
/ 

• • • • • • • • • • • • 

~C6&zJc-
- ~~-·· --. ........ ..........._~:.. 

• 

ENHANCED 32-BIT 
MICROPROCESSOR 
USER'S MANUAL 
SECOND EDITION 

@MOTOROLA 



Introduction • 

Data Organization and Addressing Capabilities • 

Instruction Set • 

Processing States • 

Signal Description .. 

On-Chip Cache Memories .. 

Bus Operation • 

Exception Processing • 

Memory Management Unit .. 

Coprocessor Interface Description • 

Instruction Execution Timing Ill 
Applications Information • 

Electrical Characteristics • 

Ordering Information and Mechanical Data Ill 
M68000 Family Summary • 

Index 

,. 



~ MOTOROLA 

MC68030 
ENHANCED 32 .. BIT 
MICROPROCESSOR 
USER'S .MANUAL 
SECOND EDITION 

B PRENTICE HALL, Englewood Cliffs, N.J 07632 



This document contains information on a new product. Specifications 
and information herein are subject to change without notice. Motorola 
reserves the right to make changes to any products herein to improve 
functioning or design. Although the information in this document has 
been carefully reviewed and is believed to be reliable, Motorola does 
not assume any liability arising out of the application or use of any 
product or circuit described herein; neither does it convey any license 
under its patent rights nor the rights of others. 

Motorola, Inc. general policy does not recommend the use of its components in life 
support applications wherein a failure or malfunction of the component may directly 
threaten life or injury. Per Motorola Terms and Conditions of Sale, the user of Motorola 
components in life support applications assumes all risk of such use and indemnifies 
Motorola against all damages. 

© 1989 by Motorola, Inc. 

All rights reserved. No part of this book may be 
reproduced, in any form or by any means, 
without permission in writing from the publisher. 

Printed in the United States of America 

10 9 8 7 6 5 4 3 2 1 

ISBN 0-13-566951-D {PRENTICE HALL} 

ISBN 0-13-566969-3 {MOTOROLA} 

Prentice-Hall International (UK) Limited, London 
Prentice-Hall of Australia Pty. Limited, Sydney 
Prentice-Hall Canada Inc., Toronto 
Prentice-Hall Hispanoamericana, S.A., Mexico 
Prentice-Hall of India Private Limited, New Delhi 
Prentice-Hall of Japan, Inc., Tokyo 
Simon & Schuster Asia Pte. Ltd., Singapore 
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro 



PREFACE 

The MC68030 User's Manual describes the capabilities, operation, and programming of 
the MC68030 32-bit second-generation enhanced microprocessor. The manual consists of 
the following sections and appendix. 

Section 1. Introduction 
Section 2. Data Organization and Addressing Capabilities 
Section 3. Instruction Set 
Section 4. Processing States 
Section 5. Signal Description 
Section 6. On-Chip Cache Memories 
Section 7. Bus Operation 
Section 8. Exception Processing 
Section 9. Memory Management Unit 
Section 10. Coprocessor Interface Description 
Section 11. Instruction Execution Timing 
Section 12. Applications Information 
Section 13. Electrical Specifications 
Section 14. Ordering Information and Mechanical Data 
Appendix A. M68000 Family Summary 

NOTE 

In this manual, assertion and negation are used to specify forcing a signal to a 
particular state. In particular, assertion and assert refer to a signal that is active 
or true; negation and negate indicate a signal that is inactive or false. These terms 
are used independently of the voltage level (high or low) that they represent. 

The audience of this manual includes system designers, systems programmers, and ap­
plications programmers. Systems designers need some knowledge of all sections, with 
particular emphasis on Sections 1, 5, 6, 7, 13, and 14, and Appendix A. Designers who 
implement a coprocessor for their system also need a thorough knowledge of Section 10. 
Systems programmers should become familiar with Sections 1, 2, 3, 4, 6, 8, 9, and 11, and 
Appendix A. Applications programmers can find most of the information they need in 
Sections 1, 2, 3, 4, 9, 11, and 12, and Appendix A. 

From a different viewpoint, the audience for this book consists of users of other M68000 
Family members, and those who are not familiar with these microprocessors. Users of the 
other family members can find references to simi1arities to and differences from the other 
MOTOROLA microprocessors throughout the manual. However, Section 1 and Appendix 
A specifically identify the MC68030 within the rest of the family, and contrast its differences. 

MC68030 USER'S MANUAL MOTOROLA 
iii 



MOTOROLA 
iv 

MC68030 USER'S MANUAL 



Paragraph 
Number 

1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.6.1 
1.6.2 
1.7 
1.8 
1.9 

2.1 
2.2 
2.2.1 
2.2.2 
2.2.3 
2.3 
2.4 
2.4.1 
2.4.2 
2.4.3 
2.4.4 
2.4.5 
2.4.6 
2.4.7 
2.4.8 
2.4.9 
2.4.10 
2.4.11 
2.4.12 
2.4.13 
2.4.14 
2.4.15 
2.4.16 
2.4.17 
2.4.18 
2.5 

TABLE OF CONTENTS 

Title 

.Section 1 
Introduction 

Features ................................................................................. . 
MC68030 Extensions to the M68000 Family ................................... . 
Programming Model. ................................................................ . 
Data Types and Addressing Modes .............................................. . 
Instruction Set Overview ........................................................... . 
Virtual Memory and Virtual Machine Concepts ............................... . 

Virtual Memory .................................................................. . 
Virtual Machine ................................................................. .. 

The Memory Management Unit .................................................. . 
Pipelined Architecture ............................................................... . 
The Cache Memories ................................................................ . 

Section 2 
Data Organization and Addressing Capabilities 

Instruction Operands ................................................................ . 
Organization of Data in Registers ................................................ . 

Data Registers .................................................................. .. 
Address Registers ............................................................... . 
Control Registers ................................................................ . 

Organization of Data in Memory ................................................. . 
Addressing Modes ................................................................... . 

Data Register Direct Mode .................................................... . 
Address Register Direct Mode ............................................... . 
Address Register Indirect Mode ............................................. . 
Address Register Indirect with Postincrement Mode ................... . 
Address Register Indirect with Predecrement Mode .................. .. 
Address Register Indirect with Displacement Mode .................... . 
Address Register Indirect with Index (8-Bit Displacement) Mode .. .. 
Address Register Indirect with Index (Base Displacement) Mode .. .. 
Memory Indirect Postindexed Mode ...................................... .. 
Memory Indirect Preindexed Mode ......................................... . 
Program Counter Indirect with Displacement Mode .................. .. 
Program Counter Indirect with Index (8-Bit Displacement) ........... . 
Program Counter Indirect with Index (Base Displacement) Mode .. . 
Program Counter Memory Indirect Postindexed Mode ............... .. 
Program Counter Memory Indirect Preindexed Mode ................ .. 
Absolute Short Address Mode .............................................. .. 
Absolute Long Address Mode ............................................... . 
Immediate Data ................................................................ .. 

Effective Address Encoding Summary .......................................... . 

Page 
Number 

1-1 
1-3 
1-3 
1-8 
1-8 
1-9 

1-11 
1-11 
1-11 
1-12 
1-12 

2-1 
2-1 
2-2 
2-3 
2-3 
2-4 
2-6 
2-7 
2-7 
2-8 
2-8 
2-8 
2-9 

2-10 
2-10 
2-11 
2-11 
2-12 
2-12 
2-13 
2-14 
2-14 
2-15 
2-16 
2-16 
2-16 

MC68030 USER'S MANUAL MOTOROLA 
v 



Paragraph 
Number 

2.6 
2.6.1 
2.6.2 
2.7 
2.8 
2.8.1 
2.8.2 
2.8.3 

3.1 
3.2 
3.2.1 
3.2.2 
3.2.3 
3.2.4 
3.2.5 
3.2.6 
3.2.7 
3.2.8 
3.2.9 
3.2.10 
3.2.11 
3.3 
3.3.1 
3.3.2 
3.3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3.8.1 
3.8.2 
3.9 

4.1 
4.1.1 
4.1.2 
4.1.3 
4.2 

TABLE OF CONTENTS (Continued) 

Page 
Title Number 

Programmer's View of Addressing Modes...................................... 2-18 
Addressing Capabilities........................................................ 2-18 
General Addressing Mode Summary....................................... 2-23 

M68000 Family Addressing Compatibility....................................... 2-27 
Other Data Structures................................................................ 2-28 

System Stack...................................................................... 2-28 
User Program Stacks............................................................ 2-28 
Queues .. . . . .. .. . . . .. . .. .. . .. . . .. . .. .. .. .. . .. .. . . . . . . . . .. . . . .. . . . . . .. . . .. . . .. .. .. . .. 2-29 

Section 3 
Instruction Set 

Instruction Format..................................................................... 3-1 
Instruction Summary................................................................. 3-2 

Data Movement Instructions.................................................. 3-3 
Integer Arithmetic Instructions .. .. .. . .. . .. . .. .. . .. . .. .. . .. .. .. .... .. .. .. .. .. . 3-3 
Logical Instructions.............................................................. 3-4 
Shift and Rotate Instructions.................................................. 3-4 
Bit Manipulation Instructions................................................. 3-6 
Bit Field Instructions .. . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . .. 3-6 
Binary Coded Decimal Instructions.......................................... 3-7 
Program Control Instructions................................................. 3-8 
System Control Instructions................................................... 3-8 
Memory Management Unit Instructions................................... 3-10 
Multiprocessor Instructions ................................................... 3-10 

Instruction Set Details ................................................................ 3-10 
Notation and Format............................................................ 3-11 
Condition Code Register .. .. .. .. .. .. . .. .. .. .. . .. .. .. .. .. . .. . .. .. .. .. .. .. .. .. .. . 3-12 
Instruction Descriptions .. . . . .. . . . . . . . . . . . .. .. . .. .. . . .. . .. .. .. . .. . .. .. . .. . . . .. . . 3-13 

Using the CAS and CAS2 Instructions ........................................... 3-193 
Nested Subroutine Calls ............................................................. 3-195 
Bit Field Instructions .................................................................. 3-196 
Pipeline Synchronization with the NOP Instruction ........................... 3-198 
Condition Codes....................................................................... 3-198 

Condition Code Computation ................................................. 3-198 
Condition Tests ................................................................... 3-200 

Instruction Format Summary ....................................................... 3-201 

Section 4 
Processing States 

Privilege Levels........................................................................ 4-1 
Supervisor Privilege Level..................................................... 4-2 
User Privilege Level .. .. . .. .. . .. .. .. .. .. .. .. .. .. . .. .. .. .. .. .. . .. . .. .. .. . .. .. .. .. . 4-3 
Changing Privilege Level....................................................... 4-3 

Address Space Types . .. . . . . . . . . .. . . . . .. . . . . . .. . .. .. .. .. .. . .. .. . . .. . .. . . . .. .. . . . . . . . . 4-4 

MOTOROLA 
vi 

MC68030 USER'S MANUAL 



Paragraph 
Number 

4.3 
4.3.1 
4.3.2 

5.1 
5.2 
5.3 
5.4 
5.5 
5.6 
5.6.1 
5.6.2 
5.6.3 
5.6.4 
5.6.5 
5.6.6 
5.6.7 
5.6.8 
5.6.9 
5.7 
5.7.1 
5.7.2 
5.7.3 
5.7.4 
5.8 
5.8.1 
5.8.2 
5.8.3 
5.9 
5.9.1 
5.9.2 
5.9.3 
5.10 
5.10.1 
5.10.2 
5.10.3 
5.11 
5.11.1 
5.11.2 
5.11.3 
5.11.4 
5.12 
5.13 
5.14 

TABLE OF CONTENTS (Continued} 

Title 

Exception Processing ................................................................ . 
Exception Vectors .............................................................. .. 
Exception Stack Frame ........................................................ . 

Section 5 
Signal Description 

Signal Index ........................................................................... . 
Function Code Signals (FCO through FC2) ...................................... . 
Address Bus (AO through A31) ................................................... .. 
Data Bus (DO through D31) ....................................................... .. 
Transfer Size Signals (SIZO, SIZ1) ............................................... .. 
Bus Control Signals ................................................................. .. 

Operand Cycle Start (OCS) .................................................. .. 
External Cycle Start (ECS) .................................................... . 
Read/Write (R/W) ................................................................ . 
Read-Modify-Write (RMC) ..................................................... . 
Address Strobe (AS) .......................................................... .. 
Data Strobe (DS) ................................................................ . 
Data Buffer Enable (DBEN) .................................................. .. 
Data Transfer and Size Acknowledge (DSACKO, DSACK1 ) ............ . 
Synchronous Termination (STERM) ....................................... .. 

Cache Control Signals .............................................................. .. 
Cache Inhibit Input (CllN) .................................................... .. 
Cache Inhibit Output (CIOUT) ................................................ . 
Cache Burst Request (CBREQ) .............................................. .. 
Cache Burst Acknowledge (CBACK) ........................................ . 

Interrupt Control Signals ........................................................... . 
Interrupt Priority Level Signals ............................................. .. 
Interrupt Pending (!PEND) .................................................... . 
Autovector (AVEC) .............................................................. . 

Bus Arbitration Control Signals ................................................... . 
Bus Request (BR) .............................................................. .. 
Bus Grant (BG) .................................................................. . 
Bus Grant Acknowledge (BGACK) ......................................... .. 

Bus Exception Control Signals .................................................... . 
Reset (RESET) .................................................................... . 
Halt (HALT) ...................................................................... .. 
Bus Error (BERR) ............................................................... .. 

Emulator Support Signals .......................................................... . 
Cache Disable (COTS) .......................................................... .. 
MMU Disable (MMUDIS) ..................................................... .. 
Pipeline Refill (REFILL) ........................................................ .. 
Internal Microsequencer Status (STATUS) ............................... . 

Clock (CLK) ............................................................................ .. 
Power Supply Connections ........................................................ . 
Signal Summary ...................................................................... . 

Page 
Number 

4-4 
4-5 
4-5 

5-2 
5-2 
5-2 
5-2 
5-2 
5-2 
5-2 
5-4 
5-4 
5-4 
5-4 
5-4 
5-4 
5-4 
5-5 
5-5 
5-5 
5-5 
5-5 
5-5 
5-5 
5-5 
5-6 
5-6 
5-6 
5-6 
5-6 
5-6 
5-6 
5-6 
5-7 
5-7 
5-7 
5-7 
5-7 
5-7 
5-7 
5-8 
5-8 
5-8 

MC68030 USER'S MANUAL MOTOROLA 
vii 



Paragraph 
Number 

6.1 
6.1.1 
6.1.2 
6.1.2.1 
6.1.2.2 
6.1.3 
6.1.3.1 
6.1.3.2 
6.2 
6.3 
6.3.1 
6.3.1.1 
6.3.1.2 
6.3.1.3 
6.3.1.4 
6.3.1.5 
6.3.1.6 
6.3.1.7 
6.3.1.8 
6.3.1.9 
6.3.1.10 
6.3.1.11 
6.3.2 

7.1 
7.1.1 
7.1.2 
7.1.3 
7.1.4 
7.1.5 
7.1.6 
7.1.7 
7.2 
7.2.1 
7.2.2 
7.2.3 
7.2.4 
7.2.5 
7.2.6 
7.2.7 
7.2.8 
7.2.9 
7.2.10 

TABLE OF CONTENTS (Continued) 

Page 
Title Number 

Section 6 
On-Chip Cache Memories 

On-Chip Cache Organization and Operation.................................... 6-1 
Instruction Cache . . . .. .. . . .. . . . .. . . . .. . . .. .. . . . . . . . . . . . . . . . . . . . . . . . .. .. .. . . . .. .. . 6-3 
Data Cache . . . . . . . . . . ... . . .. .. . . . .. .. .... . .. . . . . . . . . . . . . . . . . . . . . . . . . . .... .. .. ... .. . 6-5 

Write Allocation............................................................. 6-5 
Read-Modify-Write Accesses............................................ 6-7 

Cache Filling . .. . . . . .. .. .. .. . .. .. .. . . .. .. .. . .. . .. .. . . . .. . . .. . . . .. .. .. .. . . . . . . .. . . . . 6-8 
Single Entry Mode .. .. . . . .. .. . .. .. .. .. . . . . .. . . . . . . . .. . . .. . . . .. .. . .. .. . .. .. . 6-8 
Burst Mode Filling .......................................................... 6-12 

Cache Reset............................................................................. 6-15 
Cache Control . .. . .. .. .. . .. .. . . . . . . . . .. . . . . .. . . . . . . . .. .. .. . .. .. .. .. .. . .. .. . . . . . . .. . . . .. . 6-16 

Cache Control Register......................................................... 6-16 
Write Allocate .. .. . .. . . .. . . . .. . . .. . .. .. . . .. . . . . . .. . . .. . . . .. .. . . .. .. .. .. .. . .. . 6-16 
Data Burst Enable .......................................................... 6-16 
Clear Data Cache........................................................... 6-16 
Clear Entry in Data Cache ................................................ 6-16 
Freeze Data Cache.......................................................... 6-16 
Enable Data Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-17 
Instruction Burst Enable .. .. .... .. . .. .. .. .. .. .. .. .. .. .. .. . .. .. .. .. . .. .. .. . 6-17 
Clear Instruction Cache................................................... 6-17 
Clear Entry in Instruction Cache ........................................ 6-17 
Freeze Instruction Cache .................................................. 6-17 
Enable Instruction Cache................................................. 6-17 

Cache Address Register........................................................ 6-17 

Section 7 
Bus Operation 

Bus Transfer Signals.................................................................. 7-1 
Bus Control Signals .. . . .. . .. . . .. . . . .. .. .. .. .. .. . . .. . .. . .. .. .. .. . .. . .. .. . . .. . .. .. 7-3 
Address Bus....................................................................... 7-3 
Address Strobe................................................................... 7-4 
Data Bus .. .. . .. . . . .. .. .. . .. . .. . .. .. .. .. .. . .. .. . . . . .. . . . .. .. .. .. . . . .. . . .. . .. . .. .. . .. 7-4 
Data Strobe........................................................................ 7-4 
Data Buffer Enable............................................................... 7-4 
Bus Cycle Termination Signals............................................... 7-4 

Data Transfer Mechanism........................................................... 7-5 
Dynamic Bus Sizing .. .. .. .. . .. .. .. . .. . .. . .. . . .. . . . .. . . .. .. . .. . .. .. . .. .. . . .. . .. .. 7-5 
Misaligned Operands . .. .. .. .. . .. .. .. .. .. .. .. . .. .. .. .. . .. .. .. .. .. .. .. .. . .. .. .. .. 7-11 
Effects of Dynamic Bus Sizing and Operand Misalignment........... 7-13 
Address, Size, and Data Bus Relationships................................ 7-17 
MC68030 versus MC68020 Dynamic Bus Sizing.......................... 7-20 
Cache Filling .. . . .. . . .. .. .. . . . .. . .. .. .. . .. .. .. . . .. . .. . . . . . . . . . . . . . .. . .. .. .. . .. .. . .. 7-20 
Cache Interactions............................................................... 7-20 
Asynchronous Operation....................................................... 7-22 
Synchronous Operation with DSACKx...................................... 7-23 
Synchronous Operation with STE RM....................................... 7-24 

MOTOROLA 
viii 

MC68030 USER'S MANUAL 



Paragraph 
Number 

7.3 
7.3.1 
7.3.2 
7.3.3 
7.3.4 
7.3.5 
7.3.6 
7.3.7 
7.4 
7.4.1 
7.4.1.1 
7.4.1.2 
7.4.1.3 
7.4.2 
7.4.3 
7.5 
7.5.1 
7.5.2 
7.5.3 
7.5.4 
7.6 
7.7 
7.7.1 
7.7.2 
7.7.3 
7.7.4 
7.8 

8.1 
8.1.1 
8.1.2 
8.1.3 
8.1.4 
8.1.5 
8.1.6 
8.1.7 
8.1.8 
8.1.9 
8.1.10 
8.1.11 
8.1.12 
8.1.13 

TABLE OF CONTENTS (Continued} 

Title 

Data Transfer Cycles ................................................................ .. 
Asynchronous Read Cycle .................................................... . 
Asynchronous Write Cycle .................................................... . 
Asynchronous Read-Modify-Write Cycle .................................. . 
Synchronous Read Cycle ...................................................... . 
Synchronous Write Cycle ..................................................... . 
Synchronous Read-Modify-Write Cycle .................................... . 
Burst Operation Cycles ....................................................... .. 

CPU Space Cycles .................................................................... . 
Interrupt Acknowledge Bus Cycles ........................................ .. 

Interrupt Acknowledge Cycle - Terminated Normally .......... . 
Autovector Interrupt Acknowledge Cycle ............................ . 
Spurious Interrupt Cycle ................................................. . 

Breakpoint Acknowledge Cycle .............................................. . 
Coprocessor Communication Cycles ...................................... .. 

Bus Exception Control Cycles ..................................................... . 
Bus Errors ........................................................................ . 
Retry Operation ................................................................. . 
Halt Operation ................................................................... . 
Double Bus Fault ................................................................ . 

Bus Synchronization ................................................................. . 
Bus Arbitration ........................................................................ . 

Bus Request ..................................................................... .. 
Bus Grant ........................................................................ .. 
Bus Grant Acknowledge ...................................................... .. 
Bus Arbitration Control ........................................................ . 

Reset Operation ....................................................................... . 

