, we can use any of the 26 letters as variables, not just D, R, and T
(they were just convenient for our problem).

Chapter 6----------

!Al re There More Stars Or Grains Of Sand?

~In this mathematical world we are blessed with very large and very
small numbers. Millions of these and billionths of those. To cope with all
this, our Computer uses "exponential notation," or "standard scientific nota­
tion," when the number sizes start to get out of hand. The number 5 million
(5,000,000), for example, can be written "5E+06" (E for Exponential), which
means, "the number 5 followed by six zeros."

Or technically, 5*106 which is 5 times ten to the sixth power: 5*10*10*10*10*10*
10.

If an answer comes out "5E-06," that means we must shift the decimal point,
which is after the 5, six places to the left, inserting zeros as necessary. Tech-
nically, it means 5 X 10-6, or 5 millionths (.000,005). ''

In our BASIC, that's 5/10/10/10/10/10/10.

It's really pretty simple once you get the hang of it and makes it very easy
to keep track of the decimal point. Since the Computer insists on using it
with very large and very small numbers, we can just as well get used to it
right now.

Type the following in the Command window:

PRINT 5*10"7 1;m1111e1 (The caret " is located above the 6 key.)

The answer is:

5E+07

46

1--tt:=Y ! Wl-IAT 'R~ VA
DOI~':? l'M 6~TTING
ACROPl-IOBIC I .

"

48 Chapter 6

Select New before performing the following exercises.

EXERCISE 6-1: If 100 million cars drove 10 million miles in a certain
year, how many miles did they drive altogether that year? Write
and run a simple program using zeros (not exponential notation).

Look at Lines 20 and 30. What're those pound signs (#) doing at the end
of those Lines? It turns out the Mac automatically stores all numbers over
9,999,999 in double precision variables even in Binary BASIC. The pound
sign is a Type Declaration Character that means the number exceeded single
precision. Don't worry about it! We'll explain it in Part 4.

EXERCISE 6-2: Change Lines 20 and 30 in the Car Miles Solution
program (from Exercise 6-1) to express the numbers written there
in exponential notation, or SSN (Standard Scientific Notation). Then
RUN it

Learned in Chapter 6

Miscellaneous

E • notation

----------Chapter 7

ID~fiilll~ ~ D Arrncdl 1rl1n®
@ITcdl®IT (Q)f[@]p)®IT~lrll@Illl~

arentheses play an important role in computer programming, just as
in ordinary math. They are used here in the same general way, but
there are important exceptions.

1. In BASIC, parentheses can enclose operations to be performed.
Those operations which are within parentheses are performed
before those not in parentheses.

2. Operations buried deepest within parentheses (that is, parentheses
inside parentheses) are performed first.

To be sure equations are calculated correctly, use () around the operations which
must be performed first.

3. When there is a "tien as to which operation the Computer should
perform after it has solved all problems enclosed in parentheses,
it works its way along the program Line from left to right per·
forming the multiplication and division. It then starts at the left
again and performs the addition and subtraction.

Recall the old memory aid, "My Dear Aunt Sally"? In math we do Multiplication
and Division first (from left toright), then come back for Addition and Subtraction
(left to right). Microsoft BASIC follows the same sequence.

INT, RND and ABS functions are performed before multiplication and division.
(We haven't used them yet, but just to be completely accurate ...)

4. An operation written as (X)(Y) will not tell the Computer to mul·
tiply. X * Y is the only scheme recognized for multiplication.

49

MY l)(;"AR. AUNT
6ALLV- I DIDN'T
KNOW VOU
WE:RE PA~r CF

Tl-\1~ I
•

(4{.'

IMI~ 14S MY
;G-L--0-W
NEP\-&~W !

Using C) And The Order Of Operations 51

EXAMPLE: To convert temperature expressed in degrees Fahrenheit to Celsius
(Centigrade), the following relationship is used:

The Fahrenheit temperature equals 32 degrees plus nine-fifths of the
Celsius temperature. Or, maybe you're more used to the simple
formula:

9
F = - * C + 32

5

Assume we have a Celsius temperature of 25. Type in this New
program and Run it:

10 REM * CELSIUS TO FAHRENHEIT CONVERSION *
20 c = 25
30 F = <Sl5>*C + 32
40 PRINT c;"DEGREES <C> =";F;"DEGREES <F>•"

SAMPLE RUN:

25 DEGREES CC> = 77 DEGREES <F>.

Remember what the semi-colons are for?

Notice first that Line 40 consists of a PRINT statement followed by 4 sepa­
rate expressions -- 2 variables and 2 groups of words in quotes called "liter­
als," or "strings." Notice also that everything within the quotes (including
spaces) is PRINTed.

Next, note how the parentheses are placed in Line 30. With the 9/5 securely
inside, we can multiply its quotient times C, then add 32.

Now, remove the parentheses in Line 30 and Run again. The answer comes
out the same. Why?

52 Chapter 7

1. On the first pass, the Computer started by solving all problems
within parentheses, in this case just one (9/5). It came up with
(but did not PRINT) 1. 8. It then multiplied the 1. 8 times the
value of C and added 32.

2. On our next try, without the parentheses, the Computer simply
moved from left to right performing first the division problem
(9 divided by 5), then the multiplication problem (1.8 times C),
then the addition problem (adding 32). The parentheses really
made no difference in this example.

Next, change the +32 to 32+, and move it to the front of the equation in
Line 30 to read:

30 F = 32 + 9/5*C

Run it again.

Did it make a· difference in the answer? Why not?

Answer: Execution proceeds from left to right, multiplication and division
first, then returns and performs addition and subtraction. This is why the 32
was not added to the 9 before being divided by 5. Very Important! If they
had been added, we would, of course, have gotten the wrong answer.

EXERCISE 7-1: Write and Run a program which converts 65 degrees
Fahrenheit to Celsius. The rule tells us that "Celsius temperature is
equal to five-ninths times what's left after 32 is subtracted from the
Fahrenheit temperature."

5
c = (F - 32) x -

9

Using () And The Order Of Operations 53

EXERCISE 7-2: Remove the first set of parentheses in the Ex. 7-1
answer and Run again.

EXERCISE 7-3: Replace the first set of parentheses in program Line
30 and remove the second pair of parentheses, then Run. Note
how the answer comes out - correctly!

EXERCISE 7-4: Insert parentheses in the following equation to make
it correct. Write a program to check it out on the Macintosh.

30-9-8-7-6 = 28

Learned In Chapter 7

Miscellaneous

()
Order of Operations

Chapter s----------

IJl f you liked the preceding Chapters, then you're going to love the rest
~of this book!

... because we're really just getting into the good stuff like IF-THEN
and GOTO statements that let the Computer make decisions and take, um, er,
executive action. But first, a few more operators.

Relational Operators allow the Computer to compare one value with
another. There are only 3:

1. Equals, using the symbol -

2. Is greater than, using the symbol >

3. Is less than, using the symbol <

Combining these 3, we come up with 3 more operators:

4. Is not equal to, using the symbol <>

5. Is less than or equal to, using the symbol <=

6. Is greater than or equal to, using the symbol > =

Example: A<B means A is less than B. To help distinguish between < and >,
just remember that the smaller (pointed) part of the < symbol points to the smaller
of the two quantities being compared.

By adding these 6 relational operators to the math operators we already know,
plus new statements called IF-THEN and GOTO, we create a powerful system
of comparing and calculating that becomes the central core of everything that
follows.

54

Relational Operators 55

The IF-THEN statement, combined with the 6 relational operators above, gives
us the action part of a system of logic. Enter and Run this New program:

10 A = 5
20 IF A = 5 THEN 50
30 PRINT II A DOES NOT EQUAL 5."
LIO END
50 PRINT II A EQUALS 5. 11

The screen displays:

A EQUALS 5.

This program is an example of using an IF-THEN statement with only the
most fundamental relational operator, the equals sign.

The Autopsy
Let's examine the program Line by Line.

Line 10 establishes the fact that A has a value of 5.

Line 20 is an IF-THEN statement which directs the Computer to
GOTO Line 50, skipping over whatever might be in between Lines
20 and 50, if the value of A is exactly 5. Since A does equal 5,
the Computer jumps to Line 50 and does as it says, PRINTing A
EQUALS 5. Lines 30 and 40 were not used at all.

Now, change Line 10 to read:

10 A = 6

•.. and Run.

The screen says:

A DOES NOT EQUAL 5.

/GOTO

IF-Tl-IEN

Relational Operators 57

Taking it a Line at a time:

Line 10 establishes the value of A to be 6.

Line 20 tests the value of A. IF A equals 5, THEN the Computer
is directed to GOTO Line 50. But "the test fails," that is, A does
not equal 5, so the Computer proceeds as usual to the next Line,
Line 30.

Line 30 directs the Computer to PRINT the fact that A D 0 ES N 0 T
EQUAL 5. It does not tell us what the value of A is, only that it
does not equal 5. The Computer proceeds to Line 40.

Line 40 ENDs the program's execution. Without this statement
separating Lines 30 and 50, the Computer would charge right on to

Line 50 and PRINT its contents, which obviously are in conflict
with the contents of Line 30.

IF-THEN Vs. GOTO
IF-THEN is what is known as a conditional branching statement. The program
will "branch" to another part of the program on the condition that it passes
the IF-THEN test. If it fails the test, program execution simply passes to the
next Line.

GOTO is an unconditional branching statement. If we were to replace Line
40 with:

ao GOTO 89

and add Line 99:

98 END

•.. whenever the Computer hit Line 40 it would unconditionally follow orders
and GOTO 99, ENDing the Run. Change Line 40 as discussed above, and
add Line 99 to the end of the program so the entire program appears as:

10 A = 8

58 Chapter 8

20 IF A = S THEN SO
30 PRINT "A DOES NOT EQUAL S."
40 GOTO 99

SO PRINT "A EQUALS S."
99 END

.•. and Run.

Did the program work OK as changed? Did you try it with several values of
A? Be sure you do! We will find many uses for the GOTO statement in the
future.

Optional THEN With GOTO
When the IF-THEN statement is used with a GOTO statement, either THEN
or GOTO or both can be used. This can be useful in long program Lines. For
example, either of these Lines will work in place of Line 20 in our program:

or

20 IF A = S THEN GOTO 50

20 IF A = S GOTO 50

EXERCISE 8-1: Change the value of A in Line 10 back to 5 then
rewrite the resident program using a "does-not-equal" sign in Line
20 instead of the equals sign. Change other Lines as necessary, so
the same results are achieved with your program as with the one
in the example.

Relational Operators 59

EXERCISE 8·1: Change Line 10 to give A the value of 6. Leave the
other four Lines from Exercise 8· 1 as shown. Add more program
Lines as necessary so the program will tell us whether A is larger
or smaller than 5 and Run.

EXERCISE 8-3: Change the value of A in Line 10 at least three more
times, Running after each change to ensure that your new program
works correctly.

No sample answers are given since you are choosing your own values of A. It
will be obvious whether or not you are getting the right answer.

Learned In Chapter 8

Statements

IF-THEN
GOTO

Relational
Operators

=
>
<
<>
<=
>=

Miscellaneous

Conditional branching
Unconditional branching

Chapter 9----------
Illr &Il~CID T~Il~

Anncdl ILfi~11®nn~

y now you have probably become tired of having to Edit Line 10
each time you wish to change the value of A. The INPUT statement
is a simple, fast and more convenient way to accomplish the same

thing. It's a biggie, so don't miss any points.

Enter this New program:

10 PRINT "THE VALUE I WISH TO GIVE A IS"
20 INPUT A
30 PRINT "A =";A

... and Run.

The Computer prints:

THE VALUE I WISH TO GIVE A IS
?

See the question mark on the screen? It means, "It's your turn •• and I'm
waiting ... "

Type in a number, and press l;Aiiiie! to see what happens. The program
responds exactly the same way as when we changed values within a program
Line. Run several more times to get the feel of the INPUT statement.

Pretty powerful, isn't it?

Let's add a touch of class to the INPUT process by changing Line 10 as
follows:

10 PRINT "THE VALUE I WISH TO GIVE A IS";
60

It Also Talks And Listens 61

Look at that Line very carefully .. Do you see how it differs from the earlier
Line 10? It is different - a semi-colon was added at the end.

Think back a bit. We used semi-colons before in PRINT statements, but only
in the middle, to hook several together to PRINT them on the same line. In
this case, we put a semi-colon at the end, so the question mark from the Line
10 will PRINT on the same display line rather than on a second line. After
changing Line 10 as above, Run. It should read:

THE VALUE I WISH TO GIVE A IS?

We cannot use a semi-colon indiscriminately at the end of a PRINT state­
ment. It is only meant to hook two lines together, both of which will PRINT
something. The INPUT Line PRINTs a question mark. We will later connect
two long Lines starting with PRINT by a "trailing semicolon" so as to PRINT
everything on the same line.

The Microsoft BASIC interpreter speaks ''The King's BASIC" as well as a
variety of dialects. The first of the many "short-cuts" we will learn combines
PRINT and INPUT into one statement.

INTERPRETER - is the program we loaded in from disk which allows us to ''rap"
with the Computer in the English language. The program is called BASIC, which
stands for Beginners All-pmpose Symbolic Instruction Code.

Sometimes the word "dialect" is used when talking about the different variations
of a computer language. Just as with dialects in "human" languages, there are dif­
ferences in the way different computers use BASIC words. That's why I wrote
The BASIC Handbook, Encyclopedia of the BASIC Language available at better
Computer and Bookstores everywhere in English, and translated into French, Ger­
man, Swedish, Norwegian, Dutch, Italian, Spanish and Hebrew.

Change Line 10 to read:

10 INPUT "TYPE IN A VALUE FOR A";A

delete Line 20 by cutting it out with the Editor

... and Run.

The results come out exactly the same, don't they? Here is what we did:

1. Changed PRINT to INPUT

62 Chapter 9

2. Placed both statements on the same Line

3. Eliminated an unnecessary Line

In the long programs which we will be writing, Running and converting, this
shortcut will be valuable.

Endless Love
Up to now, all our programs have been strictly one-shot affairs. You Run it;
the Computer executes it, PRINTS the results (if any), and comes back with
a flashing cursor in the List window. To repeat the program, we have to Run
it again. Can you think of another way to make the Computer execute a pro­
gram two or more times?

No - don't enlarge the program by repeating its Lines over and over again -
that's not very creative!

We'll answer that question by upgrading our Celsius-to-Fahrenheit conversion
program (Chapter 7). If you think GOTO is a powerful statement in everyday
life, wait 'til you see what it does for a computer program!

Select New and type the following:

10 REM * IMPROVED <C> TO <F> CONV. PROGRAM *
20 INPUT "WHAT IS THE TEMP IN DEGREES <C>";C
30 F = (9/5)*C + 32
40 PRINT c;"DEGREES <C> =";F;"DEGREES <F>."
50 GOTO 20

... and Run.

Use I B to exit the program loop, and ll 1! to List the program.

The Computer will keep asking for more until we get tired, and stop it or the
power goes off (or some other event beyond its control). This is the kind of

f!>V ~e:OR6E-!
I T'-·UNK •'V~
GOT IT~!

I' U... ll(;E P /<;¥_­
IN I FCJ? MOl<E
UNTl L- 'DU \-UT aa

64 Chapter9

thing a computer is best at - doing the same thing over and over. Modify
some of the other programs to make them self-repeating. They're often much
more useful this way.

These have been 4 long and ''meaty" lessons, so go back and review them
all, repeating those assignments where you feel weak. We are moving out
into progressively deeper water, and complete mastery of these fundamentals
is your only life preserver.

Learned In Chapter 9

Statements Miscellaneous

INPUT and ; Trailing semi-colon
INPUT with built-in PRINT

------------------Chapter IO

CC~Ilccunll~lt®JJ CCDIT

IlITIIDITIID®cdlfi~lt® OO@cdl®

wo Easy Features
Before continuing exploration of the nooks and crannies of the Com­
puter acting as a computer, we should be aware that it also works

well as a calculator. If we enter the Command window by either selecting it
from the Windows menu or by clicking inside the Command window, the
Computer will execute certain statements and commands and display the
answer on the screen. What's more, it will work as a calculator even when
another computer program is loaded, without disturbing that program. All we
need, to be in the calculator mode, is to be in the Command window with
the flashing cursor.

We won't be using the List window for these examples so remove it by clicking
in the List window close box.

EXAMPLE: How much is 3 times 4? With the flashing cursor in the Com­
mand window, type in:

CLS l;Gi!!IU

PRINT 3 * 4 1m11111e1

... the answer comes back in the Output window:

12

CLS CLears the Output window. It is a very unfussy statement which you
will want to use to make room for new output. Later you'll see how using
CLS will make your displays neat and impressive.

EXAMPLE: How much is 345 divided by 123?

65

66 Chapter 10

Type:

PRINT 345/123 l;Ai!iiel

... the answer is:

2.804878

Spend a few minutes making up routine arithmetic problems of your own, and
use the calculator mode to solve them. Any arithmetic expression which can
be used in a program can also be evaluated in the calculator mode. This
includes parentheses and chain calculations like A *B*C. ·

Try the following:

PRINT (2/3)*(3/2) 1;m1111e1

The answer is:

1

Calculator Mode For Troubleshooting
Suppose a program isn't giving the answers we expect. How can we trou­
bleshoot it? One way is to ask the Computer to tell us what it knows about
the variables used in the resident program.

EXAMPLE: If our program uses the vanable X, we can ask the Computer to:

PRINT X l;Gt!iiei

The Computer will PRINT the present value of X.

Keep this bandy tip in mind as you get into more complex programs.

Y
1

KNOW,
AL-l-IHl~ I~
UNNg~GSAR>'

RJI< -n:?Ct.JBLE
~l-IC>OTINC=l r

I

68 Chapter 10

Another thought: Something is stored in evecy memocy cell (even if you have
not put anything there). Enter this instruction in the immediate (calculator)
mode:

UtVtWtXtYtZ l;Aliihi

What gives? Only five values were PRINTed! We asked for 26! It appears
that we can print right off the edge of the Computer's screen. Luckily, there
is a command that allows us to set the screen width so we don't lose any
characters. Type:

WIDTH 70 l;AllH.!

and

PRINT A tB tC t ... tZ l;Aiiliel

Ah, much better! After the first five values, the rest seem to ''wraparound"
the display window.

The answers you got depend on the values last given those variables - even from
much earlier programs. If we tum the Computer off, then on again, all variables
will be reset to O. Selecting Start or typing RUN also "initializes" all variables to
0.

Screen WIDTH Control
When the Computer enters BASIC, the screen width is set at its maximum
width of 255. This "normal" screen width can be changed to any value from
1 to 255 with the WIDTH command.

WIDTH also lets us change the size of the PRINT zones. The default zone
width is 14, but can be set to any value between 1 and 255. A good com­
bination which provides 5 equal width zones is a screen width of 60 with
PRINT zones of 12. Tcy it by typing the following in the Command window:

WIDTH 60t12 1;m1111n

Calculator Or Immediate Mode 69

Now test it by typing a Line containing more than 60 characters. Notice how
the Computer refuses to display a line longer than 60 columns? Reset the
WIDTH to the default (maximum) size by typing:

WIDTH 255 1;mn11.1

The FRE(O) Function
Since programs do occupy space in the Computer's memory and program size
is limited to how much memory is installed, it may be important to know how
much memory is left. That's what the FRE(O) Function is for.

In a "128K" computer there are about 128,000 different memory locations
available to store and process programs. "128K" is just a shortcut phrase for
the exact amount of memory, which is 131072.

This manual is meant to be for the computer operator and programmer, so we are
studiously avoiding computer electronics theory - when possible.

The Computer uses some of the memory for program control. To see the
actual amount of memory available for our use, type NEW in the Command
window or select New from the File menu. Then activate the Command win­
dow, and type:

PRINT FRECO>

0 is a "dummy" value used with FRE. Any number or letter can be used .

. . . and the answer is:

21000

With no program loaded, it means there are 21000 memory locations available
for use. The difference in memory space between 21000 and 131072 is used
by the BASIC language interpreter and overall management and .. monitoring"
of what the Computer is doing.

70 Chapter 10

Activate the List window, and type in this simple program:

10 A = 25 1;r:u111e1

then measure the memory remaining by entering the Command window and
typing:

PRINT FRE<O> l;Aiiiiu

The answer is:

20984

The program we entered took 21000 - 20984 = 16 bytes of space. Here is
how we account for it:

1. Each Line number and the space following it (regardless of how small or
large that Line number is) occupies 6 bytes. The "carriage return" at the
end of the Line takes 4 more bytes, even though it does not print on the
display. Thus, memory "overhead" for each Line, short or long, is 10
bytes.

2. In the above program, 10 A = 25 takes a total of 16 bytes. That's 10
bytes for overhead plus 6 bytes for the characters (10 + 6 =
16 bytes).

BYTE -- is the basic unit of storage for the Macintosh and most other microcom­
puters. In the Macintosh it is a string of sixteen binary digits (bits). Thus a byte
= 16 bits.

We will be studying memory requirements in more detail later.

Obviously, the short learning programs we have written so far are not taking
up much memory space. This changes quickly, however, as we move to more
sophisticated programming. Make a habit of typing PR I NT FR E (0) when
completing a program to develop a sense of its size and memory
requirements.

Learned In Chapter 10

Functions Commands

FRE(O) WIDTH

Calculator Or Immediate Mode 71

Miscellaneous

Calculator (Direct
Command) Mode

Memory
Byte

Chapter 11-------------------
§& WJEfiilll~ &illlcdl 11CQ)&J])fiilll~

ID ~fiilll~ Wfi~lk
!Al big advantage of having disk drives is that programs can be SA VEd
~on or Opened (LOADed) from disk very quickly and reliably.

With a one-drive system, programs are automatically SA VEd on the diskette
inside the Macintosh, unless the disk is locked (write-protected). With a two­
drive system, the diskette inside the Macintosh serves as an application disk
(i.e. has BASIC on it) and the one in the external drive serves as the data
disk to which information would be written.

The Macintosh can have 2 drives; a second external drive or a high speed internal
"hard disk" drive can be added.

Type in this short New BASIC program:

10 REM * SAVE THIS PROGRAM *
20 PRINT "HELLO THEREt DISKETT~!"

88 END

then, Save it on disk As:

PROGRAM1

by selecting Save As from the File menu, typing PR 0 GRAM 1 when the dialog
box appears, and clicking the pointer in the Save box (or simply pressing
1;m1111.1 >·

Don't confuse Save As with the Save option. Save is used when saving a program
with the same name that is shown on the Title Bar (no, "Untitled" should not be
used).

72

SAVEing And LOADing Using Disk 73

Well, something seemed to happen. Our little program is now Saved on the
disk under the name PROGRAM!.

Now, let's recall the program from the disk. First, from the File menu, choose
New to clear the program out of memory.

Notice that no trace remains in the List window. Good thing we Saved it on
diskette. Hope it's really there.

To see what is on the disk, display the disk FILES. Select Show Command
from the Windows menu, and simply type:

FILES 1;m101.:

Yes, there it is, the last program listed.

Programs can also be SA VEd from the keyboard by simply entering the Com­
mand window, and typing:

SAVE "Pro~raM naMe" l;Aiiihl

Quotation marks are required around file names only when SA VEing or
LOADing a file from the keyboard. If they're omitted, a "Type mismatch"
error results.

To copy the program from the diskette back into memory, choose Open ...
from the File menu, click the mouse over the file name PROGRAM!, then
click in the Open box.

Programs can also be opened by double-clicking on the program name.

and in it comes.

To LOAD a program from the keyboard, just enter the Command window,
and type:

LOAD "Pro~raM naMe" 1;m1111;i

Don't forget the quotation marks.

W(;LL, OUN ~VIN6t;
Pl<06RAM 006~ Nor

INCLUD~ DI~~ /
•

SAVEing And LOADing Using Disk 75

File names can contain as few a 1 character or as many as 63. They can
include any characters (even blank spaces) except the colon and quotation
marks.

While we're on the subject, you can Save a program to a different disk by
selecting the Eject box in the Save As ... dialog box. The Computer ejects the
diskette, and after you insert another and click the Save box, it prompts you
to swap disks until the program is Saved.

There are three format options available at the bott<>m of the Save As ...
box. The Computer normally Saves programs in the Compressed mode to con­
serve disk space. There are times when we will sacrifice a little disk space
for the luxury of Saving a program "character for character'' by selecting the
Text format, or what is often referred to as the "ASCII format."

Programs must be Save in the ASCII format if they are to be used with other
application software. Later we will MERGE programs that have been Saved
in ASCII format.

The third format option allows us to Protect the program. By selecting this
option, the program cannot be LISTed or RUN. Doesn't leave much for us
to do with it except to Trash it.

Learned In Chapter 11

Commands Miscellaneous Menu

LOAD Ftle names Ftle
FILES Text format Save As ...
SAVE Compressed format Save

Protected programs Open ...

Chapter 12------------------

major difference between a Computer and a calculator is the Com­
puter's ability to do the same thing over and over an outrageous
number of times! This single capability (plus, a larger display) more

than any other feature distinguishes between the two.

The FOR-NEXT loop is of such overwhelming importance in putting our Com­
puter to work that few of the programming areas we explore from here on
will exclude it. Its simplicity and variations are the heart of its effectiveness,
and its power is truly staggering.

Type NEW in the Command window and then type the following program in
the List window:

20 PRINT "HELP! MY COMPUTER IS BERSERK!"
40 GOTO 20

... and Run.

The Computer is PRINTing:

HELP! MY COMPUTER IS BERSERK!

and will do so indefinitely, until we tell it to STOP. When you have seen
enough, Stop <BIB>· This "breaks" the program Run. Now, List <BIL!) the
program.

Endless Loop
We created what is called an "endless loop." Remember our earlier programs
which kept coming back for more INPUT? They were in a very similar
"loop."

76

FOR~NEXT Looping 77

Line 40 is an unconditional GOTO statement which causes the Computer to
cycle back and forth ("loop") between Lines 20 and 40 forever, if not halted.
This idea has great potential if we can harness it.

Modify the program to read:

10 FOR N = 1 TO 5
20 PRINT "HELP! MY COMPUTER lS BERSERK!"
40 NEXT N
60 PRINT "NO --- IT'S UNDER CONTROL."

... and Run it.

The line:

HELP! MY COMPUTER IS BERSERK!

was PRINTed 5 times, then:

NO --- IT'S UNDER CONTROL.

The FOR-NEXT loop created in Lines 10 and 40 caused the Computer to
cycle through Lines 10, 20, and 40 exactly 5 times, then continue through the
rest of the program. Each time the Computer hit Line 40, it saw "NEXT N."
The word NEXT caused the value of N to increase (or STEP) by exactly 1.
The Computer "conditionally" went back to the F 0 R N = statement that began
the loop.

Execution of the NEXT statement is "conditional" on N being less than or
equal to 5 because Line 10 says FOR N = 1 TO 5. After the 5th pass through
the loop, the built-in test fails, the loop is broken and program execu­
tion moves on. The FOR-NEXT statement harnessed the endless loop!

NOW '1l4AT'~

•

WHAT I CAL.L (OJ
AN ENDl...EGt3

'-" L-OOP I ~
r--S" .

78 Chapter 12

The Step Function
There are times when it is desirable to increment the FOR-NEXT loop by
some value other than 1. The STEP function allows it. Change Line 10 to
read:

10 FOR N = 1 TO 5 STEP 2

... and Run.

Line 20 was PRINTed only 3 times (when N= 1, N=3, and N=5). On the
first pass through the program, when NEXT N was hit, it was incremented
(or STEPped) by the value of 2, instead of the default value of 1. On the
second pass through the loop, N equaled 3. On the third pass N equaled 5.

FOR-NEXT loops can be STEPped by any decimal number, even negative
numbers. Why we would want to STEP with negative numbers might seem
vague at this time, but that too will be understood with time. Meanwhile,
change the following Line:

10 FOR N = 5 TO 1 STEP -1

... and Run.

Five passes through the loop stepping down from 5 to 1 is exactly the same
as stepping up from 1 to 5. Line 20 was still PRINTed 5 times. Change the
STEP from -1 to -2.5 and Run again.

Amazing! It PRINTed exactly twice. Smart Computer. Change the STEP
back to -1.

Modifying The FOR-NEXT Loop
Suppose we want to PRINT both Lines 20 and 60 five times, alternating
between them. How will you change the program to accomplish it? Go ahead
and make the change.

HINT: If you can't figure it out, try moving the NEXT N Line to another
position.

l-t{;l-P ~ MY COMrt .. rrB2
l'? gi;:~ei<K ! WGLP I
MY COMDU~R I~ .
BER~~ l-IEL.P !
MY COMPLilI:J< I~
l*Pai=Rll~ WELP~
MY CDMPUTE::\2 ~
E?~~ ! l-laP1

•.

MY COMl=I.flERfq,
Bwafi2Y ! I-RP!

MY eOMPU 19<
l6B~4~!

H~P! MY
(OMPU10<

;I\ \~ g~~" ~
:. . . - .&,,. .1 ...

80 Chapter 12

Right - we moved Line 40 to Line 70, and the screen reads:

HELP! MY COMPUTER IS BERSERK!
NO --- IT'S UNDER CONTROL.
HELP! MY COMPUTER IS BERSERK!
NO --- IT'S UNDER CONTROL •

... etc., 3 more times.

How would you modify the program so Line 20 is PRINTed 5 times, then
Line 60 is PRINTed 3 times? Make the changes, and Run.

The New program might read:

10 FOR N = 1 TO 5
20 PRINT "HELP! MY COMPUTER IS BERSERK!"
40 NEXT N
50 FOR M = 1 TO 3
60 PRINT "NO --- IT'S UNDER CONTROL."
70 NEXT M

We now have a program with two controlled loops, sometimes called DO­
loops. The first do-loop DOes something 5 times; the second one DOes some­
thing 3 times. We used the letter N for the first loop and M for the second,
but any letters can be used. In fact, since the two loops are totally separate
we could have used the letter N for both of them - not an uncommon practice
in large programs where many of the letters are needed as variables.

Run the program. Be sure you understand the fundamental principles and the
variations. Then Save on disk As D 0 La a P.

Incremental Looping
There is nothing magic about the FOR-NEXT loop; in fact, you may have
already thought of another (longer) way to accomplish the same thing by using

FOR-NEXT Looping 81

features we learned earlier. Stop now, and see if you can figure out a way
to construct a workable do-loop substituting something else in place of the
FOR-NEXT statement.

Answer:

10 N = 1
20 PRINT "HELP! MY COMPUTER IS BERSERK!"
30 N = N + 1
40 IF N < 6 THEN 20
60 PRINT "NO --- IT'S UNDER CONTROL. 11

Line 10 initializes the value of N, giving it an initial, or beginning, value of
1. Without initializing, N could have been any number from a previous pro­
gram or program Line. Note that selecting Run, or typing RUN, automatically
resets all variables back to 0 before the program executes.

Initialize: initially, or at the beginning, establishes the value of a variable.

Line 30 increments it by 1, making N one. more than whatever it was before.
Line 40 uses one relational operator, <, to check that the new value of N
is within the bounds we have established. If not, the test fails and the program
continues.

Increments: STEPs (increases or decreases) values by specific amounts: by l's,
3's, S's, or whatever.

Note that in this system of incrementing and testing we do not send the pro­
gram back to Line 10 as was the case with FOR-NEXT. What would happen
if we did?

Answer: We would keep re-initializing the value of N to equal 1 and would
again form an endless loop.

82 Chapter 12

The opposite of incrementing is decrementing. Change the program so Line
30 reads:

30 N = N - 1

To decrement is to make smaller .

. . . then make other changes as needed to make the program work.

The changed Lines read:

10 N = 6
30 N = N - 1

40 IF N>1 THEN 20

Putting FOR-NEXT To Work
It isn't very exciting just seeing or doing the same thing over and over. The
FOR-NEXT loop has to have a more noble purpose. It has many, and we will
be learning new ones for a long time.

Suppose we want to PRINT out a chart showing how the time it takes to fly
from London to San Diego varies with the speed at which we fly. (Remember,
the formula is D = R*T.) Let's PRINT out the flight time required for each
speed between 100 mph and 1000 mph, in increments of 100 mph. The pro­
gram might look like this:

10 REM * TIME VS RATE FLIGHT CHART *
20 D = 6000
30 PRINT " LONDON TO SAN DIEGO"
40 PRINT " DISTANCE =";D;"CMILES>"
50 PRINT "RATE CMPH>"t"TIME <HOURS>"
60 PRINT
70 FOR R=lOO TO 1000 STEP 100

80 T = D/R

90 PRINT RtT

100 NEXT R

FOR-NEXT Looping 83

Type in the program, select Show Output from Windows menu to remove the
List window from the display, then Run.

How about that ... ? Try doing that one on the old slide rule or hand calculator!

It is really solving the D = R *T problem 10 times in a row, for different
values and PRINTing out the result~ The screen should look like this:

LONDON TO SAN DIEGO

DISTANCE = 6000 <MILES>

RATE <MPH> TIME <HOURS>

100 60

zoo 30

300 zo
400 15

500 12

600 10

700 81571428

800 7.5

900 6.666667

1000 6

Analyzing The Program
Press 111!, and look through the program. Observe these many features before
we do some exercises to change it:

1. The REM statement identifies the program for future use.

84 Chapter 12

2. Line 20 initializes the value of D. D will remain at its initial·
ized value.

3. Lines 30 through 60 PRINT the chart heading.

4. Line 50 uses automatic zone spacing (the comma) to place those
column headings, and Line 60 PRINTs a blank line.

Remember zone spacing? The comma(,) in a PRINT statement automatically starts
the PRINTing in the next PRINT zone. We define the WIDTH of that zone. It
is the second value in the WIDTH command, i.e., in WIDTH 60,12, 60 is the
screen width, and 12 is the zone width.

The WIDTH command can be built right into a program. Try adding:

15 WIDTH 30t10

.•• and RUN. Then:

15 WIDTH 70t35

Experiment with different values, ending up with:

15 WIDTH 60112

S. Line 70 established the FOR-NEXT loop complete with a STEP.
It says, "Initialize the rate (R) at 100 mph, and make passes
through the 'do-loop' with values of R incremented by values of
100 mph until a final value of 1000 mph is reached." Line 100
is the other half of the loop.

6. Line 80 contains the actual formula which calculates the answer.

7. Line 90 PRINTs the two values. They are positioned under
their headings by automatic zone spacing (the commas).

8. Lines 80 and 90 are indented from the rest of the program text.
This is a simple programming technique which highlights the do­
loop and makes reading and troubleshooting easier. Try to adopt
good programming practices like this as you do the exercises.
Indenting does take up a little memory space and, on long pro­
grams, is sometimes omitted.

FOR-NEXT Looping 85

Take a deep breath, and go back over any points you might have missed in
this lesson. Save the program onto disk As L 0 ND 0 N 1 because we will use
it in the next Chapter, continuing our study of FOR-NEXT loops.

Learned In Chapter 12

Statements

FOR-NEXT
STEP

Miscellaneous

Increment
Decrement
Initialize
"Do-Loop"
Indenting program Lines

Menu

Windows
Show Output

Chapter 13----------

[!] his is heady stuff. If you turned the Computer off between Chapters,
LOAD in the L 0NDON1 program which we SA VEd in the last
Chapter.

Modify the program so the rate and time are calculated and PRINTed for every
50 mph increment instead of the 100 mph increment presently in the program .

... and Run.

Answer: 70 FOR R = 100 TO 1000 STEP 50

Trouble In The Old Corral
What a revolting development! The PRINTout goes so fast we can't read it,
and by the time it stops, the top part is cut off. Aught' a known you can't
trust these computers!

Solutions For Sale
Several solutions are available:

1. Placing the pointer on the Edit, Run or Windows menu and
pressing the mouse button will stop the execution of a program
or the listing of files until the button is released.

2. Choosing Suspend from the Run menu (or pressing the fl
and the W keys at the same time) will halt program execution or
LISTing. Pressing almost any other key will start it again. Run
the program several times, and practice stopping and starting
using this method.

86

Son Of FOR-NEXT 87

There's another solution we must try. While the program is RUNning, - choose
Stop (or press the mil and B keys) from the Run menu. While Suspend (mil~) can
be thought of as just pressing in the clutch, a Stop (mil B) is more like turning
off the engine.

To restart execution after a Stop, either select Start from the Run menu (or type
RUN in the Command window) to start all over again from the beginning, or
choose Continue to continue execution from the "break-point." Choosing Continue
(or typing CONT in the Command window) does not reset all variables back to
zero, which can be an important consideration.

3. For a classy display we can build a "pause" into the program.
The screen will fill, pause a moment, then automatically con­
tinue if we don't interrupt execution.

The Timing Loop
It takes time to do everything. Even Macintosh takes time to do some things,
though we may be awed by its speed.

We are going to write and experiment with a timing program using Lines 1-9
without erasing the one already resident. The new one must END without
plowing ahead into the LONDON! program, thus, Line 9. Insert the cursor
at the front of Line 10, and type Lines 1-9 hitting lm10iiel at the end of each.

1 REM * TIMER PROGRAM *
4 PRINT "DON'T GO AWAY"
5 FOR X = 1 TO 22000

6 NEXT X
7 PRINT "TIMER PROGRAM ENDED+"
9 END

... and Run.

Remember back when we learned not to do this (number Lines in tight sequence)?
Well ... if we hadn't followed that rule with our LONDON 1 program, we
wouldn't have this nice space to demonstrate the point.

How long did it take? Well, it did take time, didn't it? About 10 seconds

~Ml--IH ._.
DON'I Dl!ffURB
'IM! 1-1~'4 IN
11-4~ Ml DDL-6
OF A LOOP/

•

I

.·
......................... ;.·:··:·"".;.•'·"

Son Of FOR-NEXT 89

from the time the Computer displayed D 0 N 'T G 0 AWAY until it displayed
TI MER PROGRAM ENDED. Microsoft BASIC can execute approximately
2200 FOR-NEXT loops per second. That means, by specifying the number of
loops, we can build in as long a time-delay as we wish.

Change the program to create a 30-second delay. Time it against your watch
or clock to see how accurate it is.

Answer: 5 FOR X = 1 TO 66000

EXERCISE 13-1: Using the space in lines 1 through 1r design and
Run· a program which:

1) Asks us how many seconds delay we wish, allows us to
enter a number, then executes the delay and reports back
at the end that the delay is aver and how many seconds it
took. A sample answer is in Section B.

How To Handle Long Program LISTings
We now have two programs in the Computer. Double click inside the List
window title bar to enlarge the List window to full size. My, my -- the pro­
gram fills the entire List window, and the last Lines of the second program
are chopped off. Now what do we do?

Rather than wring our hands about the problem, try each of the following
solutions and watch the screen very carefully as each does its thing.

To LIST a program beginning with a specific Line:
Type LIST and the Line number in the Command window. The
program, beginning with the specified Line number, will appear
in the List window. (This LISTing can be done without
activating the List window.)

To LIST a particular portion of the window:
Point to the scroll box, hold down the button and drag the scroll

90 Chapter 13

box down (or up). When you release the button, a portion of the
program will pop into view. Scrolling the box toward the top,
center, or bottom of the scroll bar will LIST respectively the top,
center, or bottom portion of the program.

To scroll the LISTing one Line at a time:
Move the pointer to and click the down arrow. The program will
scroll upwards one Line at a time. Click the up arrow to scroll
the program downwards.

Is There No End To This Magic?
To RUN the first program resident in the Computer - we just type RUN. To
RUN the second one we have a variation of RUN called:

RUN ###

The #'s represent the number of the Line we want the RUN to start with .

... and as you might suspect, it is similar to LIST###. To RUN the program
starting with Line 10, select Show Command window, and type:

RUN 10

... and that's just what happens.

Don't forget the space between RUN and 10. The Macintosh is fussy about some
of these things.

Will wonders never cease? If there are 20 or 30 programs in the Computer
at the same time, we can RUN just the one we want, provided we know its
starting Line number. What's more, we can start any program in the middle
(or elsewhere) for purposes of troubleshooting - something we will do as our
programs get longer and more complicated.

Son Of FOR-NEXT 91

Remember: Using RUN reinitializes all variables to zero. H you want to preserve
the current values, use GOTO ###.

Meanwhile, Back At The Ranch
We got into this whole messy business trying to find a way to slow down our
RUN on the flight times from London to San Diego. In the process we found
out a lot more about the Computer and learned to build a timer loop. Now
let's see if we can build a pause right into the Distance program. First, erase
the test program by typing the command:

DELETE 1-9 1;rem11e1

Don't forget the space after DELETE.

Wow! How's that for power? It DELETEd those Lines, without having to cut
out each individual Line Number with the Editor.

Wrong Way Computer
One way to STOP the fast parade of information is to put in a STOP. Insert:

75 IF R = 600 THEN STOP

... and Run.

We know R is going to increment from 100 to 1000. 600 is a little more than
half the way to the end. See how the chart PRINTed out to 550 mph, then
hit the STOP as 600 came racing down to Line 75? The Output window dis­
plays the first half of the chart, then the Computer beeps, flashes:

Pro~ram stoPPed (in the upper right)

and draws a block around the contents of Line 75. This means the program
is STOPped, or broken, in Line 75. To restart the program merely choose

92 Chapter 13

Continue (from the Run menu) or enter the Command window and type:

CONT 1;m1111e1

It automatically picks up where it left off and PRINTs the rest of the chart,
or executes until it hits another STOP.

It may be desirable to change the size of the Command window and the Output
window a bit to make the London} desktop as large as possible.

At Last
The ultimate plan is to build a timer into the program so as not to completely
STOP execution, but merely delay it for study.

Insert:

73 IF R <> 600 THEN 80
74 FDR X = 1 TD 11000
75 NEXT X

Be sure to Cut out the old Line 75 .

... and Run.

Hey! It really works! As long as R does not equal 600, the program skips
over the delay loop in Lines 74 and 75. When R does equal 600, the test
"falls through" and Lines 74 and 75 "play catch" 11000 times, delaying the
program's execution for about 5 seconds.

Time For A Cool One
It's been a long and tortuous route with numerous scenic side trips, but we
finally made it. You picked up so many smarts in these 2 lessons on FOR­
NEXT, that it's your tum to put them to work.

Son Of FOR-NEXT 93

EXERCISE 13·1: Modify the resident program so that in this head­
ing, (MPH) appears below RATE, and (HOURS) appears below
TIME. This one should be a breeze.

EXERCISE 13-3: Design, write and Run a program which will cal·
culate and PRINT income at yearly, monthly, weekly and daily rates,
based on a 40-hour week, a 1 /12th-year month, and a 52-week
year. Do this for yearly incomes between $5,000 and $20,000 in
$1,000 increments. Document your program with REM statements
to explain the equations you create.

Some of the exercise programs are becoming too long to leave work space for
your ideas. From now on, use a pad of paper for working up the answers.

EXERCISE 13-4: Here's an old chestnut that the Computer really
eats up: Design, write and Run a program which tells how many
days we have to work, starting at a penny a day, so if our salary
doubles each day, we know which day we earn at least a million
dollars. Include columns which show each day's number, its daily
r9te, and the total income to-date. Make the program stop after
PRINTing the first day our daily rate is a million dollars or more.
(After that ... who cares?)

Answers to these exercises are found in Section B.

The ''Brute Force" Method
(Subtitled: Get A Bigger Hammer)
Much to the consternation of some teachers, a great value of the Computer
is its ability to do the tedious work involved in the "cut and try," "hunt and
peck" or other less respectable methods of finding an answer (or attempting
to prove the correctness of a theory, theorem or principle). This method
involves trying many possible solutions to see if one fits, or to find the closest
one, or establish a trend. Beyond that, it can be a powerful learning tool by
providing reams of data in chart or graph form which would simply take too

94 Chapter 13

long to generate by hand. For example:

EXERCISE 13-5: You have a 1000 foot roll of fencing wire and
want to make a rectangular pasture.

Using all of the wire, determine what length and width dimensions
will allow you to enclose the maximum number of square feet?
Use the brute force method; let the Computer try different values
for Land Wand PRINT out the Area fenced by each pair of Land
w.

The formula for area is Area = Length times Width, or A= L *W.

EXERCISE 13-6: Extra credit problem for "electronics types"

As a further example (more complex and tends to prove the point
better) try this final (optional) assignment. It involves a problem
confronted by eNery electricity student who has studied SOURCES
(batteries, generators) and LOADS (lights, resistors).

The Maximum D.C Power Transfer Theorem states,

·Maximum DC power is delivered to an electrical load when the
resistance of that load is equal in value to the internal resistance
of the source."

And then the arguments begin ...

·use a HIGH resistance load because it will drop more voltage
and accept more power." (P = V2/R)

·No, use a LOW resistance load so it will draw more current
and accept more power." (P = l2*R)

·use a load value somewhere in between." (P = l*V)

Don't necessarily shy awf!f from this problem if electricity doesn't
happen to be your bag. Enough information is given to write the
program. The principle, the optimizing of a value, is applicable to
many fields of endeavor and is little short of profound.

Son Of FOR-NEXT 95

With the values given in the schematic, design, write and Run a
program which will try out values of load resistance ranging from
1 to 20 ohms, in 1 ohm increments, and PRINT the answers to the
following:

1. Value of Load Resistance (from 1 to 20 ohms)

2. Total circuit power (circuit current squared, times circuit
resistance) = 12 * (1 O + R)

3. Power lost in source (circuit current squared, times source
resistance) = 12 * 10

4. Power delivered to load (circuit current squared, times load
resistance) = 12 * R

Note: Circuit current is found by dividing source voltage (120 volts)
by total circuit resistance (load resistance + 10 ohms source resist·
tance). Everything follows Ohms Law CV=l*R) and Watts Law (P=I*
V).

GOOD LUCK! Don't look at the answer until you've got it whipped.

120 VOLTS

r--~1-----.

I -::- ;
I -=r I
I I
I ~ 10 I
I ~OHMS I
I ~ I
L.-------l

~Load
~ Resistance
> R

96 Chapter 13

Learned In Chapter 13

Commands

LIST###
RUN###
DELETE###
CONT

Miscellaneous Menu

Timer Loop Run
"Brute Force" method Suspend (BJ [iJ)

Stop CllB>
Continue

---------Chapter 14

!Al fter those last few Chapters, it's time for an easy one.

~We already know 3 ways to set up our output PRINT format.

We can:

1. Enclose what we want to say in quotes, inserting blank spaces
as necessary.

2. Separate the objects of the PRINT statement with semi-colons
so as to PRINT them tightly together on the same line.

3. Separate the objects of the PRINT statement with commas to
PRINT them on the same line in the different PRINT "zones."

Macintosh will default to 5 PRINT zones unless reset using the WIDTH statement.

A 4th way is by using the TAB function, which is similar to the TAB on a
regular typewriter. TAB is especially useful when the output consists of col­
umns of numbers with headings. Type in the following NEW program and
Run:

10 PRINT TABC5)i"THE"iTABCZO>;"TOTAL";
TABC35);"SPENT"

20 PRINT TABC5);"BUDGET"iTABCZO> ;"YEAR'S";
TABC35);"THIS"

30 PRINT TABC5)i"CATEGORY";TABCZO> ;"BUDGET";
TABC35);"MONTH"

97

98 Chapter 14

The Run should appear:

THE
BUDGET
CATEGORY

TOTAL
YEAR'S
BUDGET

SPENT
THIS
MONTH

EXERCISE 14-1: EDIT the above program using the 3 ways we
know (so far) to format PRINTing. Here is a start:

10 PRINT"THE TOTAL SPENT"
20 PRINT 11 BUDGET"t 11 YEAR'S"t 11 THIS"
30 PRINT TAB<);"CATEGORY";TABC);

"BUDGET";TABC >;"MONTH"

Use ordinary spacing for the first Line of the heading, zone spacing
for the second Line and TABbing for the third Line.

A semi-colon is traditionally used following TAB, as shown above. Most newer
BASIC interpreters permit a blank, quote marks or even no symbol, instead.

10 PRINT TAB<lO> "OOPSt NO SEMICOLON!"

Runs just fine, but leave out semi-colons at your own peril.

The Computer will start PRINTing TAB(##) spaces to the right of the left
margin. It is important to remember when using T ABs that whenever numbers
or numeric variables are PRINTed, the Computer inserts one additional space
to the left of the number to allow for the - or + sign.

Type this NEW program:

10 A = 3
20 B = 5

30 C = A + B

HE.V~ Tl-IE MM.\
JU~T ~AlDIO

TAKi:= IT r;./J;bY­
L-E:T~ NOT GO
OV~J:ZBOAl<D I .

100 Chapter 14

40 PRINT TAB<10);"A";TAB<20);"B";TAB<30);"C"
50 PRINT TAB<10>;A;TAB<20);B;TAB<30>;C

... and Run.

The results ...

A B c
3 5 8

The numbers are indented one space beyond the TAB(##). Keep this in mind
when lining up (or indenting) headings and answers.

Change Line 20 to read:

20 B = -5

... and Run.

See why numbers indent one space?

Whole numbers are most commonly used as TAB values, but on those rare
occasions when a fraction is used, the Computer rounds the fraction to the
nearest whole number before TABbing.

All of the rules we have seen so far for TABbing apply whether the TAB
value is an actual number or a numeric variable.

The Long Lines Division
Have you ever wondered what would happen if we had to PRINT a great
number of headings or answers on the same line -- but didn't have enough
room on the program Line to neatly hold all the TAB statements? You have?
Really? You're in luck because it's easy. Type and Run the following New
program. It stretches the "leaving out of semi-colons" to the limits of
prudence.

10 A = 0

Formatting With TAB 101

20 B = 1
30 c = 2
40 D = 3
50 E = 4

60 F = 5
70 G = 6
80 PRINT "A"TABC10>"B"TAB<ZO>"C"TABC30>"0";
80 PRINT TAB<40>"E"TABC50>"F"TABC60)"G"
100 PRINT A;TABC10)B;TABC20)C;TABC30)0;
110 PRINT TABC40>E;TABC50>F;TABC60>G

The trailing semi-colons (;) in Lines 80 and 100 do the trick. They make the
end of one PRINT Line continue right on to the next PRINT Line without
activating a carriage return. The combination of TAB and trailing semi-colon
allows us almost infinite flexibility in formatting the output.

Finally, to see the program crash when one too many liberties are taken with
semicolons, remove the last one in Line 110 and Run.

The program Runs fme until the Computer encounters the second TAB instruc­
tion in Line 110. The Computer stops and displays the error message:

Subscript out of ran~e

Click the OK box, and insert a semicolon before the last TAB in Line 110.
Run again to make sure that fixed the problem.

POS(N)
An additional and sometimes useful· statement allows the Computer to report
back the horizontal POSition of the cursor. This simple New program exer­
cises the POS function.

5 WIDTH 60

102 Chapter 14

10 INPUT "ANY NUMBER BETWEEN -9 AND 45";A
20 PRINT TAB<lO + A>
30 PRINT POSCO>;
40 PRINT " IS NUMBER OF NEXT PRINT COLUMN"

... and RUN.

