
P 0 W ~ R

By L. Frank Turovich

SENTIENT FRUIT

llARNING

f U T U R I B A S I C™

Macintosh BASIC Power

by L. Frank Turovich
Copyright ©1994 Sentient Fruit

All Rights Reserved Worldwide

Requirements

The source code in this book was designed to work with the
FutureBASIC™ programming language. All development was done
under FutureBASIC versionl.02.

Learning FutureBASIC: Macintosh BASIC Power
by L. Frank Turovich

Questions
z.edcor, Inc. does not support, nor is z.edcor, Inc. responsible for any of the contents of this producl All
inquirtes and questions regarding this product or any other products produced by Sentient Fruit should
be directed to ...

Sentient Fruit"'
MACINTOSH CONSULTING • PROGRAMMING • DOCUMENTATION

PO BOX 13362 • TUCSON •AZ 85732-3362

We can also be reached online at:

Amertca Online:
Internet:

TUROVICH

turovich@aol.com

Print history
Copyrtght ©1994 Sentient Fruit
Second Printing March 1994

Printed in the United States of Amertca
ISBN 0-9639552-0-9

Trademarks
FutureBASIC is a trademark of z.edcor, Inc.
Macintosh and ResEdit are trademarks of Apple Computer, Inc.
Sentient Fruit and the Mac-in-the-Tree logo are registered trademarks ofL. Frank Turovich.
All other products and logos mentioned in this documentation are the trademarks or registered
trademarks of their respective owners.

Legalese
LIMITATION ON WARRANTIES AND LIABILI'IY
EVEN IBOUGH SENTIENT FRUIT AND L. FRANK TUROVICH HAVE REVIEWED IBIS MANUAL,
SENTIENT FRUIT AND L. FRANK TUROVICH MAKE NO WARRANIY OR REPRESENTATION, EIIBER
EXPRESSED OR IMPLIED, WITH RESPECT TO IBlS MANUAL, ITS QUALl'IY, ACCURACY,
MERCHANTABILl'IY, OR FITNESS FORA PARTICULAR PURPOSE. AS A RESULT, IBlS MANUAL IS
SOLD "AS IS" AND YOU, THE PURCHASER, ARE ASSUMING 1lIE ENTIRE RISK AS TO ITS QUALI'IY
AND ACCURACY. IN NO EFFECT WILL SENTIENT FRUIT OR L. FRANK TUROVICH BE HELD LIABLE
FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM
ANY DEFECT OR INACCURACCY IN IBIS MANUAL, EVEN IF ADVISED OF THE POSSIBILI'IY OF SUCH
DAMAGES. IBE WARRANIY AND REMEDIES SET FOR1H ABOVE ARE EXCLUS~ AND IN LIEU OF
ALL OIBERS, ORAL, OR WRITIEN, EXPRESS OR IMPLIED. SOME STA'IBS DO NOT ALLOW THE
EXCLUSION OR LIMITATION OF IMPLIED WARRANTIES OR LIABILI'IY FOR INCIDENTAL OR
CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY TO YOU.

Production
This book was wrttten on a Macintosh II, System 7.1 using FrameMaker® for the words, FutureBASIC™
for the source code, Resorcerer® and ResEdit™ for the resources, DeskPaint®, DeskDraw®, and
ClartsWorks™ for the graphics. It was prtnted on a Texas Instruments microLaser PS-35 at 300 DPI
using Bookman for body text, Helvetica for titles, Courter for source code, and Symbol for bullets.

Acknowledgements

This book is the cumulation of months of hard work both in writing and
programming. It could not have happened without the support of the
following people:

First and foremost, I must thank my loving wife Lora for her continued
support and great patience in editing numerous revisions.

John "the pitbull" Richetta for his ruthless editing style. All mistakes
remaining herein are mine alone.

The brothers Gariepy: Michael, the CEO of Zedcor, Inc. for allowing me to do
it, Peter for the bully cover design, and Andy for answering my endless
questions.

Ross Lambert of Ariel Publishing for suggesting it.

And finally to my test readers who saw a very early version of what you now
hold in your hands: Chris Stasny, Chris Dwyer, and Paul Valach.

Table of Contents

Int:roduction ... 7
Pro grain Design
Events
Menus

15
33
43

Windows ... 67
87

103
123
143
151
169

Buttons
Dialog Events

.........•..•••••••......................••....•...•••.....•..•.•••..•
...

Edit & Picture Fields .. .
Scroll Buttons

.. Records
Files ...
Globals & Includes . 197
Resources . 211
.Al.erts • . . • . • • • • • . . • 231
Strings & Text•..
Edit Menus .. .
Printing ...•.•..................
Application Resources .. .
Final Touches .•.•....••...••....•......•..........••••••••..•.••........

247
263
279
297
313

Bibliography . 319
Appendix . 321
Index ... 343

5

CHAPTER 1

Introduction

Welcome
Welcome to Learning FutureBASIC™: Macintosh BASIC Power.

Since its release FutureBASIC has rightly gained a good share of enthusiastic
followers. Its ease-of-use, extensive BASIC command set, built-in access to
the Toolbox, flexible environment, and versatility in creating both stand-alone
applications and code resources have been welcomed with open arms by the
BASIC community. FutureBASIC has made the writing of programs easy and
fun for professionals and hobbyists alike.

Old followers of ZBASIC™ (FutureBASIC's predecessor) are amazed at the
wealth of new features contained in this powerful language. New followers
find its arsenal of capabilities astounding. Professionals who haven't used
BASIC in years are finding it easy to write code in hours instead of days.

Worldwide, people are using it to create programs that range from CASE tools
to Mac-to-mainframe communications, from Quick.Time™ editors to
educational software, from graphics programs to children's games, and
everything in between.

The Rise of BASIC
BASIC has always been a popular language. Since its beglnning in the early
1960's, BASIC has been available on nearly every computer ever created. Its
inclusion with most home computers guaranteed a wide distribution, and its
ease of learning made it the language most beginners turned to when they
started to program.

Introduction 7

The Rise of BASIC

Sadly, BASIC has always had a reputation for being too slow (most BASICs
were interpreted), too general (it has commands for nearly everything), and
too clumsy when it came to writing "real programs".

But Fu:tureBASIC (hereafter referred to as FB) addresses all of those points
and more. FB is a compiler, so it's fast. While it does have an extensive 300+
command set, it doesn't try to do everything, just enough to let you get the job
done. Nor is it clumsy: FB offers all the high-level structures found in other
programming languages including SELECT CASE, LOCAL FNS, INCLUDE files,
access to system equates, and much more. With FB you can write "real
programs" quickly and easily, and you can create all of those widgets that
make the Macintosh so much fun. For example, you can write desk
accessories, control devices, custom windows, menus, and controls - the
choices are endless.

The Plan
The outline for this book is simple. Users have been demanding a
comprehensive book that would lead them step-by-step into the exciting
world of Macintosh programming. While the FB manuals have all the
necessa:iy clues, those clues aren't really drawn together into a complete, full
featured application where a new user can get all the answers. The Getting
Started manual included with FB nibbles around the edges, but never really
tackles the tough issues facing a beginning Mac programmer.

With this book, I've tried to anticipate and respond to your questions as they
might come up. I walk you step-by-step through an entire Macintosh
application, from concept to completion. Along the way, 111 also explain what
goals we want to achieve, how we'll accomplish those goals, as well as
providing helpful insights into the reasoning behind these choices.

RGURE1. Data Entry window in SimpleBase.

Slmplebase Data Ent

Record# 4 or 6 records

Name:lsentlent Fruit'"

Address: !Po BOH 13362

City: lrucson

State:lnz I
Zip: 185732-3362 I

Phone#[J
Faa#L J
Dept: ®Programming

0Merketlng
Qornce Help

8 Introduction

I
I
I

H New Record m

(Show First)

(« Preu «)

(»Neat»)

(Show Lest)

Find

Claar

SimpleBase

SimpleBase
To provide a reference point for explanations, I wanted an example program
that would draw on a host of Macintosh features, as well as using Toolbox
commands and resources. What I came up with is SimpleBase, a small
database program that a business might use to track employee information.

As I said, it's simple, so I won't be going into how to calculate employee
benefits or taxes, but I will examine all of the common Macintosh features
we've all come to know and love. Things like menus, windows, buttons, scroll
bars, alerts, printing and much more will be examined in depth. Each will be
introduced as it is required by the program along with copious explanations
along the way.

I've also attempted to throw in just about every technique, shortcut, or
obscure bit of knowledge I've acquired through years of programming the
Mac - information I would have killed for when I first began. Most of these
never appeared in any programming book, but were discovered after lots of
sweating, cursing, rebooting, and in conversations with fellow programmers.
Of course, pure inspiration also played a big role.

Theme of Things
With all this explaining to do, I decided I needed a nifty theme to run through
the book, one that really ties everything together and keeps people interested.
I chose to use an exercise theme as my guide, since it seemed to fit both the
style of this book as well as my current workout regiment. Thus each chapter
is divided into the following four sections:

Warm-up
Each chapter starts by telling you what the chapter offers. It's followed by a
few terminology definitions, explanations of various common programming
tasks relevant to the chapter topic, as well as numerous step-by-step program
examples, insightful illustrations, and lots of straight talk about why you
should adhere to Apple's interface standard. You'll get your feet wet on some
fundamental Macintosh programming ideas, but the water will never rise over
your ears.

Introduction 9

Regular Exercise

Regular Exercise
This section is where we'll actually develop the program code for the
SimpleBase application. I11 walk you step-by-step through the various
routines expla1n1ng their purpose, as well as showing you their development
from initial concept to final implementation.

Each chapter in the project has one or more files on disk that show exactly
how each program step progressed. Print them out, pull up a lounge chair
under your favorite shady tree, sip some ice tea (no sugar please), and
examine them as you read each chapter in order to better understand the

. project.

Peak Performance
1h1s is where we pull out all the stops. You may want to skip this section the
first time through as it ts more complex and isn't always relevant to the
chapter topic. However, once you've completed the project, come back and
browse through it for advanced tips and programming techniques that you
can use to modify SimpleBase or your other programs.

Cooldown
Flnally, we wrap up all the concepts explained in the chapter into a neat little
bundle. This will emphasize the chapter's main points, and point out a few
key concepts you should remember.

Where Should I Start?
Like they always say, "an application of 10,000 lines begins With one
keyword," or something like that. That's exactly how you should approach
this book - one step at a time.

Neuer Programmed Before?
If you don't already have it, call Zedcor at 602.881.8101 and order their
"Programming the Macintosh With FutureBASIC" manual. This interactive
manual takes you from programming ground zero all the way to handling
simple Macintosh features. A good place to start 1f you haven't done any
BASIC programmtng before.

Head down to your local library and pick up a few programming books that
explain BASIC programming concepts. Explore the possibilities in those
books until you feel comfortable With loops, data types, and structured
programming concepts.

10 Introduction

If You've Programmed BASIC Before

Note that most of these books are not geared to programming the Macintosh,
but are aimed instead at other computers. Believe me, they're still useful.
You'll probably have to fiddle with some syntax differences, but with a few
changes, many of their exercises will run just fine.

When you feel ready, start at the "Program Design" chapter, concentrate on
the Warm-up section to get the main concepts behind each chapter. Then, go
through the Regular Exercise section carefully as we create the SimpleBase
project, making sure you understand each step before going on to the next.

When you've finished the project, use the same techniques explored here to
create your own program. Say to yourself, "Okay, for my program I need to
add ... ", and then review the appropriate chapter to add a particular program
feature. Finally, go back and read the Peak Performance sections to learn
even more.

{{You've Programmed BASIC Before
Read through the Warm-up sections to get the main concepts for the chapter,
then read the Regular Exercise section and create the SimpleBase project. Go
back after you've finished the project and reread the Peak Performance
sections for additional programming knowledge you may find useful in other
projects.

References
If you don't know it already, I'll tell you now: you can't program in a vacuum.
Programming the Macintosh requires knowledge of the entire Macintosh,
from interface to the nitty-gritty of byte passing. Here are some references I
have found veiy useful, both in writing this book, and in my daily
programming endeavors.

Inside Macintosh, 2nd Edition
The absolute best reference work for programming the Macintosh is Apple's
own Inside Macintosh series. Even as I write this, the second edition series is
almost completely published. The 18 volumes replacing the original six have
expanded both in size and depth of explanation. If it's about programming the
Macintosh, you'll find it there.

If you do any type of commercial or consultant programming, you shouldn't
be without any of them. If you're a weekend programmer, I urge you to get the
volumes that most interest you. In either case, you won't be sorry.

Introduction 11

Macintosh Revealed

Macintosh Revealed
The second reference work I highly recommend is the Macintosh Revealed
series by Stephen Chernicoff. While all of his examples are written in MPW
Pascal, the explanations are clear, and the progression from feature to feature
is interesting and concise. If you can't get all of the Inside Macintosh series,
try this four book set for an abbreviated reference work.

Inside Basic
Of course, for the most up-to-date information on FutureBASIC and how you
can make it work, read Inside Basic magazine from Ariel Publishing. Each
monthly issue contains several articles that provide numerous hints, tips,
explanations, and answers to common FutureBASIC programming questions.

America Online
For daily conversation with hundreds of FutureBASIC users, you can't beat
the forums on America Online. Both Zedcor (keyword: ZEDCOR) and Ariel
(keyword: ARIEL) provide FutureBASIC support areas where you can ask for
and receive help, usually in hours. If you've got a modem, get signed up and
join the fun, you won't be disappointed.

Internet
There is also a list on the Internet where FutureBASIC owners can keep in
touch and up to date. The addresses to become part of the list include:
Add name:

Send message:

List owner:

futurebasic.list-request@statistik.tu-muenchen.de

futurebasic.list@statistik.tu-muenchen.de

futurebasic.list-owner@statistik.tu-muenchen.de

Sentient Fruit
Finally, you can contact us here at:

Sentient Fruit
P.O. Box 13362
Tucson, AZ 85732-3362

Or contact us online at:

America Online: TUROVICH

Internet: turovich@aol.com

12 Introduction

Typographical Info

Conventions
The following is a list of formatting and presentation conventions used
throughout this book.

Typographical Info
Program listings and examples, as well as routine and variable names, all
appear in Courier. Small program examples will appear in-line with the main
body text like this:

PRINT%(10,10) tmp$

Larger examples will appear offset from the main text and be referenced using
the PROGRAM identifier.

FutureBASIC keywords appear in the text as uppercase Courier font like this:
WINDOW (_efNum) •

Toolbox keywords in the text appear in mixed case Courier like this:
SetRect.

Menu titles, item names, and buttons always appear in Chicago.

Program names appear as italic.

Key terms and concepts are always shown in boldface the first time they
appear, like this: keyword.

Since we will use LOCAL FNS for all of our programming examples they will be
referred to collectively as functions, routines, and subroutines for variety.

Occasionally, a program line will extend past the right of the page and onto
the next line. Such lines are marked with a," symbol to indicate this
continuation.

Notes that explain a particularly obscure point will appear within the body
text as smaller, offset type, preceded by a small dividing line. Read them for
additional background material.

• A note explains something not totally relevant to the main discussion, but
interestingjust the same.

The entire SimpleBase program appears in the Appendb(.

A bibliography of related books and magazines has also been provided in the
back of the book.

Introduction 13

'IYPographical Info

Let's Get Started ...
Now that we've gone through all the uninteresting, but necessa.iy, prelimina.iy
information, let's begin learning how to program the Macintosh using
FutureBASIC.

14 Introduction

\

CHAPTER2

Program Design

Warm-up
This chapter introduces structured programming. Along the way we11 learn:

• Top-down design methodology,

• Stepwise refinement techniques,

• The only three control blocks you11 ever need, and

• How to organize your program layout.

Additionally, we11 describe design methods that make writing programs:

• easier to write correctly the first time (fewer nasty bugs),

• easier to read (self-documenting),

• easier to modify, and

• easier to take apart and re-use.

This type of program is much easier to work with than those created by
people who fail to understand or practice these methods.

At the moment, this may seem boring or a bit overwhelming. However, as you
grow in programming experience, you11 realize that the early application of
these programming techniques will pay back dividends in increased
productivity, more error-free programs, and more re-usable code.

Program Design 18

Programs

Programs
A program is a sequence of instructions that describe how the computer is to
perform a defined task or goal. It doesn't matter what the task or goal is since
a computer doesn't know, doesn't care, and couldn't be bothered with
anything but executing its instructions. A programmer is an individual that
writes the necessary step-by-step instructions that tell the computer how to
accomplish the task or achieve the desired goal.

Most programs have a major task or goal to accomplish. A word processor
program handles tasks related to writing. To accomplish this task, hundreds,
if not thousands of sub-tasks exist that enable the program to open a file, edit
it, and save or print out the updated file.

To accomplish all its various tasks, a program contains a hierarchy of
subroutines. A subroutine performs a specific task for the program. In the
word processing example, some subroutines allow the user to create a letter,
others allow the letter to be saved on disk, yet others allow the user to print
the letter.

By calling different subroutines in a particular order, the program can
perform all of those actions and more. Thus, a program consists of a series of
different subroutines, each of which perform a single act, linked together in a
specific order to perform a particular action. The programmer determines the
series of subroutines that will perform the task, writes the routines to
complete the task, calls them in the correct order, then tests them separately
and together to ensure that they accomplish the stated goal.

When writing a program, a programmer seldom gets it right the first time.
Errors in design, faults in logic, incorrect parameters, and many other
oversights all contribute to what are commonly called program bugs. Bugs
are the downside of the learning process. The process of finding and
eradicating program bugs is known as debugging.

16 Program Design

Top-Down Design

Top-Down Design
The method of program design used throughout this book is called top-down
design. Top-down design has the programmer think about the program in its
broadest design terms, then slowly refine the design step-by-step down to its
exact details.

Top-down design encourages programmers to think in abstract terms about
the actual goal or task the program is supposed to solve. Once a goal is
identified (i.e. printing a letter), sub-goals to print the letter are defined. The
letter must be open, it may have to be formatted, the printer must be readied,
the letter must be sent to the printer, and finally, everything cleaned up
afterward. All of these are sub-goals that must be accomplished successfully
in sequence to print the letter. Each sub-goal can be used to identify a
program subroutine. The subroutine must then be examined and its sub
goals also determined. It's time to write code when no additional sub-goals
can be identified.

Along with top-down design, we'll also use another technique known as
stepwise refinement. Stepwise refinement is based on the top-down design
model where a program goal is defined, then code is written that will achieve
the goal in greater and greater detail, hiding the details of implementation
until the very last routine.

Stepwise refinement allows us to test concepts of the design at each step
along the way using skeleton routines. Skeleton routines are subroutines
that do nothing, yet allow us to test for operational correctness at the level of
detail we are working on. Most will contain a single PRINT statement defining
its task, like "Print routine called" or something similar. By executing the code
at each step we assure ourselves that the routines on that level of refinement
operate correctly. Once we're satisfied that everything works properly, we
move down a level and begin filling in the details at that level.

Let's look at the printing example. We start by defining the main task as a
subroutine in a LOCAL FN structure like this:
LOCAL FN PrintLetter

END FN

Program Design 17

Top-Down Design

Next, we refine the steps to actually print a letter using the sub-goals
previously mentioned. The print routine now reads like this:

LOCAL FN PrintLetter
FN OpenLetter
FN EnsurePrinterisReady
FN FormatLetter
FN SendLetterToPrinter
FN FinishLetter

END FN

Each sub-goal has its own subroutine. The details of opening, formatting, and
printing a letter are hidden in the various subroutines as shown in Figure 3.
This hiding of details allows us to concentrate on the goal, and not be
distracted by details. However, once this routine is defined, its time to delve
into the various subroutines one at a time and implement their tasks. Each of
these subroutines can also call other, even lower level subroutines to
accomplish their individual tasks.

Note that we can test the PrintLetter subroutine at anytime to ensure that
it works correctly. Once the OpenLetter function works, we can implement
the EnsurePrinterisReady function. Each function is independent of the
others. This allows us to test them individually and, when all are complete,
test them together to assure ourselves that they work properly.

The use of these techniques offers several benefits including:

• At each stage of the top-down process you're concerned with the details
of how the program operates only at that level. Once you're satisfied that
it operates correctly, you move down a step and refine the next level.
Repeat until all details of the design have been fleshed out completely.

FIGURE 2. Major goal with sub-goals.

Sub
goals

Major _r
goal~

18 Program Design

i FN Openletter

i FN EnsurePrinterlsReady

.. { FN Formatletter

~{ FN SendLetterToPrinter

.. { FN Finishletter

f FN Printletter

1
J
L ..
1

-~

L
1 ~

1
J
1
1
l
J

Greet User by Name Example

• This technique of chunking the program into smaller, more easily
managed sections enables you to ignore the other portions of the
program until required. A large program is simply several smaller
programs linked together, not a large single set of program instructions.

By now, some of you are probably thinking this is a total waste of time. "Why?
I could go in and code something up in no time at all," you're thinking, "Why
worry about levels and steps?"

Well, that may be true for small programs of 100-200 lines. But, when it
comes time to code a far larger program, say 5000 to 20,000 (or even more)
lines of code, this attention to design, implementation, and detail at the upper
levels will greatly improve your ability to complete the project faster and with
fewer bugs.

Greet User by Name Example
Eventually, after all your top-down design work, it comes time to begin
writing the code to accomplish the stated goal. One way to think about
implementing this code is in pseudocode format. Pseudocode is simply a
series of statements that describe the actions the subroutine will perform in
English, or whatever language you use daily. For example, the pseudocode for
our program is shown in Program 1.

PROGRAM 1. Sample program pseudocode.

1. ask for user last name
2. ask for user first name
3. combine the names with a salutation
4. show the result to the user

Note that there are no FB keywords included in this pseudocode example.
We'll do that later. For now, it's important to see how to describe to ourselves
what the computer should do. This allows us to focus on the program steps
required to tell the computer how to perform the task.

• Note that the line TUJITlbers are merely used to reference a particular line in the
text. They wUl not be used in the .final program at alL

Converting this pseudocode to FB keywords is pretty easy to do. Asking for
the user's last and first names in lines 1 and 2 tells us to use a statement that
provides for such user interaction. In this case, the INPUTstatementwlll serve
handily. We combine the two string entries in line 3, then display the final
result using a PRINT statement. Program 2 shows how we converted the
pseudocode into source code with keywords that achieve the desired task.

Program Design 19

WhyaskWhy?

PROGRAM 2. Sample code first translation.

INPUT "What is your last name? ";lastName$
INPUT "What is your first name? ";firstName$
salutation$= "Hello, "+firstName$+" "+lastName$+"."
PRINT salutation$

As you can see from this example, it's entirely possible to translate
pseudocode directly into statements that accomplish a stated program goal.
This was an extremely simple program, yet it displays the same
characteristics of a large program. Any task can be broken down into
individual pseudocode steps that can themselves be translated into FB
commands. Later, as we develop SimpleBase you'll see how a single line of
pseudocode can lead to multiple subroutines.

Why ask Why?
Good top-down design will enable you to design and write programs faster
and with less chance of error. Because you test at each level of the design
process using skeleton routines, errors are kept to a minimum.

The steps involved in good top-down designing are:

• Begin with a simple main idea. Write in pseudocode the major tasks to
accomplish.

• Translate each step into detailed pseudocode that resembles one or more
BASIC statements.

• Write skeleton routines to test your design at each step of the process.

• Fill in subroutine details as required. If more subroutines are required,
repeat the above steps for each level.

• When the program is working correctly, implement any additional
improvements as desired.

20 Program Design

Why ask Why?

Control Structures
Earlier we mentioned that a program consists of many individual subroutines
linked together to perform an action. If the programmer could write those
instructions as a series of linear statements, (i.e. one line right after another
in sequence) programming would be extremely easy to do. However, a linear
program is nearly useless. It can't branch to another subroutine, it can't loop
upon itself, and it can't handle the real life problems it's supposed to solve.

Since a program consists of simple statements like PRINT, GOSUB, and INKEY$,

where do programming problems come from? Each statement is simple to
understand, yet when combined with others they can quickly achieve great
complexity. Even the short example shown in Program 3 demonstrates how a
few lines of code can cause confusion in a program.

PROGRAM 3. Complex statement example.

•start•
INPUT "Do you want instructions? •;answer$
IF answer$ = "YES" THEN GOTO "Instructions"
IF answer$ = "N0° THEN GOTO "Program•
PRINT 0 Please enter YES or NO only."
GOTO •start•
"Program"
GOTO "Main Program"
"Instructions 0

PRINT "Here's your instructions"."
PRINT • ... "
0 Main Program"
and so on."

Do you understand what Program 3 is trying to do? You probably had to
study it awhile to be entirely sure. Its goal is to find out if the user wishes to
view the program instructions, and then display or skip them at the user
response. If it's anything but YES or NO, the loop repeats. Pretty
straightforward and easy to follow, not!

A count of branches show that there are four input points (the subroutine
labels) and four exit points (the four GOTO statements) in this 12 line program.
Each branch implies a different point of entry and exit. The difficulty comes in
trying to understand which branch occurs and under what conditions. A
diagram of these various jumps looks something like the spaghetti shown in
Figure 3.

Program Design 21

Linear Programs

RGURE3. Diagram of confusing code.

"Start"

GOTO

GOTO

GOTO

"Program"

GOTO

How even simple looking
code can go bad using
improper programming
techniques.

Is this how you program?

Can you follow it? You probably had to trace through the code several times to
figure out where all the branches were taking you and under what conditions.
If this much confusion can creep into only a dozen lines of code, imagine this
type of decision making over hundreds or thousands of program lines.

With this type of branching, could you ever be absolutely sure that it works
correctly under all conditions? Would you want to debug or try to maintain
this type of code? Probably not. So let's examine a way to avoid this kind of
confusion.

Linear Programs
There is a solution: make every program a linear program. But wait, we've
already said that's not possible. Well, sure it is, if we bend the rules slightly.
Instead of treating each statement separately, let's treat them as a larger
block of statements. These block statements can be combined into a linear
program even though the individual statements contained within them aren't
linear at all.

Linearity is now imposed upon the block statements. Each block must
completely finish executing all of its individual statements before another
block can execute. So when a block is called, entry is always at the top of the
block and exit is always at the end. This form of block is often called a one
in/ one-out block. Any jumps out of the block must return to that block in
order to uphold this one-in/ one-out sequence.

22 Program Design

Action Blocks

• In this we follow the Pascal conventioTL Pascal doesn't allow one to exit any
structure from the middle, while C doesn't care where one exits. It's akin to the old
GOTO statement which originally led to the spaghetti code syndrome of illogical
jumps and WlTeadable programs.

We'll enforce the one-in/ one-out block structures in SimpleBase by using
LOCAL FNs to define every subroutine in the program. If you're used to a more
free-wheeling programming style this method may seem a bit restrtctive at
first. "Only one entry and exit point? It'll never work," you say. Believe me,
after using it awhile and seeing how it simplifies your programming task, it'll
soon become second nature and you'll never go back.

• The latest version of Futw-eBASIC includes an EXIT FN statement to satisfy tfwse
people wfw thrive on conji.J.ston in their code. We won't use it here and I don't
recommend that you use it either.

Okay, now that we understand the linear programming method, let's look at
three types of control blocks that will help us to achieve a linear programming
style.

Action Blocks
The most rudimentary control structure is the action block. It's easy to
overlook because the action block is simply a sequence of action statements.

Identifying an action block is easy: it can contain no IF, GOTO, GOSUB, or FN

calls or other control statements that might cause ajump outside of the
block. An action block might look like the example shown in Program 4.

This series of statements direct text output to a printer and then returns it to
the screen. It contains no branching or alternate actions; it is a perfect action
block example.

FIGURE 4. Action block structure.

Entry Point: LOCAL FN

sum%=2 *2
PRINT sum%

Exit point: END FN

Action block - a straight
series of action statements
that contain no FN, GOTO,
GOSUB, or IF statements.

Program Design 23

Loop Blocks

PROGRAM 4. Action block example.

LOCAL FN PrintSomething

ROUTE _toPrinter

PRINT "Hello there!"
PRINT "What a wonderful day it is."

ROUTE _toScreen

END FN

Loop Blocks
The next control block structure is called a loop block. As you might suspect.
it is used to repeat a specific action several times. Loop blocks are always
entered at the top of the control structure and exited at the ending control
structure when the exit condition becomes true. This is graphically shown in
Figure 5. There are several types of loop structures available including FOR/

NEXT. WHILE/WEND. and DO/UNTIL. The example in Program 5 demonstrates a
standard loop block construction.

FIGURES. Loop block structure.

I Entry Point: I LOCAL FN

____ DO

UNTIL exitCondition

I Exit point: END FN

Loop block - a loop
structure that continuously
executes until the exit
condition is true.

Just because ifs a loop block doesn't mean you can't branch out of the loop.
The key is to always return to the loop and then exit. FN and GOSUB

statements work perfectly for this since they automatically return to the line
following their call. Never use the uncontrolled GOTO to exit a loop block. It's
not only bad practice. but causes more problems than ifs worth.

• Many people believe they should be allowed to exit in the middle of a loop
structure, a la C. But the one-in/ one-out rule rrwst hold for loops also.

PROGRAM s. Loop block example

count = 0

DO

PRINT "I now equal= •;count
INC (count)

UNTIL count > 100

24 Program Design

Branch Blocks

FIGURES. A branch block structure.

I Entry Point: I LOCAL FN

E
LONG IF testCondition

>> statements for true condition
XELSE

>> statements for false condition
END IF testCondition

I Exit point: I END FN

Branch Blocks

Branch block -
perform one set of
statements if the test
condition is true,
another set if the
condition is false.

Programs would be worthless if they performed identically from one run to
another. Branch blocks allow programs to execute different code depending
on the condition of one or more variables.

Branch blocks direct program control to other portions of the program. This is
graphically illustrated in Figure 6. Once we've entered a branching block at
its entry point, we must exit at its end, never in the middle. There are several
branching structures available including IF /ELSE, LONG IF /XELSE/END IF,

and SELECT /END SELECT. A good example of a branching block is shown in
Program 6.

PROGRAM 6. Branch block example.

LOCAL FN GoSomeWhere (direction)
LONG IF direction

FN HandleTrueCondition
XELSE

FN HandleFalseCondition
END IF

END FN

Nesting Block Structures
In 1966, Boehm and Jacopini mathematically proved the following theorem:

Any program logic, no matter how complex, can be resolved into
action blocks, loop blocks, and branch blocks.

If this seems a bit extreme, note that we can nest one block structure inside
another. Thus, the "do something" statements inside a loop or branch block
can consist of another action, loop, or branch block.

Program Design 25

Nesting Block Structures

This nesting of blocks ensures that our entire program follows the one-in/
one-out principle. Instead of a straight sequence of program statements, a
program will consist of a sequence of action, loop, and branch blocks.

Referring back to the ill-written "ask instructions" example in Program 3, we
can rewrite the code to take advantage of our new knowledge of the one-in/
one-out format using all three control block structures. The rewritten code
can be seen in Program 7 with some flow arrows pointing out the program
direction. When completely diagramed out as shown in Figure 7, we can see
that complexity has been reduced to a single loop branch until the user
responds correctly.

The new code begins with an action block at u start", then immediately
switches to a loop block. While in the loop, we examine the condition of the
doneflag% variable to determine when to exit the loop. When doneFlag%
becomes true, a yes or no answer has been received, the loop completes and
the action block continues. Next, a decision block is used to check the status
of answer$. If answer$ = YES we display instructions, otherwise it skips the
entire u Instructions" subroutine. In either case, the action block continues
with the "Main Program", and so on. As you can see, only one entry point
("Start") and one exit point (the end of the program) exist in the program.

Don't you think this code is much easier to read and follow than the original?
There are no illogical jumps, no multiple entry or exit points. This lessening of
complexity makes writing large programs infinitely easier to design, write,
and debug.

PROGRAM 7. Improved complex statement example.

•start•
doneFlag% = _false
DO

INPUT "Do you want instructions? ";answer$
LONG IF answer$ = "YES" OR answer$ = "NO"'-----.

doneFlag% =_true ~------------'
XELSE

PRINT "Please enter YES or NO only."
END IF

UNTIL doneFlag%

"Instructions"
LONG IF answer$= "YES"-----------.,

PRINT "Here are your instructions ... • ... ~-----'
PRINT " "

END IF

26 Program Design

Header Section

FIGURE7. Optimized instructions asking routine.

I "start"

DO -)_ -- -1

LONG IF

XELSE

END IF

UNTIL

I "Instructions" I
LONG IF

END IF

I "Main Program"

I
7

An optimized linear
program using action,
loop, and decision blocks.

Wouldn't you like your
code to read like this?

Program Layout
"A place for everything and everyth1ng in its place." That's the nature of our
program layout. It formats a program listing in a way that makes it easy to
find specific program features. It also makes it easier to navigate and change
portions of your program because like routines are grouped together. The
following are descriptions of the various sections used in creating
SimpleBase. A sample of this program layout can be found on disk as
00.SimpleBase.main.

Header Section
Use the Header section to define all the compiler directives for accessing
resource files, setting compiler options, defining output files, and anything
else that doesn't have a particular place. I usually have a header that looks
something like this:

RESOURCES •resource file.rsrc•, "APPL9999"
COMPILE 0, _strResource _;nacsBugLabels
OUTPUT FILE "my application name•

RESOURCES specifies the resource file to use with the program, the program's
final type (always APPL for applications) and creator (any 4-character
sequence not already in use). The COMPILE statement tells the runtime to
convert all the strings used in the program to STR# resources when the
program is built, as well as adding labels that the MacsBug debugger can

Program. Design 27

Constants Section

display, should a program bug surface. Finally, I use the OUTPUT FILE

statement to specify a default filename for building the final application. It
prevents me from having to enter a name each time I build the program.

Constants Section
Here is where we define all of our program constants. Constants are integer
and long integer values represented by a name. Constants are identified by a
leading underscore character. When FB compiles the program, it replaces
each constant name with the actual value of the constant. You can update an
entire program by changing a single constant value.

There are three types of constant definitions used: .FutureBASIC, user
defined, and Macintosh constants. Let's look at each type in turn.

FutureBASIC Constants
There are over 100 pre-defined .FutureBASIC constants that provide
mnemonic support for FB statements and functions. A quick examination of
the FB Reference manual reveals that many statements and functions
already have common constant names associated with them. For example,
instead of remembering which number represents which button type, it's
easier to remember: _push, _checkBox, _radio, and _shadow.

Yes, it may seem a drag at the time to enter a window type of _doc instead of
the number 1. Why use four letters when I could type only one instead? Well,
months (if not years) later when you reread the source code, it's much easier
to understand which window type is built by name rather than by number.

User-defined Constants
User-defined constants are constants that you design for your own program.
They can represent any integer or long integer value you require. You define a
constant like this:

_myConstant = myValue

Where _myConstant is the constant name and myValue is the actual value.
Each constant must be defined on its own program line and must be unique
in the first 16 characters.

You will see in later chapters how we often create user-defined constants to
represent common values used throughout the SimpleBase program. This
usage helps to make the code almost self-documenting. For example, instead
of representing the main Data Entry window like this:

WINDOW #1,"DATA", (0,0)-(500,300)

28 Program Design

Macintosh Constants

We will instead write it as:

WINDOW #_dbEntryWIND,"DATA", (0,0)-(500,300)

Now. just a glance at the line will tell us which window it's creating. No more
guessing. This also makes it much easier to read decision making code like
this:

LONG IF wndID% = _dbEntryWIND
' do something useful

END IF

While you might remember the window number while working week after
week on your killer mega-program. several months after you finish. it will
read like total gibberish as you struggle to remember which value represents
which window.

Macintosh Constants
In addition to FB constants. there are literally thousands of other predefined
constants available for use. There are constants defined in the Inside
Macintosh volumes (called equates), which the Toolbox managers like
Window. Text Edit. and Dialog manager. as well as thousands more use all
the time.

With these definitions. we can use them too. For example. four of the
constants associated with a rectangle record are: _top. _left. _bottom, and
_right.

Globals Section
The Globals section of a program contains all variable definitions determined
to be global in nature. That means that all subroutines and functions
(including LOCAL FNs) have access to their values without explicitly passing
them as parameters.

Globals are normally kept in one or more global files, separate from the main
program. They are called by the main program using the GLOBALS statement
with the file name. This separation of global settings from the main file allows
other files. namely include files. to also make use of the same global
definitions.

Global variables should be kept to a minimum. Doing so reduces the chances
for variable conflicts. and promotes portable code since self-contained
subroutines are easily copied to other programs and can operate without
modification.

Program Design 29

Functions Section

Functions Section
The Functions section of a program contains all of the subroutines required
to execute the program.

Functions can also be contained in files external to the main source file.
These external files are called include files. We'll see in later chapters how
you can write common routines once and put them in an include file for use
by many different programs.

Main Loop Section
The Main Loop section is where all event handling takes place. Only a single
one of these is allowed in a Macintosh program. Other BASICs promoted the
bad practice of multiple event handling loops in their examples. This is not
correct, nor an encouraged practice in a Macintosh program. All events are
captured in a single event loop, then directed to subroutines designed to
handle the event.

As we'll see later, the Macintosh operating system sends a program messages.
The Main Loop section is where the program receives those messages and
directs each of them to the appropriate subroutine.

30 Program Design

Main Loop Section

SimpleBase Notes
When entering the Sim.pleBase program it's important to keep in mind a few
rules:

• A function must be defined before it can be called in a subroutine.
Example: FN One must be defined before FN Two can call it.
LOCAL FN One <-- defined before FN B
END FN

LOCAL FN Two
FN One

END FN

• A function does not have to return a value. It can act as an action block
and just do something.

• You can't have two functions with identical names. Always enter the
example code into the specified subroutine. Some subroutines undergo
massive changes during program development so be careful when
appending new code to an already created subroutine.

• Learning FufureBASIC: Macintosh BASIC Power assumes you are using
the default preference settings FB shipped with. If you are using the
"Programming the Macintosh with FutureBASIC" workbook, reset your
preferences back to the default before continuing with this book.

• As we create Sim.pleBase, all of the interim files can be found on disk. To
see exactly how the program was built for a particular chapter, just go to
the folder with the chapter's name. Inside are all of the source code files,
numbered sequentially, to illustrate the order in which subroutines were
added or updated.

• If you create the program along with the book, note that you will
normally create an initial subroutine, then add additional code to it as
we continue to develop StmpleBase. Do not simple create a new
subroutine with an identical name.

The complete StmpleBase program is contained in the Appendix at the back of
this book. Use it as a reference to locate subroutines in your version of
SimpleBase while following through this book.

Program Design 31

Main Loop Section

Cooldown
Whew! That was a lot of information for a beginning chapter. Along the way
we learned about structured programming techniques called top-down design
and stepwise refinement. We also saw the importance of using these
techniques to help us design and write programs faster, with less bugs, and
which are much easier to maintain.

We also talked about the three control block structures that help us write
linear programs. We saw how we can use action, loop, and branch blocks to
control program flow in a one-in/ one-out sequence that makes for cleaner
program designs. We also saw how we can nest these into a linear design that
made it easy to follow a program's logic.

Finally, we talked about the layout of programs and descrtbed the various
program sections we use to create the SimpleBase project.

Now we're ready to begin with our program, so let's get started.

32 . Program Design

CHAPTER3

Events

Warm-up
This chapter introduces events, the single most fundamental topic to
understanding how to program the Macintosh. This topic is so pervasive that
one chapter can't hold it all and will be distributed out over the entire book as
required. In this chapter you will learn:

• What events are,

• The types of events, and

+ How to program for events.

Once you've mastered this topic, you'll be well on your way to becoming a
successful Macintosh programmer.

What are Events?
Events are messages from the Macintosh operating system to a program.
Events inform programs that the user has selected a menu item, clicked the
mouse, pressed a key, inserted a disk into a floppy drive, clicked a button, or
performed some other noteworthy action. Events from the operating system
tell an application to move to the background, come forward, refresh a
window, update, and other. Yet other events enable programs to communicate
with each other and transfer information between them.

Events are passed to the program via an event queue. The event queue is a
first-in, first-out buffer (FIFO) area where events are lined up one after
another as they are detected by the system. Up to 64 events can be in the

Events 33

Event Types

FIGURE 8. How events are generated.

User presses a
button on the

screen.

This generates an
event that is seen by

the operating system. It
places the event into

the event queue for the
program.

The program
examines the event

and responds.

queue at one time. When a new event is generated that cause the queue to
exceed 64, the oldest event is lost as the new event is placed in the queue.

Alright, why should you care about events?

On a Macintosh the user chooses how to interact with the program. A user
can select a menu item, click a button, enter text, move windows, draw
shapes, and perform a multitude of other tasks. All of these actions generate
events. And, when the program receives an event. it should respond
appropriately. In other words, a program waits until the user makes a choice,
then promptly executes the necessary subroutines required to fulfill the
request. The simple truth to successfully using events can be summed up by
saying:

Never anticipate an event!
When you anticipate an event, you are actually fighting against the very
nature of the Macintosh. While it's possible to write a program that doesn't
use events, it won't be considered a real Macintosh program. It won't behave
like one, and it certainly won't respond like a typical Macintosh program.

Event Types
Events are placed into the event queue in response to three activities: the
actions of a user, the operating system, and from other programs. These
events are grouped according to event types. Table 1 is a list of common event
types that a program can receive and respond to. Not all of them are required
or should be used in every program, but some of them, like DIALOG, MENU, and
MOUSE, are used in most programs.

34 Events

Event Types

TABLE 1. Event types

Name Event Description

MENU user A menu event is received whenever the user
selects a menu item from a program menu.

A dialog event can be generated by a user

user/ pressing a key, clicking on a window, button,
DIALOG system picture, or edit field. System events include

window refresh, resume and suspend, cursor
position, and many more.

A mouse event is received whenever the user

MOUSE user/ clicks the mouse within the contents of a program
system window. The click must not be in a button or

active edit field.

BREAK user Received when the user presses the Command-
Period keys down.

Received at a program-specified time interval.
TIMER system Intervals can be defined in terms of seconds or

ticks (1/60th of a second).

Called whenever a program window contains an
EDIT user active edit field and the user is entering

characters through the keyboard.

Generated during a print operation to halt

LPRINT user/ printing. The user can invoke it by pressing the
system Command-Period keys, or the print routine can

generate it by setting a Print Manager error value.

OVERFLOWS system Generated whenever a math operation has
exceeded the limits of the variable type.

Generated whenever a program encounters a
STOP system STOP, END, or QUIT statement in program

execution.

Raw Macintosh events not filtered through

EVENT user/ FutureBASIC's runtime package. Enables you to
system filter true Mac events before the runtime can

examine them.

Now that we know what event types we can expect to receive, how do we go
about handling them?

• In this book, we will only cover events that originate wit.h the user or the operating
system.

Events 35

Programming for Events

Programmingfor Events
Fortunately, most of the details of handling events is taken care of by the FB
runtime. Reread the final event type: EVENT. This is the original raw
Macintosh event received by the FB runtime. All other event types should be
considered filtered events. This means the runtime has seen the event and
massaged it into an easy-to-use form for us.

For example, if the user clicks a button, the raw Mac event _mButDwnEvt is
translated by the runtime into a DIALOG event that returns a_btnClick type
and the btnID% of the button clicked on. All of the background processing
necessruy to return that information is handled automatically by the runtime
package. Figure 9 graphically shows the process each raw event goes through
before the program can handle the event.

FIGURE9. How events are handled.

EVENT

EVENT

EVENT

, EVENT ,11--........ ~o
128§(1

Raw Macintosh events are sent along
the event queue to the program.

The runtime examines the event
and determines if the program can
deal with it. If a program can't deal
with a particular event, it's ignored.

If the program can deal with the event,
it's assigned an event type and passed
onto the programs event handling code
via HANDLEEVENT.

~I EVENT: DIALOG

Events must be handled as they are received, so it behooves us to have a
single point in the program that does nothing but watch for such events. A
quick glance back at our program layout shows just such a site, the
program's Main Loop section. A single keyword is all that's required to receive
events, HANDLEEVENTS.

When HANDLEEVENTS receives an event, it routes it to the appropriate
subroutine designed to handle the event. It does this continuously until the
program ends. A typical Mac program spends a large percentage of its time
simply waiting for events to arrive.

36 Events

Programming for Events

The pseudocode in Program 8 describes the entire event handling sequence in
plain English phrases. Its readability helps to clarify the actions required
whenever an event is detected.

PROGRAM a. Event handling pseudocode

Get event from system
Process event in appropriate subroutine
Repeat until program ends

Because of a lack of understanding on how events work, many people think
they have to grab events as they need them. A cypical example is a program
that has a separate event loop for each window in the program. This method
of event handling is incorrect. By watching for a particular event at a specific
time and place, the programmer is ignoring other events that may arrive in
the meantime. This restricts the activity of the user, and can cause strange
side effects.

RGURE 10. Correct and incorrect event handling example.

Some of the c::::::J
greatest authors c::::::J p
of the last hun- c::::::J
dred years were c::::::J renowned for ~oyle
their ...

1 &.."j:IQI I'""'' ""'UllU' ghs

Some of the
Robert A. Hein greatest authors
Isaac Asimov of the last hun-
Ayn Rand dred years were
Sir Arthur Com; renowned for
Rex Stout their ...
Edgar Rice Bu civu1:1m:o I

Some of the
greatest authors
of the last hun-
dred years were
renowned for
their ...

cagar nice i:;,u TUul:f' '"' J

Events

c:::::J
C:=J
c:::::J
c::::::J

c::J
c:::::J
c::J
c:::::J

The user needs to see
information in the back
window and moves the
front window to the right to
expose a larger portion of
the back window.

A standard event handling
program would have little
trouble receiving and
responding to the refresh
event by redrawing the
back window's contents.

A program that handles
events as it needs them
could very well ignore the
refresh event and not
redraw the window's
contents, leaving the user
frustrated, unable to
continue.

37

Programming for Events

A good example is when a window based event loop watches only for button
events in that window. If the user moves the front window, as shown in
Figure 10, a refresh event is generated by the operating system, sent to the
event queue, received by the runtime, and reported to the program as a
_wndRefresh DIALOG event. But, since the program was only watching for
button events, the refresh event is ignored leaving the uncovered portion of
the window blank and the user very annoyed.

Another common problem relates to the same issue. The programmer
anticipates a specific event, most notably a _wndRefresh event, and so
proceeds to redraw a window's contents before the refresh event is received.
What happens? The refresh event arrtves, the runtime knows you must
redraw a portion of the window and kindly erases that portion for you in
anticipation of the redraw. In effect, this wipes out what you drew there
before the event and leaves it blank. The solution: never anticipate an event.
Wait until you receive the _wndRefresh event before refreshing a window.

So, the main points for handling events include:

• Create a single main event loop to receive events.

• Respond to a specific event only when it's received (never anticipate the
event).

• Respond quickly to the event, then return to the main loop to await the
next one.

Now that we know how a program should respond to events, let's look at how
we might actually implement some event handling.

Regular Exercise
Let's begin to create our database application that a business might use to
maintain an employee list. It won't be entirely suitable in that regard, but it
will serve to illustrate one method of creating a full-featured Macintosh
application.

The first and most important section of our program is, of course, the Main
Loop. Since this portion of code must capture events repeatedly, we'll use a
loop block structure. Looking at the program layout, we know to place the
loop block in the Main Loop section at the bottom of the program layout. Our
Main Loop code is shown in Program 9.

The DO/UNTIL loop repeats until the global variable gQuit% becomes true.
This loop is where the program will spend 990.A> of its time waiting for the user

38 Events

Programming for Events

PROGRAM 9. Main Loop example.

I --- MAIN LOOP ---------------------------------------
00

HANDLEEVENTS
UNTIL gQuit%
END

to choose a menu, click a button, or enter text. The FB statement
HANDLEEVENTS is used to remove events from the event queue.

Each event is processed by the program's event handlers. HANDLEEVENTS
identifies each event type and directs it to the appropriate event handling

routine. Events that a program doesn't handle are ignored byHANDLEEVENTS .1

Next, we have a global variable gQuit% (identified by the lowercase "g" as the
first letter) we define it in the Globals section of our program like this:

I --- GLOBALS --
DIM gQuit%
END GLOBALS

Whenever gQuit% is set to true anywhere in the program (remember it's
globally available to all subroutines), and when control returns to the Main
Loop, the program will exit the DO/UNTIL loop block and end.

Look at the code as it stands in Program 10. It doesn't look like much now,
but this small kernel of code is the framework around which we'll construct
our entire program.

PROGRAM 10. Event handling loop.

I --- HEADER --------------------------------------
' --- CONSTANTS -----------------------------------
' --- GLOBALS --------------------------------------
DIM gQuit%
END GLOBALS

I --- FUNCTIONS -----------------------------------
' --- MAIN ---
00

HANDLEEVENTS
UNTIL gQuit%
END

1. An exception being BREAK events. If no Break handler routine is specified, any press of
the Command-period key combo will execute a STOP statement, ending the program.

Events 39

Handling Mouse Events

Now that we have some code, it's always smart to test it before moving onto
the next section. Remember, the key to top-down programming and stepwise
refinement is the testing of code at every level of execution, making sure that
it works. Don't wait until later. For our first test, select Run from the
Command menu. FB compiles the program in memory and then executes it.
At this point we certainly won't see much, but we can test that we are
receiving events. To do this, just press the Command-period keys to stop the
program. If everything has gone well, you should be back into the FB editor
ready to continue.

Feel free to skip ahead to the Menu chapter. What follows is the first Peak
Performance section where some advanced event handling capabilities are
explained. Be sure to come back later after you've finished the entire book to
explore these features on your own.

Peak Performance
Realistically, SimpleBase cannot make use of all the various event types
offered by FB. For instance, there is no place in the design of SimpleBase to
deal with mouse events. Since all of its activity deals with edit fields, buttons,
menus, and dialog events, there was nothing left over for the mouse.

To give you some experiences, let's create a small program that will help you
understand how mouse events should be handled. Of course, we'll start with
the Main Loop, but we'll also add the ON MOUSE FN statement to direct mouse
events to a mouse handler called HandleMouse. The program can be seen in
Program 10 (Mouse Events.main).

Handling Mouse Events
To remove a mouse event from the event queue, use the MOUSE (o) function.
This function will return whether the user clicked the mouse button once,
twice, or three times. Remember, a mouse event is only reported if the runtime
can't assign the click to an active control, edit or picture field, or window title.
In most cases, the mouse event will always be either _clicklnDrag,

_click2nDrag, or _click3nDrag. We can convert it into _clickl, _click2, or
_click3 by using ABS on the value returned by MOUSE (o) •

• Due to the nature ofFB's mouse hand.Ung, you wiUprobably never see a positive
msEvn t % value. That's because the 11.111.time examines the state of the mouse
button when it executes the MOUSE (OJ function., and due to the greater speed of
most machines, you wiU almDst always receive a_clicklnDrag, _click2nDrag, or
_click3nDrag event.

40 Events

Handling Mouse Events

PROGRAM 11. Mouse handling program.

I --- FUNCTIONS ----------------------------
LOCAL FN HandleMouse

DIM rect.8, msPt;O, msV%, msH%
msEvnt% = ABS(MOUSE (0))
msH% = MOUSE (1)
msV% = MOUSE (2)
CALL SETRECT (rect, 100, 100, 200, 200)
LONG IF FN PTINRECT (msPt, rect)

SELECT msEvnt%
CASE _clickl

CALL ERASERECT (rect)
CALL FRAMERECT (rect)

CASE _click2
CALL INVERTRECT (rect)

CASE _click3
PEN I I I I RND(31)
CALL ERASERECT (rect)
CALL PAINTRECT (rect)
PEN I I I I 0

END SELECT
XELSE

CALL ERASERECT (rect)
END IF

END FN

I --- MAIN ----------------------------------

WINDOW 1, "MOUSE Test" : TEXT 3, 9, , 0
ON MOUSE FN HandleMouse
DO

HANDLEEVENTS
UNTIL 0
END

'show rect

'invert rect

'give rect a pattern

'erase rect

Once the event type is identified, examine the location of the mouse and
determine how the program should react. Play with the example and look at
how:

• a single click selects a shape,

• a double click inverts the shape,

• a triple click changes the pattern used to fill the shape,

• any click outside of the shape erases it.

Events 41

Handling Mouse Events

The key points to remember when dealing with mouse events:

• A mouse event is only generated when the mouse click doesn't occur in
an active window title, edit or picture field, or control.

• Tue event value of mouse clicks will nearly always be a negative value.
Use ABS to convert it into a positive value.

• Clicksarealwaysreportedinsequence. Inotherwords,a_clickl willbe
received before a _click2. If the user double-clicks, the program will
receive a _clickl event, followed by a _click2 event. It is up to your
program to determine what happens on each click.

Cooldown
This chapter has introduced you to events, the key to creating Macintosh
programs. In it, we saw how events generated by the user and the operating
system are retrieved, processed, and reported to the program, and the
importance of waiting for an event before responding. We also learned how
the HANDLEEVENTS statement allows us to deal with events by directing each
event type to subroutines designed to handle them. In later chapters we'll
develop routines to handle specific events. In fact, the next chapter will show
you how to implement menus and handle menu events quickly and
efficiently.

42 Events

CHAPTER4

Mentis

Warm-up
This chapter introduces one of the most useful and popular features of the
Macintosh: menus. Along the way we'll learn:

+ What menus are,

+ The different types of menus,

+ Various menu features,

+ How to create menus, and

+ How to respond to menu events.

What are Menus?
Menus are interface elements that allow the user to view or choose from a list
of commands. They can appear in any of three different menu styles as shown
in Figure 11: pull-down, hierarchical, and pop-up.

Pull-down menus typically appear at the top of the Macintosh screen. They
are usually identified by a menu title, which can be a word or an icon. Pull
down menus appear when their title is clicked on with the mouse. They
disappear when the mouse button is released.

merarchical menus appear as a sub-menu of a pull-down menu. They are
normally identified by a right-pointing arrow that appears at the right edge of

Menus 43

Menu Features

a menu item. Hierarchical menus appear when the user has selected a menu
item which contains a sub-menu. In all other aspects, they behave exactly the
same as pull-down menus.

Pop-up menus do not appear on the menu bar, but can appear anywhere on
the screen when the user clicks the mouse button in a predefined area. Pop
ups are normally identified by a shadowed rectangle containing an item title
and a downward pointing arrow. Pop-up menus often have a title that resides
to the left of the pop-up itself.

RGURE 11. The three menu types.

• File Edit TeHt

Pull-down

Size Geneuo
Style Monoco

New York
Symbol

Hierarchical

Font I Chicogo ,.. I

Font Chicago
Geneuo
Monoco
New York
Symbol

Pop-up

For the SimpleBase program we will only deal with pull-down and
hierarchical menus. Actually we'll only use pull-downs in our program, but
the techniques used for them apply to hierarchical menus, too. See the FB
Handbook for routines that implement pop-up menus.

Menu Features
Before we can begin using menus, examine Figure 12 and let's identify some of
the common features found on various menus.

Pull-down menus are usually displayed on the menu bar. The menu bar is
the area at the top of the main screen where all available menu titles are
shown. A menu title is the text or icon that appears in the menu bar and
identifies a particular menu to the user.

When a menu title on the menu bar is clicked, a pull-down menu appears
containing a list of choices. Each choice is identified with an item title that
describes the action performed by choosing that item. Llke a menu title, a
menu item can be a dividing line, or can consist of text, an icon, or both. A

44 Menus

Menu Features

FIGURE 12. Menu features.

Menu title ---IJlllllL __ _,
Mark ../ Rsimou 88R------ Keyboard
Menu item ----1- Heinlein 88H equivalent

Mystery • Stout
Do~j~<~ Divider ----t--------1

Icon-----

_Hierarchical
menu

....._ ___ Disabled
item

dividing line is an inactive menu item used to separate distinct groupings of
menu items.

The user typically uses the mouse to choose a partic~ar item from a menu.
Keyboard support is also provided in the form of a keyboard equivalent. A
keyboard equivalent is a character associated with a particular menu item.
By pressing the command (88) and character key simultaneously on the
keyboard, the user can invoke the menu item.

Menus can also contain marks and icons. A mark is a character used to
indicate a selection in a group of choices, or to indicate the active or inactive
states of a particular menu item. Normally, the item mark is a checkmark
character, but it can be anything. An icon is an image that represents an
object, concept, or message.

A menu title or item can also have two states: enabled or disabled. An active
menu item can be chosen with the mouse or command key equivalent. A
disabled menu item is grayed out and can't be selected by either of these
methods. When an entire menu is disabled, its title in the menu bar is grayed
out.

A menu m is a unique numerical value assigned by the programmer that
identifies the menu to the program. An item m uniquely identifies the menu
items for a particular menu. It is also assigned by the programmer to identify
the menu item for that menu's item list.

For example, in Figure 13, the Rut hors menu has been assigned a menu ID
of 20 by the programmer when the menu was created (we'll see how to do that
later). The menu title itself is assigned an item ID of zero, the Rsimou item
has an item ID of one, Heinlein is two, and so on. To respond to a selection of

Menus

Creating Menus

FIGURE 13. Identifying menus and menu items.

menulD% = 20

itemlD% = 1 Rsimou 88R
itemlD%= 2 Heinlein 88H
itemlD%= 3
itemlD% = 4 Mystery • itemlD% = 5

itemlD%= 6 IAI Ryn Rand

I
Stout
no~.t~(~

menulD% = 31

itemlD% = 1
itemlD%=2

the Hyn Hand item, the program needs to receive an event that contains a
menu ID of 20 and an item ID of 6.

Okay, now that we've described the various features of menus, it's time to
learn how to create some of our own.

Creating Menus
There are two ways of creating menus in FB. The first uses the MENU

statement to create program menus on the fly. The second requires some
setup in ResEditwhere the menus are stored as MENU resources. This method
will be covered in the Peak Performance of this chapter.

The MENU statement requires a minimum of four pieces of information: a
menu ID, an item ID, a menu state, and a string for the menu or menu item
title. A menu bar on a Mac Classic can comfortably hold 10 menu titles (as
long as they aren't extremely long ones), and larger screens can hold more.
However, you should always strive to keep menus to a minimum so that all of
them will fit on the smallest screen available. Too many menus not only
confuses a user into thinking the program is overly complex or difficult to
use, but also run the risk of exceeding menu bar space.

To create a new menu, assign it a menu ID, a zero for the item ID, a state
setting (in this case _enabled), and the menu's title like this:
MENU l, 0, _enabled, "File"

To append an item to the menu, just repeat the MENU statement with a
different item ID, state, and item title like this:
MENU 1, 1, _enabled, 11New1•

MENU 1, 2, _enabled, "Open•
MENU 1, 3, _disabled, u _11

MENU 1, 4, _enabled, "Quit"

46 Menus

The Apple Menu

Repeat with different menu IDs for as many menus as required by the
program.

The Apple Menu
The s menu is a special case when it comes to its menu ID. The s menu
automatically supports the display and access to user desk accessories and
utilities (aliases, applications, etc.) available on the host system.

When the APPLE MENU statement is used, it creates an s menu that uses and
returns a menu ID of255. If the s menu is created with a MENU resource, it
uses and returns a menu ID of 127.

You can append more than one item under an s menu using a special
separator character (semi-colon) in the menu's title assignment like this:

APPLE MENU "About SimpleBase ... ;Help"

You should limit yourself to absolutely no more than three items underneath
the s menu including: an about window, a help system (if needed), and one
more (if required by your program).

The Edit Menu
The second special menu is the Edit menu. The Edit menu provides support
for edit fields to cut, copy, paste, and clear text within a program. FB
normally assigns it a menu ID of 2. When created as a MENU resource, it
should also have a menu ID of 2. For more information on implementing
some custom cutting and pasting see the chapter "Edit Menus".

Assigning Command Keys
You assign a command key to a menu item by inserting the "/" character at
the beginning or the end of an item title. The first character after the "/" will
be inserted as the command key. For example, either of these two forms will
assign the "Q" key to the Quit item of our File menu:

MENU _mFile, _iQuit, _enable, 11 /QQuit"

or

MENU _mFile, _iQuit, _enable, "Quit/Q"

Once a command key is assigned to a menu item, it can't be changed using
the MENU statement. To do that, you'll need to use the Toolbox procedure
SetitemCmd.

Many programs have begun assigning modifier keys like Sh.Jft, Option, and
Control to menu items. These are not supported by Apple's default menu

Menus 47

Assigning Icons

TABLE2. MENU title styles.

Meta-character ...

B
I
0
s
u

Font Format...

Bold
Italic
Outline
Shadow
Underline

definition and the means of implementing such keys is beyond the scope of
this book.

Assigning Icons
You can assign an icon to a menu item. However, doing so prevents the item
from having a command key associated with it. The icon displayed in a menu
item must have a resource ID that's within the range of257 to 512.

You assign an icon to the item using the""" character followed by the icon's
ID number minus 256 in the item title. For example, to display icon #257,
use:

MENU 1, 1, _enabled, •AlNew•

To assign icon #258 use:

MENU 1, 2, _enabled, "A20pen"

Assigning Text Styles
It's possible to provide each menu item with a unique text style using a meta
character. A meta-character defines which style the item title will display.
This is done by embedding the "<" symbol in the title string followed
immediately by the style meta-character. The style settings can be seen in

Table 2.

For example, to create a bold faced menu item you would do this:

MENU 1, 1, _enabled, "<BNew•

However, in most situations, assigning any style other than plain to a menu
screams "amateur programmer". If an item not part of a font's Style or Size
menu, don't use a style. There may be a very good reason why a style should
be applied to a menu item, but in most cases you can get by without it. The
decision is yours.

48 Menus

Unhighlighting Menus

Unhighlighting Menus
When the user chooses a menu item, the menu title is automatically inverted,
or highlighted, to remind the user which menu was chosen. To unhighlight it,
use the MENU statement without any parameters. We'll see how to do this once
we begin handling menu events later in the chapter.

Enabling & Disabling Menus
One of the most valuable features of menus is that they can guide the user
under any situation. They do this by restricting menu and item choices with
disabled menus and menu items. For example, if a document isn't open, it
would be pointless to allow a user to Close, Saue, or Print a non-existent file.
By disabling those menu items, the user knows that a file must be open
before the choices become available.

This type of user guidance is done using the MENU statement to change the
menu state. For example, to disable the Close item (item #3) on our File
menu, we can do this:

MENU menuID%, 3, _disable

and re-enable it using:

MENU menuID%, 3, _enable

We can also disable an entire menu using item number zero (the menu title)
like this:

MENU menuID%, 0, _disable

and re-enable it using:

MENU menuID%, 0, _enable

Marking a Menu Item
You can show that an item is selected by displaying an item mark next to the
item title. The mark is usually a checkmark which can be added to the menu
by setting the menu item state to _checked like this:

MENU menuID%, itemID%, _checked

However, the mark can be any character you desire. To mark an item with a
non-standard character, set the state of the item to the ASC value of the
character to display. For example, to display a bullet (•) character you would
do this:

MENU menuID%, itemID%, ASC ("•")

To add a mark to an item that contains several item titles in a single string,
such as an tt menu, use the "I" symbol before the character like this:

Menus 49

Changing Item Titles

MENU menuID%, itemID%, _enable, "New Record;!•Open;!•Close;Quit"

To remove a mark, reset the item state to _enable using:

MENU menuID%, itemID%, _enable

Changing Item Titles
It's also possible to change a menu item's title by assigning a new one to the
menu item. If the menu is already built, the runtime replaces the current title
with the new one. Still using the File menu example, we can modify the New
item by executing a line like this:

MENU menuID%, itemID%, _enable, "New Record"

And change it back to its original form using:

MENU menuID%, itemID%, _enable, "New•

We'll see how we can use this technique later, not only to create new employee
database files, but also to create new records once a file is open.

Deleting Menus
You normally don't have to wony about removing menus built in your
program. The standard FB runtime takes care of that task for you whenever
the program ends. This is another benefit of using the FB runtime package.

Note that resource menus having IDs in the range of 1 to 31 are also
automatically deleted at the program end by the FB runtime.

Regular Exercise
Now that we understand what menus are, let's begin adding them to our
program and learn how to respond to their selection.

Program Menus
Creating menus is a two step process. First, determine what menus the
program will need, then define them in syntax FB will understand. What
could be easier? Our goal is to create menus that appear just like those
shown in Figure 14.

Step One: Menu Constants
The first step to creating our menus is determining which ones the program
will need. Since StmpleBasewill deal with files, we need a File menu, and of
course, it uses text, so an Edit menu is required. Additionally, we'll want to be
able to move around and manipulate the various records in our database, so

50 Menus

Step One: Menu Constants

FIGURE 14. SimpleBase menus.

About SimpleBase .•• Undo ••• ooz Show First 001
Help... OOH Preuious 002

Cut OOH Ne Ht 003
IQJm Copy ooc Show Last 004

New OON Paste oou
Open ••• 000 Clear Find ••• OOF
Close oow Goto •.• 006

Select All OOH
Page Setup ••• Clear Record
Print ••• SCP Copy Record OOK

Paste Record
Quit OOQ

a Records menu would be nice. Finally, we should always have an• menu
so users will have access to their desk accessories and system utilities.

The easiest place to define our menus is in the Constants section of the
program. By defining an equate for each menu and menu item, we begin the
process of creating self-documenting code. For example, it's much easier to
read and understand a program line like this:

MENU _mfile, _iQuit, _enable

than something like this:

MENU 1, 10, 1

Who can remember what item # 10 is, especially if six months have gone by
since you last worked on the source code? Make it easy on yourself, using
techniques like these will make your source code almost self-documenting.

Looking at the menus again, we see that we need to create constants for our
four program menus: s, File, Edit, and Records. The s menu has already
been predefined with a constant LappleMenu), so we only have to create the
others. For mnemonic ease, each menu constant is preceded by a lower case
"m", while each item constant uses a lower case "i" as an identifier.

We define the menu constants like this:
_mFile = 1

_mEdit = 2
_mRecord = 3

Menus 51

Step One: Menu Constants

PROGRAM 12. Defining menu equates.

EQUATES ---------------------------------------
' >>> APPLE MENU
_iAbout = 1
_iHelp 2

I >>> FILE MENU

_mFile = 1
_iNew 1

_iOpen = 2
_iClose = 3

I -------------

_iPageSetup = 5
_iPrint = 6

I -------------

_iQuit = 8

I >>> EDIT MENU

_rnEdit = 2

_iUndo = 1 . -------------
_iCut = 3
_iCopy = 4
_iPaste = 5

_iClear = 6

I -------------

_iSelectAll = 8

I -------------

_iCopyRec = 10

_iPasteRec = 11
I >>> RECORD MENU
_mRecord = 3

_iFirstRec = 1
_iPrevRec = 2
_iNextRec = 3

_iLastRec = 4

I -------------

_iFindRec = 6
_iGotoRec 7

I -------------

_iClearRec = 9

62 Menus

Step Two: Menus

With our main menus decided upon, we can define their respective menu
items in the same way. The final list is shown in Program 12. Now that we
have the menu constants defined, it's time to add them to our program.

Step Two: Menus
When adding an entire program of menus, it's always tempting to bundle the
entire creation process into the Initialize subroutine of the program.
Don't do it. In the spirit of top-down design, you should always break each
routine down to its smallest parts, hiding the details until the very last
routine. With that idea, we'll add our menus to the Initialize routine with
one line of code as shown in Program 13.

PROGRAM 13. Adding menus to Initialize.

LOCAL FN Initialize
FN BuildMenus

END FN

You can see what this routine is doing for the Initialize routine, it's
building our program menus. Now, let's add the function BuildMenus where
all of the dirty work is done. The entire BuildMenus routine can be seen in
Program 14.

We start by defining the s menu items using the APPLEMENU statement.
APPLEMENU accepts a string containing one or more item titles. Each item title
is separated by a semi-colon. In our case we'll use two, one for the about
information item, and one for program help.

Next, the File menu provides all the commands required to handle
SimpleBase's data files. We assign the standard New, Open, Close, Page
Setup, Print, and Quit menu items normally associated with the File menu.
Each allows us to perform actions on the database as a complete unit. You
may notice that there is no Saue or Saue Rs ... items. We handle saving
automatically, so users never have to worry about losing their data. We'll see
how we implement these features when we create some files.

The Edit menu is another special case menu handled by the FB runtime.
Here we create an entire Edit menu containing all the common editing items
like Undo, Cut, Copy, Paste, etc., then add three additional items for: Select
Rll, Copy Record, and Paste Record.

The final menu, Records, contains items related to moving around our
database file once it's open. We have six items: Show First, Preuious, NeHt,

Menus 53

Step Two: Menus

Show Last, Find ... , and Goto In addition, we enable the user to erase
data with Clear Record.

You may have noticed the ellipsis (.•.) that appears on some menu items but
not others. By design, an ellipsis tells the user that selecting this item
requires additional information in order to complete the requested task.
Usually, a window appears asking for that information. For example, the Find
item uses the ellipsis in the title because it will ask for some search text from
the user.

Note that we can safely skip all blank menu items, or dividing lines, in our
menu definitions, since FB automatically fills them in for us.

That's all there is to building menus. If you run the program at this stage,
you11 see the menus, but they don't respond like a menu should. We'll take
care of that now.

PROGRAM 14. BuildMenus routine.

LOCAL FN BuildMenus
APPLE MENU "About SimpleBase-;Help-/H"

MENU ,Jl\Fil e, 0
MENU _mFile, _iNew
MENU _mFile, _iOpen
MENU ,Jl\File, _iClose

, _enable , "File"
, _enable , "New/N"
, _enable , "Open ... /O"
, _disable, "Close/W"

MENU _mFile, _iPageSetup, _disable, "Page Setup_•
MENU ,Jl\File, _iPrint
MENU ,Jl\File, _iQuit

EDIT MENU _mEdit

, _disable, "Print-IP"
, _enable , "Quit/Q"

MENU _mEdit, _iSelectAll , _enable, "Select All/A"
MENU _mEdit, _iCopyRec , _enable, "Copy Record/K"
MENU _mEdit, _iPasteRec , _enable, • Paste Record"

MENU _mRecord, 0
MENU _mRecord, _iFirstRec
MENU _mRecord, _iPrevRec
MENU _mRecord, _iNextRec
MENU _mRecord, _iLastRec
MENU _mRecord, _iFindRec
MENU ...JYIRecord, _iGotoRec
MENU _mRecord, _iClearRec

END FN

54 Menus

, _disable, "Records"
_enable , "Show First/1"

, _enable , "Previous/2"
_enable , "Next/3"

, _enable , "Show Last/4"
, _enable , "Find-IF"

_enable , "Goto ... /G"
_enable , "Clear Record"

Handling Menu Events

PROGRAM 1s. Menu event handling pseudocode.

Get a menu event
Determine the correct menu and item ID numbers
Call the routine to handle the selected menu
The routine deals with the event
Return to look for the next event

Handling Menu Events
I'll bet you thought we would never get back to talking about events. They
haven't been forgotten, they were just set aside while we got our menus in

place and ready to go. So now let's talk about menu events.

