LEARNING
FUTUREBASIC

RACINTOSH BASIC POWER

By L. Frank Turovich

SENTIENT FRUIT

LEARNING
FUTUREB ASIC

Macintosh BASIC Power

by L. Frank Turovich
Copyright ©1994 Sentient Fruit
All Rights Reserved Worldwide

Requirements

The source code in this book was designed to work with the

FutureBASIC™ programming language. All development was done
under FutureBASIC version1.02.

Learning FutureBASIC: Macintosh BASIC Power
by L. Frank Turovich

Questions

Zedcor, Inc. does not support, nor is Zedcor, Inc. responsible for any of the contents of this product. All
inquiries and questions regarding this product or any other products produced by Sentient Fruit should
be directed to...

Sentient Fruit”

MACINTOSH CONSULTING « PROGRAMMING « DOCUMENTATION

PO BOX 13362 » TUCSON ¢ AZ 85732-3362

‘We can also be reached online at:

America Online: TUROVICH
Internet: turovich@aol .com

Print history

Copyright ©1994 Sentient Fruit
Second Printing March 1994

Printed in the United States of America
ISBN 0-9639552-0-9

Trademarks

FutureBASIC is a trademark of Zedcor, Inc.

Macintosh and ResEdit are trademarks of Apple Computer, Inc.

Sentient Fruit and the Mac-in-the-Tree logo are registered trademarks of L. Frank Turovich.

All other products and logos mentioned in this documentation are the trademarks or registered
trademarks of their respective owners.

Legalese
LIMITATION ON WARRANTIES AND LIABILITY

EVEN THOUGH SENTIENT FRUIT AND L. FRANK TUROVICH HAVE REVIEWED THIS MANUAL,
SENTIENT FRUIT AND L. FRANK TUROVICH MAKE NO WARRANTY OR REPRESENTATION, EITHER
EXPRESSED OR IMPLIED, WITH RESPECT TO THIS MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. AS A RESULT, THIS MANUAL IS
SOLD “AS IS” AND YOU, THE PURCHASER, ARE ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY. IN NO EFFECT WILL SENTIENT FRUIT OR L. FRANK TUROVICH BE HELD LIABLE
FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM
ANY DEFECT OR INACCURACCY IN THIS MANUAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND IN LIEU OF
ALL OTHERS, ORAL, OR WRITTEN, EXPRESS OR IMPLIED. SOME STATES DO NOT ALLOW THE
EXCLUSION OR LIMITATION OF IMPLIED WARRANTIES OR LIABILITY FOR INCIDENTAL OR
CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY TO YOU.

Production

This book was written on a Macintosh II, System 7.1 using FrameMaker® for the words, FutureBASIC™
for the source code, Resorcerer® and ResEdit™ for the resources, DeskPaint®, DeskDraw®, and
ClarisWorks™ for the graphics. It was printed on a Texas Instruments microLaser PS-35 at 300 DPI
using Bookman for body text, Helvetica for titles, Courier for source code, and Symbol for bullets.

Acknowledgements

This book is the cumulation of months of hard work both in writing and
programming,. It could not have happened without the support of the
following people:

First and foremost, I must thank my loving wife Lora for her continued
support and great patience in editing numerous revisions.

John “the pitbull” Richetta for his ruthless editing style. All mistakes
remaining herein are mine alone.

The brothers Gariepy: Michael, the CEO of Zedcor, Inc. for allowing me to do
it, Peter for the bully cover design, and Andy for answering my endless
questions.

Ross Lambert of Ariel Publishing for suggesting it.

And finally to my test readers who saw a very early version of what you now
hold in your hands: Chris Stasny, Chris Dwyer, and Paul Valach.

November 1993

Table of Contents

10 1n 0T 16 161 (o) o [N N 7
Program DesSigncccceirviiiiiiiiiiiiniiiiiinniniiiiiiiiciinin, 15
EVENES 1itiiiiiiiiiiiiiiiieriicieciiererecnsensenssecsresssesscnsrssonscnsennes 33
IMEIMUS tiverinrenenrrnrnenssecncoseectonsoscsessssssssossosssssssnscnssasnsces 43
%7510 Lo o) 2 S TN 67
| 51011 10) 1 1 T PP 87
Dialog EVENtScccvcvuiiiniiiniiniiiiiiiiiiiiiiiii. 103
Edit & Picture FIeldS ...ccccveveveviviririerineneiernrecncreneencncens 123
SCIOll BUTOIS ...evivrrireeneierereeierecrerrercnesesersesesensoscnscns 143
| 23S 60) s K< ST 151
| 1 (< ST 169
Globals & INCIUAES ..evevinrrrierrneierereeriereereerseeroecasseacnss 197
RESOUTICES .ivverrrerierresseescssersessesssscssssssssssessosssssssscsnces 211
AJETES iviviinieerenrnirienererereesrnessasssersnsasasesasssssrnsessssessse 231
Strings & TEXt ...ccvvererrieririiinniininiiiiiiiiieniieeiieniennn. 247
Edit MEINUS ..iviveririeneneiiienereernecerecasesecscssesesssoncassssscnss 263
Printingcccccovvimiieiiiimniiniiiiieeenn 279
Application RESOUTICESccccvviviirniiiiniiieniiieiieiieine 297
FINAl TOUCKHES ..cuvvviiirerrireniieereenrreteresssesacncnsrassencnsnas 313
Bibliographycccceeiiiiiiiiiiiiiiiiiiiiiieee. 319
Pa\0) 013 s Lo 1 5. SN 321

CHAPTER 1

Introduction

Welcome
Welcome to Learning FutureBASIC™: Macintosh BASIC Powser.

Since its release FutureBASIC has rightly gained a good share of enthusiastic
followers. Its ease-of-use, extensive BASIC command set, built-in access to
the Toolbox, flexible environment, and versatility in creating both stand-alone
applications and code resources have been welcomed with open arms by the
BASIC community. FutureBASIC has made the writing of programs easy and
fun for professionals and hobbyists alike.

Old followers of ZBASIC™ (FutureBASIC's predecessor) are amazed at the
wealth of new features contained in this powerful language. New followers
find its arsenal of capabilities astounding. Professionals who haven’t used
BASIC in years are finding it easy to write code in hours instead of days.

Worldwide, people are using it to create programs that range from CASE tools
to Mac-to-mainframe communications, from QuickTime™ editors to
educational software, from graphics programs to children’s games, and
everything in between.

The Rise of BASIC

BASIC has always been a popular language. Since its beginning in the early
1960’s, BASIC has been available on nearly every computer ever created. Its
inclusion with most home computers guaranteed a wide distribution, and its
ease of learning made it the language most beginners turned to when they
started to program.

Introduction 7

The Rise of BASIC

Sadly, BASIC has always had a reputation for being too slow (most BASICs
were interpreted), too general (it has commands for nearly everything), and
too clumsy when it came to writing “real programs”.

But FutureBASIC (hereafter referred to as FB) addresses all of those points
and more. FB is a compiler, so it's fast. While it does have an extensive 300+
command set, it doesn’t try to do everything, just enough to let you get the job
done. Nor is it clumsy: FB offers all the high-level structures found in other
programming languages including SELECT CASE, LOCAL FNs, INCLUDE files,
access to system equates, and much more. With FB you can write “real
programs” quickly and easily, and you can create all of those widgets that
make the Macintosh so much fun. For example, you can write desk
accessories, control devices, custom windows, menus, and controls — the
choices are endless.

The Plan

The outline for this book is simple. Users have been demanding a
comprehensive book that would lead them step-by-step into the exciting
world of Macintosh programming. While the FB manuals have all the
necessary clues, those clues aren’t really drawn together into a complete, full-
featured application where a new user can get all the answers. The Getting
Started manual included with FB nibbles around the edges, but never really
tackles the tough issues facing a beginning Mac programmer.

With this book, I've tried to anticipate and respond to your questions as they
might come up. I walk you step-by-step through an entire Macintosh
application, from concept to completion. Along the way, I'll also explain what
goals we want to achieve, how we’ll accomplish those goals, as well as
providing helpful insights into the reasoning behind these choices.

FIGURE 1. Data Entry window in SimpleBase.

Record# 4 of 6 records o)
Name: [Sentient Fruit™] | | m—
llddress:]l’ll BOR 13362 I
City: [Tucson]
Slate:lnz | (> Neut» |
s
Prone¥[]
Dept: @ Programming

O Marketing

O office Help

8 Introduction

SimpleBase

SimpleBase

To provide a reference point for explanations, I wanted an example program
that would draw on a host of Macintosh features, as well as using Toolbox
commands and resources. What I came up with is SimpleBase, a small
database program that a business might use to track employee information.

As I said, it's simple, so I won’t be going into how to calculate employee
benefits or taxes, but I will examine all of the common Macintosh features
we’ve all come to know and love. Things like menus, windows, buttons, scroll
bars, alerts, printing and much more will be examined in depth. Each will be
introduced as it is required by the program along with copious explanations
along the way.

I've also attempted to throw in just about every technique, shortcut, or
obscure bit of knowledge I've acquired through years of programming the
Mac - information I would have killed for when I first began. Most of these
never appeared in any programming book, but were discovered after lots of
sweating, cursing, rebooting, and in conversations with fellow programmers.
Of course, pure inspiration also played a big role.

Theme of Things

With all this explaining to do, I decided I needed a nifty theme to run through
the book, one that really ties everything together and keeps people interested.
I chose to use an exercise theme as my guide, since it seemed to fit both the
style of this book as well as my current workout regiment. Thus each chapter
is divided into the following four sections: ‘

Warm-up

Each chapter starts by telling you what the chapter offers. It's followed by a
few terminology definitions, explanations of various common programming
tasks relevant to the chapter topic, as well as numerous step-by-step program
examples, insightful illustrations, and lots of straight talk about why you
should adhere to Apple’s interface standard. You'll get your feet wet on some
~ fundamental Macintosh programming ideas, but the water will never rise over
your ears.

Introduction 9

Regular Exercise

Regular Exercise

This section is where we'll actually develop the program code for the
SimpleBase application. I'll walk you step-by-step through the various
routines explaining their purpose, as well as showing you their development
from initial concept to final implementation.

Each chapter in the project has one or more files on disk that show exactly
how each program step progressed. Print them out, pull up a lounge chair
under your favorite shady tree, sip some ice tea (no sugar please), and
examine them as you read each chapter in order to better understand the
project.

Peak Performance

This is where we pull out all the stops. You may want to skip this section the
first time through as it is more complex and isn’t always relevant to the
chapter topic. However, once you've completed the project, come back and
browse through it for advanced tips and programming techniques that you
can use to modify SimpleBase or your other programs.

Cooldown

Finally, we wrap up all the concepts explained in the chapter into a neat little
bundle. This will emphasize the chapter’s main points, and point out a few
key concepts you should remember.

Where Should I Start?

Like they always say, “an application of 10,000 lines begins with one
keyword,” or something like that. That's exactly how you should approach
this book - one step at a time.

Never Programmed Before?

If you don’t already have it, call Zedcor at 602.881.8101 and order their
“Programming the Macintosh with FutureBASIC” manual. This interactive
manual takes you from programming ground zero all the way to handling
simple Macintosh features. A good place to start if you haven’t done any
BASIC programming before.

Head down to your local library and pick up a few programming books that
explain BASIC programming concepts. Explore the possibilities in those
books until you feel comfortable with loops, data types, and structured
programming concepts.

10

Introduction

If You've Programmed BASIC Before

Note that most of these books are not geared to programming the Macintosh,
but are aimed instead at other computers. Believe me, they’re still useful.
You'll probably have to fiddle with some syntax differences, but with a few
changes, many of their exercises will run just fine.

When you feel ready, start at the “Program Design” chapter, concentrate on
the Warm-up section to get the main concepts behind each chapter. Then, go
through the Regular Exercise section carefully as we create the SimpleBase
project, making sure you understand each step before going on to the next.

When you've finished the project, use the same techniques explored here to
create your own program. Say to yourself, “Okay, for my program I need to
add...”, and then review the appropriate chapter to add a particular program
feature. Finally, go back and read the Peak Performance sections to learn
even more.

If You've Programmed BASIC Before

Read through the Warm-up sections to get the main concepts for the chapter,
then read the Regular Exercise section and create the SimpleBase project. Go
back after you've finished the project and reread the Peak Performance
sections for additional programming knowledge you may find useful in other
projects.

References

If you don’t know it already, I'll tell you now: you can’t program in a vacuum.
Programming the Macintosh requires knowledge of the entire Macintosh,
from interface to the nitty-gritty of byte passing. Here are some references I
have found very useful, both in writing this book, and in my daily
programming endeavors.

Inside Macintosh, 2nd Edition

The absolute best reference work for programming the Macintosh is Apple’s
own Inside Macintosh series. Even as I write this, the second edition series is
almost completely published. The 18 volumes replacing the original six have
expanded both in size and depth of explanation. If it’s about programming the
Macintosh, you'll find it there.

If you do any type of commercial or consultant programming, you shouldn’t
be without any of them. If you're a weekend programmer, I urge you to get the
volumes that most interest you. In either case, you won't be sorry.

Introduction 11

Macintosh Revealed

Macintosh Revealed

The second reference work I highly recommend is the Macintosh Revealed
series by Stephen Chernicoff. While all of his examples are written in MPW
Pascal, the explanations are clear, and the progression from feature to feature
is interesting and concise. If you can't get all of the Inside Macintosh series,
try this four book set for an abbreviated reference work.

Inside Basic

Of course, for the most up-to-date information on FutureBASIC and how you
can make it work, read Inside Basic magazine from Ariel Publishing. Each
monthly issue contains several articles that provide numerous hints, tips,
explanations, and answers to common FutureBASIC programming questions.

America Online

For daily conversation with hundreds of FutureBASIC users, you can’t beat
the forums on America Online. Both Zedcor (keyword: ZEDCOR) and Ariel
(keyword: ARIEL) provide FutureBASIC support areas where you can ask for
and receive help, usually in hours. If you've got a modem, get signed up and
join the fun, you won't be disappointed.

Internet

There is also a list on the Internet where FutureBASIC owners can keep in
touch and up to date. The addresses to become part of the list include:

Add name: futurebasic.list-request@statistik.tu-muenchen.de
Send message: futurebasic.list@statistik.tu-muenchen.de

List owner: futurebasic.list-owner@statistik.tu-muenchen.de

Sentient Fruit
Finally, you can contact us here at:

Sentient Fruit
P.O. Box 13362
Tucson, AZ 85732-3362

Or contact us online at:
America Online; TUROVICH

Internet: turovich@aol .com

12

Introduction

Typographical Info

Conventions

The following is a list of formatting and presentation conventions used
throughout this book.

Typographical Info

Program listings and examples, as well as routine and variable names, all
appear in Courier, Small program examples will appear in-line with the main
body text like this:

PRINT%(10,10) tmp$

Larger examples will appear offset from the main text and be referenced using
the PROGRAM identifier.

FutureBASIC keywords appear in the text as uppercase Courier font like this:
WINDOW (_efNum).

Toolbox keywords in the text appear in mixed case Courier like this:
SetRect.

Menu titles, item names, and buttons always appear in Chicago.

Program names appear as italic.

Key terms and concepts are always shown in boldface the first time they
appear, like this: keyword.

Since we will use LOCAL FNs for all of our programming examples they will be
referred to collectively as functions, routines, and subroutines for variety.

Occasionally, a program line will extend past the right of the page and onto
the next line. Such lines are marked with a “-~” symbol to indicate this
continuation.

Notes that explain a particularly obscure point will appear within the body
text as smaller, offset type, preceded by a small dividing line. Read them for
additional background material.

* A note explains something not totally relevant to the main discussion, but
interesting just the same.

The entire SimpleBase program appears in the Appendix.

A bibliography of related books and magazines has also been provided in the
back of the book.

Introduction 13

Typographical Info

Let’s Get Started...

Now that we've gone through all the uninteresting, but necessary, preliminary

information, let’s begin learning how to program the Macintosh using
FutureBASIC.

14 Introduction

CHAPTER 2

Program Design

Warm-up

This chapter introduces structured programming, Along the way we’ll learn:
¢ Top-down design methodology,

¢+ Stepwise refinement techniques,

¢ The only three control blocks you'll ever need, and

¢ How to organize your program layout.

Additionally, we'll describe design methods that make writing programs:
e easier to write correctly the first time (fewer nasty bugs),

e easier to read (self-documenting),

e easier to modify, and

e easier to take apart and re-use.

This type of program is much easier to work with than those created by
people who fail to understand or practice these methods.

At the moment, this may seem boring or a bit overwhelming., However, as you
grow in programming experience, you'll realize that the early application of
these programming techniques will pay back dividends in increased
productivity, more error-free programs, and more re-usable code.

Program Design 18

Programs

Programs

A program is a sequence of instructions that describe how the computer is to
perform a defined task or goal. It doesn’'t matter what the task or goal is since
a computer doesn’t know, doesn’t care, and couldn’t be bothered with
anything but executing its instructions. A programmer is an individual that
writes the necessary step-by-step instructions that tell the computer how to
accomplish the task or achieve the desired goal.

Most programs have a major task or goal to accomplish. A word processor
program handles tasks related to writing. To accomplish this task, hundreds,
if not thousands of sub-tasks exist that enable the program to open a file, edit
it, and save or print out the updated file.

To accomplish all its various tasks, a program contains a hierarchy of
subroutines. A subroutine performs a specific task for the program. In the
word processing example, some subroutines allow the user to create a letter,
others allow the letter to be saved on disk, yet others allow the user to print
the letter.

By calling different subroutines in a particular order, the program can
perform all of those actions and more. Thus, a program consists of a series of
different subroutines, each of which perform a single act, linked together in a
specific order to perform a particular action. The programmer determines the
series of subroutines that will perform the task, writes the routines to
complete the task, calls them in the correct order, then tests them separately
and together to ensure that they accomplish the stated goal.

When writing a program, a programmer seldom gets it right the first time.
Errors in design, faults in logic, incorrect parameters, and many other
oversights all contribute to what are commonly called program bugs. Bugs
are the downside of the learning process. The process of finding and
eradicating program bugs is known as debugging.

16

Program Design

Top-Down Design

Top-Down Design

The method of program design used throughout this book is called top-down
design. Top-down design has the programmer think about the program in its
broadest design terms, then slowly refine the design step-by-step down to its
exact details.

Top-down design encourages programmers to think in abstract terms about
the actual goal or task the program is supposed to solve. Once a goal is
identified (i.e. printing a letter), sub-goals to print the letter are defined. The
letter must be open, it may have to be formatted, the printer must be readied,
the letter must be sent to the printer, and finally, everything cleaned up
afterward. All of these are sub-goals that must be accomplished successfully
in sequence to print the letter. Each sub-goal can be used to identify a
program subroutine. The subroutine must then be examined and its sub-
goals also determined. It's time to write code when no additional sub-goals
can be identified.

Along with top-down design, we’ll also use another technique known as
stepwise refinement. Stepwise refinement is based on the top-down design
model where a program goal is defined, then code is written that will achieve
the goal in greater and greater detail, hiding the details of implementation
until the very last routine.

Stepwise refinement allows us to test concepts of the design at each step
along the way using skeleton routines. Skeleton routines are subroutines
that do nothing, yet allow us to test for operational correctness at the level of
detail we are working on. Most will contain a single PRINT statement defining
its task, like “Print routine called” or something similar. By executing the code
at each step we assure ourselves that the routines on that level of refinement
operate correctly. Once we're satisfied that everything works properly, we
move down a level and begin filling in the details at that level.

Let’s look at the printing example. We start by defining the main task as a
subroutine in a LOCAL FN structure like this:

LOCAL FN PrintLetter
END FN

Program Design 17

Top-Down Design

Next, we refine the steps to actually print a letter using the sub-goals
previously mentioned. The print routine now reads like this:
LOCAL FN PrintLetter

FN OpenLetter

FN EnsurePrinterIsReady

FN FormatLetter

FN SendLetterToPrinter

FN FinishLetter
END FN
Each sub-goal has its own subroutine. The details of opening, formatting, and
printing a letter are hidden in the various subroutines as shown in Figure 3.
This hiding of details allows us to concentrate on the goal, and not be
distracted by details. However, once this routine is defined, its time to delve
into the various subroutines one at a time and implement their tasks. Each of
these subroutines can also call other, even lower level subroutines to
accomplish their individual tasks.

Note that we can test the PrintLetter subroutine at any time to ensure that
it works correctly. Once the OpenLetter function works, we can implement
the EnsurePrinterIsReady function. Each function is independent of the
others. This allows us to test them individually and, when all are complete,
test them together to assure ourselves that they work properly.

The use of these techniques offers several benefits including;

+ At each stage of the top-down process you're concerned with the details
of how the program operates only at that level. Once you're satisfied that
it operates correctly, you move down a step and refine the next level.
Repeat until all details of the design have been fleshed out completely.

FIGURE 2. Major goal with sub-goals.

[— FN OpenLetter —>
—» FN EnsurePrinterlsReady [
Sub- - _|] — FN FormatLetter —
goals
—1 FN SendLetterToPrinter —
| —>{ PN FinishLetter —>
Major _ «——] FN PrintLetter -—
goal I .

18

Program Design

Greet User by Name Example

» This technique of chunking the program into smaller, more easily
managed sections enables you to ignore the other portions of the
program until required. A large program is simply several smaller
programs linked together, not a large single set of program instructions.

By now, some of you are probably thinking this is a total waste of time. “Why?
I could go in and code something up in no time at all,” you're thinking, “Why
worry about levels and steps?”

Well, that may be true for small programs of 100-200 lines. But, when it
comes time to code a far larger program, say 5000 to 20,000 (or even more)
lines of code, this attention to design, implementation, and detail at the upper
levels will greatly improve your ability to complete the project faster and with
fewer bugs. ’

Greet User by Name Example

Eventually, after all your top-down design work, it comes time to begin
writing the code to accomplish the stated goal. One way to think about
implementing this code is in pseudocode format. Pseudocode is simply a
series of statements that describe the actions the subroutine will perform in
English, or whatever language you use daily. For example, the pseudocode for
our program is shown in Program 1.

PROGRAM1. Sample program pseudocode.

. ask for user last name

. ask for user first name

. combine the names with a salutation
. show the result to the user

[T S S

Note that there are no FB keywords included in this pseudocode example.
We'll do that later. For now, it's important to see how to describe to ourselves
what the computer should do. This allows us to focus on the program steps
required to tell the computer how to perform the task.

e Note that the line numbers are merely used to reference a particular line in the
text. They will not be used in the final program at all.

Converting this pseudocode to FB keywords is pretty easy to do. Asking for
the user’s last and first names in lines 1 and 2 tells us to use a statement that
providesforsuchuserinteraction. In this case, the INPUT statement will serve
handily. We combine the two string entries in line 3, then display the final
result using a PRINT statement. Program 2 shows how we converted the
pseudocode into source code with keywords that achieve the desired task.

Program Design 19

Why ask Why?

PROGRAM 2. Sample code first translation.

INPUT "What is your last name? *;lastName$

INPUT "What is your first name? ";firstName$
salutation$ = "Hello, "+firstName$+® “"+lastName$+"."
PRINT salutation$

As you can see from this example, it's entirely possible to translate
pseudocode directly into statements that accomplish a stated program goal.
This was an extremely simple program, yet it displays the same
characteristics of a large program. Any task can be broken down into
individual pseudocode steps that can themselves be translated into FB
commands. Later, as we develop SimpleBase you’'ll see how a single line of
pseudocode can lead to multiple subroutines.

Why ask Why?
Good top-down design will enable you to design and write programs faster

and with less chance of error. Because you test at each level of the design
process using skeleton routines, errors are kept to a minimum.

The steps involved in good top-down designing are:

» Begin with a simple main idea. Write in pseudocode the major tasks to
accomplish.

« Translate each step into detailed pseudocode that resembles one or more
BASIC statements.

» Write skeleton routines to test your design at each step of the process.

+ Fill in subroutine details as required. If more subroutines are required,
repeat the above steps for each level.

» When the program is working correctly, implement any additional
improvements as desired.

20

Program Design

Why ask Why?

Control Structures

Earlier we mentioned that a program consists of many individual subroutines
linked together to perform an action. If the programmer could write those
instructions as a series of linear statements, (i.e. one line right after another
in sequence) programming would be extremely easy to do. However, a linear
program is nearly useless. It can’t branch to another subroutine, it can’t loop
upon itself, and it can’t handle the real life problems it’'s supposed to solve.

Since a program consists of simple statements like PRINT, GOSUB, and INKEYS,
where do programming problems come from? Each statement is simple to
understand, yet when combined with others they can quickly achieve great
complexity. Even the short example shown in Program 3 demonstrates how a
few lines of code can cause confusion in a program.

PROGRAM3. Complex statement example.

"Start"

INPUT “Do you want instructions? *;answer$
IF answer$ = "YES®" THEN GOTO "Instructions"”
IF answer$ = "NO" THEN GOTO “Program"
PRINT "Please enter YES or NO only."

GOTO “Start"

*Program"

GOTO "Main Program"

"Instructions"

PRINT "Here'’s your instructions..”

PRINT *".."

“Main Program"

and so on..

Do you understand what Program 3 is trying to do? You probably had to
study it awhile to be entirely sure. Its goal is to find out if the user wishes to
view the program instructions, and then display or skip them at the user
response. If it’s anything but YES or NO, the loop repeats. Pretty
straightforward and easy to follow, not!

A count of branches show that there are four input points (the subroutine
labels) and four exit points (the four GOTO statements) in this 12 line program.
Each branch implies a different point of entry and exit. The difficulty comes in
trying to understand which branch occurs and under what conditions. A
diagram of these various jumps looks something like the spaghetti shown in
Figure 3.

Program Design 21

Linear Programs

FIGURE 3. Diagram of confusing code.

" " How even simple looking
ﬁi}ﬁ:————-" code can go bad using
‘ improper programming
techniques.
GOTO

i ?
GOTO Is this how you program?

"Program"

GO

i

"Instructions" (e

"Main Program"

Can you follow it? You probably had to trace through the code several times to
figure out where all the branches were taking you and under what conditions.
If this much confusion can creep into only a dozen lines of code, imagine this
type of decision making over hundreds or thousands of program lines.

With this type of branching, could you ever be absolutely sure that it works
correctly under all conditions? Would you want to debug or try to maintain
this type of code? Probably not. So let’s examine a way to avoid this kind of
confusion.

Linear Programs

There is a solution: make every program a linear program. But wait, we've
already said that’s not possible. Well, sure it is, if we bend the rules slightly.
Instead of treating each statement separately, let’s treat them as a larger
block of statements. These block statements can be combined into a linear
program even though the individual statements contained within them aren’t
linear at all.

Linearity is now imposed upon the block statements. Each block must
completely finish executing all of its individual statements before another
block can execute. So when a block is called, entry is always at the top of the
block and exit is always at the end. This form of block is often called a one-
in/one-out block. Any jumps out of the block must return to that block in
order to uphold this one-in/one-out sequence.

22

Program Design

Action Blocks

» In this we follow the Pascal convention. Pascal doesn’t allow one to exit any
structure from the middle, while C doesn’t care where one exits. It’s akin to the old
GOTO statement which originally led to the spaghetti code syndrome of illogical

Jjumps and unreadable programs.

We'll enforce the one-in/one-out block structures in SimpleBase by using
LOCAL FNs to define every subroutine in the program. If you're used to a more
free-wheeling programming style this method may seem a bit restrictive at
first. “Only one entry and exit point? It'll never work,” you say. Believe me,
after using it awhile and seeing how it simplifies your programming task, it'll
soon become second nature and you’ll never go back.

o The latest version of FutureBASIC includes an EXIT FN statement to satisfy those
people who thrive on confusion in their code. We won’t use it here and I don’t
recommend that you use it either.

Okay, now that we understand the linear programming method, let’s look at
three types of control blocks that will help us to achieve a linear programming

style.

Action Blocks

The most rudimentary control structure is the action block. It's easy to
overlook because the action block is simply a sequence of action statements.

Identifying an action block is easy: it can contain no IF, GOTO, GOSUB, or FN
calls or other control statements that might cause a jump outside of the
block. An action block might look like the example shown in Program 4.

This series of statements direct text output to a printer and then returns it to
the screen. It contains no branching or alternate actions; it is a perfect action
block example. '

FIGURE 4. Action block structure.

Entry Point: | LOCAL FN Action block - a straight
series of action statements
sum% =2*2 that contain no FN, GOTO,
PRINT sum% GOSUB, or IF statements.

Exit point: END FN

Program Design 23

Loop Blocks

PROGRAM4. Action block example.

LOCAL FN PrintSomething
ROUTE _toPrinter
PRINT "Hello there!"
PRINT "What a wonderful day it is."
ROUTE _toScreen
END FN

Loop Blocks

The next control block structure is called a loop block. As you might suspect,
it is used to repeat a specific action several times. Loop blocks are always
entered at the top of the control structure and exited at the ending control
structure when the exit condition becomes true. This is graphically shown in
Figure 5. There are several types of loop structures available including FOR/
NEXT, WHILE/WEND, and DO/UNTIL. The example in Program 5 demonstrates a
standard loop block construction.

FIGURE 5. Loop block structure.

Entry Point: | LOCAL FN Loop block - a loop
structure that continuously

Z DO executes until the exit
UNTIL exitCondition condition is true.

Exit point: END FN

Just because it’s a loop block doesn’t mean you can’'t branch out of the loop.
The key is to always return to the loop and then exit. FN and GOSUB
statements work perfectly for this since they automatically return to the line
following their call. Never use the uncontrolled GOTO to exit aloop block. It’s
not only bad practice, but causes more problems than it’s worth.

* Many people believe they should be allowed to exit in the middle of a loop
structure, a la C. But the one-in/one-out rule must hold for loops also.

PROGRAMS. Loop block example

count = 0

DO
PRINT "I now equal = ";count
INC (count)

UNTIL count > 100

24 Program Design

Branch Blocks

FIGURE 6. A branch block structure.

Entry Point: | LOCAL FN Branch block -
perform one set of
LONG IF testCondition statements if the test
>> statements for true condition condition is true,
XELSE another set if the

P >> statements for false condition condition is false.
END IF testCondition .

Exit point: END FN

Branch Blocks

Programs would be worthless if they performed identically from one run to
another. Branch blocks allow programs to execute different code depending
on the condition of one or more variables.

Branch blocks direct program control to other portions of the program. This is
graphically illustrated in Figure 6. Once we've entered a branching block at
its entry point, we must exit at its end, never in the middle. There are several
branching structures available including IF/ELSE, LONG IF/XELSE/END IF,
and SELECT/END SELECT. A good example of a branching block is shown in
Program 6.

PROGRAMS6. Branch block example.

LOCAL FN GoSomeWhere (direction)
LONG IF direction
FN HandleTrueCondition
XELSE
FN HandleFalseCondition
END IF
END FN

Nesting Block Structures
In 1966, Boehm and Jacopini mathematically proved the following theorem:.

Any program logic, no matter how complex, can be resolved into
action blocks, loop blocks, and branch blocks.
If this seems a bit extreme, note that we can nest one block structure inside
another. Thus, the “do something” statements inside a loop or branch block
can consist of another action, loop, or branch block.

Program Design 25

Nesting Block Structures

This nesting of blocks ensures that our entire program follows the one-in/
one-out principle. Instead of a straight sequence of program statements, a
program will consist of a sequence of action, loop, and branch blocks.

Referring back to the ill-written “ask instructions” example in Program 3, we
can rewrite the code to take advantage of our new knowledge of the one-in/
one-out format using all three control block structures. The rewritten code
can be seen in Program 7 with some flow arrows pointing out the program
direction. When completely diagramed out as shown in Figure 7, we can see
that complexity has been reduced to a single loop branch until the user
responds correctly. '

The new code begins with an action block at “Start”, then immediately
switches to a loop block. While in the loop, we examine the condition of the
doneflag% variable to determine when to exit the loop. When doneFlag%
becomes true, a yes or no answer has been received, the loop completes and
the action block continues. Next, a decision block is used to check the status
of answers$. If answer$ = YES we display instructions, otherwise it skips the
entire “Instructions” subroutine. In either case, the actionblock continues
with the “Main Program”, and so on. As you can see, only one entry point
(“start”) and one exit point (the end of the program) exist in the program.

Don't you think this code is much easier to read and follow than the original?
There are no illogical jumps, no multiple entry or exit points. This lessening of
complexity makes writing large programs infinitely easier to design, write,
and debug.

PROGRAM 7. Improved complex statement example.

“"Start*
doneFlag% = _false
DO =%
INPUT "Do you want instructions? ";answer$
LONG IF answer$ = "YES" OR answer$ = “NO“—|
doneFlag% = _true -
- XELSE
PRINT “Please enter YES or NO only."
END IF
UNTIL doneFlag$

"Instructions"”
LONG IF answer$ = “YES"

PRINT “"Here are your ins.tructions..."<——I

PRINT “.."
Y =®=wi1F
26 Program Design

Header Section

FIGURE 7. Optimized instructions asking routine.

"Start" An optimized linear
program using action,
loop, and decision blocks.

LONG IF Wouldn't you like your

XELSE code to read like this?

END IF

"Instructions" |

LONG IF

END IF

“Main Program"

Program Layout

“A place for everything and everything in its place.” That’s the nature of our
program layout. It formats a program listing in a way that makes it easy to
find specific program features. It also makes it easier to navigate and change
portions of your program because like routines are grouped together. The
following are descriptions of the various sections used in creating
SimpleBase. A sample of this program layout can be found on disk as
00.SimpleBase.main.

Header Section

Use the Header section to define all the compiler directives for accessing
resource files, setting compiler options, defining output files, and anything
else that doesn’'t have a particular place. I usually have a header that looks
something like this:

RESOURCES “resource file.rsrc®", ®“APPL9999*

COMPILE 0, _strResource _macsBugLabels

OUTPUT FILE "my application name"®

RESOURCES specifies the resource file to use with the program, the program’s
final type (always APPL for applications) and creator (any 4-character
sequence not already in use). The COMPILE statement tells the runtime to
convert all the strings used in the program to STR# resources when the
program is built, as well as adding labels that the MacsBug debugger can

Program Design 27

Constants Section

display, should a program bug surface. Finally, I use the OUTPUT FILE
statement to specify a default filename for building the final application. It
prevents me from having to enter a name each time I build the program.

Constants Section

Here is where we define all of our program constants. Constants are integer
and long integer values represented by a name. Constants are identified by a
leading underscore character. When FB compiles the program, it replaces
each constant name with the actual value of the constant. You can update an
entire program by changing a single constant value.

There are three types of constant definitions used: FutureBASIC, user-
defined, and Macintosh constants. Let’s look at each type in turn.

FutureBASIC Constants

There are over 100 pre-defined FutureBASIC constants that provide
mnemonic support for FB statements and functions. A quick examination of
the FB Reference manual reveals that many statements and functions
already have common constant names associated with them. For example,
instead of remembering which number represents which button type, it's
easier to remember: _push, _checkBox, _radio, and _shadow.

Yes, it may seem a drag at the time to enter a window type of _doc instead of
the number 1. Why use four letters when I could type only one instead? Well,
months (if not years) later when you reread the source code, it's much easier
to understand which window type is built by name rather than by number.

User-defined Constants

User-defined constants are constants that you design for your own program.
They can represent any integer or long integer value you require. You define a
constant like this:

_myConstant = myValue

Where _myConstant is the constant name and myValue is the actual value.
Each constant must be defined on its own program line and must be unique
in the first 16 characters.

You will see in later chapters how we often create user-defined constants to
represent common values used throughout the SimpleBase program. This
usage helps to make the code almost self-documenting. For example, instead
of representing the main Data Entry window like this:

WINDOW #1, "DATA", (0,0)-(500,300)

Program Design

Macintosh Constants

We will instead write it as:
WINDOW #_dbEntryWIND, “DATA", (0,0)-(500,300)

Now, just a glance at the line will tell us which window it’s creating. No more
guessing. This also makes it much easier to read decision making code like
this:
LONG IF wndID$ = _dbEntryWIND

* do something useful
END IF
While you might remember the window number while working week after
week on your killer mega-program, several months after you finish, it will
read like total gibberish as you struggle to remember which value represents
which window.

Macintosh Constants

In addition to FB constants, there are literally thousands of other predefined
constants available for use. There are constants defined in the Inside
Macintosh volumes (called equates), which the Toolbox managers like
Window, Text Edit, and Dialog manager, as well as thousands more use all
the time.

With these definitions, we can use them too. For example, four of the
constants associated with a rectangle record are: _top, _left, _bottom, and
_right.

Globals Section

The Globals section of a program contains all variable definitions determined
to be global in nature. That means that all subroutines and functions
(including LOCAL FNs) have access to their values without explicitly passing
them as parameters.

Globals are normally kept in one or more global files, separate from the main
program. They are called by the main program using the GLOBALS statement
with the file name. This separation of global settings from the main file allows
other files, namely include files, to also make use of the same global
definitions.

Global variables should be kept to a minimum. Doing so reduces the chances
for variable conflicts, and promotes portable code since self-contained
subroutines are easily copied to other programs and can operate without
modification.

Program Design 29

Functions Section

Functions Section

The Functions section of a program contains all of the subroutines required
to execute the program.

Functions can also be contained in files external to the main source file.
These external files are called include files. We'll see in later chapters how
you can write common routines once and put them in an include file for use
by many different programs.

Main Loop Section

The Main Loop section is where all event handling takes place. Only a single
one of these is allowed in a Macintosh program. Other BASICs promoted the
bad practice of multiple event handling loops in their examples. This is not
correct, nor an encouraged practice in a Macintosh program. All events are
captured in a single event loop, then directed to subroutines designed to
handle the event.

As we'll see later, the Macintosh operating system sends a program messages.
The Main Loop section is where the program receives those messages and
directs each of them to the appropriate subroutine.

30

Program Design

Main Loop Section

- SimpleBase Notes

When entering the SimpleBase program it’s important to keep in mind a few
rules:

A function must be defined before it can be called in a subroutine.
Example: FN One must be defined before FN Two can call it.

LOCAL FN One <-- defined before FN B
END FN

LOCAL FN Two
FN One
END FN

A function does not have to return a value. It can act as an action block
and just do something.

You can’t have two functions with identical names. Always enter the
example code into the specified subroutine. Some subroutines undergo
massive changes during program development so be careful when
appending new code to an already created subroutine.

Learning FutureBASIC: Macintosh BASIC Power assumes you are using
the default preference settings FB shipped with. If you are using the
“Programming the Macintosh with FutureBASIC” workbook, reset your
preferences back to the default before continuing with this book.

As we create SimpleBase, all of the interim files can be found on disk. To
see exactly how the program was built for a particular chapter, just go to
the folder with the chapter’s name. Inside are all of the source code files,
numbered sequentially, to illustrate the order in which subroutines were
added or updated.

If you create the program along with the book, note that you will
normally create an initial subroutine, then add additional code to it as
we continue to develop SimpleBase. Do not simple create a new
subroutine with an identical name.

The complete SimpleBase program is contained in the Appendix at the back of
this book. Use it as a reference to locate subroutines in your version of
SimpleBase while following through this book.

Program Design

31

Main Loop Section

Cooldown

Whew! That was a lot of information for a beginning chapter. Along the way
we learned about structured programming techniques called top-down design
and stepwise refinement. We also saw the importance of using these
techniques to help us design and write programs faster, with less bugs, and
which are much easier to maintain.

We also talked about the three control block structures that help us write
linear programs. We saw how we can use action, loop, and branch blocks to
control program flow in a one-in/one-out sequence that makes for cleaner
program designs. We also saw how we can nest these into a linear design that
made it easy to follow a program’s logic.

Finally, we talked about the layout of programs and described the various
program sections we use to create the SimpleBase project.

Now we're ready to begin with our program, so let’s get started.

32

- Program Design

CHAPTER 3

Events

Warm-up

This chapter introduces events, the single most fundamental topic to
understanding how to program the Macintosh. This topic is so pervasive that
one chapter can't hold it all and will be distributed out over the entire book as
required. In this chapter you will learn:

¢ What events are,
¢ The types of events, and
¢ How to program for events.

Once you've mastered this topic, you'll be well on your way to becoming a
successful Macintosh programmer.

What are Events?

Events are messages from the Macintosh operating system to a program.
Events inform programs that the user has selected a menu item, clicked the
mouse, pressed a key, inserted a disk into a floppy drive, clicked a button, or
performed some other noteworthy action. Events from the operating system
tell an application to move to the background, come forward, refresh a
window, update, and other. Yet other events enable programs to communicate
with each other and transfer information between them.

Events are passed to the program via an event queue. The event queue is a
first-in, first-out buffer (FIFO) area where events are lined up one after
another as they are detected by the system. Up to 64 events can be in the

Events 33

Event Types

FIGURE 8. How events are generated.

This generates an

User presses a event that is seen by The program
button on the the operating system. It examines the event
screen. places the event into and responds.
the event queue for the
program.

queue at one time. When a new event is generated that cause the queue to
exceed 64, the oldest event is lost as the new event is placed in the queue.

Alright, why should you care about events?

On a Macintosh the user chooses how to interact with the program. A user
can select a menu item, click a button, enter text, move windows, draw
shapes, and perform a multitude of other tasks. All of these actions generate
events. And, when the program receives an event, it should respond
appropriately. In other words, a program waits until the user makes a choice,
then promptly executes the necessary subroutines required to fulfill the
request. The simple truth to successfully using events can be summed up by

saying:
Never anticipate an event!

When you anticipate an event, you are actually fighting against the very
nature of the Macintosh. While it's possible to write a program that doesn’t
use events, it won't be considered a real Macintosh program. It won’t behave
like one, and it certainly won't respond like a typical Macintosh program.

Event Types

Events are placed into the event queue in response to three activities: the
actions of a user, the operating system, and from other programs. These
events are grouped according to event types. Table 1 is a list of common event
types that a program can receive and respond to. Not all of them are required
or should be used in every program, but some of them, like DIALOG, MENU, and
MOUSE, are used in most programs.

34 Events

Event Types

TABLE 1. Event types

Name Event Description

A menu event is received whenever the user

M user selects a menu item from a program menu.

A dialog event can be generated by a user
pressing a key, clicking on a window, button,

DIALOG us:tr e/m picture, or edit field. System events include
Sy window refresh, resume and suspend, cursor
position, and many more.
A mouse event is received whenever the user
MOUSE user/ clicks the mouse within the contents of a program
system window. The click must not be in a button or
active edit field.
Received when the user presses the Command-
BREAK user Period keys down.
Received at a program-specified time interval.
TIMER system Intervals can be defined in terms of seconds or
ticks (1/60th of a second).
Called whenever a program window contains an
EDIT user active edit field and the user is entering
characters through the keyboard.
Generated during a print operation to halt
LPRINT user/ printing. The user can invoke it by pressing the
system Command-Period keys, or the print routine can

generate it by setting a Print Manager error value.

Generated whenever a math operation has

OVERFLOWS | system exceeded the limits of the variable type.

Generated whenever a program encounters a

STOP system STOP, END, or QUIT statement in program
execution.
Raw Macintosh events not filtered through
EVENT user/ FutureBASIC’s runtime package. Enables you to
system filter true Mac events before the runtime can
examine them.

Now that we know what event types we can expect to receive, how do we go
about handling them?

» In this book, we will only cover events that originate with the user or the operating
system.

Events 35

Programming for Events

Programming for Events

Fortunately, most of the details of handling events is taken care of by the FB
runtime. Reread the final event type: EVENT. This is the original raw
Macintosh event received by the FB runtime. All other event types should be
considered filtered events. This means the runtime has seen the event and
massaged it into an easy-to-use form for us.

For example, if the user clicks a button, the raw Mac event _mButDwnEvt is
translated by the runtime into a DIALOG event that returns a_btnClick type
and the btnID% of the button clicked on. All of the background processing
necessary to return that information is handled automatically by the runtime
package. Figure 9 graphically shows the process each raw event goes through

before the program can handle the event.

FIGURE 9. How events are handled.
EVENT Raw Macintosh events are sent along
the event queus to the program.
EVENT

The runtime examines the event

EVENT |<— and determines if the program can
deal with it. If a program can't deal
with a particular event, it's ignored.

If the program can deal with the event,

EVENT &= it's assigned an event type and passed
onto the programs event handling code
m + via HANDLEEVENT.
=~

 J Eﬂ@@ EVENT:DIALOG

Events must be handled as they are received, so it behooves us to have a
single point in the program that does nothing but watch for such events. A
quick glance back at our program layout shows just such a site, the
program’s Main Loop section. A single keyword is all that’s required to receive
events, HANDLEEVENTS.

When HANDLEEVENTS receives an event, it routes it to the appropriate
subroutine designed to handle the event. It does this continuously until the
program ends. A typical Mac program spends a large percentage of its time
simply waiting for events to arrive.

36

Events

Programming for Events

The pseudocode in Program 8 describes the entire event handling sequence in
plain English phrases. Its readability helps to clarify the actions required

whenever an event is detected.

PROGRAMS. Event handling pseudocode

Get event from system

Process event in appropriate subroutine

Repeat until program ends

Because of a lack of understanding on how events work, many people think
they have to grab events as they need them. A typical example is a program
that has a separate event loop for each window in the program. This method
of event handling is incorrect. By watching for a particular event at a specific
time and place, the programmer is ignoring other events that may arrive in
the meantime. This restricts the activity of the user, and can cause strange

side effects.

FIGURE 10.

Some of the —
greatest authors|] F
of the lasthun- | ——
dred years were —
renowned for Doyle
their...

‘ ——r:ummJghs

Some of the —
Robert A. Heiry | greatest authors|]
Isaac Asimov | [of the last hun- | ——
Ayn Rand dred years were —
Sir Arthur Conq |renowned for
Rex Stout 1;:;;
Edgar Rice Bu |
Some of the I—
greatest authors|]
of the last hun- —
dred years were —
renowned for
|their...
Eagar Mice sulTougrs |

Correct and incorrect event handling example.

The user needs to see
information in the back
window and moves the
front window to the right to
expose a larger portion of
the back window.

A standard event handling
program would have little
trouble receiving and
responding to the refresh
event by redrawing the
back window’s contents.

A program that handles
events as it needs them
could very well ignore the
refresh event and not
redraw the window’s
contents, leaving the user
frustrated, unable to
continue.

Events

87

Programming for Events

A good example is when a window based event loop watches only for button
events in that window. If the user moves the front window, as shown in
Figure 10, a refresh event is generated by the operating system, sent to the
event queue, received by the runtime, and reported to the program as a
_wndRefresh DIALOG event. But, since the program was only watching for
button events, the refresh event is ignored leaving the uncovered portion of
the window blank and the user very annoyed.

Another common problem relates to the same issue. The programmer
anticipates a specific event, most notably a _wndRefresh event, and so
proceeds to redraw a window’s contents before the refresh event is received.
What happens? The refresh event arrives, the runtime knows you must
redraw a portion of the window and kindly erases that portion for you in
anticipation of the redraw. In effect, this wipes out what you drew there
before the event and leaves it blank. The solution: never anticipate an event.
Wait until you receive the _wndRefresh event before refreshing a window.

So, the main points for handling events include:
« Create a single main event loop to receive events.

« Respond to a specific event only when it’s received (never anticipate the
event).

+ Respond quickly to the event, then return to the main loop to await the
next one.

Now that we know how a program should respond to events, let’s look at how
we might actually implement some event handling.

Regular Exercise

Let’s begin to create our database application that a business might use to
maintain an employee list. It won’t be entirely suitable in that regard, but it
will serve to illustrate one method of creating a full-featured Macintosh
application.

The first and most important section of our program is, of course, the Main
Loop. Since this portion of code must capture events repeatedly, we’ll use a
loop block structure. Looking at the program layout, we know to place the
loop block in the Main Loop section at the bottom of the program layout. Our
Main Loop code is shown in Program 9. ‘

The DO/UNTIL loop repeats until the global variable gQuit% becomes true.
This loop is where the program will spend 99% of its time waiting for the user

Events

Programming for Events

PROGRAMYO. Main Loop example.

' === MAIN LOOP —==-=-me e e e e e e e e e e e e
DO
HANDLEEVENTS
UNTIL gQuit%
END

to choose a menu, click a button, or enter text. The FB statement
HANDLEEVENTS is used to remove events from the event queue.

Each event is processed by the program’s event handlers. HANDLEEVENTS
identifies each event type and directs it to the appropriate event handling

routine. Events that a program doesn’t handle are ignored by HANDLEEVENTS A

Next, we have a global variable gQuit% (identified by the lowercase “g” as the
first letter) we define it in the Globals section of our program like this:

' ——= GLOBALS =====m == e e e e e

DIM gQuit$%

END GLOBALS

Whenever gQuit$ is set to true anywhere in the program (remember it's
globally available to all subroutines), and when control returns to the Main
Loop, the program will exit the DO/UNTIL loop block and end.

Look at the code as it stands in Program 10. It doesn’t look like much now,
but this small kernel of code is the framework around which we’ll construct
our entire program.

PROGRAM 10. Event handling loop.

' === HEADER —=====m = o mm oo oo
' ——— CONSTANTS —--—=====——=—mmmm e oo mmemmee
' === GLOBALS ======m=m oo o e e
DIM gQuit$
END GLOBALS
' === FUNCTIONS ---—===mmmm—mme—e e e
' mmm MAIN === mmm e o e e e
DO

HANDLEEVENTS
UNTIL gQuit%
END

1. An exception being BREAK events. If no Break handler routine is specified, any press of
the Command-period key combo will execute a STOP statement, ending the program.

Events 39

Handling Mouse Events

Now that we have some code, it’s always smart to test it before moving onto
the next section. Remember, the key to top-down programming and stepwise
refinement is the testing of code at every level of execution, making sure that
it works. Don’t wait until later. For our first test, select Run from the
Command menu. FB compiles the program in memory and then executes it.
At this point we certainly won’t see much, but we can test that we are
receiving events. To do this, just press the Command-period keys to stop the
program. If everything has gone well, you should be back into the FB editor
ready to continue.

Feel free to skip ahead to the Menu chapter. What follows is the first Peak
Performance section where some advanced event handling capabilities are
explained. Be sure to come back later after you've finished the entire book to
explore these features on your own.

Pealk Performance

Realistically, SimpleBase cannot make use of all the various event types
offered by FB. For instance, there is no place in the design of SimpleBase to
deal with mouse events. Since all of its activity deals with edit fields, buttons,
menus, and dialog events, there was nothing left over for the mouse.

To give you some experiences, let’s create a small program that will help you
understand how mouse events should be handled. Of course, we'll start with
the Main Loop, but we’ll also add the ON MOUSE FN statement to direct mouse
events to a mouse handler called HandleMouse. The program can be seen in
Program 10 (Mouse Events.main).

Handling Mouse Events

To remove a mouse event from the event queue, use the MOUSE (0) function.
This function will return whether the user clicked the mouse button once,
twice, or three times. Remember, a mouse event is only reported if the runtime
can’t assign the click to an active control, edit or picture field, or window title.
In most cases, the mouse event will always be either _clicklnDrag,
_click2nDrag, or _click3nDrag.We can convertitinto_clickl, _click2, or
_click3 by using ABS on the value returned by MOUSE (0).

» Due to the nature of FB’s mouse handling, you will probably never see a positive
msEvnt % value. That's because the runtime examines the state of the mouse
button when it executes the MOUSE (0) function, and due to the greater speed of
most machines, you will almost always receive a _clicklnDrag, _click2nDrag, O
_click3nDrag event.

Events

Handling Mouse Events

PROGRAM 11. Mouse handling program.

' === FUNCTIONS ===-m==m=mmm==———=—m—m—oo oo

LOCAL FN HandleMouse
DIM rect.8, msPt;0, msV%, msH%
msEvnt% = ABS(MOUSE (0))
msH% MOUSE (1)
nsvs MOUSE (2)
CALL SETRECT (rect, 100, 100, 200, 200)
LONG IF FN PTINRECT (msPt, rect)
SELECT msEvnt$%
CASE _clickl ‘show rect
CALL ERASERECT (rect)
CALL FRAMERECT (rect)

CASE _click2 'invert rect
CALL INVERTRECT (rect)

CASE _click3 ‘give rect a pattérn
PEN ,,,, RND(31)

CALL ERASERECT (rect)
CALL PAINTRECT (rect)

PEN ,,,, O
END SELECT
XELSE 'erase rect
CALL ERASERECT (rect)
END IF
END FN
' e MAIN —=—-—mmmmm e

WINDOW 1, "MOUSE Test" : TEXT 3, 9, , 0
ON MOUSE FN HandleMouse
DO
HANDLEEVENTS
UNTIL O
END

Once the event type is identitfied, examine the location of the mouse and
determine how the program should react. Play with the example and look at
how:

« asingle click selects a shape,

» adouble click inverts the shape,

« atriple click changes the pattern used to fill the shape,
« any click outside of the shape erases it.

Events 41

Handling Mouse Events

The key points to remember when dealing with mouse events:

« A mouse event is only generated when the mouse click doesn't occur in
an active window title, edit or picture field, or control.

» The event value of mouse clicks will nearly always be a negative value.
Use ABS to convert it into a positive value.

» Clicksarealwaysreported in sequence. In other words, a_clickl willbe
received before a _click2. If the user double-clicks, the program will
receive a _clickl event, followed by a _click2 event. It is up to your
program to determine what happens on each click.

Cooldown

This chapter has introduced you to events, the key to creating Macintosh
programs. In it, we saw how events generated by the user and the operating
system are retrieved, processed, and reported to the program, and the
importance of waiting for an event before responding. We also learned how
the HANDLEEVENTS statement allows us to deal with events by directing each
event type to subroutines designed to handle them. In later chapters we’ll
develop routines to handle specific events. In fact, the next chapter will show
you how to implement menus and handle menu events quickly and
efficiently.

42 Events

CHAPTER 4

Menus

Warm-up

This chapter introduces one of the most useful and popular features of the
Macintosh: menus. Along the way we'll learn:

¢ What menus are,

The different types of menus,

.

¢ Various menu features,

¢ How to create menus, and
¢

How to respond to menu events.

What are Menus?

Menus are interface elements that allow the user to view or choose from a list
of commands. They can appear in any of three different menu styles as shown
in Figure 11: pull-down, hierarchical, and pop-up.

Pull-down menus typically appear at the top of the Macintosh screen. They
are usually identified by a menu title, which can be a word or an icon. Pull-
down menus appear when their title is clicked on with the mouse. They
disappear when the mouse button is released.

Hierarchical menus appear as a sub-menu of a pull-down menu. They are
normally identified by a right-pointing arrow that appears at the right edge of

Menus 43

Menu Features

a menu item. Hierarchical menus appear when the user has selected a menu
item which contains a sub-menu. In all other aspects, they behave exactly the
same as pull-down menus.

Pop-up menus do not appear on the menu bar, but can appear anywhere on
the screen when the user clicks the mouse button in a predefined area. Pop-
ups are normally identified by a shadowed rectangle containing an item title

and a downward pointing arrow. Pop-up menus often have a title that resides
to the left of the pop-up itself.

FIGURE 11. The three menu types.

& File Edit Teut]m_ Font

' . Font b
Size
Style

Font

Chicago
Geneva
Monaco

| New %N
| Dpen 80 |
| Close 381U

Chicago
Size Geneva
Style Monaco

New York
Symbol

New York
Symbol

Quit %80
Pull-down Hierarchical Pop-up

For the SimpleBase program we will only deal with pull-down and
hierarchical menus. Actually we’ll only use pull-downs in our program, but
the techniques used for them apply to hierarchical menus, too. See the FB
Handbook for routines that implement pop-up menus.

Menu Features

Before we can begin using menus, examine Figure 12 and let’s identify some of
the common features found on various menus.

Pull-down menus are usually displayed on the menu bar. The menu bar is
the area at the top of the main screen where all available menu titles are
shown. A menu title is the text or icon that appears in the menu bar and
identifies a particular menu to the user.

When a menu title on the menu bar is clicked, a pull-down menu appears
containing a list of choices. Each choice is identified with an item title that
describes the action performed by choosing that item. Like a menu title, a
menu item can be a dividing line, or can consist of text, an icon, or both. A

Menus

Menu Features

FIGURE 12. Menu features.

Mark — v Asimov %A Key_board
Menu item — Heinlein 3H equivalent
Mystery)| Stout |— Hierarchical
Divider Hayle menu
Icon A Ayn Rand
Disabled
item

dividing line is an inactive menu item used to separate distinct groupings of
menu items.

The user typically uses the mouse to choose a particular item from a menu.
Keyboard support is also provided in the form of a keyboard equivalent. A
keyboard equivalent is a character associated with a particular menu item.
By pressing the command (88) and character key simultaneously on the
keyboard, the user can invoke the menu item.

Menus can also contain marks and icons. A mark is a character used to
indicate a selection in a group of choices, or to indicate the active or inactive
states of a particular menu item. Normally, the item mark is a checkmark
character, but it can be anything. An icon is an image that represents an
object, concept, or message.

A menu title or item can also have two states: enabled or disabled. An active
menu item can be chosen with the mouse or command key equivalent. A
disabled menu item is grayed out and can’t be selected by either of these
methods. When an entire menu is disabled, its title in the menu bar is grayed
out.

A menu ID is a unique numerical value assigned by the programmer that
identifies the menu to the program. An item ID uniquely identifies the menu
items for a particular menu. It is also assigned by the programmer to identify
the menu item for that menu’s item list.

For example, in Figure 13, the Authors menu has been assigned a menu ID
of 20 by the programmer when the menu was created (we’ll see how to do that
later). The menu title itself is assigned an item ID of zero, the Asimob item

has an item ID of one, Heinlein is two, and so on. To respond to a selection of

Menus 45

Creating Menus

FIGURE 13. Identifying menus and menu items.

menulD% = 20 m___

itemID% = 1 Asimov %A
itemliD% = 2 Heinlein %H

itemID% = 3 J'—" menulD% = 31
itemlD% = 4 Mystery p| Stout itemID% = 1
itemiD% =5 Hayle itemID% = 2

itemiD% =6 || A | Ayn Rand

the AYn Rand item, the program needs to receive an event that contains a
menu ID of 20 and an item ID of 6.

Okay, now that we've described the various features of menus, it’s time to
learn how to create some of our own.

Creating Menus

There are two ways of creating menus in FB. The first uses the MENU
statement to create program menus on the fly. The second requires some
setup in ResEdit where the menus are stored as MENU resources. This method
will be covered in the Peak Performance of this chapter.

The MENU statement requires a minimum of four pieces of information: a
menu ID, an item ID, a menu state, and a string for the menu or menu item
title. A menu bar on a Mac Classic can comfortably hold 10 menu titles (as
long as they aren’t extremely long ones), and larger screens can hold more.
However, you should always strive to keep menus to a minimum so that all of
them will fit on the smallest screen available. Too many menus not only
confuses a user into thinking the program is overly complex or difﬁcult to
use, but also run the risk of exceeding menu bar space.

To create a new menu, assign it a menu ID, a zero for the item ID, a state
setting (in this case _enabled), and the menu’s title like this:

MENU 1, 0, _enabled, "File®

To append an item to the menu, just repeat the MENU statement with a
different item ID, state, and item title like this:

MENU 1, 1, _enabled, "New"
MENU 1, 2, _enabled, "Open"
MENU 1, 3, _disabled, "*-*

MENU 1, 4, _enabled, "Quit®"

46 Menus

The Apple Menu

Repeat with different menu IDs for as many menus as required by the
program.

The Apple Menu

The & menu is a special case when it comes to its menu ID. The ¢ menu
automatically supports the display and access to user desk accessories and
utilities (aliases, applications, etc.) available on the host system.

When the APPLE MENU statement is used, it creates an 6 menu that uses and
returns a menu ID of 255. If the menu is created with a MENU resource, it
uses and returns a menu ID of 127.

You can append more than one item under an § menu using a special
separator character (semi-colon) in the menu'’s title assignment like this:
APPLE MENU “About SimpleBase...;Help*

You should limit yourself to absolutely no more than three items underneath

the menu including: an about window, a help system (if needed), and one
more (if required by your program).

The Edit Menu

The second special menu is the Edit menu. The Edit menu provides support
for edit fields to cut, copy, paste, and clear text within a program. FB
normally assigns it a menu ID of 2. When created as a MENU resource, it
should also have a menu ID of 2. For more information on implementing
some custom cutting and pasting see the chapter “Edit Menus”.

Assigning Command Keys
You assign a command key to a menu item by inserting the “/” character at
the beginning or the end of an item title. The first character after the “/” will

be inserted as the command key. For example, either of these two forms will
assign the “Q” key to the Quit item of our File menu:

MENU _mFile, _iQuit, _enable, "/QQuit"
or
MENU _mFile, _iQuit, _enable, ®"Quit/Q"

Once a command key is assigned to a menu item, it can’t be changed using
the MENU statement. To do that, you'll need to use the Toolbox procedure
SetItemCmd.

Many programs have begun assigning modifier keys like Shift, Option, and
Control to menu items. These are not supported by Apple’s default menu

Menus 47

Assigning Icons

TABLE 2. MENU title styles.

Meta-character... Font Format...
B Bold

I Italic

(@) Outline

S Shadow

U Underline

definition and the means of implementing such keys is beyond the scope of
this book.

Assigning Icons
You can assign an icon to a menu item. However, doing so prevents the item

from having a command key associated with it. The icon displayed in a menu
item must have a resource ID that’s within the range of 257 to 512.

“ AN

You assign an icon to the item using the “~” character followed by the icon’s
ID number minus 256 in the item title. For example, to display icon #257,
use:

MENU 1, 1, _enabled, "~1New"

To assign icon #258 use:

MENU 1, 2, _enabled, "“~20pen"

Assigning Text Styles

It’s possible to provide each menu item with a unique text style using a meta-
character. A meta-character defines which style the item title will display.
This is done by embedding the “<” symbol in the title string followed
immediately by the style meta-character. The style settings can be seen in
Table 2.

For example, to create a bold faced menu item you would do this:

MENU 1, 1, _enabled, "<BNew®

However, in most situations, assigning any style other than plain to a menu
screams “amateur programmer”. If an item not part of a font’s Style or Size
menu, don't use a style. There may be a very good reason why a style should

be applied to a menu item, but in most cases you can get by without it. The
decision is yours.

48 Menus

Unhighlighting Menus

Unhighlighting Menus
When the user chooses a menu item, the menu title is automatically inverted,
or highlighted, to remind the user which menu was chosen. To unhighlight it,

use the MENU statement without any parameters. We’ll see how to do this once
we begin handling menu events later in the chapter.

Enabling & Disabling Menus

One of the most valuable features of menus is that they can guide the user
under any situation. They do this by restricting menu and item choices with
disabled menus and menu items. For example, if a document isn’t open, it
would be pointless to allow a user to Close, Save, or Print anon-existent file.

By disabling those menu items, the user knows that a file must be open
before the choices become available.

This type of user guidance is done using the MENU statement to change the
menu state. For example, to disable the Close item (item #3) on our File
menu, we can do this:

MENU menulID%, 3, _disable
and re-enable it using:
MENU menulD%, 3, _enable

We can also disable an entire menu using item number zero (the menu title)
like this:

MENU menulID%, 0, _disable
and re-enable it using:
MENU ménuID%, 0, _enable

Marking a Menu Item

You can show that an item is selected by displaying an item mark next to the
item title. The mark is usually a checkmark which can be added to the menu
by setting the menu item state to _checked like this:

MENU menulID%, itemID%, _checked
However, the mark can be any character you desire. To mark an item with a
non-standard character, set the state of the item to the AsC value of the

character to display. For example, to display a bullet (-) character you would
do this:

MENU menuID%, itemID%, ASC ("e")

To add a mark to an item that contains several item titles in a single string,
such as an ® menu, use the “I” symbol before the character like this:

Menus 49

Changing Item Titles

MENU menulD%, itemID%, _enable, "New Record;!eOpen;!esClose;Quit"
To remove a mark, reset the item state to _enable using:

MENU menuID%, itemID%, _enable

Changing Item Titles

It’s also possible to change a menu item’s title by assigning a new one to the
menu item. If the menu is already built, the runtime replaces the current title
with the new one. Still using the File menu example, we can modify the New
item by executing a line like this:

MENU menulID%, itemID%, _enable, “New Record"
And change it back to its original form using:
MENU menuID%, itemID%, _enable, “New"

We'll see how we can use this technique later, not only to create new employee
database files, but also to create new records once a file is open.

Deleting Menus

You normally don’t have to worry about removing menus built in your
program. The standard FB runtime takes care of that task for you whenever
the program ends. This is another benefit of using the FB runtime package.

Note that resource menus having IDs in the range of 1 to 31 are also
automatically deleted at the program end by the FB runtime.

Regular Exercise

Now that we understand what menus are, let’s begin adding them to our
program and learn how to respond to their selection.

Program Menus

Creating menus is a two step process. First, determine what menus the
program will need, then define them in syntax FB will understand. What
could be easier? Our goal is to create menus that appear just like those
shown in Figure 14,

Step One: Menu Constants

The first step to creating our menus is determining which ones the program
will need. Since SimpleBase will deal with files, we need a File menu, and of
course, it uses text, so an Edit menu is required. Additionally, we’ll want to be
able to move around and manipulate the various records in our database, so

Menus

Step One: Menu Constants

FIGURE14. SimpleBase menus.

i |

About SimpleBase... Undo... 82 Show First 81
Help... 8H Previous 82
Cut ®H Next 83
m Copy 8C Show Last 84
New ~ %N Paste)
Open... 30 Clear Find... %F
Close 8w Goto... 86
Select Al %A
Page Setup... Clear Record
Print... *P Copy Record %K
Paste Record
Quit 1]

a Records menu would be nice. Finally, we should always have an € menu
so users will have access to their desk accessories and system utilities.

The easiest place to define our menus is in the Constants section of the
program. By defining an equate for each menu and menu item, we begin the
process of creating self-documenting code. For example, it’s much easier to
read and understand a program line like this:

MENU _mfile, _iQuit, _enable

than something like this:

MENU 1, 10, 1

Who can remember what item #10 is, especially if six months have gone by

since you last worked on the source code? Make it easy on yourself, using
techniques like these will make your source code almost self-documenting,.

Looking at the menus again, we see that we need to create constants for our

four program menus: &, File, Edit, and Records. The # menu has already
been predefined with a constant (_appleMenu), so we only have to create the
others. For mnemonic ease, each menu constant is preceded by a lower case
“m”, while each item constant uses a lower case “i” as an identifier.

We define the menu constants like this:

_mFile =1
_mEdit = 2
mRecord = 3

Menus 51

Step One: Menu Constants

PROGRAM 12. Defining menu equates.