Line 5 sets the screen WIDTH to 60 characters.

Line 20 just TABs the cursor over 10 places from A.

Line 30, containing POS, is the key. The 0 inside the brackets is
just a "dummy." Most any other number or variable would work as
well -- but something has to be placed there. POS reports back the
horizontal cursor POSition on the screen.

Remember, most Macintosh fonts are proportionally spaced. Characters may not
always line up properly unless the monospace "Monaco" font is specified.

That's enough fooling around with Mother Nature.

EXERCISE 14·2: Rework the answer to Exercise 13-3 to include the
hourly rate of pay in the PRINTout. Use the TAB Function to have
the chart display all 5 columns side by side.

Learned In Chapter 14

Statements Print Modifiers Miscellaneous

POS TAB Trailing semi-colon

------------------Chapter 15

fTl he FOR-NEXT loop didn't go away for long. It returns here more
~powerful than ever. Type this New program:

10 FOR A = 1 TO 3
20 PRINT "A LOOP"
30 FOR B = 1 TO 2
40 PRINT t"B LOOP"
50 NEXT B
60 NEXT A

... and Run.

For good program readability, add 2 blank spaces in Line 20 before PRINT, 3 in
Line 30 before FOR, 4 in 40 before PRINT, and 3 in 50 before NEXT.

The result is:

A LOOP

A LOOP

A LOOP

B LOOP
B LOOP

B LOOP
B LOOP

B LOOP
B LOOP

103

104 Chapter 15

This display vividly demonstrates operation of the nested FOR-NEXT loop.
"Nesting" is used in the same sense that drinking glasses are "nested" when
stored to save space. Certain types of portable chairs, empty cardboard boxes,
etc. can be nested. They fit one inside the other for easy stacking.

Let's analyze the program a Line at a time:

Line 10 establishes the first FOR-NEXT loop, called A, and directs
that it be executed 3 times.

Line 20 PRINTs A LO 0 P so we will know where it came from in
the program. See how this program Line is indented to make it
stand out as being nested in the "A loop"?

Line 30 establishes the second loop, called B, and directs that it be
executed twice. It is indented even more so we can instantly see
that it is buried even deeper in the "A" loop.

Line 40 PRINTs two items: "nothing" in the 1st PRINT zone, then
the comma kicks us into the 2nd PRINT zone where B L 0 0 P is
PRINTed. Makes for a clear distinction on the screen between A
loop and B loop, eh?

Line 50 completes the "B" loop and returns control to Line 30 for
as many executions of the "B" loop as Line 30 directs. (So far we
have PRINTed one "A" and one "B.")

Line 60 ends the first pass through the "A" loop and sends control
back to Line 10, the beginning of the A loop. The A loop has to
be executed 3 times before the program RUN is complete,
PRINTing "A" 3 times and "B" six times (3 times 2).

Study the program and the explanation until you completely comprehend. It's
simple but powerful magic.

Okay, to get a better "feel" for this nested loop (or loop within a loop) busi­
ness, let's play with the program. Change Line 10 to read:

10 FOR A = 1 TO 5

... and Run.

106 Chapter 15

Right! A was PRINTed 5 times, meaning the "A" loop was executed 5 times,
and B was PRINTed 10 times -- twice for each pass of the "A" loop. Now
change Line 30 to read:

30 FOR B = 1 TO 4

... and Run.

Nothing to it! A was PRINTed 5 times, and B PRINTed 20 times. Do you
remember what to do if the A's and B's whiz by too fast? Press the II~ or
choose Suspend from the Control menu to temporarily freeze the display.
Press most any other key to continue.

How To Goof-Up Nested FOR-NEXT Loops
The most common error beginning programmers make with nested loops is
improper nesting. Change these Lines:

50 NEXT A
60 NEXT B

... and Run.

The Computer displays a dialog box saying:

NEXT without FOR

and blocks Line 10.

Looking at the program, we quickly see that the B loop is not nested within
the A loop. The FOR part of the B loop is inside the A loop, but the NEXT
part is outside it. That doesn't world A later chapter deals with something
called "flow charting," a means of helping us plan programs to avoid this type
of problem. Meanwhile, we just have to be careful.

Breaking Out Of Loops
Improper nesting is illegal, but breaking out of a loop when a desired con-

Grandson Of FOR-NEXT 107

dition has been met is OK. Click the OK box, then add and change these
Lines:

50 NEXT B
55 IF A = 2 GOTO 100
60 NEXT A
88 ENO
100 PRINT "A EQUALED z. RUN ENDED."

... and Run.

As the screen shows, we "bailed out" of the A loop when A equaled 2 and
hit the Test Line at 55. The END in Line 99 is just a precautionary block
set up to STOP the Computer from executing into Line 100 unless specifically
directed to go there. That would never happen in this simple program, but we
will use protective ENDs from time to time to remind us that Lines which
should be reached only by specific GOTO or IF-THEN statements must be
protected against accidental "hits."

We'll be seeing a lot of the nested FOR-NEXT loop now that we know what
it is and can put it to use.

EXERCISE 15-1: Re-enter the original program found at the begin­
ning of this Chapter. It contains a B loop nested within the A
loop. Make the necessary additions to this program so a new loop
called «C will be nested within the B loop and will PRINT «C
LOOPn 4 times for each pass of the B loop.

EXERCISE 15-2: Use the program which is the answer to Exercise
15-1. Make the necessary additions to this program so a new loop
called «Dn will be nested within the C loop and will PRINT «D
LOOPn 5 times for each pass of the C loop.

WIIlLE • WEND
A more obscure variation on the FOR-NEXT idea is the WHILE-WEND state­
ment. WHILE is the beginning statement in a series which is executed
repeatedly until a certain WHILE condition becomes false.

108 Chapter 15

The loop which begins with WHILE must be closed by a WEND. Type in
this NEW program:

When writing programs, be sure to indent Lines to highlight nesting or program
flow. It helps when reading them - and is a great aid when debugging (trou­
bleshooting) problems. End of message.

10 x = 1

20 WHILE X<>O
30 INPUT X
40 s = s + x
50 WEND
60 PRINT "SUM =";S

... and Run.

INPUf several non-zero numbers, then INPUf a 0. As long as X does not
= 0, WEND keeps returning execution to WHILE. When Xis INPUf as 0,
the WHILE statement in Line 20 interprets the 0 as its "bail-out" cue and
exits the loop via WEND. Line 60 PRINTs the sum of the numbers INPUT.

And with that, let's WEND our way towards the next Chapter.

Learned In Chapter 15

Statements

WHILE-WEND

Miscellaneous

Nested FOR-NEXT loops
Protective END blocks

~---------Chapter 16

[!] nteger? "I can't even pronounce it, let alone understand it!' Oh,
come, come. Don't let old nightmares of being trapped in Algebra
class stop you now. It's pronounced (IN·teh·jur) and simply means a

whole number like ·5, 0, or 3, etc. How difficult can that be? Come to think
of it, some folks make a whole career of complicating simple ideas. We try
to do just the opposite.

The INTeger function, INT(X), allows us to "round off' any number, large
or small, positive or negative, into an INTeger, or whole number.

Careful •• we're not talking about ordinary rounding. Ordinary rounding gives us
the closest whole number, whether it's larger or smaller than X. INT(X), on the
other hand, gives us the largest whole number which is less than or equal to
X. As you'll see in this Chapter, this is a very versatile form of rounding - in
fact, we can use it to produce the other "ordinary" kind of rounding.

Select New from the File menu to clear out any old programs, then type:

10 X = 3. Ul158

20 Y = INT<X>
50 PRINT "Y =";Y

... and Run.

The display reads:

y = 3

109

110 Chapter 16

Oh - success is so sweet! It rounded 3.14159 off to the whole number 3.
Change Line 10 to read:

10 x = -3.14159

... and Run.

Good Grief! It rounded the answer down to read:

y = -4

What kind of rounding is this? Easy. The INT function always rounds down
to the next lowest whole number. Pretty hard to get that confused! It makes
a positive number less positive and makes a negative number more negative
(same thing as less positive). At least it's consistent.

Taking it a Line at a time:

Line 10 set the value of X (or any of our other alphabet-soup vari­
ables) equal to the value we specified, in this case pi.

Line 20 found the INTeger value of X and assigned it to a variable
name. We chose Y.

Line 50 PRINTed an identification label (Y =) followed by the
value of Y.

Not Content To Leave Well Enough Alone
We can do some foxy things by combining a FOR-NEXT loop with the
INTeger function.

Change the program to read:

10 x = 3.14159

20 y = INT<X>
30 z = x - y

40 PRINT II x : II ; x

50 PRINT "Y =11 ;y
60 PRINT "Z =11 ;z

Save As I NT EGER 1 ... and Run.

The INTeger Function 111

AHA! I don't know what we've discovered, but it must be good for some­
thing. It reads:

x = 3+·14159
y = 3

z = +1415901

We've split the value of X into its INTeger (whole number) value (calling it
Y) and its decimal part (calling it Z).

Lines 40, 50, and 60 merely PRINTed the results.

Hold The Phone
Oh - oh! Why doesn't Z equal the exact difference between X and Y? Where
did that "01" in the decimal value come from? What gives?

The slight difference has nothing to do with the INT function. You have dis­
covered the Computer's limit of accuracy. Just like a calculator (or a person),
a computer can never be perfectly accurate all the time. For short arithmetic
expressions, the Mac is accurate to six digits. In longer, more complex
expressions, such a minute error in the sixth digit can be magnified to where
it becoms significant. All programmers have to cope with this kind of built-in
error.

There is a way to control the accuracy of our results. It involves artificially
rounding the fraction to the desired number of decimal places and then forcing
the Computer to PRINT out only those digits which are "properly rounded."

For example, suppose we need pi accurate to only 3 decimal places. (Of
course, we can specify it as 3.142, but that's not the point.) Select New, then
enter and Run the following program:

10 x = 3+14159

112 Chapter 16

20 x = x + .ooos
30 X = INT<X * 1000)/1000

ao PRINT x

Adding .0005 in Line 20 gives our fraction a "push in the right direction." If
this fraction has a digit greater than 4 in its 10-thousandths-place, then adding
.0005 will effectively increase the thousandths-place digit by 1. Otherwise,
the added .0005 will have no effect on the final result. This results in what's
called "4/5 rounding."

1'M 1=20UNDING
OFF A NUMBEK' !
~

Try using other values than pi for X (just make sure X*lOOO isn't too large
for the INT function to handle).

It's easy to change the program to round accurately to a number of decimal
places. For example, to round X off at the hundredths-place (2 digits to the
right of the decimal point), change Lines 20 and 30 to read:

20 x = x + .oos
30 X = INT<X * 100)/100

... and Run, using several values for X.

This trick is very useful when PRINTing out dollars-and-cents. It prevents $39.995
type prices.

HMMMM!!!
Do you suppose there is any way to separate each of the digits in 3.14159,
or in any other number? Do you suppose we would have brought it up if
there wasn't? After all (mumble, mumble).

The INTeger Function 113

It's really your turn to do some creative thinking, but we'll get it started and
see if you can finish this idea. First, wipe out the resident program and
reOpen I NT EGER 1.

Now, if we multiply Z by 10, then Z will become a whole number plus a
decimal part: 1.4159. We can then take its INTeger value and strip off the
decimal part, leaving the left hand digit standing alone. Let's label the Left­
hand digit L and see what happens. Enter:

70 z = z * 10

80 L = INT<Z>
90 PRINT "L =";L

... and Run.

Hmmml It reads:

x = 3.14159

y = 3

z = .1415901

L = 1

We peeled off the leftmost digit in the decimal. Can you think of a way we
might use a FOR-NEXT loop in order to strip off the rest?

Time Out For Creative Thinking!

(... brief interlude of recorded music ...)

After all, these digits might not be just an accurate value of pi, but a coded mes­
sage from a cereal box. If you don't have the decoder ring, it's tough luck, Charlie
-- unless you have a computer!

(... more recorded music ...)

~· .
· ::~ .. \. ::'. :;
. . · ·~.' . \ '

=· : . :. :. .. . =· ;. . .. ·

I ~) ;'\ : \ ~ I .: ' \ :: I I (\ .f J' /~ / ,· .'..
•' .···· .· .. ··~ ·· .. . ,

'. '' TIME OUT FOR ::, I ,··· :·;: .. ~: ...
.. :- CREATIVE THlNKU~G;::.- ·

/ '
/ I '· I I \ ' I , I I I I \ I ; I I . \ \ \ " ~ '""· .. . : . ;:· . : : : ":. ·. ·.. ·.,

. . . : ·.

C1

MON,
t;TIC~ 10

MATl-t.

; ...
·:.

)

The INTeger Function 115

Enough thinking there on company time! Add these Lines:

75 FOR A = 1 TO 5
100 Z = Z L

110 z = z * 10
120 NEXT A

Save As I NTEGER2 and Run.

VOILA! The "PRINTout" reads:

x = 3.14159
y = 3

z = .1415901
L = 1
L = 4
L = 1

L = 5
L = 9

Let's analyze the program.

Line 75 began a FOR-NEXT loop with 5 passes, one for each of
the S digits right of the decimal.

Line 100 creates a new decimal value of Z by stripping off the
INTeger part. (Plugging in the values, Z = 1.4159 - 1 =
.415901.)

Line 110 does the same as Line 70 did, multiplying the new
decimal value times 10 so as to make the left-hand digit an INTeger
and vulnerable to being snatched away by the INT function.
(Z = .415901 * 10 = 4.15901.)

Une 120 sends control back to Une 75 for another pass through
·the clipping program, and the rest is history.

116 Chapter 16

Is This Too Hard To Follow?
No -- it isn't hard to follow, and we could go through and calculate every
intermediate value just like I did before, and it would be perfectly clear (to
coin a phrase). Let's instead learn a way to let the Computer help us under­
stand what it is doing.

We can insert temporary PRINT Lines anywhere in any program to follow
every step in its execution. The Computer can actually overwhelm us with
data. By carefully indicating exactly what we want to know, it will display
the inner details of any process. Start by adding this Line:

72 PRINT "#72 Z =";z

... and Run.

The essentials of this "test" or "debugging" or "flag" Line are:

1. It PRINTs something.

2. The PRINT tells the Line number for analysis and easy location
for later erasure.

3. It tells the name of the variable we are watching at that point
in the program.

4. It gives the value of that variable at that point.

This "flagging" is such a wonderful tool for troubleshooting stubborn programs
that you will want to make a habit of never forgetting to use it when the going
gets tough.

It can be very helpful when inserted in FOR-NEXT loops -- so:

77 PRINT "#77 A =";A

•.. and Run.

Wow! The information comes thick and fast! It tells what is happening during

The INTeger Function 117

each pass of the loop. Hard to keep track of so much, and we've barely
begun. Is there some way to make it more readable?

Yes, there are lots of ways. Indenting is one simple way to separate the
answers from the troubleshooting data. Change Lines 72 and 77 as follows:

72 PRINT t"#72 Z =";z
77 PRINT tt"#77 A =";A

... and Run.

Ahh. How sweet it is. That is so easy to read, let's monitor one more point
in the program. Type in:

105 PRINT ttt"•105 Z =";z

Save As I NTEGER3 ••• and Run.

Very nice.

Well, there it is. All the data we can handle (and then some). By using Sus­
pend or the • ii] keys to temporarily halt execution, we can study the data
at every step to understand how the program works (or doesn't). Do it.
Understand this program and all its little lessons completely. When you are
satisfie<I, go back and erase the "flags."

INTeger Division
And if that isn't quite enough to keep the mind reeling, there is another way
to get the INTeger value of the result of an equation without using the INT
function! It is called "INTeger division," and instead of using the normal slash
I, we use a backslc:,tsh \.

Choose New. Then enter this example:

10 x = 23.987
20 y = 2.567

30 PRINT "X/Y =";X/Y

118 Chapter 16

40 PRINT "INT<XIY> =";INT(X/Y)
50 PRINT "X\Y =";X\Y

•.. and RUN. It should produce:

X/Y = 9.344371
INT<XIY> = 9
X\Y = B

8? Is that right? Yep. INTeger division actually modifies the value of each
variable in the equation before the calcula.tion is made. In this case, both X
and Y are rounded to the nearest whole numbers, 24 and 3, then division is
performed producing the INTeger value of 8. Hmmm, did that sink in?

Take a breather. You have learned quite enough in this Chapter.

EXERCISE 16-1: Enter this straightforward New program for finding
the area of a circle.

10 p = 3.14159
20 PRINT "RADIUS"t "AREA"
30 PRINT
40 FOR R=1 TO 10
50 A = p * R * R
60 PRINT RtA
70 NEXT R

... and Run.

Area equals pi times the radius squared (that is, the radius times
itself).

Pretty routine stuff - huh? Problem is, who needs all those little
numbers to the far right of the decimal point Oh, you do? Well,
there's one in f!>lery crowd. The rest of us can do without them.
Modify the resident program to suppress all the numbers to the
right of the decimal point

The INTeger Function 119

EXERCISE 16-i: Now, knowing just enough to be dangerous, and
in need of a lot of humility, change Line 55 so that each value of
area is rounded (down) to be accurate to one decimal place. For
example:

RADIUS
1

AREA
3. 1

EXERCISE 16-3: Carrying the above Exercise one step further,
modify the program Line 55 to round (down) the value of area to
be accurate to 2 decimal places.

Learned In Chapter 16

Functions

INT(X)

Math
operators

\

Miscellaneous

Flags
INTeger Division

Chapter 17------------------

lilt Went That-A-Way

~Enter this New program:

10 INPUT "TYPE A NUMBER BETWEEN 1 AND 5";N
20 IF N = 1 GOTO 100
30 IF N = 2 GOTO 120
40 IF N = 3 GOTO 140
50 IF N = 4 GOTO 160
60 IF N = 5 GOTO 180
70 PRINT "THE NUMBER YOU TYPED WAS"
80 PRINT "NOT BETWEEN 1 AND 5!"
90 END
100 PRINT "N = 1"
110 END
120 PRINT "N = 2"
130 END
140 PRINT "N = 3"
150 END
160 PRINT "N = 4"
170 END
180 PRINT "N = 5"

120

More Branching Statements 121

Save As 0 NG 0 T 0 1 and Run it a few times to feel comfortable and to be sure
it is "debugged." Be sure to try numbers outside the range of 1-5, including
0 and a negative number.

Debugged is an old Latin word which, freely translated, means "getting all the
errors out of a computer program."

This program works fine for examining the value of a variable, N, and sending
the Computer off to a certain Line number to do what it says there. H there
are lots of possible directions in which to branch, however, we will want to
use a greatly improved test called ON-GOTO which cuts out lots of Lines of
programming.

DELETE Lines 20, 30, 40, 50 and 60. Remember how? (Type DELETE 20-
60 in the Command window.)

Enter this new Line:

20 ON N GOTO 1001120114011601180

Save As ONGOT02 and Run a few times, as before.

Works fine until a negative number or a number greater than 255 is entered.
Then the Mac responds with an "illegal function call" error and blocks the
contents of Line 20.

Using the ON-GOTO statement is really pretty simple, though it looks hard.
Line 20 says:

IF the "rounded" value of N is 1, THEN GOTO Line 100.

IF the "rounded" value of N is 2, THEN GOTO Line 120.

IF the "rounded" value of N is 3, THEN GOTO Line 140.

IF the "rounded" value of N is 4, THEN GOTO Line 160.

IF the "rounded" value of N is 5, THEN GOTO Line 180.

AW,LE.T~
NOT DRAG
OUT Tl-IATOL

1

CWE:~TNUT

FOR 11 Dt=­
BU66IN61'/

I

r-
::::·
::"
"

More Branching Statements 123

IF the "rounded" value of N is not one of the numbers Listed
above, THEN move on to the next Line, Line 70.

The ON-GOTO statement has a built-in standard rounding system. If the
number INPUT is less than halfway between 2 INTegers, rounding is down­
ward to the lower INTeger. If it is halfway or larger, rounding is to the next
higher INTeger.

Run again, and type in the following values of N to prove the point:

2.4

1. 5

3.7

4.5001

4.5

o.s

Get the picture?

Variations On A Theme
Lots of tricks can be played to milk the most from ON-GOTO. For example,
if we wanted to branch out to 15 different locations but didn't want to type
that many different numbers on a single ON-GOTO Line, we could use several
Lines, like this (don't bother to do it):

20 ON N GOTO 100t120t140t160t180

30 ON N-5 GOTO 200t220t240t260t280

40 ON N-10 GOTO 300t320t340t360t380

and, of course, fill in the proper responses at those Line numbers.

In Line 30, it was necessary to subtract 5 from the number being INPUT as
N, since each new ON-GOTO Line starts counting again from the number 1.

In Line 40, since we had already provided for INPUTs between 1 and 10, we
subtract 10 from N to cover the range from 11 through 15.

124 Chapter 17

We could have used any letter after "ON," not just N. N can be the value
of a letter variable or a complete expression, either calculated in place or cal­
culated in a previous Line.

Give Me A SGN(X)
Using ON-GOTO along with a new function called SGN (it's pronounced
"sign") plus a modest amount of imagination produces a useful little routine.
But first, let's learn about SGN.

The SGN function examines any number to see whether it is negative, zero,
or positive. It tells us the number is negative by giving us a (-1). (In com­
puter language, "it returns a -1.'') If the number is zero, it returns a (0). If
positive, it returns a (+ 1). SGN is a very simple function.

In order to sneak easily into the next concept, we will simulate the built-in
SGN function with a SUBROUTINE.

So What Is A Subroutine?
Funny you should ask. A subroutine is a short but very specialized program
(or routine) which is built into a large program to meet a specialized need.
The BASIC interpreter incorporates many of them which we never see.

As an example of how to create functions that are not included in our BASIC,
we will use a 5-Line subroutine instead of the "SGN" function to accomplish
the same thing. (Even though Microsoft BASIC has its own "SGN'' function,
you should complete this Chapter to be sure you learn about subroutines. We
don't want to turn out computer illiterates, you know.)

Until now we have assigned a number to each program Line to help identify
them for later study. Let's try typing in this program without Line numbers.
"Scratch" the program now in memory by choosing New, then - very care­
fully, type in this SGN subroutine:

END
SIGN:

REM* SGN<X> *INPUT Xt OUTPUT T=-1t0t OR +1
IF X < 0 THEN T = -1
IF X = 0 THEN T = 0

IF X > 0 THEN T = +1
RETURN

More Branching Statements 125

SIGN: is the label assigned to the subroutine, and it must be followed by
a colon(:). We indented the program's Lines to help them stand out from the
other Lines. Remember, indenting isn't mandatory, just a way to make pro­
grams easier to read.

We can assign any name we want to the routine as long as we do not use
a name that is reserved for use as a BASIC statement, command or function.
The label can contain any combination of letters and numbers, although it
must begin with a letter and cannot be more than 40 characters long.

A list of reserved words can be found in Appendix B.

"CALLING" A Subroutine
(Sort of like calling hogs •••)
GOSUB directs the Computer to go to a Line number or a subprogram label,
execute what it says there and in the Lines following, and when done,
RETURN back to the Line containing that GOSUB statement. The RETURN
statement is always at the end of a subroutine.

RETURN is to GOSUB what NEXT is to FOR.

One advantage to writing subroutines (or subprograms) without Line numbers
is that the subroutine can be placed anywhere within the main program without
interfering with the existing Line numbering sequence. Notice that we placed
a protective END block in the first Line before our subroutine so the Computer
doesn't come crashing into it. Of course, this won't be necessary if the routine
happened to be placed ahead of the main program.

Getting Down To Business
Okay, now let's combine GOSUB with the SON subroutine to see what all
this fuss is about. Add:

10 INPUT "TYPE ANY NUM6ER";X

126 Chapter 17

20 GO SUB SIGN
30 ON T+2 GOTO 50t70t90
40 END
50 PRINT "THE NUMBER IS NEGATIVE."
60 END
70 PRINT "THE NUMBER IS ZERO."
80 END
90 PRINT "THE NUMBER IS POSITIVE."

... and Run.

Try entering negative, zero and positive numbers to be sure it works. Most
of the program workings are obvious, but here is an analysis:

Line 10 INPUTs any number.

Line 20 sends the Computer to the subroutine labeled SIGN via a
GOSUB statement. This is different from an ordinary GOTO, since
a GOSUB will return control to the originating Line like a boo­
merang when the Computer hits a RETURN. The call to GOSUB
is not complete and will not move on to the next program Line
until a RETURN is found.

Three Lines in the subroutine contain the simple logic routine.

The last Line in the subroutine holds RETURN, which sends control
back to Line 20, which silently acknowledges the return and allows
execution to move to the next Line.

Line 30 is an ordinary ON-GOTO statement, but adds 2 to the value
of its variable, in this case T. Line 30 really says,

"If T is -1, THEN GOTO Line 50. If it is zero, THEN GOTO
Line 70, and if it is + l, GOTO Line 90."

By adding 2 to each of the values from SGN, we "matched" them
up with the 1, 2, and 3 series which is built into the ON-GOTO
statement.

More Branching Statements 127

Lines 40, 60, and 80 are routine protective END blocks.

By the way, many subroutines are not this simple -- as a matter of fact, they often
contain very hairy mathematical derivations. We won't bother trying to explain
any of them -- if you're heavily into Math, you go right ahead and play with the
numbers.

ON-GOSUB
ON-GOSUB is a variation on the ON-GOTO and GOSUB schemes. It allows
branching to a variety of subroutines from a single GOSUB statement. If we
had 3 subroutines and had to choose which one to use based on the value of
X, here is how the program might be structured. (Don't bother to type it in.)

10 INPUT X
20 ON X GOSUB 1000t2000t3000
30 REM - CALCULATIONS HERE
60 REM - PRINT RESULTS HERE

88 END
1000 REM - 1ST ROUTINE GOES HERE.

1089 RETURN
2000 REM - 2ND ROUTINE GOES HERE.

2099 RETURN
3000 REM - 3RD ROUTINE GOES HERE.

3099 RETURN

Or with labels:

10 INPUT X
20 ON X GOSUB FIRSTtSECONDtTHIRD
30 REM - CALCULATIONS HERE
40 REM - PRINT RESULTS HERE

89 END

128 Chapter 17

FIRST: REM - lST ROUTINE GOES HERE+
RETURN

SECOND: REM - 2ND ROUTINE GOES HERE.
RETURN

THIRD: REM - 3RD ROUTINE GOES HERE.
RETURN

Preview Of Coming Attractions?
Like so much of what we are learning, this is just the tip of the iceberg. The
ON-GOTO and ON-GOSUB statements have many more clever applications,
and they will evolve as we need them. As a hint for restless minds, note that
the value of X (which we INPUT) was not used, but it didn't go away. All
we did was find its SGN. Hmmm ...

Routines Vs. Subroutines
In this Chapter we studied a special-purpose routine used as a SUBroutine. It
was easy to understand. All routines, understandable or not, can be built
directly into any program instead of being set aside and "called" as sub­
routines. The main value of subroutines is that they can be ••called" repeatedly
from different parts of a program, which is often desirable. Ordinary routines
are usually only used once, so use of GOSUB and RETURN with them often
doesn't make good programming sense.

One value of using routines as subroutines is that some are exceedingly com­
plex to type without error, and if each is typed once and SA VEd on disk, it
can be quickly and accurately WADed back into the Computer as the first
step in creating a new program, or added to an existing one.

We'll have more to say in a later Chapter. When you see just how powerful sub­
routines are, you'll feel like your Macintosh is even smarter than it thinks it is.

Now, it's your turn.

EXERCISE 17-1: Remove all traces of the subroutine from the resi­
dent program. Use the SGN function to accomplish the same thing
we have been doing with a subroutine. Hint: T = SGN(X)

Learned In Chapter 17

Functions

SGN(X)

Statements

ON..QOTO
GOSUB
ON~GOSUB
RETURN

More Branching Statements 129

Miscellaneoi,s

Debugging
Calling a subroutine
Routines
Labels

Chapter is------------------

tRANDOM
A random number is one with a value which is unpredictable. A
"Random Number Generator'' is a device which pulls random numbers

"out of a hat." Our Computer has an RND generator, and it works this way:

N = RNDCX>

where N is the random number.

RND is the symbol for RaNDom Function.

X is a dummy value, either negative, zero, or positive, which can
be either placed between the parentheses or brought in as a variable
from elsewhere in the program.

Type this NEW program:

20 FOR N = 1 TO 10
30 PRINT RNDC1>
40 NEXT N

... and Run. Did you observe:

1. A different number appeared each time?
2. All numbers were between 0 and 1?
3. Very small numbers were expressed in Exponential notation?

RND behaves exactly the same as RND(X), when X is a positive number.
Since this is almost always how it is used, we almost always omit (X). Put
a semi-colon behind the PRINT statement and increase the FOR-NEXT loop

130

Random Numbers 131

to 40 passes to put more numbers on the screen at one time. Line 10 is added
to keep the printout from running off the display.

10 WIDTH 60
20 FDR N = 1 TD 40
30 PRINT RNO;
40 NEXT N

Close the List window to get it out of the way and Run.

The Computer uses an internal "seed number" to produce a "random number"
series. The seed for RND is always ·the same.

You get the idea.

Now bring back the List window (•I!), and add:

50 PRINT RND<O>

Close the List window again and Run.

The last RaNDom number PRINTed is repeated. Hmmm •••

This Is Fairly Exciting!
Well, maybe so, but you ain't seen nothin' yeti Virtually all computer games
are based on RND(X), and we'll soon play and design our own.

RND With Racing Stripes
In most real-life cases we need a Random INTeger, not a Random Number
between 0-1. To create numbers larger than 1, we have to resort to mathemat­
ical chicanery.

Remove Line 50, and change Line 30 to read:

30 PRINT INT<RND * 15 + 1>;

•.. and Run.

132 Chapter 18

Wow! That's more like it-· real live random INTegen. They all have values
between 1 and 15. Figured out the scheme? Pretty simple, isn't it?

This equation specifies the range of INTegers RND will output:

R = INT(RND * (B·A + 1) + A)

where R =the RaNDom number,
B =the largest JNTeger and
A=the smallest INTeger.

Pseudo-Random
Random numbers are unpredictable, properly functioning computers are not.
So how do we get truly random numbers from the Computer? We usually
don't; we get pseudo-random numbers.

Run the program several times, and study the screen. The numben from each
Run are the same as from the previous Run! They may be random, but are
certainly predictable!

Change Line 30, and Run several times using negative seed numbers, like:

30 PRINT RND<-20);

We get a different set of numbers with each seed -- but all the numbers in
any one set have the same value. Running again, the numbers are
unchanged. Using a different negative seed with RND produces a similar
result, but the value will be changed.

When Running game programs using RND, it's a good idea to set the seed
to an unpredictable value. To ensure that a different pseudo-random number
sequence is used each time the Computer uses RND(X), we need to find a
source of unpredictable numben somewhere in the Computer.

Enter the Command window, and type the following:

CL S l;AllllH

PRINT TIME$ 1;m1111e1

Random Numbers 133

Hmmm, that's interesting. If we could somehow separate the seconds from
the rest of the time, we would have essentially unpredictable numbers between
0 and 59. That would give us 60 different seed numbers. Here's how to do it:

PRINT VAL<RIGHT$CTIME$t2))

The mechanics of that statement will be covered in detail in a later Chapter,
but for those too curious to wait here is a short analysis: RIGHT$(TIME$,2)
means, "Peel off the 2 right-most characters from TIME$." VAL means,
"Make sure those 2 characters are numbers so we can use them in a numeric
variable."

We now have the tools to write a subroutine for "randomizing" the INPUT
to RND. Type the following:

10 GOSUB 10000 (to our own Randomizer)

20 FOR N = 1 TO 10
30 PRINT RNO;
ao NEXT N
99 END
10000 S = VAL<RIGHT$(TIME$t2))

10010 FOR N = 1 TO S
10020 D = RND
10030 NEXT N
1ooao RETURN

and here's how it works:

Line 10000 picks off a number between 0-59.

Lines 10010-10030 "burn off' the first "S" numbers in the RND
series.

Line 10040 RETURNs execution to the main program where:

134 Chapter 18

Line 30 continues RND and PRINTs the next 10 numbers.

If you don't believe any of this, insert a temporary Line:

10005 s = 25

which sets the number of bum-offs to a specific value. Then Run
several times. The same 10 numbers appear each time, so it must be
working.

Remove Line 10005, and Run a few more times. Ahhh! Now we've
got it. Instead of only one, we now have 60 versions. We have
developed a viable RANDOMIZER routine.

Randomizer
With a RANDOMIZE statement at the beginning of the program, the Com­
puter will "shuffle," or "reseed," the series of random numbers. Type this
New program:

10 RANDOMIZE
20 WIDTH 60
30 FOR N = 1 TO 10

40 PRINT RNDi
50 NEXT N

... and Run.

Oh, Oh! More decisions needed. RANDOMIZE allows the selection of 65536
different seed values. Even so, whoever picks the seed controls the numbers
series.

Variable Randomizer
To increase the possibility that a different seed number will be selected each
time RANDOMIZE is encountered, we can let the Computer make that selec­
tion for us. The RANDOMIZE statement can be followed by a variable or
numeric constant between - 32768 and + 32767.

Random Numbers 135

Let's use a close relative to the TIME$ function. Enter the Command window
and type:

CLS !;Al!iiel

PRINT TIMER l;Aiiiie!

The number displayed is the number of seconds that have elapsed since mid­
night. (Just what we wanted to know!) We can use TIMER to set the random
seed. Type in this short New program:

10 RANDOMIZE TIMER
20 FOR R = 1 TO 10
30 PRINT RNO;
40 NEXT R

... and Run

... and Run again.

We get different numbers each time! But what if the value of TIMER is
greater than 32767 (which it would be if it were after nine o'clock in the
morning)? We would surely get an error if we used, say a constant of 35000,
as a RANDOMIZE seed value. It turns out that the Macintosh does some
tricky internal manipulation of the TIMER value so that Microsoft BASIC does
not "crash" on us.

The "randomness" of this scheme is based on the unpredictability of the
number of seconds that have passed since midnight. Care to guess that value
after glancing at your watch?

The Old Coin Toss Gambit
We could toss a thousand heads in a row, and the odds on the next toss are
exactly 50150 that a bead will come up next. The outcome of every toss is
totally independent of what happened before. It is too!

In the long run, however, the number of beads and tails should be exactly the
same. (Casinos live off people who go broke waiting for their particular

136 Chapter 18

scheme to pay off . . . "in the long run.") The Computer can provide an edu·
cation in "odds" and various games of chance and allow us to prove or dis·
prove many ideas involving probability. This is known as computer "model·
ing," or "simulation."

Type in this coin toss simulation:

10 RANDOMIZE
20 INPUT "NUMBER OF COIN FLIPS 11 ;F
30 PRINT "STAND BY WHILE I'M FLIPPING. 11

40 FOR N=1 TO F
50 X = INT<RND * 2 + 1)
60 ON X GOTO 90t110
70 PRINT 11 WAS NEITHER A HEADS NOR TAILS. 11

80 END
90 H = H + 1
100 GOTO 120
110 T = T + 1
120 NEXT N
130 PRINT 11 HEADS 11 t 11 TAILS 11 t 11 TOTAL FLIPS"
140 PRINT HtTtF
150 PRINT INT<100*H/F); 11 %11 tINT<lOO*T/F); 11 %11 t

11 100% 11

... and Run.

Seed the generator with the number 1, and "Flip the coin" 100 times. Run
a number of times, changing the seed. When it's time for lunch, try 25,000
flips or more.

Line 10 establishes a Random seed value.

Line 20 INPUTs the number of flips desired.

Line 30 Prints a "Standby" statement.

Random Numbers 137

Line 40 begins a FOR-NEXT loop that Runs "F' times.

Line 50 is the RND generator. We told it to generate INTegers
between 1 and 2, and that restricts it to just the numbers 1 and
2. Heads is "l," and Tails is "2."

Line 60 has an ON-GOTO test sending X = 1 to Line 90 where the
"Heads" are counted and X = 2 to Line 110 where the "Tails" are
counted.

Lines 70 is the default Line. If X = other than 1 or 2, the error
message will be PRINTed and execution will END. It will never
happen, but here is the proof.

Line 90 sets up H as a counter. Each time the ON-GOTO tests
sends control to this Line because X = 1, H is incremented by one
and keeps count of the "Heads."

Line 100 sends control to Line 120 where NEXT N is executed.
When the N Loop has gone through all "F' number of passes, con­
trol drops to Line 130.

Until then, Line 50 generates another RaNDom number (1 or 2). If
the next X = 2, ...

Line 60 sends control to Line 110.

Line 110 keeps track of the "Tails."

Line 130 PRINTs the Headings.

Line 140 PRINTs the values of H, T and F.

Line 150 calculates and PRINTs the percentage of heads and per­
centage of tails.

Save this program As CO I NTOSS.

More Than One Generator At A Time
It is possible to generate more than one random number in a program by using
more than one generator. This has special value when the ranges of the
generators are different, but is helpful even if their ranges are the same.

l GUE::~ I CAN'T
COMPLAIN - I
A~~~D FOR

RANDOM NUMBa:zq, I I @~

Random Numbers 139

It could also be done with a single generator, but that wouldn't make the point.

To make the point, we will simulate the game of "Craps" •• where 2 dice are
"rolled." Each "die•• has six sides. and each side has 1,2,3,4,S or 6 dots.
When the 2 dice are rolled, the number of dots showing on their top sides
are added. That sum is important to the game. Obviously. the lowest number
that can be rolled is 2, and the highest number is 12. We will set up a sepa·
rate Random Number Generator for each die, give each a range from 1 to 6,
and call them die "A" and die "B!'

Type NEW, then the following:

10 A = INT<RND*6+1)
20 B = INT<RND*6+1>
30 N = A + B
40 PRINT Nt
so GOTO 10

... Run.

Each number PRINTed falls between 2 and 12. We only need to PRINT N
since the dice are both thrown at the same time, and only the sum of the 2
is what counts.

Remember to press iiliiB to stop the Computer.

Why would the following by wrong? It creates numbers between 2 and 12.

10 PRINT INT<RND*11+2>

Answer: Adding random numbers created by two generators, each picking
numbers between 1 and 6, will create many more sums which equal
3,4,5,6,7,8,9,10 and 11 than a single generator which picks an equal amount
of numbers 0 through 10, to which we add 2, to make the range 2 through
12. To simulate 2 dies, the generator range must be 1-6, twice.

140 Chapter 18

Rules Of The Game
In its simplest form, the game goes like this:

1. The player rolls the two dice. If the sum is 2 (called "snake
eyes"), a 3 ("cock-eyes"), or a 12 ("boxcars") on the first roll,
he loses, and the game is over. That's "craps."

2. If the player rolls 7 or 11 on the first throw (called "a natural"),
he wins, and the game is over.

3. If any other number is rolled, it becomes the player's "point."
He must keep rolling until he either "makes his point" by getting
the same number again to win or rolls a 7 and loses.

EXERCISE 18-1: You already know more than enough to complete
this program. Do it. Put in all the tests, PRINT Lines, etc. to meet
the rules of the game and tell the player what is going on. It will
take you awhile to finish, but give it your best before turning to
Section B for a sample solution. Good luck!

Learned In Chapter 18

Functions

RND(X)
RANDOMIZER
TIME$
TIMER

Miscellaneous

Seed numbers
Pseudo-random

---------chapter 19

~ e have learned how to insert numeric values into programs by two L!!J different methods. The first is by building them into the program:

10 A = 5

The second is by using an INPUT statement to enter them through the
keyboard:

10 INPUT A

The third principal method uses the DATA statement.

Type in this New program:

10 DATA 1,z,3,4,5
20 READ AtBtCtDtE
30 PRINT A;e;c;o;E

... and Run.

The DATA statement is in some ways similar to the first method in that a
Line holding the values is part of the program. It's different, however, since
each DATA Line can contain many numbers, or pieces of data, each separated
by a comma. Each piece of DATA must be read by a READ statement. Each
READ Line can hold a number of READ statements, each separated by a
comma.

The display shows that all 5 pieces of DATA in Line 10, the values 1,2,3,4
and 5, were READ by Line 20, assigned to variables A through E, and
PRINTed by Line 30.

141

142 Chapter 19

Keep in mind these important distinctions: DATA Lines can be read only by
READ statements. If more than one piece of DATA is placed on a DATA Line,
they must be separated by commas. INPUT statements are used to enter data
directly from the keyboard.

DATA Lines are always read from left to right by READ statements; the first
DATA Line first (when there is more than one), and it does not matter where
they are in the program. This may seem startling, but do the following and
see:

1. Move the DATA Line between Lines 20 and 30 (don't bother to
change Line numbers), and Run. No change in the PRINTout,
right?

2. Move the DATA Line to the end of the program. Same thing -­
no change in the PRINTout.

DATA Line(s) can be placed anywhere in the program.

This fact leads different programmers to use different styles. Some place all
DATA Lines at the beginning of a program so they can be read first in a
LISTing and found quickly, to change the DATA.

Others place all DATA Lines at a program's end where they are out of the
way. Still others scatter the DATA Lines throughout the program, next to the
READ Lines. The style you select is of little consequence -- but consistency
is comfortable.

The Plot Thickens
Since we now know all about FOR-NEXT loops, let us see what happens
when a DATA Line is placed in the middle of a loop. Erase the old program
by selecting New, and type in this program:

DATA 1,z,3,4,5
10 FOR N = 1 TO 5

20 READ A
30 PRINT A;

v·KNow L?OMt;THIN •
F~IEND '? YOU'l<E'
NOT l-IAL-F A~
t3CAR.Y A~ lN ™E
B~INNING.

I

--

144 Chapter 19

40 NEXT N

... and Run.

That DATA Line is outside the loop. Now move it between Lines 10 and 20
and Run. What happened?

Nothing different! It is important to absorb this fact, or we wouldn't have
gone to the trouble to prove it. We went through the N loop 5 times, READ
the letter A 5 times, and the PRINT statement PRINTed A 5 times, but A's
value was different each time. Its value was what it last READ from the
DATA Line. The reason - each piece of data in a DATA Line can only be
read once each time the program is RUN. The next time a READ statement
requests a piece of data, it will read the NEXT piece of data in the DATA
Line or if that Line is all ''used up," move on to the next DATA Line and
begin READing it.

Change Line 10 in the program to read:

10 FOR N = 1 TO 6

... and Run.

The READ statement was instructed to read 6 pieces of DATA, but there
were only S. An error statement caught it, as the dialog box shows.

Out of DATA

and READ A is boxed.

Click the OK box, then change Line 10 so the number of READs is less than
the DATA available.

10 FOR N = 1 TO 4

••• and Run.

No problem. It works just fine even if we don't use all the available data. The
point is, each piece of data in a DATA statement can only be READ once
during each Run.

READlng Data 145

Exceptions, Exceptions!
Because it is sometimes necessacy to read the same DATA more than once
without RUNning the complete program over, a statement called RESTORE
is available. Whenever the program comes across a RESTORE, all DATA
Lines are RESTOREd to their original ''unread" condition, both those that have
been READ and those that have not, and all are available for reading again.
Change Line 10 back to:

10 FOR N = 1 TO 5

and insert:

25 RESTORE

..• and Run.

Oh-oh! The screen PRINTed five l's instead of 1 2 3 4 5. Can you figure
out why?

Line 20 READ A as 1, but Line 25 immediately RESTOREd the
DATA Line to its original unREAD condition. When the FOR­
NEXT loop brought the READ Line around for the next pass, it
again read the first piece of data, which was that same 1. Same
thing happened with the remaining passes.

READ and DATA statements are extremely common. RESTORE is used less
often.

Do you begin to see some distant glimmer involving the storing of business or
technical DATA in DATA Lines where it's easily changed or updated without
affecting the rest of the program or its formulas?

String Variables
Who knows where some of these seemingly unrelated words come from? If
they weren't so important, we could ignore them. We have been using the
letters A through Z to hold number values. They are called numeric variables.
We can use the same 26 letters to hold string variables by just adding a"$."

A$, for example, is called "A String." String variables can be assigned to
indicate letters, words and/or combinations of letters, numbers, spaces and

146 Chapter 19

other characters. Choose New, then type in:

10 INPUT "WHAT IS YOUR NAME";A$
20 PRINT "HELLO THEREt ";A$

.•. and Run.

Hey-hey! How's that for a grabber? If that, along with what we have learned
in earlier Chapters doesn't make the creative juices flow, nothing will.

That's Two
We now know two ways to PRINT words. The first, learned long ago, is to
imbed words in PRINT statements (and is called "PIUNTing a string"). The
second is to bring word(s) through an INPUT statement (called "INPUTting
a string"). If you can't think of the third way, go back and check the title
at the top of this Chapter.

Select New, and type in this program:

10 READ A$
20 DATA APPLE MACINTOSH COMPUTER
30 PRINT "SEE MY ";A$

••. and Run.

SEE MY APPLE MACINTOSH COMPUTER

Let's use 2 string variables to accomplish the same thing, seeing how they
work with each other. Reword the program to read:

10 READ A$
15 READ 6$
20 DATA APPLEt MACINTOSH COMPUTER
30 PRINT "SEE MY ";A$;" ";6$

••. and Run.

READlng Data 14 7

Analyzing the program:

Line 20 contains two pieces of string Data, separated by a comma.

Line 10 READs the first one.

Line 15 READs the second one.

Line 30 contains 4 PRINT expressions:

The first one PRINTs "SEE MY ", leaving a space behind the
"Y'' since, unlike numeric variables, string variables do not insert
leading and trailing spaces. This gives excellent control over
PRINT spacing.

The second PRINT expression is A$, and it prints "APPLE".

The third inserts the space which is enclosed in quotes.

The fourth PRINT expression is B$ which PRINTs "MAC­
INTOSH COMPUTER".

Together, they PRINT the entire message on the same line.

A semi-colon between STRING variables does not cause a space to be PRINTed
between them. We have to insert a space using 11 11 marks.

Learned In Chapter 19

Statements

READ
DATA
RESTORE

Miscellaneous

String Variables A$, B$, ...
Numeric Variables

[I] ntermediate Features Of Microsoft
BASIC for the Apple Macintosh
Now that we've learned the rudiments of "Elementary" BASIC, we

can get serious about "Intermediate" BASIC. The next Chapter is sort of a
"catch up" and "catch all," explaining a lot of little unrelated features that
didn't find convenient homes in the previous Chapters. Study each of them,
do the sample programs and think about them. Each one is brief but
important.

--------chapter 20 ·

ultiple Statement Lines : (Now he tells us!)
BASIC allows more than one consecutive statement on each program
Line, sep&J'8ted by a colon(:). For example, a timer loop such as:

100 FOR N = 1 TO 500
110 NEXT N

can become ...

100 FOR N = 1 TO 500 : NEXT N

Caveat Emptor (Don't buy a used computer from a stranger.)

Control yourself! It's easy to get carried away with this exciting feature.
While we will use multiple statement Lines often from here on, you will
quickly find that it's possible to pack the information so tightly it becomes
hard to read, and also very hard to modify.

More Caveat (or is it more Emptor?)

Multiple statement Lines require careful understanding. Especially critical are
statements of the IF-THEN variety.

Enter the following inco"ect program:

10 INPUT "TYPE IN A NUMBER"IX
20 IF X = 3 THEN 50 : GOTO 70
30 PRINT "HOW DID YOU GET HERE?"
40 END

151

152 Chapter 20

50 PRINT 11 X=3 11

60 END

70 PRINT "CAN'T GET FROM THERE TO HERE. 11

... and Run it several times with different INPUT values, including 3.

Line 20 has an error in logic. If the IF-THEN test passes, control moves
to Line 50. That's OK.

If the test fails, however, control drops to the next Line in the program -·
Line 30, not to the 2nd statement in Line 20. There is no way the 2nd state­
ment in Line 20 (GOTO 70) can ever be executed.

The Message·· if you put an IF-THEN (or ON-GOTO) type-test in a multiple
statement Line, it must be the last statement in that Line.

Next Message •• we cannot send control TO any point in a multiple statement
Line except to its FIRST statement. Look at Line 20. There is no way to
address the GOTO 70 portion. It shares the same Line number as the first
statement in the same Line. Only the first statement is addressable by a GOTO
or IF-THEN. Other statements in a Line are accessed in sequence, IF each
prior test is passed.

Searching The Program
Now that we are beginning to develop larger and more complex programs, it
becomes more difficult to find something buried deep within the program.

The Search menu has several methods that can be used to Search for individual
characters, text or the cursor. It's also possible to Search for a letter or text
and replace it with something else. This is useful when changing a name or
variable used throughout a program to a different name or variable. For exam­
ple, let's use the Search feature to find the location of each variable X in our
resident program.

Place the cursor at the beginning of the program and select Find... from the
Search menu or press Ill Ii· A dialog box appears with the cursor flashing in
the Find next box. Type in the letter X (upper or lower case -- it isn't fussy),
and click the OK box or press lmnl!iel.

The Computer found the first X in Line 10 and pointed it out by reversing
the letter.

Smorgasbord 153

To Find the Next letter X, press II W (or select Find Next from the Search
menu). Continue pressing II W. and notice that after the last X is found, the
Computer returns to the first one in Line 10.

Now let's change variable X to Y.

Place the pointer at the beginning of the program, and click the mouse. This
sets the letters to the normal font and places the cursor at the beginning of
the program.

Select Replace ... from the Search menu. Another dialog box appears. It looks
like the Find dialog box except in this box we can specify a Replace­
ment for what is listed in the Find next box.

The letter X is still sitting in the Find next box. Let's leave it there, and
place a Y in the Replace with box. Position the pointer inside the Replace
with box and click. Type the letter Y (use upper case -- it matters this time),
but don't hit l;Ai!Hei.

We also have the options of "Verifying before replacing" and "Replacing all
occurrences." In this example, we want to change all X variables, so click
the box for "Replace all occurrences." Then click the box for "Verify before
replacing" so we can monitor the action. Your dialog box should look like
this:

Find neHt IH

Replace with :v================================ (OK) 123 Uerify before replacing

[Conc:el) ~ Replnce all occurrences

Select OK. The Computer should have found the first X in Line 10 and dis­
played the Replace verify box in the upper right-hand comer. Click Yes for
the three occurrences of the variable X in the program. As long as the Verify
box is present, there are more X's to be replaced.

Selective Searching
As with most other features in our Mac, there is a short cut to selecting and
Searching text.

154 Chapter 20

Place the cursor to the right of the 70 in Line 20. Press the mouse button and
drag to the left until the number 7 and 0 are reversed. Be careful not to select
more than the two numbers, then release the button. Now select Find Selected
Text from the Search menu, and bingo, the Computer found the 70 in Line 70.

In a very large program, a GOTO or GOSUB Statement may be specifying
a Line number or Label that is residing far down the program. With the Find
Selected Text feature we can easily select any portion of text by shading it
with the mouse and find other occurrences of it in the program.