As mentioned in the chapter "Events", every time a user chooses a menu
item, an event is generated. The Main Loop sees the raw event, translates it
into a menu event, then passes it onto the program's menu event handling
routine. The pseudocode to handle menu events is shown in Program 15:

The activities descrtbed in this particular pseudocode example are spread
over several different subroutines in the program. Each decision that deals
with the event passes control to the next stage of the design. The Main Loop
gets the event. It calls the assigned menu handling routine which extracts the
menu ID and item ID from the event. The menu handling routine then calls
the subroutine designed to deal with the menu selection. The subroutine may
in turn call other subroutines to deal with the event. When finished, control
returns to the Main Loop to await the next event.

Remember that HANDLEEVENTS has the job of retrieving the event from the
event queue and handing it over to the program's appropriate event handler.
But how does HANDLEEVENTS know which handler that is? Simple: we tell it
like this:

ON MENU FN MenuEventHandler

We add this line of code just prior to entering the Main Loop of the program.
All ON <event> FN statements are, in effect, a sign that points HANDLEEVENTS

to the function designed to deal with the event. In this case, it tells
HANDLEEVENTS to direct all menu events to the routine MenuEventHandler.

Once again, we bury the details of handling menu events in this subroutine.
The menu event handling subroutine is shown in Program 16.

There are two pieces of information the program requires from the event: the
menu and the item number, often referred to as the menu ID and item ID.
These two pieces of data are used to identify the menu selection made by the
user. The MENU function returns both values, placing them in appropriately

Menus

Handling Menu Events

PROGRAM 16. Skeleton menu handling routine.

LOCAL FN MenuEventHandler
menuID% = MENU (_menuID)
itemID% = MENU (_itemID)
MENU

END FN

named variables called menuID% and itemID%. The final MENU statement
(without parameters) in the routine, unhighlights the chosen menu title. This
should occur after the menu handling subroutine has completed executing.

Okay, our program has received a menu event, and extracted the correct
menu and item values with the MENU function - what's the next move? Well,
at this point of top-down design we hide the details in another subroutine, or
in this case, routines. In other words. we create a subroutine for each menu
in the program and call it when the correct menuID% appears. The best way to
call multiple items from a single value is to use the SELECT /END SELECT

structure. Program 17 shows what our complete menu handling function
looks like.

PROGRAM 17. Enhanced menu handling routine.

LOCAL FN MenuEventHandler
menuID% = MENU (....menuID)
itemID% = MENU (_itemID)
SELECT menuID%

CASE _appleMenu : FN DoAppleMenu (itemID%)
CASEmFile : FN DoFileMenu (itemID%)
CASEmEdit : FN DoEditMenu (itemID%)
CASE _mRecord : FN DoRecordMenu (itemID%)

END SELECT
MENU

END FN

Notice how the predefined menu constants make it easy to understand which
menu is called. Also note the descriptive routine names that leave little doubt
as to their defined task. Each subroutine handles its own menu items. We
make sure to pass the i temID% to them since each will need that information
to make their own internal decisions. Let's examine a couple of them to see
how they do that.

The first is DoAppleMenu which is shown in Program 18. Since it has to make
a choice of which item was selected. we pass it the i temID% as a parameter.

56 Menus

Handling Menu Events

We use another SELECT/END SELECT structure to call the final routines, the
ones which will actually execute the chosen menu task.

PROGRAM 18. Skeleton apple menu routine.

LOCAL FN DoAppleMenu (itemID%)
SELECT itemID%

CASE _iAbout : FN ItemAbout
CASE _iHelp : FN ItemHelp

END SELECT
END FN

Since the s menu can also contain special items like· desk accessories, or
with System 7, aliases, applications, and documents, you might think we
have some special processing to do. Wrong! We don't have to worry about that
at all since the FB runtime takes care of those details for us. We deal with the
menu items we specified with APPLE MENU. No muss, no fuss.

The next menu handler to examine is the File menu as shown in Program 19.
Again, we use SELECT /END SELECT to choose between all the possible values of
i temID% and call to the appropriate item handling routine. This same
technique is used for the Edit and Record menus.

PROGRAM 19. File menu routine.

LOCAL FN DoFileMenu (itemID%)
SELECT itemID%

CASE _iNew : FN ItemNew
CASE _iOpen : FN ItemOpen
CASE _iClose : FN ItemClose
CASE _iPageSetup : FN ItemPageSetup
CASE _iPrint : FN ItemPrint
CASE _iQuit : FN ItemQuit

END SELECT
MENU

END FN

Menus 87

Handling Menu Selections

PROGRAM 20. Skeleton Print item routines

LOCAL FN ItemAbout
PRINT "About item"

END FN

LOCAL FN ItemHelp
PRINT "Help item"

END FN

Handling .Menu Selections
At this time, it's possible to add all of the individual item handlers for each
menu. Sometimes called skeleton routines, these functions are fully callable
but perform little or no actual work. Functionality will be added later as we
develop StmpleBase.

We can check to see that our menus work by adding a single BEEP or PRINT

statement into each one and testing it. For example, we can test the tl menu
subroutines by adding PRINT statements as shown in Program 20.

If you run the program at this time, you can select either About Simple
Base ... or Help ... from the tl menu. If the program encounters no errors, the
correct skeleton message will appear in the program window when an item is
chosen from the tl menu.

Not all of the routines have to be skeletons at this point. One in particular,
Quit, is quickly implemented. The Main Loop is constantlycheckingtheval.ue
of gQuit%, so set gQuit% to _true (i.e. to anything but zero) in order to exit
our program. We do that in the ItemQuit routine like this:
LOCAL FN ItemQuit

gQuitt = _true
END FN

Here, shown in all its beginning glory in Program 21, is the remainder of the
program (consisting mostly of skeleton routines) to handle all StmpleBase
menu items.

68 Menus

Handling Menu Selections

PROGRAM 21. Menu item handlers.

LOCAL FN ItemAbout
END FN

LOCAL FN ItemHelp
END FN

LOCAL FN DoAppleMenu {itemID%)
SELECT itemID%

CASE_iAbout
CASE _iHelp

END SELECT
END FN

LOCAL FN ItemNew
END FN

LOCAL FN ItemOpen
END FN

LOCAL FN ItemClose
END FN

FN ItemAbout
FN ItemHelp

LOCAL FN ItemPageSetup
END FN

LOCAL FN ItemPrint
END FN

LOCAL FN ItemQuit
gQuit% = _true

END FN

LOCAL FN DoFileMenu {itemID%)
SELECT itemID%

CASE _iNew : FN ItemNew
CASE _iOpen : FN ItemOpen
CASE _iClose : FN ItemClose
CASE _iPageSetup : FN ItemPageSetup
CASE _iPrint : FN ItemPrint
CASE _iQuit : FN ItemQuit

END SELECT
END FN

oonttnued on next page .••

Menus 59

Handling Menu Selections

LOCAL FN ItemUndo
END FN

LOCAL FN ItemCut
END FN

LOCAL FN ItemCopy
END FN

LOCAL FN ItemPaste
END FN

LOCAL FN ItemClear
END FN

LOCAL FN ItemSelectAll
END FN

LOCAL FN ItemCopyRecord
END FN

LOCAL FN ItemPasteRecord
END FN

LOCAL FN DoEditMenu (itemID%)
SELECT itemID%

CASE _iUndo : FN ItemUndo
CASE _iCut : FN ItemCut
CASE _iCopy : FN ItemCopy
CASE _iPaste : FN ItemPaste
CASE _iSelectAll : FN ItemClear
CASE _iCopyRec : FN ItemCopyRecord
CASE _iPasteRec : FN ItemPasteRecord

END SELECT
END FN

LOCAL FN ItemShowFirst
END FN

LOCAL FN ItemPrevRecord
END FN

LOCAL FN ItemNextRecord
END FN

LOCAL FN ItemLastRecord
END FN

continued on next page •.•

60 Menus

RECORD MENU ITEM HANDLERS

Resource Menus

LOCAL FN ItemLastRecord
END FN

LOCAL FN ItemFindRecord
END FN

LOCAL FN ItemGotoRecord
END FN

LOCAL FN ItemClearRecord
END FN

LOCAL FN DoRecordMenu (itemID%)
SELECT itemID%

CASE _iFirstRec : FN ItemFirstRecord
CASE _iPrevRec FN ItemPrevRecord
CASE _iNextRec FN ItemNextRecord
CASE _iLastRec FN ItemLastRecord
CASE _iFindRec FN ItemFindRecord
CASE _iGotoRec FN ItemGotoRecord
CASE _iClearRec : FN ItemClearRecord

END SELECT
END FN

Peak Performance
If you haven't done so already, please read the chapter "Resources" on using
ResEdit. If you are already familiar with ResEdit, welcome, you're about to
learn how to add resource menus to your programs.

Resource Menus
Adding menus as resources is almost easier than using the MENU statement.
Because s, File, and Edit menu tend to appear in every Mac program, you can
create them once and just copy them into each new project. Additionally, they
are much easier to change both durtng program development and after
compilation. Should you decide to change an item name, just drop into
ResEdtt and make the change, no need to recompile.

Creating MENU Resources
We start by opening the file SimpleBase.rsrc. Next, choose Create New
Resource from the Resource menu and select the MENU type in the scrolling
list as shown in Figure 15. Click OK. ResEdit automatically creates a new
menu for you and opens the Menu editor shown in Figure 16. Here is where
you enter the menu items, add command keys, colors, and styles.

Menus 61

Creating MENU Resources

FIGURE 15. Select New Type dialog.