! === EQUATES =-=-=-ecemme e e e
' >>> APPLE MENU

_iAbout =1

_iHelp =2

' >>> FILE MENU

_mFile =1

_iNew =1

_iOpen =2

_iClose =3

_iPageSetup = 5

_iPrint =6
e
_iQuit =8
* >>> EDIT MENU
_mEdit =2
_iUndo =1
e
_icut =3
_iCopy =4
_iPaste =5
_iClear =6

_iCopyRec = 10
_iPasteRec = 11
' >>> RECORD MENU

_mRecord =3
_iFirstRec =1
_iPrevRec =2
_iNextRec =3
_iLastRec =4
_iFindRec =6
_iGotoRec =7
_iClearRec =9

52 Menus

Step Two: Menus

With our main menus decided upon, we can define their respective menu
items in the same way. The final list is shown in Program 12. Now that we
have the menu constants defined, it's time to add them to our program.

Step Two: Menus

When adding an entire program of menus, it’s always tempting to bundle the
entire creation process into the Initialize subroutine of the program.
Don’t do it. In the spirit of top-down design, you should always break each
routine down to its smallest parts, hiding the details until the very last
routine. With that idea, we'll add our menus to the Initialize routine with
one line of code as shown in Program 13.

PROGRAM 13. Adding menus to Initialize.

LOCAL FN Initialize
FN BuildMenus
END FN

You can see what this routine is doing for the Initialize routine, it's
building our program menus. Now, let’s add the function BuildMenus where
all of the dirty work is done. The entire BuildMenus routine can be seen in
Program 14.

We start by defining the 6 menu items using the APPLEMENU statement.
APPLEMENU accepts a string containing one or more item titles. Each item title
is separated by a semi-colon. In our case we’ll use two, one for the about
information item, and one for program help.

Next, the File menu provides all the commands required to handle
SimpleBase’s data files. We assign the standard New, Open, Close, Page
Setup, Print, and Quit menu items normally associated with the File menu.
Each allows us to perform actions on the database as a complete unit. You
may notice that there is no Save or Save RS... items. We handle saving
automatically, so users never have to worry about losing their data. We'll see
how we implement these features when we create some files.

The Edit menu is another special case menu handled by the FB runtime.
Here we create an entire Edit menu containing all the common editing items
like Undo, Cut, Copy, Paste, etc., then add three additional items for: Select
All, Copy Record, and Paste Record.

The final menu, Records, contains items related to moving around our
database file once it’s open. We have six items: Show First, Previous, Next,

Menus 53

Step Two: Menus

Show Last, Find..., and Goto.... In addition, we enable the user to erase
data with Clear Record.

You may have noticed the ellipsis (...) that appears on some menu items but
not others. By design, an ellipsis tells the user that selecting this item
requires additional information in order to complete the requested task.
Usually, a window appears asking for that information. For example, the Find
item uses the ellipsis in the title because it will ask for some search text from
the user.

Note that we can safely skip all blank menu items, or dividing lines, in our
menu definitions, since FB automatically fills them in for us.

That's all there is to building menus. If you run the program at this stage,
you'll see the menus, but they don’t respond like a menu should. We'll take
care of that now.

PROGRAM 14. BuildMenus routine.

LOCAL FN BuildMenus
APPLE MENU “About SimpleBase..;Help../H"

MENU _mFile, 0 , —enable , "File*®
MENU _mFile, _iNew , —enable , “New/N*
MENU _mFile, _iOpen . —enable , "Open../O"
MENU _mFile, _iClose , _disable, "Close/W*

MENU _nFile, _iPageSetup, _disable, “Page Setup..”
MENU _mFile, _iPrint , disable, °"Print../P*
MENU _mFile, _iQuit enable , "Quit/Q*
EDIT MENU _mEdit

MENU _mEdit, _iSelectall enable, "Select All/A®

1 -

MENU _nEdit, _iCopyRec , —enable, "Copy Record/K"
MENU _mEdit, _iPasteRec , _enable, " Paste Record*
MENU _mRecord, 0 , _disable, “Records"®
MENU _mRecord, _iFirstRec , _enable , “Show First/1*
MENU _mRecord, _iPrevRec , —enable , "Previous/2"
MENU _mRecord, _iNextRec , —enable , °“Next/3"
MENU _mRecord, _iLastRec , —enable , "Show Last/4"
MENU _mRecord, _iFindRec , —enable , "Find../F"
MENU _mRecord, _iGotoRec , —enable , "Goto../G*
MENU _mRecord, _iClearRec , _enable , "Clear Record*
END FN

84 Menus

Handling Menu Events

PROGRAM 15. Menu event handling pseudocode.

Get a menu event

Determine the correct menu and item ID numbers
Call the routine to handle the selected menu
The routine deals with the event

Return to look for the next event

Handling Menu Events

I'll bet you thought we would never get back to talking about events. They
haven't been forgotten, they were just set aside while we got our menus in
place and ready to go. So now let’s talk about menu events.

As mentioned in the chapter “Events”, every time a user chooses a menu
item, an event is generated. The Main Loop sees the raw event, translates it
into a menu event, then passes it onto the program’s menu event handling
routine. The pseudocode to handle menu events is shown in Program 15:

The activities described in this particular pseudocode example are spread
over several different subroutines in the program. Each decision that deals
with the event passes control to the next stage of the design. The Main Loop
gets the event. It calls the assigned menu handling routine which extracts the
menu ID and item ID from the event. The menu handling routine then calls
the subroutine designed to deal with the menu selection. The subroutine may
in turn call other subroutines to deal with the event. When finished, control
returns to the Main Loop to await the next event.

Remember that HANDLEEVENTS has the job of retrieving the event from the
event queue and handing it over to the program’s appropriate event handler.

But how does HANDLEEVENTS know which handler that is? Simple: we tell it
like this:

ON MENU FN MenuEventHandler

We add this line of code just prior to entering the Main Loop of the program.
All ON <event> FN statements are, in effect, a sign that points HANDLEEVENTS
to the function designed to deal with the event. In this case, it tells
HANDLEEVENTS to direct all menu events to the routine MenuEventHandler.
Once again, we bury the details of handling menu events in this subroutine.
The menu event handling subroutine is shown in Program 16.

There are two pieces of information the program requires from the event: the
menu and the item number, often referred to as the menu ID and item ID.

These two pieces of data are used to identify the menu selection made by the
user. The MENU function returns both values, placing them in appropriately

Menus 58

Handling Menu Events

PROGRAM16. Skeleton menu handling routine.

LOCAL FN MenuEventHandler

menulID% = MENU (_menulID)
itemID% = MENU (_itemID)
MENU

END FN

named variables called menuID% and itemID%. The final MENU statement
(without parameters) in the routine, unhighlights the chosen menu title. This
should occur after the menu handling subroutine has completed executing.

Okay, our program has received a menu event, and extracted the correct
menu and item values with the MENU function — what’s the next move? Well,
at this point of top-down design we hide the details in another subroutine, or
in this case, routines. In other words, we create a subroutine for each menu
in the program and call it when the correct menuID% appears. The best way to
call multiple items from a single value is to use the SELECT/END SELECT
structure. Program 17 shows what our complete menu handling function
looks like.

PROGRAM17. Enhanced menu handling routine.

LOCAL FN MenuEventHandler
menulID% = MENU (_menulID)
itemID% = MENU (_itemID)
SELECT menuID%
CASE _appleMenu : FN DoAppleMenu (itemID%)
CASE _mFile : FN DoFileMenu (itemID%)
CASE _mEdit : FN DoEditMenu (itemID%)
CASE _mRecord : FN DoRecordMenu (itemID$%)
END SELECT
MENU
END FN

Notice how the predefined menu constants make it easy to understand which
menu is called. Also note the descriptive routine names that leave little doubt
as to their defined task. Each subroutine handles its own menu items. We
make sure to pass the itemID% to them since each will need that information
to make their own internal decisions. Let's examine a couple of them to see
how they do that.

The first is DoAppleMenu which is shown in Program 18. Since it has to make
a choice of which item was selected, we pass it the itemID% as a parameter.

56 Menus

Handling Menu Events

We use another SELECT/END SELECT structure to call the final routines, the
ones which will actually execute the chosen menu task.

PROGRAM 18. Skeleton apple menu routine.

LOCAL FN DoAppleMenu (itemID$%)
SELECT itemID%
CASE _iAbout : FN ItemAbout
CASE _iHelp : FN ItemHelp
END SELECT
END FN

Since the % menu can also contain special items like desk accessories, or
with System 7, aliases, applications, and documents, you might think we
have some special processing to do. Wrong! We don't have to worry about that
at all since the FB runtime takes care of those details for us. We deal with the
menu items we specified with APPLE MENU. No muss, no fuss.

The next menu handler to examine is the File menu as shown in Program 19.
Again, we use SELECT/END SELECT to choose between all the possible values of
itemID% and call to the appropriate item handling routine. This same
technique is used for the Edit and Record menus.

PROGRAM 19. File menu routine.

LOCAL FN DoFileMenu (itemID%)
SELECT itemID%
CASE _iNew : FN ItemNew
CASE _iOpen : FN ItemOpen
CASE _iClose : FN ItemClose
CASE _iPageSetup : FN ItemPageSetup
CASE _iPrint : FN ItemPrint
CASE _iQuit : FN ItemQuit
END SELECT
MENU
END FN

Menus 87

Handling Menu Selections

PROGRAM20. Skeleton Print item routines

LOCAL FN ItemAbout
PRINT "About item"
END FN

LOCAL FN ItemHelp
PRINT "Help item"
END FN

Handling Menu Selections

At this time, it’s possible to add all of the individual item handlers for each
menu. Sometimes called skeleton routines, these functions are fully callable
but perform little or no actual work. Functionality will be added later as we
develop SimpleBase.

We can check to see that our menus work by adding a single BEEP or PRINT
statement into each one and testing it. For example, we can test the § menu
subroutines by adding PRINT statements as shown in Program 20.

If you run the program at this time, you can select either About Simple-
Base... or Help... from the # menu. If the program encounters no errors, the

correct skeleton message will appear in the program window when an item is
chosen from the § menu.

Not all of the routines have to be skeletons at this point. One in particular,
Quit, is quicklyimplemented. The Main Loops constantly checking the value
of gQuit%, so set gQuit$% to _true (i.e. to anything but zero) in order to exit
our program. We do that in the ItemQuit routine like this:
LOCAL FN ItemQuit

gQuit% = _true
END FN
Here, shown in all its beginning glory in Program 21, is the remainder of the
program (consisting mostly of skeleton routines) to handle all SimpleBase
menu items.

58

Menus

Handling Menu Selections

PROGRAM 21. Menu item handlers.

! APPLE MENU ITEM HANDLERS

LOCAL FN ItemAbout
END FN

LOCAL FN ItemHelp
END FN

LOCAL FN DoAppleMenu (itemID$%)
SELECT itemID%
CASE_iAbout : FN ItemAbout
CASE _iHelp : FN ItemHelp
END SELECT
END FN

! FILE MENU ITEM HANDLERS

LOCAL FN ItemNew
END FN

LOCAL FN ItemOpen
END FN

LOCAL FN ItemClose
END FN

LOCAL FN ItemPageSetup
END FN

LOCAL FN ItemPrint
END FN

LOCAL FN ItemQuit
gouit® = _true
END FN

LOCAL FN DoFileMenu (itemID%)
SELECT itemID%
CASE _iNew : FN ItemNew
CASE _iOpen : FN ItemOpen
CASE _iClose : FN ItemClose
CASE _iPageSetup : FN ItemPageSetup
CASE _iPrint : FN ItemPrint
CASE _iQuit : FN ItemQuit
END SELECT
END FN

continued on next page...

Menus

Handling Menu Selections

EDIT MENU ITEM HANDLERS

LOCAL FN ItemUndo
END FN

LOCAL FN ItemCut
END FN

LOCAL FN ItemCopy
END FN

LOCAL FN ItemPaste
END FN

LOCAL FN ItemClear
END FN

LOCAL FN ItemSelectAll
END FN

LOCAL FN ItemCopyRecord
END FN

LOCAL FN ItemPasteRecord
END FN

LOCAL FN DoEditMenu (itemID%)
SELECT itemID%
CASE _iUndo : FN ItemUndo
CASE _iCut : FN ItemCut
CASE _iCopy : FN ItemCopy
CASE _iPaste : FN ItemPaste
CASE _iSelectAll : FN ItemClear
CASE _iCopyRec : FN ItemCopyRecord
CASE _iPasteRec : FN ItemPasteRecord
END SELECT
END FN
! RECORD MENU ITEM HANDLERS

LOCAL FN ItemShowFirst
END FN

LOCAL FN ItemPrevRecord
END FN

LOCAL FN ItemNextRecord
END FN

LOCAL FN ItemLastRecord
END FN

continued on next page...

Menus

Resource Menus

LOCAL FN ItemLastRecord
END FN

LOCAL FN ItemFindRecord
END FN

LOCAL FN ItemGotoRecord
END FN

LOCAL FN ItemClearRecord
END FN

LOCAL FN DoRecordMenu (itemID%)
SELECT itemID%
CASE _iFirstRec : FN ItemFirstRecord
CASE _iPrevRec : FN ItemPrevRecord
CASE _iNextRec : FN ItemNextRecord
CASE _iLastRec : FN ItemLastRecord
CASE _iFindRec : FN ItemFindRecord
CASE _iGotoRec : FN ItemGotoRecord
CASE _iClearRec : FN ItemClearRecord
END SELECT
END FN

Peak Performance

If you haven’t done so already, please read the chapter “Resources” on using
ResEdit. If you are already familiar with ResEdit, welcome, you're about to
learn how to add resource menus to your programs.

Resource Menus

Adding menus as resources is almost easier than using the MENU statement.
Because &, File, and Edit menu tend to appear in every Mac program, you can
create them once and just copy them into each new project. Additionally, they
are much easier to change both during program development and after
compilation. Should you decide to change an item name, just drop into
ResEdit and make the change, no need to recompile.

Creating MENU Resources

We start by opening the file SimpleBase.rsrc. Next, choose Create New
Resource from the Resource menu and select the MENU type in the scrolling
list as shown in Figure 15. Click OK. ResEdit automatically creates a new

menu for you and opens the Menu editor shown in Figure 16. Here is where
you enter the menu items, add command keys, colors, and styles.

Menus 61

Creating MENU Resources

FIGURE 15. Select New Type dialog.

Select New Type

|4

On the lett of the editor you can see a small display of the current menu. As
items are added they will be appended to the list. On the right, enter the title
for the menu item as well as setting if it should be initially enabled. On the
bottom-right are selections for adding color to the various features of the
menu. On the menu bar itself is a real-time copy of your menu that you can
check out as you add items so you know exactly how it will appear.

Additionally, you can add hierarchical menus to menu items by choosing the
has Submenu checkbox and inserting a menu ID number. Since we don’t
need any hierarchical menus, we’ll just skip that feature for now.

While in the Menu Editor, choose Get Resource Info from the Resources
menu. The MENU information window shown in Figure 17 appears. Here you
can enter the menu ID used by your program to identify the menu. In the
case of the File menu, that ID is 1. I also like to enter the menu name for
easier identification later.

FIGURE 16. MENU resource editor.

E[J=——— MENU “File” ID = 1 from SimpleBase.rsrc ——=——=|
File | Selected Item: X Enabled
New 8N fQ
Open... %0 | || Tent: @
Close 8w
Save %8s O == (separator line)
Save fs...
Color
Page Setup...] has Submenu Text: [l
Print... 8P
Cmd-Key: m [:l
Quit 380 J
- Mark:[None |

62

Menus

Creating MENU Resources

FIGURE 17. MENU resource information.

[ECT== nfo for MENU 1 from SimpleBase.rsrc ==

Type: MENU Size: 118
o]
Name: |[File J
Owner type
Owner ID: I.DUHD“EFI.-' ﬁ
Sub 1D: MDEF [3)
Attributes:
O System Heap []Locked [Preload
[J Purgeable [JProtected []Compressed

e Warning, unlike other resources, never make a MENU resource purgeable. If you do,
the menu may get purged by the Memory manager when it needs space, and the
next time the user selects the menu a system error (-84) will result.

When you close the resource info window, ResEdit warns you of the menu ID
change with an alert. Just ignore its advice and click OK. Failure to change a
menu’s ID isn’t serious, you just won’t be able to use it in your program. It's
the menu ID number that the FB runtime uses to identify a menu selection. If
the File’s MENU resource has a menu ID of 128 and you expect to see 1 in your
event loop, it won’t happen. However, should you forget to change a menu ID
to match the resource ID, just go back into ResEdit, open the correct MENU
resource, then choose 6et Menu 1D from the MENU menu to get the dialog
shown in Figure 18.

FIGURE18. MENU ID dialog.

Please enter the Menu ID and
the resource ID of the MDEF to
be used below.

Menu ID:

-
o

MDEF 1D:

Menus 63

Create MBAR Resource

Do not change the MDEF ID in this dialog unless you know what you're doing.
This is the procedure code that tells the system which MDEF resource (Menu
DEFinition) to use when drawing the menu. MDEF 0 is the default pull-down
menu procedure. Unless you are using a custom MDEF to draw your menu,
never change this value.

Repeat the above steps for each menu resource required by the program. For
SimpleBase that is MENU resources for &, File, Edit, and Records. Make sure
that the menu ID for each menu matches the resource ID (and the menu
should be 127). Forgetting this will prevent FB from finding the correct menu
when a user selects it.

Create MBAR Resource

The next thing to do is add an MBAR resource with an ID of 127 to the resource
file. When FB sees this resource type in a program’s resource file, it
automatically loads it into memory, and then loads the MENU resources listed
in it. Voila, instant program menus with no code.

To create an MBAR resource, start by choosing Create New Resource from
the Resource menu. Enter or scroll to select MBAR from the list of file types
just as we did with the MENU resource. Click OK.

Second, highlight the MBAR resource and choose Get Resource Info from the
Resource menu. Enter the value 127 in the ID field and check the Purgeable

box as shown in Figure 19. Close the window by clicking the window’s close
box.

FIGURE 19.

Creating a MBAR resource.

[EC= Info for MBAR 127 from SimpleBase.rsrc ==

Type: MBAR Size: O
:
Name: |
Owner type
Owner 1D: ORUR [
Sub 10: e
ub 10 MDEF [J]
Attributes:
[JSystem Heap []Locked [J Preload
X Purgeable [CJProtected []Compressed

Menus

Create MBAR Resource

Next, enter the values of the MENU resources the MBAR resource will display on
the menu bar. Click on the asterisks shown in the MBAR editor in Figure 20.A
box will appear around them. Now choose Insert New Field to add a place
for a menu ID. Repeat until you have four spaces. Finally, enter your menu ID
numbers in the order they should appear on the menu bar.

FIGURE 20. MBAR resource editor.

ECJ=—— MBAR ID = 127 from SimpleBase.rsrc =i
ity

of menus 4

1] Aeskok ok

Menures ID |127

2] Hekeok ok

Menu res 1D

3] s skeok skoke

Menu res ID

4] Aok sk

Menu res 1D

J00E

5) Aok ok sk ok

=@l

Finally, save all your work and close the resources file. If it’s not already
present in your main file, add a RESOURCES statement to the Header section of
the file. Go to the Initialize subroutine and delete the call to BuildMenus.
Run the program. If no errors are present in the resource file, your menus will
appear and work just as before, with the exception that you didn’t use a
single line of code to add them to your program.

Menus 65

Create MBAR Resource

Cooldown

This chapter covered everything you need to know about menus including:
the three types of menus (pull-down, hierarchical, pop-up), and their
distinctive features. We looked at one method of creating menus for a
program that required us to first define the menu constants, then construct
the menus using the MENU statement. We then learned how to get menu
events, and recover the menuID% and itemID% so that we can respond to
specific user choices. Then, we looked at how to enable and disable menus
and menu items, and how to unhighlight a selected menu title.

Finally, we closed by showing how to convert a program’s menus into MENU
resources, how to create them using ResEdit, and how to implement them
using a MBAR resource.

We learned quite a bit in this chapter. At this point we have the barest
skeleton of an application, one that presents us with some menus but little
else. In the next chapter we'll look at another important interface feature, the
window.

(-]

Menus

CHAPTER 5

Windows

Warm-up

This chapter introduces you to another common interface component,
windows. In this chapter you will:

¢ Learn what windows are,
¢ Identify common window types,
¢ Identify window features, and

¢ Learn how to create windows.

What are Windows?

A window is a specified area of the screen that allows the user to view or enter
information. A program can have multiple windows on the screen, each
performing a different function.

Programs typically create windows that allow the user to enter data, or view
text, graphics, or other information in a meaningful way. When displaying a
document, the window provides a view into the document contents. The user
can change, move, resize, and close windows. There are a number of
standardized window elements that make using windows convenient for the
user. These standard elements are shown in Figure 21.

The close box enables the user to close a window. This releases all data
structures related to the window or its contents including buttons and edit
fields.

Windows 67

‘What are Windows?

FIGURE 21. Window features at a glance.

Close box
| Title bar
Higl—— Zoom box

Untitled-1

Scroll bar (or scroll buttons)

Size box

The title bar often displays the name of the document and indicates whether
the window is active or inactive. It also allows the user to reposition the
window by dragging the title bar with the mouse. Some windows do not have
title bars (see the chapter “Alerts”) and cannot be moved by the user.

The zoom box allows the user to switch the window’s size between two
predefined sizes, while the size box enables the user to resize the window
dimensions manually.

Scroll bars (scroll buttons in FB terminology) enable the user to see other
portions of the document when the data in the document exceeds the
viewable area of the window. Scroll bars are not part of the window, but are a
control placed there by the program (see the chapter “Scroll Buttons” for more
information).

FIGURE 22. Window content and frame regions.

The content region of
a window contains
buttons, edit and
picture fields, as well
as grow boxes.

000

The frame region of a

window consists of the

title bar, close box,

A window consists of zoom box, and frame

both a content region around the window.
and a frame region.)

68

Windows

Creating Windows

A window as shown in Figure 22 consists of two main parts: the content
region and the frame. The content region is that area of the window in which
a program can display data, controls, and the size box. The frame is the rest
of the window including the title bar, the close and zoom boxes, and the
window’s outline.

For the most part, the FB runtime handles all of the actions required to
manage windows in your programs. The programmer, must define the
window’s initial size, and close it, but moving, resizing, and zooming are all
handled automatically. Also, the runtime allows a program to handle any of
these actions if necessary.

Creating Windows

Windows are the main method a program uses to display output and receive
input from a user. Since a program can require many different windows, FB
provides support for up to 63 program windows. Each is uniquely identified
by a wndID% number that ranges from 1 to 63. A specific window is built
using the WINDOW statement.

e Never use a wndID2 of zero as that is reserved for the default Command window.

The WINDOW statement needs several pieces of information, awndID%, a title (if
required), a rectangle that specifies its position on the screen, a window type,
and while not mandatory, a window class.

WINDOW #wndID%, °MY WND", (10,50) - (200,80), _docNoGrow, wndClass$

The wndID%, of course, specifies which window to build. If wndID$% is
proceeded by a negative sign, the window is built invisibly on the screen. This
enables us to build our data entry window with all of its fields and buttons
beyond the user’s view, then display it when complete. Using this technique
tricks the user into thinking that the program builds windows quickly. This is
because since the window appears to leap onto the screen all at once, instead
of a piece at a time.

» Don’t be confused by the negative sign on wndIDg, the wndIDt is always a positive
value. The negative sign is a flag to the runtime that tells it to build the window
invisibly.

The title in windows with title bars can be up to 255 characters, but should
be smaller than that if you expect all of it to be displayed.

The window rectangle specifies the size of the window as well as its location
on the screen. It has the following format:

(left, top) - (right, bottom)

Windows 69

Centering Windows

for its two opposite corners, where the left-top corner of the screen is 0, 0 and
the right-bottom corner can range from 512, 342 and beyond depending on
the size of the monitor. This is important to remember, a default window
should never be larger than the Classic’s 9" monitor. This means that controls
and fields should always appear so that they are available even on the
Macintosh, the smallest screen. Forcing the user to scroll fields or controls
into view is unacceptable in a program. Windows should take advantage of
larger screens if available, but should never force users of smaller screens to
perform mouse or command key gymnastics to accomplish normal tasks in a
window.

The top-left coordinates of a window start at the top-left corner of its content
region, not the title bar. Therefore, when positioning a window that has a title
bar, always add 20 pixels to the window top to compensate for the title bar. In
addition, the menu bar adds another 20 pixels to the top position or else the
window’s title bar will be obscured.

FIGURE23. Window positioning on the screen.

*——— Screen corner (0,0)

& File Edit Form

Menu bar (20 pixels) —|_
Title bar (20 pixels) —[

Window corner (5,45) in
screen coordinates

Centering Windows

You center a window on a screen by specifying the left and top coordinates of
the window rectangle to O, O.

When Macs only had small 9" screens, only alerts and dialogs got centered on
the screen. When larger monitors came out, it became important to center
windows instead of restricting them to the upper left corner of the screen. In
the beginning, programmers had to calculate this center for each window,
today the FB runtime has this capability built into it. To center any window
on any screen, just do this:

WINDOW #wndID%, “CENTERED WND", (0, 0) - (200, 80), _docNoGrow
One caveat, however, never rebuild a centered window without first closing it.

If you fail to close the window, the runtime will recalculate the center and the

window will appear in the upper-left corner of the screen with only a quarter
of it visible.

70

Windows

Window Types

You can determine the screen size using the SYSTEM functions:

scrnWidth% = SYSTEM (_scrnWidth)

scrnHeight% = SYSTEM (_scrnHeight)

The maximum screen size in both directions extends from -32768 to +32767,
or about 35 feet in height and width. This is plenty of room for maneuvering
windows.

Window Types

Each window has a purpose. Some are used for normal documents, others
provide information or alert the user to a problem. Still others are used to
request input from the user. The window types you use will depend on the
program you are writing. For SimpleBase we rely on the window type
_docNoGrow for most of our windows.

Some of our windows could have probably used the standard _dialog type of
window, especially the Find and Goto windows. The decision not to use them
is because of System 7. Since multiple applications can be open, multiple
windows can appear on the screen and create window confusion. I felt it more
important to display window titles to identify the window, something the
_docNoGrow type supports but _dialog does not. You may choose differently.

Table 3 contains a list of various window types available and a brief de-
scription of their common uses in Macintosh programs.

Modal vs. Non-Modal Windows

There are two main kinds of windows, non-modal and modal. Non-modal are
more popular and enable users to work within the window, choose menus,
click in other windows, and generally work in any order they wish. For
example, the following WINDOW statement builds aregular non-modal window:

WINDOW #wndID%, °"NON-MODAL", (0, 0) - (500, 300), _docNoGrow

A modal window, however, is one that prevents the user from clicking or
selecting anything outside of the window. It generally appears as a dialog or
alert window type. Any attempt to click outside of the window results in a
beep. This type of window is created when the window type in the WINDOW
statement is proceeded by a negative sign. The following WINDOW statement
builds a modal window:

WINDOW #wndID%, °“MODAL", (0, 0) - (500, 300), _docNoGrow

In the age of System 7, modal window types are generally frowned upon in
programs. Many different applications can be open at once, and a modal
window prevents the user from switching out of the current application. It's

Windows 71

Modal vs. Non-Modal Windows

TABLE 3. Window Types

WINDOW

DESCRIPTION

Document — the standard Macintosh window containing a
title bar, vertical and horizontal scroll bars, as well as a size
box. Used by most applications for their documents.

Dialog — a non-moveable window that normally appears
requesting additional information or displaying an alert
message.

Plain — another form of a non-moveable dialog window.
This one gets occasional use as a start-up window in

programs.

Shadow —yet another form of the non-movable dialog
window. This one is also used occasionally as a start-up
window in programs.

No Grow Document — a special form of the document
window, this version doesn’t contain scroll bars or a size
box. Occasionally used for non-modal dialog windows
before the Moveable Dialog type appeared.

Moveable Dialog — introduced with System 7, this form of
dialog window enables the user to position the window
anywhere on the screen rather than an arbitrary position
defined by the programmer.

Zoom Document — a standard document window with a
zoom box. If the document window can be resized, it should
include a zoom box to enable the user to quickly zoom the
window to full size or down to its minimum size without
clicking and dragging the size box.

NoGrow Zoomn Document — a variation of the normal no
grow document window. This version has a zoom box to
toggle the window between two defined sizes.

Round Document — this seldom used window type was
originally prescribed for desk accessories, but never really
caught on.

72

Windows

Window Classes

strongly recommended that you never use modal windows created by WINDOW
in your program. Instead, see the chapter “Alerts” for ways of using alert
windows instead.

Window Classes

The final parameter for a WINDOW statement is the window class. This is a
programmer specific value that has one important use. It allows a number of
windows to belong to a class. This class identifier is important because it
enables the programmer to write routines that deal with a specific window
class instead of a specific window number.

What this means is that it is possible to write routines to support a class of
windows and have them work for all windows of that class. Once SimpleBase
is up and running for one employee file, we can create additional data entry
windows, and have the same subroutines work for all of them.

Later we’ll see how to use the window class to determine all of the actions
required for a window, from building to refreshing to closing.

Hiding & Showing Windows

Once a window is built, it’s possible to hide it or show it to the user. There are

many reasons for wanting to hide a window from the user. It may be that you -. .

have an extremely complex window that takes a while to build each time. By -~
hiding it instead of closing it, it can appear much faster the next time the user
calls for it. All of the windows in SimpleBase are built invisibly, then pop onto
the screen when complete.

To show a window that was built invisibly to the user, use the WINDOW
statement like this:

WINDOW #wndID%

To make the window visible and directs all text and graphic commands to it.
Then, to hide a visible window, just use a negative sign before the wndID%
value like this:

WINDOW #-wndID%

Window Sizing

There are two statements that enable you to control the minimum and
maximum size of a re-sizeable window. Users can manually resize the _doc
and _doczoom window types, but they shouldn’t be able to make them too
small, nor too large. Your program can control these sizes using the

MINWINDOW and MAXWINDOW statements. For example, to keep a window from
becoming too small just do this:

Windows » 73

Is Window There?

MINWINDOW 200,100

This sets the minimum size that the runtime will allow all program windows
to be reduced to. This is a global setting and effects all resizeable windows in
the program. On the flip side, you can set the maximum size using:

MAXWINDOW 500,400

Again, this is a global setting in the runtime. If different windows need
different settings, just reset the minimum or maximum size each time the
window is made to the output, or frontmost window.

Is Window There?

One way to determine if a window has already been built, is to use the WINDOW
function. When given a -wndID%, it returns zero if the window has not already
been built, and a value if it has (actually, the window pointer). Thus, to see if
window #15 is already present, yet possibly hidden, do this:

LONG IF WINDOW (-15)

‘ window #15 is already built

XELSE

‘ window #15 is not built, so build it here

END IF

So, to determine if a window is already built, use the WINDOW function like:
this:

IsWindowBuilt = WINDOW (-wndID%)

Window Output

With so many windows capable of appearing on the screen, there must be
some method of designating which window will receive the text and graphics
you want to display. Fortunately, there are two ways of accomplishing this.
One uses the WINDOW statement, the other uses the WINDOWOUTPUT statement.

The WINDOW statement accepts a wndID$ and makes that window the
frontmost one on the screen. It redirects text and graphics commands to that
window. For example, to direct output to window #15, just do this:

WINDOW #15

In contrast, WINDOW OUTPUT also accepts a wndID%, but it directs any
subsequent text and graphics commands to the specified window without
making it the frontmost window. This is handy for updating windows that are
behind others on the screen. If window #15 is the frontmost window, but
window #7 needs updating behind it, use:

WINDOW OUTPUT #7

! -- update window #7 here
WINDOW OUTPUT #15

74

Windows

Closing Windows

to direct output to window #7, update its contents, then redirects output back
to window #15. All this is done without changing the order of the windows on
the screen.

Closing Windows

Use WINDOW CLOSE with the appropriate wndID% to dispose of the window and
all its associated items (buttons, edit and picture fields).

If that’s all there is to closing a window, why make such a big deal about it?
Because, it isn't quite that easy (sigh!). Re-read the second line above,
especially the part about “all its associated items...”. That's the trick. We must
make sure we have gathered all the data from a window’s buttons and fields
before it’s disposed of. If we don’t, we have no way of recovering it. We'll see
how to handle that later on in the chapter.

Regular Exercise

Now that we understand windows better, we can begin adding them to
SimpleBase. We'll follow almost the same steps that we used to create our
menus. Look at Table 4 on the next page to see the program windows and a
brief description what each one does.

Window Routines

There are three main window handling routines that every program should
have: building, capturing a window’s data, and closing the window. Each
performs a specific task related to window management including. Let’s look
at each one briefly before we dive into the code that makes them work.

Window Build Routine

The window building routine is straightforward. We need a short routine that
will build any window and then display it. It should also know if a window has
already been built and just display it, instead of rebuilding the entire window
(a slow and painful process for the user). The pseudocode to accomplish these
goals is shown in Program 22.

PROGRAM 22, Build window pseudocode.

Determine if window needs building
If not built, determine which window to build
build correct window

when window is built, just show it

Windows 75

Window Build Routine

TABLE 4.

SimpleBase window descriptions.

PROGRAM WINDOW

DESCRIPTION

Record® 1of1

Name: [P

-~ =
stato:]] (2 Reut»)
e S—
] —
R —
Gept: @ Programming
O Marketing
O offica Help

Data Entry — the main database entry
window. Here the user can maneuver
around the current open database, add
new records, clear current ones, and edit
record data. Record data is automatically
saved as the user moves through the file.

Find: |

[CJignore Case

Find — this window appears when the
user selects Find from the Records menu

or clicks the Find button in the data entry
window. Here the text is entered for the
search in the current active database.

SimpleBase

An Bmployes Databsse

Sentient Fruit

MACITOSH CORSULTING - DOCUVENTATION - PROGRANMING
P.0.BOX 13362 * TUCSON * AZ 85732-3362

About — this window (really an alert)
appears when the user selects the About

SimpleBase item from the % menu. It
provides information on the program.

ICT1 Simplebase lelp
Cerovious) (Twent_)

File menu

Now

Choose Naw when It comos time Lo create o new employes
datedsase file. A stondard dialog will appesr requesting a
neme for the file, just enter a name end click the Save
button. Ths Data Entry window will sulomstically cpen to
ollow you to begin antering employees immediately.

Open...

Chcose Open to open o pravioust(j crealed smployse
detebase thal has besn savad Lo disk. The Dale Entry
window will eppser to ollow you Lo bagin managing the

Help — appears when the user selects
Help from the % menu. It contains a
scrolling listing of help text. The user
clicks on the buttons to move through the
various help screens.

e Set Print Range EE3

@ This record only
O Rii records

O selected records: [INEN]

Print — appears when the user tries to
print something. It allows them to print a
single record, any subset of records, as
well as all records.

Goto — appears when the user chooses

Goto from the Records menu. Enables
them to directly jump to a specific record
in the database.

76

Windows

Window Capture Routine

Window Capture Routine

The routine to capture window data is not as simple. WindowCaptureis called
when a window is about to be closed that contains data the user wouldn't like
to lose, or just to read the data in the window. Since a window’s edit fields
and controls are destroyed when the window is closed, the data contained
would be irretrievable. This routine ensures that the user loses no data. The
pseudocode for the WindowCapture subroutine is shown in Program 22.

PROGRAM 23. Capture window pseudocode.

Determine the window to capture information from
Does any data in the window require saving
Save the data

Window Close Routine

The window closing routine is also pretty straightforward. It closes the
specified window after calling the window capture routine and after disposing
of anything in the window that needs it. While we have no structures in
SimpleBase that illustrate this technique, the explanation is simple.

Here, in Program 24, are the three skeleton window routines required by
SimpleBase to capture, close, and build windows. Each accepts a wndID%
parameter to specify which window they should operate on.

PROGRAM 24. Skeleton window routines.

LOCAL FN WindowCapture (wndID$%)
END FN

LOCAL FN WindowClose (wndID$%)
END FN

LOCAL FN WindowBuild (wndID%)
END FN

Now that we have our window handling routines ready to go, let’s start
building some windows.

Window Constants

Let’s continue by defining our program’s window constants. We define them
as shown in Program 25, creating one for each window as previously
described in Table 4.

Windows 77

Building the Windows

PROGRAM 25. Window constant definitions.

' >>> WINDOWS
_dbEntxryWIND
_dbFindWIND
_aboutWIND
_helpWIND
_printWIND
_gotoWIND

non
o Ul W N R

Building the Windows

Building our program windows falls directly on the subroutine windowBuild.
It’s whole purpose in life is to direct the building of program windows. We
already saw the pseudocode, but let’s look at it formatted as a LOCAL FN in
Program 26.

PROGRAM 26. Build window function in pseudocode

LOCAL FN WindowBuild (wndID$%)
Determine if window needs building
If not built, determine which window to build
call subroutine to build window
when window is built, just show it
END FN

Translating the rest of the pseudocode into equivalent BASIC statements is
quick and easy. Since the pseudocode describes a choice between two
actions, that choice indicates the use of a branch block. In this case, let’s use
a LONG IF structure.

Earlier we mentioned that our WindowBuild routine should be smart enough
to know if a window has already been built. We know that a version of the
WINDOW function can do this using a negative wndID%, so we add that to the
LONG IF test. If the window is already built, just redisplay it using the WINDOW
statement, if not, we have to build it first.

Next, in the SELECT portion of WwindowBuild, we can add a CASE statement for
each window defined earlier, and add the call to each window’s build routine.
The final windowBuild routine can be seen in Program 27.

78

Windows

Window Building Routines

PROGRAM 27.

Expanded WindowBuild routine

LOCAL FN WindowBuild (wndID%)

LONG

IF WINDOW (-wndID%) = 0

SELECT wndID%

CASE _dbEntryWIND : FN BuildEntryWnd
CASE _dbFindWIND : FN BuildFindWnd
CASE _aboutWIND : FN BuildAboutWnd
CASE _helpWIND : FN BuildHelpWnd
CASE _printWIND : FN BuildPrintWnd
CASE _gotoWIND : FN BuildGotoWnd

END SELECT
END IF
WINDOW #wndID%

END FN

Window Building Routines

In the spirit of top-down design, we shuffle the actual window building to
other subroutines. In our case, six more routines do the low level work of
creating the windows. Each routine performs essentially the same task: it
builds the window along with the window’s controls, edit fields, and picture
fields. Let’s look closely at one of these building routines.

The main window is, of course, the Data Entry window. This is where users

will be

able to enter their employee data. With all that information, the Data

Entry window will be the most complex of our windows. However, since each
follows the same general pattern, no window is any harder to build than
another. The pseudocode shown in Program 28 is the skeleton code for all of
our window building subroutines.

PROGRAM 28.

Build window skeleton.

LOCAL FN BuildWindowSkeleton
create window as required
assign the font, size, style, and mode
build all window buttons
build all window edit fields
assign any preset conditions (to buttons, fields, etc)

END FN

Why do we add all the controls and fields in the build window subroutines?
Because of a simple fact, the runtime updates them all for us. That means
that once we've built a window, and added the appropriate controls and fields
to it, we never have to worry about building them again. Unless we change a

Windows 79

Window Building Routines

name, change an item'’s location, or close a button or field, we don’t have to
worry about them.

We'll see how to add buttons and edit fields in later chapters but now let’s
look at the construction of the window. To build the Data Entry window,
examine the routine shown in Program 29.

PROGRAM29. Build Data Entry window.

LOCAL FN BuildDataEntryWnd
tmp$ = "SimpleBase Data Entry*
WINDOW #-_dbEntryWIND, tmp$, (0,0)-(500,300), _docNoGrow, _dbEntryWIND
TEXT _sysFont, 12
’ add buttons
* add edit/picture fields
' assign preset values
END FN

We start by assigning a window title to a temporary string. This may seem
silly to do at this point, but later when we move all of our string data to STR#
resources in “Creating Program STR#”, it will make more sense.

Next, we use the WINDOW statement to build the window. Here we pass it the
window ID (as one of our predefined constants), the title in our temporary
string, its location on the screen (centered, of course), its window type and
window class (identical to our defined constant).

Once the window has been built invisibly by its build routine, a second
WINDOW statement makes the window visible just before exiting the
WindowBuild subroutine.

The next line uses the TEXT statement to assign a default font and font size to
the new window. FB builds a window with a default font and size, which may
not be what you want. In this case I wanted Chicago 12 as my window font.
This is the font and size FB will use when creating edit fields or for printing in
the window.

Using the same general design, it’s now possible to write all of our window
building routines. You can see how they came out by examining the code in
Program 30.

80

Windows

Window Testing

PROGRAM 30. Window building routines.

LOCAL FN BuildDataEntryWindow
tmp$ = "SimpleBase Data Entry"
WINDOW #-_dbEntryWIND, tmp$, (0,0)-(500,290), _docNoGrow, _dbEntryWIND
TEXT _sysFont, 12

END FN

LOCAL FN BuildFindWindow
tmp$ = "SimpleBase Find"
WINDOW #-_dbFindWIND, tmp$, (0,0)-(340,80), _docNoGrow, _dbFindWIND
TEXT _sysFont, 12

END FN

LOCAL FN BuildAboutWindow
' will use alert - see Alerts chapter

END FN

LOCAL FN BuildHelpWindow
tmp$ = "SimpleBase Help®
WINDOW #-_helpWIND, tmp$, (0,0)-(400,260), _docZoom, _helpWIND
TEXT _sysFont, 12

END FN

LOCAL FN BuildPrintWindow
tmp$ = "Print Record"
WINDOW #-_printWIND, tmp$, (0,0)-(300,125), _docNoGrow, _printWIND
TEXT _sysFont, 12

END FN

LOCAL FN BuildGotoWindow
tmp$ = "Goto Record"
WINDOW #-_gotoWIND, tmp$, (0,0)-(200,80), _docNoGrow, _gotoWIND
TEXT _sysFont, 12

END FN

Window Testing

With our window building routines finished, you may notice that they aren’t
accessible to the rest of the program as it is now. We can, however, add some
additional lines of code to display each window using a menu command.

This is important. Remember the spirit of stepwise refinement states that at
each stage of the design process we test the design to ensure it works. In this
case, we need to check each window to see that it’s the correct window type,
has the correct size, and most of all, that the WindowBuild routine, and
window build subroutines all work as designed.

For example, the logical place to test build our data entry window is under the
New item on the File menu. Opening the Print window should be done under
the Print item of the File menu. For the Find and Goto windows, it’s Find...

Windows 81

Closing Windows

PROGRAM 31. Window building calls.

LOCAL FN ItemHelp

FN WindowBuild (_helpWIND)
END FN
LOCAL FN ItemNew

FN WindowBuild (_dbEntryWIND)
END FN

LOCAL FN ItemFindRecord
FN WindowBuild (_dbFindWIND)
END FN

LOCAL FN ItemPrint
FN WindowBuild (_printWIND)
END FN

LOCAL FN ItemGotoRecord
FN WindowBuild (_gotoWIND)
END FN

and 6010... under the Records menu. The Help window should be built from
the ® menu. To achieve this, add the lines of code shown in Program 31 to
the specified subroutines.

Run SimpleBase. You can now display any of our six program windows by
selecting, Help, New, Print, Find..., or Goto... from the appropriate menu.
Unfortunately, you can’t close any of them just yet, so let’s look into that.

Closing Windows

As previously mentioned, closing a window is simple, however, it's important
to preserve any information stored in the buttons and edit fields within the
window before it’s closed. Otherwise, that information will be lost forever. This
routine can be seen in Program 32.

PROGRAM 32. Close window test.

LOCAL FN ItemClose
FN WindowClose (WINDOW (_outputWnd))
END FN

We make sure the data is saved by calling the windowCapture routine before
closing the window. This guarantees that our information will be saved
whenever the window is closed. We also include a SELECT/END SELECT
structure in there, in case there are any special features in the window that

82

Windows

Capturing Window Data

PROGRAM33. Simple window close routine.

LOCAL FN WindowClose (wndID%)
LONG IF FN WindowCapture (wndID%)
SELECT wndID%
CASE _dbEntryWIND
CASE _dbFindWIND
CASE _aboutWIND
CASE _helpWIND
CASE _printWIND
CASE _gotoWIND
END SELECT
WINDOW CLOSE #wndID%
END IF
END FN

must be disposed of prior to calling WINDOW CLOSE. Examine the listing in
Program 33 to see a simple close window routine.

We pass WindowClose the wndID% of the current frontmost window and let it
take care of the rest. We will also add more calls to windowClose as they
become necessary.

Capturing Window Data

The WindowClose routine provides a handy spot to determine if a window
that’s about to be closed has any worthwhile data to save. If it does, we call
the WwindowCapture routine shown in Program 34 to handle all the sundry
details of saving our window’s data. Here we set a closeFlag$ variable upon
entry which in turn is passed back to the calling function. If, for any reason
the close should need to be canceled, just zero out the closeFlag% and
prevent the window from being closed.

At this point, we don’t really have anything to save but it's important to make
these decisions now. We'll see how to implement saving later when we have
some buttons and fields in the window to work with.

That covers everything on windows needed to get them up and running on
SimpleBase. Feel free to skip ahead to the “Buttons” chapter where we start
filling in windows with usable controls.

Windows 83

Window Record

PROGRAM 34. Simple window capture routine.

LOCAL FN WindowCapture (wndID%)
SELECT wndID$%
CASE _dbEntryWIND
CASE _dbFindWIND
CASE _aboutWIND
CASE _helpWIND
CASE _printWIND
CASE _gotoWIND
END SELECT
END FN

Peak Performance

The following are useful window subroutines that show some of the
interesting things you can do with a window once it’s been built.

Window Record

A Macintosh window is stored in memory as a window record. It contains
everything you’d ever want to know about a particular window. We won't
detail the window record here since its structure can be found in the
Reference manual under GET WINDOW and in Inside Macintosh: Macintosh
Toolbox Essentials.

The key to accessing all this window information depends on getting a pointer
(@ memory address) to the record. You can get this pointer using one of two
methods: the GET WINDOW statement or the WINDOW (_wndPointer) function.
Once you have a valid pointer to a window record you can examine, modify, or
retrieve information contained within.

Window Titles

Sometimes a program needs to know which window is currently the
frontmost by name instead of window number or class. The following Toolbox
procedure GetWTitledemonstrates howtoretrieve awindowname using the
wndID%:

CALL GETWTITLE (WINDOW (_wndPointer), wndTitle$)

PRINT wndTitle$

And, since you may sometimes need to change a window's title, use the
Toolbox procedure SetwWTitle to replace the current title with a new one:

wndTitle$ = “Database Listing"
CALL SETWTITLE (WINDOW (_wndPointer), wndTitle$)

84 Windows

Resizing Windows

Resizing Windows

Often it may be necessary to resize a window, either to display more
information to the user by making it larger, or to hide information by making it
smaller. The example in Program 33 shows how to use the SizeWindow
procedure to do both.

PROGRAM35. Resizing window example.

LOCAL FN ResizeWindow (wndID%, newX%, newY%)
01dwndID%$ = WINDOW (_outputWnd)
WINDOW OUTPUT wndID%
GET WINDOW wndID%, wndPtr&
CALL SIZEWINDOW (wndPtr&, newX%, newY%, _zTrue)
WINDOW OUTPUT oldWndID%

END FN

Windows 85

Resizing Windows

Cooldown

In this chapter you learned all about windows, what they are, their various
features, the different window types and their major uses in a program. Along
the way we talked about centering windows on larger screens and building
windows invisibly to give the illusion of greater speed when they first appear to
the user.

Additionally, we described the six windows used by SimpleBase, and walked -
you through creating three window handling subroutines (build, close, and
capture) that every program will use. Also, we described in both pseudocode
and keywords how to quickly implement these routines in a program.

With our windows built, it’s now time to add some functionality to them. We
start in the next chapter by adding buttons.

86 Windows

CHAPTER 6

Buttons

Warm-up

This chapter introduces you to controls, more commonly referred to in FB as
buttons. In this chapter you will:

¢ Learn what buttons are,
¢ Identify the four button types,
¢ Learn how to create buttons, and

¢ Learn how to handle specific button actions.

What are Buttons?

Buttons, or controls, are selectable objects in a window that maintain a value
or perform some type of action. The purpose of a button is normally indicated
by a title, but can be represented by icons or pictures.

Buttons are redrawn automatically by the FB runtime package. That means a
program can create them once in a window and never worry about them
again.

Creating Buttons

Buttons are identified by a btnID%. Each window in a program can contain
up to 8192 buttons. Assuming you had enough memory to hold them all, that
comes to a staggering 516,096 buttons for 63 program windows. Each
window maintains its own internal list of buttons. That means that window

Buttons 87

Button States

#1 can have a button #1, window #2 can have a button #1, and so on. Note,
that FB doesn’t allow multiple buttons with the same ID within one window.

You can create any of the four button types using the BUTTON statement.
BUTTON requires five pieces of information, a btnID% to uniquely identify the
button in the window, a button state, a title, a location in the window, and a
button type. For example, to create any button in a window you would do
this:

BUTTON #btnID%, btnState%, title$, (left, top)-(right, bottom), btnType%

Of course, the btnID% is used extensively to identify the button, both on
creation, and later when we need it to determine which button was selected in
a window.

Button States

Every button can have one of three states as shown in Table 5. Your program
can control a button’s appearance by resetting the btnState% parameter in
the BUTTON statement.

Just as with menus, graying a button enables the program to guide the user’s
choices. It disables button choices that shouldn’t be available and enables
button choices that are.

TABLE 5. Button states.
STATE DESCRIPTION
—grayBtn Inactive button. User can't select.
—activeBtn Active button. User can select.
_markedBtn Selected button. Active and selected by the user.
Button Titles

A button title can be any string up to 255 characters. For push buttons and
shadow buttons, titles are normally restricted to just a few words and
preferably just one. Most push buttons have names like Done, Cancel, and

Save. Not very exciting as titles go, but they get the job done.

Checkboxes and radio buttons can, and should, have titles that describe the
button’s purpose completely. Titles like: “Enable the turbo-warp drive on
start-up” describe exactly what the user is setting the button for.

It’s possible to wrap a long title so that the button displays its title on two or
more lines. While not common, it’s sometimes necessary. To do this, insert a
carriage return into the title where the break should occur. Naturally, you

88

Buttons

Button Titles

must adjust the button’s height to accommodate this extra line. For example.
to display the long title in the previous paragraph you can define it like this:
title$ = "Enable the turbo-warp" + CHR$(13) + “"drive on start-up"

BUTTON #1, _activeBtn, title$, (10, 10) - (100, 40), _checkbox

The use of multiple title lines should only be used on buttons as a last resort
when a shorter title will not work.

FIGURE24. Forcing multiple lines in buttons.

0

] Enable the turbo-warp
drive on start-up

Most buttons use the Chicago font to display their titles. In some cases, you
may need to use an alternate font for a title display. To do so, you must
append the _useWFont setting to the button type. This forces the runtime to
use the current window font as its display font. For example, it’s easy to mix
and match fonts in a window like this:

BUTTON #1, activeBtn, "Chicago®, (10, 10)-(100, 25), _push

BUTTON #2, activeBtn, °“Window Font", (10, 40)-(100, 55), _push_useWFont
However, it's not recommended. Don't confuse a user by displaying your
mastery of font juggling in button titles. Simple, direct, and readable fonts
like Chicago work just fine, without any embellishment.

FIGURE 25. Buttons using Chicago and window fonts.

ECI

(Chicago |

[Window Font]

Buttons 89

Button Positioning & Sizes

Button Positioning & Sizes

The coordinates of a button are always defined in relation to the top-left
corner of the window’s content area, not the title bar. Button coordinates are
used by the button to determine one thing: the area where button clicks will
be detected. '

Buttons should be wide enough to display the entire title. Radio buttons and
checkboxes can be very wide if the title is descriptive. Push and shadow
buttons should leave enough room at each end so that the titles don’t appear
cramped inside them.

Buttons should also have enough height to clearly present the title. For
example, the default height for a push button is 20 pixels, for checkboxes and
radio buttons it's normally 15 pixels.

» Note, for SimpleBase we use FB’s default COORDINATE WINDOW setting. This causes
our coordinates to match the screen resolution of 72 dpl. If you use COORDINATE x,

y to define any other coordinate system, you are on your own calculating where
items will appear in a window.

Closing Buttons

There are two ways to close a button. The first works upon an individual
button using the BUTTON CLOSE statement. Just pass it a btnID% value and
the button closes. The second method is to simply close the window
containing the button. If you have a lot of buttons to close, this is probably
the best method to ensure all are closed properly.

Button Types

The final parameter identifies the button type to create using one of FB’s pre-
defined constants. There are several types of buttons including: push button,
checkbox, radio, and a variation of the push button, the shadow button. Each
performs a specific task when clicked by the user.

20

Buttons

Creating Program Buttons

TABLE 6. Button types

BUTTON DESCRIPTION
Push — when clicked, a program should perform the
action defined by the button title immediately. Push
buttons should be large enough to hold the title.
X on
[] off Checkbox— clicking a checkbox button allows the user to
enable or disable the option specified by the button text.
B8 pisabied
® Choice 1 Radio — provide between two and seven mutually

O Choice 2 exclusive choices. In each group of radio buttons, only
Y Chaice 3 one can ever be on at a time. A

Shadow — usually the default button in a window. Users

can click with the mouse or press the Return or Enter key

to activate a shadow button.

Regular Exercise

Now that we understand more about buttons, let’'s begin adding them to our
program windows. We start by creating a few button constants that will be
used by the various windows in SimpleBase.

Again, as was done with windows, I end each button constant with the suffix

BTN (or SCROLL for scroll buttons). That way I never have to think about what
the constant refers to. The complete list of constants is shown in Program 36.

The constants are defined, now it's time to create the buttons.

Creating Program Buttons
Before we get started, let’s state one truism about them:

Buttons, edit, and picture fields
are automatically redrawn by
the runtime.

That means that once we've defined a button (or edit or picture field) in a
window, we never have to go back and redraw it for any reason. The runtime

Buttons 91

Data Entry Window Buttons

PROGRAM 36. Button constants.

' >>> BUTTONS

' >>> DATA ENTRY WINDOW
_doneBTN =1
_newRecBTN = 2
_firstRecBTN =3
_prevRecBTN =4
_nextRecBTN =5
_lastRecBTN =6
_deleteRecBTN = 7
_programBTN =8
_marketBTN =9
_officeBTN = 10
' >>> FIND WINDOW
_findBTN =1
_cancelBTN =2
_ignoreCaseBTN = 3
' >>> ABOUT WINDOW
_okBTN =1
' >>> HELP WINDOW
_helpSCROLL =1
' >>> PRINT WINDOW
_printBTN =1
_thisRecBTN =3
_allRecBTN =4
_selectRecBTN = 5
' >>> GOTO WINDOW
_gotoBTN =1

takes care of that for us. We may change its title, state, or location in the
window, but we never have to worry about refreshing it.

What else have we already built that doesn’t need to be refreshed? If you
answered “window”, you're absolutely correct. Therefore we can bundle our
button creation routines within our window building routines. Let’s start with
the most challenging window, the data entry window.

Data Entry Window Buttons

Most of the program’s activity will take place in the main Data Entry window,
so it’s vital that we offer as many options as possible without overpowering
either the window, or the user with too many buttons. The Data Entry
window with its numerous buttons is shown in Figure 26.

92

Buttons

Data Entry Window Buttons

FIGURE26. Buttons in Data Entry window.

(New Record)
QO Programming
O Marketing
Q office Help

PROGRAM37. Adding buttons to BuildEntryWindow.

LOCAL FN BuildEntryWindow
tmp$ = "SimpleBase Data Entry"
WINDOW #-_dbEntryWIND, tmp$, (0,0)-(500,290), _docNoGrow, _dbEntryWIND
TEXT _sysFont, 12, ,0
' eee BUTTONS
tmp$ = "New Record"
BUTTON _newRecBTN,_activeBtn, tmp$, (380,20)-(480,40), _shadow
tmp$ = "Show First®
BUTTON _firstRecBTN,_activeBtn, tmp$, (380,50)-(480,70),_push
tmp$ = "<< Prev <<*
BUTTON _prevRecBTN, _activeBtn, tmp$, (380,80)-(480,100),_push
tmpS = “>> Next >>"
BUTTON _nextRecBTN,_activeBtn, tmp$, (380,110)-(480,130),_push
tmp$ = °“Show Last"®
BUTTON _lastRecBTN,_activeBtn, tmp$, (380,140)-(480,160),_push
tmp$ = “Find*
BUTTON _findRecBTN,_activeBtn, tmp$, (380,170)-(480,190),_push
tmp$ = "Delete"
BUTTON _deleteRecBTN,_activeBtn, trmp$, (380,210)-(480,230), _push
tmp$ = "Programming"
BUTTON _programBTN, _activeBtn, tmp$, (90,222)-(200,237),_radio
tmp$ = "Marketing®
BUTTON _marketBTN,_activeBtn, tmp$, (90,238)-(200,253),_radio
tmp$ = "Office Help®
BUTTON _officeBTN,_activeBtn, tmp$, (90,254)-(200,269),_radio
' eee EDIT/PICTURE FIELDS

END FN

Buttons

93

Find Window Buttons

Since we've already defined our button constants, let’'s add them to the
BuildEntryWindow subroutine with the BUTTON statement. Each statement
sets the button title in a string variable, sets its initial state, defines its
position in the window, and set the button type. You can view the changes
made to BuildEntryWindow in Program 37.

The first seven buttons are push buttons that will execute commands useful
to the user while in the data entry window. They allow the user to add new
records, find records, clear records, as well as maneuver forward and
backward in the database. Once the buttons are added, we can view their
positions by running the program and opening the Data Entry window using
New from the File menu. Ideally, you should see something that looks a lot
like Figure 26.

FIGURE27. Find window button positions.

E[J=—— Find Record DV0Fr0F—=———|

Clignore case

Find Window Buttons

The Find window doesn’t have quite the same complexity as does the Data
Entry window. Its three buttons make for a much more compact build
routine. The layout of the Find window with its three buttons can be seen in
Figure 27, while the code to add them is shown in Program 38.

PROGRAM 38. Find window buttons.

LOCAL FN BuildFindWindow

tmp$ = "Find Record"

WINDOW #-_dbFindWIND, tmp$, (0,0)-(340,80), _docNoGrow, _dbFindWIND

TEXT _sysFont, 12

! eee BUTTONS

tmp$ = "Find"

BUTTON _findBTN,_activeBtn, tmp$, (250,50)-(320,70),_shadow

tmp$ = "Cancel"

BUTTON _cancelBTN, _activeBtn, tmp$, (160,50)-(230,70),_push

tmp$ = "Ignore Case"

BUTTON _ignoreCaseBTN, _activeBtn, tmp$, (20,50)-(150,70), _checkBox
END FN

94

Buttons

Print Window Buttons

FIGURE 28. Print window button positions.

Set Print Range =——

@ This record only
QO All records
QO Selected records:

Print Window Buttons

The next buttons to create belong to the Print window. Again, we have a
default Print button, a Cancel button, and three grouped radio buttons
defining which records will be printed. We'll see how to handle these radio
buttons as a group quickly later in this chapter. The Print window layout is
shown in Figure 28 while the code to create it is shown in Program 40.

PROGRAM 39. Print window buttons.

LOCAL FN BuildPrintWindow
WINDOW #-_printWIND, "*,(0,0)-(300,140),_docNoGrow, _printWIND
TEXT _sysFont, 12, , 0
* +es BUTTONS

tmp$ = "Print"
BUTTON _printBTN,_activeBtn, tmp$, (200,90)-(280,110), _shadow
tmp$ = "Cancel"

BUTTON _cancelBTN, _activeBtn, tmp$, (100,90)-(180,110), _push

tmp$ = "This record only"

BUTTON _thisRecBTN,_activeBtn, tmp$, (20,10)-(200,25), _radio

tmp$ = "All records"

BUTTON _AllRecBTN, _activeBtn, tmp$, (20,30)-(200,45), _radio

tmp$ = "Selected records:"

BUTTON _selectRecBTN,_activeBtn, tmp$, (20,50)-(160,65), _radio
END FN

Goto Window Buttons

The Goto window is simplicity itself. There are only two buttons available here,
adefault Goto and a Cancel button. The window layout is shown in Figure 29
while the code to create this window is shown in Program 40.

Buttons 95

Help Window Buttons |

FIGURE 29. Goto window button positions.

Goto Record

PROGRAM 40. Goto window buttons.

LOCAL FN BuildGotoWindow
WINDOW #-_gotoWIND, "*", (0,0)-(200,80),_docNoGrow, _aboutWIND
TEXT _sysFont, 12, , 0
’ eee BUTTONS
tmp$ = "Goto"
BUTTON _gotoBTN, _activeBtn, tmp$, (120,45)-(180,65)), _shadow
tmp$ = "Cancel"
BUTTON _cancelBTN,_activeBtn, tmp$, (20,45)-(80,65)), _push
END FN

Help Window Buttons
The final window to receive buttons is the Help window. Here we have two
buttons, Previous and Ne#t, that allow the user to cycle through the various

help messages. The layout for this window’s buttons is shown in Figure 30
while the code to create this window is shown in Program 40.

FIGURE30. Help window buttons.

EC] SimpleBuse llelp E0ee—|

(Previous] [Nent)

96

Buttons

Handling Button Actions

PROGRAM 41. Help window buttons.

LOCAL FN BuildHelpWindow
tmp$ = “"Simplebase Help"
WINDOW #-_helpWIND, tmp$, (0,0)-(400,260), _docZoom, _helpWIND
TEXT _sysFont, 12

! eee BUTTONS

tmp$ = “"Previous®

BUTTON #_prevHelpBTN, 1, tmp$, (20,5)-(100,25), _push

tmp$ = "Next"

BUTTON #_nextHelpBTN, 1, tmp$, (120,5)-(200,25), _push
END FN

Handling Button Actions

Once again, we are back to dealing with events. As stated before, the program
should never anticipate the arrival of an event, instead it should wait until it
receives an event before responding. This is especially true with buttons.

The key to handling buttons is to get the event in the Main Loop, and if it’s a
button event then pass it onto a dialog handling subroutine. It in turn
determines the type of event and passes it to the appropriate window’s dialog
handling subroutine. Just as we did with building our windows in the last
chapter, we now create a dialog handling subroutine for each window in the
program to deal with its own dialog events. We'll see exactly how to do this in
the next chapter “Dialog Events”.

Before we do that, let’s briefly look at some standard methods of dealing with
different button events no matter which window they reside in.

The BUTTON function returns the value of the specified button. We can use
this in many of the following generic subroutines to determine program logic
based on the current state of the button. For example, to return the state of a
button:

btnState$ = BUTTON (btnID%)

Push Buttons

Handling a button event for a push button is simple. The program determines
which button was pressed and immediately responds accordingly. In
SimpleBase, push buttons will open the Find window, control movement
among our records, close windows, and set program and record options.

Push buttons only use two of the three states: _activeBtn, and _grayBtn.
They only briefly use the _markedBtn setting when highlighted by a mouse
click.

Buttons 97

Checkboxes

Checkboxes

Handling checkboxes is a little more complicated than push buttons, but isn’t
reallyhard. Checkboxes have two active states (_activeBtnand_markedBtn),
alternating between them at user selection. The routine to handle this for any
program’s checkbox is shown in Program 42.

We use the BUTTON function to determine the state of the specified button. If
the button is in the marked state, we unmark it, otherwise, we mark it.
Additionally, the routine returns the current button state so that the user’s
choices can be stored in a preferences file.

PROGRAM 42, Handling checkboxes.

LOCAL FN CheckBoxHandler (btnID%)

LONG IF BUTTON (btnID%) = _markedBtn
BUTTON btnID, _activeBtn

XELSE
BUTTON btnID, _markedBtn

END IF

btnState% = BUTTON (btnID%)
END FN = btnState

This is one for your own library of useful routines. Build it once and never
worry about it again.

Radio Buttons

Handling radio buttons is a common interface hurdle faced by Macintosh
programmers. How do you ensure that only one radio button of any group is
active? Briefly, since they are clustered together into groups, a subroutine can
cycle through all of the buttons in the group to turn on the correct one while
making sure the rest are off. The only requirement for this routine in
Program 43 is that you define each grouping of radio buttons in sequence.

PROGRAM43. Handling radio buttons.

LOCAL FN RadioButtonHandler (firstBtn%, lastBtn%, btnID%)
FOR count% = firstBtn% TO lastBtn$%
LONG IF count% = btnID%
BUTTON count%, _markedBtn
XELSE
BUTTON count%, _activeBtn
END IF
NEXT count%
END FN = btnID%

o8 Buttons

Shadow Buttons

PROGRAM 44. HiliteSelectedButton routine.

LOCAL FN HiliteSelectedButton (btnID%)
BUTTON btnID%, _markedBtn
DELAY _secTick
BUTTON btnID%, _enableBtn

END FN

The routine uses a FOR/NEXT loop that begins with the first radio button
(£irstBtng) in the group and cycles through to the last (lastBtn$). It sets
each radio button to _activeBtn as it goes, ensuring that only one radio
button per group is ever marked at the same time. When the button specified
bybtnID% is found, the LONG IF is executed and the button state is changed to
_markedBtn.

This is another routine to add to your own library of useful subroutines.

Shadow Buttons

Shadow buttons are push buttons that have a thick rectangle around them
that identifies them as the default button in the window. Other than the thick
outline, shadow buttons are identical to regular push buttons.

While a shadow button is nothing more than a fancy push button, a program
should treat it a little differently than a regular push button. Specifically,
when the user hits the Return or Enter key, the default button in the window
is expected to respond just as if the mouse had clicked on it. To get that kind
of behavior, use the routine shown in Program 44.

When passed a btnID$%, the HiliteSelectedButton subroutine sets the
specified button to marked. In this case, the push button inverts, just as if it
were clicked with the mouse. A slight pause then allows the user to see the
inverted button, then it’s reset to the normal active state.

Enabling & Disabling Buttons

As previously mentioned, it’s possible to disable, or make unselectable, any
button that shouldn’t be available to the user. The function shown in
Program 45 looks at the current state of the button and switches it from
inactive to enabled.

While this routine is simpie, it's often useful and should be stored in your
subroutine library.

Buttons 99

Button Handles

PROGRAM45. Enable button function.

LOCAL FN EnableButton (btnID%)

LONG IF BUTTON (btnID%) = _grayBtn
BUTTON btnID%, _activeBtn
XELSE
BUTTON btnID%, _grayBtn
END IF
END FN
Peak Performance

The use of FB’s four button types will satisfy the majority of programmer
requirements. However, there may come a time when you need to do
something slightly different with a button. For that, you need access to the
control (or button) record.

Every button you build in a window has an internal record that contains all
the information pertaining to that button. I won’t detail the control record
here since it is described completely in the FB Reference manual under
BUTTON& and in Inside Macintosh: Macintosh Toolbox Essentials.

Button Handles

The location of a control record is stored in memory as a handle. A handle is
an address that points to another address, which itself points to the actual
control data. With a handle to a control record, it’s possible to manipulate the
control in ways not directly available in FB statements.

» For more information on handles and pointers see the chapter “Resources”.