Try fmding other selected text such as the PRINT statements or the value 3
in Lines 20 and SO until you get a handle on all the Search features.

After we have written a program that has more Lines than the screen can
hold, we can use the Search menu to Fmd the Cursor. Selecting the Find the
Cursor option causes the Computer to scroll down the program and display
the program starting with the Line where the cursor is p0sitioned. Again, these
are features that will come in handy when working with very long programs.

New Numeric Variables
We know we can use the 26 letters of the alphabet as names for variables. We
can also use the numbers 0 through 9 in conjunction with these letters:

etc.

A3 = 65

FS = 37

Although the 26 letter variables are usually enough, addition of the numbers
give us an additional 26*10 = 260. They can be very handy, particularly if
we want to label a number of "sub" variables (Dl,D2,D3,etc.) which combine
to make a grand total which we can just call D.

PI = 3.14159

(Circumference = 3.14159 * Diameter)

In addition, we can use any combination of upper- and lowercase letters, num·

Smorgasbord 155

hers and decimal points (or periods) for a name, up to 40 characters long. For
example:

LEARNING.MICROSOFT.BASIC = 19.95

Now that really looks valuable.

If that doesn't provide enough variables to solve your problems, nothing will.

New String Variables
So far we've used only A$ and B$ as string variables. We actually have all
the letters of the alphabet available for strings. And the numbers 0 through
9 too, plus any letter-number combination. These are valid string names:

X$

D8$

PI$

WHAT.A.GREAT.BOOK$

etc.

As with numeric variables, string variables can have any combination of up
to 40 letters (upper- or lowercase), numbers and decimal points (periods) fol­
lowed by the $ sign.

Upper- and lowercase letters can be used in both numeric and string variable names
although the Computer cannot distinguish between the two. For example, Pi and
PI would be treated as the same variable, as would x2$ and X2$.

Shorthand
There are several little "shorthand" tricks available.

156 Chapter 20

The first is the use of ? in place of the very common word, PRINT. Select
New, then type this Line:

10 ?"QUESTION MARK" 1;m1111e1

Awwk! The pumpkin turned into a coach. The Computer rewrote it to read:

10 PRINT"QUESTION MARK"

It also works at the command level. Enter the Command window and try:

and we get:

12

Try ?FRE (0 >.

The ' is shorthand for REM and is especially nice when documenting the
purpose of a Line. It makes program Lines into multiple statement Lines
as in ' = :REM.

50 X = Z*C/4 + 33 'THE SECRET EQUATION

The only place ' can't be used unaided is in a DATA Line, and that problem
can be overcome by actually adding a : .

1000 DATA 102t3t9t105t10tl : 'DATA IS IN
1010 DATA 108t7t3t111t6tl : 'SEQUENCE

Use Of Quotes
Technically, it is not necessary to use quotes to close off many PRINT state­
ments, or LOADs and SA VEs.

10 PRINT "WHERE IS THE END QUOTE?

Note lack of second " .

Smorgasbord 157

Runs just fine, but leave it off· at your own peril.

A BASIC interpreter that is "too forgiving" is like an airplane that is "too for­
giving." It allows us to become sloppy, and when we need all the skill we
can muster, it is gone from the lack of practice. You are strongly encouraged
not to take these and other "cheap" short-cuts.

INPUT
It's possible to INPUT several variables with a single INPUT statement. Type
this program and respond with a cluster of 3 numbers separated by commas. It
will "swallow" them all in one gulp.

10 INPUT At6tC

... and Run.

However, if we fail to INPUT them all, separated by commas, the error:

?Redo f roM start

?

points out that more DATA must be INPUT. To see the Error Message, Run
again, but only INPUT one number, lmlillie!, then type DB to bail out.

Run again and try to INPUT letters instead of numbers. Same Error Message.

There is extensive information in Appendix C dealing with Error Messages.
Most often, Redo reminds us that we can't INPUT a string variable into a
request for a numeric variable.

Optional NEXT
FOR-NEXT loops don't always have to specify which FOR we are NEXTing.
This can be useful when dealing with nested loops.

Type this New program:

10 FOR A = 1 TO 2 PRINT A
20 FOR B = 1 TO 3 : PRINT tB

ME JUt;,T worz.Kt:=.D ~ l-t~
ON A Pl206RAM ~
THE. COMPLJn;.I< ~A\D:

Smorgasbord 159

30 FOR C = 1 TO 4 1 PRINT ,,c
40 NEXT : NEXT : NEXT

Run it several times to get the flavor. (Note how commas were used to place
PRINTing in different zones.)

This method of NEXTing should not be used . if the program contains tests
which might allow a loop to be broken out of. Better then to be specific, or
use this little short-cut:

40 NEXT CtBtA

IF-THEN-ELSE
ELSE is an interesting addition to our stable of conditional branching state•
ments. It allows an option other than dropping to the next Line if a test fails.
Try this New one:

10 INPUT "ENTER A NUMBER";N
20 IF N=O THEN PRINT "0" ELSE PRINT "NOT Oh

... and Run.

255 Characters Per Line
Microsoft BASIC permits up to 255 characters in a single program Line.
(Don't ask me to debug such a Line!)

Another Way Of Leaving BASIC
In the past, whenever we wanted to leave BASIC to return to the Finder, we
pulled the File menu down and selected Quit. As you may have discovered,
QUIT will not work from the keyboard. Instead, we need to use the SYSTEM
command.

160 Chapter 20

Learned In Chapter 20

Commands Statements Miscellaneous

SYSTEM IF-THEN-ELSE Multiple statement Lines
Variable Names
Some Shorthand
Quotes
Multiple INPUTting
Optional NEXT
String Variables

Menu

Search
Fmd ... <•Ii>
Find Next <•Ill)
Find Selected Text
Find the Cursor
Replace .••

---------chapter 21

he purpose of this Chapter is to learn how to use ASC and CHR$.
Before doing so, however, we must learn about something called ''the
ASCil set."

ASCil is pronounced (ASK' -EE) and stands for American Standard Code for
Information Interchange. Since a computer stores and processes only numbers,
not letters or punctuation, it's important that there be some sort of uniform
system to specify which numbers represent which letters and symbols. The
ASCil Chart in Appendix A shows the relationship between the number system
and symbols as used in the Macintosh. Take a minute to review the chart.

Type in this New program:

10 FOR N = 32 TO 217
20 PRINT "ASCII NUMBER"INI
30 PRINT "STANDS FOR"ltCHR$CN>
40 FOR T = 1 TO 500 : NEXT T
50 NEXT N

Save As ASCII .•• and Run.

Observe that the characters between ASCil code numbers 97 and 122 are
lowercase duplicates of ASCil numbers 65 to 90. Numbers 128 to 217 call
forth special graphics and foreign language characters.

The ®Dltenl Key
We can use the keyboard to enter all those special characters by using the
®iJU.ili key. (There are two of them, one below each DD key.) To use the
®iJU.hl key, hold it down while pressing another key on the keyboard, in the
same manner as we would use the •key.

161

162 Chapter 21

Instead of "poking around in the dark" to find out which t!Ji1!1.lel sequences
produce the different characters, there is a desktop accessory called "Key
Caps" in the j Menu. Use the mouse to pull down the j menu, and select
Key Caps.

Like all windows, we can move it around the desk top by pointing at the title
bar while dragging the mouse.

With the t!Ei•t-1!@3 key released, hold down the ~key and notice the
screen change. The two §DDJ keys are darkened, the lowercase letters are
replaced with uppercase and the number keys are replaced by the special
characters.

With the t!EJ•t-1!@3 key off, hold down the ®nit.lei key. Aha! There are
some of the special characters and their keyboard placement. Note that some
are blank (0). Now, while holding down ttmiMel, press filDID. The rest of
the special characters are then displayed.

Above its picture of the keyboard, Key Caps has a small window available
for displaying anything we type on our keyboard. Choose some of the special
characters, and enter them. Use the l:EAM•bli§ key to clear the window.

After experimenting with Key Caps for a while, click the close box (small
white box) on the title bar to remove it from the desk top.

Note that we can select Key Caps for more experimentation at any time, even
during INPUT while Running a program. And if we feel really lazy, we can
even use the mouse to click the keys on Key Caps keyboard!

ASCil Chart
Some of the ASCII numbers between 0 and 31 are used by the Macintosh for
special control purposes:

Code Function

7 Beep
8 Backspace and erase current character
9 TAB(9,17,25 ...)

10 Move cursor to beginning of next Line
12 Clear screen
13 Move cursor to beginning of next Line (Return)

The ASCII Set 163

Change Line 10 to read:

10 FOR N = 1 TO 31

and Run again.

There is very little unifonnity internationally (or even within the U.S.) in the
assignment of ASCII code numbers, except those used for the "Roman" letters
and numbers. Fortunately, they handle most of our everyday needs. If we
contemplate the problems faced by users of other languages which need special
letters and characters, it's easy to see how good use can be found for the
ASCII values between 128 and 216.

So What Is CHR$(N)?
We have used CHR$ (pronounced Character String) without describing it, but
you undoubtedly figured it out anyway. CHR$(N) produces the ASCII
character (or control action) specified by the code number N. It is a one-way
converter from the ASCII code number to the ASCII character and allows us
to throw characters around with the ease of throwing around numbers. The
word "string" refers to any character or mixture of characters (letters, numbers
or punctuation).

Enter this simple New program:

10 INPUT "TYPE ANY NUMBER (33-217)";N
20 PRINT CHR$<N>
30 PRINT : GOTO 10

... and Run.

Don't forget to press fl B or select Stop from the Run menu to break out of the
loop.

Almost all of our activity with ASCII numbers will be confined to this range.

164 Chapter 21

EXERCISE 21-1: Using the ASCII chart (Appendix A) and the CHR$
function, create a program which will PRINT the name: MACINTOSH.

ASCII Applications
If we end up in the Big House serving time for computer fraud, the following
little program will make up our license plate combinations, putting CHR$ to
good use.

Enter this New program:

10 REM * LICENSE PLATE NUMBER GENERATOR *
20 FOR N=1 TO 3: PRINT INT<RND*10);
30 NEXT N : PRINT " n;
40 FOR N=1 TO 3
50 PRINT CHR$<INT<RND*26> + 65);" n;
60 NEXT N : PRINT : GOTO 20

Save As LICPLATE ..• and Run.

The RND generator in Line 20 PRINTs numbers between 0 and 9. Line 50
PRINTs those characters whose ASCII number falls between 65 and 90 by
producing a RaNDom INTeger between 0 and 25 and then adding 65 to it.
What do we see on the ASCII conversion chart between 65 and 90?
Hmmmm???

What Then Is ASC($)?
ASC is the exact opposite of CHR$(N). ASC is a one-way converter from the
ASCII character to its corresponding ASCII number.

Select New and type:

10 INPUT "TYPE NEARLY ANY CHARACTER";A$
20 PRINT "ITS ASCII NUMBER IS";ASCCA$)
30 PRINT : GOTO 10

.•. and Run.

. :·~· . . •.•.

t.--ir-}:i::iiiilllil~~if :•

166 Chapter 21

It will PRINT the ASCII number of almost all characters. (Try lower case
letters and special code characters which use the wmtili1 key, too.) It doesn't
work with the comma (,), the quotation mark ("), the space bar, and some
others, but then strings can be a real mystery at times, as we will see.

To get around this and other problems, we use an advanced form of INPUT
called LINE INPUT. LINE INPUT allows us to INPUT any character (that
is assigned an ASCII code) as a string. Notice that the Computer will not
insert a question mark when it asks for the text.

Change Line 10 to:

10 LINE INPUT "TYPE IN ANYTHING ";A$

... and Run. Check comma, quote, space bar, etc.

An obscure way to use ASC is to imbed the character within quotes, thus:

10 PRINT ASC<"A">

but this latter method is rarely convenient.

Home Base
So far we have talked exclusively about decimal numbers, since most of us
have just 10 fingers. But the Macintosh has two intrinsic functions which con­
vert decimal numbers to numbers with Hexadecimal and Octal Bases. Whereas
the Decimal system is built on the base 10 (10 digits, 0-9), Octal is base 8
(8 digits, 0-7), and Hexadecimal is base 16 (16 digits, 0-9 and A-F). We'll
leave the mechanics of using other bases to other CompuSoft books, but just
to be complete, select New, and type in this New program:

10 LINE INPUT "TYPE ANY LETTERt NUMBER OR
CHARACTER: ";A$

20 A = ASC <A$) : PR I NT
30 PRINT "ITS ASCII NUMBER IS";ASC(A$)
40 PRINTtAt"OECIMAL"

50 PRINTtHEX$<A> t"HEXADECIMAL"
60 PRINT tOCT$<A> t"OCTAL"
70 PRINT : GOTO 10

Save As BASECONV ... and Run.

The ASCII Set 16 7

Before we can really understand the importance of CHR$ and ASC, we must
learn a lot more about strings. Before we could learn about strings, we had
to learn something about ASCII. It's like "catch Macintosh."

EXERCISE 11-1: Input a single character from the keyboard, and
test its ASCII value to determine IF it is a number. If not, return
program control to the INPUT statement. Hint: use two IF statements
and ASC.

Learned In Chapter 21

Functions

CHR$
ASC
HEX$
OCT$

Statements

LINE INPUT

Miscellaneous

ASCII Codes
tmUGmkey
Special characters

Menu

• Key Caps

Chapter 22---------

[]
t was not our intention to "string you along" in the previous Chapter,
but we really can't understand how strings work without first under·
standing the ASCil concept of numbers standing for letters, numbers

and other characters and controls.

Comparing Strings
One of the most powerful string handling capabilities is the ability to compare
them. We compare the values of numeric variables all the time. How can we
compare strings of letters or words? Well, why do you suppose we put the
ASCil Chapter just before this one? Right! The Computer can compare the
ASCil code numbers of letters and other characters. The net result is a com-­
parison of what's in the corresponding strings.

Type in this New program:

10 INPUT "WHAT IS YOUR NAME";A$
20 IF A$ = "ISHKIBIBBLE" THEN 50
30 PRINT "SORRY. WRONG NAMEI"
40 END
50 PRINT "FINALLY GOT ITt"

... and Run.

If the Computer can compare A$ against that name, it should be able to com·
pare anything!

During the process of comparing what you enter as A$ in Line 10 to what's
already in quotes in Line 20, the ASCII code numbers of each letter found
in one string are compared, letter for letter, from left to right with those in
the other. Every one must match, or the test fails.

168

Strings In General 169

Strings and "quotes" are inseparable. You know this from earlier Chapters
where every PRINT "XXX" has its string enclosed in quotes.

PRINT "XXX" is called a string constant. A$ is a string variable.

Run the above program again, this time answering the question with
"ISHKIBIBBLE," but endosed in quotes.

Sure -· it ran OK.

READing Strings
A string can be INPUT with or without quotes. BASIC has become increas­
ingly lenient about this matter, but every once in a while the rules come up
from behind and bite us if we play fast and loose with them.

If we READ a string from a DATA Line, and it has no commas, semi-colons,
leading or trailing spaces in it, we don't have to enclose it in quotes. We will
never go wrong by always enclosing strings in quotes, but that can be a
nuisance.

EXERCISE n-1: Write a program that will compare two strings
entered from the keyboard. PRINT them in alphabetical order.

Erase the resident program, and type in this next one, which READs string
data from a DATA Line.

10 READ A$18$1C$
20 PRINT A$
30 PRINT 8$
40 PRINT C$
100 DATA COMPUSOFTt SAN DIEGO, CAt 92119

... and Run.

Look carefully at the results. The screen shows:

COMPUSOFT
SAN DIEGO
CA

Strings In General 171

That's nice, but where is the ZIP Code? And why weren't SAN DIEGO and
CA PRINTed on the same line? The answer, my friend, is blowing in the
... er, in the commas.

Because of the commas in the DATA Line, the READ statement sees 4 pieces
of DATA, but only READs 3 of them. What do we have to do in order to
PRINT a comma as part of a string? Right - enclose it, or the string con·
taining it, in quotes.

Change Line 100 to read:

100 DATA COMPUSOFTt "SAN DIEGO• CA"• 92119

... and Run.

Aaaah! That's more like it. Notice that we didn't have to enclose all pieces
of string DATA in separate quotes, but could have.

What would happen if we also enclosed the entire DATA Line in quotes,
leaving the existing quotes in there? (Think about it, then try it. Every ques-­
tion raised has a specific purpose.)

Our Editor is so easy to use; let's make it read:

100 DATA "COMPUSOFTt "SAN DIEGO, CA"• 92119'

... and Run.

Awwk! Disaster. A "Type mismatch" error in Line 10? Yes, there is no
straight-forward way to READ quotes as part of a string, even by enclosing
them inside another pair of quotes. The Computer just isn't smart enough to
figure out which quote mark is which. The usual way to overcome this BASIC

172 Chapter 22

language deficiency is to substitute ' for each " imbedded inside other
quotes. Let's try it:

100 DATA 11 COMPUSOFT t 'SAN DIEGO t CA It 92119"

... and Run.

Ooops, "Out of DATA"? Of course. With quotes surrounding the whole
works there is now just one piece of DATA, and we are trying to read 3
pieces. Change Line 10 to just read one piece:

10 READ A$

... and Run.

B$ and C$ are PRINTed as "blanks" since they are empty.

There we go. Might look a little strange, but it demonstrates the point and
warns us a little about the "touchiness" of strings.

Learned In Chapter 22

Miscellaneous

String comparison
INPUTting strings
READing strings

---------chapter 23

lnl ne of the most frequently needed facts about a string is its length.
~Fortunately, the LEN function makes it easy to find. Type:

10 INPUT "ENTER A STRING OF CHARACTERS";A$
20 L = LENCA$)
30 PRINT A$;" HAS";L;"CHARACTERS"
90 FOR X = 1 TO 8000 : NEXT X : RUN

See how Run can be used inside a BASIC program? The delay loop in Line 90
gives us a chance to read the display before the Computer clears the screen at the
next Run.

Enter your name and other combinations of letters and numbers. Try entering
your name, last name first, with a comma after your last name.

AHA! Can't INPUT a comma. How about if we put it all in quotes? Try
again.

Yep. Just like it said in the last Chapter.

LEN has only one significant variation, and it's not all that useful -- unless
it's really needed. Change Lines 10-30 to read:

10 INPUT "ENTER A NUMBER";A
20 L = LEN<A>
30 PRINT A;" HAS";L;"CHARACTERS"

... and Run, entering any number.

173

17 4 Chapter 23

Crash time again! "Type mismatch" means we tried to INPUT a number into
LEN - but it requires a string.

Letters cause a "?Redo from start" since they need to be INPUT by an A$
or equivalent. Run again, and INPUT a letter. Is there no justice here? OK,
let's change LEN to make it a string:

20 L = LEN<"A">

•.. and Run, entering a Number. Then try bigger numbers.

Hmmm. Doesn't seem to matter what number we INPUT, it always comes
back saying that we have only 1 character.

The answer is, LEN evaluates the LENgth of what is actually between its
parentheses (or quotes). At first we brought in a string from the "outside" and
measured its length. That worked fine. We are now measuring the length of
what's actually between the quotes, and that length doesn't change with the
value of A. We are using A as a "literal string constant," not a variable string.

Like we said, this second way to use LEN has its limitations, but don't lose
any sleep over it. (Change the resident program back to the way it appears
at the beginning of the Chapter.)

DEFSTR •• For Thrill Seekers
Those among us who attract trouble will love this next one. As if handling
strings isn't complex enough, this vecy powerful statement looks nice and
clean but in long and complex programs can be the greatest source of
heartburn since the horseradish pizza.

DEFSTR (pronounced "DEFine STRing") allows us to define which variables
are to be string variables, so we don't have to use the $ any more. (Hmm
... Uncle Sam could put some of this DEFSTR business to good use.) Add
this Line:

5 DEFSTR A

and change Lines 10 and 20 to:

10 INPUT "ENTER A STRING";A

Measuring Strings 175

20 L = LEN<A>

Then Run.

Works fine, doesn't it. A was declared by Line S to be a string variable. So
what's all the fuss about?

Well, this is a very simple program, but let's change S to read:

5 DEFSTR A-Z

which makes all letters string variables .

... and Run, entering any character(s).

Crasho again! We got a "'Type mismatch." Too much of a good thing.
Because of Line 5, the Lin Line 20 is now also a string. Since LEN gives
us the length of a string as a number, it doesn't set at all well with L (really
L string). Imagine the fun this can create in a long program.

Good thing we can learn by our errors!

DEFSTR is best used to define individual variables. For example:

DEFSTR AtNtZ

defines only A, N and Z as string variables. Rework Line S back to read:

5 DEFSTR A

... and Run.

That's a short course in what DEFSTR is all about.

Concatenation
Concatenation? Concatenation??? Now what is that supposed to mean? Did
you ever wonder who pays whom to sit around and think up such nondescrip-

CONCATENATION~

CONCATENAT/ON .~/

I

FO~C::.ST -rHe:
W~~T~~, PAL..
lT M~ANc:;., "ADD
~T~N~ TO­
C:t.e;TH~ II

.I

• ... ·. · ·. • · • . ~ .. ·. ·.. .
. ··-·.

. . . ·~:·: : : :=.;::. :-: •• • •..

Measuring Strings 177

tive words? It must have been done on a government grant. Wait till Senator
Proxmire hears about it.

Concatenation (pronounced con-cat-uh-na'shun) is a national debt-sized word
which means ADD, as in "add strings together." It's easier to do than to
pronounce.

Type this New program:

10 FOR N = 1 TO 11
20 READ A$: 6$ = 6$ + A$
30 PRINT 6$
40 NEXT N
DATA ALPHAtBRAVOtCHARLIEtDELTA
DATA ECHOtFOXTROTtGOLFtHOTEL
DATA INDIAtJULIETTEtKILO

Check it carefully, but don't RUN it yet. The key Line is 20, which simply
says B$ (a new variable) equals the old B$ (which starts out as nothing) plus
whatever is in A$. The program cycles around and keeps adding what is in
B$ to what is READ from DATA as A$. Now close the List window, and
Run.

Anyhoo, the point of all this is concatenation. Line 20 just did it, and that's
about all there is to it. We added strings together.

EXERCISE U-1 : Use the LEN function to check the length of a
string INPUTted from the keyboard. PRINT a message telling us if
the string exceeded 10 characters.

EXERCISE U-2: INPUT a word from the keyboard, and compare
it to a secret password. If there is a match, PRINT «CORRECT PASS­
WORD; YOU MAY ENTER." If not, PRINT ~RONG PASSWORD. TRY
AGAINt• Store the ASCII number for each letter of the password
in a DATA Line. READ each value, and use CHR$ to build (concate­
nate) the password string.

178 Chapter 23

Learned In Chapter 23

Statements

DEFSTR

Functions

LEN

Miscellaneous

Concatenation (+)

---------Chapter 24

fTl he "hassle factor" can be very high when converting back and forth
~between strings and numerics.

By definition, if we convert a numeric variable (can hold only a number) to
a string variable (can hold almost anything), the contents of that new string
is still the original number. No letters or other characters were converted (ex­
cept for a leading space) since they weren't in the numeric variable to start
with.

Conversely, if we change a string variable to a numeric variable, we can't
change any letters or other characters to numbers. Only the numbers in a
string can be converted to a numeric variable. (Don't confuse this with ASCII
conversions.)

If you '11 keep the two previous paragraphs in mind, it'll save an awful lot of
grief in dealing with strings.

VAL
Let's give string-to-numeric conversion a shot. The VAL function converts a
string variable holding a number into a number, if the number is at the begin­
ning of the string. Try this VAL program:

10 INPUT "ENTER A STRING ";A$
20 A = VAL<A$)
30 PRINT"THE NUMERIC VALUE OF ";A$;" IS";A
90 PRINT : COTO 10

... and Run

179

180 Chapter 24

Try lots of different INPUTs, such as:

12345
ASDF
123ASD
ASD123
1 t2 t3

AtBtC

and the same ones over again, but enclosed in quotes.

The screen tells all.

Use Stop from the Run menu or press•• to break out of the program, then
take the $ out of Lines 10, 20, and 30 and Run, INPUTting both numbers
and letters.

What you're seeing is typical of the frustrations that bedevil string users who
don't follow the rules. VAL only evaluates STRINGs, and we've put A, a
numeric value, in where a string belongs. Does this remind you of the prob­
lems in the last Chapter with LEN?

Let's put that A in quotes and see what happens.

20 A = VAL<"A")

... and Run.

No help at all! The rule remains unchanged.

Properly used, VAL converts a string holding a number into that number.

Looking at the screen you can see all the other uses we are finding for VAL
are just not in the cards. Remember this irritating frustration and ''The Rule"
when you get in the thick of debugging a nasty string-loaded program.

VAL~2
~Tl<I (~~)
NOW HOW ABOUT
61VINGNE11-IAT

WE=B'STER~ '2 •

182 Chapter 24

STR$
Now let's try the opposite, converting a numeric variable to a string variable.
Change the program to read:

10 INPUT "NUMBER TO CONVERT TO STRING";A
20 A$ = STR$(A)
30 PRINT"THE STRING VALUE OF";A;"IS";A$
90 PRINT : GOTO 10

... and Run, using the same INPUTs we used when wringing out VAL.

There it is. A short but very important Chapter. Spend as much time on this
one as any other Chapter. The time spent learning to avoid the pitfalls sur­
rounding these two powerful functions will come back manyfold in future
debugging time. VAL and STR$ have very specific, but narrow abilities.

EXERCISE 14-1: INPUT your street address (e.g. 2423 LA PAL.MA).
Use VAL to extract the street number. Add the number 4 to the
street number, and report this new number as your neighbor's
street number.

EXERCISE 14-2: Write a program using STR$ to PRINT the following
20 store item stock numbers: 101WT, 102WT, 103WT, ... 120WT.
Hint: Looks like a natural for a FOR-NEXT loop.

Learned In Chapter 24

Functions

VAL
STR$

----------chapter 25

IRI~vfillll~ A IB3~Illl
Wfi11Iln ~11rrfim~

EFT$, RIGHT$, MID$
Three different, yet very similar, functions are used for playing pow­
erful games with strings. They are LEFr$, RIGHT$ and MID$. Let's

start with this program:

10 S$ = "KILROY WAS HERE"
ao PRINT LEFTCS16) f

50 PRINT MIDCS1813) t

60 PRINT RIGHTCS14)

.•. and Run.

The screen says:

KILROY WAS

(How about that one, nostalgia buffs?)

HERE

Learning to use these string functions is exceedingly simple. Study the pro­
gram slowly and carefully as we go thru what happened.

LEFr$ PRINTed the LEFrmost 6 characters in the string named
S$.

MID$ PRINTed 3 characters in the string named S$, starting with
the 8th character from the left. (Count 'em.)

RIGHT$ PRINTed the 4 RIGHTmost characters in the string named
S$.

183

184 Chapter 25

The commas after Lines 40 and 50 are to PRINT everything on the same line.

Save this program As KILROY, then let's move some Lines around to exer­
cise our new-found power. Move Line 50 to Line 30:

30 PRINT MIOCSt8t3),

Run . . . and we get:

WAS KILROY HERE

Now move Line 60 to Line 20 and add a trailing comma.

20 PRINT RIGHTCSt4),

Run . . . and we get:

HERE WAS KILROY

These 3 functions can really do wonders with strings. Use Cut and Paste to
Edit the resident program to read:

10 S$ = "KILROY WAS HERE"
20 FOR N = 1 TO 15
30 PRINT II N =11 ;N,

40 PRINT LEFTCStN>
90 NEXT

... and Run.

The picture tells it faster than words. LEFr$ picks off "N'' letters from the

Having A Ball With String 185

LEFr side of S string. See how this string function could be used to strip off
only the first 3 digits of a phone number or the first letter of a name when
searching and sorting?

Change Line 20 to read:

20 FOR N = 1 TO 20

Save As LEFT ... and Run.

Even though there are only IS characters in the string, the overRUN is
ignored. Change Line 20 back to N = 1 T 0 15.

RIGHT$ works the same way, but from the RIGHT:

Change Line 40 to read:

40 PRINT RIGHT$(S$tN)

Save As RIGHT ... and Run.

It's the mirror image of LEFI'$.

Now let's exercise MID$ and see where it goes. Change Line 40 to:

40 PRINT MI0$(S$tNt1)

Save As MID ... and Run.

It very methodically scanned the string, from left to right, picking out and
PRINTing one letter at a time. Slow it down with a delay loop if the action
is too fast to follow.

With only a slight change, MID$ can act like LEFf$. Change Line 40 to:

40 PRINT MI0$(S$t1tN>

... and Run.

It PRINTed N characters, counting from number 1 on the left.

, · ..

L ' . I

Having A Ball With String 187

MID$ can also simulate RIGHT$. Change Line 40:

40 PRINT MI0$(S$t16-NtN>

... and Run.

Would you believe RIGHT$ backwards, one at a time?

40 PRINT NI0$(S$t16-Nt1)

... and Run.

How about a sort of "histogram" type graph:

40 PRINT MI0$(S$tNtN)

... and Run.

Make notes for future reference. If all these examples don't spark some ideas for
your future use, I give up.

Suppose we want to PRINT the character in a specific position in the string.
Make the program read:

10 S$ = "KILROY WAS HERE"
20 INPUT "CHARACTER# TO PRINT";N
30 PRINT MI0$(S$tNt1)

••. and Run.

If it's not obvious, we can assign any of these statements to a variable. That
variable can in tum be used in tests against other variables. Change:

30 V$ = MI0$(S$tNt1)
40 PRINT V$

... and Run.

188 Chapter 25

A short book could be written about these three powerful functions, but I think
the point's been made. They are used very frequently in complex sort and
select routines. H we dissect them into these simple components, they are easy
to keep track of. The next section has some good examples.

EXERCISE 15-1: Write a program that asks the question, ·1sNT THIS
A SMART COMPUTER." Input a YES or NO answer. If the first
character in the answer is a Y, PRINT "AFFIRMATIVE: If the first
character is an N, PRINT "NEGATIVE." Otherwise PRINT "THIS IS A
YES OR NO QUESTION," and send control back to the INPUT
statement

EXERCISE 15-1: READ in the following part numbers: N106WT,
A208FM, AND Z154DX. Use MID$ to find the numbers. PRINT the
number with the largest value.

Searching With INSTR
INSTR (pronounced, "In-string") is a function that can be of value when
searching for a needle in a haystack. It compares one string against another
to see if they have anything in common.

Suppose we have a list of names and want to see if another name (or part
of that name) is in our list. It's the "part of' which makes this operation very
different from a straight comparison of name-against-name, which we already
know how to do using ordinary string-against-string comparisons. Here we
learn how to locate a name (and similar names) by asking for just a small part
of it.

Start the New program by entering this list of Names:

DATA SMITHt JONESt FAHRQUARTt BROWN
DATA JOHNSONt SCHWARTZt FINKELSTEIN
DATA BAILEYt SNOOPYt JOE BFTSPLKt *

That was the easy part.

How do we READ these names, one at a time, and compare them, or parts

Having A Ball With String 189

of them, with the name or part of a name which we INPUT? Add these Lines:

10 INPUT "WHAT LETTER<S> IS WANTEO";N$
20 PRINT
30 READ 0$
40 IF 0$ = "*" THEN GOTO 99

50 IF INSTR<lt0tN) = 0 THEN 30

60 PRINT tN$;" IS PART OF ";0$
70 GOTO 30

99 PRINT : PRINT "ENO OF SEARCH" : ENO

Save this program As INSTR. We'll be needing it later.

Now this talces a bit of explaining:

Line 10 INPUTs the name or part of the name we are trying to
locate.

Line 20 PRINTs a blank space for easier reading to help give this
book some class.

Line 30 READs a single name from the DATA file.

Line 40 tests to see if D$ is READing the last item in the DATA
file; IF so, execution branches to Line 99.

Line 50 uses the INSTRing to do all the searching. INSTR looks
at D$, starting with the 1st character, to see if the characters INPUT
in N$ match characters in D$. If INSTR returns the value of 0, it
means there is no "match," and the program should READ the next
piece of DATA. If there is a match, INSTR returns a number which
is the number of characters it counted in N$ before a match was
found. Since this number is not 0, execution drops to:

Line 60 which PRINTs both what we're looking for and the match.

Line 70 starts the process over again.

190 Chapter 25

Run, trying various letters, names and parts of names to get the hang of what's
going on. It's pretty impressive!.

Now that wasn't too bad, was it? ('Twarnt nothin', really.) It doesn't matter how
hard a program seems; when broken down to its individual parts, it isn't very hard.
Like we've pointed out before, ''The BASICs Are Everything." A little time beside
the pool reflecting on the logic will do wonders.

For those with only a silver fingerbowl, but no pool, these changes will show
the inner machinations of INSTR.

50 L = INSTR<lt0tN)
55 IF L = 0 THEN 30
60 PRINT tN$;" IS CHARACTER•";L;"IN ";0$

Run it through a number of times trying different letters. It really does make
sense!

To see the effect the starting number following INSTR has on our program,
change Line 50 to:

50 L = INSTR<Zt0tN)

·INSTR now looks at 0$, starting with the 2nd character.

Run and type in the letter S. See how it skipped SMITH, SCHWARTZ and
SNOOPY? Play around with the starting number in INSTR until you have a
good handle on what it does.

Having A Ball With String 191

EXERCISE 25-3: ReLOAD the ·1NSTR" program, and change the
DATA Lines to:

DATA P-RUTHt OF-MANTLEt SB-MORGAN
DATA SS-LEOTHELIPt P-KOUFAX
DATA C-CAMPANELLAt P-FELLERt*

What string would we enter to LIST the pitchers only?

AP
B. PITCHER
C. P-
D. None of the above

Save As BASEBALL and Run. Practice sorting by team positions.

Snarled STRING
In the last Chapter we learned about STR$, which lets us convert a numeric
variable to a string variable. For the purpose of confusion (no doubt), there
is another "string-string" that does something completely different. For­
tunately, it is written differently.

STRING$(N ,A) is a specialized PRINT modifier which allows us to PRINT
a single ASCII character, represented by A, a total of N times. Quite simple,
really, and very useful.

Select New and type:

10 PRINT STRING$C23t42>1
20 PRINT "STRING$ FUNCTION";
30 PRINT STRING$C23t42>

••. and Run.

Wow! That really moves. It PRINTed ASCII character 42, which is a*, 23
times, then PRINTed the phrase STRING$ FUNCTION, then PRINTed * 23
more times. This just has to have some good applications.

192 Chapter 25

Suppose we need to type a "header'' across the top of a report -- let's say
the first line of it is to be solid dashes. What is the ASCil code for a dash?
Forgot? Me too. Everybody back to Appendix A to find the code number.

45 it is. We want to PRINT, 70 times, the character represented by ASCil
code 45. That will print dashes across the full width of our screen. The New
program should look something like:

20 PRINT STRING$C70t45)

... Run it.

An even easier way to use STRING$ is to replace the ASCil code of the
character we wish to PRINT with the actual character itself. (It must be
enclosed in quotes.) This works fine with characters that really PRINT, such
as letters, numbers and punctuation marks. Change Line 20 so the program
reads:

20 PRINT STRING$(70t"-">

... and Run.

Works nice, doesn't it, and we didn't have to look up the ASCil code.

We can bring in a single string character via a string variable. This simple
New program shows a variation on the theme and may trigger some ideas:

10 INPUT "ANY LETTERt NUMBER OR SYMBOL";A$
20 PRINT STRING$(70tA$)
30 PRINT : GOTO 10

Play around with STRING$ a while. It's really very helpful when needed,
particularly for giving display PRINTouts some class. An obvious advantage
is its ability to do a lot of PRINTing with very little programming.

EXERCISE 15-4: Print a string of 30 asterisks centered at the top
of the screen.

Having A Ball With String 193

SPACE$ And SPC
The SPACE$ allows us to print from 0 to 255 proportionally-spaced blank
spaces. For example:

PRINT "A";SPACE$C20>;"B"

will print A and B with 20 spaces between them.
r~

SPC is almost the same function as SPACE$, but it doesn't use proportional
spacing. Example:

PRINT "A";spcc2o>;"B"

prints 20 non-proportional blank spaces between A and B.

On The Lighter Side
The specialized string functions enable us to do all sorts of exotic things. Here
is the beginning of a simple but fun New program which uses LEN and
MID$. You can easily figure it out, especially after you've seen it Run.

Enter:

10 REM * TIMES SQUARE BILLBOARD *
20 CLS : N=O : PRINT : READ A$
30 L=LENCA$) : F=l
ao IF L>N THEN L=N+2
50 6$ = MIDCAtFtL>
60 PRINT TABC64-N>;B$
70 FOR T=l TO 200 : NEXT T
BO IF N=63 GOTO 100
90 N=N+l : IF N<B3 GOTO 120
100 L=L-1 : F=F+l : IF L<O THEN L=O
110 IF L=30 GOTO 20
120 CLS : GOTO 40

194 Chapter 25

500 DATA "LUCKY LINDY HAS LANDED IN PARIS •••"
510 DATA "••• MET BY CROWD AT LEBOURGET AIRPORT"

.•. and Run.

Your assignment, if you choose to accept it, is to complete the program so
it repeats, ends, or otherwise does not crash.
Good luck!.

Learned In Chapter 25

Functions

LEFf$
MID$
RIGHT$
INSTR
STRING$
SPACE$
SPC

. Fsssss!

Miscellaneous

INSTRing routine

---------chapter 26

fiil ow about a short and simple Chapter?

~Wouldn't it be nice to be able to use time and date information in
a BASIC program'? We can, and it's as easy as A$, B$, C$, ...

All we have to do is enter the Command window and type:

PRINT TIME$ l;Ai!iiel

and TIME is displayed.

The DATE can also be displayed by typing:

PRINT DATE$ lm1l!IUI

Setting The Clock And Calendar From BASIC
The DATE is set by typing:

DATE$ = "12-12-85" lmH!iili

or

DATE$ = "12/12/85" l;Ai!iiel

The Computer places the date into the Operating System. Verify it by typing:

PRINT DATE$
12-12-1985

l;Al!ml

195

TIME$ And DATE$ 197

To set the time from BASIC, type:

TIME$ = "18:06:30" l;Gll!iiel

Type:

PRINT TIME$ l;AllHii

to verify. Depending on how fast a typist you are, several seconds will have
elapsed.

All of the string operators we learned about in the previous Chapters can be
used to manipulate these two strings. For example, to PRINT only the day
and month from DATE$, return to the List window and type:

10 DAY$ = MID$CDATE$t4t2)
20 MONTH$ = LEFT$CDATE$t2)
30 PRINT "THIS IS DAY #";DAY$;
40 PRINT" IN MONTH #";MONTH$

Save As DATE ... and Run.

Note carefully that DATE$ and TIME$ are built into the Macintosh, but
DAY$ and MONTH$ are simply string variables we created.

Type in this New program:

10 PRINT DATE$t TIME$
20 GOTO 10

... and Run.

How's that for cheap and dirty? There are an endless number of much more
sophisticated ways to display time and date. Any ideas?

EXERCISE i6-1: Write a program which continuously displays the
time and date neatly on the screen.

198 Chapter 26

Keyboard Buffer
You may have noticed that the Computer seems to remember what we have
typed on the keyboard even when it is busy performing some other task.

An area in memory is set aside to be a Keyboard Buffer. That buffer stores
our keystrokes until the Computer is ready to accept them. We can easily
"type ahead" of the Computer while it is busy performing such tasks as
reading the FILES, printing information on the screen or printer, performing
large calculations, executing FOR-NEXT loops, etc.

The Keyboard Buffer can store up to 31 key strokes.

When the buffer is overloaded, it will signal you. If the sound has not been turned
off, Macintosh will BEEP. If it has been turned off, the Menu bar will flash.

Enter this delay loop program.

10 PRINT "TYPE CHARACTERS UNTIL I BEEP."
20 FOR N = 1 TO 30000 : NEXT
30 INPUT "PRESS CReturnJ"IA$
40 PRINT A$

As soon as you Run the program, type any group of letters or numbers until
the Computer beeps and wait. When program execution is finished, the key­
strokes are displayed. Press l;Aliihl to satisfy the INPUT statement.

For fast typists, this is a real time-saver.

Learned In Chapter 26

Statements

TIME$
DATE$

Miscellaneous

Keyboard buffer

PART4

W &IBIL&IIBILJE
IFIR?JECCil§ IT (Q) ~

~ OOA'1I'IHI

Chapter27------------------

he two versions of Microsoft BASIC, BASIC(b) and BASIC(d), store
and display numbers with different accuracy. When BASIC(b) is
selected, 7 digits are displayed, though only 6 will be accurate. This

is called "single precision" accuracy and is more than adequate for most appli­
cations.

The old slide rule was accurate to only 3 digits.

For large business or special scientific applications, however, greater accuracy
is needed. With Microsoft BASIC, we have a capability called "double pre­
cision." When BASIC(d) is selected, the Computer stores numbers accurate
to 14 digits and PRINTs them out accurate to 13. However, we pay a price
for this precision both in the additional memory it takes to store and process
long numbers and in the extra time required to process them.

We could use either version of BASIC to learn about single and double pre­
cision numbers since both versions can convert numbers to either precision.
However, since up to this point, we have been using BASIC(b) to write our
programs, it's best to continue using it. Programs written in one version of
BASIC cannot be loaded into memory when using the other version.

If you're not in BASIC(b) or are not sure which version of BASIC is loaded
in the Computer, select Quit from the File menu and return to the Finder.
Now, double-click the BASIC(b) icon. When BASIC(b) is loaded, enter this
program:

10 x = 1234567890987654321

20 y = .000000000123456789

30 z = x * y

200

(Check 'em.)

(Check 'em.)

40 PRINT x;"TIMES";Y

50 PRINT "EQUALS";z

What Price Precision? 201

Note that the number values in Lines 10 and 20 have been converted to Expo­
nential Double Precision. That's what the "D's" in those Lines stand. for.

Now Run.

1.234568E+18 TIMES 1.234568E-10

EQUALS 1.524158E+08

Ummm.-hmmm. A very large number times a very small number and the
answer - all expressed in Exponential notation. That's what the "E's" stand
for, and each number has been clipped to 7 significant digits. (The 'E' desig­
nates Exponential notation. E+ 18 means the number before it times 10 to the
+18th power. E-10 means the number ahead of it times 10 to the -10th
power.)

Double Precision
We can easily convert storage, processing and printing of X, Y and Z to
double precision. The BASIC Statement is an easy one:

5 OEFOBL A-Z

DEFDBL stands for "DEFine as DouBLe precision," and A-Z means "every
variable from A through Z."

Insert the Line and RUN.

1.2345678909876540+18 TIMES 1.234567890-10

EQUALS 152415787.6238378

Quite a difference, eh? Those lost significant digits in the answer came back
from the hinterland and expanded our printout from 7 places to 16.

202 Chapter 27

Such precision is usually wasteful of memory space and time except in short
programs; but fortunately only a few variables ever need to be so precise.

Since we are o~ly using 3 variables, X, Y, and Z, there is really no point
in DEFining more than them to double precision. We can tell the Computer
to handle only those as double precision and leave any other variables (of
which there are none, right now) alone. Change Line 5 to:

5 OEFOBL X-Z

... and Run.

Same results.

Overruled!
There are times when we will want to temporarily override the DEFDBL
declaration, converting a number or answer back to single precision. Suppose
we want Z to be printed as single precision. We can override the Line 5 decla­
ration by changing only those Lines which contain Z. Do it:

30 Z! = X * Y

50 PRINT "EQUALS";Z!

... and Run.

1.2345678808876540+18 TIMES 1.234567880-10

EQUALS 1.524158E+08

Our "raw" data and the calculating was done in double precision, but our final
answer is printed out with only. single-precision accuracy -- just what we asked
for. A specific declaration (like the ! which stands for "single precision")
always takes precedence over a global declaration like Line 5. (Global means
"valid for the entire program," not just one character or one Line.)

DouBLe Precision -- Simplified
There's another way to calculate with high (double) precision but print the
answer in single precision. Since single precision is the "default" mode, we

What Price Precision? 203

can simply not include Z in Line 5.

Change Lines 5, 30 and 50 and Run.

5 DEFDBL XtY

30 z = x * y
(or DEFDBL X-Y)

50 PRINT "EQUALS";Z

Same results.

Global Override
It is possible to override the "global" DEFDBL declaration with a global single
precision declaration. DEFSNG will change everything back to single
precision. Let's try it by adding these Lines:

60 DEFSNG X-Y
70 PRINT x;"TIMES";Y;"EQUALS";z

... and Run.

Good Grief -- our "single-precision" numbers turned to zeros, but the Z answer
is correct!

Well, it turns out that X DouBLe precision is a completely separate variable
from X SiNGle precision. It's as different from X as is Y, or any other vari­
able. If we want to use X and Y again as single-precision numbers, we have
to go back and assign them values after declaring them to be single pre­
cision. Hmmmm. This is getting complicated.

A cheap and dirty way to show the point is to change Line 70 to:

70 GOTO 10

... and Run -- choosing Stop or hitting the 11 B keys after both double and
single precision versions are printed in Lines 40 and 50.

Line 60 reDEFines X and Y as single precision, then control returns to Line

204 Chapter 27

10, and the calculations are performed again. (Fortunately, there is rarely
reason to reDEFine a variable within a program. If necessary, we can do it
with conventional string techniques.)

DouBLe Precision, Another Way
Instead of a "global" declaration of accuracy, we can do it one variable at a
time. Change the resident program to read:

10 X# = 1234567890987654321
20 Y# = .000000000123456789
30 Z• = X• * Y•
40 PRINT xa; 11 TIMES 11 ;Y•
so PRINT 11 EQUALS 11 ;za

... and Run.

Same results as before. The # sign declares that the variable letter preceding
it is to be handled as DouBLe precision, overriding the normal presumption
that it is SiNGle precision.

Remember, X# is not the same as X. It is an entirely different variable.
Same with Y# and Z#. To nail this point down, add:

5 x = 4.321
60 PRINT 11 X =11 ;X

... and Run.

The values of X and X# had no effect on each other, did they?

INTeger Precision
In those frequent cases where the numbers used are integers (and in the range
between -32768 and +32767), execution can be speeded up by declaring them
to be INTegers with the % sign or the DEFINT statement. Type this NEW
program:

20 PRINT 11 START 11

30 FOR N = 1 TO 22000
40 NEXT N
50 PRINT "STOP"

What Price Precision? 205

Using a stopwatch or clock with a second hand, measure the time it takes for
the 22000 passes thru the FOR-NEXT Loop . • • and Run.

Should be around 10 seconds. By default, the Macintosh processed the values
of N in single precision.

Now, let's declare N to be an INTeger {which is all the accuracy we need),
and time it again. Insert:

10 DEFINT N

... and Run.

Aha! It took only about 5 seconds. Cut the processing time in half.

We can accomplish the same thing using specific declarations instead of the
global DEFINT. Delete Line 10, and change the program to read:

30 FOR N% = 1 TO 10000
40 NEXT N%

... and Run.

Same fast results.

One More Way
The conversion functions CSNG(#), CDBL(#) and CINT(#) provide 3 addi­
tional ways to declare numbers as SiNGle, DouBLe or INTeger precision.
Enter this NEW test program:

10 x = 12345.6789
20 PRINT X
30 PRINT CSNG<X>

206 Chapter 27

40 PRINT CDBL<X>

50 PRINT CINT<X>

... and Run.

It tells the whole sordid story:

12345.68

12345.68

12345.6787109375

12346

Line 10 changes to 1 0 X = 1 2 3 a 5 • 6 7 8 8 # indicating the
number was so long that it could not be held in single precision.

Line 20 PRINTed the value of X accurate to 7 digits.

Line 30 PRINTed the SiNGle precision value of X -- the same value
as PRINTed by Line 20.

Line 40 PRINTed the DouBLe precision value of X, but it sure
isn't a duplicate of what we specified as X in Line 10! The problem
is, we only input the number in single precision (by default).
PRINTing it out in double precision requires the Computer to just
"make up" numbers to fill out the places.

Don't try to be more accurate than what you begin with. It's the
programmer who's supposed to be creative, not the Computer!

Line 50 PRINTed the INTeger value of X. This works slightly dif­
ferent than INT(X). CINT(X) "rounds off' the fractional part.

Let's make the value of X negative and see what happens. Change Line 10 to:

10 x = -12345.6789•

... and Run.

What Price Precision? 207

No surprises. CINT acted just like INT does, rounding downward to arrive at
-123ll8.

DouBLe The Trouble ·· DouBLe The Fun
Now let's go back and declare the value of X to be DouBLe precision, change
it to a positive number and do all our PRINTing in DouBLe precision. The
edited program will read:

10 X# = 12345.6789

20 PRINT X#

30 PRINT CSNGCX#)

40 PRINT CD6LCX#)

50 PRINT CINTCX•>

... then Run,

and the display reads:

12345.6789

12345.68

12345.6789

12346

All makes sense, and all quite predictable, isn't it?

Caveat
Degrees of precision may not be the most inspiring subject, nor always seem
to be the most consistent. But, if we're at least aware of the differences in
precision, we'll not be caught off guard and be deceived by numbers that
never were.

208 Chapter 27

Learned In Chapter 27

Statements

DEFDBL
DEFSNG
DEFINT

Functions

CDBL
CSNG
CINT

Miscellaneous

Double precision(#)
Single precision(!)
Integer precision (%)

---------chapter 28

he BASIC language includes a number of mathematical functions.
These math functions are all very straightforward and easy to use, but
if your math skills are a bit rusty, you will want to refresh them to

fully understand what we're doing. We'll keep everything here at the 9th·
grade Algebra level so there's no need to panic (unless maybe you're in the
6th grade ... but even so, just hang on and you'll be OK).

INT(N)
We have studied the INTeger function in some detail in earlier Chapters so
we won't cover that ground again. INT stores and executes numbers in single
precision.

FIX(N)
FIX is just like INT, but instead of rounding negative numbers downward, it
simply chops off everything to the right of the decimal point.

Try this simple test in the Command window:

PRINT INT<-12345.67)

produces ·12346.

PRINT FIXC-12345.67>

produces ·12345.

The one we use depends on what we want.

209

210 Chapter 28

SQR(N)
The SQuare Root function is simple to use.

Type this New program in the List window:

10 INPUT "THE SQUARE ROOT OF";N
20 PRINT "IS";SQR<N>
30 PRINT : GOTO 10

... and Run some familiar numbers.

Another way to find the square (or any) root of a number is by using the "
(caret). The caret is produced by pressing the rsmm and m keys at the same
time. It means "raised to the power." Finding the square root of a number is
the same as raising it to the 112 power. Change Line 20 to:

20 PRINT "IS 0 ;NA(1/2)

... and Run some familiar numbers.

The same logic which allows us to find the square root with the " will let
us find any other root. (Even the thought of doing that in pre-computer days
drove men mad.) Out of the sheer arrogance of power, let's find the 21st root
of any number. Change the first two Lines:

10 INPUT "THE TWENTY-FIRST ROOT OF";N
20 PRINT "IS ";NA(1/21)

... and Run.