Section 8 
Exception Processing 

Exception Processing Sequence .................................................. . 
Reset Exception ................................................................. . 
Bus Error Exception ............................................................ . 
Address Error Exception ...................................................... . 
Instruction Trap Exception .................................................... . 
Illegal Instruction and Unimplemented Instruction Exceptions ...... . 
Privilege Violation Exception ................................................. . 
Trace Exception ................................................................. . 
Format Error Exception ........................................................ . 
Interrupt Exceptions ............................................................ . 
MMU Configuration Exception .............................................. . 
Breakpoint Instruction Exception ............................................ . 
Multiple Exceptions ............................................................ . 
Return from Exception ......................................................... . 

Page 
Number 

7-25 
7-25 
7-31 
7-36 
7-40 
7-43 
7-44 
7-49 
7-57 
7-57 
7-58 
7-60 
7-60 
7-60 
7-60 
7-61 
7-67 
7-70 
7-74 
7-76 
7-77 
7-77 
7-80 
7-81 
7-81 
7-81 
7-83 

8-1 
8-3 
8-5 
8-6 
8-6 
8-6 
8-7 
8-8 
8-9 
8-10 
8-15 
8-15 
8-16 
8-17 

MC68030 USER'S MANUAL MOTOROLA 
ix 



Paragraph 
Number 

8.2 
8.2.1 
8.2.2 
8.2.3 
8.3 
8.4 

9.1 
9.1.1 
9.1.2 
9.2 
9.2.1 
9.2.2 
9.2.3 
9.3 
9.4 
9.5 
9.5.1 
9.5.1.1 
9.5.1.2 
9.5.1.3 
9.5.1.4 
9.5.1.5 
9.5.1.6 
9.5.1.7 
9.5.1.8 
9.5.1.9 
9.5.1.10 
9.5.1.11 
9.5.1.12 
9.5.2 
9.5.3 
9.5.3.1 
9.5.3.2 
9.5.3.3 
9.5.3.4 
9.5.3.5 
9.5.4 
9.5.5 
9.5.5.1 
9.5.5.2 
9.5.5.3 
9.5.5.4 
9.6 

TABLE OF CONTENTS (Continued) 

Page 
Title Number 

Bus Fault Recovery.................................................................... 8-19 
Special Status Word............................................................. 8-19 
Using Software to Complete the Bus Cycles.............................. 8-21 
Completing the Bus Cycles with RTE . . . . . . . . . . . . . .. . . . . . .. . . . .. . . . . . . . .. .. . 8-22 

Coprocessor Considerations........................................................ 8-22 
Exception Stack Frame Formats . . . . . . . . . . . . . . . . .. . .. . . . .. .. . . . . . . . . . . . . . . . . . . . . .. . 8-23 

Section 9 
Memory Management Unit 

Translation Table Structure ........................................... ~............. 9-5 
Translation Control.............................................................. 9-5 
Translation Table Descriptors................................................. 9-8 

Address Translation . . .. . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-9 
General Flow for Address Translation...................................... 9-9 
Affect of RESET on MMU ...................................................... 9-11 
Affect of MMUDIS on Address Translation................................ 9-11 

Transparent Translation............................................................. 9-13 
Address Translation Cache.......................................................... 9-14 
Translation Table Details .. . .. .. .. .. .. .. .. .. . .. .. .. . . . .. .. .. .. . .. .. . . . .. .. .. .. . . . .. . . 9-15 

Descriptor Details................................................................ 9-16 
Descriptor Field Definitions.............................................. 9-16 
Root Pointer Descriptor................................................... 9-18 
Table Descriptor, Short Format......................................... 9-18 
Table Descriptor, Long Format.......................................... 9-18 
Early Termination Page Descriptor, Short Format .................. 9-18 
Early Termination Page Descriptor, Long Format.................. 9-19 
Page Descriptor, Short Format.......................................... 9-20 
Page Descriptor, Long Format .. .. .. . .. . .. .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . 9-20 
Invalid Descriptor, Short Format........................................ 9-20 
Invalid Descriptor, Long Format........................................ 9-21 
Indirect Descriptor, Short Format....................................... 9-21 
Indirect Descriptor, Long Format....................................... 9-21 

General Table Search........................................................... 9-22 
Variations in Translation Tree Structure . . .. .. .. . . . .. . . .. . .. . . ... . . . .. . . . . . 9-25 

Early Termination and Contiguous Memory......................... 9-25 
Indirection.................................................................... 9-26 
Table Sharing Between Tasks ........................................... 9-27 
Paging of Tables............................................................ 9-30 
Dynamic Allocation of Tables........................................... 9-30 

Detail of Table Search Operations........................................... 9-30 
Protection.......................................................................... 9-30 

Function Code Lookup.................................................... 9-34 
Supervisor Translation Tree .. . . .. .. .. . .. .. .. .. . .. .. .. .. . .. . .. .. . . . .. .. .. 9-34 
Supervisor Only............................................................. 9-36 
Write Protect................................................................. 9-36 

MC68030 and MC68851 MMU Differences...................................... 9-36 

MOTOROLA MC68030 USER'S MANUAL 
x 



Paragraph 
Number 

9.7 
9.7.1 
9.7.2 
9.7.3 
9.7.4 
9.7.5 
9.7.5.1 
9.7.5.2 
9.7.5.3 
9.8 
9.9 
9.9.1 
9.9.2 
9.9.3 
9.9.3.1 
9.9.3.2 
9.9.3.3 
9.9.3.4 
9.9.3.5 
9.9.3.6 
9.10 
9.10.1 
9.10.2 
9.10.3 

10.1 
10.1.1 
10.1.2 
10.1.3 
10.1.4 
10.1.4.1 
10.1.4.2 
10.1.4.3 
10.2 
10.2.1 
10.2.1.1 
10.2.1.2 
10.2.2 
10.2.2.1 
10.2.2.1.1 
10.2.2.1.2 
10.2.2.2 
10.2.2.2.1 
10.2.2.2.2 

TABLE OF CONTENTS (Continued) 

Title 

Registers ................................................................................ . 
Root Pointer Registers ......................................................... . 
Translation Control Register ................................................. . 
Transparent Translation Registers .......................................... . 
MMU Status Register .......................................................... . 
Register Programming Considerations .................................... . 

Register Side Effects ...................................................... . 
MMU Status Register Decoding ...................................... .. 
MMU Configuration Exception ......................................... . 

MMU Instructions .................................................................... . 
Defining and Using Page Tables in an Operating System ................. . 

Root Pointer Registers ......................................................... . 
Task Memory Map Definition ................................................ . 
Impact on MMU Features on Table Definition ........................... . 

Number of Table Levels ................................................. . 
Initial Shift Count ......................................................... .. 
Limit Fields .................................................................. . 
Early Termination Page Descriptors .................................. . 
Indirect Descriptors ....................................................... . 
Using Unused Descriptor Bits ......................................... .. 

An Example of Paging Implementation in an Operating System ........ .. 
System Description ............................................................. . 
Allocation Routines ............................................................. . 
Bus Error Handler Routine .................................................... . 

Section 10 
Coprocessor Interface Description 

Introduction ............................................................................ . 
Interface Features ............................................................... . 
Concurrent Operation Support ............................................. .. 
Coprocessor Instruction Format ............................................. . 
Coprocessor System Interface ............................................... . 

Coprocessor Classification .............................................. . 
Processor-Coprocessor Interface ...................................... . 
Coprocessor Interface Register Selection ........................... .. 

Coprocessor Instruction Types .................................................... . 
Coprocessor General Instructions ........................................... . 

Format ....................................................................... . 
Protocol ...................................................................... . 

Coprocessor Conditional Instructions ...................................... . 
Branch On Coprocessor Condition Instruction .................... .. 

Format ................................................................. .. 
Protocol ................................................................ . 

Set On Coprocessor Condition Instruction ......................... .. 
Format ................................................................. .. 
Protocol ................................................................ . 

Page 
Number 

9-39 
9-39 
9-42 
9-43 
9-45 
9-45 
9-46 
9-46 
9-47 
9-47 
9-49 
9-49 
9-50 
9-51 
9-51 
9-52 
9-53 
9-53 
9-53 
9-54 
9-54 
9-54 
9-58 
9-62 

10-1 
10-2 
10-2 
10-3 
10-4 
10-4 
10-4 
10-6 
10-6 
10-7 
10-7 
10-8 
10-9 

10-10 
10-10 
10-11 
10-11 
10-11 
10-12 

MC68030 USER'S MANUAL MOTOROLA 
xi 



Paragraph 
Number 

TABLE OF CONTENTS (Continued) 

Title 
Page 

Number 

10.2.2.3 Test Coprocessor Condition, Decrement and 
Branch Instruction ....................................................... 10-12 

10.2.2.3.1 Format................................................................... 10-12 
10.2.2.3.2 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-13 
10.2.2.4 Trap On Coprocessor Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-13 
10.2.2.4.1 Format................................................................... 10-13 
10.2.2.4.2 Protocol................................................................. 10-14 
10.2.3 Coprocessor Save and Restore Instructions ............................... 10-14 
10.2.3.1 Coprocessor Internal State Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-15 
10.2.3.2 Coprocessor Format Words.............................................. 10-16 
10.2.3.2.1 Empty/Reset Format Word.......................................... 10-16 
10.2.3.2.2 Not Ready Format Word ............................................ 10-16 
10.2.3.2.3 Invalid Format Word ................................................. 10-17 
10.2.3.2.4 Valid Format Word ................................................... 10-17 
10.2.3.3 Coprocessor Context Save Instruction ................................ 10-18 
10.2.3.3.1 Format................................................................... 10-18 
10.2.3.3.2 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-18 
10.2.3.4 Coprocessor Context Restore Instruction............................. 10-19 
10.2.3.4.1 Format................................................................... 10-20 
10.2.3.4.2 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-20 
10.3 Coprocessor Interface Register Set ............................................... 10-21 
10.3.1 Response Cl R . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .. .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . 10-21 
10.3.2 Control CIR ........................................................................ 10-22 
10.3.3 Save CIR ........................................................................... 10-22 
10.3.4 Restore CIR ........................................................................ 10-22 
10.3.5 Operation Word CIR............................................................. 10-22 
10.3.6 Command CIR .................................................................... 10-23 
10.3.7 Condition CIR ..................................................................... 10-23 
10.3.8 Operand CIR ....................................................................... 10-23 
10.3.9 Register Select CIR .............................................................. 10-24 
10.3.10 Instruction Address CIR ........................................................ 10-24 
10.3.11 Operand Address CIR ........................................................... 10-24 
10.4 Coprocessor Response Primitives ................................................. 10-24 
10.4.1 ScanPC .... ............... .. .. ............ .... .. ..... .... ...... ....... .............. 10-24 
10.4.2 Coprocessor Response Primitive General Format . . . . . . . . . . . . . . . . . . . . . . . 10-25 
10.4.3 Busy Primitive .................................................................... 10-26 
10.4.4 Null Primitive ..................................................................... 10-27 
10.4~5 Supervisor Check Primitive .................................................... 10-29 
10.4.6 Transfer Operation Word Primitive .......................................... 10-29 
10.4.7 Transfer from Instruction Stream Primitive ............................... 10-30 
10.4.8 Evaluate and Transfer Effective Address Primitive ...................... 10-30 
10.4.9 Evaluate Effective Address and Transfer Data Primitive ............... 10-31 
10.4.10 Write to Previously Evaluated Effective Address Primitive ............ 10-33 
10.4.11 Take Address and Transfer Data Primitive................................. 10-34 
10.4.12 Transfer to/from Top of Stack Primitive .................................... 10-35 
10.4.13 Transfer Single Main Processor Register Primitive ...................... 10-35 
10.4.14 Transfer Main Processor Control Register Primitive .................... 10-36 

MOTOROLA 
xii 

MC68030 USER'S MANUAL 



Paragraph 
Number 

10.4.15 
10.4.16 
10.4.17 
10.4.18 
10.4.19 
10.4.20 
10.5 
10.5.1 
10.5.1.1 
10.5.1.2 
10.5.1.3 
10.5.1.4 
10.5.1.5 
10.5.2 
10.5.2.1 
10.5.2.2 
10.5.2.3 
10.5.2.4 
10.5.2.5 
10.5.2.6 
10.5.2.7 
10.5.2.8 
10.5.3 
10.6 

11.1 
11.2 
11.2.1 
11.2.2 
11.2.3 
11.2.4 
11.2.5 
11.2.5.1 
11.2.5.2 
11.2.5.3 
11.2.6 
11.3 
11.3.1 
11.3.2 
11.3.3 
11.3.4 
11.4 
11.5 
11.6 

TABLE OF CONTENTS (Continued) 

Title 

Transfer Multiple Main Processor Registers Primitive ................ .. 
Transfer Multiple Coprocessor Registers Primitive .................... .. 
Transfer Status Register and Scan PC Primitive ........................ .. 
Take Pre-Instruction Exception Primitive .................................. . 
Take Mid-Instruction Exception Primitive ................................ .. 
Take Post-Instruction Exception Primitive ............................... .. 

Exceptions .............................................................................. . 
Coprocessor Detected Exceptions .......................................... . 

Coprocessor Detected Protocol Violations ......................... .. 
Coprocessor Detected Illegal Command or Condition Words .. . 
Coprocessor Data Processing Exceptions .......................... .. 
Coprocessor System Related Exceptions ............................ . 
Format Errors ............................................................... . 

Main Processor Detected Exceptions ..................................... .. 
Protocol Violations ........................................................ . 
F-Line Emulator Exceptions ............................................. . 
Privilege Violations ........................................................ . 
cpTRAPcc Instruction Traps ............................................ .. 
Trace Exceptions ......................................................... .. 
Interrupts ..................................................................... . 
Main Processor Detected Format Errors ............................ .. 
Address and Bus Errors .................................................. . 

Coprocessor Reset .............................................................. . 
Coprocessor Summary ............................................................. .. 

Section 11 
Instruction Execution Timing 

Performance Tradeoffs .............................................................. . 
Resource Scheduling ................................................................ . 

Microsequencer ................................................................ .. 
Instruction Pipe ................................................... ~ ............. .. 
Instruction Cache ............................................................... . 
Data Cache ...................................................................... .. 
Bus Controller Resources ..................................................... . 

Instruction Fetch Pending Buffer ..................................... .. 
Write Pending Buffer .................................................... .. 
Micro Bus Controller. ..................................................... . 

Memory Management Unit ................................................... . 
Instruction Execution Timing Calculations .................................... .. 

Instruction-Cache Case ........................................................ . 
Overlap and Best Case ........................................................ . 
Average No-Cache Case ...................................................... .. 
Actual Instruction Cache Case Execution Time Calculations ........ .. 

Effect of Data Cache ................................................................. . 
Effect of Wait States ................................................................. . 
Instruction Timing Tables .......................................................... . 

Page 
Number 

10-36 
10-37 
10-38 
10-40 
10-41 
10-42 
10-43 
10-44 
10-44 
10-45 
10-45 
10-45 
10-46 
10-46 
10-46 
10-47 
10-48 
10-49 
10-49 
10-49 
10-50 
10-50 
10-51 
10-51 

11-1 
11-1 
11-2 
11-2 
11-2 
11-2 
11-4 
11-4 
11-4 
11-4 
11-4 
11-5 
11-5 
11-5 
11-6 
11-8 
11-12 
11-14 
11-18 

MC68030 USER'S MANUAL MOTOROLA 
xiii 



Paragraph 
Number 

11.6.1 
11.6.2 
11.6.3 
11.6.4 
11.6.5 
11.6.6 
11.6.7 
11.6.8 
11.6.9 
11.6.10 
11.6.11 
11.6.12 
11.6.13 
11.6.14 
11.6.15 
11.6.16 
11.6.17 
11.6.18 
11.7 
11.7.1 
11.7.2 
11.8 
11.9 

TABLE OF CONTENTS (Continued) 

Page 
Title Number 

Fetch Effective Address (Fea) ................................................. 11-19 
Fetch Immediate Effective Address (Flea) .................................. 11-20 
Calculate Effective Address (CEA) . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. . 11-22 
Calculate Immediate Effective Address Mode (Clea) .................... 11-24 
Jump Effective Address Mode ................................................ 11-26 
MOVE Instruction ................................................................ 11-27 
Special Purpose MOVE Instruction .......................................... 11-28 
Arithmetical/Logical Instructions ............................................. 11-29 
Immediate Arithmetical/Logical Instructions .............................. 11-30 
Binary Coded Decimal and Extended Instructions....................... 11-31 
Single Operand Instructions................................................... 11-32 
Shift/Rotate Instructions ........................................................ 11-33 
Bit Manipulation Instructions . .. . . . . . . .. .. .. .. . . . .. . . . . .. .. . . . .. . . . . . . . .. .. .. . 11-34 
Bit Field Manipulation Instructions .......................................... 11-35 
Conditional Branch Instructions.............................................. 11-36 
Control Instructions ............................................................. 11-37 
Exception Related Instructions and Operations .......................... 11-38 
Save and Restore Operations ................................................. 11-38 

Address Translation Tree Search Timing........................................ 11-39 
MMU Effective Address Calculation ......................................... 11-45 
MMU Instruction Timing ....................................................... 11-46 

Interrupt Latency ...................................................................... 11-46 
Bus Arbitration Latency.............................................................. 11-47 

Section 12 
Applications Information 

12.1 Adapting the MC68030 to MC68020 Designs ................................... 12-1 
12.1.1 Signal Routing .................................................................... 12-1 
12.1.2 Hardware Differences........................................................... 12-2 
12.1.3 Software Differences............................................................ 12-3 
12.2 Floating-Point Units................................................................... 12-4 
12.3 Byte Select Logic for the MC68030.............. .................................. 12-7 
12.4 Memory Interface ...................................................................... 12-10 
12.4.1 Access Time Calculations...................................................... 12-11 
12.4.2 Burst Mode Cycles ............................................................... 12-14 
12.5 Static RAM Memory Banks ......................................................... 12-14 
12.5.1 A Two Clock Synchronous Memory Bank Using SRAMs .............. 12-14 
12.5.2 A 2-1-1-1 Burst Mode Memory Bank Using SRAMs ..................... 12-19 
12.5.3 A 3-1-1-1 Burst Mode Memory Bank Using SRAMs ..................... 12-21 
12.6 External Caches ........................................................................ 12-24 
12.6.1 Cache Implementation.......................................................... 12-25 
12.6.2 "Instruction-Only" External Cache Implementations.................... 12-28 
12.7 Debugging Aids ........................................................................ 12-28 
12.7.1 STATUS and REFILL. ............................................................ 12-28 
12.7.2 Real-Time Instruction Trace ................................................... 12-30 
12.8 Power and Ground Considerations ............................................... 12-34 

MOTOROLA 
xiv 

MC68030 USER'S MANUAL 



TABLE OF CONTENTS (Concluded) 

Paragraph Page 
Number Title Number 

Section 13 
Electrical Characteristics 

13.1 Maximum Ratings ..................................................................... 13-1 
13.2 Thermal Characteristics - PGA Package........................................ 13-1 
13.3 Power Considerations................................................................ 13-1 
13.4 DC Electrical Characteristics........................................................ 13-2 
13.5 AC Electrical Specifications - Clock Input...................................... 13-3 
13.6 Preliminary AC Electrical Specifications - Read and Write Cycles....... 13-4 
13.7 AC Electrical Specifications Definitions.......................................... 13-6 

Section 14 
Ordering Information and Mechanical Data 

14.1 Standard MC68030 Ordering Information....................................... 14-1 
14.2 Pin Assignments - Pin Grid Array (RC Suffix) .. .. . .. .. .. .. . . . .. .. .. .. . .. .. . . . 14-2 
14.3 Pin Assignments - Ceramic Surface Mount (FE Suffix)..................... 14-3 
14.4 Package Dimensions.................................................................. 14-4 

MC68030 USER'S MANUAL 

Appendix A 
M68000 Family Summary 

Index 

MOTOROLA 
xv 



MOTOROLA 
xvi 

MC68030 USER'S MANUAL 



Figure 
Number 

1-1 
1-2 
1-3 
1-4 

2-1 
2-2 
2-3 
2-4 
2-5 
2-6 
2-7 
2-8 
2-9 
2-10 
2-11 
2-12 
2-13 
2-14 

3-1 
3-2 
3-3 
3-4 
3-5 
3-6 

4-1 

5-1 

6-1 
6-2 
6-3 
6-4 
6-5 
6-6 
6-7 
6-8 

6-9 

LIST OF ILLUSTRATIONS 

Title 

MC68030 Block Diagram ......................................................... . 
User Programming Model. ...................................................... . 
Supervisor Programming Model Supplement .............................. . 
Status Register ..................................................................... . 

Memory Operand Addressing .................................................. . 
Memory Data Organization ..................................................... . 
Single-Effective-Address Instruction Operation Word .................... . 
Using SIZE in the Index Selection ............................................. . 
Using Absolute Address with Indexes ....................................... . 
Addressing Array Items .......................................................... . 
Using Indirect Absolute Memory Addressing .............................. . 
Accessing an Item in a Structure Using Pointer ........................... . 
Indirect Addressing, Suppressed Index Register .......................... . 
Preindexed Indirect Addressing ................................................ . 
Postindexed Indirect Addressing .............................................. . 
Preindexed Indirect with Outer Displacement. ............................. . 
Postindexed Indirect Addressing with Outer Displacement ............. . 
M68000 Family Address Extension Words .................................. . 

Instruction Word General Format ............................................. . 
Instruction Description Format ................................................. . 
Linked List Insertion .............................................................. . 
Linked List Deletion ............................................................... . 
Doubly Linked List Insertion .................................................... . 
Doubly Linked List Deletion ..................................................... . 

General Exception Stack Frame ................................................ . 

Functional Signal Groups ....................................................... . 