You can get a handle to a control using the BUTTON& function. When given a
btnID%, BUTTON& returns a handle to that button’s control record. For
example, to get the handle to the Find button in the Find window of
SimpleBase, the window must first be opened. Then do this:

findBtnH& = BUTTON& (_findBTN)

That's all there is to it.

Getting & Setting Button Titles

Another thing you can do with a control handle is retrieve or set the title of a
control. For example, to get a button’s title use the Toolbox GetCTitle
procedure like this:

100 Buttons

Hiding Buttons

CALL GETCTITLE (BUTTON& (btnID%), ctlTitle$)
PRINT ctlTitle$

To replace a button title use the Toolbox procedure SetCTitle:

ctlTitle$ = “"Reset®
CALL SETCTITLE (BUTTON& (btnID%), ctlTitle$)

This is a much better method than rebuilding the entire button each time its
name changes.

Hiding Buttons

Occasionally, it may be necessary to hide a button in a window. A routine that
provides this capability is shown in Program 46. It makes use of two Toolbox
procedures, HideControl and ShowControl, and a flag variable to specify the
action it should perform.

PROGRAM 46. Hide and show button function.

LOCAL FN HideShowBtn (btnID%, hideFlag$)
cntrlH& = BUTTON& (btnID$%)
LONG IF hideFlag$%
CALL HIDECONTROL (cntrlH&)
XELSE
CALL SHOWCONTROL (cntrlH&)
END IF
END FN

Buttons 101

Hiding Buttons

Cooldown

In this chapter we’ve introduced you to buttons. Along the way you learned
the four different button types and their appropriate uses in programs. We
created buttons in our project and learned some useful subroutines for
handling specific button actions for checkboxes, radio buttons, and shadow
buttons.

In the next chapter we’ll learn how to handle these buttons as well as window
events so that SimpleBase can begin acting like a real program.

102 Buttons

CHAPTER 7

Dialog Events

Warm-up

The efficient handling of dialog events is critical to the smooth and seamless
operation of an application. This chapter continues your education in
handling events, especially dialog events. In this chapter you will:

¢ Learn what dialog events are,
¢ Identify the window an event belongs to, and

¢ Write routines to handle window, button, and cursor events.

What are Dialog Events?

Dialog events are events generated by the operating system that are
processed by the FB runtime. Unlike mouse and menu events, dialog events
are generated by many Macintosh interface features including;

« Windows — events include activation, refresh, close, zoom in, zoom out,
resize, and repositioned.

e Buttons — button clicks.
¢ Cursors — window, button and field determinations.

« Edit and picture fields — field clicks, clear, Return, Tab, and arrow key
detection.

« Keypresses — key activation.

+ Operating system events — includes suspend and resume application,
clipboard changed, and mouse moved events.

Dialog Events 103

‘What are Dialog Events?

» Preview events — special events sent by the runtime to your program
before the dialog handler routines receives the actual event. Events
include menu and field clicks, as well as growing, moving, zooming, and
sizing windows,

« Programmer-defined events — special events sent by the program to
itself.

We'll cover three of these dialog events in this chapter (buttons, windows, and
cursors). The others will be introduced as they are required by SimpleBase.

As previously stated, events are messages from the operating system to the
program. When the program receives an event, it identifies the event type and
passes it on to an event handler. An event handler is a subroutine designed
to handle a specific event type. SimpleBase has several event handler
routines. Some are designed to deal with a specific event type (menu, dialog,
cursor, etc.), yet others deal with a diverse cross-section of events (buttons,
windows, cursors, etc.). With that in mind, let’s examine the pseudocode in
Program 47 that deals with dialog events.

PROGRAM47. Main Loop event handling pseudocode.

HANDLEEVENTS receives and identifies event
HANDLEEVENTS sends event to correct Event Handler
Event Handler extracts information about event
Event Handler routes event to appropriate subroutine
Repeat until program ends

As you can see, the whole purpose of HANDLEEVENTS is to route an identified
event to the correct event handler subroutine. It is the responsibility of the
event handler to extract the information it requires to deal with the event. For
purposes of this chapter, the event handler we'll talk about concerns dialog
events.

Before we continue, we must point out that once an event is detected by
HANDLEEVENTS and routed to an event handler subroutine, it must always be
extracted from the event queue. Failure to extract an event can result in slow,
unresponsive programs. Events which are not extracted create roadblocks in
the event queue for new events. As new events arrive, they will eventually fill
the event queue and push older events out of the queue, effectively losing
them.

104

Dialog Events

Specifying Event Handlers

Regular Exercise

Okay, now that we understand dialog events and their usefulness in our
programs, let’s see how we deal with them in SimpleBase.

Specifying Event Handlers

In the Main Loop section of SimpleBase we specify the event handler where all
dialog events should be sent. This notification tells HANDLEEVENTS where to
route control when it detects dialog events in the event queue. We do this with
an ON <event> FN statement like this:

ON DIALOG FN HandleDialogEvent

We add this line (as well as all other ON <event> FNs) just prior to entering
the Main Loop. Our Main Loop begins to look something like this:

ON DIALOG FN HandleDialogEvent
ON MENU FN HandleMenuEvent
DO
HANDLEEVENTS
UNTIL gQuit
END

Once the event handler for dialog events is specified, we add the dialog event
handler subroutine as shown in Program 48.

PROGRAM48. DIALOG event handling routine.

LOCAL FN HandleDialogEvents
dlgEvnt% = DIALOG (0)
dlgID% = DIALOG (d1lgEvnt%)

END FN

Here we use the DIALOG function to return two values of importance. The
first, dlgEvnt$, indicates the kind of dialog event retrieved from the event
queue by HANDLEEVENTS. The second, d1gID%, is also returned by the DIALOG
function, but its value is dependent upon the event type itself. For example,
the _wndRefresh event returns the wndiD% of the window that needs
refreshing in d1gID%, and the _btnClick event returns abuttonIDin d1gID%.
Each event carries additional information required by the program in its own
dlgID%. We'll see how to handle several of these later in this chapter and
others.

Dialog Events 108

Window Handling

Window Handling

Since most dialog events involve windows or objects contained in windows
(things like buttons and edit fields), it behooves us to respond to these events
on a per window basis. This means that when we receive a DIALOG event, we
determine which window the event was meant for, before deciding what to do
with it.

While there are some common events that work with all windows (refresh
being one), the events for buttons and edit fields are always specific to a
particular window. In other words, an event meant for the Data Entry window
should not interfere with an event for the find window.

By separating events by the window they apply to, we allow the program to
deal with identical events differently. For example, a click in button #1 of the
Data Entry window (New Record) will create a newrecord in the database. A
click in button #1 of the find window (Find) will begin a search for matching
text in the data file.

To discriminate among windows, modify the HandleDialogEvents function
as shown in Program 49. As before, we pass off the handling of each window’s
dialog events to another subroutine, one that deals with that window’s
specific event requirements. We make use of the SELECT structure to call the
program window the event occurred in. Note how we again make use of
window constants to further improve readability.

See how we also use the class assigned to each window to identify which
window event handler to call instead of the window’s wndID%. For example:
imagine that we had four identical windows open for data entry, each would
have a different wndID%, but, each could have the same class type. By

PROGRAM49. DIALOG events for windows.

LOCAL FN HandleDialogEvents
dlgEvnt% = DIALOG (0)
dlgID$ = DIALOG (dlgEvnt%)
SELECT WINDOW (_outputWClass)
CASE _dbEntryWIND : FN DialogEntryWindow (dlgEvnt%, dlgID%)
CASE _dbFindWIND : FN DialogFindWindow (dlgEvnt%, dlgID%)
CASE _aboutWIND : FN DialogAboutWindow (dlgEvnt%, dlgID%)
CASE _helpWIND : FN DialogHelpWindow (dlgEvnt%, dlgID%)
CASE _printWIND : FN DialogPrintWindow (dlgEvnt%, dlgID%)
CASE _gotoWIND : FN DialogGotoWindow (dlgEvnt%, dlgID$)
END SELECT
END FN

106

Dialog Events

Window Handling

FIGURE 31. Window classes vs. window IDs.

Here are four wndID% = 1
windows with I 1| wvndClass% = _dbEntryWIND
different ID's, —
however, they all wndID% = 2
have identical — wndClass% = _dbEntxryWIND
classes. —
wndID% = 3

By trapping the I] wndClass% = _dbEntryWIND
wndClass instead of] — wndIDS - 4
the wndID%, the wndClass$ = _dbEntryWIND
same event handler —
can work for all four —
windows. —

—

trapping the class, the same dialog subroutines can handle all dialog events
in all four windows. See the diagram in Figure 31 for an example of using
class types.

Each window’s dialog handling routine requires both event values, so we pass
along the dlgEvnt% and d1gID%. This enables them to respond accordingly
no matter which event is passed to them.

Of course, the next step is to define the individual subroutines that deal with
the window’s events. Each accepts the two event parameters, and each uses
another SELECT structure to deal with the DIALOG events passed. Program 50
shows the layout for the Data Entry window’s dialog handling. Duplicate this
example for each window in Simplebase.

Then we need to add some real capabilities to each dialog handling routine.
Since our windows were created first, we'll start with window events. Our
most important windows are defined, let's add some dialog event handling
capabilities to deal with them.

PROGRAMS50. DIALOG window routine.

LOCAL FN DialogEntryWindow (dlgEvnt%, dlgID$%)
SELECT dlgEvnt$%
! eee WINDOW HANDLING EVENTS
! eee BUTTON HANDLING EVENTS
! eee CURSOR HANDLING EVENTS
CASE ELSE
END SELECT
END FN

Dialog Events 107

Handling Window Events

Handling Window Events

The first category of dialog events deal with the windows themselves. There
are numerous window related events, some of which help you determine if a
window’s close or zoom box were clicked, whether it needs to refresh itself,
and others.

Within each window’s event handler, we add CASE selections to deal with
many of these events. Let’s look at some of these subroutines so we can see
exactly what is happening in each.

Window Close

When a program receives a _wndClose event, it first calls FN windowClose
which in turn calls FN WindowCapture to save any information entered by the
user (text or button values), then closes the window for us. The same
sequence is used for all of our windows whether they have data to save or not.

Active Window

The next event is _wndClick. When a _wndClick event is detected the
program uses the WINDOW statement to make the chosen window frontmoston
the screen. As the frontmost window, it now becomes the one ready to accept
all text or graphic commands.

Subsequently, whenever a window is brought to the front, a series of
activation and refresh events are generated. These additional events are very
useful as we will see in the next couple of sections.

Window Activation

The _wndActivate event is generated whenever a window is brought to the
front or sent behind another window. This event makes our program more
interactive. We can use this event to update information displayed in the
window, save a window’s contents for later, or update program menus.

In SimpleBase, we’ll use the activation of a window to update our menus.
Whenever a window receives a _wndActivate event, it calls FN UpdateMenus
to keep our menus in sync. Since we're only interested in window activation
events, FN UpdateMenus only checks for the absolute value of the wnd1D% and
updates the menus according to which window is frontmost on the screen.

Window Refreshing

With a _wndRefresh event, the system tells the program that a portion of a
window needs updating. It could be that the window has just been created
and needs to be drawn for the first time, or that it was partially obscured by

108 Dialog Events

Window Refreshing

PROGRAMS1. Window activation updates menus.

LOCAL FN MenuUpdate (wndID$%)
SELECT ABS (wndID$%)
CASE _dbEntryWIND
MENU _mFile, 0, _enable
MENU _mRecord, 0, _enable
CASE _dbFindWIND, _printWIND, _gotoWIND
MENU _mFile, 0, _disable
MENU _mRecord, 0, _disable
CASE _aboutWIND, _helpWIND
MENU _mFile, 0 disable

L.

MENU _mEdit, 0, _disable

MENU _mRecord, 0, _disable
CASE ELSE
MENU _mFile, 0, _enable

MENU _mRecord, 0, _enable
END SELECT
END FN

another window, or even hidden entirely by another program (System 7 or
MultiFinder). This is our cue to redraw all of a window’s changing elements.
Changing elements are those parts of a window not automatically updated by
the runtime itself. What's included in this? All buttons, edit and picture
fields, and scroll buttons are already taken care of by the runtime. Your
responsibility is to refresh any text or graphics placed there by the program.
These are things like data, borders, icons, lists, etc.

For example, in the Data Entry window, I wanted a nice little border around
both the data entries and the buttons Therefore, I added a bit of code in the
_wndRefresh section to draw some borders.

FIGURE32. The Data Entry window after a refresh.

Dept: O Programming
QO Marketing
Q Office Help

Dialog Events 109

Handling Button Events

See Figure 32 for a look at the Data Entry window’s new borders. The code to
create the borders in FN DialogEntryWindowis shown in Program 52 as well
as the rest of the window event code. Just to see if window refreshing works,
add this section of code to SimpleBase and try it out. Start by opening the
Data Entry window. Briefly open the Find window and then close it. Portions
of the borders may disappear, but as soon as the _wndrRefresh event is
received, FN DialogEntryWindow redraws them good as new.

PROGRAM52. Data window refreshing.

LOCAL
DIM rect;8
LOCAL FN DialogEntryWindow (dlgEvnt%, dlgID%)
SELECT dlgEvnt$
' eee WINDOW EVENTS
CASE _wndRefresh
PEN ,,,,3
CALL SETRECT (rect, 10, 10, 360, 280)
DEF TITLERECT ("", 0, rect)
CALL SETRECT (rect, 370, 10, 490, 240)
DEF TITLERECT (“", 0, rect)
PEN ,,,,0
CASE ELSE
END SELECT
END FN

Handling Button Events

Dealing with button events is pretty straightforward. The runtime interprets
the system event and gives you the event type _btnClick, and the button ID.
A window’s dialog handler that contains any buttons must trap for the
_btnClick event.

Button Handling

Program 53 shows how the button handling is done in the Data Entry and
Find windows (the other sections have been removed to save space). Again, we
make use of the trusty SELECT structure to deal with the myriad of events a
window must handle. Since we've already created subroutines to deal with
the actions in the button titles, it’s a simple matter to connect the buttons to
the subroutines.

Back in the “Menus” chapter we introduced two methods of accessing a
program subroutine. The user chooses a menu item with the mouse or uses a
command key equivalent from the keyboard. Now, with the introduction of

110 Dialog Events

Data Entry Window Events

PROGRAM53. Window button handlers.

LOCAL FN DialogEntryWindow (dlgEvnt%, dlgID%)
SELECT dlgEvnt%

! eee BUTTON HANDLING SECTION
CASE _btnClick
SELECT dlgID$%
CASE _newRecBTN : FN ItemNew
CASE _firstRecBTN : FN ItemFirstRecord
CASE _prevRecBTN : FN ItemPrevRecord
CASE _nextRecBTN : FN ItemNextRecord
CASE _lastRecBTN : FN ItemLastRecord
CASE _clearRecBTN : FN ItemClearRecord
CASE ELSE
FN RadioButtonHandler (_programBTN, _officeBTN, dlgID$%)
END SELECT
CASE ELSE
END SELECT
END FN

dialog event handling in a window, a third method presents itself, the user
can click on a button to call the same subroutine.

Data Entry Window Events

As you can see, most of the routines that deal with the Data Entry window’s
push buttons match already defined menu routines. This re-use of code
makes for a compact and efficient program design. Also, writing one piece of
code that is called from many points in the program makes the interface more
flexible.

This benefits the user since a click on a button, a menu choice by mouse, or a
command key, accesses the same subroutine.

The final CASE ELSE in the Data Entry’s button handling section calls the
RadioBtnHandler subroutine to deal with the radio buttons in the window. In
the Find window, the CASE ELSE calls the CheckboxHandler subroutine.

Notice how easy it is to read the statements in this subroutine. Using the
constants and descriptive function names makes the code very readable, even
without any descriptive comments. We’'ll see how to add the rest of these
routines dialog handling routines later on in the chapter.

Handling Cursor Events

The last type of dialog event we will deal with is cursor events. We start with a
little bit of background and then show the code.

Dialog Events 111

What is a Cursor?

FIGURE 33. Cursor array.

{— Cursor hot spot.

|||
Cursor array for EEEEEE R R R R
arrow cursor OEEROOOO0O00000COO

with hot spot. L] ! UEUED oo
A eEsenae s
OEEEREREERROOO0000

What is a Cursor?

A cursor is any 256-byte image bounded by a 16-by-16 bit square. The mouse
driver normally displays the current cursor and handles the details of moving
it on the screen. A cursor can be black and white or color and is typically
stored as a resource in an application.

The cursor is always moved on the screen relative to the path that the mouse
is moved by the user. A cursor’s hot spot is the point of the cursor which is
reported to the operating system when a user clicks the mouse button.

Your application is responsible for changing the cursor as the user moves it.
For example, applications normally change the cursor to an I-beam whenever
the mouse location intersects an active edit field. Others change the cursor
when it’s over a button. Still others use mouse down or up events to change
the cursor’s appearance. Which ones you'll use will depend on your program’s
requirements. We will examine two FB cursor events: _cursEvent and
_cursOver.

Dealing with Cursors

The _CursEvent event tells the application when a cursor has entered or
exited a window. Since we have no need for a special cursor in our windows,
we just ensure that it becomes the default arrow cursor when it’s in one of
our windows. We do that by placing the following line in each window’s dialog
handling subroutine:

! eee CURSOR HANDLING SECTION
CASE _cursEvent : CURSOR _arrowCursor

112

Dialog Events

Dealing with Cursors

PROGRAM54. Cursor handlers.

LOCAL FN DialogEntryWindow (dlgEvnt%, dlgID%)
SELECT dlgEvnt$%
‘ CURSOR EVENT HANDLERS
CASE _cursEvent
CURSOR _arrowCursor

CASE _cursOver
SELECT dlgID$%
CASE < 0 ' handle edit fields here

LONG IF ABS(dlgID%) = WINDOW (_efNum)
CURSOR _iBeamCursor

XELSE
CURSOR _arrowCursor

END IF

CASE > 0 ' handle buttons here
CURSOR _crossCursor

CASE ELSE ’ not over button or edit field
CURSOR _arrowCursor

END SELECT
CASE ELSE
END SELECT
END FN

Once we know the cursor is in a program window, we can detect when it's
over a button or edit field using _cursover. The code to handle a cursor over
both objects can be seen in Program 54.

Note that we must distinguish between buttons and edit fields by checking
the value of the d1gID%. A positive value indicates the cursor is over a button.
For now, we'll just change the cursor shape to a plus. Later, Peak
Performance we'll use ResEdit to add a custom cursor to this bit of code.

A negative value in d1gID% indicates an edit or picture field. When the cursor
is over an edit or picture field, the program should change the cursor to an I-
beam shape. However, it should only do this for the active edit field. All others
should be ignored until they are made active. To determine the active field, we
use the WINDOW (_efNum) function to return the ID of the currently active
field. If the two match, we change the cursor to an I-beam. We'll see how to
handle this in the chapter “Edit & Picture Fields”.

Because so many of the cursor events are handled identically, no matter
which window is open, it seems appropriate to create a single subroutine to
handle these events.

Dialog Events 113

Window Dialog Handlers

Well, we've covered all the event routines required for the data entry window
up to this point. Using the same technique you can create routines to handle
the remaining windows in SimpleBase. See the complete program in the back
of the book for complete details. Once you put in all the routines, run
SimpleBase and test out the various additions we've made to the source.

Window Dialog Handlers

Now that we have all of our window, button, and cursor dialog event handling
routines in place, let’s see how each window’s dialog handler is setup.

Data Window Handler

The Data Entry window code is shown in Program 55 has the most event
handling features. Besides the normal window events like activation and
closing, it also requires some _wndRefresh handling. It does a multitude of
button events to tend to as well as cursor events for all the fields. While no
more difficult then all the other windows, it does have more features to
contend with.

Find Window Handler

In Program 56 we show how to handle the dialog events for the Find window.
Here we have the standard window dialog events (_wndClose, _wndActivate,
etc.), a checkbox for the search strings case setting, and a cancel push button
and find shadow button.

PrintWindow Handler

The Print window is unremarkable as shown in Program 57. The dialog
handling code contains a shadow and push button, and three radio buttons
to select how records are printed. Later, when we add some edit fields it'll
become more exciting,.

Goto Window Handler

Goto is as easy as it gets as demonstrated in Program 58, with dialog
handling for two buttons: a push button to cancel and a shadow button to
implement the goto record action.

Help Window Handler

Finally, the Help window code is shown in Program 59. It has just two plain
push buttons to cycle through the help text we will soon add. Unlike most of
the other windows, we get rid of this window only with the window’s close box.

114 Dialog Events

Help Window Handler

PROGRAM55. Entry window handler.

LOCAL
DIM rect;8

LOCAL FN DialogEntryWindow (dlgEvnt%, dlgID%)

SELECT dlgEvnt%
' eee¢ WINDOW EVENTS

CASE _wndClose : FN WindowClose (_dbEntryWIND)
CASE _wndActivate : FN UpdateMenus
CASE _wndClick : WINDOW #_dbEntryWIND

CASE _wndRefresh
PEN 11113

CALL SETRECT (rect, 10, 10, 360, 280)

DEF TITLERECT ("", O,

rect)

CALL SETRECT (rect, 370, 10, 490, 240)

DEF TITLERECT ("", O,

PEN ,,,,0
' eee¢ BUTTON EVENTS
CASE _btnClick
SELECT dlgID$%$

rect)

CASE _newRecBTN : FN ItemNew

CASE _firstRecBTN :

CASE _prevRecBTN
CASE _nextRecBTN
CASE _lastRecBTN
CASE _findRecBTN

CASE _clearRecBTN :

CASE ELSE

FN RadioBtnHandler% (_programBTN, _officeBTN, dlgID$%)

END SELECT

' ees FIELD EVENTS
! eee¢ CURSOR EVENTS

.

.
H

.
.

.
.

FN ItemFirstRecord

FN ItemPrevRecord

FN ItemNextRecord

FN ItemLastRecord

FN WindowBuild (_dbFindWIND)
FN ItemClearRecord

CASE _cursOver, _cursEvent
FN CursorHandler (dlgEvnt%, dlgID%)

CASE ELSE
END SELECT
END FN

Dialog Events

115

Help Window Handler

PROGRAM 56. Find window handler.

LOCAL FN DialogFindWindow (dlgEvnt%, dlgID$%)
SELECT dlgEvnt$%
' eee WINDOW EVENTS
CASE _wndClose : FN WindowClose (_dbFindWIND)
CASE _wndActivate : FN UpdateMenus
CASE _wndClick : WINDOW #_dbFindWIND
CASE _wndRefresh

! eee BUTTON EVENTS
CASE _btnClick
SELECT dlgID$
CASE _ignoreCaseBTN : FN CheckBoxHandler% (dlgID%)
CASE ELSE : FN WindowClose (_dbFindWIND)
END SELECT
' eee FIELD EVENTS
' eee CURSOR EVENTS
CASE _cursOver, _cursEvent
FN CursorHandler (dlgEvnt%, dlgID%)
CASE ELSE
END SELECT
END FN

PROGRAM 57. Print window handler.

LOCAL FN DialogPrintWindow (dlgEvnt%, dlgID%)
SELECT dlgEvnt$%
' eee WINDOW EVENTS
CASE _wndClose : FN WindowClose (_printWIND)
CASE _wndActivate : FN UpdateMenus
CASE _wndClick : WINDOW #_printWIND
CASE _wndRefresh
' eee BUTTON EVENTS
CASE _btnClick
SELECT dlgID%
CASE _thisRecBTN,_allRecBTN, _selectRecBTN
CASE ELSE : FN WindowClose (_printWIND)
END SELECT
' eee FIELD EVENTS
' eees CURSOR EVENTS
CASE _cursOver, _cursEvent : FN CursorHandler (dlgEvnt%, dlgID%)
CASE ELSE
END SELECT
END FN

116 Dialog Events

Help Window Handler

PROGRAMS58. Goto window handler.

LOCAL FN DialogGotoWindow (dlgEvnt%, dlgID%)
SELECT dlgEvnt$%
! eee WINDOW EVENTS
CASE _wndClose : FN WindowClose (_gotoWIND)
CASE _wndActivate : FN UpdateMenus
CASE _wndClick : WINDOW #_gotoWIND
CASE _wndRefresh
' eee BUTTON EVENTS
CASE _btnClick : FN WindowClose . (_gotoWIND)
' ees FIELD EVENTS
' ees CURSOR EVENTS
CASE _cursOver, _cursEvent
FN CursorHandler (dlgEvnt%, dlgID%)
CASE ELSE
END SELECT
END FN

PROGRAM 59. Help window handler.

LOCAL FN DialogHelpWindow (dlgEvnt%, dlgID%)
SELECT dlgEvnt%
' ees WINDOW EVENTS
CASE _wndClose : FN WindowClose (_helpWIND)
CASE _wndActivate : FN UpdateMenus
CASE _wndClick : WINDOW #_helpWIND
CASE _wndRefresh
' eee BUTTON EVENTS
CASE _btnClick
SELECT dlgID%
CASE _prevHelpBTN
CASE _nextHelpBTN
END SELECT
' eee FIELD EVENTS
' eee CURSOR EVENTS
CASE _cursOver, _cursEvent
FN CursorHandler (dlgEvnt$%, dlgID$%)
CASE ELSE
END SELECT
END FN

Dialog Events 117

Cursor Designing

We'll have some minor refresh handling to take care of as well as handling a
scroll button and resizeable edit field. More on that later in the book.

Peak Performance

This section will explain how to create custom cursors for use in SimpleBase
and other programs.

Cursor Designing

We start our custom cursor design by opening SimpleBase.rsrc. Once open,
choose Create New Resource from the Resource menu. At the Select
New Type dialog, enter or choose from the scrolling list the CURS type. Click
OK.ResEdit creates a new CURS resource and opens the cursor editor window
as shown in Figure 34.

Designing Cursors
As soon as the cursor editor is open, use it to design both the cursor and the

cursor mask. Remember, the cursor mask is what allows you to view the
cursor against different screen backgrounds, so don’t forget to add one.

The palette on the left of the window contains all of the graphic tools needed

to create custom cursors. Use the EI tool to place the cursor’s hot spot in the
design. There are two menus: Transform and CURS, that enable you to
manipulate the cursor in various ways (Flip Horizontal, Flip Vertical, etc.) and

try the new cursor design. Once you are satisfied with your cursor design,
save your work.

FIGURE 34. Design CURS with cursor editor.

E[JE CURS ID = 128 from SimpleBase.rs

=1
Eal § B

| L]] 7
B |
x|~ ==..=... Mask
mll:! E l=.l

118 Dialog Events

Using Custom Cursors

Using Custom Cursors

Next, we modify the program code to deal with the new cursor. In this case, a
new constant is called for in the globals file. Open SimpleBase.glbl and add
the following constant:

’ >>> OTHER CONSTANTS

_fingerCursor = 128

Save the changes and close the globals file. Next, open SimpleBase. Locate the
dialog routines for all of the windows that contain buttons. Find the
_cursOver section of the event handler and change:

LONG IF ABS(dlgID%) = WINDOW (_efNum)
CURSOR _IBeamCursor

XELSE
CURSOR _plusCursor

END IF

to:

LONG IF ABS(dlgID%) = WINDOW (_efNum)

CURSOR _IBeamCursor
XELSE

CURSOR _fingerCursor
END IF
Save your changes and try out the program. In place of the plus cursor, you
should see the finger cursor appear whenever the mouse cursor is over an
active button. Now that you know the procedure, you can create your own
custom cursor library.

Event Handling

There are two means of retrieving events from the event queue. Under System
6 (and not running MultiFinder), events are retrieved using GetNextEvent.
Since only one application can operate at a time under System 6, the
application naturally collects all events issued by the operating system.

However, under System 6 with MultiFinder and System 7, multiple
applications can be running at once. Normally, the foremost application (the
one you are working on) collects the majority of event messages. Applications
operating in the background can also receive events and perform tasks. This
is what enables system utilities like Print Monitor to print in the background
while you continue to add more chapters to your book.

In order to share events, programs must use a different mechanism to
retrieve events. Instead of GetNextEvent, it must use WaitNextEvent.We can
tell the runtime to use WaitNextEvent by setting the number of times per
second the program requires events.

Dialog Events 119

Suspend and Resume Events

The code in Program 60 detects which system the program is operating under
and sets the tick count to what our program requires. Note that the code only
checks for the presence of System 7, as there is no Apple approved method of
detecting the presence of MultiFinder.

PROGRAM60. Enabling background processing.

ticksPerSecond = 6

LONG IF SYSTEM (_sysVers) > 699
& EVENT - 8, ticksPerSecond

END IF

Suspend and Resume Events

Both System 7 and System 6's MultiFinder allow multiple applications to run
concurrently. The user can switch between running applications by clicking
on any portion of a visible window from another application, or choose the
application directly from the Application’s menu (System 7) or the menu
(System 6).

With the capability of having multiple applications open at the same time, it’s
to your benefit to write programs that can operate in this environment. One
way to do that is to detect the _mfSuspend and _mfResume events.

When a program is about to be switched behind another, the operating
system sends it a _mfSuspend event. This is a signal that it must prepare
itself to be switched out as the foreground application.

The foreground application is the one currently in use by the user. All other
running applications are called background applications. A program should
take this signal as an opportunity to convert any private clipboard contents to
the system clipboard.

The FB runtime handles the conversion of the private text scrap for you, but
only if it contains simple ASCII text. If your program manipulates other types
of data, like pictures for example, you must place that data on the clipboard

yourself,

Additionally, some programs take the opportunity to hide all palette-style
windows before the switch. You can do this with your program windows by
using a routine similar to the one shown in Program 61. The routine shows
how to hide and show program windows. You’'ll need to modify it to remember
only the windows that were open when the program was switched out.
Otherwise, all of the program windows will appear when this routine is called
on to show windows.

120 Dialog Events

Suspend and Resume Events

PROGRAM61. Hide and Show Windows.

LOCAL FN HideShowWindows (hideFlag#%)
FOR wndID% = 1 TO 63
LONG IF WINDOW (-wndID%)
LONG IF hideFlag% = _mfSuspend
WINDOW #-wndID%
XELSE
WINDOW #wndID%
END IF
END IF
NEXT wndID%
END FN

The opposite happens when a program receives a_mfResume event. This tells

the program that it is about to be moved in front of all other applications.

When a _mfResume event is received, the program should accept this as a
signal to convert the system clipboard to its own internal scrap. Again, if the

program can import types of data other than text, you must handle the

importing process yourself.

Dialog Events

121

Suspend and Resume Events

Cooldown

In this chapter we learned more about events and how to respond to three
different types of dialog events for windows, buttons, and cursors. Along the
way we saw how to react to dialog events on a window-by-window basis.

We learned how to handle the common window events, output, activate,
refresh, and close. We also saw how to deal with push buttons, and
implemented our checkbox and radio button handler routines. Finally, we not
only saw how to detect and respond to cursor events, but we saw how to
create a custom cursor for our program.

122 Dialog Events

CHAPTER 8

Edit & Picture Fields

Warm-up

This chapter introduces you to edit and picture fields. In this chapter you will
learn:

¢+ What edit and picture fields are,

¢ To identify the edit field types,

¢+ Two methods of inserting data into edit fields,
¢ How to extract text data from edit fields,

¢+ How to insert images into a picture field,

¢+ How to close both edit and picture fields, and
¢ How to deal with different field events.

What are Edit Fields?

A edit field is an area within a window that displays static or editable text.
Text fields are normally editable, but can be static, disabled, or even inverted.
Edit fields can display text in any available font, and in any style, size, or color.
When linked to a scroll button, the contents of an edit field are scrolled when
the user clicks on the scroll button. You can have up to 8192 fields, either edit
or picture versions within a single window, memory permitting.

All edit fields that allow text entry have an insertion point. An insertion
point is the position within the edit field where the next character will be
inserted when a key is pressed. It is usually indicated by a blinking caret in

Edit & Picture Fields 123

Edit Field Features

the form of a vertical bar (I). Static, non-editable edit fields do not display a
caret.

To act upon the text within an edit field, a selection must be made. A
selection is a sequence of one or more characters chosen by the user or the
program for editing. A selection is indicated by highlighting the current
selection, either by inverting or coloring the selection. Once text has been
selected, the user can cut, copy, paste, or clear the selected text, or change
the font characteristics to any available font, size, style, or color.

Positioning the insertion point can be done using the mouse, the arrow keys,
or under program control. When the user clicks the mouse in an active edit
field, the insertion point is positioned at the nearest character. The user can
then use the arrow keys to move the insertion point. The left and right arrow
keys move the insertion point one character forward or back. The up and
down arrow keys move the insertion point one line up or down, respectively.

If the cursor is positioned at the start or end of the field’s text, an arrow key
event is generated that can be detected using the DIALOG function.

FIGURE35. Standard edit field types.

Edit field with frame Use the framed edit field when
requesting input from a user.

Edit field without a frame Use the noframed edit field when the
frame doesn't fit your window’s layout.

static edit field Use t.he static e_dit fielq to display
uneditable text in a window.

Bisabied odit field l'Jse t.he disablqd edit field when the
field is not available.

Inverted edit field Use the inverted edit field to
emphasize field importance.

Edit Field Features

Edit fields fall into two broad categories: those that accept carriage returns
and those that don’t. When a field that accepts carriage returns is active, any
press of the Return key sends a carriage return to the field. Any active field
that doesn’t accept carriage returns generates an _efReturn event instead.

Edit fields also come in five standard types: framed, noFramed, static, gray
(for disabled), and inverted. By mixing these various types you can create edit
fields that can serve any purpose a program might require. For example,
normal single line edit fields used for data input do not accept carriage

124 Edit & Picture Fields

Unstyled vs. Styled

returns and have frames. Edit fields used to display titles are usually static
and not framed. Some examples of the various standard field types can be
seen in Figure 35.

You can further customize an edit field’s appearance by adding one of five
modifiers tothefield type. Thesemodifiersare: _round,_rounder,_roundest,
_boldBox, and _anyLines. Examples of these types are shown in Figure 36.

FAGURE 36. Edit field type modifier examples.

e e ———. Here is an example of
Ny —framed_round .2 using the custom type
= - options to modify the
appearance of an edit

field.

| —framed_rounder]

(_framed_roundest) Notethe anyLines
option in the bottom two

examples. This allows
| —anylLines_leftLine_bottomLine you to customize an edit
' field frame.

A word of caution though: use these custom field types only when absolutely
necessary to prevent causing confusion in your users. Users expect edit fields
to look like edit fields, not examples of cleverness. If you do use them, you will
need to experiment with the various options to get the effect you want. Make
sure that a user can immediately identify them as places to enter text.

* Note, it may take some experimenting to get the custom field type that you want,
as some modifiers interfere with other modifiers.

Unstyled vs. Styled

There are two kinds of edit fields: unstyled and styled. The original unstyled
edit field dates from the early days of the Macintosh and allows the field to
contain exactly one font, size, and style for the entire field. You create an
unstyled edit field by using a positive £ieldID% like this:

EDIT FIELD #fieldID%, tmp$, rect, type, just

With the introduction of the color Macintosh, a new styled edit field became

available. You can create a styled edit field by using a negative £ield1D% like
this:

Edit & Picture Fields , 125

Creating Edit Fields

EDIT FIELD #-fieldID%, tmp$, rect, type, just

The runtime recognizes the difference and builds the correct type of field. You
can see the differences between the two field kinds in Figure 37. Note that
both unstyled and styled fields are always referred to using positive £ieldID3%
numbers no matter how they were defined. Any attempt to refer to an edit
field by a negative ID will cause a runtime error.

FIGURE37. Styled vs. unstyled edit fields.

Create unstyled edit fields with a positive £ie1dID$%:

A standard unstyled edit field can only have
one font, size, style, and color associated
with it.

Create styled edit fields with a negative £ieldID$%:

A styled edit field can have multiple fonts,
sizes, styles , and color associated with it.

You define the initial text font, size, style, and color when you use the TEXT
statement to specify a window’s default font and font attributes. Thereafter,
you can change a field’s font and associated attributes using the EDIT TEXT
statement. For example, to change the font for selected characters in the
active edit field from Chicago to Geneva do this:

SETSELECT startChar%, endChar%
EDIT TEXT _geneva

Creating Edit Fields

Once a program window has been built, putting in edit fields is not difficult.
We start by assigning the field a £ie1dID% number (either positive or negative
for unstyled or styled fields respectively), define its location in the window,
assign it a field type and justification, and optionally add a class specifier.

The second parameter can be a string variable, a quoted string, a text handle,
or a TEXT resource ID. Usually, for text of less than 255 characters in length,
you'll use either string variables (tmp$) or quoted strings (*this is a
string"). For longer text, you must use text handles or resource IDs. See the
Peak Performance section for details on dealing with large blocks of text.

Next, define the location of the edit field in window coordinates using the
(left, top) - (right, bottom) format. Then, define the field type using one

126 Edit & Picture Fields

Setting Field Data

PROGRAM62. Creating Edit Fields.

WINDOW #1, “EDIT FIELD", (0,0)-(500,300), _doc
TEXT _sysFont, 12

tmp$ = "An example of an edit field®
EDIT FIELD #-1, tmp$, (10,10)-(300,300), _framed, _leftJust

DO
UNTIL INKEY$ <> *"

of FB’s constants, and finally assign a justification to the field. Examine
Program 62 to see how to define a single edit field in a window.

Setting Field Data

While many edit and picture fields will have their data set once when the field
is created and never be changed for the life of the window, others will require
updates to reflect changing conditions. This is the case with the fields in the
Data Entry window used to display record information. As the user moves
forward or backward through the data file, the fields will display the current
viewable record. Update the field data using either EDIT FIELD or EDITS.

Use EDITFIELDwhen the replacement text should be selected or highlighted
after the insertion. Use EDIT$ when you want to replace the text in an edit
field without it being selected. To demonstrate:

WINDOW #1 : TEXT _sysFont, 12

EDIT FIELD #-1, *°, (10,10)-(300,25), _framed

EDIT FIELD #-2, "*, (10,40)-(300,55), _framed

tmp$ = :This is an example of text insertion.®

EDITS (1) = tmp$

EDIT FIELD #2, tmp$

This example will insert the same text into both fields, but the text inserted
into field #1 will not be selected and that inserted into field #2 will be selected.
Examine Figure 38 to see the difference.

There are a couple of variations to inserting text into an edit field that are
useful in certain circumstances. First, both EDIT FIELD and EDIT$ can accept
handles and resource IDs to TEXT resources. You can load a text handle into
an edit field using either of these two methods:

EDIT FIELD #fieldID%, &zTxtH&

EDITS (fieldID%) = &zTxtH&

The only caveat is that the handle must be properly formatted in order for this
insertion to work. This means that the first two bytes of the handle must
contain an integer value representing the number of characters in the handle.

Edit & Picture Fields 127

Formatting Text

See “Using all 32K” later in the Peak Performance section for details on this
format.

Use the same two methods to access TEXT resources:
EDIT FIELD #fieldID%, %textResID%
EDITS$ (fieldID%) = %textResID%

Find out more about this text insertion method in the chapter “Strings &
Text”.

Formatting Text

Besides text, you may want to insert numerical data into a field. Since a field
requires text, use STR$ or USING to convert the numerical value to a string
representation of the number. For example: to convert a numerical value into
its string, use the STR$ function like this:

userData$ = STR$(123.456)
EDITS (15) = userData$

You can format numerical data before displaying it with the USING function
like this:

userValue! 123.456
EDITS (15) USING “###. ###", userValue!

While EDITS will work for both edit and picture fields to replace a field’s
content, you must use PICTURE FIELD to replace a picture field’s image that
should be selected. Additionally, you can load text resources into edit fields
using a resource ID or a text handle with both EDIT$ and EDIT FIELD.

FIGURE 38, Inserting field data.

EDITS replaces the contents of the
specified field without selecting the text.

I%Dg EDITS us EDIT FIELD =a0—=—

[This is an example of text insertion. |

This is an edample of text insertion.

|

EDIT FIELD replaces the contents of
the specified field and selects the text.

128

Edit & Picture Fields

Getting Field Data

Getting Field Data

Once the user has entered data into an edit field, it’s often necessary to extract
that information. You can retrieve an edit field’s data using the EDIT$
function. For example, to extract the text from an edit field whose £ieldID%is
15, do this:

userData$ = EDITS$(15)

Assuming that a field’s data isn’t just text, but also has numbers, you can get
the value of the field data like this:

userValue% = VAL(EDIT$(15))
Note that these two methods only work when the text in the field is under 255

characters in length. Since FB internally uses Pascal formatted strings, the
standard string variable can’t handle anything larger.

To handle larger blocks of text, you must delve into the field’s record
structure and work directly with the text data itself. To see how to do that,
refer to “Using all 32K” later in this chapter.

Closing Edit Fields

You can close edit fields using the EDIT FIELD CLOSE statement with the
appropriate £ieldID%. Remember that the textinformation storedin thefield
will be gone forever once the field is closed. To close an edit field do this:

EDIT FIELD CLOSE #fieldID%

Normally, you can let the FB runtime handle all the details of closing both
edit and picture fields, as well as buttons, when it closes a window. This is
just another item taken care of by the FB runtime.

Enabling & Disabling Fields
You may occasionally have to disable fields in a window. You can do this by

resetting the field type. For example, if we have a _framedNoCR field, we can
disable it like this:

EDIT FIELD #fieldiID%, , , _statFramedGray
And reactivate it using the original field type like this:
EDIT FIELD #fieldID%, , , _framedNoCR

What are Picture Fields?

A picture field is an area within a window that displays picture images.
Picture fields are usually static, but can be active and act as graphic buttons
a la HyperCard™. Picture fields share the same data structure in memory

Edit & Picture Fields 129

Loading Pictures

that allows up to 8192 edit, picture, or any combination of these two field
types in a single window. A picture field cannot have the same £ieldID% as
an edit field in the same window.

Loading Pictures
Picture fields share the same definition format used by edit fields. The only
real difference is that one operates on text, the other on picture data.

A picture field can display images by handle, resource ID, or resource name.
For example, to create a simple picture handle and display it on screen
examine the program shown in Program 63.

PROGRAM63. Picture field demonstration.

WINDOW 1, “PICTURE FIELD DEMO"
‘ eee CREATE A PICTURE
PICTURE ON

COLOR _zRed

CIRCLE FILL 100, 100, 50
CIRCLE 100, 100, 55

COLOR _zBlack

PICTURE OFF, pictH&

 eee NOW DISPLAY IT IN A PICTURE FIELD
PICTURE FIELD #1, &pictH&, (10,10)-(200, 200), _framed, _cropPICT
DO
HANDLEEVENTS
UNTIL 0
END

Note the program makes use of the PICTURE ON and PICTURE OFF statements
to create a picture handle. We then pass the handle to the PICTURE FIELD and
let it do the rest of the work.

A picture field’s justification parameter defines how the graphic will display
inside the field. The three types of graphic justifications are shown in Table 7.

TABLE 7. PICTURE FIELD justifications.

_CcropPict _scalePict _centerPict

P

130 Edit & Picture Fields

Creating Picture Fields

The _centerpPict justification requires that the top-left corner of the picture
frame (not the bounds of the PICTUREFIELD) always be set to O, 0. Anything
else causes the field to scale the image and center it on the lower-right corner
of the picture field frame.

Creating Picture Fields

Picture fields use syntax identical to edit fields for their creation. You assign
the picture field a £ield1D% (different than any edit fields in the same
window), pass it a picture identifier (handle, name, or resource ID), specify an
area in the window, then assign a field type, and justification.

Setting Picture Fields

Just as was done with edit fields, use the PICTURE FIELD and EDIT$
statements to assign images to a picture field. The only difference is that you
must tell the runtime how to interpret the image data. For example, to assign
a picture handle to a picture field do this:

PICTURE FIELD #fieldID%, &pictH&
or this:
EDITS (£ieldID%) = &pictH&

The ampersand (&) before the pictH& tells the runtime that the number
following represents a picture handle, while a leading percent sign () usesa
use the PICT resource ID to places it into the picture field:

PICTURE FIELD #fieldID%, %pictResID%
or like this:
EDITS (fieldID%) = %pictResID%

Finally, place a resource PICT using the resource’s name like this:

PICTURE FIELD #fieldID%, pictResName$
EDITS(fieldID%) = pictResName$

Closing Picture Fields

Just as you can with edit fields, you can close picture fields using the EDIT
FIELD CLOSE statement. All you need is the appropriate fieldID and a line of
code like this:

EDIT FIELD CLOSE #pictFieldID%

Closing a window also closes all of the field and button structures used in the
window. Remember to always extract your data first.

Edit & Picture Fields 131

Creating EDIT FIELDs

PROGRAM 64. Field constant definitions.

' >>> DATA ENTRY WINDOW
_dbNameFLD
_dbAddrFLD
_dbCityFLD
_dbstateFLD
_dbZipFLD
_dbPhoneFLD
_dbFaxFLD
_dbPhotoFLD
' >>> FIND WINDOW
_searchFLD =1
' >>> HELP WINDOW
_helpFLD =1
' >>> PRINT WINDOW
_firstFLD =1
_lastFLD = 2
' >>> GOTO WINDOW
_gotoFLD =1

N oy Ul WD R

wowowonowononon

11

Regular Exercise

Now that we understand edit and picture fields much better, it's time to add
them to our program. Of course we begin by defining the field constants that
will make life easier for us. The field constants used by SimpleBase are shown
in Program 64. You'll note that there are only constants for active and
informational display fields, fields used simply to display titles or instructions
are left undefined.

Creating EDIT FIELDs

With the constants in place, it’s time to add the fields to our various windows.
The natural place to start is each window’s build routine. There, after all
button definitions, we begin adding both the edit and picture fields.

Data Entry Window

The Data Entry window has the majority of edit fields and picture fields, so
we'll start there. We begin by creating the static edit fields that display the
field name, add the picture field, followed by the editable fields, and finish by
setting the first editable field active. The lines to add to FN Build-
EntryWindow are shown in Program 65.

132

Edit & Picture Fields

Data Entry Window

PROGRAM65. Adding fields to the Data Entry window.

' eee STATIC TEXT FIELDS

xPos% = 85

tmp$ = "Name:"

EDIT FIELD #21, tmp$, (20,40)-(xPos%$xPos%-5,56), _statNoframed, _rightJust
tmp$ = “Address:”

EDIT FIELD #22, tmp$, (20,66)-(xPos%-5,82), _statNoframed, _rightJust
tmp$ = "City:"

EDIT FIELD #23, tmp$, (20,92)-(xPos%-5,108), _statNoframed, _rightJust
tmp$ = “"State:"

EDIT FIELD #24, tmp$, (20,118)-(xPos%-5,134), _statNoframed, _rightJust
trmp$ = "Zip:"

EDIT FIELD #25, tmp$, (20,144)-(xPos%-5,160), _statNoframed, _rightJust
tmp$ = "Phonei"

EDIT FIELD #26, tmp$, (20,170)-(xPos%-5,186), _statNoframed, _rightJust
tmp$ = "FAX#"

EDIT FIELD #27, tmp$, (20,196)-(xPos%-5,212), _statNoframed, _rightJust
tmp$ = “Dept:"

EDIT FIELD #28, tmp$, (20,222)-(xPos%-5,238), _statNoframed, _rightJust
tmp$ = "Recordi#"

EDIT FIELD #29, tmp$, (20,14)-(xPos%-5,30), _statNoframed, _rightJust
EDIT FIELD #30, "" , (xPos%,14)-(330,30), _statNoframed, _leftJust

' eee STATIC PICT FIELDS :

PICTURE FIELD #_dbPhotoFLD, "", (215,118)-(345,270), _statframed, _cropPict'
eee ACTIVE EDIT FIELDS

EDIT FIELD #-_dbNameFLD, "“, (xPos%,40)-(345,56),_framedNoCR, _leftdJust
EDIT FIELD #-_dbAddrFLD, "", (xPos%,66)-(345,82),_framedNoCR, _leftJust
EDIT FIELD #-_dbCityFLD, "*, (xPos%,92)-(345,108),_framedNoCR, _leftJust
EDIT FIELD #-_dbStateFLD, "", (xPos%,118)-(170,134),_ framedNoCR, _leftJust
EDIT FIELD #-_dbZipFLD , "", (xPos%,144)-(200,160),_framedNoCR, _leftJust
EDIT FIELD #-_dbPhoneFLD, "", (xPos%,170)-(200,186),_framedNoCR, _leftJust
EDIT FIELD #-_dbFaxFLD, "“, (xPos%,196)-(200,212),_ framedNoCR, _leftJust

EDIT FIELD #_dbNameFLD ‘set active edit field

Note the use of the xPos% variable. This is a little trick you can use to align
the right edge of a title field with the left edge of its editable field. This is very
handy when adding fields to a window. Since I often need to fine tune the
location of the fields so that all the text in a title field fits, assign a variable
that defines the boundary between the two fields. Then if you need to resize
either one, just change one variable and the entire window is reformatted
automatically. The completely designed Data Entry window can now be seen
in Figure 39.

Edit & Picture Fields 1383

Other Windows

FIGURE 39. Final Data Entry window.

Rocora® (New nocora)
Neme:|] e —
Rddress:|]
city: |]
sme:l | l 3> Nent »]
phone#[]
Dept: @ Programming

QO Marketing

Q Office Help

Other Windows

The remaining windows have their own requirements for editable and static
fields. Most follow the same pattern as the Data Entry window. Add the static
fields first, then follow with the editable fields. For a complete listing, be sure
to examine the program in the back of the book.

Help and About Windows

You may have noticed the absence of the Help and About windows in the
previous paragraphs. The Help window will be dealt with in the

chapter “Scroll Buttons” and the chapter “Strings & Text”, while the About
window will be fully described in the chapter “Alerts”.

Feel free to try out SimpleBase and see all your new edit and picture fields.
Remember, continuous testing is the main method of discovering program
bugs, and taking steps to solve them.

Handling Field Events

All right, now that our fields are in place, it’s time to make things happen with
them using events. Fortunately, handling events in edit fields and picture
fields falls into familiar territory. It’s similar to the dialog handling routines for
our program windows.

Let’s start by examining the various field event types and see how a program
should respond to each one. As we look at each event, we’ll create a
subroutine to handle the event. In this way, we’ll create a library of field event

handling subroutines that we can drop into any program and know that
they’ll work.

134 Edit & Picture Fields

Handling Mouse Clicks

PROGRAM66. Other window fields.

LOCAL FN BuildFindWindow

' eee STATIC TEXT FIELDS

XPos% = 60

tmp$ = °Find:"

EDIT FIELD #21, tmp$, (20,15)-(xPos%-5,31),_statNoframed, _rightJust

' eee ACTIVE EDIT FIELDS

EDIT FIELD #_searchFLD,"*, (xPos%,15)-(320,31),_framedNoCR, _leftJust
END FN
LOCAL FN BuildPrintWindow
' eee STATIC TEXT FIELDS

EDIT FIELD #99 , "to", (210,50)-(230,65),_statNoframed, _centerJust

' eee ACTIVE EDIT FIELDS

tmp$ = STR$ (gMaxRecords$)

EDIT FIELD #_lastFLD, tmp$, (240,50)-(275,65),_framedNoCR,_centerJust

tmp$ = STRS (gRecordNum$ + 1)

EDIT FIELD #_firstFLD, tmp$, (165,50)-(200,65),_framedNoCR,_centerJust
END FN
LOCAL FN BuildGotoWindow
' eee STATIC TEXT FIELDS

tmp$ = "Goto Record:"

EDIT FIELD #99, tmp$, (20,15)-(135,31), _statNoframed, _leftJust

' eee ACTIVE EDIT FIELDS

tmp$ = STRS (gRecordNum%)

tmp$ = RIGHTS (tmp$, LEN(tmp$) - 1)

EDIT FIELD #_gotoFLD, tmp$, (135,15)-(160,31), _framedNoCR, _centerdJust
END FN

Handling Mouse Clicks

Any mouse click within an active edit field generates an _efClick. This
method is the most direct way of moving between several edit fields.
Additionally, because we have changed the active field, we need to update the
cursor to reflect it’s position over the active field. The routine to handle
_efClick events is shown in Program 67.

PROGRAM 67. Click handling events.

LOCAL FN EFClickEvent (fieldID%)
EDIT FIELD #fieldID%
CURSOR __iBeamCursor

END FN

Edit & Picture Fields 135

Handling Tabs

Handling Tabs

One common way of moving between multiple edit fields is to use the Tab key.
The Tab key normally moves the cursor to the next active edit field, while the
Shift-Tab combination moves the cursor to the previous field. Both are
identified using the _efTab and _efshiftTab constants.

When the user presses the Tab key, an _efTab event is generated. It’s up to
the program to trap this event in a dialog handler and respond appropriately.

This is where the sequential numbering of active fields comes into the game.
Since all of the fields in the Data Entry window lie in the range of _dbNameFLD
to _dbFaxFLD (1 - 8), it’s child’s play to write a routine that will handle this
type of incrementing. Additionally, by passing the event type to the routine,
we can also use it to handle Shift-Tab events. This dual purpose routine is
shown in Program 68.

The TabshiftTabEvents subroutine expects three parameters: the event,
the lowest field count to cycle through, and the highest. We need to pass
these variables to ensure that any window that requires tabbing can use this
same routine. When called, the subroutine examines the event and
determines which course of action to follow.

PROGRAM68. Handling Tab and Shift-Tab events.

LOCAL FN TabShiftTabEvents (dlgEvnt%, startF1ld%, lastF1ldg)
LONG IF dlgEvnt% = _efTab
fieldID% = (WINDOW (_efNum) MOD lastFld%) + 1
IF fieldID% > lastF1ld% THEN fieldID% = startF1ld$%
XELSE
fieldID% = (WINDOW (_efNum) - 1
IF fieldID% < startFld% THEN fieldID% = lastFld%
END IF
EDIT FIELD #fieldID%
END FN

Ifit’s a Tab event, it determines the current active fieldID% and increments
it by one. It then checks to ensure that fieldiD% doesn’t exceed lastF1ds. If
it does, we reset it to startF1ds.

If it’s a Shift-Tab event, it again determines the current fieldID%, subtracts
one from that, then checks to ensure it isn’t below the startF1ds value. Ifit
is, it's set to lastF1d%. Finally, the new active field is activated. Note that we
use EDITFIELD so that the text of the newly active field is completely selected.

In both cases you should note that we always wrap the Tabs and Shift-Tabs
around the active fields in the window. By changing the values of startF1ds

136

Edit & Picture Fields

Return Keys

and lastF1d%, we can use this routine for any window that requires tabbing
support.

Return Keys

Another common method of switching edit fields is to use the Return key. This
method only works if the fields used in the window are of the non-carriage
return type, otherwise the key press will be intercepted by the active edit field
and applied to the field itself.

In many cases, a program may have to handle Return keys separately from
Tab key events. The illustration in Figure 40 shows one method of handling
both Return and Tab keys.

FIGURE 40. Handling Return key events.

Tabs move insertion point

to next field
>

Field #1 Field #2
Return/Enter
keys should Field #3 Field #4
move the
insertion point Field #5 Field #6
downward.

-

Shift- Tabs move insertion
point to previous field.

Unless you have some special processing, use FN TabShiftTabEvents to
handle the Return key event. Justremember to pass an_efTab event instead
of _efReturn to the subroutine.

We will use the Return key for other actions. Since most of our windows have
a default shadow button, the normal action would be to activate the default
button when the Return key is pressed. We can do this by intercepting the
_efReturn event and converting it into a _btnClick. The easiest place to do
this is right at the top of each window’s dialog handler before the event gets
passed onto the SELECT/END SELECT structure. The code to enter looks like
this:
LONG IF _efReturn

dlgID% = FN ChangeReturnToBtn (dlgEvnt%, btnID%)
END IF
where btnID% represents the window's default button btnID%. The
subroutine ChangeReturnToBtn does exactly what it says. It accepts both the

Edit & Picture Fields 137

Arrow Keys

dlgEvnt%and d1gIDs%. It then calls the HiliteSelectedButton subroutine to
briefly invert the default button, then converts the d1gevnt % from _efReturn
to _btnClick. It does this using a simple trick. When passed the d1gEvnt$, it
accepts not the event, but the address of the event, which it uses to replace
_efReturn event with a _btnClick.

Given the address to anything, we can modify it by making it look like a
record. We'll see how to use this technique when we talk about Records later.

Now that the support routines are in place, add a call to ChangeReturnToBtn
in the Data Entry, Find, Goto, and Print window dialog handling subroutines.

Arrow Keys

Arrow keys must also be handled in a special manner.

When the insertion point is within the text of a field, the field will suppress
any arrow key event and move the insertion point as directed by the arrow
key. For example, an up arrow will cause the insertion point to move up one
line in the text. A left arrow key will move the insertion point one character
left of its current position.

FIGURE 41. Handling arrow key events.

In this example, the insertion point is
Some sample text to | ;46 the text of an edit field. When the
illustrate|a point user presses an arrow key, the

about field events. insertion point moves in the direction of
the arrow key pressed.

However, if the insertion point is
_Some sample t_eut to located at the end or beginning of the
illustrate a point field's text, an event is generated when
about field events.| the user presses any arrow key.

When the insertion point is at the very beginning or end of the field’s body
text, the program will receive an arrow key event message. The program can
then use the event to move the insertion point to another field entirely. In
most cases, by passing the correct event type, you can call FN
TabsShiftTabEvents for all of your arrow events.

138

Edit & Picture Flelds

Using all 32K

Peak Performance

We've only covered the fundamentals of using edit and picture fields. What
follows are some additional tricks you might find useful.

Using all 32K

None of the fields in our SimpleBase program required access to more than
255 characters. But since edit fields can contain up to 32,365 characters,
there may come a time when accessing all of them is necessary.

ZTXT Method

The quickest method of accessing all 32K is to use GET FIELD. GET FIELD
returns a handle (see the chapter “Resources”for more information on
handles) containing a combination of both text and style information,
commonly referred to as ZTXT. A zTXT handle has the following format:

FIGURE 42. ZTXT data format.

CHAR LEN% CHARS 0 - n SIYL 0 - n

Each zTXT handle begins with an integer value that contains the character
count, it’s then followed by character data, and finally by any style
information. So to get a zTXT handle, do this:

GET FIELD zTxtH& , fieldID%
Once you have a ZTXT handle, it can be written to disk using:

WRITE FIELD #fileID%, zTxtH&
and read back into memory using:
READ FIELD #fileID%, zTxtH&

One thing to remember, is to always dispose of a ZTXT handle using KILL
FIELD. Failure to dispose of this handle properly, either by forgetting to
dispose of it or using another command, can create memory problems later.

Edit & Picture Fields 139

Reading Text to a Field

Reading Text to a Field

Now that we understand the ZTXT format, let’s look at a common problem,
reading a TEXT file into an edit field. Most people come very close, but usually
seem to end up with extra garbage characters at the end of the text. The
reason is simple, they passed a handle containing nothing but text to the edit
field. The field interpreted the first two characters as the number of
characters, and read that many characters into the field. For example, say we
had the following text in a handle:

Fred was here.

The statements EDIT FIELD and EDIT$ would see it like this:

<18034>ed was here.

Where the 18034 is the character count returned by the “Fr” characters. This
is way too many characters than in our little example.

EDITFIELDandEDIT$ don’t care. They will blindly accept this incorrect count
and process beyond the handle into random memory. The result is garbage
characters in the field.

PROGRAM 69. Text File to Field reader.

CLEAR LOCAL
LOCAL FN TextFile2Field (fieldID%)
filename$ = FILESS (_fOpen, “TEXT", , wdRefNum%)
LONG IF LEN (filename$) > 0
OPEN "I", #1, filename$, , wdRefNum$
LONG IF SYESERROR = _noErr
size% = LOF (1, 1)
LONG IF size% < 32765
hndl& = FN NEWHANDLE (size% + 2)
LONG IF (hndl& <> 0) AND (SYSERROR = _noErr)
hndl&. .none% = size%
osErr% = FN HLOCK (hndlk)
READ FILE #1, [hndl&] + 2, size$
osErr% = FN HUNLOCK (hndl&)
EDITS (fieldID%) = &hndlé&
DEF DISPOSEH (hndl&)
END IF
END IF
CLOSE #1
END IF
END IF
END FN

140

Edit & Picture Fields

Sending Field Text to a File

However, if the handle was reformatted with a leading integer it would look
like this:

<14>Fred was here.

And everything would operate correctly. So the key is to add a length value at
the beginning of the handle containing the text. The routine in Program 69
shows exactly how to do this. It checks for errors but doesn't give any notice if
it encounters one, so be sure and beef it up before using it in your own
programs.

Sending Field Text to a File

So, we got the text into the field, modified it as desired, now it’s time to save it
back out to disk. All we do is reverse the process that got it into the field. This
is handled by the routine shown in Program 70.

PROGRAM 70. Field to Text File routine.

CLEAR LOCAL
LOCAL FN Field2TextFile (fieldID)
GET FIELD txtHndl&, fieldID
LONG IF txtHndl& = 0
BEEP : BEEP
XELSE
txtLen% = {[txtHndl&])}
osErr% = FN HLOCK (txtHndl&)
LONG IF osErr% = _noErr
BLOCKMOVE [txtHndl&] + 2, [txtHndl&), txtLen%
osErr = FN HUNLOCK (txtHndl&)
LONG IF osErr = _noErr
osErr = FN SETHANDLESIZE (txtHndl&, txtlen%)
LONG IF osErr = _noErr
tmp$ = “Save file as:"®
filename$ = FILESS (_fSave,tmp$, untitled”, wdRefNum%)
LONG IF LEN(filename$) > 0
DEF OPEN “TEXTxxxx"
OPEN "O", #1, filename$, , wdRefNum%
WRITE FILE #1, [txtHndl&], txtLen
CLOSE #1
END IF
END IF
END IF
END IF
KILL FIELD txtHndl&
END IF
END FN

Edit & Picture Fields 141

Sending Field Text to a File

The subroutine takes a standard zZTXT handle, strips out the length and style
data, and just writes the character data to disk as a TEXT file.

Cooldown

That was a long chapter. In it we learned all about edit and picture fields. We
first learned about the various types of fields, their uses, and how to create
them. Then, we repeated that for picture fields, emphasizing how to insert
and retrieve data from both field types.

Next, we added fields to our windows and then learned about dealing with the
multitude of events that are generated by user actions in a field. Finally, we
learned how to read and write text files to and from edit fields.

142 Edit & Picture Fields

CHAPTER 9

Scroll Buttons

Warm-up

This chapter introduces a close cousin of the push, checkbox, and radio
buttons, the scroll button. In this chapter you will learn:

¢ What scroll buttons are,

¢ The three types of scroll buttons,

¢ How to create scroll buttons,

¢ How to handle scroll button events, and

¢ How to link a scroll button with an edit field.

What are Scroll Buttons?

Scroll buttons are a variation of the standard control that enable you to view
different sections of a document within a window. A scroll button represents
an entire document in one dimension, either top to bottom, or left to right. By
changing a scroll button’s value, you can view different sections of the same
document. As Figure 43 shows, if a document is larger than the window
viewing area, you can use a scroll button to control the visible portion.

Scroll Button Features

Scroll buttons (also called scroll bars) consist of a rectangle with arrows at
each end. Inside the rectangle is a square called the scroll box (or thumb). The
remainder of the scroll button is known as the gray area.

Scroll Buttons 143

Creating Scroll Buttons

FIGURE43. How scrolling works.

Document

This is line number 1

This is line number 3 —— Up arrow

This is line number 4
This is line number 5
. This is line number 6
V\!'nc!ow This is line number 7
viewing area This is line number 8
This is line number 9
This is line number 10
TTrhsistimeomber
This is line number 12
This is line number 13
This is line number 14

—— Page up region
—— Thumb position

—— Page down region

[1—— Down arrow

Since the range of a scroll button is between -32,767 and 32,767, its current
value is identified as the scroll box value (or thumb value). A click in a scroll
arrow increments or decrements the current scroll value by one. Larger
changes are made using a page value. A page value is assigned to the scroll
button upon creation and can be changed later as needs dictate. A click in
either gray area increments or decrements the scroll box by the page amount.

Creating Scroll Buttons

Creating scroll buttons is very similar to creating other buttons. They do
require several more parameters than regular buttons since they are designed
to support a range of values. These additional parameters include the:
current value, minimum value, maximum value, and page value, as well as
its location in the window and a type. The syntax to create a scroll button is:

SCROLL BUTTON #btnID%, current%, min%, max%, page%, rect, type%

A scroll button’s btnID% resides in the same control list used by regular
buttons. Therefore, a scroll button can't have a btnID% already used by
another button in the window.

The current% setting is the position of the scroll box, and min% and max$%
represent the lowest and highest values current$ can assume for the scroll
button. The page% parameter controls the amount current$ will change
when the user clicks in a scroll button’s gray area. The source shown in
Program 71 (do not add to SimpleBase) demonstrates how to create different
scroll buttons in a window.

144 Scroll Buttons

Types of Scroll Buttons

PROGRAM 71. Creating scroll buttons.

LOCAL FN BuildwWnd

WINDOW #1, °"TEST", (0, 0) - (400, 300) , _doc
SCROLL BUTTON #1, 1, 1, 100, 10, , _scrollVert
SCROLL BUTTON #2, 1, 101, 200, 10, , _scrollHorz
SCROLL BUTTON #3, 1, -100, 1, 10, , _scrollOther

END FN

FN Buildwnd

ON DIALOG FN HandleDialogEvent

DO
HANDLEEVENTS

UNTIL 0

END

Types of Scroll Buttons

There are three variations of scroll buttons: _scrollvert, _scrollHorz, and
_scrollother. Vertical and horizontal scroll buttons are often associated
with document windows. They are automatically placed at a window’s edge by
the runtime and remain there even when the window is resized. From their
positions they control the vertical and horizontal scrolling of a window’s
contents. The type _scrollother, or freeform scroll button, can be placed
anywhere in a window and doesn’t change position when the window is
resized. It’s useful for scrolling lists and edit fields. Examine Figure 44 to see
examples of the three types of scroll buttons.

FIGURE 44. Scroll button types.

E[==————— Cat Directory

Purr Factor:

Dhurralord
Shamara

A e
|

Other scroll button Horizontal scroll Vertical scroll button
works with scrolling button used in used in document
fields, lists, and variable document windows. windows.

inputs.

Scroll Buttons 145

Getting the Scroll Box Value

Getting the Scroll Box Value

We get the value of a scroll button using the BUTTON function. Scroll button
events are reported by the _btnClick event. In a program’s dialog handler
use the d1gID% to identify which scroll button was clicked. The BUTTON
function can return both the current and previous thumb positions. To get
the current thumb position do this:

thisThumbPos% = BUTTON (dlgID$%)
To get the previous thumb position use:
lastThumbPos% = BUTTON

Program 72 shows how to retrieve both thumb positions. As you can see,
leaving off the btnID% returns the previous thumb position. Remember, this
only works when a scroll button is clicked, not with other button types.

Setting the Thumb Value

You can reposition the thumb of a specified scroll button by setting the
current% value of the scroll button. For example, set the thumb anywhere
between the min% and max$% values using:

SCROLL BUTTON #btnID%, current%

Other than the btnID% and the current$ setting, no additional parameters
are required.