Now there is real horsepower! Problem is, how can we be sure that the
answers are right? Well, it's easy enough to add a few Lines that will take
the root and raise it back to the 21st power to find out. Let's change the
program to make it read:

10 INPUT "THE TWENTY-FIRST ROOT OF";N
20 R = NA(1/21)

Intrinsic Math Functions 211

30 PRINT 11 IS 11 ;R
40 PRINT
50 PRINT R; "TO THE 21ST POWER =11 ;RA21
60 PRINT : GOTO 10

•.. and Run.

The INPUT and output numbers check out pretty close, don't they? This
''proof' process might not stand up under rigorous scrutiny, but the answers
are correct.

EXERCISE 18-1: Pythagoras discovered that the sides of a right
triangle always obey the rule:

C' = A2 + 82

where C is the longest side (hypotenuse). Stated another Wfrt: ihe
length of side C equals the square root of the sum of the squares
of sides A and 8 CC = V A2 + 02):

If side A = 5 and side 8 = 12, write a program to calculate the
length of side C.

ABS(N)
ABSolute value has a lot to do with signs, or without them. The absolute
value of any number is the number without a sign. If you've forgotten, this
program will quickly refresh your memory:

10 INPUT "ENTER ANY NUMBER 11 ;N
20 A = ABS<N>
30 PRINT A
40 PRINT : GOTO 10

... and Run.

Respond with various large and small, positive and negative numbers, and
zero.

212 Chapter 28

They all come out as they went in, didn't they, except the sign is missing?

MOD
No, not the Music. MOD isn't really a math Function; it's more of a Math
Operator. MOD returns the remainder when one number is divided into
another number. For example:

PRINT 17 MOD a

returns a 1 since 17/4 is 4 with a remainder of 1.

Other examples to try:

8 or 16 or 24 MOD 8 each equals 0. (There's 0 remainder when
any of them are divided by 8.)

9 or 17 or 25 MOD 8 each equals 1. (There's 1 remainder after
any of them are divided by 8.)

10 or 18 or 26 MOD 8 each equals 2. (There's 2 remainder after
any of them are divided by 8.)

15 or 23 or 31 MOD 8 each equals 7. (There's 7 remainder after
any of them are divided by 8.)

LOG(N)
No, a LOG isn't what they build cabins with, but even the swiftest among
us have to refresh our memory from time to time to keep the details straight.

A LOG (logarithm) is an exponent. Exponent of what? The exponent of a
base. What's a base? A base is the number that a given number system is
built on. Aren't all number systems built on 10? 'Fraid not.

1()3 = 1000

10 is the BASE.

3 is the LOG(exponent), and

1000 is the answer.

Intrinsic Math Functions 213

Think it has something to do with "new math," but I was too old to talce it, too
young to teach it, and grateful for not learning it from those who didn't under·
stand it.

As if life weren't complicated enough, the LOGarithm system is centered
around what are called natural logs. Exactly what that means is the subject
of another discussion, but we're stuck with it anyway. Natural logs use the
number 2.718282 as their base. (Really makes your day, doesn't it!) Some
BASIC interpreters provide a second LOG option using 10 as the base, as in
our decimal system, but making the conversion isn't too bad •• and we do
have to live with it.

Type this New program:

10 INPUT 11 ENTER ANY POSITIVE NUMBER 11 ;N
20 PRINT • L = LOG<N> •
30 PRINT 11 THE LOG OF";N;
40 PRINT "TO THE NATURAL BASE =";L
50 PRINT : GOTO 10

The LOG function is not valid for negative numbers or zero .

•.. and Run.

Ummm Hmmm. Can't relate to the conclusion? Respond with the number
100, and you should get the answer 4.60517. What it means is, 2.718282 to
the 4.60517 power = 100. Lay that one on them at the next meeting of the
Audubon Society, and they'll know you're weird for sure.

Let's jack this thing around to where the vast majority of us who have to
work with LOGs can use it . . . into the decimal system.

LET Mi;: GUE;f,~ -­
NEW COMPUTE-I< 2 •

\

Intrinsic Math Functions 215

Decimal-based LOGs are called "common," or "base 10," Logs. Insert these
Lines:

45 PRINT "THE LOG OF";N;
47 PRINT "TO THE BASE 10 =";L*t4342945

... and Run, using 100 as the number.

Ahhh! That's more like it. We can all see that 10 to the 2nd power equals
100. It's good to be back on relatively solid ground.

The magic conversion rules are:

To convert a natural log to a common log, multiply the natural log
by .4342945.

To convert a common log to a natural log, multiply the common
log by 2 .3026.

And that's the name of that tune.

This final New program scoops it up and spreads it out:

10 REM * LOGARITHM DEMO *
20 INPUT "ENTER A POSITIVE NUM5ER";N
30 PRINT
40 PRINT "THE NUM5ER"t"NATURAL LOG"t
50 PRINT "COMMON LOG"
60 PRINT NtLOG<N> tLOG<N>*.4342945
70 PRINT 1 GOTO 20

Wring it out until you're comfortable with the concept.

EXP(N)
EXP is sort of the opposite of LOG. EXP computes the value of the answer,
given the EXPonent of a natural log. (Another winner.)

216 Chapter 28

2.718282 raised to the EXP power = the answer.

Type in this New program:

10 INPUT "ENTER A NUMBER";N
20 A = EXP<N>
30 PRINT "2+718282 RAISED TO THE";N;
40 PRINT "POWER =";A
50 PRINT : GOTO 10

... and Run.

We're entering the EXPonent now, so it's easy to INPUT a number that is
too big for the Computer and will cause it to overflow.

As a benchmark against which to test the program, enter this number:

4.6051702

The BASE of the natural log system raised to this power should equal 100
(or something very close).

Being this far into logs, you can create your own advanced test programs, and
check the results against a LOG table. And if you' re not too comfortable with
all this . . . try making a log cabin with the remainders!

EXERCISE 18-i: (For math fans only) Convince yourself that LOG
and EXP functions are inverses of each other (hint: LOG(EXP(N)) =
N). Try putting the two functions together in the opposite order
using both positive and negative values for N. Why do the negative
values create havoc?

Learned In Chapter 28

Functions

INT
FIX
SQR
ABS
MOD
LOG
EXP

Math
operators

" (caret)

Intrinsic Math Functions 217

Miscellane0us

Natural Logs
Common Logs

Chapter 29---------

fCl ince this is about as deep as we'll get into mathematics, I have to
~assume you know something about elementary. trig.

Trigonometry, of course, deals with triangles, their angles, and the ratios
between the lengths of their sides. In the triangle below, the Sine (abbreviated
SIN) of angle A is defined as the ratio (what we get after dividing) of the
length of side a to the length of side c. COSine and TANgent are defined
similarly:

SIN A=a/c

COS A=b/c

TAN A=a/b

From these relationships, we can find any ratio if we know the corresponding
angle. Let's try this simple New program:

10 INPUT "ENTER AN ANGLE <0-90 DEGREES>";A
20 S = SIN<A*.0174533)
30 PRINT ·THE SIN OF A0 ;A;"OEGREE ANGLE 1s•;s
40 PRINT : GOTO 10

•.• and Run.

It really worlcs! Try the old "standard" angles like 45°, 300, 600, 900, C>°, etc.

Unless you're right up to snuff on trig, Line 20 undoubtedly looks strange.
Well, it turns out that most computers think in radians, not degrees (always
has to be some nasty twist, doesn't there ••. !). A radian is a unit of measure­
ment equal to approximately 57 degrees. In order to convert from degrees

218

The Trigonometric Functions 219

(which most of us use) to radians, we changed the INPUT from degrees to
radians. The SIN function will not work correctly without this conversion.

To convert angles from degrees to radians, multiply the degrees by
0.0174533.

To convert angles from radians to degrees, multiply the radians by
57.29578.

Failure to make these conversions correctly is by far the biggest source of
computer users' problems with the trig functions . .
COSine and TANgent work the same way. Change the resident program to~

10 INPUT "ENTER AN ANGLE <0-90 DEGREES>";A
20 C = COS<A*.0174533)
30 PRINT "THE COS OF A";A;"DEGREE ANGLE IS";C
40 PRINT : GOTO 10

... and Run.

We know that COS(90°) should be 0. Unfortunately, the Computer is slightly
off because it calculates these functions by approximation. It's doing the best
that it can . . . honest!

For TAN gent, Run this program:

10 INPUT "ENTER AN ANGLE <0-90 DEGREES>";A
20 T = TAN<A*.0174533)
30 PRINT "TAN OF A";A;"DEGREE ANGLE IS";T
40 PRINT : GOTO 10

The TAN function is not even defined for 90", though Microsoft BASIC will try
to calculate it.

This next New program displays all 3 major trig functions at the same time.

. .

..

. I NO,NO,NO·. RAQAN6?
1-1At;N'T GOT ANVTI-llNG
TO CO WIT~ ATOMIC

t=NER6V/
•

The Trigonometric Functions 221

Note that in Line 20 we divide our incoming angle by 57 .29578 instead of
multiplying it by 0.0174533. The results are the same.

10 INPUT "ENTER AN ANGLE <0-90 DEGREES>";A
20 A = A/57.29578 : PRINT
30 PRINT "SIN =";SIN<A>
40 PRINT "COS =";cos<A>
50 PRINT "TAN =";TAN<A>

Inverse Trig Functions
The opposite of finding a ratio between two sides of a triangle when an angle
is known, is finding an angle when the ratio of two sides is known. There
are 3 trig functions available to do it, but most computers only make provi·
sions for one, called ATN (Arc of the TaNgent).

The following simple program takes the angle we INPUT, converts it to
radians, computes and PRINTs its TANgent. Then, as a "proof check," it
takes that TANgent value and reverses the process by computing its arc
(angle). The letter "f' is used in the program since the arctangent is also
known as the "Inverse" (sort of the "opposite") of the TANgent.

10 REM * ATN DEMO *
20 INPUT "ENTER AN ANGLE <0-90 DEGREES>";A
30 T = TAN<A/57.29578> : PRINT
40 PRINT "TANGENT =";T
50 I = ATN<T> * 57.29578
60 PRINT "ARC OF THE TANGENT =";I

If you're one of those rare types who is very familiar with trig, you can prob­
ably throw numbers around in such a fashion that the other 2 "inverse" trig
functions, ARCSIN and ARCCOS, are not needed. But for those of us who
get confused when we run out of fingers, the last 2 functions are built into
this simple New program by way of special routines. The accuracy is close
enough for "government" work. Give it a try:

10 REM * INVERSE FUNCTION ROUTINES DEMO *

222 Chapter 29

20 INPUT "ENTER THE RATIO OF 2 SIDES"iR
30 CLS : PRINT
ao ARS=2*ATN(R/(1+SQR<ABS<1-R*R)))) * 57.2858
50 AC=80 - ARS : PRINT
80 PRINT "RATIO"t"ARCSIN"t"ARCCOS"t"ARCTAN"
70 PRINT "<NUMBER>"•"<DEGREES>"•"<DEGREES>"t
80 PRINT "<DEGREES>" : IF ABS<R>>1 THEN 110
80 PRINT RtARStACtATN<R>*57.2858
100 PRINT : GOTO 20
110 PRINT Rt"U"t"U"tATN<R>*57.2858
120 PRINT : GOTO 20

Remember, while the TANgent can be any number, when our ratio moves
outside the range of - 1 to l, SIN and COS are both mathematically "Unde·
fined." Also, ARCTAN and ARCSIN produce angle measures between -90
and 90 degrees, but ARCCOS has a range between 0 and 180 degrees.

Learned In Chapter 29

Functions

SIN
cos
TAN
ATN

Miscellaneous

Degrees
Radians

---------chapter 30

~his Chapter is for advanced math types. H that isn't your bag, skim
~it lightly, and move on down the road.

In addition to the intrinsic (built-in) Functions, Microsoft BASIC allows us to
define our own Functions.

In what kind of situation would we want to do that? Repetition of formulas
and simple operations that are used repeatedly can be greatly shortened by
building a custom Function. They won't operate as fast as the other, factory
built-in Functions, but like subroutines, they greatly simplify BASIC
programming.

The Format for defining a Function is:

DEF FN name(vl,v2~ ...) = formula

where:

name is the Function name, and

v 1, v2, .. . are dummy variables that represent the values the Func­
tion will act on. Name and vl, v2 ... can be any valid variable
names.

formula is the expression where the calculations are carried out.

Let's create a Function to do MODular arithmetic. MOD is one of our math
operators, but we'll use it to demonstrate the technique DEFined FuNction.
Try this on for size:

10 INPUT "ENTER x";x
20 INPUT "ENTER yn;y

223

I DUNNO, YOU
MIGi-iT GIVE 71-IE.
CHAPTE:R A g,~OT .,.

:~ ..
;-:·:
~:·:· ·

-

. . , . .

,, .

DEFined FuNctions 225

30 DEF FNCCXtY> = INT<X-Y * INTCXIY>>
40 REM C = FUNCTION NAME/XtY = THE NUMBERS
50 PRINT x;"MOD";v;"=";FNC<XtY>

... and Run.

The variables X and Y used in defining the Function in Line 30 are really
"dummy arguments." They only show the Computer how to perform the cal­
culations. Change Line 30 to:

30 DEF FNC<AtB> = INTCA-B * INT<AJB>>

... and Run.

Same results? You betcha. In fact, we could even use A and B elsewhere in
the program; Line 30 won't effect their values at all.

The FuNction variable can be INTeger, Single, or Double precision or even
a string variable. The value returned to the program is determined by the type
of variable. Try this NEW sample with a string:

10 DEF FNZCA) = "·" + A$ + "-"
20 PRINT FNZ$C"FUNCTION">

..• and Run.

Functions are very powerful when used for repetitive calculations. How about
the distance between two coordinate points in a plane, (Xl,Yl) and (X2,Y2).
Use:

10 DEF FND•<X1tY1tX2tY2> = SQR<<X1-X2>*<X1-X2>
+ <Y1-Y2>*<Y1-Y2>>

20 PRINT "DISTANCE IS"I FND•C-1t3t2t7)

Note: Line 10 is shown on two lines to fit the book. The Computer displays it
on one line.

226 Chapter 30

... and Run.

NOTE that D# is a double precision variable.

And it is even possible to come up with a Function that uses no variables at
all:

10 DEF FNA = 1 + INT<RND*5>
20 PRINT FNA

Learned In Chapter 30

Statement

DEF FN

PARTS

IID Il§lFJLA 1r
JF(Q)filOOA1f1rITW@

Chaptera1------------------

nd It Draws Pictures Too!
Our Macintosh can draw an endless variety of pictures on the Video
Display. We will learn some of the basic procedures and capabilities

in this Chapter. After that, what you create is limited only by your own imag­
ination. Who knows ... you may write a graphic program artistically equivalent
to the Mona Lisa.

Now, the 2 most basic of the 4 graphic commands:

PSET turns on (darkens) a particular section or point on the screen.

PRESET turns off (lightens) a particular point.

For graphic use, the screen is divided into a large number of sections or
''pixels." Each pixel is a rectangular block, and each pixel has its own "ad­
dress."

The letter "O" occupies a space that is 9 pixels high by 6 pixels wide.

For example:

PSET (55t32>

means - ''turn on the light'' at the junction of 55th "H'' Street and 32nd "V"
Avenue.

H is the horizontal address, counting across from the left-hand side of the
screen. V is the vertical address, counting down from the top of the screen.
All "street addresses" start counting from the upper left-hand comer. H and
V as used here are the same as X and Y used in the first quadrant of

228

Video Display Graphics 229

mathematical coordinate grid systems. H and V are more descriptive and
easier to work with while learning.

Type in:

10 PSET<55t32>

... and RUN.

Look carefully for the dot because it is very tiny (there are approximately 74
dots per inch).

Careful now, don't mess up the screen. Open the Command window and type:

PRESET<55t3Z>

How about that? We found the ON-OFF switch!

Want to really press you luck? Try darkening two pixels. That's right; add
this Line:

20 PSET<55t33)

... and RUN.

We now have 2 pixels light, one on top of the other. Let's tum the upper
pixel off by RUNning our program with this additional Line:

30 PRESET<55t32)

The point of all this obviously is that we can control whether each pixel on
the screen is dark or light (on or off) by "talking" to it at its individual address
with PSET and PRESET statements.

Flying Saucers Or Lightning Bugs?
If one has an ON-OFF switch, what does one do with it? With a little
imagination, we could create pixels that go ON and OFF, to attract attention •.•

230 Chapter 31

by blinking. This simple program shows how to set up a "blinker." Run it:

10 H = 100
20 v = 100
30 PSET<H1V>
40 PRESET<H1V>
50 GOTO 30

Simple FOR-NEXT loops at 35 and 45 could be used to control the blinking rate.

Once Again, More Heavily
In the Horizontal direction, there are 32768 addresses, numbered 0 to 32767.
0 is at the far left, 245 is near the middle, 490 is at the far right of the visible
screen, and 32767 is at the extreme right, off the screen.

In the Vertical direction, there are also 32768 pixel addresses; 0 is at the top,
300 is at the bottom of the screen (with the Command window closed) and
32767 is at the very bottom, off the screen.

The statement ''PSET(H, V)" darkens the pixel which is the Hth pixel from the
left in the horizontal direction and the Vth one down from the top in the ver·
tical direction. And, you've figured out that PRESET works in the same way
except that it lightens the pixel.

Let's exercise PSET more aggressively. This NEW program will darken any
one pixel of your choosing. Type:

10 INPUT "HORIZONTAL <OTO 490)";H
20 INPUT "VERTICAL <OTO 300)";V
30 CLS
40 PSET<HtV)

... and RUN a number of times using various values of H and V.

Video Display Graphics 231

You may have noticed that if a pixel is lit in the area of the List window,
it is covered over when the program ends. Try H = 330 and V = 150. We
can avoid this problem by either closing the List window before Running or
by not returning control to the prompt - by adding:

99 GOTO 99

This Line locks the Computer in an endless loop. Add Line 99, and Run the
program trying values of H = 300 and V = 100. To break the loop, press
II B or select Stop from the Run menu.

CLS is a single statement which PRESETs every pixel on the screen to "'OFF'
in one operation; we don't have a similar statement to tum them all "'ON."

However_, we can easily write a program that "darkens," or "paints," the entire
screen. It uses one CLS (not really a must, but always a good habit to use
in graphics programs), two FOR-NEXT loops and one endless "locking
loop." Type this:

10 FOR H = 0 TO 490
20 FOR V = 0 TO 300
30 PSETCHtV)
40 NEXT V
50 NEXT H

99 GOTO 99

... and RUN.

The program fills the display from left to right. Redesign it so it starts at the
top and fills to the bottom.

Answer

10 FOR V = 0 TO 300
20 FOR H = 0 TO 490

232 Chapter 31

30 PSET<HtV>
40 NEXT H
50 NEXT V
99 GOTO 99

Next, rewrite it so it starts painting at the bottom and fills to the top.

Answer

10 FOR V = 300 TO 0 STEP -1

20 FOR H = 0 TO 490

30 PSET<HtV>
40 NEXT H
50 NEXT v
99 GOTO 99

Did you forget FOR-NEXT could STEP backwards?

Rewrite it so it starts painting at the upper right-hand side and fills to the
lower left-hand side.

Answer

10 FOR H = 490 TO 0 STEP -1

20 FOR V = 0 TO 300

30 PSET<H1V>
40 NEXT V
50 NEXT H
99 GOTO 99

Just for practice, Run the program using other positive and negative STEP
increments ...

Fantastic -- now we can paint the old barn at least four ways!

Video Display Graphics 233

EXERCISE 31-1: Write a program which will allow the painting of
only a small part of the display (you determine which part). Allow
keyboard INPUT to determine the starting and ending pixel numbers
in both the horizontal and vertical directions.

Getting the hang of it? Great! Enough playing with blocks ... let's draw some
lines. Erase the resident program.

You haven't forgotten how to do that, have you! Select Erase ... no, no! Select
New from the File menu.

We'll start our artistry with a straight line. This program PSETs a straight
horizontal line across the entire display. Type:

10 INPUT "VERTICAL ADDRESS CO TO 300>";V
20 CLS
30 FOR H = 0 TO 490
40 PSETCHtV>
50 NEXT H
99 GOTO 99

... and RUN several times.

We can just as easily create a straight vertical line. Try this.

10 INPUT "HORIZONTAL ADDRESS CO TO 490)";H
20 CLS
30 FOR V = 0 TO 300
40 PSETCHtV>
50 NEXT V
99 GOTO 99

... and RUN a number of times.

Now, let's see if we can modify this last program to allow us to INPUT both

234 Chapter 31

the starting vertical address and the length (in pixels):

12 INPUT "VERTICAL STARTING ADDRESS • (0 TO
300>";v

14 INPUT "NUMBER OF VERTICAL PIXELS";N
16 IF V + N < 301 GOTO 20
18 PRINT "TOO MANY VERTICAL PIXELS!"
19 END
30 FOR V = V TO V + N

Now that we can draw straight lines, we can form figures - like squares and
rectangles. This program forms a rectangle. After selecting New, type:

10 INPUT "HORIZONTAL STARTING ADDRESS CO
TO 490)";H

20 INPUT "VERTICAL STARTING ADDRESS CO
TO 300) 11 ;v

30 INPUT "LENGTH OF EACH SIDE <IN PIXELS>
CO TO 300>";s

40 CLS
50 FOR L = H TO H + s
60 PSETCLtV)
70 PSETCLtV+S)
80 NEXT L
90 FOR M = V TO v + s
100 PSETCHtM>
110 PSETCH+StM)
120 NEXT M
999 GOTO 999

••. and RUN.

Video Display Graphics 235

You may want to come back later for some heavier study.

A Little Diversion
All our graphics work so far has been drawing dark lines on the light display.
We can do just the reverse by painting the display dark first, then lightening
the desired areas with PRESET. This New program draws a white horizontal
line on a black background. To save time, we will only darken part of the
screen. Type:

10 INPUT "VERTICAL POSITION <OTO 150)";V
20 CLS
30 FOR H = 0 TO 120
40 FOR J = 0 TO 150
50 PSET<HtJ>
60 NEXT J
70 NEXT H
80 FOR H = 0 TO 120
90 PRESET<HtV>
100 NEXT H
999 GOTO 999

••. and RUN.

If you're interested, go back and try similar easy modifications to other
demonstration programs and have fun with these reverse (or ''negative") dis­
plays.

Learned In Chapter 31

Statements

PSET
PRESET

Miscellaneous

Pixel

Chaptera2-------------------

e can draw other straight (more or less) lines by just changing H and
V addresses of PSET in the FOR-NEXT loop. Try this New program
to draw a diagonal line:

10 INPUT "HORIZONTAL STARTING ADDRESS
<O TO 480) 11 ;H

20 INPUT "VERTICAL STARTING ADDRESS
(0 TO 300>";v

30 INPUT "DIAGONAL LENGTH";D
40 CLS
50 FOR L = 0 TO D - 1
60 PSET<H+LtV+L)
70 NEXT L
99 GOTO 99

Once we have the diagonal line, we can form a right triangle by making these
changes and additions:

70 PSETCHtV+L)
BO PSET<H+LtV+D>
90 NEXT L

or

70 PSET<H+DtV+L)

236

80 PSET<H+LtV)
90 NEXT L

Try them both.

Question: What is the difference in the displays?

Intermediate Graphics 237

Answer: They are inverted, mirror images of each other.

Broken Lines
In every prior graphics program, we could have made the lines "broken" by
introducing a STEP other than "l" in the FOR-NEXT loops. For example, try
drawing a broken horizontal line with this New program:

10 INPUT "VERTICAL ADDRESS (1 TO 300) II ; v

20 INPUT "STEP SIZE";s
30 CLS
40 FOR H = 0 TO 490 STEP S
50 PSET<HtV>
60 NEXT H
99 GOTO 99

Run this program with various values of S. Note that as you increase S, the
line is drawn much faster (since the Computer has less work to do). In fact,
for S = 10 or more, we can hardly see the line being drawn. This is how
a TV picture is created -- since it too is drawn one unit at a time (but so fast
we don't notice the "drawing time").

Insert the following Lines into the resident program:

5 REM * V MUST BE LARGER THAN 0 *
55 PRESET<HtV-1>
70 v = v + 1

80 IF V < 301 GOTO 40

238 Chapter 32

If S is small, we can see each line being drawn and cleared. But if S is fairly
large (try 20), the line seems to move in somewhat "old-time-movie" fashion.
This is the way the illusion of motion is created on a TV set and in some
of the popular video games.

Try this New program. It paints a dot on the display and moves it down.

10 INPUT "HORIZONTAL STARTING ADDRESS
<OTO 490)";H

20 INPUT "VERTICAL STARTING ADDRESS
<1 TO 300)";V

30 CLS
40 PRESET<HtV-1>
50 PSET<HtV>
60 v = v + 1

70 IF V < 301 GOTO 40

99 GOTO 99

Having problems spotting the dot? Don't worry, it isn't your eyes. The action
is so fast and the pixel is so small that it's difficult to spot it. The PRESET
statement simply followed along behind and erased the dot from the last PSET.

What happens if you omit PRESET? When you try it, remember to change
Line 70 to GOTO 50.

One Minor Detail
If a negative coordinate is used with PRESET and PSET, the line will begin
off the screen. Take a look at Line 40:

40 PRESET<HtV-1)

If you INPUT V equal to -100, then the V address really becomes -101.
The line won't appear until V is increased in value to 0.

Intermediate Graphics 239

More Of The Good Stuff
We can just as easily move a point to the right by substituting these Lines:

10 INPUT "HORIZONTAL STARTING ADDRESS
<1 TO 490>"iH

20 INPUT "VERTICAL STARTING ADDRESS
<OTO 300>"IV

30 CLS
40 PRESET<H-1tV>
50 PSET<HtV>
60 H = H + 1
70 IF H < 491 GOTO 40
99 GOTO 99

EXERCISE 32·1: Change the last two programs so that they move
the dot up and to the left respectively.

Let's have the dot move down until it strikes a barrier. The New program
will read:

10 INPUT "HORIZONTAL STARTING ADDRESS
(1 TO 4SO>"iH

20 INPUT "VERTICAL STARTING ADDRESS
<1 TO 100>"iV

30 INPUT "LOWER BARRIER <200 TO 300>"iB
40 CLS
50 FOR M = 0 TO 490
60 PSETCMtB>
70 NEXT M
80 PRESETCHtV-1>

240 Chapter 32

90 PSET<HtV>

100 v = v + 1
110 IF V < B GOTO 80
999 GOTO 999

The dot appears to strike the barrier and stick to it.

Now let's have the dot start in the middle and ricochet off the top and bot­
tom. Select New, then enter this program:

10 FOR H = 0 TO 490

20 PSET<Ht50>
30 PSET<Ht250)

40 NEXT H
50 v = 150
60 D = 1
70 PRESET<245tV-D>
80 PSET<245tV>
90 v = v + D
100 IF v = 251 GOTO 120

110 IF v <> 49 GOTO 70

120 v = v - 2 * D
130 D = -D
140 GOTO 80

The change in direction of the moving dot is caused by:

130 D = -D

Note that we must be careful not to accidentally erase part of the boundary.
To do this, we move the dot back 2 steps with Line 120 (after moving it
forward 1 in Line 90), but we also return to the PSET in 80 rather than to

Intermediate Graphics 241

PRESET in 70. Tricky, tricky. You can kill the whole day messing around
with this silly bouncing ball. Rather good resilience, eh?

Save this program As B 0 UN CE for use in the next Chapter.

Real Moving Pictures
We can draw whatever figures we like. Let's try a stick man. FlfSt, his legs:

Select New, then:

10 H = 64
20 FOR K = 0 TO 30
30 PSET<H+Kt200+K>
40 PSET<H-Kt200+K>
50 NEXT K
SSS GOTO SSS

••. and RUN.

Then add his body and arms:

60 FOR K = 0 TO 20
70 PSET<H+Kt17S+K>
80 PSETCHt17S+K)
so PSET<H-Kt17S+K>
100 NEXT K

... and RUN.

And finally his head:

110 FOR K = 0 TO 4
120 PSET<H+Kt16S+K>
130 PSET<H-KtlSS+K>

242 Chapter 32

140 PSETCH+Kt178-K>

150 PSETCH-Kt178-K>

160 NEXT K

... and RUN.

Now let's try and move him to the right. Add:

35 PRESETCH+K-2t200+K>

45 PRESETCH-K-2t200+K>

75 PRESETCH+K-2t179+K>

85 PRESETCH-2t179+K>

95 PRESETCH-K-2t179+K)

125 PRESETCH+K-Zt169+K>

135 PRESETCH-K-2t169+K>

145 PRESETCH+K-Zt178-K>

155 PRESETCH-K-Zt178-K>

170 H = H + 2
180 GOTO 20

.•. and RUN.

Sure moves funny, doesn't he? Well, I'm no animator either, but you're
beginning to get the idea.

Line Drawing With LINE
We have been drawing lines (horizontal, vertical and diagonal) by using
PSET. There is an easier and shorter method for drawing straight lines. Type
in this New program:

10 LINE C100t40)-(50tSO>

20 LINE - <150tSO>

lntennediate Graphics 243

30 LINE - <100,ao>

... and RUN.

WOW! Now that's fast. It only took 3 program Lines to draw 3 display
lines. A similar program using PSET would require about five loops. By
analyzing each Line, we'll discover that LINE is actually similar to PSET.
LINE and PSET use the same Horizontal and Vertical address numbers to
spot the starting point on the display.

Nice. But what is the program doing?

Line 10 draws a diagonal LINE by following the dots from coor­
dinates 100 (horizontal) and 40 (vertical) to (-) 50 (horizontal) and
90 (vertical).

Line 20 draws the horizontal base line. The to (-) and the destina­
tion coordinates are all that are included in this LINE statement.
When the starting coordinates are omitted, the Macintosh uses the
coordinates last used by PSET or LINE. In this example, the last
pixel turned on in Line 10 was at (50,90). So, Line 20 really says,
"From the last coordinate (50,90), draw a LINE to (-) horizontal
position 150 on vertical line 90."

Line 30 begins at the last pixel turned on by Line 20 and draws
the third LINE up to the top of the triangle.

Zeroing Out The LINE
Add Line 40 to the resident program:

ao LINE (75t90)-(125t90) tO

... RUN

By selecting a portion of the horizontal LINE and adding , 0 to the end of
the LINE statement, we made LINE act like PRESET. Do some experi­
menting on your own with LINEs before going on.

244 Chapter 32

EXERCISE 31-1: Add three Lines to the LINE program that will draw
this completed diagram:

•• • ••• •• • • •• • ••• •• • • •• • •••
••• •• •

•• • •••
••• •••
~ ..
~

~
~ . • •• ~ .

~
~ ..
~ .

-~ ...

Drawing Boxes
We can also draw boxes without topses. Try this NEW program:

10 LINE C5t8>-<234t118> tl tB

99 GOTO 99

Line 20 did all that? The first coordinate (5,8) established the top left-hand
comer of the box, and (234,118) set the bottom right hand comer. Then B
told LINE to connect these two points in the shape of a Box.

How about a box within a box? Add:

20 LINE <50t18>-<190t108) tl tB

Now wouldn't it look neat to fill in the inside box? Suppose that requires
several FOR-NEXT loops and a PSET? Wrong, just adding the letter F to our
LINE statement Fills in the Box. Change Line 20 to:

20 LINE (50t18>-<190 t108) tl t6F

••. and RUN.

Intermediate Graphics 245

Just like that, the Box is Filled.

Do you suppose there are any more tricks left in the LINE statement? Well,
there just happens to be one more. We can remove an entire box the same
way we removed a LINE. Let's add the finishing touches to this program
with these Lines:

30 LINE C55t23>-C185t103)t0tB
40 LOCATE 4t11 : PRINT "BURMA"
50 LOCATE 5t11 : PRINT "SHAVE"

Study these three new Lines closely. By tracing the coordinates used in Line
30's LINE statement, we can see how the pixels were turned off inside the
black box boundary. The Computer automatically clears an area around the
words PRINTed by Lines 40 and 50.

These have been two long and active Chapters .• . and to think, all this with
only the PSET, PRESET, and LINE statements. In many cases, by simply
exchanging PRESET for PSET or a 0 for a 1, we could have drawn the same
pictures with light on a dark background instead of dark on light. You might
want to give it a try.

Because the ideas come so fast in the area of graphics, we have deliberately
chosen to show a number of straightforward examples rather than get bogged
down in elaborate programs. There is no substitute for lots of experimenting
with graphics, and you now know the basics. Put in your time, study the
examples, and soon you can apply for membership in the artists' guild.

Learned In Chapter 32

Statements

LINE

Miscellaneous

Animated graphics
Diagonal lines
Boxes
Filling Boxes

Chapter 33---------

e used this in the last chapter; now let's see what it's all about. The
LOCATE statement allows PRINTing to begin anywhere on the
screen. Type:

10 CLS : LOCATE 8t10
20 PRINT "HELLO THEREt 8t10!"

... and RUN.

The LOCATE locations start at l, 1 in the upper-left hand comer and, as long
as a WIDTH hasn't been specified, go through to 1,32767 in the first line.
They pick up on the second line with 2,1 and continue through to
32767 ,32767 (the lower-right hand comer). This is well beyond the limits of
what we can see on the display, so we will normally restrict the LOCATE
numbers to within 16,60.

The actual number of spaces available in the line depends on the value selected
in the WIDTH statement. If the WIDTH statement is not used, the default line
width is 32767 spaces.

If we want to PRINT on line 19, we must first close the Command window
and expand the Output window to the bottom of the display or else our
PRINTed message will be lost beneath the Command window.

It's That Time Already?
Let's create a 24-hour clock. Sounds like more fun than digging through this
obscure LOCATE statement mapping. Type:

10 LOCATE 7t28
246

20 PRINT "H M S"
30 FOR H = 0 TO 23
40 FOR M = 0 TO 59

50 FOR S = 0 TO 59

60 LOCATE 8tZ7

Formatting With LOCATE 24 7

70 PRINT H;":";M;":";S
80 FOR N = 1 TO 2000 : NEXT N
90 NEXT S
100 NEXT M
110 NEXT H
120 GOTO 10

Save As TI MER ... and RUN.

Nothing to it. Ahem!

"Hello? Bureau Of Standards?"
Of course, the accuracy of this timer depends on how closely we calibrate
it. We earlier discussed that the Mac will execute somewhere around 2200
simple FOR-NEXT loops per second. When used in a program like this, the
FOR-NEXT value in Line 80 must be adjusted to allow for the activity going
on with the various other FOR-NEXT loops and LOCATE statements. If we
really get carried away with this program, it can be calibrated against a pre­
cision timepiece, increasing or decreasing the "2000" as needed, or better yet,
using our TIME$ statement along with LOCATE. Over the short run, it is
quite a good timer. Note that we are not triggering this with the power line
frequency or a crystal oscillator, but relying solely on the amount of time
required to execute FOR-NEXT loops. (It's not nearly as accurate as the clock
built into the Computer.)

Oh, Yes ••• The LOCATE
Anyway -- let's not lose sight of the forest for the trees (or is it trees for the
forest). The purpose of this program is to demonstrate the LOCATE state­
ment. We used it twice. With blazing speed, the HMS (no, no, not Her
Majesty's Service -- it stands for Hours, Minutes and Seconds) are PRINTed
-- and the HM&S are updated each second.

248 Chapter 33

For a better clock program, the real clock nut only needs to calibrate this
program a little closer to be an acceptable sundial. Then the Computer
becomes the most expensive clock in the house!

POS(N) And CSRLIN
An additional and sometimes useful function allows the Computer to report
back the horizontal POSition of the cursor. This simple New program exer­
cises the POS function.

10 INPUT II A NUMBER BETWEEN -9 AND S0 11 ;A
20 CLS
30 PRINT TAB<10+A>
40 PRINT POS<O>I
50 PRINT II WAS NUMBER OF NEXT PRINT POSITION"

••. and RUN.

Line 40, containing POS, is the key.

The 0 inside the brackets is just a "dummy." Most any other number or vari­
able would work as well - but something has to be placed there. POS reports
back any cursor POSition on the screen up thru 4096. Numbers above 4096
are reported as 1.

To help locate the cursor, we can add these Lines to the resident program:

45 L = CSRLIN
55 PRINT "AND WAS LOCATED IN LINE"IL

CSRLIN tells us the CuRSor LINe (Row) number from 1-2048 that the cursor
was on at the time CSRLIN was encountered.

Remember, CSRLIN returns the CuRSor LINe (Row), and POS(O) returns the
column.

The CSRLIN and POS limits will vary somewhat when different fonts are selected.

Formatting With LOCATE 249

That's How The Ball Bounces
Meanwhile, back with the bouncing ball. Select Open from the File menu,
and double click the program named "BOUNCE" Saved in the last Chapter. It
reads:

10 FOR H = 0 TO 490

20 PSET<H1SO>

30 PSET<H12SO>

40 NEXT H
50 v = 150

60 D = 1

70 PRESETC2451V-D>

80 PSET<2451V>

90 V = V + D

100 IF V = 251 GOTO 120

110 IF V <> 49 GOTO 70

120 V = V - 2 * D

130 D = -D
140 GOTO 80

Since we did not explain in detail how that fairly simple program worked,
take time now to see if you can follow it through. Concentrate your thinking
on the PSET and PRESET Lines and the logic that gives them their numerical
values. When you have it figured out, tackle this exercise:

EXERCISE 33-1: Using LOCATE statement(s), cause the word ·p1NG~
to appear near the ball each time it bounces off either the top or
bottom boundary. A sample answer is in Section B.

Isn't it amazing how close we are building towards some of the video games
that are all the rage -- and yet it's really so simple and logical.

WRITEing To The Screen
The WRITE statement allows us to PRINT on the screen. It is similar to

250 Chapter 33

PRINT, except that the WRITE statement automatically inserts a comma
between each item the Computer WRITEs on the screen. It also places quotes
around all strings. Try this New program:

10 READ AtBtCtD$
20 WRITE A;B;c;D$

30 DATA 100t200t300t ••• ETC

Variables in Line 20 can be separated by semicolons or commas. The Computer
will treat them the same. Note the 4th piece of DATA in Line 30 is a string but
has no quotes.

Run, and see:

100t200t300t" ••• ETC"

We already know that BASIC is unable to READ a string from the DATA
Line if it contains quotes within quotes. By using WRITE, we can READ a
string and let the Computer insert the quotes.

Learned In Chapter 33

Statements

LOCATE
WRITE

Functions

POS(N)
CSRLIN

---------chapter 34

[]
t is often helpful to graph mathematical functions to better understand
what's happening. Macintosh graphics can be used for a non-precision
examination of many mathematical functions, and the following short

demo programs illustrate that capability.

Just imagine there is an X-Y coordinate system drawn on the display (or draw
your own, either with the Computer or a china marker). The numbers in these
demo programs are not magic; they just allow the graphs to be drawn large,
but not so large they run off the display.

These programs are included to show how LOCATE can be used in a sup­
porting role to the Macintosh graphics. Experiment to get what you want for
your own particular application.

A Single Sine Wave

10 LOCATE 1t1 1 PRINT "SINE"
20 FOR X = 0 TO 240
30 Y = SINCX/38)
40 PSETCXt150-Y*100)
50 LOCATE 1140 1 PRINT "X =";X
60 LOCATE 1150: PRINT "Y ="; INT<150-Y*100)
70 NEXT X

80 GOTO 80

251

252 Chapter 34

Graph Of 3 Cosine Waves

10 LOCATE 1t1 : PRINT "COSINE"
20 FOR X = 0 TO 720
30 Y = COS(X/38)
40

so
60

PSET<Xl3t1SO-Y*100>
LOCATE 1t40: PRINT "X
LOCATE 1tSO: PRINT "Y

70 NEXT X
80 GOTO 80

Graph Of The Tangent

- II • - '
=" ;

10 LOCATE 1t1 : PRINT "TANGENT"
20 FOR X = 0 TO 240
30 Y = TAN<X/160)
40 PSET<Xt230-Y*16)
so LOCATE 1t40 • PRINT "X : II ; •

60 LOCATE 1tSO • PRINT II y - II • • - '
70 NEXT x
80 GOTO 80

INT<X/3)

INT<1SO-Y*100>

INT<X>
INT<230-Y*16)

There is obviously quite an education to be had by a careful study of the
graphs. Look for such things as relative density of the line at different points,
the rate at which blocks are lit relative to the other variable, etc. Sure beats
the "early days" when we had to try and imagine these things on a blackboard.

Merely For Display Purposes
A good way to get a feel for LOCATE (or any other feature) is to look at

Graphing Trig Functions 253

a fairly simple program which illustrates its use. This New program lays out
a graph format on the display. Type:

10 LOCATE 1t20 : PRINT "GRAPH
H E A D I N G"

20 REM * HORIZONTAL MARKERS *
30 FOR X = 1 TO 50
40 LOCATE 17t10+X : PRINT H II •
50 NEXT X
60 REM * HORIZONTAL NUMBERS *
70 FOR X = 0 TO 45 STEP 5
80 LOCATE 18t10+X : PRINT X
90 NEXT X

100 REM * VERTICAL MARKERS *
110 FOR Y = 1 TO 14
120 LOCATE Y+Zt9 : PRINT "-"
130 NEXT Y
140 REM * VERTICAL NUMBERS *
150 FOR Y = 1 TO 14
160 LOCATE Y+Ztl : PRINT 14-Y
170 NEXT Y
999 GOTO 999

Remember to close the Command window and enlarge the Output window to make
use of the entire screen.

What you do with these programs beyond this point depends on your own
needs and interest, but they are worth entering, studying and becoming com­
fortable with.

254 Chapter 34

Learned In Chapter 34

Miscellaneous

Graphing with LOCATE

---------chapter 35

he INKEY$ (pronounced lnkey-string) function is a powerful one
which enables us to INPUT information from the keyboard without
having to use the l;Aiiihl key.

Enter this New program:

10 IF INKEY$ = "T" THEN 30
20 GOTO 10
30 PRINT "YOU HIT THE LETTER 'T'"
40 GOTO 10

... and Run.

Press a variety of individual alpha and numeric keys.

The keyboard seems to be dead until we hit the ii key. Why?

Aha! The test in Line 10 is passed, execution moves to Line 30 and a mes­
sage is PRINTed. Then the process starts over. Hit ii again. Hold it down.

The way INKEY$ works is clever if somewhat subtle, so pay close attention.

The Macintosh keyboard is constantly scanned by the Computer, checking to
see if any key is pressed. If a key was pressed before the Computer encoun­
ters INKEY$, the character that key represents was stored in the INKEY$
storage, or buffer, area. The buffer can hold only one character at a time so
when a new key is pressed, that new character replaces whatever preceeded
it in the buffer, if anything. INKEY$ automatically assumes the String Value
of whatever character is in its buffer.

255

256 Chapter 35

Since INKEY$ can only "photograph" one letter or number at a time, if we
want to test for more than one character, we have to write the program to test
for each one in sequence. In so doing, however, we must be careful or
INKEY$ will trip us up.

Press ml B to stop the program and ll 1! to List it. Then add these Lines
to the program:

15 IF INKEY$ = "P" THEN 50
50 PRINT "YOU HIT THE LETTER 'P'"
60 GOTO 10

... and Run again.

As you can see, we no longer get an "instant" response each time ii or Ii are
pressed. This distressing condition exists because the INKEY$ buffer is
cleared and reset to a null string each time INKEY$ is hit. Aaawk! Just when
it was starting to make sense. Select Stop from the Control menu, or press
1I9 B. and List (111!) so we can take a good look at the program to see
how this clearing of the buffer results in the "loss" of a keystroke.

Suppose the operator presses the ii key just as Line 15 begins execution.
Where does the T go? Into the INKEY$ buffer, of course. There it sits until
another key is pressed, or INKEY$ is "called."

When Line 15 is executed, INKEY$ "reads" the buffer. The buffer's current
value (T) is compared to Line 15's "P". Since the two strings are not equal,
control passes to the next Line, then back to Line 10. In Line 10, INKEY$
is called again, but when it checks the buffer this time, "T' is gone. What
happened to the T?

Let's replay that last sequence and zoom in for a closeup on the INKEY$ buf­
fer. As the operator hits the ii key, we see the T stored in the buffer. As the
INKEY$ Function in Line 15 is executed, the buffer suddenly goes blank.
Ahhhhh! Thank heavens for instant replay. It's now obvious that each time
INKEY$ is called, its buffer is cleared, whether or not it meets the string test
in the Line calling it. If we want to preserve the value of T, we'll need to
store it elsewhere, maybe in a temporary string variable.

WA~E UP l-IARRY !
~Ut;.T w~o IS·~·~

'' INK6Y 51R\NG11 YOU
KEEP MUMBL\ N6

.ABOUT'i-
• I \ I ' ,
- 0 -,,

~ I'
I

258 Chapter 35

Change Lines 10 and 15 to:

10 A$ = INKEY$: IF A$ = "T" THEN 30
1Srif A$= "P" THEN SO

... and Run.

Aha! Now we're getting somewhere. Give it the ultimate test·· alternate pres­
sing ii and (i as quickly as possible.

By setting a "regular'' string variable equal to INKEY$ and having T and P
checked against the variable instead of against the INKEY$ buffer, we store
its value for as long as needed and process it much more efficiently and pre­
dictably.

Rapid Scanner
If INKEY$ scans the buffer and does not find a key pressed (the usual case),
it is said to read a "null string." INKEY$ is a string Function, and null means
nothing. A null string is represented by two quote marks with nothing between
them, thus:

II II

The ASCII code for null is 0.

To see how fast we can scan for INPUT with INKEY$, try this New
program:

10 K$ = INKEY$
20 IF K$ = 1111 THEN PRINT "NO KEYBOARD INPUT"
30 PRINT ttK$: GOTO 10

... and Run.

Type in random characters and words, and see them break the scan.

INKEY$ And INPUT$ 259

Get the general idea how to use INKEY$? So simple, yet the possibilities are
enormous. Only a lot of experimenting will make you comfortable with it,
but INKEY$ will keep you awake nights staring at the ceiling thinking of
ways to put it to work.

Out or The Blue Or The Western Sky •••
While chasing the solitude needed to write computer books, your author
piloted a heavily loaded private plane, packed with computers, ham radio and
other goodies, into a medium sized city airport. Transferring this freight to a
rental car turned out to be a big deal since security wouldn't let a car on the
apron to unload the plane. (You're supposed to drop it by parachute?)

After some cajoling (and a gratuity), it was agreed that my car could be driven
up near the apron, and an "officially approved" car would haul the goodies
from the plane to my car. It seemed a bit officious, but elections were far
away ...

Anyway, to get my car thru the security fence it was necessary to open an
electrically-operated gate. A secret code was punched into a numeric keypad
for some sort of computer to analyze, and it controlled the motorized gate.
The secret code number was 1930.

Needless to say, as soon as the computer was set up, I wrote a BASIC pro­
gram to do everything but actually open the gate. It provides a good example
of a real-life application of INKEY$ and is offered here for your amusement,
amazement and careful study.

10 LOCATE 7t21 : PRINT "TYPE THE COMBINATION"
20 LOCATE 8120 : PRINT "FOLLOWED BY AN

ASTERISK"
30 LOCATE 2t18 : PRINT "THE ELECTRIC GATE IS

CLOSED"
40 K$ = INKEY$: IF K$ = nn THEN 40

SO READ 0$: IF 0$ = "*" THEN 80
60 IF 0$ = K$ THEN 40

260 Chapter 35

70 RESTORE : GOTO 40
80 CLS : LOCATE 2122 : PRINT "YOU MAY ENTER

NOW"
90 LOCATE 4119 : PRINT "WAIT FOR THE GATE

TO OPEN"
100 FOR T = 1 TO 3000 : NEXT T
110 CLS : RESTORE : GOTO 10
DATA 1t9t3t0t*

Save As GATE and Run. Try the combination.

The password (1930 followed by an asterisk) is imbedded, a character at a
time, in the DATA Line. The commas only separate the characters and should
not be typed in as part of the password.

Line 40 holds the magic. It stores the buffer contents in K$ and
checks K$ for something besides a null string. If it finds a key was
pressed, execution drops to Line 50.

Line 50 READs a piece of DATA. If it happens to be an asterisk
(which can only be READ from DATA after all of the other code
characters have been READ), execution moves to Line 80 where
the gate is OPENed.

If, however, the test in Line 50 does not find an asterisk, execution
defaults to the next test, in Line 60.

Line 60 checks to see if the keyboard character matches up with
the character READ from DATA. If so, the first hurdle has been
passed and execution returns back to Line 40 for INKEY$ to await
another keyboard character. If the keyboard and DATA characters
don't match, the test fails and execution drops to Line 70.

Line 70 RESTOREs the DATA pomter back to its beginning and
returns execution to Line 40 to start scanning all over again. The
keypad puncher sees none of this and has no idea if he is making
progress towards cracking the code.

INKEY$ And INPUT$ 261

Line 100 merely allows the gate a brief time to open and close (and
us to read the screen), then

Line 110 CLears the Screen, RESTOREs the DATA and starts the
program over from the beginning.

The password can be changed to any combination of characters by changing
the DATA Line. If we wanted it to be 'MACINTOSH' for example:

DATA MtAtCtitNtTtOtStHt*

Or 'OPENSESAME'

DATA OtPtEtNtStEtStAtMtEt*

Don't forget that last piece of DATA, the asterisk.

Happy gate crashing!

INPUT$
INPUT$ can be thought of as a multi-character INKEY$. It allows us to
INPUT a certain number of characters from the keyboard without printing
them on the screen. It's great for entering passwords.

Make the following changes:

40 READ PASSWORD$
50 L = LEN<PASSWORD$)
60 K$ = INPUT$CL)
70 IF K$ = PASSWORD$ THEN 80 ELSE 60
DATA MACINTOSH

... and Run.

Very carefully, type MACINTOSH (no liG1il!iei).

262 Chapter 35

This change has a disadvantage in that once you start typing, there's no way
to start over if you make a mistake. With more elaborate programming, a
"reset" could automatically take place after a period of time.

I hope you enjoyed this Chapter as much as I did in creating it.

Learned In Chapter 35

Functions

INKEY$
INPUT$

Miscellaneous

INKEY$ Buffer
Null String

---------Chapter 36

fall the ways we have to PRINT, the most powerful (and most com­
plex) is one called PRINT USING. The name PRINT USING implies
that we PRINT by USING something else. That implication is

correct.

As originally developed for use on large computers, PRINT USING consists
of two parts -- PRINT and USING. PRINT prints, USING the format (called
the "image") found in another Line. The Macintosh PRINT USING feature is
similar, but does not always require a second Line for the "image" . . . as we
will see.

PRINT USING With Numbers
Type in this New program:

10 A = 123.456789

50 PRINT USING U$;A

... and Run.