Internal Caches and the MC68030 ............................................. . 
On-Chip Instruction Cache Organization ..................................... . 
On-Chip Data Cache Organization ............................................. . 
No-Write-Allocate and Write-Allocate Mode Examples .................. . 
Single Entry Mode Operation - 8-Bit Port .................................. . 
Single Entry Mode Operation - 16-Bit Port ................................ . 
Single Entry Mode Operation - 32-Bit Port ................................ . 
Single Entry Mode Operation - Misaligned Long Word and 

8-Bit Port. ......................................................................... . 
Single Entry Mode Operation - Misaligned Long Word and 

16-Bit Port ........................................................................ . 

Page 
Number 

1-2 
1-4 
1-6 
1-7 

2-4 
2-5 
2-6 
2-19 
2-20 
2-21 
2-21 
2-22 
2-22 
2-23 
2-23 
2-24 
2-24 
2-27 

3-1 
3-15 
3-194 
3-195 
3-196 
3-197 

4-6 

5-1 

6-2 
6-4 
6-6 
6-7 
6-9 
6-9 

6-10 

6-10 

6-11 

MC68030 USER'S MANUAL MOTOROLA 
xvii 



LIST OF ILLUSTRATIONS (Continued) 

Figure Page 
Number Title Number 

6-10 Single Entry Mode Operation - Misaligned Long Word and 
32-Bit DSACKx Port .. .. .. .. .. . .. .. . . .. . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . 6-11 

6-11 Burst Operation Cycles and Burst Mode...................................... 6-13 
6-12 Burst Filling Wrap-Around Example........................................... 6-13 
6-13 Deferred Burst-Filling Example.................................................. 6-14 
6-14 Cache Control Register............................................................ 6-15 
6-15 Cache Address Register........................................................... 6-17 

7-1 Relationship Between External and Internal Signals....................... 7-2 
7-2 Asynchronous Input Sample Window......................................... 7-2 
7-3 Internal Operand Representation............................................... 7-6 
7-4 MC68030 Interface to Various Port Sizes..................................... 7-7 
7-5 Example of Long-Word Transfer to Word Port.............................. 7-9 
7-6 Long-Word Operand Write Timing (16-Bit Data Port)..................... 7-10 
7-7 Example of Word Transfer to Byte Port....................................... 7-11 
7-8 Word Operand Write Timing (8-Bit Data Port) .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 7-12 
7-9 Misaligned Long-Word Transfer to Word Port Example.................. 7-13 
7-10 Misaligned Long-Word Transfer to Word Port.............................. 7-14 
7-11 Misaligned Cachable Long-Word Transfer from Word Port Example 7-15 
7-12 Misaligned Word Transfer to Word Port Example .. .. .. .. .. .. .. .. .. .. .. .. . 7-15 
7-13 Misaligned Word Transfer to Word Port...................................... 7-16 
7-14 Example of Misaligned Cachable Word Transfer from Word Bus...... 7-17 
7-15 Misaligned Long-Word Transfer to Long-Word Port....................... 7-17 
7-16 Misaligned Write Cycles to Long-Word Port................................. 7-18 
7-17 Misaligned Cachable Long-Word Transfer from Long-Word Bus....... 7-19 
7-18 Byte Data Select Generation for 16- and 32-Bit Ports..................... 7-21 
7-19 Asynchronous Long-Word Read Cycle Flowchart.......................... 7-26 
7-20 Asynchronous Byte-Read Cycle Flowchart................................... 7-26 
7-21 Asynchronous Byte and Word-Read Cycles - 32-Bit Port............... 7-27 
7-22 Long-Word Read - 8-Bit Port, with CIOUT Asserted...................... 7-28 
7-23 Long-Word Read - 16-Bit Port and 32-Bit Port............................. 7-29 
7-24 Asynchronous Write Cycle Flowchart .. .. .. .. . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 7-31 
7-25 Asynchronous Read-Write-Read Cycles - 32-Bit Port .. .. . .. .. .. .. .. .. .. . 7-32 
7-26 Asynchronous Byte and Word-Write Cycles - 32-Bit Port............... 7-33 
7-27 Long-Word Operand Write - 8-Bit Port...................................... 7-34 
7-28 Long-Word Operand Write - 16-Bit Port..................................... 7-35 
7-29 Asynchronous Read-Modify-Write Cycle Flowchart........................ 7-37 
7-30 Asynchronous Byte Read-Modify-Write Cycle - 32-Bit Port 

(TAS Instruction, with CIOUT or CllN Asserted).......................... 7-38 
7-31 Synchronous Long-Word Read Cycle Flowchart - No Burst Allowed 7-41 
7-32 Synchronous Read with CllN Asserted and CBACK Negated............ 7-42 
7-33 Synchronous Write Cycle Flowchart........................................... 7-44 
7-34 Synchronous Write Cycle with Wait States, CIOUT Asserted............ 7-45 
7-35 Synchronous Read-Modify-Write Cycle Flowchart......................... 7-46 
7-36 Synchronous Read-Modify-Write Cycle Timing, CllN Asserted .. .. .. .. . 7-47 
7-37 Burst Operation Flowchart - Four Long Words Transferred............ 7-51 
7-38 Long-Word Operand Request from $07 with Burst Request 

MOTOROLA 
xviii 

and Wait Cycles.................................................................. 7-52 

MC68030 USER'S MANUAL 



LIST OF ILLUSTRATIONS (Continued) 

Figure Page 
Number Title Number 

7-39 Long Word Operand Request from $07 with Burst 
Request - CBACK Negated Early........................................... 7-53 

7-40 Long-Word Operand Request from $OE - Burst Fill Deferred.......... 7-54 
7-41 Long-Word Operand Request from $07 with Burst 

Request - CBACK and CllN Asserted...................................... 7-55 
7-42 MC68030 CPU-Space Address Encoding ... .. .. .. .. .. .. . .. .. .. .. .. .. .. .. .. .. . 7-57 
7-43 Interrupt Acknowledge Cycle Flowchart...................................... 7-58 
7-44 Interrupt Acknowledge Cycle Timing.......................................... 7-59 
7-45 Autovector Operation Timing ... .. .... .... ......... ..................... ........ 7-61 
7-46 Breakpoint Operation Flow....................................................... 7-62 
7-47 Breakpoint Acknowledge Cycle Timing . .. .. .. .. .. .. .. .. . .... .. .. .. .. .. .. .. .. . 7-63 
7-48 Breakpoint Acknowledge Cycle Timing (Exception Signaled) .. .. .. . .. .. 7-64 
7-49 Bus Error without DSACK........................................................ 7-68 
7-50 Late Bus Error with DSACR...................................................... 7-69 
7-51 Late Bus Error with STERM - Exception Taken............................ 7-70 
7-52 Long-Word Operand Request - Late BERR on Third Access........... 7-71 
7-53 Long Word Operand Request - BERR on Second Access............... 7-72 
7-54 Asynchronous Late Retry......................................................... 7-73 
7-55 Synchronous Late Retry.......................................................... 7-74 
7-56 Late Retry Operation for a Burst................................................ 7-75 
7-57 Halt Operation Timing............................................................. 7-76 
7-58 Bus Synchronization Example................................................... 7-78 
7-59 Bus Arbitration Flowchart for Single Request............................... 7-79 
7-60 Bus Arbitration Operation Timing.............................................. 7-80 
7-61 Bus Arbitration State Diagram . .. . .. . .. .. .. .. .. .. . .. .. . .. .. . .. .. .. .. .. .. .. .... .. 7-82 
7-62 Single-Wire Bus Arbitration Timing Diagram................................ 7-83 
7-63 Bus Arbitration Operation (Bus Inactive) .. .. .. .. . .. .. .. . ... .. . .. . .. .. . .. .... . 7-84 
7-64 Initial Reset Operation Timing .. .. .. .. . .. .. . .. .. .. .. . .. .. . .. .. .. .. . .. . .. . .. ... .. 7-85 
7-65 Processor Generated Reset Operation .. .. .. .. .... .. .. ................. ....... 7-86 

8-1 Reset Operation Flowchart....................................................... 8-4 
8-2 Interrupt Pending Procedure..................................................... 8-10 
8-3 Interrupt Recognition Examples................................................ 8-12 
8-4 Assertion of IPEND................................................................. 8-12 
8-5 Interrupt Exception Processing Flowchart.................................... 8-13 
8-6 Examples of Interrupt Recognition and Instruction Boundaries ........ 8-14 
8-7 Breakpoint Instruction Flowchart............................................... 8-16 
8-8 RTE Instruction for Throwaway Four-Word Frames....................... 8-18 
8-9 Special Status Word (SSW)...................................................... 9-20 

9-1 MMU Block Diagram .............................................................. 9-3 
9-2 MMU Programming Model .. .. .. . .. . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . .. .. . .. . ... .. 9-4 
9-3 Translation Table Tree .. .. . .. .. . .. .. . .. . .. .. .. .. . .. .. .. .. . .. . .. .. .. .. .. .. .. .. .... . 9-4 
9-4 Example Translation Table Tree................................................ 9-6 
9-5 Example Translation Table Tree Layout in Memory....................... 9-7 
9-6 Derivation of Table Index Fields................................................ 9-8 
9-7 Example Translation Tree Using Different Format Descriptors......... 9-10 
9-8 Address Translation General Flowchart....................................... 9-12 

MC68030 USER'S MANUAL MOTOROLA 
xix 



Figure 
Number 

9-9 
9-10 
9-11 
9-12 

9-13 
9-14 
9-15 
9-16 
9-17 
9-18 
9-19 
9-20 
9-21 
9-22 
9-23 
9-24 
9-25 
9-26 
9-27 
9-28 
9-29 
9-30 
9-31 
9-32 

9-33 

9-34 
9-35 
9-36 
9-37 
9-38 
9-39 
9-40 

10-1 
10-2 

10-3 
10-4 
10-5 
10-6 
10-7 
10-8 
10-9 
10-10 

LIST OF ILLUSTRATIONS (Continued) 

Title 

Root Pointer Descriptor Format ................................................ . 
Short Format Table Descriptor ................................................. . 
Long Format Table Descriptor ................................................ .. 
Short Format Page Descriptor and Short Format Early Termination 

Page Descriptor ................................................................. . 
Long Format Early Termination Page Descriptor ......................... .. 
Long Format Page Descriptor ................................................. .. 
Short Format Invalid Descriptor ............................................... . 
Long Format Invalid Descriptor ................................................ . 
Short Format Indirect Descriptor ............................................. .. 
Long Format Indirect Descriptor ............................................... . 
Simplified Table Search Flowchart ............................................ . 
Five-Level Table Search .......................................................... . 
Example Translation Tree Using Contiguous Memory ................... . 
Example Translation Tree Using Indirect Descriptors .................... . 
Example Translation Tree Using Shared Tables .......................... .. 
Example Translation Tree with Non-Resident Tables .................... . 
Detailed Flowchart of MMU Table Search Operation .................... .. 
Table Search Initialization Flowchart ........................................ .. 
ATC Entry Creation Flowchart .................................................. . 
Limit Check Procedure Flowchart .............................................. . 
Detailed Flowchart of Descriptor Fetch Operation ......................... . 
Logical Address Map Using Function Code Lookup ..................... .. 
Example Translation Tree Using Function Code Lookup ................ . 
Example Translation Tree Structure for Two Tasks Sharing a 

Common Supervisor Table ................................................... . 
Example Logical Address Map with Shared Supervisor and 

User Address Spaces ......................................................... .. 
Example Translation Tree Using S and WP Bits to Set Protection .... . 
Root Pointer Register (CRP, SRP) Format .................................. .. 
Translation Control Register (TC) Format ................................... . 
Transparent Translation Register (TTO or TT1) Format ................. .. 
MMU Status Register (MMUSR) Format .................................... .. 
MMU Status Interpretation - PTEST Level 0 .............................. . 
MMU Status Interpretation - PTEST Level 7 .............................. . 

F-Line Coprocessor Instruction Operation Word ........................... . 
Asynchronous Non-DMA M68000 Coprocessor Interface 

Signal Usage .................................................................... .. 
MC68030 CPU Space Address Encodings .................................. .. 
Coprocessor Address Map in MC68030 CPU Space ...................... . 
Coprocessor Interface Register Set Map .................................... .. 
Coprocessor General Instruction Format (cpGEN) ....................... .. 
Coprocessor Interface Protocol for General Category Instructions .... . 
Coprocessor Interface Protocol for Conditional Category Instructions 
Branch on Coprocessor Condition Instruction (cpBcc.W) ............... .. 
Branch on Coprocessor Condition Instruction (cpBcc.L) ................ .. 

Page 
Number 

9-18 
9-19 
9-19 

9-19 
9-20 
9-20 
9-21 
9-21 
9-21 
9-21 
9-23 
9-24 
9-27 
9-28 
9-29 
9-31 
9-32 
9-33 
9-33 
9-34 
9-35 
9-36 
9-37 

9-38 

9-39 
9-40 
9-41 
9-42 
9-44 
9-45 
9-47 
9-48 

10-3 

10-5 
10-6 
10-6 
10-7 
10-7 
10-8 

10-10 
10-10 
10-10 

MOTOROLA 
xx 

MC68030 USER'S MANUAL 



Figure 
Number 

10-11 
10-12 

10-13 
10-14 
10-15 
10-16 
10-17 
10-18 
10-19 
10-20 
10-21 
10-22 
10-23 
10-24 
10-25 
10-26 
10-27 
10-28 
10-29 
10-30 
10-31 
10-32 
10-33 
10-34 
10-35 
10-36 
10-37 
10-38 
10-39 
10-40 
10-41 
10-42 
10-43 
10-44 
10-45 

11-1 
11-2 
11-3 
11-4 
11-5 

12-1 
12-2 
12-3 
12-4 

LIST OF ILLUSTRATIONS (Continued) 

Title 

Set On Coprocessor Condition {cpScc) ..................................... .. 
Test Coprocessor Condition, Decrement and Branch Instruction 

Format {cpDBcc) ................................................................ . 
Trap On Coprocessor Condition {cpTRAPcc) .............................. .. 
Coprocessor State Frame Format in Memory .............................. . 
Coprocessor Context Save Instruction Format {cpSAVE) ................ . 
Coprocessor Context Save Instruction Protocol ........................... . 
Coprocesor Context Restore Instruction Format {cpRESTORE) ........ . 
Coprocessor Context Restore Instruction Protocol ....................... .. 
Control CIR Format. .............................................................. .. 
Condition CIR Format ............................................................ . 
Operand Alignment for Operand CIR Accesses ............................ . 
Coprocessor Response Primitive Format .................................... . 
Busy Primitive Format ............................................................ . 
Null Primitive Format ............................................................. . 
Supervisor Check Primitive Format ........................................... . 
Transfer Operation Word Primitive Format.. .............................. .. 
Transfer from Instruction Stream Primitive Format ....................... . 
Evaluate and Transfer Effective Address Primitive Format ............. .. 
Evaluate Effective Address and Transfer Data Primitive Format ....... . 
Write to Previously Evaluated Effective Address Primitive Format .. .. 
Take Address and Transfer Data Primitive Format ....................... .. 
Transfer To/From Top of Stack Primitive Format .......................... . 
Transfer Single Main Processor Register Primitive Format ............. . 
Transfer Main Processor Control Register Primitive Format.. ......... .. 
Transfer Multiple Main Processor Registers Primitive Format ......... . 
Register Select Mask Format ................................................... . 
Transfer Multiple Coprocessor Registers Primitive Format ............. . 
Operand Format in Memory for Transfer to - {An) ....................... . 
Transfer Status Register and Scan PC Primitive Format .................. . 
Take Pre-Instruction Exception Primitive Format .......................... . 
MC68030 Pre-Instruction Stack Frame ........................................ . 
Take Mid-Instruction Exception Primitive Format ........................ .. 
MC68030 Mid-Instruction Stack Frame ....................................... . 
Take Post-Instruction Exception Primitive Format ........................ .. 
MC68030 Post-lnstrution Stack Frame ........................................ . 

Block Diagram - Eight Independent Resources .......................... .. 
Simultaneous Instruction Execution ......................................... .. 
Derivation of Instruction Overlap Time ...................................... . 
Processor Activity - Even Alignment ........................................ . 
Processor Activity - Odd Alignment ........................................ .. 

Signal Routing for Adapting the MC68030 to MC68020 Designs ..... .. 
32-Bit Data Bus Coprocessor Connection .................................... . 
Example MC68881/MC68882 SSI Chip Select Circuits .................... . 
PAL Equations ...................................................................... . 

Page 
Number 

10-11 

10-12 
10-13 
1,0-15 
10-18 
10-19 
10-20 
10-20 
10-22 
10-23 
10-23 
10-25 
10-26 
10-27 
10-29 
10-29 
10-30 
10-30 
10-31 
10-33 
10-34 
10-35 
10-35 
10-36 
10-37 
10-37 
10-37 
10-39 
10-39 
10-40 
10-40 
10-41 
10-42 
10-42 
10-43 

11-3 
11-5 
11-6 
11-7 
11-8 

12-2 
12-5 
12-6 
12-6 

MC68030 USER'S MANUAL MOTOROLA 
xxi 



Figure 
Number 

12-5 
12-6 
12-7 
12-8 
12-9 
12-10 
12-11 
12-12 
12-13 
12-14 
12-15 

12-16 
12-17 

12-18 
12-19 
12-20 
12-21 
12-22 
12-23 
12-24 
12-25 

LIST OF ILLUSTRATIONS (Concluded) 

Title 

Bus Cycle Timing Diagram ..................................................... .. 
Example MC68030 Byte Select PAL System Configuration ............ .. 
MC68030 Byte Select PAL Equations ........................................ .. 
Access Time Computation Diagram .......................................... . 
Example Two Clock Read, Three Clock Write Memory Bank .......... . 
Example PAL Equations for Two Clock Bank .............................. .. 
Additional Memory Enable Circuits ........................................... . 
Example Two Clock Read and Write Memory Bank ...................... . 
Example Example PAL Equation for Two Clock Read and Write Bank 
Example 2-1-1-1 Burst Mode Memory Bank at 20 MHz, 256K Bytes ... 
Example 3-1-1-1 Pipelined Burst Mode Memory Bank at 20 MHz, 

256K Bytes ....................................................................... . 
Additional Memory Enable Circuit ............................................ . 
Example MC68030 Hardware Configuration with 

External Physical Cache ....................................................... . 
Example Early-Termination Control Circuit ................................. . 
Normal Instruction Boundaries ................................................ . 
Trace or Interrupt Exception ................................................... .. 
Other Exceptions .................................................................. . 
Processor Halted ................................................................... . 
Trace Interface Circuit ............................................................ . 
PAL Pin Definitions ................................................................ . 
Logic Equations .................................................................... . 