PROGRAM72. Getting the thumb position.

LOCAL FN HandleDialogEvent
dlgEvnt% = DIALOG (0)
dlgID% = DIALOG (dlgEvnt$)
LONG IF dlgEvnt$% = _btnClick
LONG IF dlgID% = _myScrollBtn
lastThumbPos% = BUTTON
thisThumbPos% = BUTTON (dlgID$%)
SELECT dlgID$%
CASE 1 : PRINT “Vertical scroll..®
CASE 2 : PRINT “Horizontal scroll..”
CASE 3 : PRINT “Other scroll..”
END SELECT
PRINT "Last thumb position ="; lastThumbPos$%
PRINT “This thumb position ="; thisThumbPos$%
END IF
END IF
END FN

146

Scroll Buttons

Changing Scroll Button Values

Changing Scroll Button Values

Since a scroll button’s scroll box represents a variable range of values, you
may occasionally need to reset those values. For example, a document used
in a word processing program constantly increases as the user enters more
lines of text. If the scroll button doesn’t change its max$ value, scrolling to the
bottom of the document would be impossible.

You can change most scroll button parameters. Exceptions are the btnID%,
and the scroll button type which can’t be changed once they’re built. Every-
thing else is fair game. Just specify the scroll button to change, and then set
the new parameter. For example, to change the max% value, do this:

SCROLL BUTTON #btnID%, , , max%
Set a new page% value like this:
SCROLL BUTTON #btnID%, , , , page$

And to reset new min% and max$% values:

SCROLL BUTTON #btnID%, , min$%, max$%

Note that all missing parameters are left unaffected by the changes. To
disable a scroll button, set all parameters to zero like this:

SCROLL BUTTON #btnID%, 0, 0, 0, 0

Linked Scroll Buttons

One of the best features of FB is its ability to link a scroll button with an edit
field to produce a scrolling edit field. With just two lines of FB code you
accomplish what other languages take dozens, if not hundreds, of lines to do.

There are a few requirements to make this happen successfully, including:
+ You must use the styled edit field exclusively.

« The edit field and the scroll button must use the same ID value, i.e.
btnID% = fieldID%.

« Define a linked scroll button with the negative sign in both the EDIT
FIELD and SCROLL BUTTON statements.

That's all the restrictions. So, to create a linked scrolling field, merely do this:
EDIT FIELD #-1, tmp$, rect, type, just

SCROLL BUTTON #-1, , , , , rect, type

Note that both the edit field and the scroll button have identical negative IDs.
The runtime uses this to determine which field will be linked to which scroll
button. If the scroll bar is of the type _scrollVert or _scrollHorz, youdon't
even have to specify the thumb position, the runtime handles that also.

Scroll Buttons 147

Linked Scroll Buttons

When linking a field and a _scrollOther scroll button type, you must
perform some calculations to properly position the scroll button next to the
edit field. There is a small subroutine called BuildScrollF1ld in the FB
Library help file that performs these calculations for you.

Once a linked field is defined in a program, you don’t have to handle a thing
except for placing new data into the field. The runtime handles the details of
keeping the edit field contents and scroll button’s thumb in perfect sync.

Regular Exercise

Now that we understand scroll buttons a bit better, it's time to add one to
SimpleBase. The main entry window doesn’t require a scroll button, but the
Help window is perfect. The Help window provides users with detailed
instructions using a linked edit field and scroll button. Insert the code in
Program 73 into the FN BuildHelpWindow routine.

PROGRAM73. Build Help window.

LOCAL FN BuildHelpWindow
tmp$ = "SimpleBase Help"
WINDOW #-_helpWIND, tmp$, (0,0)-(400,260), _doc, _helpWIND
TEXT _sysFont, 12

' eee STATIC TEXT FIELD
EDIT FIELD #-_helpFLD,"", (4,4)-(382,244), _statFramed, _leftJust
SCROLL BUTTON #-_helpSCROLL,1,1,1,10,, _scrollVert

END FN

Once the Help window build routine is complete, finish the FN Dialog-
HelpWindow by adding the event handling code shown in Program 74. Here,
the goal is to watch for a_wndRefresh event. If we get one, we need to ensure
that the edit field is resized so that it fills the window. We do that by
recalculating the window size and setting the edit field’s rectangle properly.

We'll see how to add the program instructions later when we talk about TEXT
resources in the chapter “Strings & Text”, but for now, the Help window is set
up to handle them once they become available.

Peak Performance

Working with scroll buttons is exactly the same as working with regular

buttons. Although they share the same control record, some portions of it are
used differently.

148 Scroll Buttons

Scroll Indicators

PROGRAM 74. Revised Help window dialog handler.

LOCAL FN DialogHelpWindow (dlgEvnt%, dlgID$%)
SELECT dlgEvnt$
' ees WINDOW EVENTS
CASE _wndRefresh
wndX = WINDOW (_width) : wndY = WINDOW (_height)
EDIT FIELD #_helpFLD, "*, (4,34)-(wndX-4,wndy-4)
PLOT 0, 30 TO wndX, 30
' eee¢ BUTTON EVENTS
CASE _btnClick
SELECT dlgID%
CASE _prevHelpBTN
DEC (gHelpID%)
IF gHelpID% < _firstHelp THEN gHelpID% = _lastHelp
CASE _nextHelpBTN
INC (gHelpID%)
IF gHelpID% > _lastHelp THEN gHelpID% = _firstHelp
CASE ELSE
END SELECT
LONG IF dlgID% > _helpSCROLL
SCROLL BUTTON #_helpSCROLL, 1
EDIT FIELD #_helpFLD, $%gHelpID%

END IF
CASE ELSE
END SELECT
END FN
Scroll Indicators

Occasionally, when using a scroll button, you may wish to display the current
value. One means of doing this is to find the location of the thumb and display
the current% setting within it. The example in Program 75 shows how to
access the thumb position within a control record.

The thumb position is stored as a handle within the contrlData field of the
control record. We start by creating a window with two scroll buttons, then
enable dialog events. When a _btnClick event is detected, the routine gets
the control’s handle using BUTTON%, then uses it to access the contrlData
handle. Once it has the handle, it looks two bytes into the handle and locates
the rectangle position of the thumb in the window. A quick copy to a local
rectangle and draw the thumb value inside the thumb position in the window:.
Then, the AUTOCLIP statement disables all clipping of the control area and
the current% setting is drawn at the thumb’s position. AUTOCLIP is re-
enabled and the dialog handler ends.

Scroll Buttons 149

Scroll Indicators

PROGRAM 75. Scroll indicators example.

LOCAL
DIM rect.8
LOCAL FN DoDialog
dlgEvnt% = DIALOG(0)
dlgID% = DIALOG (dlgEvnt%)
LONG IF dlgEvnt% = _btnClick
scrollValue% = BUTTON (dlgID%)
AUTOCLIP O : TEXT ,7,.,1
btnH& = BUTTON& (dlgID%)
rect;8 = [btnH&..contrlData&] + 2
PRINT% (rect.left%, rect.top% + 10) USING “###";scrollValue%;
LONG IF dlgID% = 1
tmp$ = "Vertical scroll =*
XELSE
tmp$ = "Horizonal scroll =*
END IF
TEXT ,12,,0 : PRINT%(10,20) tmp$;scrollValue%;
CLS LINE : AUTOCLIP 1
END IF
END FN

LOCAL FN Init
WIDTH _noTextWrap
WINDOW 1, "SCROLL BUTTON", , _doc : TEXT _geneva, 9, ,0
SCROLL BUTTON #1, 1, 1, 100, 10,, _scrollvert
SCROLL BUTTON #2, 1, 1, 100, 10,, _scrollHorz
END FN
FN Init
ON DIALOG FN DoDialog
DO
HANDLEEVENTS
UNTIL O
END

* Note, the FB runtime automatically clips out of the drawing area any space
occupied by a button or field. You can use avrocLip when needed or set the
window attribute _noAutoclip when building the window.

Cooldown

That's it for scroll buttons. In this chapter you have learned what scroll
buttons are, the three types available to us, how to create them, and how to
change their values including current%, ming%, max%, and page%. You also
learned how to link a scroll button with an edit field.

180

Scroll Buttons

CHAPTER 10

Records

Warm-up

We've done the interface work, now it’s time to begin manipulating the data
we need to store in our employee files. One way to do that is to use record
structures. In this chapter you will learn:

What records are,

How to define records and create record variables,

How to create record arrays,

3
.
¢ How to assign and retrieve data from record variables,
.
¢ How to move records to edit fields and back, and

.

How to write and read records from a disk file.

What are Records?

Records are a method of organizing related pieces of data into a structure that
can be manipulated as a single object. A record is a structured format for
data. Records can store any type of data including text, values, and graphical
information.

Arecord is made up of separate fields. A field is a component of a record that
contains data in defined format. For example, a rectangle record consists of
four fields (top, left, bottom, right), each of which holds an integer value. Each
rectangle field requires two bytes to maintain its data, resulting in a total of
eight bytes for the rectangle record. The combined size of all record fields is

called the record size.

Records 151

Record Sizes

When accessing a record, it's usually referred to by a record number. The
record number is the indexed location of the record within a file. Record
numbers normally begin with zero and increment by one for each record

thereafter.

FIGURE 45. Program data file containing records.

P #00003 |

== [Semin P

|
= W { PO Box 13362 |
—_— | Tucson, AZ 85732-3362 |

File on disk Records in file Fields in record

« Note, setting “Arrays without element zero” in the Preferences can change this.

Record Sizes

An individual record can be up to 32K in size. Records used in arrays,
however, are restricted to 256 bytes due to runtime limitations. Future
versions of FB will probably not have this restriction.

» The 32K limit is imposed by the absolute size of single code blocks. Future
machines may not have this limitation.

Defining Records

Therearethree statementsrequired to define arecord structure: DIMRECORD,
DIM, and DIM END RECORD. DIM RECORD starts the record definition, DIMdefines
the individual fields within the record, and DIM END RECORD defines the
record’s end and returns its total size and type. A record defined using these
commands becomes a variable type just as integer, long integer, string,
single-, and double-precision are variable types.

One common record is the rectangle record. It's used to define windows,
buttons, edit fields, graphics, and other object positions. A rectangle record
contains four integers specifying the top, left, bottom, and right coordinates.
We define a rectangle record like this:

152 Records

Record Types

DIM RECORD rect
DIM gtop%
DIM gleft$%
DIM gbottom$
DIM gright$%
DIM END RECORD .rectRecSize

As you can see, each field in the record follows the other in the definition.
This is exactly how the variables are placed into memory, one right after the
other. The last statement, DIM END RECORD, returns the total size of the newly
defined record. The use of the dot (.) in the statement before the size variable
creates the record structure but allocates NO memory for the record itself.

¢ By conwention, I always define my record sizes to end with the suffix RecSize for
easier recognition.

Record Types

Why separate the record definition from the record? It's mainly for clarity and
consistency in implementation. You don’t see or use an integer, you use
variables of the integer type. Likewise, you don’t have a string to manipulate,
you have a variable of the type string. This same method should be used with
records. Define the record type, then define variables of that type. For
example, a look at other variable types reveals this general variable format:

<varName> [varType]

where the varType is always an optional identifier. A look at the different
variable types shows they all run true to form:

<integerVar>[%]
<longIntVar>[&]
<stringVar>[$]
<singlePrecVar>[!]
<doublePrecVar>[#]

whereas a record variable looks like this:
<recordVar>.recordType

With the dot separating the variable from the record type. When defining
record variables, the record type must always be appended to the definition.

Record Allocation

Using the same example, we can define multiple variables of the same record
type like this:
DIM aRect.rectRecSize

DIM bRect.rectRecSize
DIM cRect.rectRecSize

Records 153

Variable Sizes

Where rectRecSize represents the record type, just as the shorthand
modifiers &, &, $, !, and # represent their respective variable types.

However, there may be occasions where this separation of record type and
variable is inconvenient or unwieldy. In that case, you can use an underscore
instead of a dot in the DIM END RECORD statement like this:

DIM RECORD rect

DIM gTop$%

DIM gLeft$%

DIM gBottom%

DIM gRight%
DIM END RECORD _rectRecSize
This sets aside memory for the record as it’s defined. You now have both the
structure and the variable in one bundle. References to it are made using the
record name (rect) like this:

rect.gTop% = 10

References to individual fields can be by field name or record offset. For
example, I could say:

gTop% = 10
or I could say:
rect.gTop% = 10

Both of these set the field gTop%. I prefer the second method because it
identifies which record I am using. If I just use gTop%, it might as well be
defined as a global variable.

Variable Sizes

There is a shorthand method of defining adjacent variables. Instead of
defining each one separately, define them instead as a single group. Since we
know the size of each field variable (2 bytes), it's easy to calculate the total
record size of eight bytes. If we defined a record to hold car information, it
might look like this:

DIM RECORD car
DIM carRect.8
DIM carModel$%
DIM carStyle%
DIM END .carRecSize

The use of the dot (.) in the DIM statement tells the runtime to define the
variable using the length after the dot and remember it as a record. As we'll
see later, defining a variable as a record has some benefits, including the
ability to copy one record variable into another.

154

Records

Zero Length Variables

We could have also defined the variable like this:

DIM RECORD car

DIM carRect;8

DIM carModel$%

DIM carStyle$%
DIM END .carRecSize
The use of the semi-colon (;) after the variable overrides the normal variable
size and sets it to the specified value. Instead of being a sub-record within the
record, we have a variable carRect$% with an additional six bytes attached to
it. I don’t recommend using this format except for special cases. You gain
nothing by using it, and lose all record handling capabilities allowed with the
dot specifier.

Zero Length Variables

One good use for the semi-colon is to define a variable of zero length. Many
times you may need to refer to a specific variable in two different ways. The
common occurrence of this is with a mouse point.

A mouse point consists of two integer variables specifying the vertical and
horizontal position of the cursor. Some Toolbox routines, however, expect you
to pass the point as a single long integer. How can we do both? Simple- create
a long integer variable of zero length followed by two integer variables like
this: ’

DIM where&;0, posY%, posX$%

The variable where& occupies the same memory as posY% and posx$%
(remember, memory is assigned contiguously) because it’'s defined as having
no length. The runtime happily assigns the subsequent posY% and posX$%
variables the same memory location in its variable lookup table. An example
of this is:

posY% = 99

posX% = 88

So, if you need to pass the mouse position as a long integer you can pass
whereg, or access either the vertical or horizontal positions using posY% and
posX%.

Accessing Record Data

Now that we understand how to create record types, let’s look at storing and
retrieving data in a record variable.

When you create a record structure, each field name used in the record
becomes a constant. Remember that constants are predefined values that can
be used in place of variables. When we created the rectangle record earlier it

Records 155

Assigning Record Data

created a total of five constants, one for each field name (_gTop, _gLeft,
_gBottom, and _gRight), and one for the record size (_rectRecSize). Each
field constant represents the actual byte offset from the beginning of the
record. Thus, _gTop = 0, while the field constant _gBottom = 4. The
illustration in Figure 46 shows how the record offsets are used to point to the

individual field data in the variable aRect.

FIGURE 46. Record storage in memory.

aRect.right%
aRect .bottom®¥
aRect.left%

aRect .top% —* l

0 2

P
o -

MEMORY

|
_rectRecSize = 8 bytes

When a variable is created by a program, the runtime links the variable name
to a particular address in memory. Any references in the program to that
variable causes the runtime to look up the name in its variable list and locate
the address where the variable’s data is stored.

A record variable consists of a sequence of contiguous bytes stored at a
specific memory location. If a constant is added to the variable, the runtime
seeks out the variable’s memory location, then offsets the search from that
location by the number of bytes specified by the constant. For example, to
print the gbottoms field in a rectangle record you could do this:

PRINT aRect.gbottom%

The runtime looks up the variable aRect and locates its memory address.
Then, it adds the constant value _gbottom (4) to the first address. The single
dot (.) tells the runtime to add the subsequent constant to the base variable’s
memory address found in the lookup table. Finally, it grabs the number of
bytes specified by the type identifier (%) and prints the information. It sounds
more complex than it is and besides, the runtime is doing all the work
anyway. In reality, you don’t have to worry about all this.

Assigning Record Data

You assign values to the fields in a record just as you would assign any other
variable value. The only difference is that you use a field constant to provide

186 Records

Retrieving Record Data

the offset into the record where the data should be stored. Additionally, you
must supply a variable type identifier (¢, &, $, !, #) to tell the runtime exactly
how much data it should store in the field.

Let’s assume we've defined a record structure that looks like this:

DIM RECORD miscStuff
DIM myVarl$%
DIM nmyVar2&
DIM myVar3$
DIM END RECORD .miscRecSize

And created a variable of that record type like this:

DIM myRecord.miscRecSize

We can use the implied (with the equal sign) LET statement to assign values
to myRecord like this:
10

&HAABB
"Fred Hott"

myRecord.myVarl$
myRecord.myVar2&
myRecord.myVar3$

Which stores an integer () into myVarl, along integer (&) into myvar2,and a
string ($) into myVar3.

Retrieving Record Data

Retrieving data stored in a record variable is just as easy. Using the same
format shown in the previous section, specify the record name, the field
constant with its dot, and a type identifier. To retrieve the information stored
in the above example do this:

PRINT myRecord.myVarl$
PRINT myRecord.myVar2&
PRINT myRecord.myVar3$
which would output:

10
&HAABB
Fred Hott

Note again the use of the type identifiers (%, &, $, !, #) in the reading of the
field data. These are required to tell the runtime how it should read the data
in the record.

Nested Records

One of the best features of record types is the ability to nest one record
structure inside another. For example, if you had an object record that
requires a rectangle, you could define it as shown in Program 76.

Records 157

Power Records

PROGRAM76. Nesting record types.

DIM RECORD rectRec
DIM rect%.8
DIM END RECORD .rectRecSize
DIM RECORD objectRec
DIM oNum$
DIM oFlag$
DIM oRect.rectRecSize
DIM END RECORD .objectRecSize

Next, create a variable of type objectRecSize and assign values to the
rectangle record inside as shown in Program 77.

Additionally, you can use any of the standard Toolbox procedures designed to
create specific data structures. Here is another way to assign rectangle
information:

CALL SETRECT (gObj.oRect, 10, 10, 120, 120)

As you can see, the runtime knows where the gObj variable is located in
memory. It then uses the field constant (oRect) to access the nested record,
and the rectangle constants to reach the correct field. To print out the bottom
field again you would do this:

PRINT “Bottom = *;gObk.oRect.bottom%

PROGRAM 77. Assigning record field values.

DIM gObj.objectRec
gObj .oNum%= 1
gObj.oFlag%= &HAA

gObj .oRect.top%= 10
gObj.oRect.left%= 10
gObj .oRect .bottom%= 120
gObj .oRect.right%= 120

Power Records

One reason for using records is the easy integration it has with all of the
predefined record structures built into the Macintosh. A simple run through
the Inside Macintosh volumes shows hundreds of record types just begging to
be used, if only you could get to the information quickly and easily. Now you
can.

For example, every window contains a record that holds all of the information
required by that window. FB gives us a pointer to the window record using
either the WINDOW function or the GET WINDOW statement like this:

158

Records

Copying Records

wndPtr& = WINDOW (_wndPointer)
or this:
GET WINDOW #wndID%, wndPtr&

Before constants were available, once you had a window pointer it was
difficult to access or change the fields directly. The methods included
reproducing the record using DIM statements or using PEEKs and POKES to
read/change the data.

Now, as soon as you have any window pointer, use the Toolbox field names as
offsets into the record structure. To access information from the window
record, use its own field constants (see Inside Macintosh or use the Constants
tool) as shown in Program 78. '

PROGRAM78. Reading record fields.

PRINT wndPtr&.txFont%
PRINT wndPtr&.txSize$
PRINT wndPtr&.£fgColor&
PRINT wndPtr&.bkColor&
PRINT wndPtr&.windowKind$
PRINT wndPtr&.strucRgn&
PRINT wndPtr&.contRgn&
PRINT wndPtr&..titleHandle$

Notice the use of double dots for the window title. Use this technique to read
the contents of a handle (a handle is a pointer to a pointer) stored in a record.
In this case, it's the window title. Of course, you can also assign values
directly using this same technique. Now, isn’t that better?

Copying Records

Another nifty record feature is the ability to copy data from one record into
another, as long as both are identical record types. For example, you can copy
one rectangle variable into another by doing this:

aRect = bRect

Note that you can’t do this if the variables don’t have matching record types,
nor if they've been defined using a semi-colon.

Record Arrays

Record arrays are easy to implement and use. Taking our earlier example of
ten rectangles we can define an array to store them like this:
DIM RECORD rectRec

DIM rect%.8
DIM END RECORD .rectRec

Records 159

Reading & Writing Records to Files

DIM gMyRect.rectRec (9)
and use it like this:

elementNum% = 0

CALL SETRECT (gMyRect (elementNum%), 10, 10, 120, 120)

We then define constants to represent individual rectangles and access them
this way:

_wndR = 0

_OkBtn= 3

CALL FRAMERECT (gMyRect (_wndR))

CALL FRAMERECT (gMyRect (_okBtn))

Records used in arrays are limited to 256 bytes in size. Using records larger
than this can cause unpredictable results when reading or writing to records
in the array.

Reading & Writing Records to Files

Variables defined as record types can be written to and read from disk files by
using their names. Since the runtime already knows the total record size, it’s
not much of a chore. For example, to write the object record defined earlier to
disk you can do something like what's shown in Program 79.

PROGRAM 79. Writing records to disk.

LOCAL FN WriteRecord (recNum%)
OPEN “'R",1, "MyFile", _objectRec, wdRefNum%
RECORD #1, recNum%, 0
WRITE #1, myObj
CLOSE #1
END FN

This routine opens a file with the OPEN statement, sets the record position
using RECORD, then writes the record variable to disk with WRITE. Finally, the
file is a closed. We will examine these routines in more detail later in the
chapter “Files”.

To read it back into memory just reverse the process and use a routine much
like that shown in Program 80.

PROGRAM 80. Reading records from disk.

LOCAL FN ReadRecord (recNum$%)
OPEN "R",1, "MyFile", _objectRec, wdRefNum$%
RECORD #1, recNum%, 0
READ #1, myObj
CLOSE #1
END FN

160

Records

Records to Fields and Back

Again, what could be easier?

Regular Exercise

Now that we understand records better, it's time to develop the ones required
by SimpleBase. The record structure for our project can be seen in
Program 81.

In most cases the fields in this record are string variables. This was done
because most of the information we will be storing is best described by
strings, and not numbers. The two exceptions relate to the employee’s
department which we will represent using a button number, and the resource
ID of the employee picture.

The semi-colon variation of specifying a variable size was used here to define
our string fields. This tells the runtime that we want to set aside X number of
bytes for that variable, no more, no less. This means we must be careful to
check that the data we write to those fields never exceeds the length count, or
risk corrupting the variable adjacent in memory. Also, it means our actual
string length is one character less than the formatted size, leaving room for a

length byte.

PROGRAM 81. SimpleBase record structure.

' === RECORDS ======= === oo oo o o e e
DIM RECORD dbRecord

DIM dbName$;64

DIM dbAddr$;64

DIM dbCity$;32

DIM dbMyState$;4

DIM dbzip$;12

DIM dbPhone$;12

DIM dbFax$;12

DIM dbDeptNum%

DIM dbPictID%

DIM dbExtra&
DIM END RECORD .dbRecordSize

Records to Fields and Back

Once we've defined the record structure, we need some way of storing that
record info. And after the records are stored in memory, we need some way to
read the data into our edit fields and retrieve any changes for later updating.

When we first talked about records, we stated that defining a record structure
is not the same as defining a record variable. Once the structure is in place,

Records 161

Records to Fields and Back

we define a record variable using the record type (record size). For our
program we only need one record variable which we define like this:

DIM gEmployee.dbRecordSize

Where DIMRECORD only defined the record structure, this DIM statement now
sets aside memory for the employee record. This is the location where the
current active record’s information will be stored.

Not to jump ahead of ourselves, but if we assume that the gEmployee variable
contains valid employee information, we need some means of transferring
that data into the relevant edit fields of the data entry window for display. The
subroutine RecordFieldToEF in Program 82 uses the field constants created
earlier to place the data into the specified edit field.

PROGRAM 82. Record to edit field.

LOCAL FN RecordFieldToEF
01ldWnd% = WINDOW (_outputWnd)
WINDOW OUTPUT #_dbEntryWIND
EDITS (_dbNameFLD)
EDITS (_dbAddrFLD)
EDITS (_dbCityFLD)
EDITS (_dbStateFLD)
EDITS (_dbZipFLD) gEmployee.dbZip$
EDITS (_dbPhoneFLD) gEmployee.dbPhone$
EDITS (_dbFaxFLD) = gEmployee.dbFax$
EDITS (_dbPhotoFLD) = %gEmployee.dbPictID%

FN RadioButtonHandler (_programBTN, _officeBTN, gEmployee.dbDeptNum%)
WINDOW OUTPUT #0ldWnd% '
END FN

gEmployee .dbName$
gEmployee.dbAddr$
gEmployee.dbCity$
gEmployee.dbMyState$

The subroutine starts by ensuring that we’re transferring data from the
correct window using. The WINDOW function returns the current output
window, then WINDOW OUTPUT makes sure we're at the Data Entry window.
When finished with the data transfer, it resets the original output window.

Next we use the EDITS statement to replace the contents of the specified edit
or picture field with new data. There are two exceptions, the first is the
RadioBtnHandler routine. It uses the value stored in dbDeptNum$ as the
department number to set the appropriate radio button. The second
exception is the employee picture that is assigned directly, using the picture’s
resource ID.

Once the data is in the correct edit fields, it's possible (actually pretty darn
likely) that the user will modify that information. Therefore, our next step

162 Records

Records to Fields and Back

involves adding a routine to extract the new information in the proscribed
fields and place them in the correct gEmployee record fields.

Remember, earlier we defined our string fields to be a finite length. That
means we risk overwriting an adjacent field’s data should one field exceed its
length. To solve this, we add the subroutine CheckFieldLength$ that uses
the LEFTS statement to ensure that the data taken from an edit field doesn’t
exceed its field length. This routine is shown in Program 83.

PROGRAM 83. String length checker.

LOCAL FN CheckFieldLength$ (fieldID%, maxLen$)
tmp$ = EDITS (fieldIDS%)
LONG IF len (tmp$) > maxLen$
BEEP
tmp$ = LEFTS (tmp$, maxLen%)
END IF
END FN = tmp$

With our length checking routine in place, it's time to extract the data from
the edit fields and copy it into our record. The EFtoRecordField function
shown in Program 84. Note that the string length passed to CheckField-
Length$ is one less than the string’s defined length.

PROGRAM 84. Edit field to record.

LOCAL FN EFtoRecordField
0ldWnd% = WINDOW (_outputWnd)
WINDOW OUTPUT #_dbEntryWIND
gEmployee .dbName$ = FN CheckFieldLength$ (_dbNameFLD, 63)
gEmployee .dbAddr$ CheckFieldLength$ (_dbAddrFLD, 63)
gEmployee.dbCity$ CheckFieldLength$ (_dbCityFLD, 31)
gEmployee.dbMyState$ CheckFieldLength$ (_dbStateFLD, 3)
gEmployee.dbZip$ = CheckFieldLength$ (_dbZipFLD, 11)
gEmployee .dbPhone$ CheckFieldLength$ (_dbPhoneFLD, 11)
gEmployee .dbFax$ = CheckFieldLength$ (_dbFaxFLD, 11)
WINDOW OUTPUT #oldWnd$

END FN

nonou
o
2 2 2

2 2 2

Now we can deal with the string data itself. The department data is handled in
the DialogEntryWindow routine when handling button events. Whenever a
button is pushed in the Data Entry window, the program determines which
button it was and responds by calling RadioBtnHandler and then setting the
dbDeptNums field. This is shown in Program 85.We will see how to handle the
picture resource ID in a later chapter.

Records 163

Records to Fields and Back

PROGRAM 85. Handling radio buttons.

SELECT evnt
CASE _btnClick
SELECT dlgID%
CASE _newRecBTN
* skip showing others
CASE ELSE
FN RadioButtonHandler (_programBTN, _officeBTN, dlgID%)
gEmployee.dbDeptNum$ = dlgID$%
END SELECT
CASE ELSE
END SELECT

Peak Performance

While the implementation of records in FB was a welcome addition to BASIC
programmers, it doesn’t provide all of the features some people desire.
Probably the main capability records currently lack, is that of including
arrays within a record definition. While a problem, it does have a solution,
one that allows you to have your arrays in a record. To do that, we’ll borrow a
strategy used quite often by Apple when implementing various Toolbox
records. That strategy is handles.

Examine the Toolbox text edit record shown in the FB Reference manual
under TEHANDLE. Note the record field teTextH&. This handle points to the
actual text data for that field. Examine Figure 47 to see how the handle in the
TE record points to a memory address. The data isn’t stored in the record
itself, only its handle address. We can use this same technique to create and
manipulate arrays for our own records. Let’'s see how to do that.

To begin, we'll need three routines to deal effectively with our arrays: one to
create the array, one to resize as required, and one to dispose of it once we're
done. Also, we’ll want our routine to work with any type or size of array, so it

FIGURE47. From handle to data memory path.

N/ N

TeTextH& TePtr& The Ever Present
Tortured Artist
Effect
Handle Pointer Data in memory

164 Records

Creating the Array

must be flexible. Additionally, we need one little trick to pull off this array
masquerade, and that is the XREF@ statement. XREF@ will link our amorphous
handle to a more standard array structure.

With those goals in mind, let’s see how to create records that contain arrays.

Creating the Array

The size of an array depends on two conditions, the number of elements in
the array, and the size of each element. We should have some method of
defining the standard sizes. The following is a list of the major variable types
defined as constants, along with their default sizes in bytes:

_integer
_longInt
_single
_double
_string

[N

©

[R | N 1 [}
=3

256

e Note that the _single and _double size specifications are dependent on their
length settings in the Preferences dialog in FB.

Next, define a small record structure to handle the array overhead required by
our routines. It's not much, merely 10 bytes per usage, but very important to
controlling the array. The record contains three fields. The first field is the
array handle itself. The second contains the size of the array elements, be it
integer, long integer, or other. Finally, we end the record with the total count
of elements in the array. Our array record is shown in Program 86 as well as
the record variable.

With all that out of the way, it’s time to write a subroutine to create an array
handle. The routine shown in Program 87 expects three variables: a pointer to

PROGRAM 86. Array handling record structure.

DIM RECORD array
DIM elemSize$%
DIM numElemsé&
DIM recArrayH&
DIM END RECORD .arrayRecSize
DIM RECORD test
DIM testRect.8
DIM testArray.arrayRecSize
DIM 63 testsStr$
DIM END RECORD .testRecSize
DIM gTest.testRecSize
END GLOBALS

Records ‘ 165

Linking the Array

PROGRAM 87. Create record array.

LOCAL FN CreateArray (@recFieldPtr&, size%, elements&)
recFieldPtr&.elemSize% = size%
recFieldPtr&.numElems& elements&
recFieldPtr&.myArrayH& FN NEWHANDLE (elements& * size%)
LONG IF (recFieldPtr&.myArrayH& = 0) OR (SYSERROR <> 0)
BEEP : BEEP
arrayErr% = SYSERROR
END IF
END FN = arrayErr%

arecord field, the size of the elements (in bytes) in the array, and the number
of elements the array should initially contain.

The FN CreateArray routine starts by assigning the size% and elements&
parameters to the specified record field. It then creates a handle of the
calculated size (size% * elementsé&) using the Toolbox function NewHandle.
If successful, we get a valid handle back which is stored in the correct field of
the record. If the array handle comes back zero, or a system error is detected,
we set an error and exit the function. Always test the error result returned by
this function. If the error code is anything but zero, the handle wasn’t
created. Any subsequent attempt to use it will fail dismally, and probably
with assorted pyrotechnics.

« Ican’t emphasize this point enough. When using handles and pointers on the
Macintosh, always test for valid parameters before continuing with the program.
You’ll avoid a lot of programming trouble if you get into the habit of always
checking them.

We call the routine like this:

err% = FN CreateArray (gTest.testArray, _integer, 100)

Where gTest .testArray is the field in the record that needs an array. We
want integers (2 bytes each) so pass that constant, and 100 elements makes
for a nice round handle of 200 bytes.

Linking the Array

Once we have a valid handle in our record, the next step is to link it to a
common array. We do that using XREF@. XREF@ acts like a translator, linking
the defined array structure to the named handle. In this way, we don’t have to
calculate offsets into the handle to set or get information, XREFe@ does it for us.
Remember, XREF@ is a close cousin to DIVM, so we use the same syntax we
would with DIM to define the array structure. We do that like this:

166

Records

Disposing of the Array

XREF@ gTest.testArray.recArrayH% (100)

Where we use the same name as in the handle to define an integer array with
100 elements. Note the use of the % symbol to specify an integer array, just as
you would do with a DIM statement. Also note that we must use the same
name as the handle in order for the runtime to make the link between the
array and the handle.

Once the array and handle are linked, we can fill in and read values as if it
were a regular array. To fill in the 100 elements and see them you do this:

FOR count = 1 TO 100

gTest.testArray.recArrayH% (count) = count

PRINT "Array: "; gTest.testArray.recArrayH% (count)
NEXT count

As soon as data is in the array, use it like any other array structure in the
program. You can change values like this:

gTest.testArray% (23) = 333
Use arrays in calculations, or anywhere else your program requires them.
Remember, it’s just an array, use it like one.

Disposing of the Array

When finished with the array we must dispose of the handle used to store the
data. This breaks the link to the XREF@ array structure and frees up the
memory occupied by the handle for other uses. The routine to dispose of the
handle is shown in Program 88.

Again, we ensure we have a valid handle before trying to dispose of it, then
reset the handle to zero so it can’t be reused again.

PROGRAM 88. Disposing of record arrays function.

LOCAL FN DisposeArray (@recFieldPtr&)
LONG IF recFieldPtr&.myArrayH& = 0
arrayErr% = _nilHandleErr
XELSE
DEF DISPOSEH (recFieldPtr&.myArrayH&)
recFieldPtr&.myArrayH& = 0
END IF
END FN = arrayErr%

Resizing the Array
Now we come to another benefit of using a handle to create an array. By

resizing a handle we can effectively increase or decrease the number of
elements the array structure has access to. That means that as your

Records 1687

Resizing the Array

PROGRAM 89. Resizing record arrays function.

LOCAL FN SizeArray (@recFieldPtr&, .newElemCount&)
LONG IF recFieldPtr&.myArrayH& = 0
arrayErr% = _nilHandleErr
XELSE)
newSize& = recFieldPtr&.elemSize% * newElemCounté&
oldsize& FN GETHANDLESIZE (recFieldPtr&.myArrayH&)
LONG IF newSize& <> oldSize&
arrayErr% = FN SETHANDLESIZE (recFieldPtr&.myArrayH&, newSize&)
arrayPtr&.numElems% = newElemCount&
END IF
END IF
END FN = arrayErr$%

requirements for more elements grow, so can the size of your array. If
requirements decrease, the handle can be reduced to match.

The routine to resize an array handle can be seen in Program 89. The routine
requires a pointer to the record field that contains the handle, and the new
element count. The routine recalculates the appropriate size and resizes the
handle if required, using the new value.

Cooldown

That finishes our tour of records. Along the way we learned what records are,
how to create them, how to access their variables for writing and reading, and
how to write them to disk and read them back later. We also saw how easy it
is to pass record fields to an edit field for display and how to extract any new
information from the edit field.

Finally, we saw how to handle resizeable arrays within a record structure by
using handles and the XREF@ statement.

168 Records

CHAPTER 11

Files

Warm-up
This chapter introduces you to file handling on the Macintosh. In this chapter
you will learn:

¢ How Macintosh files are organized,

¢ Two methods of locating files on Macintosh volumes,
¢ How to open, close, and get information about a file,
¢ Three ways of saving and reading file data, and

¢ How to use the standard open and save dialogs.

Macintosh Files

A file is data stored on disk. Files are created by an application as an ordered
sequence of bytes on a Macintosh volume. A file can contain text, numerical
data, images, and anything else a program can organize and write to disk.

Typically, files containing user data are referred to as documents when
describing them to users. A document is any file a user can create or edit. A
document has a specific file type. A file type is a 4-character alphanumeric
sequence that describes the type of data the file contains (TEXT, PICT, or
others). Some common file types can be opened by many applications (TEXT),
while others can only be opened by the program that created them (SbDb,
used by SimpleBase files).

Files 169

Macintosh Volumes

Macintosh files contain two forks for storing information. One fork is called
the data fork, the other is the resource fork. The data fork contains the file’s
data and is accessible using standard file commands (OPEN, READ, WRITE,
CLOSE, and others). The resource fork contains file resources and is
accessible using Toolbox commands. A file can contain a data fork, a resource
fork, or both.

Resources are blocks of arbitrary amounts of data identified by a
combination of name, resource type, and ID number. Some types of resources
are common to many Macintosh applications and have a standardized format
including MENU, CODE, DLOG, ALRT, TEXT, etc. For more information on
resources, see the chapter “Resources”.

FIGURE 48. Macintosh file forks.

b |—— Data fork

Resource map

File

»| "ICON" resource Resource fork
"TEXT" resource

"TEXT" resource

Macintosh Volumes

A volume is any storage device formatted to store files created by an
application. Macintosh volumes are organized using folders. A folder is a
subdivision of a Macintosh volume that can contain files or other folders.
Folders are sometimes known as directories. Folders nested within other
folders are also known as subdirectories.

Files can be located and accessed using a variety of means. We'll describe two
common methods here: pathname and working directory reference number.

Full Pathnames

A full pathname is a series of concantenated folder names ending in a file
name. A full pathname serves to uniquely locate a file by having the
Macintosh File Manager walk a string of folder names until the file or folder is
found. The folder name and the file name are separated from each other by a
colon in a full pathname.

170 Files

Working Directories

FIGURE49. Macintosh volume design.

E Macintosh volume

Directory

— Subdirectories and
file i

A full pathname might look like this:

MACe1l:Programming :Book Programs:15.Files(02)

Where “MAC+1” is the volume name and “:Programming : Book Programs” is
the search path through two folders, and “15.Files (02)” is the file name. A
full pathname tells a file opening routine how to locate the file by starting at a
specific volume and leading it through the correct folders until the file is
found. :

Using pathnames was somewhat common in the early years of Macintosh
programming, but it does have a couple of problems on today’s machines. The
main problem is a pathname is stored as a string, so it’s limited to only 255
characters. On today’s larger hard drives folders can be buried many levels
deep and a full pathname can easily exceed the length of a string. Even small
drives can have trouble if a user assigns long descriptive folder names.
Another problem is that any folder that has been renamed in the path will
disrupt the file search totally. Figure 50 shows how a full pathname looks at
every intermediate folder until it finds the specified filename.

So, using a full pathname has some advantages, but much better solutions
are available as described in the next section.

Working Directories

A working directory reference number (WD) is a temporary reference
number that combines a volume reference number with a directory ID to
uniquely identify a folder. A working directory reference number is assigned
by the operating system when a folder is opened and remains valid only while
the folder is open. If the folder is closed and then reopened, it might have an
entirely different value assigned to it.

Files 171

File Commands

FIGURES50. Searching by full pathname.

Full pathname:
MACe1:Programming:Book Programs:15.Files(02)

- [T

I | R N B

Using working directory reference numbers, the File Manager can go directly
to a specified folder to locate a file. And since working directory reference
numbers are easy to get with standard FB commands, they are simple and
convenient to use.

For SimpleBase, we'll use the working directory reference number method of
locating files. This is the one that the FB runtime supports and probably the
one you should use in your own programs. Figure 51 shows the search path
using just the filename and WD reference number. Note the lack of jumps
between folders.

FIGURE 51. Searching by filename and working directory.

Filename: 15.Files(02)
WD number: -35766

||||||nmaum| WD l

-

File Commands

FB contains several statements and functions that make creating and
managing files quick and easy. Let’s discuss each one before adding any file
handling code to SimpleBase.

Opening a File
The standard statement for opening any file is OPEN. Opening a file called
“Fred” for input looks like this:

OPEN "I", #fileID%, “Fred”, 1, wdRefNum%

172

Files

File Permissions

The OPEN statement requires five parameters. These parameters include the
file permission, the file ID number, a filename, a record size, and a working
directory reference number. The last two parameters, record size and WD
reference number can be optional, although I strongly suggest you always use
the WD number.

TABLE 8. File Privileges.

METHOD ACCESS PERMISSION

I (input) read-only

O (output) write-only

A (append) write-only

R (random) exclusive read/write

N (network) shared read/write
File Permissions

There are five methods described in Table 8 for opening a file. These methods
determine how the OPEN statement in a program can interact with a file.
Which method you use will be determined by what you are trying to
accomplish with the file. For example, if you only need to read a text file you
might use “I” (input). To write it back out to disk use the “O” (output)
method.To open a file using write permission do this:

OPEN “0O", #fileID%, “Fred”, 1, wdRefNum%
And, to open a file with shared read/write permission use:

OPEN "N", #fileID%, “Fred”, 1, wdRefNum%

Data vs. Resource Forks

Since there can be two forks associated with a file (data and resource), the
OPEN statement also lets you open either file fork. In almost all cases, you will
open the data fork. However, in rare circumstances you may need to open the
resource fork. Once a file fork is open, this is where data will be read from
disk using INPUT#, READ#, READ FILE# and written back to disk using PRINT#,
WRITE#, or WRITE FILE#.

You specify which fork to open by appending a “D” (data) or an “R” (resource)
to the access mode parameter. By default, if no fork is specified, the data fork
is assumed. For example, to open the resource fork of a file do this:

OPEN "IR", #fileID%, “Fred”, 1, wdRefNum%

Files 173

The fileID%

We will only deal with a file’s data fork in this chapter. While it’s possible to
access the resource fork using the OPEN statement I don’t recommend it
unless you have a very firm grasp of how a resource fork is organized.
Fumbling around a file’s resource fork is guaranteed to corrupt a file beyond
redemption. In later chapters we'll describe how to access a file’s resource
fork safely using standard Resource Manager calls.

The fileID%

The next parameter OPEN expects is the fileID% (or deviceID%) itself. A
fileID%is a positive integer limited by the maximum open files setting in the
Preferences dialog. A deviceID% is normally negative and refers to a serial
port or other device. We will only deal with fileID%s here.

Whenever FB opens a file, it allocates space for a file information buffer. A file
information buffer is simply a block of memory reserved by FB for holding
file information. This information includes the file size, type, creation and
modification dates, as well as other information.

The number of files a program can have open at one time is limited to the
number of file buffers allowed. Choose Preferences from the Edit menu to
reset the maximum number of open files FB can handle at one time. The limit
is 99. Increasing the open file limit increases the amount of space allocated
for file buffers, so don't set it unnecessarily high.

Filenames

The filename$ parameter is normally an individual file name, but can be a
full or partial pathname containing volume and folder names, as well full a
file name. See the “Full Pathnames” section for a complete description of
pathnames.

Record Length

The recordLength parameter is used to specify the maximum size of an
individual record contained within a file. A default length of 256 bytes is
assigned by the runtime if a record length is not specified in the OPEN
statement. You can safely leave this parameter blank if the data you are
reading or writing doesn’t have a default length.

Working Directory ID

The final parameter is the wdRefNumg. This is an integer value that uniquely
identifies a folder in a particular volume. See the “Working Directories”
section for additional details. It's the easiest method to use in FB and our
preferred method for opening files in folders.

174 Files

Getting the File Size

Getting the File Size

Once a file is open, it’s possible to determine its size using the LOF function.
Given a fileID%, LOF returns the size of the file fork opened with the OPEN
statement. Here is an example of getting a file size (for the data fork):

OPEN “"I", #fileID%, filename$, , wdRefNum%

fileSize& = LOF (fileID%, 1)

PRINT "The file "+filename$+" contains ";fileSize&;" bytes."

CLOSE #fileID%

The second parameter in LOF is used to specify arecord length. When given a
value of 1 (as shown above), it returns the byte count of the specified file fork.
When given any other value, it returns a result that is the file size divided by
that value. This comes in handy when dealing with records. For example, if
we have a file that is 300 bytes in size and each record has a length of 60
bytes, LOF will return a count of five records.

To get the size of a file that contains both a data and a resource fork (as do
SimpleBase files) use the subroutine shown in Program 90. It automatically
opens and closes both file forks, getting the fork size each time, and
returning the total size to the subroutine caller.

PROGRAM 90. Get real file size using OPEN.

LOCAL FN GetFileSize& (fileID%, filename$, wdRefNum%)
OPEN "ID", #fileID%, filename$, , wdRefNum%
dataSize& = LOF (filelID%, 1)

CLOSE #fileID$%
OPEN "IR", #fileID%, filename$, , wdRefNum%
rsrcSize& = LOF (fileID%, 1)
CLOSE #fileID%
END FN = dataSize& + rsrcSize&

Setting File Positions

Once a file is open, we use the RECORD statement to position the file pointer
within the file. A file pointer is the position in the file where the next read or
write operation will start. RECORD is very flexible when it comes to setting the
file pointer.

RECORD requires three parameters, the £ileID$, a recordID&, and a
bytePos%. The £ileID% identifies which open file to operate on, the
recordID& identifies the record position from the start of the file (if you're
using records), and bytePos% specifies a byte offset from the start of the
record. Thus, to specify byte 14 in record 125 in file 3 we can do this:

RECORD #3, 125, 14

Files 175

Getting File Positions

FIGURE52. Positioning the file pointer.

RECORD fileID%, recordID&, bytePos$
RECORD fileID%, 1 , 4

'

HNEEEEEEEEEEEEE

! 1 1

Record =0 Record = 1 Record =2

You can see how this works in Figure 52, when a file is opened which
containsrecords 6 byteslong. We use RECORD to position the file pointer to the
fourth byte of the first record.

e Note that by default in FB, record zero is a valid record.

Getting File Positions

Often, you will need to determine the file pointer position to know which
record or byte offset in a record it is reading from. Use the REC and LOC
functions to return this information.

To determine the record number where the file pointer is currently
positioned, use the REC function like this:

recordID% = REC(fileID%)
To get the byte offset within the current record, use the LOC function:

bytePos& = LOC (filelID%)

FIGURES3. Record organization on disk.

HENEEEEEEEEEEEER

t !

Record =0 Record = 1

j

Record =2

File pointer is here

176 Files

Saving Data

Saving Data

Once a file has been opened, it’s possible to save information to disk. FB
offers you several methods of accomplishing this. The method you choose will
depend upon the data to save.

PRINT#

When it comes to writing data to disk, the PRINT# statementis the statement
of choice for most BASIC programmers. It allows them to write strings and
numbers to disk without a whole lot of trouble. PRINT#, however, as an means
of outputting data to disk is very slow. For example, to write a single string
variable to disk you can do this:

PRINT #fileID%, tmp$

Or, you can write several numbers and strings to a file like this:
PRINT #£fileID%, tmp$, myInt%, myLong&, mySp!

And, to print a dozen strings to disk as a TEXT file, use this:

DEF OPEN "TEXT??°?°?"
OPEN "0O", #fileID%, fileName$, , wdRefNum$
FOR lineCount% = 1 to 12
PRINT #fileID%, tmp$(lineCount%)
NEXT lineCount$%
CLOSE #filelID%

This example opens the file for output only (since we're only sending data to
disk), then loops through the dozen strings printing each to disk in turn. The
DEF OPEN statement specifies the file type FB will assign to the file upon
creation. We will talk more about file types later on in the “Getting the File
Type” section. '

The alter ego of PRINT# is the INPUT# statement. See the “INPUT# & LINE
INPUT#” section for more details.

WRITE #

The WRITE# statement is a faster means of writing data to disk. WRITE# sends
data to disk in the binary format used to store it in memory. The runtime
writes the data to disk without any translation, reducing the calculation
overhead and increasing output speed.

WRITE#alreadyunderstandsvariable typeslikeintegers, longintegers, single-
and double-precision variables. It also understands record types. As with
standard variables, the runtime already knows the record size and can treat it
appropriately. Just give it the variable name of a record and let WRITE# do its
job like this:

Files 177

WRITE FILE#

DIM myRecordVar .myRecordType

WRITE #fileID%, myRecordVar

The only variable type the runtime needs help with is strings. Since a string
variable can range from 1 to 255 characters, WRITE# expects you to tell it how
many characters to write to disk. This enables you to save space in a file by
reducing the length of any string written to disk to the absolute minimum. To
write a string variable simply do this:

author$ = "HEINLEIN®

WRITE #fileID%, author$;LEN (authors$)

It's important to set the string variable accurately, because if you set the
length too low, some characters will be lost. If you set it too high, WRITE#
assigns additional space characters to fill up the length. To see results of
either length error, examine Figure 54 which illustrates both problems.

The alter ego of WRITE# is the READ# statement. See the “READ#” section for
more details.

WRITE FILE #

For arrays, INDEX$, and other large data structures, neither of the previous
two statements beat using WRITE FILE# in speed. Using the WRITE FILE#
statement requires three parameters: a £ileID%, a pointer to the data, and
the number of bytes to write to disk. When executed, WRITE FILE# begins at
the specified address, reads the specified number of bytes, then writes it to
disk as a single block of data. Writing an entire 1M array to hard disk takes
less than a second on a standard Macintosh II.

Program 91 demonstrates the speed of WRITE FILE# in place of traditional
sequential methods, i.e., PRINT#. The Toolbox function TickCount returns
the number of ticks between the start of the write operation and its ending

FIGURES4. Writing strings to disk.

WRITE #1, tmp$;4
0O4|H|E| | | N | <@=———— Characters clipped at 4.

WRITE #1, tmp$;8

O8|H|E| IINJL]JE}]I|N Filler spaces
written to disk.

WRITE #1, tmp$;15 , '
O8|H|E| I'INJL|E]|I|N

178

Files

Reading Data

PROGRAM91. Writing data to disk with WRITE FILE#.

_arrayElements = 100000

DIM myArray%® (_arrayElements), endOfArray$%

myArraySize& = @endOfArray% - @myArray% (0)

OPEN "O", #1, "WRITE FILE Test", , SYSTEM (_aplVol)
startTime& = FN TICKCOUNT

WRITE FILE#1l, @myArray%(0), myArraySize&

stopTime& = FN TICKCOUNT

CLOSE #1

PRINT "Total ticks (1/60th Sec) =";stopTime& - startTime&
STOP

time. Eachtick equals 1/60th ofasecond. Tryincreasingthe_arrayElements
constant beyond its current value to see how efficient WRITE FILE# really is.

Also, notice how we calculated the size of our array, by getting the address to
the next pDI1Med variable minus the first element of the array. We did this
using the shorthand version of VARPTR (the @ sign). Since the runtime
allocates memory to dimensioned variables in sequence, the endOfArray$%
variable comes right after the array in memory position, making it easy to
calculate the array size.

Next, we open a new file and write the information in the array to disk. The
Toolbox TickCount function gives us the start and stop times which we
display at the end of the entire operation.

The alter ego of WRITE FILE# is the READ FILE# statement. See the section
“READ FILE#” for more details.

Reading Data

Once the data is written to disk, getting it back into memory is not difficult.
Mostly, it's a matter of reading the data back in using the same format as
when it was written to disk.

INPUT# & LINE INPUT #

The INPUT# statement is the statement of choice to read data back into
memory. Like PRINT#, it's a bit slow because of the string conversion
overhead, but it’s reliable and easy to use.

INPUT# is the mirror image of PRINT#. To read information from disk back
into memory, copy the save disk routine and change all PRINT# statements to
INPUT# statements. For example, to read a single string variable from disk:

INPUT #fileID%, tmp$

Files 179

READ#

To read a combination of numbers and strings back into memory, use:
INPUT #fileID%, tmp$, myInt%, myLong&, mySp!

Also, LINE INPUT# works great if you know the file you're about to read is
nothing but a collection of strings. To read a dozen strings previously saved
as a TEXT file back into memory, copy the subroutine and change the PRINT#
to LINE INPUT# like this:
OPEN "I", #fileID%, fileName$, , wdRefNum$
FOR lineCount% = 1 to 12

LINE INPUT #fileID%, tmp$(lineCount%)

NEXT lineCount$%
CLOSE #fileID%

READ#

READ# is the opposite of WRITE#, it accepts the same arguments used by
WRITE# and reads the data back into the specified variables. As before, strings
must be read using a length. And, as with PRINT# and INPUT#, create the
read subroutine by copying the save subroutine and converting all WRITE# to
READ# statements. For example, to read the same record used in the WRITE#
example, do this:

READ #fileID%, myRecordVar

To read a string back, remember to assign the same length to the string
variable used: '

READ #fileID%, author$;15
PRINT author$

which will print:
HEINLEIN

Of course, you must be sure to specify the same number of characters to read
as were previously written.

READ FILE#

READ FILE#, like WRITE FILE#, may be used to read large blocks of
contiguous, arbitrary blocks of data from disk into memory. READ FILE#
requires a fileIDS%, a pointer to where to place the data, and a byte count.

It’s important to remember that when reading disk data into memory, ensure

that you have enough space set aside to accept the data and avoid trampling
over other variables already stored in memory. A mistake here can cause all
kinds of problems.

180

Files

Setting a File Type

PROGRAM 92. Reading data from disk with READ FILE#.

_arrayElements = 100000

DIM myArray% (_arrayElements)

OPEN "I", #1, "READ FILE Test", , SYSTEM (_aplVol)
fileSize& = LOF (1,1)

startTime& = FN TICKCOUNT

READ FILE#1l, @myArray%(0), fileSize&

stopTime& = FN TICKCOUNT

CLOSE #1

PRINT “Total ticks (1/60th Sec) =";stopTime& -~ startTime&
STOP

Setting a File Type

Every file on a Macintosh has a file type associated with it. Some file types are
quite common, like TEXT or PICT, and can be opened by many applications.
Others have unique file types that are opened only by the application that
created it. To set a file type use the DEF OPEN statement.

DEF OPEN specifies both the file type and application signature of the program
that created the file. Once defined, it remains in effect until another DEF OPEN
statement is encountered in the program.

The most common way to make sure a program file has the required file type
is to define the type prior to opening the file. In SimpleBase, we do it this way:
DEF OPEN "SbDbFbSb"

OPEN "R", #1, filename$, , wdRefNum%

This ensures that any file we save always has the correct file type associated

with it.

Closing a File

Once you're finished with a file, it's always a good idea to close it until it's
needed again. The more files a program has open, the more memory required,
and the greater possibility of data loss or file corruption should a power
outage or system error occur. The best means of combating both of these
problems is to open the file, read the data required into memory, then close it
immediately.

A convenient way to close a file or other open device is to use the CLOSE
statement like this:

CLOSE #fileID%

Files 181

Open File Dialog

With use of the optional £ileID$, it’s possible to close any file, while leaving
others untouched. However, you can close all currently open files, devices, or
ports by using CLOSE without any parameter like this:

CLOSE

The RESET keyword provides the same functionality of CLOSE without the
parameters. Use it exactly as CLOSE to close all files or devices opened by the
program.

Open File Dialog

The Macintosh has always provided an uniform method of accessing a file on
disk. This method is known as the standard get file dialog. FB enables you to
access this dialog using the FILES$ _fOpen function. See Figure 55 for an

illustration of a standard get file dialog. :

FILESS accepts three parameters, the _fOpen constant, afile type string, and
a working directory reference number. The additional parameter positioned
between file types and WD number is ignored when using the _fOpen version
of FILESS. Unlike most other functions, FILESS _fOpen returns two pieces of
information, the filename and the file’s working directory reference number.

FIGURE 55.

Standard get file dialog.

Folder name

|&3 Learning FutureBASIC w]

D Buttons
D Chapter
D Dialog Events
D Edit Fields

D Events

D FB WallChart

D FrontMatter

D Index
D Intro

©MACel =

i)

—— Volume name

Click here to open selected
file or access a selected

1 folder's contents.

Click here to cancel without
selecting a file

Scrolling list of files selectable
by user.

The scrolling list that appears in the dialog will normally display all the files
in the current directory unless we limit those choices. FILESS can filter the
filenames that appear in its scrolling list by file type (TEXT, PICT, etc.). Up to
four file types can be filtered at one time. This means users don’t have to view
every file when looking to open only program files, instead, they will only see
files the program can open. For example, to see only TEXT type files in the
dialog use this:

182

Files

Getting the File Type

filename$ = FILESS (_fOpen, “TEXT", , wdRefNum$)

To see two file types, concantenate the two types into a single string variable
like this:

filename$ = FILESS (_fOpen, "TEXTPICT", , wdRefNum%)

Now the dialog will show only files of types TEXT and PICT.

Just as with anything else, check to ensure you have a valid filename before
attempting to open the file. A good way to do this is to use the LEN function. If
the user clicks the Cancel button in the FILES$ dialog, the filename will be
blank and its length set to zero.

We can test condition like this:

filename$ = FILESS (_fOpen, "TEXT", , wdRefNum$)
LONG IF LEN(filename$) > 0

‘do something with filename$
END IF

Getting the File Type

Since it’s possible to display many different file types in a FILES$ _fOpen
dialog, we need a method of determining the file type in order to properly open .
the file. We can determine a file's type using an alternate form of FILESS, one
without parameters.

Look at our last example that had a dialog that displayed both TEXT and PICT
file types. The method of reading data from each type will definitely be
different, so we need to know which type of file the user chose so that the
correct open subroutine is called. Here is one way that would read the file
type and branch to the correct opening routine:
filename$ = FILES$ (_fOpen, "TEXTPICT", "", wdRefNum$)
LONG IF LEN (filename$) > 0
SELECT FILES$
CASE "PICT" : FN OpenPICTFile (filename$, wdRefNum$)
CASE "TEXT" : FN OpenTEXTFile (filename$, wdRefNum%)

END SELECT"
END IF

Save File Dialog

Another valuable Macintosh feature is the save file dialog. This dialog
normally appears to request a filename and folder when saving a file. Unlike
the FILES$ _fOpen function, FILES$ _£Save requires all four parameters, the
_fSave constant, the message string, the default filename that appears in the
dialog, and a wdRefNum%. Figure 56 shows a typical save file dialog.

Files 183

Handling Folders

FIGURE56. Standard save file dialog.

Folder name

€3 LFB-DB folder v

T D(.tronts.bes S MAcet Volume name
0 b2.Menus t01).bas
Q p2.Menus 102).bas - . . .
D o2renus (03Lbas Click here to save the file in the
8 aus 2 . .pe
O D2 Menus 105)bas selected folder using the specified
name.

Save Program as:

Click here to close the save
dialog without saving the file.

Enter the file name to save the file
as shown here.

To specify a default filename and the save message that appears in the dialog,
you might do something like this:

filename$ = FILESS$(_fSave, "Save program as:", "Untitled", wdRefNum%)
And it would appear as shown in Figure 57.

In addition to returning the filename the user enters in the text field of the
dialog, FILESS _fSave also returns the wdrRefNum$ to the chosen folder.

FIGURE57. A modified save dialog.

& FutureBASIC™ v

& FutureBsisie S MRACe1
& PHPRD 2.D.2

@ ResEdit 2.0.1
& T8 PRD Seskio

Save file as... -

[untitied | (Ccancer)

Handling Folders

The FILESS functions provide a familiar method for a user to navigate the
volumes and folders available to them. The following functions enable your
program to navigate them just as easily as a user.

184 Files

Finding Folders

Finding Folders

Many times you will need to determine the folder where the program resides.
You can do this with the sYSTEM function. To retrieve the WD reference
number of the folder where the program is located use:

currentPgmWDRefNum$ = SYSTEM (_aplvVol)

You can locate files stored in the same folder as the program. This location is
often used by a program to store preference files. Another popular location for
storing preference files under System 6 is the System folder. To locate the
System folder use:

systemWDRefNum% = SYSTEM (_sysVol)

Under System 7, preference files should be stored in the Preferences folder
within the System folder. You can store files there using a combination of
SYSTEM (_sysVol) and a partial pathname. The search starts in the System
folder, then walks the pathname until the file is found. For example, to save a
file in the Preferences folder do this:

pathname$ = ":Preferences:My Prefs File®

OPEN *0O", #1, pathname$, , SYSTEM (_sysVol)

You can also retrieve the WD reference number of the Preferences folder using
the FOLDER function. To do that use these lines:

sysWDRe fNum% SYSTEM (_sysVol)

sysWDRefNum$ FOLDER ("', sysWDRefNum%)

prefWDRefNum% = FOLDER ("Preferences", 0)

We start by getting the System folder's WD number, switch the active
directory to it, then see if a Preferences folder exists. If the Preferences folder
exists, we get a valid WD number. If not, a zero is returned. Use this same
technique to determine if any folder already exists in the current folder. Start
by getting the current active folder:

currentWDRefNum% = FOLDER (*", 0)
And follow it with this:
foundWDRefNum% = FOLDER ("This Folder"®, 0)

Where “This Folder” represents the name of the folder to locate. If the folder
exists, foundwWDRefNum$ will return its WD reference number. If the folder
doesn’t exist, zero is returned.

Creating Folders

You can also create your own folders using the FOLDER function. FOLDER
requires two parameters, the name of the folder to create and a valid WD
reference ID where to place the folder. For example, the following line will

Files 188

Saving a File

create a new folder called “Program Stuff” in the same directory as the
program itself:

fWDRefNum% = FOLDER ("Program Stuff*, SYSTEM (_aplVol))

The program’s OPEN statements can then use the fWDRefNumg variable toread
and write files to the new folder.

Regular Exercises

Now that we know how to handle files on the Macintosh, let’s begin
implementing them in SimpleBase.

Saving a File
The first thing to do is save some employee data to disk so that it can be read
later. The pseudocode to accomplish this operation looks like this:

. Open the file

. Set the record position to write
. Write record data

. Update maximum record count

. Close file

The subroutine to handle this activity is called FN DBWriteRecord. It starts by
opening the file in “R” mode and setting the file position with RECORD. Once
thefileis open, it writes the datain the gEmployeerecord using WRITE# at the
specified record number, updates the gMaxRecInFiles$% variable using the
LOF function, and finally closes the employee file.

u s W

PROGRAM 93. DBWriteRecord subroutine.

LOCAL FN DBWriteRecord
DEF OPEN "SbDbFbSb"
OPEN “R", #gFileNum%, gFileName$, _dbRecordSize, gWdRefNum$
RECORD #gFileNum%, gRecordNum%, 0
WRITE #gFileNum%, gEmployee
gMaxrecinFiles% = LOF (gFileNum%, _dbRecordSize)
CLOSE #gFileNum$
END FN

Opening a File

After we've saved some employee data to disk, we read it back into memory by
reversing the process used to save it. The same general pseudocode describes
the entire read file operation:

1. Open the file
2. Set the record position to read

186

Files

File Handling

3. Read record data
4. Update maximum record count
5. Close file

As soon as the file is open, FN DBReadRecord uses READ# to read the record
data from disk into the global record variable gEmployee. Next, it updates the
global variable gMaxRecInFile%, then closes the file.

PROGRAM94. DBReadRecord subroutine.

LOCAL FN DBReadRecord
DEF OPEN “SbDbFbsb*
OPEN "R", #gFileNum%, gFileName$, _dbRecordSize, gWdRefNum%
RECORD #gFileNum%, gRecordNum%, 0
READ #gFileNum%, gEmployee
gMaxRecInFile% = LOF (gFileNum%, _dbRecordSize) - 1
CLOSE #gFileNum$%
END FN

File Handling

Our file handling subroutines are now in position. We still need to add calls to
them in other subroutines so that SimpleBase can become a real working
program. Let’s begin with the routines to create a new employee file.

New Employee Files

Creating a new employee file requires some setup before it’s displayed to the
user. The pseudocode to accomplish this whole operation is as follows:

. Get a name for the employee file

Clear old data from employee record

Create a new employee file

Set empty record data

Write blank record to file

Close file

. Build data entry window
Update window edit fields

The responsibility for creating a new file falls to the FN ItemNew subroutine.
The entire code to implement a new file is shown in Program 95. It starts by
getting a filename and WD reference number using FILESS. If it gets a valid
name, it clears any data from the employee record, resets the gOpenRecord%
variable to zero and calls FN DBNewDataBase.

0w Joa U B WN

The subroutine DBNewDataBase shown in Program 96 starts by assigning

some default information strings to the first few fields of the employee record.
These will be written to disk in record number zero to help identify the creator
of the file. Again, this is not required but does make it nice if you ever need to

Files 187

Opening Employee Files

PROGRAM 95. ltemNew subroutine.

LOCAL FN ItemNew
gFileName$ = FILESS (_fSave, "Save database as:", “Untitled”, gWdRefNum%)
LONG IF LEN (gFileName$) > 0
DEF BLOCKFILL (@gEmployee, _dbRecordSize, 0)
gOpenRecord% = 0
FN DBNewDataBase
DEF BLOCKFILL (@gEmployee, _dbRecordSize, 0)
gEmployee.dbName$ = "Empty record”
gEmployee.dbDeptNum$% = _programBTN
FN DBWriteRecord
FN WindowBuild (_dbEntryWIND)
FN EFRecordToEF
END IF
END FN

recover the tile trom a crashed disk. Next, the employee record containing the
info strings is written to disk with DBWriteRecord, and the gOpenRecord%
variable is incremented to point to the next record.

Upon return to FN ItemNew, the info strings are again cleared from the
employee record, new default information is assigned so that we know it's a
new record, and the first real employee record is written to disk. Once safely
on disk, the Data Entry window is built using FN WindowBuild, and the
default employee data is sent to the window’s edit fields with FN
FieldRecordToEF.

PROGRAM96. DBNewDataBase subroutine.

LOCAL FN NewDatabase
gEmployee.dbName$
gEmployee.dbAddr$
gEmployee.dbCity$
FN DBWriteRecord
INC (gRecordNum$)

END FN

Opening Employee Files
Of course, the most natural place to open an employee file is with 0pen on

the File menu. Therefore, rewrite the FN ItemOpen to look like the one in
Program 98.

"This file was created by SimpleBase"
*from the book: Learning FutureBASIC."
*Published by Sentient Fruit™e

It begins with FILES$ to get a filename and a WD reference number. If
gFileNames$ is valid, we use a DEF BLOCKFILL to erase the current information

188 Files

Saving Employee Files

in the gEmployee record. This isn’'t mandatory but I like to start with a clean
record slate anyway.

Next, the subroutine sets a couple of global variables, then calls the FN
WindowBuild subroutine to construct the Data Entry window. When the
window is built, it calls DBReadRecord to get the first record from the file.
Finally, it transfers the data in the gEmployee record to the data entry
window’s edit field using FN EFRecordToEF.

Note that none of this happens unless the user selects a valid employee file
from disk. We limit which files are shown in the FILES$ dialog by using the
file filter type SbDb.

PROGRAM 97. Revised ltemOpen subroutine.