The answer is:

123.46

A was rounded UP and PRINTed to an accuracy of 2 decimal places, fol­
lowing the same format as Line 40, the image Line.

263

264 Chapter 36

Add:

20 B = 1.6

60 PRINT USING U$;B

••. and Run.

The Display shows:

123.46

1.60

Notice that we called upon Line 40, the image Line, twice - once in Line
50 and again in Line 60. Also, note that the answers appear with their decimal
points lined up. Last, see that a 0 has been added to the 1.6 to make it read
1.60. These latter 2 points are important when PRINTing out financial reports.

One more addition:

30 c = 9876.54321

70 PRINT USING U$;C

••. and Run, produces:

123.46

1.60

%9876.54

Oh-oh! Vas ist los?

Well, the% sign means we have overrun our image Line's capacity to PRINT
digits left of the decimal point, but it PRINTs them anyway. Better to lose
the decimal point lineup than important numbers, but it does call our attention
to a programming problem.

PRINT USING 265

Let's add another# sign to make room for that extra digit left of the decimal
point. (We are adding another element to the field in the image Line. Got
that?)

Line 40 now has 4 elements in "left field" and 2 in "right field." The decimal
point is the dividing point .

.•. and Run.

That's better - but the overRUN message would appear again if we tried to
PRINT a number with more than 4 digits on the left.

This PRINT USING business looks like it might have some potential, lining
up decimal points like it does. We don't have any other reasonable,
straightforward way to accomplish that, and it's essential for PRINTing dollars
and cents. Wonder how we can PRINT a dollar sign?

Change the image Line to:

40 U$ = "$••••·••" (Check 'em carefully.)

... and Run.

Nice, eh? The dollar signs all line up in a row:

$ 123.48

• 1.00
$9878.54

But suppose we want the dollar signs to snug right up against each dollar
amount'? Make 40 read:

40 U$ = "$$•••·••"

266 Chapter 36

... and Run.

and shure enuf:

$123.46

$1.60

$9876.54

Not an especially attractive format, but taken singly, as when writing checks,
it's almost essential.

The lessons so far are:

1. PRINT USING with # lines up the decimal points.

2. It rounds off the cents (the numbers to the right of the decimal
point) to the number of elements specified. It does not round off
dollars (left of the decimal point), but sends up an error flag
(%), PRINTs all dollars and slips the printout to the right if
the field isn't large enough.

3. If a single$ is added to left field, dollar signs are PRINTed and
lined up in a column like decimal points. This single$ does not
expand the field.

4. If two $ are placed on the left, one $ will be PRINTed on each
Line immediately in front of the first dollar digit. One of these
$'s can be used to replace one # in the field, thereby not ex·
panding it.

We've covered a lot in a very small program, but have a long ways to go.

Printing Checks
When using a printer for writing checks, it's usually wise to take extra pre·
cautions against "alterations." This is easily accomplished by changing Line
40 to read:

(Count 'em.)

... and Run.

The display reads:

**123.46

****1+60

*9876.54

PRINT USING 26 7

That's swell. It fills up the unused space alright, but there's no dollar sign.
Okay, replace the first # sign with a dollar sign, like so:

Aren't you glad we have an Editor for all these changes?

See it Now:

*$123.46

***$1.GO

$9878.54

just like they do it uptown! Only 1 $ was needed when using leading *'s,
compared to $$ without them.

If we really want to impress others with the size numbers we usually deal in
at our local lemonade stand, add lots more # signs to the image Line, thus:

40 U$ = "**$###############+##"

and our checks read:

**************$123.46

****************$1.60

*************$9876.54

... very impressive.

268 Chapter 36

An illegal funcion call error will occur if more than•24 characters are assigned to
a PRINT USING variable.

Since we're obviously big time operators, having now franchised the lemonade
stands, it's getting hard to keep track of the big numbers. How about some
commas to break them apart? (Knock out those extra #'s first. Too hard to
count them.)

(Look closely.)

... and Run.

**$123146

****$1160

$9t876154

Only one of our numbers has more than 3 digits in left field, but a comma
separated its 9 and 8 for easier readability. In the image field, the comma can
be placed anywhere between the $ and the decimal point, and only one comma
is required to automatically insert commas to the left of every 3rd digit left
of the decimal point. (You really big-time operators who deal in the millions
will have to wait 'til the next chapter to see how to go "double precision"
to avoid losing the loose change.)

NOTE: The comma does not serve as a field element.

Stringing It Out
Let's rework the resident program to show some other PRINT USING
capabilities:

10 A = 1231456789

20 B = 116

30 c = 9876154321

40 U$ = "####1## s ####1## 5 ####. ##"

50 PRINT USING U$;At6tC
.•. and Run.

PRINT USING 269

The PRINT USING statement will reuse its image Line until all the fields are
PRINTed.

Shorten Line 40 to:

"

... and Run again, with the same effect.

See how numbers can be displayed horizontally instead of vertically? Line 50
determines where the fields are PRINTed.

123.46 9 1.60 6 9876.54

EXERCISE 36-1: Write the various forms line 40 must take to PRINT
these formats:

123.46

$ 123.46

$123.46

$123.46

and finally

***$123.46

1. 60

$ 1.60

$1.60

$1.60

*****$1.60

PRINT USING With Strings
Select New, and enter this program:

10 A$ = 11 IT'S 11

20 6$ = "HOWDY"

9876.54

$9876.54

$9876.54

$9t876.54

*$9,876.54

270 Chapter 36

30 C$ = 11 DOODY 11

40 D$ = 11 TIME 11

50 U$ = "\\"

60 PRINT USING UiA

... and Run.

The only thing unique about this program are the back slashes in Line 50. \
is a symbol in Macintosh PRINT USING which is to strings something like
what the # is to numbers.

The \ \ reserved 2 spaces for strings. Only IT was PRINTed. Unlike #,
however, to reserve more spaces in a string field, we must add spaces between
the \ signs. Change Line 50 to:

50 U$ =11 \ 2 \" (The small 2 is just for us.)

... and Run.

4 spaces are set aside, and I T ' S is PRINTed without clipping.

Let's make room for PRINTing another string on the same line.

50 U$ = II\ 2 \ \ 3 \II

60 PRINT USING UiAtB$

... and Run.

Oops! We ran:

IT'SHOWDY

together.

To space them apart we have to put an actual space in the image field just
as we did earlier when PRINTing numbers.

PRINT USING 271

50 U$ = ff\ 2 \ 1 \ 3 \ff

... and Run.

That's more like it.

Now it's your tum. Complete Lines 50 and 60 to print IT'S HOWDY
DOODY TI ME all on one line.

Answer:

50 U$ = II\ 2 \ 1 \ 3 \ 1 \ 3 \ 1 \ 2 \"

60 PRINT USING U$;A$tBtCtD$

... and Run.

It's time to quit doodling around and get down to business! Change our
HOWDY DOODY to some typical report headings.

10 A$ = "PART NUMBER"
20 6$ = "DATE PURCHASED"
30 C$ = 11 DESCRIPTION 11

40 0$ = "COST"
50 (Figure out this one yourself)

60 PRINT USING U$;A$tBtCtD$

Assignment: Design the image needed in Line 50.

Answer:

50 U$ = 11 \ 9 spaces \ 4 \ 12 \ 4 \ 9

\ 4 \2\ 11

.•. and Run.

272 Chapter 36

EXERCISE 36-2: Duplicate the following statement. Use PRINT
USING for all but the column headings.

CREDITS

ASTRAL COMPUTER 18.30

BIOFEEDBACK ADAPTER 1.00

PERSONALITY MODULE 7.20

Learned In Chapter 36

Statements

PRINT USING

Miscellaneous

Image Line
PRINT USING
Symbols
#.$*,\

TAX

.10

.oo

.30

TOTAL

19.00

1.00

7.50

DUE: 28.30

---------Chapter 37

JPIBITWJr UJ~IlWCG!r 00

IB@ill1IITl cd1 ~

[]
n the previous Chapter we learned almost everything really needed to
put PRINT USING to work. Here are a few other "tricks" that some
will find helpful.

When PRINTing big bucks (over 9,999,999 dollars), it is necessary to use
double precision or we lose the loose change. Type in this New program:

10 A$ = "$$######t###.##"

20 D = 123456789.01

30 PRINT USING A$;D

... and Run.

(Count 'em.)

Sure enough, it rounds to $123,456,792.00. Granted, it's only a few seconds
interest on the national debt, but for businesses doing the taxpaying, the accu­
racy can be easily improved by simply switching to double-precision.

Change Lines 20 and 30 to:

20 0# = 123456788.01

30 PRINT USING A$;O#

There it is -- $123,456,789.01 -- even the change to tip the porter who hides
the public baggage carts. Notice that the image Line didn't have to change?
All we did was use the double-precision techniques we learned earlier.

H the 17-place accuracy of double precision isn't adequate to keep track of
the Krugerrands in your mattress, you and Scrooge McDuck can probably
afford to spring for a bigger computer.

273

274 Chapter 37

Profit Or Loss?
Was that last number this quarter's PROFIT from the lemonade stand, or was
it a LOSS? We can make the image Line PRINT either one. Change it to
read:

10 A$ = "+$$######t###t##"

... and Run.

Very nice. Wonder what would happen if D# was a negative number?

20 D• = -123456789.01

... and Run.

So far, so good. Suppose we take the + out of the image Line. Wonder if
it will PRINT the minus sign anyway? Use the Editor, and remove it from
Line 10.

Then Run.

Oh, Pshaw! It goofed it up. Negative numbers require one more field element
than positive numbers, and the extra $ doesn't do the job. The + did count
as an element, so let's put the + sign back in, this time at the end of the
image.

10 A$ = "$$#######1•••·••+"

... and Run.

Mmmmm. That's nice. The sign is PRINTed at the ·end. Let's change D#
back to a positive number and see what happens.

20 D• = 123456789.01

... and Run.

Very nice. Looks better to have the signs at the end, not interfering with the
dollar sign, don't you think?

PRINT USING - Round 2 275

Most printers don't PRINT deficits in red. How can we tag them so it's harder
for the project manager to slip them by us? (We'll just take all + numbers
for granted.) Let's try changing the image + to a minus and see what
happens.

10 A$ = 11 $$••••••••••·••-"

.•. and Run.

Seems normal. How about when it's hit with a negative number.

20 D• = -123456789.01

.•• and Run.

AHA! Sticks out like a sore thumb. Now about this little deficit here,
Smythe •..

EXERCISE 37-1: Duplicate this simplified ledger by use of PRINT
USING:

REVENUES
1t203t104.22

o.oo

EXPENSES ASSETS
o.oo 1t203t104.22

560t143.80 560t143.80-

More On Strings
There are two more PRINT USING characters that have real value. Like so
many exotic ''upgrades" of BASIC, it does nothing that can't be achieved
using other BASIC words, but does it easier. Enter this New program:

10 X$ = "ALEXANDER"
20 Y$ = "GRAHAM"
30 Z$ = "BELL"
40 A$ = "!1!1\2\ 11

50 PRINT USING A$;X$tYtZ

276 Chapter 37

... and Run.

Who should appear before our very eyes but:

A G BELL

Each ! reserves an element in the field for the first letter of the string assigned
to it. Very handy when we want to PRINT the initials and last names of a
list of people.

Another Short Cut
An area of PRINT USING worthy of examination is incorporation of the
image Line into the PRINT USING Line. It requires some care and has value
primarily when only a few variables are to be PRINTed or are only PRINTed
once. In most practical applications, the image Line is referenced many times
during a Run, frequently by different PRINT USING Lines.

Change Line 50 and delete Line 40 in the resident program so it looks like
this:

10 X$ = "ALEXANDER"
20 Y$ = "GRAHAM"
30 Z$ = "BELL"
50 PRINT us ING "11 11 \ 2 \" ;x$ 1Y$,z$

... and Run.

We simply did away with A$ and incorporated its elements into a combination
PRINT and image Line, separated by a semicolon. It does save space, and for
short and uncomplicated PRINT USING applications, has great value. For the
long and complicated ones, it's better to keep the image and PRINT USING
Lines separate.

INPUTting The Image
We move deeper into the woods as we make BASIC's PRINT formatting
capabilities resemble the superior (and far more complicated) ones of the FOR·
TRAN language from which it is derived. We can even INPUT the image

PRINT USING •• Round 2 277

Line, since it is a string. An easy way to see this is by using our resident
program, adding Line 40 and changing Line 50:

40 INPUT A$
50 PRINT USING A$;X$tYtZ

... and Run.

We now have to respond by typing in the image Line. (Seems like they're
hard enough to create without INPUTting.) The safest one to use is old Line
40, so respond to the question mark with:

? !1!1\2\ 1;m•nae1

and see:

A G BELL

appear again.

Run again, this time responding with something like:

? \ 7 \1\ 4 \1\2\

and we should see something like:

ALEXANDER GRAHAM BELL

Try some other INPUTs and see how fast we get into trouble with ''Type
Mismatch" errors. The down-to-earth value of this particular capability is a
little elusive.

Let's experiment with a new PRINT USING character. Run the program
again, and when it asks for an INPUT type:

278 Chapter 37

This new character allows the use of variable length strings. The three names
\

are concatenated and PRINTed. This is a little strange because it defeats the
purpose of PRINT USING since there's no way to control column placement.
However, when the right application pops up, it's there to use.

Scientific Forms Of PRINT USING
Would you believe a double-precision number, clipped and expressed via
PRINT USING in double-precision Exponential notation? The technical types
among us with mismatched socks and rope for a belt will salivate at that one.
We aren't going to bore the business types with the gory details except for
a quick intro.

Type in this New program:

10 A$ = "••················AAA AH (18+4)

20 D• = 1234567890987654321

30 D = 1234567890987654321

AO PRINT USING As;o1
50 PRINT USING As;o

... and Run.

What we see is what we get, both in double and single precision. Using the
Editor, move the block of 4 carets (up-arrows) to the left, one position at a
time, by deleting #'sand then adding #'s to the right of the carets. Have fun!

Bring On The Money Changers
Here is a straightforward user program which uses PRINT USING in a prac­
tical way. One would be hard pressed to get the same results in so short a
program without USING it.

If you're not in the international currency biz, just type in the first half-dozen
or so DATA Lines, plus Line 1500 to get a feel for what PRINT USING can
do. See how \ and # can be mixed with blank spaces on the same image
Line?

PRINT USING •• Round 2 279

Remember, DATA items are easy to change. H you want to use the current rate
of exchange, just enter them in place of these.

Count spaces in Line 100 very carefully! Add a "measuring Line" 99 if
necessary.

10 REM * INTERNATIONAL MONEY CHANGER *
20 REM * USING SAMPLE RATES OF EXCHANGE *
30 RESTORE
ao PRINT "HOW MANY u.s. DOLLARS";
50 INPUT "DO YOU WISH TO EXCHANGE";D
60 CLS
70 PRINT "AT TODAY'S RATE YOU WILL GET"
80 PRINT
90 READ A$tA : IF A$ = "END" THEN 30
100 P$ = 11 \ (16 spaces) \ ######## • ## 11

110 PRINT USING P$;A$;D/A
120 GOTO 90
1000 DATA ARGENTINE PESOt .02576
1010 DATA AUSTRALIAN DOLLARt .9025
1020 DATA AUSTRIAN SCHILLINGt .05179
1030 DATA BELGIAN FRANCt .01786
1040 DATA BRAZILIAN CRUZEIROt .0006809
1050 DATA BRITISH POUNDt 1.3830
1060 DATA CANADIAN DOLLARt .7710
1070 DATA CHINESE YUANt .a523
1080 DATA COLOMBIAN PESOt .01034
1090 DATA DUTCH GUILDERt .3210
1100 DATA DANISH KRONEt .09930
1110 DATA ECUADORIAN SUCREt .01075
1120 DATA FINNISH MARKKAt .1715
1130 DATA FRENCH FRANCt .1185
1140 DATA GREEK DRACHMA •• 009217
1150 DATA HONG KONG DOLLARt .1279
1160 DATA INDIAN RUPEEt .0904
1170 DATA INDONESIAN RUPIAHt .000991
1180 DATA IRISH PUNTt 1+1150
1190 DATA ISRAELI SHEKELt .005528

.1200 DATA ITALIAN LIRAt .0005910

280 Chapter 37

1210 DATA JAPANESE YENt .004305
1220 DATA LEBANESE POUNDt .1751
1230 DATA MALAYSIAN RINGGITt .4322
1240 DATA MEXICAN PESOt .004902
1250 DATA NEW ZEALAND DOLLARt .6470
1260 DATA NORWEGIAN KRONEt .1277
1270 DATA PAKISTANI RUPEEt .07246
1280 DATA PERUVIAN SOLt .0003378
1290 DATA PHILLIPPINE PESOt .07133
1300 DATA PORTUGUESE ESCUDOt .007143
1310 DATA SAUDI ARABIAN RIYALt .2841
1320 DATA SINGAPORE DOLLARt .4739
1330 DATA SOUTH AFRICAN RANDt .7800
1340 DATA SPANISH PESETAt .006494
1350 DATA SWEDISH KRONAt .1236
1360 DATA SWISS FRANCt .4415
1370 DATA TAIWANESE DOLLARt .02526
1380 DATA THAI BAHTt .04351
1390 DATA URUGUAY NEW PESOt .01965
1400 DATA VENEZUELAN BOLIVARt 1.333
1410 DATA WEST GERMAN MARKt .3648
1500 DATA ENDt 0

As we've seen, PRINT USING is the most complex of our PRINT statements
but by far the most powerful. If you're a serious programmer, you should
master PRINT USING completely. Then you can take our many simple
learning examples and expand them into large, useful routines.

Learned In Chapter 37

Miscellaneous

PRINT USING symbols
+ - .. !

---------chapter 38

I R I eady for a brook to learn something that's vay simple?

LPRINT And LLIST
These BASIC Commands/Statements are almost too easy.

Our Chapter is written for the lmagewriter because it was designed specifically for
the Mac, but Mac will support the new Laserwriter and other serial printers if a
special driver is purchased from your Apple dealer.

We have learned a lot of ways to PRINT, but they have all been on the video
screen. Now we'll learn how to PRINT-out to the Imagewriter. If you don't
have one, at least skim this Chapter before proceeding.

Hook up and turn on the printer, then type this new one-Line program:

LPRINT "THE PRINTER WORKSll I"

Notice that the first word is LPRINT, not PRINT. Run the program.

Did it print? If your printer did nothing, check the connections again. Make
sure the printer is on, the SELECT light is lit and the covers are in place. Try
Running the one-Line program again.

NOTE: There is much widespread misuse of the language when it comes to
naming printers. Here are some definitions:

PRINTer = a device which converts computer talk to ''hard copy."

Dot Matrix Printer = A printer such as the Apple Imagewriter
which creates characters and graphics by printing clusters of dots.

281

282 Chapter 38

Character Printer = A printer which, like most typewriters, prints
complete pre-formed characters.

Line Printer = A very large "hi-speed" printer which literally "sets".
and then prints an entire LINE of print at one time.

There is much misnaming of printers. Very few are true "Line Printers,"
though many are sold under that name. True Line Printers are very expensive
and can print over 1000 lines of type per minute.

It is from the Line Printer name that the "L" in LPRINT was derived.

LLISTing The Program
LUST is typed in the Command window when we want a USTing of a pro­
gram sent to the PRINTer.

Both LPRINT and LUST can be used either as statements or commands. If
you want to PRINT both on the screen and on paper, use duplicate program
Lines, with PRINT for the screen and LPRINT for the PRINTer.

To print a listing as it appears on the screen with the same spacing and font
styles, select Print... from the File menu. A paper option window appears
that lets us choose various paper sizes and styles. You can change the settings
or leave them as is and continue by clicking the OK box. The next window
lets us select the quality of printing and the Page Range. The Page Range
will come in handy with very long programs that fill more than one printed
page. Clicking inside the OK box in this window starts the printing.

Enter any program of your choice, and convert it to LPRINT the results on
your PRINTer. Make a "hard copy" LUSTing of it.

If you accidentally precede either PRINT or UST with the letter L and don't
have a PRINTer connected, there may be trouble. It's very easy to acciden­
tally tum a simple LIST into LUST. If there is no PRINTer hooked up or
it's turned OFF, LPRINT and LUST have no effect. However, if the printer
is turned on and the SELECT light is off, the Computer freezes until the
SELECT switch is pressed.

LPRINT TAB
The TAB function can handle numbers up through 32767. This has little value

Using A Printer 283

in displays PRINTed on the Computer, but on big PRINTers, it is common
to PRINT Lines up to 132 characters long.

We recall that PRINT STRING$ is used to repeat a number of characters or
actions. We can use it to sneak around the above rule by having it repeat a
number of spaces. For example:

LPRINT STRING$(95t32>;x

will "PRINT'' 95 blank spaces before PRINTing the value of X. "32" is the
ASCil code for a space.

Formatting
Now, let's see how to PRINT with a nice format. Select New, and type:

10 FOR X=1 TO 100
20 LPRINT Xt
30 NEXT X
40 LPRINT

... Run it.

See how the printer will format the PRINTing into neat little columns? The
comma with LPRINT works the same as it does with PRINT.

Try using a semi-colon in Line 20 rather than a comma. Type:

20 LPRINT x;

... and Run. The semi-colon works the same on the PRINTer as it does on the
video screen. Let's see how TAB works. Type this New program:

10 LPRINT TABC25); "TELEPHONE LIST"
20 LPRINT
30 LPRINT TABC15); "NAME";

284 Chapter 38

40 LPRINT TAB<45>1 "TELEPHONE NUMBER"
50 LPRINT
60 INPUT "TYPE A FRIEND'S NAME";A$
70 INPUT "PHONE NUMBER";B$
80 PRINT "THANK YOU"
90 LPRINT TAB<15>1 A$;TAB<45)1 B$
100 INPUT "IS THERE ANOTHER FRIEND (Y/N)".Q$
110 IF Q$="Y" THEN 60

.•. and Run.

H the paper width is smaller than 8 1/2 inches, you'll want to use different
TAB settings.

LPRINT USING
In the last Chapter we saw how PRINT USING can format our PRINT outputs
on the screen. Those same features can be applied to the printer by using
LPRINT USING. Incorporate LPRINT USING in one of the simple programs
from the last Chapter.

10 X$ = "ALEXANDER"
20 Y$ = "GRAHAM"
30 Z$ = "BELL"
50 LPRINT USING "!l !l\ 2 \";X$;Y$;Z$

... and Run.

Advanced LPRINT Capabilities
The printer is capable of producing all different kinds of printouts. By sending
the printer certain codes, it can be made to display graphics, underline text,
make boldfaced letters, etc. We have listed just a few of the popular ASCII
codes. See the Imagewriter Printer Manual for more.

Using A Printer 285

8 backspace
9 horizontal tab

10 line feed and carriage return
12 roll paper to top of next sheet
13 carriage return
14 begin headline mode
IS end headline mode

To see what this all means, enter this New program:

10 INPUT "ENTER A CODE NUMBER";N
20 LPRINT N;"IS ";CHRS<N>;" TO A PRINTER"
30 GOTO 10

... and Run.

Try each of the codes, and see what happens. Some codes may do nothing.
If something goes wrong, shut the printer off and turn it back on to "clear"
it out.

The ''top of form," or ''top of next sheet," feature is necessary when using
the printer with preprinted forms or when printing must start at the top of the
page.

When your Computer is turned on, if it is going to do any PRINTing, it
automatically assumes it will be PRINTing 6 lines per inch on sheets of paper
11 inches long, 66 lines per page.

Screen Dumps
By holding a BJD1D EJ with the Lill·'"•B.19' down, the Macintosh will dump
the entire screen to the printer. If the LiU·I0-13.143 key is not down, only the
active window will be printed.

LCOPY
LCOPY does what pressing llBJDID El does, but from within a program.

286 Chapter 38

With a little experimenting, your PRINTer will be doing what you paid to
have it do.

Learned In Chapter 38

Statements

LPRINT
LUST
LCOPY

Miscellaneous

Trailing semi-colon
Screen dump <I Bli1DJ IJ)

Menu

File
Print ...

Chapter 39---------

e know we can use combinations of the 26 letters of the alphabet,
digits 0-9, and the decimal points to create variable names of up to
40 characters in length. We've also discovered that very few of our

programs have required anywhere near that many variables. There are times,
however, when we need more variables - sometimes hundreds or even
thousands of them.

The way we control and keep track of that many variables is by holding them
in an ARRAY. Array is just another word for "lineup," "arrangement" or
"series of things."

Let's organize a collection, arrangement or lineup (array) of autos, each of
which has a different I.D. (address) number.

We line up 10 cars, as in an a"ay. They are all the same except for their
engine size - and each has a different I.D. or license number. Let's say the
I.D. numbers range from 1 to 10, and we want to use the Computer to quickly
spit out the engine size when we identify a car by its I.D. number. This might
not seem like a real heavyweight problem -- but, as before, we discover the
full potential of these things by learning little steps at a time.

The I.D. numbers and engine sizes are as follows:

CAR# ENGINE

1 300
2 200
3 500
4 300
s 200
6 300
7 400
8 400
9 300
10 500

288

Arrays 289

Now, we could give each of these cars a different letter name, using the vari·
ables A through J, but what a waste ·- and what will we do when there are
a thousand cars, not just ten?

Setting Up Arrays
Microsoft BASIC allows any valid variable name to be used as an array
name. An Array named "A" is not the same as the Numeric variable "A,"
and neither is it the same as string variable A$. It is a totally separate "A"
used to identify a Numeric array. We call it A-sub(something), and it can
only hold numbers. We will name the cars A(l) through A(lO), pronounced
"A sub 1" through "A sub 10." Get the idea?

What's that -- you don't believe there can be 3 separate variables all named
"A"? Ok, in the Command window type:

A = 12 !;Aii!iu

A$ = II (YOUR NAME) II 1;m1111e1

A< 1 > = 999 1m1111rn

then: PR I NT A , A$, A< 1) l;Al!iie!

Does that make you a believer?

Let's store the car engine sizes in DATA statements. Return to the List win­
dow, and type:

500 DATA 3001200150013001200

510 DATA 3001400140013001500

Notice how carefully we kept the DATA elements in order from 1 to 10 so
the first car's engine size is found in the first DATA Location, and the 10th
one's in the 10th location?

We now have to "spin up" an array inside the Computer's memory to make
these data elements immediately addressable.

Big words meaning "so we can find a car fast."

290 Chapter 39

Think how difficult it would be to try to address the 7th engine (or the 7
thousandth!), for example, using only what we've learned so far. It can be
done using only DATA, READ and RESTORE statements, but that would be
very messy and slow.

The easy way to create the array is to insert:

20 FOR L = 1 TO 10
30 READ A<L>
40 NEXT L

... and Run.

Nothing happen? Yes, it did. We simply didn't display what happened.

The FOR-NEXT loop READ 10 pieces of DATA and named the elements (or
"cells") in which they're stored A(l) through A(lO). To PRINT out the values
in those array elements, add:

95 FOR N = 1 TO 10

100 PRINT A<N>
110 NEXT N

... and Run.

Aha! It works, but how? We READ the DATA elements into an array called
A(L), but PRINTed them out of an array called A(N). Why the difference?
Nothing significant.

The array's NAME is "A." The location of each data element within that
array is identified by the number we place inside the parentheses. That number
can be brought inside the parentheses by using any numeric variable and even
some simple arithmetic can be done inside the parentheses, if necessary. We
arbitrarily used N to READ them in and L to PRINT them out.

Remember, the array we are using is named "A." Its elements are numbered
and called A-sub(number).

Arrays 291

Some pure mathematicians might insist on calling A(X) A "OF' X. We don't need
that added confusion. Best you know, just in case.

Let's work some more on the program.

Insert, and change:

80 PRINT
90 PRINT "CAR#"t"ENGINE SIZE"
100 PRINT NtACN>

... and Run.

Now that's more like it. We have every I.D. number, every engine size .and
are not ''using up" any of the "regular'' alphabetic variables to store them.
Having demonstrated that point, remove Lines 95 and 110, and insert:

10 INPUT "WHICH CAR'S ENGINE SIZE";W

100 PRINT WtA<W>

..• and Run, answering with a car #.

Get the idea? Can you see the crude beginning of a simple inventory system
for a small business?

Let's go one small step (for mankind) further. Suppose we know the color of
each of the 10 cars, and for simplicity, suppose the colors are coded 1, 2,
3 and 4. We might then have a master chart that looks like this:

CAR# ENG. SIZE COLOR

1 300 3
2 200 1
3 500 4
4 300 3
5 200 2
6 300 4
7 400 3
8 400 2
9 300 1

10 500 3

l-t(;;l.-I I a..tEH. A LL
l A':3K~D FOR
WA~ARRAV~.

Arrays 293

In the language of professional computer types, this is called a matrix. A
matrix is just an array that has more than one dimension. (In our arrays, we
can have at most 255 dimensions with a maximum of 32,768 elements. Our
first array had the dimension of 1 by 10 -- 1 column by 10 rows.) This new
array has a horizontal dimension of 2 and a vertical dimension of 10.

If we wanted to be terribly inefficient about the matter, we could say that this
is a 3 by 10 array, counting the I.D. number. If so, our first example would
be called a 2 by 10 array -- but who needs it? As long as we keep the I.D.
numbers in a simple 1 to 10 FOR-NEXT loop and the DATA in proper
sequence, the arrays will be simple and easier to handle.

Since we do not store the car number in the Computer it is a "pointer" or an
"index." That's why we don't consider it as another "DIMension" to the matrix.

How then can we label this 2 by 10 matrix? We have already used up our
A array elements numbered 1 through 10. Oh, you want to know how many
elements we have to work with? Very good!

Let's arbitrarily assign array locations 101 through 110 to hold the color code.
We also have to put the color code info in the program using a DATA state­
ment. From the table, type:

520 DATA 3,1,4,3,z,4,3,z,1,3

and insert:

50 FOR S = 101 TO 110
60 READ A<S>
70 NEXT S

These last Lines load the color code DATA into the array. Array element
numbers 11 through 100 are not used, nor are those from 111 to the end of
memory since they have not been formally assigned any values .

... Run, and select any car number.

294 Chapter 39

Awwkll What is this "Subscript out of range" business? Well, since arrays
take up a lot of memory space, the Computer automatically allows us to use
up to only 11 array elements without question. (They can be numbered from
0 to 10.) Then our credit runs out. We earlier used elements numbered from
1 to 10 without any problem.

If we'd wanted to, we could have put at the beginning of our program:

5 OPTION BASE 1

This OPTION changes the lowest (or BASE) array element number to 1,
instead of 0. 1 or 0 are the only numbers that can be used with the OPTION
BASE statement.

To use array elements numbered beyond 10 in the array called "A," we have
to "reDIMension" the available array space. Our highest number in Array "A"
needs to be 110, so we'll add a program DIMension statement:

5 DIM A<110)

... and Run again. That's better, but it's not PRINTing the color code.

To display all the information, change these Lines:

10 INPUT "WHICH CA~ TO EXAMINE"IW
90 PRINT "CAR•"1"ENG. SIZE"t"COLOR"
100 PRINT W1A<W> 1A<W+lOO>

... then Run.

Check your answers against the earlier master matrix chart. Save the pro­
gram As CARARRAY.

Let your imagination go. Can you envision entire charts and "look-up" tables
stored in this way? Entire inventory lists? How about trying to find the car
which has a certain size engine and a certain color? Hmmm. We will come
back to the Logic needed for that last one.

\

'

Arrays 295

EXERCISE 39-1 i Assume that your inventory of 10 cars includes 3
different body styles, coded 10, 20 and 30, as follows:

CAR#
1
2
3
4
5
6
7
8
9

10

BODY
20
20
10
20
30
20
30
10
20
20

Modify the resident program to PRINT the body sfyle information
along with the rest when the car is identified by l.D. number.

A Smith & Wesson Beats 4 Aces
If we want to create a computerized card game (they make good examples to
show so many things), how can we program it so it draws the 52 or so (watch
the dealer at all times) cards in a totally random way? ANSWER: Spin up
the deck into a single-dimension array, pick array elements using a random
number generator, as each card is "drawn" set its array element value equal
to zero, then test each card drawn to be sure it isn't zero. Now that is really
simple! (Might want to read it once again, more slowly.)

We will now, a step at a time, write a program which will draw, at random,
all 52 cards numbered from 1 through 52 and PRINT the card numbers on
the screen as they are drawn. No card will be drawn more than once. When
all cards have been drawn, it will PRINT "END OF DECK!"

You do a step first, then check against my example. Then change yours to
match mine - otherwise we might not end up at the same place at the same
time.

STEP 1: Spin up all 52 cards into an array.

296 Chapter 39

10 WIDTH 60

20 DIM A<52)
30 FOR C=1 TO 52 : READ A<C> : NEXT C

500 DATA 1t2t3t4t5t6t7t8t9t10t11t12t13

510 DATA 14t15t1Bt17t18t19t20t21t22t23

520 DATA 24t25t26t27t28t29t30t31t32t33

530 DATA 34t35t36t37t38t39t40t41t42t43

540 DATA 44t45t46t47t48t49t50t51t52

At this point, all we can tell when Running is that processing time is required
since the cursor (flashing bar) doesn't come back right away.

Shhhh! I know there's a shorter way to program this special case, but it doesn't
teach what's needed.

STEP 2: Draw 52 cards at random, PRINTing their values.

40 FOR N = 1 TO 52

50 V = INT<RND * 52 + 1)
60 PRINT A<V>;

70 NEXT N

... and Run.

True, 52 card values are PRINTed on the screen, but if we look carefully,
the same number appears more than once. This means that some "cells" are
not being READ and some READ more than once.

STEP 3: When a card is drawn, set its array value equal to 0. Test each card
drawn to be sure it is not 0. When 52 cards have been drawn and PRINTed,
PRINT "END OF DECK!"

Arrays 297

40 p = 52
55 IF ACV> = 0 GOTO 50
70 ACV> = 0 • p = p - 1 .
BO IF P<>O GOTO 50
90 PRINT : PRINT "END OF DECK!"

... and Run.

Line 70 sets the value in cell A(V) equal to 0 only if Line 55 finds it not
equal to 0 already, letting the program pointer fall through.

When a "fall through" occurs:

1. the card's value is PRINTed (Line 60).

2. the number stored in that cell is set to 0 (Line 70).

3. the second statement in Line 70 counts down the number of
cards PRINTed. Line 40 initialized the number of PRINTs at
52.

4. the number of PRINTs is tested (Line 80). When there are no
more PRINTs to go, "END OF DECK!" is PRINTed (Line 90).

Pretty slick -- and we don't have to watch the dealer Gust the programmer).

But how do we really know that every card has been dealt? Write a quick
addition to the program to "interrogate" each array cell and PRINT its
contents.

100 FOR T = 1 TO 52
110 PRINT ACT>;
120 NEXT T

Run ... and every cell comes up zero. If you don't really trust all this, change
Line 40 to read:

40 p = 50

298 Chapter 39

... Run and see what happens.

AHA! It flushed out those 2 cards up the sleeve, didn't it?

To add a final touch of ''randomness" to the deal, add:

5 RANDOMIZE TIMER

Change P back to 52, Delete test program Lines 100, 110, and 120, and we
end up with a good card-drawing routine. You might want to clean it up to
your satisfaction and Save it As CARDDRAW for future projects.

Question: Why does the PRIN'f"mg of card numbers slow down to a near halt
as those last few cards are being drawn? Is the dealer reluctant?

Answer: The random number generator has to keep drawing numbers until it
hits one that is the array address of an element which has not been set to
zero. Near the end of the deck, almost all elements have been set to zero. The
random number generator has to draw numbers as fast as it can to find a
"live" one.

Look again at the card numbers PRINTed. There will not be any duplication.
No stray aces.

EXERCISE 39·1: Change the program so the original array can be
loaded with the card numbers without having to READ them in
from DATA Lines.

New Dimensions
We have already done some DIMensioning with single dimension numeric
arrays. String arrays must also be DIMensioned.

Suppose we have a program like this: (Type it in.)

10 FOR N = 1 TO 15
20 READ A$<N>
30 PRINT A$<N> t

40 NEXT N

100 DATA ALPHAtBRAVOtCHARLIEtDELTA
110 DATA ECHOtFOXTROTtGOLFtHOTEL
120 DATA INDIAtJULIETTEtKILOtLIMA
130 DATA MIKEtNOVEMBERtOSCAR

... and Run.

Arrays 299

Oops. There's that same problem. ••subscript out of range" means .. not
enough space set aside for an array." Recall that only 11 elements per a"ay
(from 0-10) are set aside on power-up. We are trying to read in 15 of them,
starting with 1. The solution:

5 DIM A$(15)

... and Run.

DIMensioning a string array is just like dimensioning a numeric one -· simply
call it by its name. In this case, its name is A$. You "high speed" types will
want to know that to do "dynamic redimensioning" (that's doing it while a
program is running), the program must first encounter a CLEAR. Oh.

All CLEAR
The CLEAR statement simply CLEARs the memory of all meaningful infor·
mation except the actual program. It makes all string variables and arrays con­
tain nothing and sets all numeric variables to 0. And anything we DEFined
with a DEF FN statement will be forgotten.

For example, enter the Command window, and type:

CLEAR l;G1illji'

and then:

PRINT A$(3) l;f51i!llU

Nothing. Typing RUN lmmlie! to start the program again and to reload the
Array, then PRINT A$(3), and we get CHARLIE.

300 Chapter 39

ERASE will null out the contents of a specific array variable.

For example, type:

ERASE 6$ 1;r:n111e1

By telling the Computer to ERASE all data in the B$ array, we have not
removed the data in A$ array. (Since we don't have a B$ array in our pro­
gram, we'll get an "illegal function call.") To prove this point type:

PRINT A$(3) l;Ali!W

Now type:

ERASE A$!;Alim!

and

PRINT A$(3) •;mmm
Try PRINTing other elements in A$ array. They have all been ERASEd.

Array Names
A<N>
BC<N>
D3<N>
E4$<N>
XY$<N>
A+SAMPLE.ARRAY$<N>

are examples of legal array names. The last 3 are for "string arrays."

Learned In Chapter 39

Statements

DIM
CLEAR
ERASE
OPTION BASE

Miscellaneous

Arrays
Array names

Arrays 301

Chapter 40---------

ne of the Computer's most powerful features is its ability to search
through a pile of DATA and sort the fmdings into some order.
Alphabetical, reverse alphabetical, numerical from smallest to largest,

or the reverse are all common sorts. The search/sort feature is so important
we will spend this entire Chapter learning how to use it.

Typical applications of search and sort include:

1. Arranging a list of customers' or prospects' names in alphabet·
ical order.

2. Sorting names in ZIP·Code order for lower-cost mailing.

3. Sorting the names of clients in telephone area code order.

While not really all that complicated, the sorting process is sufficiently
rigorous that we are going to take it very slowly and examine each step. Once
we get the hang of it, the Computer can blaze away without our considering
the staggering number of steps it's going through.

A Problem Of Sorts
Let's start with a problem. We have the names of 10 customers. (If that
doesn't grab you, make it 10 million •• the process is identical.) We wish to
arrange them in alphabetical order.

Start by storing their names in a DATA Line. Select the List window and
type in:

DATA BRAV01XRAY1ALPHA1ZULU1FOXTROT1TANG01
HOTEL1SIERRA1MIKE1JULIETTE

302

Search And Sort 303

Since we are sorting by name rather than by number, we have to use string
variables, string arrays, etc. They work equally well with numbers such as
zip codes, while numeric variables and arrays work only with numbers.

The backbone of a sort routine is the array. Each name is to be READ from
DATA into an array. So add:

10 REM * ALPHA SORT OF STRINGS FROM DATA *
20 FOR D = 1 TO 10 : READ A$(D) : N=N+l :

NEXT D

Line 10 is, of course, just the title.

Line 20 "loads the array" by READing the 10 names into storage
slots A$(1) to A$(10). N is simply a counter which will follow
through the rest of the program. In this simple program, we could
have made N = 10 since we know how many names we have. In
the next sample program, we won't know how many names there
are, so let's leave N the way it's usually used.

Important to the sort routine are 2 nested FOR-NEXT loops.

1. The first one, F, controls the First name.

2. S, the second one, controls the name to be compared
against the first.

Names and words are compared as we learned in the Chapter on ASCII set,
remember?

Let's establish the loops first, and fill in the guts later:

30 FOR F = 1 TO N-1 (F =First word to be compared)

40 FOR S = F+l TO N (S =Second word to be compared)

90 NEXT s (Makes 9 passes)

100 NEXT F (Makes 9 passes)

304 Chapter 40

It may seem puzzling that F and S only have to make 9 passes when there
are 10 names. Think of it this way. Whatever word isn't smaller (ASCII #)
than the rest, just ends up last. No need to test again to prove that.

The F loop READs array elements 1 through 9 (N-1 = 9). The S loop
READs array elements 2 through 10. This always provides different array ele­
ments to compare.

Now we'll jump to the end of the program and prepare it to PRINT out what
will happen. Type:

110 WIDTH 60t12
120 FOR D = 1 TO N : PRINT AS<D>, : NEXT D

When the sorting is done, the contents of A$(1) to A$(10) will be the same
names READ from DATA, but they will be in alphabetical order. We'll
PRINT the array contents on the screen.

50 IF A$ <F> <= A$CS> THEN 90 (tests for smaller ASCII#)

60 T$ = A$<F> (first word to Temp storage)

70 A$<F> = A$<S> (copy Second word to Frrst place)

80 A$<S> = T$ (copy Temp word to Second place)

And there is the biggie! If you can understand the last 4 Lines, the rest is
duck soup.

Line 50 says, "If the Frrst word is smaller than (or equal to) the
Second word, leave well enough alone and bail out of this routine
by going to Line 90, which will end this pass and READ another
word to compare against F. If it is larger, drop to the next Line."

Line 60 says, "Oh, they weren't in the right order, eh? We'll just
copy the First word in a Temporary storage location called T$ and
store it there for future use. I'm sure we'll need it again."

Line 70 copies the name held in the Second cell into the First array
cell. If the Second one had an earlier starting letter than the First
one, we do want to do this, don't we?

Search And Sort 305

Line 80 completes the switch by copying the name Temporarily
stored in T$ into the Second array cell. A$(1) and A$(2) contents
have now been exchanged with the aid of the Temporacy holding
pen, T$.

Us simple country boys find this one easy: There are two brahma bulls in separate
pens, A$(1) & A$(2), and we want to switch them around. Ain't no way we're
going to put them in the same pen at the same time. (Not with me in there any­
way. Already broken too many 2 by 4's between their horns and have some scars
on the wrong end from escapes that were a hair too slow.) Thats why we built
a temporary holding pen called T$. Got it?

If we did everything right, the program should:

Run

and in a flash the names appear on the screen in alphabetical order:

ALPHA
MIKE

BRAVO
SIERRA

FOXTROT
TANGO

HOTEL
XRAY

JULIETTE
ZULU

Save As SORT, and Run it to your heart's delight. This is one of the most
powerful things a Computer can do, and it does it so well. The identical pro­
cedure is used to sort very long lists of names (or zip codes, or whatever)
but we would, of course, have to reDIMension for a larger array.

To get a really good look at what's happening, it's necessary to slow the beast
way down, and insert a few extra PRINT Lines. They allow us to peer inside
the program by watching the tube.

Add these temporaries:

45

55

85

PRINT FiA$(F> ttSiA$<S>
PRINT TAB<10>; "<<--<<
PRINT FiA$<F> ttSiA$(S)

SWITCHER00 11

(Allow three spaces after the arrow - that way it will look nice on the screen
when you Run it.)

1--lt;V, DOG, WHATk;
2 PEt\lfl WITH BULL~
IN 'EM 601 10 CQ
WlTl-l "GEARCl-1 'atilL

t;ORT"~

I

Search And Sort 307

... and Rqn.

Aw c'mon horse -- Whoa!

If that wasn't slow enough, add Line 47 and make the delay long enough so
there is time to completely think through each step. Pretend you're the Com­
puter, and make the decision that Line 50 has to make. Take it from the top
-- very slowly!

47 FOR Z = 1 TO 1000 : NEXT Z

The Diagnosis

1 BRAVO Z XRAY

means "in cell #1, is the word BRAVO, and in cell #2, is the word XRAY''
just like they came from the DATA Line. Of those two words, BRA VO is
the "smallest" (ASCII#), so it stays in number 1 place. On to the next pass
of S ...

1 BRAVO 3 ALPHA

Oops. BRAVO is in #1 and ALPHA is in #3, but ALPHA is smaller than
BRA VO. We better switch them around. So

<<--<< SWITCHEROO

1 ALPHA 3 BRAVO

Don't worry too much about what is happening in the second column. S is
scanning through the array, and its contents are always changing, testing
against what's in the first. It's what ends up in the first column that counts
-- and that list must be in increasing alphabetical order.

308 Chapter 40

As the program Runs, watch new words appear in S, loop and column, and
compare them against what's in F. Try to guess what the Computer's going
to do. Also keep an eye on the increasing numbers on the left. The final word
assigned to a given number in the first column is what will appear in the final
PRINTout.

Run the program as many times as it takes (and at as many sessions as it
takes) to completely understand what's happening. It's awfully clever, very
important and absolutely fundamental. We carry this technique over to many
useful programs in the future, but only if we really understand it.

When you feel it's under control, add one more little item to the screen. What
T$ is holding while all this sorting is going on is interesting. Add and change
these Lines so they read:

45 PRINT F;A$CF> ,,s;A$(S)t"T$ = ";T$
85 P~INT F;A$CF> ,,s;A$CS> t"T$ = ";T$

... and Run.

"T$ = " starts off empty since there is nothing in the holding pen. BRA VO
is replaced by ALPHA in the switching process; however, T$ holds it. When
BRA VO replaces XRA Y in the #2 position, T$ holds XRA Y, etc.

On a clear head it's not hard to follow what's happening. If you're tired, it's
hopeless. Save this program and review it as often as necessary for a deep
understanding of the process.

Sorting From The Outside
We don't really have to keep all our names, numbers or other information in
DATA Lines. It can be INPUT from the keyboard or from disk. The fol­
lowing program is quite similar to the resident one, and the logic is identical.
Change and add these Lines:

10 REM * ALPHA SORT OF NAMES VIA INPUT *
20 INPUT "NEXT NAME";N$: IF N$="END" GOTO 30
25 N=N+l : A$<N> = N$: GOTO 20

Delete the DATA Line.

. Search And Sort 309

... and Run.

INPUT 6 or 8 random names, and when finished, INPUT the word "END."
The sort process is identical to what we used before.

Can you see the potential for all this?

EXERCISE 40-1: Change Line 50 of the sort program to list the
names in reverse alphabetical order.

Learned In Chapter 40

Miscellaneous

Sorting

Chapter 41---------

e have learned that an array is nothing more than a temporary parking
area for lots of numbers, or characters, or both. In addition, we
learned that it is a straight-forward procedure to compare values of

variables outside the matrix (or array) with those inside it.

An array which only has one DIMension, that is, just one long line-up of
parking places is sometimes called a vector. We can take that one-dimensional
array and cut it into perhaps four equal chunks, and position those chunks
side by side. We then call it a two-dimensional array - since the parking
places are lined up in rows and columns (or streets and avenues). Its DATA
holding or processing abilities are not changed. Only the addresses of the
parking places (or elements or memory cells) have changed.

Type in this New program:

10 DIM M<40)
20 FOR V = 1 TO 40
30 PRINT VtM<V>
40 NEXT V

Remember, any array with more than 11 elements (counting 0) must be
DIMensioned .

... and Run.

The Run simply shows the addresses (numbers) of 40 storage positions and
their contents. Since they are all lined up in a single row, it is a vector array.

310

Multi·DIMenslon Arrays 311

Why are the cell contents always O? Because every cell value is initialized at
zero upon entering BASIC and whenever we Run, just like all other numeric
and string variables. Line 30 shows how easy it is to specify the address and
read the contents of each memory cell.

Side By Side
Let's cut our 40 cell array into 4 equal strips and line them up side by side.
That would make 10 rows each containing 4 cells . . . right? Or 4 columns
each containing 10 cells. "Multi-dimensional arrays" always have rows and
columns.

Start over with this New program:

10 DIM M<10t4) (10 rows by 4 columns)

20 FOR R = 1 TO 10
30 FOR C = 1 TO 4
40 PRINT R;Ct
50 NEXT C • PRINT •

60 NEXT R

Save As MAT AD R; then after closing the List window, Run.

The addresses of all 40 cells displayed on the screen at the same time, but
not their contents. Nothing was changed from the earlier vector array con­
taining the same 40 cells. We just rearranged the furniture and gave it dif­
ferent addresses. They read:

1 1 means "first ROW, first COLUMN."

8 3 means "8th ROW, 3rd COLUMN."

etc.

To view the contents of each of these cells, change Line 40:

40 PRINT M<RtC> t

Multi-DIMension Arrays 313

... and Run.

See, the contents remain unchanged. They are still at their initialized value of
0, since we made no arrangement to store information in them. (The addresses
are no longer displayed.) Isn't this easy (... so far)?

Memory cells, like any other variables, have to be "loaded" with values to
be useful. This can be done by READing in DATA from DATA Lines, by
INPUTting it via the keyboard or from a previously recorded DATA disk. We
will load our Matrix from DATA Lines imbedded in the program.

Add these Lines:

100 DATA 1 t2 t3 t4 t5 t6 t etc. to 14

110 DATA 15t16t17t18t19t etc.to28

120 DATA 29 t30 t31 t32 t33 t etc. to 40

and this Line to READ the DATA into matrix cells:

35 READ M(RtC)

Save As MATCONT and Run.

The DATA is nicely arranged in the matrix, and each matrix position has its
original specific address. Again, that address is not displayed -- just the con­
tents. Let's go to the Command window for a minute and "poll," or "inter­
rogate," several matrix positions to see what they are holding Ask:

PRINT M<2t3) lmUl!ie!

Write down 7, the answer. We'll Run the program again later and check it.

PRINT M<St4) t;Aiiljii

Says that cell holds the number 36.

PRINT M(3t6) 1;m1111e1

314 Chapter 41

"Subscript out of range"? Why did we get that? Oh, there is no column 6?
No wonder.

Run the program again and check the screen, counting down the Rows and
over the Columns to see if the answers match up.

Mine did - how about yours?

Row2Col.3=7
Row 9 Col. 4 = 36

As an aside, in the Command window, type:

ERASE M 1mm!h1

then, check any matrix cell again.

PRINT MC2t2) 1mmm1

and get 0. ERASE M re-initialized all cells of array M to zero. We can, of
course, reload them by typing:

RUN l;Ai!IUI

and verify the results by:

PRINT MC2t2) liGUl!Ul

Row2Col.2=6

We must ERASE an array before reD][Mensioning it, or will get a "Duplicate
Definition" error. It isn't often necessary to reDIMension.

Okay, Now What Do We Do With It?
Good question. Everything we learned in the last Chapter on Arrays applies.