Page 
Number 

12-7 
12-9 
12-10 
12-12 
12-15 
12-16 
12-17 
12-18 
12-18 
12-20 

12-22 
12-23 

12-26 
12-27 
12-29 
12-29 
12-30 
12-30 
12-32 
12-34 
12-35 

13-1 Clock Input Timing Diagram..................................................... 13-3 
13-2 Drive Levels and Test Points for AC Specifications........................ 13-7 
13-3 Asynchronous Read Cycle Timing Diagram ................................. Foldout-1 
13-4 Asynchronous Write Cycle Timing Diagram ................................. Foldout-1 
13-5 Synchronous Read Cycle Timing Diagram ................................... Foldout-2 
13-6 Synchronous Write Cycle Timing Diagram .................................. Foldout-2 
13-7 Bus Arbitration Timing Diagram ................................................ Foldout-3 
13-8 Other Signal Timings .............................................................. Foldout-3 

MOTOROLA 
xxii 

MC68030 USER'S MANUAL 



Table 
Number 

LIST OF TABLES 

Title 
Page 

Number 

1-1 MC68030 Addressing Modes....................................................... 1-9 
1-2 Instruction Set .................... :..................................................... 1-10 

2-1 Effective Address Specification Formats......................................... 2-17 
2-2 IS-I/IS Memory Indirection Encodings............................................ 2-18 
2-3 Effective Addressing Mode Categories........................................... 2-19 

3-1 Data Movement Operations......................................................... 3-4 
3-2 Integer Arithmetic Operations...................................................... 3-5 
3-3 Logical Operations.................................................................... 3-5 
3-4 Shift and Rotate Operations........................................................ 3-6 
3-5 Bit Manipulation Operations........................................................ 3-7 
3-6 Bit Field Operations................................................................... 3-7 
3-7 Binary Coded Decimal Operations................................................ 3-7 
3-8 Program Control Operations........................................................ 3-8 
3-9 System Control Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8 
3-10 Memory Management Unit Instructions......................................... 3-10 
3-11 Multiprocessor Operations .......................................................... 3-10 
3-12 Condition Code Computations..................................................... 3-13 
3-13 Condition Code Computations ..................................................... 3-199 
3-14 Conditional Tests ...................................................................... 3-200 
3-15 Operation Code Map .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . .. .. .. .. . .. .. . .. . .. .. .. .. . .. 3-201 

4-1 Address Space Encodings........................................................... 4-4 

5-1 Signal Index .. . .. .. .. . .. . .. .. .. .. . . . .. .. . . .. . .. .. .. .. . .. .. . .. .. .. .. .. . .. .. . .. . .. .. .. . .. . 5-3 
5-2 Signal Summary....................................................................... 5-9 

7-1 DSACK Codes and Results .......................................................... 7-5 
7-2 Size Signal Encoding................................................................. 7-7 
7-3 Address Offset Encodings........................................................... 7-7 
7-4 Data Bus Requirements for Read Cycles .. .. . .. .. .. . .. .... .. . .. .. .. . .. .. . .. .. . .. 7-8 
7-5 MC68030 Internal to External Data Bus Multiplexer - Write Cycles .. .. . 7-9 
7-6 Memory Alignment and Port Size Influence on Write Bus Cycles......... 7-13 
7-7 Data Bus Write Enable Signals for Byte, Word, and Long-Word Ports... 7-19 
7-8 DSACR, BERR, and HALT Assertion Results.................................... 7-65 
7-9 STE RM, BERR, and HALT Assertion Results.................................... 7-66 

8-1 Exception Vector Assignments..................................................... 8-2 
8-2 Microsequencer STATUS Indications............................................. 8-3 
8-3 Privileged Instructions................................................................ 8-7 
8-4 Tracing Control .. .. . .. .. .. . .. .. .. .. . .. .. .. . .. .. .. .. . .. .. .. . .. .. .. . .. .. .. .. . .. . .. .. .. . .. 8-8 
8-5 Interrupt Levels and Mask Levels.................................................. 8-11 

MC68030 USER'S MANUAL MOTOROLA 
xx iii 



Table 
Number 

LIST OF TABLES (Continued) 

Title 
Page 

Number 

8-6 Exception Priority Groups ........................................................... 8-17 
8-7 Exception Stack Frames .... .................... .................. ................... 8-24 

9-1 Size Restrictions .. .. . .. .. .. .. . .. .. .. . . . .. .. .. .. . . . .. .. .. . .. .. .. .. . .. .. .. . .. .. .. .. .. .. .. 9-8 
9-2 Translation Tree Selection .. . . . .. .. .. .. ... .. . .. . . .. .. .. .. .. . .. .. .. .. . .. .. .. .. .. . .. .. 9-22 
9-3 MMUSR Bit Definitions . . .. .. .. .. .. .. .. . . .. .. .. .. . .. .. .. .. .. .. .. .. . . . . .. .. .. .. . . . .. . . 9-46 

10-1 cpTRAPcc Op-Mode Encodings .................................................... 10-14 
10-2 Coprocessor Format Word Encodings ............................................ 10-16 
10-3 Null Coprocessor Response Primitive Encodings ............................. 10-28 
10-4 Valid Effective Address Codes ..................................................... 10-31 
10-5 Main Processor Control Register Selector Codes .............................. 10-36 
10-6 Exceptions Related to Primitive Processing ..................................... 10-46 

12-1 Data Bus Activity for Byte, Word, and Long Word Ports.................... 12-8 
12-2 Memory Access Time Equations .................................................. 12-13 
12-3 Calculated tAVDV Values for Operation at Frequencies 

Less Than or Equal to the CPU's Maximum Frequency Rating ......... 2-13 
12-4 Microsequencer STATUS Indications ............................................. 12-28 
12-5 List of Parts . . . . . . . .. . . . .. .. . . . . . . . . . . . . .. . . . . . .. .. .. . . . .. . . . .. . . . . .. . . . .. . . .. . . . . . .. . . . . 12-33 
12-6 AS and E'CS'C Indications ............................................................ 12-33 
12-7 Vee and GND Pin Assignments ................................................... 12-35 

MOTOROLA 
xx iv 

MC68030 USER'S MANUAL 



SECTION 1 
INTRODUCTION 

The MC68030 is a second-generation full 32-bit enhanced microprocessor from Motorola. 
The MC68030 is a member of the M68000 Family of devices that combines a central 
processing unit (CPU) core, a data cache, an instruction cache, an enhanced bus controller, 
and a memory management unit in a single VLSI device. The processor is designed to 
operate at clock speeds beyond 20 MHz. The MC68030 is implemented with 32-bit registers 
and data paths, 32-bit addresses, a rich instruction set, and versatile addressing modes. 

The MC68030 is upward object code compatible with the earlier members of the M68000 
Family and has the added features of an on-chip memory management unit, a data cache, 
and an improved bus interface. It retains the flexible coprocessor interface pioneered in 
the MC68020 and provides full IEEE floating-point support through this interface with the 
MC68881 or MC68882 Floating-Point Coprocessor. Also, the internal functional blocks of 
this microprocessor are designed to operate in parallel, allowing instruction execution to 
be overlapped. In addition to instruction execution, the internal caches, the on-chip memory 
management unit, and the external bus controller all operate in parallel. 

The MC68030 fully supports the nonmultiplexed bus structure of the MC68020, with 32 
bits of address and 32 bits of data. The MC68030 bus has an enhanced controller that 
supports both asynchronous and synchronous bus cycles and burst data transfers. It also 
supports the MC68020 dynamic bus sizing mechanism that automatically determines device 
port sizes on a cycle-by-cycle basis as the processor transfers operands to or from external 
devices. 

A block diagram of the MC68030 is shown in Figure 1-1. The instructions and data required 
by the processor are supplied from the internal caches whenever possible. The memory 
management unit (MMU) translates the logical address generated by the processor into a 
physical address utilizing its address translation cache (ATC). The bus controller manages 
the transfer of data between the CPU and memory or devices at the physical address. 

1.1 FEATURES 

The features of the MC68030 microprocessor are: 

• Object Code Compatible with the MC68020 and Earlier M68000 Microprocessors 

• Complete 32-Bit Nonmultiplexed Address and Data Buses 

• Sixteen 32-Bit General Purpose Data and Address Registers 

• Two 32-Bit Supervisor Stack Pointers and Ten Special Purpose Control Registers 

• 256-Byte Instruction Cache and 256-Byte Data Cache that can be Accessed Simulta­
neously 

• Paged Memory Management Unit that Translates Addresses in Parallel with Instruction 
Execution and Internal Cache Accesses 

MC68030 USER'S MANUAL MOTOROLA 
1-1 

• 



TS:: 
NQ 

d 
::c 
0 
s;: 

3:: 
n 

I 
c 
t/) 
m 

~ 
~ 
2 
; .... 

ADDRESS 
BUS 

MMU 

IREGl~RS I 
0 

BUS CONTROLLER 

BUS CONTROL 
SIGNALS 

MICROSEOUENCER ANO CONlllOL 

CONlllOL 
STORE 

CONTROL 
LOGIC 

INSTRUCTION 
ADDRESS 

BUS 

DATA 
ADDRESS 

BUS 

Figure 1-1. MC68030 Block Diagram 

CACHE 
HOLDING 
REGISTER 

fCAHRI 

INSTRUCTION 111~-----~ 
CACHE 

DATA 
SECTION 

DATA 
CACHE 

SIZE 
MULTIPLEXER 

INTERNAL 
DATA 
BUS 

II 

DATA 
BUS 



• Two Transparent Segments Allow Untranslated Access to Physical Memory to be 
Defined for Systems that Transfer Large Blocks of Data between Predefined Physical 
Addresses, e.g., Graphics Applications 

• Pipelined Architecture with Increased Parallelism Allows Accesses to Internal Caches 
to Occur in Parallel with Bus Transfers and Instruction Execution to be Overlapped 

• Enhanced Bus Controller Supports Asynchronous Bus Cycles (three clocks minimum), 
Synchronous Bus Cycles (two clocks minimum), and Burst Data Transfers (one clock 
minimum) all to the Physical Address Space 

• Dynamic Bus Sizing Supports 8-, 16-, 32-Bit Memories and Peripherals 

• Support for Coprocessors with the M68000 Coprocessor Interface; e.g., Full IEEE Float­
ing-Point Support Provided by the MC68881/MC68882 Floating-Point Coprocessors 

• 4-Gigabyte Logical and Physical Addressing Range 

• Implemented in Motorola's HCMOS Technology that Allows CMOS and HMOS (High 
Density NMOS) Gates to be Combined for Maximum Speed, Low Power, and Optimum 
Die Size 

• Processor Speeds Beyond 20 MHz 

Both improved performance and increased functionality result from the on-chip imple­
mentation of the MMU and the data and instruction caches. The enhanced bus controller 
and the internal parallelism also provide increased system performance. Finally, the im­
proved bus interface, the reduction in physical size, and the lower power consumption 
combine to reduce system costs and satisfy cost/performance goals of the system designer. 

1.2 MC68030 EXTENSIONS TO THE M68000 FAMILY 

In addition to the on-chip instruction cache present in the MC68020, the MC68030 has an 
internal data cache. Data that is accessed during read cycles may be stored in the on-chip 
cache, where it is available for subsequent accesses. The data cache reduces the number 
of external bus cycles when the data operand required by an instruction is already in the 
data cache. 

Performance is enhanced further because the on-chip caches can be internally accessed 
in a single clock cycle. In addition, the bus controller provides a two-clock cycle synchronous 
mode and burst mode accesses that can transfer data in as little as one clock per long 
word. 

The MC68030 enhanced microprocessor contains an on-chip memory management unit 
that allows address translation to operate in parallel with the CPU core, the internal caches, 
and the bus controller. 

Additional signals support emulation and system analysis. External debug equipment can 
disable the on-chip caches and the MMU in order to freeze the MC68030 internal state 
during breakpoint processing. In addition, the MC68030 indicates: 

1. The start of a refill of the instruction pipe 

2. Instruction boundaries 

3. Pending trace or interrupt processing 

4. Exception processing 

5. Halt conditions 

MC68030 USER'S MANUAL MOTOROLA 
1-3 

• 



• 
This status and control information allows external debugging equipment to trace the 
MC68030 activity and interact non intrusively with the MC68030 to effectively reduce system 
debug effort. 

1.3 PROGRAMMING MODEL 

The programming model of the MC68030 consists of two groups of registers: the user 
model and the supervisor model. This corresponds to the user and supervisor privilege 
levels. User programs, executing at the user privilege level, can only use the registers of 
the user model. System software executing at the supervisor level uses the control registers 
of the supervisor level to perform supervisor functions. 

Figure 1-2 shows the user programming model, consisting of sixteen 32-bit general-purpose 
registers and two control registers: 

• General-purpose 32-bit registers (D0-07, AO-A7) 

• 32-bit program counter (PC) 

• 8-bit condition code register (CCR) 

31 16 15 8 7 

DD 
!--------------+-------+------~ 

01 
!--------------+-------+------~ 

02 
!--------------+-------+------~ 

03 
!--------------+-------+------~ DATA REGISTERS 

04 
!--------------+-------+------~ 

05 
t---------------+-------+--------t 

06 
!--------------+-------+------~ 

07 

31 16 15 

AO 
!--------------+------------~ 

Al 
t---------------+--------------1 

A2 
!--------------+------------~ 

A3 ADDRESS REGISTERS 
t---------------+--------------1 

A4 
!--------------+------------~ 

A5 
!--------------+------------~ 

AB 

31 16 15 

....._ ___________ ...._ ___________ __. A7 (USPJ} USER STACK POINTER 

31 

....._-------------------------' PC } PROGRAM COUNTER 
15 7 

MOTOROLA 
1-4 

[ = = =D = = =-=i ===========i CCR } CONDITION CODE REGISTER 

Figure 1-2. User Programming Model 

MC68030 USER'S MANUAL 



The supervisor programming model consists of the registers available to the user plus 14 
control registers: 

• Two 32-bit supervisor stack pointers (ISP and MSP) 

• 16-bit status register (SR) 

• 32-bit vector base register (VBR) 

• 32-bit alternate function code registers (SFC and DFC) 

• 32-bit cache control register (CACR) 

• 32-bit cache address register (CAAR) 

• 64-bit CPU root pointer (CRP) 

• 64-bit supervisor root pointer (SRP) 

• 32-bit translation control register (TC) 

• 32-bit transparent translation registers (TIO and TT1) 

• 16-bit MMU status register (MMUSR) 

The user programming model remains unchanged from previous M68000 Family micro­
processors. The supervisor programming model supplements the user programming model 
and is used exclusively by the MC68030 system programmers who utilize the supervisor 
privilege level to implement sensitive operating system functions, 1/0 control, and memory 
management subsystems. Here, in the supervisor programming model, are all the controls 
to access and enable the special features of the MC68030. This segregation was carefully 
planned so that all application software is written to run at the nonprivileged user level 
and migrates to the MC68030 from any M68000 platform without modification. Since sys­
tem software is usually modified by system programmers when ported to a new design, 
the control features are properly placed in the supervisor programming model. For ex­
ample, the transparent translation feature of the MC68030 is new to the family supervisor 
programming model for the MC68030 and the two translation registers are new additions 
to the family supervisor programming model for the MC68030. Only supervisor code uses 
this feature and user application programs remain unaffected. 

Registers D0-07 are used as data registers for bit and bit field (1 to 32 bits), byte (8 bit), 
word (16 bit), long word (32 bit), and quad word (64 bit) operations. Registers AO-A6 and 
the user, interrupt, and master stack pointers are address registers that may be used as 
software stack pointers or base address registers. Register A7 (shown as A7', and A7" in 
Figure 1-3) is a register designation that applies to the user stack pointer in the user privilege 
level, and to either the interrupt or master stack pointer in the supervisor privilege level. 
In the supervisor privilege level, the active stack pointer (interrupt or master) is called the 
supervisor stack pointer (SSP). In addition, the address registers may be used for word 
and long word operations. All of the 16 general purpose registers (D0-07, AO-A7) may be 
used as index registers. 

The program counter (PC) contains the address of the next instruction to be executed by 
the MC68030. During instruction execution and exception processing, the processor au­
tomatically increments the contents of the PC or places a new value in the PC, as appro­
priate. 

The status register, SR, (Figure 1-4) stores the processor status. It contains the condition 
codes that reflect the results of a previous operation and can be used for conditional 
instruction execution in a program. The condition codes are: extend (X), negative (N), zero 
(Z), overflow (V), and carry (C). The user byte containing the condition codes is the only 

MC68030 USER'S MANUAL MOTOROLA 
1-5 

• 



• 
31 16 15 

A 7' tlSPi]- INTERRUPT STACK POINTER 

31 16 15 

15 8 7 

A 7" iMS3- MASTER STACK POINTER 

.__ _____ __. ___ 1c_cR_1 __ _.I SR } STATUS REGISTER 

31 

VBR 

31 2 0 ,-----------------------------EJ SFC 

t============================= ~ 31 

} VECTOR BASE REGISTER 

}- ALTERNATE FUNCTION 

]- CODE REGISTERS 

'----------------------------1 CACR } CACHE CONTROL REGISTER 
31 

----------------------------' CAAR } CACHE ADDRESS REGISTER 

63 32 

63 32 

31 

TC 

31 

TTO 

31 

TT1 

} °'" oom '"'m' '"'"'" 

} 
SUPERVISOR ROOT POINTER 
REGISTER 

} 
TRANSLATION CONTROL 
REGISTER 

} 
TRANSPARENT TRANSLATION 
REGISTER 0 

} 
TRANSPARENT TRANSLATION 
REGISTER 1 

15 

L--------------' MMUSR} MMU STATUS REGISTER 

Figure 1-3. Supervisor Programming Model Supplement 

portion of the status register information available in the user privilege level, and it is 
referenced as the CCR in user programs. In the supervisor privilege level, software can 
access the full status register, including the interrupt priority mask (three bits) as well as 
additional control bits. These bits indicate whether the processor is in: 

1. One of two trace modes (T1, TO) 

2. Supervisor or user privilege level (S) 

3. Master or interrupt mode (Ml 

The vector base register (VBR) contains the base address of the exception vector table in 
memo,.Y. The displacement of an .exception vector is added to the value in this register to 
access the vector table. 

MOTOROLA 
1-6 

MC68030 USER'S MANUAL 



SYSTEM BYTE 

15 14 13 12 11 10 9 

Tl TO S M 0 12 11 IO 0 

TRACE 
ENABLE 

INTERRUPT 
PRIORITY MASK 

SUPERVISOR/USER 
STATE--~ 

MASTER/INTERRUPT 
----~ 

STATE 

USER BYTE 
(CONDITION CODE REGISTER) 

4 

0 X N Z 

CARRY 

'----- OVERFLOW 

'-----ZERO 

'-------- NEGATIVE 

~------ EXTEND 

Figure 1-4. Status Register 

Alternate function code registers SFC and DFC contain 3-bit function codes. Function codes 
can be considered extensions of the 32-bit linear address that optionally provide as many 
as eight 4-gigabyte address spaces. Function codes are automatically generated by the 
processor to select address spaces for data and program at the user and supervisor privilege 
levels, and a CPU address space used for processor functions (for example, coprocessor 
communications). Registers SFC and DFC are used by certain instructions to explicitly 
specify the function codes for operations. 

The cache control register (CACR) controls the on-chip instruction and data caches of the 
MC68030. The cache address register (CAAR) stores an address for cache control functions. 

The CPU root pointer (CRP) contains a pointer to the root of the translation tree for the 
currently executing task of the MC68030. This tree contains the mapping information for 
the task's address space. When the MC68030 is configured to provide a separate address 
space for supervisor routines, the supervisor root pointer (SRP) contains a pointer to the 
root of the translation tree describing the supervisor's address space. 

The translation control register (TC) consists of several fields that control address trans­
lation. These fields enable and disable address translation, enable and disable the use of 
SRP for the supervisor address space, and select or ignore the function codes in translating 
addresses. Other fields define the size of memory pages, the number of address bits used 
in translation, and the translation table structure. 

The transparent translation registers, TIO and TI1, can each specify separate blocks of 
memory as directly accessible without address translation. Logical addresses in these areas 
become the physical addresses for memory access. Function codes and the eight most 
significant bits of the address can be used to define the area of memory and type of access; 
either read, write, or both types of memory access can be directly mapped. The transparent 
translation feature allows rapid movement of large blocks of data in memory or 1/0 space 
without disturbing the context of the on-chip address translation cache or incurring delays 
associated with translation table lookups. This feature is useful to graphics, controller, and 
real time applications. 

MC68030 USER'S MANUAL MOTOROLA 
1-7 

• 



• 
The MMU status register (MMUSR) contains memory management status information 
resulting from a search of the address translation cache or the translation tree for a par­
ticular logical address. 

1.4 DATA TYPES AND ADDRESSING MODES 

Seven basic data types are supported: 

• Bits 

• Bit Fields (Fields of consecutive bits, 1-32 bits long) 

• BCD Digits (Packed: 2 digits/byte, Unpacked: 1 digit/byte) 

• Byte Integers (8 bits) 

• Word Integers (16 bits) 

• Long Word Integers (32 bits) 

• Quad Word Integers (64 bits) 

In addition, the instruction set supports operations on other data types such as memory 
addresses. The coprocessor mechanism allows direct support of floating-point operations 
with the MC68881 and MC68882 floating-point coprocessors, as well as specialized user­
defined data types and functions. 

The 18 addressing modes, shown in Table 1-1, include nine basic types: 

• Register Direct 

• Register Indirect 

• Register Indirect with Index 

• Memory Indirect 

• Program Counter Indirect with Displacement 

• Program Counter Indirect with Index 

• Program Counter Memory Indirect 

• Absolute 

• Immediate 

The register indirect addressing modes can also postincrement, predecrement, offset, and 
index addresses. The program counter relative mode also has index and offset capabilities. 
As in the MC68020, both modes are extended to provide indirect reference through mem­
ory. In addition to these addressing modes, many instructions implicitly specify the use of 
the condition code register, stack pointer, and/or program counter. 

1.5 INSTRUCTION SET OVERVIEW 

The instructions in the MC68030 instruction set are listed in Table 1-2. The instruction set 
has been tailored to support structured high-level languages and sophisticated operating 
systems. Many instructions operate on bytes, words, or long words and most instructions 
can use any of the 18 addressing modes. 

MOTOROLA 
1-8 

MC68030 USER'S MANUAL 



Table 1-1. MC68030 Addressing Modes 

Addressing Modes Syntax 

Register Direct 
Data Register Direct Dn 
Address Register Direct An 

Register Indirect 
Address Register Indirect (An) 
Address Register Indirect with Postincrement (An)+ 
Address Register Indirect with Predecrement -(An) 
Address Register Indirect with Displacement (d15.An) 

Register Indirect with Index 
Address Register Indirect with Index (8-Bit Displacement) (d8,An,Xn) 
Address Register Indirect with Index (Base Displacement) (bd,An,Xn) 

Memory Indirect 
Memory Indirect Post-Indexed ([bd,An],Xn,od) 
Memory Indirect Pre-Indexed ([bd,An,Xn].od) 

Program Counter Indirect with Displacement (d15,PC) 

Program Counter Indirect with Index 
PC Indirect with Index (8-Bit Displacement) (d8,PC,Xn) 
PC Indirect with Index (Base Displacement) (bd,PC,Xn) 

Program Counter Memory Indirect 
PC Memory Indirect Post-Indexed ([bd,PC],Xn,od) 
PC Memory Indirect Pre-Indexed ([bd,PC,Xn].od) 

Absolute 
Absolute Short (xxx).W 
Absolute Long (xxx).L 

Immediate #(data) 

NOTES: 
Dn = Data Register, DO-D7 
An = Address Register, AO-A7 

d8, d16 = A twos-complement, or sign-extended displacement; added as part of the 
effective address calculation; size is 8 (d8) or 16 (d16) bits; when omitted, 
assemblers use a value of zero. 

Xn = Address or data register used as an index register; form is Xn.SIZE*SCALE, 
where SIZE is .W or .L (indicates index register size) and SCALE is 1, 2, 4, or 
8 (index register is multiplied by SCALE); use of SIZE and/or SCALE is op­
tional. 

bd = A twos-complement base displacement; when present, size can be 16 or 32 
bits. 

ad = Outer displacement, added as part of effective address calculation after any 
memory indirection; use is optional with a size of 16 or 32 bits. 

PC = Program Counter 
(data) = Immediate value of 8, 16, or 32 bits 

I ) = Effective Address 
I l = Use as indirect access to long word address. 