LOCAL FN ItemOpen
gFileName$ = FILESS (_fOpen, "SbDb", , gWdRefNum%)
LONG IF LEN (gFileName$) > 0
DEF BLOCKFILL (@gEmployee, _dbRecordSize, 0)
gRecordNum% = 1
FN WindowBuild (_dbEntryWIND)
FN DBReadRecord
FN EFRecordToEF
END IF
END FN

The next place we need to read an employee record is in the FNDoRecordMenu
subroutine just before END FN and after the END SELECT statement. By placing
it here, we enable the menu items associated with maneuvering the records.
Commands like First, Last, Previous, and Next will now work. The lines of
code to do this are:

LONG IF itemID% < _iClearRec

FN DBReadRecord

FN EFRecordToEF
END IF
This sequence is repeated in several places throughout the listing. It is called
in the DialogGotoWindow, DBFindRecord, DialogEntryWindow, and
PrintManyRecords subroutines. Examine the complete SimpleBase program
in the Appendix for details.

Saving Employee Files
As with DBReadRecord, DBWriteRecordis called numerous times throughout
the program. The obvious place to look is the FN ItemSave subroutine called

Files 189

Record Creation

when Save is chosen from the File menu. The complete ItemSavesubroutine
is shown in Program 98.

FN ItemSave first determines if it has a valid filename. It clears the old data
from the gémployee record with DEF BLOCKFILL, then calls FN
EFToRecordField to return the latest version of the employee data from the
active Data Entry window. Finally, it calls DBWriteRecord to open the
specified employee file and save the new information.

PROGRAM98. Revised ltemSave subroutine.

LOCAL FN ItemSave
LONG IF LEN (gFileName$) > 0
DEF BLOCKFILL (@gEmployee, _dbRecordSize, 0)
FN EFToRecord
FN DBWriteRecord
END IF
END FN

As before, the other major subroutine that uses DBWriteRecord is
DoRecordMenu. Because we save the latest information each time the user
selects first, last, previous, or next record, either by button or menu,
DBWriteRecord gets called before reading the next record from disk. Enter
the following lines before the SELECT itemID% statement in DoRecordMenu:

LONG IF itemID% < _iClearRec

FN EFToRecord

FN DBWriteRecord
END IF
DBWriteRecordis also called from the following subroutines: WindowCapture,
DBNewDataBase, ItemNew, ItemClearRecord, and DialogEntryWindow.
Examine the complete SimpleBase program listing in the Appendix for more
details.

Record Creation

A couple of routines still need to be expanded or introduced. First, we need
some method of adding new records to the employee file. We also need some
way of changing the value of gOpenRecord% so that the menu and button
choices to move in the file actually work.

To add the same response to the New item of the File menu requires some
window trickery. We have already written it so that it creates a new employee
file, how can we change it to also create new employee records? The answer is
simple, we know that New should only create employee files ifthe Data Entry

190

Files

Navigating Records

PROGRAM 99. Revised ltemNew subroutine.

LOCAL FN ItemNew
LONG IF WINDOW (_outputWClass) = _dbEntryWIND
FN EFToEFRecord
FN DBWriteRecord
gRecNumber% = gMaxRecords$%
DEF BLOCKFILL (@gEmployee, _dbRecordSize, 0)
FN DBWriteRecord
FN EFRecordToEF
XELSE
gFileName$ = FILESS (_fSave, "Save database as:", "Untitled", gWdRefNum$%)
LONG IF LEN (gFileName$) > 0
DEF BLOCKFILL (@gEmployee, _dbRecordSize, 0)
gFileNum% = 1
gRecordNum% = 0
FN NewDatabase
DEF BLOCKFILL (@gEmployee, _dbRecordSize, 0)
gEmployee.dbName$ = "Empty record"
gEmployee .dbDeptNum$ = _programBTN
FN DBWriteRecord
FN WindowBuild (_dbEntryWIND)
FN EFRecordToEF
END IF
END FN

window is absent. But, if it’s present on the screen, we should instead create
a new record in the file. The routine to handle this is shown in Program 95.

Once this code is in place, its easy to implement from the New Record

button. Find the FN DialogEntryWindow subroutine and add a call to the FN
ItemNew subroutine in response to a button click in New Record. Just add

the line inside the SELECT d1gID% structure like this:

SELECT dlgEvnt%
CASE _btnClick
SELECT dlgID%
CASE _newRecordBTN
FN ItemNew <<-- ADD THIS LINE
END SELECT
END SELECT

Navigating Records

Finally, we need to add the means to set the gOpenRecords variable.

Files 191

Records Menu

Records Menu

The Records menu handles the majority of our gOpenRecord% manipulation.
It is here that we can quickly pick the first, last, previous, or next record
number via menu or button.

One important difference in the DoRecordMenu subroutine shown in
Program 100 has to do with record saving. We add calls to our record
handling subroutines to ensure that each record is saved before we move to
another file. For example, if the user chooses Previous, DoRecordMenu first
calls EFtoRecordField and DBWriteRecord to store the current record’s
data. It then calls the ItemPrevRecord function to change gOpenRecords,
and finishes by reading the specified record from disk with DBReadRecord
and showing it with RecordFieldToEF. Because of this, the user never has to
worry about saving data, it’s all handled automatically.

PROGRAM 100. Revised DoRecordMenu subroutine.

LOCAL FN DoRecordMenu (itemID%)
FN EFtoRecordField
FN DBWriteRecord
SELECT itemID$%

CASE _iFirstRec : FN ItemFirstRecord
CASE _iPrevRec : FN ItemPrevRecord
CASE _iNextRec : FN ItemNextRecord
CASE _iLastRec : FN ItemLastRecord
CASE _iFindRec : FN ItemFindRecord
CASE _iGotoRec : FN ItemGotoRecord
CASE _iClearRec : FN ItemClearRecord
END SELECT

FN DBReadRecord
FN RecordFieldToEF
END FN

The subroutines to handle the various manipulations of gOpenRecord% are

shown in Program 101. As you can see, they all set gOpenRecord%, but in the
subroutine ItemPrevRecordand ItemNextRecordit’s very important to make
sure we don’'t exceed the valid record boundaries and to avoid any file errors.

Find Record

Choosing Find... from the Records menu or using the Find button in the
Data Entry window enables us to search for a record in our database. As it’s
designed now, it will only search the dbName$ field of the employee record.

Let’s modify the DialogFindWindowbutton event’s section so that it looks like
that shown in Program 102.

192 Files

Find Record

PROGRAM 101. Moving through the employee file.

LOCAL FN ItemFirstRecord
gOpenRecord% = 1
END FN
LOCAL FN ItemPrevRecord
DEC (gOpenRecord$%)
IF gOpenRecord% < 1 THEN gOpenRecord% = gMaxRecInFile%
END FN

LOCAL FN ItemNextRecord

INC (gOpenRecord%)

IF gOpenRecord% > gMaxRecInFile% THEN gOpenRecord% = 1
END FN

LOCAL FN ItemLastRecord
gOpenRecord% = gMaxRecInFile$%
END FN

As you can see, we call windowClose twice, which in turn calls Window-
Capture, so let’s look at it in Program 103 to see how it works. It extracts
whatever the user enters in the Find window’s edit field into a new global
variable called gSearch$. Then, when control returns to FNWindowClose, the
Find window itself is closed. Finally, depending upon which button was
chosen, we clear the gSearchs$ for a cancel or call the DBFindRecord function
to begin the search.

PROGRAM 102. Revised DialogFindWindow.

LOCAL FN DialogFindWindow (dlgEvnt%, dlgID$%)
SELECT dlgEvnt%
' eee BUTTON EVENTS
CASE _btnClick
SELECT dlgID%
CASE _findBTN
FN WindowClose (_dbFindWIND)
FN DBFindRecord
CASE _cancelBTN
FN WindowClose (_dbFindWIND)
gSearch$ = "
CASE _ignoreCaseBTN
gCaseFlag% = FN CheckBoxHandler (dlgID%)
END SELECT
CASE ELSE
END SELECT
END FN

Files 193

Find Record

PROGRAM 103. WindowCapture’s Find window section.

LOCAL FN WindowCapture (wndID%)
closeFlag% = _true
SELECT wndID$%$
CASE _dbFindWIND
gSearch$ = EDITS (_dbFindFLD)
END SELECT
END FN = closeFlag$

DBFindRecord is a simple, sequential search routine shown in Program 104.
It starts by storing the current gOpenRecord$ value, and converts gSearchs$
to all caps if that option was chosen in the Find window. Then, beginning with
record number one, it cycles through each record in turn, using DBRead-
Record to search for a match using the INSTR function. If a match is made,
the found flag causes the routine to exit the loop, and the current record is
shown in the Data Entry window. If no match is found, the loop exits when
there are no more records to read, the original record number is restored and
read back into memory. Later, we’ll see how to add an alert to tell the user

that no match was found.

PROGRAM 104. Finding a specific record.

CLEAR LOCAL
LOCAL FN DBFindRecord
originalRecNum% = gOpenRecord%

IF gCaseFlag = _markedBtn THEN gSearch$ = UCASES$ (gSearch$)

CURSOR _watchCursor
gOpenRecord® = 1
DO

FN DBReadRecord

test$ = gEmployee.dbName$

IF gCaseFlag = _markedBtn THEN test$ = UCASES$ (test$)

found% = INSTR (1, test$, gSearch$)
INC (gOpenRecord$%)

UNTIL (found% <> 0) OR (gOpenRecord% > gMaxRecInFile%)

CURSOR _arrowCursor

LONG IF found% = 0
BEEP
gOpenRecord% = originalRecNum$
FN DBReadRecord

END IF

WINDOW #_dbEntryWIND

FN RecordFieldToEF

END FN

194 Files

Goto Record

Goto Record

Choosing Goto... from the Records menu allow us to specify which record to
view directly, without flipping through the dozens of records between where
we are and where we want to be.

PROGRAM 105. Capturing the new record number.

LOCAL FN WindowCapture (wndID$%)
SELECT wndID%
CASE _gotoWIND
gOpenRecord%$ = VAL (EDITS (_gotoFLD))
IF gOpenRecord% < 1 THEN gOpenRecord$ = 1
IF gOpenRecord%>gMaxRecInFile% THEN gOpenRecord% = gMaxRecInFile%

END SELECT
END FN

Going to a specific record starts in the DialogGotoWindow function where we
save the current record and store a copy of the current record number. Then
extract a new record number from the Goto window’s edit field using FN
WindowCapture as shown in Program 106. In WindowCapture, it’s converted
from a string into the gOpenRecord% number, then checked to make sure it
fits the current file number boundaries. Lastly, FN WindowClose closes the
Goto window.

PROGRAM 106. Going to a specific record.

LOCAL FN DialogGotoWindow (dlgEvnt%, dlgID$%)
SELECT dlgEvnt$%
CASE _btnClick
SELECT dlgID$%
CASE _gotoBTN
FN DBWriteRecord
FN EFtoRecordField
originalRecNum% = gOpenRecord$%
FN WindowClose (_gotoWIND)
LONG IF dlgID% = _gotoBTN
FN DBReadRecord
FN RecordFieldToEF
XELSE .
gOpenRecord% = originalRecNum$
END IF
END SELECT
CASE ELSE
END SELECT
END FN

Files 195

Is File There?

When control returns to DialogGotoWindow, it looks at which button was
selected. If cancelled, the code just restores the original record number,
otherwise, it reads in the specified record and displays it. The entire
subroutine to handle this is shown in Program 106.

Our file handling is complete. You should now try out SimpleBase by creating
some employee files. Save a couple and try re-opening them.

Peak Performance

To round out your knowledge of file handling here is a convenient method of
determining if a file exists in the chosen folder.

Is File There?

We finish with a small subroutine which allows you to determine if a file exists
in a specified folder. It makes use of the Toolbox function GetFileInfo to see
if the file is there. If the routine in Program 106 returns anything but a zero,
the file is missing from the designated folder.

PROGRAM 107. Does the file exist?

CLEAR LOCAL

DIM pbBlk.80

LOCAL FN FileExists% (fileName$, wdRefNum%)
pbBlk.ioVolName& = @fileName$
pbBlk.ioVRefNum% = wdRefNum%
fileMissing% = FN GETFILEINFO (@pbBlk)

END FN = fileMissing%

Cooldown

That wraps it up for files and file handling. Along the way we talked about the
various routines like OPEN, CLOSE, RECORD, POS, LOC, REC, and many more that
enabled you to not only open disk files, but gather information about them.
We also saw how to implement the standard open and save dialogs using
FILESS$ and how to get a file’s type. Finally, we saw how easy it is to add a few
reading and writing routines to SimpleBase and make it a real working
program.

196 Files

CHAPTER 12

Globals & Includes

Warm-up

Up to now, we've worked with the SimpleBase program as a single file. For
small projects this may be an ideal solution. But for larger projects, having all
your code in a single file may not make sense. In this chapter we will:

¢ Learn what global and include files are,

¢ Learn the benefits of using global files,

¢ Learn the benefits of using include files, and
¢ Learn how to use global and include files.

What are Globals?

A global file is a document that contains the definitions of all program
records, dimensioned variables, and arrays. Normally a program uses a single
global file, but can use several if required.

The most important reason to move global definitions from the main program
file to a separate global file, is to allow other program files (called includes -
which we’ll look at later), easy access to the same information without
repeating the globals in every file.

Imagine a global file to be a sheet of music. If the members of an orchestra
were each given a different music sheet, it's unlikely that they could carry a
tune when they attempted to play together. Yet if each has the same music
sheet, wonderful music is usually the result. It's the same when writing a
program. If each program file (both main and include) uses different sheets of

Globals & Includes 197

Creating a Global File

FIGURESS. Regular use of globals variables.

DIM RECORD A
DIM varA%
DIM varB&
DIM END RECORD .aRecSize
DIM rect.8
END GLOBALS

Globals are normally
defined in the main
program which makes
them accessible only by
the main program.

LOCAL FN Init
END FN

FN Init

DO
HANDLEEVENTS

UNTIL O

END

global music, it's doubtful the program will execute successfully. Yet, if each
program file executes while using the same global file, a working program is
the result.

Examine Figure 58 to see a program with global variables. Here the defined
variables can be read only by the main program. In Figure 59, we can look at
a program that has a separate globals file. As a separate file, the globals
defined there are accessible not only to the main program, but other program
files too. This ability to separate files will become even more important the
larger your programs become. Instead of redefining your global variables in
each file, you can make a single change in the globals file, and know that all
of the program files will see the change.

There’s one point to remember. The definitions used in a global file are
available to all portions of a program. Make sure that the variables and
records you define there are required by the entire program before assigning
them to the global file.

Creating a Global File

It’s not difficult to create a globals file. Just create a new document in FB and
begin entering constant and variable definitions, record structures, and
arrays. Then, save it as a TEXT file (the tokenized file format is not allowed)
using the suffix “.glbl” (case is unimportant on suffixes). This helps to
identify the file properly in the Project tool’s window.

Note, while you can dimension variables and arrays in the global file, don't try
to add data to them. The runtime uses a small subset of routines to read and

198 Globals & Includes

Accessing a Global File

FIGURE 59.

Globally available globals.

DIM RECORD A
DIM varA%
DIM varB&
DIM END RECORD .aRecSize

Globals defined in a
globals file are accessible
by both the main program
and other include files.

DIM rect.8

GLOBALS "Global A"
END GLOBALS

INCLUDE FILE "A.incl"

GLOBALS "Global A"
INCLUDE "A.incl® END GLOBALS

LOCAL FN Init LOCAL FN DoSomeThing
END FN END FN

FN Init

DO
HANDLEEVENTS

UNTIL 0

END

assimilate the definitions in the global file. Attempts to set global variables
may not work at all. Set any array values in your program’s initialization
routines during program start-up.

Accessing a Global File

Once your project has a global file, you make it available to any program file
(main or include) using the GLOBALS statement like this:

GLOBALS “"SimpleBase.glbl®

END GLOBALS

Always follow the GLOBALS statement by an END GLOBALS statement to identify
the end of global declarations in the program file. This procedure should be
followed in every file of a project that requires access to the global definitions.

Globals & Includes 199

Global File Do’s & Don't’s

Global File Do’s & Don'’t’s

Here are some general rules of advice to follow when using global files in your
projects:

¢ Do include all constant definitions, as well as globally defined DIM
variables, arrays, and record structures.

e Don't initialize any global variables in the global file. Wait to do that in
your program’s initialization routines.

¢ Do try to keep global declarations to a minimum.

e Don't forget to update include files when a new global variable, array, or
record is added or removed from the globals file.

¢ Doidentify global files with the suffix “. g1bl” so that the Project Manager
tool can display the file properly.

¢ Do remember to identify your global variables as global. The standard we
suggest is the lowercase “g” prefix on variable names. If you use something
different, make it consistent over all of your programs.

e A smuall caveat, an include file that has already been compiled must be re-
compiled before it will see any changes in the globals file. See the Includes section
Jor more details.

What are Include Files?

An include file is a program file that contains both source code and compiled
code. Remember, files can contain both data and resource forks, and an
include file has both. The data fork holds the source code and its compiled
code is stored in the resource fork. This is shown graphically in Figure 60.

FIGURE 60. Include file.

A compiled include
file contains both
source code and one
or more code
resources containing
compiled code.

An uncompiled 0101011
include file contains 0011010
only source code just
like the main file.

200 Globals & Includes

Include File Types

One reason to use an include file is speed. For example, when it comes time to
build or run your program, the compiler proceeds to compile source code into
machine code. When it encounters an INCLUDE statement in a file (whether
main or include), it opens the designated include file and replaces the single
INCLUDE statement with all of the compiled code in the include file, then
continues compiling the rest of the main program’s source code. This
insertion of already compiled code greatly speeds up the compilation process.
There is no limit to how many include files that can be used in a single

program.
FIGURE61. Inserting includes into a main program.

LOCAL FN "Alpha® AT When the compiler

o TNCLUDE statoment
™ 0010010 ,

INCLUDE "A" < it replaces it with the

LOCAL FN "Bravo" pre-compiled code

END FN "B" found in the

1101011 specified include
INCLUDE "B" i
N 1 co11110 file.

Another reason to use include files is re-usability. It's possible to write a
routine once, and then re-use it again and again in other programs.

Include File Types

There are three types of include files that FB can create. Each are identified
by a constant value that makes it easy to remember which one does what.
These constants and descriptions can be seen in Table 9.

TABLE 9. Include file types.
_Constant Description
1Tncl Creates an include file using the entire runtime package.

~apin All FB and Toolbox commands are available.
Creates an include file that uses only the mini-runtime
package. That means you are restricted to functions and

—resIncl procedures in the Toolbox as well as commands in the
Reference manual marked with the @

allIncl Creates an include file using both the mini-runtime and
- the full runtime package.

Globals & Includes 201

Include File Limitations

» Note that use of the _resincl and _allincl restricts source code statements in the
include file to Toolbox routines and those few BASIC statements understood by
the mini-runtime.

Include File Limitations

While include files offer a host of utility to the programmer, there are some
restrictions that do apply.

The 32K Limit

Include files are limited to 32K of compiled code. Due to the fundamental
design of Macintosh memory, a single compiled code segment is limited to no
more than 32K. That means, when it comes time to compile an include file, all
of the compiled code must remain within this 32K limit. If the code segment
exceeds this, you will get the following error:

Code segment too large for compiling.

Another problem manifests itself when an attempt is made to combine two
include files together. In this case, the total compiled code for both can’t be
larger than 32K. This is shown graphically in Figure 62. The individual
include files on the left each have 32K limits. However, on the right, B.Incl
now has used the INCLUDE statement to add all of A.Incl’s compiled code to
itself. This compiled combination must also stay within the segment size
limitation. If the total of both exceed 32K, you'll get an error.

A solution to this problem is to examine both files and remove, or move to
another include, any redundant or unnecessary routines until the total is less
than 32K in size. It's also possible to redirect program control using a
technique described later in the Peak Performance section.

FIGURE 62. Combining Include file limits.

BN LN
A.incl] 01010 A.incl > 01010
10101 10101
| N ‘ | 01010 |
10101
; | o1110 ; _
B.incl 10001 B.incl
01110
10001
If A.incl and B.incl do not However, if B.incl INCLUDEs
call each other, each has A.incl. in it, the combined code of
a 32K limit. both in B.incl can't exceed 32K.

202

Globals & Includes

Visibility Restricted

« This 32K limitation may be a thing of the past when the new PowerPCs arrive
since they will use a different memory management technique.

Visibility Restricted
An include file cannot see subroutines defined in another include file unless
it’'s accessed with the INCLUDE statement in the first include file. When

working on large projects, this can put almost as much of a crimp in program
development as when we only had a single source file to play with.

The problem is that when the compiler tries to compile an include file, it must
know where every subroutine used in the file exists in memory. Include files
are by definition stand-alone in nature, and a subroutine referred to in the
source code yet not found in the compilation process causes a major problem
because that code is missing. As it is now, the compiler just complains that it
can't find the referenced subroutine.

However, it's possible to overcome even this. For a method of circumventing
this restriction, be sure to check out the Peak Performance section of this
chapter.

Missing the Data

You can’t use any DATA statements in an include file. One of the restrictions
in the Macintosh design is that code resources can’t use global data
structures. FB will compile the include file without error, yet when it comes
time to run the code, data is likely to be missing. This is most evident when
using strings.

The solution is to store your data in custom resources. Or, if you must use
DATA statements, always place them in the projects main source file.

Include File Tips

Include files are often misunderstood, let’s take a moment to clarify some
points. Each addresses a specific behavior that programmers often overlook.

¢ An include file is only as current as its last compilation.

When FB compiles the source in an include file, the compiled code contains a
snapshot of the current state of all global files or include files called by the
file. Any subsequent changes made to either the globals file or the nested
include file will be invisible to the compiled version of the include file.

For example, if a global file is changed by adding, deleting, or re-arranging its
list of records, variables or arrays, the include file that calls it with a GLOBALS
statement won’t know of the changes until it has been recompiled. Plus, if an

Globals & Includes 203

Adding a Global File

include file itself calls another include file and you make changes in the
nested include, the original include won't see the changes until its been
recompiled.

¢ Compile both the main and all include files using identical COMPILE
statement setting.

One of the fastest ways to create quirky bugs in your programs is to mix and
match COMPILE statements among the main and all its include files. If the
main file uses:

COMPILE 0, _strResource_macsBugLabels

Then be sure to use the same statement in all includes called by the main
program. Like global files, it ensures that all modules in the project play with
the same sheet of global music.

One of the most common COMPILE mismatch errors is to use
_caseInsensitive in one file and not in another. This creates the very
annoying “function not found” error. However, it's easy to fix by matching the
COMPILE statements of all concerned files.

It is especially important to watch out for mixing of the following compiler
settings: _caseInsensitive, _arrayBasel or _arrayBase0, _optimizeAsInt
and _dontOptimize, and _chkRuntimeErr and _noRuntimeErrs. Any
mismatch of these settings can create subtle problems that are hard to locate.

e Always use the _strResource setting,.

As previously mentioned, code resources are not allowed to have any global
data statements. To overcome this restriction, use DATA statements in the
main program, or for strings, use the _strResource setting of the COMPILE
statement. This ensures that the compiler always saves your code resource
strings with the code itself.

Regular Exercise

Now that we understand globals and include files a bit better, let’s convert
SimpleBase into a program that uses them.

Adding a Global File
Adding a global file is pretty easy. The steps are:

1. Copy all of the global declarations created with DIM statements from
the .main document to the Clipboard.

2. Choose New from the File menu to create a blank source file.

204

Globals & Includes

Adding Include Files

3. Paste the Clipboard contents into the new file.

Save the file using the . glbl suffix for easy identification. We call ours
SimpleBase.glbl.

5. Return to the .main source file. Replace all of the global declarations
with GLOBALS “SimpleBase.glbl” just before the END GLOBALS state-
ment.

6. Save the changes made to the .main file.

Try out the new version of SimpleBase. Notice any difference? You shouldn’t.

Adding Include Files

We are going to create two include files for use with SimpleBase. The first will
be a universal include that contains all of our button, edit field, and cursor
event handlers. We separate these routines out because they are often used,
and as a separate file they will be much easier to add to other projects later.
The second include file will contain the rest of our program code. Ready? Let’s
get started.

DialogEvents.Incl

To add the universal include that contains all of the common edit field,
button, and cursor handling subroutines, follow these steps:

1. Choose New from FB’s File menu.
2. Add the following lines to the new untitled document:

INCLUDE FILE _aplIncl
GLOBALS "SimpleBase.glbl®
END GLOBALS

Save the file as DialogEvent.Incl
Open the SimpleBase file.

5. Copy the following subroutines from the SimpleBase file to the Dialog-
Event.Incl file:

FN CursorHandler

FN EFClickEvent

FN TabShiftTabEvents

FN CheckBoxHandler$%

FN RadioBtnHandler%

FN HiliteSelectedButton
FN ChangeReturnToBtn

6. Save the DialogEvent.Incl file.

Globals & Includes 205

SimpleBase.Incl

7.

Choose Run from the Compile menu. If everything is correct, the edi-
tor will translate the source into compiled code within the include file.

Return to the SimpleBase source file and remove all of the previously
mentioned subroutines. Save your changes.

That's it. We now have an include file that we can use in any program to
handle some common dialog events. To see how we call it, continue with the
next section.

SimpleBase.Incl

The biggest change is with moving the majority of our subroutines from the
main source file to an include. The following steps describe exactly how to do

this:
1.
2.

o ok W

Choose New from FB’s File menu.

On the new untitled document add the following lines:

INCLUDE FILE _aplIncl
GLOBALS “SimpleBase.glbl®
END GLOBALS

INCLUDE “DialogEvent.Incl®

Save the file as SimpleBase.Incl

Open the SimpleBase file.

Save as under the name SimpleBase.main.

Copy everything BUT the following subroutines from the SimpleBase.-

main file to the SimpleBase.Incl file:

FN BuildMenus
FN Initialize
Everything below the Main Loop section marker

Add the INCLUDE statement to SimpleBase.main at the specified loca-
tion:

END GLOBALS
INCLUDE "SimpleBase.Incl" <-- ADD THIS LINE
! =-= FUNCTIONS ----=---———mme e e o

Save your changes to both files.

Compile the SimpleBase.Incl file.

L]

If you haven’t already compiled the DialogEvent.Incl you will get an error. Just
compile DialogEvent.Incl and try again.

206

Globals & Includes

The Project Include

Now run SimpleBase.main. Does it compile a bit faster? It really doesn't, but
since the majority of code is already compiled in SimpleBase.Incl, the main file
flies when it comes time to run.

Peak Performance

As mentioned earlier, one include file can't look into the contents of another.
At least, not without some help from us. In this section we will examine one
technique of providing that access.

The Project Include

The method we will examine requires a specialized include file that I'll call
Prgject.Incl. In essence, the Prgject.Incl file contains a listing of all the
subroutines that must be globally available to the entire project, no matter
which file they reside in. It does this by indirection.

The problem with compiling an include file that is trying to access a
subroutine in another include, is that the compiler can't find the subroutine
in the include. What we need to do is trick it into finding the subroutine.
How? By providing the subroutine in the Project.Incl file. Here's how it works.

In the DialogEvent.Incl file are seven routines to handle common dialog
events. Let’s create a Prgject.Incl file that contains pointers to those
subroutines. When we add the Prgject.Incl to another file, the routines in it
become available to that file. If we add it to all of a project’s include files, they
are available to them all.

Creating a Project Include File

The code to create a project file for Simplebase is shown in Program 108. It
makes use of the FN USING statement to redirect program control to another
address in memory.

It starts like a standard include file with INCLUDE FILE, and accesses the
project’s global file with GLOBALS. After that it differs.

The next section contains all of the definitions for our globally available
functions using FN USING. We use the same names defined earlier to call the
original subroutines. Each FNUSING statement defines the exact parameters
used by the original function. For example, the function CursorHandler
expects two parameters. Our project function definition must accept the same
two parameter types. The names don’t have to match, just the type.

Globals & Includes 207

Revising DialogEvent.Incl

Each function definition also uses a global pointer variable. Program control
will be directed to the address stored in the pointer when the project
subroutine is called. Since it’s globally defined, FN USING doesn’t care where
the real subroutine resides, it just directs control to it.

PROGRAM 108. The Project Include.

INCLUDE FILE _aplIncl
GLOBALS "SimpleBase.glbl*
END GLOBALS

! -—- GLOBAL PROJECT FUNCTIONS ----—========-==-———c

DEF FN CursorHandler (cursEvtID%,dlgID%) USING gCursorPtr&

DEF FN EFClickEvent (£fieldID%) USING gEFClickPtr&

DEF FN TabShiftTabEvents (dlgEvnt%,startFld%, lastF1ld%) USING gTabEventsPtr&
DEF FN CheckBoxHandler$% (btnID%) USING gCheckBoxPtr&

DEF FN RadioBtnHandler% (lowBtnID$%,highBtnID%, setBtnID%) USING gRadioBtnPtr&
DEF FN HiliteSelectedButton (btnID%) USING gHiliteBtnPtr&

DEF FN ChangeReturnToBtn (@evntIDPtr&, btnID%) USING gReturnToBtnPtr&

Revising DialogEvent.Incl

There are a couple of things that we need to do to the DialogEvent.Incl. We
start by changing all of the function names to the project names. For
simplicity, I just precede each function name with a lowercase “p” for project.
Then, at the bottom of the file, add the lines of code shown in Program 109.

Essentially, these lines use the @FN statement to get the address of the
specified subroutine and place them into the global values we used with the
Prgject.Incl file. These lines are executed each time the program runs and they

provide the critical link to access the project subroutines.

PROGRAM 109. Revised DialogEvent.Incl.

' --- SET PROJECT ADDRESSES —-------===-=-=-m-mme

gCursorPtr& = @FN pCursorHandler
gEFClickPtr& = @FN pEFClickEvent
gTabEventsPtr& = @FN pTabShiftTabEvents
gCheckBoxPtr& = @FN pCheckBoxHandler
gRadioBtnPtr& = @FN pRadioBtnHandler
gHiliteBtnPtr& = @FN pHiliteSelectedButton
gReturnToBtnPtr& = @FN pChangeReturnToBtn

208

Globals & Includes

Revising SimpleBase.glbl

Revising SimpleBase.glbl
Revising the Simplebase.glbl file just requires that we add the necessary

global pointers defined in the Prgject.Incl file to it. This ensures that every file
that uses the global file will see the pointers, and allow them to access the

working subroutines stored at that memory address.

PROGRAM 110. Revised SimpleBase.glbl.

! --- DEFINE PROJECT ADDRESS POINTERS ---=--=-=—==—-—=--

DIM gCursorPtr&

DIM gEFClickPtr&
DIM gTabEventsPtr&
DIM gCheckBoxPtr&
DIM gRadioBtnPtr&
DIM gHiliteBtnPtr&
DIM gReturnToBtnPtr&

Understanding Project Includes

So what happens when we make a call to a project available function? The
entire sequence is graphically shown in Figure 63.

Each include file has added the Prgject.Incl file to it, and each makes a call to
its locally defined FN USING statement. The FN USING statement accepts the
parameters required by the subroutine that does the work, and then passes
control to the address specified by its global pointer value. At that address
(which can be anywhere in program memory) is the working subroutine. The
working subroutine does its thing with the parameters, then returns control
to FN USING, which passes control back to the calling routine. To the calling
routine it looks as if the original project subroutine performed the task.

FIGURE63. The calling sequence.

SimpleBase.Incl

FN A calls the locally
I::'» DEF FN CursorHandler () USING gCursorPtré& defined FN Cursor-

Handler included in

LOCAL FN A the Project.Incl file.

FN CursorHandler (dlgEvnt$%, dlgID%)
END FN

FN CursorHandler
in turn calls the
globally available

DialogEvent.Incl

LOCAL FN pCursorHandler () < FN pCursorHandler
END FN to perform the actual
work.

Globals & Includes 209

Understanding Project Includes

Multiple project include files are possible within a single project. It's even
better to have several small project includes instead of one single humongous
one. Why? Because each project include is added to EVERY file that uses it,
the code can get duplicated many, many times. By keeping the project include
small, your other include files can have room to grow without feeling cramped
in their 32K limit.

Cooldown

In this chapter we discussed ways of extending a program from one file to
many. We started with describing global files and how to implement them in
all of your programs. We followed globals by describing include files, and their
strengths and weaknesses. We showed how it’s possible to use them to
increase the pace of program development and allow you to re-use code in
different projects. Finally, in Peak Performance we showed how to access
subroutines in different include files using a Prgject.Incl file.

All-in-all, a busy chapter, but one that will serve you well as your pro-
gramming projects grow in size and complexity.

210 Globals & Includes

CHAPTER 13

Resources

Warm-up

This chapter introduces you to resources. In it you will learn:
¢ What resources are,

¢ How to use ResEdit to create resources,

¢ What pointers and handles are,

¢+ How to implement resources in your programs, and

¢+ How to manipulate external resource files.

What are Resources?
A resource is a structured form of data stored in the resource fork of a file.

Resources are grouped into resource types. Resource types are 4-character
alphanumeric identifiers that uniquely identify a resource’s data structure.
Some common resource types include CODE, MENU, CURS, DLOG, WIND, etc.
These resource types are known as standard resources since their format
has been defined by Apple. You are not restricted to using standard
resources, instead, you can also design custom resources for your programs.

Remember that a file can consist of a data fork, a resource fork, or both.
Normally, applications consist entirely of resource forks while program data
files are stored in file data forks. There are, however, exceptions to every rule.
Alook at the FutureBASIC Extras file shows that it's made up entirely of
resources. Regular source code files saved as text are exclusively data.

Resources 211

‘What are Resources?

Source files that have been compiled as include files contain both data and
resource forks.

A program can have any number of resource files open at one time. The
system resource file is always the first one opened by an application and
consists of all resources stored in the System file. The next resource file
opened by a program is its own application resource fork. Additional
resource files can be opened under both program and user control depending
on the nature of the program.

Resource files are always searched in the reverse order of their opening. An
application that has opened an external resource file will look for a resource
in: the external resource file, the application, and finally the system
resources. There are some Toolbox calls that enable you to manipulate this
search order. We'll see how to use them later in the chapter.

FIGURE 64. Resource file search order.

Search order When an application looks
External for a resource, it searches
Resources itself, then the system
resources.
gpeglcl)ﬁggg g%%t%arggg If the appl!cation opens a file
to access its resources, the
search begins in the external
System System file, then itself, then the
v Resources Resources system.

You access resources using Toolbox calls. A resource can be referenced using
a name, an ID number, or its type and index number. Many common FB
commands allow you to open resources easily. Examples include the MENU,
SOUND, and STR# statements. Other resource types can be accessed using
standard Toolbox routines like FN GetResource.

Resources have attributes associated with them. Resource attributes
determine how the resource will be dealt with by the Resource Manager.
These are described in Table 10.

212

Resources

ResEdit

TABLE 10. Resource attributes.

Attribute Explanation

—resPurgeable Marks the resource as purgeable from memory
should the Memory manager need to make room.

—resProtected Prevents the resource from being changed by other
resource modifying calls.

—resChanged Marks the resource as changed.

—resPreload Marks this resource for loading immediately after the
resource file it resides in is opened.

—resSysHeap Identifies which heap (application or system) the
resource resides in.

_resLocked Locks a resource in memory so that it can’t be
purged.

ResEdit

The most often used resource editing program is ResEdit. Originally designed
for internal program development at Apple, it has since been distributed
worldwide for the benefit of programmers everywhere. While it does have a
quirky interface, and lacks some useful features, it provides a good overall

capability for creating and designing resources both standard and custom

resources. 1

Understanding ResEdit is an entire journey in and of itself. There is not
enough room in this book to detail all the ins and outs of ResEdit. If you have
additional questions, check out the bibliography in the back of the book.

I can only give you a few guidelines and point out the most hazardous areas,
but the major warning I give is this:

Danger, Will Robinson!
Always work on a copy of the
file you are modifying.

I can’t say this enough. Because ResEdit works in strange and mysterious
ways to manipulate resources, you court trouble working on any original file.

1. An even more full featured resource editor called Resorcerer® can be obtained from
Mathemsaesthetics, Inc. at 617.738.8803.

Resources 213

A Quick Tour

A power fluctuation, a cat running across your keyboard, an errant key press,
a spilled drink, all of these and more can cause you to lose an entire file
you've just spent hours editing. One error in any resource and it’s bomb city
the next time you attempt to use it. So be careful.

If you forget to do this, don’t say I didn’t warn you.

A Quick Tour

For a quick tour of ResEdit you'll need to have it loaded on your disk. It's
available on disk #3 of the FutureBASIC package. If you haven't already done
so, take a minute and load it onto your hard disk. Come back when you're
ready after booting up ResEdit.

To open aresource file in ResEdit, select 0pen from the File menu. ResEdit
will display all files and folders on your disk, including invisible files in the
open file dialog. Select the file you wish to view and click the Open button.

While ResEdit will attempt to open any file, it can’t directly edit files that only

contain a data fork?. ResEdit will ask if you want to add a resource fork to
any file that doesn’t have one. In most cases you should say “No” unless you
really mean to add resources to the file.

Once a file is open, you'll see a resource picker window like that shown in
Figure 65 displaying all of the resource types in the file. A picker window is
simply a window that enables you to view and select resources within the file
in icon format. Use the Uiew menu to display any of the picker windows in
either icon or type order.

FIGURE 65. Application resource picker window.

E] SimpleBase.rsrc ==—0

7 The application picker

B I = [window displays all of
the resource types
— currently present in the
DITL ~ MBAR MENU resource fork of the

open file or application.

=T The The

a = quick qurck .
H: s brown brown Double click any icon to
PICT STR* styl TEXT open that resource's

picker window.

=]k

2. Resorcerer® allows you to edit both the resource and data forks of a file.

214 Resources

Custom Editors

FIGURE66. ALRT resource picker window.

O

Tl
s ([l

ALRTs from SimpleBase.rsrc =
Size

The resource picker
window shows all of
the resources of the
indicated type.

Name

Shown in this picker
window is the ID
number, size, and
name of ALRT
resources.

To view a particular resource type, double-click on the icon for that resource
type. For example, a double-click on the ALRT icon opens the ALRT resource
picker window shown in Figure 66. As you can see, there are several
individual ALRT resources in this file, each identified by a unique resource ID
and shown with its size and name. A resource ID is an integer value used to
identify a certain resource of the specified type. Again, you can change this
picker view to display the resources in icon, ID, name, or order in the file. A
double-click on any particular resource ID will open the ALRT custom editor.

Custom Editors

ResEdit wouldn't be of much use if you couldn't easily edit certain resource
types, so it contains over 60 custom editors. These allow you to create and
manipulate such diverse resources as MENU, WIND, DLOG, DITL, PICT, ALRT,
cicn, ICN#, CURS, STR, STR#, TEXT, styl, and a host of others. Custom editors
have been created both by Apple and by resourceful people in the
programming community who just couldn’t wait for Apple to release more.

For example, by double-clicking on ALRT ID 1 (a standard ALRT resource
supplied by FB), it opens the custom ALRT editor window shown in Figure 67.
Note that it allows customizing of the ALRT resource including its size, its
color, and which DITL resource it uses for its items. In addition, you can click
on the alert shown in the small mini-screen within the window and move or
resize it with the mouse.

Adouble-click on the small ALRTin the mini-screen will open the DITL (dialog
item list) custom editor which allows you to move, add, rename, or delete the
actual items in the ALRT resource. The DITL editor can be seen in Figure 68.

Resources 215

Custom Editors

FIGURE 67. Custom ALRT editor window.
E[]=————— ALRT ID = 1 from SimpleBase.rsrc
- Fhe . R RIS S Biscu Color: @ Default The ALRT
v O Custom editor enables
you to

o 1|

customize any
ALRT resource
to best suit
your program's
requirements.

Note the floating palette containing the items that can be placed in an ALRT or

DLOG resource.

ResEdit has many custom editors. We'll cover most of the common ones in
later chapters as we deal with specific resources. However, there is a general
order you can follow that enables you to create resource files and add any
type of resource your program needs. Let’'s see how to do that.

FIGURE 68. Custom DITL editor for ALRT #1.
E[=== DITL ID = 1 from SimpleBase.rsrc
AD I&
AI &
A2 Ii
A3 Ii

Button

X Check Box

@ Radio Button

Control

The DITL editor enables you to customize the items
inside any ALRT or DLOG resource. The palette on the
right enables you to add new items to ALRTS or DLOGS.

T: Static Text

Edit Text

N\ Icon

b Picture

User Item

216

Resources

Creating Resources

Creating Resources

Once you have a resource file open, it’s time to create a program resource file.
Create a new resource file by choosing New from the File menu. At the save
dialog, enter the name for the file, in our case “SimpleBase.rsrc”, and click on
the Save button. ResEdit creates the resource file in the chosen folder, then
displays an empty resource picker window.

Once we have a resource file open, it's simple to add any type of resource a
program requires. Start by choosing Create New Resource from the
Resources menu. The resource type window that appears shows a scrolling
list of all the templates for resource types ResEdit can create. Click on a
resource type, or enter its 4-character specifier, then click 0K. ResEdit will
open its picker window, create a resource of the requested type, and open its
editor for you.

Deleting Resources

Deleting resources once they have been created is easy. Simply select the
individual resource to delete and choose Clear from the Edit menu. You can
delete individual resources from within the resource picker window, or an
entire resource type from within the application picker window.

Remember that some resources have partners. For example, both ALRT and
DLOG resources have DITL resources associated with them, TEXT resources
normally have styl resources attached to them. When deleting an ALRT or
DLOGresource be sure to delete the orphan DITL resource too. It’s not hard to
locate orphaned DITL resources, they’ll have the same ID number as the ALRT
or DLOG resource just deleted. TEXT resources will also have a styl resource
with a matching ID number.

Getting File Information

Another feature ResEdit has is the capability of viewing and changing both file
and folder information. This information is normally only accessible to your
programs using either GET FILE INFO or the Toolbox function GETFINFO. You
can view this information by selecting Get File/Folder Info... from the File

menu and opening a file or folder, or by selecting Get Info for This File
(where This File is replaced by the currently active file name) from the File
menu.

For example, in Figure 68 we can see the file information from a sample file. It
contains the file name, status, its type and creator, some special system
settings, the file creation and modification dates, the size of both file forks,

Resources 217

Pointers and Handles

FIGURE 69. File information dialog.

E[J=—————Info for SimpleBase.rsrc =r————1|
Fie: OLocked
Type: ‘E Creator:
[JFile Locked [J Resources Locked File In Use: Yes
[Printer Driver MultiFinder Compatible File Protected: No
Created: [Sat, Oct 23,1993 | Time:|22:00:32 |
Modified: [Sun, Oct 24,1993 | Time:|12:27:33 |

Size: 14198 bytes in resource fork
0 bytes in data fork

Finder Flags: @ 7.8 O 6.0.%

[Has BNDL CINo INITs Label:| None v|
[shared X Inited [Invisible
[J stationery [Alias [use Custom Icon

and the special Finder flags. Normally, the System takes care of handling all
of these settings so you don’'t have to. The only ones we'll play with are the
Type and Creator fields. We'll see how to do that in a later chapter.

Pointers and Handles

One of the common things you hear about when dealing with resources is
pointers and handles. While the actions of pointers and handles may at first
seem overwhelming to the weekend programmer, it isn’t.

Pointers

A pointer is a nonrelocatable block of memory that contains a memory
address. The address contains the pointer data. Once created, a pointer never
moves in memory, making it possible to locate the data simply by reading the
pointer address.

Creating and Disposing of Pointers

You can create a pointer using the Toolbox command FN NewPtr. It accepts
size value and returns a pointer to a non-relocatable block of memory of the
size requested. For example, to create a pointer that will hold a RGB color
record (6 bytes), do this:

rgbPtr& = FN NEWPTR (_rgbColor)

218

Resources

Accessing Pointer Data

FIGURE70. How a pointer works.

0002040 —>

.

A pointer contains A block of data.
the address to a
block of data.

N\

When finished with a pointer, be sure to dispose of it to free memory for other
activities. To dispose of our color pointer do this:

osErr = FN DISPOSEPTR(rgbPtr&)

Accessing Pointer Data

You can use the standard PEEK LONG or PEEK WORD to read data from a pointer’s
data block. For example, read an integer value like this:

data% = PEEK WORD (dataPtr&)

or long integer data like this:

data& = PEEK :LONG (dataPtr&)

Or use the record reading method with a single dot and an offset like this:
data% = dataPtr&.none%

and this:

data& = dataPtr&.none&

Note that the constant offset _none equals zero, enabling us to read the first
two or four bytes of data from the data block. By changing this field offset
using a different constant (even ones unrelated to the actual data stored in
the block) we can read further into the data block like this:

data& = dataPtr&.bottom&

Which returns a long integer six bytes into the pointer’s data block.

Handles

A handle is a pointer to a pointer. In other words, a handle is a pointer (a
memory address) that points to a non-moving master pointer (a second
memory address) that in turn points to the data. Since a handle’s block of
data is relocatable, the Memory Manager can move location at certain well
defined times. Whenever it moves the data, it updates the master pointer with
the new address, ensuring that it always points to the block of data.

Resources 219

Creating and Disposing of Handles

FIGURE 71. How a handle works.

7 2
0126680 |——| 0002040 +—>V///

Z
A handle contains The pointer contains A block of data.
the address of a the address to the
pointer. handle’s block of data.

Creating and Disposing of Handles

You can create a handle using the Toolbox command FN NewHandle. It
accepts a size value and returns a handle to a relocatable block of memory of
the size requested. For example, to create a handle to a RGB color record (6
bytes), do this:

rgbH& = FN NEWHANDLE (_rgbColor)

When finished with a handle, be sure to dispose of it to free up memory. To
dispose of our color handle we can do this:

osErr%$ = FN DISPOSEHANDLE (rgbH&)

Accessing Handle Information

You can retrieve information from a handle using a couple of methods. First,
you can manually use PEEK LONG to navigate the handle and pointer
addresses, like this where:

dataPtr& = PEEK LONG (myHandle&)

Returns the data address stored in the pointer. This method of accessing
handle data via the pointer is known as de-referencing. For example, to read
an integer from the handle’s data block do this:

data% = PEEK WORD (dataPtr&)
and:
data& = PEEK LONG (dataPtr&)

returns a long integer. We can adjust the offset from the data block’s starting
address to read further into the data like this:

data& = PEEK LONG (dataPtr& + offset&)
An alternate method for reading handle data is to use the double-dot record
reading format and let the runtime do the work. This enables us to read the

data directly without confusing ourselves with PEEK LONGs and PEEK WORDS.
For example, this returns an integer:

data% = dataHandle&..none$%

220 Resources

Using Program Resources

And this returns a long integer from the data block:

data& = dataHandle&. .none&

Using Program Resources

The method of choice for accessing our program’s resource file is to use the
RESOURCES statement. RESOURCES allows us to use our program’s resource file
from within the editor during program development, and neatly bundles the
file with our final application when we build it.

The RESOURCES statement will do the following for us:

In the editor while developing a program it:
« Opens the resource file for quick access by the program, and
« Closes it when we quit testing our program

When building an application it:
» Copies all program resources to the final application,

» Assigns the creator and file type specified to the final application, and
» Ensures that a SIZE resource is added to the application

It’s the RESOURCES statement that makes it easy to use ResEdit to create
program resources like alerts, dialogs, strings, icons, pictures, etc. and use
them from within the editor during program development and testing. All it
needs is the name of the resource file to use:

RESOURCES "SimpleBase.rsrc"

Additionally, the resource file must be in the same folder as the program’s
source code. Since most projects are naturally grouped into a folder to use the
Project Manager tool, this shouldn’t present a problem.

Using External Resources

Using resource files external to the application is a bit different. There is no
single statement that handles all the complexities of dealing with external
resource files. An external resource file is one that will be opened by a program
and its resources read, updated, deleted, or added as required. ResEdit is the
epitome of this - it's sole purpose is to manipulate the resources of other files.

When it comes to dealing with resource files the only way to do so is using the
Macintosh Toolbox. While FB makes it easy to use sound, pictures, strings,
and icons with built-in commands, accessing other resources requires
Toolbox commands from the Resource Manager.

Resources 221

Opening & Closing Resource Files

Opening & Closing Resource Files

Opening an external resource file is made simple by using USR OPENRFPERM.
This function accepts the same parameters returned by FILESS, a filename
and a WD reference number, as well as a permission setting. In turn, it
returns a resource reference number that is used to manage the resource file
while it's open. For example:

rsrcRef% = USR OPENRFPERM (filename$, wdRefNum%, perm%)

Will open the specified file’s resource fork. The types of file access permission
include: read only (_fsCurPerm), write only (_fsWrPerm), exclusive read &
write (_fsRdWrPerm), shared read & write (_fsRdWrShPerm), and whatever
permission is allowed (_fsCurPerm). Normally, I use _fsCurPerm unless I
have a specific objective in mind, like listing all DLOG resources in the file.
Then I would use _fsRdPerm instead.

When finished with a resource file, close it using the resource reference
number obtained from USR OPENRFPERM like this:

CALL CLOSERESFILE (rsrcRef%)

Managing Several Resource Files

We mentioned earlier that an application can open multiple resource files.
And since we need to search them to open specific resources, it’s obvious that
we need some commands to allow us to manage those open files.

Why do we need to do this? Well, since each resource file contains its own list
of resources, its possible that many of them may conflict in resource ID. For
example, imagine that we want to open the PICTresource in FB containing its
about picture which happens to have a resource ID of 258. But what if the
System has an identically numbered PICT resource? Both resource forks are
open. Which PICT resource should the Resource manager open?

The answer is, whichever one it finds first. If the application’s resource fork is
searched first, the correct about picture will be shown. However, if the System
is searched first, the wrong one will appear. As you can see, it can be very
important which resource file is accessed. The following commands will help
you do that.

CurResFile

Amethod of managing several resource files is to use the rsrcRef% associated
with each resource file. For example, to get the resRefNum$ of the current
resource file use FN CurResFile like this:

currentResRefNum% = FN CURRESFILE

222 Resources

UseResFile

UseResFile

Since every time we open a resource file we get a rsrcRef% in return, we can
use that to manage the order of our resource search. For example, if we need
to search the System resource fork before the applications, just do this:

systemResRefNum% = {_sysMap}
CALL USERESFILE (systemResRefNum%)

HomeResFile

To locate the resource file where a particular resource comes form, use FN
HomeResFile. When given a handle belonging to a resource, it returns the

resource’s file rsrcRef%. Assuming that we have a valid resource handle, do
this:

myResRefNum% = FN HOMERESFILE (resourceH&)

Creating a Resource File

Creating a file with a resource fork is something you might need to do. This
task falls to the Toolbox call CreateResFile and is implemented like this:

CALL CREATERESFILE (fileName$)

It creates a blank resource file containing no data in its resource fork. Once
our file has a resource fork, the commands in the next section allows you to
add, delete, or change the resources inside.

Adding & Deleting Resources

There is only one command for creating a resource and that’s FN
AddResource. FN AddResource requires four pieces of information from us in
order for it to successfully add a new resource to a file. It requires a handle to
the data to store the resource in, a resource type, a resource ID, and
optionally, a name. For example, if we had a handle it would be possible to
save it as a resource like this:

CALL ADDRESOURCE (hndl&, resType&, resID%, resName$)

Where resTypes&is any 4-character alphanumeric converted to alonginteger.
It's possible to do this using:

resType& = CVI("PICT")

or use the shorthand method of:

resType& = _"PICT"

This can be combined in the AddResource call like this:

CALL ADDRESOURCE (hndl&, _"PICT", resID%, resName$)

Resources 223

RmveResource

RmuveResource

When it’s time to remove a resource, use the procedure RmveResource. All
that it requires is a valid resource handle as an argument. For example, to
dispose of a PICT resource do this:

aboutH& = FN GETPICTURE (258)
CALL RMVERESOURCE (aboutH&)

ReleaseResource

The ReleaseResource command enables you to dispose of aresource handle,
freeing up the memory it occupied. Don’t use this unless you are absolutely
sure you're done with the resource. To release a resource just pass it a
resource handle like this:

CALL RELEASERESOURCE (resH&)

DetachResource

Finally, we come to DetachResource. You will find this command very useful
with resources. Since a resource is linked to its resource file, you can't use
the resource if the file isn’t open. However, if you detach the resource’s handle
from the associated file, you can safely close the file and continue to use the
resource. To detach a resource from its resource file do this:

CALL DETACHRESOURCE (resH&)

Getting Resources

Many of the standard resource types have their own calls to access them from
a resource file. We'll see how many of them work in later chapters. However,
in this chapter we'll deal with one that SimpleBase’s employee record must
deal with, pictures. The Toolbox call we favor is FN Get Picture. But there are
several other methods of accessing a specific resource: by resource type and
ID, by type and index position, and type and name.

GetPicture

FN GetPicture returns a handle to the specified PICT resource. A PICT
resource contains a recorded series of QuickDraw commands to reproduce
any image you might want to display. For example, to open FB’s about picture
and display it on the screen we can just do this:

pictH& = FN GETPICTURE (258)
PICTURE (10,10), pictH&

224

Resources

GetResource

GetResource

For more general resources, we can use FN GetResource. FN GetResource
requires a resource type and a resource ID in order to locate the correct
resource. To open the same about picture with GetResource, do this:

pictH& = FN GETRESOURCE (_"PICT", 258)
PICTURE (10,10), pictH&

GetIndResource

However, if we absolutely knew that the PICT resource we wanted was the
fifth of seven PICT resources we could also do this:

pictH& = FN GETINDRESOURCE (_"PICT", 5)
PICTURE (10,10), pictH&

GetNamedResource

And finally, if the PICT resource has a name associated with it we could have
done this:

pictH& = FN GETNAMEDRESOURCE (_"PICT", “FB About")
PICTURE (10,10), pictH&

Regular Exercise

We just covered a lot of information on resource files and resources. Now let’s
add some resource file support to SimpleBase.

Before we begin, we need one global variable. This variable will contain the
handle of the current employee picture being displayed. Add the following line
to the SimpleBase.glbl file:

DIM gPictH&

The employee pictures themselves will be saved in the resource fork of the
employee file as common PICT resources. Each PICT resource will have a
resource ID that matches the employee record number. I.e., employee record
#1 will use a PICT resource with an ID of 1 also.

Creating an Employee File

Out first order of business is to add a resource fork to our newly created
employee file. To do that, we modify the DBNewEmployeeFile subroutine as
shown in Program 111 to first open a blank file with the standard OPEN
statement, close it, then add a resource fork to the same file using
CreateResFile. That's all there is to it. The rest of the subroutine remains
the same.

Resources 225

Reading Employee Pictures

PROGRAM 111. Revised DBNewEmployeeFile subroutine.

LOCAL FN DBNewEmployeeFile
FN DBBlankRecord
DEF OPEN "SbDbFbSb"
OPEN “O", #1, gFileName$, , gWDRefNum$%
CLOSE #1
CALL CREATERESFILE (gFileName$)
gOpenRecord% = 0
gEmployee .dbName$
gEmployee.dbAddr$
gEnmployee.dbCity$
FN DBWriteRecord
INC (gOpenRecord$)
END FN

"Created by SimpleBase, from the book:*
"L,earning FutureBASIC: Macintosh BASIC Power"
"By Sentient Fruit™®

Reading Employee Pictures

The routine to read our employee pictures is called ReadEmployeeGraphic
and can be seen in Program 112. It begins by using USR OPENRFPERM to get a
resource reference ID to the resource fork of the employee record. If the ID is
valid, we next check to see if the currently open employee record has a picture
associated with it. If the employee record does have a matching picture, the
subroutine disposes of the previous picture handle with DEF DISPOSEH.

Next it uses FN Get Pictureto read the employee’s picture into memory and
check to make sure we got it. It uses the EDITS function to display the picture
in the picture field of the Data Entry window. Then, it detaches the picture
resource from the employee file with Detachresource and closes it using
CloseResFile.

Finally, we add calls to the ReadEmployeeGraphic from both the
RecordFieldToEF subroutine and the _wndRefresh section of the
DialogEntryWindow function.

Adding Employee Pictures

When it comes time to add an employee picture to an employee file we use the
SaveEmployeeGraphic shown in Program 113.

It begins by opening the employee file with USR OPENRFPERM. If it has a valid
resource reference number, it checks to see if a PICT resource already exists
using the gOpenRecord$ ID number. If one does, it deletes it from the
employee file. This ensures that the latest image is always stored to disk.

226

Resources

Adding Employee Pictures

PROGRAM 112. ReadEmployeeGraphic subroutine.

LOCAL FN ReadEmployeeGraphic
resRef% = USR OPENRFPERM (gFileName$, gWDRefNum%, _fsCurPerm)
LONG IF resRef% <> _nil
LONG IF gEmployee.dbPictID% > _nil
DEF DISPOSEH (gPictH&)
gPictH& = FN GETPICTURE (gEmployee.dbPictID%)
LONG IF (gPictH& <> _nil) AND (FN RESERROR = _noErr)
EDITS (_dbPhotoFLD) = &gPictH&
CALL DETACHRESOURCE (gPictH&)
END IF
END IF
CALL CLOSERESFILE (resRef%)
END IF
END FN

Next, it adds the picture handle stored in the global variable gPictH& using
AddrResource, then sets its purgeable bit using SetResAttrs. It's marked as
changed with ChangedResource, and WriteResource immediately saves it to
disk. We detach the new resource from its home file using DetachResource
and close the employee file.

Finally, we add a call to the SaveEmployeeGraphic from the EFtoRecord-
Field subroutine.

PROGRAM 113. AddPicture2File subroutine.

LOCAL FN SaveEmployeeGraphic
resRef% = USR OPENRFPERM (gFileName$, gWDRefNum%, O0)
LONG IF resRef% <> 0
LONG IF gEmployee.dbPictID% > _nil
tmpH& = FN GETPICTURE (gOpenRecord$)
IF tmpH& THEN CALL RMVERESOURCE (tmpH&)
CALL ADDRESOURCE (gPictH&, _"PICT", gOpenRecord%, "")
CALL SETRESATTRS (gPictH&, _resPurgeable%)
CALL CHANGEDRESOURCE (gPictH&)
CALL WRITERESOURCE (gPictH&)
CALL DETACHRESOURCE (gPictH&)
END IF
CALL CLOSERESFILE (resRef%)
END IF
END FN

Resources 227

DATA Arrays

Peak Performance

Resources are a Macintosh creation and their diversity and usefulness can’t
be over emphasized. What follows is a method of translating those old DATA
statements into modern custom resources.

DATA Arrays

Many people still insist that the only safe means of storing static program
data is in DATA statements. This method does have some benefits, like the
ability to modify them directly in the program’s source code and it’s a bit
easier to understand. But, the drawback of this method is that the arrays
themselves can waste vast amounts of static memory, even if they’re never
used!

What's the solution? Move the information into custom resources. The
benefits include: your information will only occupy memory when you need it,
it's flexible, and it can be read into and saved out to disk much faster.

For demonstration, let’'s imagine that we have an integer array of 10,000
elements. We need these pre-calculated values to calculate the trajectory of a
falling leaf. By having them in memory we can speed up the time it takes to
calculate a solution. In the old days, we might have been done something like
this:
DATA 10, 5, 6, 3, 23, 89, 97, 3001, 89, 1002
DATA 23, 45, 67, 34, 56, 32, 53, 102, 76, 432
and so on for 10,000 values. When it came time to execute the program, the
user waited while all of those DATA statements were read into an array like
this:
FOR count% = 1 TO 10000

READ leaf% (count%)
NEXT count$
Which essentially took the information stored in the DATA statements and
made it useful to the programmer in an array.

Custom Resources

Now let’s take that same array and save it as a resource. To start, read the
information into the original array just like before, only this time, we're going
to grab it and store the entire array into a resource using the ArrayTo-
Resource function shown in Program 114.

228 Resources

Custom Resources

PROGRAM 114. ArrayToResource subroutine.

LOCAL FN ArrayToResource (@arrayPtr&, arraySize&, resType&, resID%)
resH& = FN NEWHANDLE (arraySize&)
LONG IF (resH& <> 0) AND (SYSERROR = _noErr)
osErr% = FN HLOCK (resH&)
BLOCKMOVE arrayPtr&, [resH&], arraySize&
osErr% = FN HUNLOCK (resH&)
CALL ADDRESOURCE (resH&, resType&, resID%, “")
CALL SETRESATTRS (resH&, _resPurgeable%)
CALL CHANGEDRESOURCE (resH&)
CALL WRITERESOURCE (resH&)
CALL RELEASERESOURCE (resH&)
END IF
END FN

The ArrayToResource function accepts four parameters, a pointer to the
array to store, it’s calculated size in bytes, a resource type, and a resource ID
number. With these it creates a handle using FN NewHandle, locks it from
moving, and then uses BLOCKMOVE to transfer the array to the handle. Then, it
unlocks the handle, and uses AddResource to store it as a resource. Finally it
makes sure the resource is made purgeable, marks it as changed, writes it to
disk, and releases it from memory. For example, to save our leaf array we
might have called it like this:

FN ArrayToResource (leaf%(0), 20000, _"leaf", 128)

Then, when it comes time to read it into memory again, just use the

ResourceToArray function. It does exactly the opposite. It gets the described
resource with GetResource, locks it, and uses BLOCKMOVE to copy the handle
contents to the array. It then unlocks and releases the handle from memory.

PROGRAM 115. ResourceToArray subroutine.

LOCAL FN ResourceToArray (arrayPtr&, resType&, resID%)
resH& = FN GETRESOURCE (resType&, resID%)
LONG IF (resH& <> 0) AND (FN RESERROR = _noErr)
osErr% = FN HLOCK (resH&)
BLOCKMOVE [resH&], arrayPtr&, FN GETHANDLESIZE (resH&)
osExrr% = FN HUNLOCK (resH&)
CALL RELEASERESOURCE (resH&)
END IF
END FN

Resources 229

Custom Resources

As you may have guessed, using this technique makes loading in a large
array nearly effortless. Combine this technique with the XREF@ statement to
link a handle with an array structure, and you have the makings of a truly
dynamic array.

Cooldown

Well, while that finishes our initial discussion on resources, our tour is far
from over. In this chapter we learned what resources are, saw what they’re
made of, learned how to create them, read them, and save them. We learned
how ResEdit helps us to create, design, and manage our program resources.

We also went over pointers and handles and why they’re important. Then, we
learned how easy it was to add a resource fork to any file, and how to safely
add and read PICT resources from our employee file.

With all this new resource knowledge, it’s time to look at some other resource
types, and see how to create and use them in SimpleBase.

230 Resources

CHAPTER 14

Alerts

Warm-up

This chapter introduces alerts. In it you will learn:
¢ What alerts are,

¢ How to use the four standard alerts,

¢ How to create custom alerts, and

¢ How to implement alerts in programs.

What are Alerts?

Alerts are special windows that contain informative text, controls, icons, and
pictures. They normally report an error or provide warning to the user of a
possible problem. Alerts can also play a sound or contain a message that
requires a user’s acknowledgment before a program takes action.

A common alert in FB is the alert that appears when the user tries to close a
file that hasn’'t been saved. The save alert can be seen in Figure 75.

As you can see, this alert contains all of the features previously mentioned. It
has a text message, displays an icon, and contains several buttons that the
user can choose among. The user’s response determines the fate of the file in
question.

Alerts normally provide a default button (identified by a 3-pixel shadow)
which indicates the default desired action for the alert. The default button
should never encourage users to execute actions which may cause a loss of

Alerts 231

What are Alerts?

FIGURE 72. FutureBASIC's standard save alert.

This icon provides a visual clue to the user that caution
should be used when responding to this alert.

Save changes to “Untitled” before l
Clearing?

(bon’t save) [cCancel) I

Message which requests
a response from the user.

User clicks here to User clicks here to User clicks here to
close the file cancel the close save the file.
without saving it. action and return to

the document.

data. Many users seldom read the text of an alert, so a default button that
would perform an irreversible action is not a good idea.

For example, the save alert above has a default button which saves the file’s
data. If instead, the default button was the Don’t Save button, it might cause
immense anxiety to the user when they throw away a file containing a full
days work. Always err on the side of data safety and your users will love you.

TABLE 11. Alert function calls

Icon displayed: Calling function:
FN ALERT (alrtID, 0)
none The simplest alert call, it shows an alert box without
any specific icon.

FN NOTEALERT (alrtID, 0)

The note alert is used to provide information to the
user or ask a simple question with multiple responses
possible (Yes or No).

FN CAUTIONALERT (alrtID, 0)

Use the caution alert when the possible action may
have undesirable results (such as losing data) if it’s
allowed to continue.

FN STOPALERT (alrtID, 0)

Use a stop alert when a problem or situation is so bad
that the requested action cannot be completed.

G| >

232 Alerts

Default Alerts

FIGURE73. Standard stop alert.

W

Default Alerts

There are four alert icon variations possible simply by using different Toolbox
calls. These four alert functions are described in Table 11.

The default ALRT resources shown in Table 12 are always bundled with a
compiled application. This enables you to use them during program
development and still take advantage of them in the final application without
having to re-create them. Each is designed to provide for a common alert
situation requiring a response from the user, be it a simple acknowledgment
or multiple choice option.

Each alert has a different default button to tailor the alert to a specific
situation. A simple notice will probably need just an 0K button. A dangerous
alert situation may require both an 0K and Cancel button to give the user a
choice of actions.

For example, to display ALRT resource #3 as a STOPALERT you would do this:
item = FN STOPALERT (3, 0)

which is shown in Figure 75 when executed.

FIGURE 74. Standard alert with custom text.

The open file:
Fred.file
is missing a record!

Would you like to look for it?

Adding custom text to the alert allows you to customize the alert for multiple
situations without bulking up your application with even more alert
resources. You add text to an alert (or dialog) using the PARAMTEXT call. CALL

Alerts 233

Default Alerts

PARAMTEXT accepts up to four string variables (maximum of 63 characters
each) and places them into global memory.

When displayed, the alert checks its static and editable text fields to see if
they contain any ~n symbols (where nranges from O to 3 exclusively). If one is
found, the alert then replaces each “nwith the appropriate string. String one
alwaysreplaces the ~0 marker, string two replaces the ~1 marker, and soon.
Thus, we can replace our previous plain vanilla alert with one that describes
the reason for the alert like this:

AS$ “The open file:*

B$ = "Fred.file"
C$ = "is missing a record! *
D$ = "Would you like to look for it?*

CALL PARAMTEXT (A$, BS, C$, D$)
item = FN STOPALERT (3, 0)

Which would appear as shown in Figure 75.

TABLE 12. Default ALRT resources.

Default alerts: Explanation
E é This is the tst line of text
i b the nd e o o ALRT #1 — this basic alert only
This is the 4th line of text seeks acknowledgment of a user
request.
This is the 1st line of text
This is th
Thie I the Sed line of tont ALRT #2 —this alert allows the user
This Is the 4th line of text to cancel the requested action.
(Ccancet) [ok]
Tois Is the st line of text ALRT #3 —This alert has the same
This is the 3rd line of text Setup as ALRT #2 but the button
Thisls the 4th fine of tewt names may be more suitable for
C e) (e) some situations.
This is the 1st line of text
e e 200 e o et ALRT #4— a modified ALRT #3
This is the 4th line of text where the default action is to cancel
Com) C&) the user request.