Multi-DIMension Arra'/S 315

We've only rearranged the deck chairs on this Titanic - the end result is
unaffected.

At this point, what we've learned is best utilized for calling up and loading
relatively unchanging DATA. It is placed in a matrix so it can be accessed
and compared, processed or otherwise put to work. Typical applications are:

1. Technical Tables: Instead of looking up the same information in
tables, store the tables in DATA Lines and let the Computer look
them up and do any needed calculations. The time saved may
quickly pay for the Computer.

2. Price Quotes: I saw this approach used by a lumber yard to fur­
nish fast quotes on building materials, and by a printing shop for
fast quoting of all sorts of printed matter. The programs are
written so simply that customers just belly up to the counter, an­
swer the computer's questions, and get their quote right on the
screen and printer.

The latest prices on paper products and printing costs are held
in DATA Lines and "spun up" into the Matrix at the beginning
of the day. The customer responds to a "Menu" on the screen
and answers some questions on quantity and quality. The quote
is calculated and PRINTed.

When DATA is loaded in externally, either via the keyboard or disk, we obvi­
ously don't want to have to go through that loading process each time we
want an answer. It's important therefore, to never let execution END. Always
have it come back to a screen "Menu" of choices, or at least a simple INPUT
statement. If an END is hit, the matrix crashes and the DATA has to be reRun
to reload it.

String Matrices
So far we have concentrated on numeric arrays. They can also be used to
hold letters or words, using the same rules learned in the Chapters on Strings,
including CLEARing enough String space.

String matrices need String names. Make these subtle changes in the resident
program.

10 DIM M$(10t4>
35 READ M$(RtC>

316 Chapter 41

40 PRINT M$CRtC> t

... and Run.

Absolutely no difference! We changed to a string matrix but the data is all
numeric. Strings handle numbers as well as letters, but not vice-versa.

Let's change the DATA to words and try it again. Change:

10 DIM M$C5t4>
20 FOR R=1 TO 5
80 PRINT
100 DATA ALPHAt6RAVOtCHARLIEtDELTAtECHO
110 DATA FOXTROTtGOLFtHOTELtINDIAtJULIETTE
120 DATA KILOtLIMAtMIKEtNOVEM6ERtOSCAR
130 DATA PAPAtQUE6ECtROMEOtSIERRAtTANGO

Save As STRMAT and Run.

Stop for a moment and contemplate the string-comparing and string-handling
techniques we learned a few Chapters ago. Your mind should be running flat
out at this point, considering the possibilities.

How About Mixing Strings And Numerics?
Oh! Funny you should ask. That's why we ran all numbers in a string matrix,
then all words with that same program. They mix very well, as long as the
mixer is a string matrix and not a numeric one.

We have one final program. It is designed for demonstration only but could
be expanded to INPUT the DATA from disk and be quite usable. It
demonstrates some important possibilities and programming techniques.

The Objective
The objective of this demo program is to allow a church treasurer to keep
track of who gave what, when. Could use the same program with a service
club, bowling league, or any organization that has a membership and dues.

Multi·DIMension Arrays 317

We want to be able to access every member's record by name and get a
readout on his status.

Let's start with the DATA. Type this in the New program:

1000 REM * DATA FILE *
1010 DATA 07.0186tJONESt15

1020 DATA 07.0186tSMITHt87

1030 DATA 07.0186tBROWNt24

1040 DATA 07.0186tJOHNSONt53

1050 DATA 07.0186tANDERSONt42

The first number in each DATA Line employs "data compression," that is,
"encoding" several pieces of information into one number. This number con·
tains the Month, Day and Year in one 6 digit number. (Using string
techniques, we could easily strip them apart again, if we wished, for special
reports.) Single precision will hold the 6 digits accurately.

The second thing we've done with this first number is protect the leading 0.
Since months below October are identified by only one digit, the leading 0
would be lost in these months and the number changed to only 5 digits. There
are other ways to get around that problem, but we put in a decimal point just
to act as an unmovable reference.

The second element in each DATA Line is the name. We could put in the
full name, and if we used a comma, would of course have to enclose the
name in quotes.

The third element in each DATA Line holds the amount of money tendered
on that date.

Obviously, a full DATA set would contain many entries for each week, and
many weeks in a row. We don't need to enter that much DATA to
demonstrate the principles involved and want to keep it short and to the point.

This DATA must now be READ into a string matrix (displaying it as we
go).

10 FOR E = 1 TO 5 PRINT Et 'LOAD 5 ENTRIES

318 Chapter 41

20 FOR D = 1 TO 3

30 READ R$(E1D>
40 PRINT R$(E1D>,

50 NEXT D
BO PRINT
70 NEXT E

'LOAD DATE,
NAME, AMT

'TEMP ARRAY
PRINTOUT

90 PRINT: PRINT "ENTRY #"t"DATE"t"NAME"t
"AMT $"

Save As REC 0RDS1, close the List window and Run.

Very good. The Matrix is loaded, and its accuracy confirmed on the screen.
We see the first 5 bookkeeping entries from July 1, 1986.

Now that we know it loads OK, we can remove some of the test software.
Change Line 10:

10 FOR E = 1 TO 5 'LOAD 5 ENTRIES

Delete Lines 40 and 60

... and Run.

Good. We still get the heading, but the matrix contents display is gone. Now,
how can we interrogate the Matrix to pull an individual member's record?

Guess we first have to ask a question. Type:

80 INPUT "WHOSE RECORD ARE YOU SEEKING";N$

Then we have to write the program to scan the matrix and compare N$, the
name we INPUT, with each element, R$(E,D), until we find a match. This
means setting up the FOR-NEXT loops again and scanning every element.

Add:

Multi-DIMension Arr~ 319

100 FOR E = 1 TO 5
110 IF R$(Et2) = N$ THEN 150
120 NEXT E
130 PRINT1N$; " IS NOT IN THE FILE."
140 PRINT : GOTO 80
150 PRINT Et RS<E tl > tRS<E t2> tRS<E t3)
160 PRINT : GOTO 80

Save As RECORDS2 and Run.

Answer with names that are in the DATA Lines, and those that are not. Lines
140 and 160 have built-in defaults back to the question.

The key Line is #150. It PRINTs 4 things:

E

R$(E,l)

R$(E,2)

R$(E,3)

the entry Number on that date

the Date in the memory cell just preceding the
one containing the member's name

the Name

the Amount

H you have trouble visualizing what Line 150 is doing, insert this temporary
Line. It PRINTs the address of each DATA element just below it and is very
helpful:

... and Run.

Again, the preceding program was not written to be a model of programming
style and efficiency H but to teach the basics of loading and retrieving "record­
keeping" type information from a Matrix.

320 Chapter 41

EXERCISE 41-1: Write a program that fills a two dimension string
array with:

JONESt C.
ROTHtJ•
BAKERtH+
HARMONtD+

10439

10023

12936

10422

100.00

87.24

398.34

23.17

EXERCISE 41-1: Sort the names of the array in Exercise 41-1
alphabetically. Don't forget to keep the rest of the information on
each row with the original name. This Exercise will be a challenge.
Think it through carefully.

EXERCISE 41-3: If you survived Exercise 41-2, try sorting the array
in increasing order by the numbers in Column 3.

Learned In Chapter 41

Statements

ERASE

Miscellaneous

Multi-Dimension Arrays
String Arrays

PART7

OOil~CCJEJLJL~CQ)UJ~

Chapter 42---------

EEK and POKE are BASIC words that allow us to do "non-BASIC''
things. They provide the means whereby we can PEEK into the
innards of the Computer's memory and, if we wish, POKE in new

information.

It is not our purpose here to become experts in machine language program­
ming nor on how the Computer works. We have to approach this and related
topics a little gingerly, lest we fall over the edge into a computer abyss (or
is it an abysmal computer?)

We do know, however, that computers do their thing entirely by the manipu­
lation of numbers. Therefore, when we PEEK at the contents of memory,
guess what we'll find? Numbers? Very good! (Ummmyaas).

Large chunks of the Computer's memory are reserved, or "mapped," for very
specific uses. The entire screen display, for example, uses byte addresses
108,288 through 130,175. All numbers we talk about here are decimals, not
hex, octal, binary or Sanskrit.

Turn the Computer off to clear out memory, wait a minute, turn it back on,
bring up Microsoft BASIC, and type in this New program:

10 N = 0

20 PRINT Nt PEEK<N> t CHR$<PEEK<N»

30 N = N + 1

40 GOTO 20

Let's analyze the program before RUNning it.

Line 10 sets the beginning address where we want to start

322

PEEK And POKE 323

PEEKing. There are lots of good places to go spelunking, and we
can change Line 10 to start wherever we want.

Line 20 PRINTs three things:

1. The address -- that is, the number of the byte at whose
contents we are PEEKing.

2. The contents of that byte expressed as a decimal number
between 0 and 255.

3. The contents of that address converted to its ASCII
character. (Many of the ASCII characters are not PRINT­
able. Go back to the Chapter on ASCII if your memory
has grown dim.)

Okay, now Run the program, being ready to freeze it with ~Bl if you see
something interesting. It can also be stopped at any time with Bii B or Stop
from the Run menu. To restart without resetting N back to 0, select Continue
from the Run menu.

See anything interesting? You have to be able to read vertically as the letters
swish by.

Change N to start at any of the 16,777,215 different places in memory and
PEEK to your heart's delight. You can't goof up anything by just PEEKing.
It's indiscriminate POKEing that gets one into trouble.

If you haven't already done so, stop the program.

The Command window is very handy for resetting the starting address.
Change the value of N by just typing:

N = 2300 1;m1111u

for example, then type:

CONT l;Gli!liiJ (or select Continue from the Run menu)

When done PEEKing, and having seen far more information than can possibly

324 Chapter 42

be absorbed, rework Line 20 to read simply:

20 PRINT CHR$CPEEKCN>>;

Insert:

5 WIDTH 60

... and Run.

It PRINTs only the ASCII characters, horizontally, and is the ideal program
to RUN when friends visit. Just act casual about the whole display and avoid
direct questions. Makes a great background piece for a science fiction movie.

When you find an interesting spot, hit 11 B, then:

PRINT N !iG1il!iel

at the Command window to find out where in memory you are PEEKing.
(Don't you wish we could explore the comers of our minds as easily?)

CONTinue on when ready.

Having degenerated from PEEKing to leering, we'd better move on.

Careless POKEing Can Leave Holes •••
Before POKEing, we'd better see that we're not POKEing a stick into a hor­
nets' nest. It's with the greatest of ease that we destroy a program in memory
by POKEing around where we shouldn't.

Let's PEEK around 68000 and see if anything is going on there.

Change these two program lines to:

10 N = 68000
20 PRINT Ni PEEKCN),

PEEK And POKE 325

If you have a Mac with 512K of memory, change Line 10 to:
10 N = 20000

... and Run.

68000 0 68001 0 68002 0

68004 255 68005 0 68006 0

68008 255 68009 255 68010 0

... etc.

and the results on the 512K Mac are:

20000 255 20001 255 20002 255

20004 255 20005 255 20006 255

20008 255 20009 255 20010 255

... etc.

68003 255

68007 1

68011 0

20003 255

20007 255

20011 255

What we see are the address numbers and their contents in easy-to-read
parallel rows. Unless you've been messing around with other programs since
power-up, we should just see rows of 255's, O's and 1 's. The memory at
these locations has not been used.

Great! Write a New program, POKE in some information and do something
with it. Make it read: ·

5 REM * POKE PROGRAM *
10 N = 68000 (20000 on the 512K Mac)

20 READ D

30 POKE NtD

40 N = N + 1

50 IF N = 68011 THEN END

60 GOTO 20

PEEK And POKE 327

(20011 on the 512K Mac)

100 DATA 80t69t69t75t45t65t45t66t79t79t33

Before Running, let's analyze it.

Lin~ 10 initializes the starting address at 68000 (or 20000 on the
512K Mac).

Line 20 READs a number from the DATA Line.

Line 30 POKEs the DATA "D" into address ''N."

Line 40 increments the address number by one.

Line 50 ENDs execution when we have POKEd in all 11 pieces of
DATA.

Line 60 sends us back for more DATA.

Line 100 stores the DATA we are going to POKE into memory .

... now Run.

Well, that was sure fast. I wonder what it did? How can we find out? Should
we PEEK at it? Yes, but let's leave the old program in and just start a new
one at 200.

200 REM * PEEK PROGRAM *
210 FOR N=68000 TO 68010

(20000 TO 20010 on the 512K Mac)

220 PRINT Nt PEEK<N>

230 NEXT N

... and in the Command window type RUN 200 lm'Hiiill.

on the 512K Mac:

68000

68001

80

69

20000

20001

80

69

328 Chapter 42

68002 69 20002 69

68003 75 20003 75

68004 45 20004 45

68005 65 20005 65

68006 45 20006 45

68007 66 20007 66

68008 79 20008 79

68009 79 20009 79

68010 33 20010 33

How about that? We really did change the contents of those memory loca­
tions. We shot the numbers from our DATA line right into memory. Now if
we only knew what those numbers stood for. Wonder ... if we changed them
to ASCil characters, would they tell us anything?

Insert:

205 CLS

and change:

220 PRINT CHR$CPEEK<N>>i

... and RUN 200.

That's how PEEK and POKE work.

Learned In Chapter 42

Statements Functions

POKE PEEK

---------Chapter 43

[]

n classical mathematics (fancy words for simple ideas), there exist
what are known as the "logical AND," the "logical OR," and the
"logical NOT,"

So The One Cow Said To The Other Cow •••
In Figure 43· 1, if gate A AND gate B AND gate C are open, the cow can
move from pasture #1 to pasture #2. If any gate is closed, the cow's path
is blocked.

Figure 43-1

The principle is called "logical AND."

Pasture #2

In Figure 43·2, if gate X OR gate Y OR gate Z are open, then old Bess can
move from pasture #3 to #4. That principle is called "logical OR." These
ideas are both pretty logical. If the cow can figure them out surely we can!

Using these ideas is very simple. Type this New program:

10 INPUT II IS GATE , A, OPEN 11 ;A$

20 INPUT II IS GATE , 6, OPEN 11 ;B$

30 INPUT II IS GATE , c, OPEN 11 ;C$

40 PRINT

50 IF A$=11y11 AND 6$= 11y11 AND C$= nyn THEN 80

329

330 Chapter 43

Pasture #3 Pasture #4

Figure 43-2

60 PRINT "OLD BESSIE IS SECURE."
70 END
80 PRINT "ALL GATES ARE OPEN."
90 PRINT "OLD BESSIE IS FREE TO ROAM."

... and Run.

Answer the questions (YIN) differently during different RUNs to see how the
logical AND works in Line 50.

Where Is The Logic In All This?
You should by now understand every part in the program, except perhaps Line
50.

Lines 10, 20, and 30 INPUT the gate positions as open (which we
defined as equal to "Y") or closed (defined as "N"). We could have
defined them the other way around and rewritten Line 50 to match,
if we'd wanted to.

Line 50 is the key. It reads, literally, "If gate A is open, AND
gate B is open, AND gate C is open, then go to Line 80. If any
one gate is closed, report that fact by defaulting to Line 60."

Imagine how this simple logic could be used to create a super-simple "com-

Ji;E;P~Rt;!
l-IOW DID YOU
GET IN l-lt;l<E: ~

Tl-I~ NAML;.~
6COOI~ '3t1d., GA-rt;

C WA'b OPE:N-

\

332 Chapter 43

puter" consisting of only an electric switch on each gate. Add a battery and
put a light bulb in the farmer's house. The bulb could indicate if any of the
gates are open. Such a "gate-checking" computer would have only three
memory cells -- the switches.

Hmm. It would do the job a lot cheaper than a Macintosh ... but would be awfully
hard to play Invaders with.

EXERCISE 43-1: Using the above program as a model, and the
"OR logic" seen in Figure 43-2, write a program which will report
Bessie's status as determined by the position of Gates X, Y and Z.

Teacher's Pet
Here is a simple program which uses > instead of the equals sign in a logical
test. The student passes if he has a final grade over 60 OR a midterm grade
over 70 AND a homework grade over 75. Enter this New program, Run it
a few times, and see how efficiently the logical OR and logical AND tests
work in the same program Line (40).

10 INPUT "FINAL GRADE";F
20 INPUT "MIDTERM GRADE";M
30 INPUT "HOMEWORK GRADE";H
ao IF CF>SO OR M>70) AND H>75 THEN 70
50 PRINT "FAILED"
60 END
70 PRINT "PASSED"

Does this give some idea of the power and convenience of logical math? The
actual "cut off' numbers could, of course, be set at any level.

Logical Variations
This next program example mixes equals, greater-than and less-than signs in
the same program. It determines and reports whether the two numbers we
INPUT are both positive, both negative, or have different signs.

Logical Operators 333

Analyze the program. Note the parentheses. Although they are not necessary,
they tell us to shift our thinking to "logical." Type it in and Run.

10 INPUT "FIRST NUMBER IS";F
20 INPUT "SECOND NUMBER IS";S
30 IF <F>=O> AND <S>=O> THEN 70
40 IF <F<O> AND <S<O> THEN 90
50 PRINT "OPPOSITE SIGNS"
60 END
70 PRINT "BOTH POSITIVE OR ZERO"
80 END
90 PRINT "BOTH NEGATIVE"

With Graphics Too, Yet
Yes, the logical symbols also work with the graphics statements. See if you
can figure out the surprise which will be caused by the logical AND in Line
40. Type this New program in and Run.

10 FOR X = 50 TO 100
20 FOR y = 100 TO 150
30 IF <X>=75) AND <Y>=125> THEN 50
40 PSETCXtY>
50 NEXT Y
60 NEXT x
99 GOTO 99

Use fiI!l B to exit the program's endless loop.

What happens if we replace the AND in Line 40 with an OR? After you think
you have figured out, do it and see the result.

Did you guess right?

334 Chapter 43

There's More?
Oh, yes - the only limit is your imagination. See how easily the logical nota·
tion makes the drawing of lines? Change Line 30 to read:

30 IF <X=75> OR <Y=125) THEN 50

What happens to the program if we replace OR with AND? Sketch your esti­
mated result, then change Line 30 and try it.

Hope you got it right. If not, it really sneaked up, didn't it?

Using the INT function, we can create a white-on-black grid. The reasoning
is:

In the horizontal dimension:

The INT(X/10)*10-X will equal 0 when X equals 50, 60, 70,
80, 90 and 100.

In the vertical dimension:

The INT(Y/10)*10-Y will equal 0 when Y equals 100, 110,
120, 130, 140 and 150.

Oh come on, it's very simple if you take the time and think it through!

Replace the old Line 30 with:

30 IF INT<X/10>*10-X=O OR INTCY/10)*10-Y=O
THEN 50

and you will create a five-by-five grid.

And on and on it goes ..•

Logical Operators 335

NOT
In addition to the logical AND and OR functions, we have what is called
logical NOT. Here is how it can be used:

10 INPUT "ENTER A NUMBER";N
20 L = NOT<N>5>
30 IF L = 0 GOTO 60
40 PRINT "N WAS NOT GREATER THAN 5"
50 END
60 PRINT "N WAS GREATER THAN 5"

... and Run.

Line 20, containing NOT, is obviously the key one. If the statement
in Line 20 is true (namely, that N is NOT larger than 5), the Com­
puter makes the value of L = -1. The test in Line 30 then fails.

If, on the other hand, N IS larger than 5, the statement is false and
the Computer makes the value of L = 0.

True = -1 and False = 0. (Time for the primal scream, again. All
together, now ...)

More Logical Operators
As if these 3 logical operators weren't enough, Microsoft BASIC allows use
of 3 more ''Logical" words. They are (in order of appearance):

EQV, XOR, and IMP.

To help see how these things work, let's write a ''testbed" program into which
we can install them.

10 INPUT "ENTER A VALUE FOR X";X
20 INPUT "ENTER A VALUE FOR yu;y

336 Chapter 43

30 IF <X<lO> AND <Y>lO> THEN 60
40 PRINT : PRINT "CONDITION WAS FALSE"
SO END
60 PRINT : PRINT "CONDITION WAS TRUE"

•.. and Run.

INPUT the number 5 for X and 15 for Y. No big deal. Both comparisons
were true, which made the AND condition true.

OR
Replace the AND in Line 30 with OR and Run. Try different numbers to get
a feel for the program.

EQV
There are several more "advanced" logical operators. EQV stands for EQuiVa­
lence. Replace the OR in Line 30 with the word EQV.

30 IF <X<lO> EQV <Y>lO> THEN 60

The condition in Line 30 will be true only if both arithmetical comparisons
are the same. Only if X is less than 10 AND Y is greater than 10, OR if
X is not less than 10 AND Y is not greater than 10.

Try the number 5 for X and 15 for Y. Both tests pass so the overall condition
is true.

Try 15 for X and 5 for Y. Both conditions are false, but since they are both
the same (false in this case), the overall condition is true and execution jumps
to Line 60.

XOR
XOR stands for eXclusive OR. This means that if one and only one test
passed, the overall condition will be true.

. Logical Operators 337

Replace the EQV in Line 30 with the word XOR. Run with different num­
bers. Try 5 for X and 15 for Y. Execution falls through to Line 40 because
both tests pass. Remember if we were using the regular OR, the overall con­
dition would be true.

IMP
Our final operator is IMP which stands for IMPiication. This is probably the
hardest to understand. The IMP condition will be true for all conditions except
when the first test is true and the second test is false. The overall condition
is then false. Replace the XOR with an IMP:

30 IF <X<10) IMP <Y>10> THEN 60

... and Run.

Try 5 for both X and Y. These numbers give us a false condition. All other
conditions are true.

Order Of Operations
When trying to figure out which gets calculated first in the thick of a
''humongous" equation, remember this pecking order:

Those operations buried deepest inside the parentheses get resolved
first. The idea is to clear the parentheses as quickly as possible.
When it all becomes a big tie, here's the order:

1. Exponentation -- a number raised to a power

2. Negation, that is, a number having its sign changed -- typically,
a number multiplied times -1

3. Multiplication and division -- from left to right

4. Integer Division

5. MODulo Division

6. Addition and subtraction -- from left to right

338 Chapter 43

7. Relational operators - less than, greater than, equals, less than
or equal to, greater than or equal to, not equal to - from left
to right

8. The logical NOT

9. The logical AND

10. The logical OR and XOR

11. The logical EQV

12. The logical IMP

And In Conclusion
Logical math is worth the hassle. As one last fun program, enter and Run this
''Midnight Inspection." Line 90 checks each response for a NO answer (in­
stead of a YES). Using logical OR, it branches to the "no-go" statement (Line
110) if any one of the tests is negative ("N").

10 PRINT "ANSWER WITH 'Y' OR 'N'•"
20 PRINT
30 INPUT "HAS THE CAT BEEN PUT OUT";A$
40 INPUT "PORCH LIGHT TURNED OFF";B$
50 INPUT "ALL DOORS/WINDOWS LOCKED";C$
so INPUT "IS THE T.v. TURNED OFF";D$
70 INPUT "THERMOSTAT TURNED DOWN";E$
80 PRINT:PRINT
90 IF A$="N" OR B$="N" OR C$="N" OR D$=

"N" OR E$="N" THEN 110
100 PR I NT " (10 spaces) GOODNIGHT 11 : END
110 PRINT "SOMETHING HAS NOT BEEN DONE. DO

NOT GO TO BED"
120 PRINT "UNTIL YOU FIND THE PROBLEM!"
130 GOTO 20

Logical Operators 339

In most cases, AND and OR statements are interchangeable if other parts of
a program are rewritten to accommodate the switch.

Learned In Chapter 43

Miscellaneous

Logical AND
Logical OR
Logical NOT
Logical EQV
Logical XOR
Logical IMP
Order of Operations

Chapter 44---------

icrosoft BASIC has some features that are not used by most beginning
programmers. Their use presumes special applications and requires
knowledge which is really beyond the scope of this book. In the

interest of completeness, however, abbreviated descriptions of what they are
and how they are used are included iill this Chapter.

CALL
The CALL Function has a variety of uses, most of them having little to do
with BASIC. It allows us to "call" or "gosub" a program written in
ASSEMBLY language and "return" back to the main BASIC program when
it's finished. To make much sense of CALL, you'll need ASSEMBLY lan­
guage skills - a whole book in itself.

A typical CALL statement might look like this:

CALL ADDRS

ADDRS is a numeric variable which contains the address of the machine lan­
guage program.

CALL also allows us to pass certain values to our machine language routine.
We can use some of the Macintosh's machine language programs to do special
things for our BASIC programs.

Macintosh ROM Routines
ROM stands for Read Only Memory. The ROM on the Macintosh has many
built-in programs that allow the Computer to communicate with us. These
programs are machine language routines that take care of all the things that
Macintosh does. Screen management, pull down menus, mouse control, and
graphics are a few examples.

340

A Study Of Obscurities 341

With the CALL command, we can Run these programs from BASIC. Here's
one to try that will really come in handy:

CALL MOVETOCXtY>

This moves an imaginary pen to a screen pixel coordinate specified by X and
Y. If we printed text or graphics after a CALL MOVETO(X,Y), the output
would start at the new coordinates.

Type in this New program:

INPUT "ENTER x : II ; x
INPUT "ENTER y : II ; y

INPUT "ENTER A LETTER: II ; S$

CLS
PRINT S$
CALL MOVETO<XtY>
PRINT S$

... and Run.

From Microsoft BASIC, we can make two CALLS to some built-in ROM
routines to change the "Geneva" proportionally spaced text font to "Monaco,"
a mono-spaced font. Insert this Line at the beginning of the program:

CALL TEXTFONT<4> : CALL TEXTSIZE<S>

... and Run.

The Output window is now displaying the TEXT in the Monaco FONT and
the smaller TEXTSIZE allows a full 80 column format.

Use X coordinates between 0 and 480 and Y coordinates from 10 to 220.
Numbers outside of this range may cause printing to take place outside the
window.

342 Chapter 44

Refer to the Microsoft BASIC manual for a list of available ROM routines.

Machine and Assembly language programming books are readily available for
that small percentage of readers who want to pursue the subject. You, at least,
have a sufficient introduction to nod your head and smile knowingly when
others try to impress you with their knowledge of these things. Consult the
Microsoft BASIC reference manual for more details.

VARPTR
While V ARPfR (short for V ARiable PoinTeR) is found in Microsoft BASIC,
it's about as far from main-line BASIC as anything we have.

Take A Deep Breath
If a variable is numeric, V ARPfR tells us the location of the first byte of the
number stored in that variable.

If it's a string variable, V ARPfR tells us where in memory the INDEX to
the variable is located. Read that last line carefully. We don't want anyone
getting lost.

V ARPTR doesn't have the common decency to point to the location of the
contents of a string variable. Instead, it points to a five byte "index" to the
variable. The five bytes contain:

1. The length of the string
2. The address of the contents of the string

To actually find the contents of the string variable, we have to calculate the
location using the last three bytes of the "index" to that variable. Sound com­
plicated? Well, it's a bit tricky, but this example should clarify matters a bit.

Enter this New program:

10 REM * STRING VARIABLE LOCATOR *
20 A$ = 11 12345 11

30 X = VARPTRCA$)

A Study Of Obscurities 343

40 PRINT "THE INDEX TO A$ IS AT";X

... and Run.

Line 30 uses V ARPTR to store the address of the index to A$ in X. Line
40 PRINTS it.

We haven't found the contents of A$ yet, just the index. Hang in there. Add:

50 L = PEEK<X+Z)*65536+PEEK<X+3>*256+PEEK<X+4)
60 PRINT "A$ IS HIDING AT LOCATION";L

... and Run.

So that's where the little rascal is. Line 50 uses some fancy footwork to con­
vert bytes three (X+2), four (X+3), and five (X+ll) of the index (X) into the
actual location L of A$. Line 60 PRINTs the address value.

Next we need to find the LENgth of A$ (of course, we could use LEN(A$),
but that's not our purpose here). Add:

70 S = PEEK<X> * 256 + PEEK<X+1)
80 PRINT "THE LENGTH OF A$ IS";S

... and Run.

How do we know that all this information is correct? Sure. PEEK at the con­
tents of A$, and compare it with 12345. Add:

90 FOR N = L TO L+S-1
100 PRINT CHR$CPEEK<N>>;
110 NEXT N : PRINT

... and Run.

Satisfied? The 5 digits in A$ are stored in 5 consecutive memory locations.

344 Chapter 44

Now, knowing where a variable· is located in memory may not seem too useful
at first blush, but it has some surprising consequences. Once we have found
the location of the string variable, we can modify its contents. Try this
change:

110 READ Y : POKE NtY
120 NEXT N : PRINT
130 PRINT A$
140 DATA 169t217t165t217t169

Surprise! We poked graphics codes into an unsuspecting .. normal" string vari­
able and transformed it into a pictorial masterpiece.

In the Command window, type:

PRINT A$ 1;r:1111 a e1

to be sure we aren't just dreaming. Yes, we actually modified the contents
of A$ by using V ARPTR to find the string, and then POKEing in new num­
bers. These computers can be downright fun once we get to know them.

Press a [!, and look at Line 20. Did we do that? I'm afraid so. A Listing
contains the actual graphics.

Leave with this thought. We packed a "dummy" string with only 5 graphic
codes. A string variable constant can hold up to 255 characters. Just imagine
what we could do with strings packed with up to 255 cursor control codes,
graphic codes, and spcial character codes! If that doesn't push your imagina­
tion into overload, you might as well trade this Computer in for a $4.95
calculator.

SWAP
The SW AP function lets us exchange the position of two variables with ease.

Type:

PRINT "ENTER TWO NUMBERS ";
INPUT "SEPARATED BY COMMA";AtB

A Study Of Obscurities 345

PRINT : PRINT "A =";At"B =";B
SWAP AtB
PRINT "SWAPPED"

•.. and Run.

It works with string variables, too. Try changing every A and B to A$ and
B$. INPUT a pair of names, and watch what happens.

Rodent Control (Or Watching Your Mouse)
Here's what we've all been waiting for. We can use the mouse in programs
by using the MOUSE(X) function. The X in parenthesis is a number between
0 and 6 which will report seven different mouse values. They are:

MOUSE(O) = Button Status
MOUSE(l) = Current X (horizontal) coordinate
MOUSE(2) = Current Y (vertical) coordinate
MOUSE(3) = Starting X coordinate
MOUSE(4) = Starting Y coordinate
MOUSE(5) = Ending X coordinate
MOUSE(6) = Ending Y coordinate

Enter this New program:

10 REM * MOUSE TRAP PROGRAM *
20 PRINT CHR$(255)
30 X = MOUSE<!> : Y = MOUSE<2>
40 CALL MOVET0<30t13>
50 PRINT "X =0 ;x; 0 y =";v
60 IF MOUSE<O> = 0 THEN 30
70 IF X<3 OR X>11 OR Y<3 OR Y>11 THEN 30
80 PRINT "SNAP!!!" : BEEP

••. and Run.

346 Chapter 44

Move the mouse, and notice how the X and Y coordinates change whenever
the mouse location is updated.

Move the pointer above the display window. The Y value becomes negative.
If the pointer is moved past the left edge of the display window, X will
become negative.

Okay, ready to catch a mouse? Move the pointer so that it is inside the square
in the upper left comer of the display window. Now press the mouse
button. SNAP! The little critter is now harnessed by these simple commands.

Here's how the program works:

Line 20 PRINTs the box character.

Line 30 sets X to the current horizontal mouse location and sets Y
to the current vertical position.

Line 40 calls a built in Macintosh ROM routine (MOVETO) to
enable us to PRINT X and Y at certain screen locations.

Line 50 PRINTs X and Y.

Line 60 performs a check on the status of the mouse button (zero
means it is not being pressed -- more about the button later).

Line 70 tests the location of the pointer. At this point, we know
that the button is pressed. But if the pointer is put inside of the
box, we go back to Line 30.

If program execution reaches Line 80, then we know all the con­
ditions were met, and we've caught our mouse! Oh, BEEP? Well,
what else do you think a command called BEEP can do besides
BEEP?

More Than A Mouseful
The MOUSE(O) Function will return a number between -3 and 3. A zero
means the mouse button is not currently down (or hasn't been pressed since
the last MOUSE(O) statement was executed).

Positive values mean the mouse button is NOT being pressed at the time, but
it has been pressed since the last reference to MOUSE(O).

348 Chapter 44

Negative values mean that the mouse button is down. These values will also
tell us what type of selection is being made.

·3 Button pressed - triple click selected
·2 Button pressed - double click selected
• l Button pressed - single click selected
0 Button inactive
1 Button not pressed - single selection chosen
2 Button not pressed - double selection chosen
3 Button not pressed - triple selection chosen

Enter this New program to see how we determine mouse clicking from
BASIC:

10 REM * MOUSE BUTTON CONTROL *
20 B = ABS<MOUSE<O>>
30 IF B = 0 THEN 20
40 ON B GOTO 70t80t90
50 IF MOUSE<O><>O THEN 50
60 GOTO 20
70 PRINT "SINGLE CLICK": GOTO 50
80 PRINT t"OOUBLE CLICK": GOTO 50
90 PRINT tt"TRIPLE CLICK"

... Run.

Click the mouse once, as we would to activate a window. Then click it twice,
as we did when selecting the Microsoft BASIC icon after turning the Computer
ON.

To exit the program, click the mouse three times (real fast).

Now let's look at each of the significant lines:

Line 20 assigns the variable B to the ABSolute value of the mouse
button status. The reason for this technique will become clear in
Line 40.

A Study Of Obscurities 349

Line 30 tests the button to see if it turned up zero, meaning the
button is NOT pressed down. As long as the value is zero, we'll
keep going back to Line 20 until it changes.

The button is pressed when we get to Line 40. Remember that a
negative mouse button status value means that the button is
pressed. ON-GOTO will not work with negative values. That's
why we used the ABSolute value of MOUSE(O) in Line 20.

Depending upon the type of click selected, we'll get different
responses. If a triple click is selected, the program will stop.

Otherwise execution is passed to Line 50 where we test to see if
our finger has "let·up" on the button. IF MOUSE(O) is not zero
(we're still holding it down), THEN loop until we let go.

Line 60 sends us back to Line 20 to start over again.

Learned In Chapter 44

Functions

CALL
VARPTR
SWAP
MOUSE(X)
BEEP

Miscellaneous

ROM routines
Mouse control

Chapter45------------------

TAB
PfAB is almost identical to TAB in its usage, except PfAB will TAB
out to a specific pixel positiolll. Type in this New program:

10 LINE (10t10>-<150t100)t33t6
20 PRINT : PRINT
30 PRINT PTAB<58);"BURMA" : PRINT
40 PRINT PTAB<BO>;"SHAVE"

CIRCLE
The CIRCLE command lets us draw circles of various sizes on the Mac-
intosh' s screen.

Enter this New program and Run:

10 INPUT "HORIZONTAL CENTER ";X
20 INPUT "VERTICAL CENTER n;y

30 INPUT "INPUT RADIUS ";R
40 CLS
50 CIRCLE <X1Y>tR

X and Y are the coordinates for the center of CIRCLE. R is the number of
pixels that make up the radius.

A full CIRCLE syntax (with all the bells and whistles) looks like this:

CIRCLE STEP (x,y), radius, color, start, end, aspect

350

Advanced Graphics 351

STEP - offsets a CIRCLE using a previous graphics coordinate. If,
for example, the last coordinates used were (5,10), STEP(l0,20)
would set X at 15 (10 pixels from 5) and Y at 30 (20 pixels from
10).

radius - the number of pixels in the radius of the CIRCLE

color - The default is black. If 0 or 30 is selected as the variable,
then CIRCLE is drawn in white.

start --the circle's starting angle (in radians). When a negative number
is used, a line is drawn from the center of the circle (or ellipse) to its
starting point.

end- the circle's end angle (in radians). Acts the same as the starting
point in that a negative number causes a line to be drawn from the
center of the circle (or ellipse) to its end point.

aspect - a ratio of X to Y. The default is 1.0. If aspect is not 1,
you'll get an oval.

Change Line 50 in our program to see the effect we can get by using some
of the CIRCLE options:

50 CIRCLE (XtY> tRtt-•5t-5.8

... and Run.

Make your own changes to the Line and try other options before moving on.

POINT
POINT returns the color value of a pixel on the screen. This program will
explain it all:

10 RANDOMIZE TIMER
20 FOR X = 1 TO 9
30 C = INT<2 * RND<1> + 1)
40 IF C = 1 THEN PSET<Xt10>

352 Chapter 45

50 IF C = 2 THEN PRESET<XtlO>
60 NEXT : PRINT
70 FOR X = 1 TO 9
80 P = POINT <Xt10)
90 PRINT x;": POINT =";P
100 NEXT : PRINT
110 PRINT "30 = WHITEt 33 =BLACK"

... and Run.

GET And PUT
GET and PUT are two commands that we use to "GET' part of the screen
display and "PUT' it somewhere else. In order to do this, we have to DIMen­
sion some variable space to hold all this data. Unfortunately, the screen dis­
play talces up an extremely large chunk of memory. So we are limited to
GETting only small parts of the screen.

The first thing to do in order to demonstrate GET and PUT is to draw (or
PRINT) something to the screen. Let's begin by entering these Lines:

10 REM * GET AND PUT DEMO *
20 RANDOMIZE TIMER
30 DIM A%(2504)
40 LINE (010)-(50150) 116

50 FOR N = 1 TO 5
60 X = INT<47 * RND<1>+2>
70 Y = INT<47 * RND<1>+2>
80 R = INT<20 * RND<l>>
90 CIRCLE <X 1Y) tR
100 NEXT N

... Run.

Advanced Graphics 353

A box is drawn, and random circles are place in and around it. The box and
everything inside of it is what we will be GETting. But first, let's analyze
what we have done so far:

Line 20 sets the RaNDom seed.

Line 30 DIMensions an integer variable named A% to 2504 ele­
ments. Why did we use this number? Simple. The portion of the
screen that we want to GET takes up an area of 50x50 pixels. This
means that there are 2500 pixels involved. The other 4 bytes are
for the space that A% uses up in memory. Integer variables take
up, as one would guess, only 4 bytes. Thus we need a DIMension
of 2504.

Line 40 uses our LINE command to draw a box.

Lines 50-100 draw 5 random circles within and around the box.

Now add these last few Lines:

110 GET (0,0>-<50t50>tA%: CLS

120 FOR I = 2 TO 426 STEP 53

130 FOR J = 2 TO 197 STEP 53

140 PUT <I tJ) tA%
150 NEXT J : NEXT I

... and Run.

How's that for fast graphics?

Line 110 uses the same coordinates as the LINE command in Line
40. The data that we GET is assigned to our dimensioned variable
which is listed after the coordinates.

Line 120 initializes the FOR-NEXT loop that is used for PUTting
the data in A% along the X axis (horizontal).

Line 130 uses a second FOR-NEXT loop for the Y axis. The loop
steps by 53 pixels. In this way, each PUT does not overlap on a

354 Chapter 45

previously PUT set of data. (Wqw! There is some possibility for
animation here!)

Just to slow things down a bit, let's insert one more Line to the program.
Type:

105 IF MOUSE<O>=O THEN 105

Line 105 will halt the program until we press the mouse button, allowing us
to view the first half of the program before PUTting the boxes all over the
screen.

Now let's Run the program, pressing the mouse button when we're ready to
go on.

PUT With All The Options
Even more powerful than GET, the PUT statement can also be used with "ac­
tion verbs" to perform special tasks. Remove Lines 105 and 120 thm 150
from the current program in memory, then add:

120 FOR J = 50 TO 200
130 PUT COtO>-<J1J)tA%
140 NEXT

.•. and Run.

Hmmm. Never did care too much for modem art.

In the first program using GET and PUT, the ending X and Y coordinates of
PUT were kept equal with the values specified in the GET. Since we changed
the values when we PUT the screen data to the display, we change the image's
size.

Just for fun, type in this sequence in the Command window:

CLS: PUT <20t20)-(300t100>tA% l;Aiiiiil

It will even change shape!

Advanced Graphics 355

Now what's all this jazz about "action verbs"?

To clean up the current program, Edit Line 130 to read:

130 PUT <010>-<J1J)1A%1PSET

... and Run.

Ah, now that's more like it! But what's PSET doing at the end of the PUT
command?

PSET is just one of PUT's action verbs. Here's a list of all the ones we can
use:

XOR is the default value. It is used most often for animation.

OR will "superimpose" the image onto whatever exists underneath
the PUT.

AND will only PUT pixels to the screen where existing pixels
match up with those in the GET buffer.

PSET will PUT exactly what is in the GET buffer to the screen.

PRESET is the same as PSET except that the image is reversed.

Change the PSET in Line 130 to PRESET and Run.

Replace PRESET with one of the other action verbs to see what you can come
up with.

Another Chapter Completed!
Take some time out to experiment on your own with all these graphics com­
mands. We have explored enough to keep busy for some time.

356 Chapter 45

Learned In Chapter 45

Commands

CIRCLE
GET
PUT

Statements

PTAB
POINT

---------Chapter 46

ata Processing is an important computer application. An example of
DP would be storing all the names in the telephone book, then recal­
ling any name, address and phone number very quickly. Sorting,

alphabetizing, adding and deleting vast quantities of data, inventory (merchan­
dise), general ledger (money), mailing lists (people), recipe files, or other
records, replace intricate and complex calculations as the computer's purpose.
DP is not the same thing as programming but is simply an application which
requires specialized programming with emphasis on disk files used for other
than just SA VEing and LOADing the program itself.

At the heart of Data Processing is the accumulation of data in what is known
as a DATA FILE. The DATA may be similar to the data we know how to
store in DATA LINES, but the quantity is often so large the entire memory
of the computer is not enough to hold it. Thus the need for "external storage,"
as on a disk.

Up to now we've relied on BASIC's numeric variables, string variables and
DATA Lines to store the data the programs need. This has 2 severe
limitations:

1. The Computer's memory may not be large enough to hold all
the data (for example, an inventory list).

2. When the Computer is turned off, the values of all variables are
lost.

Diskette data files solve both problems. Virtually endless quantities of infor­
mation can be stored on an endless stack of disks and retrieved later at will,
just as we now SAVE and reLOAD programs. Besides SAVE and LOAD,
we need to learn more special statements.

357

358 Chapter 46

OPEN The Door, Richard
The first is the OPEN statement. OPEN handles all the details of creating a
new DATA file. It communicates 3 things to the system:

1. What we plan to do with the file, i.e., INPUT data from it or
PRINT information into it.

2. What buffer number (1 • 255) to assign to the file. (More on
that in a second .•.)

3. The file's name.

Type:

30 OPEN "TESTDATA" FDR OUTPUT AS 1

. but don't RUN yet. OUTPUT means that we intend to OUTPUT information
· from the Computer to a data file on the disk named "TESTDATA." The Pro­

gram Line reads, "OPEN the data file named TESTDATA FOR OUTPUT­
ting to disk." If we wanted to INPUT information back from disk to memory,
we would use INPUT instead of OUTPUT. We'll learn how to INPUT in a
minute.

File Botlers
Line 30 assigns ''buffer'' number 1 to the file and names it TESTDATA. Any
number from 1 to 255 may be used.

A file buffer is a small part of the Computer's memory which is assigned to
act as a Traffic Director for information traveling to and from the Computer
and a disk file. All 255 buffers are available at any one time on the Mac.

The OPEN statement is our written instruction to the Computer to OUTPUT
its data to TESTDATA through buffer #1 until notified otherwise. In addi·
tion, the OPEN statement sets the file buffer size to a default value of 128
bytes. The size can be set to a different value by placing

LEN = N

at the end of the OPEN statement. The LENgth value (N) can be any value
from 1 to 32767.

Introduction To Data Processing 359

OPEN simply assigns the data file TESTDATA a buffer number (1 in this
case) and prepares TESTDATA for either OUTPUT (as in this case) or INPUT
from disk to Computer memory. TESTDATA will stay on the disk indefinitely
under that name.

CLOSE The Barn Door
The opposite of OPENing a file is CLOSEing it. It's a good habit to CLOSE
all files when they aren't being used. And we could all use an extra good
habit or two. Better add:

50 CLOSE 1

Line 50 will CLOSE the file OPENed in Line 30. (Remember, don't RUN
yet!)

CLOSE Options
The CLOSE statement severs the association of a file with its assigned buffer.

Without getting too far ahead of ourselves, it's worth noting that if any left·
over or stray data is still in the file's buffer, that data is saved to disk when
the file is CLOSEd. For example:

CL 0 SE 1 t 3 CLOSEs only files numbered 1 and 3 and saves to
disk any data left in buffers 1 and 3.

CL 0 SE N CLOSEs only file number N and saves to disk any data
left in buffer N.

CLOSE CLOS Es all files currently OPEN and saves any data
left in all of the buffers to the correct disk file.

Most of the time, we will simply use:

CLOSE

since it CLOSEs everything in sight, secures all data from the file buffers and
writes it all to the disk. To fully understand the value of the CLOSE state­
ment, we need to take a closer look at the way data is transferred to the disk.

360 Chapter 46

To send data to a disk file, we need 2 additional BASIC statements:

PRINT#
Our old friend PRINT directs output to the screen, and LPRINT directs it to
the printer. The third member of the family is PRINT # which sends output
to a disk file.

Remember the file buffer number that we assigned in the OPEN statement?
It's used by the PRINT# statement to direct output to that buffer for transfer
to the disk file. We assigned buffer #1 to the file TESTDATA, so we use:

PRINT #1

to send information to the TESTDATA file.

But what do we want to PRINT, and how do we do it?

Writing DATA into a "sequential file" is very similar to writing data to the
screen. We can think of a sequential file as one

V E .••. R •.•• Y ..•••..••.•..••••••••.••...••••.••••.••••.••

long stream of data.

Numbers, strings and variables can be separated by commas or semicolons,
and these "formatters" have precisely the same effect on the disk file as they
do on the screen or printer output. If the formatting is unusually complex and
we have enough disk space, we can even use PRINT USING just like we
learned for the screen and printer. For example:

PRINT #ltUSING "••·••";A

(See Chapters 36 and 37 for a review if your PRINT USING skills have grown
dull.)

Insert the following Lines, and Run:

10 REM * SEQUENTIAL FILE PROGRAM *
20 A = 1 : B = 2 : C = 3

40 PRINT #1tAtBtC

I

Introduction To Data Processing 361

This is what happened:

Line 20 assigned values to variables A, B and C.

Line 30 OPENed a file on disk named TESTDATA and assigned
buffer #1 to OUTPUT data to that file.

Line 40 PRINTed the values in A, B, and C to buffer #1 (at this
point it is still not on disk).

Line 50 transferred the data from buffer #1 to the TESTDATA file
and CLOSEd it.

We now have a "permanent" record which can easily be read back into the
Computer or any other computer which is compatible. Note that the variables
A, B and C were not written onto the disk -- just the values of those variables
(in this case, 1, 2 and 3).

INPUT#
The next step in this learning process is to INPUT that data from disk back
into memory. After all, the only reason to store something on disk is so we
can retrieve it later.

Once file buffer number 1 is CLOSEd in Line 50, it is no longer associated
with disk file TESTDATA. It's free to be used with any file specified in a
new OPEN statement. Add:

70 OPEN "TESTDATA" FOR INPUT AS 1

We are reOPENing the file TESTDATA using buffer number l, but this time
for INPUTing. (Any other valid buffer number will work as well.) It's impor­
tant to remember with sequential files that we must first CLOSE the file, then
reOPEN it when switching from reading to writing, and vice versa.

To read the contents of the sequential DATA file, insert these Lines in their
proper order:

60 PRINT "THE NUMBERS";A;B;c;" ARE WRITTEN
ON DISK."

362 Chapter 46

80 INPUT #ltAtBtC
90 PRINT "THE DATA HAS BEEN READ FROM DISK."
100 PRINT "A =";A,"B =";B,"C =";C
110 CLOSE

... and Run.

The Computer says:

THE NUMBERS 1 2 3 ARE WRITTEN ON DISK.
THE DATA HAS BEEN READ FROM DISK.
A = 1 B = 2 C = 3

Remember to move the List window or close it to see the entire display.

If yours doesn't look that way, here is a complete program listing:

10 REM * SEQUENTIAL FILE PROGRAM *
20 A = 1 : B = 2 : C = 3

30 OPEN "TESTDATA" FOR OUTPUT AS 1

40 PRINT #ltAtBtC
50 CLOSE 1

60 PRINT "THE NUMBERS";A;B;c;"ARE WRITTEN
ON DISK."

70 OPEN "TESTDATA" FOR INPUT AS 1

80 INPUT #ltAtBtC
90 PRINT "THE DATA HAS BEEN READ FROM DISK."
100 PRINT "A =";A,"B =";B,"C =";C
110 CLOSE

Introduction To Data Processing 363

Here's what happened:

Line 70 OPENed the TESTDATA file for INPUT via buffer number
1.

Line 80 INPUT # the three numbers from disk into buffer number
1 where the values were assigned to variables A, B and C.

Line 90 PRINTed a reassuring message.

Line 100 PRINTed the data values that were read from disk.

Line 110 CLOSEd file buffer number 1, the only one OPENed.

APPEND
APPEND allows us to OPEN a sequential file and add data to the end of it.

To APPEND more information, add these Lines:

200 OPEN 11 TESTDATA 11 FOR APPEND AS 1
210 PRINT #l t "MORE INFO"
220 CLOSE 1
230 OPEN 11 TESTDATA 11 FOR INPUT AS 1
240 INPUT # 1 t A tB tC t0$
250 PRINT AtBtCt0$
280 CLOSE

... and Run.

Line 200 OPENs TESTDATA so something can be done to or with
it and assigns it to buff er 1.

Line 210 PRINTs MORE INFO at the end of what's already in file
TESTDATA.

Line 220 CLOSEs it again.

364 Chapter 46

Line 230 reOPENs the TESTDATA file to INPUT the 4 pieces of
data in it, and Line 240 PRINTs them. Note that since the new
data is made up of letters, it is a string variable.

Line 260 CLOSEs the file for the last time.

EXERCISE 46-1: Write a program that stores a shopping list of five
items on disk. The program should ask for each item and then write
it to the disk. HINT: Use a FOR-NEXT loop. Be sure to CLOSE the
file when you are through writing to it

EXERCISE 46-2: Add a second part to Exercise 46-1 that reads the
five items from the disk and displays them to the screen. SAVE the
entire program (both output and input) As SHOPLIST.

EOF
Until now, we've been dealing with a precisely known quantity of data, but
most of the time, the amount of data in the file is not known. How would
we know where the end of the file is? The EOF, or End Of File, function
is the answer.

Type in the following NEW program:

10 REM * EOF DEMO *
20 RANDOMIZE
30 OPEN "UNKNOWN" FOR OUTPUT AS 1
40 FOR N = 1 TO INT<10*RND>
50 PRINT •1• "DATA";N
60 NEXT N : CLOSE

Note that Line 50 PRINTs 2 pieces of DATA to file, the word "DATA" and
the value of N. Due to the deliberate use of the RND function in Line 40
to determine how many FOR-NEXT loops will be executed, we don't know
how many data pairs will be written to the file named UNKNOWN.