Select New Type

MOAT {}

MDEF I
mhlr Pll\

~~~~I 
MONMO 

~ 

n OK D 

[ Cancel ) 

On the left of the editor you can see a small display of the current menu. As 
items are added they will be appended to the list. On the right, enter the title 
for the menu item as well as setting if it should be initially enabled. On the 
bottom-right are selections for adding color to the various features of the 
menu. On the menu bar itself is a real-time copy of your menu that you can 
check out as you add items so you know exactly how it will appear. 

Additionally, you can add hierarchical menus to menu items by choosing the 
has Submenu checkbox and inserting a menu ID number. Since we don't 
need any hierarchical menus, we'll just skip that feature for now. 

While in the Menu Editor, choose Get Resource Info from the Resources 
menu. The MENU information window shown in Figure 17 appears. Here you 
can enter the menu ID used by your program to identify the menu. In the 
case of the File menu, that ID is 1. I also like to enter the menu name for 
easier identification later. 

FIGURE 16. MENU resource editor. 

§0 MENU "File" ID = 1 f rom SimpleBase.rsrc 

~ I Selected Item: [8J Enabled 
New 3CN ~ 

1

, 
Open... 31:0 
Close 3CW I 
Saue 3CS .! 

0 ........... (separator line) 

Saue As ••• .......................... ·-·-·····-·--.......................................... I 
_E~~'.;~~·~~~--- -- --~!- I O hos Submenu 

Color 

TeHt : I I 
Cmd-Key:@] I I 

ouit 31:0 I 
~--------~"°'~ ! Mark:I None "'Ill 

62 Menus 



Creating MENU Resources 

FIGURE 11. MENU resource information. 

~ Info for MENU 1 from SlmpleBase.rsrc ~ 

Type: MENU Size: 118 

ID: 11 
Name: :F=ll=e==================== 

Owner type 

Attributes: 
D System Heap D Locked D Preload 
D Purgeable D Protected D Compressed 

• Warning, Wl.like other resources, never make a MENU resource purgeable. if you do, 
the menu may get purged by the Memory manager when it needs space, and the 
next time the user selects the menu a system error (-84) will result. 

When you close the resource info window, ResEdit warns you of the menu ID 
change with an alert. Just ignore its advice and click DK. Failure to change a 
menu's ID isn't serious, you just won't be able to use it in your program. It's 
the menu ID number that the FB runtime uses to identify a menu selection. If 
the File's MENU resource has a menu ID of 128 and you expect to see 1 in your 
event loop, it won't happen. However, should you forget to change a menu ID 
to match the resource ID, just go back into ResEdit, open the correct MENU 

resource, then choose Get Menu ID from the MENU menu to get the dialog 
shown in Figure 18. 

FIGURE 18. MENU ID dialog. 

Please enter the Menu ID and 
the resource ID of the MDEF to 
be used below. 

MDEF ID: ._Io __ _, 

(cancel) ([ OK JJ 

Menus 63 



Create MBAR Resource 

Do not change the MDEF ID in this dialog unless you know what you're doing. 
This is the procedure code that tells the system which MDEF resource (Menu 
DEFinitlon) to use when drawing the menu. MDEF o is the default pull-down 
menu procedure. Unless you are using a custom MDEF to draw your menu, 
never change this value. 

Repeat the above steps for each menu resource required by the program. For 
SimpleBase that is MENU resources for s, File, Edit, and Records. Make sure 
that the menu ID for each menu matches the resource ID (and the s menu 
should be 127). Forgetting this will prevent FB from finding the correct menu 
when a user selects it. 

Create MBAR Resource 
The next thing to do is add an MBARresource with an ID of 127 to the resource 
file. When FB sees this resource type in a program's resource file, it 
automatically loads it into memory, and then loads the MENU resources listed 
in it. Vona, instant program menus with no code. 

To create an MBAR resource, start by choosing Create New Resource from 
the Resource menu. Enter or scroll to select MBAR from the list of file types 
just as we did with the :MENU resource. Click OK. 

Second, highlight the MBARresource and choose Get Resource Info from the 
Resource menu. Enter the value 127in the ID field and check the Purgeable 
box as shown in Figure 19. Close the window by clicking the window's close 
box. 

FIGURE 19. Creating a MBAR resource. 

!§0§ Info for MBRR 127 from SimpleBase.rsrc ~ 

Type: MBRR Size: O 

owner type 

Owner ID: 

Sub ID: 

DRUB ~ 
WDEF 

~ MDEF 

Attributes: 
D System Heap D Locked D Preload 
181 Purgeable D Protected D Compressed 

64 Menus 



Create MBAR Resource 

Next, enter the values of the MENU resources the MBAR resource will display on 
the menu bar. Click on the asterisks shown in the MBAR editor in Figure 20. A 
box will appear around them. Now choose Insert New Field to add a place 
for a menu ID. Repeat until you have four spaces. Finally, enter your menu ID 
numbers in the order they should appear on the menu bar. 

FIGURE 20. MBAR resource editor. 

sD MBRR ID - 127 from SimpleBose.rsrc 

#of menus 4 

1) ***** 
Menu res ID 1121 
2) ***** 
Menu res ID I 1 

3) ***** 
Menu res ID 12 

4) ***** 
Menu res ID 13 

5) ***** 

Finally, save all your work and close the resources file. If it's not already 
present in your main file, add a RESOURCES statement to the Header section of 
the file. Go to the Initialize subroutine and delete the call to BuildMenus. 
Run the program. If no errors are present in the resource file, your menus will 
appear and work just as before, with the exception that you didn't use a 
single line of code to add them to your program. 

Menus 65 



Create MBAR Resource 

Cooldown 
This chapter covered everything you need to know about menus including: 
the three types of menus (pull-down, hierarchical, pop-up), and their 
distinctive features. We looked at one method of creating menus for a 
program that required us to first define the menu constants, then construct 
the menus using the MENU statement. We then learned how to get menu 
events, and recover the menuID% and i temID% so that we can respond to 
specific user choices. Then, we looked at how to enable and disable menus 
and menu items, and how to unhighlight a selected menu title. 

Finally, we closed by showing how to convert a program's menus into MENU 

resources, how to create them using ResEdit, and how to implement them 
using a MBAR resource. 

We learned quite a bit in this chapter. At this point we have the barest 
skeleton of an application, one that presents us with some menus but little 
else. In the next chapter we'll look at another important interface feature, the 
window. 

66 Menus 



CHAPTERS 

Windows 

Warm-up 
This chapter introduces you to another common interface component, 
windows. In this chapter you will: 

+ Learn what windows are, 

+ Identify common window types, 

+ Identify window features, and 

+ Learn how to create windows. 

What are Windows? 
A window is a specified area of the screen that allows the user to view or enter 
information. A program can have multiple windows on the screen, each 
performing a different function. 

Programs typically create windows that allow the user to enter data, or view 
text, graphics, or other information in a meaningful way. When displaying a 
document, the window provides a view into the document contents. The user 
can change, move, resize, and close windows. There are a number of 
standardized window elements that make using windows convenient for the 
user. These standard elements are shown in Figure 21. 

The close box enables the user to close a window. This releases all data 
structures related to the window or its contents including buttons and edit 
fields. 

Windows 67 



What are Windows? 

RGURE 21. Window features at a glance. 

l 
D Untitled-1 

~ 

Close box 

Title bar 

Zoom box 

1-- Scroll bar (or scroll buttons) 

'°' 
The title bar often displays the name of the document and indicates whether 
the window is active or inactive. It also allows the user to reposition the 
window by dragging the title bar with the mouse. Some windows do not have 
title bars (see the chapter "Alerts") and cannot be moved by the user. 

The zoom box allows the user to switch the window's size between two 
predefined sizes, while the size box enables the user to resize the window 
dimensions manually. 

Scroll bars (scroll buttons in FB terminology) enable the user to see other 
portions of the document when the data in the document exceeds the 
viewable area of the window. Scroll bars are not part of the window, but are a 
control placed there by the program (see the chapter "Scroll Buttons" for more 
information). 

RGURE 22. Window content and frame regions. 

A window consists of 
both a content region 
and a frame region. 

68 Windows 

The content region of 
a window contains 
buttons, edit and 
picture fields, as well 
as grow boxes. 

The frame region of a 
window consists of the 
title bar, close box, 
zoom box, and frame 
around the window. 



Creating Windows 

A window as shown in Figure 22 consists of two main parts: the content 
region and the frame. The content region is that area of the window in which 
a program can display data, controls, and the size box. The frame is the rest 
of the window including the title bar, the close and zoom boxes, and the 
window's outline. 

For the most part, the FB rµntime handles all of the actions required to 
manage windows in your programs. The programmer, must define the 
window's initial size, and close it, but moving, resizing, and zooming are all 
handled automatically. Also, the runtime allows a program to handle any of 
these actions if necessary. 

Creating Windows 
Windows are the main method a program uses to display output and receive 
input from a user. Since a program can require many different windows, FB 
provides support for up to 63 program windows. Each is uniquely identified 
by a wndID% number that ranges from l to 63. A specific window is built 
using the WINDOW statement. 

• Never use a wndIDi of zero as that is reserved for the default Command window. 

The WINDOW statement needs several pieces of information, a wndID%, a title (if 
required), a rectangle that specifies its position on the screen, a window type, 
and while not mandatory, a window class. 

WINDOW #wndID%, "MY WND", (10,50) - (200,80), _docNoGrow, wndClass% 

The wndID%, of course, specifies which window to build. If wndID% is 
proceeded by a negative sign, the window is built invisibly on the screen. This 
enables us to build our data entry window with all of its fields and buttons 
beyond the user's view, then display it when complete. Using this technique 
tricks the user into thinking that the program builds windows quickly. This is 
because since the window appears to leap onto the screen all at once, instead 
of a piece at a time. 

• Don't be conjllsed by the negative sign on wndIDi, the wndIDi is always a positive 
value. The negative sign is ajlag to the runtime that tells it to build the window 
invisibly. 

The title in windows with title bars can be up to 255 characters, but should 
be smaller than that if you expect all of it to be displayed. 

The window rectangle specifies the size of the window as well as its location 
on the screen. It has the following format: 

(left, top) - (right, bottom) 

Windows 69 



Centertng Windows 

for its two opposite corners, where the left-top corner of the screen is 0, 0 and 
the light-bottom corner can range from 512, 342 and beyond depending on 
the size of the monitor. This is important to remember, a default window 
should never be larger than the Classic's 9" monitor. This means that controls 
and fields should always appear so that they are available even on the 
Macintosh, the smallest screen. Forcing the user to scroll fields or controls 
into view is unacceptable in a program. Windows should take advantage of 
larger screens if available, but should never force users of smaller screens to 
perform mouse or command key gymnastics to accomplish normal tasks in a 
window. 

The top-left coordinates of a window start at the top-left comer of its content 
region, not the title bar. Therefore, when positioning a window that has a title 
bar, always add 20 pixels to the window top to compensate for the title bar. In 
addition, the menu bar adds another 20 pixels to the top position or else the 
window's title bar will be obscured. 

FIGURE 23. Window positioning on the screen. 

f Screen corner (O,O) 

Menu bar (20 pixels) -[ s File Edit Forma 

Title bar (20 pixels) -{ l~-=oiiiiii~ 

" Window corner (5,45) in 
screen coordinates 

Centering Windows 
You center a window on a screen by specifying the left and top coordinates of 
the window rectangle to 0, 0. 

When Macs only had small 9" screens, only alerts and dialogs got centered on 
the screen. When larger monitors came out, it became important to center 
windows instead of restricting them to the upper left corner of the screen. In 
the beginning, programmers had to calculate this center for each window, 
today the FB runtime has this capability built into it. To center any window 
on any screen, just do this: 

WINDOW #wndID%, "CENTERED WND", (0, 0) - (200, 80), _docNoGrow 

One caveat, however, never rebuild a centered window without first closing it. 
If you fail to close the window, the runtime will recalculate the center and the 
window will appear in the upper-left comer of the screen with only a quarter 
of it visible. 

70 Windows 



Window Types 

You can determine the screen size using the SYSTEM functions: 
scrnWidth% = SYSTEM (_scrnWidth) 
scrnHeight% = SYSTEM (_scrnHeight) 

The maximum screen size in both directions extends from -32768 to +32767, 
or about 35 feet in height and width. This is plenty of room for maneuvering 
windows. 

Window Types 
Each window has a purpose. Some are used for normal documents, others 
provide information or alert the user to a problem. Still others are used to 
request input from the user. The window types you use will depend on the 
program you are writing. For StmpleBase we rely on the window type 
_docNoGrow for most of our windows. 

Some of our windows could have probably used the standard _dialog type of 
window, especially the Find and Goto windows. The decision not to use them 
is because of System 7. Since multiple applications can be open, multiple 
windows can appear on the screen and create window confusion. I felt it more 
important to display window titles to identify the window, something the 
_docNoGrow type supports but _dialog does not. You may choose differently. 

Table 3 contains a list of various window types available and a brief de
scription of their common uses in Macintosh programs. 

Modal vs. Non-Modal Windows 
There are two main kinds of windows, non-modal and modal. Non-modal are 
more popular and enable users to work within the window, choose menus, 
click in other windows, and generally work in any order they wish. For 
example, the following WINDOW statement builds aregular non-modal window: 

WINDOW #wndID%, "NON-MODAL", (0, 0) - (500, 300), _docNoGrow 

A modal window, however, is one that prevents the user from clicking or 
selecting anything outside of the window. It generally appears as a dialog or 
alert window type. Any attempt to click outside of the window results in a 
beep. This type of window is created when the window type in the WINDOW 

statement is proceeded by a negative sign. The following WINDOW statement 
builds a modal window: 

WINDOW #wndID%, "MODAL", (0, 0) - (500, 300), _docNoGrow 

In the age of System 7, modal window types are generally frowned upon in 
programs. Many different applications can be open at once, and a modal 
window prevents the user from switching out of the current application. It's 

Windows 71 



Modal vs. Non-Modal Windows 

TABLE3. Window Types 

WINDOW DESCRIPTION 

bd Document- the standard Macintosh window containing a 
title bar, vertical and horizontal scroll bars, as well as a size 
box. Used by most applications for their documents. 

D Dialog - a non-moveable window that normally appears 
requesting additional information or displaying an alert 
message. 

D Plain- another form of a non-moveable dialog window. 
This one gets occasional use as a start-up window in 
programs. 

D Shadow -yet another form of the non-movable dialog 
window. This one is also used occasionally as a start-up 
window in programs. 

LJ No Grow Document- a special form of the document 
window, this version doesn't contain scroll bars or a size 
box. Occasionally used for non-modal dialog windows 
before the Moveable Dialog type appeared. 

Moveable Dialog - introduced with System 7, this form of ~Untitled~ 

ll JI 
dialog window enables the user to position the window 
anywhere on the screen rather than an arbitraiy position 
defined by the programmer. 

b:] 
ZIJom Document- a standard document window with a 
zoom box. If the document window can be resized, it should 
include a zoom box to enable the user to quickly zoom the 
window to full size or down to its minimum size without 
clicking and dragging the size box. 

CJ NoGrow Zoom Document- a variation of the normal no 
grow document window. This version has a zoom box to 
toggle the window between two defined sizes. 

D Round Document - this seldom used window type was 
originally prescribed for desk accessories, but never really 
caught on. 

72 Windows 



Window Classes 

strongly recommended that you never use modal windows created by WINDOW 

in your program. Instead. see the chapter "Alerts" for ways of using alert 
windows instead. 

Window Classes 
The final parameter for a WINDOW statement is the window class. This is a 
programmer specific value that has one important use. It allows a number of 
windows to belong to a class. This class identifier is important because it 
enables the programmer to write routines that deal with a specific window 
class instead of a specific window number. 

What this means is that it is possible to write routines to support a class of 
windows and have them work for all windows of that class. Once SimpleBase 
is up and running for one employee file. we can create additional data entry 
windows. and have the same subroutines work for all of them. 

Later we'll see how to use the window class to determine all of the actions 
required for a window. from building to refreshing to closing. 

Hiding & Showing Windows 
Once a window is built. it's possible to hide it or show it to the user. There are 
many reasons for wanting to hide a window from the user. It may be that you 
have an extremely complex window that takes a while to build each time. By · , 
hiding it instead of closing it, it can appear much faster the next time the user 
calls for it. All of the windows in SimpleBase are built invisibly. then pop onto 
the screen when complete. 

To show a window that was built invisibly to the user. use the WINDOW 

statement like this: 

WINDOW #wndID% 

To make the window visible and directs all text and graphic commands to it. 
Then, to hide a visible window, just use a negative sign before the wndID% 

value like this: 

WINDOW #-wndID% 

Window Sizing 
There are two statements that enable you to control the minimum and 
maximum size of a re-sizeable window. Users can manually resize the _doc 

and _doczoom window types, but they shouldn't be able to make them too 
small. nor too large. Your program can control these sizes using the 
MINWINDOW and MAXWINDOW statements. For example, to keep a window from 
becoming too small just do this: 

Windows 73 



Is Window There? 

MINWINDOW 200,100 

This sets the minimum size that the runtime will allow all program windows 
to be reduced to. This is a global setting and effects all resizeable windows in 
the program. On the flip side, you can set the maximum size using: 

MAXWINDOW 500,400 

Again, this is a global setting in the runtime. If different windows need 
different settings, just reset the minimum or maximum size each time the 
window is made to the output, or frontmost window. 

Is Window There? 
One way to determine if a window has already been built, is to use the WINDOW 

function. When given a -wndID%, it returns zero if the window has not already 
been built, and a value if it has (actually, the window pointer). Thus, to see if 
window #15 is already present, yet possibly hidden, do this: 

LONG IF WINDOW (-15) 
' window #15 is already built 
XELSE 
' window #15 is not built, so build it here 
END IF 

So, to determine if a window is already built, use the WINDOW function like' 
this: 

IsWindowBuilt = WINDOW (-wndID%) 

Window Output 
With so many windows capable of appearing on the screen, there must be 
some method of designating which window will receive the text and graphics 
you want to display. Fortunately, there are two ways of accomplishing this. 
One uses the WINDOW statement, the other uses the WINDOW OUTPUT statement. 

The WINDOW statement accepts a wndID% and makes that window the 
frontmost one on the screen. It redirects text and graphics commands to that 
window. For example, to direct output to window #15,just do this: 

WINDOW #15 

In contrast, WINDOW OUTPUT also accepts a wndID%, but it directs any 
subsequent text and graphics commands to the specified window without 
making it the frontmost window. This is handy for updating windows that are 
behind others on the screen. If window #15 is the frontmost window, but 
window #7 needs updating behind it, use: 

WINDOW OUTPUT #7 
' -- update window #7 here 

WINDOW OUTPUT #15 

74 Windows 



Closing Windows 

to direct output to window #7, update its contents, then redirects output back 
to window # 15. All this is done without changing the order of the windows on 
the screen. 

Closing Windows 
Use WINDOW CLOSE with the appropriate wndID% to dispose of the window and 
all its associated items (buttons, edit and picture fields). 

If that's all there is to closing a window, why make such a big deal about it? 
Because, it isn't quite that easy (sigh!). Re-read the second line above, 
especially the part about "all its associated items ... ". That's the trick. We must 
make sure we have gathered all the data from a window's buttons and fields 
before it's disposed of. If we don't, we have no way of recovering it. We'll see 
how to handle that later on in the chapter. 

Regular Exercise 
Now that we understand windows better, we can begin adding them to 
SimpleBase. We'll follow almost the same steps that we used to create our 
menus. Look at Table 4 on the next page to see the program windows and a 
brief description what each one does. 

Window Routines 
There are three main window handling routines that every program should 
have: building, capturing a window's data, and closing the window. Each 
performs a specific task related to window management including. Let's look 
at each one briefly before we dive into the code that makes them work. 

Window Build Routine 
The window building routine is straightforward. We need a short routine that 
will build any window and then display it. It should also know if a window has 
already been built and just display it, instead of rebuilding the entire window 
(a slow and painful process for the user). The pseudocode to accomplish these 
goals is shown in Program 22. 

PROGRAM 22. Build window pseudocode. 

Determine if window needs building 
If not built, determine which window to build 
build correct window 

when window is built, just show it 

Windows 75 



Window Build Routine 

TABLE4. SimpleBase window descriptions. 

PROGRAM WINDOW 

Sim leBase Doto Ent 

Record# I ar I 

Name: 11111i1111111tr_I _ __ _ _ ' 

State:c:::==::J D zio:I I 
Phana# 

:::: ® Pragramadng 
OMartaHng 
QOfflcaHalp 

Find 

D Ne&D Becord I 
I Sllowflnt J 

I « Preu« ) 

I »NBHI» I 
I ShOUJLUI I 

Find 

Claar 

Find:.__ _________ _. 

D Ignore Case ( Cancel ) H Find H 

SimpleBase 
NlliJzlplt>,..lbb-

Fiie menu 

New 

Sentient Fruit 
IMCIO'OllHCOHal.TWll•DOCU.BITATIOft•~ 

P.0.90>< 133&2 • l\ICSON • >Z. 8S73Z-33S2 

Sim labosa llelp 

Choose New when It ccmoa lime to creole o new emploVft 
detQt111se tna. A standanl dlolog wtll appeorrequoaUng a 
nemu for the rna~ jQlt enter a name and cltclC lha Sava 
bullon. Tho Dato Entry window W111 automottcanv cpon to 
allow you to begtn entering employtes tmmadlolely. 

Open_ 
Choo11 Dptn to op1n e praylouali:i creeled emplogea 
dehtblH lhol ho1 been ecwed &o dlat. Th• Dele Entry 
window wlll appaa:r to ollow you lo begin meneglng lhe 

Set Print Ren e 

®This record only 
O 1111 records 

0 Selected records: - to OJ 

76 Windows 

Cancel J H Print D 

Goto 

Goto Record: II 
(cancel) GJ 

DESCRIPTION 

Data Entry- the main database entry 
window. Here the user can maneuver 
around the current open database, add 
new records, clear current ones, and edit 
record data. Record data is automatically 
saved as the user moves through the file. 

Find- this window appears when the 
user selects Find from the Records menu 
or clicks the Find button in the data entry 
window. Here the text is entered for the 
search in the current active database. 

About - this window (really an alert) 
appears when the user selects the About 
SimpleBase item from the 9 menu. It 
provides information on the program. 

Help - appears when the user selects 
Help from the 9 menu. It contains a 
scrolling listing of help text. The user 
clicks on the buttons to move through the 
various help screens. 

Print- appears when the user tries to 
print something. It allows them to print a 
single record, any subset of records, as 
well as all records. 

Goto - appears when the user chooses 
Goto from the Records menu. Enables 
them to directly jump to a specific record 
in the database. 



Window Capture Routine 

Window Capture Routine 
The routine to capture window data is not as simple. WindowCapture is called 
when a window is about to be closed that contains data the user wouldn't like 
to lose, or just to read the data in the window. Since a window's edit fields 
and controls are destroyed when the window is closed, the data contained 
would be irretrievable. This routine ensures that the user loses no data. The 
pseudocode for the WindowCapture subroutine is shown in Program 22. 

PROGRAM 23. Capture window pseudocode. 

Determine the window to capture information from 
Does any data in the window require saving 
Save the data 

Window Close Routine 
The window closing routine is also pretty straightforward. It closes the 
specified window after calling the window capture routine and after disposing 
of anything in the window that needs it. While we have no structures in 
SimpleBase that illustrate this technique, the explanation is simple. 

Here, in Program 24, are the three skeleton window routines required by 
SimpleBase to capture, close, and build windows. Each accepts a wndID% 

parameter to specify which window they should operate on. 

PROGRAM 24. Skeleton window routines. 

LOCAL FN WindowCapture (wndID%) 
END FN 
LOCAL FN WindoWClose (wndID%) 
END FN 
LOCAL FN WindowBuild (wndID%) 
END FN 

Now that we have our window handling routines ready to go, let's start 
building some windows. 

Window Constants 
Let's continue by defining our program's window constants. We define them 
as shown in Program 25, creating one for each window as previously 
described in Table 4. 

Windows 77 



Building the Windows 

PROGRAM 25. Window constant definitions. 

I >>> WINDOWS 
_dbEntryWIND = 1 

_dbFindWIND = 2 
_about WIND = 3 
_helpWIND = 4 
_print WIND = 5 
_gotoWIND = 6 

Building the Windows 
Building our program windows falls directly on the subroutine WindowBuild. 

It's whole purpose in life is to direct the building of program windows. We 
already saw the pseudocode, but let's look at it formatted as a LOCAL FN in 
Program26. 

PROGRAM 26. Build window function in pseudocode 

LOCAL FN WindowBuild (wndID%) 
Determine if window needs building 
If not built, determine which window to build 
call subroutine to build window 
when window is built, just show it 

END FN 

Translating the rest of the pseudocode into equivalent BASIC statements is 
quick and easy. Since the pseudocode describes a choice between two 
actions, that choice indicates the use of a branch block. In this case, let's use 
a LONG IF structure. 

Earlier we mentioned that our WindowBuild routine should be smart enough 
to know if a window has already been built. We know that a version of the 
WINDOW function can do this using a negative wndID%, so we add that to the 
LONG IF test. If the window is already built, just redisplay it using the WINDOW 

statement, if not, we have to build it first. 

Next, in the SELECT portion of WindowBuild, we can add a CASE statement for 
each window defined earlier, and add the call to each window's build routine. 
The final WindowBuild routine can be seen in Program 27. 

78 Windows 



Window Building Routines 

PROGRAM~- Expanded WindowBuild routine 

LOCAL FN WindowBuild (wndID%) 
LONG IF WINDOW (-wndID%) = 0 

SELECT wndID% 
CASE _dbEntryWIND : FN BuildEntryWnd 
CASE _dbFindWIND : FN BuildFindWnd 
CASE _aboutWIND : FN BuildAboutWnd 
CASE _helpWIND : FN BuildHelpWnd 
CASE _printWIND : FN BuildPrintWnd 
CASE _gotoWIND : FN BuildGotoWnd 

END SELECT 
END IF 
WINDOW #wndID% 

END FN 

Window Building Routines 
In the spirit of top-down design, we shuffle the actual window building to 
other subroutines. In our case, six more routines do the low level work of 
creating the windows. Each routine performs essentially the same task: it 
builds the window along with the window's controls, edit fields, and picture 
fields. Let's look closely at one of these building routines. 

The main window is, of course, the Data Entry window. This is where users 
will be able to enter their employee data. With all that information, the Data 
Entry window will be the most complex of our windows. However, since each 
follows the same general pattern, no window is any harder to build than 
another. The pseudocode shown in Program 28 is the skeleton code for all of 
our window building subroutines. 

PROGRAM 28. Build window skeleton. 

LOCAL FN BuildWindowSkeleton 
create window as required 
assign the font, size, style, and mode 
build all window buttons 
build all window edit fields 
assign any preset conditions (to buttons, fields, etc) 

END FN 

Why do we add all the controls and fields in the build window subroutines? 
Because of a simple fact, the runtime updates them all for us. That means 
that once we've built a window, and added the appropriate controls and fields 
to it, we never have to worry about building them again. Unless we change a 

Windows 79 



Window Building Routines 

name, change an item's location, or close a button or field, we don't have to 
worry about them. 

We'll see how to add buttons and edit fields in later chapters but now let's 
look at the construction of the window. To build the Data Entry window, 
examine the routine shown in Program 29. 

PROGRAM 29. Build Data Entry window. 

LOCAL FN BuildDataEntryWnd 
tmp$ = "SimpleBase Data Entry" 
WINDOW #-_dbEntryWIND, tmp$, (0,0)-(500,300), _docNoGrow, _dbEntryWIND 
TEXT _sysFont, 12 
' add buttons 
' add edit/picture fields 
' assign preset values 

END FN 

We start by assigning a window title to a temporary string. This may seem 
silly to do at this point, but later when we move all of our string data to STR# 

resources in "Creating Program STR#", it will make more sense. 

Next, we use the WINDOW statement to build the window. Here we pass it the 
window ID (as one of our predefined constants), the title in our temporary 
string, its location on the screen (centered, of course), its window type and 
window class (identical to our defined constant). 

Once the window has been built invisibly by its build routine, a second 
WINDOW statement makes the window visible just before exiting the 
WindowBuild subroutine. 

The next line uses the TEXT statement to assign a default font and font size to 
the new window. FB builds a window with a default font and size, which may 
not be what you want. In this case I wanted Chicago 12 as my window font. 
This is the font and size FB will use when creating edit fields or for printing in 
the window. 

Using the same general design, it's now possible to write all of our window 
building routines. You can see how they came out by examining the code in 
Program30. 

80 Windows 



Window Testing 

PROGRAM 30. Window building routines. 

LOCAL FN BuildDataEntryWindow 
tmp$ = "SimpleBase Data Entry" 
WINDOW #-_dbEntryWIND, tmp$, (0,0)-(500,290), _docNoGrow, _dbEntryWIND 
TEXT _sysFont, 12 

END FN 

LOCAL FN BuildFindWindow 
tmp$ = "SimpleBase Find" 
WINDOW #-_dbFindWIND, tmp$, (0,0)-(340,80), _docNoGrow, _dbFindWIND 
TEXT _sysFont, 12 

END FN 

LOCAL FN BuildAboutWindow 
' will use alert - see Alerts chapter 

END FN 

LOCAL FN BuildHelpWindow 
tmp$ = "SimpleBase Help" 
WINDOW #-_helpWIND, tmp$, (0,0)-(400,260), _docZoom, _helpWIND 
TEXT _sysFont, 12 

END FN 

LOCAL FN BuildPrintWindow 
tmp$ = "Print Record" 
WINDOW #-_printWIND, tmp$, (0,0)-(300,125), _docNoGrow, _printWIND 
TEXT _sysFont, 12 

END FN 

LOCAL FN BuildGotoWindow 
tmp$ = "Goto Record" 
WINDOW #-_gotoWIND, tmp$, (0,0)-(200,80), _docNoGrow, _gotoWIND 
TEXT _sysFont, 12 

END FN 

Window Testing 
With our window building routines finished, you may notice that they aren't 
accessible to the rest of the program as it is now. We can, however. add some 
additional lines of code to display each window using a menu command. 

This is important. Remember the spirit of stepwise refinement states that at 
each stage of the design process we test the design to ensure it works. In this 
case, we need to check each window to see that it's the correct window type, 
has the correct size, and most of all, that the WindowBuild routine. and 
window build subroutines all work as designed. 

For example, the logical place to test build our data entry window is under the 
New item on the File menu. Opening the Print window should be done under 
the Print item of the File menu. For the Find and Goto windows. it's Find ... 

Windows 81 



Closing Windows 

PROGRAM 31. Window building calls. 

LOCAL FN ItemHelp 
FN WindowBuild (_helpWIND) 

END FN 

LOCAL FN ItemNew 
FN WindowBuild (_dbEntryWIND) 

END FN 

LOCAL FN ItemFindRecord 
FN WindowBuild (_dbFindWIND) 

END FN 

LOCAL FN ItemPrint 
FN WindowBuild (_printWIND) 

END FN 

LOCAL FN ItemGotoRecord 
FN WindowBuild (_gotoWIND) 

END FN 

and lioto ... under the Records menu. The Help window should be built from 
the s menu. To achieve this, add the lines of code shown in Program 31 to 
the specified subroutines. 

Run SimpleBase. You can now display any of our six program windows by 
selecting, Help, New, Print, Find .... or Goto ... from the appropriate menu. 
Unfortunately, you can't close any of them just yet, so let's look into that. 

Closing Windows 
As previously mentioned, closing a window is simple, however, it's important 
to preserve any information stored in the buttons and edit fields within the 
window before it's closed. Otherwise, that information will be lost forever. This 
routine can be seen in Program 32. 

PROGRAM 32. Close window test. 

LOCAL FN ItemClose 
FN WindowClose (WINDOW (_outputWnd)) 

END FN 

We make sure the data is saved by calling the WindowCapture routine before 
closing the window. This guarantees that our information will be saved 
whenever the window is closed. We also include a SELECT/END SELECT 

structure in there, in case there are any special features in the window that 

82 Windows 



Capturing Window Data 

PROGRAM 33. Simple window close routine. 

LOCAL FN WindowClose (wndID%) 
LONG IF FN WindowCapture (wndID%) 

SELECT wndID% 
CASE _dbEntryWIND 
CASE _dbFindWIND 
CASE _aboutWIND 
CASE _helpWIND 
CASE _printWIND 
CASE _gotoWIND 

END SELECT 
WINDOW CLOSE #wndID% 

END IF 
END FN 

must be disposed of prior to calling WINDOW CLOSE. Examine the listing in 
Program 33 to see a simple close window routine. 

We pass WindowClose the wndID% of the current frontmost window and let it 
take care of the rest. We will also add more calls to WindowClose as they 
become necessary. 

Capturing Window Data 
The WindowClose routine provides a handy spot to determine if a window 
that's about to be closed has any worthwhile data to save. If it does, we call 
the windowCapture routine shown in Program 34 to handle all the sundry 
details of saving our window's data. Here we set a c loseFlag% variable upon 
entry which in turn is passed back to the calling function. If, for any reason 
the close should need to be canceled, just zero out the closeFlag% and 
prevent the window from being closed. 

At this point, we don't really have anything to save but it's important to make 
these decisions now. We'll see how to implement saving later when we have 
some buttons and fields in the window to work with. 

That covers everything on windows needed to get them up and running on 
SimpleBase. Feel free to skip ahead to the "Buttons" chapter where we start 
filling in windows with usable controls. 

Windows 83 



Window Record 

PROGRAM 34. Simple window capture routine. 

LOCAL FN WindowCapture (wndID%) 
SELECT wndID% 

CASE _dbEntryWIND 
CASE _dbFindWIND 
CASE _aboutWIND 
CASE _helpWIND 
CASE _printWIND 
CASE _gotoWIND 

END SELECT 
END FN 

Peak Performance 
The following are useful window subroutines that show some of the 
interesting things you can do with a window once it's been built. 

Window Record 
A Macintosh window is stored in memory as a window record. It contains 
everything you'd ever want to know about a particular window. We won't 
detail the window record here since its structure can be found in the 
Reference manual under GET WINDOW and in Inside Macintosh: Macintosh 
Toolbox Essentials. 

The key to accessing all this window information depends on getting a pointer 
(a memory address) to the record. You can get this pointer using one of two 
methods: the GET WINDOW statement or the WINDOW (_wndPointer) function. 
Once you have a valid pointer to a window record you can examine, modify, or 
retrieve information contained within. 

Window Titles 
Sometimes a program needs to know which window is currently the 
frontmost by name instead of window number or class. The following Toolbox 
procedure GetWTi tle demonstrates how to retrieve a window name using the 
wndID%: 

CALL GETWTITLE (WINDOW (_wndPointer), wndTitle$) 
PRINT wndTitle$ 

And, since you may sometimes need to change a window's title, use the 
Toolbox procedure SetWTitle to replace the current title with a new one: 
wndTitle$ = "Database Listing• 
CALL SETWTITLE (WINDOW (_wndPointer), wndTitle$) 

84 Windows 



Resizing Windows 

Resizing Windows 
Often it may be necessary to resize a window, either to display more 
information to the user by making it larger, or to hide information by making it 
smaller. The example in Program 33 shows how to use the SizeWindow 
procedure to do both. 

PROGRAM 35. Resizing window example. 

LOCAL FN ResizeWindow (wndID%, newX%, newY%) 
oldWndID% = WINDOW (_outputWnd) 
WINDOW OUTPUT wndID% 
GET WINDOW wndID%, wndPtr& 
CALL SIZEWINDOW (wndPtr&, newX%, newY%, _zTrue) 
WINDOW OUTPUT oldWndID% 

END FN 

Windows 85 



Resizing Windows 

Cooldown 
In this chapter you learned all about windows, what they are, their vartous 
features, the different window types and their major uses in a program. Along 
the way we talked about centering windows on larger screens and building 
windows invisibly to give the illusion of greater speed when they first appear to 
the user. 

Additionally, we described the six windows used by SimpleBase, and walked · 
you through creating three window handling subroutines (build, close, and 
capture) that every program will use. Also, we described in both pseudocode 
and keywords how to quickly implement these routines in a program. 

With our windows built, it's now time to add some functionality to them. We 
start in the next chapter by adding buttons. 

86 Windows 



CHAPTER6 

Buttons 

Warm-up 
This chapter introduces you to controls, more commonly referred to in FB as 
buttons. In this chapter you will: 

+ Learn what buttons are, 

+ Identify the four button types, 

+ Learn how to create buttons, and 

+ Learn how to handle specific button actions. 

What are Buttons? 
Buttons, or controls, are selectable objects in a window that maintain a value 
or perform some type of action. The purpose of a button is normally indicated 
by a title, but can be represented by icons or pictures. 

Buttons are redrawn automatically by the FB runtime package. That means a 
program can create them once in a window and never worry about them 
again. 

Creating Buttons 
Buttons are identified by a btnID%. Each window in a program can contain 
up to 8192 buttons. Assuming you had enough memory to hold them all, that 
comes to a staggering 516,096 buttons for 63 program windows. Each 
window maintains its own internal list of buttons. That means that window 

Buttons 87 



Button States 

#1 can have a button #1, window #2 can have a button #1, and so on. Note, 
that FB doesn't allow multiple buttons with the same ID within one window. 

You can create any of the four button types using the BUTTON statement. 
BUTTON requires five pieces of information, a btnID% to uniquely identify the 
button in the window, a button state, a title, a location in the window, and a 
button type. For example, to create any button in a window you would do 
this: 

BUTTON #btnID%, btnState%, title$, (left, top)-(right, bottom), btnType% 

Of course, the btnID% is used extensively to identify the button, both on 
creation, and later when we need it to determine which button was selected in 

a window. 

Button States 
Eveiy button can have one of three states as shown in Table 5. Your program 
can control a button's appearance by resetting the btnstate% parameter in 

the BUTTON statement. 

Just as with menus, graying a button enables the program to guide the user's 
choices. It disables button choices that shouldn't be available and enables 
button choices that are. 

TABLE5. Button states. 

STATE DESCRIPTION 

_grayBtn Inactive button. User can't select. 
_activeBtn Active button. User can select. 
_rnarkedBtn Selected button. Active and selected by the user. 

Button Titles 
A button title can be any string up to 255 characters. For push buttons and 
shadow buttons, titles are normally restricted to just a few words and 
preferably just one. Most push buttons have names like Done, Cancel, and 
Saue. Not very exciting as titles go, but they get the job done. 

Checkboxes and radio buttons can, and should, have titles that describe the 
button's purpose completely. Titles like: "Enable the turbo-warp drive on 
start-up". describe exactly what the user is setting the button for. 

It's possible to wrap a long title so that the button displays its title on two or 
more lines. While not common, it's sometimes necessary. To do this, insert a 
carriage return into the title where the break should occur. Naturally, you 

88 Buttons 



Button Titles 

must adjust the button's height to accommodate this extra line. For example. 
to display the long title in the previous paragraph you can define it like this: 
title$ = "Enable the turbo-warp" + CHR$(13) + "drive on start-up" 
BUTTON #1, _activeBtn, title$, (10, 10) - (100, 40), _checkbox 

The use of multiple title lines should only be used on buttons as a last resort 
when a shorter title will not work. 

FIGURE 24. Forcing multiple lines in buttons. 

::o 

D Enable the turbo-warp 
driue on start-up 

Most buttons use the Chicago font to display their titles. In some cases, you 
may need to use an alternate font for a title display. To do so, you must 
append the _useWFont setting to the button type. This forces the runtime to 
use the current window font as its display font. For example, it's easy to mix 

and match fonts in a window like this: 
BUTTON #1, activeBtn, "Chicago", (10, 10)-(100, 25), _push 
BUTTON #2, activeBtn, "Window Font", (10, 40)-(100, 55), _push_useWFont 

However, it's not recommended. Don't confuse a user by displaying your 
mastery of font juggling in button titles. Simple, direct, and readable fonts 
like Chicago work just fine, without any embellishment. 

FIGURE 25. Buttons using Chicago and window fonts. 

( Chicago J 

( Wi ndo\r/ Font J 

Buttons 89 



Button Positioning & Sizes 

Button Positioning & Sizes 
The coordinates of a button are always defined in relation to the top-left 
corner of the window's content area, not the title bar. Button coordinates are 
used by the button to determine one thing: the area where button clicks will 
be detected. 

Buttons should be wide enough to display the entire title. Radio buttons and 
checkboxes can be very wide if the title is descriptive. Push and shadow 
buttons should leave enough room at each end so that the titles don't appear 
cramped inside them. 

Buttons should also have enough height to clearly present the title. For 
example, the default height for a push button is 20 pixels, for checkboxes and 
radio buttons it's normally 15 pixels. 

• Note.for SimpleBase we use FB's default COORDINATE WINDOW setting. This causes 
our coordinates to match the screen resolution of 72 dpl if you use cooRDINATE x, 
y to define any other coordinate system, you are on your own ca1culating where 
items will appear in a window. 

Closing Buttons 
There are two ways to close a button. The first works upon an individual 
button using the BUTTON CLOSE statement. Just pass it a btnID% value and 
the button closes. The second method is to simply close the window 
containing the button. If you have a lot of buttons to close, this is probably 
the best method to ensure all are closed properly. 

Button Types 
The final parameter identifies the button type to create using one of FB's pre
defined constants. There are several types of buttons including: push button, 
checkbox, radio, and a variation of the push button, the shadow button. Each 
performs a specific task when clicked by the user. 

90 Buttons 



Creating Program Buttons 

TABLE6. Button types 

BUTTON 

( Push J 

DESCRIPTION 

Push- when clicked, a program should perform the 
action defined by the button title immediately. Push 
buttons should be large enough to hold the title. 

181 On 
D Off 
~ m~nbh~•1 

Checkbox- clicking a checkbox button allows the user to 
enable or disable the option specified by the button text. 

e Choice 1 
0 Choice 2 
() Choi< •~ :j 

Radio- provide between two and seven mutually 
exclusive choices. In each group of radio buttons, only 
one can ever be on at a time. 

(( Shadow D 
Shadow- usually the default button in a window. Users 
can click with the mouse or press the Return or Enter key 
to activate a shadow button. 

Regular Exercise 
Now that we understand more about buttons, let's begin adding them to our 
program windows. We start by creating a few button constants that will be 
used by the various windows in SimpleBase. 

Again, as was done with windows, I end each button constant with the suffix 
BTN (or SCROLL for scroll buttons). That way I never have to think about what 
the constant refers to. The complete list of constants is shown in Program 36. 
The constants are defined, now it's time to create the buttons. 

Creating Program Buttons 
Before we get started, let's state one truism about them: 

Buttons, edit, and picture fields 
are automatically redrawn by 

the runtime. 
That means that once we've defined a button (or edit or picture field) in a 
window, we never have to go back and redraw it for any reason. The runtime 

Buttons 91 



Data Entry Window Buttons 

PROGRAM 36. Button constants. 

I >>> BUTTONS 
I >>> DATA ENTRY WINDOW 
_doneBTN = 1 
_newRecBTN = 2 
_firstRecBTN 
_prevRecBTN 
_nextRecBTN 
_lastRecBTN 
_deleteRecBTN 
_programBTN 
_marketBTN 
_officeBTN 

= 
= 

= 

= 
= 

3 

4 

5 

6 

7 

8 

9 

10 

I >>> FIND WINDOW 
_findBTN = 1 
_cancelBTN = 2 
_ignoreCaseBTN = 3 

I >>> ABOUT WINDOW 
_okBTN = 1 

I >>> HELP WINDOW 
_helpSCROLL = 1 

I >>> PRINT WINDOW 
_printBTN = 1 
_thisRecBTN = 3 
_allRecBTN = 4 
_selectRecBTN = 5 

I >>> GOTO WINDOW 
_gotoBTN = 1 

takes care of that for us. We may change its title, state, or location in the 
window, but we never have to worry about refreshing it. 

What else have we already built that doesn't need to be refreshed? If you 
answered "window", you're absolutely correct. Therefore we can bundle our 
button creation routines within our window building routines. Let's start with 
the most challenging window, the data entry window. 

Data Entry Window Buttons 
Most of the program's activity will take place in the main Data Entry window, 
so it's vital that we offer as many options as possible without overpowering 
either the window, or the user with too many buttons. The Data Entry 
window with its numerous buttons is shown in Figure 26. 

92 Buttons 



Data Ent:iy Window Buttons 

FIGURE26. Buttons in Data Entry window. 

SlmpleBase Data Ent 

O Programming 
OMartetlng 
O Office Help 

( New Record I 
Show First 

« Preu « 

» NaHt » 

Show last 

Find ... 

Clear 

PROGRAM 37. Adding buttons to BuildEntryWindow. 

LOCAL FN BuildEntryWindow 
tmp$ = "SimpleBase Data Entry• 
WINDOW #-_dbEntryWIND, tmp$, (0,0)-(500,290), _docNoGrow, _dbEntryWIND 
TEXT _sysFont, 12, ,0 

I ••• BUTTONS 
tmp$ = "New Record" 
BUTTON _newRecBTN,_activeBtn,tmp$, (380,20)-(480,40), _shadow 
tmp$ = "Show First" 
BUTTON _firstRecBTN,_activeBtn,tmp$, (380,50)-(480,70),__push 
tmp$ = "<< Prev <<" 
BUTTON _prevRecBTN,_activeBtn,tmp$, (380,80)-(480,100),__push 
tmp$ = ">> Next >>" 
BUTTON _nextRecBTN,_activeBtn,tmp$, (380,110)-(480,130),_push 
tmp$ = "Show Last" 
BUTTON _lastRecBTN,_activeBtn,tmp$, (380,140)-(480,160),_push 
tmp$ = "Find" 
BUTTON _findRecBTN,_activeBtn,tmp$, (380,170)-(480,190),_push 
tmp$ = "Delete" 
BUTTON _deleteRecBTN,_activeBtn,tmp$, (380,210)-(480,230), __push 
tmp$ = "Programming• 
BUTTON _programBTN,_activeBtn,tmp$, (90,222)-(200,237),_radio 
tmp$ = "Marketing" 
BUTTON _marketBTN,_activeBtn,tmp$, (90,238)-(200,253),_radio 
tmp$ = "Office Help" 
BUTTON _officeBTN,_activeBtn,tmp$, (90,254)-(200,269),_radio 

EDIT/PICTURE FIELDS 
END FN 

Buttons 93 



Find Window Buttons 

Since we've already defined our button constants, let's add them to the 
BuildEntryWindow subroutine with the BUTTON statement. Each statement 
sets the button title in a string variable, sets its initial state, defines its 
position in the window, and set the button type. You can view the changes 
made to BuildEntryWindow in Program 37. 

The first seven buttons are push buttons that will execute commands useful 
to the user while in the data entry window. They allow the user to add new 
records, find records, clear records, as well as maneuver forward and 
backward in the database. Once the buttons are added, we can view their 
positions by running the program and opening the Data Entry window using 
New from the File menu. Ideally, you should see something that looks a lot 
like Figure 26. 

RGURE27. Find window button positions. 

~o Find Record 

D Ignore case cancel ([ Find JI 

Find Window Buttons 
The Find window doesn't have quite the same complexity as does the Data 
Entry window. Its three buttons make for a much more compact build 
routine. The layout of the Find window with its three buttons can be seen in 
Figure 27, while the code to add them is shown in Program 38. 

PROGR4M 38. Find window buttons. 

LOCAL FN BuildFindWindow 
trnp$ = "Find Record" 

WINDOW #-_dbFindWIND, trnp$, (0,0)-(340,80), _docNoGrow, _dbFindWIND 
TEXT _sysFont, 12 

' • • • BUTTONS 
trnp$ = "Find" 

BUTTON _findBTN,_activeBtn,trnp$, (250,50)-(320,70),_shadow 
trnp$ = "Cancel" 

BUTTON _cancelBTN,_activeBtn,trnp$, (160,50)-(230,70),_push 
trnp$ = "Ignore Case" 

BUTTON _ignoreCaseBTN,_activeBtn,trnp$, (20,50)-(150,70), _checkBox 
END FN 

94 Buttons 



Print Window Buttons 

FIGURE28. Print window button positions. 

Set Print Range 

®This record only 
O All records 
O Selected records: 

Cancel n ~hnt D 

Print Window Buttons 
The next buttons to create belong to the Print window. Again, we have a 
default Print button, a Cancel button, and three grouped radio buttons 
defining which records will be printed. We'll see how to handle these radio 
buttons as a group quickly later in this chapter. The Print window layout is 
shown in Figure 28 while the code to create it is shown in Program 40. 

PROGRAM 39. Print window buttons. 

LOCAL FN BuildPrintWindow 
WINDOW #-_printWIND, 1111

, (0,0)-(300,140),_docNoGrow, _printWIND 
TEXT _sysFont, 12, , 0 

I ••• BUTTONS 

trnp$ = "Print" 
BUTTON _printBTN,_activeBtn,trnp$, (200,90)-(280,110), _shadow 
trnp$ = "Cancel" 
BUTTON _cancelBTN,_activeBtn,trnp$, (100,90)-(180,110), _push 

trnp$ = "This record only" 
BUTTON _thisRecBTN,_activeBtn,trnp$, (20,10)-(200,25), _radio 
trnp$ = "All records" 
BUTTON _AllRecBTN,_activeBtn,trnp$, (20,30)-(200,45), _radio 
trnp$ = "Selected records:" 
BUTTON _selectRecBTN,_activeBtn,trnp$, (20,50)-(160,65), _radio 

END FN 

Goto Window Buttons 
The Goto window is simplicity itself. There are only two buttons available here, 
a default Goto and a Cane el button. The window layout is shown in Figure 29 
while the code to create this window is shown in Program 40. 

Buttons 95 



Help Window Buttons · 

FIGURE29. Goto window button positions. 

Goto Record 

( Cancel ) (( Goto )J 

PROGRAM 40. Goto window buttons. 

LOCAL FN BuildGotoWindow 

WINDOW #-_gotoWIND, "", (0,0)-(200,80),_docNoGrow, _aboutWIND 

TEXT _sysFont, 12, , 0 

' • • • BUTTONS 

tmp$ = "Goto" 

BUTTON _gotoBTN,_activeBtn,tmp$, (120,45)-(180,65)), _shadow 

tmp$ = "Cancel" 

BUTTON _cancelBTN,_activeBtn,tmp$, (20,45)-(80,65)), _push 

END FN 

Help Window Buttons 
The final window to receive buttons is the Help window. Here we have two 
buttons, Preuious and NeKt, that allow the user to cycle through the various 
help messages. The layout for this window's buttons is shown in Figure 30 
while the code to create this window is shown in Program 40. 

FIGURE 30. Help window buttons. 

SimpleBase Help 

Preulous Ne Ht 

96 Buttons 



Handling Button Actions 

PROGRAM 41. Help window buttons. 

LOCAL FN BuildHelpWindow 
tmp$ = "Simplebase Help" 
WINDOW #-_helpWIND, tmp$, (0,0)-(400,260), _docZoom, _helpWIND 
TEXT _sysFont, 12 

I ••• BUTTONS 

tmp$ = "Previous" 
BUTTON #_prevHelpBTN, 1, tmp$, (20,5)-(100,25), _push 
tmp$ = "Next" 
BUTTON #_nextHelpBTN, 1, tmp$, (120,5)-(200,25), _push 

END FN 

Handling Button Actions 
Once again, we are back to dealing with events. As stated before, the program 
should never anticipate the arrival of an event, instead it should wait until it 
receives an event before responding. This is especially true with buttons. 

The key to handling buttons is to get the event in the Main Loop, and if it's a 
button event then pass it onto a dialog handling subroutine. It in turn 
determines the type of event and passes it to the appropriate window's dialog 
handling subroutine. Just as we did with building our windows in the last 
chapter, we now create a dialog handling subroutine for each window in the 
program to deal with its own dialog events. We'll see exactly how to do this in 
the next chapter "Dialog Events". 

Before we do that. let's briefly look at some standard methods of dealing with 
different button events no matter which window they reside in. 

The BUTTON function returns the value of the specified button. We can use 
this in many of the following generic subroutines to determine program logic 
based on the current state of the button. For example. to return the state of a 
button: 
btnStatet = BUTTON (btnIDt) 

Push Buttons 
Handling a button event for a push button is simple. The program determines 
which button was pressed and immediately responds accordingly. In 
SimpleBase, push buttons will open the Find window, control movement 
among our records, close windows, and set program and record options. 

Push buttons only use two of the three states: _acti veBtn, and _grayBtn. 
They only briefly use the _markedBtn setting when highlighted by a mouse 
click. 

Buttons 97 



Checkboxes 

Checkboxes 
Handling checkboxes is a little more complicated than push buttons, but isn't 
really hard. Checkboxes have two active states Lac ti veBtn and_markedBtn), 
alternating between them at user selection. The routine to handle this for any 
program's checkbox is shown in Program 42. 

We use the BUTTON function to determine the state of the specified button. If 
the button is in the marked state, we unmark it, otherwise, we mark it. 
Additionally, the routine returns the current button state so that the user's 
choices can be stored in a preferences file. 

PROGRAM 42. Handling checkboxes. 

LOCAL FN CheckBoxHandler (btnID%) 
LONG IF BUTTON (btnID%) = _markedBtn 

BUTTON btnID, _activeBtn 
XELSE 

BUTTON btnID, _markedBtn 
END IF 
btnState% = BUTTON (btnID%) 

END FN = btnState 

This is one for your own library of useful routines. Build it once and never 
worry about it again. 

Radio Buttons 
Handling radio buttons is a common interface hurdle faced by Macintosh 
programmers. How do you ensure that only one radio button of any group is 
active? Briefly, since they are clustered together into groups, a subroutine can 
cycle through all of the buttons in the group to turn on the correct one while 
making sure the rest are off. The only requirement for this routine in 
Program 43 is that you define each grouping of radio buttons in sequence. 

PROGRAM 43. Handling radio buttons. 

LOCAL FN RadioButtonHandler (firstBtn%, lastBtn%, btnID%) 
FOR count% = firstBtn% TO lastBtn% 

LONG IF count% = btnID% 
BUTTON count%, _markedBtn 

XELSE 
BUTTON count%, _activeBtn 

END IF 
NEXT count% 

END FN = btnID% 

98 Buttons 



Shadow Buttons 

PROGRAM 44. HiliteSelectedButton routine. 

LOCAL FN HiliteSelectedButton (btnID%) 
BUTTON btnID%, _markedBtn 
DELAY _secTick 
BUTTON btnID%, _enableBtn 

END FN 

The routine uses a FOR/NEXT loop that begins with the first radio button 
(firstBtn%) in the group and cycles through to the last (lastBtn%). It sets 
each radio button to _activeBtn as it goes, ensuring that only one radio 
button per group is ever marked at the same ttme. When the button specified 
bybtnID% is found, the LONG IF is executed and the button state is changed to 
_rnarkedBtn. 

This is another routine to add to your own librruy of useful subroutines. 

Shadow Buttons 
Shadow buttons are push buttons that have a thick rectangle around them 
that identifies them as the default button in the window. Other than the thick 
outline, shadow buttons are identical to regular push buttons. 

While a shadow button is nothing more than a fancy push button, a program 
should treat it a little differently than a regular push button. Specifically, 
when the user hits the Return or Enter key, the default button in the window 
is expected to respond just as if the mouse had clicked on it. To get that kind 
of behavior, use the routine shown in Program 44. 

When passed a btnID%, the HiliteSelectedButton subroutine sets the 
specified button to marked. In this case, the push button inverts, just as if it 
were clicked with the mouse. A slight pause then allows the user to see the 
inverted button, then it's reset to the normal active state. 

Enabling & Disabling Buttons 
As previously mentioned, it's possible to disable, or make unselectable, any 
button that shouldn't be available to the user. The function shown in 
Program 45 looks at the current state of the button and switches it from 
inactive to enabled. 

While this routine is simple, it's often useful and should be stored in your 
subroutine librruy. 

Buttons 99 



Button Handles 

PROGRAM 45. Enable button function. 

LOCAL FN EnableButton (btnID%) 
LONG IF BUTTON (btnID%) = _grayBtn 

BUTTON btnID%, _activeBtn 
XELSE 

BUTTON btnID%, _grayBtn 
END IF 

END FN 

Peak Performance 
The use of FB's four button types will satisfy the majority of programmer 
requirements. However. there may come a time when you need to do 
something slightly different with a button. For that. you need access to the 
control (or button) record. 

Evexy button you build in a window has an internal record that contains all 
the information pertaining to that button. I won't detail the control record 
here since it is described completely in the FB Reference manual under 
BUTI'ON& and in Inside Macintosh: Macintosh Toolbox Essentials. 

Button Handles 
The location of a control record is stored in memoxy as a handle. A handle is 
an address that points to another address, which itself points to the actual 
control data. With a handle to a control record, it's possible to manipulate the 
control in ways not directly available in FB statements. 

• For more information on handles and pointers see the chapter "Resources". 

You can get a handle to a control using the BUTTON& function. When given a 
btnID%, BUTTON& returns a handle to that button's control record. For 
example, to get the handle to the Find button in the Find window of 
StmpleBase, the window must first be opened. Then do this: 
findBtnH& = BUTTON& (_findBTN) 

That's all there is to it. 

Getting & Setting Button Titles 
Another thing you can do with a control handle is retrieve or set the title of a 
control. For example, to get a button's title use the Toolbox GetCTitle 
procedure like this: 

100 Buttons 



Hiding Buttons 

CALL GETCTITLE (BUTTON& (btnID%), ct1Title$) 
PRINT ct1Title$ 

To replace a button title use the Toolbox procedure SetCTitle: 

ct1Title$ = "Reset• 
CALL SETCTITLE (BUTTON& (btnID%), ct1Title$) 

This is a much better method than rebuilding the entire button each time its 
name changes. 

Hiding Buttons 
Occasionally, it may be necessary to hide a button in a window. A routine that 
provides this capability is shown in Program 46. It makes use of two Toolbox 
procedures, HideControl and ShowControl, and a flag variable to specify the 
action it should perform. 

PROGRAM 46. Hide and show button function. 

LOCAL FN HideShowBtn (btnID%, hideFlag%) 
cntrlH& = BUTTON&(btnID%) 
LONG IF hideFlag% 

CALL HIDECONTROL (cntrlH&) 
XELSE 

CALL SHOWCONTROL (cntrlH&) 
END IF 

END FN 

Buttons 101 



Hiding Buttons 

Cooldown 
In this chapter we've introduced you to buttons. Along the way you learned 
the four different button types and their appropriate uses in programs. We 
created buttons in our project and learned some useful subroutines for 
handling specific button actions for checkboxes, radio buttons, and shadow 
buttons. 

In the next chapter we'll learn how to handle these buttons as well as window 
events so that StmpleBase can begin acting like a real program. 

102 Buttons 



CHAPTER? 

Dialog Events 

Warm-up 
The efficient handling of dialog events is critical to the smooth and seamless 
operation of an application. This chapter continues your education in 
handling events, especially dialog events. In this chapter you will: 

+ Learn what dialog events are, 

+ Identify the window an event belongs to, and 

+ Write routines to handle window, button, and cursor events. 

What are Dialog Events? 
Dialog events are events generated by the operating system that are 
processed by the FB runtime. Unlike mouse and menu events, dialog events 
are generated by many Macintosh interface features including: 

• Windows - events include activation, refresh, close, zoom in, zoom out, 
resize, and repositioned. 

• Buttons - button clicks. 

• Cursors - window, button and field determinations. 

• F.dit and picture.fields - field clicks, clear, Return, Tab, and arrow key 
detection. 

• Keypresses - key activation. 

• Operating system events - includes suspend and resume application, 
clipboard changed, and mouse moved events. 

Dialog Events 103 



What are Dialog Events? 

• Preview events - special events sent by the runtime to your program 
before the dialog handler routines receives the actual event. Events 
include menu and field clicks, as well as growing, moving, zooming, and 
sizing windows, 

• Programmer-defined events - special events sent by the program to 
itself. 

We'll cover three of these dialog events in this chapter (buttons, windows, and 
cursors). The others will be introduced as they are required by SimpleBase. 

As previously stated, events are messages from the operating system to the 
program. When the program receives an event, it identifies the event type and 
passes it on to an event handler. An event handler is a subroutine designed 
to handle a specific event type. SimpleBase has several event handler 
routines. Some are designed to deal with a specific event type (menu, dialog, 
cursor, etc.), yet others deal with a diverse cross-section of events (buttons, 
windows, cursors, etc.). With that in mind, let's examine the pseudocode in 
Program 47 that deals with dialog events. 

PROGRAM 47. Main Loop event handling pseudocode. 

HANDLEEVENTS receives and identifies event 
HANDLEEVENTS sends event to correct Event Handler 
Event Handler extracts information about event 
Event Handler routes event to appropriate subroutine 
Repeat until program ends 

As you can see, the whole purpose of HANDLEEVENTS is to route an identified 
event to the correct event handler subroutine. It is the responsibility of the 
event handler to extract the information it requires to deal with the event. For 
purposes of this chapter, the event handler we'll talk about concerns dialog 
events. 

Before we continue, we must point out that once an event is detected by 
HANDLEEVENTS and routed to an event handler subroutine, it must always be 
extracted from the event queue. Failure to extract an event can result in slow, 
unresponsive programs. Events which are not extracted create roadblocks in 
the event queue for new events. As new events arrive, they will eventually fill 
the event queue and push older events out of the queue, effectively losing 
them. 

104 Dialng Events 



Specifying Event Handlers 

Regular Exercise 
Okay, now that we understand dialog events and their usefulness in our 
programs, let's see how we deal with them in SimpleBase. 

Specifying Event Handlers 
In the Main Loop section of SimpleBase we specify the event handler where all 
dialog events should be sent. This notification tells HANDLEEVENTS where to 
route control when it detects dialog events in the event queue. We do this with 
an ON <event> FN statement like this: 

ON DIALOG FN HandleDialogEvent 

We add this line (as well as all other ON <event> FNs) just prior to entering 
the Main Loop. Our Main Loop begins to look something like this: 
ON DIALOG FN HandleDialogEvent 
ON MENU FN HandleMenuEvent 
DO 

HANDLEEVENTS 
UNTIL gQuit 
END 

Once the event handler for dialog events is specified, we add the dialog event 
handler subroutine as shown in Program 48. 

PROGRAM 48. DIALOG event handling routine. 

LOCAL FN HandleDialogEvents 
dlgEvnt% = DIALOG (0) 
dlgID% = DIALOG (dlgEvnt%) 

END FN 

Here we use the DIALOG function to return two values of importance. The 
first, dlgEvnt%, indicates the kind of dialog event retrieved from the event 
queue by HANDLEEVENTS. The second, dlgID%, is also returned by the DIALOG 

function, but its value is dependent upon the event type itself. For example, 
the _wndRefresh event returns the wndID% of the window that needs 
refreshing in dlgID%, and the _btnClick event returns a button ID in dlgID%. 

Each event carries additional information required by the program in its own 
dlgID%. We'll see how to handle several of these later in this chapter and 
others. 

Dialog Events 105 



Window Handling 

Window Handling 
Since most dialog events involve windows or objects contained in windows 
(things like buttons and edit fields), it behooves us to respond to these events 
on a per window basis. This means that when we receive a DIALOG event, we 
determine which window the event was meant for, before deciding what to do 
with it. 

While there are some common events that work with all windows (refresh 
being one), the events for buttons and edit fields are always specific to a 
particular window. In other words, an event meant for the Data Enny window 
should not interfere with an event for the find window. 

By separating events by the window they apply to, we allow the program to 
deal with identical events differently. For example, a click in button #1 of the 
Data Entry window (New Record) will create a new record in the database. A 
click in button# 1 of the find window (Find) will begin a search for matching 
text in the data file. 

To discriminate among windows, modify the HandleDialogEvents function 
as shown in Program 49. As before, we pass off the handling of each window's 
dialog events to another subroutine, one that deals with that window's 
specific event requirements. We make use of the SELECT structure to call the 
program window the event occurred in. Note how we again make use of 
window constants to further improve readability. 

See how we also use the class assigned to each window to identify which 
window event handler to call instead of the window's wndID%. For example: 
imagine that we had four identical windows open for data entiy, each would 
have a different wndID%, but, each could have the same class type. By 

PROGRAM 49. DIALOG events for windows. 

LOCAL FN HandleDialogEvents 
dlgEvnt% = DIALOG (0) 
dlgID% = DIALOG (dlgEvnt%) 

SELECT WINDOW (_outputWClass) 
CASE _dbEntryWIND : FN DialogEntryWindow (dlgEvnt%, dlgID%) 
CASE _dbFindWIND : FN DialogFindWindow (dlgEvnt%, dlgID%) 
CASE _aboutWIND : FN DialogAboutWindow (dlgEvnt%, dlgID%) 
CASE _helpWIND : FN DialogHelpWindow (dlgEvnt%, dlgID%) 
CASE _printWIND : FN DialogPrintWindow (dlgEvnt%, dlgID%) 
CASE _gotoWIND : FN DialogGotoWindow (dlgEvnt%, dlgID%) 

END SELECT 
END FN 

106 DiakJg Events 



Window Handling 

FIGURE 31. Window classes vs. window IDs. 

Here are four 
windows with 
different ID's, 
however, they all 
have identical 
classes. 

1--------11 wndID% = 1 

By trapping the 
wndClass instead of 
the wndID%, the 
same event handler 
can work for all four 
windows. 

wndClass% = _dbEntryWIND 

..... -------1 wndID% = 2 
wndClass% = _dbEntryWIND 

wndID% = 3 
wndClass% = _dbEntryWIND 

wndID% = 4 
wndClass% = _dbEntryWIND 

trapping the class, the same dialog subroutines can handle all dialog events 
in all four windows. See the diagram in Figure 31 for an example of using 
class types. 

Each window's dialog handling routine requires both event values, so we pass 
along the dlgEvnt% and dlgID%. This enables them to respond accordingly 
no matter which event is passed to them. 

Of course, the next step is to define the individual subroutines that deal with 
the window's events. Each accepts the two event parameters, and each uses 
another SELECT structure to deal with the DIALOG events passed. Program 50 
shows the layout for the Data Entry window's dialog handling. Duplicate this 
example for each window in Simplebase. 

Then we need to add some real capabilities to each dialog handling routine. 
Since our windows were created first, we'll start with window events. Our 
most important windows are defined, let's add some dialog event handling 
capabilities to deal with them. 

PROGRAM 50. DIALOG window routine. 

LOCAL FN DialogEntryWindow (dlgEvnt%, dlgID%) 
SELECT dlgEvnt% 

' ••• WINDOW HANDLING EVENTS 
' ••• BUTTON HANDLING EVENTS 
' ••• CURSOR HANDLING EVENTS 
CASE ELSE 

END SELECT 
END FN 

Dialog Events 107 



Handling Window Events 

Handling Window Events 
The first category of dialog events deal with the windows themselves. There 
are numerous window related events, some of which help you determine if a 
window's close or zoom box were clicked, whether it needs to refresh itself, 
and others. 

Within each window's event handler, we add CASE selections to deal with 
many of these events. Let's look at some of these subroutines so we can see 
exactly what is happening in each. 

WmdowClose 
When a program receives a _wndClose event, it first calls FN WindowClose 
which in turn calls FN WindoWCapture to save any information entered by the 
user (text or button values), then closes the window for us. The same 
sequence is used for all of our windows whether they have data to save or not. 

Active Window 
The next event is _wndClick. When a _wndClick event is detected the 
program uses the WINDOW statement to make the chosen windowfrontmoston 
the screen. As the frontmost window, it now becomes the one ready to accept 
all text or graphic commands. 

Subsequently, whenever a window is brought to the front, a series of 
activation and refresh events are generated. These additional events are very 
useful as we will see in the next couple of sections. 

Window Activation 
The _wndActi vate event is generated whenever a window is brought to the 
front or sent behind another window. This event makes our program more 
interactive. We can use this event to update information displayed in the 
window, save a window's contents for later, or update program menus. 

In SimpleBase, we'll use the activation of a window to update our menus. 
Whenever a window receives a _wndActi vate event, it calls FN UpdateMenus 
to keep our menus in sync. Since we're only interested in window activation 
events, FN UpdateMenus only checks for the absolute value of the wndID% and 
updates the menus according to which window is frontmost on the screen. 

Wmdow Refreshing 
With a _wndRefresh event, the system tells the program that a portion of a 
window needs updating. It could be that the window has just been created 
and needs to be drawn for the first time, or that it was partially obscured by 

108 Dialog Events 



Window Refreshing 

PROGRAM s1. Window activation updates menus. 

LOCAL FN MenuUpdate (wndID%} 
SELECT ABS(wndID%) 

CASE _dbEntryWIND 
MENU _mFile, 0, _enable 
MENU _mRecord, 0, _enable 

CASE _dbFindWIND, _printWIND, _gotoWIND 
MENU _mFile, 0, _disable 
MENU _mRecord, 0, _disable 

CASE _aboutWIND, _helpWIND 
MENU _mFile, 0, _disable 
MENU _mEdit, 0, _disable 
MENU _mRecord, 0, _disable 

CASE ELSE 
MENU _mFile, 0, _enable 
MENU _mRecord, 0, _enable 

END SELECT 
END FN 

another window, or even hidden entirely by another program (System 7 or 
MultlFinder). This is our cue to redraw all of a window's changing elements. 
Changing elements are those parts of a window not automatically updated by 
the runtime itself. What's included in this? All buttons, edit and picture 
fields, and scroll buttons are already taken care of by the runtime. Your 
responsibility is to refresh any text or graphics placed there by the program. 
These are things like data, borders, icons, lists, etc. 

For example, in the Data Entry window, I wanted a nice little border around 
both the data entries and the buttons Therefore, I added a bit of code in the 
_wndRefresh section to draw some borders. 

FIGURE 32. The Data Entry window after a refresh. 

' .. - - - SlmpleBase Data Ent 

Dept: O Programming 
OMarketlng 
QOtncaHalp 

DiDlDg Events 

( New Record I 
( Shawflnt I 
( « Preu « ) 

( »NeKt » ) 

( Shaw Lest ) 

Find ... 

Clear 

109 



Handllng Button Events 

See Figure 32 for a look at the Data Entry window's new borders. The code to 
create the borders in FN DialogEntryWindowis shown in Program 52 as well 
as the rest of the window event code. Just to see if window refreshing works. 
add this section of code to SimpleBase and try it out. Start by opening the 
Data Entry window. Briefly open the Find window and then close it. Portions 
of the borders may disappear, but as soon as the _wndRefresh event is 
received, FN DialogEntryWindow redraws them good as new. 

PROGRAM s2. Data window refreshing. 

LOCAL 
DIM rect;8 
LOCAL FN DialogEntryWindow (dlgEvnt%, dlgID%) 

SELECT dlgEvnt% 
I • • • WINDOW EVENTS 
CASE _wndRef resh 

PEN ,,,,3 
CALL SETRECT (rect, 10, 10, 360, 280) 
DEF TITLERECT ("", 0, rect) 
CALL SETRECT (rect, 370, 10, 490, 240) 
DEF TITLERECT ("", 0, rect) 
PEN ,,,,0 

CASE ELSE 
END SELECT 

END FN 

Handling Button Events 
Dealing with button events is pretty straightforward. The runtime interprets 
the system event and gives you the event type _btnClick, and the button ID. 
A window's dialog handler that contains any buttons must trap for the 
_btnClick event. 

Button Handling 
Program 53 shows how the button handling is done in the Data Entry and 
Find windows (the other sections have been removed to save space). Again, we 
make use of the trusty SELECT structure to deal with the myriad of events a 
window must handle. Since we've already created subroutines to deal with 
the actions in the button titles, it's a simple matter to connect the buttons to 
the subroutines. 

Back in the "Menus" chapter we introduced two methods of accessing a 
program subroutine. The user chooses a menu item with the mouse or uses a 
command key equivalent from the keyboard. Now, with the introduction of 

110 Dialog Events 



Data Entry Window Events 

PROGRAM 53. Window button handlers. 

LOCAL FN DialogEntryWindow (dlgEvnt%, dlgID%) 
SELECT dlgEvnt% 

' ••• BUTTON HANDLING SECTION 
CASE _btnClick 

SELECT dlgID% 

CASE _newRecBTN FN ItemNew 

CASE _firstRecBTN FN ItemFirstRecord 

CASE _prevRecBTN FN ItemPrevRecord 
CASE _nextRecBTN FN ItemNextRecord 
CASE _lastRecBTN FN ItemLastRecord 

CASE _clearRecBTN FN ItemClearRecord 
CASE ELSE 

FN RadioButtonHandler (_programBTN, _officeBTN, dlgID%) 

END SELECT 
CASE ELSE 

END SELECT 

END FN 

dialog event handling in a window, a third method presents itself: the user 
can cllck on a button to call the same subroutine. 

Data Entry Window Events 
As you can see, most of the routines that deal with the Data Entry window's 
push buttons match already defined menu routines. This re-use of code 
makes for a compact and efficient program design. Also, writing one piece of 
code that is called from many points in the program makes the interface more 
flexible. 

This benefits the user since a click on a button, a menu choice by mouse, or a 
command key, accesses the same subroutine. 

The final CASE ELSE in the Data Entry's button handling section calls the 
RadioBtnHandler subroutine to deal with the radio buttons in the window. In 
the Find window, the CASE ELSE calls the CheckboxHandler subroutine. 

Notice how easy it is to read the statements in this subroutine. Using the 
constants and descriptive function names makes the code very readable, even 
without any descriptive comments. We'll see how to add the rest of these 
routines dialog handling routines later on in the chapter. 

Handling Cursor Events 
The last type of dialog event we will deal with is cursor events. We start with a 
Uttle bit of background and then show the code. 

Dialog Events 111 



What is a Cursor? 

RGURE 33. Cursor array. 

Cursor array for 
arrow cursor 

with hot spot. 

r Cursor hot spot. 

aaaaaaaaaaaaaaaa o••aaaaaaaaaaaaa 
a•••aaaaaaaccaaa 
D•• iDDDDDDD o•• soooso D•• DOD D 
a•••••••aaaaaaaa a••••••••aaaaaaa a•••••••••aaaaaa a••-••••••aaaaa a••••••aaaaaaaaa a••aa••DDDDDDCCC a•aaaa••aaaaaaaa 
000000••00000 
DDDDDDD••DDDD 
DDDDDDD••DDDD 

What is a Cursor? 
A cursor is any 256-byte image bounded by a 16-by-16 bit square. The mouse 
driver normally displays the current cursor and handles the details of moving 
it on the screen. A cursor can be black and white or color and is typically 
stored as a resource in an application. 

The cursor is always moved on the screen relative to the path that the mouse 
is moved by the user. A cursor's hot spot is the point of the cursor which is 
reported to the operating system when a user clicks the mouse button. 

Your application is responsible for changing the cursor as the user moves it. 
For example, applications normally change the cursor to an I-beam whenever 