234 Alerts

The Save Alert

There are a couple of other default specialty ALRT resources that you can use.

The Save Alert

Another alert included with the runtime package is the save dialog as shown
in Figure 75. If the user has changed the information in a document and not
saved the changes, use the save dialog when the user tries to close the
document or quit the application. It asks the user if they want to Save,
Cancel, or Don’t Save the changed document.

FIGURE 75. Standard save alert.

c save changes to “Untitled” before

Clearing?

(Den’t save]) ([Cancel)

The buttons return the following values: Save (1), Don’t Save (2) and Cancel
(3) so your program can respond appropriately whichever one is chosen.

The General Alert

The general alert provides an quick way of presenting general messages to the
user without designing a special ready-made alert. You can pass it one string
of information using the PARAMTEXT call. This makes it a great debugging tool
for presenting alert messages during program development. Also, this a plain
alert, so jazz it up using NOTE-, CAUTION-, or STOPALERT icons when calling it.
The code to implement the alert in Figure 75 is shown in Program 116.

PROGRAM 116. General alert procedure.

tmp$ = "An example alert message that tells the user something important.®
CALL PARAMTEXT (tmp$, ", "“, "v)
item = FN NOTEALERT (132, 0)

FIGURE76. Standard generic alert.

An example alert message that tells
g the user something important.

Alerts 235

Creating an ALRT Resource

Creating an ALRT Resource

Here are the steps used to create a custom alert. Open ResEdit and then open
the SimpleBase.rsrc file we created in the last chapter. Select Create New
Resource from the Resources menu. When the resource type window
appears, select ALRT in the scrolling list or enter ALRT into the editable field.
Click OK. ResEdit creates a new blank ALRT resource in the SimpleBase.rsrc
file and opens the ALRT/DLOG editor window shown in Figure 77.

The first thing to do is resize the ALRT using the small black handle in the
mini-screen display, or just enter a size in the fields provided. After that, open
the DITL editor by double-clicking on the ALRT window in the example
screen to start adding buttons and other items.

The DITL editor provides a floating palette containing drag-off objects that
can be used in an ALRT or DLOG resource. See Figure 78 for a brief look of the
palette tools.

As soon as you are done positioning all of the objects in the DITL editor, close
the editor windows and save your work. Later in the chapter we'll see how we
create several alerts for our program.

You can modify an ALRTs behavior as an alert box. When it appears, which
button is the default one, and when will it beep. All of that is taken care of in
the Set ‘ALRT’ Stage Info dialog under the ALRT menu item. Figure 79

shows the ‘ALRT Stages dialog with all of its options.

FIGURE 77. ALRT/ DLOG editor window.

E[J=——— DL0G ID = 128 from LFB test.rsrc DV—0————|
=] i g [0==m]
o] o O o e [N
2
tlll Edil Besource Window Color: @ I]efault
‘ QO Custom
DITL 1D:

X Initially visible

X Close box

236 Alerts

Alert Constants

FIGURE 78. DITL floating palette tools.

Push button [® suwen | Click and drag an object
Checkbox button [5 creek o tool off the floating palette
Radio button | @ Radio Button oqto the DITL editor

Custom control [@ control window.
Static text box

Double click on any

Editable text box object in the DITL editor
Icon image (ICON) to view and set that

Picture image (PlCT) 1. Picture object’s information.
Custom user item User Item

FIGURE79. Set ‘ALRT Stage info dialog.

‘ALRT' Stages

Alert box Default button Sounds
X visible @ 0K QO Cancel
X visible @® 0K QO Cancel
X visible |[@ 0K O Cancel
M visible [@ 0K QO Cancel

Regular Exercise
Now that we understand alerts better, let’s add a few to SimpleBase.

Alert Constants

There are three alerts we will use in SimpleBase: the about, field data too
long, and no match found. The constants to define them are shown below:

_aboutALRT = 128
_twoLongALRT = 129
_noFindALRT = 130

About Alert

We've mentioned the About window many times, but so far haven't done a
thing with it. Well, now’s the time. Here we'll create an alert window that will
be used as our About window. It will viewable by the user when they select
About SimpleBase... from the & menu.

Alerts 237

About Alert

For SimpleBase, our About window will consist of a plain alert window that
contains two items: a visible picture (from a PICT resource), and an invisible
button positioned outside the boundary of the alert.

To start, create a picture in a graphics program, select it with the marquee
tool and copy it to the clipboard. Open the SimpleBase.rsrc file with ResEdit.
Choose Paste from the Edit menu. The graphic will be pasted into the file as
aPICTresource. Ifit’s the first one in the file (it should be at this point), it will
have a resource ID of 128.

Following the steps described earlier, create an alert. Stretch its size out a bit
larger than what'’s needed, then double-click on the alert window to open the
DITL editor. From the floating palette, drag a push button onto the alert.
Position it well down in the lower-right corner of the window as shown in
Figure 80. This is the hidden button. Don’t worry about naming it since the
user will never see it anyway.

FIGURE 80. Hidden button in About.

=] DITL “about” 1D = 128 from SimpleBase.rsrc =5

Simplebase

An Employes Database

Sentient Fruit

P.O.BOX 13362 « TUCSON = AZ 85732-3362

Next, drag the PICT object into the alert. Position it near the top-left of the
window. Double-click on it to open the object editor. Enter the PICTID in the
Resource 1D text field and set the Enabled checkbox, then close the object
editor. You should see your about picture scrunched into the picture object.
Make sure the PICT object is selected and choose Use Item’s Rectangle
from the DITL menu. Reposition for the best appearance and close the DITL
editor.

Resize the alert in the mini-screen until the push button is completely hidden
and the alert is neatly centered in the window. Then from the ALRT menu,

choose Set ‘ALRT’ Stage Info. At the dialog, set all of the alert stages to zero.

Finally, save your work, the About window is now done. Return to FB and
open SimpleBase.Incl. Find the FN ItemAbout subroutine and enter the code
shown in Program 117.

238

Alerts

Text Too Long

PROGRAM 117. ltemAbout alert code.

LOCAL FN ItemAbout
item% = FN ALERT (_aboutALRT, 0)
END FN

Text Too Long

Create a new ALRT for the “text too long” error. Use the same methods
described for the about alert, create an alert that looks like the one shown in
Figure 81 with a single 0K button and a static text field. When done, save your
work.

The obvious place to place our “text too long” error message is within the

CheckFieldLength$ subroutine. Replace the generic alert code with the
custom alert code shown in Program 118.

FIGURE 81. Text too long alert.

[ECI= 0iTL 1D = 129 from SimpleBase.rsrc =

fThe text enceeds the manimum |
'Iength allowed in a record field.

Some characters will be deleted i—t— Statictext=3

to make it fit. "

(oK 3—1— Push button = 1

ICON image =2

PROGRAM 118. Text too long code.

LOCAL FN CheckFieldLength$ (fieldID%, maxLen%)
tmp$ = EDITS(£ieldID%)
LONG IF LEN (tmp$) > maxLen%
item% = FN ALERT (_tooLongALRT, 0)
tmp$ = LEFTS (tmp$, maxLen$)
END IF
END FN = tmp$

Find Failure

The final alert we need to add informs the user of an unsuccessful search
when the Find menu item of button is used. It's a variation on the text too long
alert. Since PARAMTEXTallows us to customize our alert messages, we'llbeefup
the standard “No match found” message using ParamText to add gSearchs$
and gFileName$ using a the ~0 and ~1 markers.

Alerts 239

Find Failure

To create the alert, duplicate both the ALRT and DITL resources numbered
129. Next open the DITL editor and change the static text item to what is

shown in Figure 82. Note the use of the ~0 and ~1 markers to show where the
custom text will be inserted. When done, save your changes.

To implement this alert, find the DBFindRecord function and replace the
LONG IF/END IF action block with the lines shown in Program 119.

FIGURE 82. Find was unsuccessful alert.

E[J== DITL ID = 130 from SimpleBase.rsrc =—

Unable to find “~0” in the

employee database “~1”,

Statictext =3
|
(__ ok _3—1— Push button = 1
n
ICON image =2

PROGRAM 119. Find unsuccessful alert.

LONG IF found = 0
CALL PARAMTEXT (gSearch$, gFileName$, “©°, ")
item% = FN ALERT (_noFindALRT, 0)
gOpenRecord% = originalRecNum$
FN DBReadRecord

END IF

240 Alerts

Find Failure

Peak Performance

Closely related to alerts are their big brothers, dialogs. Dialogs are covered
very well in the FB Handbook, but only on a one-to-one basis. For this dialog
you write one subroutine, for that one a different one. Wouldn't it be nice if you
could write one dialog handling subroutine and modify it to use different
dialogs? Sure it would, and here’s how to do it.

A major stumbling block to writing our universal dialog handler is the fact
that each dialog has different items associated with it. How can we write one
dialog handler that deals with them all? To accomplish that, we're going to re-
use @FNand FNUSING to direct program control to the correct subroutines for
each dialog. We're also going to create three template routines that our dialog
handler needs.

Let’s recap how functions work very briefly. The runtime expects you to define
a function before it’s called in the program. If you call a function that hasn’t
been defined, an error occurs. In Figure 83 you can see that FN Two is defined
after FN One. Thus FN Two can successfully call FN One, but FN One can’t call
FN Two because of its location in the program.

FIGURE 83. Normal functions in action.

LOCAL FN One (num}) - When normally using a function,
INC (num%) the function being called must
END FN = nums be defined before it is called.
Lorclﬁ;%m: Eg"One (num%) = Inthis case FN One is defined
END FN before it is called by FN Two.

Now, we saw in the chapter “Globals & Includes” how we could use @FNto get
the address of any function in memory, and we saw how we could use that
address with FN USING to jump to that subroutine, no matter where it was
located in a program. We're going to do the same thing here.

FNUSINGneeds two pieces of information. It needs a template definition to tell
it what parameters it should accept, and it needs the address of another
subroutine. Since the template controls the parameter list, and since a
parameter list can’t be changed once the template is defined, FN USING is
stuck with those same parameters. However, it is not stuck with a static
subroutine address. Change the address and you can call different routines
that accept identical arguments.

Alerts 241

Find Failure

FIGURE 84. FN USING in action.

LOCAL FN OneTemplate (num%)
END FN = num$

LOCAL FN Two (num%, templatePtrs) <«
num% = FN OneTemplate USING templatePtr&; (NUMY)
END FN

LOCAL FN One (num%) -

INC (num%¥) .
END FN = num$ FN USING lets you call any function

based upon its address in memory.

FN Two (1, @FN One)
In this case, when FN Two is called it
calls FN OneTemplate, but the address
in templatePtr& re-directs program
control to FN One.

Examine the code in Figure 84, it shows how this works. Any call to FN Two
invokes FN USING to call the FN OneTemplate definition. But, the address FN
USING calls can be any subroutine in the program, in this case FN One, that
accepts the identically assigned parameters. Every time FN Two is called, we
send it the address of the subroutine we want FN USING to execute.

To see exactly how this works with some working code, see the example in
Program 121. It uses different addresses to enable a single subroutine to
return three different results. By passing the address of FN DoAdd, FN
DoSubtract, or FN DoMultiply with @FN, FN Math can return a variety of
numerical results.

Let’s recap, the general requirements of creating subroutines that can handle
multiple branching are:

1. A template function to define the parameter list.
2. A FN USING statement that calls the template.
3. A subroutine address that will do the work.

242 Alerts

Handling Multiple Dialogs

PROGRAM 120. Multiple subroutine program example.

LOCAL FN MathTemplate (num%) ‘<<-- our template subroutine
END FN = num%
LOCAL FN Math (num%, templatePtr&)

num% = FN MathTemplate USING témplatePtr&; (num$)
END FN = num%
LOCAL FN DoAdd (num%)

INC (num%)
END FN = num$%

LOCAL FN DoSubtract (num%)
DEC (num%)
END FN = num%

LOCAL FN DoMultiply (num%)

num% = num% * num%
END FN = num$
num% = 2
WINDOW 1
PRINT “Add: ";FN Math (num%, @FN DoAdd)
PRINT "Sub: ";FN Math (num%, @FN DoSubtract)
PRINT “Mul: ";FN Math (num%, @FN DoMultiply)
STOP

Handling Multiple Dialogs

Now that we've seen the basic workings, let’s apply it to a universal dialog
handler. There are the five basic actions required to effectively handle a
custom dialog:

Get the dialog resource.

Do any initialization and setup before showing the dialog,.
Handle events while the dialog is active.

Do any clean-up work when finished.

Close the dialog.

We'll start by defining three basic template subroutines which each of our
dialogs will need. One is the routine for pre-processing (Step 2), one for event
processing (Step 3), and one for post-processing (Step 4) of the dialog. Each
requires slightly different parameters and are defined in Program 121.

AR

Each of these template routines tell the runtime the type and number of
parameters that should be passed to the working subroutine. For example, FN
PreProcessTemplate only requires a pointer to the dialog to work, while FN

Alerts 243

Handling Multiple Dialogs

PROGRAM 121. Dialog processing routines.

LOCAL FN PreProcessTemplate (dlogPtr&)

END FN

LOCAL FN EvntProcessTemplate (dlogPtr&, itemHit%)
END FN

LOCAL FN PostProcessTemplate (dlogPtré&)

END FN

EvntProcessTemplate requires both a dialog pointer and the number of the
item clicked on in the dialog.

« As you might have noticed from our earlier example, the pre- and post-processing
Jfunctions could actually use a single template routine since they both accept a
single long integer, but for clarity we’ll just define both.

Once the templates are defined, it’s time to write the dialog handling routine
that will control multiple dialogs. As you can see in Program 121, the
complete FN HandleModalDialog is a bit complex but follows our five steps.

Notice the addition of five parameters to the dialog handling function. The
dlogID%is obvious, it’s the resource ID of the DLOG resource to open. itemID$
is the button ID that we'll use as a flag to close the dialog. The next three
variables, preProcessPtr&, evnt ProcessPtr&, and post ProcessPtré, are the
addresses to the three processing subroutines that will handle the dialog.

The subroutine opens the DLOG resource specified by dlogID%, then checks
to ensure we have a valid pointer and sets our port to the dialog itself. Next, it
uses FNUSING to call the specified pre-processing subroutine. Notice the LONG
IF check to ensure that we have a valid subroutine address. Some dialogs

may notrequire any pre-processing, so this simple check allows us to skip FN
USING if it’s not needed.

Next, we enter a standard DO/UNTIL loop with MODALDIALOG inside. Here we
also check for a valid event-processing pointer before calling that subroutine.
When itemHit$ is less than or equals itemID%, control drops out of the loop
and any post-processing is taken care of before closing the dialog and
resetting the original port.

The final item to take care of is to actually write the subroutines used by each
individual dialogs for processing. Since each dialog will have its own unique
requirements, you’ll have to determine which ones are needed, and write
them yourself.

244

Alerts

Handling Multiple Dialogs

PROGRAM 122. Multiple dialog handling function.

CLEAR LOCAL
LOCAL FN HandleModalDialog (dlogID%, itemID%, preProcessPtr&,—
evntProcessPtr&, postProcessPtr&)
dlogPtr& = FN GETNEWDIALOG (dlogID%, 0
LONG IF dlogPtr&
CALL GETPORT (originalPorté)
CALL SETPORT (dlogPtr&)
LONG IF preProcessPtré&
FN PreProcessTemplate USING preProcessPtr&; (dlogPtr&)
END IF
DO
CALL MODALDIALOG (0, itemHit$%)
LONG IF evntProcessPtr&
itemHit% = FN EvntProcessTemplate USING evntProcessPtr&; -
(dlogPtr&, itemHit%)

zTrue)

-

END IF
UNTIL itemHit% <= itemID%
LONG IF postProcessPtr&
FN PostProcessTemplate USING postProcessPtr&; (dlogPtr&)
END IF
CALL CLOSEDIALOG(dlogPtr&)
CALL SETPORT (originalPorté&)
END IF
END FN

Handling Multiple Dialogs

Cooldown

In this chapter we've discussed what alerts are, examined the various types,
and seen how to use several standard ones included with every application.
We also took the opportunity to add several important alert notices to
SimpleBase so that the user would be kept informed of program activity.

246 Alerts

CHAPTER 15

Strings & Text

Warm-up

The information presented in this chapter provides all of the tools you need to
become a text importing and exporting expert. In this chapter you will learn
how to:

¢ Read and save STR resources,
¢ Read and save STR# resources,
¢ Read and save TEXT and ZTXT resources, and

¢ Move INDEX$ arrays to and from resources and edit fields.

STR Resources
A‘sTR ’resource (don’t forget the space) contains a single Pascal formatted

string with up to 255 characters. STR resources are useful for individual
string items unrelated to others in a program.

Creating STR Resources

You create a STR resource by choosing Create New Resource from the
Resource menu and selecting STR from the list of available resource types.
Click the OK button and a new STRresource is created. Once it’s created, use
the STR editor shown in Figure 85 to enter up to 255 characters into the
string.

Strings & Text 247

Reading a STR Resource

FIGURE 85. Editing a STR resource.

E[J=——= STR ID = 3000 from SimpleBase 1.00 |

theStr SimpleBase
Data $L

=<

Reading a STR Resource

Reading a STR resource requires a few Toolbox Resource Manager calls to
open and manipulate the resource. These are shown in Program 123 as a
function designed specifically to read individual STR resources.

The subroutine starts by getting the specified string resource using
GetString and storing it into a handle in memory. As always, check for a
valid handle and be sure that no error occurred during the resource operation
before continuing. Any error at this point sounds a double beep and an error
message is returned by the function.

If a valid handle is present and no error discovered, it uses PEEK LONG! to de-
reference the handle into a pointer, then PSTR$ to read the resource string
into a string variable. Finally, we free the resource from occupying memory
with the Toolbox procedure ReleaseResource.

PROGRAM 123. Reading a STR resource.

LOCAL
DIM tmp$
LOCAL FN ReadSTRResource$ (resID$%)
strH& = FN GETSTRING (resID%)
LONG IF (strH& = 0) OR (FN RESERROR <> _noErr)
BEEP : BEEP
tmp$ = "Didn‘t find requested string."
XELSE
tmp$ = PSTRS ([strH&])
CALL RELEASERESOURCE (strH&)
END IF
END FN = tmp$

1. Note that we use the shorthand method of PEEK LONG by using square brackets to read
the handle.

248 Strings & Text

Saving a STR Resource

Saving a STR Resource

Tosave a STR resource, it’s a matter of going backwards from what was done
to get the string. The example in Program 124 demonstrates how to add or
replace a STR resource quickly and easily.

It starts by passing a string variable and a resource ID to the SaveSTR-
Resource function. It then uses the Toolbox function NewString to create a
handle from the string variable. If the handle is valid, the subroutine next
checks for the presence of an older copy using the same resource ID in the
resource fork. If one is found, it's must be removed from the file using FN
RmveResource before saving the new one.

A call to the Addresource procedure adds the string handle to the resource
file. Next, we inform the Memory Manager that we've modified its resource
map with ChangedResource (so that our changes will be saved to disk), and
finally use ReleaseResource to free the string handle memory.

As you may have noticed, reading or adding STR resources requires some
work with Toolbox routines. While that’s true when dealing with STR
resources, accessing other string and text resources is more directly
supported in the next section.

PROGRAM 124. Saving STR resources.

LOCAL FN SaveSTRResource (tmp$, resID%)
strH& = FN NEWSTRING (tmp$)
LONG IF (strH& = 0) OR (FN RESERROR <> _noErr)
BEEP : BEEP
tmp$ = "Can’t create string handle.*
XELSE
tempH& = FN GETSTRING (resID$%)
IF tempH& THEN CALL RMVERESOURCE (tempH&)
CALL ADDRESOURCE (strH&, _"STR ", resID%, *")
CALL CHANGEDRESOURCE (strH&)
CALL RELEASERESOURCE (strH&)
END IF
END FN

STR# Resources

A STR# resource (pronounced string list) contains a list of Pascal formatted
strings. STR#s are used so often in programming the Macintosh that allowing
easy access to them with an FB function was absolutely necessary. In this

case, it’s a function called STR# (not to be confused with STR#, the resource

type).

Strings & Text 249

Creating STR# Resources

FIGURE 86. Editing a STR# resource.

[ECI= sTR# “Names” ID = 3001 from SimpleBase 1.00 ===

it
numsStrings 3

|) HoRokokok

2) e e sl sjek

The string IThe Total Employee Database |

3) L 22 g

The string [Copyright ©1993 Sentient Fruit™ —|

4) ke 3k ok ok
O
|

Using STR# resources has several benefits. First, memory isn’'t used by STR#
the same way DIM'ed string arrays do. The STR# list resides on disk until
needed, then is loaded into memory only as long as it takes to read an
individual string, then it’s released. This is unlike regular string arrays which
always occupy memory. Second, you can have hundreds of STR# resources in
a program’s resource fork, accessible and easy to use.

If you are only using a few strings, saving them to a STR# resource may be
overkill. However, I once saw a program that used a single dimensioned string
array to store over 600K of strings. Half of the program was used to assign the
strings to elements of the string array. I recommended converting the string
array into several STR# resources, with the result that the program ran faster,
the source code was reduced in size by nearly half, and the final application
operated in less than half its previously allocated memory space. There are
big benefits to using STR# resources.

Creating STR# Resources

Creating STR# resourcesis a snap. ResEdit contains a STR# editor that creates
STR# resources quickly and easily. Open your resource file and choose
Create New Resource from the Resources menu, choose STR# from the
list, then click OK. Once the STR# resource is created, use the STR# editor
shown in Figure 87 to enter the string data.

Inserting Fields & Deleting STR# Resources

To add a string to a STR# resource, click on the five asterisks in the STR#
editor and select Insert New Field(s) from the Resources menu. ResEdit

250 Strings & Text

Setting STR# Resource Info

FIGURE 87. STR# resource information.

[EC= Info for STR# 3001 from SimpleBase.rsrc =

Type: STR# Size: 73
i
Name: |[Names J
Owner type

Owner ID: DRUR [}

Sub Ip: WDEF
Attributes:
[OJsystem Heap []Locked [Preload
Purgeable [JProtected []Compressed

will insert a blank string into the position indicated by the asterisks. ‘T'o delete
an individual string, choose the asterisks next to the string to delete, then
choose Clear from the Edit menu. Examine Figure 87 again to see how we
added three strings to a STR# resource.

Setting STR# Resource Info
Use Get Resource Info from the Resource menu to change the STR#

resource ID, add a name, and change attributes as shown in Figure 87. At a
minimum, always set the Purgeable checkbox to ensure that the STR#

resources will never occupy memory longer than necessary.

Reading STR#

To read a STR# resource use FB’s STR# function. It only requires two
parameters, the STR# resource ID and the indexed ID of the string toread. For
example, to read the second string in STR# 3001 as shown in Figure 87, do
this:

PRINT STR# (3001, 2)

Which will output:

The Total Employee Database

Occasionally, you may need to determine how many strings are actually
stored in a STR# either for a loop block or program use. This information is
stored in the first two bytes of all STR# resources. The function shown in

Program 125 shows how to get this information from a specified STR#
resource.

Strings & Text 251

Saving STR#

PROGRAM 125. Getting a string count from a STR# resource.

LOCAL FN GetSTRCount% (resID%)
strCount% = 0
resH& = FN GETRESOURCE (_“"STR#", resID%)
LONG IF (resH& = 0) OR (FN RESERROR <> _noErr)
BEEP
XELSE
strCount% = resH&..none%
CALL RELEASERESOURCE (resH&)
END IF
END FN = strCount%

Saving STR#

You can save string data to a STR# resource using DEF APNDSTR. If the
resource is already present do this:
strH& = FN GETRESOURCE (_"STR#", resID%)
LONG IF strH&
DEF APNDSTR (stringVar$, strH&)

CALL CHANGEDRESOURCE (strH&)
END IF

If the required STR# resource is not present, then create it using the
CreateSTRResource function shown in Program 126.

PROGRAM 126. Creating a STR# resource.

LOCAL FN CreateSTRResource& (resID%)
strH& = FN NEWHANDLE (2)
LONG IF strH& = 0
BEEP : BEEP
XELSE
CALL ADDRESOURCE (strH&, _“STR#", resID%, "")
CALL CHANGEDRESOURCE (strH&)
END IF
END FN = strH&

TEXT Resources

A TEXT resource can contain up to 32,767 characters in a single resource.
The characters in a TEXT resource can also be styled using the sty1 resource.

Creating TEXT Resources

Just as we’ve done before, choose Create New Resource, select TEXTas the
resource type, and then begin entering your data in the new resource. You

252 Strings & Text

Reading TEXT Resources

FIGURE 88, Editing TEXT and sty1 resources.

IECJ==== TEHT/styl ID = 128 from Test RsrcFile.rsrc

)

This is an example of entering TEXT data vith real St’Y’[e I l '

=@

can use the Font, Size, and Style menus that appear on the menu bar to
specify the formatting of your text data. When any of these three menus are
used, a styl resource of the same resource ID is added to the file. The TEXT
and styl editor is shown in Figure 87.

Reading TEXT Resources

Reading a TEXT resource into an edit field is simple. Just give either EDIT$ or
EDITFIELDavalid resID% and let the runtime do all of the work. The example
in Program 127 shows exactly how to do this using a resource ID. Remember
that if you plan to read a styled TEXT resource, you must have a styled edit
field to receive it.

PROGRAM 127. Reading TEXT data.

LOCAL FN ReadTEXTResByID (resID%, fieldID%)
EDITS (f£ieldID%) = %resID%
END FN

There is a trick to reading a TEXT resource into a handle and placing it into
an edit field. The trick is that the handle must be configured as a ZTXT
resource in order to properly read into an edit field. All this involves is the
addition of a length value at the beginning of the handle. Let’'s see how to do
that.

Converting TEXT to ZTXT

A ZTXT resource contains up to 32,767 characters and appended style data
associated with the text. ZTXT is a styled text format returned by the GET
FIELD function. It combines an edit field’s normal text with its style
information into a single handle that can be written to disk or resource.

Converting a normal TEXT resource into ZTXT format is accomplished as
shown in Program 128. The procedure is to create a handle 2 bytes larger

Strings & Text 253

Saving ZTXT Resources

PROGRAM 128. Converting TEXT to ZTXT format.

LOCAL FN PutTextH2Field (textH&, fieldID%)
EDITS$ (fieldID%) = &textH&

END FN
LOCAL FN Text2Ztxt& (textH&)
ztxtH& = 0

LONG IF textH&
textHSize% = FN GETHANDLESIZE (textH&)
ztxtH& = FN NEWHANDLE (textHSize% + 2)
LONG IF (ztxtH& = 0) OR (SYSERROR <> _noErr)
BEEP
XELSE
osErr% = FN HLOCK (textH&)
osErr% = FN HLOCK (ztxtH&)
BLOCKMOVE [textH&], [ztxtH&] + 2, textHSize%
ztxtH&. .none% = textHSize%
osErr% = FN HUNLOCK (ztxtH&)
osErr% = FN HUNLOCK (textH&)
DEF DISPOSEH (textH&)
END IF
END IF
END FN = ztxtH&

than the TEXT resource, then copy the TEXT data into the ZTXT handle with
BLOCKMOVE but offset from the start of the handle by 2 bytes. Next, poke the
text length into the first 2 bytes of the ZTXThandle. The text is now formatted
correctly for insertion into an edit field.

Note that we have not included routines for adding the styl resource.
Routines for doing exactly that can be found in the Functions Library Help file
on your FB disks.

Saving ZTXT Resources

Saving a ZTXT handle is much easier than converting one. The procedure
uses GET FIELD to gather the text and style data from an edit field into a
single handle. Next, write the handle to disk with Toolbox calls exactly as was
shown with the STR resources. Additionally, ensure that we don’t duplicate a
ZTXT resource by deleting any older version before writing the new one.
The whole procedure is shown in Program 129 in the function SavezTxt-
2Rsrec.

254 Strings & Text

Reading ZTXT Resources

PROGRAM 129. Saving ZTXT data to a resource.

LOCAL FN SaveZTxt2Rsrc (resID%, fieldID%)
GET FIELD zTxtH&, fieldID%
LONG IF zTxtH& = 0
BEEP : BEEP
XELSE
tempH& = FN GET1RESOURCE (_"ZTXT", resID%)
IF tempH& THEN CALL RMVERESOURCE (tempH&)
CALL ADDRESOURCE (zTxtH&, _"ZTXT", resID%, "")
CALL CHANGEDRESOURCE (zTxtH&)
CALL RELEASERESOURCE (zTxtH&)
KILL FIELD zTxtH&
END IF
END FN

Reading ZTXT Resources

First, read the zTXT resource into a handle with the Toolbox function
Get1Resource. Ifit’s avalid handle, use the EDIT$ function to replace the edit
field’s current contents. Since it’s already been formatted correctly, we can
insert the zTXT handle into a styled edit field. Finally, clear the old resource
handle from memory with ReleaseResource. An example of doing exactly this
is shown in Program 130.

PROGRAM 130. Reading zZTXT data.

LOCAL FN ReadZTxt2Rsrc (resID%, fieldID$)
zTxtH& = FN GET1RESOURCE (_"ZTXT", resIDS%)
LONG IF (2TxtH& = 0) OR (FN RESERROR <> _noErr)
BEEP : BEEP
XELSE
EDIT$ (fieldID%) = &zTxtH&
CALL RELEASERESOURCE (zTxtH&)
END IF
END FN

Regular Exercise

With our new knowledge of various types of text and strings resources
available, let’s use that knowledge to add some to our program.

Strings & Text 255

Creating Program STR#

Creating Program STR#

Actually, the best method of creating STR# resources is not to use ResEdit.
Instead, make use of the COMPILE statement setting _strResource. This tells
the compiler that all strings it encounters in a program should be added to the
final application as a single STR# (ID 127) when you build the program.

« Note that you must use the _strResource setting if a program makes any use of
INCLUDE files.

Field & Button STR#

Using a STR# list is a great way of making your application easy to localize for
a foreign country. While most of us have no intention of marketing our
software products overseas, some people do, and STR# makes translating
programs easy without re-writing the code. It’s for this reason that you
should use STR# resources to hold all the window, button, and static field text
in a program.

Open SimpleBase.glbl and add the following constants:

_windowSTR 1000
_buttonsSTR 2000
_fieldsSTR = 3000

Save your changes. These few constants enable us to determine the STR# ID
used for storing the text. All window titles will be found in the STR# number
1000, which can have up to 63 window titles in it. Button titles will be found

in STR# ranging from 2001 through 2063, whilefield textranges from 3001 to
3063. Let’s see how to use this.

Window STR#

OpenSimpleBase.main and rewrite all of the window build routines to take
advantage of STR#. Remember how we used a tmp$ variable to assign names
to windows, buttons, and static fields. Convert all of those to the STR#
command. For example, in FN BuildEntryWindow, replace:

tmp$ = "SimpleBase Data Entry"

with:

tmp$ = STR# (_windowSTR, _dbEntryWIND)

Note how we can use the _windowSTR constant to open the correct STR#
resource, and the title is found using the constant assigned to the window.

256

Strings & Text

Button & Field STR#

Button & Field STR#

For all of the buttons in the window, combine the constant for button STR#
with the window constant like this, using the btnID% as the offset into the
STR# entries:

tmp$ = STR# (_dbEntryWIND_buttonSTR, btnID%)
And do the same for the window’s static text fields:
tmp$ = STR# (_dbEntryWIND_fieldSTR, btnID%)

This identification method makes it easy to read your source code and see
which STR# resource is accessed. It also makes it easy to change a string after
the program hasbeenbuilt. Forget re-compiling, just edit the STR# resources
in ResEdit and away it goes.

» Notice how we combine the window and string list constants. The runtime
determines the calculated value upon compile time and inserts the correct value
into the code when it built. If we had used a plus sign between the two, the
runtime would have to calculate the value each time the line was called. Doing it
the first way is much faster.

Make the code changes on all of the window build routines and save them to
disk. Then use ResEdit to create the STR# resources and the strings
themselves for the subroutines to call.

Creating the Help TEXT

With SimpleBase.rsrc open in ResEdit, create anew TEXT resource using the
Create New Resource item on the Resources menu, enter TEXT, and click
OK. Select it, then choose Get Resource Info and make it Purgeable. Close
and save when done. Finally, duplicate the TEXT resource nine times and
renumber them from 1001 to 1009.

With the TEXT resources created, add the information for all four menus and
each window as I did. Examine the SimpleBase.rsrc file to see the text I used
to describe the various menu items in their respective help text resource.

Next, open the SimpleBase.glbl file and add these constants:

1001
1009

_minHelpID
_maxHelpID

Save your changes and open the Simplebase.main file. Go to the FN
DialogHelpWindow function and modify it to look like the example shown in
Program 131. Save your changes and test the Help window’s information, as
well as try out the About and string length error alerts.

Strings & Text 257

INDEX$ Types

PROGRAM 131. Help window dialog handling.

LOCAL FN DialogHelpWindow (dlgEvnt%, dlgID%)
SELECT dlgEvnt$
CASE _btnClick
LONG IF dlgID% > _helpSCROLL
LONG IF dlgID% = _prevHelpBTN
DEC (gHelpID$%)
IF gHelpID% < _minHelpID THEN gHelpID% = _maxHelpID
XELSE
INC (gHelpID%)
IF gHelpID% > _maxHelpID THEN gHelpID% = _minHelpID
END IF
SCROLL BUTTON _helpSCROLL, 1
EDITS (_helpSCROLL) = %gHelpID%
END IF
CASE ELSE
END SELECT
END FN

Peak Performance

There is one other form of managing strings that we haven't talked about, and
that is INDEXS arrays. A very powerful set of commands enables you to easily
manipulate these very flexible string arrays. The commands include INDEX$,
INDEX$ I, INDEXS$ D, INDEX$ F, CLEAR and the MEM function.

INDEXS Types

An INDEXS array is only limited by the amount of memory available to the
program. The array itself can contain millions of elements (memory
permitting of course) with each element able to store a string with up to 255
characters. A program can have a total of ten INDEX$ arrays open at one time
and all INDEX$ arrays are global in nature. This means that all LOCAL FNs see
and use them with no additional work on the part of the programmer.

¢ A small secret, an INDEX$ array is really a handle in disquise. That's why it can
grow and shrink as demands upon it change.

INDEX$ arrays come in either variable or fixed length elements. The variable
length format enables the array to have elements that range between O to 255
characters. Since each element can be a different length, searches,
insertions, and deletions are somewhat slower since each element must be
individually examined by each command. A fixed length array has a defined

288 Strings & Text

Creating an INDEX$ Array

maximum length for each element. This limits the type of data stored in the
array but has a much faster search, insertion and deletion speed than a
variable length array does.

» There’s a correction to the Reference manual. When defining a fixed length
INDEX$ array, the by tes& variable should be replaced by the numElemsé&
variable. :

Creating an INDEXS Array

To create an INDEXS$ array you need a location in memory to contain the data
that will be stored there. Todo that, use the CLEAR statement. For example, to
create a small variable length INDEX$ array do this:

CLEAR numBytes&, indxID$%

Where indxID$% represents a number between zero and nine. Each array can
have its own memory requirements. To create a fixed length INDEX$ array do
this:

CLEAR numElems&, indxID%, elemLength%

Once the array is created, you may sometimes need to clear out old data and
insert new. To clear an INDEXS array simply do this:

CLEAR INDEX$ indxID%

where again, indxID% represents the INDEXS$ array to clear.

INDEXS Information

Use the MEM function to return information about a specific INDEX$ array. You
can find out how many elements exist in an INDEX$ array, how much memory
it currently uses, how much memory it has free and more. For example, to

determine how many entries there are in a particular INDEX$ array do this:

numElements% = MEM (indxID% + _numElem)
To determine how much memory is left for additional elements use:
bytesAvailToUse% = MEM (indxID% + _availBytes)

And to get the maximum number of bytes available use:

maxBytesAvail% = MEM (indxID% + _maxBytes)

Inserting and Deleting Elements

Once an INDEX$ array is available, you can insert strings into the array using
INDEX$ I.INDEX$ I enables you to insert a string into any array element
directly.

Strings & Text 259

Changing INDEX$ Sizes

FIGURE 89. Inserting & Deleting elements.

00] DAVE 00| DAVE 00| DAVE
01} LOUIS 01} LOUIS 01§ LOUIS
02} JEFF 02| PAUL 02] JOHN
03| JEFF 03| PAUL

04| JEFF

beme Two insertions at element 2 moves the
element containing Jeff down twice.

N 00| DAVE 00| DAVE 00| DAVE
01| Louls 01| JOHN 01| PAUL
02| JOHN 02| PAUL 02| JEFF
03| PAUL 03| JEFF
04| JEFF .
Two deletions at element 1 moves Paul

and Jeff up twice, while Louis and John
are removed from the array.

Unlike a traditional array created with the DIM statement, INDEX$ I shifts the
data in the array down one element to make room for the insertion.When it
comes time to delete an element using INDEX$ D, the specified element is
removed and all subsequent elements are shifted forward by one. The
diagram in Figure 89 shows how elements are added and removed to the
array.

Changing INDEXS Sizes

After inserting elements, it's often necessary to increase the size of a
particular INDEX$ array to make room for more data. To do that you use
CLEAR to resize the specified INDEXS$. The subroutine shown in Program 132

shows how to correctly adjust any INDEX$ to accommodate more or less array
elements.

PROGRAM 132. Changing an INDEXS size.

CLEAR LOCAL
LOCAL FN SetIndexSize (sizeReg&, indxID%, setSpare%)
indxSize& = MEM(indxID% + _availBytes)
crntSize& = MEM(indxID% + _maxBytes)
LONG IF indxSize& < sizeReq&
CLEAR crntSize& + sizeReg& + setSpare%, indxID%
LONG IF MEM(indxID% + _maxBytes) = crntSize&
BEEP : SYSERROR = _dsMemFullErr
END IF
END IF
END FN

260

Strings & Text

Displaying INDEX$

Displaying INDEXS

People have discovered the many uses for scrolling edit fields, and lots of you
are wondering how to mix a scrolling edit field with an INDEX$ array. The
following routines show how to move data from an INDEXS to an edit field.

We start by examining the differences between the two. An INDEX$ array
exists as a series of strings separated by alength byte. The INDEX$ commands
know how to traverse this format to insert, read, or delete any element in this
mass of data. Edit field text, however, is contained in a single handle

PROGRAM 133. INDEXS$ to an edit field.

LOCAL FN Index2ScrollEF (£14ID%, indxID$%)

tmp$ = e

strPtr& = @tmp$ + 1

count$% =0

offset& = 2

numElems% = MEM (indxID% + _numElem)

indxSize& MEM (indxID% + _usedBytes)
LONG IF size& > _maxInt
BEEP : BEEP
XELSE
indxH& = FN NEWHANDLE (indxSize& + 2)
LONG IF (indxH& = 0) OR (SYSERROR <> _noErr)
BEEP : BEEP
XELSE
osErr% = FN HLOCK (indxH&)
LONG IF osErr% = _noErr
indxPtr& = [indxH&]
DO
tmp$ = INDEX$ (count%, indxID%) + CHR$(13) 'add linefeedt
newSize& = LEN (tmp$)
BLOCKMOVE strPtr&, indxPtr& + offset&, newSize&
offset& = offset& + newSize&
INC (count$%)
UNTIL count$%$ = numElems$%
o0sErr% = FN HUNLOCK (indxH&)
osErr% = FN SETHANDLESIZE (indxH&, offset&)
indxH&. .none% = offset& - 2
END IF
EDITS (£14ID%) = &indxH&
SCROLL BUTTON f£1d4dID%,1,1, numElems$%
END IF
END IF
END FN

Strings & Text 261

Displaying INDEX$

containing all the text and formatting characters (like line feeds), but not style
information.

Thus, to mix the two, it’s necessary to translate one format (separate
elements) into another (single handle of data). The function in Program 133
does all the necessary translation, moving the single elements of an INDEX$
array, into a single zTXT handle for insertion into the specified edit field. It
creates a handle large enough to hold the INDEX$ data, then inserts each
element into the handle while it appends a line feed at the end of each
insertion. When done, it resizes the handle to reflect the actual character
count, places the count in the first two bytes of the handle, then uses EDITS
to place the handle into the designated field.

Cooldown

Once again we've covered a lot of ground. In this chapter we described the
three types of string and text resources including STR, STR#, and TEXT. We
also saw how to read and save data to them. And covered INDEX$ arrays and
how to manage strings in them.

262 Strings & Text

CHAPTER 16

Edit Menus

Warm-up

This chapter describes how you can write programs that implement an Edit
menu and communicate with other programs via the Clipboard. In this
chapter we will learn:

¢ How to use the standard Edit menu,
¢ How to customize the Edit menu, and

¢ How to cut, copy, and paste TEXT and PICT data.

The Edit Menu

A standard feature of Macintosh programs is the ever present Edit menu. The
Edit menu provides common editing capabilities that enable a user to transfer
information via cutting or copying, from one position to another in the
program, or from program to program. This editing capability is not restricted
to text alone. It can consist of pictures, records, or anything else the
programmer can codify into a selectable object.

The FB runtime handles the text handling capabilities for you when dealing
with text information in edit fields. It can’t, however, handle graphics,
records, or anything else automatically. You must program that capability
into it yourself. And that’s just what we're going to do.

Edit Menus 263

The Standard Edit Menu

The Standard Edit Menu

To use the standard Edit menu, use the EDIT MENU statement in your
program. FB will create an entire Edit menu containing the Undo, a divider,
Cut, Copy, Paste, and Clear items. Once added to a program, the user can
easily manipulate text as it appears in an edit field. It can't deal with text in
PRINT or INPUT statements, only text in edit fields.

« Note that the default Edit menu items are stored in a STR# resource in the
FutureBASIC Extras file.

Undo, however, is not supported by the runtime. That too must be
programmed into the application by the programmer.

Clipboard Workings

The Clipboard is referred to in programming as the desk scrap. It is the
mechanism by which different applications can share data in common
formats.

TextEdit has its own internal version of the Clipboard, known as the TE
scrap. It is the TE scrap that holds text data during cutting and pasting
between edit fields by the runtime. However, the TE scrap must be passed to
the desk scrap if the application wishes to share TEXT data.

The normal method of transferring the TE scrap to the desk scrap occurs
when the application receives notice that it is being moved to the background
via a _mfSuspend event. At that time the frontmost application needs to
transfer the TE scrap to the desk scrap for possible use by another program.

When the application is brought to the foreground once again, it receives a
_mfResume event that tells it to transfer the desk scrap toits own internal TE
scrap so the user will have it available.

Fortunately we don’t need to worry about either of these events when dealing
with TEXT, the runtime manages to take care of these details for us. But, we
must worry about them when it comes time to handle PICT data ourselves.
We will bypass these problems, however, by transferring the picture data
directly to the desk scrap on cut or copy operations, and read the data
directly from the desk scrap when it comes time to paste the picture.

264 Edit Menus

Getting Scrap Information

Getting Scrap Information

There are two scrap types we can check the Clipboard for using the WINDOW
function, they are TEXT and PICT. For example, to determine ifa PICT scrap is
on the Clipboard do this:

pictOnClip% = WINDOW (_pictClip)

To check for TEXT, use this:

textOnClip% = WINDOW (_textClip)

To determine if other scrap types are present, use the Toolbox FNGetScrap.
GetsScrap requires three parameters, a handle to hold the scrap data, a data
type, and an offset variable. When given this information, the function
returns the size of the scrap found. If the specified scrap type isn't found, it
returns zero. If the scrap type is found, a copy of it is made to the handle
passed to it.

~ Ifthe handle parameter is nil, Get Scrap returns the presence of a scrap type.
For example, to determine if any scrap on the Clipboard has the type ZTXT do
this:

scrapSize& = FN GETSCRAP (_nil, _"ZTXT", offset&)

We'll see how to get the scrap later on, so let’s look at the type of data we need
to support.

Customizing the Edit Menu

One method of customizing the Edit menu is to add additional items below
the standard menu items. For example, when the EDIT MENU statement is
used, it automatically includes six items (Undo, a divider, Cut, Copy, Paste,
and Clear). If you assign new items beginning with an itemID% greater than
six, the items will be appended to the Edit menu. That's exactly what we've
done to append the Select All, Copy Record, and Paste Record items.

Edit Menu Events

The standard Edit menu handling provided by the runtime is just great when
it comes to copying and pasting text from edit field to edit field. However, it’s
not designed to handle anything else. So we have a choice. Do we disable the
runtime’s standard text editing features and write our own? Or, do we
somehow intercept menu choices in the Edit menu and respond accordingly?
The answer is neither.

When the runtime sees a window with active edit fields, it’s perfectly happy to
handle the text editing directly and never let us see a menu event! This works

Edit Menus 265

Edit Menu Events

FIGURE 90. Standard and custom Edit menus.

 oit I it I

Undo... $Z Undo... 8Z
Cut BH Cut 8H
Copy $8C Copy 8C
Paste 8U Paste 8D
Clear Clear
Select All %A
Standard and
custom Edit menus Copy Record 2K
Paste Record

fine with text, but how can we handle the picture field? Easy, we use an
undocumented feature of the runtime. If we disable all of the fields in the
Data Entry window with:

EDIT FIELD #_nil

We are sent Edit menu selections as menu events. Once we receive the menu
event, it's not hard to handle the cutting, copying, pasting, or clearing of
pictures.

Regular Exercise

Now that we understand what can be done with Edit menus, let’s begin
adding support for them in SimpleBase.

To do that we’ll create another include file called EditMenus.Incl. In it we will
place all of our special Edit menu routines. We will also add a function to the
Project.Incl file for the DoEditMenu subroutine and a global pointer to the
SimpleBase.glbl file. Here are the directions to get started:

Create a new source file called EditMenus.Incl. Set it up as an include file with
the standard program headers used in the other include files. At the very
bottom of the new file add:

gEditMenuPtr& = @FN pDoEditMenu
Then in SimpleBase.glbl add:

DIM gEditMenuPtr&
In Project.Incl add:

DEF FN DoEditMenu (itemID%) USING gEditMenuPtré&

266 Edit Menus

Adding Select All

Finally, in the SimpleBase.Incl file, delete the ItemSelectall, ItemExport -
Record, and ItemImportRecord subroutines, then cut the DoEditMenu
subroutine and paste it into EditMenus.Incl. Rename it pDoEdi tMenu. Add the
subroutines called by pDoEditMenu (note the name changes), and remember
to save all of your files. The starting source for the EditMenus.Inclis shown in
Program 135.

Adding Select All

Implementing the Select All item is the easiest addition to make. Just add
the SETSELECT statement to the EditSelectAll subroutine as shown in
Program 134. Because this is a menu item not handled by the runtime,
whenever the user chooses it the contents of the active edit field will be
highlighted, ready for cutting, copying, deletion, or replacement.

PROGRAM 134. Select all subroutine.

LOCAL FN EditSelectall
SETSELECT 0, _maxInt
END FN

Exporting Data

All right, we know the runtime will take care of exporting all text selections for
us, so all we have to worry about is the picture data. How do we do that? Well,
we start by identifying where the user is. Since we are only concerned with the
lone picture field in the Data Entry window, let’s start there.

The picture field was created as an active field, but the Tab and Shift-Tab
events are designed to bypass it when the user presses either combination.
The only remaining event to watch for is an _efClick in the picture field in
the Data Entry window. When SimpleBase receives this event, it should
deactivate all the active fields in the window so that it can intercept all
subsequent menu events.

Also, because the user has no way of knowing that they clicked in the picture
field (it doesn’t have a blinking cursor), it needs some method of showing
them the field is selected. The answer is a routine called FrameField.
FrameField draws a rectangle around the picture field (much like the
System 7 get and put field dialogs) so that the user has a visible mark of
where they are. It also handles erasing the rectangle when the user clicks in
an edit field. The routine is shown in Program 136.

Edit Menus 267

Exporting Data

PROGRAM 135. EditMenus.Incl file.

INCLUDE FILE _apllIncl
COMPILE 0, _strResource_macsBugLabels

' === CONSTANTS =-=-========—mmmm oo

GLOBALS "SimpleBase.glbl"
END GLOBALS

' === FUNCTIONS --===== oo o oo e

LOCAL FN EditUndo

END FN

LOCAL FN EditCut

END FN

LOCAL FN EditCopy

END FN

LOCAL FN EditPaste

END FN

LOCAL FN EditClear

END FN

LOCAL FN EditSelectAll

END FN

LOCAL FN EditExportRecord

END FN

LOCAL FN EditImportRecord

END FN

LOCAL FN pDoEditMenu (itemID%)
SELECT itemID%

CASE _iUndo : FN EditUndo
CASE _iCut : FN EditCut
CASE _iCopy : FN EditCopy
CASE _iPaste : FN EditPaste
CASE _iClear : FN EditClear
CASE _iSelectAll : FN EditSelectall
CASE _iCopyRec : FN EditExportRecord
CASE _iPasteRec : FN EditImportRecord
END SELECT
END FN

' =-= GLOBAL POINTER --==--====-—mmmmme o __
gEditMenuPtr& = @FN pDoEditMenu

268 Edit Menus

Exporting Data

PROGRAM 136. FrameField subroutine.

LOCAL
DIM rect;8
LOCAL FN DrawFrame (showFrame%)
CALL SETRECT (rect, 210,113,350,275)
LONG IF showFrame$%
PEN 2,2,,,0
XELSE
PEN 2,2,,,19
END IF
CALL FRAMERECT (rect)
PEN 1,1,,,0
END FN

FrameFieldstarts by defining arectangle with enough room to leave a pixel of
space around the picture field’s boundary. Then, depending on the setting of
showFrame?, it either draws a black 2 pixel wide rectangle around the field or
erases one. When done it resets the pen back to its normal setting. It's called
from two locations in DialogEntryWindow: _efClick and _wndRefresh. Both
make appropriate checks of the £1e1dID% to properly set the showFrame% flag.

The end result of all this is that when the user clicks in the picture field, a
border appears around it and all fields in the window are deactivated. All
selections in the Edit menu, even the ones previously handled by the
runtime, are sent to us via a menu event.

Now that we have menu events, let’s see how to export pictures.

PROGRAM 137. Modified DialogEntryWindow routines.

' eee WINDOW EVENTS
CASE _wndRefresh
LONG IF WINDOW(_efNum) = 0
FN DrawFrame (_true)
XELSE
FN DrawFrame (_false)
END IF
' eee FIELD EVENTS
CASE _efClick
FN EFClickEvent (dlgID$%)
LONG IF dlgID% = _dbPhotoFLD
EDIT FIELD #_nil
FN DrawFrame (_true)
XELSE
FN DrawFrame (_false)
END IF

Edit Menus 269

Exporting PICT

Exporting PICT

Exporting picture data is bit tricky — we have to deal with a couple of different
formats that the picture data may be stored in the picture field. Let’s review
the rudiments of picture fields before examining the routines required to
manipulate pictures.

When a PICTURE FIELD is created, it’s possible to add a picture using a either
a PICT resource ID, or a picture handle. The runtime stores this picture
information in the space normally used to store text data. We need to extract
this information and get a copy of the picture.

We also have one other problem, how do we identify a PICTURE FIELD from an
EDITFIELD? The same way the runtime does, by examining the field type. You
see, a picture field is just a modified edit field that can show pictures. A field
created with PICTURE FIELD always has a negative field type value. We can
check this using:

fieldType% = WINDOW (_efClass)

And if it’s less than zero, it’s a picture field.

Once a field is identified as a picture field, we have two different methods of
storing picture information. In practice, when you pass a picture ID or picture
handle to a picture field it stores the ID or handle in the field as well as the
method used to place it there. We extract this information using:

pictInfo$ = EDITS(fieldID%)

If the first character in pictInfo$ starts with the “%” character, a picture ID
follows. If the first character is a “&”, a picture handle follows.

PROGRAM 138. Exporting PICT.

CLEAR LOCAL
LOCAL FN GetPICTHandle&
tmp$ = EDITS (_dbPhotoFLD)
pict$ = RIGHTS (tmp$, LEN (tmp$) - 1)
SELECT LEFTS (tmp$, 1)
CASE "%*
pictH&
CASE "&"
pictH&
CASE ELSE
pictH& = _nil
END SELECT
END FN = pictH&

FN GETPICTURE (CVI(pict$))

CVI(pict$)

270

Edit Menus

Copy Picture

Our routine to determine all of this is FN Get PICTHandle& and is shown in
Program 138. It starts by extracting the text from the picture field using
EDITS. It extracts the picture number from the field using RIGHT$. Next, it
determines how the picture data got into the picture field, by resource ID or
handle. If the data was placed using a resource ID, we convert the remaining
text into a number and use FN GetPicture to get a handle to the picture.
However, if the picture was placed as a handle, we convert the remaining text
into a handle using cVI. If neither character is found, it sets the handle to nil
and the routine returns nothing.

Copy Picture
When the user chooses Copy from the Edit menu with all fields deactivated,
we are sent amenu event. The HandleMenuEvent subroutine routes control to

pDoEditMenu. It in turn calls the EditCopy function shown in Program 139.
We cover this subroutine first because it is also called by EditCut.

It begins by calling Get PICTHandle& to see if the picture field contains a
picture. If it does, it then calls FN DataHandleToScrap to place the picture
onto the desk scrap. This makes it available to any other program that reads
the desk scrap. Since the Scrap manager makes a copy of our picture handle,
it disposes of pictHs& with DEF DISPOSEH and ends.

PROGRAM 139. EditCopy subroutine.

CLEAR LOCAL
LOCAL FN EditCopy
LONG IF WINDOW (_efClass) < 0
pictH& = FN GetPICTHandle&
LONG IF pictH& <> _nil
scrapErr% = FN DataHandleToScrap (pictH&, _"PICT", _true)
DEF DISPOSEH (pictH&)
END IF
END IF
END FN

DataHandleToScrap starts by accepting three parameters, a handle contain-
ing the data to place on the clipboard, in this case PICT, and a flag that allows
us to clear the clipboard or just add to the desk scrap.

It makes sure it has a valid handle, then examines the zeroClipBoard$ flag
to determine whether to clear the clipboard using FN ZeroScrap. Next, it gets
the handle size, locks it from moving in memory with FN Hlock, and calls
PutScrap to copy the data into the clipboard. It finishes by unlocking the

handle with FN HunLock and returns any error it encountered.

Edit Menus 271

Cut Picture

PROGRAM 140. Sending data to scrap.

CLEAR LOCAL
LOCAL FN DataHandleToScrap (dataH&, dataType&, zeroClipBoard$%)
LONG IF dataH& <> _nil
LONG IF zeroClipBoard% <> _nil
scrapH& = FN ZEROSCRAP
END IF
sizeOfH& = FN GETHANDLESIZE (dataH&)
osErr% = FN HLOCK (dataH&)
LONG IF osErr% = _noErr
osErr% = FN PUTSCRAP (sizeOfH&, dataType&, [dataH&])
osErr% = FN HUNLOCK (dataH&)
END IF
END IF
END FN = osErr%

Cut Picture

When the user chooses Cut from the Edit menu, Editcut is called. It checks
to make sure we are in the picture field, then calls EditCopy to copy the
picture data from the picture field to the desk scrap. Then, since it's cutting
the picture from the record, it clears the picture field with EDITS, sets the
dbPictID% field of the employee record to nil, and disposes of the global
picture handle gpictHs. This subroutine is shown in Program 141.

PROGRAM 141. EditCut subroutine.

CLEAR LOCAL
LOCAL FN EditCut
LONG IF WINDOW (_efClass) < 0
FN EditCopy
EDIT$ (_dbPhotoFLD) = "*
gEmployee.dbPictID% = _nil
DEF DISPOSEH (gPictH&)
END IF
END FN

Clear Picture

EditClear, shown in Program 142, is exactly like Editcut with the ex-
ception that it doesn’t copy the picture field’s contents to the desk scrap.

272

Edit Menus

Copy Record

PROGRAM 142, EditClear subroutine.

CLEAR LOCAL
LOCAL FN EditClear
LONG IF WINDOW (_efClass) < 0
EDITS (_dbPhotoFLD) = "
gEmployee.dbPictID% = _nil
DEF DISPOSEH (gPictH&)
END IF
END FN

Copy Record

One final export option we should look at involves copying an entire record to
the Clipboard. This enables the user to place all of the data in a single record
into another program in one step. The most common format has each field in
our record separated by a tab so that the exported information appears in a

database, spreadsheet or word processing document in the proper alignment.

EditExportRecord, shown in Program 143, starts by calculating the total
length of all entries in the current record. As soon as it has that, it creates a
handle to hold all of the data. Once it has a valid handle, it locks it in memory
with FNHLock, then cycles through eachrecord field, extracting the field text,
appends a tab onto the end and inserts it into the handle. A variable called
of fset& keeps track of the next position to place data. When the final field is
read (fax number in SimpleBase), it appends a carriage return instead of a
tab, then calls DataHandleToScrap with the type TEXT to place the data onto
the desk scrap.

Importing Data

Exporting picture data isn’t the whole game. We also need to import data via
the clipboard in order to be totally conversant with other programs. The
routine that does this for us is called FN ScrapToDataHandle& and can be
seen in Program 144.

FN ScrapToDataHandle& starts by accepting one parameter, the type of scrap
to search for in the desk scrap. In our case, that will be PICT. It starts by
creating a new handle to hold the data, then uses the Toolbox function
GetScrapto see ifany PICT data is on the desk scrap. If there is, it’s copied to
the empty handle (which isn’t empty anymore) and returns it to the calling
routine.

Edit Menus 273

Importing Data

PROGRAM 143. Copy record to scrap.

CLEAR LOCAL
LOCAL FN EditExportRecord
FOR count% = _dbNameFLD TO _dbFaxFLD
calcHSize% = calcHSize% + LEN(EDITS$(count%)) + 1
NEXT count$%
offset% = 0
recordH& = FN NEWHANDLE (calcHSize% + offset%)
LONG IF (recordH& <> 0) AND (SYSERROR = _noErr)
osErr% = FN HLOCK (recordH&)
LONG IF osErr% = _noErr
FOR count$% = _dbNameFLD TO _dbFaxFLD
tmp$ = EDITS (count$)
LONG IF count% < _dbFaxFLD
char$ = CHR$(_tab)
XELSE
char$ = CHR$(_cr)
END IF
tmp$ = tmp$ + char$
size% = LEN (tmp$)
BLOCKMOVE @tmp$+1l, [recordH&] + offset%, size%
offset% = offset% + size% '
NEXT count$%
END IF
osErr% = FN HUNLOCK (recordH&)
osErr% = FN DataHandleToScrap (recordH&, _"TEXT", _true)
DEF DISPOSEH (recordH&)
END IF
END FN

PROGRAM 144. Importing data from the scrap.

CLEAR LOCAL
LOCAL FN ScrapToDataHandle& (scrapType&)
scrapH& = FN NEWHANDLE (0)
LONG IF scrapH& <> _nil
scrapSize& = FN GETSCRAP (scrapH&, scrapType&, offset&)
LONG IF scrapSize& <= 0
DEF DISPOSEH (scrapH&)
END IF
END IF
END FN = scrapH&

274 Edit Menus

Paste Picture

Paste Picture

When Paste is called and the picture field is active, the EditPaste sub-
routine in Program 145 makes sure it’s in the picture field, then calls FN
ScrapToDataHandle& to return a handle containing picture data to us. If the
handle comes back valid, it disposes of the current global picture data in
gPictH& using DEF DISPOSEH, saves the new picture handle to the global
handle, and places it into the picture field using EDIT$. Finally, it assigns the
gOpenRecord$ to gEmployee.dbPictID% so that it will be saved to the
employee file.

PROGRAM 145. EditPaste subroutine.

CLEAR LOCAL
LOCAL FN EditPaste
LONG IF WINDOW (_efClass) < 0
pictH& = FN ScrapToDataHandle& (_"PICT")
LONG IF pictH& <> _nil
DEF DISPOSEH (gPictH&)
gPictH& = pictH&

EDITS (_dbPhotoFLD) = &gPictH&
gEmployee.dbPictID% = gOpenRecord$
END IF
END IF
END FN
Paste Records

Of course, if we can export an entire record, we should also be able to import a
record that is formatted properly. We know we are importing a record, and all
the program has to do is parse the text handle it finds on the clipboard into
separate fields, placing them appropriately. The entire EditImportRecord
function is shown in Program 146.

It starts by calling ScrapToDataHandle& to see if there is any TEXT on the
desk scrap. If there is, it sets up some string pointers (for greater speed) and
then assigns a Tab to a string called char$. This is what separates each field
in the record and what we’ll search for to determine where to parse the field
data.

Next, it uses a Toolbox function called Munger to search the text handle.
Munger is great for searching, inserting, replacing, or deleting text from
handles. Think of it as MID$’s big brother. Munger wants as parameters: a
handle containing text, a position to begin the search, a pointer to a search
string, the search string’s length, a pointer to a replacement string and its

Edit Menus 278

Paste Records

length. Since we are only searching, we can leave the replacement string and-
length nil. And by manipulating where the search starts, we can walk
through the handle looking for each field separately.

Note that the pointers to the search and replacement strings must contain
the address to the first character of each string, not their length bytes. That's
why a 1 is added to each pointer, to skip the length byte.

If Munger returns a negative value, that means it didn’t find anything to
match the search criteria (our Tab), so we inform the user with another alert
that the text they are trying to paste is not a record and exit the function. If

PROGRAM 146. Copy record from scrap.

CLEAR LOCAL
DIM tmp$
DIM 3 char$
LOCAL FN EditImportRecord
scrapH& = FN ScrapToDataHandle& (_"TEXT")
LONG IF scrapH& <> _nil
strPtr& = @tmp$
charPtr& = @Qchar$ + 1
~char$ = CHRS$ (_tab)
startPos& = _nil
offset& = FN MUNGER (scrapH&, startPos&, charPtr&, 1, _nil, _nil)
LONG IF offset& > _nil
fieldID% = _dbNameFLD
DO
size% = offset& - startPos&
POKE strPtr&, size%
BLOCKMOVE [scrapH&] + startPos&, strPtr&+l, size%
EDITS (fieldID%) = tmp$
INC (fieldID%)
startPos& = offset& + 1
offset& = FN MUNGER (scrapH&, startPos&, charPtr&, 1
UNTIL (offset& < 0) OR (fieldID% = _dbFaxF1ld)
size% = FN GETHANDLESIZE (scrapH&) - startPos&
POKE strPtr&, size%
BLOCKMOVE [scrapH&] + startPos&, strPtr&+l, size%
EDITS$ (fieldID%) = tmp$

. -nil, _nil)

XELSE
item% = FN NOTEALERT (_noRecordALRT, 0)
END IF
DEF DISPOSEH (scrapH&)
END IF
END FN

276 Edit Menus

Paste Records

Munger finds a match it returns the offset into the handle one byte after the
match position.

Once we have our first match, the real work begins. In a DO/UNTIL loop we
calculate the size of the field’s data by taking the of fset& - startPos&, then
we POKE that into a temporary string variable defined earlier, followed by a
BLOCKMOVE of the text from the startPos& to of fset& position into the string
variable. Next, the temporary string is placed into the waiting edit field, the
fieldID% is incremented, startPos% is updated to one byte past offsetg,
-and we call Munger again using the new offset position.

This cycle continues until Munger fails (offset& < 0). At this time we know
only the final field’s data remains, so we calculate the size of the handle
minus the startPosg, and repeat the POKE and BLOCKMOVE of the final field’s
data into the temporary string and into the edit field. The last act is to dispose
of the handle using DEF DISPOSEH.

Edit Menus 277

Paste Records

Cooldown

And that'’s all there is to cutting, copying, clearing, and pasting picture data in
SimpleBase. Now that wasn’t so bad, was it?

In this chapter we learned about the desk and TE scraps (more commonly
referred to as the Clipboard) and their major differences. We also saw how to
manipulate the Edit menus so that the runtime has control when
manipulating text data, and we have control for pictures and record data. We
learned how to interpret the picture data in a picture field, and how to copy,
cut, and paste it into other picture fields as well as other programs. Finally we
saw how easy it is to manipulate records of data to enable copying of complete
records from place to place in the employee database.

Use of these techniques will make your programs more user friendly and
enable you to provide the editing support your users desire.

278 Edit Menus

CHAPTER 17

Printing

Warm-up

We're nearing the end, this chapter explains how to print text and graphics
from any program. In it you will learn:

¢+ How to print to any attached printer,
¢ How to handle the standard print loop, and
¢ How to handle printer errors.

Printing on the Macintosh is remarkably easy to do if you keep one thing in
mind: sending text and graphics to a printer is exactly like printing to a
program window.

The Print Manager

The Print Manager is the Toolbox manager that handles printing requests on
the Macintosh. It’s the Print Manager’s responsibility to provide a common
interface to the print driver for the attached printer. A print driver is software
that translates your program’s printable output into a language the printer
can understand. Print drivers are selected by the user with the System’s
Chooser and include files like LaserWriter and ImageWriter.

Normally, a program should never worry about which printer is connected,
you call the same print routines. This makes it very easy to write print
routines in a program that work on any Chooser compatible printer. Some of
these routines are described below.

Printing 279

The Print Record

The Print Record

All of the formatting information for a printer is stored in a print record. This

information includes things like the paper size, the paper’s printable area, the
resolution, and a host of user options including the number of copies to print,
paper size, and many more. Options are set using two printer dialogs, one for
style information, and one for print information.

Page Setup
The Page Setup dialog enables users to specify page dimensions, page

orientation, and for laser printers, special effects like graphics text
smoothing.

You access the Page Setup dialog in a program using the DEF PAGE statement.
Users make their selections and click the 0K button to save the changes to
the print record. Use the PRCANCEL function to determine if the Cancel
button was selected.

FIGURE 91. Printer style dialog.

Laserllriter Page Setup

Paper: @ US Letter O A4 Letter] '
OusLegal QBS Letter O[_Tabloid (cancel)

Reduce or % Printer Effects:

Enlarge: X Font Substitution?

Orientation Text Smoothing?
1 tj Graphics Smoothing?
iR [Faster Bitmap Printing?

Print...

The Print dialog enables the user to control the number of copies, page
selections, type of printing, and several other immediate print job
requirements. Unless cancelled, the normal sequence is to print the document
after viewing this dialog. It’s at this point that your program takes charge and
handles the actual work of printing.

To display the print job dialog, use DEF LPRINT. Again, use PRCANCEL to
determine if the user clicked the Cancel button.

Print Record

The current print record is accessed using FB's PRHANDLE function. The
information stored therein should not be considered valid until both the Page

280

Printing

Routing Output

FIGURE 92. Printer job dialog.