To read the data back in from UNKNOWN into memory and to display it,
add these Lines. We'll use GOTO in Line 110 to keep reading in the DATA

Introduction To Data Processing 365

until it runs out. Since the information was written to disk in "data pairs,"
we INPUT # it back in with a single variable A$ in Line 90. Add:

70 OPEN "UNKNOWN" FOR INPUT AS 1
BO REM
90 INPUT •1tA$
100 PRINT A$
110 GOTO 80
120 CLOSE

Run the program.

Ack! An error! BASIC won't allow us to just keep reading DATA from disk
until it runs out, any more than it will permit us to do it from DATA Lines.
The error message "Input past end" tells the story. If we don't know the exact
length of the tile, we must test for the EOF condition.

EOF works this way. If we are at the end of file, the numeric value of EOF
equals -1, paradoxically known as ''true." If there's still more data to be
read, EOF will equal 0, called "false." From these little truths, EOF can be
used in a test, as follows:

Change Line 80 to:

BO IF EOF<1> THEN 120

The 1 in parentheses is the buffer number assigned to the file when it was
OPENed. Line 80 reads, "If we have reached the End Of the File (EOF is
true), then branch to Line 120." The EOF function can "look ahead" to signal
when INPUT # is at the End Of the File.

Save this program As EOFTEST ... and Run.

Whew! Nothing like a smooth running program to make your day!

366 Chapter 46

EXERCISE 46-3: Write a program that asks for the names and ages
of several people. Use a GOTO loop to enter the data. After all
the names are entered (signified by typing nDONE" or some other
key word), CLOSE the file, then reOPEN it for INPUT to read the
names and ages back into the Computer. Use EOF to avoid reading
past the file's end.

Learned in Chapter 46

Statements

OPEN
CLOSE
PRINT#
PRINT #, USING
INPUT#
EOF (End Of File)

Miscellaneous

Data files (Sequential)
File numbers
File buffers
Buffer size
Output
Input
Append

---------Chapter 47

&cd1W(IDIIDCC®cd1 §& VIEfiIID~9
001Effil®lEfiIID~9 &IIDcd1 CQIHIAil~fiIID~

I E I vecyone type in this New program:

10 REM LINE 10
20 REM LINE 20

ao REM LINE ao

We know this program is not destined for fame, but SA VE it on disk any·
way. Each program SA VEd to disk becomes a FILE. Like any file, it is
labeled with a file name. We will call this program FIRST. Save As:

FIRST

BASIC programs can be Saved on disk in either of 2 "formats." Unless we
specify otherwise, the so-called "Compressed (or binary) format" is used.

1. In the binary format, everything that can be abbreviated is stored in a
shortened form. All numbers except those enclosed in quotes are stored in
a minimum number of bytes, with BASIC keywords like PRINT and
GOTO stored as special shorthand "codes." This format is the one usually
used and is fme for most purposes since it conserves disk space. This is
all "invisible" to the user.

2. But there are times when we will sacrifice a little disk space for the luxury
of saving a program or data on disk in the "character for character" format.
It is called the "Text (or Ascm format."

Text formatted files have several special purposes.

1) They can be loaded directly into word processing programs or
other "applications" software.

367

368 Chapter 4 7

2) Files in Text format can be sent over phone lines to other com­
puters. Electronic mail is here!

3) And, the Text format can be used to MERGE two files -
hooking them end-to-end. Using Text format, we can MERGE
a useful routine into several programs without retyping it.
(Remember our SON subroutine?)

Merging Files
Let's try a MERGEr right now. Type this New program:

30 REM THIS LINE GOES BEFORE LINE 40

ao REM THIS LINE REPLACES LINE ao
50 REM THIS LINE APPEARS AFTER LINE ao

and Save it in Text As

SECOND

by following this simple procedure. Select Save As from the File menu as
usual. Type in the file name, SECOND, but before clicking the OK box (or
hitting !;AO!IU), move the pointer to 0 Text and click. A black dot will
appear within the O meaning our file will be saved in Text. Now click the.
Save box.

With that done, we can MERGE the two programs. Load the original program
back into memory by selecting Open... from the File menu and either double­
clicking on the file name FIRST or by clicking once on the file name and
then clicking the Open box.

Check the Listing to be sure only the FIRST program is in memory. Now
bring in the next program by entering the Command window and typing:

MERGE "SECOND" Imm He!

Check the List window to verify that ilie two programs were MERGEd.

10 REM LINE 10

Advanced SAVEing, MERGEing, And Chaining 369

20 REM LINE 20
40 REM LINE 40

30 REM THIS LINE GOES BEFORE LINE 40
40 REM THIS LINE REPLACES LINE 40
50 REM THIS LINE APPEARS AFTER LINE 40

Of course, it worked! We have new Lines 30, 40 and 50 and the original
Lines 10, 20 and 40.

Observe that the FIRST program did not have to be in Text format, only the
second one drawn in for MERGEr. It's now a simple task to cut out the orig­
inal Line 40 with the Editor.

10 REM LINE 10
20 REM LINE 20
30 REM THIS LINE GOES BEFORE LINE 40
40 REM THIS LINE REPLACES LINE 40
50 REM THIS LINE APPEARS AFTER LINE 40

The combined program can be Saved as usual under any name. After selecting
Save AB ... from the File menu, be sure to click the Compressed circle before
Saving As:

MERGER

Removing Files From The Diskette
The 2 program files, FIRST and SECOND, are now combined into a
MERGEd file, MERGER, and Saved on disk. They are no longer necessary.
Right?

What's that about a safety copy of the program?

Yes, we should keep an extra copy of any important program and right now,
FIRST and SECOND are the only protection we have if MERGER should

W-W-W~AT
i-IADPEN~D ~

I

Advanced SAVEing, MERGEing, And Chaining 371

somehow get zapped. What if we erased them and a nasty electrical spike
sizzled the MERGER file?

A safety backup copy is nonnally made on a different diskette. Since we are
only risking 5 Lines of code at this point, we'll gamble with Murphy's law
and make our safety copy of the MERGER program on the same diskette.

Since we can't Save the same program on the same diskette under the same
name, we have to give it another name. Rather than have to remember an
excessive number of names, just Save As:

MERGER/BAK

By appending the "f' and the three letter "extension" "BAK," we create a
second file with the same "first name" (MERGER) as our original. The exten­
sion "BAK" reminds us that the program is a safety BAcKup, and thus a
duplicate, not a different program. /SAF for SAFety, /COP for COPy, /NOi
for Number 1 and other extensions can work as well.

KILL· KILL!
Now we can erase the 2 original files with a clear conscience. In the Com­
mand window, type:

KILL 11 FIRST 11

KILL "SECOND"
l;Ai!iih

!;Aiiiiu

Check the files on the disk by typing:

FILES l;Ali!iu

to make sure FIRST and SECOND have disappeared.

The KILL instruction doesn't actually "erase" FIRST and SECOND from the
diskette. It simply removes their names from the list of files. The result is
the same, however; if they can't be found, they can't be used, (sort of like
having an unlisted telephone number).

372 Chapter 4 7

(To answer the question in some readers minds, YES, with a special UTILITY
program we could conceivably patch up the list of files and retrieve our "dead"
files. Of course, if another new file is Saved first and it happens to use the
same place on the disk, the file(s) is lost for good. For all intents and pur­
poses, consider the files KILLed.)

We can also reNAME programs from BASIC. Suppose we want to change
the name of the backup copy to NEWMERGE. No problem. Just type:

NAME "MERGER/BAK" AS "NEWMERGE"

Check the Files again to be sure that MERGER/BAK is gone and NEW­
MERGE took its place. (Note that NEWMERGE has no /BAS or /BAK since
none was specified.)

CHAINing
The ability to CHAIN programs is very powerful. Not only can we Run one
program by calling it from another, but the values of the variables can be
transferred from one program to the next without being reset to 0. Try this
New program:

10 REM * THIS IS THE FIRST PROGRAM
30 PRINT "PROGRAM ONE"
llO M$ = "MACINTOSH COMPUTER"
50 A = 20
60 PRINT "M$ = ";M$
70 PRINT "A =";A
80 RUN "TWO"

Save As ONE, but do not Run it! Choose New, and enter these Lines:

10 REM * THIS IS THE SECOND PROGRAM *
20 PRINT : PRINT "PROGRAM TWO"
30 PRINT "M$ = ";M$
llO PRINT "A =";A : PRINT

Advanced SAVEing, MERGEing, And Chaining 373

Save it As T W 0, but do not Run. Now, from the Command window type:

RUN "ONE"

Note very carefully that the String and Numeric variables were not carried
over from the first to the second program. We used a RUN statement to exe­
cute TWO (Line 80 in program ONE). Remember RUN clears the screen and
initializes all variables back to 0 or null. Now type:

LOAD "ONE" (or use Open ... from the File menu)

and change Line 80 to:

80 CHAIN "TWO"tt ALL

Select Save from the File menu

... and Run.

Wow! The variables passed from ONE to TWO.

By adding the ALL option, program ONE passed ALL variable data to pro­
gram TWO. Now let's see what gets placed between the two commas.

Add this Line to program TWO:

50 CHAIN "ONE"t100tALL

and Save. Line 50 will LOAD program ONE and begin execution at Line
100. If we don't specify a Line number, it would start ONE running at its
first Line again, and we would be in an endless loop, or endless CHAIN. If
the starting Line number is omitted, as we did in Line 80 of the ONE pro­
gram, we still have to use the commas as place holders.

Now LOAD ONE back in, and change Line 80 to:

80 CHAIN "TWO"

374 Chapter 47

and add the following:

20 COMMON M$
99 STOP
100 PRINT "WE ARE NOW BACK IN 'ONE'"
110 PRINT "M$ = ";M$
120 PRINT "A =";A

Save

... and Run.

Here's what happened. Program ONE ran up thru Line 80, where it CHAINed
to program TWO. Only M$ was forwarded from ONE.

Since the ALL option was removed from Line 80, all variables were not car­
ried over to the CHAINed program. But, by adding Line 20, we made M$
COMMON to both programs. Variable M$ was forwarded, but A was not.
Program TWO ran thru Line 50 where it CHAINed back to Line 100 of
ONE. ALL variables were forwarded, but A=O in TWO, so that's what was
printed this 2nd time by ONE.

The Line 99 STOP will never be executed and is not necessary. It was placed
there as a reminder that program ONE in this case is really executed as 2
different programs under the same name.

The way to forward only selected variables without CHAINing them all is:

20 COMMON M$1A (etc ...)

Do it, Save and Run again.

LOAD program ONE and then program TWO, and study them very carefully.

CHAINing and MERGEing have real programming value. What you have
learned here will satisfy most programming needs. If you need to use more
"advanced" CHAIN and MERGE features, refer to the factory manual.

Learned In Chapter 47

Statements

MERGE
CHAIN
COMMON
NAME

Advanced SAVEing, MERGEing, And Chaining 375

Commands

KILL

PARTS

JFm@CGt Iffi&JOO
CC(Q)~1fffi(Q)IL

Chapter 48---------

ost of the programs written for this book were simple; but they met
simple, specific needs. Suppose we want to write a program to play
chess or bridge, evaluate complicated investment alternatives, keep

records for a bowling league or a small business, or do stress calculations for
a new building? How do we approach writing such a complex program?

We break down a complex program into a series of smaller programs. This
is called modular programming, and the individual programs are called mod­
ules. But how are the modules related -- and how do we write them, anyway?

Module is just a 75-cent word for "section" or "building block."

One way to plan a program is to make a picture displaying its logic.
Remember, a picture is worth a thousand words (or is it the other way
around)? The picture that programmers use is called a flowchart.

Flowcharts are most helpful when kept simple. A cluttered flowchart is hard
to read and usually isn't much more helpful than an ordinary program LIST­
ing. A ·good. flowchart is also helpful for . "documentation" to give us (or
others) a picture of bow the program works - for later on, when we've
forgotten.

Flowcharts are so widely used that programmers have devised standard sym­
bols. There are many specialized symbols in use, but we will examine only
the most common ones.

(__)
378

TERMINAL BLOCK
(means Begin or End)

PROCESSING BLOCK
(something the
Computer does without
making any decisions)

DECISION DIAMOND
(branches off in different
directions, depending on the
decision it makes)

Flowcharting 379

Each decision point asks a question such as "ls A larger than B?" or "Have
all the cards been dealt?" The different branches are marked by YES or NO.

Another useful symbol is:

CONTINUATION
(usually contains a
number which corresponds
to a number on another
page if the flowchart is
too large for a single
sheet)

CONNECTOR ARROWS
(indicate the direction
in which program
execution proceeds)

380 Chapter 48

There are no hard-and-fast rules about what goes into a flowchart and what
doesn't. A flowchart is supposed to help, not be more work than it's worth. It
helps us plan the logic of a program. When it stops helping and makes us
feel like we're back in arts and crafts designing mosaics, we've gone as far
as the flowchart will take us (or more typically, it's passed its point of
usefulness).

Suppose we want to grade a 5-question test by comparing each of the students'
answers with the correct answer. We can put the correct answers in a DATA
statement in the program, enter a student's answers through the keyboard,
compare (grade) them, then PRINT the % of correct answers. This procedure
can be repeated until all the students' papers are graded.

The flowchart might look like this:

START

END

ADD 1 TO
Yl9 NUMBER CORRECT

PAlNT "CORRECT"
LINE 110

Flowcharting 381

This flowchart has three decision diamonds. In the first, the Computer deter­
mines if an answer is correct. In the second, the Computer determines if all
the questions in a single student's paper have been graded. The third termi­
nates execution when all tests have been graded.

EXERCISE 48-1: Using the flowchart as a guide, write a program
that grades a test having five questions.

For more complicated problems, we may subdivide the flowchart into larger
modules. A master flowchart will show the relationship between the flow­
charts of individual programs.

For example, let's say we want to write a program that calculates the return
on various investments. The options might be:

1 - CERTIFICATE OF DEPOSIT

2 - BANK SAVINGS ACCOUNT

3 - CREDIT UNION

4 - MONEY MARKET FUND

The main (or Control) program will select one of these 4 options using an
INPUT question, execute the correct sub-program, and PRINT the answer. Its
flowchart might be as shown on the next page.

We can now flowchart each of the individual programs in the blocks sepa­
rately. The Certificate of Deposit program would, for example, have to con­
tain the rate of return, size of deposit, and maturity. The order in which that
program INPUTs data and performs the calculations would be specified in its
own flowchart.

EXERCISE 48-1: Write the master program as flowcharted, with a
branch to a program to calculate the return on a Bank Savings
Account paying simple interest

EXERCISE 48-3: Choose a program from an early Chapter and
design your own flowchart.

382 Chapter 48

START

ENTER OPTION

YES

YES

YES

YES

Learned In Chapter 48

Miscellaneous

Flowcharting

CALCULATE
CERTIFICATE
Of DEPOSIT

CALCULATE
PORBANK

SAVINGS ACCOUNT

CALCULATE
PORCREDIT

UNION

CALCULATE
POR MORTGAGE

LOAN

PRINT
RETURN

ON
INVESTMENT

END

---------chapter 49

uick -- The Raid!
The Computer has given us plenty of nasty messages. We know
something's wrong, but it isn't always obvious exactly where, or why.

How do we find it? The answer is simple -- be very systematic. Even experi­
enced programmers make lots of silly mistakes . . . but experience teaches how
to locate mistakes quickly.

Hardware, Cockpit Or Software?
The first step in the "debugging" process is to isolate the problem as being
either:

1. A hardware problem,

2. An operator problem, or

3. A software problem.

Is It Further To Cupertino Or By Bus?
Starting with the least likely possibility -- is the Computer itself malfunction­
ing? Chances are very high that the Computer is working perfectly. There are
several very fast ways to find out.

A. Type:

PRINT FRE<O>

in the Command window.

383

384 Chapter 49

H there is no program loaded into memory, the answer should be:

21000

Or the correct value previously noted for your system. H there is a program
loaded, the answer should be some lesser value.

H the answer is too large (assuming, of course, you have not added more
memory), there may be trouble. Or, it's possible that the answer is a negative
number. Trouble.

Possible Solution
In either of the above cases, select Quit, Eject the disk and shut the Computer
off. (Or, as they say in the big time, "Take it all the way down.") Let it sit
for a full minute before turning it on.

Yes, any program in memory will be lost, but at this point it's probably shot any­
way. You could try to SAVE it before turning OFF the machine if it makes you
feel any better.

Turn the machine back ON, and try the PRINT FRE(O) test again. H the
results are the same, there is probably a chip failure that will require pro­
fessional troubleshooting and replacement.

B. One Last Try

Before full panic sets in, choose New and enter this program. It assigns
almost every free memory location in RAM a specific value, then reads that
value back out, comparing it to adjacent values.

Type:

10 WIDTH 60
20 DIM AC1730)
30 FOR x = 1 TO
40 FOR y = 1 TO

1730
1730

• •
• •

A<X> = X : NEXT X
PRINT A<Y>;

Debugging Programs 385

50 IF A<Y> - A<Y-1> <> 1 THEN PRINT "BAD" :
BEEP

60 NEXT Y

••. and Run.

After a short wait, the monitor should display:

1 2 3 4 5 6 7 8 (etc. through the value of 1730)

If the ''horn honks" and "BAD" appears, we may have found the problem •••
a bad memory chip.

Type this test program into the Computer, Save As M EMT EST. Try it out
before you need it, and hope it will never be used.

Video Display Problems?
The Video Display is very similar to its counterpart in a television set. It has
an adjustment for brightness under the left side of the Macintosh's front panel
above the IQ! symbol.

Idiot Here -· What's Your Excuse?
Of course, you don't make silly mistakes!

Now that's settled.

1. Is everything plugged in? Correctly? Firmly?

2. Is the printer turned ON and ON-Line?

If so ...

go walk the dog, then check it all over again.

If ••• Then
If the trouble was not found in the cockpit or with the hardware, there is

386 Chapter 49

probably something wrong with the program. Dump out the troublesome pro­
gram. LOAD in one that is known to work, and Run it as a final hardware
and operator check.

Common Errors
Here are some of the common sources of "computer-detected errors."

1. Assume the error is in a PRINT or INPUT statement.

Did you:

a. Forget one of the needed pair of quotation marks?
EXAMPLE:

10 PRINT "ANSWER ISt X : GOTO 5
ERROR: No ending quotation mark after IS

Yes, I know it's Ok if the missing quote is the last character in the Line.

b. Use an illegal variable name?
EXAMPLE:

10 INPUT SG
ERROR: Variable names must begin with a letter.

c. Use a Line number larger than 65529?
EXAMPLE:

85530 PRINT "BAD LINE NUMBER."

d. Accidentally have a double quotation mark in the text?
EXAMPLE:

10 PRINT "HE SAID "HELLO THERE."

e. Type a Line more than 255 characters long?

f. Misspell PRINT or INPUT? (It happens!)

g. Accidentally type a stray character in the Line, especially an
extra comma or semicolon'?

Debugging Programs 387

2. If the error is in a READ statement, almost all the previous pos­
sibilities apply, plus:

a. Is there really a DATA statement for the Computer to
read? Remember, it will only read a piece of DATA once
unless it is RESTOREd.

EXAMPLE:

10 READ XtYtZ

20 DATA 2t5
ERROR: There are only two numbers for the Computer to
read. If we mean for Z to be zero, we must say so.

20 DATA 215t0

3. If the bad area is a FOR-NEXT loop, most of the previous pos­
sibilities apply, plus:

a. Is there a NEXT statement to match the FOR?
EXAMPLE:

10 FOR A=l TO N
ERROR: Where's the NEXT A?

Some of these FOR-NEXT loop errors won't trigger actual error
messages; the program may just wind up in an endless loop.

b. Do you have all the requirements for a loop -- a starting
point, an ending point, a variable name, and a STEP size
if it's not 1?

EXAMPLE:

10 A=l TO N
ERROR: Must have a FOR and a NEXT.

c. Did you accidentally nest 2 loops using the same variable
in both loops?

EXAMPLE:

10 FOR X=l TO 5
20 FOR X=l TO 3
30 PRINT X
40 NEXT X

388 Chapter 49

50 NEXT X
ERROR: The nested loops must have different variables.

d. Does a variable in a loop have the same letter as the loop
counter?

EXAMPLE:

10 A=22
20 FOR R=1 TO 5
30 R=18
40 Y=R*A
50 PRINT Y
60 NEXT R

ERROR: The value of R was changed by another R inside
the loop, and NEXT R was overRUN, since 18 is larger
than S.

e. Are the loops nested incorrectly with one not completely
inside the other?

EXAMPLE:

10 FOR X=1 TO 6
20- FOR Y=1 TO 8
30 PRINT XtY
40 NEXT X
50 NEXT Y

ERROR: NEXT Y must come before NEXT X.

4. If the goofed-up statement is an IF-THEN or GOTO

a. Does the Line number or Line label specified by the THEN
or GOTO really exist? Be especially careful of this error
when eliminating a Line in the process of ''improving" or
"cleaning up" a program.

S. The error comes back as ''Out of memory" but PRINT FRE(O)
indicates there is room left. If you are using an array and get an
error, remember, extra room (up to hundreds of bytes) has
to be left for processing. You have probably overRUN the
amount of available memory.

Debugging Programs 389

6. The error comes back as "Subscript out of range."

a. Did you forget to DIMension an array containing more than
eleven elements?

7. The error comes back as ••megal function call."

a. Did you exceed the limits of one of the built-in functions?

8. Did one of the values on the Line exceed the maximum or
minimum size for numbers?

To find out whether you did any of these things, PRINT the values for all
the variables used in the offending Line. H you still don't see the error, try
carrying out the operations indicated on the Line. For example, the error may
occur during a multiplication of two very large numbers.

PRINT the operation in the Command window.

These certainly aren't all the possible errors one can make, but at least they
give some idea where to look first. Since we can't completely avoid silly
errors, it's necessary to be able to recover from them as quickly as possible.

By the way . . . a one-semester course in beginning typing can do wonders for
your programming speed and typing accuracy.

From The Ridiculous To The Sublime:
All the Computer can tell us is that we have (or have not) followed all of
its rules. Assuming we have, the Computer will not protest even if we're
asking it to do something that's quite silly and not at all what we intended. It
will dutifully put out garbage all day long if we feed it garbage -- even though
we follow its rules. Remember GIGO?

GIGO stands for Garbage In, Garbage Out.

If the program has no obvious errors, what might be the matter?

390 Chapter 49

Typical ''unreported" errors are:

1. Accidentally reinitializing a variable -- particularly easy when
using loops.

EXAMPLE:

10 FOR N=1 TO 3
20 READ A
30 PRINT A
40 RESTORE
50 NEXT N
60 DATA 1t2t3

2. Reversing conditions, i.e. using"=" when we mean "<>," or
"greater than" when we mean "less than."

3. Accidentally including "equals," as in "less than or equals,"
when we really mean only "less than."

4. Confusing similarly named variables, particularly the variable A,
the string A$, and the array A(X). They are not at all related.

5. Forgetting the order of program execution - from left to right
on each Line, but multiplications and divisions always having
priority before additions and subtractions. Intrinsic functions
(INT, RND, ABS, etc.) have priority over everything.

6. Counting incorrectly in loops. FOR I =O TO 7 causes the
loop to be executed. eight, not seven, times.

7. Using the same variable accidentally in two different places.
This is okay if we don't need the old variable any more, but
disastrous if we do. Be especially careful when combining pro­
grams or using the special subroutines.

But how do we spot these errors if the Computer doesn't point them out? Use
common sense, and let the Computer help. The rules are:

1. Isolate the error. Insert temporary "flags." Add STOP, END,
and extra PRINT statements until you narrow the error down to
one or two Lines.

EXAMPLES OF USEFUL FLAGS:

299 PRINT t"LINE •299"

Debugging Programs 391

399 IF X<O THEN PRINT "X OUT OF RANGE AT
•399" : STOP

Line 299 checks whether the Line immediately following Line
299 is executed. Line 399 might be used to locate the point
where X goes out of range.

Although the details are different in every program, these
techniques can be easily applied.

2. Make "tests" as simple as possible. Don't add "enhancements"
until you've found the problem.

3. Check simple cases by hand to test the logic, but let the Com­
puter do the hard work. Don't try to wade through complex cal­
culations with pencil and paper. You'll introduce more new mis­
takes than you'll find. Use the Command window or a separate
band calculator for that work.

4. Remember that we can force the Computer to start a program at
any Line number. Just enter the Command window and type:

GOTO ###

This is a useful tool for working back through a program. Give
the variables acceptable values using statements entered in the
Command window, then GOTO some point midway through the
program. If the answers are what are expected, then the error is
before the "test point." Otherwise, the error is after the test
point.

5. Remember if you need to look at two sections of the pro­
gram, you can UST one section in the main List window and
the other section in the second List window.

6. Practice "defensive programming." Just because a program ''runs
okay," don't assume it's dependable. Programs that accept
INPUT data and process it can be especially deceptive. Make a
point of checking a new program at all the critical places.

392 Chapter 49

EXAMPLES: A square root program should be checked for
INPUTs less than or equal to zero. Math functions should be
checked at points where the function is undefined, such as
TAN(90°).

Beware Of Creeping Elegance
Programs grow more elegant with the ego reinforcement of the programmer.
This "creeping elegance" increases the chance of silly errors. It's fun to let
the mind wander and add some more program here and some more there, but
it's also easy to lose sight of the program's purpose. It is at times like this
when the flowchart is ignored and the trouble begins. Nuff said.

Learned In Chapter 49

Miscellaneous

Defensive programming
Computer-detected errors
Flags
Hardware checkout procedures

---------Chapter 50

e have seen that the EDITor is a powerful aid in changing programs
once we find out what is wrong. In this and the next Chapter we will
learn how to use built-in diagnostic tools to help hunt down the errors.

TRON/TROFF
The simplicity but power of TRON/TROFF is awesome. Enter this New
program:

10 INPUT "PRESS RETURN TO WATCH TRGN";X$
20 CLS
30 FOR N = 1 TO 5

40 PRINT "SEE TRON RUN"
50 NEXT N
60 GOTO 10

... and Run to be sure it's OK.

Stop the program, then choose Trace On from the Run menu, or enter the
Command window and type:

TRON 1;m1111,1

(which stands for TRacer ON), then Run.

After pressing !;Alim!, wait for the PRESS RETURN request to reappear and
press IO·B to Stop the program and ID I! to show the listing. The INPUT
statement in Line 10 is enclosed in a box indicating this is the Line the Com­
puter was sitting on when the program was stopped.

393

01-1, COME NOW!

Chasing Bugs 395

Run the program again and after pressing l;Aiiliel, quickly press 11 B while
the Computer is printing SEE TR 0 N RUN. If you were quick enough, a Line
within the FOR-NEXT will be enclosed in a box. Again, the Computer is
showing us where it was when it stopped.

Go to the Run menu again, and this time choose Trace Off, or enter the Com­
mand window and type:

TROFF Imm He!

(for TRacer OFF) and Run.

The Tracing has stopped when the Listing appears, and it's business as usual.
TRON is the very essence of simplicity.

TRON and TROFF can be imbedded as program statements as well as used
as BASIC commands giving greater flexibility in program troubleshooting.

Stepping Through The Program
With large, complex programs, it is often difficult to Stop execution at the
precise point where we suspect a problem. With the Step feature, we can
watch each program Line as it is being executed and see the results on the
screen.

Run our resident program. Select Step from the Run menu, or press llii,
then press l;Aiiiirl as requested by the program. Once again, as with TRON,
the INPUT statement in Line 10 is enclosed in a box. Press Ill ii and notice
that the screen cleared as the CLS statement was enclosed in a box.

Continue pressing BJ ii to step through the remainder of the program while
watching the action on the screen. Remember to press lmlil!iel when the
INPUT Statement is executed. Pressing Bl'lii does not take the place of pres­
sing l;ffjllHel.

Imagine its value in a program with dozens or hundreds of program Lines all
tangled up with IF-THEN's, ON-GOTO's, etc. The errors that drive us wild
are those we can't see.

396 Chapter 50

Learned In Chapter SO

Commands/Statements

TRON
TROFF

Menu

Run
Trace On
Trace Off
Step ~ii

---------chapter 51

icrosoft BASIC provides 46 different ERROR messages numbered
between 1-38 for the Elementary and Intermediate BASIC we have
learned, and between 50-74 for Advanced or Disk BASIC. There are

so many we need a separate Chapter plus an Appendix just to understand what
they mean.

Let's quietly tiptoe into the hall of ERRORs by typing this New little test
program:

10 REM * TESTING ERROR CODES *
20 INPUT "CHECK WHICH ERROR CODE";N
30 ERROR N

Run the program a number of times (entering numbers between 1 and 74)
forcing the Computer to print out the message for various types of
ERRORs. Don't waste time trying to understand them now. You can study
them in detail in Appendix C.

The only new BASIC word is in Line 30. ERROR has little use in life except
as above, printing the Error Code from its code number.

ERROR Trapping
The ON ERROR GOTO statement is of more value. It is used when we think
we're on the trail of a specific type of ERROR, but are not sure.

397

398 Chapter 51

Microsoft ERROR CODES

BASIC ERRORS

Code Error
1 NEXT without FOR
2 Syntax error
3 RETURN without GOSUB
4 OutofDATA
5 lliegal function call
6 Overflow
7 Out of memory
8 Undefined label
9 Subscript out of range
10 Duplicate Definition
11 Division by zero
12 lliegal direct
13 Type mismatch
14 Out of Heap Space
15 String too long
16 String formula too complex
17 Can't continue
18 Undefined user function
19 NoRESUME
20 RESUME without error
21 Unprintable error
22 Missing operand
23 Line too long
26 FOR Without NEXT
29 WHILE without WEND
30 WEND without WHILE
35 Undefined subprogram
36 Subprogram already in use
37 Argument count mismatch
38 Undefmed array

DISK ERRORS
50 FIELD overflow
51 Internal error
52 Bad file number
53 File not found
54 Bad file mode

Chasing The Errors 399

Code Error

55 File already open
57 Device 1/0 error
58 File already exists
61 Disk full
62 Input past end
63 Bad record number
64 Bad file name
66 Direct statement in file
67 Too many opened files
68 Device Unavailable
70 Disk Write Protected
74 Unknown Volume

Suppose we suspect that someplace in the program there is an accidental
square rooting of a negative number, and it's goofing up the results. Type in
this New test program:

10 ON ERROR GOTO 70
20 PRINT
30 INPUT "FIND THE SQUARE ROOT OF";N

40 A = SQRCN>
50 PRINT "SQUARE ROOT OF"iNi"="iA
60 GOTO 30
70 BEEP
80 PRINT "SQR ROOT OF NEGATIVE"
90 PRINT "IS ILLEGAL!"
999 END

... and Run.

Try positive values, and 0, then try a negative value.

ON ERROR GOTO is acting much as our old friend ON X GOTO did, so
there are no big surprises here.

Change Line 10 to a REM Line and try assorted values, ending with a nega ..

400 Chapter 51

tive number. Again, no big surprise. An ERROR message was delivered, pin­
pointing both the nature and location of the ERROR, and execution was ter­
minated. Lines 70, 80 and 90 were not executed, however.

Change Line 10 back to:

10 ON ERROR GOTO 70

and insert:

100 RESUME 20

... and Run with various values, including negative ones.

Although the Computer was forced to operate with an ERROR (negative
square root), execution did not terminate. The . ERROR message was deliv­
ered, but the Computer kept on going, thanks to RESUME. This is the
essence of good ERROR trapping - identifying the ERROR without "crash­
ing" the program. There may be several interrelated ERRORs that can be
found easily only by continuing the Run.

Stop the program, and change Line 100 to:

100 RESUME NEXT

... and Run.

Although the results are similar to those obtained with:

RESUME 20

there is a subtle difference.

RESUME NEXT causes execution to RESUME at the NEXT Line imme­
diately following the Line which made the ERROR. Thus Line 50 is
PRINTed, even though (in this case) it gives a wrong answer. RESUME 20
directed execution to a very specific Line. With a little bead-scratching, we
can quickly see how both of these features are useful in difficult debugging
situations.

Chasing The Errors 401

Next, change Line 100 to:

100 RESUME

••. and Run.

AB we see and hear, RESUME by itself (or RESUME 0) sends execution back
to the Line in which the ERROR is being made. The Computer keeps trying
to take the square root of the same negative number. To regain control click
Stop from the Run menu or press 19 •· If you are having difficulty vis­
ualizing what is taking place in any of these examples, try Stepping (IHI)
through the program, and read the road map.

ERL
Change Line 100 back to:

100 RESUME 20

and insert:

85 PRINT "ERROR IS IN LINE •";ERL

.•. and Run.

The program now informs us that the

ERROR IS IN LINE • 40

ERL is a "reserved" word that produces the Line number in which the ERROR
occurs. For my money, this little jewel in combination with ON ERROR
GOTO to snag 'em and RESUME NEXT (or RESUME Line number) to keep
the program from crashing, makes this whole hassle worthwhile.

ERR
A final esoteric touch may be obtained by adding the ERR (not ERL) state­
ment. ERR produces the ERROR code number.

402 Chapter 51

We've gone almost full cycle. Insert Line 97:

97 PRINT "AND ERROR CODE IS";ERR

... and Run .

... which brings us back to Do, a deer, a female deer ... (it must be time to
STOP this book -- getting too silly!)

EXERCISE 51-1: Enter the following Nevv program:

20 CLS
30 FOR I=l TO 10
ao x = INT<RND * 21) + 1 : F = X-10/X
50 PRINT I •"X =" ;x ,"F<X> = "iF
60 IF F< THEN PRINT
70 IF X = 20 THEN READ A
80 NEXT I
90 INPUT "PRESS RETURN TO CONTINUE";z :

GOTO 20

Write an ERROR trapping routine that recovers from both ERRORs
and PRINTS:

OUT OF DATA ERROR IN LINE ##

SYNTAX ERR 0 R I N L I NE # # or as appropriate.

HINT -- Syntax error is code 2, and Out of DATA is code 4.

Learned In Chapter 51

Statements

ERROR
ON ERROR GOTO
RESUME

Functions

ERL
ERR

Chasing The Errors 403

Miscellaneous

ERROR codes

~JE<OVJ:ril(Q)~ IB3

ANSWERS
TO

EXERCISES

406 Section B

SAMPLE ANSWER FOR EXERCISE 5-1:

50 PRINT D

SAMPLE RUN FOR EXERCISE 5-1:

6000

Note: You may have used a different Line number in your answer, but the
way to get the answer PRINTed on the screen is by using the PRINT state­
ment. If you didn't get it right the first time, don't be discouraged. Type in
Line 50 above, and RUN the program. Then return to Chapter 5 and continue.

SAMPLE ANSWER FOR EXERCISE 5-2:

10 REM * TIME SOLUTION KNOWING DISTANCE AND RATE *
20 D = 6000
30 R = 500
40 T = D I R
50 PRINT "THE TIME REQUIRED IS";T;"HOURS."

Note: Remember to hit l;Ai!ml after each Line.

SAMPLE RUN FOR EXERCISE 5-2:

THE TIME REQUIRED IS 12 HOURS.

Note: In order to arrive at the formula in Line 40, it is necessary to transpose
D = R * T and express the equation in terms of T.

SAMPLE ANSWER FOR EXERCISE 5-3:

10 REM * CIRCUMFERENCE SOLUTION *
20 p = 3 .14
30 D = 35
40 c = p * D
50 PRINT "THE CIRCLE'S CIRCUMFERENCE IS";C;"FEET. 11

SAMPLE RUN FOR EXERCISE 5-3:

THE CIRCLE'S CIRCUMFERENCE IS 109.9 FEET.

Answers To Exercises 407

Note: Since pi is not included in Microsoft BASIC, we have to set a variable
(in this case P was used) equal to the value pi (3.14).

SAMPLE ANSWER FOR EXERCISE S-4:

10 REM * CIRCULAR AREA SOLUTION *
20 p = 3.14
30 R = 5
40 A = p * R * R
so PRINT "THE CIRCLE'S AREA IS"iAi"SQUARE INCHES."

SAMPLE RUN FOR EXERCISE S-4:

THE CIRCLE'S AREA IS 78.S SQUARE INCHES.

Note: Some BASICs do not have a function which means "raise to the power"
to handle R2• (Microsoft BASIC does.) In easy cases like this one, we can
simply use R times R (R*R). You'll learn how to use the simple EXPONEN­
TIATION function as we proceed.

SAMPLE ANSWER FOR EXERCISE S-S:

10 B = 225
20 c = 17 + 35 + 225
30 D z 40 + 200
40 N = B - c + D
50 PRINT "YOUR NEW BALANCE IS $ 11 iN

SAMPLE RUN FOR EXERCISE S-S:

YOUR NEW BALANCE IS $ 188

SAMPLE ANSWER FOR EXERCISE 6-1:

10 REM * CAR MILES SOLUTION PROGRAM *
20 N z 1oqooqooo
30 D z 10000000
40 T z N * D
50 PRINT "THE TOTAL NUMBER OF MILES DRIVEN IS"IT

408 Section B

SAMPLE RUN FOR EXERCISE 6-1:

THE TOTAL NUMBER OF MILES DRIVEN IS 1E+15

Note: As discussed earlier, the answer is the number 1 followed by 15 zeros,
or l ,000,000,000,000,000. That's one zillion. The Computer will not store
any number larger than 9,999,999 without converting it to exponential nota­
tion.

SAMPLE ANSWER FOR EXERCISE 6-2:

20 N = 1E+08
30 D = 1E+07

SAMPLE RUN FOR EXERCISE 6-2:

THE TOTAL NUMBER OF MILES DRIVEN IS 1E+15

SAMPLE ANSWER FOR EXERCISE 7-1:

10 REM * FAHRENHEIT TO CELSIUS CONVERSION *
20 F = 65
30 C = <F-32) * (5/9)
40 PRINT F;"DEGREES FAHRENHEIT =";c;"DEGREES CELSIUS."

SAMPLE RUN FOR EXERCISE 7-1:

65 DEGREES FAHRENHEIT = 18.33333 DEGREES CELSIUS.

Observe carefully how the parentheses were placed. As a general rule, when
in doubt -- use parentheses. The worst they can do is slow down calculating
the answer by a few millionths of a second.

SAMPLE ANSWER FOR EXERCISE 7-2:

30 C = F - 32 * (5 I 9)

SAMPLE RUN FOR EXERCISE 7-2:

65 DEGREES FAHRENHEIT = 47122222 DEGREES CELSIUS.

Answers To Exercises 409

Note how silently and dutifully the Computer came up with the wrong
answer. It has done as we directed, and we directed it wrong. A common
phrase in computer circles is GIGO (pronounced "gee·goe"). It stands for
"Garbage Jn • Garbage Out." We have given the Computer garbage, and it
gave it back to us by way of a wrong answer. Phrased another way, "Never
in the history of mankind has there been a machine capable of making so
many mistakes so rapidly and confidently." A computer is worthless unless it
is programmed correctly.

SAMPLE ANSWER FOR EXERCISE 7-3:

30 C = <F - 32> * 5 I 9

SAMPLE RUN FOR EXERCISE 7-3:

65 DEGREES FAHRENHEIT = 18.33333 DEGREES CELSIUS.

SAMPLE ANSWER FOR EXERCISE 7-4:

Two possible answers:

30 - < 9 - B > - < 7 - 6 > = 28
30 - (9 - (8 - (7 - 6))) = 28

Sample programs:

10 A= 30 - (9 - (8 - <7 - 6)))
20 PRINT A

Or Line 10 might be:

10 A = 30 - < 9 - 8 > - < 7 - 6 >

Try a few on your own.

SAMPLE ANSWER FOR EXERCISE 8-1:

10 A = 5
20 IF A <> 5 THEN 50
30 PRINT "A EQUALS 5."
40 END
50 PRINT "A DOES NOT EQUAL 5."

410 Section B

SAMPLE RUN FOR EXERCISE 8-1:

A EQUALS 5.

SAMPLE ANSWER FOR EXERCISE 8-2:

10 A = 6
20 IF A <> 5 THEN 50
30 PRINT "A EQUALS 5. 11

40 END
50 PRINT "A DOES NOT EQUAL 5 • n

60 IF A < 5 THEN 90
70 PRINT "A IS LARGER THAN 5. II
80 END
90 PRINT "A IS SMALLER THAN 5 • n

SAMPLE RUN FOR EXERCISE 8-2:

A DOES NOT EQUAL 5.
A IS LARGER THAN 5.

Note: We had to put in another END statement (Line 80) to keep the program
from running in to Line 90 after PRINTing Line 70.

SAMPLE ANSWER FOR EXERCISE 13-1:

1 REM * DELAY PROGRAM *
2 INPUT "HOW MANY SECONDS DELAY DO YOU WISH";s
3 p = 2200
a D = S * P
5 FOR X = 1 TO D
6 NEXT X
7 PRINT "DELAY IS OVER. TDDK 11 ;s; 11 SECDNDS."

Explanation:

Line 2 used the INPUT statement to obtain desired delay, S in
seconds.

Line 3 defined P, the number of passes required to for a one second
delay.

Answers To Exercises 411

Line 4 multiplied the delay for one second times the number of
seconds desired and called that product D.

Line 5 began the FOR-NEXT loop from 1 to whatever is required.

Line 6 is the other half of the loop.

Line 7 reports the delay is over and prints S, the number of
seconds. Obviously, S is only as accurate as the program itself
since it merely copies the value of S you entered in Line 2.

SAMPLE ANSWER FOR EXERCISE 13-2:

50 PRINT "RATE"t "TIME"
55 PRINT "<MPH>"t"<HDURS>"

H you honestly had trouble with this one, better go back and start all over
because you've missed the real b~ics.

SAMPLE ANSWER FOR EXERCISE 13-3:

10 PRINT "*** S A l- A R Y R A T E
C H A R T ***"

20 PRINT
30 PRINT "YEAR"t"MDNTH"t"WEEK"t"DAY"
40 PRINT
50 FDR Y = 5000 TD 20000 STEP 1000
55 REM * CONVERT YEARLY INCOME INTO MONTHLY *
60 M = Y/12
65 REM * CONVERT YEARLY INCOME INTO WEEKLY *
70 W = Y/52
75 REM * CONVERT WEEKLY INTO DAILY *
80 D = W/5
100 PRINT YtMtWtD
110 NEXT Y

412 Section B

SAMPLE RUN FOR EXERCISE 13-3:

*** S A L A R v R A T E CHART

YEAR MONTH WEEK

5000 416.8867 96.15385
6000 500 115.3846
7000 583.3333 134.6154
8000 666.8867 153.8462

etc.

SAMPLE ANSWER FOR EXERCISE 13-4:

10 R = .01
20 D = 1
30 T = .01
ao PRINT "DAV"t"DAILY"t"TOTAL"
50 PRINT n # "1"RATE" 1"EARNED"
60 PRINT
70 PRINT DtRtT
80 IF R > 1000000
90 R = R * 2
100 D = D + 1
110 T = T + R
120 GOTO 70

THEN END

SAMPLE RUN FOR EXERCISE 13-4:

DAY DAILY TOTAL
RATE EARNED

1 .01 .01
2 .02 .03
3 .04 .01
4 .00 .15
5 .16 .31
6 .32 .63

etc.

DAY

19.23077
23.07682
26.92308
30.76923

Answers To Exercises 413

SAMPLE ANSWER FOR EXERCISE 13-5:

10 PRINT "WIRE FENCE"t"LENGTH"t"WIDTH"t"AREA"
20 PRINT" <FEET>"•"<FEET>"•"<FEET>"t"(SQ. FEET>"
30 F = 1000
40 FDR L = 0 TO 500 STEP 50
50 W = <F - 2 * L)/2
60 A = L * W
70 PRINT FtLtWtA
80 NEXT L

SAMPLE RUN FOR EXERCISE 13-5:

WIRE FENCE LENGTH
<FEET> <FEET>
1000 0
1000 50
1000 100
1000 150
1000 200

etc.

WIDTH
<FEET>
500
450
400
350
300

AREA
(SQ• FEET>
0
22500
40000
52500
60000

ADDENDUM TO EXERCISE 13-5:

Here's a program that lets the Computer do the comparing:

5 REM * SET MAXIMUM AREA AT ZERO *
10 M = 0
15 REM * SET DESIRED LENGTH AT ZERO *
20 N = 0
25 REM * F IS TOTAL FEET OF FENCE AVAILABLE *
30 F = 1000
35 REM * L IS LENGTH OF ONE SIDE OF RECTANGLE *
40 FDR L = 0 TO 500 STEP 50
45 REM * W IS WIDTH OF ONE SIDE OF RECTANGLE *
50 W = <F - 2 * L> I 2
60 A = W * L
65 REM * COMPARE WITH A CURRENT MAXIMUM.

REPLACE IF NECESSARY *
70 IF A <= M THEN GOTO 110

414 Section B

80 M = A
90 REM * ALSO UPDATE CURRENT DESIRED LENGTH *
100 N = L
110 NEXT L
120 PRINT "FOR LARGEST AREA USE THESE DIMENSIONS:"
130 PRINT N;"FT. 5yn;500-N;"FT1 FOR TOTAL AREA OF";M;

11 SQ1 FT1"

SAMPLE ANSWER FOR OPTIONAL EXERCISE 13-6:

10 REM * FINDS OPTIMUM LOAD TD SOURCE MATCH *
20 PRINT "LDAD"t"CIRCUIT"t 11 SDURCE"t"LDAD"
30 PRINT "RESISTANCE"t"PDWER"t"PDWER"t"PDWER"
40 PRINT "<DHMS>"•"<WATTS>"•"<WATTS>"•"<WATTS>"
50 PRINT
60 FDR R = 1 TD 20
70 I = 120 I <10 + R)
80 C = I * I * <10 + R)
90 S = I * I * 10
100 L = I * I * R
110 PRINT RtCtStL
120 NEXT R

SAMPLE RUN FOR OPTIONAL EXERCISE 13-6:

LOAD CIRCUIT SOURCE LOAD
RESISTANCE POWER POWER POWER
<OHMS> <WATTS> <WATTS> <WATTS>

1 1309.091 1190. 083 119. 0083
2 1200 1000 200
3 1107.692 852.071 255.6213
4 1028.571 734.6938 293.8775
5 960 640 320
6 900 562.5 337.5
7 847.0588 498.2699 348.7889
8 800 444.4444 355.5555
9 757.8948 398.892 359.0028
10 720 360 360
11 685.7143 326.5306 359.1837

etc.

Answers To Exercises 415

SAMPLE ANSWER FOR EXERCISE 14-1:

10 PRINT "THE TOTAL SPENT"
20 PRINT "BUDGET"t"YEAR'S"t"THIS"
30 PRINT "CATEGORY";TAB<15);"BUDGET";TAB<29>;"MONTH"

SAMPLE ANSWER FOR EXERCISE 14-2:

10 PRINT " *** S A L A R Y R A T E
C H A R T ***"

20 PRINT
30 PRINT" YEAR";TAB<15>;"MONTH";TAB<28);"WEEK"
40 PRINT TAB<41>;"DAY";TAB<54>;"HOUR"
~O FOR Y = 5000 TO 20000 STEP 1000
55 REM * CONVERT YEARLY INCOME INTO MONTHLY *
60 M = Y/12
65 REM * CONVERT YEARLY INCOME INTO WEEKLY *
70 W = Y/52
75 REM * CONVERT WEEKLY INCOME INTO DAILY *
80 D = W/5
85 REM * CONVERT WEEKLY INCOME INTO HOURLY *
90 H = W/40
100 PRINT y;TAB<14);M;TAB<27>;w;TAB<40>;D;TAB<53);H
110 NEXT Y

SAMPLE RUN FOR EXERCISE 14-2:

*** s A L A R y R A T E c H A R T ***

YEAR MONTH WEEK DAY HOUR
5000 416.6667 96.15385 19.23077 2.403846
6000 500 115.3846 23.07692 2.884615
7000 583.3333 134.6154 26.92308 3.365385
8000 666.6667 153.8462 30.76923 3.846154
9000 750 173.0769 34.61538 4.326923
10000 833.3333 192.3077 38.46154 4.807693
11000 816.6667 211 .5385 42.30769 5.288462
12000 1000 230.7692 46.15385 5.769231
13000 1083.333 250 50 6.25
14000 1166.667 269.2308 53.84615 6.730769
15000 1250 288.4615 57.69231 1.211539

etc.

416 Section B

SAMPLE ANSWER FOR EXERCISE 15-1:

10 FOR A = 1 TO 3
20 PRINT 11 A LOOP"
30 FOR B = 1 TO 2
40 PRINT t"B LOOP"
42 FOR C = 1 TO 4
44 PRINT tt"C LOOP 11

48 NEXT c
50 NEXT B
60 NEXT A

SAMPLE ANSWER FOR EXERCISE 15-2:

The program will be the same as the answer to Exercise 15-1 with the
following additions:

45 FOR D = 1 TO 5
46 PRINT ttt 11 D LOOP"
47 NEXT D

Note: To get the full impact of this "4-deep" nesting, stop the RUN frequently
to examine the nesting relationships between each of the loops.

SAMPLE ANSWER FOR EXERCISE 16-1:

Addition of the following single Line gives a nice clean PRINTout with all
the values "rounded" to their integer value:

55 A = INT<A>

Worth all the effort to learn it, wasn't it?

SAMPLE ANSWER FOR EXERCISE 16-2:

55 A = INT<10 * A) I 10

When 3.14159 was multiplied times 10 it became 31.4159. The INTeger value
of 31.4159 is 31. 31 divided by 10 is 3.1, etc.

Answers To Exercises 417

SAMPLE ANSWER FOR EXERCISE 16-3:

This was almost too easy.

55 A = INT<100 * A> I 100

SAMPLE ANSWER FOR EXERCISE 17-1:

10 INPUT "TYPE ANY NUMBER";X
20 T = SGN<X>
30 ON T+2 GOTO 50170180
ao END
50 PRINT "THE NUMBER IS NEGATIVE."
BO END
70 PRINT "THE NUMBER IS ZERO."
80 END
80 PRINT "THE NUMBER IS POSITIVE."