the mouse location intersects an active edit field. Others change the cursor 
when it's over a button. Still others use mouse down or up events to change 
the cursor's appearance. Which ones you'll use will depend on your program's 
requirements. We will examine two FB cursor events: _cursEvent and 
_cursOver. 

Dealing with cursors 
The _CursEvent event tells the application when a cursor has entered or 
exited a window. Since we have no need for a special cursor in our windows, 
we just ensure that it becomes the default arrow cursor when it's in one of 
our windows. We do that by placing the following line in each window's dialog 
handling subroutine: 
' ••• CURSOR HANDLING SECTION 
CASE _cursEvent : CURSOR _arrowCursor 

112 Dialog Events 



Dealing with Cursors 

PROGRAM 54. Cursor handlers. 

LOCAL FN DialogEntryWindow (dlgEvnt%, dlgID%) 
SELECT dlgEvnt% 

I CURSOR EVENT HANDLERS 
CASE _cursEvent 

CURSOR _arrowCursor 

CASE _cursOver 
SELECT dlgID% 

CASE < 0 ' handle edit fields here 
LONG IF ABS(dlgID%) = WINDOW (_efNum) 

CURSOR _iBeamCursor 
XELSE 

CURSOR _arrowcursor 
END IF 

CASE > 0 ' handle buttons here 
CURSOR _crossCursor 

CASE ELSE ' not over button or edit field 
CURSOR _arroWCursor 

END SELECT 
CASE ELSE 

END SELECT 
END FN 

Once we know the cursor is in a program window, we can detect when it's 
over a button or edit field using _cursover. The code to handle a cursor over 
both objects can be seen in Program 54. 

Note that we must distinguish between buttons and edit fields by checking 
the value of the dlgID%. A positive value indicates the cursor is over a button. 
For now, we11 just change the cursor shape to a plus. Later, Peak 
Performance we'll use ResEdtt to add a custom cursor to this bit of code. 

A negative value in dlgID% indicates an edit or picture field. When the cursor 
is over an edit or picture field, the program should change the cursor to an I
beam shape. However, it should only do this for the active edit field. All others 
should be ignored until they are made active. To determine the active field, we 
use the WINDOW (_efNum) function to return the ID of the currently active 
field. If the two match, we change the cursor to an I-beam. We'll see how to 
handle this in the chapter "Edit & Picture Fields". 

Because so many of the cursor events are handled identically, no matter 
which window is open, it seems appropriate to create a single subroutine to 
handle these events. 

Dialog Events 113 



Window Dialog Handlers 

Well, we've covered all the event routines required for the data entry window 
up to this point. Using the same technique you can create routines to handle 
the remaining windows in SimpleBase. See the complete program in the back 
of the book for complete details. Once you put in all the routines, run 
SimpleBase and test out the vartous additions we've made to the source. 

Window Dialog Handlers 
Now that we have all of our window, button, and cursor dialog event handling 
routines in place, let's see how each window's dialog handler is setup. 

Data Window Handler 
The Data Entry window code is shown in Program 55 has the most event 
handling features. Besides the normal window events like activation and 
closing, it also requires some _wnd.Refresh handling. It does a multitude of 
button events to tend to as well as cursor events for all the fields. While no 
more difficult then all the other windows, it does have more features to 
contend with. 

Find Window Handler 
In Program 56 we show how to handle the dialog events for the Find window. 
Here we have the standard window dialog events (_wndClose, _wndActi vate, 
etc.), a checkbox for the search strings case setting, and a cancel push button 
and find shadow button. 

PrintWindow Handler 
The Print window is unremarkable as shown in Program 57. The dialog 
handling code contains a shadow and push button, and three radio buttons · 
to select how records are printed. Later, when we add some edit fields it11 
become more exciting. 

Goto Window Handler 
Goto is as easy as it gets as demonstrated in Program 58, with dialog 
handling for two buttons: a push button to cancel and a shadow button to 
implement the goto record action. 

Help Window Handler 
Finally, the Help window code is shown in Program 59. It has just two plain 
push buttons to cycle through the help text we will soon add. Unlike most of 
the other windows, we get rid of this window only with the window's close box. 

114 Dialog Events 



Help Window Handler 

PROGRAM 55. Entry window handler. 

LOCAL 
DIM rect;8 
LOCAL FN DialogEntryWindow (dlgEvnt%, dlgID%) 

SELECT dlgEvnt% 
I ••• WINDOW EVENTS 
CASE _wndClose : FN WindowClose (_dbEntryWIND) 
CASE _wndActivate : FN UpdateMenus 
CASE _wndClick : WINDOW #_dbEntryWIND 
CASE _wndRefresh 

PEN ,, ,, 3 
CALL SETRECT (rect, 10, 10, 360, 280) 
DEF TITLERECT ("", 0, rect) 
CALL SETRECT (rect, 370, 10, 490, 240) 
DEF TITLERECT ("", 0, rect) 
PEN , I I ,0 

I ••• BUTTON EVENTS 
CASE _btnClick 

SELECT dlgID% 
CASE _newRecBTN FN ItemNew 
CASE _firstRecBTN : FN ItemFirstRecord 
CASE _prevRecBTN FN ItemPrevRecord 
CASE _nextRecBTN FN ItemNextRecord 
CASE _lastRecBTN FN ItemLastRecord 
CASE _findRecBTN FN WindowBuild (_dbFindWIND) 
CASE _clearRecBTN : FN ItemClearRecord 
CASE ELSE 

FN RadioBtnHandler% (_programBTN, _officeBTN, dlgID%) 
END SELECT 

FIELD EVENTS 
I ••• CURSOR EVENTS 
CASE _cursOver, _cursEvent 

FN CursorHandler (dlgEvnt%, dlgID%) 
CASE ELSE 

END SELECT 
END FN 

Dialog Events 115 



Help Window Handler 

PROGRAM 56. Find window handler. 

LOCAL FN DialogFindWindow (dlgEvnt%, dlgID%) 
SELECT dlgEvnt% 

I ••• WINDOW EVENTS 
CASE _wndClose : FN WindoWClose (_dbFindWIND) 
CASE _wndActivate : FN UpdateMenus 
CASE _wndClick : WINDOW #_dbFindWIND 
CASE _wndRef resh 

I ••• BUTTON EVENTS 
CASE _btnClick 

SELECT dlgID% 
CASE _ignoreCaseBTN : FN CheckBoxHandler% (dlgID%) 
CASE ELSE : FN WindoWClose (_dbFindWIND) 

END SELECT 

FIELD EVENTS 
I ••• CURSOR EVENTS 
CASE _cursOver, _cursEvent 

FN CursorHandler (dlgEvnt%, dlgID%) 
CASE ELSE 

END SELECT 
END FN 

PROGRAM 57. Print window handler. 

LOCAL FN DialogPrintWindow (dlgEvnt%, dlgID%) 
SELECT dlgEvnt% 

I • • • WINDOW EVENTS 
CASE _wndClose : FN WindoWClose (_printWIND) 
CASE _wndActivate : FN UpdateMenus 
CASE _wndClick : WINDOW #_printWIND 
CASE _wndRefresh 
I • • • BUTTON EVENTS 

CASE _btnClick 
SELECT dlgID% 

CASE _thisRecBTN,_allRecBTN,_selectRecBTN 
CASE ELSE : FN WindowClose (_printWIND) 

END SELECT 

FIELD EVENTS 
I ••• CURSOR EVENTS 
CASE _cursOver, _cursEvent 

CASE ELSE 
END SELECT 

END FN 

116 Dialog Events 

FN CursorHandler (dlgEvnt%, dlgID%) 



Help Window Handler 

PROGRAM sa. Goto window handler. 

LOCAL FN DialogGotoWindow (dlgEvnt%, dlgID%) 
SELECT dlgEvnt% 

I • • • WINDOW EVENTS 
CASE _wndClose : FN WindowClose (_gotoWIND) 
CASE _wndActivate : FN UpdateMenus 
CASE _wndClick : WINDOW #_gotoWIND 
CASE _wndRefresh 

I ••• BUTTON EVENTS 
CASE _btnClick : FN WindowClose (_gotoWIND) 

FIELD EVENTS 

I ••• CURSOR EVENTS 
CASE _cursOver, _cursEvent 

FN CursorHandler (dlgEvnt%, dlgID%) 

CASE ELSE 
END SELECT 

END FN 

PROGRAM 59. Help window handler. 

LOCAL FN DialogHelpWindow (dlgEvnt%, dlgID%) 
SELECT dlgEvnt% 

I • • • WINDOW EVENTS 
CASE _wndClose : FN WindoWClose (_helpWIND) 
CASE _wndActivate : FN UpdateMenus 
CASE _wndClick : WINDOW #_helpWIND 
CASE _wndRefresh 

I ••• BUTTON EVENTS 
CASE _btnClick 

SELECT dlgID% 
CASE _prevHelpBTN 
CASE _nextHelpBTN 

END SELECT 

FIELD EVENTS 
I ••• CURSOR EVENTS 
CASE _cursOver, _cursEvent 

FN CursorHandler (dlgEvnt%, dlgID%) 

CASE ELSE 
END SELECT 

END FN 

Dta.1.og Events 117 



Cursor Designing 

We'll have some minor refresh handling to take care of as well as handling a 
scroll button and resizeable edit field. More on that later in the book. 

Peak Performance 
This section will explain how to create custom cursors for use in SimpleBase 
and other programs. 

Cursor Designing 
We start our custom cursor design by opening SimpleBase.rsrc. Once open, 
choose Create New Resource from the Resource menu. At the Select 
New Type dialog, enter or choose from the scrolling list the CURS type. Click 
OK. ResEdit creates a new CURS resource and opens the cursor editor window 
as shown in Figure 34. 

Designing Cursors 
As soon as the cursor editor is open, use it to design both the cursor and the 
cursor mask. Remember, the cursor mask is what allows you to view the 
cursor against different screen backgrounds, so don't forget to add one. 

The palette on the left of the window contains all of the graphic tools needed 

to create custom cursors. Use the 0 tool to place the cursor's hot spot in the 
design. There are two menus: Transform and CURS. that enable you to 
manipulate the cursor in various ways (Flip Horizontal, Flip Vertical, etc.) and 
try the new cursor design. Once you are satisfied with your cursor design, 
save your work. 

RGURE 34. Design CURS with cursor editor. 

p r-, l:l• Id) . ' • • . _ .. 
• • 0 p • • 11111111 • • ••• • ~ ••• • I .•1 •• • • 

>C .......... • • • • •• • Mask • • • • • D • • • • • • • • 0 • • • • • • • 0 

I I 

118 Dialog Events 



Using Custom Cursors 

Using CUstom Cursors 
Next, we modify the program code to deal with the new cursor. In this case, a 
new constant is called for in the globals file. Open StmpleBase.glbl and add 
the following constant: 
I >>> OTHER CONSTANTS 
_fingerCursor = 128 

Save the changes and close the globals file. Next, open SimpleBase. Locate the 
dialog routines for all of the windows that contain buttons. Find the 
_cursOver section of the event handler and change: 
LONG IF ABS{dlgID%) = WINDOW {_efNum) 

CURSOR _IBeamCursor 
XELSE 

CURSOR _plusCursor 
END IF 

to: 
LONG IF ABS{dlgID%) = WINDOW {_efNum) 

CURSOR _IBeamCursor 
XELSE 

CURSOR _fingerCursor 
END IF 

Save your changes and try out the program. In place of the plus cursor, you 
should see the finger cursor appear whenever the mouse cursor is over an 
active button. Now that you know the procedure, you can create your own 
custom cursor libracy. 

Event Handling 
There are two means of retrieving events from the event queue. Under System 
6 (and not running MultiFinder), events are retrieved using GetNextEvent. 
Since only one application can operate at a time under System 6, the 
application naturally collects all events issued by the operating system. 

However, under System 6 with MultiFinder and System 7, multiple 
applications can be running at once. Normally, the foremost application (the 
one you are working on) collects the majority of event messages. Applications 
operating in the background can also receive events and perform tasks. This 
is what enables system utilities like Print Monitor to print in the background 
while you continue to add more chapters to your book. 

In order to share events, programs must use a different mechanism to 
retrieve events. Instead of GetNextEvent, it must use Wai tNextEvent. We can 
tell the runtime to use WaitNextEvent by setting the number of times per 
second the program requires events. 

Dialog Events 119 



Suspend and Resume Events 

The code in Program 60 detects which system the program is operating under 
and sets the tick count to what our program requires. Note that the code only 
checks for the presence of System 7, as there is no Apple approved method of 
detecting the presence of MultiFinder. 

PROGRAM 60. Enabling background processing. 

ticksPerSecond = 6 
LONG IF SYSTEM (_sysVers) > 699 

& EVENT - 8, ticksPerSecond 

END IF 

Suspend and Resume Events 
Both System 7 and System 6's MultlFinder allow multiple applications to run 
concurrently. The user can switch between running applications by clicking 
on any portion of a visible window from another application, or choose the 
application directly from the Application's menu (System 7) or the s menu 
(System 6). 

With the capability of having multiple applications open at the same time, it's 
to your benefit to write programs that can operate in this environment. One 
way to do that is to detect the _mfSuspend and _mfResume events. 

When a program is about to be switched behind another, the operating 
system sends it a _mfSuspend event. This is a signal that it must prepare 
itself to be switched out as the foreground application. 

The foreground application is the one currently in use by the user. All other 
running applications are called background applications. A program should 
take this signal as an opportunity to convert any private clipboard contents to 
the system clipboard. 

The FB runtime handles the conversion of the private text scrap for you, but 
only if it contains simple ASCII text. If your program manipulates other types 
of data, like pictures for example, you must place that data on the clipboard 
yourself. 

Additionally, some programs take the opportunity to hide all palette-style 
windows before the switch. You can do this with your program windows by 
using a routine similar to the one shown in Program 61. The routine shows 
how to hide and show program windows. You'll need to modify it to remember 
only the windows that were open when the program was switched out. 
Otherwise, all of the program windows will appear when this routine is called 
on to show windows. 

120 Dialog Events 



Suspend and Resume Events 

PROGRAM 61. Hide and Show Windows. 

LOCAL FN HideShowWindows (hideFlag%) 
FOR wndID% = 1 TO 63 

LONG IF WINDOW (-wndID%) 
LONG IF hideFlag% = _Jl\fSuspend 

WINDOW #-wndID% 
XELSE 

WINDOW #wnd!D% 
END IF 

END IF 
NEXT wnd!D% 

END FN 

The opposite happens when a program receives a_mfResume event. This tells 
the program that it is about to be moved in front of all other applications. 
When a _mfResume event is received, the program should accept this as a 
signal to convert the system clipboard to its own internal scrap. AgaJn, if the 
program can import types of data other than text, you must handle the 
importing process yourself. 

Dialog Events 121 



Suspend and Resume Events 

Cooldown 
In this chapter we learned more about events and how to respond to three 
different types of dialog events for windows, buttons, and cursors. Along the 
way we saw how to react to dialog events on a window-by-window basis. 

We learned how to handle the common window events, ·output, activate, 
refresh, and close. We also saw how to deal with push buttons, and 
implemented our checkbox and radio button handler routines. Flnally, we not 
only saw how to detect and respond to cursor events, but we saw how to 
create a custom cursor for our program. 

122 Dialog Events 



CHAPTERS 

Edit & Picture Fields 

Warm-up 
This chapter introduces you to edit and picture fields. In this chapter you will 
learn: 

+ What edit and picture fields are, 

+ To identify the edit field types, 

+ Two methods of inserting data into edit fields, 

+ How to extract text data from edit fields, 

+ How to insert images into a picture field, 

+ How to close both edit and picture fields, and 

+ How to deal with different field events. 

What are Edit Fields? 
A edit field is an area within a window that displays static or editable text. 
Text fields are normally editable, but can be static, disabled, or even inverted. 
Edit fields can display text in any available font, and in any style, size, or color. 
When linked to a scroll button, the contents of an edit field are scrolled when 
the user clicks on the scroll button. You can have up to 8192 fields, either edit 
or picture versions within a single window, memory permitting. 

All edit fields that allow text entry have an insertion point. An insertion 
point is the position within the edit field where the next character will be 
inserted when a key is pressed. It is usually indicated by a blinking caret in 

Edit & Picture Fields 123 



Edit Field Features 

the form of a vertical bar (I). Static, non-editable edit fields do not display a 
caret. 

To act upon the text within an edit field, a selection must be made. A 
selection is a sequence of one or more characters chosen by the user or the 
program for editing. A selection is indicated by higJdtghting the current 
selection, either by inverting or coloring the selection. Once text has been 
selected, the user can cut, copy, paste, or clear the selected text, or change 
the font characteristics to any available font, size, style, or color. 

Positioning the insertion point can be done using the mouse, the arrow keys, 
or under program control. When the user clicks the mouse in an active edit 
field, the insertion point is positioned at the nearest character. The user can 
then use the arrow keys to move the insertion point. The left and right arrow 
keys move the insertion point one character forward or back. The up and 
down arrow keys move the insertion point one line up or down, respectively. 

If the cursor is positioned at the start or end of the field's text, an arrow key 
event is generated that can be detected using the DIALOG function. 

FIGURE 35. Standard edit field types. 

I Edit field with frnme 

Edit field without a frame 

I Static edit field 

I nt•erted edit field 

Edit Field Features 

Use the framed edit field when 
requesting input from a user. 

Use the noframed edit field when the 
frame doesn't fit your window's layout. 

Use the static edit field to display 
unedltable text in a window. 

Use the disabled edit field when the 
field is not available. 

Use the inverted edit field to 
emphasize field importance. 

Edit fields fall into two broad categories: those that accept carriage returns 
and those that don't. When a field that accepts carriage returns is active, any 
press of the Return key sends a carriage return to the field. Any active field 
that doesn't accept carriage returns generates an _efReturn event instead. 

Edit fields also come in five standard types: framed, noFramed, static, gray 
(for disabled), and inverted. By :miXing these various types you can create edit 
fields that can serve any purpose a program might require. For example, 
normal single line edit fields used for data input do not accept carriage 

124 Edit & Picture Fields 



Unstyled vs. Styled 

returns and have frames. Edit fields used to display titles are usually static 
and not framed. Some examples of the various standard field types can be 
seen in Figure 35. 

You can further customize an edit field's appearance by adding one of five 
modifiers to the field type. These modifiers are: _round, _rounder, _roundest, 
_boldBox, and _anyLines. Examples of these types are shown in Figure 36. 

RGURE 36. Edit field type modifier examples. 

(-------- _framed_round ------.) ----------- ___________ ... 
I _framed_rounder 

_framed_roundest 

_anylines_leftline_bottomline 

unylines dinglines her:i!:Eentline 

Here is an example of 
using the custom type 
options to modify the 
appearance of an edit 
field. 

Note the _anyLines 
option in the bottom two 
examples. This allows 
you to customize an edit 
field frame. 

A word of caution though: use these custom field types only when absolutely 
necessary to prevent causing confusion in your users. Users expect edit fields 
to look like edit fields, not examples of cleverness. If you do use them, you will 
need to experiment with the various options to get the effect you want. Make 
sure that a user can immediately identify them as places to enter text. 

• Note, tt may talce some experimenting to get the custom.field type that you want. 
as some modifiers interfere with other modifiers. 

Unstyled vs. Styled 
There are two kinds of edit fields: unstyled and styled. The original unstyled 
edit field dates from the early days of the Macintosh and allows the field to 
contain exactly one font, size, and style for the entire field. You create an 
unstyled edit field by using a positive fieldID% like this: 
EDIT FIELD #fieldID%, tmp$, rect, type, just 

With the introduction of the color Macintosh, a new styled edit field became 
available. You can create a styled edit field by using a negative f ieldID% like 
this: 

Edit & Picture Fields 125 



Creating Edit Fields 

EDIT FIELD #-fieldID%, tmp$, rect, type, just 

The runtime recognizes the difference and builds the correct type of field. You 
can see the differences between the two field kinds in Figure 37. Note that 
both unstyled and styled fields are always referred to using positive f ieldID% 

numbers no matter how they were defined. Any attempt to refer to an edit 
field by a negative ID will cause a runtime error. 

RGURE rr. Styled vs. unstyled edit fields. 

Create unstyled edit fields with a positive fieldID%: 

R standard unstyled edit field can only haue 
one font, size, style, and color associated 
with it. 

Create styled edit fields with a negative fieldID%: 

A styled edit field can have multiple fonts, 
sizes, styles , and color associated with it. 

You define the initial text font, size, style, and color when you use the TEXT 

statement to specify a window's default font and font attributes. Thereafter, 
you can change a field's font and associated attributes using the EDIT TEXT 

statement. For example, to change the font for selected characters in the 
active edit field from Chicago to Geneva do this: 
SETSELECT startChar%, endChar% 
EDIT TEXT _geneva 

Creating Edit Fields 
Once a program window has been built, putting in edit fields is not difficult. 
We start by assigning the field a fieldID% number (either positive or negative 
for unstyled or styled fields respectively), define its location in the window, 
assign it a field type and justification, and optionally add a class specifier. 

The second parameter can be a string variable, a quoted string, a text handle, 
or a TEXT resource ID. Usually, for text ofless than 255 characters in length, 
you'll use either string variables (tmp$) or quoted strings ( 11 this is a 
string 11 ). For longer text, you must use text handles or resource IDs. See the 
Peak Performance section for details on dealing with large blocks of text. 

Next, define the location of the edit field in window coordinates using the 
(left, top) -(right, bottom) format. Then, define the field type using one 

126 Edit & Picture Fields 



Setting Field Data 

PROGRAM 62. Creating Edit Fields. 

WINDOW #1, "EDIT FIELD", (0,0)-(500,300), _doc 
TEXT _sysFont, 12 

tmp$ = "An example of an edit field" 
EDIT FIELD #-1, tmp$, (10,10)-(300,300), _framed, _leftJust 

DO 

UNTIL INKEY$ <> II II 

of FB's constants, and finally assign a justification to the field. Examine 
Program 62 to see how to define a single edit field in a window. 

Setting Field Data 
While many edit and picture fields will have their data set once when the field 
is created and never be changed for the life of the window, others will require 
updates to reflect changing conditions. This is the case with the fields in the 
Data Entry window used to display record information. As the user moves 
forward or backward through the data file, the fields will display the current 
viewable record. Update the field data using either EDIT FIELD or EDIT$. 

Use EDIT FIELD when the replacement text should be selected or highlighted 
after the insertion. Use EDIT$ when you want to replace the text in an edit 
field without it being selected. To demonstrate: 
WINDOW #1 : TEXT _sysFont, 12 
EDIT FIELD #-1, "", (10,10)-(300,25), _framed 
EDIT FIELD #-2, "", (10,40)-(300,55), _framed 
tmp$ = :This is an example of text insertion." 
EDIT$(1) = tmp$ 
EDIT FIELD #2, tmp$ 

This example will insert the same text into both fields, but the text inserted 
into field # 1 will not be selected and that inserted into field #2 will be selected. 
Examine Flgure 38 to see the difference. 

There are a couple of variations to inserting text into an edit field that are 
useful in certain circumstances. First, both EDIT FIELD and EDIT$ can accept 
handles and resource IDs to TEXT resources. You can load a text handle into 
an edit field using either of these two methods: 
EDIT FIELD #fieldID%, &zTxtH& 
EDIT$ (fieldID%) = &zTxtH& 

The only caveat is that the handle must be properly formatted in order for this 
insertion to work. This means that the first two bytes of the handle must 
contain an integer value representing the number of characters in the handle~ 

Edit & Picture Fields 127 



Foxmatting Text 

See "Using all 32K" later in the Peak Performance section for details on this 
format. 

Use the same two methods to access TEXT resources: 
EDIT FIELD #fieldID%, %textResID% 
EDIT$ (fieldID%) = %textResID% 

Find out more about this text insertion method in the chapter "Strings & 
Text". 

Formatting Text 
Besides text, you may want to insert numerical data into a field. Since a field 
requires text, use STR$ or USING to convert the numerical value to a string 
representation of the number. For example: to convert a numerical value into 
its string, use the STR$ function like this: 
userData$ = STR$(123.456) 
EDIT$ (15) = userData$ 

You can format numerical data before displaying it with the USING function 
like this: 
userValue! = 123.456 
EDIT$ (15) =USING "###.###", userValue! 

While EDIT$ will work for both edit and picture fields to replace a field's 
content, you must use PICTURE FIELD to replace a picture field's image that 
should be selected. Additionally, you can load text resources into edit fields 
using a resource ID or a text handle with both EDIT$ and EDIT FIELD. 

FIGURE 38. Inserting field data. 

EDIT$ replaces the contents of the 
specified field without selecting the text. 

=o EDIT$ us EDIT FIELD 

!This is an eHnmple of teHt insertion. 

This is an eHample of teHt insertion. 

128 Edit & Picture Fields 

EDIT FIELD replaces the contents of 
the specified field and selects the text. 



Getting Field Data 

Getting Field Data 
Once the user has entered data into an edit field, it's often necessary to extract 
that information. You can retrieve an edit field's data using the EDIT$ 
function. For example, to extract the text from an edit field whose f ieldID% is 
15, do this: 

userData$ = EDIT$(15) 

Assuming that a field's data isn't just text, but also has numbers, you can get 
the value of the field data like this: 

userValue% = VAL(EDIT$(15)) 

Note that these two methods only work when the text in the field is under 255 
characters in length. Since FB internally uses Pascal formatted strings, the 
standard string variable can't handle anything larger. 

To handle larger blocks of text, you must delve into the field's record 
structure and work directly with the text data itself. To see how to do that, 
refer to "Using all 32K" later in this chapter. 

Closing Edit Fields 
You can close edit fields using the EDIT FIELD CLOSE statement with the 
appropriate f ieldID%. Rememberthat the text information stored in the field 
will be gone forever once the field is closed. To close an edit field do this: 

EDIT FIELD CLOSE #f ieldID% 

Normally, you can let the FB runtime handle all the details of closing both 
edit and picture fields, as well as buttons, when it closes a window. This is 
just another item taken care of by the FB runtime. 

Enabling & Disabling Fields 
You may occasionally have to disable fields in a window. You can do this by 
resetting the field type. For example, if we have a_framedNoCR field, we can 
disable it like this: 

EDIT FIELD #fieldID%, , , _statFramedGray 

And reactivate it using the original field type like this: 

EDIT FIELD #fieldID%, , , _framedNoCR 

What are Picture Fields? 
A picture field is an area within a window that displays picture images. 
Picture fields are usually static, but can be active and act as graphic buttons 
a la HyperCard™. Picture fields share the same data structure in memory 

Edit & Picture FYelds 129 



Loading Pictures 

that allows up to 8192 edit, picture, or any combination of these two field 
types in a single window. A picture field cannot have the same f ieldID% as 
an edit field in the same window. 

Loading Pictures 
Picture fields share the same definition format used by edit fields. The only 
real difference is that one operates on text, the other on picture data. 

A picture field can display images by handle, resource ID, or resource name. 
For example, to create a simple picture handle and display it on screen 
examine the program shown in Program 63. 

PROGRAM 63. Picture field demonstration. 

WINDOW 1, "PICTURE FIELD DEMO" 
I ••• CREATE A PICTURE 
PICTURE ON 
COLOR _zRed 
CIRCLE FILL 100, 100, 50 

CIRCLE 100, 100, 55 

COLOR _zBlack 
PICTURE OFF, pictH& 

' ••• NOW DISPLAY IT IN A PICTURE FIELD 
PICTURE FIELD #1, &pictH&, (10,10)-(200, 200), _framed, _cropPICT 

DO 

HANDLEEVENTS 
UNTIL 0 
END 

Note the program makes use of the PICTURE ON and PICTURE OFF statements 
to create a picture handle. We then pass the handle to the PICTURE FIELD and 
let it do the rest of the work. 

A picture field's justification parameter defines how the graphic will display 
inside the field. The three types of graphic _justifications are shown in Table 7. 

TABLE7. PICTURE FIELD justifications. 

_cropPict _scalePict _centerPict 

130 Edit & Picture Fields 



Creating Picture Fields 

The _centerPict justification requires that the top-left corner of the picture 
frame (not the bounds of the PICTUREFIELD) always be set to 0, 0. Anything 
else causes the field to scale the image and center it on the lower-right corner 
of the picture field frame. 

Creating Picture Fields 
Picture fields use syntax identical to edit fields for their creation. You assign 
the picture field a fieldID% (different than any edit fields in the same 
window), pass it a picture identifier (handle, name, or resource ID), specify an 
area in the window, then assign a field type, and justification. 

Setting Picture Fields 
Just as was done with edit fields, use the PICTURE FIELD and EDIT$ 
statements to assign images to a picture field. The only difference is that you 
must tell the runtime how to interpret the image data. For example, to assign 
a picture handle to a picture field do this: 

PICTURE FIELD #fieldID%, &pictH& 

or this: 

EDIT$(fieldID%) = &pictH& 

The ampersand (&) before the pictH& tells the runtime that the number 
following represents a picture handle, while a leading percent sign (%)uses a 
use the PICT resource ID to places it into the picture field: 

PICTURE FIELD #fieldID%, %pictResID% 

or like this: 

EDIT$(fieldID%) = %pictResID% 

Finally, place a resource PICT using the resource's name like this: 
PICTURE FIELD #fieldID%, pictResName$ 
EDIT$(fieldID%) = pictResName$ 

Closing Picture Fields 
Just as you can with edit fields, you can close picture fields using the EDIT 
FIELD CLOSE statement. All you need is the appropriate fieldID and a line of 
code like this: 

EDIT FIELD CLOSE #pictFieldID% 

Closing a window also closes all of the field and button structures used in the 
window. Remember to always extract your data first. 

Edit & Picture Fields 131 



Creating EDIT FIELDS 

PROGRAM 64. Field constant definitions. 

I >>> DATA ENTRY WINDOW 
_dbNameFLD = 1 

_dbAddrFLD = 2 
_dbCityFLD = 3 
_dbStateFLD = 4 
_dbZipFLD = 5 

_dbPhoneFLD = 6 

_dbFaxFLD = 7 
_dbPhotoFLD = 11 

I >>> FIND WINDOW 
_searchFLD = 1 

I >>> HELP WINDOW 
_helpFLD = 1 

I >>> PRINT WINDOW 
_firstFLD = 1 

_lastFLD = 2 

I >>> GOTO WINDOW 
_gotoFLD = 1 

Regular Exercise 
Now that we understand edit and picture fields much better, it's time to add 
them to our program. Of course we begin by defining the field constants that 
will make life easier for us. The field constants used by SimpleBase are shown 
in Program 64. You'll note that there are only constants for active and 
informational display fields, fields used simply to display titles or instructions 
are left undefined. 

Creating EDIT FIEI.Ds 
With the constants in place, it's time to add the fields to our various windows. 
The natural place to start is each window's build routine. There, after all 
button definitions, we begin adding both the edit and picture fields. 

Data Entry Window 
The Data Entry window has the majority of edit fields and picture fields, so 
we'll start there. We begin by creating the static edit fields that display the 
field name, add the picture field, followed by the editable fields, and finish by 
setting the first editable field active. The lines to add to FN Build

EntryWindow are shown in Program 65. 

132 Edit & Picture Fields 



Data Entiy Window 

PROGRAM 65. Adding fields to the Data Entry window. 

' ••• STATIC TEXT FIELDS 
xPos% = 85 
tmp$ = "Name:" 
EDIT FIELD #21, tmp$, (20,40)-(xPos%xPos%-5,56), _statNoframed, _rightJust 
tmp$ = "Address:" 
EDIT FIELD #22, tmp$, (20,66)-(xPos%-5,82), _statNoframed, _rightJust 
tmp$ = "City:• 
EDIT FIELD #23, tmp$, (20,92)-(xPos%-5,108), _statNoframed, _rightJust 
tmp$ = "State:" 
EDIT FIELD #24, 
tmp$ = "Zip:" 
EDIT FIELD #25, 
tmp$ = "Phone#" 
EDIT FIELD #26, 
tmp$ = "FAX#" 
EDIT FIELD #27, 
tmp$ = "Dept:" 
EDIT FIELD #28, 
tmp$ = "Record#" 

tmp$, 

tmp$, 

tmp$, 

tmp$, 

tmp$, 

(20,118)-(xPos%-5,134), 

(20,144)-(xPos%-5,160), 

(20,170)-(xPos%-5,186), 

(20,196)-(xPos%-5,212), 

(20,222)-(xPos%-5,238), 

_statNoframed, _rightJust 

_statNoframed, _rightJust 

_statNoframed, _rightJust 

_statNoframed, _rightJust 

_statNoframed, _rightJust 

EDIT FIELD #29, tmp$, (20,14)-(xPos%-5,30), _statNoframed, _rightJust 
EDIT FIELD #30, "" , (xPos%,14)-(330,30), _statNoframed, _leftJust 

I ••• STATIC PICT FIELDS 
PICTURE FIELD #_dbPhotoFLD, 1111 , (215, 118) - (345, 270), _stat framed, _cropPict' 

••• ACTIVE EDIT FIELDS 
EDIT FIELD #-_dbNameFLD, 
EDIT FIELD #-_dbAddrFLD, 1111 

EDIT FIELD #-_dbCityFLD, "" 

(xPos%,40)-(345,56),_framedNoCR, _leftJust 
(xPos%,66)-(345,82),_framedNoCR, _leftJust 
(xPos%,92)-(345,108),_framedNoCR, _leftJust 

EDIT FIELD #-_dbStateFLD, ••, (xPos%,118)-(170,134),_framedNoCR, _leftJust 
EDIT FIELD #-_dbZipFLD , ••, (xPos%,144)-(200,160),_framedNoCR, _leftJust 
EDIT FIELD #-_dbPhoneFLD, "", (xPos%,170)-(200,186),_framedNoCR, _leftJust 
EDIT FIELD #-_dbFaxFLD, "", (xPos%,196)-(200,212),_framedNoCR, _leftJust 

EDIT FIELD #_dbNameFLD 'set active edit field 

Note the use of the xPos% vartable. This is a little trick you can use to align 
the right edge of a title field with the left edge of its editable field. This is very 
handy when adding fields to a window. Since I often need to fine tune the 
location of the fields so that all the text in a title field fits, assign a vartable 
that defines the boundary between the two fields. Then if you need to resize 
either one, just change one variable and the entire window is reformatted 
automatically. The completely designed Data Entry window can now be seen 
in Figure 39. 

Edit & Picture Fields 133 



Other Windows 

RGURE 39. Final Data Entry window. 

SlmpleBase Data Ent 

Record# 

Name:[ 

Rddre11:( 

City:[ 

State: I I 
Zip:( J 

Phone#I I 
FRH#I I 
Dept: ®Programming 

OMarlcetlng 
QOtnceHelp 

Other Windows 

J 

II New Record J 
( Show First ) 

( « Preu« ) 

( »Neat» ) 

( Show Lnst ) 

Find 

Clear 

The remaining windows have their own requirements for editable and static 
fields. Most follow the same pattern as the Data Entry window. Add the static 
fields first, then follow with the editable fields. For a complete listing, be sure 
to examine the program in the back of the book. 

Help and About Windows 
You may have noticed the absence of the Help and About windows in the 
previous paragraphs. The Help window will be dealt with in the 
chapter "Scroll Buttons" and the chapter "Strings & Text", while the About 
window will be fully described in the chapter "Alerts". 

Feel free to hy out Simp'leBase and see all your new edit and picture fields. 
Remember, continuous testing is the main method of discovering program 
bugs, and taking steps to solve them. 

Handling Field Events 
All right, now that our fields are in place, it's time to make things happen with 
them using events. Fortunately, handling events in edit fields and picture 
fields falls into famillar territory. It's similar to the dialog handling routines for 
our program windows. 

Let's start by examining the various field event types and see how a program 
should respond to each one. As we look at each event, we'll create a 
subroutine to handle the event. In this way, we'll create a library of field event 
handling subroutines that we can drop into any program and know that 
they'll work. 

134 Edit & Picture Fields 



Handling Mouse Clicks 

PROGRAM 66. Other window fields. 

LOCAL FN BuildFindWindow 
' ••• STATIC TEXT FIELDS 
xPos% = 60 
tmp$ = "Find:" 
EDIT FIELD #21, tmp$, (20,15)-(xPos%-5,31),_statNoframed, _rightJust 
I ••• ACTIVE EDIT FIELDS 
EDIT FIELD #_searchFLD,"", (xPos%,15)-(320,31),_framedNoCR, _leftJust 

END FN 

LOCAL FN BuildPrintWindow 
' ••• STATIC TEXT FIELDS 

EDIT FIELD #99 , "to", (210,50)-(230,65),_statNoframed, _centerJust 
I ••• ACTIVE EDIT FIELDS 
tmp$ = STR$(gMaxRecords%) 
EDIT FIELD #_lastFLD, tmp$, (240,50)-(275,65),_framedNoCR,_centerJust 
tmp$ = STR$(gRecordNum% + 1) 
EDIT FIELD #_firstFLD, tmp$, (165,50)-(200,65),_framedNoCR,_centerJust 

END FN 

LOCAL FN BuildGotoWindow 
' ••• STATIC TEXT FIELDS 

tmp$ = "Goto Record:" 
EDIT FIELD #99, tmp$, (20,15)-(135,31), _statNoframed, _leftJust 
' ••• ACTIVE EDIT FIELDS 
tmp$ = STR$(gRecordNum%) 
tmp$ = RIGHT$(tmp$, LEN(tmp$) - 1) 
EDIT FIELD #_gotoFLD, tmp$, (135,15)-(160,31), _framedNoCR, _centerJust 

END FN 

Handling Mouse Clicks 
Any mouse click within an active edit field generates an _efClick. This 
method is the most direct way of moving between several edit fields. 
Additionally, because we have changed the active field, we need to update the 
cursor to reflect it's position over the active field. The routine to handle 
_efClick events is shown in Program 67. 

PROGRAM fU. Click handling events. 

LOCAL FN EFClickEvent (fieldID%) 
EDIT FIELD #f ieldID% 
CURSOR _iBeamCursor 

END FN 

Edit & Picture Fields 135 



Handling Tabs 

Handling Tabs 
One common way of moving between multiple edit fields is to use the Tab key. 
The Tab key normally moves the cursor to the next active edit field, while the 
Shift-Tab combination moves the cursor to the previous field. Both are 
identified using the _efTab and _efShiftTab constants. 

When the user presses the Tab key, an _efTab event is generated. It's up to 
the program to trap this event in a dialog handler and respond appropriately. 

This is where the sequential numbering of active fields comes into the game. 
Since all of the fields in the Data Entrywindow lie in the range of _dbNarneFLD 

to _dbFaxFLD (1 - 8), it's child's play to write a routine that will handle this 
type of incrementing. Additionally, by passing the event type to the routine, 
we can also use it to handle Shift-Tab events. This dual purpose routine is 
shown in Program 68. 

The TabShiftTabEvents subroutine expects three parameters: the event, 
the lowest field count to cycle through, and the highest. We need to pass 
these variables to ensure that any window that requires tabbing can use this 
same routine. When called, the subroutine examines the event and 
determines which course of action to follow. 

PROGRAM 68. Handling Tab and Shift-Tab events. 

LOCAL FN TabShiftTabEvents (dlgEvnt%, startFld%, lastFld%) 
LONG IF dlgEvnt% = _efTab 

fieldID% = (WINDOW (_efNum) MOD lastFld%) + 1 
IF fieldID% > lastFld% THEN f ieldID% = startFld% 

XELSE 
fieldID% = (WINDOW (_efNum) - 1 

IF fieldID% < startFld% THEN fieldID% = lastFld% 
END IF 
EDIT FIELD #fieldID% 

END FN 

If it's a Tab event, it determines the current active f ieldID% and increments 
it by one. It then checks to ensure that fieldID% doesn't exceed lastFld%. If 
it does, we reset it to startFld%. 

If it's a Shift-Tab event, it again determines the current fieldID%, subtracts 
one from that, then checks to ensure it isn't below the startFld% value. Ifit 
is, it's set to lastFld%. Finally, the new active field is activated. Note that we 
use EDIT FIELD so that the text of the newly active field is completely selected. 

In both cases you should note that we always wrap the Tabs and Shift-Tabs 
around the active fields in the window. By changing the values of startFld% 

136 Edit & Picture FYelds 



Return Keys 

and lastFld%, we can use this routine for any window that requires tabbing 
support. 

Return Keys 
Another conunon method of switching edit fields is to use the Return key. This 
method only works if the fields used in the window are of the non-carriage 
return type, otherwise the key press will be intercepted by the active edit field 
and applied to the field itself. 

In many cases, a program may have to handle Return keys separately from 
Tab key events. The illustration in Figure 40 shows one method of handling 
both Return and Tab keys. 

RGURE 40. Handling Return key events. 

Return/Enter 
keys should 
move the 
insertion point 
downward. 

Tabs move insertion point 
to next field 

I Field #1 11 Field #2 
::===== 
I Field #3 11 Field #4 
::=====::::: 
.._I F_ie_ld_#_s _ ___.l I Field #6 

Shift- Tabs move insertion 
point to previous field. 

Unless you have some special processing, use FN TabShiftTabEvents to 
handle the Return key event. Just remember to pass an _efTab event instead 
of _efReturn to the subroutine. 

We will use the Return key for other actions. Since most of our windows have 
a default shadow button, the normal action would be to activate the default 
button when the Return key is pressed. We can do this by intercepting the 
_efReturn event and converting it into a _btnClick. The easiest place to do 
this is right at the top of each window's dialog handler before the event gets 
passed onto the SELECT /END SELECT structure. The code to enter looks like 
this: 
LONG IF _efReturn 

dlgID% = FN ChangeReturnToBtn (dlgEvnt%, btnID%) 
END IF 

where btnID% represents the window's default button btnID%. The 
subroutine ChangeReturnToBtn does exactly what it says. It accepts both the 

Edit & Picture Fields 137 



Arrow Keys 

dlgEvnt% and dlgID%. It then calls the HiliteSelectedButton subroutine to 
briefly invert the default button. then converts the dlgEvnt% from _efReturn 

to _btnClick. It does this using a simple trick. When passed the dlgEvnt%, it 
accepts not the event. but the address of the event. which it uses to replace 
_efReturn event with a _btnClick. 

Given the address to anything. we can modify it by making it look like a 
record. We'll see how to use this technique when we talk about Records later. 

Now that the support routines are in place, add a call to ChangeReturnToBtn 
in the Data Entry. Find, Goto. and Print window dialog handling subroutines. 

Arrow Keys 
Arrow keys must also be handled in a special manner. 

When the insertion point is within the text of a field. the field will suppress 
any arrow key event and move the insertion point as directed by the arrow 
key. For example. an up arrow will cause the insertion point to move up one 
line in the text. A left arrow key will move the insertion point one character 
left of its current position. 

RGURE 41. Handling arrow key events. 

Some sample teHt to 
illustrate! a point 
about field euents. 

Some sample teHt to 
illustrate a point 
about field euents.I 

In this example, the insertion point is 
inside the text of an edit field. When the 
user presses an arrow key, the 
insertion point moves in the direction of 
the arrow key pressed. 

However, if the insertion point is 
located at the end or beginning of the 
field's text, an event is generated when 
the user presses any arrow key. 

When the insertion point is at the vecy beginning or end of the field's body 
text. the program will receive an arrow key event message. The program can 
then use the event to move the insertion point to another field entirely. In 
most cases, by passing the correct event type. you can call FN 

TabShiftTabEvents for all of your arrow events. 

138 Edit & Picture Fields 



Using all 32K 

Peak Performance 
We've only covered the fundamentals of using edit and picture fields. What 
follows are some additional tricks you might find useful. 

Using all 32K 
None of the fields in our SimpleBase program required access to more than 
255 characters. But since edit fields can contain up to 32,365 characters, 
there may come a time when accessing all of them is necessary. 

ZTXTMethod 
The quickest method of accessing all 32K is to use GET FIELD. GET FIELD 

returns a handle (see the chapter "Resources"for more information on 
handles) containing a combination of both text and style information, 
commonly referred to as ZTXT. A ZTXT handle has the following format: 

RGURE 42. ZTXT data format. 

CBARS 0 - n 8I'YL 0 - n 

Each ZTXT handle begins with an integer value that contains the character 
count, it's then followed by character data, and finally by any style 
information. So to get a ZTXT handle, do this: 
GET FIELD zTxtH& , fieldID% 

Once you have a ZTXT handle, it can be written to disk using: 

WRITE FIELD #fileID%, zTxtH& 

and read back into memory using: 

READ FIELD #fileID%, zTxtH& 

One thing to remember, is to always dispose of a ZTXT handle using KILL 

FIELD. Failure to dispose of this handle properly, either by forgetting to 
dispose of it or using another command, can create memory problems later. 

Edit & Picture Fields 139 



Reading Text to a Field 

Reading Text to a Field 
Now that we understand the ZTXT format. let's look at a common problem. 
reading a TEXT file into an edit field. Most people come very close. but usually 
seem to end -up with extra garbage characters at the end of the text. The 
reason is simple. they passed a handle containing nothing but text to the edit 
field. The field interpreted the first two characters as the number of 
characters. and read that many characters into the field. For example. say we 
had the following text in a handle: 

Fred was here. 

The statements EDIT FIELD and EDIT$ would see it like this: 

<18034>ed was here. 

Where the 18034 is the character count returned by the "Fr" characters. This 
is way too many characters than in our little example. 

EDITFIELDandEDIT$ don't care. Theywillblindlyacceptthisincorrectcount 
and process beyond the handle into random memory. The result is garbage 
characters in the field. 

PROGRAM 69. Text Rle to Field reader. 

CLEAR LOCAL 
LOCAL FN TextFile2Field (fieldID%) 

filename$= FILES$ (_fOpen, "TEXT", , wdRefNum%) 
LONG IF LEN (filename$) > 0 

OPEN "I", #1, filename$, , wdRefNum% 
LONG IF SYESERROR = _noErr 

size% = LOF (1, 1) 
LONG IF size% < 32765 

hndl& = FN NEWHANDLE (size% + 2) 
LONG IF (hndl& <> 0) AND (SYSERROR = _noErr) 

hndl& .. none% =size% 
osErr% = FN HLOCK (hndl&) 
READ FILE #1, [hndl&] + 2, size% 
osErr% = FN HUNLOCK (hndl&) 
EDIT$ (fieldID%} = &hndl& 
DEF DISPOSEH (hndl&) 

END IF 
END IF 
CLOSE #1 

END IF 
END IF 

END FN 

140 Edit & Picture Fields 



Sending Field Text to a File 

However, if the handle was reformatted with a leading integer it would look 
like this: 

<14>Fred was here. 

And everything would operate correctly. So the key is to add a length value at 
the beginning of the handle containing the text. The routine in Program 69 
shows exactly how to do this. It checks for errors but doesn't give any notice if 
it encounters one, so be sure and beef it up before using it in your own 
programs. 

Sending Field Text to a File 
So, we got the text into the field, modified it as desired, now it's time to save it 
back out to disk. All we do is reverse the process that got it into the field. This 
is handled by the routine shown in Program 70. 

PROGRAM 70. Field to Text File routine. 

CLEAR LOCAL 
LOCAL FN Field2TextFile (fieldID) 

GET FIELD txtHndl&, fieldID 
LONG IF txtHndl& = 0 

BEEP : BEEP 
XELSE 

txtLen% = {[txtHndl&]} 
osErr% = FN HLOCK (txtHndl&) 
LONG IF osErr% = _noErr 

BLOCKMOVE [txtHndl&] + 2, [txtHndl&], txtLen% 
osErr = FN HUNLOCK (txtHndl&) 
LONG IF osErr = _noErr 

osErr = FN SETHANDLESIZE (txtHndl&, txtlen%) 
LONG IF osErr = _noErr 

tmp$ ="Save file as:" 
filename$= FILES$ (_fSave,tmp$, untitled", wdRefNum%) 
LONG IF LEN(filename$) > 0 

DEF OPEN "TEXTxxxx" 
OPEN "0", #1, filename$, , wdRefNum% 
WRITE FILE #1, [txtHndl&], txtLen 
CLOSE #1 

END IF 
END IF 

END IF 
END IF 
KILL FIELD txtHndl& 

END IF 
END FN 

Edit & Picture Fields 141 



Sending Field Text to a File 

The subroutine takes a standard ZTXT handle, strips out the length and style 
data, and just writes the character data to disk as a TEXT file. 

Cooldown 
That was a long chapter. In it we learned all about edit and picture fields. We 
first learned about the various types of fields, their uses, and how to create 
them. Then, we repeated that for picture fields, emphasizing how to insert 
and retrieve data from both field types. 

Next, we added fields to our windows and then learned about dealing with the 
multitude of events that are generated by user actions in a field. Finally, we 
learned how to read and write text files to and from edit fields. 

142 Ed.it & Picture Fields 



CHAPTERS 

Scroll Buttons 

Warm-up 
This chapter introduces a close cousin of the push, checkbox, and radio 
buttons, the scroll button. In this chapter you will learn: 

+ What scroll buttons are, 

+ The three types of scroll buttons, 

+ How to create scroll buttons, 

+ How to handle scroll button events, and 

+ How to link a scroll button with an edit field. 

What are Scroll Buttons? 
Scroll buttons are a variation of the standard control that enable you to view 
different sections of a document within a window. A scroll button represents 
an entire document in one dimension, either top to bottom, or left to right. By 
changing a scroll button's value, you can view different sections of the same 
document. As Figure 43 shows, if a document is larger than the window 
viewing area, you can use a scroll button to control the visible portion. 

Scroll Button Features 
Scroll buttons (also called scroll bars) consist of a rectangle with arrows at 
each end. Inside the rectangle is a square called the scroll box (or thumb). The 
remainder of the scroll button is known as the gray area. 

Scroll Buttons 143 



Creating Scroll Buttons 

AGURE 43. How scrolling works. 

Document 

Window----• 
viewing area 

This is line number 3 
This is line number 4 
This is line number 5 
This is line number 6 
This is line number 7 
This is line number B 
This is line number 9 

- Up arrow 

- Page up region 

-- Thumb position 

-- Page down region 

..,..Th"""'is""'is~lltPlinll!l'e"'nu""'m,..b'll!le,,.r 1'1"101'-_,,_-- Down arrow 

This is line number 12 
This is line number 13 
This is line number 14 

Since the range of a scroll button is between -32, 767 and 32, 767, its current 
value is identified as the scroll box value (or thumb value). A click in a scroll 
arrow increments or decrements the current scroll value by one. Larger 
changes are made using a page value. A page value is assigned to the scroll 
button upon creation and can be changed later as needs dictate. A click in 
either gray area increments or decrements the scroll box by the page amount. 

Creating Scroll Buttons 
Creating scroll buttons is very similar to creating other buttons. They do 
require several more parameters than regular buttons since they are designed 
to support a range of values. These additional parameters include the: 
current value, minimum value, maximum value, and page value, as well as 
its location in the window and a type. The syntax to create a scroll button is: 

SCROLL BUTTON #btnID%, current%, min%, max%, page%, rect, type% 

A scroll button's btnID% resides in the same control list used by regular 
buttons. Therefore, a scroll button can't have a btnID% already used by 
another button in the window. 

The current% setting is the position of the scroll box, and min% and max% 
represent the lowest and highest values current% can assume for the scroll 
button. The page% parameter controls the amount current% will change 
when the user clicks in a scroll button's gray area. The source shown in 
Program 71 (do not add to SimpleBase) demonstrates how to create different 
scroll buttons in a window. 

144 Scroll Buttons 



Types of Scroll Buttons 

PROGRAM 71. Creating scroll buttons. 

LOCAL FN BuildWnd 
WINDOW #1, "TEST", (0, 0) - (400, 300) , _doc 
SCROLL BUTTON #1, 1, 1, 100, 10, , _scrollVert 
SCROLL BUTTON #2, 1, 101, 200, 10, , _scrollHorz 
SCROLL BUTTON #3, 1, -100, 1, 10, , _scrollOther 

END FN 
FN BuildWnd 
ON DIALOG FN HandleDialogEvent 
DO 

HANDLEEVENTS 
UNTIL 0 
END 

Types of Scroll Buttons 
There are three variations of scroll buttons: _scroll Vert, _scrollHorz, and 
_scrollOther. Vertical and horizontal scroll buttons are often associated 
with document windows. They are automatically placed at a window's edge by 
the runtime and remain there even when the window is resized. From their 
positions they control the vertical and horizontal scrolling of a window's 
contents. The type _scrollOther, or freeform scroll button, can be placed 
anywhere in a window and doesn't change position when the window is 
resized. It's useful for scrolling lists and edit fields. Examine Flgure 44 to see 
examples of the three types of scroll buttons. 

FIGURE 44. Scroll button types. 

Modem 
Dhurralord 
Shamara 

Other scroll button 
works with scrolling 
fields, lists, and variable 
inputs. 

Scroll Buttons 

Cat Directory 

Horizontal scroll 
button used in 
document windows. 

I 
Vertical scroll button 
used in document 
windows. 

145 



Getting the Scroll Box Value 

Getting the Scroll Box Value 
We get the value of a scroll button using the BUTTON function. Scroll button 
events are reported by the _btnClick event. In a program's dialog handler 
use the dlgID% to identify which scroll button was clicked. The BUTTON 

function can return both the current and previous thumb positions. To get 
the current thumb position do this: 

thisThumbPos% = BUTTON (dlgID%) 

To get the previous thumb position use: 

lastThumbPos% = BUTTON 

Program 72 shows how to retrieve both thumb positions. As you can see, 
leaving off the btnID% returns the previous thumb position. Remember, this 
only works when a scroll button is clicked, not with other button types. 

Setting the Thumb Value 
You can reposition the thumb of a specified scroll button by setting the 
current% value of the scroll button. For example, set the thumb anywhere 
between the min% and max% values using: 

SCROLL BUTTON #btnID%, current% 

Other than the btnID% and the current% setting, no additional parameters 
are required. 

PROGRAM 72. Getting the thumb position. 

LOCAL FN HandleDialogEvent 
dlgEvnt% = DIALOG (0) 
dlgID% = DIALOG (dlgEvnt%) 
LONG IF dlgEvnt% = _btnClick 

LONG IF dlgID% = _myScrollBtn 
lastThumbPos% = BUTTON 
thisThumbPos% = BUTTON (dlgID%) 
SELECT dlgID% 

CASE 1 PRINT "Vertical scroll."" 
CASE 2 : PRINT "Horizontal scroll-" 
CASE 3 : PRINT "Other scroll. .. " 

END SELECT 
PRINT "Last thumb position="; lastThumbPos% 
PRINT "This thumb position="; thisThumbPos% 

END IF 
END IF 

END FN 

146 Scroll Buttons 



Changing Scroll Button Values 

Changing Scroll Button Values 
Since a scroll button's scroll box represents a variable range of values, you 
may occasionally need to reset those values. For example, a document used 
in a word processing program constantly increases as the user enters more 
lines of text. If the scroll button doesn't change its max% value, scrolling to the 
bottom of the document would be impossible. 

You can change most scroll button parameters. Exceptions are the btnID%, 

and the scroll button type which can't be changed once they're built. Evecy
thing else is fair game. Just specify the scroll button to change, and then set 
the new parameter. For example, to change the max% value, do this: 

SCROLL BUTTON #btnID%, , , max% 

Set a new page% value like this: 

SCROLL BUTTON #btnID%, , , , page% 

And to reset new min% and max% values: 

SCROLL BUTTON #btnID%, , min%, max% 

Note that all missing parameters are left unaffected by the changes. To 
disable a scroll button, set all parameters to zero like this: 

SCROLL BUTTON. #btnID%, 0, 0, 0, 0 

Linked Scroll Buttons 
One of the best features of FB is its ability to link a scroll button with an edit 
field to produce a scrolling edit field. With just two lines of FB code you 
accomplish what other languages take dozens, if not hundreds, of lines to do. 

There are a few requirements to make this happen successfully, including: 

• You must use the styled edit field exclusively. 

• The edit field and the scroll button must use the same ID value, i.e. 
btnID% = fieldID%. 

• Define a linked scroll button with the negative sign in both the EDIT 

FIELD and SCROLL BUTTON statements. 

That's all the restrictions. So, to create a linked scrolling field, merely do this: 
EDIT FIELD #-1, tmp$, rect, type, just 
SCROLL BUTTON #-1, , , , , rect, type 

Note that both the edit field and the scroll button have identical negative IDs. 
The runtime uses this to determine which field will be linked to which scroll 
button. If the scroll bar is of the type _scroll Vert or _scrollHorz, you don't 
even have to specify the thumb position, the runtime handles that also. 

Scroll Buttons 147 



Linked Scroll Buttons 

When linking a field and a _scrollOther scroll button type, you must 
perform some calculations to properly position the scroll button next to the 
edit field. There is a small subroutine called BuildScrollFld in the FB 
library help file that performs these calculations for you. 

Once a linked field is defined in a program, you don't have to handle a thing 
except for placing new data into the field. The runtime handles the details of 
keeping the edit field contents and scroll button's thumb in perfect sync. 

Regular Exercise 
Now that we understand scroll buttons a bit better, it's time to add one to 
StmpleBase. The main entry window doesn't require a scroll button, but the 
Help window is perfect. The Help window provides users with detailed 
instructions using a linked edit field and scroll button. Insert the code in 
Program 73 into the FN BuildHelpWindow routine. 

PROGRAM 73. Build Help window. 

LOCAL FN BuildHelpWindow 
tmp$ = "SimpleBase Help" 
WINDOW #-_helpWIND, tmp$, (0,0)-(400,260), _doc, _helpWIND 
TEXT _sysFont, 12 

I ••• STATIC TEXT FIELD 
EDIT FIELD #-_helpFLD,"", (4,4)-(382,244), _statFramed, _leftJust 
SCROLL BUTTON #-_helpSCROLL,1,1,1,10,, _scrollVert 

END FN 

Once the Help window build routine is complete, finish the FN Dialog
HelpWindow by adding the event handling code shown in Program 7 4. Here, 
the goal is to watch for a_wndRefresh event. If we get one, we need to ensure 
that the edit field is resized so that it fills the window. We do that by 
recalculating the window size and setting the edit field's rectangle properly. 

We'll see how to add the program instructions later when we talk about TEXT 

resources in the chapter "Strings & Text", but for now, the Help window is set 
up to handle them once they become available. 

Peak Performance 
Working with scroll buttons is exactly the same as working with regular 
buttons. Although they share the same control record, some portions of it are 
used differently. 

148 Scroll Buttons 



Scroll Indicators 

PROGRAM 74. Revised Help window dialog handler. 

LOCAL FN DialogHelpWindow (dlgEvnt%, dlgID%) 
SELECT dlgEvnt% 

I • • • WINDOW EVENTS 
CASE _wndRef resh 

wndX = WINDOW (_width) : wndY = WINDOW (_height) 
EDIT FIELD jj:_helpFLD, "", (4,34)-(wndX-4,wndY-4) 
PLOT 0, 30 TO wndX, 30 

I ••• BUTTON EVENTS 
CASE _btnClick 

SELECT dlgID% 
CASE _prevHelpBTN 

DEC (gHelpID%) 
IF gHelpID% < _firstHelp THEN gHelpID% = _lastHelp 

CASE _nextHelpBTN 
INC (gHelpID%) 
IF gHelpID% > _lastHelp THEN gHelpID% = _firstHelp 

CASE ELSE 
END SELECT 
LONG IF dlgID% > _helpSCROLL 

SCROLL BUTTON t_helpSCROLL, 1 

EDIT FIELD jl:_helpFLD, %gHelpID% 
END IF 

CASE ELSE 
END SELECT 

END FN 

Scroll Indicators 
Occasionally, when using a scroll button, you may wish to display the current 
value. One means of doing this is to find the location of the thumb and display 
the current% setting within it. The example in Program 75 shows how to 
access the thumb position within a control record. 

The thumb position is stored as a handle within the contrlData field of the 
control record. We start by creating a window with two scroll buttons, then 
enable dialog events. When a _btnClick event is detected, the routine gets 
the control's handle using BUTTON&, then uses it to access the contrlData 
handle. Once it has the handle, it looks two bytes into the handle and locates 
the rectangle position of the thumb in the window. A quick copy to a local 
rectangle and draw the thumb value inside the thumb position in the window. 
Then, the AUTOCLIP statement disables all clipping of the control area and 
the current% setting is drawn at the thumb's position. AUTOCLIP is re
enabled and the dialog handler ends. 

Scroll Buttons 149 



Scroll Indicators 

PROGRAM 75. Scroll indicators example. 

LOCAL 
DIM rect.8 
LOCAL FN DoDialog 

dlgEvnt% = DIALOG(O) 
dlgID% = DIALOG (dlgEvnt%) 

LONG IF dlgEvnt% = _btnClick 
scrol1Value% = BUTTON (dlgID%) 
AUTOCLIP 0 : TEXT ,7,,1 
btnH& = BUTTON& (dlgID%) 
rect;8 = [btnH& .. contrlData&] + 2 
PRINT% (rect.left%, rect.top% + 10) USING "###";scrol1Value%; 
LONG IF dlgID% = 1 

tmp$ = "Vertical scroll =" 
XELSE 

tmp$ "Horizonal scroll =" 
END IF 
TEXT ,12,,0 : PRINT%(10,20) tmp$;scrol1Value%; 
CLS LINE : AUTOCLIP 1 

END IF 
END FN 

LOCAL FN Init 
WIDTH _noTextWrap 
WINDOW 1, "SCROLL BUTTON", , _doc : TEXT _geneva, 9, ,0 
SCROLL BUTTON #1, 1, 1, 100, 10,, _scrollvert 
SCROLL BUTTON #2, 1, 1, 100, 10,, _scrollHorz 

END FN 

FN !nit 
ON DIALOG FN DoDialog 
DO 

HANDLE EVENTS 
UNTIL 0 
END 

• Note, the FB n.t.ntime automatically clips out of the drawing area any spare 
occupied by a button or field. You can use AUTOCLIP when needed or set the 
window attribute _noAutoclip when building the window. 

Cooldown 
That's it for scroll buttons. In this chapter you have learned what scroll 
buttons are, the three types available to us, how to create them, and how to 
change their values including current%, min%, max%, and page%. You also 
learned how to link a scroll button with an edit field. 

150 Scroll Buttons 



CHAPTER10 

Records 

Warm-up 
We've done the interface work, now it's time to begin manipulating the data 
we need to store in our employee files. One way to do that is to use record 
structures. In this chapter you will learn: 

+ What records are, 

+ How to define records and create record variables, 

+ How to assign and retrieve data from record variables, 

+ How to create record arrays, 

+ How to move records to edit fields and back, and 

+ How to write and read records from a disk file. 

What are Records? 
Records are a method of organizing related pieces of data into a structure that 
can be manipulated as a single object. A record is a structured format for 
data. Records can store any type of data including text, values, and graphical 
information. 

A record is made up of separate fields. A field is a component of a record that 
contains data in defined format. For example, a rectangle record consists of 
four fields (top, left, bottom, right), each of which holds an integer value. Each 
rectangle field requires two bytes to maintain its data, resulting in a total of 
eight bytes for the rectangle record. The combined size of all record fields is 

called the record size. 

Records 1151 



Record Sjzes 

When accessing a record, it's usually referred to by a record number. The 
record number is the indexed location of the record within a file. Record 
numbers normally begin with zero and increment by one for each record 

thereafter. 

AGURE 45. Program data file containing records. 

r;::::=;:=:::;:==:;i·"''" ················ 

············· 
········· 

r--i. 

I g•• 
.... J:z· ": ........ J .. 

. ·················· 
····· ········ 
················ 
........................ 

#00003 

r Sentie~t Fruit : ] 

(PO Box 13362 I 
I Tucson, AZ :as~~2~3362 I 

...................... __________ .. 

File on disk Records in file Fields In record 

• Note, setting "Arrays without element zero" in the Preferences can ch.ange this. 

Record Sizes 
An individual record can be up to 32K in size. Records used in arrays, 
however, are restrtcted to 256 bytes due to runtime limitations. Future 
versions of FB will probably not have this restrtction. 

• The 32K limit is imposed by the absolute size of single code blocks. Future 
machines may not have this limitati.oTL 

Defining Records 
There are three statements required to define are cord structure: DIM RECORD, 

DIM, and DIM END RECORD. DIM RECORD starts the record definition, DIM defines 
the individual fields within the record, and DIM END RECORD defines the 
record's end and returns its total size and type. A record defined using these 
commands becomes a variable type just as integer, long integer, string, 
single-, and double-precision are variable types. 

One common record is the rectangle record. It's used to define windows, 
buttons, edit fields, graphics, and other object positions. A rectangle record 
contains four integers specifying the top, left, bottom, and right coordinates. 
We define a rectangle record like this: 

152 Records 



Record Types 

DIM RECORD rect 
DIM gtop% 
DIM gleft% 
DIM gbottom% 
DIM gright% 

DIM END RECORD .rectRecSize 

As you can see. each field in the record follows the other in the definition. 
This is exactly how the variables are placed into memory. one right after the 
other. The last statement. DIM END RECORD. returns the total size of the newly 
defined record. The use of the dot (.) in the statement before the size variable 
creates the record structure but allocates NO memory for the record itself. 

• By convention, I always de.fine my record sizes to end with the suffix Recsizefor 
easter recognition. 

Record Types 
Why separate the record definition from the record? It's mainly for clarity and 
consistency in implementation. You don't see or use an integer. you use 
variables of the integer type. Likewise. you don't have a string to manipulate. 
you have a variable of the type string. This same method should be used with 
records. Define the record type. then define variables of that type. For 
example. a look at other variable types reveals this general variable format: 

<varName>[varType] 

where the varType is always an optional identifier. A look at the different 
variable types shows they all run true to form: 
<integerVar>[%] 
<longintVar>[&] 
<stringVar>[$] 
<singlePrecVar>[!] 
<doublePrecVar>[#] 

whereas a record variable looks like this: 

<recordVar>.recordType 

With the dot separating the variable from the record type. When defining 
record variables. the record type must always be appended to the definition. 

Record Allocation 
Using the same example, we can define multiple variables of the same record 
type like this: 
DIM aRect.rectRecSize 
DIM bRect.rectRecSize 
DIM cRect.rectRecSize 

Records 153 



Vartable Sizes 

Where rectRecSize represents the record type, just as the shorthand 
modifiers %, &, $, ! , and #represent their respective variable types. 

However, there may be occasions where this separation of record type and 
variable is inconvenient or unwieldy. In that case, you can use an underscore 
instead of a dot in the DIM END RECORD statement like this: 
DIM RECORD rect 

DIM gTop% 
DIM gLef t% 
DIM gBottom% 
DIM gRight% 

DIM END RECORD _rectRecSize 

This sets aside memory for the record as it's defined. You now have both the 
structure and the variable in one bundle. References to it are made using the 
record name (rect) like this: 

rect.gTop% = 10 

References to individual fields can be by field name or record offset. For 
example, I could say: 

gTop% = 10 

or I could say: 

rect.gTop% = 10 

Both of these set the field gTop%. I prefer the second method because it 
identifies which record I am using. If I just use gTop%, it might as well be 
defined as a global variable. 

Variable Sizes 
There is a shorthand method of defining adjacent variables. Instead of 
defining each one separately, define them instead as a single group. Since we 
know the size of each field variable (2 bytes), it's easy to calculate the total 
record size of eight bytes. If we defined a record to hold car information, it 
might look like this: 
DIM RECORD car 

DIM carRect.8 
DIM carModel% 
DIM carStyle% 

DIM END .carRecSize 

The use of the dot (.) in the DIM statement tells the runtime to define the 
variable using the length after the dot and remember it as a record. As we'll 
see later, defining a variable as a record has some benefits, including the 
ability to copy one record variable into another. 

154 Records 



Zero Length Variables 

We could have also defined the variable like this: 
DIM RECORD car 

DIM carRect;8 
DIM carModel% 
DIM carStyle% 

DIM END .carRecSize 

The use of the semi-colon (;) after the variable overrides the normal variable 
size and sets it to the specified value. Instead of being a sub-record within the 
record, we have a variable carRect% with an additional six bytes attached to 
it. I don't recommend using this format except for special cases. You gain 
nothing by using it, and lose all record handling capabilities allowed with the 
dot specifier. 

Zero Length Variables 
One good use for the semi-colon is to define a variable of zero length. Many 
times you may need to refer to a specific variable in two different ways. The 
common occurrence of this is with a mouse point. 

A mouse point consists of two integer variables specifying the vertical and 
horizontal position of the cursor. Some Toolbox routines, however, expect you 
to pass the point as a single long integer. How can we do both? Simple- create 
a long integer variable of zero length followed by two integer variables like 
this: 
DIM where&;O, posY%, posX% 

The variable where& occupies the same memory as posY% and posX% 

(remember, memory is assigned contiguously) because it's defined as having 
no length. The runtime happily assigns the subsequent posY% and posX% 

variables the same memocy location in its variable lookup table. An example 
of this is: 
posY% = 99 
posX% = 88 

So, if you need to pass the mouse position as a long integer you can pass 
where&, or access either the vertical or horizontal positions using posY% and 
posX%. 

Accessing Record Data 
Now that we understand how to create record types, let's look at storing and 
retrieving data in a record variable. 

When you create a record structure, each field name used in the record 
becomes a constant. Remember that constants are predefined values that can 
be used in place of variables. When we created the rectangle record earlier it 

Records 155 



Assigning Record Data 

created a total of five constants, one for each field name (_gTop, _gLeft, 
_gBottom, and _gRight), and one for the record size LrectRecSize). Each 
field constant represents the actual byte offset from the beginning of the 
record. Thus, _gTop = o, while the field constant _gBottom = 4. The 
illustration in Flgure 46 shows how the record offsets are used to point to the 

individual field data in the variable aRect. 

RGURE 46. Record storage in memory. 

aRect.right% 
aRect.bottom% 

aRect.left% 

l aRect.top% 

' 1 
0 2 4 6 

MEMORY I I I 
_rectRecSi ze = 8 bytes 

When a variable is created by a program, the runtime links the variable name 
to a particular address in memory. Any references in the program to that 
variable causes the runtime to look up the name in its variable list and locate 
the address where the variable's data is stored. 

A record variable consists of a sequence of contiguous bytes stored at a 
specific memory location. If a constant is added to the variable, the runtime 
seeks out the variable's memory location, then offsets the search from that 
location by the number of bytes specified by the constant. For example, to 
print the gbot tom% field in a rectangle record you could do this: 
PRINT aRect.gbottom% 

The runtime looks up the variable aRect and locates its memory address. 
Then, it adds the constant value _gbot tom ( 4) to the first address. The single 
dot (.) tells the runtime to add the subsequent constant to the base variable's 
memory address found in the lookup table. Flnally, it grabs the number of 
bytes specified by the type identifier(%) and prints the information. It sounds 
more complex than it is and besides, the runtime is doing all the work 
anyway. In reality, you don't have to worry about all this. 

Assigning Record Data 
You assign values to the fields in a record just as you would assign any other 
variable value. The only difference is that you use a field constant to provide 

156 Records 



Retrieving Record Data 

the offset into the record where the data should be stored. Additionally, you 
must supply a variable type identifier (%, &, $, ! , #)to tell the runtime exactly 
how much data it should store in the field. 

Let's assume we've defined a record s1ructure that looks like this: 
DIM RECORD miscStuf f 

DIM myVar1% 
DIM myVar2& 
DIM myVar3$ 

DIM END RECORD .miscRecSize 

And created a variable of that record type like this: 
DIM myRecord.miscRecSize 

We can use the implied (with the equal sign) LET statement to assign values 
to Ir\YRecord like this: 
myRecord.myVar1% = 10 
myRecord.myVar2& = &HAABB 
myRecord.myVar3$ = "Fred Hott" 

Which stores an integer(%) into Ir\YVarl, a long integer(&) into myVar2, and a 
string ($) into Ir\YVar3. 

Retrieving Record Data 
Retrieving data stored in a record variable is just as easy. Using the same 
format shown in the previous section, specify the record name, the field 
constant with its dot, and a type identifier. To retrieve the information stored 
in the above example do this: 
PRINT myRecord.myVar1% 
PRINT myRecord.myVar2& 
PRINT myRecord.myVar3$ 

which would output: 
10 
&HAABB 
Fred Hott 

Note again the use of the type identifiers(%,&,$, !, #)in the reading of the 
field data. These are required to tell the runtime how it should read the data 
in the record. 

Nested Records 
One of the best features of record types is the ability to nest one record 
structure inside another. For example, :If you had an object record that 
requires a rectangle, you could define it as shown in Program 76. 

Records 157 



Power Records 

PROGRAM 76. Nesting record types. 

DIM RECORD rectRec 

DIM rect%.8 

DIM END RECORD .rectRecSize 

DIM RECORD objectRec 

DIM oNum% 

DIM oFlag% 

DIM oRect.rectRecSize 

DIM END RECORD .objectRecSize 

Next, create a variable of type objectRecSize and assign values to the 
rectangle record inside as shown in Program 77. 

Additionally, you can use any of the standard Toolbox procedures designed to 
create specific data structures. Here is another way to assign rectangle 
information: 

CALL SETRECT (gObj.oRect, 10, 10, 120, 120) 

As you can see, the runtime knows where the gObj variable is located in 
memory. It then uses the field constant (oRect) to access the nested record, 
and the rectangle constants to reach the correct field. To print out the bottom 
field again you would do this: 

PRINT "Bottom= •;gObk.oRect.bottom% 

PROGRAM 77. Assigning record field values. 

DIM gObj.objectRec 

gObj.oNum%= 1 

gObj.oFlag%= &HAA 

gObj.oRect.top%= 10 

gObj.oRect.left%= 10 
gObj.oRect.bottom%= 120 

gObj.oRect.right%= 120 

Power Records 
One reason for using records is the easy integration it has with all of the 
predefined record structures built into the Macintosh. A simple run through 
the Inside Macintosh volumes shows hundreds of record types just begging to 
be used, if only you could get to the information quickly and easily. Now you 
can. 

For example, every window contains a record that holds all of the information 
required by that window. FB gives us a pointer to the window record using 
either the WINDOW function or the GET WINDOW statement like this: 

158 Records 



Copying Records 

wndPtr& = WINDOW (_wndPointer) 

or this: 

GET WINDOW #wndID%, wndPtr& 

Before constants were available, once you had a window pointer it was 
difficult to access or change the fields directly. The methods included 
reproducing the record using DIM statements or using PEEKS and POKES to 
read/ change the data. 

Now, as soon as you have any window pointer, use the Toolbox field names as 
offsets into the record structure. To access information from the window 
record, use its own field constants (see Inside Macintosh or use the Constants 
tool) as shown in Program 78. 

PROGRAM 78. Reading record fields. 

PRINT wndPtr&.txFont% 
PRINT wndPtr&.txSize% 
PRINT wndPtr&.fgColor& 
PRINT wndPtr&.bkColor& 
PRINT wndPtr&.windowKind% 
PRINT wndPtr&.strucRgn& 
PRINT wndPtr&.contRgn& 
PRINT wndPtr& .. titleHandle$ 

Notice the use of double dots for the window title. Use this technique to read 
the contents of a handle (a handle is a pointer to a pointer) stored in a record. 
In this case, it's the window title. Of course, you can also assign values 
directly using this same technique. Now, isn't that better? 

Copying Records 
.Another nifty record feature is the ability to copy data from one record into 
another, as long as both are identical record types. For example, you can copy 
one rectangle variable into another by doing this: 
aRect = bRect 

Note that you can't do this if the variables don't have matching record types, 
nor if they've been defined using a semi-colon. 

Record Arrays 
Record arrays are easy to implement and use. Taking our earlier example of 
ten rectangles we can define an array to store them like this: 
DIM RECORD rectRec 

DIM rect%.8 
DIM END RECORD .rectRec 

Records US9 



Reading & Writing Records to Files 

DIM gMyRect.rectRec (9) 

and use it like this: 
elementNum% = 0 
CALL SETRECT (gMyRect(elementNum%), 10, 10, 120, 120) 

We then define constants to represent individual rectangles and access them 
this way: 
_wndR = 0 
_okBtn= 3 
CALL FRAMERECT (gMyRect(_wndR)) 
CALL FRAMERECT (gMyRect(_okBtn)) 

Records used in arrays are limited to 256 bytes in size. Using records larger 
than this can cause unpredictable results when reading or writing to records 
in the array. 

Reading & Writing Records to Files 
Variables defined as record types can be written to and read from disk files by 
using their names. Since the runtime already knows the total record size, it's 
not much of a chore. For example, to write the object record defined earlier to 
disk you can do something like what's shown in Program 79. 

PROGRAM 79. Writing records to disk. 

LOCAL FN WriteRecord (recNum%) 
OPEN "R",1,"MyFile", _objectRec, wdRefNum% 
RECORD #1, recNwn%, 0 
WRITE #1, myObj 
CLOSE #1 

END FN 

This routine opens a file with the OPEN statement, sets the record position 
using RECORD, then writes the record variable to disk with WRITE. Finally, the 
file is a closed. We will examine these routines in more detail later in the 
chapter "Files". 

To read it back into memory just reverse the process and use a routine much 
like that shown in Program 80. 

PROGRAM 80. Reading records from disk. 

LOCAL FN ReadRecord (recNwn%) 
OPEN "R",1,"MyFile", _objectRec, wdRefNwn% 
RECORD #1, recNwn%, 0 
READ #1, myObj 
CLOSE #1 

END FN 

180 Records 



Records to Fields and Back 

Again, what could be easier? 

Regular Exercise 
Now that we understand records better, it's ti.me to develop the ones required 
by SimpleBase. The record structure for our project can be seen in 

Program 81. 

In most cases the fields in this record are string variables. This was done 
because most of the information we will be storing is best described by 
strings, and not numbers. The two exceptions relate to the employee's 
department which we will represent using a button number, and the resource 