Laserlriter “Lazarus Long” ﬁ‘l

cOples.@ Pages: @ All O From: |:|To :l -

Cover Page: @ No Q First Page O Last Page

Paper Source: @ Paper Cassette O Manual Feed
Print: @ Black & White QO Color/Grayscale
Destination: @ Printer O PostScript® File

Setup and Print dialogs have been okayed by the user. We'll soon see how to
extract relevant portions of that information as required by the program.

+ See Inside Macintosh, Vol. 2, or the FB Reference manual for a description of the
Print record.

Routing Output

Once it’s determined that the user wants to print, i.e. PRCANCEL is false, use
the ROUTE statement to direct all subsequent text and graphic commands to
the Print Manager. Normally, all text and graphic commands go to the current
output window, but to send them to the printer, use ROUTE _toPrinter. This
output includes EDIT FIELD, PICTURE FIELD, PICTURE, BUTTON, and SCROLL
BUTTON statements too. '

As soon as the print job is complete, use ROUTE _toScreen to return output
to the current window. Additionally, use of ROUTE in the middle of a print job
enables you to send output to the printer and also display status information
in a window.

« Note that you can use ROUTE for the modem ports too. See the FB Reference
manual for details.

Page Information

To all intents and purposes, once you've routed output to a printer, you can
treat the paper as just another output window. This flexibility allows you to
write a single routine that will print a report to the screen, and output the
same report to any printer just by changing the ROUTE statement.

Since you set the size of the page in the Page Setup dialog by choosing the
paper type, your program should be able to detect the change and make
adjustments to provide the best printout possible. For example, you can

Printing

PROGRAM 147. Getting the page size.

ROUTE _toPrinter
printHt% = WINDOW (_height)
printWd% = WINDOW (_width)
ROUTE _toScreen

determine the actual printable area of the page using the WINDOW functions
shown in Program 147.

Additionally, use the PRHANDLE function which returns a handle to the actual
print record that describes the current print job. There is a host of
information stored inside it, but most programs won't require that amount of
control. But, some programs do require more information, so the example in
Program 147 shows how to use PRHANDLE to get the starting and ending page
numbers, as well as the number of copies.

PROGRAM 148. Other printer information.

prHndl& = PRHANDLE

numCopies% = prHndl&..iCopies%
startPg% = prHndl&..iFstPage$%
lastPg% = prHndl&..iLstPage%
vertRes% = prHndl&..iVRes$
horzRes% = prHndl&..iHRes$%

Additionally, while treating the printer as a window you can output text using
different fonts, text sizes and styles, as well as colors and output graphics
using all of the FB and Toolbox commands.

Printing
FutureBASIC offers a lot of control over printing text. What follows is the three
most common commands used to output text to a printer.

FIGURE93. Print rectangle on paper.

Paper rectangle — actual size
of paper to print on.

<@— Print rectangle — actual area
of paper you can print on.

Printing

LPRINT

LPRINT

LPRINTis the old-fashioned means of outputting text to a printer. When using
LPRINT, the Print Manager is bypassed, and the character data is sent directly
out the chosen serial port to the printer. Formatting your output is difficult
since you must send special printer code sequences to the printer to format
the subsequent text. LPRINT uses the printer’s native fonts which has the
benefit of higher speed.

LPRINT does have some other problems. It may not be reliable over networks,
doesn’t like some laser printers, and since different dot-matrix printers offer
different features, the code sequences to format output may differ from
printer to printer. Also, LPRINT is slow. It actually creates and closes a new
printer port each time it is called. All-in-all, these non-features of LPRINT
make it a poor choice for outputting anything to a printer.

PRINT?%

The standard PRINTS statement is the preferred method of outputting text to
a printer (PRINT and PRINT@ are close behind). For all intents and purposes
PRINT% functions exactly as when outputting strings to a window at a precise
pixel location. This makes it very easy to write print routines that serve the
dual purpose of printing exactly the same to both a window and a printer. A
small example of this is shown in Program 149. Additionally, it’s probably a
bit faster than using the edit field method described next.

PROGRAM 149, Dual print routine.

LOCAL FN DualPrint (whereTo)

LONG IF whereTo = _toPrinter
ROUTE _toPrinter
END IF

! eee PRINT YOUR FORMATTED DATA HERE

ROUTE _toScreen
END FN

Once output is routed to the printer, you can use any of the standard
formatting statements to change the font, size, style, and mode of the
outputted data. Again, just like you can in a window.

EDIT & PICTURE FIELDs
When output is routed to a printer, it can be treated exactly as if it were a
window. This means that you can create both edit and picture fields® in this

1. And buttons and scroll buttons as well.

Printing 283

Graphics

printer output window. These edit and picture fields can have all the
attributes of their normal window brothers, including frames, styled text,
alignment, etc. For outputting large quantities of styled text or pictures this
technique works very well. In fact, we’ll use a PICTURE FIELD to print the
employee’s picture along with their other personal data.

This method may be a bit slower than PRINT%, but the benefits gained far
outweigh the disadvantages.

Graphics

Finally, when it comes to outputting graphics to a printer, you can use all of
FB’s graphic commands: PLOT, BOX, PLOT TO, BOX FILL, CIRCLE, CIRCLE FILL,
PEN, and COLOR, as well as all Toolbox graphic commands.

Regular Exercise

Now that we understand more about printing, it'’s time to begin adding a
printing capability to SimpleBase. You'll want to insert these print routines
near the top of the main file. See the Appendix for the complete SimpleBase
listing.

To do that we’ll create another include file called Printing.Incl. In it we will
place all of the print routines. Just as before, here are the directions to get
started.

Set Printing.Incl up as an include file with the standard program headers used
in the other include files. At the very bottom of the new file add:

gDoPrintPtr& = @QFN pDoPrinting

Then in SimpleBase.glbl add:

DIM gDoPrintPtr&

And in Prgject.Incl add:

DEF FN DoPrinting (readRecPtr&) USING gDoPrintPtr&

Finally, in the SimpleBase.Incl file, delete the old DoPrinting subroutine.

Remember to save all of your files. The starting source for the Printing.Incl is
shown in Program 150.

A Standard Print Loop

We'll begin by implementing a standard printing loop. This is the core printing
function that you can drop into a program and modify. It handles most of the
requirements for setting up and disposing of a print job, all you do is add

284

Printing

A Standard Print Loop

PROGRAM 150. Printing.Incl file.

' ——- HEADER ---=--=-==mn e

INCLUDE FILE _aplIncl
COMPILE 0, _strResource_macsBugLabels

' === CONSTANTS —========mmmm oo oo e e

GLOBALS “SimpleBase.glbl"
END GLOBALS

' ——- GLOBAL FUNCTIONS ~=--=m==mm==m=mmm——m—mmm e

LOCAL FN DBReadRecordTemplate
END FN

' === FUNCTIONS =====m==mmmmmm o= oo o e e

LOCAL FN PrintRecord
END FN

LOCAL FN PrintManyRecords
END FN

LOCAL FN pDoPrinting (readRecPtr&)
END FN

' —-— GLOBAL POINTER =---======m===—=————mm—e—m
gDoPrintPtr& = @FN pDoPrinting

your program’s specific printing code. We'll explain it as we build it so that it
you need to modify it later, you’ll have a place to start.

The print loop starts from when the user has selected Print from the File
menu. Naturally, the user expects a print job dialog, so use DEF PAGE to
display one. Next, it checks to see if the user selected the Cancel button

using PRCANCEL.

PROGRAM 151. Standard print routine.

LOCAL FN pDoPrinting
DEF LPRINT
LONG IF PRCANCEL = 0
CURSOR _watchCursor
ROUTE _toPrinter
! eee place custom print routine here
ROUTE _toScreen
CLOSE LPRINT
CURSOR _arrowCursor
END IF
END FN

Printing 285

The Custom Print Routine

If the user cancels the dialog, control returns to the program’s Main Loop.
However, when Print is chosen, the routine sets the cursor to a watch and
uses ROUTE to send all text and graphics to the printer. We'll skip the custom
print routines for now since they can be anything. When control returns from
the program’s custom print routine, output routes back to the screen, and
the Print Manager is closed with CLOSE LPRINT.

The Custom Print Routine

Now that we have our standard print loop, let’s jazz it up a bit and make it
useful for SimpleBase.

Our custom print routine in Program 152 begins with a DEF LPRINT
statement that enables the user to choose the number of copies to print. Once
Print is chosen, we store the current record number for later use. Open the
database file’s resource fork with USR OPENRFPERM to allow us access to the
employee pictures stored there. A change of cursor to show we're busy and
the ROUTE statement will send all subsequent output to the printer.

Since we have three choices in the Print window (current, all, or selected
records), we use a SELECT structure to handle the user’s choice. Depending
on the value of gPrintFlag%, we implement one of two subroutines: '
PrintRecord, or PrintManyRecords.

To print the current record only, we pass that job off to PrintRecord which
has the responsibility of printing a single employee record. Upon completion,
we use CLEAR LPRINT to tell the Print Manager we’re done with that page and
to print it. Exiting the SELECT structure routes outputback to the screen with
ROUTE, then closes the Print Manager with CLOSE LPRINT. If resRef% is valid it
closes the database file with CloseResFile. Finally, we reset the value of
gOpenRecord¥, read the saved record (in case it changed as we’ll see later),
and show the arrow cursor to let the user know we’re done.

To print multiple records, including both all and selected records, everything
up to the SELECT structure remains the same except the value of
gPrintFlag%. To print all records, or a selected few, the routine calls
PrintManyRecords and passes it two parameters, the first and the last record
number to print. “Ah ha”, you say, finally you can see why it was important to
save the current value of gOpenRecord$%. Since PrintManyRecords uses
gOpenRecord% to access the specified records, we must have some way of
returning the user to the record they started at. In the case of printing all
records, we pass parameters of zero for first record and gMaxRecInFile$ for ¢
the final record. To print only a chosen few, we pass gPrFirstRec% and
gPrLastRec% instead. The same routine handles both variations. '

286 Printing

Global Template

PROGRAM 152. Custom printing records routine.

LOCAL FN pDoPrinting (readRecPtr&)
DEF LPRINT
LONG IF PRCANCEL = 0
oldRecNum% = gOpenRecord$
resRef% = USR OPENRFPERM (gFileName$, gWDRefNum%, _fsCurPerm)
CURSOR _watchCursor
ROUTE _toPrinter
SELECT gPrintFlag$
CASE _thisRecBTN
FN PrintRecord (10)
ROUTE _toScreen
CLEAR LPRINT
CASE _allRecBTN
FN PrintManyRecords (1, gMaxRecInFile%, readRecPtr&)
CASE _selectRecBTN
FN PrintManyRecords (gPrFirstRec%, gPrLastRec%, readRecPtr&)
END SELECT
ROUTE _toScreen
CLOSE LPRINT
IF resRef% THEN CALL CLOSERESFILE (resRef%)
gOpenRecord% = oldRecNum$%
FN DBReadRecordTemplate USING readRecPtr&;
CURSOR _arrowCursor
END IF
END FN

That's the controller subroutine that handles all of our required printing
tasks. Now let’s look at the individual routines that print the employee
records.

Global Template

You may have noticed that in the subroutine pDoPrinting we pass it a
pointer as a parameter and later on use it in the FN DBReadRecordTemplate
call. What's going on here?

What's going on is that the DBReadRecord subroutine is located in the
SimpleBase.Incl file which can’t be seen from Printing.Incl directly. We could
have placed it into the Prgject.Incl but thought we’d demonstrate another
means of calling a subroutine with FN USING. In this version we pass the
address to the subroutine we want to access as a parameter. In the include
file that is called, we create a template function, just as we do in the
Projects.Incl.

Printing a Single Record

Since DBReadRecord is stored in SimpleBase.Incl, it's an easy matter to use
@FN to get its address and pass it onto pDoPrinting. pDoPrinting gets the
address and uses it to call DBReadRecord from itself via DBReadRecord-
Template when required. A nice symbiotic relationship.

So in SimpleBase.Incl, the call is made like this:

FN DoPrinting (@FN DBReadRecord)

Printing a Single Record

Now let’s examine the actual printing routine. I'm sure you thought we’d never
get there. This is the real workhorse of the print loop. It’s here that we take the
actual data, format it correctly, and then print it. '

We start by determining what the layout of each record should look like when
printed. Since SimpleBase only has a few fields, it was easy to design a layout
that had an employee’s picture on the left, the field titles in the middle, and
the actual data next to the field titles. This layout has two benefits: one it
looks good, and two, it allows four employee records to appear on a single
printed page which can save a lot of paper.

The subroutine PrintRecordaccepts one parameter called pgvof£set%. This
parameter is used to specify which of four record positions on the page the
current record will be printed. Another important value used here,
_gutteradj, is defined as a constant. This constant defines how much gutter
space a page should have. Adjust it to suit your preferences, or change it to a
global value that the user can modify themselves. Of course, you'll need to
add a preferences window to accomplish this. ‘

The subroutine PrintRecord starts by defining a couple of coordinate offsets
to correctly place the various elements of an employee record on the page. It
loops through the field titles stored in the STR# _printerSTRand prints them
to the page while adjusting the vOffset% variable. Next, a series of PRINTS
statements print the data in the gEmployee fields using xOffSet% and
_gutterAdj as well as pgVOffsets.

We set the position of the employee picture, draw it using a PICTURE FIELD,
and finish by adding a gray dividing line after the employee record.

288 Printing

Printing Multiple Records

PROGRAM 153. Print a page routine.

LOCAL
DIM rect.8
LOCAL FN PrintRecord (pgVOffset%)
x0ffset® = 150
vOffset® = 15 .
TEXT _geneva, 9, 1
' eee PRINT FIELD TITLES
FOR count®% = _dbNameFLD TO _dbFaxFLD
tmp$ = UCASES (STR# (_dbEntryWIND_fieldSTR, count%))
PRINT% (xOffSet% + _gutterAdj, pgVOffset® + vOffset%) tmp$
vOffset% = vOffset% + 15
NEXT count$%

' eee PRINT FIELD DATA

TEXT °_geneva, 12¢ 0

PRINTS (xOffSet$% _gutterAdj
PRINT%(xOffSet% _gutterAdj

+ 80, pgVOoffset% + 15) gEmployee.dbName$
+
PRINT® (xOffSet% + _gutterAdj
+
+
+

80, pgVOoffset% + 30) gEmployee.dbAddr$
80, pgVoffset® + 45) gEmployee.dbCity$
80, pgVOoffset% + 60) gEmployee.dbMyState$
PRINT% (xOffSet% + _gutterAdj 80, pgVOoffset% + 75) gEmployee.dbZip$
PRINT% (xOffSet% + _gutteraAdj 80, pgVOoffset% + 90) gEmployee.dbPhone$
. PRINT% (xOffSet% + _gutterAdj + 80, pgvVOoffset% +105) gEmployee.dbFax$
' eee PRINT PICTURE & SEPERATOR .
CALL SETRECT (rect, _gutterAdj,pgVOffset%, 130 + _gutterAdj, pgVOffset%+152)
PICTURE FIELD #100, %gEmployee.dbPictID%, @rect, _statFramed, _cropPict
PEN ,,,,3
PLOT 0, pgVOffset% + 165 TO 600, pgVOffset% + 165
PEN ,,,,0
END FN

PRINTS (xOffSet% + _gutterAdj

+ + * + o+ 4+

Printing Multiple Records

Once we have the record printing routine finished and tested, it’s not difficult
to add another routine shown in Program 154 to print multiple records. The
routine only requires two parameters: the number of the first and last records
to print. In this case, the first record to print is always record number one,
and the final record is defined by gMaxRecInFile%.

After some initial setup, the routine cycles through getting each record into
memory using DBReadRecord, then printing it using the custom printing
subroutine previously described. After it returns from printing one record, it
increments its control variables and repeats until all specified records have
printed. Once the record count exceeds the last record specified, control
drops out of the loop and eventually returns to the Main Loop.

Printing 289

Printing Selected Records

In the loop, we have some special code that determine how many records
have already been printed. When four records have printed to the page, a
page number is then printed at the page bottom and the page is closed. This
causes the Print Manager to close the page in memory and begin processing it
for printing. Meanwhile the program can begin printing the next page of
records.

PROGRAM 154. Print multiple records routine.

LOCAL FN PrintManyRecords (firstRec%, lastRec%, readRecPtr&)
pgVOffset® = 10
pageNum% = 1
recCount% = 0
DO
gOpenRecord% = firstRec%
FN DBReadRecordTemplate USING readRecPtré&;
FN PrintRecord (pgVOffset%)
INC (firstRec%)
INC (recCount%)
LONG IF (recCount®% MOD 4) = 0
PRINTS (_gutterAdj, pgVOffset% + 180) “PAGE#";pageNum$%
INC (pageNum%)
pgVOoffset?® = 10
IF recCount$% < lastRec% THEN CLEAR LPRINT

XELSE
pgVOffset® = pgVOffset%® + 180
END IF
UNTIL firstRec% > lastRec%
END FN

Printing Selected Records

Finally, the last printing option to include is one that prints from a start record
toafinalrecord. The previously written PrintRecord and PrintManyRecords
routines will again be used to provide this handy feature. All we need to do is
pass the gPrFirstRec% and gPrLastRec% values to PrintManyRecords
functions, and voila, we have a custom printing routine that prints any record
or number of records we choose.

The key is gathering the users input data from the edit fields in the Print
window. Of course, that task falls to WindowCapture as shown in

Program 155. We add another small but handy routine called CheckRange%
that ensures our starting and ending values fall within accepted record
number boundaries

290 Printing

Closing the Print Manager

PROGRAM 155. Print selected records.

LOCAL FN CheckRange$% (current%, minRange%, maxRange%)
IF current% < minRange% THEN current% = minRange$%
IF current® > maxRange% THEN current% = maxRange%

END FN = current%

LOCAL FN WindowCapture
SELECT wndID%
CASE _printWIND
gPrLastRec% = VAL(EDITS (_lastPrFLD))
FN CheckRange% (gPrLastRec%, 1, gMaxRecInFile%)
gPrFirstRec% = VAL(EDITS(_firstPrFLD))
FN CheckRange% (gPrFirstRec%, 1, gPrLastRec%)
END SELECT
END FN

Closing the Print Manager

Just as there is a sequence to opening the Print manager to deal with your
printing task, there’s also a recommended method of finishing it.

The big finish occurs when there are no more pages to print. At that point we
use CLOSE LPRINT to close the Print manager. This tells the Print manager
that there are no more pages to print, enabling it to close down.

Right after that, always ensure that you ROUTE output back to the screen, and
that you close all of your own private data structures, print message
windows, etc.

Printing 291

Get Printer Name

Peak Performance

There may come a time when you want to do something fancier with the
printer. The following are some routines that may be useful to you.

Get Printer Name

Occasionally your program may need to know which printer is currently
selected. You may need to display the printer type, or simply use the name in a
dialog or alert. In either case, the following routine will locate the name of the
currently chosen printer as selected by the Chooser desk accessory.

» Inreality, a program should not concern itself with which printer is currently
selected since a print routine should work with any attached printer.

The following routine searches for the name of the currently chosen printer
on the computer. That information is stored in the System file as a STR
resource with an ID -8192. The routine searches all open resource forks for
the matching string. Since negative STR values are reserved by Apple for
system resources, this string will only be found in the System file. The routine
is shown in Program 156.

PROGRAM 156. Get Printer Name.

CLEAR LOCAL MODE
DIM 63 printerName$
LOCAL FN GetPrinterName$
resH& = FN GETSTRING (-8192)
LONG IF resH& = 0
printerName$ = "unknown®
XELSE
printerName$ = PSTRS([resH&])
CALL RELEASERESOURCE (resH&)
END IF
END FN = printerName$

292

Printing

Getting a Printer Icon

Getting a Printer Icon

Yet another piece of information you might require is the actual icon
representing the currently chosen printer. This is great for the users since they
can see immediately which printer they have chosen (if they have several) and
also makes them wonder how the program knew which printer to display.

FIGURE 94. Astandard print cancel dialog.

Printing page: 1 of 5

(_cancel Printing]

In Program 157, we make use of the Get PrinterName function to locate the
name of the printer extension file. We also determine which operating system
the program is operating under and search in the appropriate folder for the
printer extension. We do some fancy folder dancing to get the correct
wdRefNum% and then open the printer file’s resource fork. Once open, we
extract the printer icon, close up shop, and return the icon’s handle.

e Under System 6, all printer files reside in the System Folder itself, under System 7
printer files are located in the Extensions folder within the System Folder.

Well, the first order of business is to get the chosen printer’s name as
demonstrated in “Get Printer Name”. Next, we use the SYSTEM function to
return the working directory reference number of the System Folder in the
wdRefNum$ variable.

Now we do some more fancy folder work. If the program is executing under
System 6 there is nothing more to do because printer files live in the System
Folder, so the next routine is skipped. However, if it’s operating under System
7 we must switch to the Extensions folder to locate our printer file. We do that
using two variations of the FOLDER function. The first uses the System’s
volume reference number to open the System Folder. The second FOLDER call
searches the System Folder to see if a folder called Extensions lives there. If it
does, it opens that folder and returns its volume reference number in
vRefNum$.

Printing 293

Getting a Printer Icon

PROGRAM 157. Get Printer Icon.

CLEAR LOCAL MODE
LOCAL FN GetPrinterIcon
printerName$ = FN GetPrinterName$
oldResRef% = FN CURRESFILE
wdRefNum% = SYSTEM (_sysVol)
LONG IF SYSTEM (_sysVers) > 699
wdRefNum% = FOLDER ("", wdRefNum%)
wdRefNum% = FOLDER ("Extensions', 0)
END IF
resRef% = USR OPENRFPERM (printerName$, WDRefNum%, _fsCurPerm)
LONG IF resRef = 0
BEEP : BEEP
XELSE
printerIcnH& = FN GET1INDRESOURCE (_"ICN#", 1)
LONG IF printerIcnH& = 0
BEEP : BEEP
XELSE
CALL DETACHRESOURCE (printerIcnH&)
END IF
IF resRef% THEN CALL CLOSERESFILE (resRef%)
END IF
CALL USERESFILE (oldResRef$%)
END FN = printerIcnH&

The search path we use is illustrated in Figure 95. The top portion ot the
diagram shows that printer files for System 6 are stored in the System Folder.
On the bottom, printer extensions reside in the Extensions folder within the
System Folder. In either case, the routine now attempts to open the printer
file called printerName$ in the folder specified by wdRefNum% using USR
OPENRFPERM. A valid resRef% number (non-zero) indicates success.

FIGURE 95. Printer file paths.

System Pg};er
Folder —'P% ;
System 6.x path.
System Extensions Printer
Folder — Folder _> File
System 7 x path.

294 Printing

Getting a Printer Icon

With a valid resRef% we search the printer file for the first ICN# resource
stored in its resource list using the Toolbox function Get1IndResource.
GetlIndResourcegrabsthefirstresource of the requested typein the printer
file and returns a handle to the icon data. Once it has the handle, it detaches
it from the file allowing us to close the printer file with CloseResFile. The
icon handle is then returned to the calling routine.

We can now display it in a window, a dialog, or an alert with PlotIcon and
leave the user wondering how we figured it out. The small example in
Program 158 shows how to do this.

PROGRAM 158. Display printer icon.

DIM rect.8
CALL SETRECT (rect, 20, 20, 52, 52)
WINDOW 1 : CLS
printerIcnH& = FN GetPrinterIcon
LONG IF printerIcnH&
CALL PLOTICON (rect, printerIcnH&)
DEF DISPOSEH (printerIcnH&)
END IF
STOP

Getting a Printer Icon

Cooldown

In this chapter we learned about the various methods of sending data to a
printer. We saw how some useful printing statements may not provide the
amount of control or speed you require from your program. We also learned
how to create simple yet effective routines to handle a multitude of printing
tasks, from individual records, to all records, and selected records.

With the information provided in this chapter you are well on your way to
becoming a printing master. In the next chapter, we’ll create many of the
resources necessary to make SimpleBase a unique application in the eyes of
the Finder and everyone else.

296 Printing

CHAPTER 18

Application Resources

Warm-up

We're nearing the end of creating SimpleBase. What follows are some addition
resources required by applications on the Macintosh. Here you'll learn all
about:

¢ The BNDL resource,

¢ FREF resources,

¢ ICN# resources,

¢ The signature resource,
¢ The vers resource,

¢ The SIZE resource, and

¢ Special System 7 resources.

There are several resource types required by any program for it to be
recognized as a unique application by the Finder. What follows are
explanations of these various resources and how they relate to an application
and to each other.

» Note that the following resources are required under both System 6 and System 7
Jfor all applications.

Application Resources 297

The BNDL Resource

The BNDL Resource

The BNDL (bundle) resource identifiesall Finder-related resources associated
with the application program. These resources include the ICN#, FREF, and
signature resources.

The BNDL resource links these three resources together into, well, a bundle.
Tobegin, the BNDL resource identifies theapplication’s signature resource (4-
character type) to the Finder. This enables the Finder to link documents with
specific file types to the application that created them. I.e., the user can
double-click on a document and the Finder will search out and open the
application that created the document.

Next the BNDL links a FREF resource to an ICN# resource. The FREF (file
reference) contains a 4-character file type, and an index number to the ICN#
resources. Typically, the first FREF relates to the application itself, and the
first ICN# in the index is the application icon. The next FREF represents a
single file type the application can save to disk and its associated ICN# index
number. Another FREF resource is required for each file type associated with
the application. You can see this resource relationship in Figure 111.

The Signature Resource

Asignatureresource is an application unique resource type that enables the
Finder to identify and launch the correct application when the user double-
clicks on adocument created by that application. The signatureresourceisa

FIGURE96. BNDL resource relationships.

BNDL resource
Creator type:

FREF resources ICN# resources

File type: ICN#128 |
one [T2s] K3

File type: ‘ ICN# 129 |

ICN#| 129 —

298 Application Resources

FREF Resources

4-character type commonly referred to as the creator type. For example,
FutureBASIC has a creator type of ZBAS and ResEdit has one of RSED. You can
designate the signature type in the BNDL editor as shown in Figure 97.

Your programs should have their own unique creator types. If a program has
the same creator type as another, the Finder can become confused and
display the wrong icons on both the application and its documents.

Programs specify a file type for a file using the DEF OPEN statement as
previously shown in the chapter “Files”. You can determine a document file
type using FILESS or FINDERINFO as demonstrated in the chapter “Final
Touches”.

FIGURE 97. BNDL editor in ResEdit.

[J==———= BNDL ID = 128 from SimpleBase.rsrc Y————|

signature: [Fbsb_|
ID:|0] (should be 0)

® string: |Copyright ©1993 Sentient Fruit™ |

FREF Finder Icons

lacal :res ID iType |local ires ID ICN# icld4 icl8 ics¥®ics4 ics8

o 128 {APPL |0 128 @@@@@ e

S (P O R (g = = = ST
-C]

« Note, to ensure that your applications signature doesn’t conflict with another
application, register your application’s signature with Apple Computer, Inc., at
Macintosh Developer Technical Support.

FREF Resources

FREF (file reference) resources are used to link specific file types with the
icon used by the Finder to display it on the screen. For each file type an
application can create, it should have a FREF resource of that type.

A FREF resource contains three items: a 4-character file type, alocal ICN# ID,
and an empty string (never implemented by Apple). File types can be a
common one like TEXT or PICT, or be unique to your application. The two
FREFs used by SimpleBase are shown in Figure 98.

Application Resources 299

ICN# Resources

FIGURE98. The FREF resources used by SimpleBase.

FREF ID = 128 from SimpleBase.rsrc

File Type [aPPL |
lcon localld [0
FileName |
SCJ=——— FREF 1D = 129 from SimpleBase.rsrc ——r—=
it
Icon locallD l:‘
FileName I J
=
=

ICN# Resources

ICN# (icon list) resources contain all of the icons associated with an
application and its documents. You can see the entire ICN# for the SimpleBase
application icon in Figure 99. The ICN# editor makes it easy to design all the
icons required by any program. Besides the usual drawing tools and icon
design area, it displays the icons against both white and patterned
backgrounds so that you can see how it will look on screen.

FIGURE 99. Application ICN# for SimpleBase.

E[J==———= Icon Family ID = 128 from SimpleBase.rsrc
& E L o
75 H "a"un

]]

o & mpn
Bu G " oy
Bl E EEEEEEEEN SEEEEEEEE E
(5] (@) H EEEEEE E B]
]] 5]

@O0 i et _" 8
H EE_ W]

]]]

] u]

] mm N N

] u]

] EENEEEEE N

] EEEEEEEEE §

= n _mEREREEEES §

0 £

[T s i i o st s o P

300 Application Resources

The vers Resource

\

From top to bottom you can use this single editor to create black and white
ICN# and icn# resources, as well as 4- and 8-bit color icl14, ics4, icl8, and
ics8icon resources and the icon masks (used to separate the icon from the
background pattern). All of these icon resources together are known
collectively as an ICN# family."

The vers Resource

The versresource contains the application version information. It’s normally
displayed when the userhighlights the application and chooses Get Infofrom
the File menu while in the Finder. An example of SimplaBase version
information display is shown in Figure 100.

Setting the vers information is done in the vers editor shown in Figure 101.
Here is where you set things like the application’s version number, its stage of
development (development, alpha, beta, and final), the country code (identifies
the script system the version of the software was developed for), and provide
short and long version strings for the 6et Info window. Additionally, a vers
resource should have a resource ID of 1 to specify the file version, or a resource
ID of 2 to represent the version for a set of files.

FIGURE 100. Get Info display for SimpleBase.

=
SimpleBase T

Kind : applicati .
S:’:e: aem :: :i::kpgz':::4 bytes used) Thls hOW the Ve:rs resource
Vhere: MACo! - L FetureBASIC | information is displayed
M : Languages : Future! ™
o LFB-08/05/3 bac- when the program’s user
chooses Get Info.

E[J=—— SimpleBase Info

Created: Sat, Sep 4, 1993, 15:54
Modified: Sat, Sep 4, 1993, 15:54
Version : Copyright ©1993, Sentient Fruit™
Software
Comments :

~Memory Requirements -
{ Suggested size: 2000 K

i Mini size: |S00 K
[Jrocked | Preferredsize: [5G0 K

This how the SIZE resource
information is displayed.

Application Resources 301

The SIZE Resource

FIGURE 101. vers editor in ResEdit.

E[[== vers ID = 1 from SimpleBase.rsrc

Uersion number: Ii] 5 |—6——| i |-0—_—|

Release:| Beta w | Non-release: |_0:|

W

Country Code:| 00 - USA v|

Short version string: |ul.0l] I

Long version string (visible in Get Info):

Copyright ©1993, Sentient Fruit™ Software

System 7 Resources

The following resources are required to provide additional support for System
7 (and MultiFinder) features. They should be added to all programs you write,
regardless of which system the user will ultimately use your program on.
User’s of System 6 do use MultiFinder occasionally, and hopefully will upgrade
to System 7 at some time. So help them out by making your application
System 7 friendly right from the start.

The SIZE Resource

Because System 7 can run multiple applications at once, and because there is
a finite amount of RAM memory in a particular machine, parcelling that
memory out is vitally important. Since the System can’t determine on its own
what amount of memory an application might require, the SIZE resource was
created. This enables the System to ask the application how much memory it
requires. It then allocates enough space for the application, and launches it
into the allocated memory space.

The SI1ZE resource under System 7 (and System 6 MultiFinder) describes
both the upper and lower limits of memory space an application requires. The
minimum memory setting is vitally important since it describes the least
amount of memory an application can still operate in, albeit at a reduced
capacity. In most cases the maximum memory setting describes the typical
user requirements when working with the program. In some cases, if the user

302

Application Resources

Determining Memory Requirements

FIGURE 102. Determining memory requirements.

S(J=———— About This Macintosh =05
System Software7.1
[L==] Macintosh 1 © Apple Computer,, hc. 1983-1993
Total Memory: 8,192K Largest Unused Block: S5156K
(2] simpleBase sic [| 1O

System Software 2,524k [N |

o<l

is making unusually large demands on a program’s memory space, the
memory should be increased.

Additionally, the SIzZEresource provides the operating system with additional
information on whether the application is 32-bit clean, it can accept suspend
and resume events, does it support stationary, and many more. We'll examine
which ones should be set later in the chapter.

Determining Memory Requirements

One question I am often asked is how to determine the suggested, minimum,
and preferred sizes for an application. While it’s easy to just pick a size for
each entry, doing so intelligently requires both some work and some thought
on your part.

First, write and build your application. Then run it as hard as you can
memory wise. Open as many files as the application allows. Build every array
as large as required. Work the application as hard as you can. Periodically,
examine the memory display in the Finder as shown in Figure 102. See how
much memory the dialog shows the application actually requires.

In our example, SimpleBase is only using about 80K of its allocated 512K with
no files open. Adding 20 or 25% of safety factor gives a total of about 100K for
the minimum setting. However, when a file is open, it actually uses very little
more, about 90K or so. This is because SimpleBase only keeps one record in
memory at a time instead of the entire database. So, adding 25% to that (with

some rounding up) I get a maximum memory setting of 128K1.
Now, on both memory extremes, we've ensured that the program won’t bump

against a too small memory problem or request more memory than it can ever
use and prevent other programs from running.

1. A nice even multiple of 2.

Application Resources 303

Adding Finder Messages to Documents

o Note that if no SIZE resource is included in your application’s resource file, FB will
use a copy of its own SIZE resource which has a preferred setting of 2000K.
Probably much larger than your program may ever need.

Adding Finder Messages to Documents

Under System 7, when the user attempts to open or print a document the
Finder will search for the application that created the document. If a match of
signature types is found, the Finder starts the application and tells it to open
or print the document. If the application isn’'t found, it displays an
application-unavailable alert.

If the document is of the type TEXT or PICT and the TeachText application
is available, the Finder will offer to open the document with TeachText. If
TeachText is not available, the Finder displays an alert box like that shown in
Figure 103.

FIGURE 103. Standard application-unavailable alert.

The document “Fred.DB” could not be
opened, because the application
“SimpleBase” could not be found.

Before displaying the alert, the Finder searches the document for one of two
custom STR resources. If the document is one that users can open, supply a
STR -16397 resource containing the application name. If the file is a
preferences file, or one that is used by the application but one that users
shouldn’t open, supply a STR -16396 resource containing a short message
describing why the user can’t open the file as shown for a fictional
preferences file in Figure 113. Both resoures should be made purgeable.

Adding Balloon Help Resource
The System 7 Finder provides balloon help for online assistance of users.

Whenever the user chooses Show Balloons from the @ menu, descriptive

messages appear inside of cartoon-style balloons as the users moves the
cursor over an area of the screen (window, control, dialog) that has a help
resource associated with it.

304

Application Resources

Adding Balloon Help Resource

FIGURE 104. Custom application-unavailable alert.

This document contains the user
preferences for the application
SimpleBase. This document must be
stored in the Preferences folder to

be usable by SimpleBase.

(_ox]

The Finder provides default help messages for applications. Since that isn’t
much fun, we can customize our application’s balloon help message by
creating a hfdr resource with a resource ID of -5696. When users turn on
balloon help, they will see something like that shown in Figure 105.

FIGURE 105. Balloon help for SimpleBase.

Use the SimpleBase database
to create and manage an

employee database for your
business.

Unfortunately, you can’t overide the default document balloon help, just
applications.

Application Resources 305

Creating BNDL Resources

FIGURE 106. Empty BNDL editor.

O BNDL 1D = 128 from SimpleBase.rsrc |
signature:
ID: |0 | (should be 0)

© String:

FREF Finder Icons

local ires ID iType |local jresID | ICN® icl4 icl8 ics®ics4 ics8
it
o]

Regular Exercise

It's time to add all of the previously mentioned resources to the
SimpleBase.rsrc file. Take it one step at a time and add them just as described.

Creating BNDL Resources

From the BNDL editor it’s possible to create the BNDL, FREF, ICN#, and
signature resources. Start by running ResEdit and opening the
SimpleBase.rsrc file. Choose Create New Resource from the Resource
menu and click the BNDL resource type, then 0K. ResEdit will create a blank
BNDL resource like that shown in Figure 106. Finally, choose Extended Uiew
from the BNDL menu so that all of the resource bundled in the BNDL resource
can be viewed.

Creating a Signature Resource

We start by adding our creator type to the BNDL editor. This will automatically
generate a signature resource of the specified 4-character type within the
resource file. We also add a small string to the resource. It's not required, and
many applications leave the signature resource blank, but I like to place a
copyright notice there. You can see the signature type and string in

Figure 107 just as it was entered.

306

Application Resources

Creating FREF Resources

FIGURE 107. Creating a signature resource in the BNDL editor.

=[] BNDL ID = 128 from SimpleBase.rsrc S —0———
Signature: |FbSb
ID: |0 (should be 0)
© String: [Copyright ©1993 Sentient Fruit™
FREF Finder Icons
local ires ID Tgpe local iresID i ICN® icl4 icl8 ics®ics4 ics8
%
|
[
Creating FREF Resources

With the BNDL editor window frontmost, choose Create New File Type from
the Resources menu. ResEditwill add a complete FREF/ICN# link. Enter the
appropriate FREF types beginning with APPL. Also, add the resource ID to the
ICN# containing the application icon. Choose Create New File Type again
and add a FREF for our data files as SbDb and the resource ID to the file ICN#.

When finished, it should look like the screen shot in Figure 108.

FIGURE 108. Adding FREFs to BNDL resource.

=l

BNDL 1D = 128 from SimpleBase.rsrc o=

Signature: |FbSb

(should be 0)

© String: [Copyright ©1993 Sentient Fruit™

ICN#

FREF Finder Icons
local iresID iType |local ires ID
0 128 APPL |D 128

1 129 SbDb |1 129

icl4

ic18 ics® ics4 ics8

<l

Application Resources

307

Creating ICN# Resources

« Note that you shouldn’t change any of the Local ID settings. Just let ResEdit
assign those as it sees fit.

Creating ICN# Resources

Next, it's time to add the icons that will make our application visually unique
on the desktop. Double-click on the gray rectangles for Finder Icon #128.
ResEditwill open the ICN# editor whereyoucanbegin creating theicon family
that will represent your application on the desktop. When done, close the
ICN# editor and repeat for Finder Icon #129. You can see the application icons
in Figure 99 and their document icons in Figure 109.

FIGURE 109. Document icons for SimpleBase.

EO Icon Family ID = 129 from SimpleBase.rsrc

L) L

. i @

You've now completely filled in the BNDL resource, as well as added FREFs,
ICN#s, and a signature resource. The BNDL editor should look similar to
what is shown in Figure 110 at this point. Now, save your work and then
begin creating the rest of the application required resources.

308 Application Resources

Creating ICN# Resources

FIGURE 110. Complete BNDL for SimpleBase.

Ell

Signature: |FbSb
1D: | 0 | (should be 0)

© string: [Copyright ©1993 Sentient Fruit™ |

BNDL ID = 128 from SimpleBase.rsrc =iee————|

FREF Finder Icons
lacal ires ID {Type [local jres ID | ICN® icl4 icl8 ics®ics4 ics8

(i} 128 |APPL |0 128 9-
1 129 {sbDb |1 129 l%l%

el

Application Resources

Creating a vers Resource

Creating a vers Resource

We'll begin the other resources by creating the vers resource. Choose Create
New Resource, type in vers, and click 0K. ResEdit creates a vers resource
and opens the vers editor shown in Figure 111. Enter the version number
(1.0.0), short and long version strings, choose the release type Final, and
finish by setting the country code (for the Script Manager).

FIGURE 111. vers resource editor.

[ECI=== vers ID = 1 from SimpleBase.rsrc ==—

Dersion number: IEI . rL__I . E o

Release:| Final w) Non-release: D

Country Code:| 00 - USA v]

Short version string: [v1.00

Long version string (visible in Get Info):
Copyright ©1993, Sentient Fruit™ Software

To complete the vers resource, choose Get Resource Info from the
Resources menu and change the vers resource ID to 1. Save your changes
and you're done with this resource.

Creating a SIZE Resource

To create an SIZE resource, select Create New Resource from the
Resources menu, find the SIZE type in the list. Click 0K. When the SIZE
editor appears, enter the suggested, minimum, and preferred application
memory requirements, then click on the attributes your application requires.
By default, you should always select the attibutes shown in Figure 112. Each
of the selected attributes does the following (the others are not detailed here):

» Accept suspend/resume events — tells the operating system that your
application can process suspend/resume events.

+ Can background — when set, it tells the operating system that your
application wants to receive null events while it’s in the background.

310 Application Resources

Creating the hfdr Resource

e Can activate on FG switch - tells the operating system that your
application should receive the mouse down and up events used to bring
your application to the foreground.

» 32-bit compatible - indicates that your program is 32-bit clean. Required
for all new machines, and especially when running under System 7.

Finally, when everything is set as shown in Figure 112, use 6et Resource
Info to change the SIZE resource ID number to O.

FIGURE 112. SIZE resource settings.

SIZE ID = 0 from SimpleBase =

[save screen (obsolete)

B Accept suspend/resume events
[pisable option (obsolete)

Can background

Xl Does activate on FG swilch

] Only background

[] Get front clicks

[J Rccept application died events
32-bit compatible

[] High-level event aware

[Local and remate HL events

[stationary aware

[] Use text edit services

Preferred: m bytes

Creating the hfdr Resource

To create the hfdr resource, select Create New Resource from the
Resources menu and find the hfdr type in the list. Click 0K. When the hfdr
editor appears, select STR format for the message from the Help popup list,
then double-click on the balloon to access the STR editor. Enter the text that
will appear when the user has balloon help on, then save your work.

Use Get Resource Info to change the hfdr resource ID number to -5696.
For SimpleBase, the balloon help should appear as shown in Figure 113.

Application Resources 311

Creating the hfdr Resource

FIGURE 113. Custom help balloon for SimpleBase.

[ECE nfdr 1D = -5696 from Test | =)

Help: | STR resource v]

7

~\

Use the Simplebase program to create
and manage an employee database for
your business.

y

STR resource ID: 1000

Cooldown

That's it for the system resources. In this chapter we learned all about the
BNDL, FREF, ICN#, and signature resources. When properly linked, they
provide the Finder with the capability to display your application icon and
open your application when a user double-clicks on a program file.
Additionally, we learned about some other resources like SIZE, vers, hfdr

and others.

312 Application Resources

CHAPTER 19

Final Touches

Warm-up

This chapter will complete our work on SimpleBase. What's left are some final
touches that you should add to SimpleBase and your own programs to make
them friendlier to users.

Which System am I?

Right off the top you should know that your programs will not operate on all
Macintosh computers, nor under all System versions (see the FB Getting
Started manual, Minimum system requirements). So the first order of
business when your program begins running, should always be to check that
it can run under the host machine and operating system.

We can check our environment quite easily using the SYSTEM function. For
example, to see if the program is running under a System version earlier than
6.05 we use the code shown in Program 159.

PROGRAM 159. Checking System version.

LONG IF SYSTEM (_sysVers) < 605
item = FN ALERT (_versALRT, 0)
END

END IF

Where the alert displayed is specific to the problem. In this case it should tell
the user that the program cannot run under the current operating system.
The ALRT resource added to the program might look like this.

Final Touches 313

Screen Colors

FIGURE 114. Wrong system alert.

Sorry, SimpleBase requires
E@ System 6.05 or later in order to
operate.

Return to Finder

Additionally, we must always make sure that the program executes on is at
least a MacPlus or newer. Another similar check should be made as shown in
Program 160 which displays its own ALRTresource describing the particular
problem to the user.

PROGRAM 160. Checking machine version.

LONG IF SYSTEM (_macType) < _envMacPlus
item = FN ALERT (_machALRT, 0)
END

END IF

In many cases a program can effectively get by using these two alert
messages. Using ResEdit, add these two ALRT resources to SimpleBase’s
resource file. Next, let’s open the SimpleBase.glbl file and add the two alert
constants (_versionALRT and _machALRT), save and close. Finally, open the
SimpleBase.main file and add the two testing routines to the Initialize
function.

FIGURE 115. Sample wrong ROMs alert.

Sorry, SimpleBase requires
Macintosh ROMs more current
than those found on this

machine.

Return to Finder)

Screen Colors

Other programs may have different operating requirements. For example, a
game program may require a color monitor before the user can play it. Or,
more commonly, the user has a color monitor, but it’s set to a different color

314

Final Touches

Opening and Printing File

FIGURE 116. Incorrect color setting alert.

Sorry, SimpleGame requires at
@ least 4-bit color in order to

operate.

Return to Finder

level than that required by the program. The user’s monitor is set to black
and white, but the game requires 4-bit color.

For this situation, a two-tiered test is required. We need to know first, is the
program running on a color monitor, and secondly, if it is, is it set to the
correct level for the program. The appropriate alert messages might look like
Figure 116 while the code to implement this type of tiered color check appears
in Program 161.

PROGRAM 161. Checking monitor color level

myMinColorLevel = 4
LONG IF SYSTEM (_maxColors) < myMinColorLevel
item = FN ALERT (_noColorSpptALRT, 0)
END
XELSE
LONG IF SYSTEM (_crntDepth) < myMinColorLevel
item = FN ALERT (_resetColorALRT, 0)
END
END IF
END IF

Opening and Printing File

Macintosh users are used to the operating system keeping track of a diversity
of information. One particular bit that comes in very handy is the ability to
double-click on a program’s file and have the application launch, then open

or print the selected file or files. Adding this functionality to your program is
quickly done.

The statement that makes it all possible if FINDERINFO. FINDERINFO returns
all information required by the program in order for it to open or print double-
clicked files. This information includes a file count, filenames, file types, and
volume reference numbers. The program can than examine each item in turn
to determine whether it can open the particular file.

Final Touches 315

Opening and Printing File

The key to using FINDERINFO is the proper organization of program routines
for opening and printing files. If you adhere to the principles detailed in
creating SimpleBase it becomes an easy matter to add this type Finder
support.

We start by defining two new constants in the SimpleBase.glbl file:

_openFiles = 0

_printFiles = 1

These are used to identify which operation the Finder wants us to do when it
passes us a file. The CheckIncomingFiles routine shown in Program 162
shows how to extract the infomration we need to successfully open or print a
file.

PROGRAM 162. Adding Finder support.

LOCAL FN CheckIncomingFiles
maxFiles% = 1
doWhat% = FINDERINFO (maxFiles%, gFileName$, fileType&, gWDRefNum%)
LONG IF (maxFiles% > 0) AND (fileType& = _"SbDb")
SELECT doWhat%
CASE _openFiles
FN ItemOpen
CASE _printFiles
FN ItemOpen
FN ItemPrint
END SELECT
END IF
END FN

We call this routine last in the Initialize routine during program start-up.
It uses FINDERINFO to determine if any filenames have been passed from the
Finder. If no files were passed to the program, it returns without doing a
thing.

If files have been passed, it examines each file in turn and processes it
appropriately. The routine starts by specifying the maximum number of files
the program will accept in the variable maxFiles%. maxFiles% is used by the
FINDERINFO function to examine the file list from the Finder. When done,
maxFiles% contains the actual number of files passed to the program.

This setting of maxFiles% is critical to successfully using FINDERINFO to
open or print files. If maxFiles% is not set (or ever equates to zero) your
program will be unable to open or print files during startup.

316

Final Touches

Handling Multiple File Types

Once FINDERINFO has been called, the routine examines maxFiles%. If
maxFiles% doesn’t equal zero further processing takes place. It then exa-
mines the dowhat% variable to determine exactly how to respond. dowhat$%
will contain a zero if the file should be opened, and 1 if it should be printed.

Handling Multiple File Types

Now that we know what to do with double-clicked files, let’s examine how to
add another filter to the file evaluation, that of file types. If Simplebase had a
preferences file, we may want the program to open, but not display the
preferences directly.:

DEF OPEN "FREDfred"

This statement specified the data file’s type and creator. The type being a 4-
character code that uniquely identifies the file and the creator being another
4-letter code that identifies the application that created the file. The Finder
uses these bits of information to open the file’s creator application when its
double-clicked.

We require this bit of information if our program can open more than one file
type. We first examine the file type to determine if, one, the file type is actually
one our program can open, and second, if it is one we can open, then direct it
to the correct opening subroutine. A SELECT/END SELECT structure works best
for this type of filtering. That way, if we ever need to add an additional file
type, just add another CASE to the list for the appropriate file type. The file
type filtering routine might look like this:

SELECT type&
CASE _"lora"
FN OpenLoraTypeFile
CASE _"todd*
FN OpenToddTypeFile
CASE _"john"
FN OpenJohnTypeFile
CASE ELSE
END SELECT

Final Touches 317

PS:

Cooldown

Well, that’s it. We're done with SimpleBase. That'’s not to say that you have to
be done with it. You probably already have some great ideas bubbling around
in your head on improving SimpleBase or writing other programs.

In this book, I've tried to give you the knowledge required to write applications
on the Macintosh. Along the way, we've seen how to implement common

features of the Macintosh interface, as well as explained the principles behind
their presence and reasons for their actions. We've also covered many useful

programming techniques that are guaranteed to make your other projects
easier. o

Like my favorite cowboy always said, “Happy coding to you”.

Fran

PS:
Now that I feel like I'm on some kind of a product roll, watch for:
Learning FutureBASIC: Toolbox 1

Learning FutureBASIC: Macintosh BASIC Power Video

318 Final Touches

Bibliography

The following references may help your understanding when using this book,
I know they helped me.

Hogan, Thom. “The Programmer’s Apple Mac Sourcebook” Microsoft Press.
Chernicoff, Stephen. “Macintosh Revealed Volumes 1-4” Hayden Books.
Gariepy, Michael. “FutureBASIC Handbook” Zedcor, Inc.

Gariepy, Michael. “Programming the Macintosh with FutureBASIC” Zedcor, Inc.
“Inside Macintosh, Volumes I-VI” Addison-Wesley.

“Inside Macintosh 2nd Ed: Files” Addison-Wesley.

“Inside Macintosh 2nd Ed: Overview” Addison-Wesley.

“Inside Macintosh 2nd Ed: Text” Addison-Wesley.

“Inside Macintosh 2nd Ed: Macintosh Toolbox Essentials” Addison-Wesley.
Knaster, Scott. “Macintosh Programming Secrets 2nd Ed”Addison-Wesley.
Little, Gary and Swihart, Tim. “Programming for System 7" Addison-Wesley.
Turovich, L. Frank. “FutureBASIC Reference” Zedcor, Inc.

Magazines...

Inside Basic magazine, The Journal of Macintosh BASIC Programming
Ariel Publishing, Inc.

PO Box 398

Pateros, WA 98846-0398

Phone: 509.923.2249

America Online: Ariel

MacTech magazine, The Macintosh Programming Journal
PO Box 250055

Los Angeles, CA 90025-0055

America Online: MacTechMag

develop, The Apple Technical Journal
Apple Computer, Inc.

PO Box 531

Mt. Morris, IL 61054

AppleLink: DEV.SUBS

Bibliography e 319

320

Appendix

SimpleBase.gibl

' —== CONSTANTS ---==-=-mmmm=mmmmmomcmmoommmmmmmae

' >>> FILE ID
_dbFileID

' >>> WINDOWS
_dbEntryWIND
_dbFindWIND
_aboutWIND
_helpWIND
_printWIND
_gotoWIND

oW onn
AU WM

' >>> BUTTONS
' >>> DATA ENTRY
_newRecBTN

_firstRecBTN
_PrevRecBTN
_nextRecBTN
_lastRecBTN
_findRecBTN
_clearRecBTN
_programBTN
_marketBTN

_officeBTN

I

HOoOo~NoUbh WS

o

' >>> FIND WINDOI
_findBTN =
_cancelBTN

_ignoreCaseBTN

non
w N -

' >>> ABOUT WINDOW
_OkKBTN =1

' >>> HELP WINDOW
_helpSCROLL
_prevHelpBTN
_nextHelpBTN

1
2
3

' >>> PRINT WINDOW
_printBTN 1
_thisRecBTN
_allRecBTN
_selectRecBTN

3
4
5
' >>> GOTO WINDOW
_gotoBTN =1

‘ >>> EDIT/PICTURE
' >>> FIND WINDOW

_dbFindFLD =1
' >>> HELP WINDOW
_helpFLD =1
' >>> PRINT WINDOW
_firstPrFLD =1
_lastPrFLD =2

]
[y

NDOW

FIELDS

' >>> DATA ENTRY WINDOW

_dbNameFLD =1

Appendix

321

SimpleBase.glbl

_dbAddrFLD
_dbCityFLD
_dbstateFLD
_dbZipFLD
_dbPhoneFLD
_dbFaxFLD
_dbPhotoFLD
_recordFLD

W unn
UoNou s Wi

' >>> GOTO WINDO
_gotoFLD =1

' >>> APPLE MENU

_iAbout =1
_iHelp =2

' >>> FILE MENU
_IFile
_iNew
_iOpen

i unan
WK

_iPageSetup =
_iPrint .
_iguit =8
' >>> EDIT MENU
_mEdit = 2
_iUndo =1

_iCopyRec = 10
_iPasteRec =

' >>> RECORD MENU

_mRecord
_iFirstRec
_iPrevRec
_iNextRec
_iLastRec

LI [| N [)
BwWwN - W

_iClearRec =9

' >>> ALRT IDs
_aboutALRT
_tooLongALRT
_NOFindALRT
_machErrALRT
_SYSErrALRT
_NotRecordALRT=

' >>> STRING IDs
_windowSTR
_buttonSTR
_fieldsTR

' >>> HELP ID
_minHelpID
_maxHelpID

' >>> MISC STUFF

128
129
130
131
132
133

1000
2000
3000

1001
1009

322

Appendix

SimpleBase.glbl

_gutterAdj = 30
_openFiles =0
_printFiles =1
_tab =9
cr = 13

' --- RECORD STRUCTURES

DIM RECORD dbRecord
DIM dbName$; 64
DIM dbAddrs$;64
DIM dbCity$;32
DIM dbMyState$; 4
DIM dbZip$;12
DIM dbPhone$;12
DIM dbFax$;12
DIM dbDeptNum$
DIM dbPictID$%

DIM dbExtra&
DIM END RECORD .dbRecordSize

! -—= VARIABLES ----=-==-mmmmmmmmmmmmmm—m—mmmmm e

' >>> FILE

DIM gOpenRecord%, gMaxRecInFile%
DIM gWDRefNum$%

DIM 255 gFileName$

' >>> HELP WND
DIM gHelpID%

' >>> PRINT WND
DIM gPrFirstRec%
DIM gPrLastRec%
DIM gPrintFlag$

' >>> RECORD
DIM gEmployee.dbRecordSize
DIM gPictH&

' >>> FIND WND
DIM gCaseFlag%
DIM 127 gSearch$

" >>> PROGRAM GLOBALS
DIM gQuit

' --— GLOBAL PROJECT FUNCTIONS ------===========-==--=

' --- Project.Incl
DIM gCursorPtr&

DIM gEFClickPtr&
DIM gTabEventsPtr&
DIM gCheckBoxPtr&
DIM gRadioBtnPtr&
DIM gHiliteBtnPtr&
DIM gReturnToBtnPtr&

' --- EditMenu.Incl
DIM gEditMenuPtr&

' --- Printing.Incl
DIM gDoPrintPtr&

Appendix

323

Project.Incl

Project.Incl

INCLUDE FILE _aplIncl
COMPILE 0, _strResource_macsBugLabels

' —=— CONSTANTS ~==-=====mmmmmmmmmmmm: mmmmmme oo

GLOBALS "SimpleBase.glbl®
END GLOBALS

' --- DIALOGEVENT. INCL

DEF FN CursorHandler (curskEvtID3%,dlgID%) USING gCursorPtr&

DEF FN EFClickEvent (fieldID%) USING gEFClickPtr&

DEF FN TabShiftTabEvents (dlgEvnt%, startFld%, lastF1ld$) USING gTabEventsPtr&
DEF FN CheckBoxHandler% (btnID%) USING gCheckBoxPtr&

DEF FN RadioBtnHandler% (lowBtnID%, highBtnID%, setBtnID$%) USING gRadioBtnPtr&
DEF FN HiliteSelectedButton (btnID%) USING gHiliteBtnPtra

DEF FN ChangeReturnToBtn (@evntIDPtr&, btnID%) USING gReturnToBtnPtr&

' --- PRINTING.INCL

DEF FN DoPrinting (readRecPtr&) USING gDoPrintPtr&

SimpleBase.Incl

' === HEADER ===-—mm oo oo
INCLUDE FILE _aplIncl
COMPILE 0, _strResource_macsBugLabels

' —-— CONSTANTS -------- —
GLOBALS “SimpleBase.glbl®
END GLOBALS

' == INCLUDES ======mmmmmmmmm oo mmmmm
INCLUDE “Project.Incl"

' --- FUNCTIONS ---=====-==mm-mmm -
' === MISC MENU FUNCTIONS ===

LOCAL FN UpdateMenus
SELECT WINDOW (_outputWClass)

CASE _dbEntryWIND
MENU _mFile , 0, _enable
MENU _mEdit , 0, _enable
MENU _mRecord, 0, _enable
MENU _mFile, _iNew , _enable, "New Record*
MENU _mFile, _iOpen , _disable
MENU _mFile, _iClose , _enable
MENU _mFile, _iPageSetup, _enable
MENU _mFile, _iPrint , _enable
MENU _mEdit, _iSelectAll,. _enable
MENU _mEdit, _iCopyRec , _enable
MENU _mEdit, _iPasteRec , _enable

CASE _dbFindWIND, _aboutWIND, _helpWIND, _gotoWIND
MENU _mFile , 0, _disable
MENU _mEdit , 0, _disable
MENU _mRecord, 0, _disable

CASE ELSE
MENU _mFile , 0, _enable
MENU _medit , 0, _enable
MENU _mRecord, 0, _disable

MENU _mFile, _iNew , —enable, “New*
MENU _mFile, _iOpen , _enable
MENU _mFile, _iClose , _disable

MENU _mFile, _iPageSetup , _disable

324 Appendix

SimpleBase.Incl

MENU _mFile, _iPrint ', _disable
MENU _mEdit, _iSelectAll , _disable
MENU _mEdit, _iCopyRec , _disable
MENU _mEdit, _iPasteRec , _disable
END SELECT
END FN

' === MISC RECORD FUNCTIONS ===

LOCAL FN SaveEmployeeGraphic
resRef% = USR OPENRFPERM (gFileName$, gWDRefNum$, _fsRAWrPerm)
LONG IF resRef% <> _nil
LONG IF gEmployee.dbPictID% > _nil
pictH& = FN GETPICTURE (gEmployee.dbPictID%)
LONG IF (pictH& <> _nil) AND (FN RESERROR = _noErr)
CALL RMVERESOURCE (pictH&)
END IF
CALL ADDRESOURCE (gPictH&, _"PICT®, gEmployee.dbPictID$%, gEmployee.dbName$)
CALL SETRESATTRS (gPictH&, _resPurgeable$)
CALL CHANGEDRESOURCE (gPictH&)
CALL WRITERESOURCE (gPictH&)
CALL DETACHRESOURCE (gPictH&)
END IF
CALL CLOSERESFILE (resRef%)
END IF
END FN

LOCAL FN ReadEmployeeGraphic
resRef% = USR OPENRFPERM (gFileName$, gWDRefNum$, _fsCurPerm)
LONG IF resRef% <> _nil
LONG IF gEmployee.dbPictID$ > _nil
DEF DISPOSEH (gPictH&)
gPictH& = FN GETPICTURE (gEmployee.dbPictID$)
LONG IF (gPictH& <> _nil) AND (FN RESERROR = _noErr)
EDITS (_dbPhotoFLD) = &gPictH&
CALL DETACHRESOURCE (gPictH&)
END IF
END IF
CALL CLOSERESFILE (resRef%)
END IF
END FN

LOCAL FN CheckFieldLength$ (fieldID%, maxLen$)
tmp$ = EDITS (fieldID%)
LONG IF LEN (tmp$) > maxLen$
item$ = FN ALERT (_tooLongALRT, 0)
tmp$ = LEFT$ (tmp$, maxLen$)
END IF
END FN = tmp$

LOCAL FN EFtoRecordField
0ldWnd% = WINDOW (_outputWnd)
WINDOW OUTPUT #_dbEntryWIND
gEmployee.dbName$ FN CheckFieldLength$ (_dbNameFLD, 63)
gEmployee.dbAddr$ FN CheckFieldLength$ (_dbAddrFLD, 63)
gEmployee.dbCity$ FN CheckFieldLength$ (_dbCityFLD, 31)
gEmployee.dbMyState$ = FN CheckFieldLength$ (_dbStateFLD, 3)
gEmployee.dbZip$ FN CheckFieldLength$ (_dbZipFLD, 11)
gEmployee.dbPhone$ FN CheckFieldLength$ (_dbPhoneFLD, 11)
gEmployee.dbFax$ FN CheckFieldLength$ (_dbFaxFLD, 11)
FN SaveEmployeeGraphic
WINDOW OUTPUT #o0ldWnd$%

END FN

LOCAL FN RecordFieldToEF
0ldWnd% = WINDOW (_outputWnd)
WINDOW QUTPUT #_dbEntryWIND
EDITS (_dbPhotoFLD) ne
EDITS (_dbNameFLD) gEnmployee.dbName$
EDITS (_dbAddrFLD) gEnmployee.dbAddr$

Appendix

SimpleBase.Incl

EDIT$ (_dbCityFLD)
EDITS (_dbStateFLD)
EDITS (_dbZipFLD)
EDIT$ (_dbPhoneFLD) gEmployee.dbPhone$
EDITS (_dbFaxFLD) gEmployee.dbFax$
FN RadioBtnHandler% (_programBTN, _officeBTN, gEmployee.dbDeptNum$)
FN ReadEmployeeGraphic
' eee display record and file data in window
tmp$ = STR$ (gOpenRecords) + " of" + STRS(gMaxRecInFile%) + ° records®
EDITS$ (_recordFLD) = tmp$
WINDOW OUTPUT #o0ldwnd$

END FN

gEmployee.dbCitys$
gEmployee.dbMyState$
gEmployee.dbZip$

i nowonn

=== MISC FILE HANDLING

CLEAR LOCAL
LOCAL FN DBWriteRecord
DEF OPEN "SbDbFbSb"
OPEN “R", # dbFileID, gFileName$, _dbRecordSize, gWDRefNum$
RECORD #_dbFileID, gOpenRecord$
WRITE #_dbFilelID, gEmployee
gMaxRecInFile% = LOF (_dbFileID, _dbRecordSize) - 1
CLOSE #_dbFileID
END FN

CLEAR LOCAL
LOCAL FN DBReadRecord
DEF OPEN "SbDbFbSb"
OPEN "R", #_dbFileID, gFileName$, _dbRecordSize, gWDRefNum$
RECORD #_dbFilelID, gOpenRecord$
READ #_dbFileID, gEmployee
gMaxRecInFile% = LOF (_dbFileID, _dbRecordSize) - 1
CLOSE #_dbFilelD
END FN

CLEAR LOCAL
LOCAL FN DBBlankRecord

DEF BLOCKFILL (@gEmployee, _dbRecordSize, 0) ‘make sure record is empty
END FN

CLEAR LOCAL
LOCAL FN DBNewEmployeeFile
FN DBBlankRecord
DEF OPEN “"SbDbFbSb"
OPEN "R", #1, gFileName$, , gWDRefNum$
CLOSE #1
CALL CREATERESFILE (gFileName$)
gOpenRecord$ = 0
gEmployee .dbName$
gEmployee.dbAddr$
gEmployee.dbCity$
FN DBWriteRecord
INC (gOpenRecord$)
END FN

“Created by SimpleBase, from the book:*
"Learning FutureBASIC: Macintosh BASIC Power"
"By Sentient Fruit™w+

nwonn

CLEAR LOCAL
LOCAL FN DBFindRecord
originalRecNum® = gOpenRecord$
IF gCaseFlag = _markedBtn THEN gSearch$ = UCASE$ (gSearch$)
CURSOR _watchCursor
gOpenRecord$ = 1
DO

FN DBReadRecord
test$ = gEmployee.dbName$
IF gCaseFlag = _markedBtn THEN test$ = UCASE$ (test$)
found% = INSTR (1, test$, gSearch$)
INC (gOpenRecords)
UNTIL (found% <> 0) OR (gOpenRecord% > gMaxRecInFile$)
CURSOR _arrowCursor
LONG IF found% = 0

326 Appendix

SimpleBase.Incl

CALL PARAMTEXT (gSearch$, gFileName$, "°, °*)
item$ = FN ALERT (_noFindALRT, 0)
gOpenRecord% = originalRecNum$
FN DBReadRecord

END IF

WINDOW #_dbEntryWIND

FN RecordFieldToEF

END FN

LOCAL FN CheckRange (current%, minRange%, maxRange$)
IF current% < minRange% THEN current$% = minRange$
IF current% > maxRange% THEN current%$ = maxRange$%

END FN = current$%

' === WINDOW FUNCTIONS ===

LOCAL FN WindowCapture (wndID%)
closeFlag% = _true
SELECT wndID%
CASE _dbEntryWIND
FN EFtoRecordField
FN DBWriteRecord
CASE _dbFindWIND
tmp$ = EDITS (_dbFindFLD)
LONG IF LEN (tmp$) > 127 ‘make sure find string doesn't
tmp$ = LEFTS (tmp$, 127) ‘exceed max gSearch$ length
END IF
gSearch$ = tmp$
CASE _aboutWIND
CASE _helpWIND
CASE _printWIND
gPrLastRec% = VAL (EDITS$ (_lastPrFLD))
gPrLastRec% = FN CheckRange (gPrLastRec%, 1, gMaxRecInFile$)

gPrFirstRec% = VAL (EDIT$ (_firstPrFLD))
gPrFirstRec% = FN CheckRange (gPrFirstRec%, 1, gPrLastRec%)
CASE _gotoWIND
gOpenRecord$ = VAL (EDIT$ (_gotoFLD))
gOpenRecord$ = FN CheckRange (gOpenRecord$, 1, gMaxRecInFile%)
END SELECT

END FN = closeFlag%

LOCAL FN WindowClose (wndID%)
LONG IF FN WindowCapture (wndID$)
SELECT wndID%
CASE _dbEntryWIND
CASE _dbFindWIND
CASE _aboutWIND
CASE _helpWIND
CASE _printWIND
CASE _gOtoWIND
END SELECT
WINDOW CLOSE #wndID%
END IF
END FN

LOCAL FN BuildEntryWindow
tmp$ = STR#(_windowSTR, _dbEntryWIND)
WINDOW #-_dbEntryWIND, tmp$, (0,0)-(500,290), _docNoGrow, _dbEntryWIND
TEXT _sysFont, 12
' eee BUTTONS
tmp$ = STR#(_dbEntryWIND_buttonSTR, _newRecBTN)
BUTTON _newRecBTN, _activeBtn, tmp$, (380,20)-(480,40) , _shadow
tmp$ = STR#(_dbEntryWIND_buttonSTR, _firstRecBTN)
BUTTON _firstRecBTN, _activeBtn, tmp$, (380,50)-(480,70) , _push
tmp$ = STR#(_dbEntryWIND buttonSTR, _prevRecBTN)
BUTTON _prevRecBTN, _activeBtn, tmp$, (380,80)-(480,100) , _push
tmp$ = STR#(_dbEntryWIND buttonSTR, _nextRecBIN)
BUTTON _nextRecBTN, _activeBtn, tmp$, (380,110)-(480,130), _push
tmp$ = STR#(_dbEntryWIND_buttonSTR, _lastRecBTN)
BUTTON _lastRecBTN, _activeBtn, tmp$, (380,140)-(480,160), _push