SAMPLE ANSWER FOR EXERCISE 18-1:

10 RANDOMIZE TIMER
20 INPUT "PRESS <Return> TO CONTINUE";A
30 CLS
ao GOSUB TOSS
50 P = N
BO PRINT "YOU ROLLED n;p
70 ON P GOTO 8011Ll011Ll0180180180111018018018011101140
80 REM USED FOR THE ON STATEMENT IF P = 1 <WHICH IT
CAN'T>
80 PRINT "YOUR POINT IS ";N

100 GOTO 170
110 PRINT "YOU WIN! II

120 PRINT
130 GOTO 20
1Ll0 PRINT "YOU LOSE."
150 PRINT

418 Section B

160 GOTO 20
170 GOSU5 TOSS
180 M = N
190 PRINT
200 PRINT •you ROLLED •;M
210 IF P=M THEN 110
220 IF M=7 THEN 140
230 GOTO 170
TOSS:

A = INT<RND*6+1)
5 = INT<RND*6+1>
N = A + 5
RETURN

SAMPLE ANSWER FOR EXERCISE 21-1:

10 PRINT CHR$(77)iCHR$(65>iCHR$<67>i
20 PRINT CHR$(73>iCHR$(7S>;CHR$(84>i
30 PRINT CHR$(79)iCHR$(83)iCHR$(72>

SAMPLE ANSWER FOR EXERCISE 21-2:

10 INPUT 0 ENTER A NUM5ER 0 iA$
20 A = ASC<A$)
30 IF A<47 THEN 10
40 IF A>57 THEN 10
50 PRINT "ASCII VALUE OF 0 iA$i" IS"iA

SAMPLE ANSWER FOR EXERCISE 22-1:

10 INPUT "FIRST STRING";A$
20 INPUT "SECOND STRING"i5$
30 PRINT : PRINT 0 ALPHABETICAL ORDER:•
40 IF A$(B$ THEN PRINT A$t5$: END
50 PRINT 5tA

SAMPLE ANSWER FOR EXERCISE 23-1:

10 INPUT "INPUT STRING";A$
20 IF LEN<A$))10 THEN PRINT "THE 10 CHARACTER

LIMIT WAS EXCEEDED."

SAMPLE ANSWER FOR EXERCISE 23-2:

10 INPUT "ENTER PASSWORD"iA$
20 FDR X=1 TD 11
30 READ N
40 P$ = P$ + CHR$CN>
50 NEXT X
60 IF A$ = P$ THEN 90

Answers To Exercises 419

70 PRINT "WRONG PASSWORD, TRY AGAIN,"
80 END
90 PRINT "CORRECT PASSWORD; YOU MAY ENTER,"
100 DATA 79180168178132t83168183t6517716S

SAMPLE ANSWER FOR EXERCISE 24-1:

10 INPUT "INPUT YOUR STREET ADDRESS"iA$
20 A = VALCA$)
30 PRINT: PRINT "YOUR NEIGHBOR'S STREET NUMBER IS n;

A+4

SAMPLE ANSWER FOR EXERCISE 24-2:

10 WIDTH 60
20 FDR X = 101 TO 120
30 A$ = STR$CX>
40 PRINT A$+"WT"•
50 NEXT X

SAMPLE RUN FOR EXERCISE 24-2:

101WT 102WT 103WT
105WT 106WT 107WT
109WT 110WT 11 HIT
113WT 114WT 115WT
117WT 118WT 119WT

SAMPLE ANSWER FOR EXERCISE 25-1:

104WT
108WT
112WT
116WT
120WT

10 INPUT "ISN'T THIS A SMART COMPUTER"iA$
20 B$ = LEFTCA11>
30 IF B$ = nyn THEN PRINT "AFFIRMATIVE":END
40 IF B$ = "N" THEN PRINT "NEGATIVE":END
50 PRINT "THIS IS A YES OR NO QUESTION"
60 GOTO 10

420 Section B

SAMPLE ANSWER FOR EXERCISE 25-2:

10 MAX$ = nn

20 FDR I = 1 TD 3
30 READ A$
40 N$ = MID$(A$t2t3>
50 IF N$>MAX$ THEN MAX$ = N$: P$ = A$
60 NEXT I
70 PRINT "THE PART NUMBER WITH THE LARGEST NUMERIC

PORTION IS 0 ;P$
80 DATA N106WTtA208FMtZ154DX

SAMPLE ANSWER FOR EXERCISE 25-3:

Choice C. P-

SAMPLE ANSWER FOR EXERCISE 25-4:

10 PRINT STRING$(30t42>

SAMPLE ANSWER FOR EXERCISE 26-1:

10 CLS
20 PRINT TA6(15);"DATE: ";DATE$t"TIME: ";TIME$1
30 FDR X = 1 TD 1000 : NEXT
40 GOTO 10

SAMPLE ANSWER FOR EXERCISE 28-1:

10 A = 5 : 6 = 12
20 c = SQR(AA2 + 6A2)
30 PRINT "THE SQUARE ROOT DF";A;
40 PRINT "SQUARED PLUS";a;"SQUARED IS";c

SAMPLE ANSWER FOR EXERCISE 28-2:

10 INPUT "ENTER A NUM6ER";N
20 PRINT "LOG <EXP (";N;") > =";LOG<EXP<N>>
30 PRINT "EXP <LOG (";N;") > =";EXP<LOG<N>>
40 PRINT : GOTO 10

Answers To Exercises 421

SAMPLE ANSWER FOR EXERCISE 31-1:

10 INPUT "STARTING HORIZONTAL PIXEL <OTO 490>"IH
20 INPUT "ENDING HORIZONTAL PIXEL (0 TD 490)";I
30 INPUT "STARTING VERTICAL PIXEL <O TD 300)";V
40 INPUT "ENDING VERTICAL PIXEL (0 TD 300)";W
50 CLS
60 FOR X = H TD I
70 FDR Y = V TO w
80 PSETCXtY>
90 NEXT Y
100 NEXT x
999 GOTO 999

SAMPLE ANSWER FOR EXERCISE 32-1:

A. MOVE THE DOT UP
10 INPUT "HORIZONTAL STARTING ADDRESS <O TD 490>";H
20 INPUT "VERTICAL STARTING ADDRESS <OTO 300)";V
30 CLS
40 PRESET<HtV+1)
50 PSETCHtV)
60 v = v - 1
70 IF V > -1 GOTO 40
99 GOTO 99

B. MOVE THE DOT TO THE LEFf
10 INPUT "HORIZONTAL STARTING ADDRESS <1 TO 490)";H
20 INPUT "VERTICAL STARTING ADDRESS <OTO 300)";V
30 CLS
40 PRESET<H+1tV)
50 PSET< H tV >
60 H = H - 1
70 IF H > -1 GOTO 40
99 GOTO 99

SAMPLE ANSWER FOR EXERCISE 32-2:

50 LINE <75t80)-(75t100>
60 LINE -<125t100)
70 LINE -<125t80)

422 Section B

SAMPLE ANSWER FOR EXERCISE 33-1:

Insert the following Lines:
85 P$ = 11 PING! 11

95 IF V = 250 GOTO 150
105 IF V = 50 GOTO 160
135 P$ = n n . BEEP •
137 ON D+2 GOTO 150,, 160
150 LOCATE 15126 . PRINT P$; .
160 LOCATE 5126 : PRINT P$:
5 spaces

GOTO 80
G TO 80

Note that P$ both prints the "PING" and makes it disappear by printing blanks
in its place. Also, Line 135 introduces the BEEP function which will have
many similar applications later in the book.

SAMPLE ANSWER FOR EXERCISE 36-1:

40 U$ = "####t## s n

40 U$ = "$####t## 5 n

40 U$ = "$$###t## s "
40 U$ = "$$1###t## 5 n

40 U$ = "**$1###t## 5 n

SAMPLE ANSWER FOR EXERCISE 36-2:

10 PRINT TAB<20>"CREDITS 6 TAX 9
20 FOR I = 1 TO 3
30 READ A$1X1Y1Z
40 U$ = "\ 17 \ 6 ##t##

##t##"
50 PRINT USING U$; A$1X1Y1Z
60 NEXT I
70 READ A$1N
80 V$ = II 3 \ 2 \ 6 ###. ## 11

90 PRINT TAB<29); : PRINT USING V$;A$1N
100 DATA ASTRAL COMPUTER. 10.3, .7, 19.0
110 DATA BIOFEEDBACK ADAPTER. 1.a, o, 1.a
120 DATA PERSONALITY MODULE, 7.2, .3, 7.5
130 DATA "DUE:"• 28.3

TOTAL"

11 t##

NOTE: Decimal points will not line up due to proportional spacing.

8

Answers To Exercises 423

SAMPLE ANSWER FOR EXERCISE 37-1:

10 AS = "REVENUES" BS = "EXPENSES" . CS = "ASSETS" .
20 US = II 2 \ 7 \ 14 \ 7 \ 5 \ 8

\"
30 PRINT USING us; AS,BS,CS
40 A• = 1203104.22 : B• = 560143.B . c = 0 .
50 VS = , s , s

···········•-" 60 PRINT USIN~ vs; Aa,c,A•
70 PRINT USING vs; c.B•·-B•

NOTE: Remember, decimal points will not line up due to proportional spac­
ing.

SAMPLE ANSWER TO EXERCISE 39-1:
Add or change the following Lines:

5 DIM A<210>
10 INPUT "WHICH CAR TD EXAMINE 11 ;W
20 FDR L = 1 TD 10
30 READ A<L>
40 NEXT L
50 FDR S = 101 TD 110
60 READ A<S>
70 NEXT S
72 FDR B = 201 TD 210
74 READ A
76 NEXT B
BO PRINT
90 PRINT "CAR•"•"ENG. SIZE","CDLOR","BDDY STYLE"
100 PRINT W•A<W> •A<W+100) •A<W+200)
500 DATA 300,200,500,300,200
510 DATA 300,400,aoo,300,500
520 DATA 3,1,4,3,2,4,3,2,1,3
530 DATA 20,20,10,20,30,20,30,10,20,20

SAMPLE ANSWER FOR EXERCISE 39-2:

Delete Lines 500 through 540 and change Line 30 to:

30 FDR C=1 TD 52 : A<C>=C : NEXT C

424 Section B

SAMPLE ANSWER FOR EXERCISE 40-1:

Change Li.Jie 50 to:

50 IF A$<F> >= A$<S> THEN 90 'TEST FOR LARGER ASCII #

An approach is to reverse the order of printing:

120 FOR D=N TO 1 STEP-1 1 PRINT A$<D>, : NEXT D

but that's not what we had in mind.

SAMPLE ANSWER FOR EXERCISE 41-1:

10 FOR E=1 TO 4
20 FOR D=1 TO 3
30 REM ENTRY DATA: NAMEt NUMBER• $$$$
40 READ R$CE1D>
50 PRINT R$(E1D>1
60 NEXT D 1 PRINT
70 NEXT E 1 PRINT
1000 REM * DATA FILE *
1010 DATA "JONESt C•"• 104391 100.00
1020 DATA "ROTHt J.", 10023t 87.24
1030 DATA "BAKERt H.", 12936t 398134
1040 DATA "HARMONt D1"t 104221 23.17

SAMPLE ANSWER FOR EXERCISE 41-2:

Insert:

100 REM *** SORT ***
110 FOR F=1 TO 3
120 FOR S=F+1 TO 4
130 IF R$(F11> <= R$CSt1) THEN 190
140 FOR J=1 TO 3
150 T$ = R$(F1J)
160 R$(FtJ) = R$(S1J)
170 R$CS1J) = T$
180 NEXT J
190 NEXT S

Answers To Exercises 425

200 NEXT F
210 PRINT : PRINT "ALPHA SORT" 1 PRINT
220 FOR E=l TO 4
230 FOR D=l TO 3
240 PRINT R$(EtD>
250 NEXT D : PRINT
260 NEXT E : PRINT

SAMPLE ANSWER FOR EXERCISE 41-3:

Change these Lines:

130 IF VAL<R$(Ft3)) <= VAL<R$(St3)) THEN 190
210 PRINT : PRINT "NUMERIC SORT": PRINT

SAMPLE ANSWER FOR EXERCISE 43-1:

10 INPUT "IS GATE 'X' OPEN";A$
20 INPUT "IS GATE 'Y, OPEN";B$
30 INPUT "IS GATE 'Z' OPEN";C$
40 PRINT
50 IF A$="Y" OR B$="Y" OR C$="Y" THEN BO
60 PRINT "OLD BESSIE IS SECURE IN PASTURE •3·"
70 END
BO PRINT "A GATE IS OPEN."
90 PRINT " OLD BESSIE IS FREE TO ROAM."

SAMPLE ANSWER FOR EXERCISE 46-1:

10 OPEN "SHOPPING" FOR OUTPUT AS 1
20 FOR X :: 1 TO 5
30 PRINT "ENTER ITEM •" ;x;
40 INPUT A$
50 PRINT #1tA$
60 NEXT X
70 CLOSE

426 Section B

SAMPLE ANSWER FOR EXERCISE 46-2:

80 OPEN "SHOPPING" FOR INPUT AS 1
90 FOR X = 1 TO 5
100 INPUT #l1A$
110 PRINT "ITEM •";x;"IS ";A$
120 NEXT X
130 CLOSE

SAMPLE ANSWER FOR EXERCISE 46-3:

10 OPEN "NAMEAGE" FOR OUTPUT AS 1
20 INPUT "ENTER A NAME OF 'DONE' TO
30 IF N$ = "DONE" THEN 80
40 PRINT •11N$
so INPUT "HOW OLD IS HE/SHE";A
60 PRINT #ltA
70 GOTO 20
80 CLOSE 1
90 OPEN "NAMEAGE" FOR INPUT AS 1
100 IF EOF<l> THEN 140
110 INPUT #l1N$1A
120 PRINT NSt" IS";A;"YEARS OLD"
130 GOTO 100
140 CLOSE

SAMPLE ANSWER FOR EXERCISE 48-1:

10 REM * TEST GRADER *

ENO" ;N$

20 PRINT "THIS IS A TEST GRADING PROGRAM"
30 PRINT "ENTER THE STUDENT'S FIVE ANSWERS AS REQUESTED"
40 RESTORE
50 N = 0
60 FOR C=1 TO 5
70 PRINT "ANSWER NUMBER";c;
80 INPUT A
90 READ B
100 PRINT AtBt
110 IF A=B THEN PRINT "CORRECT": N=N+l ELSE PRINT t

"WRONG"
120 PRINT
130 NEXT C

Answers To Exercises 427

140 PRINT N;"RIGHT OUT OF 5 WHICH IS";
150 PRINT N/5 * 100;"%"
160 PRINT "ANY MORE TESTS TO GRADE";
170 INPUT "--1=YESt Z=NO";z
180 IF Z=1 THEN CLS: GOTO 40
190 DATA 65t23t17t56t39

SAMPLE ANSWER FOR EXERCISE 48-2:

100 CLS
110 PRINT : PRINT
120 PRINT "SELECT ONE OF THE FOLLOWING INVESTMENTS"
130 PRINT
140 PRINT "
150 PRINT "
160 PRINT "
170 PRINT II

1
z
3
4

CERTIFICATE OF DEPOSIT"
BANK SAVINGS ACCOUNT"
CREDIT UN ION"
MORTGAGE LOAN"

180 PRINT INPUT "INVESTMENT <1-4):";F
190 ON F GOTO DEPOSITStSAVINGStC.U. tMORTGAGE
ZOO GOTO 100 : REM * IF NUMBER NOT BETWEEN 1 AND 4 *
DEPOSITS:

REM * CERTIFICATE O~ DEPOSIT PROGRAM GOES HERE *
PRINT "THE C.D. PROGRAM HAS YET TO BE WRITTEN."
GOSUB DELAY : GOTO 100

SAVINGS:
REM * BANK SAVINGS ACCOUNT PROGRAM *
CLS : PRINT : PRINT "THE ROUTINE CALCULATES SIMPLE
INTEREST ON"
PRINT "DOLLARS HELD IN DEPOSIT FOR SPECIFIED PERIOD"
PRINT "USING A SPECIFIED PERCENTAGE OF INTEREST."
PRINT
PRINT : INPUT "HOW LARGE IS THE DEPOSIT <IN
DOLLARS)";p
INPUT "HOW LONG WILL YOU LEAVE IT IN <IN DAYS>";D
INPUT "WHAT INTEREST RATE DD YOU EXPECT <IN %) 11 ;R
CLS : PRINT : PRINT
PRINT "A STARTING PRINCIPAL OF $ 11 ;P;"AT A RATE OF"
REM INTEREST = (% PER YR>l<DAYS PER YR) * DAYS *
PRINCIPAL
U$ = "$$####,##"
I = R I 100 I 365 * D * P
PRINT : PRINT TABC17) PRINT USING U$;I
END

428 Section B

c.u.:
REM * CREDIT UNION PROGRAM GOES HERE *
PRINT "THE c.u. PROGRAM HAS YET TO BE WRITTEN.•
GOSUB DELAY : GOTO 100

MORTGAGE:
REM * MORTGAGE LOAN PROGRAM GOES HERE *
PRINT "THE M.L. PROGRAM HAS YET TO BE WRITTEN."
GOSUB DELAY : GOTO 100

DELAY:
FOR D = 1 TD 5000 : NEXT : RETURN

SAMPLE ANSWER FOR EXERCISE 51-1:

10 ON ERROR GOTO 100
ZO CLS
30 FDR I = 1 TD 10
40 X = INTCRND*Z1> + 1 : F = X-10/X

PRINT It "X =";Xt"FCX)
IF F< THEN PRINT

50
60
70 IF X = 20 THEN READ A
80 NEXT I

=" ;F

90 INPUT "PRESS ENTER TD CDNTINUE"IZ : GOTO 20
100 IF ERR=2 THEN 140
110 IF ERR=4 THEN 130
120 PRINT "ERROR" : END
130 PRINT "OUT OF DATA ERROR IN LINE ";ERL~ RESUME NEXT
140 PRINT : PRINT "SYNTAX ERROR IN LINE ";ERL:

RESUME NEXT

~JECCTII(Q)~ CC

APPENDICES

Appendix A---------

Dec. Hex Geneva Chicago Monaco Dec. Hex Geneva Chicago Monaco

32 20 54 36 6 6 6

33 21 ' I ! • 55 37 7 1 7

34 22 .. II .. 56 sa 6 8 8

35 23 • # • 57 39 9 g 9

36 24 $ s $ 53 3A . .
•

37 25 I 3 I 59 3B . .
' ' '

38 26 & & & 60 3C < < <
39 27 • I I 61 30 = = =
40 28 (((62 3E) > >
41 29))) 63 3F ? .,

? •
42 2A * * * 64 40 @.' @ @

43 2B + + + 65 41 A R A

44 2C
' ' ' 66 42 B B B

45 20 - - - 67 43 c c c
46 2E • . 68 44 D 0 D

47 2F I I I 69 45 E E E

48 30 0 0 0 70 46 F F F

49 31 1 1 1 71 47 G 6 G

50 32 2 2 2 72 48 H H H

51 33 3 3 3 73 49 I I I

52 34 4 4 4 74 4A J J J

53 35 5 5 5 75 4B K K K

430

ASCII Chart 431

Dec. Hex Geneva Chicago Monaco Dec. Hex Geneva, Cblcago Monaco

76 4C L L L 110 6E n n n

77 4D M M M 111 6F 0 0 0

78 4B. N N " 112 70 p p p
79 4F 0 0 0 113 71 Q q q
80 50 p p p 114 72 r r r
81 51 Q Q Q 115 73 s s s
82 52 R R R 116 74 t t t
83 53 s s s 117 75 u u u
84 54 T T T 118 76 y u v
85 55 u u u 119 77 w w "' 86 56 v u u 120 78 x H x
87 57 w w

"'
121 79 y y y

88 58)(H x 122 7A z z z
89 59 y y y 123 7B { { {

90 SA z z z 124 7C I I I

91 5B (([125 7D } })

92 SC \ \ 126 7E
,., - -\

93 50],) J 127 7F
94 SE A "' .. 128 80 A R A
95 SF - - 129 81 l ft A -
96 60 . ' . 130 82 c ~ c ,
97 61 a 8 a 131 83 E ~ - -98 62 b b b 132 84 N N A
99 63 c c c 133 85 0 ii 0
100 64 d d d 134 86 0 ii 0
101 65 135 87

, , , e e e a 8 a
66 f 136 88

. 8 . 102 f f a a
103 67 137 &9 A "' A

9 g g 6 8 a
104 68 h h h 138 8A a ii a
105 69 i i 139 8B "'

"' i 6 a a
106 6A j 140 8C

0 0 a j j a a
107 6B k k k 141 8D c ~ ~

103 6C 1 I 142 8E
, , ,

I e e e
109 6D 143 8F • e . m m m e e

432 Appendix A

Dee. Hex Geneva Cbleago Monaco Dec. Hex Geneva Cbleago Monat0

144 90 .. " " e e e 178 B2 1 1 s
145 91 e e e 179 B3 l l l

146 92 • • i I I H~O B4 ¥ ¥ ¥

147 93 • i ' I I 181 B5 JJ. JJ. ~

148 94 .. " " I I ' 182 B6 a ~ ~

149 95 i I • 183 B7 I I :z
150 96 ii - ,,. n n 184 B8 TI R 11

151 97 • ,
6 0 0 185 B9 11 1f 11'

152 98 • • 0 0 0 186 BA J J J
153 99

.. " " 0 0 0 187 BB g I 9

154 9A 0 0 0 188 BC 2 ! 2

155 9B 0 ,.,
0 0 189 BD Q Q a

156 9C • • u u u 190 BE m m •
157 9D u . u u 191 BF fl B 0

153 9E
..

" u u u 192 co "
.

~ I.

159 9F 0 ii u 193 Cl i .
i I

160 AO t t t 194 C2 ., .., ..,

161 Al 0 0 0 195 C3 I ..r I

162 A2 ¢ ¢ ¢ 196 C4 f f f
163 A3 £ £ £ 197 cs - ts d -
164 A4 § § § 198 C6 l1 tJ. a
165 AS • • • 199 C7 « « ((

166 A6 ' en • 200 ca »)} ,,
167 A7 13 J) fl 201 cg
168 A8 ® ® 0 2()2 CA
169 A9 © © D 203 CB A .

R A
170 AA TM TM 'Ill 204

N

ii cc A A
171 AB . , , ,.,

0 205 CD 0 0
172 AC - 206 CE CE CE [

173 AD ~ * D 207 CF ce O! •
174 AE It f£ (20& DO . . -
175 AF 8 B 0 209 Dt - - -
176 BO 00 00 .. 210 D2 ,,

" "
177 Bl :!:: ± ± 211 D.3 " " R

ASCII Chart 433

Dec. Hex Geneva Chicago Monaco

212 D4 t ' ,

213 DS ' ' ,

214 D6 'I"

215 D7 0 <> •
216 08 y y i~

217 D9 ~ D =

Appendix B---------

Using reserved words as variable names will cause a Syntax error.

ABS
ALL
AND
APPEND
AS
ASC
ATN
AUTO
BACKPAT
BASE
BEEP
BREAK
BUTTON
CALL
CDBL
CHAIN
CHR$
CINT
CIRCLE
CLEAR
CLOSE
CLS
COMMON
CONT
cos
CSNG
CSRLIN
CVD
CVDBCD
CVI
CVS
CVSBCD

DATA
DATE$
DEF
DEFDBL
DEFINT
DEFSNG
DEFSTR
DELETE
DIALOG
DIM
EDIT
ELSE
END
EOF
EQV
ERASE
ERASEARC
ERASEOVAL
ERASEPOLY
ERAS ERECT
ERASEROUNDRECT
ERL
ERR
ERROR
EXIT
EXP
FIELD
FILES
FILLARC
FILLOVAL
FILLPOLY
FILLRECT

FILLROUNDRECT
FIX
FN
FOR
FRAMEARC
FRAMEOVAL
FRAMEPOLY
FRAMERECT
FRAMEROUNDRECT
FRE
GET
GETPEN
GO SUB
GOTO
HEX$
IIlDECURSOR
IIlDEPEN
IF
IMP
INITCURSOR
INKEY$
INPUT
INSTR
INT
INVERTARC
INVERTOVAL
INVERTPOLY
INVERTRECT
INVERTROUNDRECT
KILL
LBOUND
LCOPY

LEFf$
LEN
LET
LIBRARY
LINE

. LINETO
LIST
LUST
LOAD
LOC
LOCATE
LOF
LOO
LPOS
LPRINT
LSET
MENU
MERGE
MID$
MKD$
MKI$
MKS$
MOD
MOUSE
MOVE
MO VETO
NAME
NEW
NEXT
NOT
OBSCURECURSOR
OCT$
OFF
ON
OPEN
OPTION
OR
OUTPUT

PAINTARC
PAINTOVAL
PAINTPOLY
PAINTRECT
PAINTROUNDRECT
PEEK
PENMODE
PENNORMAL
PENPAT
PEN SIZE
PICTURE
POINT
POKE
POS
PRESET
PRINT
PSET
Pf AB
PUT
RANDOMIZE
READ
REM
RESET
RESTORE
RESUME
RETURN
RIGHT$
RND
RSET
RUN
SAVE
SCROLL
SETCURSOR
SON
SHARED
SHOWCURSOR
SHOWPEN
SIN

Reserved Words 435

SPACE$
SPC
SQR
STATIC
STEP
STOP
STR$
STRING$
SUB
SWAP
SYSTEM
TAB
TAN
TEXTFACE
TEXTFONT
TEXTMODE
TEXTSIZE
THEN
TIME$
TIMER
TO
TROFF
TRON
UBOUND
UCASE$
USING
USR
VAL
VARPTR
WAIT
WAVE
WEND
WHILE
WIDTH
WINDOW
WRITE
XOR

Appendix c---------

Code Error

1 NEXT without FOR
2 Syntax error
3 RETURN without GOSUB
4 Out of DATA
5 Illegal function call
6 Overflow
7 Out of memory
8 Undefined label
9 Subscript out of range

10 Duplicate Definition
11 Division by zero
12 Illegal direct
13 Type mismatch
14 Out of heap space
15 String too long
16 String formula too complex
17 Can't continue
18 Undefined user function
19 No RESUME
20 RESUME without error
21 Unprintable error
22 Missing operand
23 Line too long
26 FOR without NEXT
29 WHILE without WEND
30 WEND without WHILE
35 Undefined subprogram
36 Subprogram already in use
37 Argument count mismatch
38 Undefined array

436

Error Messages 437

Code Error
50 FIELD overflow
51 Internal error
52 Bad file number
53 File not found
54 Bad file mode
55 File already open
57 Device 1/0 Error
58 File already exists
61 Disk full
62 Input past end
63 Bad record number
64 Bad file name
66 Direct statement in file
67 Too many files
68 Device unavailable
70 Disk write protected
74 Unknown volume

Argument count mismatch (Code 37): the arguments in a subprogram CALL
statement do not equal the number of arguments in its corresponding SUB
statement.

Bad fde mode (Code 54): statements PUT or GET were used with a sequen­
tial file or a closed file to MERGE a non-ASCII file or to execute an OPEN
with a file mode other than input, output, append, or random.

Bad fde name (Code 64): An invalid form is used for the filename with
BLOAD, BSAVE, KILL, OPEN, NAME, or FILES (e.g., a filename starting
with a period).

Bad fde number (Code 52): a statement references a file with a file number
that isn't OPEN or is out of the range of possible file numbers which was
specified at initialization; the device name in the file specification is too long
or invalid, or the filename was too long or invalid.

Bad record number (Code 63): the record number in a PUT or GET state­
ment is either greater than the maximum allowed (32767) or equal to zero.

Can't continue (Code 17): the command CONT is typed, but there is no pro­
gram to concinue, the program has just been modified, or the program was
stopped due to an error.

438 Appendix C

Device 1/0 Error (Code 57): an error occurred on a device I/O operation.
DOS can't recover from the error.

Device unavailable (Code 68): Reference has been made to a device that is
not connected (i.e. external drive).

Direct statement in file (Code 66): a direct statement is encountered while
WADing or CHAINing to an ASCil format file. The WAD or CHAIN is
terminated.

Disk full (Code 61): there is no more storage space on diskette. When this
error occurs, files will be closed.

Disk write protected (Code 70): an attempt was made to save data to a write
protected disk.

Division by zero (Code 11): the Computer is asked to divide a number by 0.

Duplicate Definition (Code 10): the Computer is told to DIMension a numeric
or string Matrix after it has already been DIMensioned earlier in the same
program.

FIELD overflow (Code 50): a FIELD statement is attempting to allocate more
bytes than were specified for the record length of a random file in the OPEN
statement, or the end of the FIELD buffer was encountered while doing
sequential I/O (PRINT#,WRITE#,INPUT#,etc.) to a random file.

File already exists (Code 58): a NAME statement has specified a filename
that is identical to a filename already used on the diskette.

File already open (Code 55): you tried to OPEN a file for sequential output
or append, but the file is already OPEN, or you tried to KILL a file that is
open.

File not found (Code 53): a statement such as LOAD, KILL, NAME, FILES,
or OPEN has referenced a file that does not exist on the specified drive.

FOR without NEXT (Code 26): an attempt is made to RUN a program con­
taining a FOR-NEXT loop, but the word "NEXT'' is missing.

IDegal direct (Code 12): the Computer is asked to INPUT a value or string
in the Immediate or Direct mode.

Error Messages 439

megal function call (Code 5): illegal values are used with the built·in math
functions 1 or the Computer cannot figure out what to compute because of the
values it received.

Input past end (Code 62): this is an end of file error. An input statement
was executed for a null (empty) file or after all the data in a sequential file
was already input. To avoid this error, use the EOF function to detect the end
of file. This error also occurs if you try to read from a file that was opened
for output or append.

Internal error (Code 51): there has been an internal malfunction in BASIC.
The conditions under which the message appeared need to be reported to
Microsoft.

Line too long (Code 23): a line has been entered that has too many
characters.

Missing operand (Code 22): the Computer is not given all the information
required to carry out its directive.

NEXT without FOR (Code 1): an attempt is made to RUN a program con·
taining a FOR·NEXT loop, but the word "FOR" is missing.

No RESUME (Code 19): an ON ERROR GOTO statement is used to branch
to a specified program line, and the Computer does not encounter a RESUME
statement before the program stops.

Out of DATA (Code 4): the Computer is told to READ more items from the
DATA statement than are available.

Out of heap space (Code 14): the Macintosh heap is out of memory which
may result in the inability to use the desktop accessories.

Out of memory (Code 7): an attempt is made to store a program larger than
the Computer's memory storage space. Also occurs when a matrix variable is
assigned more elements than there is space in memory to store it.

Overflow (Code 6): the Computer is unable to use a number because it is
either too large or too small. An overflow condition can also be created by
routine mathematical calculations at either the statement or command levels.

440 Appendix C

RESUME without error (Code 20): the Computer encounters a RESUME
statement without first finding an ON ERROR GOTO statement.

RETURN without GOSUB (Code 3): the Computer reads a RETURN state·
ment but there is no corresponding GOSUB.

String formula too complex (Code 16): string manipulation has become too
complicated or too long for the Computer.

String too long (Code 15): an attempt is made to store more than 32,767
characters in a string variable.

Subprogram already in use (Code 36): the subprogram that was called has
already been called and has not yet been ended or exited.

Subscript out of range (Code 9): the elements in a numeric or string matrix
are beyond the range of values reserved in the DIM statement.

Syntax error (Code 2): a command, statement or function is misspelled, or
an operator is omitted.

Too many mes (Code 67): SA VE or OPEN is used in an attempt to create
a new file when all directory entries on the diskette are full or the file specifi·
cation is invalid.

Type mismatch (Code 13): a numeric value is assigned to a string variable,
or a string is assigned to a numeric variable.

Undermed array (Code 38): the array was not created before it was refer·
enced by a subprogram SHARED statement.

Undefined label (Code 8): a branching statement such as GOTO or GOSUB
calls for a line that does not exist.

Undermed subprogram (Code 35): the subprogram that was called is not in
the program.

Undermed user function (Code 18): a function is called before it was defined
with a DEF FN statement.

Unknown volume (Code 74): A reference has been made to a diskette that
isn't in the drive.

Error Messages 441

Unprintable error (Code 21): the ERROR statement is used to self-inflict an
error, and the resulting error code is not one used by the Computer.

WEND without WHILE (Code 30): a WEND was found before a matching
WHILE was executed.

WHILE without WEND (Code 29): a WHILE statement does not have a
matching WEND. A WHILE was executing when an END, STOP, or
RETURN statement was found.

Appendix D---------

!;l n this section, we'll briefly cover the valuable functions of the •
~(Apple) Menu.

Scrnpboolc
Alarm Clock
Note Pad
Calculator
Key Caps
Control Panel
Puzzle

Mkro;:oit BASIC (d)

11 items

lliet11 Special

Microsoft BASIC
578K in disk

Sample Programs

ll
~--'

S•~s \~rn FoMer

60K in fo Ider- 21 K avail ab le

[Ji] [Ji] [EJ [El
Mus1e T ermma I CrossRef Compr~ssor

,

Save any program that you may have in memory and Quit Microsoft BASIC
to return to the Finder.

All About ...
The very first item in the Apple Menu is the "All About" inquiry. This tells
us some information about whatever applications we're currently using. For

442

The Apple Menu 443

example, if we were in the Finder, the first item in the Apple Menu would
be "About the Finder ... " and would tell us which version we're using.

If we were in Microsoft BASIC, this selection would be "About Microsoft
BASIC ... "

Alarm Clock
An extremely useful feature of the Macintosh is its built in alarm clock.

Select Alarm Clock from the Apple Menu.

After the disk drive stops spinning, a small box with the current time will be
displayed. Move the pointer to the little switch that resembles a flag on a
mailbox. Then click the mouse.

More boxes appear, with icons for changing the date and time, as well as the
alarm clock. Right now, let's set the alarm.

0 8:37:39 RM !
5/22/85

Move the mouse pointer to the box that has the illustration of an alarm clock
and click the button. The box will darken and an hour/minute/second format
will appear underneath the current time display.

To set the time, move the pointer to the hour's position and click the button.
Two arrows will appear, one pointing up and the other pointing down. Move
the mouse pointer to either one of these and press the button. If you click it
once, the hours will change by one. But if you press and hold the button over
one of the arrows, the hours will rapidly increase or decrease, depending on
which arrow you point to.

Follow the same procedure for the minutes and seconds. Set the alarm to go
off within five minutes of the current time.

Once the alarm settings are where you want them, point the mouse to the

444 Appendix D

small switch to the left of the alarm time and click. If the switch is up, the
alarm is set to go off.

0 1 :54:33 PM !

f!l lfd:OO:OO RM llJ
@~

To close the panel on the alarm clock, click the flag. To put the clock away,
click the close box.

Note Pad
When the phone rings and you have to jot down a quick telephone number,
you'll always have the Computer's eight page Note Pad ready. Select Note
Pad from the Apple Menu.

Nute Pad

Keep up to e1 ght pages of notes
here 1n the Note Pad. Cl1ck on
the dog-ear to turn to the
follow1ng page. Click in the
lower left corner to turn to the
prev1 ous page.

1

~·

To write on the Note Pad, simply type at the keyboard. (The disk must not
be· write-protected}. Full editing and word wraparound features are included.

The Apple Menu 445

To tum to the next page, point the mouse button inside the small triangle of
''paper'' that is pulled back for us down in the lower left comer of the pad,
then click the mouse button. Zip! Macintosh turns the page for us! To go
back a page, point at the leftmost lower comer of the pad and click.

· Let's save the instructions on page 1. Tum to page 2, and type in this short
memo (we'll need it for testing another item of the desktop accessories):

6/1 Taxes due on ranch
6/9 Bud!tet Meet.ins
7/21 Meet with brake r
7/22 Meet with Swiss Banker
7/23 Meet with IRS
7/24 Meet with travel a sent
7/25 Leave far Brazil

Now, using the mouse-shading techniques we learned for editing lines, use
the mouse to shade the whole memo. Press and hold the mouse button and
move it up. When the whole memo is shaded, select Copy from the Edit
menu. Then remove the Note Pad by clicking its close box. The memo will
be saved when the box is closed.

By the way, did the Computer beep while entering that memo? If not, then it
probably will shortly. That is the Alarm on the clock.

Curious to see where that copy of the memo is? Pull the Edit menu down
again and select Show Clipboard. Aha!

Scrapbook
Our most frequently used notes, letters, or MacPaint pictures can be Pasted
into the desktop's Scrapbook. Select Scrapbook from the Apple menu, and
take a moment to look it over. Below the scrapbook "page," note the scroll
bar with its scroll box, the page counter which shows we are on page "1 of
5" pages, and the word ''TEXT'' which identifies the contents of this first
page. To see what's on the other pages, put the pointer in the scroll box and
drag it left. The page counter changes to indicate what page we are looking
at and ''TEXT'' becomes "PICT."

446 Appendix D

All transactions with the Scrapbook are done through the Clipboard, and we
just happen to have something in our Clipboard (remember when we copied
the memo from the Note Pad in that last section?). Let's Paste it into the
Scrapbook. Select Paste from the Edit menu. The disk drive will spin and
soon a copy of page two of our Note Pad will be in the Scrapbook. Look
at the page counter. Our memo has become page 1 of 6 pages.

Scrapbook

use the Scrapbook to store a var1ety of text select1ons
and p1ctures wh1ch may be transferred between
applicat1ons. Us1ng the ed1t menu, Cut or Copy rm 1tem
from the Scrapbook, then Paste 1t 1nto an applfcat1on
document.

I 1 of 5 TEXT

From here, we can take Scrapbook items, and Paste them into some applica­
tions programs (e.g. MacPaint, MacWrite). Click the close box to put the
Scrapbook away.

Calculator
This is truly a handy one. Whip out the Calculator from the Apple Menu.

Using the mouse or keyboard, we can enter numbers and perform normal cal­
culator functions. If you can imagine, this calculator will support a number
up to 9E+4950 (that is, 9 with 4,950 zeros after it!) without generating an
error.

The Apple Menu 447

D Calculator

Any number left in the Calculator's display will remain intact until we tum
the computer off, change applications, or RESET the machine.

Puzzle
After a long and tedious debugging session, take a breather by playing this
frustrating game. (They used to be plastic when I was a kid. It was fairly
easy to cheat by prying off those slippery digits and putting them back in the
right order. Not so simple anymore!)

Control Panel

n~ n~ ~ rr
~ n~ ~ !
® an a ll!

{) n@ ~ ~

We can modify many of Macintosh's operating functions, like the volume
level of Macintosh's speaker. Using the mouse, select Control Panel from the
Apple Menu.

448 Appendix D

CLOSE BOX DATE

MOUSE
TRACKING

Volume Level

BACKGROUND
PATTERN

TITLE BAR

DOUBLE·
CLICK RATE

COMMAND
FLASH
RESPONSE
KEYBOARD
REPEAT
INSERTION
POINT
BLINK

KEYBOARD
TOUCH

To adjust the volume from moderately loud to silent, move the pointer to the
slide and press the mouse button. Drag the slide up for a higher volume level
or stop it on zero to shut it off completely. When we let go of the button,
Macintosh will beep, so we can check the new volume level.

Mouse Tracking
Mouse tracking can be adjusted for two speeds, proportional to movement (0)
or exaggerated (1). Some applications that require precise mouse movement
may need the tracking set to 0.

Background Pattern
The Control Panel will also allow us to customize the background pattern or
choose one from a large selection. To edit the current pattern, click the mouse
(+) inside the pattern editing window. To save the change, click the mouse
in the pattern viewing window just to the right of the edit window. If we
want to select a predefined pattern, click the white bar above the pattern
viewing window.

The Apple Menu 449

Double-Click Rate
We may also change the speed of the double-dick; necessary for Opening
documents .and applications programs.

Insertion Point Blink
Even the rate of the blinking insertion point can be adjusted. A higher number
produces faster blinking.

Command Flash Response
Each time we select a menu item, Macintosh gives us some visual feedback
by flashing the selection. The number of blinks can be changed in the Com·
mand Blinking box.

Setting the Date and Time
In the same manner as we set the alarm clock, we can choose the hours,
minutes, or seconds in the clock window and then adjust them using the up
and down arrows. Use the same procedure for changing the date. After the
changes are set, click the mouse anywhere inside the Control Panel to imple·
ment the new date and time.

Keyboard Repeat
The rate of keyboard repeat can be adjusted by changing a value in the
keyboard window (0 is the slowest, and 4, obviously, is fastest).

Keyboard Touch
Even keyboard "touch" can be adjusted. A setting of 4 will require us to press
a little harder on the keys, whereas a 0 value will accept the lightest keypress.

(See Chapter 21 The ASCII Set for infonnation about the Key Caps desktop
accessory).

~IE<OLJrII(Q)~ II»

INDEX

452 Section D

A

Abbreviations 155
ABS 54,211
Alarm Clock 443
AND 329
Apple Menu 162,442
Answers to Exercises 405
APPEND 363
Arithmetic Functions 36,209
Arrays 288
ASC 164
ASCII 75,161,367

Chart 162,285,430
Assembly Language CALL 340
ATN 221

B

Back Space Key 16,21
Backup 11
BASIC 13,15
BEEP 345
Brightness Adjustment
Byte 70

c

12,19,385

Calculator (Direct
Command) Mode

CALL 340
65,446

Characters
ASCII 161,430
declaration 201
special 161

CHR$ 163

CINT
CIRCLE
CLEAR
Clipboard
Clock

205
350

299
24

setting 195,443
DATE$ 195
TIME$ 132,195

CLOSE 359
CLS 65
Codes

ASCII 161,430
error 398 ,436

Comma 42,268
Commands 20

window 14,65
Command B 20,76
Command E <elE) 12
Command L <ISL) 18,76
Command S <elS) 86
COMMON 374
Common Log 215
Compressed Format 75,367
Computer Program 15
Concatenate (+) 175
Conditional Tests 57
CONT (Continue) 87,92
Control Panel 447
cos 218
CSNG 205
CSRLIN 248
Cursor (insertion point) 14, 16
Cut <18X) 22

D

DATA 141
Data Processing
DATE$ 195
Debugging 383

357

Define Statements
DEFDBL 202
DEF FN 223
DEFINT 204
DEFSNG 203
DEFSTR 174

DELETE 91
Desktop 7
Dialog box 9
DIM 294
Disk 8
Disk Eject <DJE) 8
Division 36
Double-Precision 48,200

E

Edit 21
Ejecting A Disk (filE)
ELSE 159
END 32,107
EOF 364
EQV 335
ERASE 300
ERL 401
ERR 401
ERROR 397
Error Codes and Messages
EXP 215

8

Exponential notation 46,212
Expressions

logical 329
numeric 66
relational 54
string 145

F

FILES 73,367

27,397,436

Index 453

File
buffer 358
extensions 371
length and characters

Find Next <GIN) 153
FIX 209
Flowcharting 378
Fonts 341
FOR-NEXT 76
FRE(O) 14,69
Functions

arithmetic 209
defined 223
integer 109
intrinsic 209
string 145
trigonometric 218

G

GET 352
GO SUB
GOTO

125
54,77

228 Graphics
Guided Tour

H

HEX$ 167

5

75

Hexadecimal Conversion 166

I

IF-THEN 54,159
IF-THEN-ELSE 159
Image Line, PRINT USING 263
IMP 335
Initialize A Disk
INKEY$ 255

8

454 Section D

INPUT 60,157,276
INPUT# 361
INPUT$ 261
Insert Bar 14,21
INSTR 188
INT 49,109,209
Integer division 117
Integer precision 204
Interpreter 61
Interrupt (Reset) Switch 5,11,20
Inverse trigonometric functions 221

K

Key Caps 162
Keyboard Buffer 198
KILL 371

L
LCOPY 285
LEFr$ 183
LEN 173
LET 38
LINE 242
LINE INPUT
Line Labels
Line length
Line Numbers
Line Printer
LIST <1I9L)
List Window
LUST 282

166
26,125
159

26,32,39
282
18,76,89

14,31

LOAD (Open) 73,357
LOCATE 246,251
LOG 212
Logical Operators 329
LPRINT 281
LPRINT TAB 282
LPRINT USING 284

M

Matrix 293
MERGE 368
MID$ 183
Modes

Calculator 65
Immediate Mode 65

Modular Programming 378
MODulo 212
MOUSE 345
Multi-Dimension Arrays 310
Multiple Statement Lines 151

N

NAME 372
Natural Log 213
Negation 36
NEW 14
NEXT 77

optional 157
NOT 335
Note Pad 444
Numeric Variables 38

0

OCT$ 167
Octal Conversion
ON ERROR GOTO
ON GOSUB 127
ON GOTO 121
OPEN 358
Operators

36
329

166
397

arithmetic
logical
relational

OPTION BASE
54

294

()ption key 161
OR 329
Order of ()perations 49,337
Output Window 14

p

Parentheses 49
Paste <DJV) 22
PEEK 322
Pixel 228
POINT 351
POKE 322
POS 101,248
Precision 13,200
PRINT 16,30,156
PRINT# 361
PRINT TAB 97
PRINT USING 263
PRINT# USING 360
Print Zones 42,84,97
PRESET 228
PSET 228,355
PTAB 350
PUT 352
Puzzle 447

Q

Question Mark
Quitting BASIC
Quotation Marks

R

156
19,159
16,42,156,171

RANDOMIZE 134
READ 141,169
Relational ()perator& 54
REM 31,156

Index 455

Reserved Words 434
Reset (Interrupt) Switch 5,11,20
Resident Program 38
RESTORE 145
RESUME 400
RETURN 126
RIGHT$ 183
RND 49,130
ROM Routines 340
RUN <llR) 18,90

s

SA VE (Save As) 72,357
Scientific Notation

(see Exponential Notation)
Scrapbook 445
Screen Dump 285
Searching 152
Semicolon 42,61,101
SON 124
Show List Window <iBL) 31
Show Second List 31
SIN 218
Single-Precision 48,200
Size Box 15
Sort 302
SPACE$ 193
SPC 193
Special Characters 161
SQR 210
Start <BIIR) 18
Statement

conditional 57
define 223
program 29
unconditional 57

STEP 78,237,351
Step <IJT) 395

456 Section D

STOP (IBB) 20,76,90
String

arrays 298
comparisons 168,173
data 169
matrices 315
variables 145,155

STR$ 182
STRING$ 192
Subprogram 27, 125
Subroutine 124
Suspend <II S) 86
SWAP 344
Syntax Error 402
SYSTEM 159

T

TAB 97
TAN 218
Text Mode (Ascm
THEN 55,58
TIME$ 132, 195
TIMER 135
Title Bar 15
TO 77

75,367

Trigonometric Functions 218
TROFF (Trace Off) 393
TRON (Trace On) 393
Turning the Computer Off 12
Turning the Computer On 5

u

Unconditional branching 57
Upper Case Mode

l!E 01''1!.J93 Key 9
USING 263

v

VAL 179
Variables

classifying 38,145
define 174
names 39,154,155
reserved words 434
subscript 289

VARPTR 342
Video Display

clearing 65
graphics 228

w

WHILE-WEND 107
WIDTH 68,84
Windows

BASIC 7
Command
Enlarging
List 14
Output 14
Second List

WRITE 249

14
15

31

Write Protect (Locking Disk)

XYZ

XOR 335

+ 38,274
38,274

* 38,266
210,278

I 38
\ 117,270

8

Index 457

() 49
> 54
< 54
= 54
<> 54
<= 54
>= 54

202,275
204,263
% 204,264
$ 145,265

Also Available From
CompuSoft Publishing:

The BASIC Handbook, Third Edition,
Encyclopedia of the BASIC language
ISBN 0-932760-33-3

Learning TRS-80 Model ID BASIC Also includes Model I
ISBN. 0-932760-08-2

Learning IBM BASIC for the Personal Computer
ISBN 0-932760-13-9

Learning TIMEX/Sinclair BASIC
ISBN 0-932760-15-5

Learning TRS-80 Model 4/4P BASIC
ISBN 0-932760-19-8

The TRS-80 Model 100 Portable Computer
ISBN 0-932760-17-1

The IBM BASIC Handbook
ISBN 0-932760-23-6

Learning Apple Il BASIC Includes II Plus and Ile
ISBN 0-932760-24-4

Learning Commodore 64 BASIC
ISBN 0-932760-22-8

plus $2.00 Postage and Handling - $4.00 foreign orders

(California addresses add 6% sales tax)

COMPUSOFT® PUBLISHING
P.O. Box 19669, Dept. M2-l

San Diego, CA 92119

$24.95

$12.95

$19.95

$9.95

$14.95

$14.95

$14.95

$14.95

$12.95

FREE
Update Information For

LEARNING MICROSOFT BASIC
for the MACINTOSH

We can sit here and ponder and speculate and wonder all day long, but we'll never really know how
we can improve this book in future editions unless you tell us. Please help us help you by giving
us your suggestions for improvements. Honest, we really do read and learn from theml

What do you like about the book?--------------------

What don't you like? _______________________ _

Is the book complete? (If not, what should be added?) -------------

Did you find any mistakes? (If so, where?) -----------------

What other books, manuals or computer aids could be developed to help you? _____ _

Anything else? --------------------------

If you would like to receive the latest update memorandum (when available) and information regarding
new releases, complete the following:

Name: ---------------------------­

Address: ----------------------------
City /State/Zip: --------------------------

Mail to:
CompuSoft Publishing
535 Broadway, Dept. M2·1
El Cajon, CA 92021

$19.95

M I C R OSOFT @

LEARNING BASIC
FOR THE

MACINTOSH™
The Macintosh represents a new way of thinking in
the volatile world of personal computers. With its
icons and mouse and windowing software, it may
well be the beginning of a new generation. Learning
to operate the computer and the available "canned
software" is actually fun . But for many of us, the
real fun comes from programming our own software
in BASIC.

Learning Microsoft BASIC for the Macintosh
picks up right where Apple's own Guided Tour of
Macintosh leaves off. After a few minutes of intro­
duction with the Guided Tour tape cassette, you
move directly into writing your first computer pro­
gram, and don't stop learning until you've mastered
the language.

ABOUT THE AUTHOR
Dr. David A. Lien is one of the world 's most widely
acclaimed technical authors. His technique has
been developed over many years of teaching Elec­
tronics, Mathematics, Computer Science and Prog­
ramming.

He has well over a million book sales to his credit,
including such popular titles as: The BASIC Hand­
book, Learning Apple II BASIC, Learning IBM
BASIC, Learning Commodore 64 BASIC, Learning
TRS-80 Model 4/4P BASIC and the Epson MX
Printer Manuals.

_,,.. -

1111111 lllli lllfl 11~111111111111/lll lllll.lllll illll 11111111 --

NO EXPERIENCE NECESSARY
Open the box, then open this book. It's that easy
to get started. You're never left to figure out what's
going on by yourself, (although you will be chal­
lenged with exercises in nearly every chapter). No
difficult concepts or "computer words" are used that
aren't fully explained. Every chapter is built on pre­
vious ones, so you're always ready for what's coming
next.

Get the full benefit of owning a Mac; learn to program
it. Dave Lien has been teaching BASIC for years,
and he's taken all the mystery out of it. His relaxed,
hands-on style is responsible for millions of confident
new BASIC programmers who once thought they'd
never be able to learn such a "complicated" subject.

3 . $19.95
~ ~32760341 LEARNING MS BASIC FOR MACINTOS LIEN DAVID
"- .,; YDl COMPUSO 951152 SLAWSON 9104 I

PR;INITTEEDD~IN:j'LJ"usSiAr;:-~~---~~~~~~~~~) 0-932760-34-1