ID of the employee picture. 

The semi-colon variation of specifying a variable size was used here to define 
our string fields. This tells the runtime that we want to set aside X number of 
bytes for that variable, no more, no less. This means we must be careful to 
check that the data we write to those fields never exceeds the length count, or 
risk corrupting the variable adjacent in memory. Also, it means our actual 
string length is one character less than the formatted size, leaving room for a 
length byte. 

PROGRAM 81. SimpleBase record structure. 

I --- RECORDS ----------------------------------------
DIM RECORD dbRecord 

DIM dbName$;64 
DIM dbAddr$;64 
DIM dbCity$;32 
DIM dbMyState$;4 
DIM dbZip$;12 
DIM dbPhone$;12 
DIM dbFax$; 12 
DIM dbDeptNum% 
DIM dbPictID% 
DIM dbExtra& 

DIM END RECORD .dbRecordSize 

Records to Fields and Back 
Once we've defined the record structure, we need some way of storing that 
record info. And after the records are stored in memory, we need some way to 
read the data into our edit fields and retrieve any changes for later updating. 

When we first talked about records, we stated that defining a record structure 
is not the same as defining a record variable. Once the structure is in place, 

Records 161 



Records to Fields and Back 

we define a record variable using the record type (record size). For our 
program we only need one record variable which we define like this: 

DIM gEmployee.dbRecordSize 

Where DIM RECORD only defined the record structure, this DIM statement now 
sets aside memory for the employee record. This is the location where the 
current active record's information will be stored. 

Not to jump ahead of ourselves, but if we assume that the gEmployee variable 
contains valid employee information, we need some means of transferring 
that data into the relevant edit fields of the data entry window for display. The 
subroutine RecordFieldToEF in Program 82 uses the field constants created 
earlier to place the data into the specified edit field. 

PROGRAM 82. Record to edit field. 

LOCAL FN RecordFieldToEF 
oldWnd% = WINDOW (_outputWnd) 
WINDOW OUTPUT #_dbEntryWIND 

EDIT$(_dbNameFLD) 
EDIT$(_dbAddrFLD) 
EDIT$(_dbCityFLD) 
EDIT$(_dbStateFLD) 
EDIT$(_dbZipFLD) 
EDIT$(_dbPhoneFLD) 
EDIT$(_dbFaxFLD) 
EDIT$(_dbPhotoFLD) 

= gEmployee.dbName$ 
= gEmployee.dbAddr$ 
= gEmployee.dbCity$ 
= gEmployee.dbMyState$ 
= gEmployee.dbZip$ 
= gEmployee.dbPhone$ 
= gEmployee.dbFax$ 
= %gEmployee.dbPictID% 

FN RadioButtonHandler (_programBTN, _officeBTN, gEmployee.dbDeptNwn%) 

WINDOW OUTPUT #oldWnd% 
END FN 

The subroutine starts by ensuring that we're transferring data from the 
correct window using. The WINDOW function returns the current output 
window, then WINDOW OUTPUT makes sure we're at the Data Entry window. 
When finished with the data transfer, it resets the original output window. 

Next we use the EDIT$ statement to replace the contents of the specified edit 
or picture field with new data. There are two exceptions, the first is the 
RadioBtnHandler routine. It uses the value stored in dbDeptNum% as the 
department number to set the appropriate radio button. The second 
exception is the employee picture that is assigned directly, using the picture's 
resource ID. 

Once the data is in the correct edit fields, it's possible (actually pretty darn 
likely) that the user will modify that information. Therefore, our next step 

162 Records 



Records to Fields and Back 

involves adding a routine to extract the new information in the proscrtbed 
fields and place them in the correct gEmployee record fields. 

Remember, earlier we defined our string fields to be a finite length. That 
means we rtsk overwriting an adjacent field's data should one field exceed its 
length. To solve this, we add the subroutine CheckFieldLength$ that uses 
the LEFT$ statement to ensure that the data taken from an edit field doesn't 
exceed its field length. This routine is shown in Program 83. 

PROGRAM 83. String length checker. 

LOCAL FN CheckFieldLength$ (fieldID%, maxLen%) 
tmp$ = EDIT$ (fieldID%) 
LONG IF len (tmp$) > maxLen% 

BEEP 
tmp$ = LEFT$ (tmp$, maxLen%) 

END IF 
END FN = tmp$ 

With our length checking routine in place, it's time to extract the data from 
the edit fields and copy it into our record. The EFtoRecordField function 
shown in Program 84. Note that the strtng length passed to CheckField

Length$ is one less than the string's defined length. 

PROGRAM 84. Edit field to record. 

LOCAL FN EFtoRecordField 
oldWnd% = WINDOW (_outputWnd) 
WINDOW OUTPUT #_dbEntryWIND 

gEmployee.dbName$ 
gEmployee.dbAddr$ 
gEmployee.dbCity$ 

= FN CheckFieldLength$ (_dbNameFLD, 63) 
= FN CheckFieldLength$ (_dbAddrFLD, 63) 
= FN CheckFieldLength$ (_dbCityFLD, 31) 

gEmployee.dbMyState$ = FN CheckFieldLength$ (_dbStateFLD, 3) 
gEmployee.dbZip$ = FN CheckFieldLength$ (_dbZipFLD, 11) 
gEmployee.dbPhone$ = FN CheckFieldLength$ (_dbPhoneFLD, 11) 
gEmployee.dbFax$ = FN CheckFieldLength$ (_dbFaxFLD, 11) 

WINDOW OUTPUT #oldWnd% 
END FN 

Now we can deal with the string data itself. The department data is handled in 
the DialogEntryWindow routine when handling button events. Whenever a 
button is pushed in the Data Entry window, the program determines which 
button it was and responds by calling RadioBtnHandler and then setting the 
dbDeptNum% field. This is shown in Program 85. We will see how to handle the 
picture resource ID in a later chapter. 

Records 163 



Records to Fields and Back 

PROGRAM as. Handling radio buttons. 

SELECT evnt 
CASE _btnClick 

SELECT dlgID% 
CASE _newRecBTN 
' skip showing others 
CASE ELSE 

FN RadioButtonHandler (_programBTN, _officeBTN, dlgID%) 
gEmployee.dbDeptNum% = dlgID% 

END SELECT 
CASE ELSE 

END SELECT 

Peak Performance 
While the implementation of records in FB was a welcome addition to BASIC 
programmers, it doesn't provide all of the features some people desire. 
Probably the main capability records currently lack, is that of including 
arrays within a record definition. While a problem, it does have a solution, 
one that allows you to have your arrays in a record. To do that, we11 borrow a 
strategy used quite often by Apple when implementing various Toolbox 
records. That strategy is handles. 

Examine the Toolbox text edit record shown in the FB Reference manual 
under TEHANDLE. Note the record field teTextH&. This handle points to the 
actual text data for that field. Examine Figure 47 to see how the handle in the 
TE record points to a memory address. The data isn't stored in the record 
itself, only its handle address. We can use this same technique to create and 
manipulate arrays for our own records. Let's see how to do that. 

To begin, we'll need three routines to deal effectively with our arrays: one to 
create the array, one to resize as required, and one to dispose of it once we're 
done. Also, we'll want our routine to work with any type or size of array, so it 

RGURE 47. From handle to data memory path. 

TeTextH& TePtr& 

Handle Pointer 

164 Records 

The Ever Present 
Tortured Artist 

Effect 

Data in memory 



Creating the Array 

must be flexible. Additionally, we need one little trick to pull off this array 
masquerade, and that is the XREF@ statement. XREF@ will link our amorphous 
handle to a more standard array structure. 

With those goals in mind, let's see how to create records that contain arrays. 

Creating the Array 
The size of an array depends on two conditions, the number of elements in 

the array, and the size of each element. We should have some method of 
defining the standard sizes. The following is a list of the major variable types 
defined as constants, along with their default sizes in bytes: 
_integer = 2 
_long Int = 4 
_single = 4 
_double = 8 
_string = 256 

• Note that the _single and _double size specifications are dependent on their 
length settings in the Preferences dialog in FB. 

Next, define a small record structure to handle the array overhead required by 
our routines. It's not much, merely 10 bytes per usage, but very important to 
controlling the array. The record contains three fields. The first field is the 
array handle itself. The second contains the size of the array elements, be it 
integer, long integer, or other. Finally, we end the record with the total count 
of elements in the array. Our array record is shown in Program 86 as well as 
the record variable. 

With all that out of the way, it's time to write a subroutine to create an array 
handle. The routine shown in Program 87 expects three variables: a pointer to 

PROGRAM 86. Array handling record structure. 

DIM RECORD array 
DIM elemSize% 
DIM numElems& 
DIM recArrayH& 

DIM END RECORD .arrayRecSize 

DIM RECORD test 
DIM testRect.8 
DIM testArray.arrayRecSize 
DIM 63 testStr$ 

DIM END RECORD .testRecSize 

DIM gTest.testRecSize 
END GLOBALS 

Records 165 



Linking the Array 

PROGRAM 87. Create record array. 

LOCAL FN CreateArray (@recFieldPtr&, size%, elements&) 
recFieldPtr&.elemSize% = size% 
recFieldPtr&.numElems& = elements& 
recFieldPtr&.myArrayH& = FN NEWHANDLE (elements& * size%) 
LONG IF (recFieldPtr&.myArrayH& = 0) OR (SYSERROR <> 0) 

BEEP : BEEP 
arrayErr% = SYSERROR 

END IF 
END FN = arrayErr% 

a record field, the size of the elements (in bytes) in the array, and the number 
of elements the array should initially contain. 

The FN CreateArray routine starts by assigning the size% and elements& 
parameters to the specified record field. It then creates a handle of the 
calculated size (size% * elements&) using the Toolbox function NewHandle. 
If successful, we get a valid handle back which is stored in the correct field of 
the record. If the array handle comes back zero, or a system error is detected, 
we set an error and exit the function. Always test the error result returned by 
this function. If the error code is anything but zero, the handle wasn't 
created. Any subsequent attempt to use it will fail dismally, and probably 
with assorted pyrotechnics. 

• I can't emphasize this point enough. When using handles and pointers on the 
Macintosh. always test for valid parameters before continuing with the progrrun 
You'll avoid a lot ofprograrruning trouble if you get into the habit of always 
checking them 

We call the routine like this: 

err% = FN CreateArray (gTest.testArray, _integer, 100) 

Where gTest. testArray is the field in the record that needs an array. We 
want integers (2 bytes each) so pass that constant, and 100 elements makes 
for a nice round handle of 200 bytes. 

Linking the Array 
Once we have a valid handle in our record, the next step is to link it to a 
common array. We do that using XREF@. XREF@ acts like a translator, linking 
the defined array structure to the named handle. In this way, we don't have to 
calculate offsets into the handle to set or get information, XREF@ does it for us. 
Remember, XREF@ is a close cousin to DIM, so we use the same syntax we 
would with DIM to define the array structure. We do that like this: 

166 Records 



Disposing of the Array 

XREF@ gTest.testArray.recArrayH% (100) 

Where we use the same name as in the handle to define an integer array with 
100 elements. Note the use of the% symbol to specify an integer array, just as 
you would do with a DIM statement. Also note that we must use the same 
name as the handle in order for the runtime to make the link between the 
array and the handle. 

Once the array and handle are linked, we can fill in and read values as if it 
were a regular array. To fill in the 100 elements and see them you do this: 
FOR count = 1 TO 100 

gTest.testArray.recArrayH% (count) = count 
PRINT "Array: "; gTest.testArray.recArrayH% (count) 

NEXT count 

As soon as data is in the array, use it like any other array structure in the 
program. You can change values like this: 
gTest.testArray% (23) = 333 

Use arrays in calculations, or anywhere else your program requires them. 
Remember, it's just an array, use it like one. 

Disposing of the Array 
When finished with the array we must dispose of the handle used to store the 
data. This breaks the link to the XREF@ array structure and frees up the 
memory occupied by the handle for other uses. The routine to dispose of the 
handle is shown in Program 88. 

Again, we ensure we have a valid handle before trying to dispose of it, then 
reset the handle to zero so it can't be reused again. 

PROGRAM 88. Disposing of record arrays function. 

LOCAL FN DisposeArray (@recFieldPtr&) 
LONG IF recFieldPtr&.myArrayH& = 0 

arrayErr% = _nilHandleErr 
XELSE 

DEF DISPOSEH (recFieldPtr&.myArrayH&) 
recFieldPtr&.myArrayH& = 0 

END IF 
END FN = arrayErr% 

Resizing the Array 
Now we come to another benefit of using a handle to create an array. By 
resizing a handle we can effectively increase or decrease the number of 
elements the array structure has access to. That means that as your 

Records 167 



Resizing the Array 

PROGRAM 89. Resizing record arrays function. 

LOCAL FN SizeArray (@recFieldPtr&, newElemCount&) 
LONG IF recFieldPtr&.myArrayH& = 0 

arrayErr% = _nilHandleErr 
XELSE 

newSize& = recFieldPtr&.elemSize% * newElemCount& 
oldSize& = FN GETHANDLESIZE (recFieldPtr&.myArrayH&) 
LONG IF newSize& <> oldSize& 

arrayErr% = FN SETHANDLESIZE (recFieldPtr&.myArrayH&, newSize&) 
arrayPtr&.numElems% = newElemCount& 

END IF 
END IF 

END FN = arrayErr% 

requirements for more elements grow, so can the size of your array. If 
requirements decrease, the handle can be reduced to match. 

The routine to resize an array handle can be seen in Program 89. The routine 
requires a pointer to the record field that contains the handle, and the new 
element count. The routine recalculates the appropriate size and resizes the 
handle if required, using the new value. 

Cooldown 
That finishes our tour of records. Along the way we learned what records are, 
how to create them, how to access their vartables for writing and reading, and 
how to write them to disk and read them back later. We also saw how easy it 
is to pass record fields to an edit field for display and how to extract any new 
information from the edit field. 

Finally, we saw how to handle resizeable arrays within a record structure by 
using handles and the XREF@ statement. 

168 Records 



CHAPTER 11 

Files 

Warm-up 
This chapter introduces you to file handling on the Macintosh. In this chapter 
you will learn: 

+ How Macintosh files are organized, 

+ Two methods of locating files on Macintosh volumes, 

+ How to open, close, and get information about a file, 

+ Three ways of saving and reading file data, and 

+ How to use the standard open and save dialogs. 

Macintosh Files 
A file is data stored on disk. Files are created by an application as an ordered 
sequence of bytes on a Macintosh volume. A file can contain text, numerical 
data, images, and anything else a program can organize and write to disk. 

Typically, files containing user data are referred to as documents when 
describing them to users. A document is any file a user can create or edit. A 
document has a specific file type. A file type is a 4-character alphanumeric 
sequence that describes the type of data the file contains (TEXT, PICT, or 
others). Some common file types can be opened by many applications (TEXT), 

while others can only be opened by the program that created them (SbDb, 

used by SimpleBase files). 

Files 169 



Macintosh Volumes 

Macintosh files contain two forks for storing information. One fork is called 
the data fork, the other is the resource fork. The data fork contains the file's 
data and is accessible using standard file commands (OPEN, READ, WRITE, 

CLOSE, and others). The resource fork contains file resources and is 
accessible using Toolbox commands. A file can contain a data fork, a resource 
fork, or both. 

Resources are blocks of arbitrary amounts of data identified by a 
combination of name, resource type, and ID number. Some types of resources 
are common to many Macintosh applications and have a standardized format 
including MENU, CODE, DLOG, ALRT, TEXT, etc. For more information on 
resources, see the chapter "Resources". 

RGURE 48. Macintosh file forks. 

_., 
- Datafork 

Resource map 
File ....... 

~ "ICON" resource -- Resource fork 

"TEXT' resource 

"TEXT' resource 

Macintosh Volumes 
A volume is any storage device formatted to store files created by an 
application. Macintosh volumes are organized using folders. A folder is a 
subdivision of a Macintosh volume that can contain files or other folders. 
Folders are sometimes known as directories. Folders nested within other 
folders are also known as subdirectories. 

Flles can be located and accessed using a variety of means. We'll describe two 
common methods here: pathname and working directory reference number. 

Full Pathnames 
A full pathname is a series of concantenated folder names ending in a file 
name. A full pathname serves to uniquely locate a file by having the 
Macintosh File Manager walk a string of folder names until the file or folder is 
found. The folder name and the file name are separated from each other by a 
colon in a full pathname. 

170 FYles 



Working Directories 

RGURE 49. Macintosh volume design. 

Macintosh volume I 111111II11 .J----

0------ Directory 

______ I + I _ __., 

o ocJ-
A full pathname might look like this: 

Subdirectories and 
file 

MAC•l:Prograrnrning:Book Programs:l5.Files(02) 

Where "MAC• l" is the volume name and ":Programming: Book Programs" is 
the search path through two folders, and "15. Files ( 02)" is the file name. A 
full pathname tells a file opening routine how to locate the file by starting at a 
specific volume and leading it through the correct folders until the file is 
found. 

Using pathnames was somewhat common in the early years of Macintosh 
programming, but it does have a couple of problems on today's machines. The 
main problem is a pathname is stored as a string, so it's limited to only 255 
characters. On today's larger hard drives folders can be buried many levels 
deep and a full pathname can easily exceed the length of a string. Even small 
drives can have trouble if a user assigns long descriptive folder names. 
Another problem is that any folder that has been renamed in the path will 
disrupt the file search totally. Figure 50 shows how a full pathname looks at 
every intermediate folder until it finds the specified filename. 

So, using a full pathname has some advantages, but much better solutions 
are available as described in the next section. 

Working Directories 
A working directory reference number (WD) is a temporru:y reference 
number that combines a volume reference number with a directory ID to 
uniquely identify a folder. A working directory reference number is assigned 
by the operating system when a folder is opened and remains valid only while 
the folder is open. If the folder is closed and then reopened, it might have an 
entirely different value assigned to it. 

Files 171 



File Commands 

RGURE 50. Searching by full pathname. 

Full pathname: 
MAC•1 :Programming:Book Programs: 15.Files(02) 

l11111111iii1iiii1I D D D 
.______t I t I t 

Using working directory reference numbers, the File Manager can go directly 
to a specified folder to locate a file. And since working directory reference 
numbers are easy to get with standard FB commands, they are simple and 
convenient to use. 

For SimpleBase, we'll use the working directory reference number method of 
locating files. This is the one that the FB runtime supports and probably the 
one you should use in your own programs. Figure 51 shows the search path 
using just the filename and WD reference number. Note the lack of jumps 
between folders. 

RGURE 51. Searching by filename and working directory. 

Filename: 15.Files(02) 
WO number: -35766 

111111111iiii1mi1 D B D 
I t 

File Commands 
FB contains several statements and functions that make creating and 
managing files quick and easy. Let's discuss each one before adding any file 
handling code to SimpleBase. 

Opening a File 
The standard statement for opening any file is OPEN. Opening a file called 
"Fred" for input looks like this: 

OPEN "I", #fileID%, °Fred", 1, wdRefNurn% 

172 Files 



File Permissions 

The OPEN statement requires five parameters. These parameters include the 
file permission, the file ID number, a filename, a record size, and a working 
directory reference number. The last two parameters, record size and WD 
reference number can be optional, although I strongly suggest you always use 
the WD number. 

TABLES. File Privileges. 

METHOD ACCESS PERMISSION 

I (input) read-only 

0 (output) write-only 

A(append) write-only 

R (random) exclusive read/write 

N (network) shared read/write 

Fi.le Permissions 
There are five methods described in Table 8 for opening a file. These methods 
determine how the OPEN statement in a program can interact with a file. 
Which method you use will be determined by what you are trying to 
accomplish with the file. For example, if you only need to read a text file you 
might use "I" (input). To write it back out to disk use the "O" (output) 
method . To open a file using write permission do this: 

OPEN 11 0", #fileID%, "Fred0 , 1, wdRefNum% 

And, to open a file with shared read/write permission use: 

OPEN "N", #fileID%, "Fred", 1, wdRefNwn% 

Data vs. Resource Forks 
Since there can be two forks associated with a file (data and resource), the 
OPEN statement also lets you open either file fork. In almost all cases, you will 
open the data fork. However, in rare circumstances you may need to open the 
resource fork. Once a file fork is open, this is where data will be read from 
disk using INPUT#, READ#, READ FILE# and written back to disk using PRINT#, 

WRITE#, or WRITE FILE#. 

You specify which fork to open by appending a "D" (data) or an "R" (resource) 
to the access mode parameter. By default, if no fork is specified, the data fork 
is assumed. For example, to open the resource fork of a file do this: 

OPEN "IR", #fileID%, "Fred", 1, wdRefNum% 

Files 173 



ThefileID% 

We will only deal with a file's data fork in this chapter. While it's possible to 
access the resource fork using the OPEN statement I don't recommend it 
unless you have a very firm grasp of how a resource fork is organized. 
Fumbling around a file's resource fork is guaranteed to corrupt a file beyond 
redemption. In later chapters we'll describe how to access a file's resource 
fork safely using standard Resource Manager calls. 

TheftleID% 
The next parameter OPEN expects is the fileID% (or deviceID%) itself. A 
file ID% is a positive integer limited by the maximum open files setting in the 
Preferences dialog. A deviceID% is normally negative and refers to a serial 
port or other device. We will only deal with fileID%s here. 

Whenever FB opens a file, it allocates space for a file information buffer. A file 
information buffer is simply a block of memory reseived by FB for holding 
file information. This information includes the file size, type, creation and 
modification dates, as well as other information. 

The number of files a program can have open at one time is limited to the 
number of file buffers allowed. Choose Preferences from the Edit menu to 
reset the maximum number of open files FB can handle at one time. The limit 
is 99. Increasing the open file limit increases the amount of space allocated 
for file buffers, so don't set it unnecessarily high. 

Filenames 
The filename$ parameter is normally an individual file name, but can be a 
full or partial pathname containing volume and folder names, as well full a 
file name. See the "Full Pathnames" section for a complete description of 
pathnames. 

Record Length 
The recordLength parameter is used to specify the maximum size of an 
individual record contained within a file. A default length of 256 bytes is 
assigned by the runtime if a record length is not specified in the OPEN 
statement. You can safely leave this parameter blank if the data you are 
reading or writing doesn't have a default length. 

Working Directory ID 
The final parameter is the wdRefNum%. This is an integer value that uniquely 
.identifies a folder in a particular volume. See the 'Working Directories" 
section for additional details. It's the easiest method to use in FB and our 
preferred method for opening files in folders. 

174 Files 



Getting the File Size 

Getting the File Size 
Once a file is open, it's possible to determine its size using the LOF function. 
Given a fileID%, LOF returns the size of the file fork opened with the OPEN 

statement. Here is an example of getting a file size (for the data fork): 

OPEN "I", #fileID%, filename$, , wdRefNum% 
fileSize& = LOF (fileID%, 1) 
PRINT "The file "+filename$+" contains ";fileSize&;" bytes.• 
CLOSE #fileID% 

The second parameter in LOF is used to specify a record length. When given a 
value of 1 (as shown above), it returns the byte count of the specified file fork. 
When given any other value, it returns a result that is the file size divided by 
that value. This comes in handy when dealing with records. For example, if 
we have a file that is 300 bytes in size and each record has a length of 60 
bytes, LOF will return a count of five records. 

To get the size of a file that contains both a data and a resource fork (as do 
SimpleBase files) use the subroutine shown in Program 90. It automatically 
opens and closes both file forks, getting the fork size each time, and 
returning the total size to the subroutine caller. 

PROGRAM 90. Get real file size using OPEN. 

LOCAL FN GetFileSize& (fileID%, filename$, wdRefNum%) 
OPEN "ID", #fileID%, filename$, , wdRefNum% 
dataSize& = LOF (fileID%, 1) 
CLOSE #fileID% 
OPEN "IR", #fileID%, filename$, , wdRefNum% 
rsrcSize& = LOF (fileID%, 1) 
CLOSE #f ileID% 

END FN = dataSize& + rsrcSize& 

Setting File Positions 
Once a file is open, we use the RECORD statement to position the file pointer 
within the file. A file pointer is the position in the file where the next read or 
write operation will start. RECORD is very flexible when it comes to setting the 
file pointer. 

RECORD requires three parameters, the fileID%, a recordID&, and a 
bytePos%. The fileID% identifies which open file to operate on, the 
recordID& identifies the record position from the start of the file (if you're 
using records), and bytePos% specifies a byte offset from the start of the 
record. Thus, to specify byte 14 in record 125 in file 3 we can do this: 

RECORD #3, 125, 14 

Files 175 



Getting File Positions 

RGURE s2. Positioning the file pointer. 

RECORD fileID%, recordID&, bytePos% 
RECORD fileID%, 1 , 4 

J ' I i I II 
t t t 
Record= 0 Record= 1 Record= 2 

You can see how this works in Figure 52, when a file is opened which 
contains records 6 bytes long. We use RECORD to position the file pointer to the 
fourth byte of the first record. 

• Note that by default in FB, record rero is a valid record. 

Getting File Positions 
Often, you will need to determine the file pointer position to know which 
record or byte offset in a record it is reading from. Use the REC and LOC 
functions to return this information. 

To determine the record number where the file pointer is currently 
positioned, use the REC function like this: 

recordID% = REC(fileID%) 

To get the byte offset within the current record, use the LOC function: 

bytePos& = LOC (fileID%) 

RGURE 53. Record organization on disk. 

LOC = 4 

1 REC = 1 

• I ~ I 
t t t 
Record =0 Record= 1 Record= 2 

File pointer is here 

176 Files 



Saving Data 

Saving Data 
Once a file has been opened, it's possible to save information to disk. FB 
offers you several methods of accomplishing this. The method you choose will 
depend upon the data to save. 

PRINT# 
When it comes to writing data to disk, the PRINT# statement is the statement 
of choice for most BASIC programmers. It allows them to write strings and 
numbers to disk without a whole lot of trouble. PRINT#, however, as an means 
of outputting data to disk is very slow. For example, to write a single string 
variable to disk you can do this: 

PRINT #fileID%, tmp$ 

Or, you can write several numbers and strings to a file like this: 

PRINT #fileID%, tmp$, myint%, myLong&, mySp! 

And, to print a dozen strings to disk as a TEXT file, use this: 

DEF OPEN "TEXT????" 
OPEN 11 0 11 , #fileID%, fileName$, , wdRefNum% 
FOR lineCount% = 1 to 12 

PRINT #fileID%, tmp$(lineCount%) 
NEXT lineCount% 
CLOSE #f ileID% 

This example opens the file for output only (since we're only sending data to 
disk), then loops through the dozen strings printing each to disk in turn. The 
DEF OPEN statement specifies the file type FB will assign to the file upon 
creation. We will talk more about file types later on in the "Getting the File 
Type" section. · 

The alter ego of PRINT# is the INPUT# statement. See the "INPUT# & LINE 
INPUT#" section for more details. 

WRITE# 
The WRITE# statement is a faster means of writing data to disk. WRITE# sends 
data to disk in the binary format used to store it in memory. The runtime 
writes the data to disk without any translation, reducing the calculation 
overhead and increasing output speed. 

WRITE# already understands variable types like integers, long integers, single
and double-precision variables. It also understands record types. As with 
standard variables, the runtime already knows the record size and can treat it 
appropriately. Just give it the variable name of a record and let WRITE# do its 
job like this: 

Files 177 



WRlTEFILE# 

DIM myRecordVar.myRecordType 
WRITE #fileID%, myRecordVar 

The only variable type the runtime needs help with is strings. Since a string 
variable can range from 1 to 255 characters, WRITE# expects you to tell it how 
many characters to write to disk. This enables you to save space in a file by 
reducing the length of any string written to disk to the absolute minimum. To 
write a string variable simply do this: 

author$ = "HEINLEIN" 
WRITE #fileID%, author$;LEN (author$) 

It's important to set the string variable accurately, because Jf you set the 
length too low, some characters will be lost. If you set it too high, WRITE# 

assigns additional space characters to fill up the length. To see results of 
either length error, examine Flgure 54 which illustrates both problems. 

The alter ego of WRITE# is the READ# statement. See the "READ#" section for 
more details. 

WRITE FILE# 
For arrays, INDEX$, and other large data structures, neither of the previous 
two statements beat using WRITE FILE# in speed. Using the WRITE FILE# 

statement requires three parameters: a fileID%, a pointer to the data, and 
the number of bytes to write to disk. When executed, WRITE FILE# begins at 
the specified address. reads the specified number of bytes, then writes it to 
disk as a single block of data. Wrttlng an entire IM array to hard disk takes 
less than a second on a standard Macintosh II. 

Program 91 demonstrates the speed of WRITE FILE# in place of traditional 
sequential methods, i.e., PRINT#. The Toolbox function TickCount returns 
the number of ticks between the start of the write operation and its ending 

FIGURE 54. Writing strings to disk. 

WRITE #1, tmp$;4 

I 041 H I E I I I N I ... _..,._ ___ Characters clipped at 4. 

WRITE #1, tmp$;8 

WRITE #1, tmp$;15 

178 Ftl.es 

Filler spaces 
written to disk. 

I I 



Reading Data 

PROGRAM 91. Writing data to disk with WRITE FILE#. 

_arrayElements = 100000 
DIM myArray% (_arrayElements), endOfArray% 
myArraySize& = @endOfArray% - @myArray% (0) 
OPEN 11 0 11 , #1, "WRITE FILE Test", , SYSTEM (_aplVol) 
startTime& = FN TICKCOUNT 
WRITE FILE#l, @myArray%(0), myArraySize& 
stopTime& = FN TICKCOUNT 
CLOSE #1 
PRINT "Total ticks (1/60th Sec) =";stopTime& - startTime& 
STOP 

time. Each tick equals 1 /60th of a second. Tryincreasingthe_arrayElements 
constant beyond its current value to see how efficient WRITE FILE# really is. 

Also. notice how we calculated the size of our array. by getting the address to 
the next DIM'ed variable minus the first element of the array. We did this 
using the shorthand version ofVARPTR (the @sign). Since the runtime 
allocates memory to dimensioned variables in sequence, the endOfArray% 
variable comes right after the array in memory position. making it easy to 
calculate the array size. 

Next, we open a new file and write the information in the array to disk. The 
Toolbox TickCount function gives us the start and stop times which we 
display at the end of the entire operation. 

The alter ego of WRITE FILE# is the READ FILE# statement. See the section 
"READ FILE#" for more details. 

Reading Data 
Once the data is written to disk. getting it back into memory is not difficult. 
Mostly, it's a matter of reading the data back in using the same format as 
when it was written to disk. 

INPVT# & LINE INPVT# 
The INPUT# statement is the statement of choice to read data back into 
memory. Like PRINT#, u·s a bit slow because of the string conversion 
overhead, but it's reliable and easy to use. 

INPUT# is the mirror image of PRINT#. To read information from disk back 
into memory, copy the save disk routine and change all PRINT# statements to 
INPUT# statements. For example, to read a single string variable from disk: 

INPUT #fileID%, tmp$ 

Files 179 



READ# 

To read a combination of numbers and strings back into memory, use: 

INPUT #fileID%, tmp$, myint%, myLong&, mySp! 

Also, LINE INPUT# works great if you know the file you're about to read is 
nothing but a collection of strings. To read a dozen strings previously saved 
as a TEXT file back into memory, copy the subroutine and change the PRINT# 

to LINE INPUT# like this: 

OPEN "I", #fileID%, fileName$, , wdRefNwn% 
FOR lineCount% = 1 to 12 

LINE INPUT #fileID%, tmp$(lineCount%) 
NEXT lineCount% 
CLOSE #fileID% 

READ# 
READ# is the opposite of WRITE#, it accepts the same arguments used by 
WRITE# and reads the data back into the specified variables. As before, strings 
must be read using a length. And, as with PRINT# and INPUT#, create the 
read subroutine by copying the save subroutine and converting all WRITE# to 
READ# statements. For example, to read the same record used in the WRITE# 

example, do this: 

READ #fileID%, myRecordVar 

To read a string back, remember to assign the same length to the string 
variable used: 

READ #fileID%, author$;15 
PRINT author$ 

which will print: 

HEINLEIN 

Of course, you must be sure to specify the same number of characters to read 
as were previously written. 

READ FILE# 
READ FILE#, like WRITE FILE#, may be used to read large blocks of 
contiguous, arbitrary blocks of data from disk into memory. READ FILE# 

requires a fileID%, a pointer to where to place the data, and a byte count . 

. It's important to remember that when reading disk data into memory, ensure 
that you have enough space set aside to accept the data and avoid trampling 
over other variables already stored in memory. A mistake here can cause all 
kinds of problems. 

180 Files 



Setting a File Type 

PROGRAM 92. Reading data from disk with READ FILE#. 

_arrayElements = 100000 

DIM myArray% (_arrayElements) 

OPEN "I", #1, "READ FILE Test", , SYSTEM (_aplVol) 

fileSize& = LOF (1,1) 

startTime& = FN TICKCOUNT 

READ FILE#l, @myArray%(0), fileSize& 

stopTime& = FN TICKCOUNT 
CLOSE #1 

PRINT "Total ticks {l/60th Sec) =";stopTime& - startTime& 

STOP 

Setting a File Type 
Every file on a Macintosh has a file type associated with it. Some file types are 
quite common, like TEXT or PICT, and can be opened by many applications. 
Others have unique file types that are opened only by the application that 
created it. To set a file type use the DEF OPEN statement. 

DEF OPEN specifies both the file type and application signature of the program 
that created the file. Once defined, it remains in effect until another DEF OPEN 

statement is encountered in the program. 

The most common way to make sure a program file has the required file type 
is to define the type prior to opening the file. In SimpleBase, we do it this way: 

DEF OPEN "SbDbFbSb" 
OPEN "R", #1, filename$, , wdRefNum% 

This ensures that any file we save always has the correct file type associated 
with it. 

Closing a File 
Once you're finished with a file, it's always a good idea to close it until it's 
needed again. The more files a program has open, the more memory required, 
and the greater possibility of data loss or file corruption should a power 
outage or system error occur. The best means of combating both of these 
problems is to open the file, read the data required into memory, then close it 
immediately. 

A convenient way to close a file or other open device is to use the CLOSE 

statement like this: 

CLOSE #fileID% 

Files 181 



Open File Dialog 

With use of the optional fileID%, it's possible to close any file, while leaving 
others untouched. However, you can close all currently open files, devices, or 
ports by using CLOSE without any parameter like this: 

CLOSE 

The RESET keyword provides the same functionality of CLOSE without the 
parameters. Use it exactly as CLOSE to close all files or devices opened by the 
program. 

Open File Dialog 
The Macintosh has always provided an uniform method of accessing a file on 
disk. This method is known as the standard get file dialog. FB enables you to 
access this dialog using the FILES$ _fOpen function. See Figure 55 for an 
illustration of a standard get file dialog. 

FILES$ accepts three parameters, the _fOpen constant, a file type string, and 
a working directory reference number. The additional parameter positioned 
between file types and WD number is ignored when using the _fOpen version 
of FILES$. Unlike most other functions, FILES$ _fOpen returns two pieces of 
information, the filename and the file's working directory reference number. 

RGURE 55. Standard get file dialog. 

lesi Leamln2 FutureBASIC ... , 

0 Buttons ~ =MAC•I -
0 Chapter 
0 Dialog Euents ~ ( C,jl'C1 ) 
0 Edit Fields ( Desktop ) 
D Euents 
0 FD WallChart 

0 FrontMotter l Open 

0 lndeH [ Cancel ] 

0 Intro 1 

f---

Folder name 

Volume name 

Click here to open selected 
file or access a selected 
folder's contents. 

Click here to cancel without 
selecting a file 

Scrolling list of files selectable 
by user. 

The scrolling list that appears in the dialog will normally display all the files 
in the current directory unless we limit those choices. FILES$ can filter the 
filenames that appear in its scrolling list by file type (TEXT, PICT, etc.). Up to 
four file types can be filtered at one time. This means users don't have to view 
every file when looking to open only program files, instead, they will only see 
files the program can open. For example, to see only TEXT type files in the 
dialog use this: 

182 Files 



Getting the File Type 

filename$ = FILES$ (_fOpen, "TEXT", , wdRefNum%) 

To see two file types, concantenate the two types into a single string variable 
like this: 

filename$ =FILES$ (_fOpen, "TEXTPICT", , wdRefNum%) 

Now the dialog will show only files of types TEXT and PICT. 

Just as with anything else, check to ensure you have a valid filename before 
attempting to open the file. A good way to do this is to use the LEN function. If 
the user clicks the Cancel button in the FILES$ dialog, the filename will be 
blank and its length set to zero. 

We can test condition like this: 

filename$= FILES$ (_fOpen, "TEXT", , wdRefNum%) 
LONG IF LEN(filename$) > 0 

'do something with filename$ 
END IF 

Getting the File Type 
Since it's possible to display many different file types in a FILES$ _fOpen 
dialog, we need a method of determining the file type in order to properly open. 
the file. We can determine a file's type using an alternate form of FILES$, one 
without parameters. 

Look at our last example that had a dialog that displayed both TEXT and PICT 
file types. The method of reading data from each type will definitely be 
different, so we need to know which type of file the user chose so that the 
correct open subroutine is called. Here is one way that would read the file 
type and branch to the correct opening routine: 

filename$= FILES$ (_fOpen, "TEXTPICT", 1111 , wdRefNum%) 
LONG IF LEN (filename$) > 0 

SELECT FILES$ 
CASE "PICT" FN OpenPICTFile (filename$, wdRefNum%) 
CASE "TEXT" FN OpenTEXTFile (filename$, wdRefNum%) 

END SELECT" 
END IF 

Save Fi.le Dialog 
Another valuable Macintosh feature is the save file dialog. This dialog 
normally appears to request a filename and folder when saving a file. Unlike 
the FILES$ _fOpenfunction, FILES$ _fSave requires all four parameters, the 
_fSave constant, the message string, the default filename that appears in the 
dialog, and a wdRefNum%. Figure 56 shows a typical save file dialog. 

Files 183 



Handling Folders 

FIGURE 56. Standard save file dialog. 

l 
I ell LFB-DB folder "' I 

Q O I .E1•enh.bos ~ c:>MRC•I 
Cl 02.Menus ID IJ.ba• 
Cl 02.Menus ID2).b•• o:§.0 
Cl 02.Menus 103).ba• [Desktop J 
Cl 02.Menus t0-1).ba• 
Q 02.Menus tOS).ba• <> 

saue Program as: l saue 

I I l Cance!JJ 
I 

L 

Folder name 

Volume name 

Click here to save the file in the 
selected folder using the specified 
name. 

Click here to close the save 
dialog without saving the file. 

Enter the file name to save the file 
as shown here. 

To specify a default filename and the save message that appears in the dialog, 
you might do something like this: 

filename$= FILES$(_fSave, "Save program as:", "Untitled", wdRefNum%) 

And it would appear as shown in Figure 57. 

In addition to returning the filename the user enters in the text field of the 
dialog, FILES$ _fSave also returns the wdRefNum% to the chosen folder. 

FIGURE 57. A modified save dialog. 

la FutureBRSIC™ ... 1 
~ fu1un~llflSIC '" 
~ PG PHO 2.0.2 
~ HesE1m 2.1. I 
~ "fU PHO 

S111.1e file 11S ••• 

I untitled 

IQ =MRC•l 

( Ej•~i:1 J 

[Desktop ] 

( S111.1e ) 

Cancel 

Handling Folders 
The FILES$ functions provide a familiar method for a user to navigate the 
volumes and folders available to them. The following functions enable your 
program to navigate them just as easily as a user. 

184 FYI.es 



Finding Folders 

Finding Folders 
Many times you will need to determine the folder where the program resides. 
You can do this with the SYSTEM function. To retrieve the WO reference 
number of the folder where the program is located use: 

currentPgmWDRefNum% = SYSTEM (_aplVol) 

You can locate files stored in the same folder as the program. This location is 
often used by a program to store preference files. Another popular location for 
storing preference files under System 6 is the System folder. To locate the 
System folder use: 

systemWDRefNum% = SYSTEM (_sysVol) 

Under System 7, preference files should be stored in the Preferences folder 
within the System folder. You can store files there using a combination of 
SYSTEM c_sysVol) and a partial pathname. The search starts in the System 
folder, then walks the pathname until the file is found. For example, to save a 
file in the Preferences folder do this: 

pathname$= ":Preferences:My Prefs File" 
OPEN "O", #1, pathname$, , SYSTEM (_sysVol) 

You can also retrieve the WD reference number of the Preferences folder using 
the FOLDER function. To do that use these lines: 

sysWDRefNum% = SYSTEM (_sysVol) 
sysWDRefNum% =FOLDER ("", sysWDRefNum%) 
prefWDRefNum% =FOLDER ("Preferences•, 0) 

We start by getting the System folder's WD number, switch the active 
directory to it, then see if a Preferences folder exists. If the Preferences folder 
exists, we get a valid WD number. If not, a zero is returned. Use this same 
technique to determine if any folder already exists in the current folder. Start 
by getting the current active folder: 

currentWDRefNum% =FOLDER ( 1111 , 0) 

And follow it with this: 

foundWDRefNum% =FOLDER ("This Folder•, 0) 

Where 'This Folder" represents the name of the folder to locate. If the folder 
exists, foundWDRefNum% will return its WO reference number. If the folder 
doesn't exist, zero is returned. 

Creating Folders 
You can also create your own folders using the FOLDER function. FOLDER 

requires two parameters, the name of the folder to create and a valid WO 
reference ID where to place the folder. For example, the following line will 

Files 185 



Saving a File 

create a new folder called "Program Stuff' in the same directory as the 
program itself: 

fWDRefNwn% =FOLDER ("Program Stuff•, SYSTEM (_aplVol)) 

The program's OPEN statements can then use the fWDRefNum% variable to read 
and write files to the new folder. 

Regular Exercises 
Now that we know how to handle files on the Macintosh, let's begin 
implementing them in StmpleBase. 

Saving a File 
The first thing to do is save some employee data to disk so that it can be read 
later. The pseudocode to accomplish this operation looks like this: 
1. Open the file 
2. Set the record position to write 
3. Write record data 
4. Update maximwn record count 
S. Close file 

The subroutine to handle this activity is called FN DBWri teRecord. It starts by 
opening the file in "R" mode and setting the file position with RECORD. Once 
the file is open, it writes the data in the gEmployee record using WRITE# at the 
specified record number, updates the gMaxRecinFiles% variable using the 
LOF function, and finally closes the employee file. 

PROGRAM 93. DBWriteRecord subroutine. 

LOCAL FN DBWriteRecord 
DEF OPEN "SbDbFbSb" 
OPEN "R", #gFileNwn%, gFileName$, _dbRecordSize, gWdRefNum% 
RECORD #gFileNwn%, gRecordNwn%, 0 
WRITE #gFileNwn%, gEmployee 
gMaxrecinFiles% = LOF (gFileNwn%, _dbRecordSize) 
CLOSE #gFileNwn% 

END FN 

Opening a File 
After we've saved some employee data to disk, we read it back into memory by 
reversing the process used to save it. The same general pseudocode describes 
the entire read file operation: 
1. Open the file 
2. Set the record position to read 

188 Faes 



File Handling 

3. Read record data 
4. Update maximum record count 
5. Close file 

As soon as the file is open, FN DBReadRecord uses READ# to read the record 
data from disk into the global record variable gEmployee. Next, it updates the 
global variable gMaxRecinFile%, then closes the file. 

PROGRAM 94. DBReadRecord subroutine. 

LOCAL FN DBReadRecord 
DEF OPEN "SbDbFbSb" 
OPEN "R", #gFileNum%, gFileName$, _dbRecordSize, gWdRefNum% 
RECORD #gFileNum%, gRecordNum%, 0 
READ #gFileNum%, gEmployee 
gMaxRecinFile% = LOF (gFileNum%, _dbRecordSize) - 1 

CLOSE #gFileNum% 
END FN 

File Handling 
Our file handling subroutines are now in position. We still need to add calls to 
them in other subroutines so that SimpleBase can become a real working 
program. Let's begin with the routines to create a new employee file. 

New Employee Files 
Creating a new employee file requires some setup before it's displayed to the 
user. The pseudocode to accomplish this whole operatl.on is as follows: 
1. Get a name for the employee file 
2. Clear old data from employee record 
3. Create a new employee file 
4. Set empty record data 
5. Write blank record to file 
6. Close file 
7. Build data entry window 
8. Update window edit fields 

The responsibility for creating a new file falls to the FN ItemNew subroutine. 
The entire code to implement a new file is shown in Program 95. It starts by 
getting a filename and WD reference number using FILES$. Ifit gets a valid 
name, it clears any data from the employee record, resets the gOpenRecord% 

variable to zero and calls FN DBNewDataBase. 

The subroutine DBNewDataBase shown in Program 96 starts by assigning 
some default information strings to the first few fields of the employee record. 
These will be written to disk in record number zero to help identify the creator 
of the file. Again, this is not required but does make it nice if you ever need to 

Files 187 



Opening Employee Files 

PROGRAM 95. ltemNew subroutine. 

LOCAL FN ItemNew 
gFileName$ =FILES$ (_fSave, •save database as:•, •untitled", gWdRefNum%) 
LONG IF LEN (gFileName$) > 0 

DEF BLOCKFILL (@gEmployee, _dbRecordSize, 0) 
gOpenRecord% = 0 

FN DBNewDataBase 
DEF BLOCKFILL (@gEmployee, _dbRecordSize, 0) 
gEmployee.dbName$ = "Empty record" 
gEmployee.dbDeptNum% = _programBTN 
FN DBWriteRecord 
FN WindowBuild (_dbEntryWIND) 
FN EFRecordToEF 

END IF 
END FN 

recover the 1ile trom a crashed disk. Next, the employee record containing the 
info strings is written to disk with DBWriteRecord, and the gOpenRecord% 

variable is incremented to point to the next record. 

Upon return to FN ItemNew, the info strings are again cleared from the 
employee record, new default information is assigned so that we know it's a 
new record, and the first real employee record is written to disk. Once safely 
on disk, the Data Entry window is built using FN WindowBuild, and the 
default employee data is sent to the window's edit fields with FN 
FieldRecordToEF. 

PROGRAM 96. DBNewDataBase subroutine. 

LOCAL FN NewDatabase 
gEmployee.dbName$ = "This file was created by SimpleBase• 
gEmployee.dbAddr$ "from the book: Learning FutureBASic.• 
gEmployee.dbCity$ = "Published by Sentient Fruit™" 
FN DBWriteRecord 
INC (gRecordNum%) 

END FN 

Opening Employee Files 
Of course, the most natural place to open an employee file is with Open on 
the File menu. Therefore, rewrite the FN ItemOpen to look like the one in 

Program 98. 

It begins with FILES$ to get a filename and a WD reference number. If 
gFileName$ is valid, we use a DEF BLOCKFILL to erase the current information 

188 Flies 



Saving Employee Files 

in the gErnployee record. This isn't mandatory but I like to start with a clean 
record slate anyway. 

Next, the subroutine sets a couple of global variables, then calls the FN 

WindowBuild subroutine to construct the Data Entry window. When the 
window is built, it calls DBReadRecord to get the first record from the file. 
Finally, it transfers the data in the gErnployee record to the data entry 
window's edit field using FN EFRecordToEF. 

Note that none of this happens unless the user selects a valid employee file 
from disk. We limit which files are shown in the FILES$ dialog by using the 
file filter type SbDb. 

PROGRAM 97. Revised ltemOpen subroutine. 

LOCAL FN ItemOpen 
gFileName$ =FILES$ (_fOpen, "SbDb", , gWdRefNum%) 
LONG IF LEN (gFileName$) > 0 

DEF BLOCKFILL (@gEmployee, _dbRecordSize, 0) 

gRecordNum% = 1 

FN WindowBuild (_dbEntryWIND) 
FN DBReadRecord 
FN EFRecordToEF 

END IF 
END FN 

The next place we need to read an employee record is in the FNDoRecordMenu 

subroutine just before END FN and after the END SELECT statement. By placing 
it here, we enable the menu items associated with maneuvering the records. 
Commands like First, Last, Previous, and Next will now work. The lines of 
code to do this are: 
LONG IF itemID% < _iClearRec 

FN DBReadRecord 
FN EFRecordToEF 

END IF 

This sequence is repeated in several places throughout the listing. It is called 
in the DialogGotoWindow, DBFindRecord, DialogEntryWindow, and 
PrintManyRecords subroutines. Examine the complete SimpleBaseprogram 
in the .Appendix for details. 

Saving Employee Files 
As with DBReadRecord, DBWri teRecord is called numerous times throughout 
the program. The obvious place to look is the FN ItemSave subroutine called 

Files 189 



Record Creation 

when Saue is chosen from the File menu. The complete ItemSavesubroutine 
is shown in Program 98. 

FN Itemsave first determines if it has a valid filename. It clears the old data 
from the gEmployee record with DEF BLOCKFILL, then calls FN 
EFToRecordField to return the latest version of the employee data from the 
active Data Entry window. Finally, it calls DBWriteRecord to open the 
specified employee file and save the new information. 

PROGRAM 98. Revised ltemSave subroutine. 

LOCAL FN ItemSave 
LONG IF LEN (gFileName$) > 0 

DEF BLOCKFILL (@gEmployee, _dbRecordSize, 0) 
FN EFToRecord 
FN DBWriteRecord 

END IF 
END FN 

As before, the other major subroutine that uses DBWriteRecord is 
DoRecordMenu. Because we save the latest information each time the user 
selects first, last, previous, or next record, either by button or menu, 
DBWriteRecord gets called before reading the next record from disk. Enter 
the following lines before the SELECT i temID% statement in DoRecordMenu: 
LONG IF itemID% < _iClearRec 

FN EFToRecord 
FN DBWriteRecord 

END IF 

DBWri teRecord is also called from the following subroutines: WindowCapture, 
DBNewDataBase, IternNew, ItemClearRecord, andDialogEntryWindow. 
Examine the complete SimpleBase program listing in the Appendix for more 
details. 

Record Creation 
A couple of routines still need to be expanded or introduced. First, we need 
some method of adding new records to the employee file. We also need some 
way of changing the value of gOpenRecord% so that the menu and button 
choices to move in the file actually work. 

To add the same response to the New item of the File menu requires some 
window trickery. We have already written it so that it creates a new employee 
file, how can we change it to also create new employee records? The answer is 
simple, we know that New should only create employee files iftheDataEntry 

190 FYles 



Navigating Records 

PROGRAM 99. Revised ltemNew subroutine. 

LOCAL FN IternNew 
LONG IF WINDOW (_outputWClass) = _dbEntryWIND 

FN EFToEFRecord 
FN DBWriteRecord 
gRecNumber% = gMaxRecords% 
DEF BLOCKFILL (@gEmployee, _dbRecordSize, 0) 
FN DBWriteRecord 
FN EFRecordToEF 

XELSE 
gFileName$ =FILES$ (_fSave, "Save database as:", "Untitled", gWdRefNum%) 
LONG IF LEN (gFileName$) > 0 

DEF BLOCKFILL (@gEmployee, _dbRecordSize, 0) 

gFileNum% = 1 
gRecordNum% = 0 

FN NewDatabase 
DEF BLOCKFILL (@gEmployee, _dbRecordSize, 0) 

gEmployee.dbName$ = "Empty record" 
gEmployee.dbDeptNum% = _programBTN 
FN DBWriteRecord 
FN WindowBuild (_dbEntryWIND) 
FN EFRecordToEF 

END IF 
END FN 

window is absent. But, if it's present on the screen, we should instead create 
a new record in the file. The routine to handle this is shown in Program 95. 

Once this code is in place, its easy to implement from the New Record 
button. Find the FN DialogEntryWindow subroutine and add a call to the FN 

ItemNew subroutine in response to a button click in New Record. Just add 
the line inside the SELECT dlgID% structure like this: 

SELECT dlgEvnt% 
CASE _btnClick 

SELECT dlgID% 
CASE _newRecordBTN 

FN IternNew <<-- ADD THIS LINE 
END SELECT 

END SELECT 

Navigating Records 
Finally, we need to add the means to set the gOpenRecord% variable. 

FYies 191 



Records Menu 

Records Menu 
The Records menu handles the majority of our gOpenRecord% manipulation. 
It is here that we can quickly pick the first, last, previous, or next record 
number via menu or button. 

One important difference in the DoRecordMenu subroutine shown in 
Program 100 has to do with record saving. We add calls to our record 
handling subroutines to ensure that each record is saved before we move to 
another file. For example, if the user chooses Preuious, DoRecordMenu first 
calls EFtoRecordField and DBWriteRecord to store the current record's 
data. It then calls the IternPrevRecord function to change gOpenRecord%, 
and finishes by reading the specified record from disk with DBReadRecord 
and showing it with RecordFieldToEF. Because of this, the user never has to 
worry about saving data, it's all handled automatically. 

PROGRAM 100. Revised DoRecordMenu subroutine. 

LOCAL FN DoRecordMenu (itemID%) 
FN EFtoRecordField 
FN DBWriteRecord 
SELECT itemID% 

CASE _iFirstRec 
CASE _iPrevRec 
CASE _iNextRec 
CASE _iLastRec 
CASE _iFindRec 
CASE _iGotoRec 
CASE _iClearRec 

END SELECT 
FN DBReadRecord 
FN RecordFieldToEF 

END FN 

FN ItemFirstRecord 
FN ItemPrevRecord 
FN ItemNextRecord 
FN ItemLastRecord 
FN ItemFindRecord 
FN ItemGotoRecord 
FN ItemClearRecord 

The subroutines to handle the various manipulations of gOpenRecord% are 
shown in Program 101. As you can see, they all set gOpenRecord%, but in the 
subroutine IternPrevRecordand ItemNextRecordit's very important to make 
sure we don't exceed the valid record boundaries and to avoid any file errors. 

Find Record 
Choosing Find ... from the Records menu or using the Find button in the 
Data Entry window enables us to search for a record in our database. As it's 
designed now, it will only search the dbNarne$ field of the employee record. 
Let's modify the DialogFindWindow button event's section so that it looks like 
that shown in Program 102. 

192 Files 



Find Record 

PROGRAM 101. Moving through the employee file. 

LOCAL FN ItemFirstRecord 
gOpenRecord% = 1 

END FN 

LOCAL FN ItemPrevRecord 
DEC (gOpenRecord%) 
IF gOpenRecord% < 1 THEN gOpenRecord% gMaxRecinFile% 

END FN 

LOCAL FN ItemNextRecord 
INC (gOpenRecord%) 
IF gOpenRecord% > gMaxRecinFile% THEN gOpenRecord% = 1 

END FN 

LOCAL FN ItemLastRecord 
gOpenRecord% = gMaxRecinFile% 

END FN 

As you can see, we call WindowClose twice, which in turn calls Window
Capture, so let's look at it in Program 103 to see how it works. It extracts 
whatever the user enters in the Find window's edit field into a new global 
variable called gSearch$. Then, when control returns to FNWindowClose, the 
Find window itself is closed. Finally, depending upon which button was 
chosen, we clear the gSearch$ for a cancel or call the DBFindRecord function 
to begin the search. 

PROGRAM 102. Revised DialogFindWindow. 

LOCAL FN DialogFindWindow (dlgEvnt%, dlgID%) 
SELECT dlgEvnt% 

' ••• BUTTON EVENTS 
CASE _btnClick 

SELECT dlgID% 
CASE _findBTN 

FN WindowClose (_dbFindWIND) 
FN DBFindRecord 

CASE _cancelBTN 
FN WindowClose (_dbFindWIND) 
gSearch$ = "" 

CASE _ignoreCaseBTN 
gCaseFlag% = FN CheckBoxHandler (dlgID%) 

END SELECT 
CASE ELSE 

END SELECT 
END FN 

Files 193 



Find Record 

PROGRAM 103. WindowCapture's Find window section. 

LOCAL FN WindowCapture (wndID%) 
closeFlag% = _true 
SELECT wndID% 

CASE _dbFindWIND 
gSearch$ = EDIT$(_dbFindFLD) 

END SELECT 
END FN = closeFlag% 

DBFindRecord is a simple, sequential search routine shown in Program 104. 
It starts by storing the current gOpenRecord% value, and converts gSearch$ 

to all caps if that option was chosen in the Find window. Then, beginning with 
record number one, it cycles through each record in turn, using DBRead

Record to search for a match using the INSTR function. If a match is made, 
the found flag causes the routine to exit the loop, and the current record is 
shown in the Data Entry window. If no match is found, the loop exits when 
there are no more records to read, the original record number is restored and 
read back into memory. Later, we'll see how to add an alert to tell the user 
that no match was found. 

PROGRAM 104. Finding a specific record. 

CLEAR LOCAL 
LOCAL FN DBFindRecord 

origina1RecNum% = gOpenRecord% 
IF gCaseFlag = _markedBtn THEN gSearch$ = UCASE$ (gSearch$) 
CURSOR _watchCursor 
gOpenRecord% = 1 
DO 

FN DBReadRecord 
test$ = gEmployee.dbName$ 
IF gCaseFlag = _markedBtn THEN test$ = UCASE$ (test$) 
found% = INSTR (1, test$, gSearch$) 
INC (gOpenRecord%) 

UNTIL (found% <> 0) OR (gOpenRecord% > gMaxRecinFile%) 
CURSOR _arrowCursor 
LONG IF found% = 0 

BEEP 
gOpenRecord% = origina1RecNum% 
FN DBReadRecord 

END IF 
WINDOW #_dbEntryWIND 
FN RecordFieldToEF 

END FN 

194 Files 



Goto Record 

Goto Record 
Choosing Goto ... from the Records menu allow us to specifywhich record to 
view directly, without flipping through the dozens of records between where 
we are and where we want to be. 

PROGRAM 10s. Capturing the new record number. 

LOCAL FN WindowCapture (wndID%) 

SELECT wndID% 

CASE _gotoWIND 

gOpenRecord% =VAL (EDIT$(_gotoFLD)) 

IF gOpenRecord% < 1 THEN gOpenRecord% = 1 

IF gOpenRecord%>gMaxRecinFile% THEN gOpenRecord% = gMaxRecinFile% 

END SELECT 

END FN 

Going to a specific record starts in the DialogGotoWindow function where we 
save the current record and store a copy of the current record number. Then 
extract a new record number from the Goto window's edit field using FN 

WindowCapture as shown in Program 106. In WindowCapture, it's converted 
from a string into the gOpenRecord% number, then checked to make sure it 
fits the current file number boundaries. Lastly, FN WindowClose closes the 
Goto window. 

PROGRAM 106. Going to a specific record. 

LOCAL FN DialogGotoWindow (dlgEvnt%, dlgID%) 

SELECT dlgEvnt% 

CASE _btnClick 

SELECT dlgID% 

CASE _gotoBTN 

FN DBWriteRecord 

FN EFtoRecordField 

originalRecNum% = gOpenRecord% 

FN WindowClose (_gotoWIND) 

LONG IF dlgID% = _gotoBTN 

FN DBReadRecord 

FN RecordFieldToEF 

XELSE 

gOpenRecord% = originalRecNum% 

END IF 

END SELECT 

CASE ELSE 

END SELECT 

END FN 

Files 195 



Is File There? 

When control returns to DialogGotoWindow, it looks at which button was 
selected. If cancelled, the code just restores the original record number, 
otherwise, it reads in the specified record and displays it. The entire 
subroutine to handle this is shown in Program 106. 

Our file handling is complete. You should now tty out SimpleBase by creating 
some employee files. Save a couple and tty re-opening them. 

Peak Performance 
To round out your knowledge of file handling here is a convenient method of 
determining if a file exists in the chosen folder. 

Is File There? 
We finish with a small subroutine which allows you to determine if a file exists 
in a specified folder. It makes use of the Toolbox function GetFileinfo to see 
if the file is there. If the routine in Program 106 returns anything but a zero, 
the file is missing from the designated folder. 

PROGRAM 101. Does the file exist? 

CLEAR LOCAL 
DIM pbBlk.80 
LOCAL FN FileExists% (fileName$, wdRefNum%) 

pbBlk.ioVolName& = @fileName$ 
pbBlk.ioVRefNum% = wdRefNum% 
fileMissing% = FN GETFILEINFO (@pbBlk) 

END FN = fileMissing% 

Cooldown 
That wraps it up for files and file handling. Along the way we talked about the 
various routines like OPEN, CLOSE, RECORD, POS, LOC, REC, and many more that 
enabled you to not only open disk files, but gather information about them. 
We also saw how to implement the standard open and save dialogs using 
FILES$ and how to get a file's type. Finally, we sawhoweasyitis to add a few 
reading and writing routines to SimpleBase and make it a real working 
program. 

196 FY.Les 



CHAPTER12 

Globals & Includes 

Warm-up 
Up to now, we've worked with the SimpleBase program as a single file. For 
small projects this may be an ideal solution. But for larger projects, having all 
your code in a single file may not make sense. In this chapter we will: 

+ Learn what global and include files are, 

+ Learn the benefits of using global files, 

+ Learn the benefits of using include files, and 

+ Learn how to use global and include files. 

What are Globals? 
A global file is a document that contains the definitions of all program 
records, dimensioned variables, and arrays. Normally a program uses a single 
global file, but can use several if required. 

The most important reason to move global definitions from the main program 
file to a separate global file, is to allow other program files (called includes -
which we'll look at later), easy access to the same information without 
repeating the globals in every file. 

Imagine a global file to be a sheet of music. If the members of an orchestra 
were each given a different music sheet, it's unlikely that they could carry a 
tune when they attempted to play together. Yet if each has the same music 
sheet, wonderful music is usually the result. It's the same when writing a 
program. If each program file (both main and include) uses different sheets of 

Globals & Includes 197 



Creating a Global File 

FIGURE sa. Regular use of globals variables. 

DIM RECORD A 
DIM varA% 
DIM varB& 

DIM END RECORD .aRecSize 
DIM rect.8 
END GLOBALS 

LOCAL FN Init 
END FN 

FN Init 
DO 

HANDLEEVENTS 
UNTIL 0 
END 

Globals are normally 
defined in the main 
program which makes 
them accessible only by 
the main program. 

global music, it's doubtful the program will execute successfully. Yet, if each 
program file executes while using the same global file, a working program is 
the result. 

Examine Figure 58 to see a program with global variables. Here the defined 
variables can be read only by the main program. In Figure 59, we can look at 
a program that has a separate globals file. As a separate file, the globals 
defined there are accessible not only to the main program, but other program 
files too. This ability to separate files will become even more important the 
larger your programs become. Instead of redefining your global variables in 
each file, you can make a single change in the globals file, and know that all 
of the program files will see the change. 

There's one point to remember. The definitions used in a global file are 
available to all portions of a program. Make sure that the variables and 
records you define there are required by the entire program before assigning 
them to the global file. 

Creating a Global File 
It's not difficult to create a globals file. Just create a new document in FB and 
begin entering constant and variable definitions, record structures, and 
arrays. Then, save it as a TEXT file (the tokenized file format is not allowed) 
using the suffix" .glbl" (case is unimportant on suffixes). This helps to 
identify the file properly in the Project tool's window. 

Note, while you can dimension variables and arrays in the global file, don't try 
to add data to them. The runtime uses a small subset of routines to read and 

198 Globals & Includes 



Accessing a Global File 

FIGURE 59. Globally available globals. 

DIM RECORD A 
DIM varA% 
DIM varB& 

DIM END RECORD .aRecSize 
DIM rect.8 

GLOBALS "Global A" 
END GLOBALS 

INCLUDE "A.incl" 

LOCAL FN Init 
END FN 

FN Init 
DO 

HANDLE EVENTS 
UNTIL 0 
END 

1-

Globals defined in a 
1- globals file are accessible 

by both the main program 
and other include files. 

l 
INCLUDE FILE "A.incl" 

GLOBALS "Global A" 
END GLOBALS 

LOCAL FN DoSomeThing 
END FN 

assimilate the definitions in the global file. Attempts to set global variables 
may not work at all. Set any array values in your program's initialization 
routines during program start-up. 

Accessing a Global File 
Once your project has a global file, you make it available to any program file 
(main or include) using the GLOBALS statement like this: 

GLOBALS "SimpleBase.glbl" 
END GLOBALS 

Always follow the GLOBALS statement by an END GLOBALS statement to identify 
the end of global declarations in the program file. This procedure should be 
followed in every file of a project that requires access to the global definitions. 

Globals & Includes 199 



Global File Do's & Don't's 

Global File Do's & Don't's 
Here are some general rules of advice to follow when using global files in your 
projects: 

• Do include all constant definitions, as well as globally defined DIM 

variables, arrays, and record structures. 

• Don't initialize any global variables in the global file. Wait to do that in 
your program's initialization routines. 

• Do try to keep global declarations to a minimum. 

• Don't forget to update include files when a new global variable, array, or 
record is added or removed from the globals file. 

• Do identify global files with the suffix " . g lbl" so that the Project Manager 
tool can display the file properly. 

• Do remember to identify your global variables as global. The standard we 
suggest is the lowercase "g" prefix on variable names. If you use something 
different, make it consistent over all of your programs. 

• A small caveat, an include file that has already been compiled must be re
compiled before it will see any changes in the globals file. See the Includes section 
for more details. 

What are Include Files? 
An include file is a program file that contains both source code and compiled 
code. Remember, files can contain both data and resource forks, and an 
include file has both. The data fork holds the source code and its compiled 
code is stored in the resource fork. This is shown graphically in Figure 60. 

FIGURE 60. Include file. 

An uncompiled 
include file contains 
only source code just 
like the main file. 

200 Globals & Includes 

A compiled include 
file contains both 

source code and one 
or more code 

resources containing 
compiled code. 

0101011 
0011010 



Include File Types 

One reason to use an include file is speed. For example, when it comes time to 
build or run your program, the compiler proceeds to compile source code into 
machine code. When it encounters an INCLUDE statement in a file (whether 
main or include), it opens the designated include file and replaces the single 
INCLUDE statement with all of the compiled code in the include file, then 
continues compiling the rest of the main program's source code. This 
insertion of already compiled code greatly speeds up the compilation process. 
There is no limit to how many include files that can be used in a single 
program. 

FIGURE 61. Inserting includes into a main program. 

LOCAL FN "Alpha" "A" When the compiler 
encounters an 
INCLUDE statement, 
it replaces it with the 
pre-compiled code 
found in the 
specified include 
file. 

END FN 
1101001 

INCLUDE "A" - 0010010 -
LOCAL FN "Bravo" 

"811 END FN 

INCLUDE "B" .... 1101011 
....... 0011110 

Another reason to use include files is re-usability. It's possible to write a 
routine once, and then re-use it again and again in other programs. 

Include File Types 
There are three types of include files that FB can create. Each are identified 
by a constant value that makes it easy to remember which one does what. 
These constants and descriptions can be seen in Table 9. 

TABLE9. Include file types. 

_Constant 

_aplincl 

_res Incl 

_all Incl 

Globals & Includes 

Description 

Creates an include file using the entire runtime package. 
All FB and Toolbox commands are available. 

Creates an include file that uses only the mini-runtime 
package. That means you are restricted to functions and 
procedures in the Toolbox as well as commands in the 
Reference manual marked with the •. 

Creates an include file using both the mini-runtime and 
the full runtime package. 

201 



Include File Limitations 

• Note that use of the _res Incl and _allincl restricts SOLU'Ce code statements in the 
include file to Toolbox routines and those few BASIC statements understood by 
the mini-runtime. 

Include Fi.le Limitations 
While include files offer a host of utility to the programmer, there are some 
restrictions that do apply. 

The 32K Limit 
Include files are limited to 32K of compiled co.de. Due to the fundamental 
design of Macintosh memory, a single compiled code segment is limited to no 
more than 32K. That means, when it comes time to compile an include file, all 
of the compiled code must remain within this 32K limit. If the code segment 
exceeds this, you will get the following error: 

Code segment too large for compiling. 

Another problem manifests itself when an attempt is made to combine two 
include files together. In this case, the total compiled code for both can't be 
larger than 32K. This is shown graphically in Figure 62. The individual 
include files on the left each have 32K limits. However, on the right, B.Incl 
now has used the INCLUDE statement to add all of A.Incl's compiled code to 
itself. This compiled combination must also stay within the segment size 
limitation. If the total of both exceed 32K, you'll get an error. 

A solution to this problem is to examine both files and remove, or move to 
another include, any redundant or unnecessary routines until the total is less 
than 32K in size. It's also possible to redirect program control using a 
technique described later in the Peak Performance section. 

RGURE 62. Combining Include file limits. 

0 -.... _0_10_1_0_, 0- 10101 

D ~ 01110 0-- 10001 

If A.incl and B.incl do not 
call each other, each has 
a 32K limit. 

202 Globals & Includes 

A.incl 

B.incl 

01010 
10101 

01010 
10101 

01110 
10001 

However, if B.incl INCLUDEs 
A.incl. in it, the combined code of 
both in B.incl can't exceed 32K. 



Visibility Restricted 

• This 32K limitation may be a thing of the past when the new PowerPCs arrive 
since they will use a different memory management technique. 

Visibility Restricted 
An include file cannot see subroutines defined in another include file unless 
it's accessed with the INCLUDE statement in the first include file. When 
working on large projects, this can put almost as much of a crimp in program 
development as when we only had a single source file to play with. 

The problem is that when the compiler tries to compile an include file, it must 
know where every subroutine used in the file exists in memory. Include files 
are by definition stand-alone in nature, and a subroutine referred to in the 
source code yet not found in the compilation process causes a major problem 
because that code is missing. As it is now, the compiler just complains that it 
can't find the referenced subroutine. 

However, it's possible to overcome even this. For a method of circumventing 
this restriction, be sure to check out the Peak Performance section of this 
chapter. 

Missing the Data 
You can't use any DATA statements in an include file. One of the restrictions 
in the Macintosh design is that code resources can't use global data 
structures. FB will compile the include file without error, yet when it comes 
time to run the code, data is likely to be missing. This is most evident when 
using strings. 

The solution is to store your data in custom resources. Or, if you must use 
DATA statements, always place them in the projects main source file. 

Include File Tips 
Include files are often misunderstood, let's take a moment to clarify some 
points. Each addresses a specific behavior that programmers often overlook. 

• An include file is only as current as its last compilation. 

When FB compiles the source in an include file, the compiled code contains a 
snapshot of the current state of all global files or include files called by the 
file. Any subsequent changes made to either the globals file or the nested 
include file will be invisible to the compiled version of the include file. 

For example, if a global file is changed by adding, deleting, or re-arranging its 
list of records, variables or arrays, the include file that calls it with a GLOBALS 

statement won't know of the changes until it has been recompiled. Plus, if an 

Globals & Includes 203 



Adding a Global File 

include file itself calls another include file and you make changes in the 
nested include, the original include won't see the changes until its been 
recompiled. 

• Compile both the main and all include files using identical COMPILE 
statement setting. 

One of the fastest ways to create quirky bugs in your programs is to mix and 
match COMPILE statements among the main and all its include files. If the 
main file uses: 

COMPILE 0, _strResource_macsBugLabels 

Then be sure to use the same statement in all includes called by the main 
program. Like global files, it ensures that all modules in the project play with 
the same sheet of global music. 

One of the most common COMPILE mismatch errors is to use 
_caseinsensitive in one ftle and not in another. This creates the very 
annoying "function not found" error. However; it's easy to fix by matching the 
COMPILE statements of all concerned files. 

It is especially important to watch out for mixing of the following compiler 
settings:_caseinsensitive,_arrayBaselor_arrayBaseO,_optimizeAsint 
and _dontOptimize, and _chkRuntimeErr and _noRuntimeErrs. Any 
mismatch of these settings can create subtle problems that are hard to locate. 

• Always use the _strResource setting. 

As previously mentioned, code resources are not allowed to have any global 
data statements. To overcome this restriction, use DATA statements in the 
main program, or for strings, use the _strResource setting of the COMPILE 
statement. This ensures that the compiler always saves your code resource 
strings with the code itself. 

Regular Exercise 
Now that we understand globals and include files a bit better, let's convert 
SimpleBase into a program that uses them. 

Adding a Global File 
Adding a global file is pretty easy. The steps are: 

1. Copy all of the global declarations created with DIM statements from 
the .main document to the Clipboard. 

2. Choose New from the File menu to create a blank source file. 

204 Globals & Includes 



Adding Include Files 

3. Paste the Clipboard contents into the new file. 

4. Save the file using the . glbl suffix for easy identification. We call ours 
SimpleBase.glhL 

5. Return to the .main source file. Replace all of the global declarations 
with GLOBALS "SimpleBase.glbl" just before the END GLOBALS state
ment. 

6. Save the changes made to the . main file. 

Try out the new version of SimpleBase. Notice any difference? You shouldn't. 

Adding Include Files 
We are going to create two include files for use with SimpleBase. The first will 
be a universal include that contains all of our button, edit field, and cursor 
event handlers. We separate these routines out because they are often used, 
and as a separate file they will be much easier to add to other projects later. 
The second include file will contain the rest of our program code. Ready? Let's 
get started. 

DialogEvents.Incl 
To add the universal include that contains all of the common edit field, 
button, and cursor handling subroutines, follow these steps: 

1. Choose New from FB's File menu. 

2. Add the following lines to the new untitled document: 

INCLUDE FILE _aplincl 
GLOBALS "SimpleBase.glbl" 
END GLOBALS 

3. Save the file as DialogEvent.Incl 

4. Open the SimpleBase file. 

5. Copy the following subroutines from the SimpleBase file to the Dialog
Event.Incl file: 

FN CursorHandler 
FN EFClickEvent 
FN TabShiftTabEvents 
FN CheckBoxHandler% 
FN RadioBtnHandler% 
FN HiliteSelectedButton 
FN ChangeReturnToBtn 

6. Save the DialogEvent.lncl file. 

Globals & Includes 205 



SimpleBase.Incl 

7. Choose Run from the Compile menu. If everything is correct, the edi
tor will translate the source into compiled code within the include file. 

8. Return to the SimpleBase source file and remove all of the previously 
mentioned subroutines. Save your changes. 

That's it. We now have an include file that we can use in any program to 
handle some common dialog events. To see how we call it, continue with the 
next section. 

SimpleBase.Incl 
The biggest change is with moving the majority of our subroutines from the 
main source file to an include. The following steps describe exactly how to do 
this: 

1. Choose New from FB's File menu. 

2. On the new untitled document add the following lines: 

INCLUDE FILE _aplincl 

GLOBALS "SimpleBase.glbl" 

END GLOBALS 

INCLUDE "DialogEvent.Incl" 

3. Save the file as SimpleBase.Ind 

4. Open the SimpleBase file. 

5. Save as under the name SimpleBase.main. 

6. Copy everything BUI'the following subroutines from the SimpleBase.
main file to the SimpleBase.Incl file: 

FN BuildMenus 

FN Initialize 

Everything below the Main Loop section marker 

7. Add the INCLUDE statement to SimpleBase.main at the specified loca
tion: 

END GLOBALS 

INCLUDE "SimpleBase.Incl" <--ADD THIS LINE 

' --- FUNCTIONS ---------------------------

8. Save your changes to both files. 

9. Compile the SimpleBase.Incl file. 

• if you haven't already compiled the DialogEvent.Incl you wiU get an error. Just 
compile DialogEvent.Incl and try again. 

206 Globals & Includes 



The Project Include 

Now run StmpleBase.main. Does it compile a bit faster? It really doesn't, but 