Appendix

SimpleBase.Incl

tmp$ = STR#(_dbEntryWIND_buttonSTR, _findRecBTN)
BUTTON _findRecBIN, _activeBtn, tmp$, (380,170)-(480,190), _push
tmp$ = STR#(_dbEntryWIND_buttonSTR, _clearRecBIN)
BUTTON _clearRecBIN, _activeBtn, tmp$, (380,210)-(480,230), _push
tmp$ = STR# (_dbEntryWIND_buttonSTR, _programBTN)
BUTTON _programBTN, _activeBtn, tmp$, (90,222)-(200,237), _radio
tmp$ = STR# (_dbEntryWIND_buttonSTR, _marketBTN)
BUTTON _marketBTN, _activeBtn, tmp$, (90,238)-(200,253), _radio
trmp$ = STR# (_dbEntryWIND_buttonSTR, _officeBTN)
BUTTON _officeBTN, _activeBtn, tmp$, (90,254)-(200,269), _radio
' eee INACTIVE EDIT/PICT FIELDS
xPos = 85
tmp$ = STR# (_dbEntryWIND_fieldSTR, _dbNameFLD)
EDIT FIELD #100, tmp$, (20,40)-(xPos-5,56), _StatNoframed, _rightJust
tmp$ = STR#(_dbEntxryWIND_fieldSTR, _dbAddrFLD)
EDIT FIELD #101, tmp$, (20,66)-(xPos-5,82), _StatNoframed, _rightJust
tmp$ = STR# (_dbEntryWIND_fieldSTR, _dbCityFLD)
EDIT FIELD #102, tmp$, (20,92)-(xPos-5,108), _StatNoframed, _rightJust
tmp$ = STR# (_dbEntryWIND_fieldSTR, _dbStateFLD)
EDIT FIELD #103, tmp$, (20,118)-(xPos-5,134), _StatNoframed, _rightJust
tmp$ = STR#(_dbEntryWIND_fieldSTR, _dbZipFLD)
EDIT FIELD #104, tmp$, (20,144)-(xPos-5,160), _StatNoframed, _rightJust
tmp$ = STR# (_AbEntryWIND_fieldSTR, _dbPhoneFLD)
EDIT FIELD #105, tmp$, (20,170)-(xPos-5,186), _StatNoframed, _rightJust
tmp$ = STR# (_dbEntryWIND_fieldSTR, _dbFaxFLD)
EDIT FIELD #106, tmp$, (20,196)-(xPos-5,212), _StatNoframed, _rightJust
tmp$ = STR# (_dbEntryWIND_fieldSTR, _dbPhotoFLD)
EDIT FIELD #107, tmp$, (20,222)-(xPos-5,238), _StatNoframed, _rightJust
tmp$ = STR# (_dbEntryWIND_fieldSTR, _dbPhotoFLD + 1)
EDIT FIELD #108, tmp$, (20,14)-(xPos-5,30), _StatNoframed, _rightJust
EDIT FIELD #_ recordFLD, "", (xPos,14)-(345,30), _StatNoframed, _leftJust
' eee ACTIVE EDIT/PICT FIELDS
EDIT FIELD #_dbNameFLD, "", (xPos,40)-(345,56), _framedNoCR, _leftJust
EDIT FIELD #_dbAddrFLD, "", (xPos,66)-(345,82), _framedNoCR, _leftJust
EDIT FIELD #_dbCityFLD, "", (xPos,92)-(345,108), _framedNoCR, _leftJust
EDIT FIELD #_dbStateFLD, ", (xPos,118)-(170,134), _framedNoCR, _leftJust
EDIT FIELD #_dbZipFLD, "%, (xPos,144)-(200,160), _framedNoCR, _leftJust
EDIT FIELD #_dbPhoneFLD, "", (xPos,170)-(200,186), _framedNoCR, _leftJust
EDIT FIELD #_dbFaxFLD, "", (xPos,196)-(200,212), _framedNoCR, _leftJust
PICTURE FIELD #_dbPhotoFLD, "*, (215,118)-(345,270), _framedNoCR, _cropPict
' eee SET WINDOW BUTTONS/ACTIVE FIELD
EDIT FIELD #_dbNameFLD

END FN

LOCAL FN BuildFindWindow
tmp$ = STR#(_windowSTR, _dbFindWIND)

WINDOW #-_dbFindWIND, tmp$, (0,0)-(340,80), _docNoGrow_noGoAway, _dbFindWIND

TEXT _sysFont, 12

' eee BUTTONS

tmp$ = STR#(_dbFindWIND_buttonSTR, _findBTN)

BUTTON _findBTN, _activeBtn, tmp$, (250,50)-(320,70), _shadow

tmp$ = STR# (_dbFindWIND buttonSTR, _cancelBTN)

BUTTON _cancelBTN, _activeBtn, tmp$, (160,50)-(230,70), _push

tmp$ = STR# (_dbFindWIND_buttonSTR, _ignoreCaseBTN)

BUTTON _ignoreCaseBTN, _activeBtn, tmp$, (20,50)-(150,70) , _checkBox

! eee INACTIVE EDIT/PICT FIELDS

tmp$ = STR#(_dbFindWIND_fieldSTR, 1)

EDIT FIELD #100, tmp$, (15,15)-(50,30), _StatNoframed, _rightJust

' eee ACTIVE EDIT/PICT FIELDS

EDIT FIELD #_dbFindFLD, gSearch$, (55,15)-(320,30), _framedNoCR, _leftJust
END FN

LOCAL FN BuildAboutWindow
item% = FN ALERT (_aboutALRT, 0)
END FN

LOCAL FN BuildHelpWindow
tmp$ = STR#(_windowSTR, _helpWIND)
WINDOW #-_helpWIND, tmp$, (0,0)-(400,260), _docZoom, _helpWIND
TEXT _sysFont, 12

328

Appendix

SimpleBase.Incl

' eee BUTTONS

tmp$ = STR# (_helpWIND_but
BUTTON #_prevHelpBTN, 1,
tmp$ = STR#(_helpWIND_but
BUTTON #_nextHelpBTN, 1,

tonSTR, _prevHelpBTN)
tmp$, (20,5)-(100,25), _push
tonSTR, _nextHelpBTN)
tmp$, (120,5)-(200,25), _push

' eee INACTIVE EDIT/PICT FIELDS

wndX = WINDOW (_width) : wndY = WINDOW (_height)

EDIT FIELD #-_helpFLD, %gHelpID%, (4,34)-(wndX-4,wndY-4), _statNoframed, _leftJust
SCROLL BUTTON #-_helpSCROLL,1,1,1,10, (wndX-16,31)-(wndX,wndY),_scrollVert

END FN

LOCAL FN BuildPrintWindow
gPrintFlag% = _thisRecBTN

tmp$ = STR#(_windowSTR, _printWIND)

WINDOW #-_printWIND, tmp$
TEXT _sysFont, 12
' ees BUTTONS

, (0,0)-(300,125), _docNoGrow_noGoAway, _printWIND

tmp$ = STR#(_printWIND_buttonSTR, _okBTN,

BUTTON _okBTN, _activeBtn
tmp$ = STR#(_printWIND_bu

, tmp$, (200,90)-(280,110)
ttonSTR, _cancelBTN)

shadow

r =

BUTTON _cancelBTN, _activeBtn, tmp$, (100,90)-(180,110) , _push

tmp$ = STR# (_printWIND bu

ttonSTR, _thisRecBTN)

BUTTON _thisRecBTN, 2, tmp$, (20,10)-(200,25), _radio

tmp$ = STR#(_printWIND_bu
BUTTON _allRecBTN, 1, tmp
tnp$ = STR# (_printWIND_bu
BUTTON _selectRecBTN, 1,

ttonSTR, _allRecBTIN)

$, (20,30)-(200,45), _radio
ttonSTR, _selectRecBIN)

tmp$, (20,50)-(160,65), _radio

' eee INACTIVE EDIT/PICT FIELDS

tmp$ = “to"

EDIT FIELD #100, tmp$, (205,50)-(235,65), _statNoframed, _centerJust

' eee ACTIVE EDIT/PICT FIELDS

tmp$ = STRS (gMaxRecInFile$%)

EDIT FIELD #_lastPrFLD, tmp$, (240,50)-(275,65), _framedNoCR, _centerdust

EDIT FIELD #_firstPrFLD,
END FN

LOCAL FN BuildGotoWindow

“1", (165,50)-(200,65), _framedNoCR, _centerdJust

tmp$ = STR#(_windowSTR, _gotoWIND)

WINDOW #-_gotoWIND, tmp$,
TEXT _sysFont, 12

' e+ BUTTONS

tmp$ = STR#(_gotoWIND_but
BUTTON _gotoBTN, _activeB
tmp$ = STR#(_gotoWIND_but

(0,0)-(200,80), _docNoGrow_noGoAway, _gotoWIND

tonSTR, _gotoBTN)
tn, tmp$, (120,45)-(180,65), _shadow
tonSTR, _cancelBTN)

BUTTON _cancelBTN, _activeBtn, tmp$, (20,45)-(80,65), _push
' eee INACTIVE EDIT/PICT FIELDS

tmp$ = STR#(_gotoWIND_fie
EDIT FIELD #100, tmp$, (1

1dsSTRr, 1)
0,15)-(105,30), _StatNoframed, _rightdJust

' eee ACTIVE EDIT/PICT FIELDS

tmp$ = STR$ (gOpenRecords)
EDIT FIELD #_gotoFLD, tmp!
END FN

LOCAL FN WindowBuild (wndID!
LONG IF WINDOW (-wndID%)
SELECT wndID$
CASE _dbEntryWIND
CASE _dbFindWIND
CASE _aboutWIND
CASE _helpWIND
CASE _printWIND
CASE _gotoWIND
END SELECT
END IF

$, (110,15)-(180,30), _framedNoCR, _centerJust

%)
=0

: FN BuildEntryWindow
: FN BuildFindWindow
: FN BuildAboutWindow
: FN BuildHelpWindow
: FN BuildPrintWindow
: FN BuildGotoWindow

IF wndID% <> _aboutWIND THEN WINDOW #wndID%

END FN
' === APPLE MENU FUNCTIONS

LOCAL FN ItemAbout

Appendix

329

SimpleBase.Incl

item$ = FN ALERT (_aboutALRT, 0)
END FN

LOCAL FN ItemHelp
FN WindowBuild (_helpWIND)
END FN

LOCAL FN DoAppleMenu (itemID%)
SELECT itemID%

CASE _iAbout : FN ItemAbout
CASE _iHelp : FN ItemHelp
END SELECT .
END FN

' === FILE MENU FUNCTIONS ===

LOCAL FN ItemNew
LONG IF WINDOW (_outputWnd) = _dbEntryWIND
FN DBBlankRecord
FN EFtoRecordField
FN DBWriteRecord
gOpenRecord$ = gMaxRecInFile% + 1
FN DBBlankRecord
FN DBWriteRecord
FN RecordFieldToEF
XELSE
tmp$ = “Save new employee file as:*
gFileName$ = FILES$ (_fSave, tmp$, “Untitled", gWDRefNum$)
LONG IF LEN (gFileName$) > 0
FN DBNewEmployeeFile ‘create default file header
FN DBBlankRecord
gEmployee.dbName$ = "Empty record"”
gEmployee.dbDeptNum$ = _programBTN
FN DBWriteRecord

FN WindowBuild (_dbEntryWIND) 'build db window
FN RecordFieldToEF ‘show it in window
END IF
END IF
END FN

LOCAL FN ItemOpen
LONG IF LEN (gFileName$) = 0
gFileName$ = FILESS (_fOpen, "SbDb“, , gWDRefNum$)'get file from disk
END IF
LONG IF LEN (gFileName$) > 0
FN DBBlankRecord
gOpenRecord% = 1

FN WindowBuild (_dbEntryWIND) ‘build db window
FN DBReadRecord 'read first record in file
FN RecordFieldToEF 'show it in window
END IF
END FN

LOCAL FN ItemClose
FN WindowClose (WINDOW (_outputWnd))
FN UpdateMenus
gFileName$ = "

END FN

LOCAL FN ItemPageSetup
DEF PAGE
END FN

LOCAL FN ItemPrint
FN WindowBuild (_printWIND)
END FN

LOCAL FN ItemQuit
gQuit = _true
END FN

Appendix

SimpleBase.Incl

LOCAL FN DoFileMenu (itemID$%)

SELECT itemID$%
CASE _iNew
CASE _iOpen
CASE _iClose

CASE _iPageSetup

CASE _iPrint
CASE _iQuit
END SELECT

END FN

DEF FN DoEditMenu (itemID%) USING gEditMenuPtr&

'

=== EDIT MENU FUNCTIONS ===

=== RECORD MENU FUNCTIONS

LOCAL FN ItemFirstRecord

gOpenRecord$ = 1

END FN

LOCAL FN ItemPrevRecord
DEC (gOpenRecord$)

LOCAL FN ItemNextRecord
INC (gOpenRecord$)

LOCAL FN ItemLastRecord

LOCAL FN ItemFindRecord
FN WindowBuild (_dbFindWIND)

: FN ItemNew

: FN ItemOpen

: FN ItemClose

: FN ItemPageSetup
: FN ItemPrint

: FN ItemQuit

IF gOpenRecord$ < 1 THEN gOpenRecord$ = gMaxRecInFile%
END FN

IF gOpenRecord$ > gMaxRecInFile% THEN gOpenRecordd = 1
END FN

gOpenRecord® = gMaxRecInFile%
END FN

END FN

LOCAL FN ItemGotoRecord

FN WindowBuild (_gotoWIND)
END FN

LOCAL FN ItemClearRecord

FN DBBlankRecord
FN DBWriteRecord

FOR fieldID% = _dbNameFLD TO _dbPhotoFLD
EDITS (fieldID%) = "

NEXT fieldID%

EDIT FIELD #_dbNameFLD
END FN

LOCAL FN DoRecordMenu (itemID%)

FN EFtoRecordField
FN DBWriteRecord

SELECT itemID$%

CASE _iFirstRec
CASE _iPrevRec
CASE _iNextRec
CASE _iLastRec
CASE _iFindRec
CASE _iGotoRec
CASE _iClearRec

END SELECT
FN DBReadRecord
FN RecordFieldToEF

END FN

22222232

LOCAL FN HandleMenuEvent

ItemFirstRecord
ItemPrevRecord
ItemNextRecord
ItemLastRecord
ItenFindRecord
ItemGotoRecord
ItemClearRecord

‘save this records data

'read in new records data

Appendix

331

SimpleBase.Incl

renulD$ = MENU (_menulD)
itemID% = MENU (_itemID)
SELECT menulD%
CASE _appleResMenu : FN DoAppleMenu (itemID$%)

CASE _mFile : FN DoFileMenu (itemID%)
CASE _mEdit : FN DoEditMenu (itemID$%)
CASE _mRecord : FN DoRecordMenu (itemID%)
END SELECT
MENU
END FN

' === DIALOG HANDLERS ===

LOCAL
DIM rect;8
LOCAL FN DrawFrame (showFrame%)
CALL SETRECT (rect, 210,113,350,275)
LONG IF showFrame%
PEN 2,2,,,0
XELSE
PEN 2,2,,,19
END IF
CALL FRAMERECT (rect)
PEN 1,1,,,0
END FN

LOCAL
DIM rect;8
LOCAL FN DialogEntryWindow (dlgEvnt%, dlgID%)
LONG IF dlgkEvnt% = _efReturn
FN ChangeReturnToBtn (dlgEvnt%, _newRecBTN)
END IF
SELECT dlgEvnt$
' eee WINDOW EVENTS
CASE _wndClose
FN ItemClose
CASE _wndActivate
FN UpdateMenus
CASE _wndClick
WINDOW #_dbEntryWIND
CASE _wndRefresh
'FN ReadEmployeeGraphic

PEN ,,,,3 ‘set pen to gray pattem
CALL SETRECT (rect, 10, 10, 360, 280) ‘assign rect boundaries
DEF TITLERECT ("", 0, rect) 'draw patterned rect
CALL SETRECT (rect, 370, 10, 490, 240) ‘repeat for buttons

DEF TITLERECT (*", 0, rect)

PEN ,,,,0 ‘reset pen to normal

LONG IF WINDOW(_efNum) = O
FN DrawFrame (_true)
XELSE
FN DrawFrame (_false)
END IF
' eee BUTTON EVENTS
CASE _btnClick
SELECT dlgID%
CASE _newRecBTN
FN DoFileMenu (_iNew)
CASE _firstRecBTN
FN DoRecordMenu (_iFirstRec)
CASE _prevRecBTN
FN DoRecordMenu (_iPrevRec)
CASE _nextRecBTN
FN DoRecordMenu (_iNextRec)
CASE _lastRecBTN
FN DoRecordMenu (_iLastRec)
CASE _findRecBTN
FN WindowBuild (_dbFindWIND)
CASE _clearRecBTN
FN ItemClearRecord

332 Appendix

SimpleBase.Incl

CASE ELSE
FN RadioBtnHandler% (_programBTN, _officeBTN, dlgID$%)
gEmployee.dbDeptNum® = dlgID%
END SELECT
' eee FIELD EVENTS
CASE _efClick
FN EFClickEvent (dlgID%)
LONG IF dlgID% = _dbPhotoFLD
EDIT FIELD #_nil
FN DrawFrame (_true)
XELSE
FN DrawFrame (_false)
END IF
CASE _efTab, _efDownArrow, _efRightArrow
FN TabShiftTabEvents (_efTab, _dbNameFLD, _dbFaxFLD)
CASE _efShiftTab, _efUpArrow, _efLeftArrow
FN TabsShiftTabEvents (_efShiftTab, _dbNameFLD,
' eee CURSOR EVENTS
CASE _cursOver, _cursEvent
FN CursorHandler (dlgEvnt%, dlgID%)
CASE ELSE
END SELECT
END FN

dbFaxFLD)

LOCAL FN DialogFindWindow (dlgEvnt%, dlgID%)
LONG IF dlgEvnt% = _efReturn
FN ChangeReturnToBtn (dlgEvnt%, _findBTN)
END IF
SELECT dlgEvnt$%
' eee WINDOW EVENTS
CASE _wndClose
FN WindowClose (_dbFindWIND)
CASE _wndActivate
FN UpdateMenus
CASE _wndClick
WINDOW #_dbFindWIND
CASE _wndRefresh
' eee BUTTON EVENTS
CASE _btnClick
SELECT dlgID%
CASE _ignoreCaseBTN
gCaseFlag® = FN CheckBoxHandler% (dlgID$)
CASE _findBTN
FN WindowClose (_dbFindWIND)
FN DBFindRecord
CASE _cancelBTN
FN WindowClose (_dbFindWIND)
gSearch$ = "*
END SELECT
' eee FIELD EVENTS
CASE _efClick
FN EFClickEvent (dlgID%)
' eee CURSOR EVENTS
CASE _cursOver, _cursEvent
FN CursorHandler (dlgEvnt%, dlgID%)
CASE ELSE
END SELECT
END FN

LOCAL FN DialogHelpWindow (dlgEvnt%, dlgID%)
SELECT dlgEvnt$%
' eee WINDOW EVENTS
CASE _wndClose
FN WindowClose (_helpWIND)
CASE _wndActivate
FN UpdateMenus
CASE _wndClick
WINDOW #_helpWIND
CASE _wndRefresh
CLS

Appendix

SimpleBase.Incl

wndX = WINDOW (_width) : wndY = WINDOW (_height)
EDIT FIELD #_helpFLD, , (4,34)-(wndX-4,wndY-4)'adjust edit field size
PLOT 0, 30 TO wndX, 30
' eee BUTTON EVENTS
CASE _btnClick
LONG IF dlgID% > _helpSCROLL
SELECT dlgID$%
CASE _prevHelpBTN
DEC (gHelpID%)
IF gHelpID% < _minHelpID THEN gHelpID%
CASE _nextHelpBTN
INC (gHelpID%)
IF gHelpID% > _maxHelpID THEN gHelpID$ = _minHelpID
END SELECT
SCROLL BUTTON #_helpSCROLL, 1
EDIT$ (_helpFLD) = %gHelpID%
END IF
' eee CURSOR EVENTS
CASE _cursOver, _cursEvent
FN CursorHandler (dlgEvnt%, dlgID%)
CASE ELSE
END SELECT
END FN

_maxHelpID

LOCAL FN DialogPrintWindow (dlgEvnt%, dlgID$)
LONG IF dlgEvnt% = _efReturn
FN ChangeReturnToBtn (dlgEvnt%, _printBTN)
END IF
SELECT dlgEvnt$%
' eee WINDOW EVENTS
CASE _wndClose
FN WindowClose (_printWIND)
CASE _wndActivate
FN UpdateMenus
CASE _wndClick
WINDOW #_printWIND
CASE _wndRefresh
' ees BUTTON EVENTS
CASE _btnClick
SELECT dlgID%
CASE _thisRecBTN,_allRecBTN,_selectRecBTN
gPrintFlag = FN RadioBtnHandler% (_thisRecBIN, _selectRecBTN, dlgID%)
CASE _printBTN
FN WindowClose (_printWIND)
FN DoPrinting (@FN DBReadRecord)
CASE _cancelBTN
FN WindowClose (_printWIND)
gPrFirstRec% = _nil
gPrLastRec% = _nil
END SELECT
' eee FIELD EVENTS
CASE _efClick
FN EFClickEvent (dlgID%)
gPrintFlag = FN RadioBtnHandler% (_thisRecBIN, _selectRecBTN, _selectRecBTN)
CASE _efTab, _efDownArrow, _efRightArrow
FN TabShiftTabEvents (_efTab, _firstPrFLD, _lastPrFLD)
CASE _efshiftTab, _efUpArrow, _efLeftArrow
FN TabshiftTabEvents (_efShiftTab, _firstPrFLD, _lastPrFLD)
' ees CURSOR EVENTS
CASE _cursOver, _cursEvent
FN CursorHandler (dlgEvnt%, dlgID%)
CASE ELSE
END SELECT
END FN

LOCAL FN DialogGotoWindow (dlgEvnt%, dlgID$)
LONG IF dlgkEvnt% = _efReturn
FN ChangeReturnToBtn (dlgEvnt%, _gotoBTN)
END IF
SELECT dlgEvnt%

834 Appendix

--- End of SimpleBase.Incl ---

' eee WINDOW EVENTS
CASE _wndClose
FN WindowClose (_gotoWIND)
CASE _wndActivate
FN UpdateMenus
CASE _wndClick
WINDOW # gotoWIND
CASE _wndRefresh
! ees BUTTON EVENTS
CASE _btnClick

FN EFtoRecordField 'save current record
FN DBWriteRecord
originalRecNum% = gOpenRecord% 'save current record number
FN WindowClose (_gotoWIND) 'get new record number
LONG IF dlgID% = _gotoBTN 'did we want to goto?
FN DBReadRecord
FN RecordFieldToEF ‘get new record
XELSE
gOpenRecord% = originalRecNum$ ' reset record number
END IF

' eee FIELD EVENTS
CASE _efClick
FN EFClickEvent (dlgID%)
' eee CURSOR EVENTS
CASE _cursOver, _cursEvent
FN CursorHandler (dlgEvnt%, dlgID%)

CASE ELSE
END SELECT
END FN

LOCAL FN HandleDialogEvent
dlgEvnt% = DIALOG (0)

dlgID% = DIALOG (dlgEvnt%)

SELECT WINDOW (_outputWClass)
CASE _dbEntryWIND : FN DialogEntryWindow (dlgEvnt%, dlgID%)
CASE _dbFindWIND : FN DialogFindWindow (dlgEvnt%, dlgID%)
CASE _aboutWIND : FN DialogAboutWindow (dlgEvnt%, dlgID%)
CASE _helpWIND : FN DialogHelpWindow (dlgEvnt%, dlgID%)
CASE _printWIND : FN DialogPrintWindow (dlgEvnt%, dlgID%)
CASE _gotoWIND : FN DialogGotoWindow (dlgEvnt%, dlgID%)

END SELECT

FN UpdateMenus

END FN

- End of SimpleBase.Incl ---

DialogEvent.incl

' ——= HEADER —---====mmmmmmmmmmmmmmm e
INCLUDE FILE _aplIncl
COMPILE 0, _strResource_macsBugLabels

' ——— CONSTANTS —==-===m=m—m=—=mmommmm————m—— oo
GLOBALS “SimpleBase.glbl®
END GLOBALS

' ==~ FUNCTIONS --==-=mm-mmm—m=mm==mm——mm——m—mo o
' === FIELD FUNCTIONS ===

LOCAL FN pEFClickEvent (fieldID%)
EDIT FIELD #fieldID%
CURSCR _iBeamCursor

END FN

LOCAL FN pTabShiftTabEvents (dlgEvnt%, startFldi, lastFlds)
LONG IF dlgEvnt% = _efTab
fieldID% = WINDOW (_efNum) + 1

Appendix

335

DialogEvent.Incl

IF fieldID% > lastF1d% THEN fieldID% = startFld:

XELSE
fieldID% = WINDOW (_efNum) - 1

IF fieldID% < startFld% THEN fieldID% = lastF1ds

END IF
EDIT FIELD #fieldID%
END FN

! === MISC FUNCTIONS ===
LOCAL FN pCursorHandler (curskvtID%, dlgID%)
SELECT cursiEvtID$
CASE _cursOver
SELECT dlgID%
CASE < 0

LONG IF (ABS (dlgID%) = WINDOW (_efNum)) AND (WINDOW (_efClass) > 0)

CURSOR _iBeamCursor
XELSE
CURSOR _arrowCursor
END IF
CASE > 0
CURSOR _arrowCursor
CASE ELSE
CURSOR _arrowCursor
END SELECT
CASE _cursEvent
CURSOR _arrowCursor
END SELECT
END FN

' === MISC BUTTON FUNCTIONS ===
LOCAL FN pCheckBoxHandler% (btnID$%)

LONG IF BUTTON (btnID%) = _markedBtn
BUTTON btnID%, _activeBtn

XELSE
BUTTON btnID%, _markedBtn

END IF

btnState% = BUTTON (btnID$%)
END FN = btnState%

LOCAL FN pRadioBtnHandler% (lowBtnID%, highBtnID%,

FOR thisBtn% = lowBtnID% TO highBtnID%
BUTTON thisBtn%, _activeBtn
LONG IF thisBtn% = setBtnID%
BUTTON thisBtn%, _markedBtn
END IF
NEXT thisBtn%
END FN = setBtnID%

LOCAL FN pHiliteSelectedButton (btnID$)
BUTTON btnID$, _markedBtn
DELAY _secTick
BUTTON btnID%, _activeBtn

END FN

LOCAL FN pChangeReturnToBtn (@evntIDPtr&, btnID%)
FN pHiliteSelectedButton (btnID%)
evntIDPtr&.none% = _btnClick

END FN = btnID%

' --~ SET PROJECT ADDRESSES --=-====----mo—mecmma

gCursorPtr& = @FN pCursorHandler
gEFClickPtr& = @FN pEFClickEvent
gTabEventsPtr& = @FN pTabshiftTabEvents
gCheckBoxPtrs& = @FN pCheckBoxHandler
gRadioBtnPtr& = @FN pRadioBtnHandler
gHiliteBtnPtrs& = @FN pHiliteSelectedButton
gReturnToBtnPtr& = @FN pChangeReturnToBtn

setBtnID%)

‘briefly hilite the correct button
‘to show it was selected

‘hilite correct button
‘convert return event to _btnClick

336

Appendix

EditMenu.Incl

EditMenu.Incl

' === HEADER === === oo oo
INCLUDE FILE _aplIncl
COMPILE 0, _strResource_macsBugLabels

' ==~ CONSTANTS -====m==mmmmmmmmmm oo mommmemmeee
GLOBALS “SimpleBase.glbl”
END GLOBALS

CLEAR LOCAL
LOCAL FN DataHandleToScrap (dataH&, dataType&, zeroClipBoard$)
LONG IF dataH& <> _nil
LONG IF zeroClipBoard% <> _nil
scrapH& = FN ZEROSCRAP
END IF
sizeOfH& = FN GETHANDLESIZE (dataH&)
osErr% = FN HLOCK (dataH&)
LONG IF osErr% = _noErr
OsSErr% = FN PUTSCRAP (sizeOfH&, dataType&, [dataH&])
OsErr% = FN HUNLOCK (dataH&)
END IF
END IF
END FN = osErr%

CLEAR LOCAL
LOCAL FN ScrapToDataHandle& (scrapType&)
scrapH& = FN NEWHANDLE (0)
LONG IF scrapH& <> _nil
scrapSize&k = FN GETSCRAP (scrapH&, scrapType&, offset&)
LONG IF scrapSize& <= 0
DEF DISPOSEH (scrapH&)
END IF
END IF
END FN = scrapH&

CLEAR LOCAL
LOCAL FN GetPICTHandle&

tmp$ = EDITS (_dbPhotoFLD)
pict$ = RIGHTS (tmp$, LEN (tmp$) - 1)
SELECT LEFT$ (tmp$, 1)
CASE "&"
pictH& = FN GETPICTURE (CVI(pict$))
CASE ||&I|
pictH& = CVI(pict$;
CASE ELSE
pictH& = _nil
END SELECT

END FN = pictH&

CLEAR LOCAL
LOCAL FN EditCopy
pictH& = FN GetPICTHandle&
LONG IF pictH& <> _nil
scrapErr% = FN DataHandleToScrap (pictH&, _“PICT", _true)
DEF DISPOSEH (pictH&)
END IF
END FN

CLEAR LOCAL
LOCAL FN EditCut
FN EditCopy
EDIT$ (_dbPhotoFLD) = "*
gEmployee.dbPictID$ = _nil
DEF DISPOSEH (gPictH&)

Appendix

337

EditMenu.Incl

END FN

CLEAR LOCAL
LOCAL FN EditPaste
pictH& = FN ScrapToDataHandle& (_"PICT")
LONG IF pictH& <> _nil
DEF DISPOSEH (gPictH&)
gPictH& = pictH&

EDITS (_dbPhotoFLD) = &gPictH&
gEmployee.dbPictID% = gOpenRecord$
END IF
END FN
CLEAR LOCAL
LOCAL FN EditClear
EDIT$ (_dbPhotoFLD) = “*
gEmployee.dbPictID% = _nil
DEF DISPOSEH (gPictH&)
END FN
CLEAR LOCAL
LOCAL FN EditSelectall
LONG IF WINDOW (_efClass) > 0 ‘are we in an edit field?
SETSELECT 0, _maxInt
END IF
END FN
CLEAR LOCAL
DIM 255 tmp$

LOCAL FN EditExportRecord
FOR count% = _dbNameFLD TO _dbFaxFLD
calcHSize% = calcHSize% + LEN(EDITS (count%)) + 1
NEXT count$%
offset% = 0
recordH& = FN NEWHANDLE (calcHSize%)
LONG IF (recordH& <> 0) AND (SYSERROR = _noErr)
OsErr% = FN HLOCK (recordH&)
LONG IF osErr% = _noErr
FOR count% = _dbNameFLD TO _dbFaxFLD
tmp$ = EDITS (count$)
LONG IF count$% < _dbFaxFLD
char$ = CHRS (_tab)
XELSE
char$
END IF
tmp$ = tmp$ + char$
size$ = LEN (tmp$)
BLOCKMOVE @tmp$+1, [recordH&] + offset%, size%
offset® = offset% + size$

CHRS$ (_cr)

NEXT count$%
END IF
osErr% FN HUNLOCK (recordH&)

OSErr% FN DataHandleToScrap (recordH&, _"TEXT", _true)
DEF DISPOSEH (recordHs)
END IF
END FN

CLEAR LOCAL
DIM tmp$
DIM 3 char$
LOCAL FN EditImportRecord
scrapH& = FN ScrapToDataHandle& (_"TEXT")
LONG IF scrapH& <> _nil
strPtr& = @tmp$
charPtr& = @char$ + 1
char$ = CHRS (_tab)
startPos& = _nil
offset& = FN MUNGER (scrapH&, startPosg, charPtr&, 1, _nil, _nil)
LONG IF offset& > _nil
fieldID% = _dbNameFLD

338 Appendix

Printing.Incl

DO

size% = offset& - startPos&

POKE strPtr&, sized

BLOCKMOVE ([scrapH&] + startPos&, strPtr&+l, size%

EDIT$ (fieldID%) = tmp$

INC (fieldID%)

startPos& = offset& + 1

offset& = FN MUNGER (scrapH&, startPos&, charPtr&, 1, _nil, _nil)
UNTIL (offset& < 0) OR (fieldID% = _dbFaxFld)
size% = FN GETHANDLESIZE (scrapH&) - startPos&
POKE strPtr&, size$
BLOCKMOVE [scrapH&] + startPos&, strPtr&+l, sizes
EDIT$ (fieldID%) = tmp$

XELSE
item% = FN NOTEALERT (_notRecordALRT, 0)
END IF
DEF DISPOSEH (scrapH&)
END IF
END FN

LOCAL FN pDoEditMenu (itemID$)
SELECT itemID%

CASE _iCut : FN EditCut
CASE _iCopy : FN EditCopy
CASE _iPaste : FN EditPaste
CASE _iClear : FN EditClear
CASE _iSelectAll : FN EditSelectAll
CASE _iCopyRec : FN EditExportRecord
CASE _iPasteRec : FN EditImportRecord
END SELECT
END FN

' eee get global function pointers

gEditMenuPtr& = @FN pDoEditMenu

Printing.Incl

' --- HEADER -------
INCLUDE FILE _aplIncl
COMPILE 0, _strResource_macsBuglabels

' —=— CONSTANTS -----====mm—mmmmmmmmmm e mm oo eemm
GLOBALS “SimpleBase.glbl*
END GLOBALS

' --- FORWARD FUNCTIONS --

LOCAL FN DBReadRecordTemplate
END FN

' --- FUNCTIONS
LOCAL
DIM rect.8
LOCAL FN PrintRecord (pgVOffset%)
xO0ffSet% = 150
vOffset® = 15
TEXT _geneva, 9, 1
' eee PRINT FIELD TITLES
FOR count% = _dbNameFLD TO _dbFaxFLD
tmp$ = UCASES (STR# (_dbEntryWIND fieldSTR, count$))
PRINT® (xOf fSet% + _gutterAdj, pgVOffset¥ + vOffsets) tmp$
vOffset® = vOffset® + 15
NEXT count#%
' ee¢e¢ PRINT FIELD DATA
TEXT _geneva, 12, 0
PRINT% (xOffSet% + _gutterAdj + 80, pgVOffset$ + 15) gEmployee.dbName$

Appendix

Printing.Incl

PRINT® (xOffSet% + _gutterAdj
PRINTS (xOffSet® + _gutterAdj
PRINTS (xOffSet% + _gutterAdj
PRINT® (xOffSet% + _gutterAdj
PRINT® (xOffSet% + _gutterAdj
PRINT% (xOffSet% + _gutterAdj
' eee PRINT PICTURE & SEPERATOR

80, pgVOffset% + 30) gEmployee.dbAddr$
80, pgVOoffset% + 45) gEmployee.dbCity$
80, pgVOffset% + 60) gEmployee.dbMyState$
80, pgVOffset% + 75) gEmployee.dbZip$

80, pgVOffset% + 90) gEmployee.dbPhone$
80, pgVOffset% +105) gEmployee.dbFax$

+ 4+ A+ o+

CALL SETRECT (rect, _gutterAdj,pgVOoffset%, 130 + _gutterAdj, pgVoffset%+152)

PICTURE FIELD #100, %gEmployee.dbPictID%, @rect, _statFramed, _cropPict
PEN ,,,,3
PLOT 0, pgVOffset® + 165 TO 600, pgVOffset% + 165
PEI\I tree 0
END FN

LOCAL FN PrintManyRecords (firstRec%, lastRec%, readRecPtr&)
pgVoffset® = 10
pageNum$ = 1
recCount% = 0
DO
gOpenRecord% = firstRec$%
FN DBReadRecordTemplate USING readRecPtr;
FN PrintRecord (pgVOffset%)
INC (firstRec%)
INC (recCount%)
LONG IF (recCount% MOD 4) = 0
PRINT® (_gutterAdj, pgVOffset% + 180) "PAGE#";pageNum%
INC (pageNum$)
pgVOoffset® = 10
IF recCount® < lastRec% THEN CLEAR LPRINT
XELSE
pgVOffset® = pgVOffset% + 180
END IF
UNTIL firstRec% > lastRec$%
END FN

LOCAL FN pDoPrinting (readRecPtr&)
DEF LPRINT
LONG IF PRCANCEL = 0
'TRON p
oldRecNum® = gOpenRecord$
resRef% = USR OPENRFPERM (gFileName$, gWDRefNum$, _fsCurPerm)
CURSOR _watchCursor
ROUTE _toPrinter
SELECT gPrintFlag
CASE _thisRecBTN
FN PrintRecord (10)
ROUTE _toScreen
CLEAR LPRINT
CASE _allRecBTN
FN PrintManyRecords (1, gMaxRecInFile%, readRecPtrs)
CASE _selectRecBTN
FN PrintManyRecords (gPrFirstRec%, gPrLastRec%, readRecPtr&)
END SELECT
ROUTE _toScreen
CLOSE LPRINT
IF resRef% THEN CALL CLOSERESFILE (resRef$%)
gOpenRecord¥ = oldRecNum$
FN DBReadRecordTemplate USING readRecPtrk;
CURSOR _arrowCursor
END IF
END FN

! —-- SET PRINT ADDRESS ~--=-——mmmmmmm oo
gDoPrintPtr& = @ FN pDoPrinting

Appendix

SimpleBase.Main

' --- HEADER -
RESOURCES °SimpleBase.rsrc®, °"APPLFbSb*
COMPILE 0, _strResource_macsBugLabels
OUTPUT FILE “SimpleBase apl®

' —-- CONSTANTS -—-

GLOBALS “SimpleBase.glbl®
END GLOBALS

' --- INCLUDES - -

INCLUDE *"DialogEvent.Incl®
INCLUDE “EditMenu.Incl*
SEGMENT

INCLUDE “SimpleBase.Incl*
INCLUDE “Printing.Incl®

' --- FUNCTIONS -

LOCAL FN CheckIncomingFiles
maxFilest$ = 1
doWhat$ = FINDERINFO (maxFiles%, gFileName$, fileTypek, gWDRefNum$)
LONG IF (maxFiles% > 0) AND (fileType& = _"SbDb")
SELECT doWhat$%
CASE _openFiles
FN ItemOpen
CASE _printFiles
FN ItemOpen
FN ItemPrint
END SELECT
END IF
END FN

LOCAL FN Initialize
EDIT = 2
WINDOW OFF
MINWINDOW 240, 120
MAXWINDOW SYSTEM (_scrnWidth)-20, SYSTEM (_scrnHeight) - 50
gouit = _false
gHelpID$ = _minHelpID
LONG IF SYSTEM (_machType) < _envMacPlus
item$ = FN NOTEALERT (_machErrALRT, 0)
END
XELSE
LONG IF SYSTEM (_sysVers) < 605
item% = FN NOTEALERT (_sysErrAIRT, 0)
END
END IF
END IF
FN CheckIncomingFiles
END FN

' --- MAIN LOOP — - -

FN Initialize
ON MENU FN HandleMenuEvent
ON DIALOG FN HandleDialogEvent

DO

HANDLEEVENTS
UNTIL gQuit
END

Appendix

Index

Symbols
@FN 288

Numerics
32K Limit 202

A
About SimpleBase... 57

Accessing a Global File 199
Accessing Record Data 155

action block 23, 25, 26, 31, 32

Action Blocks 23

Adding a Global File 204
adding color 61

Adding Include Files 205
Alerts 231

amateur programmer 48
America 12

aplincl 205

Apple 9, 47

APPLE MENU 56

Apple Menu 47
APPLEMENU 54

application folder, getting 185
application resource fork 212
arrayBase0 204

arrayBase1 204

Arrow Keys 138

ASC 49

Assigning Command Keys 47
Assigning lcons 48
Assigning Record Data 156
Assigning Text Styles 48

B

Balloon Help 304
BAsic 7, 8, 10, 11, 30
BEEP 57

block structure 25
Boshm and Jacopini 25
BOX 284

BOX FILL 284

branch block 25, 32
Branch blocks 25
BREAK 39

btnClick 36

bugs 16

BuildMenus 53, 64
BUTTON 281

button events 38
Buttons 87
buttons

create 87

C

caselnsensitive 204
Changing ltem Titles 50
checkBox button 28
CheckRange% 290
chkRuntimeErr 204
CIRCLE 284
CIRCLE FILL 284
CLEAR LPRINT 286
Clear Record 54
clickinDrag 40
click2nDrag 40
click3nDrag 40
Clipboard 205, 263
CLOSE 182
Close 49, 54
close box 67
CLOSE LPRINT 286, 291
CLOSE# 181
CloseResFile 286, 295
closing

file 181
Closing the Print Manager 291
COLOR 284
Command 40
COMPILE 27, 204
Compile 206
constant definitions 28
Constants 28

Macintosh 28
constants

Macintosh 28
content region 69
control block structures 26
control structure

action block 23

branch block 25

loop block 24
Conventions 13
Copy 54
Copy Record 54
Copying Records 159
create

buttons 87

Index - 1

Create MBAR Resource 64
Create New Resource 61, 64
Creating 61

Creating a Project Include File 207
Creating MENU Resources 61
Creating Menus 46

cursor 112

CursorHandler 207

Cut 54

D

data fork 170, 200

DBFindRecord 189, 193

DBNewDataBase 187, 190

DBRead 194

DBReadRecord 187, 189, 192,
287, 288, 289

DBReadRecordTemplate 287

DBWriteRecord 186, 188, 189,
190, 192

debugging 16

DEF BLOCKFILL 188, 190

DEF LPRINT 280, 286

DEF OPEN 181

DEF PAGE 280, 285

default filename 28

Defining Records 152

Deleting Menus 50

de-referencing 220

desk 264

desk scrap 264

DIALOG 34, 36

DialogEntryWindow 189, 190, 191

DialogEvent.Incl 205

DialogFindWindow 192

DialogGotoWindow 189, 195

DIM 152, 200, 204

DIM END RECORD 152

DIM RECORD 152

directories 170

dividing line 44

DO 38

DO/UNTIL 24, 38, 39

DoAppleMenu 56

document 169

dontOptimize 204

DoRecordMenu 189, 192

E
Edit 50, 51, 54, 57, 61, 63
EDIT FIELD 281
edit field 123
EDIT MENU 264
Edit Menu 47
EFRecordToEF 189
EFToRecordFisld 190
EFtoRecordField 192
ellipsis (...) 54
e-mail addresses

ZEDCOR

ARIEL

TUROVICH
turovich@aol.com

12
Enabling & Disabling Menus 49
END GLOBALS 199, 205
equates 29
EVENT 36
event handler 104
event queue 33, 55
Events 33
EXIT 23

F
field 151
FieldRecordToEF 188
FIFO 33
File 47, 49, 50, 51, 54, 61, 63,
204, 205, 206
file 169
File Commands 172
file commands
CLOSE# 181
closing files 181
DEF OPEN 181
FILES$ _fSave 183
FOLDER 185
PRINT# 177
READ FILE# 180
READ# 180
RESET 182
WRITE FILE# 178
WRITE# 177
file format
tokenized 198 .
file information buffer 174
File Permissions 173
file pointer 175
file type 169
file type, getting the
file commands
FILES$ 183
file type, setting 181

FILES 188

files

getting file position 176
getting file size 175
maximum open files 174
setting file pointer 175
FILES$ 184
FILES$ _fOpen
file commands
FILES$ _fOpen 182
FILES$ _fSave 183
filtered events 36
Find 54
Find... 54
Finder 304
first-in, first-out buffer 33
FN USING 287
FOLDER 185, 293
folder 170
folder, finding a 185
folders
creating 185

getting WD reference number 185

FOR/NEXT 24
fork
resource fork 170

forks

data fork 170
frame 69
full pathname 170
Functions Section 30
FutureBASIC constants 28

G

Get Menu ID 63

Get Resource Info 62, 64
Get1indResource 295
GetFilelnfo 196
GetPrinterName 293
Getting Started Manual 8
glbl 198, 200, 205
Global File Do’s & Don’t's 200
global variable 39
GLOBALS 199, 205, 207
Globals Section 29
Globals section 39
GOsuB 21, 23

GOTO 23

Goto... 54

gQuit 38, 39, 58

gray area 143

HANDLEEVENTS 36, 39, 42, 55

HandleMouse 40

Index - 2

Handling Menu Events 54
Handling Menu Selections 57
Handling Mouse Events 40
has Submenu 62

Header Section 27

Header section 64

Help... 57

Hierarchical menus 43
highlight 48

highlighting 124

hot spot 112

|

icon 45

IF23

If \1(<1>u’ve Programmed BASIC Before

IF/ELSE 25

INCLUDE 8, 203
INCLUDE FILE 205, 207
includs file 200

Include File Limitations 202
Include File Tips 203
Include File Types 201
includs files 30

Initialize 53, 64

INPUT 177, 179
insertion point 123

Inside Basic 12

Inside Macintosh 11, 29
INSTR 194

Internet 12

Introduction 7

item ID 45

item mark 45, 49
ltemClearRecord 190
ltemNew 187, 188, 190, 191
ltemNextRecord 192
ItemOpen 188
ltemPrevRecord 192
ltemQuit 58

ltemSave 189

J
Jacopini and Boehm 25

K
keyboard equivalent 44, 45
Keyboard support 44

L

LEN 183

Let’s Get Started 14
LINE INPUT# 180
Linear 22

linear program 21

linear programming 23

Loc 176

LOCAL 23, 29

LOCAL FN 8, 13

LOF 175, 186

LONG IF/ XELSE/END IF 25
loop block 25, 32

loop block structure 38

Loop Blocks 24

LPRINT 283

M
Macintosh Constants 29
Macintosh Revealed 12

MacsBug debugger 27
main 204

Main Loop 38, 39, 40, 54, 55, 58

Main Loop Section 30
Main Loop section 36
main source file 205
mark 45
Marking a Menu ltem 49
mButDwnEvt 36
Memory Requirements 303
MENU 63
Menu

hierarchical 43
. pop-up 43

pull-down 43
menu bar 44
Menu Constants 50
Menu DEFinition 63
Menu features

dividing line 44

icon 45

item ID 45

keyboard equivalent 45

mark 45

menu bar 44

menu ID 45

menu item 44

menu title 44
menu ID 45
menu item 44
menu title 44
MenuEventHandler 55
Menus 43
meta 48
meta-character 48
Missing the Data 203
MOUSE 34, 40
multiple event handling loops 30
multiple windows 67

N
Nested Records 157

Nesting Block Structures 25
never anticipate an event 38
Never Programmed Before? 10
New 50, 54, 204, 205, 206
Next 54

non-standard character 49
noRuntimeErrs 204

nside Macintosh 158

0

ON MOUSE 40

one 22

one-in/ one-out 26
one-infone-out 32
one-infone-out block 23
OPEN 174, 175, 186
Open 54

Opening a File 172
optimizeAsint 204
OUTPUT FILE 28

P

Page 54

Page Setup 280, 281
page value 144

Paste 54

Paste Record 54
pDoPrinting 287, 288
PEN 284

picker window 214
PICTURE 281

PICTURE FIELD 281, 284, 288

picture field 129

PLOT 284

PLOT TO 284

Ploticon 295

Pop-up menus 44

Power Records 158
PRCANCEL 280, 281, 285
Preferences folder, getting 185
Previous 54

PRHANDLE 280, 282

PRINT 21, 57, 177, 178, 179,

283
Print 49, 54
print driver 279
Print Manager 279
Print Record 280
PRINT# 177
PRINT% 284, 288
Printer lcon, getting 293
Printing 282
Printing a Single Record 288
printing loop, standard 284
Printing Multiple Records 289

Index -3

Printing Selected Records 290

PrintManyRecords 189, 286, 290

PrintRecord 286, 288, 290

program 16

Program Layout 27
Constants Section 28
Functions Section 30
Globals Section 29
Header Section 27
Main Loop Section 30

Program Menus 50

programmer 16

Project Include 207

pseudocode 37, 55

pull-down 44

Pull-down menus 43

Purgeable 64

purgeable 62

push button 28

Q
QuickTime 7
Quit 47, 54, 58

R

radio button 28

raw Macintosh event 36
READ 178

READ FILE# 180
READ# 180

REC 176

RECORD 175, 176, 18
Record 57 :
record 151

Record Allocation 153
Record Arrays 159
record number 152
record size 151

Record Sizes 152
Record Types 153
RecordFieldToEF 192
Records 50, 51, 54, 63
References 11

ResEdit 46, 61, 63, 66
RESET 182

Resource 61, 64
resource 211

Resource attributes 212
resource fork 170, 200
Resource Menus 61
Resource types 211
RESOURCES 27, 64
Resources 62, 170
Retrieving Record Data 157
Revising DialogEvent.Incl 208

Revising SimpleBase.glbl 209
Rise of BASIC 7

ROUTE 281, 286

ROUTE _toPrinter 281
ROUTE_toScreen 281

Run 40, 206

runtime 36, 38, 40, 50, 63, 156

S
Save 49, 54
Save As... 54
scroll arrow 144
Scroll bars 68
scroll bars 143
scroll box value 144
SCROLL BUTTON 281
Scroll buttons 143
scroll buttons 68
SELECT 56, 286
Select All 54
SELECT CASE 8
SELECT/END SELECT 25, 56, 57
selection 124
self-documenting 28, 51
SetitemCmd 47
Setup 54
shadow button 28
Show First 54
Show Last 54
Size 48
size box 68
skeleton 17, 57
standard resources 211
standardized window elements 67
Stepwise refinement 15
stepwise refinement 17, 32, 40
STR 292
STR# 288
strings
LEN 183
strResource 204
Style 48
subdirectories 170
sub-menu 43
subroutine 16
SYSTEM 185, 293
System folder, getting 185
System folder, getting 185
system resource file 212

T

TE scrap 264
32K Limit 202
thumb value 144
TickCount 179

title bar 68

tokenized file format 198
Top 15

Top-Down Design 17
top-down design 32, 53
top-down programming 40
Typographical Info 13

U

Understanding Project Includes 209
Undo 54

Unhighlighting Menus 48

universal include 205

user- defined constants 28
User-defined constants 28
user-defined constants 28

USR OPENRFPERM 286, 294

v

variable address, getting 179
Variable Sizes 154
VARPTR 179

Visibility Restricted 203
volume 170

w
Welcome 7
What are Events? 33
What are Menus? 43
What are Records? 151
What are Windows? 67
Where Should | Start 10
WHILE/WEND 24
Window 193
window 67
Window elements

close box 67
WINDOW functions, printing 282
WindowBuild 188, 189
WindowCapture 190, 195, 290
WindowClose 193, 195
wndRefresh 38
wndRefresh DIALOG 38
wcir'l7<ii19 directory reference number

WRITE 178, 180, 186
WRITE FILE# 178, 180
WRITE# 177

r 4

ZBASIC 7

Zero Length Variables 155
zoom box 68

Index - 4

FutureBASIC Source Code

@

$355

Order SSIM now and get the following:
* Cell Interface Module (CIM) a quick way to put

together a scrolling array of cells.
- Everything is linked to a single rectangle.
- Make grid any size, put it in any window.
- Control column widths
- Control column formats such as color, font, face, etc.
- All the information is stored in a simple text array.
- Get source code and the compiled application.

e Spread Sheet Interface Module (SSIM) - A full blown spread sheet engine.
- Control font, size, color, border, justification, and format for each cell.

$69.95

- Variable column widths e JVM
B
- Insert and delete columns and rows [P T e
= |mport and Expor[ASCII tab files 5 iNew York [l Dollar (12440) | $12,440.00 M Veriable Column Widths
¥ 6 Geneva Date (MM-DD-YY) i12/12/1945 [l Insert & Delete Rows & Columns
& Save fu”y formatted flles 7 Font Sizes 9 Point Date (MMM DD,YY) iJuly 9, 1992 Menu supported Find anythinig
- Formula and equation support 8 10 Point 2 Decimals 123350 Menu'supported Go To any ceil
12 Point 4 Decimals 123.5000 Menu supported Set Row Height
i 30’000 rows by 30’000 Columns 190 14 po(:?nt 6 Decimals 123.500000 EMCut, Copy, Paste & Umut:x(q
- Tex‘t Cut, Copy, Paste, and UNDO! 11| Font Feces Plasin Import & Export Tab Files
Beld Cell Borders Print for matted documents
b Supports B&W and COIOr :; lalic Top Save fully for matted documents
- Print fully formatted files \af |7ty it
- Copy and paste ranges of cells i il = o
@
‘N SOLVE $40 [EN GRAPH $30
“eatures: Features:

A single include file and 6 global variables
' Returns formatted values
» Handles ...
..up to 50 pairs of brackets (expandable
by changing globals)
..functions, comes with TAN, SIN, etc. (you
an add your own)
4,5, 5 /and A
... variables defined in a global array
...scientific notation

How it works:

1) a$="2.3 * SIN(3E4-6.33)/34.6"-23.4"

2) Answer$=FN Solve$(a$)

(you can include variable names in a$ if you
define them before hand in a global array.)

e Everything is tied to one rectangle, scale or move your plot by
changing a rectangle coordinate.
» Supports five types of graphs: Scatter, Line, Bar, Thin bar and

Area.

» Control scale, number of tick marks, plot grid, plot box, point
markers, color, axis crossing points.
e Supports COPY graph

How it works:

1) Move your data into the plotting array
2) Set your graph type (gChart=_lineGraph)

3) Set your rectangle (CALL SETRECT(r,0,0,50,50))

4) Let the code set the plotting parameters (FN MakeChart)
5) Draw the graph (FN Graph)

Solves this equation:
2.3 * (CSC(3E4-6.23) / (TAN(3.2+5))71.4)

Nl

L

A4

>

W
g

With all ...by Design software you get: To Order

Easy to follow manual.

1 month of FREE technical support Call:

Source code and compiled applications

No runtime fee (608) 831-5259

Write:
«..by Devign. Inc.
5700 Highland Way, Ste.#201
Middleton, WI 53562

VISA/MasterCard

Shipping on all orders:
$3 US, $15 Foreign

| Get the only publication that speaks FutureBASIC!

Inside Basic’

The Journal of Macintosh BASIC Programming

\

We speak FutureBASIC!

Ariel Publishing, Inc., develop-
ers of programming tools and
utilities for all Mac programmers
and publishers of Inside Basic,
the Journal of Macintosh BASIC
Programming, is pleased to an-
nounce a wide range of products
and add-ons for the discriminat-
ing FutureBASIC programmer.

Inside Basic Magazine

Our flagship product for BASIC
developers, IB is the primary
source of FutureBASIC informa-
tion available anywhere. Notonly
does our publication cover FB in
depth, but it also teaches Mac
programming. You'lllearn how
to use FB more intelligently, too
(of course!), but you'll also get
many, many tips and techniques
that will help you to take best
advantage of the Mac toolbox.

Our regular columnists and con-
tributors include Chris Stasny
(author of PG:PRO, the awesome
CASE tool and OOPs extension
to FB), Raoul Watson (presently
of Sunburst Communications and
the author of the Mac Muppet
Learning Keys), and Zedcor'sown
Frank Turovich (author of most
of the FB manuals and technical
documentation!).

IB is a monthly journal and costs
$49.95 for one year, $94.95 for
two years.

Inside Basic on Disk, a compan-
ion disk subscription, contains
all of the article text and source
code from the magazine (as well
as the latest and greatest utili-
ties for FB programmers). IB on
Diskis $49.95 forone year, $89.95
for two years.

Tips, Tricks, & Techniques Galore!

Inside Basic Magazine is literally crammed with FutureBASIC and
Macintosh programming tips and techniques. Here's just a couple of
quickie excerpts from our most recent issues:

' Note: Gestalt Mgr only available in

' System 6.04 or later.
HelpMgré& = FN GESTALT (_"help")
LONG IF HelpMgr&

March 1992
Wstalling a {Z) menu

OSErr=FN HMGETHELPMENUHANDLE (mhndl&)

LONG IF OSErr = 0 AND mHndl& <> 0

CALL APPENDMENU (mHndl&, "My Very Own Help Menu for System 7*)
END IF ' install help elsewhere for System 6

END IF

continued on p.2

Ordering info §

on back!

ﬂiiiiili liiiih iidhidiiidi iiifi fill

CDEF-City™

This package of five control def
nitions not only adds pizazz t
your programs, but also save
tons of time when you want t
perform several tricky tasks lik
creating animated buttons, put
ting a menubar inside a wmdcwl
or turning part of a PICT into :
button. |

Andyouneednot worry that thes:
controls are a pain to work with
either. FB programmers have the
luxury of being able tobuild then
with FB's own BUTTON state.
ment(and handle them with FB's
standard DIALOG functions)
CDEF-City is $49.95 ($39.95 for
IB subscribers).

QDFx™

If you envy HyperCard's ablhty
todosnazzy wipes, dlssolves, and\
transitions from oneimage to an-
other, then you need QDFx™.
This package includes 16 differ-
ent visual effects, including Ve-
netian Blinds, InsIn ,Slide, Zoom\
Box, Dlssolve, Bubbles, Horizon, | |
Cascade, and many more.

QDFx allows you to bring a new ‘*

continued on p.2

‘#ide Basic Special Issue

Page 2

i

ips & Tricks, cont.

SRDINATE WINDOW : CLS April 1992
it,1,b,r A MultiColumn Scrolling
lWdth = 45 : rowHt = 12:TEXT 1,9,0,0 Cist

NG FN drawCell (row, col, theTxt$, seltd)

.= (row-1)*rowHt : b = t + rowHt

L = (col-1) * colWdth : r = 1 + colWdth
ALL TEXTBOX ((@theTxt$)+1, LEN (theTxt$) ,t,0)
F seltd THEN CALL INVERTRECT (t)

‘ALL INSETRECT (t,-1,-1) ' create frame
ALL FRAMERECT (t) ' and draw it
DFN

emo"

ielectedRow = RND (10)

50SUB "Show List"

ITIL LEN (INKEY$) OR FN BUTTON ' mouse click or key to end
D

thow List"

R row=1TO 10

f‘OR col =1TOS

. IF row = selectedRow THEN seltd = _2True ELSE seltd = _False
' theTxt$ = " ("+STRS (row)+", "+STRS (col) +") "

!FN drawCell (row, col, theTxt$, seltd)

NEXT

IXT

STURN

Ariel Goodies, cont.

image into all or part of your
window in a very artistic and
pleasing fashion. It is also ex-
traordinarily easy to use from
FutureBASIC (just CALL
"QDFx" with the proper param-
eters!). QDFx retails for $49.95,
but Inside Basic subscribers can
get it for $39.95.

Odd /o™

A “snd “ resource library, Odd I/
O contains over 3.25 megabytes
of royalty free sound data. It in-
cludes the beautiful (Mozart,
etc.), the funny and bizarre
(“totallymondognarly”), and the
practical (the alphabet and the
numbers 0-9). 0dd I/O retails for
$19.95 ($14.95 with an IB sub).
Since FutureBASIC plays "snd "
resources asynchronously with
its built in SOUND statement,
these sounds are easy to use in
your own programs.

509) 923-2249 (voice AND fax
TO o rd e r : gr clig the form belcfv‘: and write:)

Ariel Publishing, Inc., P.O. Box 398, Pateros, WA 98846

~

please add $48 for 15t Class Postage or $18

1B on Disk is only shipped 1st Class, but the

cost is $18 per year, per disk subscription.

Name NOTE: Non-North American customers
‘ Addr ess Line 1 for 3rd class postage per year, per
. Address Line 2 .
: City, State, Zip

Inside BASIC Magazine O 1year: $49.95 O 2 years: $94.95

Inside BASIC on Disk O 1year: $49.95 (J 2 years: $89.95

() CDEF-City..$49.95 ($39.95)] QDFx.$49.95($39.95)

[0dd 1/0..$19.95 ($14.95)

prices in parenthesis are the discounted price in conjunction with a subscription

.........

Total of all products ordered:

Shipping and handling: Software IB Magazine 1B on Disk

All North American destinations free free free

Non-North American $5.00 $18.00 per year (3rd class) $18.00 per year (1st class)

$48.00 per year (1st class)

Total Shipping and Handlingccceeeeienereienseeressseeesessensesssseressssssersssaesssssassans $
Sales Tax (Washington state residents only add 7.5%)........ccccceeeuerurerereriennenrarensennns $
Grand TOotAL ...ttt se e e s sestesseresteseressssassesssassestsesassessessanen $__
Method of payment: Q Visa O MC QO Check (J Purchase Order [Bill Me (net 90)
Card or PO# Exp. Date Signature

N

Need Random Files?

Need Fast Searches?

consider

B-Tree HELPER™

from

(M)agreeable software

B-Tree HELPER
Gets space in a file in fixed length blocks. You deter-
mine block size at file creation, from 9 to 16,388 bytes.

Releases space back to the free block pool.

Expands the file as necessary, up to the maximum avail-
able on the media.

Contracts files when possible.

B-Tree HELPER

Saves You Time

It could take you two or more weeks to write a file space
management system.

It would take you four or more weeks to write a file-
based B-Tree management system.

B-Tree HELPER is ready to run.

What Do Our Customers Say?
“Both your product and way of doing business are wor-
thy of a kind word. ...Thanks for a nice program at a
nice price.”

- Ed Ringel, Waterville ME

““Tu sei troppo simpatico. Tante grazie per la pazienza e
buon lavaro.”
— Antonio Cocco, Caserta, Italy

“B-Tree HELPER works great! Multiple keys and data
can be stored in one Mac file; and data can be anything:
pictures, edit fields, etc. It’s one of the best database
products I've seen — especially for the price.”

—John W. Roberts, Palo Alto CA

“B-Tree HELPER is a great product, and is an excep-
tional value for the money, especially when you con-
sider its capabilities and the development time that
using it has saved.”

~ John Sidney-Woollett, GTec Systems, London,
England

B-Tree HELPER

Inserts keys in one or more B-Trees in one or more
files. Keys may be strings, integers, or any other data.

Finds the keys equal to, less than, or greater than a
given value in a few hundredths of a second.

Finds lists of records whose keys are equal to, less than,
or greater than a given value or in a range of values.

Deletes keys.

B-Tree HELPER

Saves You Money
For only $75.00 you can save weeks of typing, testing,
retyping, retesting...

B-Tree HELPER is a set of code resources you call from
your FutureBASIC programs.

‘You pay no license fees or royalties.

Order B-Tree HELPER™ Today
____Please send me FutureBASIC code resources for
B-Tree HELPER 2.1 $75.00

___Please send me the THINK C source code for
B-Tree HELPER 2.1 ($150.00 separately) $100.00

Please send me the Pascal source code for
B-Tree HELPER 2.1 ($150.00 separately) $100.00

Enclose check or money order in U.S. Dollars. For other cur-
rencies, please write, call, or e-mail: MAGREEABLE (GEnie,
AppleLink, or America OnLine), or 72167,1700 (Com-
puServe).

Name
Company
Address

City
Country

State Zip

Send to: (M)agreeable software, Inc., 5925 Magnolia Lane,
Plymouth MN 55442-1573, Ph. (612) 559-1108.

Not everyone is a professional
»grammer. But each of us has
acquired knowledge in specific
fields through study or job
experience or just because we
1appened to be standing under
2 right tree when an apple fell.

f you have discovered a unique
way to store, analyze or
calculate information (or
perhaps you have an idea for a
irld class game) there is only
one (good) way to share it: a
Macintosh application. And
until now, there was only one
way to create it: spend years
learning to program.

PG:PRO has changed all of
that. Because now you don’t
have to be a professional
programmer to create a
professional program. Just let
the PRO handle interface
operations and spend your time
rorking on the things that made
rou a professional to begin with.

PG:P

(b

v

Staz Software has produced the equivalent of an object-oriented
programming (OOP) environment that doesn’t require previous
OOP experience. This is an amazing accomplishment in its own
right, but the speed and compactness of the code are
phenomenal.

- MacWorld » July 1993

PG:PRO makes a great partner for FutureBASIC and makes it
easy to design applications quickly without getting mired in the
details of managing the interface.

- Byte » June 1993

PG:PRO provides the means for even the most non-professional
programmers to create a solid Mac interface in minutes.

- Inside BASIC » June 1992

Lots of folks are using the PRO. There are
hobbiests, scientists, engineers, artists, gamers
The PRO has even cut new paths into the
HyperCard dominated markets of higher education.
We cover the U. S. from the University of Florida to
Washington state’s Battelle Labs. And we span the
globe from Australia to Japan to France (and most

points in between.) ﬁm
/B RIRT AN
[] L

Somewhere on the glo 4 i ay,
the sun is shining on aRG:PR©Ofessional. /

SIALSOFTWALE

AL PR
i arae

11A LEISURE TIME DRIVE °® DIAMONDHEAD, MS 39525 * 601°255°7085 °* FAX 601°255°7086

ORDER FORM

Sentient Fruit™

MACINTOSH CONSULTING . PROGRAMMING . DOCUMENTATION

PO BOX 13362 « TUCSON » AZ 85732-3362

The first programming book for...

Learning FutureBASIC
Macintosh BASIC Power

by L. Frank Turovich

Designed for people already familiar with BASIC, but who want to program
professional-quality Macintosh applications. Inside you'll learn...

¢ Techniques for faster, bug-free programming ¢ How to create and manage up to
63 program windows ¢ How to add and handle buttons, edit and picture fields
Why events are vital and how to program for them ¢ Amazing printing techniques
for text and graphics ¢ How to design and use common resources effortlessly
(MENU, ALRT, CURS, DLOG, DITL, ICN#, STR#, and many more) * How to handle files,
records, and folders like a pro ¢ Hundreds of other useful tips and suggestions e
A complete SimpleBase program shows you how!

e
{ Wow - I can’t wait, please send my copy of Sales Tax:
Learning FutureBASIC: Macintosh BASIC Power Alﬂmn‘;l “’iﬂgef;‘;
piease mciude
(1sBN 0-9639552-0-9) now for $39.95 US to... el s,
°
Name: Shipping:
USA $6.00,
Address: Canada $8.00,
Europe $14.00,

g Pacific Rim $17.00
City: Payable in US funds
State: Postal Code: by US check or

Intl. money order.
Country: o
Please allow 4-6
weeks for processing
FutureBASIC is a trademark of Zedcor, Inc. and shipping.

\,

~.

Yo W,