1.6 VIRTUAL MEMORY AND VIRTUAL MACHINE CONCEPTS 

The full addressing range of the MC68030 is 4 gigabytes (4,294,967,296 bytes) in each of 
eight address spaces. Even though most systems implement a smaller physical memory, 
the system can be made to appear to have a full 4 gigabytes of memory available to each 
user program by using virtual memory techniques. 

In a virtual memory system, a user program can be written as if it has a large amount of 
memory available, when the physical memory actually present is much smaller. Similarly, 

MC68030 USER'S MANUAL MOTOROLA 
1-9 

• 



II Mnemonic 

ABCD 
ADD 
ADDA 
ADDI 
ADDO 
ADDX 
AND 
ANDI 
ASL,ASR 

Bee 
BCHG 
BCLR 
BFCHG 
BFCLR 
BFEXTS 
BFEXTU 
BFFFO 
BFINS 
BFSET 
BFTST 
BKPT 
BRA 
BSET 
BSR 
BTST 

CAS 
CAS2 
CHK 
CHK2 

CLR 
CMP 
CMPA 
CMPI 
CMPM 
CMP2 

DBcc 
DIVS, DIVSL 
DIVU, DIVUL 

EOR 
EORI 
EXG 
EXT,EXTB 

ILLEGAL 

JMP 
JSR 

LEA 
LINK 
LSL, LSR 

MOVE 
MO VEA 
MOVE CCR 
MOVE SR 

Mnemonic 

cpBcc 
cpDBcc 

cpGEN 

MOTOROLA 
1-10 

Table 1-2. Instruction Set 

Description Mnemonic Description 

Add Decimal with Extend MOVE USP Move User Stack Pointer 
Add 
Add Address 
Add Immediate 
Add Quick 

MOVEC Move Control Register 
MOVEM Move Multiple Registers 
MOVEP Move Peripheral 
MOVEO Move Quick 

Add with Extend 
Logical AND 
Logical AND Immediate 
Arithmetic Shift Left and Right 

MOVES Move Alternate Address Space 

MULS Signed Multiply 
MULU Unsigned Multiply 

Branch Conditionally 
Test Bit and Change 
Test Bit and Clear 
Test Bit Field and Change 
Test Bit Field and Clear 

NBCD Negate Decimal with Extend 
NEG Negate 
NEGX Negate with Extend 
NOP No Operation 
NOT Logical Complement 

Signed Bit Field Extract OR Logical Inclusive OR 
Unsigned Bit Field Extract ORI Logical Inclusive OR Immediate 
Bit Field Find First One ORI CCR Logical Inclusive OR Immediate to 
Bit Field Insert Condition Codes 
Test Bit Field and Set ORI SR Logical Inclusive OR Immediate to Status 
Test Bit Field Register 
Breakpoint 
Branch 
Test Bit and Set 

PACK Pack BCD 
PEA Push Effective Address 

Branch to Subroutine PFLUSH Flush Entry(ies) in the ATC 
Test Bit PFLUSHA Flush All Entries in the ATC 

Compare and Swap Operands 
Compare and Swap Dual Operands 
Check Register Against Bound 
Check Register Against Upper and 

Lower Bounds 
Clear 
Compare 

PLOADR, Load Entry into the ATC 
PLOADW 

PMOVE Move to/from MMU Registers 
PMOVEFD Move to/from MMU Registers with Flush 

Disable 
PTESTR, Test a Logical Address 

PTESTW 

Compare Address RESET Reset External Devices 
Compare Immediate ROL, ROR Rotate Left and Right 
Compare Memory to Memory ROXL, ROXR Rotate with Extend Left and Right 
Compare Register Against Upper and RTD Return and Deallocate 

Lower Bounds RTE Return from Exception 

Test Condition, Decrement and Branch 
Signed Divide 

RTR Return and Restore Codes 
RTS Return from Subroutine 

Unsigned Divide SBCD Subtract Decimal with Extend 

Logical Exclusive OR 
Logical Exclusive OR Immediate 
Exchange Registers 
Sign Extend 

Sec Set Conditionally 
STOP Stop 
SUB Subtract 
SUBA Subtract Address 
SUBI Subtract Immediate 

Take Illegal Instruction Trap SUBO Subtract Quick 

Jump 
Jump to Subroutine 

SUBX Subtract with Extend 
SWAP Swap Register Words 

Load Effective Address 
Link and Allocate 
Logical Shift Left and Right 

Move 
Move Address 
Move Condition Code Register 
Move Status Register 

TAS Test Operand and Set 
TRAP Trap 
TR A Pee Trap Conditionally 
TRAPV Trap on Overflow 
TST Test Operand 

UNLK Unlink 
UNPK Unpack BCD 

COPROCESSOR INSTRUCTIONS 

Description Mnemonic Description 

Branch Conditionally cpRESTORE Restore Internal State of Coprocessor 
Test Coprocessor Condition, cpSAVE Save Internal State of Coprocessor 

Decrement and Branch cpScc Set Conditionally 
Coprocessor General Instruction cpTRAPcc Trap Conditionally 

MC68030 USER'S MANUAL 



a system can be designed to allow user programs to access devices that are not physically 
present in the system such as tape drives, disk drives, printers, terminals, and so forth . 
With proper software emulation, a physical system can appear to be any other M68000 
computer system to a user program and the program can be given full access to all of the 
resources of that emulated system. Such an emulated system is called a virtual machine. 

1.6.1 Virtual Memory 

A system that supports virtual memory has a limited amount of high-speed physical mem­
ory that can be accessed directly by the processor and maintains an image of a much 
larger "virtual" memory on a secondary storage device such as a large capacity disk drive. 
When the processor attempts to access a location in the virtual memory map that is not 
resident in physical memory, a "page fault" occurs. The access to that location is tem­
porarily suspended while the necessary data is fetched from secondary storage and placed 
in physical memory. The suspended access is then either restarted or continued. 

The MC68030 uses instruction continuation to support virtual memory. When a bus cycle 
is terminated with a bus error, the microprocessor suspends the current instruction and 
executes the virtual memory bus error handler. When the bus error handler has completed 
execution, it returns control to the program that was executing when the error was detected, 
re-runs the faulted bus cycle (when required), and continues the suspended instruction. 

1.6.2 Virtual Machine 

A typical use for a virtual machine system is the development of software, such as an 
operating system, for a new machine also under development and not yet available for 
programming use. In a virtual machine system, a governing operating system emulates 
the hardware of the new machine and allows the new software to be executed and de­
bugged as though it were running on the new hardware. Since the new software is con­
trolled by the governing operating system, it is executed at a lower privilege level than 
the governing operating system. Thus, any attempts by the new software to use virtual 
resources that are not physically present (and should be emulated) are trapped to the 
governing operating system and performed by its software. 

In the MC68030 implementation of a virtual machine, the virtual application runs at the 
user privilege level. The governing operating system executes at the supervisor privilege 
level and any attempt by the new operating system to access supervisor resources or 
execute privileged instructions causes a trap to the governing operating system. 

Instruction continuation is used to support virtual 1/0 devices in memory-mapped input/ 
output systems. Control and data registers for the virtual device are simulated in the 
memory map. An access to a virtual register causes a fault and the function of the register 
is emulated by software. 

1.7 THE MEMORY MANAGEMENT UNIT 

The memory management unit (MMU) supports virtual memory systems by translating 
logical addresses to physical addresses using translation tables stored in memory. The 
MMU stores address mappings in an address translation cache (ATC) that contains the 

MC68030 USER'S MANUAL MOTOROLA 
1-11 

• 



II 
most-recently-used translations. When the ATC contains the address for a bus cycle re­
quested by the CPU, a translation table search is not performed. Features of the MMU 
include: 

• Multiple Level Translation Tables with Short and Long Format Descriptors for Efficient 
Table Space Usage 

• Table Searches Automatically Performed in Microcode 

• 22-Entry Fully-Associative ATC 

• Address Translations and Internal Instruction and Data Cache Accesses Performed in 
Parallel 

• Eight Page Sizes Available Ranging from 256 to 32K Bytes 

• Two Optional Transparent Blocks 

• User and Supervisor Root Pointer Registers 

• Write Protection and Supervisor Protection Attributes 

• Translations Enabled/Disabled by Software 

• Translations can be Disabled with External ~M~M=U~D~l~S Signal 

• Used and Modified Bits Automatically Maintained in Tables and ATC 

• Cache Inhibit Output (CIOUT) Signal can be Asserted on a Page-by-Page Basis 

• 32-Bit Internal Logical Address with Capability to Ignore as many as 15 Upper Address 
Bits 

• 3-bit Function Code Supports Separate Address Spaces 

• 32-Bit Physical Address 

The memory management function performed by the MMU is called demand paged mem­
ory management. Since a task specifies the areas of memory it requires as it executes, 
memory allocation is supported on a demand basis. If a requested access to memory is 
not currently mapped by the system, then the access causes a demand for the operating 
system to load or allocate the required memory image. The technique used by the MC68030 
is paged memory management because physical memory is managed in blocks of a spec­
ified number of bytes, called page frames. The logical address space is divided into fixed­
size pages that contain the same number of bytes as the page frames. Memory management 
assigns a physical base address to a logical page. The system software then transfers data 
between secondary storage and memory one or more pages at a time. 

1.8 PIPELINED ARCHITECTURE 

The MC68030 uses a three-stage pipelined internal architecture to provide for optimum 
instruction throughput. The pipeline allows as many as three words of a single instruction 
or three consecutive instructions to be decoded concurrently. 

1.9 THE CACHE MEMORIES 

Due to locality of reference, instructions and data that are used in a program have a high 
probability of being re-used within a short time. Additionally, instructions and data oper­
ands that reside in proximity to the instructions and data currently in use also have a high 
probability of being utilized within a short period. To exploit these locality characteristics, 
the MC68030 contains two on-chip logical caches, a data cache, and an instruction cache. 

MOTOROLA 
1-12 

MC68030 USER'S MANUAL 



Each of the caches stores 256 bytes of information, organized as 16 entries, each containing 
a block of four long words (16 bytes). The processor fills the cache entries either one long 
word at a time or, during burst mode accesses, four long words consecutively. The burst 
mode of operation not only fills the cache efficiently, but also captures adjacent instruction 
or data items that are likely to be required in the near future due to locality characteristics 
of the executing task. 

The caches improve the overall performance of the system by reducing the number of bus 
cycles required by the processor to fetch information from memory and by increasing the 
bus bandwidth available for other bus masters in the system. Addition of the data cache 
in the MC68030 extends the benefits of cache techniques to all memory accesses. During 
a write cycle, the data cache circuitry writes data to a cached data item as well as to the 
item in memory, maintaining consistency between data in the cache and that in memory. 
However, writing data that is not in the cache may or may not cause the data item to be 
stored in the cache, depending on the write allocation policy selected in the cache control 
register (CACR). 

MC68030 USER'S MANUAL MOTOROLA 
1-13 

• 



• 

MOTOROLA 
1-14 

MC68030 USER'S MANUAL 



SECTION 2 
DATA ORGANIZATION AND ADDRESSING CAPABILITIES 

Most external references to memory by a microprocessor are either program references 
or data references; they either access instruction words or operands (data items) for an 
instruction. Program references are references to the program space, the section of memory 
that contains the program instructions and any immediate data operands that reside in 
the instruction stream. Refer to SECTION 3 INSTRUCTION SET SUMMARY for descriptions 
of the instructions in the program space. Data references refer to the data space, the section 
of memory that contains the program data. Data items in the instruction stream can be 
accessed with the program counter relative addressing modes, and these accesses are 
classified as program references. A third type of external reference used for coprocessor 
communications, interrupt acknowledge cycles, and breakpoint acknowledge cycles is 
classified as a CPU space reference. The MC68030 automatically sets the function codes 
to access the program space, the data space, or the CPU space for special functions as 
required. The function codes can be used by the memory management unit to organize 
separate program (read only) and data (read-write) memory areas. 

This section describes the data organization and addressing capabilities of the MC68030. 
It lists the types of operands used by instructions, and describes the registers and their 
use as operands. Next the section describes the organization of data in memory and the 
addressing modes available to access data in memory. Last, the section describes the 
system stack and user program stacks and queues. 

2.1 INSTRUCTION OPERANDS 

The MC68030 supports a general purpose set of operands to serve the requirements of a 
large range of applications. Operands of MC68030 instructions may reside in registers, in 
memory, or within the instructions themselves. An instruction operand might also reside 
in a coprocessor. An operand may be a single bit, a bit field of from 1 to 32 bits in length, 
a byte (8 bits), a word (16 bits), a long word (32 bits), or a quad word (64 bits). The operand 
size for each instruction is either explicitly encoded in the instruction or implicitly defined 
by the instruction operation. Coprocessors are designed to support special computation 
models that require very specific, but widely varying data operand types and sizes. Hence, 
coprocessor instructions can specify operands of any size. 

2.2 ORGANIZATION OF DATA IN REGISTERS 

The eight data registers can store data operands of 1, 8, 16, 32, and 64 bits, addresses of 
16 or 32 bits, or bit fields of 1 to 32 bits. The seven address registers and the three stack 
pointers are used for address operands of 16 or 32 bits. The control registers (SR, VBR, 
SFC, DFC, CACR, CAAR, CRP, SRP, TC, TIO, TI1, and MMUSR) vary in size according to 
function. Coprocessors may define unique operand sizes and support them with on-chip 
registers accordingly. 

MC68030 USER'S MANUAL MOTOROLA 
2-1 

• 



• 
2.2.1 Data Registers 

Each data register is 32 bits wide. Byte operands occupy the low order 8 bits, word operands 
the low order 16 bits, and long word operands the entire 32 bits. When a data register is 
used as either a source or destination operand, only the appropriate low-order byte or 
word (in byte or word operations, respectively) is used or changed; the remaining high­
order portion is neither used nor changed. The least significant bit of a long word integer 
is addressed as bit zero and the most significant bit is addressed as bit 31. For bit fields, 
the most significant bit is addressed as bit zero and the least significant bit is addressed 
as the width of the field minus one. If the width of the field plus the offset is greater than 
32, the bit field wraps around within the register. The following shows the organization of 
various types of data in the data registers. 

Bit (Oo;;Modulo (Offset)<31, Offset of 0 = MSB) 
31 30 

I MSB I 

Byte 
31 

High Order Byte 

16-Bit Word 
31 

23 

Middle High Byte 

LSB 

15 

Middle Low Byte Low Order Byte 

15 

High Order Word Low Order Word 

Long Word 
31 

Quad Word 
63 

I MSB I 
31 

Bit Field (Oo;;Offset<32, O<Width.;;32) 

Long Word 

Any Dx 

Any Dy 

3l I Width 

Offset LSB I 
.Note: If width+ offset<32, bit field wraps around within the register. 

Unpacked BCD (a= MSB) 
31 

x I x 

Packed BCD (a= MSB First Digit, e = MSB Second Digit) 
31 7 6 

4 

Data Organization in Data Registers 

MOTOROLA 
2-2 

32 

0 

LSB 

c I d 

2 0 

e I 1 g I h 

MC68030 USER'S MANUAL 



Quad word data consists of two long words: for example, the product of 32-bit multiply 
or the quotient of 32-bit divide operations (signed and unsigned). Quad words may be 
organized in any two data registers without restrictions on order or pairing. There are no 
explicit instructions for the management of this data type, although the MOVEM instruction 
can be used to move a quad word into or out of the registers. 

Binary coded decimal (BCD) data represents decimal numbers in binary form. Although 
many BCD codes have been devised, the BCD instructions of the M68000 Family support 
formats in which the four least significant bits consist of a binary number having the 
numeric value of the corresponding decimal number. Two BCD formats are used. ·In the 
unpacked BCD format, a byte contains one digit; the four least significant bits contain the 
binary value and the four most significant bits are undefined. Each byte of the packed BCD 
format contains two digits; the least significant four bits contain the least significant digit. 

2.2.2 Address Registers 

Each address register and stack pointer is 32 bits wide and holds a 32-bit address. Address 
registers cannot be used for byte-sized operands. Therefore, when an address register is 
used as a source operand, either the low order word or the entire long word operand is 
used, depending upon the operation size. When an address register is used as the desti­
nation operand, the entire register is affected regardless of the operation size. If the source 
operand is a word size, it is first sign-extended to 32 bits, and then used in the operation 
to an address register destination. Address registers are used primarily for addresses and 
to support address computation. The instruction set includes instructions that add to, 
subtract from, compare, and move the contents of address registers. The following shows 
the organization of addresses in address registers. 

31 15 

Si~n Extended 16-Bit Address Operand 

31 

Full 32-Bit Address Operand 

Address Organization in Address Registers 

2.2.3 Control Registers 

The control registers described in this section contain control information for supervisor 
functions and vary in size. With the exception of the user portion of the status register 
(condition code register CCR) they are accessed only by instructions at the supervisor 
privilege level. 

The status register (SR), shown in Figure 1-4, is 16 bits wide. Only 12 bits of the status 
register are defined; all undefined values are reserved by Motorola for future definition. 
The undefined bits are read as zeros and should be written as zeros for future compatibility. 
The lower byte of the status register is the condition code register (CCR). Operations to 
the CCR can be performed at the supervisor or user privilege level. All operations to the 
status register and condition code register are word-size operations, but for all CCR op­
erations the upper byte is read as all zeros and is ignored when written, regardless of 
privilege level. 

MC68030 USER'S MANUAL MOTOROLA 
2-3 

• 



• 
The supervisor programming model (Figure 1-3) shows the control registers. The cache 
control register (CACR) provides control and status information for the on-chip instruction 
and data caches. The cache address register (CAAR) contains the address for cache control 
functions. The vector base register (VBR) provides the base address of the exception vector 
table. All operations involving the CACR, CAAR, and VBR are long word operations, whether 
these registers are used as the source or the destination operand. 

The alternate function code registers (SFC and DFC) are 32-bit registers with only bits 2:0 
implemented that contain the address space values (FCO-FC2) for the read or write operands 
of MOVES, PLOAD, PFLUSH, and PTEST instructions. The MOVEC instruction is used to 
transfer values to and from the alternate function code registers. These are long word 
transfers; the upper 29 bits are read as zeros and are ignored when written. 

The remaining control registers in the supervisor programming model are used by the 
memory management unit. The CPU root pointer (CRP) and supervisor root pointer (SRP) 
contain pointers to the user and supervisor address translation trees. Transfers of data to 
and from these 64-bit registers are quad word transfers. The translation control register 
(TC) contains control information for the memory management unit. The MC68030 always 
uses long word transfers to access this 32-bit register. The transparent translation registers 
TTO and TT1 also contain 32 bits each; they identify memory areas for direct addressing 
without address translation. Data transfers to and from these registers are long word 
transfers. The MMU status register (MMUSR) stores the status of the MMU after execution 
of a PTEST instruction. It is a 16-bit register and transfers to and from the MMUSR are 
word transfers. Refer to SECTION 9 MEMORY MANAGEMENT UNIT for more detail. 

2.3 ORGANIZATION OF DATA IN MEMORY 

Memory is organized on a byte-addressable basis where lower addresses correspond to 
higher-order bytes. The address, N, of a long word data item corresponds to the address 
of the mostsignificant byte of the highest-order word. The lower-order word is located at 
address N + 2, leaving the least significant byte at address N + 3 (refer to Figure 2-1 ). 

31 

I 
~ 

MOTOROLA 
2-4 

23 15 

LONG WORD $00000000 

WORO $00000000 1 WORO $00000002 

BYTE $00000000 l BYTE $00000001 BYTE $00000002 l BYTE $00000003 

LONG WORO $00000004 

WORO $00000004 WORO $00000006 

BYTE $00000004 l BYTE $00000005 BYTE $00000006 l BYTE $00000007 

• • 

• 7 • I L 

• • 

' LONG WORO $FFFFFFFC 

WORO $FFFFFFFC l WORO $FFFFFFFE 

BYTE $FFFFFFFC l BYJE $FFFFFFFO BYTE $FFFFFFFE l BYTE $FFFFFFFF 

Figure 2-1. Memory Operand Address 

MC68030 USER'S MANUAL 



Notice that the MC68030 does not require data to be aligned on word boundaries (refer 
to Figure 2-2) but the most efficient data transfers occur when data is aligned on the same 
byte boundary as its operand size. However, instruction words must be aligned on word 
boundaries. 

The data types supported in memory by the MC68030 are: bit and bit field data; integer 
data of 8, 16, or 32 bits; 32-bit addresses; and binary coded decimal data (packed and 

BIT DATA 

0 r 1 ~ i 7 BYTEn+l BYTE n+2 

BASE ADDRESS BIT NUMBER 

BIT FIELO DATA BASE BIT 
0 7 0 7 0 7 0 

BYTE n-1 BYTE n 0 1 2 3 .... w·l 

f--- OFFSET -- --- -- - ---- OFFSET----. .. ~1 .... r--- WIDTH -.j 
... -3-2-1 0 1 2 ... 