since the majority of code is already compiled in StmpleBase.Incl, the main file 
flies when it comes time to run. 

Peak Performance 
As mentioned earlier, one include file can't look into the contents of another. 
At least, not without some help from us. In this section we will examine one 
technique of providing that access. 

The Project Include 
The method we will examine requires a specialized include file that I'll call 
Prqject.IncL In essence, the Project.Incl file contains a listing of all the 
subroutines that must be globally available to the entire project, no matter 
which file they reside in. It does this by indirection. 

The problem with compiling an include file that is trying to access a 
subroutine in another include, is that the compiler can't find the subroutine 
in the include. What we need to do is trick it into finding the subroutine. 
How? By providing the subroutine in the Project.Incl file. Here's how it works. 

In the Dia.logEvent.Incl file are seven routines to handle common dialog 
events. Let's create a Prqject.Incl file that contains pointers to those 
subroutines. When we add the Prqject.Incl to another file, the routines in it 
become available to that file. Ifwe add it to all of a project's include files, they 
are available to them all. 

Creating a Project Include File 
The code to create a project file for Stmplebase is shown in Program 108. It 
makes use of the FNUSING statement to redirect program control to another 
address in memory. 

It starts like a standard include file with INCLUDE FILE, and accesses the 
project's global file with GLOBALS. After that it differs. 

The next section contains all of the definitions for our globally available 
functions using FN USING. We use the same names defined earlier to call the 
original subroutines. Each FNUSING statement defines the exact parameters 
used by the original function. For example, the function CursorHandler 
expects two parameters. Our project function definition must accept the same 
two parameter types. The names don't have to match, just the type. 

Globals & Includes 207 



Revising DialogEvent.Incl 

Each function definition also uses a global pointer variable. Program control 
will be directed to the address stored in the pointer when the project 
subroutine is called. Since it's globally defined, FNUSING doesn't care where 
the real subroutine resides, it just directs control to it. 

PROGRAM 108. The Project Include. 

INCLUDE FILE _aplincl 

GLOBALS "SimpleBase.glbl" 
END GLOBALS 

' --- GLOBAL PROJECT FUNCTIONS ---------------------

DEF FN CursorHandler (cursEvtID%,dlgID%) USING gCursorPtr& 
DEF FN EFClickEvent (fieldID%) USING gEFClickPtr& 
DEF FN TabShiftTabEvents (dlgEvnt%,startFld%,lastFld%) USING gTabEventsPtr& 
DEF FN CheckBoxHandler% (btnID%) USING gCheckBoxPtr& 
DEF FN RadioBtnHandler% (lowBtnID%,highBtnID%,setBtnID%) USING gRadioBtnPtr& 
DEF FN HiliteSelectedButton (btnID%) USING gHiliteBtnPtr& 
DEF FN ChangeReturnToBtn (@evntIDPtr&, btnID%) USING gReturnToBtnPtr& 

Revising DialogEvent.Incl 
There are a couple of things that we need to do to the DialogEvent.lncl. We 
start by changing all of the function names to the project names. For 
simplicity, I just precede each function name with a lowercase "p" for project. 
Then, at the bottom of the file, add the lines of code shown in Program 109. 

Essentially, these lines use the @FN statement to get the address of the 
specified subroutine and place them into the global values we used with the 
Project.Incl file. These lines are executed each time the program runs and they 

provide the crttical link to access the project subroutines. 

PROGRAM 109. Revised DialogEvent.lncl. 

' --- SET PROJECT ADDRESSES ----------------------

gCursorPtr& = @FN pCursorHandler 
gEFClickPtr& = @FN pEFClickEvent 
gTabEventsPtr& = @FN pTabShiftTabEvents 
gCheckBoxPtr& = @FN pCheckBoxHandler 
gRadioBtnPtr& = @FN pRadioBtnHandler 
gHiliteBtnPtr& = @FN pHiliteSelectedButton 
gReturnToBtnPtr& = @FN pChangeReturnToBtn 

208 Globals & Includes 



Revising SimpleBase.glbl 

Revising SimpleBase.glbl 
Revising the Simplebase.glbl file just requires that we add the necessary 
global pointers defined in the Prqject.Incl file to it. This ensures that evecy file 
that uses the global file will see the pointers, and allow them to access the 

working subroutines stored at that memocy address. 

PROGRAM 110. Revised SimpleBase.glbl. 

' --- DEFINE PROJECT ADDRESS POINTERS --------------

DIM gCursorPtr& 
DIM gEFClickPtr& 

DIM gTabEventsPtr& 

DIM gCheckBoxPtr& 

DIM gRadioBtnPtr& 

DIM gHiliteBtnPtr& 

DIM gReturnToBtnPtr& 

Understanding Project Includes 
So what happens when we make a call to a project available function? The 
entire sequence is graphically shown in Figure 63. 

Each include file has added the Prqject.Incl file to it, and each makes a call to 
its locally defined FN USING statement. The FN USING statement accepts the 
parameters required by the subroutine that does the work, and then passes 
control to the address specified by its global pointer value. At that address 
(which can be anywhere in program memocy) is the working subroutine. The 
working subroutine does its thing with the parameters, then returns control 
to FN USING, which passes control back to the calling routine. To the calling 
routine it looks as if the original project subroutine performed the task. 

FIGURE 63. The calling sequence. 

SimpleBase.lncl 

r--~ DEF FN CursorHandler () USING gCursorPtr&--' 1--i 

LOCAL FN A 
FN CursorHandler (dlgEvnt%, dlgID%) 

END FN 

Dialog Event.Incl 

LOCAL FN pCursorHandler () 
...._ 
~ 

END FN 

Globals & Includes 

FN A calls the locally 
defined FN Cursor
Handler included in 
the Project.Incl file. 

FN CursorHandler 
in turn calls the 
globally available 
FN pCursorHandler 
to perform the actual 
work. 

209 



Understanding Project Includes 

Multiple project include files are possible within a single project. It's even 
better to have several small project includes instead of one single humongous 
one. Why? Because each project include is added to EVERY file that uses it, 
the code can get duplicated many, many times. By keeping the project include 
small, your other include files can have room to grow without feeling cramped 
in their 32K limit. 

Cooldown 
In this chapter we discussed ways of extending a program from one file to 
many. We started with descrtbing global files and how to implement them in 
all of your programs. We followed globals by descrtbing include files, and their 
strengths and weaknesses. We showed how it's possible to use them to 
increase the pace of program development and allow you to re-use code in 
different projects. Finally, in Peak Performance we showed how to access 
subroutines in different include files using a Prqfeet.Incl file. 

All-in-all, a busy chapter, but one that will serve you well as your pro
gramming projects grow in size and complexity. 

210 Globals & Includes 



CHAPTER13 

Resources 

Warm-up 
This chapter introduces you to resources. In it you will learn: 

+ What resources are, 

+ How to use ResEdit to create resources, 

+ What pointers and handles are, 

+ How to implement resources in your programs, and 

+ How to manipulate external resource files. 

What are Resources? 
A resource is a structured form of data stored in the resource fork of a file. 

Resources are grouped into resource types. Resource types are 4-character 
alphanumeric identifiers that uniquely identify a resource's data structure. 
Some common resource types include CODE, MENU, CURS, DLOG, WIND, etc. 
These resource types are known as standard resources since their format 
has been defined by Apple. You are not restricted to using standard 
resources, instead, you can also design custom resources for your programs. 

Remember that a file can consist of a data fork, a resource fork, or both. 
Normally, applications consist entirely of resource forks while program data 
files are stored in file data forks. There are, however, exceptions to every rule. 
A look at the FutureBASIC Extras file shows that it's made up entirely of 
resources. Regular source code files saved as text are exclusively data. 

Resources 211 



What are Resources? 

Source files that have been compiled as include files contain both data and 
resource forks. 

A program can have any number of resource files open at one time. The 
system resource file is always the first one opened by an application and 
consists of all resources stored in the System file. The next resource file 
opened by a program is its own application resource fork. Additional 
resource files can be opened under both program and user control depending 
on the nature of the program. 

Resource files are always searched in the reverse order of their opening. An 
application that has opened an external resource file will look for a resource 
in: the external resource file, the application, and finally the system 
resources. There are some Toolbox calls that enable you to manipulate this 
search order. We'll see how to use them later in the chapter. 

FIGURE 64. Resource file search order. 

Search order 

Application 
Resources 

System 
Resources 

External 
Resources 

Application 
Resources 

System 
Resources 

When an application looks 
for a resource, it searches 
itself, then the system 
resources. 

If the application opens a file 
to access its resources, the 
search begins in the external 
file, then itself, then the 
system. 

You access resources using Toolbox calls. A resource can be referenced using 
a name, an ID number, or its type and index number. Many common FB 
commands allow you to open resources easily. Examples include the MENU, 

SOUND, and STR# statements. Other resource types can be accessed using 
standard Toolbox routines like FN GetResource. 

Resources have attributes associated with them. Resource attributes 
determine how the resource will be dealt with by the Resource Manager. 
These are described in Table 10. 

212 Resources 



ResEdit 

TABLE 10. Resource attributes. 

Attribute Explanation 

_resPurgeable Marks the resource as purgeable from memory 
should the Memory manager need to make room. 

_res Protected Prevents the resource from being changed by other 
resource modifying calls. 

_res Changed Marks the resource as changed. 
_resPreload Marks this resource for loading immediately after the 

resource file it resides in is opened. 
_resSysHeap Identifies which heap (application or system) the 

resource resides in. 

_resLocked Locks a resource in memory so that it can't be 
purged. 

ResEdit 
The most often used resource editing program is ResEdit. Originally designed 
for internal program development at Apple, it has since been distributed 
worldwide for the benefit of programmers everywhere. While it does have a 
quirky interface, and lacks some useful features, it provides a good overall 
capability for creating and designing resources both standard and custom 

resources. 1 

Understanding ResEdit is an entire journey in and of itself. Th.ere is not 
enough room in this book to detail all the ins and outs of ResEdit. If you have 
additional questions, check out the bibliography in the back of the book. 

I can only give you a few guidelines and point out the most hazardous areas, 
but the major warning I give is this: 

Danger, Will Robinson! 
Always work on a copy of the 

file you are modifying. 
I can't say this enough. Because ResEdit works in strange and mysterious 
ways to manipulate resources, you court trouble working on any original file. 

1. An even more full featured resource editor called Resorcerer® can be obtained from 
MathemBesthetlcs, Inc. at 617. 738.8803. 

Resources 213 



A Quick Tour 

A power fluctuation, a cat running across your keyboard, an errant key press, 
a spilled drink, all of these and more can cause you to lose an entire file 
you've just spent hours editing. One error in any resource and it's bomb city 
the next time you attempt to use it. So be careful. 

If you forget to do this, don't say I didn't warn you. 

A Quick Tour 
For a quick tour of ResEdit you'll need to have it loaded on your disk. It's 
available on disk #3 of the FUtureBASIC package. If you haven't already done 
so, take a minute and load it onto your hard disk. Come back when you're 
ready after booting up ResEdit. 

To open a resource file in ResEdit, select Open from the File menu. ResEdit 

will display all files and folders on your disk, including invisible files in the 
open file dialog. Select the file you wish to view and click the Open button. 

While ResEdit will attempt to open any file, it can't directly edit files that only 

contain a data fork2 . ResEdit will ask if you want to add a resource fork to 
any file that doesn't have one. In most cases you should say "No" unless you 
really mean to add resources to the file. 

Once a file is open, you'll see a resource picker window like that shown in 
F1gure 65 displaying all of the resource types in the file. A picker window is 
simply a window that enables you to view and select resources within the file 
in icon format. Use the Uiew menu to display any of the picker windows in 

either icon or type order. 

AGURE65. Application resource picker window. 

~D SimpleBase.rsrc BJ~ The application picker 

~ '°' window displays all of 
the resource types - currently present in the .. DITL MBAR MENU resource fork of the 

The The 
open file or application. 

~Ji 
quick quick 

-·--·- brown brown Double click any icon to 
PICT STR• styl TEXT 

-0 
open that resource's 
picker window. 

Q] 

2. Resorcerer® allows you to edit both the resource and data forks of a file. 

214 Resources 



Custom Editors 

FIGURE 66. ALRT resource picker window. 

~D~ ALRTs from SimpleBose.rsrc ~BJ~ 
JQ. Size Name The resource picker 

window shows all of 
the resources of the 

2 14 indicated type. 
3 14 

Ill 
4 14 Shown in this picker 
5 12 window is the ID 
6 12 number, size, and 

129 12 name of ALRT 

130 14 {7 resources. 

132 12 l2J 

To view a particular resource type, double-click on the icon for that resource 
type. For example, a double-click on the ALRT icon opens the ALRT resource 
picker window shown in Figure 66. As you can see, there are several 
individual ALRT resources in this file, each identified by a unique resource ID 
and shown with its size and name. A resource ID is an integer value used to 
identify a certain resource of the specified type. Again, you can change this 
picker view to display the resources in icon, ID, name, or order in the file. A 
double-click on any particular resource ID will open the ALRT custom editor. 

CUstom Editors 
ResEdit wouldn't be of much use if you couldn't easily edit certain resource 
types, so it contains over 60 custom editors. These allow you to create and 
manipulate such diverse resources as MENU, WIND, DLOG, DITL, PICT, ALRT, 

cicn, ICN#, CURS, STR, STR#, TEXT, styl, and a host of others. Custom editors 
have been created both by Apple and by resourceful people in the 
programming community who just couldn't wait for Apple to release more. 

For example, by double-clicking on ALRT ID 1 (a standard ALRT resource 
supplied by FB), it opens the custom ALRT editor window shown in Figure 67. 
Note that it allows customizing of the ALRT resource including its size, its 
color, and which DITL resource it uses for its items. In addition, you can click 
on the alert shown in the small mini-screen within the window and move or 
resize it with the mouse. 

A double-click on the small ALRT in the mini-screen will open the DITL (dialog 
item list) custom editor which allows you to move, add, rename, or delete the 
actual items in the ALRT resource. The DITL editor can be seen in Figure 68. 

Resources 215 



Custom Editors 

RGURE 67. Custom ALRT editor window. 

Left: ~I s_o _ _. 

Height: I 120 

Width: 1336 

Color: @ Default 

0 Custom 

D Ill ID: ..... I • __ _. 

TheALRT 
editor enables 
you to 
customize any 
ALRT resource 
to best suit 
your program's 
requirements. 

Note the floating palette containing the items that can be placed in an ALRT or 
DLOG resource. 

ResEdit has many custom editors. We'll cover most of the common ones in 

later chapters as we deal with specific resources. However, there is a general 
order you can follow that enables you to create resource files and add any 
type of resource your program needs. Let's see how to do that. 

RGURE 68. Custom DITL editor for ALRT #1. 

D Dill ID 1 from SimpleBase.rsrc 
B Button 

li.-~-~----------------1.... :1--:~I~~~~~~~ 
T: Static Text 

[ ___ 0K __ L8 ..... 1 ··n···Eci·i·t··r~·;·i········· 
.._ ___________________ _._._r············································ 

The DITL editor enables you to customize the items 
inside any ALRT or DLOG resource. The palette on the 
right enables you to add new items to ALRTs or DLOGs. 

216 Resources 

& Icon 

I... Picture 

mill! User Item 



Creating Resources 

Creating Resources 
Once you have a resource file open, it's time to create a program resource file. 
Create a new resource file by choosing New from the File menu. At the save 
dialog, enter the name for the file, in our case "SimpleBase.rsrc", and click on 
the Saue button. ResEdit creates the resource file in the chosen folder, then 
displays an empty resource picker window. 

Once we have a resource file open, it's simple to add any type of resource a 
program requires. Start by choosing Create New Resource from the 
Resources menu. The resource type window that appears shows a scrolling 
list of all the templates for resource types ResEd:it can create. Click on a 
resource type, or enter its 4-character specifier, then click OK.ResEdttwill 

open its picker window, create a resource of the requested type, and open its 
editor for you. 

Deleting Resources 
Deleting resources once they have been created is easy. Simply select the 
individual resource to delete and choose Clear from the Edit menu. You can 
delete individual resources from within the resource picker window, or an 
entire resource type from within the application picker window. 

Remember that some resources have partners. For example, both ALRT and 
DLOG resources have DITL resources associated with them, TEXT resources 
normally have styl resources attached to them. When deleting an ALRT or 
DLOG resource be sure to delete the orphan DITL resource too. It's not hard to 
locate orphaned DITL resources, they'll have the same ID number as the ALRT 

or DLOG resource just deleted. TEXT resources will also have a styl resource 
with a matching ID number. 

Getting File Injormation 
Another feature ResEdii: has is the capability of viewing and changing both file 
and folder information. This information is normally only accessible to your 
programs using either GET FILE INFO or the Toolbox function GETFINFO. You 
can view this information by selecting Get File/Folder Info ... from the File 
menu and opening a file or folder, or by selecting Get Info for This File 
(where This File is replaced by the currently active file name) from the File 
menu. 

For example, in Figure 68 we can see the file information from a sample file. It 
contains the file name, status, its type and creator, some special system 
settings, the file creation and modification dates, the size of both file forks, 

Resources 217 



Pointers and Handles 

RGURE &9. File infonnation dialog. 

File: I I OLocked 

Type: .-I r-sr-c --

0 File Locked D Resources Locked File In Use: Yes 
D Printer Driuer MultiFinder Compatible File Protected: No 

Created: I Sat, Oct 23, 1993 I Time: I 22:00:32 

Modified: I Sun, Oct 24, 1993 I Time: I 11:27:33 

Size: 14198 bytes in resource fork 
O bytes in data fork 

Finder Flags: ® 7 .H O 6.0.H 

0 Has BNDL 0 No INITs 

D Shared 1811 nited 
D Stationery D Alias 

Label: I None ..-1 
D lnulslble 
D Use Custom Icon 

and the special Finder flags. Normally, the System takes care of handllng all 
of these settings so you don't have to. The only ones we'll play with are the 
Type and Creator fields. We'll see how to do that in a later chapter. 

Pointers and Handles 
One of the common things you hear about when dealing with resources is 
pointers and handles. While the actions of pointers and handles may at first 
seem overwhelming to the weekend programmer, it isn't. 

Pointers 
A pointer is a nonrelocatable block of memory that contains a memory 
address. The address contains the pointer data. Once created, a pointer never 
moves in memory, making it possible to locate the data simply by reading the 
pointer address. 

Creating and Disposing of Pointers 
You can create a pointer using the Toolbox command FN NewPtr. It accepts 
size value and returns a pointer to a non-relocatable block of memory of the 
size requested. For example, to create a pointer that will hold a RGB color 
record (6 bytes), do this: 

rgbPtr& = FN NEWPTR {_rgbColor) 

218 Resources 



Accessing Pointer Data 

FIGURE 10. How a pointer works. 

__ 0_0_0_2_04_0 _ __:------1 ... ~-
A pointer contains 
the address to a 

block of data. 

A block of data. 

When finished with a pointer, be sure to dispose of it to free memory for other 
activities. To dispose of our color pointer do this: 

osErr = FN DISPOSEPTR( rgbPtr&) 

Accessing Pointer Data 
You can use the standard PEEK LONG or PEEK WORD to read data from a pointer's 
data block. For example, read an integer value like this: 

data% = PEEK WORD (dataPtr&) 

or long integer data like this: 

data& = PEEK :LONG (dataPtr&) 

Or use the record reading method with a single dot and an offset like this: 

data% = dataPtr&.none% 

and this: 

data& = dataPtr&.none& 

Note that the constant offset _none equals zero, enabling us to read the first 
two or four bytes of data from the data block. By changing this field offset 
using a different constant (even ones unrelated to the actual data stored in 
the block) we can read further into the data block like this: 

data& = dataPtr&.bottom& 

Which returns a long integer six bytes into the pointer's data block. 

Handles 
A handle is a pointer to a pointer. In other words, a handle is a pointer (a 
memory address) that points to a non-moving master pointer (a second 
memory address) that in turn points to the data. Since a handle's block of 
data is relocatable, the Memory Manager can move location at certain well 
defined times. Whenever it moves the data, it updates the master pointer with 
the new address, ensuring that it always points to the block of data. 

Resources 219 



Creating and Disposing of Handles 

FIGURE 11. How a handle works . 

.__~0_12_e_e_a_o~_:-~___,•-~l~o_o_o_2_0_4_o~~~~·~~ 
A handle contains 
the address of a 

pointer. 

The pointer contains 
the address to the 

handle's block of data. 

Creating and Disposing of Handles 

A block of data. 

You can create a handle using the Toolbox command FN NewHandle. It 
accepts a size value and returns a handle to a relocatable block of memory of 
the size requested. For example, to create a handle to a RGB color record (6 
bytes), do this: 

rgbH& = FN NEWHANDLE (_rgbColor) 

When finished with a handle, be sure to dispose of it to free up memory. To 
dispose of our color handle we can do this: 

osErr% = FN DISPOSEHANDLE (rgbH&) 

Accessing Bandle Information 
You can retrieve information from a handle using a couple of methods. First, 
you can manually use PEEK LONG to navigate the handle and pointer 
addresses, like this where: 

dataPtr& = PEEK LONG (myHandle&) 

Returns the data address stored in the pointer. 'This method of accessing 
handle data via the pointer is known as de-referencing. For example, to read 
an integer from the handle's data block do this: 

data% = PEEK WORD (dataPtr&) 

and: 

data& = PEEK LONG (dataPtr&) 

returns a long integer. We can adjust the offset from the data block's starting 
address to read further into the data like this: 

data& = PEEK LONG (dataPtr& + offset&) 

An alternate method for reading handle data is to use the double-dot record 
reading format and let the runtime do the work. This enables us to read the 
data directly without confusing ourselves with PEEK LONGS and PEEK WORDS. 

For example, this returns an integer: 

data%= dataHandle& .. none% 

220 Resources 



Using Program Resources 

And this returns a long integer from the data block: 

data&= dataHandle& .. none& 

Using Program Resources 
The method of choice for accessing our program's resource file is to use the 
RESOURCES statement. RESOURCES allows us to use our program's resource file 
from within the editor during program development, and neatly bundles the 
file with our final application when we build it. 

The RESOURCES statement will do the following for us: 

In the editor while developing a program it: 
• Opens the resource file for quick access by the program, and 

• Closes it when we quit testing our program 

When building an application it: 
• Copies all program resources to the final application, 

• Assigns the creator and file type specified to the final application, and 

• Ensures that a SIZE resource is added to the application 

It's the RESOURCES statement that makes it easy to use ResEdit to create 
program resources like alerts, dialogs, strings, icons, pictures, etc. and use 
them from within the editor during program development and testing. All it 
needs is the name of the resource file to use: 

RESOURCES "SirnpleBase.rsrc" 

Additionally, the resource file must be in the same folder as the program's 
source code. Since most projects are naturally grouped into a folder to use the 
Project Manager tool, this shouldn't present a problem. 

Using External Resources 
Using resource files external to the application is a bit different. There is no 
single statement that handles all the complexities of dealing with external 
resource files. An external resource file is one that will be opened by a program 
and its resources read, updated, deleted, or added as required. ResEdit is the 
epitome of this - it's sole purpose is to manipulate the resources of other files. 

When it comes to dealing with resource files the only way to do so is using the 
Macintosh Toolbox. While FB makes it easy to use sound, pictures, strings, 
and icons with built-in commands, accessing other resources requires 
Toolbox commands from the Resource Manager. 

Resources 221 



Opening & Closing Resource Files 

Opening & Closing Resource Files 
Opening an external resource file is made simple by using USR OPENRFPERM. 

This function accepts the same parameters returned by FILES$, a filename 
and a WD reference number, as well as a permission setting. In turn, it 
returns a resource reference number that is used to manage the resource file 
while it's open. For example: 

rsrcRef% = USR OPENRFPERM (filename$, wdRefNum%, perm%) 

Will open the specified file's resource fork. The types of file access permission 
include: read only LfsCurPerm), write only LfsWrPerm), exclusive read & 
write LfsRdWrPerm), shared read & write LfsRdWrShPerm), and whatever 
permission is allowed LfsCurPerm). Normally, I use _fsCurPerm unless I 
have a specific objective in mind, like listing all DLOG resources in the file. 
Then I would use _f sRdPerm instead. 

When finished with a resource file, close it using the resource reference 
number obtained from USR OPENRFPERM like this: 

CALL CLOSERESFILE (rsrcRef%) 

Managing Several Resource Files 
We mentioned earlier that an application can open multiple resource files. 
And since we need to search them to open specific resources, it's obvious that 
we need some commands to allow us to manage those open files. 

Why do we need to do this? Well, since each resource file contains its own list 
of resources, its possible that many of them may conflict in resource ID. For 
example, imagine that we want to open the PICT resource in FB containing its 
about picture which happens to have a resource ID of 258. But what if the 
System has an identically numbered PICT resource? Both resource forks are 
open. Which PICT resource should the Resource manager open? 

The answer is, whichever one it finds first. If the application's resource fork is 
searched first. the correct about picture will be shown. However, if the System 
is searched first, the wrong one will appear. As you can see, it can be very 
important which resource file is accessed. The following commands will help 
you do that. 

CurResFile 
A method of managing several resource files is to use the rsrcRef% associated 
with each resource file. For example, to get the resRefNum% of the current 
resource file use FN CurResFile like this: 

currentResRefNum% = FN CURRESFILE 

222 Resources 



UseResFile 

UseResFile 
Since every time we open a resource file we get a rsrcRef% in return, we can 
use that to manage the order of our resource search. For example, if we need 
to search the System resource fork before the applications, just do this: 

systemResRefNum% = {_sysMap} 
CALL USERESFILE (systernResRefNum%) 

HomeResFile 
To locate the resource file where a particular resource comes form, use FN 

HomeResFile. When given a handle belonging to a resource, it returns the 
resource's file rsrcRef%. Assuming that we have a valid resource handle, do 
this: 

myResRefNum% = FN HOMERESFILE (resourceH&) 

Creating a Resource Fi.le 
Creating a file with a resource fork ts something you might need to do. This 
task falls to the Toolbox call CreateResFile and ts implemented like this: 

CALL CREATERESFILE (fileName$) 

It creates a blank resource file containing no data in its resource fork. Once 
our file has a resource fork, the commands in the next section allows you to 
add, delete, or change the resources inside. 

Adding & Deleting Resources 
There is only one command for creating a resource and that's FN 

Add.Resource. FNAddResource requires four pieces of information from us in 
order for it to successfully add a new resource to a file. It requires a handle to 
the data to store the resource in, a resource type, a resource ID, and 
optionally, a name. For example, if we had a handle it would be possible to 
save it as a resource like this: 

CALL ADDRESOURCE (hndl&, resType&, resID%, resNarne$) 

Where res Type& is any 4-character alphanumeric converted to a long integer. 
It's possible to do this using: 

resType& = CVI ("PICT") 

or use the shorthand method of: 

resType& = _"PICT" 

This can be combined in the Add.Resource call like this: 

CALL ADDRESOURCE (hndl&, _"PICT", resID%, resName$) 

Resources 223 



RmveResource 

RmveResource 
When it's time to remove a resource, use the procedure RmveResource . .All 
that it requires is a valid resource handle as an argument. For example, to 
dispose of a PICT resource do this: 

aboutH& = FN GETPICTURE (258) 
CALL RMVERESOURCE (aboutH&) 

ReleaseResource 
The ReleaseResource command enables you to dispose of a resource handle, 
freeing up the memory it occupied. Don't use this unless you are absolutely 
sure you're done with the resource. To release a resource just pass it a 
resource handle like this: 
CALL RELEASERESOURCE (resH&) 

DetachResource 
Finally, we come to DetachResource. You will find this command very useful 
with resources. Since a resource is linked to its resource file, you can't use 
the resource if the file isn't open. However, if you detach the resource's handle 
from the associated file, you can safely close the file and continue to use the 
resource. To detach a resource from its resource file do this: 

CALL DETACHRESOURCE (resH&) 

Getting Resources 
Many of the standard resource types have their own calls to access them from 
a resource file. We'll see how many of them work in later chapters. However, 
in this chapter we'll deal with one that SimpleBase's employee record must 
deal with, pictures. The Toolbox call we favor is FN Get Picture. But there are 
several other methods of accessing a specific resource: by resource type and 
ID, by type and index position, and type and name. 

Get:Picture 
FN GetPicture returns a handle to the specified PICT resource. A PICT 

resource contains a recorded series of QuickDraw commands to reproduce 
any image you might want to display. For example, to open FB's about picture 
and display it on the screen we can just do this: 

pictH& = FN GETPICTURE (258) 
PICTURE (10,10), pictH& 

224 Resources 



GetResource 

GetResource 
For more general resources, we can use FN GetResource. FN GetResource 
requires a resource type and a resource ID in order to locate the correct 
resource. To open the same about picture with GetResource, do this: 

pictH& = FN GETRESOURCE (_"PICT", 258) 
PICTURE (10,10), pictH& 

GeUndResource 
However, if we absolutely knew that the PICT resource we wanted was the 
fifth of seven PICT resources we could also do this: 

pictH& = FN GETINDRESOURCE (_"PICT", 5) 
PICTURE (10,10), pictH& 

GetNarnedResource 
And finally, if the PICT resource has a name associated with it we could have 
done this: 

pictH& = FN GETNAMEDRESOURCE (_"PICT", "FB About") 
PICTURE (10,10), pictH& 

Regular Exercise 
We just covered a lot of information on resource files and resources. Now let's 
add some resource file support to SimpleBase. 

Before we begin, we need one global variable. This variable will contain the 
handle of the current employee picture being displayed. Add the following line 
to the SimpleBase.glbl file: 

DIM gPictH& 

The employee pictures themselves will be saved in the resource fork of the 
employee file as common PICT resources. Each PICT resource will have a 
resource ID that matches·the employee record number. I.e., employee record 
# 1 will use a PICT resource with an ID of 1 also. 

Creating an Employee File 
Out first order of business is to add a resource fork to our newly created 
employee file. To do that, we modify the DBNewEmployeeFile subroutine as 
shown in Program 111 to first open a blank file with the standard OPEN 

statement, close it, then add a resource fork to the same file using 
CreateResFile. That's all there is to it. The rest of the subroutine remains 
the same. 

Resources 225 



Reading Employee Pictures 

PROGRAM 111. Revised DBNewEmployeeFile subroutine. 

LOCAL FN DBNewEmployeeFile 
FN DBBlankRecord 
DEF OPEN "SbDbFbSb" 
OPEN "0", #1, gFileNarne$, , gWDRefNum% 
CLOSE #1 

CALL CREATERESFILE (gFileNarne$) 
gOpenRecord% = 0 
gEmployee.dbNarne$ = "Created by SimpleBase, from the book:" 
gEmployee.dbAddr$ "Learning FutureBASIC: Macintosh BASIC Power" 
gEmployee .dbCity$ "By Sentient Fruit™" 
FN DBWriteRecord 
INC (gOpenRecord%) 

END FN 

Reading Employee Pictures 
The routine to read our employee pictures is called ReadEmployeeGraphic 

and can be seen in Program 112. It begins by using USR OPENRFPERM to get a 
resource reference ID to the resource fork of the employee record. If the ID is 
valid, we next check to see if the currently open employee record has a picture 
associated with it. If the employee record does have a matching picture, the 
subroutine disposes of the previous picture handle with DEF DISPOSEH. 

Next it uses FN GetPicture to read the employee's picture into memory and 
check to make sure we got it. It uses the EDIT$ function to display the picture 
in the picture field of the Data Entry window. Then, it detaches the picture 
resource from the employee file with Detachresource and closes it using 
CloseResFile. 

Finally, we add calls to the ReadEmployeeGraphic from both the 
RecordFieldToEF subroutine and the _wndRefresh section of the 
DialogEntryWindow function. 

Adding Employee Pictures 
When it comes time to add an employee picture to an employee file we use the 
SaveEmployeeGraphic shown in Program 113. 

It begins by opening the employee file with USR OPENRFPERM. If it has a valid 
resource reference number, it checks to see if a PICT resource already exists 
using the gOpenRecord% ID number. If one does, it deletes it from the 
employee file. This ensures that the latest image is always stored to disk. 

226 Resources 



Adding Employee Pictures 

PROGRAM 112. ReadEmployeeGraphic subroutine. 

LOCAL FN ReadErnployeeGraphic 

resRef% = USR OPENRFPERM (gFileName$, gWDRefNum%, _fsCurPerm) 
LONG IF resRef% <> _nil 

LONG IF gErnployee.dbPictID% > _nil 
DEF DISPOSEH (gPictH&) 
gPictH& = FN GETPICTURE (gErnployee.dbPictID%) 
LONG IF (gPictH& <> _nil) AND (FN RESERROR = _noErr) 

EDIT$ (_dbPhotoFLD) = &gPictH& 
CALL DETACHRESOURCE (gPictH&) 

END IF 
END IF 
CALL CLOSERESFILE (resRef%) 

END IF 
END FN 

Next, it adds the picture handle stored in the global variable gPictH& using 
AddResource, then sets its purgeable bit using SetResAttrs. It's marked as 
changed with ChangedResource, and Wri teResource immediately saves it to 
disk. We detach the new resource from its home file using DetachResource 

and close the employee file. 

Finally, we add a call to the SaveEmployeeGraphic from the EFtoRecord

Field subroutine. 

PROGRAM 113. AddPicture2File subroutine. 

LOCAL FN SaveErnployeeGraphic 
resRef% = USR OPENRFPERM (gFileName$, gWDRefNum%, 0) 
LONG IF resRef % <> 0 

LONG IF gErnployee.dbPictID% >_nil 
tmpH& = FN GETPICTURE (gOpenRecord%) 
IF tmpH& THEN CALL RMVERESOURCE (tmpH&) 
CALL ADDRESOURCE (gPictH&, _"PICT", gOpenRecord%, 1111 ) 

CALL SETRESATTRS (gPictH&, _resPurgeable%) 
CALL CHANGEDRESOURCE (gPictH&) 
CALL WRITERESOURCE (gPictH&) 
CALL DETACHRESOURCE (gPictH&) 

END IF 
CALL CLOSERESFILE (resRef%) 

END IF 
END FN 

Resources 227 



DATA Arrays 

Peak Performance 
Resources are a Macintosh creation and their diversity and usefulness can't 
be over emphasized. What follows is a method of translating those old DATA 

statements into modern custom resources. 

DATA Arrays 
Many people still insist that the only safe means of storing static program 
data is in DATA statements. This method does have some benefits, like the 
ability to modify them directly in the program's source code and it's a bit 
easier to understand. But, the drawback of this method is that the arrays 
themselves can waste vast amounts of static memory, even if they're never 
used I 

What's the solution? Move the information into custom resources. The 
benefits include: your information will only occupy memory when you need it, 
it's flexible, and it can be read into and saved out to disk much faster. 

For demonstration, let's imagine that we have an integer array of 10,000 
elements. We need these pre-calculated values to calculate the trajectory of a 
falling leaf. By having them in memory we can speed up the time it takes to 
calculate a solution. In the old days, we might have been done something like 
this: 

DATA 10, 5, 6, 3, 23, 89, 97, 3001, 89, 1002 
DATA 23, 45, 67, 34, 56, 32, 53, 102, 76, 432 

and so on for 10,000 values. When it came time to execute the program, the 
user waited while all of those DATA statements were read into an array like 
this: 

FOR count% = 1 TO 10000 
READ leaf%(count%) 

NEXT count% 

Which essentially took the information stored in the DATA statements and 
made it useful to the programmer in an array. 

Custom Resources 
Now let's take that same array and save it as a resource. To start, read the 
information into the original array just like before, only this time, we're going 
to grab it and store the entire array into a resource using the ArrayTo
Resource function shown in Program 114. 

228 Resources 



Custom Resources 

PROGRAM 114. ArrayToResource subroutine. 

LOCAL FN ArrayToResource (@arrayPtr&, arraySize&, resType&, resID%) 

resH& = FN NEWHANDLE (arraySize&) 

LONG IF (resH& <> 0) AND (SYSERROR = _noErr) 

osErr% = FN HLOCK (resH&) 

BLOCKMOVE arrayPtr&, [resH&], arraySize& 

osErr% = FN HUNLOCK (resH&) 

CALL ADDRESOURCE (resH&, resType&, resID%, 1111 ) 

CALL SETRESATTRS (resH&, _resPurgeable%) 

CALL CHANGEDRESOURCE (resH&) 

CALL WRITERESOURCE (resH&) 

CALL RELEASERESOURCE (resH&) 

END IF 

END FN 

The ArrayToResource function accepts four parameters, a pointer to the 
array to store, it's calculated size in bytes, a resource type, and a resource ID 
number. With these it creates a handle using FN NewHandle, locks it from 
moving, and then uses BLOCKMOVE to transfer the array to the handle. Then, it 
unlocks the handle, and uses AddResource to store it as a resource. Finally it 
makes sure the resource is made purgeable, marks it as changed, writes it to 
disk, and releases it from memory. For example, to save our leaf array we 
might have called it like this: 

FN ArrayToResource (leaf%(0), 20000, _"leaf", 128) 

Then, when it comes time to read it into memory again, just use the 
ResourceToArray function. It does exactly the opposite. It gets the described 
resource with GetResource, locks it, and uses BLOCKMOVE to copy the handle 
contents to the array. It then unlocks and releases the handle from memory. 

PROGRAM 115. ResourceToArray subroutine. 

LOCAL FN ResourceToArray (arrayPtr&, resType&, resID%) 

resH& = FN GETRESOURCE (resType&, resID%) 

LONG IF (resH& <> 0) AND (FN RESERROR = _noErr) 

osErr% = FN HLOCK (resH&) 

BLOCKMOVE [resH&], arrayPtr&, FN GETHANDLESIZE (resH&) 

osErr% = FN HUNLOCK (resH&) 

CALL RELEASERESOURCE (resH&) 

END IF 

END FN 

Resources 229 



Custom Resources 

As you may have guessed, using this technique makes loading in a large 
array nearly effortless. Combine this technique with the XREF@ statement to 
link a handle with an array structure, and you have the makings of a truly 
dynamic array. 

Cooldown 
Well, while that finishes our initial discussion on resources, our tour is far 
from over. In this chapter we learned what resources are, saw what they're 
made of, learned how to create them, read them, and save them. We learned 
how ResEdit helps us to create, design, and manage our program resources. 

We also went over pointers and handles and why they're important. Then, we 
learned how easy it was to add a resource fork to any file, and how to safely 
add and read PICT resources from our employee file. 

With all this new resource knowledge, it's time to look at some other resource 
types, and see how to create and use them in SimpleBase. 

230 Resources 



Alerts 

Warm-up 
This chapter introduces alerts. In it you will learn: 

+ What alerts are, 

+ How to use the four standard alerts, 

+ How to create custom alerts, and 

+ How to implement alerts in programs. 

What are Alerts? 

CHAPTER14 

Alerts are special windows that contain informative text, controls, icons, and 
pictures. They normally report an error or provide warning to the user of a 
possible problem. Alerts can also play a sound or contain a message that 
requires a user's acknowledgment before a program takes action. 

A common alert in FB is the alert that appears when the user tries to close a 
file that hasn't been saved. The save alert can be seen in Figure 75. 

As you can see, this alert contains all of the features previously mentioned. It 
has a text message, displays an icon, and contains several buttons that the 
user can choose among. The user's response determines the fate of the file in 

question. 

Alerts normally provide a default button (identified by a 3-pixel shadow) 
which indicates the default desired action for the alert. The default button 
should never encourage users to execute actions which may cause a loss of 

Alerts 231 



What are Alerts? 

RGURE 12. FutureBASIC's standard save alert. 

This icon provides a visual clue to the user that caution 
should be used when responding to this al ert. 

Lt Saue changes to "Untitled" before M essage which requests 
response from the user. Clearing? 

(Don't Saue ) 
J_ 

1 
User clicks here to 
close the file 
without saving it. 

( Cancel ) (( Saue 
T 
-1 

User clicks here to 
cancel the close 
action and return to 
the document. 

11 
T 

a 

l 
User clicks here to 
save the file. 

data. Many users seldom read the text of an alert, so a default button that 
would perform an irreversible action is not a good idea. 

For example, the save alert above has a default button which saves the file's 
data. Ifinstead, the default button was the Don't Saue button, it might cause 
immense anxiety to the user when they throw away a file containing a full 
days work. Always err on the side of data safety and your users will love you. 

TABLE 11. Alert function calls 

Icon displayed: 

none 

232 Alerts 

Calling function: 

FN ALERT (alrtID, 0) 
The simplest alert call, it shows an alert box without 
any specific icon. 
FN NOTEALERT (alrtID, 0) 
The note alert is used to provide information to the 
user or ask a simple question with multiple responses 
possible (Yes or No). 
FN CAUTIONALERT (alrtID, 0) 
Use the caution alert when the possible action may 
have undesirable results (such as losing data) if it's 
allowed to continue. 
FN STOPALERT (alrtID, 0) 
Use a stop alert when a problem or situation is so bad 
that the requested action cannot be completed. 



Default Alerts 

RGURE 73. Standard stop alert. 

No n Yes JJ 

Default Alerts 
There are four alert icon variations possible simply by using different Toolbox 
calls. These four alert functions are described in Table 11. 

The default ALRT resources shown in Table 12 are always bundled with a 
compiled application. This enables you to use them during program 
development and stlll take advantage of them in the final application without 
having to re-create them. Each is designed to provide for a common alert 
situation requiring a response from the user, be it a simple acknowledgment 
or multiple choice option. 

Each alert has a different default button to tailor the alert to a specific 
situation. A simple notice will probably need just an OK button. A dangerous 
alert situation may require both an OK and Cancel button to give the user a 
choice of actions. 

For example, to display ALRT resource #3 as a STOPALERT you would do this: 

item = FN STOPALERT (3, 0) 

which is shown in Figure 75 when executed. 

RGURE 74. Standard alert with custom text. 

The open file: 
Fred.file 
Is missing o record! 
Would you like to look for it? 

No ) ( Yes ) 

Adding custom text to the alert allows you to customize the alert for multiple 
situations without bulking up your application with even more alert 
resources. You add text to an alert (or dialog) using the PARAMTEXT call. CALL 

Alerts 233 



Default Alerts 

PARAMTEXT accepts up to four string variables (maximum of 63 characters 
each) and places them into global memory. 

When displayed, the alert checks its static and editable text fields to see if 
they contain any "n symbols (where nranges from 0 to 3 exclusively). If one is 
found, the alert then replaces each "n with the appropriate string. String one 
always replaces the "o marker, string two replaces the "1 marker, and so on. 
Thus, we can replace our previous plain vanilla alert with one that describes 
the reason for the alert like this: 

A$= "The open file:" 
B$ "Fred.file" 
C$ = "is missing a record! " 
D$ = "Would you like to look for it?" 
CALL PARAMTEXT (A$, B$, C$, D$) 
item = FN STOPALERT (3, 0) 

Which would appear as shown in Figure 75. 

TABLE 12. Default ALRT resources. 

Default alerts: 

234 Alerts 

rr,:, This Is the I st line of teat 
IJ:iil This Is the 2nd line of teat 

This Is the 3rd line or teat 
This Is the 4th line of teat 

rr,:, This Is the I st line of teat 
IJ:ii1 This Is the 2nd line or teHt 

This Is the 3rd line or teat 
This Is the 4th line of teHt 

n OK 1 

Cancel H OK B 

rr,:, This Is the I st line or teHt 
IJ:iil This Is the 2nd line or teHt 

This 11 the 3rd line or teHt 
This Is the 4th line or teat 

ND ftYesg 

This Is the lit line or teat 
This Is the 2nd line or teat 
This Is the 3rd line or teat 
This Is the 4th line of teHt 

n Cancel D OK 

Explariation 

ALRT #1 - this basic alert only 
seeks acknowledgment of a user 
request. 

ALRT #2 -this alert allows the user 
to cancel the requested action. 

ALRT #3 -This alert has the same 
setup as ALRT #2 but the button 
names may be more suitable for 
some situations. 

ALRT #4 - a moclifled ALRT #3 
where the default action is to cancel 
the user request. 



The Save Alert 

There are a couple of other default specialty ALRT resources that you can use. 

The Save Alert 
Another alert included with the runtime package is the save dialog as shown 
in Figure 75. If the user has changed the information in a document and not 
saved the changes, use the save dialog when the user tries to close the 
document or quit the application. It asks the user if they want to Saue, 
Cancel, or Don't Saue the changed document. 

FIGURE 75. Standard save alert. 

Saue changes to "Untitled" before 
Clearing? 

(Don't Saue) ( Cancel ) ([ Saue JJ 

The buttons return the followingvalues: Saue (1), Don't Saue (2) and Cancel 
(3) so your program can respond appropriately whichever one is chosen. 

The General Alert 
The general alert provides an quick way of presenting general messages to the 
user without designing a special ready-made alert. You can pass it one string 
of information using the PARAMTEXT call. This makes it a great debugging tool 
for presenting alert messages during program development. Also, this a plain 
alert, so jazz it up using NOTE-' CAUTION-. or STOPALERT icons when calling it. 
The code to implement the alert in Figure 75 is shown in Program 116. 

PROGRAM 116. General alert procedure. 

tmp$ = "An example alert message that tells the user something important.a 
CALL PARAMTEXT ( tmp$, " " , u " ) 

item = FN NOTEALERT (132, 0) 

FIGURE 76. Standard generic alert. 

Alerts 

Rn eHample alert message that tells 
the user something important. 

(( OK JJ 

235 



Creating an ALRr Resource 

Creating an ALRT Resource 
Here are the steps used to create a custom alert. Open ResEdit and then open 
the SimpleBase.rsrc file we created in the last chapter. Select Create New 
Resource from the Resources menu. When the resource type window 
appears, select ALRT in the scrolling list or enter ALRT into the editable field. 
Click 0 K. ResEdit creates a new blank ALRT resource in the SimpleBase. rsrc 

file and opens the ALRT /DLOG editor window shown in Figure 77. 

The first thing to do is resize the ALRT using the small black handle in the 
mini-screen display, or just enter a size in the fields provided. After that, open 
the DITL editor by double-clicking on the ALRT window in the example 
screen to start adding buttons and other items. 

The DITL editor provides a floating palette containing drag-off objects that 
can be used in an ALRT or DLOG resource. See Figure 78 for a brieflook of the 
palette tools. 

As soon as you are done positioning all of the objects in the DITL editor, close 
the editor windows and save your work. Later in the chapter we'll see how we 
create several alerts for our program. 

You can modify an ALRTs behavior as an alert box. When it appears, which 
button is the default one, and when will it beep. All of that is taken care of in 

the Set 'ALRT' Stage Info dialog under the ALRT menu item. Figure 79 
shows the 'ALRT Stages dialog with all of its options. 

FIGURE 77. ALRT/ DLOG editor window. 

DLOG ID = 128 from LFB test.rsrc 

LJbJLJDDLJD DD 

Len:I ~4_o_~ 

236 Alerts 

Height: I 200 

Width: 1240 

Color: @ Default 
0 Custom 

D Ill ID:I ~ 1_2_8 _ _, 

[811 nitiolly uisible 

1:81 Close boK 



Alert Constants 

FIGURE 78. DITL floating palette tools. 

Push button 
Checkbox button 

Radio button 
Custom control 
Static text box 

Editable text box 
Icon image (ICON) 

Picture image (PICT) 
Custom user item 

liliLiiiliili_E:;;;mr.ifillli[mr.li!iilil 
El Button 

181 Check Box 

® Radio Button ... r;i ..... c~~1·~~1· ........... . 
_,, .... -.......................... _,, .. . 

T: Static Text 

:IuE .. ~~~i~~~::~~~ 
& Jeon 

FIGURE 79. Set 'ALRr Stage info dialog. 

'ALRT' Stages 

Stage Rlert boH Default button 

181 Uisible l@DK O Cancel I 
2 181 Uisible l@DK O Cancel I 
3 181 Uisible l@DK O Cancel I 
4 181 Uisible l@DK O Cancel I 

Click and drag an object 
tool off the floating palette 
onto the DITL editor 
window . 

Double click on any 
object in the DITL editor 
to view and set that 
object's information. 

Sounds 

ID02l3I 

ID02l3I 

ID02l3I 

IDD2l3I 

C1mcel ([ DK JJ 

Regular Exercise 
Now that we understand alerts better, let's add a few to SimpleBase. 

Alert Constants 
There are three alerts we will use in SimpleBase: the about, field data too 
long, and no match found. The constants to define them are shown below: 

_aboutALRT = 128 
_twoLongALRT = 129 
_noFindALRT = 130 

About Alert 
We've mentioned the About window many times, but so far haven't done a 
thing with it. Well, now's the time. Here we'll create an alert window that will 
be used as our About window. It will viewable by the user when they select 
Rbout SimpleBase ... from the s menu. 

Alerts 237 



About Alert 

For SimpleBase, our About window will consist of a plain alert window that 
contains two items: a visible picture (from a PICT resource), and an invisible 
button positioned outside the boundary of the alert. 

To start, create a picture in a graphics program, select it with the marquee 
tool and copy it to the clipboard. Open the SimpleBase.rsrc file with ResEdit. 
Choose Paste from the Edit menu. The graphic will be pasted into the file as 
a PICT resource. If it's the first one in the file (it should be at this point), it will 
have a resource ID of 128. 

Following the steps described earlier, create an alert. Stretch its size out a bit 
larger than what's needed, then double-click on the alert window to open the 
DITL editor. From the floating palette, drag a push button onto the alert. 
Position it well down in the lower-right comer of the window as shown in 
Figure 80. This is the hidden button. Don't worry about naming it since the 
user will never see it anyway. 

FIGURE so. Hidden button in About. 

~Dill "about" ID g 128 from SimpleBose.rsrc 

r···········sJiij· .. ····-~eBa.se··· .. ····1 
i p Ao Jimp/O)'l9"/Jata/J8se ! 
: i 

Sentient Fruit ! 
W.CJNTOSH CONSUL TING• DOCUfvENTATION • PROGRMMINGl 

P.O. BOX 13362 • TUCSON • AZ 85732-3362 i ...................................................................... 

Next, drag the PICT object into the alert. Position it near the top-left of the 
window. Double-click on it to open the object editor. Enter the PICT ID in the 
Resource ID text field and set the Enabled checkbox, then close the object 
editor. You should see your about picture scrunched into the picture object. 
Make sure the PICT object is selected and choose Use I tern's Rectangle 
from the D Ill menu. Reposition for the best appearance and close the DITL 

editor. 

Resize the alert in the mini-screen until the push button is completely hidden 
and the alert is neatly centered in the window. Then from the RLRT menu, 
choose Set 'RLRT' Stage Info. At the dialog, set all of the alert stages to zero. 

Finally, save your work, the About window is now done. Return to FB and 
open SimpleBase.Incl. Find the FN ItemAbout subroutine and enter the code 
shown in Program 117. 

238 Alerts 



Text Too Long 

PROGRAM 111. ltemAbout alert code. 

LOCAL FN ItemAbout 
item% = FN ALERT (_aboutALRT, 0) 

END FN 

Text Too Long 
Create a new ALRT for the "text too long" error. Use the same methods 
described for the about alert, create an alert that looks like the one shown in 
Figure 81 with a single OK button and a static text field. When done, save your 
work. 

The obvious place to place our "text too long" error message is within the 
CheckFieldLength$ subroutine. Replace the generic alert code with the 
custom alert code shown in Program 118. 

AGURE 81. Text too long alert. 

JED§ Dill ID= 129 from SimpleBose.rsrc 

[E-J ttile-teiit-e'Hceeiis·tile·ma'Himiim··i 
ilength ollowed in o record field. ! . 
!Some chorocters will be deleted i-t-- Static text = 3 
!~~-~~~~-~~-!~~: ............................. ~ 

( OK Push button = 1 _. 
ICON image = 2 

PROGRAM 118. Text too long code. 

LOCAL FN CheckFieldLength$ (fieldID%, maxLen%) 
tmp$ = EDIT$(fieldID%) 
LONG IF LEN (tmp$) > maxLen% 

item% = FN ALERT (_tooLongALRT, 0) 
tmp$ = LEFT$ (tmp$, maxLen%) 

END IF 
END FN = tmp$ 

Find Failure 
The final alert we need to add informs the user of an unsuccessful search 
when the Find menu item of button is used. It's a variation on the text too long 
alert. Since PARAMTEXT allows us to customize our alert messages, we'll beef up 
the standard "No match found" message using ParamText to add gSearch$ 

and gFileName$ using a the "O and "l markers. 

Alerts 239 



Find Failure 

To create the alert. duplicate both the ALRT and DITL resources numbered 
129. Next open the DITL editor and change the static text item to what is 
shown in Figure 82. Note the use of the "O and "l markers to showwhere the 
custom text will be inserted. When done. save your changes. 

To implement this alert. find the DBFindRecord function and replace the 
LONG IF /END IF action block with the lines shown in Program 119. 

AGURE 82. Find was unsuccessful alert. 

~D~ D ITL ID = 130 from SimpleBase.rsrc ~ 

;·iiiiiiiiie··1ii·ri·;.-.:.--.~-~0;;·1ii·t"iie------------·--1 

~employee database ""1". 1 
~ j-1- Static text = 3 
L ..... __ ------ __ -----........•............ ____ . ___ -----.. Iii 

l OK J Push button = 1 .. 
PROGRAM 119. Find unsuccessful alert. 

LONG IF found = 0 

CALL PARAMTEXT ( gSearch$, gFileName$, " ") 
item% = FN ALERT (_noFindALRT, 0) 

g0penRecord% = origina1RecNum% 
FN DBReadRecord 

END IF 

240 Alerts 



Find Failure 

Peak Performance 
Closely related to alerts are their big brothers, dialogs. Dialogs are covered 
very well in the FB Handbook, but only on a one-to-one basis. For this dialog 
you write one subroutine, for that one a different one. Wouldn't it be nice if you 
could Wiite one dialog handling subroutine and modify it to use different 
dialogs? Sure it would, and here's how to do it. 

A major stumbling block to writing our universal dialog handler is the fact 
that each dialog has different items associated with it. How can we write one 
dialog handler that deals with them all? To accomplish that, we're going to re
use @FN and FNUSING to direct program control to the correct subroutines for 
each dialog. We're also going to create three template routines that our dialog 
handler needs. 

Let's recap how functions work very briefly. The runtime expects you to define 
a function before it's called in the program. If you call a function that hasn't 
been defined, an error occurs. InFlgure 83youcanseethatFNTwois defined 
after FN One. Thus FN Two can successfully call FN One, but FN One can't call 
FN Two because of its location in the program. 

RGURE 83. Normal functions in action. 

LOCAL FN One (mun%) ~ 
INC(num%) 

END FN = num% 

LOCAL FN Two 
num% = FN One (num%) 

END FN 

When normally using a function, 
the function being called must 
be defined before it is called. 

In this case FN one is defined 
before it is called by FN Two. 

Now, we saw in the chapter "Globals & Includes" howwe could use @FNto get 
the address of any function in memory, and we saw how we could use that 
address with FN USING to jump to that subroutine, no matter where it was 
located in a program. We're going to do the same thing here. 

FNUSING needs two pieces ofinformation. It needs a template definition to tell 
it what parameters it should accept, and it needs the address of another 
subroutine. Since the template controls the parameter list, and since a 
parameter list can't be changed once the template is defined, FN USING is 
stuck with those same parameters. However, it is not stuck with a static 
subroutine address. Change the address and you can call different routines 
that accept identical arguments. 

Alerts 241 



Find Failure 

FIGURE 84. FNUSING in action. 

LOCAL FN OneTemplate (num%) 
END FN = num% 

LOCAL FN Two (num%, templatePtr&) 
num% = FN oneTemplate USING templatePtr&; (num%) 

1 END FN 

LOCAL FN One (num%) ... ~---------------
INC(num%) 

END FN = num% 

FN Two (1, @FN One) 

FN USING lets you call any function 
based upon its address in memory. 

In this case, when FN Two is called it 
calls FN OneTemplate, but the address 
in templatePtr& re-directs program 
control to FN one. 

Examine the code in Figure 84, it shows how this works. Any call to FN Two 

invokes FN USING to call the FN OneTemplate definition. But, the address FN 

USING calls can be any subroutine in the program, in this case FN One, that 
accepts the identically assigned parameters. Every time FN Two is called, we 
send it the address of the subroutine we want FN USING to execute. 

To see exactly how this works with some working code, see the example in 
Program 121. It uses different addresses to enable a single subroutine to 
return three different results. By passing the address of FN DoAdd, FN 

DoSubtract, or FN DoMultiply with @FN, FN Math can return a variety of 
numertcal results. 

Let's recap, the general requirements of creating subroutines that can handle 
multiple branching are: 

1. A template function to define the parameter list. 

2. A FN USING statement that calls the template. 

3. A subroutine address that will do the work. 

242 Alerts 



Handling Multiple Dialogs 

PROGRAM 120. Multiple subroutine program example. 

LOCAL FN MathTemplate (nurn%) '<<-- our template subroutine 
END FN = nurn% 

LOCAL FN Math (nurn%, templatePtr&) 
nurn% = FN MathTemplate USING templatePtr&; (num%) 

END FN = num% 

LOCAL FN DoAdd ( nurn%) 
INC(num%) 

END FN = num% 

LOCAL FN DoSubtract (nurn%) 
DEC(nurn%) 

END FN = nurn% 

LOCAL FN DoMultiply (num%) 
num% = nurn% * num% 

END FN = num% 

nurn% = 2 
WINDOW 1 
PRINT "Add: ";FN Math (num%, @FN DoAdd) 
PRINT "Sub: ";FN Math (nurn%, @FN DoSubtract) 
PRINT "Mul: ";FN Math (nurn%, @FN DoMultiply) 
STOP 

Handling Multiple Dialogs 
Now that we've seen the basic workings, let's apply it to a universal dialog 
handler. There are the five basic actions required to effectively handle a 
custom dialog: 

1. Get the dialog resource. 

2. Do any initialization and setup before showing the dialog. 

3. Handle events while the dialog is active. 

4. Do any clean-up work when finished. 

5. Close the dialog. 

We'll start by defining three basic template subroutines which each of our 
dialogs will need. One is the routine for pre-processing (Step 2), one for event 
processing (Step 3), and one for post-processing (Step 4) of the dialog. Each 
requires slightly different parameters and are defined in Program 121. 

Each of these template routines tell the runtime the type and number of 
parameters that should be passed to the working subroutine. For example, FN 
PreProcessTemplate only requires a pointer to the dialog to work, while FN 

Alerts 243 



Handling Multiple Dialogs 

PROGRAM 121. Dialog processing routines. 

LOCAL FN PreProcessTemplate (dlogPtr&) 

END FN 

LOCAL FN EvntProcessTemplate (dlogPtr&, itemHit%) 

END FN 

LOCAL FN PostProcessTemplate (dlogPtr&) 

END FN 

EvntProcessTemplate requires both a dialog pointer and the number of the 
item clicked on in the dialog. 

• As you might have noticed.from our earlier example, the pre- and post-processing 
fimctions could actun.lly use a single template routine since they both accept a 
single long integer, butjor clarity we'lljust define both. 

Once the templates are defined, it's time to write the dialog handling routine 
that will control multiple dialogs. As you can see in Program 121, the 
complete FN HandleModalDialog is a bit complex but follows our five steps. 

Notice the addition of five parameters to the dialog handling function. The 
dlogID% is obvious, it's the resource ID of the DLOG resource to open. i temID% 
is the button ID that we'll use as a flag to close the dialog. The next three 
variables, preProcessPtr&, evntProcessPtr&, andpostProcessPtr&, are the 
addresses to the three processing subroutines that will handle the dialog. 

The subroutine opens the DLOG resource specified by dlogID%, then checks 
to ensure we have a valid pointer and sets our port to the dialog itself. Next, it 
usesFNUSING to call the specified pre-processing subroutine. Notice the LONG 
IF check to ensure that we have a valid subroutine address. Some dialogs 
may not require any pre-processing, so this simple check allows us to skip FN 
USING if it's not needed. 

Next, we enter a standard DO/UNTIL loop with MODALDIALOG inside. Here we 
also check for a valid event-processing pointer before calling that subroutine. 
When itemHit% is less than or equals itemID%, control drops out of the loop 
and any post-processing is taken care of before closing the dialog and 
resetting the original port. 

The final item to take care of is to actually write the subroutines used by each 
individual dialogs for processing. Since each dialog will have its own unique 
requirements, you'll have to determine which ones are needed, and write 
them yourself. 

244 Alerts 



Handling Multiple Dialogs 

PROGRAM 122. Multiple dialog handling function. 

CLEAR LOCAL 
LOCAL FN HandleModalDialog (dlogID%, itemID%, preProcessPtr&,-. 

evntProcessPtr&, postProcessPtr&) 

dlogPtr& = FN GETNEWDIALOG (dlogID%, 0, _zTrue) 
LONG IF dlogPtr& 

CALL GETPORT (originalPort&) 
CALL SETPORT (dlogPtr&) 
LONG IF preProcessPtr& 

FN PreProcessTemplate USING preProcessPtr&;(dlogPtr&) 
END IF 

DO 

CALL MODALDIALOG (0, itemHit%) 
LONG IF evntProcessPtr& 

itemHit% = FN EvntProcessTemplate USING evntProcessPtr&; ..., 
(dlogPtr&, itemHit%) 

END IF 
UNTIL itemHit% <= itemID% 

LONG IF postProcessPtr& 
FN PostProcessTemplate USING postProcessPtr&;(dlogPtr&) 

END IF 
CALL CLOSEDIALOG(dlogPtr&) 
CALL SETPORT (originalPort&) 

END IF 
END FN 

Alerts 



Handling Multiple Dialogs 

Cooldown 
In this chapter we've discussed what alerts are, examined the various types, 
and seen how to use several standard ones included with every application. 
We also took the opportunity to add several important alert notices to 
SimpleBase so that the user would be kept informed of program activity. 

246 Alerts 



CHAPTER15 

Strings & Text 

Warm-up 
The information presented in this chapter provides all of the tools you need to 
become a text importing and exporting expert. In this chapter you will learn 
how to: 

+ Read and save STR resources, 

+ Read and save STR# resources, 

+ Read and save TEXT and ZTXT resources, and 

+ Move INDEX$ arrays to and from resources and edit fields. 

STR Resources 
A 'STR ' resource (don't forget the space) contains a single Pascal formatted 
string with up to 255 characters. STR resources are useful for individual 
string items unrelated to others in a program. 

Creating STR Resources 
You create a STR resource by choosing Create New Resource from the 
Resource menu and selecting STR from the list of available resource types. 
Click the OK button and a new STR resource is created. Once it's created, use 
the STR editor shown in Figure 85 to enter up to 255 characters into the 
string. 

Strings & Text 247 



Reading a STR Resource 

FIGURE 85. Editing a STR resource. 

theStr 

Doto S 
'----~~~~~~~~~~~--' 

Reading a STR Resource 
Reading a STR resource requires a few Toolbox Resource Manager calls to 
open and manipulate the resource. These are shown in Program 123 as a 
function designed specifically to read individual STR resources. 

The subroutine starts by getting the specified string resource using 
GetString and storing it into a handle in memory. As always, check for a 
valid handle and be sure that no error occurred during the resource operation 
before continuing. Any error at this point sounds a double beep and an error 
message is returned by the function. 

If a valid handle is present and no error discovered, it uses PEEK LONG1 to de
reference the handle into a pointer, then PSTR$ to read the resource string 
into a string variable. Finally, we free the resource from occupying memory 
with the Toolbox procedure ReleaseResource. 

PROGRAM 123. Reading a STR resource. 

LOCAL 

DIM tmp$ 

LOCAL FN ReadSTRRes ource$ (resID%) 

strH& = FN GETSTRING (resID%) 

LONG IF (strH& = 0) OR (FN RESERROR <> _noErr) 
BEEP BEEP 

tmp$ "Didn't find requested string." 
XELSE 

tmp$ PSTR$ ([strH&)) 

CALL RELEASERESOURCE (strH&) 
END IF 

END FN = tmp$ 

1. Note that we use the shorthand method of PEEK LONG by using square brackets to read 
the handle. 

248 Strtngs & Text 



Saving a STR Resource 

Saving a STR Resource 
To save a STR resource, it's a matter of going backwards from what was done 
to get the string. The example in Program 124 demonstrates how to add or 
replace a STR resource quickly and easily. 

It starts by passing a string vartable and a resource ID to the saveSTR
Resource function. It then uses the Toolbox function NewString to create a 
handle from the string vartable. If the handle is valid, the subroutine next 
checks for the presence of an older copy using the same resource ID in the 
resource fork. If one is found, it's must be removed from the file using FN 
RmveResource before saving the new one. 

A call to the Add.Resource procedure adds the string handle to the resource 
file. Next, we inform the Memory Manager that we've modified its resource 
map with Changed.Resource (so that our changes will be saved to disk), and 
finally use ReleaseResource to free the string handle memory. 

As you may have noticed, reading or adding STR resources requires some 
work with Toolbox routines. While that's true when dealing with STR 
resources, accessing other string and text resources is more directly 
supported in the next section. 

PROGRAM 124. Saving STR resources. 

LOCAL FN SaveSTRResource (tmp$, resID%) 

strH& = FN NEWSTRING (tmp$) 

LONG IF (strH& = 0) OR (FN RESERROR <> _noErr) 

BEEP : BEEP 

tmp$ = "Can't create string handle." 

XELSE 

tempH& = FN GETSTRING (resID%) 

IF tempH& THEN CALL RMVERESOURCE (tempH&) 

CALL ADDRESOURCE (strH&, _ 11 STR n, resID%, 1111 ) 

CALL CHANGEDRESOURCE (strH&) 

CALL RELEASERESOURCE (strH&) 

END IF 

END FN 

STR# Resources 
A STR# resource (pronounced string list) contains a list of Pascal formatted 
strings. STR#s are used so often in programming the Macintosh that allowing 
easy access to them with an FB function was absolutely necessary. In this 
case, it's a function called STR# (not to be confused with STR#, the resource 
type). 

Strings & Text 249 



Creating SIR# Resources 

RGURE 86. Editing a STR# resource. 

1§0~ STR# "Names" ID= 3001 from SimpleBase 1.00 ~ 
-(} 

numStrings 3 

1) ............... 

The string 

2) ............... 

The string jThe Total Employee Database 

3) ............... 

The string I Copyright © 1993 Sentient Fruit™ 

4) ............... 

Using STR# resources has several benefits. First, memory isn't used by STR# 
the same way DIM'ed string arrays do. The STR# list resides on disk until 
needed, then is loaded into memory only as long as it takes to read an 
individual string, then it's released. This is unlike regular string arrays which 
always occupy memory. Second, you can have hundreds of STR# resources in 

a program's resource fork, accessible and easy to use. 

If you are only using a few strings, saving them to a STR# resource may be 
overkill. However, I once saw a program that used a single dimensioned string 
array to store over 600K of strings. Half of the program was used to assign the 
strings to elements of the string array. I recommended converting the string 
array into several STR #resources, with the result that the program ran faster, 
the source code was reduced in size by nearly half, and the final application 
operated in less than half its previously allocated memory space. There are 
big benefits to using STR# resources. 

Creating STR# Resources 
Creating STR# resources is a snap. ResEdit contains a STR# editor that creates 
STR# resources quickly and easily. Open your resource file and choose 
Create New Resource from the Resources menu, choose STR# from the 
list, then click OK. Once the STR# resource is created, use the STR# editor 
shown in Figure 87 to enter the string data. 

Inserting Fields & Deleting STR# Resources 

To add a string to a STR# resource, click on the five asterisks in the STR# 
editor and select Insert New Field(s) from the Resources menu. ResEdit 

250 Strings & Text 



Setting S1R# Resource Info 

FIGURE 87. STR# resource information. 

!S!D~ Info for STR# 3001 from SimpleBose.rsrc ~ 

Type: SJR# Size: 73 

ID: ~,,,.,~··!iilillL _____ ___, 
Nome: Nomes 

~----------~ 
Owner type 

Owner ID: DRIJR g 
1-------1 WDEF 

Sub ID: MDEF ~ 

Rttributes: 
D System Heop D Locked D Preload 
~ Purgeoble D Protected D Compressed 

will insert a blank string into the position indicated by the asterisks. To delete 
an individual string, choose the asterisks next to the string to delete, then 
choose Clear from the Edit menu. Examine Figure 87 again to see how we 
added three strings to a STR# resource. 

Setting STR# Resource Info 
Use Get Resource Info from the Resource menu to change the STR# 

resource ID, add a name, and change attributes as shown in Figure 87. At a 
minimum, always set the Purgeable checkbox to ensure that the STR# 

resources will never occupy memory longer than necessary. 

Reading STR# 
To read a STR# resource use FB's STR# function. It only requires two 
parameters, the STR# resource ID and the indexed ID of the string to read. For 
example, to read the second string in STR# 3001 as shown in Figure 87, do 
this: 

PRINT STR# (3001, 2) 

Which will output: 

The Total Employee Database 

Occasionally, you may need to determine how many strings are actually 
stored in a STR# either for a loop block or program use. This information is 
stored in the first two bytes of all STR# resources. The function shown in 
Program 125 shows how to get this information from a specified STR# 

resource. 

Strings & Text 251 



SavingSTR# 

PROGRAM 125. Getting a string count from a STR# resource. 

LOCAL FN GetSTRCount% (resID%) 
strCount% = 0 
resH& = FN GETRESOURCE (_"STR#", resID%) 
LONG IF (resH& = 0) OR (FN RESERROR <> _noErr) 

BEEP 
XELSE 

strCount% = resH& .. none% 
CALL RELEASERESOURCE (resH&) 

END IF 
END FN = strCount% 

SavingSTR# 
You can save string data to a STR# resource using DEF APNDSTR. If the 
resource is already present do this: 

strH& = FN GETRESOURCE (_"STR#", resID%) 
LONG IF strH& 

DEF APNDSTR (stringVar$, strH&) 
CALL CHANGEDRESOURCE (strH&) 

END IF 

If the required STR# resource is not present, then create it using the 
CreateSTRResource function shown in Program 126. 

PROGRAM 126. Creating a STR# resource. 

LOCAL FN CreateSTRResource& (resID%) 
strH& = FN NEWHANDLE (2) 
LONG IF strH& = 0 

BEEP : BEEP 
XELSE 

CALL ADDRESOURCE (strH&, _"STR#", resID%, "") 
CALL CHANGEDRESOURCE (strH&) 

END IF 
END FN = strH& 

TEXT Resources 
A TEXT resource can contain up to 32, 767 characters in a single resource. 
The characters in a TEXT resource can also be styled using the styl resource. 

Creating TEXT Resources 
Just as we've done before, choose Create New Resource, select TEXT as the 
resource type, and then begin entering your data in the new resource. You 

252 Strings & Text 



Reading TEXT Resources 

FIGURE 88. Editing TEXT and styl resources. 

D TEHT I sty I ID 128 from Test RsrcFile.rsrc 

This is an example of entering TEXT data with real styfel 11 

can use the Font, Size, and Style menus that appear on the menu bar to 
specify the formatting of your text data. When any of these three menus are 
used, a styl resource of the same resource ID is added to the file. The TEXT 

and styl editor is shown in F1gure 87. 

Reading TEXT Resources 
Reading a TEXT resource into an edit field is simple. Just give either EDIT$ or 
EDIT FIELD a valid res ID% and let the runtime do all of the work. The example 
in Program 127 shows exactly how to do this using a resource ID. Remember 
that if you plan to read a styled TEXT resource, you must have a styled edit 
field to receive it. 

PROGRAM 127. Reading TEXT data. 

LOCAL FN ReadTEXTResByID (resID%, fieldID%) 
EDIT$ (fieldID%) = %resID% 

END FN 

There is a trick to reading a TEXT resource into a handle and placing it into 
an edit field. The trick is that the handle must be configured as a ZTXT 

resource in order to properly read into an edit field. All this involves is the 
addition of a length value at the beginning of the handle. Let's see how to do 
that. 

Converting TEXT to ZTXT 
A ZTXT resource contains up to 32, 767 characters and appended style data 
associated with the text. ZTXT is a styled text format returned by the GET 

FIELD function. It combines an edit field's normal text with its style 
information into a single handle that can be written to disk or resource. 

Converting a normal TEXT resource into ZTXT format is accomplished as 
shown in Program 128. The procedure is to create a handle 2 bytes larger 

Strings & Text 253 



Saving zrxr Resources 

PROGRAM 128. Converting TEXT to ZTXT format. 

LOCAL FN PutTextH2Field (textH&, fieldID%) 

EDIT$ (fieldID%) = &textH& 

END FN 

LOCAL FN Text2Ztxt& (textH&) 

ztxtH& = 0 
LONG IF textH& 

textHSize% = FN GETHANDLESIZE (textH&) 

ztxtH& = FN NEWHANDLE (textHSize% + 2) 

LONG IF (ztxtH& = 0) OR (SYSERROR <> _noErr) 

BEEP 

XELSE 

osErr% = FN BLOCK (textH&) 

osErr% = FN BLOCK (ztxtH&) 

BLOCKMOVE [textH&], [ztxtH&] + 2, textHSize% 

ztxtH& .. none% = textHSize% 

osErr% = FN HUNLOCK (ztxtH&) 

osErr% = FN HUNLOCK (textH&) 

DEF DISPOSER (textH&) 

END IF 

END IF 

END FN = ztxtH& 

than the TEXT resource, then copy the TEXT data into the ZTXT handle with 
BLOCKM:OVE but offset from the start of the handle by 2 bytes. Next, poke the 
text length into the first 2 bytes of the ZTXThandle. The text is now formatted 
correctly for insertion into an edit field. 

Note that we have not included routines for adding the styl resource. 
Routines for doing exactly that can be found in the .Functions Library Help file 
on your FB disks. 

Saving ZTXT Resources 
Saving a ZTXT handle is much easier than converting one. The procedure 
uses GET FIELD to gather the text and style data from an edit field into a 
single handle. Next, write the handle to disk with Toolbox calls exactly as was 
shown with the STR resources. Additionally, ensure that we don't duplicate a 
ZTXT resource by deleting any older version before writing the new one. 
The whole procedure is shown in Program 129 in the function saveZTxt-
2Rsrc. 

254 Strings & Text 



Reading zrxr Resources 

PROGRAM 129. Saving ZTXT data to a resource. 

LOCAL FN SaveZTxt2Rsrc (resID%, fieldID%) 
GET FIELD zTxtH&, fieldID% 
LONG IF zTxtH& = 0 

BEEP : BEEP 
XELSE 

tempH& = FN GETlRESOURCE (_"ZTXT", resID%) 
IF tempH& THEN CALL RMVERESOURCE (tempH&) 
CALL ADDRESOURCE (zTxtH&, _"ZTXT", resID%, 1111 ) 

CALL CHANGEDRESOURCE (zTxtH&) 
CALL RELEASERESOURCE (zTxtH&) 
KILL FIELD zTxtH& 

END IF 
END FN 

Reading ZTXT Resources 
First, read the ZTXT resource into a handle with the Toolbox function 
GetlResource. Ifit's a valid handle, use the EDIT$ function to replace the edit 
field's current contents. Since it's already been formatted correctly, we can 
insert the ZTXT handle into a styled edit field. Finally, clear the old resource 
handle from memory with ReleaseResource.An example of doing exactlythis 
is shown in Program 130. 

PROGRAM 130. Reading ZTXT data. 

LOCAL FN ReadZTxt2Rsrc (resID%, fieldID%) 
zTxtH& = FN GETlRESOURCE (_"ZTXT", resID%) 
LONG IF (zTxtH& = 0) OR (FN RESERROR <> _noErr) 

BEEP : BEEP 
XELSE 

EDIT$ (fieldID%) = &zTxtH& 
CALL RELEASERESOURCE (zTxtH&) 

END IF 
END FN 

Regular Exercise 
With our new knowledge of various types of text and strings resources 
available, let's use that knowledge to add some to our program. 

Strings & Text 255 



Creating Program S1R# 

Creating Program STR# 
Actually, the best method of creating STR# resources is not to use ResEdit. 
Instead, make use of the COMPILE statement setting_strResource. This tells 
the compiler that all strings it encounters in a program should be added to the 
final application as a single STR# (ID 127) when you build the program. 

• Note that you must use the _strResource setting if aprogrwn makes any use of 
INCLUDE .files. 

Field & Button STR# 
Using a STR# list is a great way of making your application easy to localize for 
a foreign country. While most of us have no intention of marketing our 
software products overseas, some people do, and STR# makes translating 
programs easy without re-writing the code. It's for this reason that you 
should use STR# resources to hold all the window, button, and static field text 
in a program. 

Open SimpleBase.glbl and add the following constants: 

_windowSTR = 1000 
_buttonSTR = 2000 
_fieldSTR = 3000 

Save your changes. These few constants enable us to determine the STR# ID 
used for storing the text. All window titles will be found in the STR# number 
1000, which can have up to 63 window titles in it. Button titles will be found 
in STR# ranging from 2001 through 2063, while field text ranges from 3001 to 
3063. Let's see how to use this. 

WindowSTR# 
OpenSimpleBase.main and rewrite all of the window build routines to take 
advantage of STR #. Remember how we used a tmp$ variable to assign names 
to windows, buttons, and static fields. Convert all of those to the STR# 
command. For example, in FN BuildEntryWindow, replace: 

tmp$ = "SimpleBase Data Entry" 

with: 

tmp$ = STR# (_windowSTR, _dbEntryWIND) 

Note how we can use the _windowSTR constant to open the correct STR# 
resource, and the title is found using the constant assigned to the window. 

256 Strings & Text 



Button & Field S1R# 

Button & Field STR# 
For all of the buttons in the window, combine the constant for button STR# 

with the window constant like this, using the btnID% as the offset into the 
STR# entries: 

tmp$ = STR# (_dbEntryWIND_buttonSTR, btnID%) 

And do the same for the window's static text fields: 

tmp$ = STR# (_dbEntryWIND_fieldSTR, btnID%) 

This identification method makes it easy to read your source code and see 
which STR# resource is accessed. It also makes it easy to change a string after 
the program has been built. Forget re-compiling, just edit the STR# resources 
in ResEdit and away it goes. 

• Notice how we combine the window and string list constants. The runtime 
determines the calculated value upon compile time and inserts the correct value 
into the code when it built. If we had used a plus sign between the two, the 
runtime would have to calculate the value each time the line was called. Doing it 
the.first way is muchfaster. 

Make the code changes on all of the window build routines and save them to 
disk. Then use ResEdit to create the STR# resources and the strings 
themselves for the subroutines to call. 

Creating the Help TEXT 
With SimpleBase.rsrc open in ResEdit, create a new TEXT resource using the 
Create New Resource item on the Resources menu, enter TEXT, and click 
OK. Select it, then choose Get Resource Info and make it Purgeable. Close 
and save when done. Finally, duplicate the TEXT resource nine times and 
renumber them from 1001to1009. 

With the TEXT resources created, add the information for all four menus and 
each window as I did. Examine the SimpleBase.rsrc file to see the text I used 
to describe the various menu items in their respective help text resource. 

Next, open the SimpleBase.glbl file and add these constants: 

_minHelpID = 1001 
_maxHelpID = 1009 

Save your changes and open the Simplebase.main file. Go to the FN 

DialogHelpWindow function and modify it to look like the example shown in 

Program 131. Save your changes and test the Help window's information, as 
well as try out the About and string length error alerts. 

Strings & Text 257 



INDEX$ Types 

PROGRAM 131. Help window dialog handling. 

LOCAL FN DialogHelpWindow (dlgEvnt%, dlgID%) 
SELECT dlgEvnt% 

CASE _btnClick 
LONG IF dlgID% > _helpSCROLL 

LONG IF dlgID% = _prevHelpBTN 
DEC (gHelpID%) 
IF gHelpID% < _minHelpID THEN gHelpID% = _maxHelpID 

XELSE 
INC (gHelpID%) 
IF gHelpID% > _maxHelpID THEN gHelpID% = _minHelpID 

END IF 
SCROLL BUTTON _helpSCROLL, 1 
EDIT$(_helpSCROLL) = %gHelpID% 

END IF 
CASE ELSE 

END SELECT 
END FN 

Peak Performance 
There is one other form of managing strings that we haven't talked about, and 
that is INDEX$ arrays. A vexy powerful set of commands enables you to easily 
manipulate these vexy flexible string arrays. The commands include INDEX$, 

INDEX$ I, INDEX$ D, INDEX$ FI CLEAR and the MEM function. 

INDEX$ Types 
An INDEX$ array is only limited by the amount of memoxy available to the 
program. The array itself can contain millions of elements (memoxy 
permitting of course) with each element able to store a string with up to 255 
characters. A program can have a total of ten INDEX$ arrays open at one time 
and all INDEX$ arrays are global in nature. This means that all LOCAL FNs see 
and use them with no additional work on the part of the programmer. 

• A small secret, an INDEX$ array is really a handle in disquise. That's why it can 
grow and shrink as demands upon it change. 

INDEX$ arrays come in either variable or fixed length elements. The variable 
length format enables the array to have elements that range between 0 to 255 
characters. Since each element can be a different length, searches, 
insertions, and deletions are somewhat slower since each element must be 
individually examined by each command. A fixed length array has a defined 

258 Strings & Text 



Creating an INDEX$ Array 

maximum length for each element. This limits the type of data stored in the 
array but has a much faster search, insertion and deletion speed than a 
variable length array does. 

• There's a correction to the Reference manual. When defining a.fixed length 
INDEX$ array, the bytes& variable should be replaced by the numElems& 
variable. 

Creating an INDEX$ Array 
To create an INDEX$ array you need a location in memory to contain the data 
that will be stored there. To do that, use the CLEAR statement. For example, to 
create a small variable length INDEX$ array do this: 

CLEAR nurnBytes&, indxID% 

Where indxID% represents a number between zero and nine. Each array can 
have its own memory requirements. To create a fixed length INDEX$ array do 
this: 

CLEAR nurnElems&, indxID%, elemLength% 

Once the array is created, you may sometimes need to clear out old data and 
insert new. To clear an INDEX$ array simply do this: 

CLEAR INDEX$ indxID% 

where again, indxID% represents the INDEX$ array to clear. 

INDEX$ Information 
Use the MEM function to return information about a specific INDEX$ array. You 
can find out how many elements exist in an INDEX$ array, how much memory 
it currently uses, how much memory it has free and more. For example, to 
determine how many entries there are in a particular INDEX$ array do this: 

numElements% = MEM (indxID% + _numElem) 

To determine how much memory is left for additional elements use: 

bytesAvailToUse% = MEM (indxID% + _availBytes) 

And to get the maximum number of bytes available use: 

maxBytesAvail% = MEM (indxID% + _maxBytes) 

Inserting and Deleting Elements 
Once an INDEX$ array is available, you can insert strings into the array using 
INDEX$ r. INDEX$ I enables you to insert a string into any array element 
directly. 

Strings & Text 259 



Changing INDEX$ Sizes 

AGURE89. 

---
-

.. .... 

Inserting & Deleting elements. 

00 DAVE 00 DAVE 
01 LOUIS 01 LOUIS 

02 JEFF 02 PAUL 
03 JEFF 

Two insertions at element 2 moves the 
element containing Jeff down twice. 

00 DAVE 00 DAVE 
01 LOUIS 01 JOHN 
02 JOHN 02 PAUL 
03 PAUL 03 JEFF 

00 DAVE 
01 LOUIS 
02 JOHN 
03 PAUL 
04 JEFF 

00 DAVE 
01 PAUL 
02 JEFF 

04 JEFF 
Two deletions at element 1 moves Paul 
and Jeff up twice, while Louis and John 
are removed from the array. 

Unlike a traditional array created with the DIM statement, INDEX$ I shifts the 
data in the array down one element to make room for the insertion.When it 
comes time to delete an element using INDEX$ D, the specified element is 
removed and all subsequent elements are shifted forward by one. The 
diagram in Figure 89 shows how elements are added and removed to the 
array. 

Changing INDEX$ Sizes 
After inserting elements, it's often necessary to increase the size of a 
particular INDEX$ array to make room for more data. To do that you use 
CLEAR to resize the specified INDEX$. The subroutine shown in Program 132 
shows how to correctly adjust any INDEX$ to accommodate more or less array 
elements. 

PROGRAM 132. Changing an INDEX$ size. 

CLEAR LOCAL 
LOCAL FN SetindexSize (sizeReq&, indxID%, setSpare%) 

indxSize& = MEM(indxID% + _availBytes) 
crntSize& = MEM(indxID% + _maxBytes) 
LONG IF indxSize& < sizeReq& 

CLEAR crntSize& + sizeReq& + setSpare%, indxID% 
LONG IF MEM(indxID% + _maxBytes) = crntSize& 

BEEP : SYSERROR = _dsMemFullErr 
END IF 

END IF 
END FN 

260 Strings & Text 



Displaying INDEX$ 

Displaying INDEX$ 
People have discovered the many uses for scrolling edit fields, and lots of you 
are wondering how to mix a scrolling edit field with an INDEX$ array. The 
following routines show how to move data from an INDEX$ to an edit field. 

We start by examining the differences between the two. An INDEX$ array 
exists as a series of strings separated by a length byte. The INDEX$ commands 
know how to traverse this format to insert, read, or delete any element in this 
mass of data. Edit field text, however, is contained in a single handle 

PROGRAM 133. INDEX$ to an edit field. 

LOCAL FN Index2ScrollEF (fldID%, indxID%) 
tmp$ 
strPtr& 
count% 
off set& 

@tmp$ + 1 
= 0 

2 

numElems% = MEM (indxID% + _numElem) 
indxSize& = MEM (indxID% + _usedBytes) 
LONG IF size& > _maxint 

BEEP : BEEP 
XELSE 

indxH& = FN NEWHANDLE (indxSize& + 2) 
LONG IF (indxH& = 0) OR (SYSERROR <> _noErr) 

BEEP : BEEP 
XELSE 

osErr% = FN HLOCK (indxH&) 
LONG IF osErr% = _noErr 

indxPtr& = [indxH&] 
DO 
tmp$ = INDEX$ (count%, indxID%) + CHR$(13} 'add linefeedt 

newSize& = LEN (tmp$) 
BLOCKMOVE strPtr&, indxPtr& + offset&, newSize& 
offset& = offset& + newSize& 
INC (count%} 

UNTIL count% = numElerns% 
osErr% = FN HUNLOCK (indxH&} 
osErr% = FN SETHANDLESIZE (indxH&, offset&} 
indxH& .. none% =offset& - 2 

END IF 
EDIT$ (fldID%) = &indxH& 
SCROLL BUTTON fldID%,l,1, numElems% 

END IF 
END IF 

END FN 

Strings & Text 261 



Displaying INDEX$ 

containing all the text and formatting characters (like line feeds), but not style 
information. 

Thus, to mix the two, it's necessary to translate one format (separate 
elements) into another (single handle of data). The function in Program 133 
does all the necessary translation, moving the single elements of an INDEX$ 

array, into a single ZTXT handle for insertion into the specified edit field. It 
creates a handle large enough to hold the INDEX$ data, then inserts each 
element into the handle while it appends a line feed at the end of each 
insertion. When done, it resizes the handle to reflect the actual character 
count, places the count in the first two bytes of the handle, then uses EDIT$ 

to place the handle into the designated field. 

Cooldown 
Once again we've covered a lot of ground. In this chapter we described the 
three types of string and text resources including STR, STR#, and TEXT. We 
also saw how to read and save data to them. And covered INDEX$ arrays and 
how to manage strings in them. 

262 Strings & Text 



CHAPTER16 

Edit Mentis 

Warm-up 
This chapter describes how you can write programs that implement an Edit 
menu and communicate with other programs via the Clipboard. In this 
chapter we will learn: 

• How to use the standard Edit menu, 

• How to customize the ·Edit menu, and 

• How to cut, copy, and paste TEXT and PICT data. 

The Edit Menu 
A standard feature of Macintosh programs is the ever present Edit menu. The 
Edit menu provides common editing capabilities that enable a user to transfer 
information via cutting or copying, from one position to another in the 
program, or from program to program. This editing capability is not restrtcted 
to text alone. It can consist of pictures, records, or anything else the 
programmer can codify into a selectable object. 

The FB runtime handles the text handling capabilities for you when dealing 
with text information in edit fields. It can't, however, handle graphics, 
records, or anything else automatically. You must program that capability 
into it yourself. And that's just what we're going to do. 

Edit Menus 288 



The Standard Edit Menu 

The Standard Edit Menu 
To use the standard Edit menu, use the EDIT MENU statement in your 
program. FB will create an entire Edit menu containing the Undo, a divider, 
Cut, Copy, Paste, and Clear items. Once added to a program, the user can 
easily manipulate text as it appears in an edit field. It can't deal with text in 
PRINT or INPUT statements, only text in edit fields. 

• Note that the default Edit menu items are stored in a STR# resource in the 
FutureBASIC Extras file. 

Undo, however, is not supported by the runtime. That too must be 
programmed into the application by the programmer. 

Clipboard Workings 
The Clipboard is referred to in programming as the desk scrap. It is the 
mechanism by which different applications can share data in common 
formats. 

TextEdit has its own internal version of the Clipboard, known as the TE 
scrap. It is the TE scrap that holds text data during cutting and pasting 
between edit fields by the runtime. However, the TE scrap must be passed to 
the desk scrap if the application wishes to share TEXT data. 

The normal method of transferring the TE scrap to the desk scrap occurs 
when the application receives notice that it is being moved to the background 
via a _mfSuspend event. At that time the frontmost application needs to 
transfer the TE scrap to the desk scrap for possible use by another program. 

When the application is brought to the foreground once again, it receives a 
_mfResume event that tells it to transfer the desk scrap to its own internal TE 
scrap so the user will have it available. 

Fortunately we don't need to wony about either of these events when dealing 
with TEXT, the runtime manages to take care of these details for us. But, we 
must worry about them when it comes time to handle PICT data ourselves. 
We will bypass these problems, however, by transferring the picture data 
directly to the desk scrap on cut or copy operations, and read the data 
directly from the desk scrap when it comes time to paste the picture. 

264 Edit Menus 



Getting Scrap Information 

Getting Scrap Information 
There are two scrap types we can check the Clipboard for using the WINDOW 

function, they are TEXT and PICT. For example, to determine if a PICT scrap is 
on the Clipboard do this: 

pictOnClip% = WINDOW (_pictClip) 

To check for TEXT, use this: 

textOnClip% = WINDOW (_textClip) 

To determine if other scrap types are present, use the Toolbox FN Get Scrap. 
Get Scrap requires three parameters, a handle to hold the scrap data, a data 
type, and an offset variable. When given this information, the function 
returns the size of the scrap found. If the specified scrap type isn't found, it 
returns zero. If the scrap type is found, a copy of it is made to the handle 
passed to it. 

If the handle parameter is nil, Get Scrap returns the presence of a scrap type. 
For example, to determine if any scrap on the Clipboard has the type ZTXT do 
this: 

scrapSize& = FN GETSCRAP (_nil, _"ZTXT", offset&) 

We'll see how to get the scrap later on, so let's look at the type of data we need 
to support. 

Customizing the Edit Menu 
One method of customizing the Edit menu is to add additional items below 
the standard menu items. For example, when the EDIT MENU statement is 
used, it automatically includes six items (Undo, a divider, Cut, Copy, Paste, 
and Clear). If you assign new items beginning with an itemID% greater than 
six, the items will be appended to the Edit menu. That's exactly what we've 
done to append the Select Rll, Copy Record, and Paste Record items. 

Edit Menu Events 
The standard Edit menu handling provided by the runtime is just great when 
it comes to copying and pasting text from edit field to edit field. However, it's 
not designed to handle anything else. So we have a choice. Do we disable the 
runtlme's standard text editing features and write our own? Or, do we 
somehow intercept menu choices in the Edit menu and respond accordingly? 
The answer is neither. 

When the runtime sees a window with active edit fields, it's perfectly happy to 
handle the text editing directly and never let us see a menu event! This works 

Edit Menus 265 



Edit Menu Events 

RGURE 90. Standard and custom Edit menus. 

Undo ••• xz Undo ••• xz 

Cut XH Cut 88H 
Copy :ice Copy xc 
Paste XU Paste 880 
Clear Clear 

Select RH XR 
Standard and 
custom Edit menus Copy Record XK 

Paste Record 

fine with text, but how can we handle the picture field? Easy, we use an 
undocumented feature of the runtime. If we disable all of the fields in the 
Data Entry window with: 

EDIT FIELD #_nil 

We are sent Edit menu selections as menu events. Once we receive the menu 
event, it's not hard to handle the cutting, copying, pasting, or clearJng of 
pictures. 

Regular Exercise 
Now that we understand what can be done with Edit menus, let's begin 
adding support for them in SimpleBase. 

To do that we'll create another include file called Ed.itMerws.Incl.. In it we will 
place all of our special Edit menu routines. We will also add a function to the 
Project.Incl file for the DoEdi tMenu subroutine and a global pointer to the 
SimpleBase. glbl file. Here are the directions to get started: 

Create a new source file called Ed.itMerws.Incl.. Set it up as an include file with 
the standard program headers used in the other include files. At the very 
bottom of the new file add: 

gEditMenuPtr& = @FN pDoEditMenu 

Then in SimpleBase.glbl add: 

DIM gEditMenuPtr& 

In Prqject.Incl add: 

DEF FN DoEditMenu (itemID%) USING gEditMenuPtr& 

266 Edit Menus 



Adding Select All 

Finally, in the SimpleBase.Incl file, delete the ItemSelectAll, ItemExport

Record, and ItemimportRecord subroutines, then cut the DoEditMenu 

subroutine and paste it into EditMenus.Incl. Rename it pDoEdi tMenu. Add the 
subroutines called by pDoEdi tMenu (note the name changes), and remember 
to save all of your files. The starting source for the EditMenus.Incl is shown in 
Program 135. 

Adding Select All 
Implementing the Select Rll item is the easiest addition to make. Just add 
the SETSELECT statement to the EditSelectAll subroutine as shown in 
Program 134. Because this is a menu item not handled by the runtime, 
whenever the user chooses it the contents of the active edit field will be 
highlighted, ready for cutting, copying, deletion, or replacement. 

PROGRAM 134. Select all subroutine. 

LOCAL FN EditSelectAll 

SETSELECT 0, _maxint 

END FN 

Exporting Data 
All right, we know the runtime will take care of exporting all text selections for 
us, so all we have to worry about is the picture data. How do we do that? Well, 
we start by identifying where the user is. Since we are only concerned with the 
lone picture field in the Data Entiy window, let's start there. 

The picture field was created as an active field, but the Tab and Shift-Tab 
events are designed to bypass it when the user presses either combination. 
The only remaining event to watch for is an _efclick in the picture field in 
the Data Entiy window. When SimpleBase receives this event, it should 
deactivate all the active fields in the window so that it can intercept all 
subsequent menu events. 

Also, because the user has no way of knowing that they clicked in the picture 
field (it doesn't have a blinking cursor), it needs some method of showing 
them the field is selected. The answer is a routine called FrameField. 

FrameField draws a rectangle around the picture field (much like the 
System 7 get and put field dialogs) so that the user has a visible mark of 
where they are. It also handles erasing the rectangle when the user clicks in 
an edit field. The routine is shown in Program 136. 

Edit Menus 267 



Exporting Data 

PROGRAM 135. EditMenus.lncl file. 

I --- HEADER -------------------------------------

INCLUDE FILE _aplincl 

COMPILE 0, _strResource_macsBugLabels 

I --- CONSTANTS ----------------------------------

GLOBALS "SimpleBase.glbl" 

END GLOBALS 

I --- FUNCTIONS ----------------------------------

LOCAL FN EditUndo 

END FN 

LOCAL FN EditCut 
END FN 

LOCAL FN EditCopy 
END FN 

LOCAL FN EditPaste 
END FN 

LOCAL FN EditClear 
END FN 

LOCAL FN EditSelectAll 
END FN 

LOCAL FN EditExportRecord 
END FN 

LOCAL FN EditimportRecord 
END FN 

LOCAL FN pDoEditMenu (itemID%) 
SELECT itemID% 

CASE _iUndo 

CASE _iCut 

CASE _iCopy 

CASE _iPaste 
CASE _iClear 
CASE _iSelectAll 
CASE _iCopyRec 

FN EditUndo 

FN EditCut 

FN EditCopy 

FN EditPaste 

FN EditClear 

FN EditSelectAll 

FN EditExportRecord 
CASE _iPasteRec FN EditimportRecord 

END SELECT 
END FN 

I --- GLOBAL POINTER ---------------------------

gEditMenuPtr& = @FN pDoEditMenu 

268 Edit Menus 



Exporting Data 

PROGRAM 136. FrameField subroutine. 

LOCAL 

DIM rect;8 

LOCAL FN DrawFrame (showFrame%) 

CALL SETRECT (rect, 210,113,350,275) 

LONG IF showFrame% 

PEN 2,2,,,0 

XELSE 

PEN 2,2,,,19 

END IF 
CALL FRAMERECT (rect) 

PEN 1,1,,,0 

END FN 

FrameField starts by deflning a rectangle with enough room to leave a pixel of 
space around the picture field's boundary. Then, depending on the setting of 
showFrame%, it either draws a black 2 pixel wide rectangle around the field or 
erases one. When done it resets the pen back to its normal setting. It's called 
from two locations in DialogEntryWindow: _efClick and _wndRefresh. Both 
make appropriate checks of the fieldID% to properly set the showFrame% flag. 

The end result of all this is that when the user clicks in the picture field, a 
border appears around it and all fields in the window are deactivated. All 
selections in the Edit menu, even the ones previously handled by the 
runtime, are sent to us via a menu event. 

Now that we have menu events, let's see how to export pictures. 

PROGRAM 137. Modified DialogEntryWindow routines. 

I • • • WINDOW EVENTS 

CASE _wndRefresh 

LONG IF WINDOW(_efNum) = 0 

FN DrawFrame (_true) 

XELSE 
FN DrawFrame (_false) 

END IF 

I ••• FIELD EVENTS 

CASE _efClick 

FN EFClickEvent (dlgID%) 
LONG IF dlgID% = _dbPhotoFLD 

EDIT FIELD #_nil 

FN DrawFrame (_true) 

XELSE 

FN DrawFrame (_false) 

END IF 

Edit Menus 269 



Exporting PICT 

Exporting PICT 
Exporting picture data is bit tricky- we have to deal with a couple of different 
formats that the picture data may be stored in the picture field. Let's review 
the rudiments of picture fields before examining the routines required to 
manipulate pictures. 

When a PICWRE FIELD is created, it's possible to add a picture using a either 
a PICT resource ID, or a picture handle. The runtime stores this picture 
information in the space normally used to store text data. We need to extract 
this information and get a copy of the picture. 

We also have one other problem, how do we identify a PICWRE FIELD from an 
EDIT FIELD? The samewaytheruntimedoes, byexaminingthefield type. You 
see, a picture field is just a modified edit field that can show pictures. A field 
created with PICWRE FIELD always has a negative field type value. We can 
check this using: 

fieldType% = WINDOW (_efClass) 

And if it's less than zero, it's a picture field. 

Once a field is identified as a picture field, we have two different methods of 
storing picture information. In practice, when you pass a picture ID or picture 
handle to a picture field it stores the ID or handle in the field as well as the 
method used to place it there. We extract this information using: 

pictinfo$ = EDIT$(fieldID%) 

If the first character in pi ct Info$ starts with the"%" character, a picture ID 
follows. If the first character is a"&", a picture handle follows. 

PROGRAM 138. Exporting PICT. 

CLEAR LOCAL 

LOCAL FN GetPICTHandle& 

trnp$ = EDIT$ (_dbPhotoFLD) 

pict$ = RIGHT$ (trnp$, LEN (trnp$) - 1) 

SELECT LEFT$ (trnp$, 1) 

CASE "%" 

pictH& = FN GETPICTURE (CVI(pict$)) 

CASE "&" 

pictH& = CVI(pict$) 

CASE ELSE 

pictH& = _nil 

END SELECT 

END FN = pictH& 

270 Edit Menus 



Copy Picture 

Our routine to determine all of this is FN GetPICTHandle& and is shown in 

Program 138. It starts by extracting the text from the picture field using 
EDIT$. It extracts the picture number from the field using RIGHT$. Next, it 
determines how the picture data got into the picture field, by resource ID or 
handle. If the data was placed using a resource ID, we convert the remaining 
text into a number and use FN GetPicture to get a handle to the picture. 
However, if the picture was placed as a handle, we convert the remaining text 
into a handle using cvr. If neither character is found, it sets the handle to nil 
and the routine returns nothing. 

Copy Picture 
When the user chooses Copy from the Edit menu with all fields deactivated, 
we are sent a menu event. The HandleMenuEvent subroutine routes control to 
pDoEditMenu. It in turn calls the EditCopy function shown in Program 139. 
We cover this subroutine first because it is also called by EditCut. 

It begins by calling GetPICTHandle& to see if the picture field contains a 
picture. If it does, it then calls FN DataHandleToScrap to place the picture 
onto the desk scrap. This makes it available to any other program that reads 
the desk scrap. Since the Scrap manager makes a copy of our picture handle, 
it disposes of pictH& with DEF DISPOSER and ends. 

PROGRAM 139. EditCopy subroutine. 

CLEAR LOCAL 

LOCAL FN EditCopy 

LONG IF WINDOW (_efClass) < 0 

pictH& = FN GetPICTHandle& 

LONG IF pictH& <> _nil 

scrapErr% = FN DataHandleToScrap (pictH&, _"PICT", _true) 

DEF DISPOSEH (pictH&) 

END IF 

END IF 

END FN 

DataHandleToScrap starts by accepting three parameters, a handle contain
ing the data to place on the clipboard, in this case PICT, and a flag that allows 
us to clear the clipboard or just add to the desk scrap. 

It makes sure it has a valid handle, then examines the zeroClipBoard% flag 
to determine whether to clear the clipboard using FN zeros crap. Next, it gets 
the handle size, locks it from moving in memory with FN Hlock, and calls 
PutScrap to copy the data into the clipboard. It finishes by unlocking the 
handle with FN HunLock and returns any error it encountered. 

Edit Menus 271 



Cut Picture 

PROGRAM 140. Sending data to scrap. 

CLEAR LOCAL 
LOCAL FN DataHandleToScrap (dataH&, dataType&, zeroClipBoard%) 

LONG IF dataH& <> _nil 
LONG IF zeroClipBoard% <> _nil 

scrapH& = FN ZEROSCRAP 
END IF 
sizeOfH& = FN GETHANDLESIZE (dataH&) 
osErr% = FN HLOCK (dataH&) 
LONG IF osErr% = _noErr 

osErr% = FN PUTSCRAP (sizeOfH&, dataType&, [dataH&]) 
osErr% = FN HUNLOCK (dataH&) 

END IF 
END IF 

END FN = osErr% 

Cut Picture 

When the user chooses Cut from the Edit menu, EditCut is called. It checks 
to make sure we are in the picture field, then calls Edi tCopy to copy the 
picture data from the picture field to the desk scrap. Then, since it's cutting 
the picture from the record, it clears the picture field with EDIT$, sets the 
dbPictID% field of the employee record to nil, and disposes of the global 
picture handle gPictH&. This subroutine is shown in Program 141. 

PROGRAM 141. EditCut subroutine. 

CLEAR LOCAL 
LOCAL FN EditCut 

LONG IF WINDOW (_efClass) < 0 
FN EditCopy 
EDIT$ (_dbPhotoFLD) = 1111 

gEmployee.dbPictID% = _nil 
DEF DISPOSEH (gPictH&) 

END IF 
END FN 

Clear Picture 
EditClear, shown in Program 142, is exactly like EditCut with the ex
ception that it doesn't copy the picture field's contents to the desk scrap. 

272 Edit Menus 



Copy Record 

PROGRAM 142. EditClear subroutine. 

CLEAR LOCAL 

LOCAL FN EditClear 

LONG IF WINDOW (_efClass) < 0 

EDIT$ (_dbPhotoFLD) = 11 11 

gEmployee.dbPictID% = _nil 

DEF DISPOSEH (gPictH&) 

END IF 

END FN 

Copy Record 
One final export option we should look at involves copying an entire record to 
the Clipboard. This enables the user to place all of the data in a single record 
into another program in one step. The most common format has each field in 
our record separated by a tab so that the exported information appears in a 
database, spreadsheet or word processing document in the proper alignment. 

Edi tExportRecord, shown in Program 143, starts by calculating the total 
length of all entries in the current record. As soon as it has that, it creates a 
handle to hold all of the data. Once it has a valid handle, it locks it in memory 
with FNHLock, then cycles through each record field, extracting the field text, 
appends a tab onto the end and inserts it into the handle. A variable called 
offset& keeps track of the next position to place data. When the final field is 
read (fax number in SimpleBase), it appends a carriage return instead of a 
tab, then calls DataHandleToScrap with the type TEXT to place the data onto 
the desk scrap. 

Importing Data 
Exporting picture data isn't the whole game. We also need to import data via 
the clipboard in order to be totally conversant with other programs. The 
routine that does this for us is called FN ScrapToDataHandle& and can be 
seen in Program 144. 

FN ScrapToDataHandle& starts by accepting one parameter, the type of scrap 
to search for in the desk scrap. In our case, that will be PICT. It starts by 
creating a new handle to hold the data, then uses the Toolbox function 
GetScrapto see if any PICT data is on the desk scrap. If there is, it's copied to 
the empty handle (which isn't empty anymore) and returns it to the calling 
routine. 

Edit Menus 273 



Importing Data 

PROGRAM 143. Copy record to scrap. 

CLEAR LOCAL 
LOCAL FN EditExportRecord 

FOR count% = _dbNameFLD TO _dbFaxFLD 
calcHSize% = calcHSize% + LEN{EDIT${count%)) + 1 

NEXT count% 

offset% = 0 
recordH& = FN NEWHANDLE {calcHSize% + offset%) 

LONG IF {recordH& <> 0) AND {SYSERROR = _noErr) 

osErr% = FN HLOCK {recordH&) 
LONG IF osErr% = _noErr 

FOR count% = _dbNameFLD TO _dbFaxFLD 

tmp$ = EDIT$(count%) 
LONG IF count% < _dbFaxFLD 

char$ CHR$(_tab) 

XELSE 

char$ = CHR${_cr) 

END IF 

tmp$ = tmp$ + char$ 
size% = LEN {tmp$) 
BLOCKMOVE @tmp$+1, [recordH&] + offset%, size% 

offset% = offset% + size% 

NEXT count% 

END IF 

osErr% = FN HUNLOCK {recordH&) 

osErr% = FN DataHandleToScrap (recordH&, _"TEXT", _true) 

DEF DISPOSEH (recordH&) 

END IF 

END FN 

PROGRAM 144. Importing data from the scrap. 

CLEAR LOCAL 

LOCAL FN ScrapToDataHandle& {scrapType&) 

scrapH& = FN NEWHANDLE (0) 

LONG IF scrapH& <> _nil 

scrapSize& = FN GETSCRAP {scrapH&, scrapType&, offset&) 

LONG IF scrapSize& <= 0 

DEF DISPOSEH (scrapH&) 

END IF 

END IF 

END FN = scrapH& 

274 EditMenus 



Paste Picture 

Paste Picture 

When Paste is called and the picture field is active, the EditPaste sub
routine in Program 145 makes sure it's in the picture field, then calls FN 

ScrapToDataHandle& to return a handle containing picture data to us. If the 
handle comes back valid, it disposes of the current global picture data in 
gPictH& using DEF DISPOSEH, saves the new picture handle to the global 
handle, and places it into the picture field using EDIT$. Finally, it assigns the 
gOpenRecord% to gEmployee. dbPictID% so that it will be saved to the 
employee file. 

PROGRAM 145. EditPaste subroutine. 

CLEAR LOCAL 
LOCAL FN EditPaste 

LONG IF WINDOW (_efClass) < 0 
pictH& = FN ScrapToDataHandle& (_"PICT") 
LONG IF pictH& <> _nil 

DEF DISPOSEH (gPictH&) 
gPictH& = pictH& 
EDIT$ (_dbPhotoFLD) = &gPictH& 
gEmployee.dbPictID% = gOpenRecord% 

END IF 
END IF 

END FN 

Paste Records 
Of course, if we can export an entire record, we should also be able to import a 
record that is formatted properly. We know we are importing a record, and all 
the program has to do is parse the text handle it finds on the clipboard into 
separate fields, placing them appropriately. The entire EditimportRecord 
function is shown in Program 146. 

It starts by calling ScrapToDataHandle& to see if there is any TEXT on the 
desk scrap. If there is, it sets up some string pointers (for greater speed) and 
then assigns a Tab to a string called char$. This is what separates each field 
in the record and what we'll search for to determine where to parse the field 
data. 

Next, it uses a Toolbox function called Munger to search the text handle. 
Munger is great for searching, inserting, replacing, or deleting text from 
handles. Think of it as MID$'s big brother. Munger wants as parameters: a 
handle containing text, a position to begin the search, a pointer to a search 
string, the search string's length, a pointer to a replacement string and its 

Edit Menus 275 



Paste Records 

length. Since we are only searching, we can leave the replacement string and· 
length nil. And by manipulating where the search starts, we can walk 
through the handle looking for each field separately. 

Note that the pointers to the search and replacement strings must contain 
the address to the first character of each string, not their length bytes. That's 
why a 1 is added to each pointer, to skip the length byte. 

If Munger returns a negative value, that means it didn't find anything to 
match the search criteria (our Tab), so we inform the user with another alert 
that the text they are trying to paste is not a record and exit the function. If 

PROGRAM 146. Copy record from scrap. 

CLEAR LOCAL 
DIM trnp$ 
DIM 3 char$ 
LOCAL FN EditirnportRecord 

scrapH& = FN ScrapToDataHandle& (_"TEXT") 
LONG IF scrapH& <> _nil 

strPtr& = @trnp$ 
charPtr& = @char$ + 1 

. char$ = CHR$(_tab) 
startPos& = _nil 
offset& = FN MUNGER (scrapH&, startPos&, charPtr&, 1, _nil, _nil) 
LONG IF offset& > _nil 

fieldID% = _dbNameFLD 
DO 

size% = offset& - startPos& 
POKE strPtr&, size% 
BLOCKMOVE [scrapH&] + startPos&, strPtr&+l, size% 
EDIT$ (fieldID%) = trop$ 
INC (fieldID%) 
startPos& = off set& + 1 

offset& = FN MUNGER (scrapH&, startPos&, charPtr&, 1, _nil, _nil) 
UNTIL (offset& < 0) OR (fieldID% = _dbFaxFld) 
size% = FN GETHANDLESIZE (scrapH&) - startPos& 
POKE strPtr&, size% 
BLOCKMOVE [scrapH&] + startPos&, strPtr&+l, size% 
EDIT$ (fieldID%) = trnp$ 

XELSE 
item% = FN NOTEALERT (_noRecordALRT, 0) 

END IF 
DEF DISPOSEH (scrapH&) 

END IF 
END FN 

276 Edit. Menus 



Paste Records 

Munger finds a match it returns the offset into the handle one byte after the 
match position. 

Once we have our first match, the real work begins. In a DO/UNTIL loop we 
calculate the size of the field's data by taking the offset& - startPos&, then 
we POKE that into a temporary string variable defined earlier, followed by a 
BLOCKM:OVE of the text from the startPos& to offset& position into the string 
variable. Next, the temporary string is placed into the waiting edit field, the 
fieldID% is incremented, startPos% is updated to one byte past offset&, 

and we call Munger again using the new offset position. 

This cycle continues until Munger fails (offset&< 0). At this time we know 
only the final field's data remains, so we calculate the size of the handle 
minus the startPos&, and repeat the POKE and BLOCKMOVE of the final field's 
data into the temporary string and into the edit field. The last act is to dispose 
of the handle using DEF DISPOSER. 

Edit Menus 277 



Paste Records 

Cooldown 
And that's all there is to cutting, copying, clearing, and pasting picture data in 
SimpleBase. Now that wasn't so bad, was it? 

In this chapter we learned about the desk and TE scraps (more commonly 
referred to as the Clipboard) and their major differences. We also saw how to 
manipulate the Edit menus so that the runtime has control when 
manipulating text data, and we have control for pictures and record data. We 
learned how to interpret the picture data in a picture field, and how to copy, 
cut, and paste it into other picture fields as well as other programs. Finally we 
saw how easy it is to manipulate records of data to enable copying of complete 
records from place to place in the employee database. 

Use of these techniques will make your programs more user friendly and 
enable you to provide the editing support your users desire. 

278 Edit Menus 



CHAPTER17 

Plinting 

Warm-up 
We're nearing the end, this chapter explains how to print text and graphics 
from any program. In it you will learn: 

+ How to print to any attached printer, 

• How to handle the standard print loop, and 

• How to handle printer errors. 

Printing on the Macintosh is remarkably easy to do if you keep one thing in 
mind: sending text and graphics to a printer is exactly like printing to a 
program window. 

The Print Manager 
The Print Manager is the Toolbox manager that handles printing requests on 
the Macintosh. It's the Print Manager's responsibility to provide a common 
interface to the print driver for the attached printer. A print driver is software 
that translates your program's printable output into a language the printer 
can understand. Print drivers are selected by the user with the System's 
Chooser and include files like LaserWriter and ImageWriter. 

Normally, a program should never wony about which printer is connected, 
you call the same print routines. This makes it very easy to write print 
routines in a program that work on any Chooser compatible printer. Some of 
these routines are described below. 

Printing 279 



The Print Record 

The Print Record 
All of the formatting information for a printer is stored in a print record. This 
information includes things like the paper size, the paper's printable area. the 
resolution, and a host of user options including the number of copies to print, 
paper size, and many more. Options are set using two printer dialogs, one for 
style information, and one for print information. 

Page Setup 
The Page Setup dialog enables users to specify page dimensions, page 
orientation, and for laser printers, special effects like graphics text 
smoothing. 

You access the Page Setup dialog in a program using the DEF PAGE statement. 
Users make their selections and click the OK button to save the changes to 
the print record. Use the PRCANCEL function to determine if the Cancel 
button was selected. 

AGURE 91. Printer style dialog. 

LaserWriter Page Setup 1.1.2 

Paper: ® US Letter O R4 Letter 
O US Legal O BS Letter 0 I Tabloid ..,. , 

Reduce or 1Hmil% 
Enlarge: 

Orientation 

-~ 
Print ... 

Printer Effects: 
181 Font Substitution? 
181 TeHt Smoothing? 
181 Graphics Smoothing? 
181 Faster Bitmap Printing? 

¢ OK B 
( Cancel ] 

(Options] 

The Print dialog enables the user to control the number of copies, page 
selections, type of printing, and several other immediate print job 
requirements. Unless cancelled, the normal sequence is to print the document 
after viewing this dialog. It's at this point that your program takes charge and 
handles the actual work of printing. 

To display the print job dialog, use DEF LPRINT. Again, use PRCANCEL to 
determine if the user clicked the Cancel button. 

Print Record 
The current print record is accessed using FB's PRHANDLE function. The 
information stored therein should not be considered valid until both the Page 

280 Printing 



Routing Output 

FIGURE 92. Printer job dialog. 

LoserWriter "Lozorus Long" 7.1.2 n Print B 
Copies:llMI Poges: ® All O From: CJ To: CJ ( Cancel ) 

Couer Poge: ® No O First Poge O Lost Poge 

Poper Source:® Poper Cossette O Monuol Feed 

Print: ® Block & White O Color/6royscole 
Destination: ® Printer O Postscript® File 

Setup and Print dialogs have been okayed by the user. We'll soon see how to 
extract relevant portions of that information as required by the program. 

• See Inside Macintosh., VoL 2, or the FB Reference manual for a description of the 
Print record. 

Routing Output 
Once it's determined that the user wants to print, i.e. PRCANCEL is false, use 
the ROUTE statement to direct all subsequent text and graphic commands to 
the Print Manager. Normally, all text and graphic commands go to the current 
output window, but to send them to the printer, use ROUTE _toPrinter. This 
output includes EDIT FIELD, PICTURE FIELD, PICTURE, BUTTON, and SCROLL 

BUTTON statements too. 

As soon as the print job is complete, use ROUTE _toScreen to return output 
to the current window. Additionally, use of ROUTE in the middle of a print job 
enables you to send output to the printer and also display status information 
in a window. 

• Note that you can use ROUTE for the modem ports too. See the FB Reference 
manualjor details. 

Page Information 
To all intents and purposes, once you've routed output to a printer, you can 
treat the paper as just another output window. This flexibility allows you to 
write a single routine that will print a report to the screen, and output the 
same report to any printer just by changing the ROUTE statement. 

Since you set the size of the page in the Page Setup dialog by choosing the 
paper type, your program should be able to detect the change and make 
adjustments to provide the best printout possible. For example, you can 

281 



Printing 

PROGRAM 147. Getting the page size. 

ROUTE _toPrinter 
printHt% = WINDOW {_height) 
printWd% = WINDOW {_width) 
ROUTE _toScreen 

determine the actual printable area of the page using the WINDOW functions 
shown in Program 14 7. 

Additionally, use the PRHANDLE function which returns a handle to the actual 
print record that describes the current print job. There is a host of 
information stored inside it, but most programs won't require that amount of 
control. But, some programs do require more information, so the example in 
Program 14 7 shows how to use PRHANDLE to get the starting and ending page 
numbers, as well as the number of copies. 

PROGRAM 148. Other printer information. 

prHndl& = PRHANDLE 
numCopies% = prHndl& .. iCopies% 
startPg% = prHndl& .. iFstPage% 
lastPg% = prHndl& .. iLstPage% 
vertRes% = prHndl& .. iVRes% 
horzRes% = prHndl& .. iHRes% 

Additionally, while treating the printer as a window you can output text using 
different fonts, text sizes and styles, as well as colors and output graphics 
using all of the FB and Toolbox commands. 

Printing 
FUtweBASIC offers a lot of control over printing text. What follows is the three 
most common commands used to output text to a printer. 

FIGURE 93. Print rectangle on paper . 

..... --

i...._ 

r-

282 Prin.tfng 

Paper rectangle - actual size 
of paper to print on. 

Print rectangle - actual area 
of paper you can print on. 



LPRINT 

u>RINT 
LPRINT is the old-fashioned means of outputting text to a printer. When using 
LPRINT, the Print Manager is bypassed, and the character data is sent directly 
out the chosen serial port to the printer. Formatting your output is difficult 
since you must send special printer code sequences to the printer to format 
the subsequent text. LPRINT uses the printer's native fonts which has the 
benefit of higher speed. 

LPRINT does have some other problems. It may not be reliable over networks. 
doesn't like some laser printers, and since different dot-matrix printers offer 
different features, the code sequences to format output may differ from 
printer to printer. Also, LPRINT is slow. It actually creates and closes a new 
printer port each time it is called. All-in-all, these non-features of LPRINT 

make it a poor choice for outputting anything to a printer. 

PRINT% 
The standard PRINT% statement is the preferred method of outputting text to 
a printer (PRINT and PRINT@ are close behind). For all intents and purposes 
PRINT% functions exactly as when outputting strings to a window at a precise 
pixel location. This makes it veiy easy to write print routines that seive the 
dual purpose of printing exactly the same to both a window and a printer. A 
small example of this is shown in Program 149. Additionally, it's probably a 
bit faster than using the edit field method described next. 

PROGRAM 149. Dual print routine. 

LOCAL FN DualPrint (whereTo) 

LONG IF whereTo = _toPrinter 

ROUTE _toPrinter 

END IF 

' ••• PRINT YOUR FORMATTED DATA HERE 

ROUTE _toScreen 

END FN 

Once output is routed to the printer, you can use any of the standard 
formatting statements to change the font, size, style, and mode of the 
outputted data. Again, just like you can in a window. 

EDIT & PICTURE FIELDs 
When output is routed to a printer, it can be treated exactly as if it were a 

window. This means that you can create both edit and picture fields1 in this 

1. And buttons and scroll buttons as well. 

Printing 283 



Graphics 

printer output window. These edit and picture fields can have all the 
attributes of their normal window brothers, including frames, styled text, 
alignment, etc. For outputting large quantities of styled text or pictures this 
technique works very well. In fact, we'll use a PICTURE FIELD to print the 
employee's picture along with their other personal data. 

This method may be a bit slower than PRINT%, but the benefits gained far 
outweigh the disadvantages. 

Graphics 
Finally, when it comes to outputting graphics to a printer, you can use all of 
FB's graphic commands: PLOT, BOX, PLOT TO, BOX FILL, CIRCLE, CIRCLE FILL, 

PEN, and COLOR, as well as all Toolbox graphic commands. 

Regular Exercise 
Now that we understand more about printing, it's time to begin adding a 
printing capability to SimpleBase. You'll want to insert these print routines 
near the top of the main file. See the .Appendix for the complete StmpleBase 
listing. 

To do that we'll create another include file called Prtnting.lncL In it we will 
place all of the print routines. Just as before, here are the directions to get 
started. 

Set Printing.Incl up as an include file with the standard program headers used 
in the other include files. At the very bottom of the new file add: 

gDoPrintPtr& = @FN pDoPrinting 

Then in Simp'leBase.glbl add: 

DIM gDoPrintPtr& 

And in Prqject.lncl add: 

DEF FN DoPrinting (readRecPtr&) USING gDoPrintPtr& 

Finally, in the SimpleBase.lncl file, delete the old DoPrinting subroutine. 
Remember to save all of your files. The starting source for the Prtnttng.lncl. is 
shown in Program 150. 

A Standard Print Loop 
We'll begin by implementing a standard printing loop. This is the core printing 
function that you can drop into a program and modify. It handles most of the 
requirements for setting up and disposing of a print job, all you do is add 

284 Printing 



A Standard Print Loop 

PROGRAM 150. Printing.Incl file. 

' --- HEADER ------------~------------------------

INCLUDE FILE _aplincl 

COMPILE 0, _strResource_macsBugLabels 

' --- CONSTANTS ----------------------------------

GLOBALS "SimpleBase.glbl" 

END GLOBALS 

' --- GLOBAL FUNCTIONS --------------------------

LOCAL FN DBReadRecordTemplate 

END FN 

' --- FUNCTIONS ----------------------------------

LOCAL FN PrintRecord 

END FN 

LOCAL FN PrintManyRecords 

END FN 

LOCAL FN pDoPrinting (readRecPtr&) 

END FN 

' --- GLOBAL POINTER ---------------------------

gDoPrintPtr& = @FN pDoPrinting 

your program's specific printing code. We'll explain it as we build it so that if 
you need to modify it later, you'll have a place to start. 

The print loop starts from when the user has selected Print from the File 
menu. Naturally, the user expects a print job dialog, so use DEF PAGE to 
display one. Next, it checks to see if the user selected the Cancel button 
using PRCANCEL. 

PROGRAM 151. Standard print routine. 

LOCAL FN pDoPrinting 

DEF LPRINT 

LONG IF PRCANCEL = 0 

CURSOR _watchCursor 

ROUTE _toPrinter 

' ••• place custom print routine here 

ROUTE _toScreen 

CLOSE LPRINT 

CURSOR _arrowCursor 

END IF 

END FN 

Printing 285 



The Custom Print Routine 

If the user cancels the dialog, control returns to the program's Main Loop. 
However, when Print is chosen, the routine sets the cursor to a watch and 
uses ROUTE to send all text and graphics to the printer. We'll skip the custom 
print routines for now since they can be anything. When control returns from 
the program's custom print routine, output routes back to the screen, and 
the Print Manager is closed with CLOSE LPRINT. 

The Custom Print Routine 
Now that we have our standard print loop, let's jazz it up a bit and make it 
useful for SimpleBase. 

Our custom print routine in Program 152 begins with a DEF LPRINT 

statement that enables the user to choose the number of copies to print. Once 
Print is chosen, we store the current record number for later use. Open the 
database file's resource fork with USR OPENRFPERM to allow us access to the 
employee pictures stored there. A change of cursor to show we're busy and. 
the ROUTE statement will send all subsequent output to the printer. 

Since we have three choices in the Print window (current, all, or selected 
records}, we use a SELECT structure to handle the user's choice. Depending 
on the value of gPrintFlag%, we implement one of two subroutines: 
PrintRecord, or PrintManyRecords. 

To print the current record only, we pass thatjob off to PriritRecord wI;tich 
has the responsibility of printing a single employee record. Upon completion, 
we use CLEAR LPRINT to tell the Print Manager we're done with that page and 
to print it. Exiting the SELECT structure routes output back to the screen with 
ROUTE, then closes the Print Manager with CLOSE LPRINT. If resRef% is valid it 
closes the database file with CloseResFile. Finally, we reset the value of 
gOpenRecord%, read the saved record (in case it changed as we'll see later}, 
and show the arrow cursor to let the user know we're done. 

To print multiple records, including both all and selected records, everything 
up to the SELECT structure remains the same except the value of 
gPrintFlag%. To print all records, or a selected few, the routine calls 
PrintManyRecords and passes it two parameters, the first and the last record 
number to print. "Ah ha", you say, finally you can see why it was important to 
save the current value of gOpenRecord%. Since PrintManyRecords uses 
gOpenRecord% to access the specified records, we must have some way of 
returning the user to the record they started at. In the case of printing all 
records, we pass parameters of zero for first record and gMaxRec:J;nFile% for • 
the final record. To print only a chosen few, we pass gPrFirstRec% and 
gPrLastRec% instead. The same routine handles both variations. 

286 Printing 



Global Template 

PROGRAM 152. Custom printing records routine. 

LOCAL FN pDoPrinting (readRecPtr&) 
DEF LPRINT 
LONG IF PRCANCEL = 0 

oldRecNurn% = gOpenRecord% 
resRef% = USR OPENRFPERM (gFileName$, gWDRefNurn%, _fsCurPerm) 
CURSOR _watchCursor 
ROUTE _toPrinter 
SELECT gPrintFlag% 

CASE _thisRecBTN 
FN PrintRecord (10) 
ROUTE _toScreen 
CLEAR LPRINT 

CASE _allRecBTN 
FN PrintManyRecords (1, gMaxRecinFile%, readRecPtr&) 

CASE _selectRecBTN 
FN PrintManyRecords (gPrFirstRec%, gPrLastRec%, readRecPtr&) 

END SELECT 
ROUTE _toScreen 
CLOSE LPRINT 
IF resRef% THEN CALL CLOSERESFILE (resRef%) 
gOpenRecord% = oldRecNurn% 
FN DBReadRecordTemplate USING readRecPtr&; 
CURSOR _arrowCursor 

END IF 
END FN 

That's the controller subroutine that handles all of our required printing 
tasks. Now let's look at the individual routines that print the employee 
records. 

Global Template 
You may have noticed that in the subroutine pDoPrinting we pass it a 
pointer as a parameter and later on use it in the FN DBReadRecordTemplate 

call. What's going on here? 

What's going on is that the DBReadRecord subroutine is located in the 
SimpleBase.Incl file which can't be seen from Printing.Incl directly. We could 
have placed it into the Prqject.Incl but thought we'd demonstrate another 
means of calling a subroutine with FN USING. In this version we pass the 
address to the subroutine we want to access as a parameter. In the include 
file that is called, we create a template function, just as we do in the 
Prqjects.IncL 

287 



Printing a Single Record 

Since DBReadRecord is stored in SimpleBase.Incl. it's an easy matter to use 
@FN to get its address and pass it onto pDoPrinting. pDoPrinting gets the 
address and uses it to call DBReadRecord from itself via DBReadRecord

Template when required. A nice symbiotic relationship. 

So in SimpleBase.Incl. the call is made like this: 

FN DoPrinting (@FN DBReadRecord) 

Printing a Single Record 
Now let's examine the actual printing routine. I'm sure you thought we'd never 
get there. Th.is is the real workhorse of the print loop. It's here that we take the 
actual data, format it correctly, and then print it. 

We start by determining what the layout of each record should look like when 
printed. Since SimpleBase only has a few fields, it was easy. to design a layout 
that had an employee's picture on the left, the field titles in the middle, and 
the actual data next to the field titles. Th.is layout has two benefits: one it 
looks good, and two, it allows four employee records to appear on a single 
printed page which can save a lot of paper. 

The subroutine PrintRecord accepts one parameter called pgVOf f set%. This 
parameter is used to specify which of four record positions on the page the 
current record will be printed. Another important value used here, 
_gut terAdj, is defined as a constant. Th.is constant defines how much gutter 
space a page should have. Adjust it to suit your preferences, or change it to a 
global value that the user can modify themselves. Of course, you'll need to 
add a preferences window to accomplish this. · 

The subroutine PrintRecord starts by defining a couple of coordinate offsets 
to correctly place the various elements of an employee record on the page. It 
loops through the field titles stored in the STR# _printerSTR and prints them 
to the page while adjusting the vOffset% variable. Next, a series of PRINT% 

statements print the data in the gEmployee fields using xOffSet% and 
_gutterAdj as well as pgVOffset%. 

We set the position of the employee picture, draw it using a PICTURE FIELD, 

and finish by addillg a gray dMding line after the employee record. 

288 Printing 



Printing Multiple Records 

PROGRAM 153. Print a page routine. 

LOCAL 
DIM rect.8 
LOCAL FN PrintRecord (pgVOffset%) 

xOffSet% = 150 
v0ffset% = 15 
TEXT _geneva, 9, 1 

' ••• PRINT FIELD TITLES 
FOR count% = _dbNameFLD TO dbFaxFLD 

trnp$ = UCASE$ (STR# (_dbEntryWI~_fieldSTR, count%)) 
PRINT%(xOffSet% + _gutterAdj, pgVOffset% + VOffset%) trnp$ 
vOffset% = v0ffset% + 15 

NEXT count% 

' ••• PRINT FIELD DATA 
TEXT •_geneva, 12', 0 
PRINT%(xOffSet% + _gutterAdj + 80, pgVOffset% + 15) gErnployee.dbNarne$ 
PRINT~(xOffSet% + _gutterAdj + 80, pgVOffset% + 30) gErnployee.dbAddr$ 
PRINT%(xOffSet% + _gutterAdj + 80, pgVOffset% + 45) gErnployee.dbCity$ 
PRINT%(xOffSet% + _gutterAdj + 80, pgVOffset% + 60) gErnployee.dbMyState$ 
PRINT%(xOffSet% + _gutterAdj + 80, pgVOffset% + 75) gErnployee.dbZip$ 
PRINT%(xOffSet% + _gutterAdj + 80, pgVOffset% + 90) gErnployee.dbPhone$ 
PRINT%(xOffSet% + _gutterAdj + 80, pgVOffset% +105) gErnployee.dbFax$ 

' ••• PRINT PICTURE & SEPERATOR 
CALLSETRECT (rect,_gutterAdj,pgVOffset%, 130+_gutterAdj,pgVOffset%+152) 
PICTURE FIELD #100, %gErnplo~ee.dbPictID%, @rect, _statFrarned, _cropPict 
PEN , , , ,3 
PLOT 0, pgVOffset% + 165 TO 600, pgVOffset% + 165 
PEN , , , , 0 

END FN 

Printing Multiple Records 
Once we have the record printing routine finished and tested, it's not difficult 
to add another routine shown in Program 154 to print multiple records. The 
routine only requires two parameters: the number of the first and last records 
to print. In this case, the first record to print is always record number one, 
and the final record is defined by gMaxRecinFile%. 

After some initial setup, the routine cycles through getting each record into 
II'l:emory using DBReadRecord, then printing it using the custom printing 
subroutine previously described. After it returns from printing one record, it 
increments its control variables and repeats until all specified records have 
printed. Once the record count exceeds the last record specified, control 
drops out of the loop and eventually returns to the Main Loop. 

Printing 289 



Printing Selected Records 

In the loop, we have some special code that determine how many records 
have already been printed. When four records have printed to the page, a 
page number is then printed at the page bottom and the page is closed. This 
causes the Print Manager to close the page in memory and begin processing it 
for printing. Meanwhile the program can begin printing the next page of 
records. 

PROGRAM 154. Print multiple records routine. 

LOCAL FN PrintManyRecords (firstRec%, lastRec%, readRecPtr&) 

pgVOffset% = 10 

pageNum% = 1 

recCount% = 0 

DO 

gOpenRecord% = firstRec% 

FN DBReadRecordTemplate USING readRecPtr&; 

FN PrintRecord (pgVOffset%) 

INC (firstRec%) 

INC (recCount%) 

LONG IF (recCount% MOD 4) = 0 
PRINT% (_gutterAdj, pgVOffset% + 180) "PAGE#" ;pageNum% 

INC (pageNum%) 

pgVOff set% = 10 
IF recCount% < lastRec% THEN CLEAR LPRINT 

XELSE 

pgVOffset% = pgVOffset% + 180 

END IF 

UNTIL firstRec% > lastRec% 

END FN 

Printing Selected Records 
Finally, the last printing option to include is one that prints from a start record 
to a final record. The previouslywritten PrintRecord and PrintManyRecords 
routines will again be used to provide this handy feature. All we need to do is 
pass the gPrFirstRec% and gPrLastRec% values to PrintManyRecords 
functions, and voila, we have a custom printing routine that prints any record 
or number of records we choose. 

The key is gathering the users input data from the edit fields in the Print 
window. Of course, that task falls to WindowCapture as shown in 
Program 155. We add another small but handy routine called CheckRange% 

that ensures our starting and ending values fall within accepted record 
number boundaries 

290 Printing 



Closing the Print Manager 

PROGRAM 155. Print selected records. 

LOCAL FN CheckRange% (current%, minRange%, maxRange%) 

IF current% < minRange% THEN current% = minRange% 

IF current% > maxRange% THEN current% = maxRange% 

END FN = current% 

LOCAL FN WindowCapture 

SELECT wndID% 

CASE _printWIND 

gPrLastRec% = VAL(EDIT$(_lastPrFLD)) 

FN CheckRange% (gPrLastRec%, 1, gMaxRecinFile%) 

gPrFirstRec% = VAL(EDIT$(_firstPrFLD)) 

FN CheckRange% (gPrFirstRec%, 1, gPrLastRec%) 

END SELECT 

END FN 

Closing the Print Manager 
Just as there is a sequence to opening the Print manager to deal with your 
printing task, there's also a recommended method of finishing it. 

The big finish occurs when there are no more pages to print. At that point we 
use CLOSE LPRINT to close the Print manager. This tells the Print manager 
that there are no more pages to print, enabling it to close down. 

Right after that, always ensure that you ROUTE output back to the screen, and 
that you close all of your own private data structures, print message 
windows, etc. 

Prtnting 291 



Get Printer Name 

Peak Performance 
There may come a time when you want to do something fancier with the 
printer. The following are some routines that may be useful to you. 

Get Printer Name 
Occasionally your program may need to know which printer is currently 
selected. You may need to display the printer type, or simply use the name in a 
dialog or alert. In either case, the following routine will locate the name of the 
currently chosen printer as selected by the Chooser desk accessory. 

• In reality, a program should not concern itself with which printer is currently 
selected since a print routine should work with any attached printer. 

The following routine searches for the name of the currently chosen printer 
on the computer. That information is stored in the System file as a STR 

resource with an ID -8192. The routine searches all open resource forks for 
the matching string. Since negative STR values are reserved by Apple for 
system resources, this string will only be found in the System file. The routine 
is shown in Program 156. 

PROGRAM 156. Get Printer Name. 

CLEAR LOCAL MODE 
DIM 63 printerName$ 
LOCAL FN GetPrinterName$ 

resH& = FN GETSTRING (-8192) 
LONG IF resH& = 0 

printerName$ "unknown" 

XELSE 

printerName$ PSTR$([resH&]) 
CALL RELEASERESOURCE (resH&) 

END IF 

END FN = printerName$ 

292 Printing 



Getting a Printer Icon 

Getting a Printer Icon 
Yet another piece of information you might require is the actual icon 
representing the currently chosen printer. This is great for the users since they 
can see immediately which printer they have chosen (if they have several) and 
also makes them wonder how the program knew which printer to display. 

RGURE 94. A standard print cancel dialog. 

!I Printing pt1ge: 1 of 5 

Ct1ncel Printing 

In Program 15 7, we make use of the Get PrinterName function to locate the 
name of the printer extension file. We also determine which operating system 
the program is operating under and search in the appropriate folder for the 
printer extension. We do some fancy folder dancing to get the correct 
wdRefNurn% and then open the printer file's resource fork. Once open, we 
extract the printer icon, close up shop, and return the icon's handle. 

• Under System 6, all printer files reside in the System Folder itself, under System 7 
printer files are located in the Extensions folder within the System Folder. 

Well, the first order of business is to get the chosen printer's name as 
demonstrated in "Get Printer Name". Next, we use the SYSTEM function to 
return the working directory reference number of the System Folder in the 
wdRefNurn% variable. 

Now we do some more fancy folder work. If the program is executing under 
System 6 there is nothing more to do because printer files live in the System 
Folder, so the next routine is skipped. However, if it's operating under System 
7 we must switch to the Extensions folder to locate our printer file. We do that 
using two variations of the FOLDER function. The first uses the System's 
volume reference number to open the System Folder. The second FOLDER call 
searches the System Folder to see if a folder called Extensions lives there. If it 
does, it opens that folder and returns its volume reference number in 
vRefNum%. 

Printing 293 



Getting a Printer Icon 

PROGRAM 157. Get Printer Icon. 

CLEAR LOCAL MODE 

LOCAL FN GetPrintericon 

printerName$ = FN GetPrinterName$ 

oldResRef% = FN CURRESFILE 

wdRefNurn% = SYSTEM (_sysVol) 

LONG IF SYSTEM (_sysVers) > 699 

wdRefNurn% FOLDER ("", wdRefNurn%) 

wdRefNum% = FOLDER ("Extensions", 0) 

END IF 

resRef% = USR OPENRFPERM (printerName$, WDRefNurn%, _fsCurPerm) 

LONG IF resRef = 0 

BEEP : BEEP 

XELSE 
printericnH& = FN GETlINDRESOURCE (_"ICN#", 1) 

LONG IF printericnH& = 0 

BEEP : BEEP 

XELSE 

CALL DETACHRESOURCE (printericnH&) 

END IF 

IF resRef% THEN CALL CLOSERESFILE (resRef%) 

END IF 

CALL USERESFILE (oldResRef%) 

END FN = printericnH& 

The search path we use is illustrated in Figure 95. The top portion of the 
diagram shows that printer files for System 6 are stored in the System Folder. 
On the bottom, printer extensions reside in the Extensions folder within the 
System Folder. In either case, the routine now attempts to open the printer 
file called printerName$ in the folder specified by wdRefNum% using USR 

OPENRFPERM. A valid resRef% number (non-zero) indicates success. 

RGURE95. Printer file paths. 

System 
Folder 

System 6.x path. 

System 
Folder 

System 7.x path. 

294 Printing 

Extensions 
Folder 



Getting a Printer Icon 

With a valid resRef% we search the printer file for the first ICN# resource 
stored in its resource list using the Toolbox function GetlindResource. 
Get 1 Ind.Resource grabs the first resource of the requested type in the printer 
file and returns a handle to the icon data. Once it has the handle, it detaches 
it from the file allowing us to close the printer file with CloseResFile. The 
icon handle is then returned to the calling routine. 

We can now display it in a window, a dialog, or an alert with Ploticon and 
leave the user wondering how we figured it out. The small example in 
Program 158 shows how to do this. 

PROGRAM 158. Display printer icon. 

DIM rect.8 

CALL SETRECT (rect, 20, 20, 52, 52) 

WINDOW 1 : CLS 

printericnH& = FN GetPrintericon 

LONG IF printericnH& 

CALL PLOTICON (rect, printericnH&) 

DEF DISPOSEH (printericnH&) 

END IF 

STOP 

Printing 295 



Getting a Printer Icon 

Cooldown 
In this chapter we learned about the various methods of sending data to a 
printer. We saw how some useful printing statements may not provide the 
amount of control or speed you require from your program. We also learned 
how to create simple yet effective routines to handle a multitude of printing 
tasks, from individual records, to all records, and selected records. 

With the information provided in this chapter you are well on your way to 
becoming a printing master. In the next chapter, we'll create many of the 
resources necessary to make SimpleBase a unique application in the eyes of 
the Finder and everyone else. 

296 Printing 



CHAPTER18 

Application Resources 

Warm-up 
We're nearing the end of creating SimpleBase. What follows are some addition 
resources required by applications on the Macintosh. Here you'll learn all 
about: 

+ The BNDL resource, 

+ FREF resources, 

+ ICN# resources, 

+ The signature resource, 

+ The vers resource, 

+ The SIZE resource, and 

+ Special System 7 resources. 

There are several resource types required by any program for it to be 
recognized as a unique application by the Finder. What follows are 
explanations of these various resources and how they relate to an application 
and to each other. 

• Note that the following resow-ces are required under both System 6 and System 7 
for all applications. 

Application Resources 297 



The BNDL Resource 

The BNDL Resource 
The BNDL (bundle} resource iden titles all Finder-related resources associated 
with the application program. These resources include the ICN#. FREF, and 
signature resources. 

The BNDL resource links these three resources together into, well, a bundle. 
To begin, the BNDL resource identifies the application's signature resource ( 4-
character type} to the Finder. This enables the Finder to link documents with 
specific file types to the application that created them. I.e., the user can 
double-click on a document and the Finder will search out and open the 
application that created the document. 

Next the BNDL links a FREF resource to an ICN# resource. The FREF (file 
reference} contains a 4-character file type, and an index number to the ICN# 

resources. Typically, the first FREF relates to the application itself, and the 
first ICN# in the index is the application icon. The next FREF represents a 
single file type the application can save to disk and its associated ICN# index 
number. Another FREF resource is required for each file type associated with 
the application. You can see this resource relationship in Figure 111. 

The Signature Resource 
As ignat ure resource is an application unique resource type that enables the 
Finder to identify and launch the correct application when the user double
clicks on a document created by that application. The signature resource is a 

RGURE 96. BNDL resource relationships. 

BNDL resource 

Creator type: I FbSb 

FREF resources 

File type: I APPL 

ICN# I 128 

File type: I FbDb 

ICN# I 129 

298 Application Resources 

ICN# resources 

ICN#128 lai 
ICN# 1291 ~ 



FREF Resources 

4-character type commonly referred to as the creator type. For example, 
FutureBASIC has a creator type of ZBAS and ResEdit has one of RSED. You can 
designate the signature type in the BNDL editor as shown in Figure 97. 

Your programs should have their own unique creator types. If a program has 
the same creator type as another, the Finder can become confused and 
display the wrong icons on both the application and its documents. 

Programs specify a file type for a file using the DEF OPEN statement as 
previously shown in the chapter "Files". You can determine a document file 
type using FILES$ or FINDERINFO as demonstrated in the chapter "Final 
Touches". 

FIGURE 97. BNDL editor in ResEdit. 

§0 BNDL ID = 128 from SimpleBose.rsrc 

Signoture: I FbSb I 
ID: I 0 I (should be 0) 

© String: I Copyright ©1993 Sentient Fruit™ 

FREF Finder Icons 
locol ! res ID !Type locol ! res ID ! ICN• ic14 ic 18 ics • ics4 ics8 

0 128 RPPL 0 128 ' ~[g[g~~~ ~ 
' 

iHili~~~ 1 129 Sb Db 1 129 l 
l 
' 

I ~ 

• Note, to ensure that your applications signature doesn't conflict with another 
application, register your application's signatw-e with Apple Computer, Inc., at 
Macintosh Developer Technical Support. 

FREF Resources 
FREF (file reference) resources are used to link specific file types with the 
icon used by the Finder to display it on the screen. For each file type an 
application can create, it should have a FREF resource of that type. 

AFREF resource contains three items: a 4-character file type, a local ICN# ID, 
and an empty string (never implemented by Apple). File types can be a 
common one like TEXT or PICT, or be unique to your application. The two 
FREFs used by SimpleBase are shown in Figure 98. 

Application Resources 299 



ICN# Resources 

RGURE98. The FREF resources used by SimpleBase. 

FREF ID = 128 from SimpleBose.rsrc 

File Type jAPPL I 
Icon locollD jo I 
FileNome [ J 

D FREF ID 129 from SimpleBose.rsrc 

File Type jsbOb I ~ 
._____, Icon locollD j 1 I 

FileName l 

-0 
li2J 

ICN# Resources 
ICN# (icon list) resources contain all of the icons associated with an 
application and its documents. You can see the entire ICN# for the SimpleBase 
application icon in Figure 99. The ICN# editor makes it easy to design all the 
icons required by any program. Besides the usual drawing tools and icon 
design area, it displays the icons against both white and patterned 
backgrounds so that you can see how it will look on screen. 

RGURE 99. Application ICN# for SimpleBase. 

Icon Family ID = 128 from SimpleBose.rsrc 

••••••••••••••••••••••••••• [i]~ • • • • • • • • • • •• mm~-~- , •• • • • • • • •• • • • • .......... • • •• ~ • • • • • • • • • • D • ••••••••• ••••••••• • icsB • • • • • 0 • • • • • • •••••• • • • ••••• • • • • • • • ~ • 0 • • • • • • • • •• • ••• • • •• • • • • ics4 

I I • • • • • •••• • • ic14 

• ••••• • • •1 • •••••• • • • • • • • • • • • • • • Mask 

• • • • ••••••••••••••••••••••••••• 

300 Application Resources 



The vers Resource 

From top to bottom you can use this single editor to create black and white 
ICN# and icn# resources, as well as 4- and 8-bit color icl4, ics4, icl8, and 
ics8 icon resources and the icon masks (used to separate the icon from the 
background pattern). All of these icon resources together are known 
collectively as an ICN# family.' 

The vers Resource 
The vers resource contains the application version information. It's normally 
displayed when the user highlights the application and chooses 6 et Info from 
the File menu while in the Finder. An example of SimplaBaseversion 
information display is shown in Figure 100. 

Setting the vers information is done in the vers editor shown in Figure 101. 
Here is where you set things like the application's version number, its stage of 
development (development, alpha, beta, and final), the country code (identlftes 
the script system the version of the software was developed for), and provide 
short and long version strings for the Get Info window. Additionally, avers 
resource should have a resource ID of 1 to specify the file version, or a resource 
ID of 2 to represent the version for a set of files. 

FIGURE 100. Get Info display for SimpleBase. 

~O SimpleBose Info 

1~1 SimpleBm 

Kind: application program 
Size : SOK on disk (7 4, 1 7 4 bytes used) 

Where: MAC•1 : Languages: FutureBASIC1M: 
LFB-08 /OS /93 .bas : 

Created: Sat, Sep 4, 1993, 15:54 
Modified: Sat, Sep 4, 1993, 15:54 
Yersion: Copyright ©1993, Sentient Fruit1M 

Software 
Comments: 

0Locked 

r-Memoriy Requirements -·-1 ! Suggested size : 2000 K j 
! Minimum size: ~ K ! 
! Preferred size: ~ K i 
L__ ............. - ....................... ~ ......... l 

Application Resources 

This how the vers resource 
information is displayed 
when the program's user 
chooses Get Info. 

} 
This how the SIZE resource 
information is displayed. 

301 



The SIZE Resource 

RGURE 101. vers editor in ResEdit. 

§0 uers ID = 1 from SimpleBose.rsrc 

Uersion number: llMj . ID . ID 
Releose:I Beto ..,.. I Non-release: @=] 

Country Code:I 00 - USR ..,.. I 

Short uersion string: '-I u_l_.o_o ______ __, 

Long uersion string (uisible in Get Info): 

Copyright © 1993, Sentient Fruit™ Software 

System 7 Resources 
The following resources are required to provide additional support for System 
7 (and MultiFinder) features. They should be added to all programs you write, 
regardless of which system the user will ultimately use your program on. 
User's of System 6 do use MultiFinder occasionally, and hopefully will upgrade 
to System 7 at some time. So help them out by making your application 
System 7 friendly right from the start. 

The SIZE Resource 
Because System 7 can run multiple applications at once, and because there is 
a finite amount of RAM memory in a particular machine, parcelling that 
memory out is vitally important. Since the System can't determine on its own 
what amount of memory an application might require, the SIZE resource was 
created. This enables the System to ask the application how much memory it 
requires. It then allocates enough space for the application, and launches it 
into the allocated memory space. 

The SIZE resource under System 7 (and System 6 MultiFinder) describes 
both the upper and lower limits of memory space an application requires. The 
minimum memory setting is vitally important since it describes the least 
amount of memory an application can still operate in, albeit at a reduced 
capacity. In most cases the maximum memory setting describes the typical 
user requirements when working with the program. In some cases, if the user 

302 Application Resources 



Determining Memory Requirements 

FIGURE 102. Determining memory requirements. 

=o Rbout This Macintosh E!l 

System Software 7 .1 
!· - -! Macintosh II © Apple Computer, he . 1983-1993 

Total Memory: 8,192K Largest Unused Block: 5156K 

~ SimploBase 512K - J .Q 
~ Sy stem Soflw are 2,524K ::J 

-0 
~ 

is making unusually large demands on a program's memory space, the 
memory should be increased. 

Additionally, the SIZE resource provides the operating system with additional 
information on whether the application is 32-bit clean, it can accept suspend 
and resume events, does it support stationary, and many more. We'll examine 
which ones should be set later in the chapter. 

Determining Memory Requirements 
One question I am often asked is how to determine the suggested, minimum, 
and preferred sizes for an application. While it's easy to just pick a size for 
each entry, doing so intelligently requires both some work and some thought 
on your part. 

First, write and build your application. Then run it as hard as you can 
memory wise. Open as many files as the application allows. Build every array 
as large as required. Work the application as hard as you can. Periodically, 
examine the memory display in the Finder as shown in Figure 102. See how 
much memory the dialog shows the application actually requires. 

In our example, SimpleBase is only using about BOK of its allocated 512K with 
no files open. Adding 20 or 25% of safety factor gives a total of about lOOK for 
the minimum setting. However, when a file is open, it actually uses very little 
more, about 90K or so. This is because SimpleBase only keeps one record in 
memory at a time instead of the entire database. So, adding 25% to that (with 

some rounding up) I get a maximum memory setting of 128K1. 

Now, on both memory extremes, we've ensured that the program won't bump 
against a too small memory problem or request more memory than it can ever 
use and prevent other programs from running. 

1. A nice even multiple of 2. 

Application Resources 303 



Adding Finder Messages to Documents 

• Note that if no SIZE resow-ce is included in your application's resow-cefile, FB will 
use a copy of its own s I ZE resource which has a preferred setting of 2000K. 
Probably much larger than your program may ever need. 

Adding Finder Messages to Documents 
Under System 7, when the user attempts to open or print a document the 
Finder will search for the application that created the document. If a match of 
signature types is found, the Finder starts the application and tells it to open 
or print the document. If the application isn't found, it displays an 
application-unavailable alert. 

If the document is of the type TEXT or PICT and the TeachText application 
is available, the FY.nder will offer to open the document with TeachText. If 
TeachText is not available, the FY.nder displays an alert box like that shown in 
Figure 103. 

RGURE 103. Standard application-unavailable alert. 

The document "Fred.DB" could not be 
opened, because the application 
"SimpleBase" could not be found. 

[( OK J) 

Before displaying the alert, the FY.nder searches the document for one of two 
custom STR resources. If the document is one that users can open, supply a 
STR -16397 resource containing the application name. If the file is a 
preferences file, or one that is used by the application but one that users 
shouldn't open, supply a STR -16396 resource containing a short message 
describing why the user can't open the file as shown for a fictional 
preferences file in Figure 113. Both resoures should be made purgeable. 

Adding Balloon Help Resource 
The System 7 FY.nder provides balloon help for online assistance of users. 

Whenever the user chooses Show Balloons from the (!) menu, descriptive 
messages appear inside of cartoon-style balloons as the users moves the 
cursor over an area of the screen (window, control, dialog) that has a help 
resource associated with it. 

304 Application Resources 



Adding Balloon Help Resource 

FIGURE 104. Custom application-unavailable alert. 

This document contains the user 
preferences for the application 
SimpleBase. This document must be 
stored in the Preferences folder to 
be usable by SimpleBase. 

le oK D 

The Finder provides default help messages for applications. Since that isn't 
much fun, we can customize our application's balloon help message by 
creating a hfdr resource with a resource ID of-5696. When users turn on 
balloon help, they will see something like that shown in Figure 105. 

AGURE 10s. Balloon help for SimpleBase. 

Use the SimpleBase database 
to create and manage an 
employee database for your 
business. 

• Unfortunately, you can't overide the default document balloon help.just 
applications. 

Application Resources 305 



Creating BNDL Resources 

RGURE 106. Empty BNDL editor. 

~D BNDL ID = 128 from SimpleBase.rsrc 

Signature: 11111111 
ID: IO I (should be O) 

©String: 
'----~~~~~~~~~~--' 

FREF Finder I cons 
local i res ID T Type local res ID ICN• icl4 ic 18 ics • ics4 ics8 

I 

I 

~ 

I I 
I 

I 
I 

I 
I 

I 
I I -01 

Regular Exercise 
It's time to add all of the previously mentioned resources to the 
StmpleBase.rsrcfile. Take it one step at a time and add themjust as described. 

Creating BNDL Resources 
From the BNDL editor it's possible to create the BNDL, FREF, ICN#, and 