BASE ADDRESS 

BYTE INTEGER DATA 
0 7 0 7 0 7 

BYTE n-1 MSB Bmn LSB BYTEn+l BYTE n+2 

ADDRESS 

WORD INTEGER OATA 

0 7 0 7 0 7 0 7 

BYTE n-1 WORD INTEGER BYTEn+2 BYTE n+3 

AO DRESS 

LONG WORD INTEGER DATA 
0 7 0 7 0 7 0 7 0 7 

BYTEn-1 LONG WORD INTEGER BYTE n+4 

ADDRESS 

ADDRESS QUAD WORD DATA 

T 
0 J7 Oj7 017 

T BYTE n-1 
QUAD WORD 

Bffin+8 

PACKED BINARY-COOED OATA 
0 7 4 3 0 7 0 7 

BYTE n-1 MSD LSD BYTE n+ 1 BYTE n+2 

ADO RESS 

UNPACKED BINARY-CODED OATA 

"""-' T " T "" T " 'I' •oo "j' •m"., 
ADDRESS 

XX = USER-DEFINED VALUE 

Figure 2-2. Memory Data Organization 

MC68030 USER'S MANUAL MOTOROLA 
2-5 

• 



• 
unpacked). These data types are organized in memory as shown in Figure 2-2. Note that 
all of these data types can be accessed at any byte address. 

Coprocessors can implement any data types and lengths up to 255 bytes. For example, 
the MC68881/MC68882 Floating-Point Coprocessors support memory accesses for quad­
word sized items (double-precision floating-point values). 

A bit operand is specified by a base address that selects one byte in memory (the base 
byte) and a bit number that selects the one bit in this byte. The most significant bit of the 
byte is bit seven. 

A bit field operand is specified by: 

1. A base address that selects one byte in memory, 

2. A bit field offset that indicates the leftmost (base) bit of the bit field in relation to the 
most significant bit of the base byte, and 

3. A bit field width that determines how many bits to the right of the base bit are in the 
bit field. 

The most significant bit of the base byte is bit field offset 0, the least significant bit of the 
base byte is bit field offset 7, and the least significant bit of the previous byte in memory 
is bit offset -1. Bit field offsets may have values in the range of - 231 to 231 -1, and bit 
field widths may range between 1 and 32 bits. 

2.4 ADDRESSING MODES 

The addressing mode of an instruction can specify the value of an operand (with an 
immediate operand), or a register that contains the operand (with the register direct ad­
dressing mode), or how the effective address of an operand in memory is derived. An 
assembler syntax has been defined for each addressing mode. 

Figure 2-3 shows the general format of the single effective address instruction operation 
word. The effective address field specifies the addressing mode for an operand that can 
use one of the numerous defined modes. The (ea) designation is composed of two 3-bit 
fields: the mode field and the register field. The value in the mode field selects one, or a 
set of addressing modes. The register field specifies a register for the mode, or a sub­
mode for modes that do not use registers. 

15 14 13 12 11 10 4 

x x x x x x x x x x EFFECTIVE ADDRESS 

MOOE REGISTER 

Figure 2-3. Single-Effective-Address Instruction Operation Word 

Many instructions imply the addressing mode for one of the operands. The formats of 
these instructions include appropriate fields for operands that use only one addressing 
mode. 

The effective address field may require additional information to fully specify the operand 
address. This additional information, called the effective address extension, is contained 
in an additional word or words and is considered part of the instruction. Refer to 2.5 

MOTOROLA 
2-6 

MC68030 USER'S MANUAL 



EFFECTIVE ADDRESS ENCODING SUMMARY for a description of the extension word for­
mats. 

The notational conventions used in the addressing mode descriptions in this section are: 

EA-Effective address 
An-Address register n 

Example: A3 is address register 3 
On-Data register n 

Example: 05 is data register 5 
Xn.SIZE*SCALE-Denotes index register n (data or address), the index size (W for'word, 

L for long word), and a scale factor (1, 2, 4, or 8, for no, word, long 
word, or 8 for quad word scaling, respectively). 

PC-The program counter 
dn-Displacement value, n bits wide 
bd-Base displacement 
od-Outer displacement 

L-Long word size 
W-Word size 
( )-Identify an indirect address in a register 
[ ]-Identify an indirect address in memory 

When the addressing mode uses a register, the register field of the operation word specifies 
the register to be used. Other fields within the instruction specify whether the register 
selected is an address or data register and how the register is to be used. 

2.4.1 Data Register Direct Mode 

In the data register direct mode, the operand is in the data register specified by the effective 
address register field. 

GENERATION: EA= On 
ASSEMBLER SYNTAX: On 
MOOE: 000 31 
REGISTER: 

·I OATA REGISTER: On OPERAND 
NUMBER OF EXTENSION WORDS: 0 

2.4.2 Address Register Direct Mode 

In the address register direct mode, the operand is in the address register specified by the 
effective address register field. 

GENERATION: EA= An 
ASSEMBLER SYNTAX: An 
MODE: 001 
REGISTER: 
ADDRESS REGISTER: An 
NUMBER OF EXTENSION WORDS: 0 

MC68030 USER'S MANUAL 

31 

·I OPERAND 

MOTOROLA 
2-7 

• 



• 
2.4.3 Address Register Indirect Mode 

In the address register indirect mode, the operand is in memory and the address of the 
operand is in the address register specified by the register field . 

GENERATION: EA= !An) 
ASSEMBLER SYNTAX: !An) 
MOOE: 010 31 
REGISTER: 

·:,, 
ADDRESS REGISTER: An MEMORY ADDRESS 

·: 
t 

MEMORY ADDRESS: OPERAND 
NUMBER OF EXTENSION WORDS: 

2.4.4 Address Register Indirect with Postincrement Mode 

In the address register indirect with postincrement mode, the operand is in memory, and 
the address of the operand is in the address register specified by the register field. After 
the operand address is used, it is incremented by one, two, or four depending on the size 
of the operand: byte, word, or long word. Coprocessors may support incrementing for any 
size of operand, up to 255 bytes. If the address register is the stack pointer and the operand 
size is byte, the address is incremented by two rather than one to keep the stack pointer 
aligned to a word boundary. 

GENERATION: 

ASSEMBLER SYNTAX: 
MODE: 
REGISTER: 
ADDRESS REGISTER: 

OPERAND LENGTH 11. 2. OR 4): 

MEMORY ADDRESS: 
NUMBER OF EXTENSION WORDS: 

EA= !An) 
An= An+ SIZE 
!An)+ 
011 
n 
An 

31 

31 

2.4.5 Address Register Indirect with Predecrement Mode 

MEMORY ADDRESS 

OPERAND 

In the address register indirect with predecrement mode, the operand is in memory and 
the address of the operand is in the address register specified by the register field. Before 
the operand address is used, it is decremented by one, two, or four depending on the 
operand size: byte, word, or long word. Coprocessors may support decrementing for any 
operand size up to 255 bytes. If the address register is the stack pointer and the operand 
size is byte, the address is decremented by two rather than one to keep the stack pointer 
aligned to a word boundary. 

MOTOROLA 
2-8 

MC68030 USER'S MANUAL 



GENERATION: 

ASSEMBLER SYNTAX: 
MOOE: 
REGISTER: 
ADDRESS REGISTER: 

OPERAND LENGTH ( 1. 2. OR 4): 

MEMORY ADDRESS: 
NUMBER OF EXTENSION WORDS: 

An= An - SIZE 
EA= (An) 
-(An) 
100 
n 
An 

31 

31 

2.4.6 Address Register Indirect with Displacement Mode 

0 

MEMORY ADDRESS 

OPERAND 

In the address register indirect with displacement mode, the operand is in memory. The 
address of the operand is the sum of the address in the address register plus the sign­
extended 16-bit displacement integer in the extension word. Displacements are always 
sign extended to 32 bits prior to being used in effective address calculations. 

GENERATION: 
ASSEMBLER SYNTAX: 
MOOE: 
REGISTER: 
ADDRESS REGISTER: 

EA= (An)+ die 
(d15.An) 
101 
n 
An 

31 15 

31 

MEMORY ADDRESS 

DISPLACEMENT: 
r---------,.......-------. 
L __ ~N_!_~N~~ _ _ INTEGER 1----t 

31 

MEMORY ADDRESS: OPERAND 
NUMBER OF EXTENSION WORDS: 

MC68030 USER'S MANUAL 

Q. 

MOTOROLA 
2-9 

• 



• 
2.4.7 Address Register Indirect with Index (8-Bit Displacement) Mode 

This addressing mode requires one extension word that contains the index register indi­
cator and an 8-bit displacement. The index register indicator includes size and scale in­
formation. In this mode, the operand is in memory. The address of the operand is the sum 
of the contents of the address register, the sign extended displacement value in the low 
order eight bits of the extension word, and the sign extended contents of the index register 
(possibly scaled). The user must specify the displacement, the address register, and the 
index register in this mode. 

GENERATION: 
ASSEMBLER SYNTAX: 
MODE: 
REGISTER: 
ADDRESS REGISTER: 

DISPLACEMENT: 

INDEX REGISTER: 

SCALE: 

MEMORY ADDRESS: 

31 

EA = !An) + IXn) + dg 
ldg.An.Xn.SIZE *SCALE) 
110 

An 

31 

,--------------
L ____ ~G!: E~~:_i: _______ 1N_TE_GE_R__. 

31 

SIGN EXTENDED VALUE 

SCALE VALUE 

31 

NUMBER OF EXTENSION WORDS: 

MEMORY ADDRESS 

OPERAND 

2.4.8 Address Register Indirect with Index (Base Displacement) Mode 

This addressing mode requires an index register indicator and an optional 16- or 32-bit 
sign-extended base displacement. The index register indicator includes size and scaling 
information. The operand is in memory. The address of the operand is the sum of the 
contents of the address register, the scaled contents of the sign-extended index register, 
and the base displacement. 

In this mode, the address register, the index register, and the displacement are all optional. 
If none is specified, the effective address is zero. This mode provides a data register indirect 
address when no address register is specified and the index register is a data register (Dn). 

GENERATION: 
ASSEMBLER SYNTAX: 
MODE: 
REGISTER: 
ADDRESS REGISTER: 

31 

BASE DISPLACEMENT: 

31 

INDEX REGISTER: 

SCALE: 

MEMORY ADDRESS: 
NUMBER OF EXTENSION WORDS: 

MOTOROLA 
2-10 

EA =!An) + IXn) + bd 
ibd,An. Xn.SIZE *SCALE) 
110 31 

An MEMORY ADDRESS 

SIGN EXTENDED VALUE 

SIGN EXTENDED VALUE 

SCALE VALUE 

31 

OPERANO 
1. 2. OR 3 

MC68030 USER'S MANUAL 



2.4.9 Memory Indirect Postindexed Mode 

In this mode, the operand and its address are in memory. The processor calculates an 
intermediate indirect memory address using the base register (An) and base displacement 
(bd). The processor accesses a long word at this address and adds the index operand 
(Xn.SIZE*SCALE) and the outer displacement to yield the effective address. Both displace­
ments and the index register contents are sign extended to 32 bits. 

In the syntax for this mode, brackets enclose the values used to calculate the intermediate 
memory address. All four user-specified values are optional. Both the base and ·outer 
displacements may be null, word, or long word. When a displacement is omitted or an 
element is suppressed, its value is taken as zero in the effective address calculation. 

GENERATION: EA= (bd +An)+ Xn.SIZE·SCALE + od 
ASSEMBLER SYNTAX: ([bd,An).Xn.SIZE•SCALE.od) 31 
MOOE: 110 
ADDRESS REGISTER: An MEMORY ADDRESS 

31 D 

BASE DISPLACEMENT: SIGN EXTENDED VALUE 

31 0 

INDIRECT MEMORY ADDRESS 

POINTS TO 
31 0 

VALUE AT INDIRECT MEMORY ADDRESS 

31 0 

INDEX REGISTER: SIGN EXTENDED VALUE 

SCALE: SCALE VALUE 

31 

OUTER DISPLACEMENT: SIGN EXTENDED VALUE 

31 D 

EFFECTIVE ADDRESS: OPERAND 
NUMBER OF EXTENSION WORDS: 1, 2. 3. 4. OR 5 

2.4.10 Memory Indirect Preindexed Mode 

In this mode, the operand and its address are in memory. The processor calculates an 
intermediate indirect memory address using the base register (An), a base displacement 
(bd), and the index operand (Xn.SIZE * SCALE). The processor accesses a long word at 
this address and adds the outer displacement to yield the effective address. Both displace­
ments and the index register contents are sign extended to 32 bits. 

In the syntax for this mode, brackets enclose the values used to calculate the intermediate 
memory address. All four user-specified values are optional. Both the base and outer 

MC68030 USER'S MANUAL MOTOROLA 
2-11 

• 



• 
displacements may be null, word, or long word. When a displacement is omitted or an 
element is suppressed, its value is taken as zero in the effective address calculation. 

GENERATION: 
ASSEMBLER SYNTAX: 
MODE: 
ADDRESS REGISTER: 

31 

BASE DISPLACEMENT: 

31 

INDEX REGISTER: 

SCALE: 

31 

OUTER DISPLACEMENT: 

EA = (bd + An + Xn.SIZE ·scALE) + od 
([bd,An.Xn.SIZE •scALE].od) 
110 
An 

SIGN EXTENDED VALUE 

SIGN EXTENDED VALUE 

31 

SCALE VALUE 

31 

31 

SIGN EXTENDED VALUE 

31 

MEMORY ADDRESS 

INDIRECT MEMORY ADDRESS 

POINTS TO 

VALUE AT INDIRECT MEMORY ADDRESS 

0 

EFFECTIVE ADDRESS: OPERAND 
NUMBER OF EXTENSION WORDS: 1. 2. 3. 4. OR 5 

2.4.11 Program Counter Indirect with Displacement Mode 

In this mode, the operand is in memory. The address of the operand is the sum of the 
address in the program counter and the sign-extended 16-bit displacement integer in the 
extension word. The value in the program counter is the address of the extension word. 
The reference is a program space reference and is only allowed for reads (refer to 4.2 
ADDRESS SPACE TYPES). 

GENERATION: 
ASSEMBLER SYNTAX: 
MODE: 
REGISTER: 
PROGRAM COUNTER: 

DISPLACEMENT: 

MEMORY ADDRESS: 

EA= (PC)+ dis 
(d15.PC) 
111 
010 

31 15 

31 

ADDRESS OF EXTENSION WORD 

r- --------........ ---------. 
L - _s~N...:x:'.:N~~ - - INTEGER ---~ 

31 

OPERAND 
NUMBER OF EXTENSION WORDS: 

2.4.12 Program Counter Indirect with Index (8-Bit Displacement) 

0 

This mode is similar to the address register indirect with index (8-bit displacement) mode 
described in 2.4.7 Address Register Indirect with Index (8-Bit Displacement Mode), but the 
PC is used as the base register. The operand is in memory. The address of the operand is 
the sum of the address in the program counter, the sign extended displacement integer 

MOTOROLA 
2-12 

MC68030 USER'S MANUAL 



in the lower eight bits of the extension word, and the sized, scaled, and sign-extended 
index operand. The value in the PC is the address of the extension word. This reference 
is a program space reference and is only allowed for reads. The user must include the 
displacement, the PC, and the index register when specifying this addressing mode. 

GENERATION: 
ASSEMBLER SYNTAX: 
MOOE: 
REGISTER: 
PROGRAM COUNTER: 

DISPLACEMENT: 

INDEX REGISTER: 

SCALE: 

MEMORY ADDRESS: 

31 

EA= !PC)+ IXnl +dB 
Ida. PC.Xn.SIZE "SCALE) 
111 
011 

31 

,------------
L ___ ~I~ E~E~E~ ______ 1N_TE_GE_R_ 

31 

SIGN EXTENDED VALUE 

SCALE VALUE 

31 

NUMBER OF EXTENSION WORDS: 

ADDRESS OF EXTENSION WORD 

OPERAND 

2.4.13 Program Counter Indirect with Index (Base Displacement) Mode 

0 

This mode is similar to the address register indirect with index (base displacement) mode 
described in 2.4.8 Address Register Indirect with Index (Base Displacement Mode), but the 
PC is used as the base register. It requires an index register indicator and an optional 16-
or 32-bit sign-extended base displacement. The operand is in memory. The address of the 
operand is the sum of the contents of the PC, the scaled contents of the sign-extended 
index register, and the base displacement. The value of the PC is the address of the first 
extension word. The reference is a program space reference and is only allowed for reads 
(refer to 4.2 ADDRESS SPACE TYPES). 

In this mode, the program counter, the index register, and the displacement are all optional. 
However, the user must supply the assembler notation "ZPC" (zero value is taken for the 
PC) to indicate that the PC is not used. This allows the user to access the program space, 
without using the PC in calculating the effective address. The user can access the program 
space with a data register indirect access by placing ZPC in the instruction and specifying 
a data register (Dn) as the index register. 

GENERATION: 
ASSEMBLER SYNTAX: 
MODE: 
REGISTER: 
PROGRAM COUNTER: 

31 

BASE DISPLACEMENT: 

31 

INDEX REGISTER: 

SCALE: 

EA = (PC) + (Xn) + bd 
(bd,PC,Xn.SIZE"SCALE) 
111 
011 

SIGN EXTENDED VALUE 

SIGN EXTENDED VALUE 

31 

SCALE VALUE 

31 

ADDRESS OF EXTENSION WORD 

MEMORY ADDRESS: OPERAND 
NUMBER OF EXTENSION WORDS: 1. 2. OR 3 

MC68030 USER'S MANUAL MOTOROLA 
2-13 



• 
2.4.14 Program Counter Memory Indirect Postindexed Mode 

This mode is similar to the memory indirect postindexed mode described in 2.4.9 Memory 
Indirect Postindexed Mode, but the PC is used as the base register. Both the operand and 
operand address are in memory. The processor calculates an intermediate indirect memory 
address by adding a base displacement (bd) to the PC contents. The processor accesses 
a long word at that address and adds the scaled contents of the index register and the 
optional outer displacement (od) to yield the effective address. The value of the PC used 
in the calculation is the address of the first extension word. The reference is a program 
space reference and is only allowed for reads (refer to 4.2 ADDRESS SPACE TYPES). 

In the syntax for this mode, brackets enclose the values used to calculate the intermediate 
memory address. All four user-specified values are optional. However, the user must supply 
the assembler notation ZPC (zero value is taken for the PC) to indicate that the PC is not 
used. This allows the user to access the program space, without using the PC in calculating 
the effective address. Both the base and outer displacements may be null, word, or long 
word. When a displacement is omitted or an element is suppressed, its value is taken as 
zero in the effective address calculation. 

GENERATION: 
ASSEMBLER SYNTAX: 
MODE: 
REGISTER FIELD: 
PROGRAM COUNTER: 

BASE DISPLACEMENT: 

INDEX REGISTER: 

31 

31 

EA = ibd + PC) + Xn.SIZE *SCALE + od 
l[bd. PC]. Xn.SIZE ·scALE.od) 
111 
011 

SIGN EXTENDED VALUE 

SIGN EXTENDED VALUE 

31 

ADDRESS Of EXTENSION WORD 

31 

INDIRECT MEMORY ADDRESS 

POINTS TO 
31 

VALUE AT INDIRECT MEMORY ADDRESS IN PROGRAM SPACE 

SCALE VALUE 

31 

OUTER DISPLACEMENT: SIGN EXTENDED VALUE 

31 

EFFECTIVE ADDRESS: OPERAND 
NUMBER Of EXTENSION WORDS: 1. 2. 3. 4. OR 5 

2.4.15 Program Counter Memory Indirect Preindexed Mode 

This mode is similar to the memory indirect preindexed mode described in 2.4.10 Memory 
Indirect Preindexed Mode, but the PC is used as the base register. Both the operand and 
operand address are in memory. The processor calculates an intermediate indirect memory 
address by adding the PC contents, a base displacement (bd), and the scaled contents of 
an index register. The processor accesses a long word at that address and adds the optional 
outer displacement (od) to yield the effective address. The value of the PC is the address 

MOTOROLA 
2-14 

MC68030 USER'S MANUAL 



of the first extension word. The reference is a program space reference and is only allowed 
for reads (refer to 4.2 ADDRESS SPACE TYPES). 

In the syntax for this mode, brackets enclose the values used to calculate the intermediate 
memory address. All four user-specified values are optional. However, the user must supply 
the assembler notation ZPC (zero value is taken for the PC) to indicate that the PC is not 
used. This allows the user to access the program space, without using the PC in calculating 
the effective address. Both the base and outer displacements may be null, word, or long 
word. When a displacement is omitted or an element is suppressed, its value is taken as 
zero in the effective address calculation. 

GENERATION: 
ASSEMBLER SYNTAX: 
MOOE: 
REGISTER FIELO: 
PROGRAM COUNTER: 

31 

BASE DISPLACEMENT: 

31 

INDEX REGISTER: 

EA= lbd + PC+ Xn.SIZE*SCALE} + od 
I [bd. PC.Xn.SIZE *SCALE).od} 
111 
011 

SIGN EXTENDED VALUE 

SIGN EXTENDED VALUE 

31 

AOORESS OF EXTENSION WORD 

SCALE VALUE 

31 

INDIRECT MEMORY ADDRESS 

POINTS TO 
31 

VALUE AT INDIRECT MEMORY ADDRESS IN PROGRAM SPACE 

31 

OUTER DISPLACEMENT: SIGN EXTENDED VALUE 

31 

EFFECTIVE ADDRESS: OPERAND 
NUMBER OF EXTENSION WORDS: 1. 2. 3. 4. OR 5 

2.4.16 Absolute Short Address Mode 

In this addressing mode, the operand is in memory and the address of the operand is in 
the extension word. The 16-bit address is sign extended to 32 bits before it is used. 

GENERATION 
ASSEMBLER SYNTAX: 
MOOE: 
REGISTER: 

EA GIVEN 
lxxx).W 
111 
000 

31 15 

EXTENSION WORD: 
r----------------~ 

----------L __ s~N~~N~"._ - ___ M_E_M_oR_v_Ao_D_RE_ss __ 

MEMORY ADDRESS: 
NUMBER OF EXTENSION WORDS: 

MC68030 USER'S MANUAL 

31 

OPERAND 

MOTOROLA 
2-15 



• 
2.4.17 Absolute Long Address Mode 

In this mode, the operand is in memory and the address of the operand occupies the two 
extension words following the instruction word in memory. The first extension word con­
tains the high order part of the address; the low order part of the address is the second 
extension word. 