signature resources. Start by running ResEdit and opening the 
SimpleBase.rsrc file. Choose Create New Resource from the Resource 
menu and click the BNDL resource type, then OK. ResEditwill create a blank 
BNDL resource like that shown in Figure 106. Finally, choose EHtended Uiew 
from the BNDL menu so that all of the resource bundled in the BNDL resource 
can be viewed. 

Creating a Signature Resource 
We start by adding our creator type to the BNDL editor. This will automatically 
generate a signature resource of the specified 4-character type within the 
resource file. We also add a small string to the resource. It's not required, and 
many applications leave the signature resource blank, but I like to place a 
copyright notice there. You can see the signature type and string in 
Figure 107 just as it was entered. 

306 AppUcation Resources 



Creating FREF Resources 

FIGURE 101. Creating a signature resource in the BNDL editor. 

§0 BNDL ID = 128 from SimpleBase.rsrc 

Signature: I FbSb I 
ID: I 0 I (should be 0) 

© String: I Copyright ©1993 Sentient Fruit™ 

FREF Finder Icons 
local j res ID jType local j res ID j ICN • ic14 ic18 ics• ics4 ics8 

' I 

I 
I ~ I ! I 
I 

I I I I 
I 

I i i i 
i I 
I 

I 
I 
I 

I I ! I fzy 

Creating FREF Resources 
With the BNDL editor window frontmost, choose Create New File Type from 
the Resources menu. ResEditwill add a complete FREF /ICN# link .. Enter the 
appropriate FREF types beginning with APPL. Also, add the resource ID to the 
ICN# containing the application icon. Choose Create New File Type again 
and add a FREF for our data files as SbDb and the resource ID to the file ICN#. 

When finished, it should look like the screen shot in Figure 108. 

FIGURE 108. Adding FREFs to BNDL resource. 

§0 BNDL ID = 128 from SimpleBase.rsrc 

Signature: I FbSb I 
ID: IO I (should be O) 

© String: I Copyright © 1993 Sentient Fruit™ 

FREF 
local 

0 

i res ID jType 

I 128 ! RPPL 

.':! 129 I l sbDb 
! ' 
I .•'I l i 

I I 
I i 

AppUcation Resources 

Finder Icons 
local res ID i ICN• ic14 

o I 128 
I 

i 129 

I 
I 

ic 18 ics • ics4 ics8 

307 



Creating ICN# Resources 

• Note that you shouldn't change any of the Local ID settings. Just let ResEdit 
assign those as it sees fit. 

Creating ICN# Resources 
Next, it's time to add the icons that will make our application visually unique 
on the desktop. Double-click on the gray rectangles for Finder Icon # 128. 
ResEditwill open the ICN# editor where you can begin creating the icon family 
that will represent your application on the desktop. When done, close the 
ICN# editor and repeat for Finder Icon# 129. You can see the application icons 
in Figure 99 and their document icons in Figure 109. 

FIGURE 109. Document icons for SimpleBase. 

Icon Fomily ID= 129 from SimpleBose.rsrc 

••••••••••••••••••••••••••• • • • • • • 
····= 
····= • •• • • I ••••••••••••••••••••• • • • ••••••••••••••••••••• • • • • ••••••••••••••••••••• • ••••••••••••••••••••• • • I • • • 

. i ••••••••••••••••••••••••••• 

You've now completely filled in the BNDL resource, as well as added FREFs, 
ICN#s, and a signature resource. The BNDL editor should look similar to 
what is shown in Figure 110 at this point. Now, save your work and then 
begin creating the rest of the application required resources. 

308 Application Resources 



Creating ICN# Resources 

FIGURE 110. Complete BNDL for SimpleBase. 

§0 BNDL ID = 128 from SlmpleBnse.rsrc 

Signoture: I FbSb I 
ID: IO I (should be O) 

©String: I Copyright ©1993 Sentient Fruit'M 

FREF Finder I cons 
loco I j res ID Type locol I res ID ICN• io14 io18 ics• ios4 less 

! 
1128 ~la !aiaiaia ~ 0 1128 RPPL 0 

! ! ii Ii Ii i1 i1 [i] 1 ! 129 Sb Ob 1 i 129 
! I 
I 

I 
I 

I 
~ l l 

Application Resources 309 



Creating avers Resource 

Creating a vers Resource 
We'll begin the other resources bycreatingthevers resource. Choose Create 
New Resource, type in vers, and click OK. ResEdit creates avers resource 
and opens the vers editor shown in Figure 111. Enter the version number 
(1.0.0), short and long version strings, choose the release type Final, and 
finish by setting the countiy code (for the Script Manager). 

RGURE 111. vers resource editor. 

~D~ uers ID = 1 from SlmpleBase.rsrc 

Uersion number: l••I . [] . [] 
Release:! Final ""I Non-release: [] 

Country Code:I 00 - USA ""I 

Short uerslon string: ._I u_1._o_o _____ __.. 

Long uersion string (ulslble In Get Info): 

Copyright ®1993, Sentient Fruit™ Software 

To complete the vers resource, choose Get Resource Info from the 
Resources menu and change the vers resource ID to 1. Save your changes 
and you're done with this resource. 

Creating a SIZE Resource 
To create an SIZE resource, select Create New Resource from the 
Resources menu, find the SIZE type in the list. Click OK. When the SIZE 

editor appears, enter the suggested, minimum, and preferred application 
memory requirements, then click on the attributes your application requires. 
By default, you should always select the attibutes shown in Figure 112. Each 
of the selected attributes does the following (the others are not detailed here): 

• Accept suspend/resume events - tells the operating system that your 
application can process suspend/resume events. 

• Can background- when set, it tells the operating system that your 
application wants to receive null events while it's in the background. 

310 AppUcatton Resources 



Creating the hfdr Resource 

• Can activate on FG switch- tells the operating system that your 
application should receive the mouse down and up events used to bring 
your application to the foreground. 

• 32-bit compatible- indicates that your program is 32-bit clean. Required 
for all new machines, and especially when running under System 7. 

Finally, when everything is set as shown in Figure 112, use Get Resource 
Info to change the SIZE resource ID number to 0. 

FIGURE 112. SIZE resource settings. 

0 SIZE ID= 0 from SimpleBase ~ 

D Saue screen (obsolete) 
181 Accept suspend/resume euents 
D Disable option (obsolete) 
181 Can background 
181 Does actluate on FG swl1ch 
D Only background 
D Get front clicks 
D Accept application died euents 
18132-blt compatlble 
D Hlgh-leuel euent aware 
D Local and remote HL euents 
D Stationary aware 
D Use teHt edit seruices 

CreanngthehfdrResource 
To create the hfdr resource, select Create New Resource from the 
Resources menu and find the hfdr type in the list. Click OK. When the hfdr 

editor appears, select STR format for the message from the Help popup list, 
then double-click on the balloon to access the STR editor. Enter the text that 
will appear when the user has balloon help on, then save your work. 

Use Get Resource Info to change the hfdr resource ID number to -5696. 

For SimpleBase, the balloon help should appear as shown in Figure 113. 

AppUcation Resources 311 



Creating the hfdr Resource 

RGURE 11a. Custom help balloon for SimpleBase. 

D hfdr ID = -5696 from Test I ~ 

Help: I STR resource •I 
Use ilw SimplebaH program to oreate 
and mana,e ~ employee ~tabase for 
your bllsfness. 

STR resource ID: j1111mwj 

Cooldown 
That's it for the system resources. In this chapter we learned all about the 
BNDL, FREF, ICN#, and signature resources. When properly linked, they 
provide the Finder with the capability to display your application icon and 
open your application when a user double-clicks on a program file. 

Additionally, we learned about some other resources like SIZE, vers, hfdr 

and others. 

312 Application Resources 



CHAPTER19 

Final Touches 

Warm-up 
This chapter will complete our work on SimpleBase. What's left are some final 
touches that you should add to SimpleBase and your own programs to make 
them friendlier to users. 

Which System am I? 
Right off the top you should know that your programs will not operate on all 
Macintosh computers, nor under all System versions (see the FB Getting 
Started manual, Minimum system requirements). So the first order of 
business when your program begins running, should always be to check that 
it can run under the host machine and operating system. 

We can check our environment quite easily using the SYSTEM function. For 
example, to see if the program is running under a System version earlier than 
6.05 we use the code shown in Program 159. 

PROGRAM 159. Checking System version. 

LONG IF SYSTEM (_sysVers) < 605 

item = FN ALERT (_versALRT, 0) 

END 

END IF 

Where the alert displayed is specific to the problem. In this case it should tell 
the user that the program cannot run under the current operating system. 
The ALRT resource added to the program might look like this. 

Final Touches 313 



Screen Colors 

AGURE 114. Wrong system alert. 

Sorry, SimpleBase requires 
System 6.D5 or later in order to 
operate. 

(( Return to Finder )J 

Additionally, we must always make sure that the program executes on is at 
least a MacPlus or newer. Another similar check should be made as shown in 
Program 160 which displays its own ALRT resource describing the particular 
problem to the user. 

PROGRAM 160. Checking machine version. 

LONG IF SYSTEM (_macType) < _envMacPlus 
item = FN ALERT (_rnachALRT, 0) 
END 

END IF 

In many cases a program can effectively get by using these two alert 
messages. Using ResEdit, add these two ALRT resources to SimpleBase's 
resource file. Next, let's open the SimpleBase.glbl file and add the two alert 
constants LversionALRT and _machALRT), save and close. Finally, open the 
SimpleBase.main file and add the two testing routines to the Initialize 

function. 

AGURE 11s. Sample wrong ROMs alert. 

Sorry, SimpleBase requires 
Macintosh ROMs more current 
than those found on this 
machine. 

([ Return to Finder )J 

Screen Colors 
Other programs may have different operating requirements. For example, a 
game program may require a color monitor before the user can play it. Or, 
more commonly, the user has a color monitor, but it's set to a different color 

314 Final Touches 



Opening and Printing File 

FIGURE 116. Incorrect color setting alert. 

Sorry, Simple6ome requires ot 
leost 4-bit color in order to 
operate. 

n Return to Finder B 

level than that required by the program. The user's monitor is set to black 
and white, but the game requires 4-bit color. 

For this situation, a two-tiered test is required. We need to know first, is the 
program running on a color monitor, and secondly, if it is, is it set to the 
correct level for the program. The appropriate alert messages might look like 
Figure 116 while the code to implement this type of tiered color check appears 
in Program 161. 

PROGRAM 161. Checking monitor color level 

myMinColorLevel = 4 

LONG IF SYSTEM (_maxColors) < myMinColorLevel 

item = FN ALERT (_noColorSpptALRT, 0) 

END 
XELSE 

LONG IF SYSTEM (_crntDepth) < myMinColorLevel 

item = FN ALERT (_resetColorALRT, 0) 

END 
END IF 

END IF 

Opening and Printing File 
Macintosh users are used to the operating system keeping track of a diversity 
of information. One particular bit that comes in very handy is the ability to 
double-click on a program's file and have the application launch, then open 
or print the selected file or files. Adding this functionality to your program is 
quickly done. 

The statement that makes it all possible if FINDERINFO. FINDERINFO returns 
all information required by the program in order for it to open or print double
clicked files. This information includes a file count, filenames, file types, and 
volume reference numbers. The program can than examine each item in turn 
to determine whether it can open the particular file. 

Final Touches 315 



Opening and Printing File 

The key to using FINDER INFO is the proper organization of program routines 
for opening and printing files. If you adhere to the principles detailed in 
creating SimpleBase it becomes an easy matter to add this type Finder 
support. 

We start by defining two new constants in the SimpleBase.glbl file: 

_openFiles = 0 
_printFiles = 1 

These are used to identify which operation the Finder wants us to do when it 
passes us a file. The CheckincorningFiles routine shown in Program 162 
shows how to extract the infomration we need to successfully open or print a 
file. 

PROGRAM 162. Adding Finder support. 

LOCAL FN CheckincomingFiles 
maxFiles% = 1 

doWhat% = FINDERINFO (maxFiles%, gFileName$, fileType&, gWDRefNum%) 
LONG IF (maxFiles% > 0) AND ( fileType& = _" SbDb") 

SELECT doWhat% 
CASE _openFiles 

FN ItemOpen 
CASE _printFiles 

FN ItemOpen 
FN ItemPrint 

END SELECT 
END IF 

END FN 

We call this routine last in the Initialize routine during program start-up. 
It uses FINDERINFO to determine if any filenames have been passed from the 
Finder. If no files were passed to the program. it returns without doing a 
thing. 

If files have been passed. it examines each file in turn and processes it 
appropriately. The routine starts by specifying the maximum number of files 
the program will accept in the variable rnaxFiles%. maxFiles% is used by the 
FINDERINFO function to examine the file list from the Finder. When done. 
rnaxFiles% contains the actual number of files passed to the program. 

This setting of maxFiles% is critical to successfully using FINDERINFO to 
open or print files. If maxFiles% is not set (or ever equates to zero) your 
program will be unable to open or print files during startup. 

316 Final Touches 



Handling Multiple File Types 

Once FINDERINFO has been called, the routine examines maxFiles%. If 
maxFiles% doesn't equal zero further processing takes place. It then exa
mines the doWhat% variable to determine exactly how to respond. doWhat% 

will contain a zero if the file should be opened, and 1 if it should be printed. 

Handling Multiple File Types 
Now that we know what to do with double-clicked files, let's examine how to 
add another filter to the file evaluation, that of file types. If Simplebase had a 
preferences file, we may want the program to open, but not display the 
preferences directly.: 

DEF OPEN "FREDfred" 

This statement specified the data file's type and creator. The type being a 4-
character code that uniquely identifies the file and the creator being another 
4-letter code that identifies the application that created the file. The FY.nder 
uses these bits of information to open the file's creator application when its 
double-clicked. 

We require this bit of information if our program can open more than one file 
type. We first examine the file type to determine if, one, the file type is actually 
one our program can open, and second, if it is one we can open, then direct it 
to the correct opening subroutine. A SELECT /END SELECT structure works best 
for this type of filtering. That way, if we ever need to add an additional file 
type, just add another CASE to the list for the appropriate file type. The file 
type filtering routine might look like this: 

SELECT type& 
CASE _"lora" 

FN OpenLoraTypeFile 
CASE _"todd" 

FN OpenToddTypeFile 
CASE _"john" 

FN OpenJohnTypeFile 
CASE ELSE 

END SELECT 

Final Touches 317 



PS: 

Cooldown 
Well, that's it. We're done with SimpleBase. That's not to say that you have to 
be done with it. You probably already have some great ideas bubbling around 
in your head on improving SimpleBase or writing other programs. 

In this book, I've tried to give you the knowledge required to write applications 
on the Macintosh. Along the way, we've seen how to implement common 
features of the Macintosh interface, as well as explained the principles behind 
their presence and reasons for their actions. We've also covered many useful 
programming techniques that are guaranteed to make your other projects 
easier. 

Like my favorite cowboy always said, "Happy coding to you". 

PS: 
Now that I feel like I'm on some kind of a product roll, watch for: 

Learning FutureBASIC: Toolbox 1 

Learning FutureBASIC: Macintosh BASIC Power Video 

318 Final Touches 



Bibliography 

The following references may help your understanding when using this book, 
I know they helped me. 

Books ... 
Hogan, Thom. "The Programmer's Apple Mac Sourcebook" Microsoft Press. 
Chernicoff, Stephen. "Macintosh Revealed Volumes 1-4" Hayden Books. 

Gariepy, Michael. "FutureBASIC Handbook" Zedcor, Inc. 

Gariepy, Michael. "Programming the Macintosh with FutureBASIC" Zedcor, Inc. 

"Inside Macintosh, Volumes I-VI" Addison-Wesley. 

"Inside Macintosh 2nd Ed: Files" Addison-Wesley. 
"Inside Macintosh 2nd Ed: OveIView" Addison-Wesley. 

"Inside Macintosh 2nd Ed: Text" Addison-Wesley. 

"Inside Macintosh 2nd Ed: Macintosh Toolbox Essentials" Addison-Wesley. 
Knaster, Scott. "Macintosh Programming Secrets 2nd Ed"Addison-Wesley. 

Little, Gary and Swihart. Tim. "Programming for System 7" Addison-Wesley. 

Turovich, L. Frank. "FutureBASIC Reference" Zedcor, Inc. 

Magazines ... 
Inside Basic magazine, The Journal of Macintosh BASIC Programming 
Ariel Publishing, Inc. 
POBox398 
Pateros, WA 98846-0398 
Phone: 509.923.2249 
America Online: Ariel 

MacTech magazine, The Macintosh Programming Journal 
PO Box 250055 
Los Angeles, CA 90025-0055 
America Online: MacTechMag 

develop, The Apple Teclmtcal Journal 
Apple Computer, Inc. 
PO Box 531 
Mt. Morris, IL 61054 
AppleLink: DEV.SUBS 

Bibliography 319 



320 



Appendix 

SimpleBase.glbl 
' --- CONSTANTS ----------------------------------
' >>> FILE ID 
_dbFileID 1 
' >>> WINDOWS 
_dbEntryWIND 1 
_dbFindWIND 2 
_aboutWIND 3 
_helpWIND 4 
_printWIND 5 
_gotoWIND 6 

' >>> BUTTONS 
' >>> DATA ENTRY WINDOW 
JleWRecBTN 1 
_firstRecBTN 2 
_prevRecBTN 3 
JleXtRecBTN 4 
_lastRecBTN 5 
_findRecBTN 6 
_clearRecBTN 7 
_prograrnBTN 8 
_JllarketBTN 9 
_officeBTN 10 

' >>> FIND WINDOW 
_findBTN 1 
_cancelBTN = 2 
_ignoreCaseBTN = 3 

' >>> ABOUT WINDOW 
_okBTN = 1 

' >>> HELP WINDOW 
_helpSCROLL 1 
_prevHelpBTN 2 
JleXtHelpBTN = 3 

' >>> PRINT WINDOW 
_printBTN 1 
_thisRecBTN 3 
_allRecBTN 4 
_selectRecBTN 5 

' >>> GOTO WINDOW 
_gotoB'IN = 1 

' >>> EDIT/PICTURE FIELDS 
' >>> FIND WINDOW 
_dbFindFLD = 1 

' >>> HELP WINDOW 
_helpFLD = 1 

' >>> PRINT WINDOW 
_firstPrFLD = 1 
_lastPrFLD = 2 

' >>> DATA ENTRY WINDOW 
_dbNameFLD = 1 

Appendix 321 



SimpleBase.glbl 

_dbAddrFLD 2 
_dbCityFLD 3 
_dbStateFLD 4 
_dbZipFLD 5 
_dbPhoneFLD 6 
_dbFaxFLD 7 
_dbPhotoFLD 8 
_recordFLD 50 

' >>> GaI'O WINDOW 
_gotoFLD 1 

' >>> APPLE MENU 
_iAbout 1 
_iHelp = 2 

' >>> FILE MENU 
JllF'ile 1 
_iNew 1 
_iOpen 2 
_iClose 3 

I -------------

_iPageSetup = 5 
_iPrint = 6 

1 -------------

_iQuit = 8 
' >>> EDIT MENU 
_JllEdit = 2 
_iUndo = 1 

_iCut 3 
_iCopy 4 
_iPaste 5 
_iClear 6 

_iSelectAll = 8 

_iCopyRec 10 
_iPasteRec = 11 

' >>> RECORD MENU 
.JllRecord 3 
_iFirstRec 1 
_iPrevRec 2 
_iNextRec 3 
_iLastRec 4 
I -------------

_iFindRec = 6 
_iGotoRec = 7 
I -------------

_iClearRec = 9 

' >>> ALRT IDs 
_aboutALRT 128 
_tooLongALRT 129 
_J'lOFindALRT 130 
JllachErrALRT 131 
_sysErrALRT 132 
J10tRecordALRT= 133 

' >>> STRING 
_windoWSTR 
_J:mttonSTR 
_fieldSTR 

' >>> HELP ID 
JllinHelpID 
JllaxHelpID 

IDs 
1000 
2000 
3000 

1001 
1009 

' >>> MISC STUFF 

322 Appendix 



SimpleBase.glbl 

_gutterAdj 30 
_openFiles O 
_printFiles 1 
_tab 9 
_er 13 

RECORD STRUCTURES 

DIM RECORD dbRecord 
DIM dbName$;64 
DIM dbAddr$; 64 
DIM dbCity$;32 
DIM dbMyState$;4 
DIM dbZip$; 12 
DIM db Phone$; 12 
DIM dbFax$;12 
DIM dbDeptNum% 
DIM dbPictID% 
DIM dbExtra& 

DIM END RECORD .dbRecordSize 

' --- VARIABLES ----------------------------------

' >>> FILE 
DIM gOpenRecord%, gMaxRecinFile% 
DIM gWDRefNurn% 
DIM 255 gFileName$ 

' >>> HELP WND 
DIM gHelpID% 

' >>> PRINT WND 
DIM gPrFirstRec% 
DIM gPrLastRec% 
DIM gPrintFlag% 

' >>> RECORD 
DIM gEmployee.dbRecordSize 
DIM gPictH& 

' >>> FIND WND 
DIM gCaseFlag% 
DIM 127 gSearch$ 

' >>> PROGRAM GLOBALS 
DIM gQuit 

' --- GLOBAL PROJECT FUNCTIONS -----------------------

' --- Project.Incl 
DIM gCUrsorPtr& 
DIM gEFClickPtr& 
DIM gTabEventsPtr& 
DIM gCheckBoxPtr& 
DIM gRadioBtnPtr& 
DIM gHiliteBtnPtr& 
DIM gReturnToBtnPtr& 

' --- EditMenu.Incl 
DIM gEditMenuPtr& 

' --- Printing.Incl 
DIM gDoPrintPtr& 

Appendix 323 



Project.Incl 

Project. Incl 
' --- HEADER -------------------------------------

INCLUDE FILE _aplincl 
COMPILE O, _strResource_macsBugLabels 

' --- CONSTANl'S ---------------------- ------------

GLOBALS "SimpleBase.glbl" 
END GLOBALS 

' --- DIALOGEVENT.INCL 
DEF FN CursorHandler (cursEvtID%,dlgID%) USING gCursorPtr& 
DEF FN EFClickEvent (fieldID%) USING gEFClickPtr& 
DEF FN TabShiftTabEvents (dlgEvnt%, startFld%, lastFld%) USING gTabEventsPtr& 
DEF FN CheckBoxHandler% (btnID%) USING gCheckBoxPtr& 
DEF FN RadioBtnHandler% (lowBtnID%, highBtnID%, setBtnID%) USING gRadioBtnPtr& 
DEF FN HiliteSelectedButton (btnID%) USING gHiliteBtnPtr& 
DEF FN ChangeReturnToBtn (@evntIDPtr&, btnID%) USING gReturnToBtnPtr& 
' --- PRINTING.INCL 

DEF FN DoPrinting (readRecPtr&) USING gDoPrintPtr& 

SimpleBase.lncl 
' --- HEADER -------------------------------------
INCLUDE FILE _aplincl 
C'OMPILE 0, _strResource_macsBugLabels 

' --- CONSTANTS ----------------------------------
GLOBALS "SimpleBase.glbl" 
END GLOBALS 

' --- INCLUDES -----------------------------------
INCLUDE "Project.Incl" 

' --- FUNCTIONS ----------------------------------
' === MISC MENU FUNCTIONS === 

LOCAL FN UpdateMenus 
SELECT WINDOW (_outputWClass) 

CASE _dbEntryWIND 
MENU _mFile , 0, _enable 
MENU _J!IEdit , 0, _enable 
MENU _mRecord, 0, _enable 
MENU _mFile, _iNew , _enable, "New Record• 
MENU JllFile, _iOpen _disable 
MENU _mFile, _iClose , _enable 
MENU JllFile, _iPageSetup, _enable 
MENU JllFile, _iPrint , _enable 
MENU _mEdit, _iSelectAll, _enable 
MENU _mEdit, _iCopyRec , _enable 
MENU _mEdit, _iPasteRec , _enable 

CASE _dbFindWIND, _aboutWIND, _helpWIND, _gotoWIND 
MENU _mFile , 0, _disable 
MENU _mEdit , 0, _disable 
MENU _mRecord, 0, _disable 

CASE ELSE 
MENU _mFile , 0, _enable 
MENU _mEdit , 0, _enable 
MENU _mRecord, 0, disable 
MENU _mFile, _iNew , _enable, "New• 
MENU _mFile, _iOpen _enable 
MENU _mFile, _iClose _disable 
MENU _mFile, _iPageSetup , _disable 

324 Appendix 



SimpleBase.Incl 

MENU _rnFile, _iPrint 
MENU JOEdit, _iSelectAll 
MENU JOEdit, _iCopyRec 
MENU JOEdit, _iPasteRec 

END SELECT 
END FN 

' === MISC RECORD FUNCTIONS 

LOCAL FN SaveEmployeeGraphic 

, _disable 
, _disable 
, _disable 
, _disable 

resRef% = USR OPENRFPERM (gFileName$, gWDRefNum%, _fsRdWrPerm) 
LONG IF resRef % <> _nil 

LONG IF gEmployee.dbPictID~ > _nil 
pictH& = FN GETPICTURE (gErnployee.dbPictID%) 
LONG IF (pictH& <>_nil) AND (FN RESERROR = JlOErr) 

CALL RMVERESOURCE (pictH&) 
END IF 
CALL ADDRESOURCE (gPictH&, _"PICT"' gEmployee.dbPictID%, gErrQ;>loyee.dbName$) 
CALL SETRESATTRS (gPictH&, _resPurgeable%) 
CALL CHANGEDRESOURCE (gPictH&) 
CALL WRITERESOURCE (gPictH&) 
CALL DETACHRESOURCE (gPictH&) 

END IF 
CALL CLOSERESFILE (resRef%) 

END IF 
END FN 

LOCAL FN ReadEmployeeGraphic 
resRef% = USR OPENRFPERM (gFileName$, gWDRefNum%, _fsCurPerm) 
LONG IF resRef% <> _nil 

LONG IF gEmployee.dbPictID% >_nil 
DEF DISPOSEH (gPictH&) 
gPictH& = FN GETPICTURE (gErnployee.dbPictID%) 
LONG IF (gPictH& <> Jlil) AND (FN RESERROR = _noErr) 

EDIT$ (_dbPhotoFLD) = &gPictH& 
CALL DETACHRESOURCE (gPictH&) 

END IF 
END IF 
CALL CLOSERESFILE (resRef%) 

END IF 
END FN 

LOCAL FN CheckFieldLength$ (fieldID%, maxLen%) 
trap$ = EDIT$(fieldID%) 
LONG IF LEN (trnp$) > rnaxLen% 

item% = FN ALERT (_tooLongALRT, 0) 
trnp$ = LEFT$ ( trnp$, rnaxLen%) 

END IF 
END FN = trnp$ 

LOCAL FN EFtoRecordField 
oldWnd% = WINDOW (_outputWnd) 
WINDCM OUTPUT #_dbEntryWIND 
gErnployee. dbName$ FN CheckFieldLength$ (_dbNameFLD, 63) 
gEmployee.dbAddr$ FN CheckFieldLength$ (_dbAddrFLD, 63) 
gErnployee.dbCity$ FN CheckFieldLength$ (_dbCityFLD, 31) 
gErnployee.dbMyState$ FN CheckFieldLength$ (_dbStateFLD, 3) 
gErrployee.dbZip$ FN CheckFieldLength$ (_dbZipFLD, 11) 
gErnployee.dbPhone$ FN CheckFieldLength$ (_dbPhoneFLD, 11) 
gErnployee.dbFax$ FN CheckFieldLength$ (_dbFaxFLD, 11) 
FN SaveEmployeeGraphic 
WINDOW OUTPUT #oldWnd% 

END FN 

LOCAL FN RecordFieldToEF 
oldWnd% = WINDOW (_outputWnd) 
WINIXl'l OUTPUT #_clbEntryWIND 
EDIT$ (_dbPhotoFLD) = ". 
EDIT$ (_dbNarneFLD) = gEmployee.dbName$ 
EDIT$ (_dbAddrFLD) = gEmployee.dbAddr$ 

Append.ix 



SimpleBase.Incl 

EDIT$ (_dbCityFLD) = gEmployee.dbCity$ 
EDIT$ (_dbStateFLD) = gEmployee.dbMyState$ 
EDIT$ (_dbZipFLD) = gEmployee.dbZip$ 
EDIT$ (_dbPhoneFLD) = gEmployee.dbPhone$ 
EDIT$ (_dbFaxFLD) = gEmployee.dbFax$ 
FN RadioBtnHandler% (_prograrnBTN, _officeBTN, gEmployee.dbDeptNurn%) 
FN ReadEmployeeGraphic 
' ••• display record and file data in window 
tmp$ = STR$ (gOpenRecord%) + " of" + STR$(gMaxRecinFile%) + " records" 
EDIT$ (_recordFLD) = tmp$ 
WINDOW OUTPUT #oldWnd% 

END FN 

' === MISC FILE HANDLING 

CLEAR LOCAL 
LOCAL FN DBWriteRecord 

DEF OPEN "SbDbFbSb" 
OPEN "R", #_dbFileID, gFileName$, _dbRecordSize, gWDRefNurn% 
RECORD #_dbFileID, gOpenRecord% 
WRITE #_dbFileID, gEmployee 
gMaxRecinFile% = LOF (_dbFileID, _dbRecordSize) - 1 
CLOSE #_dbFileID 

END FN 

CLEAR LOCAL 
LOCAL FN DBReadRecord 

DEF OPEN "SbDbFbSb" 
OPEN "R", #_dbFileID, gFileName$, _dbRecordSize, gWDRefNum% 
RECORD #_dbFileID, gOpenRecord% 
READ #_dbFileID, gEmployee 
gMaxRecinFile% = LOF (_dbFileID, _dbRecordSize) - 1 
CLOSE #_dbFileID 

END FN 

CLEAR LOCAL 
LOCAL FN DBBlankRecord 

DEF BLOCKFILL (@gEmployee, _dbRecordSize, 0) 
END FN 

CLEAR LOCAL 
LOCAL FN DBNewEmployeeFile 

FN DBBlankRecord 
DEF OPEN "SbDbFbSb" 
OPEN "R"' #1, gFileName$, ' gWDRefNurn% 
CLOSE #1 
CALL CREATERESFILE (gFileName$) 
gOpenRecord% = O 

'make sure record is eI!ij;lty 

gEmployee.dbName$ = "Created by SimpleBase, from the book:• 
gEmployee.dbAddr$ = "Learning FutureBASIC: Macintosh BASIC Power• 
gEmployee.dbCity$ = "By sentient Fruit™• 
FN DBWriteRecord 
INC (gOpenRecord%) 

END FN 

CLEAR LOCAL 
LOCAL FN DBFindRecord 

originalRecNurn% = gOpenRecord% 
IF gCaseFlag = _markedBtn THEN gSearch$ = UCASE$ (gSearch$) 
CURSOR _watchCursor 
gOpenRecord% = 1 
DO 

FN DBReadRecord 
test$ = gEmployee.dbName$ 
IF gCaseFlag = _markedBtn THEN test$ = UCASE$ (test$) 
found% = INSTR (1, test$, gSearch$) 
INC (g0penRecord%) 

UNTIL (found% <> 0) OR (gOpenRecord% > gMaxRecinFile%) 
CURSOR _arrowCursor 
LONG IF found% = 0 

326 Appendix 



SimpleBase.Incl 

CALL PARAMTEXT (gSearch$, gFileName$, ••J 
item% = FN ALERT (_noFindALRT, 0) 
gOpenRecord% = originalRecNum% 
FN DBReadRecord 

END IF 
WINDOW #_dbEntryWIND 
FN RecordFieldToEF 

END FN 

LOCAL FN CheckRange (current%, minRange%, maxRange%) 
IF current% < minRange% THEN current% = minRange% 
IF current% > maxRange% THEN current% = maxRange% 

END FN = current% 

' === WINDOW FUNCTIONS 

LOCAL FN WindowCapture (wndID%) 
closeFlag% = _true 
SELECT wndID% 

CASE _dbEntryWIND 
FN EFtoRecordField 
FN DBWriteRecord 

CASE _dbFindWIND 
tmp$ = EDIT$ (_dbFindFLD) 
LONG IF LEN (tmp$) > 127 

tmp$ = LEFT$ (tmp$, 127) 
END IF 
gSearch$ = tmp$ 

CASE _aboutWIND 
CASE _helpWIND 
CASE _printWIND 

gPrLastRec% =VAL (EDIT$ (_lastPrFLD)) 

'make sure find string doesn't 
'exceed max gSearch$ length 

gPrLastRec% = FN CheckRange (gPrLastRec%, 1, gMaxRecinFile%) 
gPrFirstRec% =VAL (EDIT$ (_firstPrFLD)) 
gPrFirstRec% = FN CheckRange (gPrFirstRec%, 1, gPrLastRec%) 

CASE _gotoWIND 
gOpenRecord% =VAL (EDIT$ (_gotoFLD)) 
gOpenRecord% = FN CheckRange (gOpenRecord%, 1, gMaxRecinFile%) 

END SELECT 
END FN = closeFlag% 

LOCAL FN WindowClose (wndID%) 
LONG IF FN WindowCapture (wndID%) 

SELECT wndID% 
CASE _dbEntryWIND 
CASE _dbFindWIND 
CASE _aboutWIND 
CASE _helpWIND 
CABE _printWIND 
CASE _gotoWIND 

END SELECT 
WINDOW CLOSE #wndID% 

END IF 
END FN 

LOCAL FN BuildEntryWindow 
tmp$ = STR# (_windowSTR, _dbEntryWIND) 
WINDOW #-_dbEntryWIND, tmp$, (0,0)-(500,290), _docNoGrow, _dbEntryWIND 
TEXT _sysFont, 12 
' • • • BUTI'ONS 
tmp$ = STR# (_dbEntryWIND_buttonSTR, _newRecBTN) 
BUTI'ON _newRecBTN, _activeBtn, tmp$, (380,20)-(480,40) , _shadow 
tmp$ = STR#(_dbEntryWIND_buttonSTR, _firstRecBTN) 
BUTI'ON _firstRecBTN, _activeBtn, trop$, (380,50)-(480,70) , _push 
tmp$ = STR# (_dbEntryWIND_buttonSTR, _prevRecBTN) 
BUTI'ON _prevRecBTN, _activeBtn, tmp$, (380,80)-(480,100) , _push 
tmp$ = STR# (_dbEntryWIND_buttonSTR, _nextRecBTN) 
BUTI'ON _nextRecBTN, _activeBtn, trop$, (380,110)-(480,130), _push 
tmp$ = STR# (_dbEntryWIND_buttonSTR, _lastRecBTN) 
BUTI'ON _lastRecBTN, _activeBtn, tmp$, (380,140)-(480,160), _push 

Appendix 327 



SimpleBase.Incl 

tmp$ = STR# (_dbEntryWIND_buttonSTR, _findRecBTN) 
BUTI'ON findRecBTN, activeBtn, tmp$, (380,170)-(480,190), _push 
tmp$ = STR#(_dbEntryWIND_buttonSTR, _clearRecBTN) 
BUTI'ON _clearRecBTN, _activeBtn, tmp$, (380,210)-(480,230), _push 
tmp$ = STR# (_dbEntryWIND_buttonSTR, _programBTN) 
BUTI'ON _programBTN, _activeBtn, tmp$, (90,222)-(200,237), _radio 
tmp$ = STR#(_dbEntryWIND_buttonSTR, _marketBTN) 
BUTI'ON _marketBTN, _activeBtn, tmp$, (90,238)-(200,253), _radio 
tmp$ = STR# (_dbEntryWIND_buttonSTR, _officeBTN) 
BUTI'ON _officeBTN, _activeBtn, tmp$, (90,254)-(200,269), _radio 
' ••• INACTIVE EDIT/PICT FIELDS 
xPos = 85 
tmp$ = STR#(_dbEntryWIND_fieldSTR, _dbNarneFLD) 
EDIT FIELD #100, tmp$, (20,40)-(xPos-5,56), _StatNofrarned, _rightJust 
tmp$ = STR#(_dbEntryWIND_fieldSTR, _dbAddrFLD) 
EDIT FIELD #101, tmp$, (20,66)-(xPos-5,82), _statNoframed, _rightJust 
tmp$ = STR# (_dbEntryWIND_fieldSTR, _dbCityFLD) 
EDIT FIELD #102, tmp$, (20,92)-(xPos-5,108), _StatNoframed, _rightJust 
tmp$ = STR#(_dbEntryWIND_fieldSTR, _dbStateFLD) 
EDIT FIELD #103, tmp$, (20,118)-(xPos-5,134), _StatNoframed, _rightJust 
tmp$ = STR#(_dbEntryWIND_fieldSTR, _dbZipFLD) 
EDIT FIELD #104, tmp$, (20,144)-(xPos-5,160)' _StatNoframed, _rightJust 
tmp$ = STR#(_dbEntryWIND_fieldSTR, _dbPhoneFLD) 
EDIT FIELD #105, tmp$, (20,170)-(xPos-5,186), _StatNoframed, _rightJust 
tmp$ = STR#(_dbEntryWIND_fieldSTR, _dbFaxFLD) 
EDIT FIELD #106, tmp$, (20,196)-(xPos-5,212), _StatNoframed, _rightJust 
tmp$ = STR#(_dbEntryWIND_fieldSTR, _dbPhotoFLD) 
EDIT FIELD #107, tmp$, (20,222)-(xPos-5,238), _StatNoframed, _rightJust 
tmp$ = STR# (_dbEntryWIND_fieldSTR, _dbPhotoFLD + 1) 
EDIT FIELD #108, tmp$, (20,14)-(xPos-5,30), _statNofrarned, _rightJust 
EDIT FIELD #_recordFLD, '"', (xPos, 14) - (345, 30) , _statNoframed, _leftJust 
' ••• ACTIVE EDIT/PICT FIELDS 
EDIT FIELD #_dbNarneFLD, "", (xPos,40)-(345,56), _framedNoCR, _leftJust 
EDIT FIELD #_dbAddrFLD, "", (xPos,66)-(345,82), _framedNOCR, _leftJust 
EDIT FIELD #_dbCityFLD, ""' (xPos,92)-(345, 108)' _framedNOCR, _leftJust 
EDIT FIELD #_dbStateFLD, "", (xPos,118)-(170,134), _framedNOCR, _leftJust 
EDIT FIELD #_dbZipFLD, "", (xPos,144)-(200,160), _framedNOCR, _leftJust 
EDIT FIELD #_dbPhoneFLD, "", (xPos,170)-(200,186), _framedNoCR, _leftJust 
EDIT FIELD #_dbFaxFLD, "", (xPos,196)-(200,212), _framedNOCR, _leftJust 
PICTURE FIELD #_dbPhotoFLD, "", (215,118)-(345,270), _framedNoCR, _cropPict 
' ••• SET WINDOW BUTI'ONS/ACTIVE FIELD 
EDIT FIELD #_dbNarneFLD 

END FN 

LOCAL FN BuildFindWindow 
tmp$ = STR# (_windowSTR, _dbFindWIND) 
WINDON #-_dbFindWIND, tmp$, (0,0) - (340, 80), _docNoGrow_noGoAway, _dbFindWIND 
TEXT _sysFont, 12 
' • • • BUTI'ONS 
tmp$ = STR#(_dbFindWIND_buttonSTR, _findBTN) 
BUTI'ON _findBTN, _activeBtn, tmp$, (250,50)-(320,70), _shadow 
tmp$ = STR#(_dbFindWIND_buttonSTR, _cancelBTN) 
BUTI'ON _cancelBTN, _activeBtn, tmp$, (160,50)-(230,70), _push 
tmp$ = STR# (_dbFindWIND_buttonSTR, _ignoreeaseBTN) 
BUTI'ON _ignorecaseBTN, _activeBtn, tmp$, (20,50)-(150,70) , _checkBox 
' ••• INACTIVE EDIT/PICT FIELDS 
tmp$ = STR#(_dbFindWIND_fieldSTR, 1) 
EDIT FIELD #100, tmp$, (15,15)-(50,30), _StatNoframed, _rightJust 
' •••ACTIVE EDIT/PICT FIELDS 
EDIT FIELD #_dbFindFLD, gSearch$, (55,15)-(320,30), _framedNoCR, _leftJust 

END FN 

LOCAL FN BuildAboutWindow 
item% = FN ALERT (_aboutALRT, 0) 

END FN 

LOCAL FN BuildHelpWindow 
tmp$ = STR# (_windowSTR, _helpWIND) 
WINI>CW #-_helpWIND, tmp$, (0,0)-(400,260), _doczoom, _helpWIND 
TEXT _sysFont, 12 

328 Appendix 



SimpleBase.Incl 

I ••• BUTI'ONS 

tmp$ = STR#(_helpWIND_buttonSTR, _prevHelpBTN) 
BUTTON #_prevHelpBTN, 1, tmp$, (20,5)-(100,25), _push 
tmp$ = STR# (_helpWIND_buttonSTR, _nextHelpBTN) 
BUTTON #_nextHelpBTN, 1, tmp$, (120,5)-(200,25), _push 
' ••• INACTIVE EDIT/PICT FIELDS 

wndX = WINOOW (_width) : wndY = WINOOW (_height) 
EDIT FIELD #-_helpFLD, %gHelpID%, (4,34)-(wndX-4,wndY-4), _statNoframed, _leftJust 
SCROLL BUTI'ON #-_helpSCROLL,1,1,1,10, (wndX-16,31)-(wndX,wndY),_scrollVert 

END FN 

LOCAL FN BuildPrintWindow 
gPrintFlag% = _thisRecBTN 
tmp$ = STR#(_windowSTR, _printWIND) 
WINDOW #-_printWIND, tmp$, (0, 0)- (300, 125), _docNoGrow_noGoAway, _printWIND 
TEXT _sysFont, 12 

I ••• BUTI'ONS 
tmp$ = STR# (_printWIND_buttonSTR, _okBTNi 
BUTI'ON _okBTN, _activeBtn, tmp$, (200,90)-(280,110) _shadow 
tmp$ = STR# (_printWIND_buttonSTR, _cancelBTN) 
BUTI'ON _cancelBTN, _activeBtn, tmp$, (100,90)-(180,110) , _push 
tmp$ = STR# (_printWIND_buttonSTR, _thisRecBTN) 
BUTI'ON _thisRecBTN, 2, tmp$, (20,10)-(200,25), _radio 
tmp$ = STR# (_printWIND_buttonSTR, _allRecBTN) 
BUTTON _allRecBTN, 1, tmp$, (20,30)-(200,45), _radio 
tmp$ = STR# (_printWIND_buttonSTR, _selectRecBTN) 
BUTI'ON _selectRecBTN, 1, tmp$, (20,50)-(160,65), _radio 
' ••• INACTIVE EDIT/PICT FIELDS 
tmp$ = •to" 
EDIT FIELD #100, tmp$, (205,50)-(235,65), _statNoframed, _centerJust 
' ••• ACTIVE EDIT/PICT FIELDS 
tmp$ = STR$(gMaxRecinFile%) 
EDIT FIELD #_lastPrFLD, tmp$, (240,50)-(275,65), _framedNoCR, _centerJust 
EDIT FIELD #_firstPrFLD, "1", (165,50)-(200,65), _framedNoCR, _centerJust 

END FN 

LOCAL FN BuildGotoWindow 
tmp$ = STR# (_windowSTR, _gotoWIND) 
WINDOW #-_gotoWIND, tmp$, (0,0)-(200,80), _docNoGrow_noGoAway, _gotoWIND 
TEXT _sysFont, 12 

I ••• BUTTONS 
tmp$ = STR#(_gotoWIND_buttonSTR, _gotoBTN) 
BUTI'ON _gotoBTN, _activeBtn, tmp$, (120,45)-(180,65), _shadow 
tmp$ = STR#(_gotoWIND_buttonSTR, _cancelBTN) 
BUTI'ON _cancelBTN, _activeBtn, tmp$, (20,45)-(80,65), _push 
' ••• INACTIVE EDIT/PICT FIELDS 
tmp$ = STR#(_gotoWIND_fieldSTR, 1) 
EDIT FIELD #100, tmp$, (10,15)-(105,30), _StatNoframed, _rightJust 
' ••• ACTIVE EDIT/PICT FIELDS 
tmp$ = STR$(gOpenRecord%) 
EDIT FIELD #_gotoFLD, tmp$, (110,15)-(180,30), _framedNOCR, _centerJust 

END FN 

LOCAL FN WindowBuild (wndID%) 
LONG IF WINOOW ( -wnd!D%) 0 

SELECT wndID% 
CASE _dbEntryWIND 
CASE _dbFindWIND 
CASE _aboutWIND 
CASE _helpWIND 
CASE _printWIND 
CASE _gotoWIND 

END SELECT 
END IF 

FN BuildEntryWindow 
FN BuildFindWindow 
FN BuildAboutWindow 
FN BuildHelpWindow 
FN BuildPrintWindow 
FN BuildGotoWindow 

IF wndID% <> _aboutWIND THEN WINOOW #wnd!D% 
END FN 

' === APPLE MENU FUNCTIONS 

LOCAL FN IternAbout 

Appendix 329 



SimpleBase.Incl 

item% = FN ALERT (_aboutALRT, 0) 
END FN 

LOCAL FN IternHelp 
FN WindowBuild (_helpWIND) 

END FN 

LOCAL FN DoAppleMenu 
SELECT itemID% 

CASE _iAbout 
CASE _iHelp 

(itemID%l 

END SELECT 
END FN 

FN ItemAbout 
: FN IternHelp 

' === FILE MENU FUNCTIONS 

LOCAL FN IternNew 
LONG IF WINDOW (_outputWnd) = _dbEntryWIND 

FN DBBlankRecord 
FN EFtoRecordField 
FN DBWriteRecord 
gOpenRecord% = gMaxRecinFile% + 1 
FN DBBlankRecord 
FN DBWriteRecord 
FN RecordFieldToEF 

XELSE 
tmp$ = "Save new employee file as:• 
gFileName$ = FILES$ (_fSave, tmp$, "Untitled", gWDRefNum%) 
LONG IF LEN (gFileNarne$) > 0 

FN DBNewErnployeeFile 'create default file header 
FN DBBlankRecord 
gEmployee.dbName$ = "Empty record" 
gErnployee.dbDeptNurn% = _prograrnBTN 
FN DBWriteRecord 
FN WindowBuild (_dbEntryWIND) 'build db window 
FN RecordFieldToEF 'show it in window 

END IF 
END IF 

END FN 

LOCAL FN ItemJpen 
LONG IF LEN (gFileName$) = 0 

gFileName$ = FILES$ (_fOpen, 
END IF 

"SbDb", , gWDRefNurn%) 'get file from disk 

LONG IF LEN {gFileName$) > 0 
FN DBBlankRecord 
gOpenRecord% = 1 
FN WindowBuild {_dbEntryWIND) 
FN DBReadRecord 
FN RecordFieldToEF 

END IF 
END FN 

LOCAL FN IterrClose 
FN WindoWClose (WINDOW (_outputWnd)) 
FN UpdateMenus 
gFileName$ = "" 

END FN 

LOCAL FN ItemPageSetup 
DEF PAGE 

END FN 

LOCAL FN IternPrint 
FN WindowBuild (_printWIND) 

END FN 

LOCAL FN I terrQui t 
gQuit = _true 

END FN 

330 Appendix 

'build db window 
'read first record in file 
'show it in window 



SimpleBase.Incl 

LOCAL FN DoFileMenu (item!D%) 
SELECT itemID% 

CASE _iNew 
CASE _iOpen 
CASE _iClose 
CASE _iPageSetup 
CASE _iPrint 
CASE _iQuit 

END SELECT 
END FN 

FN ItemNew 
FN IteITOpen 
FN Itemclose 
FN ItemPageSetup 
FN ItemPrint 
FN IternQuit 

' === EDIT MENU FUNCTIONS 

DEF FN DoEditMenu (itemID%) USING gEditMenuPtr& 

' === RECORD MENU FUNCTIONS 

LOCAL FN ItemFirstRecord 
gOpenRecord% = 1 

END FN 

LOCAL FN ItemPrevRecord 
DEC (gOpenRecord%) 
IF gOpenRecord% < 1 THEN gOpenRecord% gMaxRecinFile% 

END FN 

LOCAL FN ItemNextRecord 
INC (gOpenRecord%) 
IF gOpenRecord% > gMaxRecinFile% THEN gOpenRecord% 1 

END FN 

LOCAL FN IternLastRecord 
gOpenRecord% = gMaxRecinFile% 

END FN 

LOCAL FN ItemFindRecord 
FN WindowBuild (_dbFindWIND) 

END FN 

LOCAL FN Iterri3otoRecord 
FN WindowBuild (_gotoWIND) 

END FN 

LOCAL FN IteI!ClearRecord 
FN DBBlankRecord 
FN DBWriteRecord 
FOR fieldID% = _dbNameFLD TO _dbPhotoFLD 

EDIT$ (fieldID%) = "" 
NEXT field!D% 
EDIT FIELD #_dbNameFLD 

END FN 

LOCAL FN DoRecordMenu 
FN EFtoRecordField 
FN DBWriteRecord 
SELECT i temID% 

(item!D%) 

CASE _iFirstRec 
CASE _iPrevRec 
CASE _iNextRec 
CASE _iLastRec 
CASE _iFindRec 
CASE _iGotoRec 
CASE _iClearRec 

END SELECT 
FN DBReadRecord 
FN RecordFieldToEF 

END FN 

LOCAL FN HandleMenuEvent 

Appendix 

FN ItemFirstRecord 
FN ItemPrevRecord 
FN ItemNextRecord 
FN ItemLastRecord 
FN ItemFindRecord 
FN ItemGotoRecord 
FN ItemclearRecord 

'save this records data 

•read in new records data 

331 



SimpleBase.Incl 

menuID% = MENU (JnenuID) 
itemID% = MENU (_itemID) 
SELECT menuID% 

CASE _appleResMenu 
CASE JllF'ile 
CASE _Jl\Edi t 
CASE JTIRecord 

FN DoAppleMenu (itemID%) 
FN DoFileMenu (itemID%) 
FN DoEditMenu (itemID%) 
FN DoRecordMenu (itemID%) 

END SELECT 
MENU 

END FN 

' === DIALOG HANDLERS 

LOCAL 
DIM rect;8 
LOCAL FN DrawFrame (showFrame%) 

CALL SETRECT (rect, 210,113,350,275) 
LONG IF showFrame!l; 

PEN 2,2,,,0 
XELSE 

PEN 2,2,,,19 
END IF 
CALL FRAMERECT (rect) 
PEN 1,1,, ,O 

END FN 

LOCAL 
DIM rect;8 
LOCAL FN DialogEntryWindow (dlgEvnt%, dlgID%) 

LONG IF dlgEvnt% = _efReturn 
FN ChangeReturnToBtn (dlgEvnt%, _newRecBTN) 

END IF 
SELECT dlgEvnt% 

' • • • WINDOW EVENTS 
CASE _wndClose 

FN Itemclose 
CASE _wndActivate 

FN UpdateMenus 
CASE _wndClick 

WINDOW #_dbEntryWIND 
CASE _wndRefresh 

'FN ReadEmployeeGraphic 
PEN ,, ,,3 
CALL SETRECT (rect, 10, 10, 360, 280) 
DEF TITLERECT ("", 0, rect) 
CALL SETRECT (rect, 370, 10, 490, 240) 
DEF TITLERECT ("", 0, rect) 
PEN ,, ,,0 
LONG IF WINDOW(_efNum) = 0 

FN DrawFrame (_true) 
XELSE 

FN DrawFrame (_false) 
END IF 
' • • • BUTl'ON EVENTS 

CASE _btnClick 
SELECT dlgID% 

CASE _newRecBTN 
FN DoFileMenu (_iNew) 

CASE _firstRecBTN 
FN DoRecorclMenu (_iFirstRec) 

CASE _prevRecBTN 
FN DoRecordMenu (_iPrevRec) 

CASE _nextRecBTN 
FN DoRecordMenu (_iNextRec) 

CASE _lastRecBTN 
FN DoRecordMenu (_iLastRec) 

CASE _findRecBTN 
FN WindowBuild (_dbFindWIND) 

CASE _clearRecBTN 
FN ItemclearRecord 

332 Appendix 

'set pen to gray pattern 
'assign rect boundaries 
'draw patterned rect 
•repeat for buttons 

•reset pen to normal 



SimpleBase.Incl 

CASE ELSE 
FN RadioBtnHandler% {_programBTN, _officeBTN, dlgID%) 
gEmployee.dbDeptNum% = dlgID% 

END SELECT 
' ••• FIELD EVENTS 

CASE _efClick 
FN EFClickEvent (dlgID%) 
LONG IF dlgID% = _dbPhotoFLD 

EDIT FIELD #_nil 
FN DrawFrame (_true) 

XELSE 
FN DrawFrame (_false) 

END IF 
CASE _efTab, _efDownArrow, _efRightArrow 

FN TabShiftTabEvents (_efTab, _dbNameFLD, _dbFaxFLD) 
CASE _efShiftTab, _efUpArrow, _efLeftArrow 

FN TabShiftTabEvents (_efShiftTab, _dbNameFLD, _dbFaxFLD) 
' • • • CURSOR EVENTS 

CASE _cursover, _cursEvent 
FN CUrsorHandler (dlgEvnt%, dlgID%) 

CASE ELSE 
END SELECT 

END FN 

LOCAL FN DialogFindWindow (dlgEvnt%, dlgID%) 
LONG IF dlgEvnt% = _efReturn 

FN ChangeReturnToBtn (dlgEvnt%, _findB'IN) 
END IF 
SELECT dlgEvnt% 

' • • • WINDOW EVENTS 
CASE _wndClose 

FN WindoWClose (_dbFindWIND) 
CASE _wndActivate 

FN UpdateMenus 
CASE _wndClick 

WINDOW #_dbFindWIND 
CASE _wndRef resh 

' ••• BUTTON EVENTS 
CASE _btnClick 

SELECT dlgID% 
CASE _ignorecaseBTN 

gCaseFlag% = FN CheckBoxHandler% (dlgID%) 
CASE findBTN 

FN WindoWClose (_dbFindWIND) 
FN DBFindRecord 

CASE _cancelBTN 
FN WindoWClose (_dbFindWIND) 
gSearch$ = "" 

END SELECT 
' ••• FIELD EVENTS 

CASE _efClick 
FN EFClickEvent (dlgID%) 
' ••• CURSOR EVENTS 

CASE _cursOVer, _cursEvenc 
FN CUrsorHandler (dlgEvnt%, dlgID%) 

CASE ELSE 
END SEI,ECT 

END FN 

LOCAL FN DialogHelpWindow (dlgEvnt%, dlgID%) 
SELECT dlgEvnt% 

' • • • WINDOW EVENTS 
CASE _wndClose 

FN WindowClose (_helpWIND) 
CASE _wndActivate 

FN UpdateMenus 
CASE _wndClick 

WINDOW #_helpWIND 
CASE _wndRefresh 

CLS 

Appendix 333 



SimpleBase.Incl 

wndX = WINDOW (_width) : wndY = WINDCW (_height) 
EDIT FIELD #_helpFLD, , (4,34)-(wndX-4,wndY-4} 'adjust edit field size 
PLor o, 30 TO wnd.X, 30 
' • • • BUTI'ON EVENTS 

CASE btnClick 
LONG IF dlgID% > _helpSCROLL 

SELECT dlgID% 
CASE _prevHelpBTN 

DEC (gHelpID%) 
IF gHelpID% < _minHelpID THEN gHelpID% = _;naxHelpID 

CASE _nextHelpBTN 
INC (gHelpID%) 
IF gHelpID% > _maxHelpID THEN gHelpID% = ..JllinHelpID 

END SELECT 
SCROLL BUTIDN #_helpSCROLL, 1 
EDIT$ (_helpFLD) = %gHelpID% 

END IF 
' ••• CURSOR EVENTS 

CASE _cursOver, _cursEvent 
FN CursorHandler (dlgEvnt%, dlgID%) 

CASE ELSE 
END SELECT 

END FN 

LOCAL FN DialogPrintWindow (dlgEvnt%, dlgID%) 
LONG IF dlgEvnt% = _efReturn 

FN ChangeReturnToBtn (dlgEvnt%, _printBTN} 
END IF 
SELECT dlgEvnt% 

' • • • WINDOW EVENTS 
CASE _wndClose 

FN Windowclose (_printWIND) 
CASE _wndActivate 

FN UpdateMenus 
CASE _wndCLi.ck 

WINDOW #_printWIND 
CASE _wndRefresh 

' ••• BUTI'ON EVENTS 
CASE _btnClick 

SELECT dlgID% 
CASE _thisRecBTN,_allRecBTN,_selectRecBTN 

gPrintFlag = FN RadioBtnHandler% (_thisRecBTN, _selectRecBTN, dlgID%) 
CASE _printBTN 

FN WindoWClose (_printWIND) 
FN DoPrinting (@FN DBReadRecord} 

CASE _cancelBTN 
FN WindoWClose (_printWIND} 
gPrFirstRec% = _nil 
gPrLastRec% = _nil 

END SELECT 
' ••• FIELD EVENTS 

CASE _efClick 
FN EFClickEvent (dlgID%) 
gPrintFlag = FN RadioBtnHandler% (_thisRecBTN, _selectRecBTN, _selectRecBTN) 

CASE _efTab, _efDownArrow, _efRightArrow 
FN TabShiftTabEvents (_efTab, _firstPrFLD, _lastPrFLD) 

CASE _efShiftTab, _efUpArrow, _efLeftArrow 
FN TabShiftTabEvents (_efShiftTab, _firstPrFLD, _lastPrFLD} 

' • • • CURSOR EVENTS 
CASE _cursOver, _cursEvent 

FN CUrsorHandler (dlgEvnt%, dlgID%) 
CASE ELSE 

END SELECT 
END FN 

LOCAL FN DialogGotoWindow (dlgEvnt%, dlgID%) 
LONG IF dlgEvnt% = _efReturn 

FN ChangeReturnToBtn (dlgEvnt%, _gotoBTN) 
END IF 
SELECT dlgEvnt% 

334 Appendix 



--- End of SimpleBase.Incl ---

' • • • WINDOW EVENTS 
CASE _wndClose 

FN WindowClose (__gotoWIND) 
CASE _wndActivate 

FN UpdateMenus 
CASE _wndClick 

WINDOW #_gotoWIND 
CASE _wndRef resh 

' • • • BUTI'ON EVENTS 
CASE _btnClick 

FN EFtoRecordField 
FN DBWriteRecord 
originalRecNum% = gOpenRecord% 
FN WindowClose (__gotoWIND) 
LONG IF dlgID% = _gotoBTN 

FN DBReadRecord 
FN RecordFieldToEF 

XELSE 
gOpenRecord% = originalRecNum% 

END IF 
' ••• FIELD EVENTS 

CASE _ef Click 
FN EFClickEvent (dlgID%1 
' ••• CURSOR EVENTS 

CASE _cursOVer, _cursEvent 
FN CursorHandler (dlgEvnt%, dlgID%) 

CASE ELSE 
END SELECT 

END FN 

LOCAL FN HandleDialogEvent 
dlgEvnt% = DIALOG (0) 
dlgID% = DIALOG (dlgEvnt%) 
SELECT WINIXlW (_outputWClass) 

'save current record 

'save current record number 
'get new record number 
'did we want to goto? 

'get new record 

' reset record number 

CASE _dbEnt:ryWIND FN DialogEnt:ryWindow (dlgEvnt%, dlgID%) 
CASE _dbFindWIND FN DialogFindWindow (dlgEvnt%, dlgID%) 
CASE _aboutWIND FN DialogAboutWindow (dlgEvnt%, dlgID%) 
CASE _helpWIND FN DialogHelpWindow (dlgEvnt%, dlgID%) 
CASE _printWIND FN DialogPrintWindow (dlgEvnt%, dlgID%) 
CASE __gotoWIND FN DialogGotoWindow (dlgEvnt%, dlgID%) 

END SELECT 
FN UpdateMenus 

END FN 

••• End of SimpleBase.lncl ••• 

Dialog Event.Incl 
' --- HEADER -------------------------------------
INCLUDE FILE _aplincl 
COMPILE 0, _strResource_rnacsBugLabels 

' --- CONSTANI'S ----------------------------------
GLOBALS "SimpleBase.glbl" 
END GLOBALS 

FUNCTIONS ---------------------------------
FIELD FUNCTIONS === 

LOCAL FN pEFClickEvent (fieldID%) 
EDIT FIELD #f ieldID% 
CURSOR _iBeamCursor 

END Fl\' 

LOCAL F1" pTabShiftTabEvents (dlgEvnt%, startFld%, lastFld%) 
LONG IF dlgEvnt% = _efTab 

fieldID% = WINDOW (_efNum) + 1 

Appendix 335 



DialogEvent.Incl 

IF f ieldID% > lastFld% THEN f ieldID% = startFld% 
XELSE 

fieldID% = WINIXlW (_efNum) - 1 
IF f ieldID% < startFld% THEN f ieldID% = lastFld% 

END IF 
EDIT FIELD #fieldID% 

END FN 

1 === MISC FUNCTIONS === 
LOCAL FN pCursorHandler (cursEvtID%, dlgID%) 

SELECT cursEvtID% 
CASE _cursOVer 

SELECT dlgID% 
CASE < 0 

LONG IF (ABS (dlgID%) =WINDOW (_efNum)) AND (WINDCM (_efClass) > 0) 
CURSOR _iBeanCursor 

XELSE 
CURSOR _arroWCursor 

END IF 
CASE > 0 

CURSOR _arroWCursor 
CASE ELSE 

CURSOR _arroWCursor 
END SELECT 

CASE _cursEvent 
CURSOR _arroweursor 

END SELECT 
END FN 

I === MISC BUTI'ON FUNCTIONS === 
LOCAL FN pCheckBoxHandler% (btnID%J 

LONG IF BUTI'ON (btnID%) = _markedBtn 
BUTI'ON btnID%, _activeBtn 

XELSE 
BUTI'ON btnID%, _markedBtn 

END IF 
btnState% = BUTI'ON (btnID%J 

END FN = btnState% 

LOCAL FN pRadioBtnHandler% (lowBtnID%, highBtnID%, setBtnID%J 
FOR thisBtn% = lowBtnID% TO highBtnID% 

BUTI'ON thisBtn%, _activeBtn 
LONG IF thisBtn% = setBtnID% 

BUTI'ON thisBtn%, ..J[larkedBtn 
END IF 

NEXT thisBtn% 
END FN = setBtnID% 

LOCAL FN pHiliteSelectedButton (btnID%) 
BUTI'ON btnID%, _markedBtn 
DELAY _secTick 
BUTI'ON btnID%, _activeBtn 

END FN 

LOCAL FN pChangeReturnToBtn (@evntIDPtr&, btnID%) 
FN pHiliteSelectedButton (btnID%) 
evntIDPtr&.none% = _btnClick 

END FN = btnID% 

'briefly hilite the correct button 
'to show it was selected 

'hilite correct button 
'convert return event to _btnClick 

' --- SET PROJECT ADDRESSES -----------------------

gCursorPtr& 
gEFClickPtr& 
gTabEventsPtr& 
gCheckBoxPtr& 
gRadioBtnPtr& 
gHiliteBtnPtr& 
gReturnToBtnPtr& 

336 Appendix 

= @FN pCursorHandler 
= @FN pEFClickEvent 
= @FN pTabShif tTabEvents 
= @FN pCheckBoxHandler 
= @FN pRadioBtnHandler 

@FN pHiliteSelectedButton 
= @FN pehangeReturnToBtn 



EditMenu.Incl 

EditMenu.lncl 
' --- HEADER -------------------------------------
INCLUDE FILE _aplincl 
COMPILE 0, _strResource_rnacsBugLabels 

' --- CONSTANI'S ----------------------------------
GLOBALS "SirnpleBase.glbl" 
END GLOBALS 

EDIT MENU ROUTINES 

CLEAR LOCAL 
LOCAL FN DataHandleToScrap (dataR&, dataType&, zeroClipBoard%) 

LONG IF dataR& <> _nil 
LONG IF zeroClipBoard% <> _nil 

scrapR& = FN ZEROSCRAP 
END IF 
sizeOfR& = FN GETHANDLESIZE (dataH&) 
osErr% = FN HLOCK (dataR&) 
LONG IF osErr% = _noErr 

osErr% FN PUTSCRAP (sizeOfR&, data'.[ype&, [dataH&]) 
osErr% = FN HUNLOCK (dataH&) 

END IF 
END IF 

END FN = osErr% 

CLEAR LOCAL 
LOCAL FN scrapToDataRandle& (scrap'.£Ype&) 

scrapR& = FN NEWHANDLE (0) 
LONG IF scrapR& <> _nil 

scrapSize& = FN GETSCRAP (scrapR&, scrapType&, offset&) 
LONG IF scrapSize& <= 0 

DEF DISPOSER (scrapR&) 
END IF 

END IF 
END FN = scrapR& 

CLEAR LOCAL 
LOCAL FN GetPICTRandle& 

trnp$ = EDIT$ (_dbPhotoFLD) 
pict$ = RIGHT$ (trnp$, LEN (tmp$l - 1) 
SELECT LEFT$ (trnp$, 1) 

CASE "%" 
pictR& = FN GETPICI'URE (CVI(pict$)) 

CASE "&" 
pictR& = CVI(pict$j 

CASE ELSE 
pictR& = _nil 

END SELECT 
END FN = pictR& 

CLEAR LOCAL 
LOCAL FN EditCopy 

pictR& = FN GetPICTHandle& 
LONG IF pictR& <> _nil 

scrapErr% = FN DataRandleToScrap (pictR&, _"PICT", _true) 
DEF DISPOSER (pictR&) 

END IF 
END FN 

CLEAR LOCAL 
LOCAL FN EditCut 

FN EditCopy 
EDIT$ (_dbPhotoFLD) = "" 
gErnployee.dbPictID% = nil 
DEF DISPOSER (gPictR&) 

Appendix 337 



EditMenu.Incl 

END FN 

CLEAR LOCAL 
LOCAL FN EditPaste 

pictH& = FN ScrapToDataHandle& (_"PICT") 
LONG IF pictH& <> _nil 

DEF DISPOSEH {gPictH&) 
gPictH& = pictH& 
EDIT$ (_dbPhotoFLD) = &gPictH& 
gEmployee.dbPictID% = gOpenRecord% 

END IF 
END FN 

CLEAR LOCAL 
LOCAL FN EditClear 

EDIT$ (_dbPhotoFLD) = "" 
gEmployee.dbPictID% = nil 
DEF DISPOSEH (gPictH&) 

END FN 

CLEAR LOCAL 
LOCAL FN EditSelectAll 

LONG IF WINDOW {_efClass) > 0 
SETSELECT 0, _Jllaxint 

END IF 
END FN 

CLEAR LOCAL 
DIM 255 trnp$ 
LOCAL FN EditExportRecord 

FOR count% = _dbNarneFLD TO dbFaxFLD 

'are we in an edit field? 

calcHSize% = calcHSize% + LEN{EDIT${count%)) + 1 
NEXT count% 
offset% = O 
recordH& = FN NEWHANDLE (calcHSize%) 
LONG IF {recordH& <> 0) AND {SYSERROR = JlOErr) 

osErr% = FN HLOCK {recordH&) 
LONG IF osErr% = _noErr 

FOR count% = _dbNarneFLD TO _dbFaxFLD 
tmp$ = EDIT$(count%) 
LONG IF count% < _dbFaxFLD 

char$= CHR${_tab) 
XELSE 

char$ = CHR$(_cr) 
END IF 
tmp$ = tmp$ + char$ 
size% = LEN {tmp$) 
BLOCKMOVE @trnp$+1, [recordH&J + offset%, size% 
offset% = offset% + size% 

NEXT count% 
END IF 
osErr% = FN HUNLOCK (recordH&) 
osErr% = FN DataHandleToScrap (recordH&, _"TEXT", _true) 
DEF DISPOSEH {recordH&) 

END IF 
END FN 

CLEAR LOCAL 
DIM trnp$ 
DIM 3 char$ 
LOCAL FN EditirnportRecord 

scrapH& = FN ScrapToDataHandle& (_"TEXT") 
LONG IF scrapH& <> _nil 

strPtr& = @trnp$ 
charPtr& = @char$ + 1 
char$= CHR$(_tab) 
startPos& = _nil 
offset& = FN MUNGER (scrapH&, startPos&, charPtr&, 1, _nil, _nil) 
LONG IF offset& > nil 

fieldID% = _dbNameFLD 

338 Appendix 



Printing.Incl 

00 
size% = offset& - startPos& 
POKE strPtr&, size% 
BLOCKMOVE [scrapH&] + startPos&, strPtr&+l, size% 
EDIT$ (fieldID%) = tmp$ 
INC (fieldID%) 
startPos& = offset& + 1 
offset& = FN MUNGER (scrapH&, startPos&, charPtr&, 1, _pil, _pil) 

UNTIL (offset& < 0) OR (fieldID% = _dbFaxFld) 
size% = FN GEI'HANDLESIZE (scrapH&) - startPos& 
POKE strPtr&, size% 
BLOCKMOVE [scrapH&] + startPos&, strPtr&+l, size% 
EDIT$ (fieldID%) = trnp$ 

XELSE 
item% = FN NorEALERT (_potRecordALRT, 0) 

END IF 
DEF DISPOSEH (scrapH&) 

END IF 
END FN 

LOCAL FN pDoEdi tMenu 
SELECT itemID% 

CASE _icut 
CASE _iCopy 
CASE _iPaste 
CASE _!Clear 
CASE _iSelectAll 
CASE _iCopyRec 
CASE _iPasteRec 

END SELECT 
END FN 

(itemID%) 

FN EditCUt 
FN EditCopy 
FN EditPaste 
FN EditClear 
FN EditSelectAll 
FN EditExportRecord 
FN EditimportRecord 

' ••• get global function pointers 

gEditMenuPtr& = @FN pDoEditMenu 

Printing.Incl 
I --- HEADER -------------------------------------
INCLUDE FILE _aplincl 
COMPILE 0, _strResource_JllacsBugLabels 

I --- CONSTANTS ----------------------------------
GLOBALS "SimpleBase.glbl" 
END GLOBALS 

I --- FORWARD FUNCTIONS --------------------------

LOCAL FN DBReadRecordTemplate 
END FN 

I --- FUNCTIONS ----------------------------------
LOCAL 
DIM rect.8 
LOCAL FN PrintRecord (pgVOffset%) 

XOffSet% = 150 
VOffset% = 15 
TEXT _geneva, 9, 1 
I ••• PRINT FIELD TITLES 
FOR count% = _dbNarneFLD TO _dbFaxFLD 

tmp$ = UCASE$ (STRi (_dbEntryWIND_fieldSTR, count%)) 
PRINT%(XOffSet% + _gutterAdj, pgVOffset% + VOffset%) tmp$ 
V0ffset% = VOf fset% + 15 

NEXT count% 
1 ••• PRINT FIELD DATA 
TEXT _geneva, 12, o 
PRINT%(xOffSet% + _gutterAdj + 80, pgVOffset% + 15) gEmployee.dbName$ 

Appendix 339 



Printing.Incl 

PRINT%(XOffSet% + _gutterAdj + 80, 
PRINT%(XOffSet% + _gutterAdj + 80, 
PRINT%(XOffSet% + _gutterAdj + 80, 
PRINT%(xOffSet% + _gutterAdj + 80, 
PRINT%(XOffSet% + _gutterAdj + 80, 
PRINT% (XOffSet% + _gutterAdj + 80, 
' ••• PRINT PICTURE & SEPERA'IOR 

pgVOffset% 
pgVOffset% 
pgVOffset% 
pgVOffset% 
pgVOffset% 
pgVOffset% 

+ 30) 
+ 45) 
+ 60) 
+ 75) 
+ 90) 
+105) 

gEmployee.dbAddr$ 
gEmployee.dbCity$ 
gEmployee.~State$ 
gEmployee.dbZip$ 
gEmployee.dbPhone$ 
gEmployee.dbFax$ 

CALL SETRECI' (rect, _gutterAdj,pgVOffset%, 130 + _gutterAdj, pgVOffset%+152) 
PICTURE FIELD #100, %gEmployee.dbPictID%, @rect, _statFramed, _cropPict 
PEN 'II I 3 
PLO!' 0, pgVOffset% + 165 TO 600, pgVOffset% + 165 
PEN II ,,0 

END FN 

LOCAL FN PrintManyRecords (firstRec%, lastRec%, readRecPtr&) 
pgVOffset% = 10 
pageNum% = 1 
reccount% = o 
DO 

gOpenRecord% = f irstRec% 
FN DBReadRecordI'emplate USING readRecPtr&; 
FN PrintRecord (pgVOffset%) 
INC ( firstRec%) 
INC (recCount%) 
LONG IF (recCount% MOD 4) = 0 

PRINT%(_gutterAdj, pgVOffset% + 180) "PAGE#";pageNum% 
INC (pageNum%) 
pgVOffset% = 10 
IF recCount% < lastRec% THEN CLEAR LPRINT 

XELSE 
pgVOffset% = pgVOffset% + 180 

END IF 
UNTIL firstRec% > lastRec% 

END FN 

LOCAL FN pDoPrinting (readRecPtr&) 
DEF LPRINT 
LONG IF PRCANCEL = 0 

'TRON p 
oldRecNum% = g()penRecord% 
resRef% = USR OPENRFPERM (gFileName$, gWDRefNum%, _fsCUrPerm) 
CURSOR _watchCUrsor 
ROUTE _toPrinter 
SELEcr gPrintFlag 

CASE _thisRecBTN 
FN PrintRecord (10) 
ROUTE _toscreen 
CLEAR LPRINT 

CASE _allRecBTN 
FN PrintManyRecords (1, gMaxRecinFile%, readRecPtr&) 

CASE _selectRecBTN 
FN PrintManyRecords (gPrFirstRec%, gPrLastRec%, readRecPtr&) 

END SELECT 
ROUTE _toScreen 
CLOSE LPRINT 
IF resRef% THEN CALL CLOSERESFILE (resRef%) 
gOpenRecord% = oldRecNum% 
FN DBReadRecordI'emplate USING readRecPtr&; 
CURSOR _arroWCUrsor 

END IF 
END FN 

I --- SET PRINT ADDRESS --------------------------
gDoPrintPtr& = @ FN pDoPrinting 

340 Appendix 



S:lmpleBase.Main 

SimpleBase.Main 
I --- HEADER -------------------------------------
RESOURCES •simpleBase.rsrc•, "APPLFbSb" 
CCMPILE O, _strResource_JllacsBugLabels 
OUTPUT FILE "SimpleBase apl • 

I --- CONSTANTS ----------------------------------

GLOBALS "SimpleBase.glbl" 
END GLOBALS 

I --- INCLUDES -----------------------------------

INCLUDE "DialogEvent.Incl" 
INCLUDE "EditMenu.Incl" 
SEGMENT 
INCLUDE "SimpleBase.Incl" 
INCLUDE "Printing.Incl" 

I --- FUNCTIONS ----------------------------------

LOCAL FN CheckincomingFiles 
maxFiles% = 1 
doWhat% = FINDERINFO (maxFiles%, gFileName$, file'fype&, gWDRefNum%) 
LONG IF (maxFiles% > 0) AND (file'fype& = _"SbDb") 

SELECT doWhat% 
CASE _openFiles 

FN ItemOpen 
CASE _printFiles 

FN ItemOpen 
FN ItemPrint 

END SELECI' 
END IF 

END FN 

LOCAL FN Initialize 
EDIT = 2 
WINDCM OFF 
MINWINOOW 240, 120 
MAXWINOOW SYSTEMLscmWidth)-20, SYSTEM LscrnHeight) - 50 
gQuit = _false 
gHelpID% = _;ninHelpID 
LONG IF SYSI'EM (Jnach'fype) < _envMacPlus 

i ten% = FN NOl'EALERT (_;nachErrALRT, O) 
END 

XELSE 
I.om IF SYSTEM (_sysVers) < 605 

item% = FN NOl'EALERT (_sysErrALRT, 0) 
END 

END IF 
END IF 
FN CheckincomingFiles 

END FN 

I --- MAIN LOOP ----------------------------------

FN Initialize 
ON MENU FN HandleMenuEvent 
ON DIALOG FN HandleDialogEvent 

DO 
HANDLEEVENTS 

UNTIL gQuit 
END 

Append.ix 841 



Index 
Symbols 
@FN 288 

Numerics 
32K Limit 202 

A 
About SimpleBase ... 57 
Accessing a Global File 199 
Accessing Record Data 155 
action block 23, 25, 26, 31, 32 
Action Blocks 23 
Adding a Global File 204 
adding color 61 
Adding Include Files 205 
Alerts 231 
amateur programmer 48 
America 12 
apllncl 205 
Apple 9, 47 
APPLE MENU 56 
Apple Menu 47 
APPLEMENU 54 
application folder, getting 185 
application resource fork 212 
arrayBaseO 204 
arrayBase1 204 
Arrow Keys 138 
ASC49 
Assigning Command Keys 47 
Assigning Icons 48 
Assigning Record Data 156 
Assigning Text Styles 48 

B 
Balloon Help 304 
BASIC 7, 8, 10, 11, 30 
BEEP 57 
block structure 25 
Boehm and Jacopini 25 
BOX284 
BOXFILL284 
branch block 25, 32 
Branch blocks 25 
BREAK 39 
btnClick 36 
bugs 16 
BuildMenus 53, 64 
BUTION281 

button events 38 
Buttons 87 
buttons 

create 87 

c 
caselnsensitive 204 
Changing Item Titles 50 
checkBox button 28 
CheckRange% 290 
chkRuntimeErr 204 
CIRCLE284 
CIRCLE FILL 284 
CLEAR LPRINT 286 
Clear Record 54 
click1 nDrag 40 
click2nDrag 40 
click3nDrag 40 
Clipboard 205, 263 
CLOSE 182 
Close 49, 54 
close box 67 
CLOSE LPRINT 286, 291 
CLOSE# 181 
CloseResFile 286, 295 
closing 

file 181 
Closing the Print Manager 291 
COLOR284 
Command40 
COMPILE 27, 204 
Compile 206 
constant definitions 28 
Constants 28 

Macintosh 28 
constants 

Macintosh 28 
content region 69 
control block structures 26 
control structure 

action block 23 
branch block 25 
loop block 24 

Conventions 13 
Copy 54 
Copy Record 54 
Copying Records 159 
create 

buttons 87 

Index- 1 

Create MBAR Resource 64 
Create New Resource 61, 64 
Creating 61 
Creating a Project Include File 207 
Creating MENU Resources 61 
Creating Menus 46 
cursor 112 
CursorHandler 207 
Cut 54 

D 
data fork 170, 200 
DBRndRecord 189, 193 
DBNewDataBase 187, 190 
DBRead 194 
DBReadRecord 187, 189, 192, 

287,288,289 
DBReadRecordTemplate 287 
DBWriteRecord 186, 188, 189, 

190, 192 
debugging 16 
DEF BLOCKFILL 188, 190 
DEF LPRINT 280, 286 
DEFOPEN 181 
DEF PAGE 280, 285 
default filename 28 
Defining Records 152 
Deleting Menus 50 
de-referencing 220 
desk 264 
desk scrap 264 
DIALOG 34, 36 
DialogEntryWindow 189, 190, 191 
DialogEvent.lncl 205 
DialogFindWindow 192 
DialogGotoWindow 189, 195 
DIM 152, 200, 204 
DIM END RECORD 152 
DIM RECORD 152 
directories 170 
dividing line 44 
D038 
DO/UNTIL 24, 38, 39 
DoAppleMenu 56 
document 169 
dontOptimize 204 
DoRecordMenu 189, 192 



E FILES 188 Handling Menu Events 54 
Edit 50, SI, 54, 57, 61, 63 files Handling Menu Selections 57 

EDIT FIELD 281 getting file position 17 6 Handling Mouse Events 40 

edit field 123 getting file size 17 5 has Submenu 62 

EDIT MENU 264 
maximum open files 174 Header Section 27 

Edit Menu 47 
setting file pointer 175 Header section 64 

EFRecordToEF 189 
FILES$ l84 Help .•. 57 

EFToRecordField 190 
FILES$ _fOpen Hierarchical menus 43 

ERoRecordField 192 
file commands highlight 48 

FILES$ _topen 182 
ellipsis( ... ) 54 FILES$ _fSave 183 highlighting 124 

e-mail addresses filtered events 36 hotspot 112 
ZEDCOR Find 54 I 

ARIEL Find ... 54 icon 45 
TUROVICH Finder 304 IF23 

turovich@aol.com first-in, first-out buffer 33 If You've Programmed BASIC Before 
12 FNUSING287 11 

Enabling & Disabling Menus 49 FOLDER 185, 293 IF/ELSE 25 
END GLOBALS 199, 205 folder 170 INCLUDE 8, 203 
equates 29 folder, finding a 185 INCLUDE FILE 205, 207 
EVENT36 folders include file 200 
event handler 104 creating 185 Include File Limitations 202 
event queue 33, 55 getting WO reference number 185 Include File Tips 203 
Events 33 FOR/NEXT24 Include File Types 201 
EXIT 23 fork include files 30 

F 
resource fork 170 Initialize 53, 64 

forks INPUT 177, 179 
field 151 data fork 170 
FieldRecordToEF 188 frame 69 

insertion point 123 

FIF033 full pathname 170 
Inside Basic 12 
Inside Macintosh 11, 29 

File 47, 49, 50, 51, 54, 61, 63, Functions Section 30 INSTR 194 
204,205,206 FutureBASIC constants 28 

file 169 Internet 12 

File Commands 172 G Introduction 7 

file commands Get Menu ID 63 item ID 45 
CLOSE# 181 Get Resource Info 62, 64 item mark 45, 49 

closing files 181 Get1 lndResource 295 ltemClearRecord 190 

DEFOPEN 181 GetFilelnfo 196 ltemNew 187, 188, 190, 191 
FILES$ _fSave 183 GetPrinterName 293 ltemNextRecord 192 
FOLDER 185 Getting Started Manual 8 ltemOpen 188 
PRINT# 177 glbl 198, 200, 205 ltemPrevRecord 192 
READ FILE# 180 Global File Do's & Don'fs 200 ltemQuit 58 
READ# 180 global variable 39 ltemSave 189 
RESET 182 
WRITE FILE# 178 GLOBALS 199, 205, 207 J 
WRITE# 177 Globals Section 29 Jacopini and Boehm 25 

file format Globals section 39 

tokenized 198 GOSUB 21, 23 K 
file information buffer 17 4 GOT023 keyboard equivalent 44, 45 

File Permissions 173 Goto ... 54 Keyboard support 44 

file pointer 17 5 gQuit 38, 39, 58 L 
file type 169 gray area 143 

LEN 183 
file type, getting the H Let's Get Started 14 

file commands 
HANOLEEVENTS 36, 39, 42, 55 LINE INPUT# 180 

FILES$ 183 
file type, setting 181 

HandleMouse 40 Linear 22 
linear program 21 

Index-2 



linear programming 23 
LOC 176 
LOCAL 23, 29 
LOCAL FN 8, 13 
LOF 175, 186 
LONG IF/XELSE/END IF 25 
loop block 25, 32 
loop block structure 38 
Loop Blocks 24 
LPRINT 283 

M 
Macintosh Constants 29 
Macintosh Revealed 12 
MacsBug debugger 27 
main 204 
Main Loop 38, 39, 40, 54, 55, 58 
Main Loop Section 30 
Main Loop section 36 
main source file 205 
mark45 
Marking a Menu Item 49 
mButDwnEvt 36 
Memory Requirements 303 
MENU 63 
Menu 

hierarchical 43 
pop-up 43 
pull-down 43 

menu bar 44 
Menu Constants 50 
Menu DEFinition 63 
Menu features 

dividing line 44 
icon 45 
item ID 45 
keyboard equivalent 45 
mark45 
menu bar44 
menu ID45 
menu item 44 
menu title 44 

menu ID 45 
menu item 44 
menu title 44 
MenuEventHandler 55 
Menus 43 
meta 48 
meta-character 48 
Missing the Data 203 
MOUSE 34, 40 
multiple event handling loops 30 
multiple windows 67 

N 
Nested Records 157 

Nesting Block Structures 25 
never anticipate an event 38 
Never Programmed Before? 10 
New 50, 54, 204, 205, 206 
Next 54 
non-standard character 49 
noRuntimeErrs 204 
nside Macintosh 158 

0 
ONMOUSE40 
one 22 
one-in/ one-out 26 
one-in/one-out 32 
one-in/one-out block 23 
OPEN 174, 175, 186 
Open 54 
Opening a File 172 
optimizeAslnt 204 
OUTPUT FILE 28 

p 
Page 54 
Page Setup 280, 281 
page value 144 
Paste 54 
Paste Record 54 
pDoPrinting 287, 288 
PEN 284 
picker window 214 
PICTURE 281 
PICTURE FIELD 281, 284, 288 
picture field 129 
PLOT 284 
PLOTT0284 
Plotlcon 295 
Pop-up menus 44 
Power Records 158 
PRCANCEL280,281,285 
Preferences folder, getting 185 
Previous 54 
PRHANDLE 280, 282 
PRINT 21, 57, 177, 178, 179, 

283 
Print 49, 54 
print driver 279 
Print Manager 279 
Print Record 280 
PRINT# 177 
PRINT% 284, 288 
Printer Icon, getting 293 
Printing 282 
Printing a Single Record 288 
printing loop, standard 284 
Printing Multiple Records 289 

Index- 3 

Printing Selected Records 290 
PrintManyRecords 189, 286, 290 
PrintRecord 286, 288, 290 
program 16 
Program Layout 27 

Constants Section 28 
Functions Section 30 
Globals Section 29 
Header Section 27 
Main Loop Section 30 

Program Menus 50 
programmer 16 
Project Include 207 
pseudocode 37, 55 
pull-down 44 
Pull-down menus 43 
Purgeable 64 
purgeable 62 
push button 28 

Q 
QuickTime 7 
Quit47, 54, 58 

R 
radio button 28 
raw Macintosh event 36 
READ 178 
READ FILE# 180 
READ# 180 
REC 176 
RECORD 175, 176, 186 
Record 57 
record 151 
Record Allocation 153 
Record Arrays 159 
record number 152 
record size 151 
Record Sizes 152 
Record Types 153 
RecordFieldToEF 192 
Records 50, 51, 54, 63 
References 11 
ResEdit 46, 61, 63, 66 
RESET 182 
Resource 61, 64 
resource 211 
Resource attributes 212 
resource fork 170, 200 
Resource Menus 61 
Resource types 211 
RESOURCES 27, 64 
Resources 62, 170 
Retrieving Record Data 157 
Revising DialogEvent.lncl 208 



Revising SimpleBase.glbl 209 
Rise of BASIC 7 
ROUTE 281, 286 
ROUTE _toPrinter 281 
ROUTE_toScreen 281 
Run 40, 206 
runtime 36, 38, 40, 50, 63, 156 

s 
Save 49, 54 
Save As ... 54 
scroll arrow 144 
Scroll bars 68 
scroll bars 143 
scroll box value 144 
SCROLL BUTION 281 
Scroll buttons 143 
scroll buttons 68 
SELECT 56, 286 
SelectAll 54 
SELECT CASE 8 
SELECT/END SELECT 25, 56, 57 
selection 124 
self-documenting 28, 51 
SetitemCmd 47 
Setup 54 
shadow button 28 
Show First 54 
Show Last 54 
Size 48 
size box 68 
skeleton 17, 57 
standard resources 211 
standardized window elements 67 
Stepwise refinement 15 
stepwise refinement 17, 32, 40 
STR 292 
STR# 288 
strings 

LEN 183 
strResource 204 
Style 48 
subdirectories 170 
sub-menu 43 
subroutine 16 
SYSTEM 185, 293 

System folder, getting 185 
System folder, getting 185 
system resource file 212 

T 
TE scrap 264 
32K Limit 202 
thumb value 144 
TickCount 179 

title bar 68 
tokenized file format 198 
Top 15 
Top-Down Design 17 
top-down design 32, 53 
top-down programming 40 
Typographical Info 13 

u 
Understanding Project Includes 209 
Undo 54 
Unhighlighting Menus 48 
universal include 205 
user- defined constants 28 
User-defined constants 28 
user-defined constants 28 
USR OPENRFPERM 286, 294 

v 
variable address, getting 179 
Variable Sizes 154 
VARPTR 179 
Visibility Restricted 203 
volume 170 

w 
Welcome? 
What are Events? 33 
What are Menus? 43 
What are Records? 151 
What are Windows? 67 
Where Should I Start 10 
WHILE/WEND 24 
Window 193 
window67 
Window elements 

close box 67 
WINDOW functions, printing 282 
WindowBuild 188, 189 
WindowCapture 190, 195, 290 
WindowClose 193, 195 
wndRefresh 38 
wndRefresh DIALOG 38 
working directory reference number 

171 
WRITE 178, 180, 186 
WRITE FILE# 178, 180 
WRITE# 177 

z 
ZBASIC7 
Zero Length Variables 155 
zoom box 68 

Index-4 



FutureBASIC Source Code 
Order SSIM now and get the following: 

•Cell Interface Module (CIM) a quick way to put $69.95 
together a scrolling array of cells. 

- Everything is linked to a single rectangle. 
- Make grid any size, put it in any window. 
- Control column widths 
- Control column formats such as color, font, face, etc. 
- All the information is stored in a simple text array. 
- Get source code and the compiled application. 

•Spread Sheet Interface Module (SSIM) - A full blown spread sheet engine. 
- Control font, size, color, border, justification, and format for each cell. 
- Variable column widths Main 

- Insert and delete columns and rows 4 ,F•mF#r-. Chicago CillF•r""" 

- Import and Export ASCII tab files i--H---+::,:-::-=.~"-:r,-1r.-=-:1::-t:·;""""~M':"::1 ~""":':':"_~-,_+-~1'=":~-=-i~~4""'",~:=-=_:;5~~ ·~:-::'"'":~,....~~=-=o:-:-::=--nR:"""~"'"t&_h•-c.-1-,-m-n;ifl!tm] 
- Save fully formatted files 1 F•"'Si'" 1.,,.,, o.1.<MMM00.w:>J~~~-~~;L9~~ H<;;.-;u,-,,,;,,fiiid,nvihiiiTi-I 
- Formula and equation support ltOPolnt z0oc1 .. i. .J'.~~:5~----- H;i;"uwpporiedGo·r·;;-,;;-~;1;-1 

- 30,000 rows by 30,000 columns 10 : :~~:~~t ::::::: --i-~~-~~~~~ao· ~~~~;~;~:~1:;!:9h' I 
- Text Cut, Copy, Paste, and UNDO! 11 F.mF- !Pl•fo -f---- lmport&Exp.rtT.br,,;;--! 

C Bel• Ci/I llllnlrn P'rint formetted documents j 
- Supports B&W and olor :: ! tfllir :Top Stvef"llVformotleddooumonb i 
- Print fully formatted files 14 F11111Jl#li'v ! .J~c:=~--- Et•lilltu r 
- Copy and paste ranges of cells 15 L•" :."'.'.'~---- suM t 

16 
Right ·-·-~ Bottom , ~~~·e;r·:==--~~===~==:i -0 

¢\lj 

iN SOLVE $40 FN GRAPH $30 
=eatures: 
· A single include file and 6 global variables 
Returns formatted values 

·Handles ... 
. . up to 50 pairs of brackets (expandable 
by changing globals} 

.. functions, comes with TAN, SIN, etc. (you 
~an add your own) 
... +, -, *, I and/\ 
... variables defined in a global array 
... scientific notation 
How it works: 
1) a$="2.3 * SIN(3E4-6.33}/34.6"-23.4" 
2) Answer$=FN Solve$(a$) 
(you can include variable names in a$ if you 
define them before hand in a global array.) 

Solves this equation: 
2.3 * (CSC(3E4-6.23) I (TAN(3.2+5))A1.4) 

With all ••• by Detl9n software you get: 
Easy to follow manual. I To Order 

1 month of FREE technical support Call: 

Features: 
• Everything is tied to one rectangle, scale or move your plot by 
changing a rectangle coordinate. 
• Supports five types of graphs: Scatter, Line, Bar, Thin bar and 
Area . 
• Control scale, number of tick marks, plot grid, plot box, point 
markers, color, axis crossing points . 
• Supports COPY graph 

How it works: 
1) Move your data into the plotting array 
2) Set your graph type (gChart=_lineGraph) 
3) Set your rectangle (CALL SETRECT(r,0,0,50,50)) 
4) Let the code set the plotting parameters (FN MakeChart) 
5) Draw the graph (FN Graph) 

rt tf-rli: ![ 

!I 

Write: VISA/MasterCard 
••• by De1ign. lno. 

Shipping on all orders: Source code and compiled applications (608) 831-5259 
5700 Highland Way, Ste.#201 

No runtime fee Middleton, WI 53562 $3 US, $15 Foreign 



Get the only publication that speaks FutureBASIC! 

Inside Basic™ Special Issue · 
The Journal of Macintosh BASIC Programming 

We speak FutureBASIC! 
Ariel Publishing, Inc., develop
ers of programming tools and 
utilities for all Mac programmers 
and publishers of Inside Basic, 
the Journal of Macintosh BASIC 
Programming, is pleased to an
nounce a wide range of products 
and add-ons for the discriminat
ing FutureBASIC programmer. 

Inside Basic Magazine 

Our flagship product for BASIC 
developers, IB is the primary 
source ofFutureBASIC informa
tion available anywhere. Not only 
does our publication cover FB in 
depth, but it also teaches Mac 
programming. You'llleamhow 
to use FB more intelligently, too 
(of course!), but you'll also get 
many, many tips and techniques 
that will help you to take best 
advantage of the Mac toolbox. 

Our regular columnists and con
tributors include Chris Stasny 
(authorof PG:PRO, the awesome 
CASE tool and OOPs extension 
to FB), Raoul Watson (presently 
of Sunburst Communications and 
the author of the Mac Muppet 
Learning Keys), andZedcor's own 
Frank Turovich (author of most 
of the FB manuals and technical 
documentation!): 

IB is a monthly journal and costs 
$49.95 for one year, $94.95 for 
two years. 

Inside Basic on Disk, a compan
ion disk subscription, contains 
all of the article text and source 
code from the magazine (as well 
as the latest and greatest utili
ties for FB programmers). JB on 
Disk is $49.95 for one year, $89.95 
for two years. 

Tips, Tricks, & Techniques Galore/ 
Inside Basic Magazine is literally crammed with FutureBASIC and 
Macintosh programming tips and techniques. Here's just a couple of 
quickie excerpts from our most recent issues: 

' Note: Gestalt Mgr only available in 
' System 6. 04 or later. 
HelpMgr& • FN GESTALT (_"help") 
LONG IF HelpMqr& 

OSErr=FN HMGETHELPMENUHANDLE (mhndl&) 
LONG IF OSErr - 0 AND mHndl& <> 0 

M..rch 199a 1nst••• .. CD .... "'-. 

CALL APPENDMENU (mHndl & , "My Very Own Help Menu for System 7") 
END IF ' install help elsewhere for System 6 

END IF 
continued on p.2 

Or.lerlng Info 
Ot\ bc:tclc! 

:':. :,::> ~ ,::\ .. <''''<,::.:J 

CDEF-City-n 

This package of five control def 
nitions not only adds pizazz t 
your programs, but also save 
tons of time when you want t 
perform several tricky tasks lilt, 
creating animated buttons, pu~ 
ting a menubar inside a windo~ 
or turning part of a PICT into : 
button. 

Andyouneednotworrythatthe& 
controls are a pain to work with 
either. FB programmers have tlu 
luxury ofbeingable to build then 
with FB's own BUTTON state1 
ment(andhandlethem withFB'l 
standard DIALOG functions) 
CDEF-City is $49.95 ($39.95 f01 
IB subscribers). 

QDFx™· 

If you envy HyperCard's ability, 
to do snazzy wipes, dissolves, and 
transitions from one image to an-1 

other, then you need QDFx™. 
This package includes 16 differ
ent visual effects, including Ve-· 
netian Blinds, Iris In, Slide, Zoom 
Box, Dissolve, Bubbles, Horizon, 
Cascade, and many more. 

QDFx allows you to bring a new ' 

continued on p.2 



i 
~Ide Basic Special Issue 

ips & Tricks, cont. 
)ROINATE WINDOW : CLS Apl'fl 199~ 
u, l, b, r A M'4ltlCo"4t11t\ SoroWt\g 
lWdth • 45: rowHt • 12:TEXT 1,9,0,0 tdst 

!fGFN drawCell (row,col,theTxt$,seltd) 
. • (row-1) *rowHt : b • t + rowHt 
L - (col-1) * colWdth : r - l + colWdth 
u.L TEXTBOX( (@theTxt$)+1, LEN (theTxt$) ,t, 0) 
F seltd THEN CALL INVERTRECT (t) 
:ALL INSETRECT(t,-1,-1) ' create frame 
ALL FRAMERECT (t) ' and draw it 
DFN 

emo" 

1electedRow • RND (10) 
;osus "Show List" 
ITIL LEN (INKEY$) OR FN BUTTON ' mouse click or key to end 
ID 
lhow List" 
>R row - 1 TO 10 
roR col • 1 TO 5 

IF row - selectedRow THEN seltd • _ZTrue ELSE seltd •_False 
. theTxt$ - II ("+STR$ (row)+", "+STR$ (col)+") n 

1FN drawCell (row, col,theTxt$, seltd) 
·NEXT 

To Order: (509) 923-2249 (voice AND fax) 
or clip the form below and write: 

Page2 

Ariel Goodies, cont. 
image into all or part of your 
window in a very artistic and 
pleasing fashion. It is also ex
traordinarily easy to use from 
FutureBASIC (just CALL 
"QDFx" with the proper param
eters!). QDFx retails for $49.95, 
butlnside Basic subscribers can 
get it for $39.95. 

Odd 1/0™ 

A "snd " resource library, Odd II 
0 contains over 3.25 megabytes 
of royalty free sound data. It in-
cludes the beautiful (Mozart, 
etc.), the funny and bizarre 
("totallymondognarly"), and the 
practical (the alphabet and the 
numbers 0-9). Odd 1/0 retails for 
$19.95 ($14.95 with an m sub). 
Since FutureBASIC plays "snd" 
resources asynchronously with 
its built in SOUND statement, 
these sounds are easy to use in 
your own programs. 

Ariel Publishing, Inc., P.O. Box 398, Pateros, WA 98846 

Name 
Address Line 1 
Address Line 2 
City, State, Zip 

Inside BASIC Magazine 0 1 year: $49.95 0 2 years: $94.95 
Inside BASIC on Disk 0 1 year: $49.95 0 2 years: $89.95 

NOTE: Nan-North American customal8 
pleale add '411 tor 1st Clua Postage or $18 
tor 3rd claH pastage per yeu, per 
.....-... eubecrlpllon. 

IS on Disk la only shipped 1st Class. but 1he 
CC81 la $18 per year. per disk aubacripllon. 

0 CDEF-City .. $49.95 ($39.95) 0 QDFx.$49.95($39.95) 0 Odd 1/0 .. $19.95 ($14.95) 
prices in parenthesis are the discounted price in conjunction with a subscription 

, Total of all products ordered: .......................................................................................... $, ____ _ 
Shipping and handling: Software m Magazine m OD Disk 
All North American destinations free free free 
Non-North American $5.00 $18.00 per year (3rd class) $18.00 per year (1st class) 

$48.00 per year (1st class) 
Total Shipping and Handling........................................................................................ $, ____ _ 
Sales Tax (Washington state residents only add 7.5%)................................................ $, ____ _ 

Grand Total.................................................................................................................... $ ____ _ 

Method of payment: Cl Visa Cl MC 0 Check Cl Purchase Order 0 Bill Me (net 90) 
Card or PO# _________ Exp. Date _____ Signatur _________ _ 



Need Random Files? Need Fast Searches? 

consider 

B-Tree HELPER™ 
from 

(M)agreeable software 
B· Tree HELPER 

Gets space in a file in fixed length blocks. You deter
mine block siz.e at file creation, from 9 to 16,388 bytes. 

Releases space back to the free block pool. 

Expands the file as necessary, up to the maximum avail-
able on the media. · 

Contracts files when possible. 

B-Tree HELPER 
Saves You Time 

It could take you two or more weeks to write a file space 
management system. 

It would take you four or more weeks to write a file
based B-Tree management system. 

B-Tree HELPER is ready to run. 

What Do Our Customers Say? 
"Both your product and way of doing business are wor
thy of a kind word .•.. Thanks for a nice program at a 
nice price." 
- Ed Ringel, Waterville ME 

"Tu sei troppo simpatico. Tunte grazie per la pazienza e 
buon lavaro." 
-Antonio Cocco, Caserta, Italy 

"B-Tree HELPER works great! Multiple keys and data 
can be stored in one Mac file; and data can be anything: 
pictures, edit fields, etc. It's one of the best database 
products I've seen - especially for the price." 
- John W. Roberts, Palo Alto CA 

"B-Thee HELPER is a great product, and is an excep
tional value for the money, especially when you con
sider its capabilities and the development time that 
using it has saved." 
- John Sidney-Woollett, GTec Systems, London, 
England 

B-Tree HELPER 
Inserts keys in one or more B-Trees in one or more 
files. Keys may be strings, integers, or any other data. 

Finds the keys equal to, less than, or greater than a 
given value in a few hundredths of a second. 

Finds lists of records whose keys are equal to, less than, 
or greater than a given value or in a range of values. 

Deletes keys. 

B-Tree HELPER 
Saves You Money 

For only $75.00 you can save weeks of typing, testing, 
retyping, retesting ... 

B-Tree HELPER is a set of code resources you call from 
your FutureBASIC programs. 

You pay no license fees or royalties. 

Order B-Tree HELPER™ Today 
_Please send me FutureBASIC code resources for 
B-Tree HELPER 2.1 $75.00 

_Please send me the THINK C source code for 
B-Tree HELPER 2.1 ($150.00 separately) $100.00 

_Please send me the Pascal source code for 
B-Tree HELPER 2.1 ($150.00 separately) $100.00 

Enclose check or money order in U.S. Dollars. For other cur
rencies, please write, call, or e-mail: MAGREEABLE (GEnie, 
AppleLink, or America OnLine), or 72167,1700 (Com
puServe). 

Name _____________ ~ 
Company ____________ ~ 
Address ____________ _ 
City _______ State __ Zip __ _ 
Country ________ ~ 

Send to: (M)agreeable software, Inc., 5925 Magnolia Lane, 
Plymouth MN 55442-1573, Ph. (612) 559-1108. 



PG: 
Not everyone is a professional 
>grammer. But each of us has 
!lcquired knowledge in specific 

fields through study or job 
experience or just because we 

tappened to be standing under 
3 right tree when an apple fell. 

r you have discovered a unique 
way to store, analyze or 

calculate information (or 
perhaps you have an idea for a 
1rld class game ) there is only 

one (good) way to share it: a 
Macintosh application. And 

until now, there was only one 
way to create it: spend years 

learning to program. 

PG:PRO has changed all of 
that. Because now you don't 

have to be a professional 
programmer to create a 

professional program. Just let 
the PRO handle interface 

operations and spend your time 
rorking on the things that made 
rou a professional to begin with. 

0 
• 

• • 
• 

Staz So~ware has produced the equiualent of an object·oriented 
programming (OOP) enuironment that doesn't require preuious 
OOP experience. This is an amazing accomplishment in its own 
right, but the speed and compactness of the code are 
phenomenal. 

- MacWorld ..,.. July 1993 

PG:PRO makes a great partner for FutureBASIC and makes it 
easy to design applications quickly without getting mired in the 
details of managing the interface. 

- Byte ..... June 1993 

PG:PRO prouides the means for euen the most non-professional 
programmers to create a solid Mac interface in minutes. 

- Inside BASIC ..,.. June 1992 

Lots of folks are using the PRO. There are 
hobbiests, scientists, engineers, artists, gamers 
The PRO has even cut new paths into the 
HyperCard dominated markets of higher education. 
We cover the U.S. from the University of Florida to 
Washington state's Battelle Labs. And we span the 
globe from Australia to Japan to France (and most 
points in between.) 

Somewhere on the glo""l ... ......._..........,J.+.M~,......~"-M..l~~ay, 
the sun is shining on a i=+-~:..__.:~~~~:.:..:.....+--1-t 

~Ill ~lflWll( 
1 lA LEISURE TIME DRIVE 0 DIAMONDHEAD, MS 39525 • 601 "255°7085 ° F"AX 601°255"7086 



ORDER FORM 

Sentient Fruit"' 
MACINTOSH CONSULTING • PROGRAMMING • DOCUMENTATION 

PO BOX 13362 •TUCSON •AZ 85732-3362 

The first programming book for ... 

Learning FutureBASIC 
Macintosh BASIC Power 

by L. Frank Turovich 

Designed for people already familiar with BASIC, but who want to program 
professional-quality Macintosh applications. Inside you'll learn ... 

• Techniques for faster, bug-free programming • How to create and manage up to 
63 program windows • How to add and handle buttons, edit and picture fields • 
Why events are vital and how to program for them •Amazing printing techniques 

for text and graphics • How to design and use common resources effortlessly 
(MENU, ALRT, CURS, DLOG, DITL, ICN#, STR#, and many more). How to handle files, 
records, and folders like a pro • Hundreds of other useful tips and suggestions • 

A complete SimpleBase program shows you howl · 

/ / "' { Wow - I can't wait, please send my copy of Sales Tax: \ 
j Learning FutureBASIC: Macintosh BASIC Power Artzona residents 
' C , 1 fi $39 95 U.S t please include 7% i ISBN0-9639552-0-91 now or . o... sales tax. 

I Name: ~~:~~. 
I',,, Address: P!~~:~~oo 

City: Payable in US funds 

!,'',,,, State: Postal Code: by US check or Intl. money order. 
Country: • 

Please allow 4-6 
~ weeks for processing : 
\ FutureBASIC is a trademark of Zedcor. Inc. and shipping. i 
··,-............................................................................................................................................................................................................. / 



Sentient Fruit• P.O. Box 13362 •Tucson, AZ 85732-3362 

ISBN 0-9639552-0-9 $39. 95 USA 