GENERATION: 
ASSEMBLER SYNTAX: 
MOOE: 
REGISTER: 
FIRST EXTENSION WORO: 

SECOND EXTENSION WORD: 

MEMORY ADORESS: 
NUMBER OF EXTENSION WOROS: 

2.4.18 Immediate Data 

EA GIVEN 
(xxx).L 
111 
001 

15 

AODRESS HIGH 

15 

ADDRESS LOW 

31 0 

CONCATENATION 

31 

OPERA NO 

In this addressing mode, the operand is in one or two extension words: 

Byte Operation 
Operand is in the low order byte of the extension word 

Word Operation 
Operand is in the extension word 

Long Word Operation 
The high order 16 bits of the operand are in the first extension word; the low order 
16 bits are in the second extension word. 

Coprocessor instructions can support immediate data of any size. The instruction word is 
followed by as many extension words as are required. 

Generation: 
Assembler Syntax: 
Mode Field: 
Register Field: 
Number of Extension Words: 

Operand given 
#xxx 
111 
100 
1 or 2, except for coprocessor instructions 

2.5 EFFECTIVE ADDRESS ENCODING SUMMARY 

Most of the addressing modes use one of the three formats shown in Table 2-1. The single 
effective address instruction is in the format of the instruction word. The encoding of the 
mode field of this word selects the addressing mode. The register field contains the general 
register number or a value that selects the addressing mode when the mode field contains 
"111 ". Table 2-3 shows the encoding of these fields. Some indexed or indirect modes use 
the instruction word followed by the brief format extension word. Other indexed or indirect 

MOTOROLA 
2-16 

MC68030 USER'S MANUAL 



Table 2-1. Effective Address Specification Formats 

Single Effec:tive Address lnstruc:tion Format 

15 14 13 12 11 10 4 3 

x x x x x x x x x x EFFECTIVE ADDRESS 

MODE REGISTER 

Brief Format Extension Word 

15 14 13 12 11 10 8 6 

DIA REGISTER I W/L I SCALE I 0 I DISPLACEMENT 

Full Format Extension Word(s) 

15 14 13 12 11 10 7 4 3 

DIA I REGISTER 1 WtLl SCALE 1 1 1 BS I IS l BO SIZE l 0 1 I/IS 

BASE DISPLACEMENT (0, 1, OR 2 WORDS) 

OUTER DISPLACEMENT (0, 1, OR 2 WORDS) 

Field Definition Field Definition 

Instruction: BS Base Register Suppress: 
Register General Register Number 0 =Base Register Added 

Extensions: 1 =Base Register Suppressed 
Register Index Register Number IS Index Suppress: 
DIA Index Register Type O=Evaluate and Add Index Operand 

O=Dn 1 =Suppress Index Operand 
1=An BO SIZE Base Displacement Size: 

W/L Word/Long Word Index Size 00 =Reserved 
O=Sign Extended Word 01 =Null Displacement 
1=Long Word 10 =Word Displacement 

Scale Scale Factor 11 =Long Displacement 
00=1 I/IS Index/Indirect Selection: 
01 =2 Indirect and Indexing Operand Deter-
10=4 mined in Conjunction with Bit 6, Index 
11=8 Suppress 

modes consist of the instruction word and the full format of extension words. The longest 
instruction for the MC68030 contains ten extension words. It is a MOVE instruction with 
full format extension words for both the source and destination effective addresses, and 
with 32-bit base displacements and 32-bit outer displacements for both addresses. How­
ever, coprocessor instructions can have any number of extension words. Refer to the 
coprocessor instruction formats in SECTION 10 COPROCESSOR INTERFACE DESCRIPTION. 

For effective addresses that use the full format, the index suppress (IS) bit and the index/ 
indirect selection (I/IS) field determine the type of indexing and indirection. Table 2-2 lists 
the indexing and indirection operations corresponding to all combinations of IS and I/IS 
values. 

Effective address modes are grouped according to the use of the mode. They can be 
classified as follows: 

Data A data addressing effective address mode is one that refers to data operands. 

Memory A memory addressing effective address mode is one that refers to memory 
operands. 

MC68030 USER'S MANUAL MOTOROLA 
2-17 

• 



• 
Table 2-2. IS-I/IS Memory Indirection Encodings 

IS Index/Indirect Operation 

0 000 No Memory Indirection 

0 001 Indirect Preindexed with Null Outer Displacement 

0 010 Indirect Preindexed with Word Outer Displacement 

0 011 Indirect Preindexed with Long Outer Displacement 

0 100 Reserved 

0 101 Indirect Postindexed with Null Outer Displacement 

0 110 Indirect Postindexed with Word Outer Displacement 

0 111 Indirect Postindexed with Long Outer Displacement 

1 000 No Memory Indirection 

1 001 Memory Indirect with Nufl Outer Displacement 

1 010 Memory Indirect with Word Outer Displacement 

1 011 Memory Indirect with Long Outer Displacement 

1 100-111 Reserved 

Alterable An alterable addressing effective address mode is one that refers to alterable 
(writable) operands. 

Control A control addressing effective address mode is one that refers to memory 
operands without an associated size. 

Table 2-3 shows the categories to which each of the effective addressing modes belong. 

These categories are sometimes combined, forming new categories that are more restric­
tive. Two combined classifications are alterable memory or data alterable. The former 
refers to those addressing modes that are both alterable and memory addresses, and the 
latter refers to addressing modes that are both data and alterable. 

2.6 PROGRAMMER'S VIEW OF ADDRESSING MODES 

Extensions to the indexed addressing modes, indirection, and full 32-bit displacements 
provide additional programming capabilities for both the MC68020 and the MC68030. This 
section describes addressing techniques that exploit these capabilities and summarizes 
the addressing modes from a programming point of view. 

Several of the addressing techniques described in this section use data registers and 
address registers interchangeably. While the MC68030 provides this capability, its per­
formance has been optimized for addressing with address registers. The performance of 
a program that uses address registers in address calculations is superior to that of a 
program that similarly uses data registers. The specification of addresses with data registers 
should be used sparingly (if at all), particularly in programs that require maximum per­
formance. 

2.6.1 Addressing Capabilities 

In both the MC68020 and the MC68030, setting the base register suppress (BS) bit in the 
full format extension word (Table 2-1) suppresses use of the base address register in 

MOTOROLA 
2-18 

MC68030 USER'S MANUAL 



Table 2-3. Effective Addressing Mode Categories 

Address Modes Mode Register Data Memory Control Alterable Assembler Syntax 

Data Register Direct 000 reg. no. x - - x Dn 

Address Register Direct 001 reg. no. - - - x An 

Address Register Indirect 010 reg. no. x x x x (An) 
Address Register Indirect 

with Postincrement 011 reg. no. x x - x (An)+ 
Address Register Indirect 

with Predecrement 100 reg. no. x x - x -(An) 
Address Register Indirect 

with Displacement 101 reg. no. x x x x (d15.An) 

Address Register Indirect with 
Index (8-Bit Displacement) 110 reg. no. x x x x (d8,An,Xn) 

Address Register Indirect with 
Index (Base Displacement) 110 reg. no. x x x x (bd,An,Xn) 

Memory Indirect Postindexed 110 reg. no. x x x x ([bd,An),Xn,od) 
Memory Indirect Preindexed 110 reg. no. x x x x ([bd,An,Xn).od) 

Absolute Short 111 000 x x x x (xxx).W 
Absolute Long 111 001 x x x x (xxx).L 

Program Counter Indirect 
with Displacement 111 010 x x x - (d15,PC) 

Program Counter Indirect with 
Index (8-Bit) Displacement 111 011 x x x - (d8,PC,Xn) 

Program Counter Indirect with 
Index (Base Displacement) 111 011 x x x - (bd,PC,Xn) 

PC Memory Indirect 
Posti ndexed 111 011 x x x - ([bd,PC),Xn,od 

PC Memory Indirect 
Pre indexed 111 011 x x x - ([bd,PC,Xn).od) 

Immediate 111 100 x x - - #(data) 

calculating the effective address. This allows any index register to be used in place of the 
base register. Since any of the data registers can be index registers, this provides a data 
register indirect form (Dn). The mode could be called register indirect (Rn), since either a 
data register or an address register can be used. This addressing mode is an extension to 
the M68000 family because the MC68030 and MC68020 can use both the data registers 
and the address registers to address memory. The capability of specifying the size and 
scale of an index register (Xn.SIZE*SCALE) in these modes provides additional addressing 
flexibility. Using the SIZE parameter, either the entire contents of the index register can 
be used, or the least significant word can be sign extended to provide a 32-bit index value 
(refer to Figure 2-4). 

31 

Dll vzmozzzzzzzzzzzmmzmzzzzmzzzzzi Dl 

31 16 15 

Dl.W VIZIZIOZIOZ/ll/771 Dl 

lZZJ : USED IN ADDRESS CALCULATION 

Figure 2-4. Using SIZE in the Index Selection 

MC68030 USER'S MANUAL MOTOROLA 
2-19 

• 



• 
For both the MC68020 and the MC68030, the register indirect modes can be extended 
further. Since displacements can be 32 bits wide, they can represent absolute addresses 
or the results of expressions that contain absolute addresses. This allows the general 
register indirect form to be (bd,Rn), or (bd,An,Rn) when the base register is not suppressed. 
Thus, an absolute address can be directly indexed by one or two registers (refer to Figure 
2-5). 

SYNTAX: (bd,An,Rn) 

bd 

An 

Rn 

Figure 2-5. Using Absolute Address with Indexes 

Scaling provides an optional shifting of the value in an index register to the left by zero, 
one, two, or three bits before using it in the effective address calculation (the actual value 
in the index register remains unchanged). This is equivalent to multiplying the register by 
one, two, four, or eight for direct subscripting into an array of elements of corresponding 
size using an arithmetic value residing in any of the 16 general registers. Scaling does not 
add to the effective address calculation time. ·However, when combined with the appro­
priate derived modes, it produces additional capabilities. Arrayed structures can be ad­
dressed absolutely and then subscripted, (bd,Rn*scale), for example. Optionally, an address 
register that contains a dynamic displacement can be included in the address calculation 
(bd,An,Rn*scale). Another variation that can be derived is (An,Rn*scale). In the first case, 
the array address is the sum of the contents of a register and a displacement, as shown 
in Figure 2-6. In the second example, An contains the address of an array and Rn contains 
a subscript. 

The memory indirect addressing modes use a long word pointer in memory to access an 
operand. Any of the modes previously described can be used to address the memory 
pointer. Because the base and index registers can both be suppressed, the displacement 
acts as an absolute address, providing indirect absolute memory addressing (refer to Figure 
2-7). 

The outer displacement (od) available in the memory indirect modes is added to the pointer 
in memory. The syntax for these modes is ([bd,An],Xn,od) and ([bd,An,Xn),od). When the 
pointer is the address of a structure in memory and the outer displacement is the offset 
of an item in the structure, the memory indirect modes can access the item efficiently (refer 
to Figure 2-8). 

MOTOROLA 
2-20 

MC68030 USER'S MANUAL 



15 

15 

SYNTAX: MOVE. W iA5.A6.L "SCALE).IA 7) 
WHERE: 

SIMPLE ARRAY 
!SCALE = 1) 

A5 = ADO RESS OF ARRAY STRUCTURE 
AS = INDEX NUMBER OF ARRAY ITEM 
A 7 = STACK POINTER 

RECORD OF 4 WORDS 
!SCALE = 4) 

NOTE: Regardless of array structure, software increments index by the 
appropriate amount to point to next record. 

15 

15 

Figure 2-6. Addressing Array Items 

SYNTAX: ([bd]) 

bd----- POINTER 

RECORD OF 2 WORDS 
(SCALE= 2) 

RECORD OF 8 WORDS 
(SCALE = 8) 

DATA ITEM 

Figure 2-7. Using Indirect Absolute Memory Addressing 

MC68030 USER'S MANUAL MOTOROLA 
2-21 

• 



• 
~ 

-- --~-- SYNTAX: l[An].od) 

MEMORY STRUCTURE 

An ~ POINTER 

od 

• 
DATA ITEM 

'7 '7 '7 '7 

Figure 2-8. Accessing an Item in a Structure Using Pointer 

Memory indirect addressing modes are used with a base displacement in five basic forms: 

1. [bd,An] - Indirect, suppressed index register 

2. ([bd,An,Xn]) - Preindexed indirect 

3. ([bd,An],Xn) - Postindexed indirect 

4. ([bd,An,Xn],od) - Preindexed indirect with outer displacement 

5. ([bd,An],Xn,od - Postindexed indirect with outer displacement 

The indirect, suppressed index register mode, Figure 2-9, uses the contents of register An 
as an index to the pointer located at the address specified by the displacement. The actual 
data item is at the address in the selected pointer. 

SYNTAX: l[bd.An]) 

POINTER LIST 

bd ..... 

An 

POINTER DATA ITEM 

7 '7 7 7 

Figure 2-9. Indirect Addressing, Suppressed Index Register 

The preindexed indirect mode, Figure 2-10, uses the contents of An as an index to the 
pointer list structure at the displacement. Register Xn is the index to the pointer, which 
contains the address of the data item. 

MOTOROLA 
2-22 

MC68030 USER'S MANUAL 



SYNTAX: ([bd.An.Xn)) 

POINTER LIST 

bd----

An 

DATA ITEM 

Xn 

POINTER 

Figure 2-10. Preindexed Indirect Addressing 

The postindexed indirect mode, Figure 2-11, uses the contents of An as an index to the 
pointer list at the displacement. Register Xn is used as an index to the structure of data 
items located at the address specified by the pointer. Figure 2-12 shows the preindexed 
indirect addressing with outer displacement mode. 

SYNTAX: ([bd.An).Xn) 

POINTER LIST POST-INDEXED STRUCTURE 

bd----.i 

An 

Xn 

POINTER DATA ITEM 

Figure 2-11. Postindexed Indirect Addressing 

The postindexed indirect mode with outer displacement, Figure 2-13, uses the contents of 
An as an index to the pointer list at the displacement. Register Xn is used as an index to 
the structure of data structures at the address in the pointer. The outer displacement (od) 
is the displacement of the data item within the selected data structure. 

2.6.2 General Addressing Mode Summary 

The addressing modes described in the previous section are derived from specific com­
binations of options in the indexing mode, or a selection of two alternate addressing modes. 
For example, the addressing mode called register indirect (Rn) assembles as the address 

MC68030 USER'S MANUAL MOTOROLA 
2-23 

• 



• 
SYNTAX: ([bd.An.Xn].od) 

POINTER LIST STRUCTURE 

bd----

An 

od 

Xn 

POINTER OATA ITEM 

Figure 2-12. Preindexed Indirect with Outer Displacement 

POINTER LIST 

bd-----

An 

POINTER 

SYNTAX: ([bd,An].Xn.od) 

POST-INDEXED STRUCTURE 
WITH OUTER DISPlACEMENT 

od 

Xn 

DATA ITEM 

Figure 2-13. Postindexed Indirect Addressing with Outer Displacement 

register indirect if the register is an address register. If Rn is a data register, the assembler 
uses the address register indirect with index mode using the data register as the indirect 
register and suppresses the address register by setting the base suppress bit in the effective 
address specification. Assigning an address register as Rn provides higher performance 
than using a data register as Rn. Another case is (bd,An) which selects an addressing mode 
depending on the size of the displacement. If the displacement is 16 bits or less, the address 
register indirect with displacement mode (d15,An) is used. When a 32-bit displacement is 
required, the address register indirect with index (bd,An,Xn) is used with the index register 
suppressed. 

It is useful to examine the derived addressing modes available to a programmer (without 
regard to the MC68030 effective ad.dressing mode actually encoded) because the program­
mer need not be concerned about these decisions. The assembler can choose the more 
efficient addressing mode to encode. 

MOTOROLA 
2-24 

MC68030 USER'S MANUAL 



In the list of derived addressing modes that follows, common programming terms are 
used. These definitions apply: 

pointer 

base 

index 

disp 

subscript 

relative 

addr 

psaddr 

pre indexed 

postindexed 

Long word value in a register or in memory which represents an 
address. 

- A pointer combined with a displacement to represent an address. 

- A constant or variable value added into an effective address calcula­
tion. A constant index is a displacement. A variable index is always 
represented by a register containing the value. 

Displacement, a constant index. 

- The use of any of the data or address registers as a variable index 
subscript into arrays of items 1, 2, 4, or 8 bytes in size. 

- An address calculated from the program counter contents. The ad­
dress is position independent and is in program space. All other ad­
dresses but psaddr are in data space. 

- An absolute address. 

- An absolute address in program space. All other addresses but PC 
relative are in data space. 

- All modes from absolute address through program counter relative. 

- Any of the following modes: 
addr - Absolute address in data space. 
psaddr,ZPC - Absolute address in program space. 
An - Register pointer. 
disp,An - Register pointer with constant displacement. 
addr,An - Absolute address with single variable name. 
disp,PC - Simple PC relative. 

The addressing modes defined in programming terms which are derivations of the ad­
dressing modes provided by the MC68030 architecture are: 

Immediate Data - #data: 
The data is a constant located in the instruction stream. 

Register Direct - Rn: 
The contents of a register is the operand. 

Scanning Modes: 
(An)+ 

Address register pointer automatically incremented after use. 

-(An) 
Address register pointer automatically decremented before use. 

MC68030 USER'S MANUAL MOTOROLA 
2-25 



.. 
Absolute Address: 

(addr) 
Absolute address in data space. 

(psaddr,ZPC) 
Absolute address in program space. Symbol ZPC suppresses the PC, but retains PC­
relative mode to directly access the program space. 

Register Pointer: 
(Rn) 

Register as a pointer. 

(disp,Rn) 
Register as a pointer with constant index (or base address). 

Indexing: 
(An,Rn) 

Register pointer An with variable index Rn. 

(disp,An,Rn) 
Register pointer with constant and variable index (or a base address with a variable 
index). 

(addr,Rn) 
Absolute address with variable index. 

(addr,An,Rn) 
Absolute address with 2 variable indexes. 

Subscripting: 
(An,Rn*scale) 

Address register pointer subscript. 

(disp,An,Rn*scale) 
Address register pointer subscript with constant displacement (or base address with 
subscript). 

(addr, Rn*scale) 
Absolute address with subscript. 

(addr,An,Rn*scale) 
Absolute address subscript with variable index. 

Program Relative: 
(disp,PC) 

Simple PC relative. 

(disp,PC,Rn) 
PC relative with variable index. 

(disp,PC,Rn*scale) 
PC relative with subscript. 

Memory Pointer: 
([preindexed]) 

Memory pointer directly to data operand. 

([preindexed],disp) 
Memory pointer as base with displacement to data operand. 

MOTOROLA 
2-26 

MC68030 USER'S MANUAL 



([postindexed),Rn) 
Memory pointer with variable index. 

([postindexed),disp,Rn) 
Memory pointer with constant and variable index. 

([postindexed],Rn*scale) 
Memory pointer subscripted. 

([postindexed], disp, Rn*scale) 
Memory pointer subscripted with constant index. 

2.7 M68000 FAMILY ADDRESSING COMPATIBILITY 

Programs can be easily transported from one member of the M68000 processor family to 
another in an upward compatible fashion. The user object code of each early member of 
the family is upward compatible with newer members, and can be executed on the newer 
microprocessor without change. The address extension word(s) are encoded with the 
information that allows the MC68020/MC68030 to distinguish the new address extensions 
to the basic M68000 Family architecture. The address extension words for the early MC68000/ 
008/010 microprocessors and for the newer 32-bit MC68020/MC68030 microprocessors are 
shown in Figure 2-14. Notice the encoding for SCALE used by the MC68020/MC68030 is a 
compatible extension of the M68000 architecture. A value of 0 for SCALE is the same 
encoding for both extension words; hence software that uses this encoding is both upward 
and downward compatible across all processors in the product line. However, the other 
values of SCALE are not found in both extension formats; so, while software can be easily 
migrated in an upward compatible direction, only non-scaled addressing is supported in 
a downward fashion. If the MC68000 were to execute an instruction that encoded a scaling 
factor, the scaling factor would be ignored and not access the desired memory address. 
The earlier microprocessors have no knowledge of the extension word formats imple­
mented by newer processors, and while they do detect illegal instructions, they do not 
decode invalid encodings of the extension words as exceptions. 

MC68000/MC68008/MC68010 Address 
Extension Word 

15 14 13 12 11 10 0 

I DIA REGISTER I W/L I 0 I 0 I 0 DISPLACEMENT INTEGER 

DIA: 0 = Data Register Select 
1 = Address Register Select 

WIL: 0 = Word-Sized Operation 
1 = Long-Word-Sized Operation 

MC68020/MC68030 Address 
Extension Word 

15 14 13 12 11 10 

I DIA I REGISTER I WIL I SCALE 

DIA: 0 = Data Register Select 
1 = Address Register Select 

WIL: 0 = Word-Sized Operation 
1 = Long-Word-Sized Operation 

o I DISPLACEMENT INTEGER 

SCALE: 00 = Scale Factor 1 (Compatible with MC68000) 
01 = Scale Factor 2 (Extension to MC68000) 
10 = Scale Factor 4 (Extension to MC68000) 
11 = Scale Factor 8 (Extension to MC68000) 

Figure 2-14. M68000 Family Address Extension Words 

MC68030 USER'S MANUAL MOTOROLA 
2-27 

• 



• 
2.8 OTHER DATA STRUCTURES 

Stacks and queues are widely used data structures. The MC68030 implements a system 
stack and also provides instructions that support the use of user stacks and queues . 

2.8.1 System Stack 

Address register seven (A7) is used as the system stack pointer (SP). Any of the three 
system stack registers is active at any one time. The M and S bits of the status register 
determine which stack pointer is used. When S = 0 indicating user mode (user privilege 
level), the user stack pointer (USP) is the active system stack pointer and the master and 
interrupt stack pointers cannot be referenced. When S = 1 indicating supervisor mode (at 
supervisor privilege level) and M = 1, the master stack pointer (MSP) is the active system 
stack pointer. When S = 1 and M =0, the interrupt stack pointer (ISP) is the active system 
stack pointer. This mode is the MC68030 default mode after reset and corresponds to the 
MC68000, MC68008, and MC68010 supervisor mode. The term supervisor stack pointer 
(SSP) refers to the master or interrupt stack pointers, depending on the state of the M bit. 
When M = 1, the term SSP (or A7) refers to the MSP address register. When M = 0, the term 
SSP (or A7) refers to the ISP address register. The active system stack pointer is implicitly 
referenced by all instructions that use the system stack. Each system stack fills from high 
to low memory. 

A subroutine call saves the program counter on the active system stack, and the return 
restores it from the active system stack. During the processing of traps and interrupts, both 
the program counter and the status register are saved on the supervisor stack (either master 
or interrupt). Thus, the execution of supervisor level code is independent of user code and 
the condition of the user stack; conversely, user programs use the user stack pointer 
independently of supervisor stack requirements. 

In order to keep data on the system stack aligned for maximum efficiency, the active stack 
pointer is automatically decremented or incremented by two for all byte-size operands 
moved to or from the stack. In long-word-organized memory, aligning the stack pointer 
on a long word address significantly increases the efficiency of stacking exception frames, 
subroutine calls and returns, and other stacking operations. 

2.8.2 User Program Stacks 

The user can implement stacks with the address register indirect with postincrement and 
predecrement addressing modes. With address register An (n = 0 through 6). the user can 
implement a stack that is filled either from high memory to low memory or from low 
memory to high. Important considerations are: 

• Use the predecrement mode to decrement the register before its contents are used 
as the pointer to the stack. 

• Use the postincrement mode to increment the register after its contents are used as 
the pointer to the stack. 

• Maintain the stack pointer correctly when byte, word, and long word items are mixed 
in these stacks. 

MOTOROLA 
2-28 

MC68030 USER'S MANUAL 



To implement stack growth from high to low memory, use: 

- (An) to push data on the stack, 

(An)+ to pull data from the stack. 

For this type of stack, after either a push or a pull operation, register An points to the top 
item on the stack. This is illustrated as: 

LOW MEMORY 

(FREE) 

An ~ TOP OF STACK 

7 • • ~ • 
BOTTOM OF STACK 

HIGH MEMORY 

To implement stack growth from low to high memory, use: 

(An)+ to push data on the stack, 

-(An) to pull data from the stack. 

7 L 

In this case, after either a push or pull operation, register An points to the next available 
space on the stack. This is illustrated as:. 

LOW MEMORY 

BOTTOM OF STACK 

7 • '7 • L • 
TOP OF STACK 

An - (FREE) 

HIGH MEMORY 

2.8.3 Queues 

The user can implement queues with the address register indirect with postincrement or 
predecrement addressing modes. Using a pair of address registers (two of AO through A6), 
the user can implement a queue which is filled either from high memory to low memory, 
or from low memory to high. Two registers are used because queues are pushed from 
one end and pulled from the other. One register, An, contains the "put" pointer; the other, 
Am, the "get" pointer. 

To implement growth of the queue from low to high memory, use: 

(An)+ to put data into the queue, 

(Am)+ to get data from the queue. 

After a "put" operation, the "put" address register points to the next available space in 
the queue, and the unchanged "get" address register points to the next item to be removed 

MC68030 USER'S MANUAL MOTOROLA 
2-29 

• 



• 
from the queue. After a "get" operation, the "get" address register points to the next item 
to be removed from the queue, and the unchanged "put" address register points to the 
next available space in the queue. This is illustrated as: · 

LOW MEMORY 

LAST GET (FREE) 

GET (Am)+ - NEXT GET 

I • I • i. • i. 

LAST PUT 

PUT (An)+ --+1 (FREE) 

HIGH MEMORY 

To implement the queue as a circular buffer, the relevant address register should be checked 
and adjusted, if necessary, before performing the "put" or "get" operation. The address 
register is adjusted by subtracting the buffer length (in bytes) from the register. 

To implement growth of the queue from high to low memory, use: 

- (An) to put data into the queue, 

-(Am) to get data from the queue. 

After a "put" operation, the "put" address register points to the last item placed in the 
queue, and the unchanged "get" address register points to the last item removed from 
the queue. After a "get" operation, the "get" address register points to the last item 
removed from the queue, and the unchanged "put" address register points to the last item 
placed in the queue. This is illustrated as: 

PUT -(An) 

GET -(Am) 

LOW MEMORY 

(FREE) 

LAST PUT 

• • • 
NEXT GET 

LAST GET (FREE) 

HIGH MEMORY 

To implement the queue as a circular buffer, the "get" or "put" operation should be 
performed first, and then the relevant address register should be checked and adjusted, if 
necessary. The address register is adjusted by adding the buffer length (in bytes) to the 
register contents. 

MOTOROLA 
2-30 

MC68030 USER'S MANUAL 



SECTION 3 
INSTRUCTION SET 

This section describes the set of instructions provided in the MC68030 microprocessor, 
and shows how to use them. It includes descriptions of the instruction format and the 
operands used by instructions. After a summary of the instructions by category, the section 
provides a detailed description of the operation of each instruction, in alphabetical order. 
Programming information for specific instructions is next, followed by a description of 
condition code computation and an instruction format summary. 

3.1 INSTRUCTION FORMAT 

All instructions consist of at least one word; some have as many as 11 words as shown 
in Figure 3-1. The first word of the instruction, called the operation word, specifies the 
length of the instruction and the operation to be performed. The remaining words, called 
extension words, further specify the instruction and operands. These words may be im­
mediate operands, extensions to the effective address mode specified in the operation 
word, branch displacements, bit number or bit field specifications, special register speci­
fications, trap operands, pack/unpack constants, argument counts, or coprocessor condition 
codes. 

Besides the operation code, which specifies the function to be performed, an instruction 
defines the location of every operand for the function. Instructions specify an operand 
location in one of three ways: 

• Register Specification - A register field of the instruction contains the number of the 
register. 

• Effective Address-An effective address field of the instruction contains address mode 
information. 

• Implicit Reference - The definition of an instruction implies the use of specific reg­
isters. 

15 

OPERATION WORD 
(ONE WORD, SPECIFIES OPERATION AND MODES) 

SPECIAL OPERAND SPECIFIERS 
(IF ANY, ONE OR TWO WORDS) 

IMMEDIATE OPERAND OR SOURCE EFFECTIVE ADDRESS EXTENSION 
(IF ANY, ONE TO FIVE WORDS) 

DESTINATION EFFECTIVE ADDRESS EXTENSION 
(IF ANY, ONE TO FIVE WORDS) 

Figure 3-1. Instruction Word General Format 

MC68030 USER'S MANUAL MOTOROLA 
3-1 

II 



• 

The register field within an instruction specifies the register to be used. Other fields within 
the instruction specify whether the register selected is an address or data register and how 
the register is to be used. Section 2 contains detailed register information. 

Effective address information includes the registers, displacements, and absolute ad­
dresses for the effective address modes. Section 2 describes the effective address modes 
in detail. 

Certain instructions are operations for specific registers. These instructions imply the re­
quired registers. 

3.2 INSTRUCTION SUMMARY 

The instructions form a set of tools to perform the following operations: 

Data Movement Bit Field Manipulation 
Integer Arithmetic Binary Coded Decimal Arithmetic 
Logical Program Control 
Shift and Rotate System Control 
Bit Manipulation Multiprocessor Communications 

The complete range of instruction capabilities combined with the addressing modes de­
scribed previously provide flexibility for program development. 

The following notations are used in this Section. In the operand syntax statements of the 
instruction descriptions, the operand on the right is the destination operand. 

An= any address register, AO-A7 
Dn =any data register, DO-D7 
Rn= any address or data register 

CCR= condition code register (lower byte of status register) 
cc= condition codes from CCR 

SR= status register 
cpcc =coprocessor condition code 

SP= active stack pointer 
USP= user stack pointer 
ISP= supervisor/interrupt stack pointer 

MSP =supervisor/master stack pointer 
SSP =supervisor (master or interrupt) stack pointer 
DFC =destination function code register 
SFC =source function code register 

Re= control register (VBR, SFC, DFC, CACR, CAAR) 
MRc = MMU register (SRP, CRP, TC, TTO, TT1) 

MMUSR = MMU status register 
d =displacement; d16 is a 16-bit displacement 

(ea)= effective address 
list= list of registers, for example, DO-D3 

#(data)= immediate data; a literal integer 
{offset:width} =bit field selection 

label= assembly program label 
[7) = bit 7 of an operand 

[31 :24) =bits 31 through 24 of operand (high order byte of a register) 

MOTOROLA 
3-2 

MC68030 USER'S MANUAL 



X =extend (X) bit in CCR 
N =negative (N) bit in CCR 
Z =Zero (Z) bit in CCR 
V =overflow (V) bit in CCR 
C =carry (C) bit in CCR 
+ =arithmetic addition or post-increment indicator 
- =arithmetic subtraction or pre-decrement indicator 
*=arithmetic multiplication 
I= arithmetic division or conjunction symbol 

- =invert; operand is logically complemented 
A= logical AND 
V =logical OR 
EB= logical exclusive OR 
De= data register, DO-D7 used during compare 
Du= data register, DO-D7 used during update 

Dr, Dq =data registers, remainder or quotient of divide 
Dh, DI= data registers, high or low order 32 bits of product 
MSW= most significant word 
LSW =least significant word 
MSB =most significant bit 

FC =function code 
{R/W} =read or write indicator 

[An] =address extensions 

3.2.1 Data Movement Instructions 

The MOVE instruction with its associated addressing modes is the basic means of trans­
ferring and storing addresses and data. MOVE instructions transfer byte, word, and long 
word operands from memory to memory, memory to register, register to memory, and 
register to register. Address movement instructions (MOVE or MOVEA) transfer word and 
long word operands and ensure that only valid address manipulations are executed. In 
addition to the general MOVE instructions there are several special data movement in­
structions: move multiple registers (MOVEM), move peripheral data (MOVEP), move quick 
(MOVEQ), exchange registers (EXG), load effective address (LEA), push effective address 
(PEA), link stack (LINK), and unlink stack (UNLK). Table 3-1 is a summary of the data 
movement operations. 

3.2.2 Integer Arithmetic Instructions 

The arithmetic operations include the four basic operations of add (ADD), subtract (SUB), 
multiply (MUL), and divide (DIV) as well as arithmetic compare (CMP, CMPM, CMP2), clear 
(CLR), and negate (NEG). The instruction set includes ADD, CMP, and SUB instructions for 
both address and data operations with all operand sizes valid for data operations. Address 
operands consist of 16 or 32 bits. The clear and negate instructions apply to all sizes of 
data operands. 

Signed and unsigned MUL and DIV instructions include: 

• Word multiply to produce a long word product 

• Long word multiply to produce a long word or quad word product 

MC68030 USER'S MANUAL MOTOROLA 
3-3 

• 



• 

Table 3-1. Data Movement Operations 

Instruction Operand Syntax Operand Size Operation 

EXG Rn, Rn 32 Rn .. Rn 

LEA (ea),An 32 (ea) t An 

LINK An,#(d) 16, 32 Sp-4 t SP; Ant (SP); SP t An; SP+d t SP 

MOVE (ea),(ea) 8, 16,32 source t destination 
MO VEA (ea).An 16,32. 32 

MOVEM list,( ea) 16, 32 listed registers t destination 
(ea),list 16, 32. 32 source t listed registers 

MOVEP - 6n, (d15,An) 16,32 Dn[31:24) t (An+d); Dn[23:16) t (An+d+2); 
Dn[15:8] t (An+d+4); Dn[7:0) t (An+d+6) 

(d15.An),Dn (An+d) t Dn[31:24]; (An+d+2) t Dn [23:16]; 
(An+d+4) t Dn[15:8]; (An+d+6) t Dn[7:0) 

MOVEQ #(data),Dn 8. 32 immediate data t destination 

PEA (ea) 32 SP-4 t SP; (ea) t (SP) 

UNLK An 32 Ant SP; (SP) t An; SP+4 t SP 

• Division of a long word dividend by a word divisor (word quotient and word remainder) 
• Division of a long word or quad word dividend by a long word divisor (long word 

quotient and long word remainder) 

A set of extended instructions provides multi-precision and mixed size arithmetic. These 
instructions are: add extended (ADDX), subtract extended (SUBX), sign extend (EXT), and 
negate binary with extend (NEGX). Refer to Table 3-2 for a summary of the integer arith­
metic operations. 

3.2.3 Logical Instructions 

The logical operation instructions (AND, OR, EOR, and NOT) perform logical operations 
with all sizes of integer data operands. A similar set of immediate instructions (ANDI, ORI, 
and EORI) provide these logical operations with all sizes of immediate data. The TST 
instruction compares the operand with zero arithmetically, placing the result in the con­
dition code register. 

Table 3-3 summarizes the logical operations. 

3.2.4 Shift and Rotate Instructions 

The arithmetic shift instructions ASR and ASL and logical shift instructions LSR and LSL 
provide shift operations in both directions. The ROR, ROL, ROXR, and ROXL instructions 
perform rotate (circular shift) operations, with and without the extend bit. All shift and 
rotate operations can be performed on either registers or memory. 

Register shift and rotate operations shift all operand sizes. The shift count may be specified 
in the instruction operation word (to shift from 1-8 places) or in a register (modulo 64 shift 
count). 

MOTOROLA 
3-4 

MC68030 USER'S MANUAL 



Table 3-2. Integer Arithmetic Operations 

Instruction Operand Syntax Operand Size Operation 

ADD Dn,(ea) 8, 16, 32 source+ destination t destination 
(ea),Dn 8, 16, 32 

ADDA (ea),An 16, 32 

ADDI #(data),(ea) 8, 16, 32 immediate data+ destination t destination 
ADDO #(data),(ea) 8, 16, 32 

ADDX Dn,Dn 8, 16, 32 source+ destination+ X t destination 
- (An), - (An) 8, 16, 32 

CLR (ea) 8, 16, 32 O t destination 

CMP (ea),Dn 8, 16, 32 destination - source 
CMPA (ea).An 16, 32 

CMPI #(data),(ea) 8, 16, 32 destination - immediate data 

CMPM (An)+ ,(An)+ 8, 16, 32 destination - source 

CMP2 (ea),Rn 8, 16, 32 lower bound ( = Rn ( = upper bound 

DIVS/DIVU (ea),Dn 32/16. 16:16 destination/source t destination (signed or unsigned) 
(ea),Dr:Dq 64/32 • 32: 32 

(ea),Dq 32/32. 32 
DIVSUDIVUL (ea),Dr:Dq 32/32 • 32: 32 

EXT Dn 8. 16 sign extended destination t destination 
Dn 16. 32 

EXTB Dn 8. 32 

MULS/MULU (ea),Dn 16x16t32 source*destination t destination (signed or unsigned) 
(ea),DI 32x32 t 32 

(ea),Dh:DI 32x32 t 64 

NEG (ea) 8, 16,32 O - destination t destination 

NEGX (ea) 8, 16, 32 0 - destination - X t destination 

SUB (ea),Dn 8, 16, 32 destination = source t destination 
Dn,(ea) 8, 16, 32 

SUBA (ea).An 16,32 

SUBI #(data),(ea) 8, 16, 32 destination - immediate data t destination 
SUBQ #(data),(ea) 8, 16, 32 

SUBX Dn,Dn 8, 16, 32 destination - source - X t destination 
-(An), -(An) 8, 16, 32 

Table 3-3. Logical Operations 

Instruction Operand Syntax Operand Size Operation 

AND (ea),Dn 8, 16, 32 source J\ destination t destination 
Dn,(ea) 8, 16, 32 

ANDI #(data),(ea) 8, 16, 32 immediate data A destination t destination 

EOR Dn,(ea) 8, 16, 32 source E8 destination t destination 

EORI #(data),(ea) 8, 16, 32 immediate data E8 destination t destination 

NOT (ea) 8, 16,32 - destination t destination 

OR (ea),Dn 8, 16, 32 source V destination t destination 
Dn,(ea) 8, 16, 32 

ORI #(data),(ea) 8, 16, 32 immediate data V destination t destination 

TST (ea) 8, 16, 32 source - 0 to set condition codes 

Memory shift and rotate operations shift word-length operands one bit position only. The 
SWAP instruction exchanges the 16-bit halves of a register. Performance of shift/rotate 

MC68030 USER'S MANUAL MOTOROLA 
3-5 

• 



• 

instructions is enhanced so that use of the ROR and ROL instructions with a shift count of 
eight allows fast byte swapping. Table 3-4 is a summary of the shift and rotate operations. 

Table 3-4. Shift and Rotate Operations 

Instruction Operand Syntax Operand Size Operation 

ASL Dn,Dn 8, 16,32 
#(data),Dn 8, 16,32 X/C ..... 0 

(ea) 16 

ASR Dn,Dn 8, 16, 32 
#(data),Dn 8, 16, 32 c-j X/C ...,.. 

(ea) 16 

LSL Dn,Dn 8, 16, 32 
#(data),Dn 8, 16, 32 

X/C 0 
(ea) 16 --

LSR Dn,Dn 8, 16,32 
#(data),Dn 8, 16,32 

(ea) 16 0 ....... X/C 

ROL Dn,Dn 8, 16,32 

I ~ #(data),Dn 8, 16, 32 m· 1--(ea) 16 

ROR Dn,Dn 8, 16,32 
#(data),Dn 8, 16, 32 y --...1 I ,..[£] (ea) 16 

ROXL Dn,Dn 8, 16, 32 
#(data),Dn 8, 16, 32 

[£]• I I• I x I• I 1--(ea) 16 

ROXR Dn,Dn 8, 16, 32 
#(data),Dn 8, 16, 32 

I •I x I •I _.. I I ,..[£] (ea) 16 

SWAP On 32 

M~W L;W I I I 

3.2.5 Bit Manipulation Instructions 

Bit manipulation operations are accomplished using the following instructions: bit 
test(BTST), bit test and set(BSET). bit test and clear(BCLR), and bit test and change (BCHG). 
All bit manipulation operations can be performed on either registers or memory. The bit 
number is specified as immediate data or in a data register. Register operands are 32 bits 
long, and memory operands are 8 bits long. In Table 3-5, the summary of the bit manip­
ulation operations, Z refers to bit 2, the zero bit of the status register. 

3.2.6 Bit Field Instructions 

The MC68030 supports variable length bit field operations on fields of up to 32 bits. The 
bit field insert (BFINS) instruction inserts a value into a bit field. Bit field extract unsigned 

MOTOROLA 
3-6 

MC68030 USER'S MANUAL 



Table 3-5. Bit Manipulation Operations 

Instruction Operand Syntax Operand Size Operation 

BCHG On,(ea) 8,32 - ((bit number) of destination) • Z • bit of destination 
#(data),(ea) 8, 32 

BCLR On,( ea) 8,32 - ((bit number) of destination) • Z; 
#(data),(ea) 8,32 0 • bit of destination 

BSET On,( ea) 8, 32 - ((bit number) of destination) • Z; 
#(data),(ea) 8, 32 1 • bit of destination 

BTST On,( ea) 8, 32 - ((bit number) of destination)• Z 
#(data),(ea) 8,32 

(BFEXTU) and bit field extract signed (BFEXTS) extract a value from the field. Bit field find 
first one (BFFFO) finds the first bit that is set in a bit field. Also included are instructions 
that are analogous to the bit manipulation operations; bit field test (BFTST), bit field test 
and set (BFSET), bit field test and clear (BFCLR), and bit field test and change (BFCHG). 
Table 3-6 is a summary of the bit field operations. 

Table 3-6. Bit Field Operations 

Instruction Operand Syntax Operand Size Operation 

BFCHG (ea) {offset:width} 1-32 - Field • Field 

BFCLR (ea) {offset:width} 1-32 O's• Field 

BFEXTS (ea) {offset:width},On 1-32 Field• On; Sign Extended 

BFEXTU (ea) {offset:width},On 1-32 Field • On; Zero Extended 

BFFFO (ea) {offset:width},On 1-32 Scan for first bit set in Field; offset t On 

BFINS On,(ea) {offset:width} 1-32 On• Field 

BFSET (ea) {offset:width} 1-32 1's •Field 

BFTST (ea) {offset:width} 1-32 Field MSB • N; - (OR of all bits in field) t Z 

NOTE: All bit field instructions set the N and Z bits as shown for BFTST before performing the specified operation. 

3.2.7 Binary Coded Decimal Instructions 

Five instructions support operations on binary coded decimal numbers. The arithmetic 
operations on packed binary coded decimal numbers are: add decimal with extend (ABCD). 
subtract decimal with extend (SBCD), and negate decimal with extend (NBCD). PACK and 
UNPACK instructions aid in the conversion of byte encoded numeric data, such as ASCII 
or EBCDIC strings, to BCD data and vice versa. Table 3-7 is a summary of the binary coded 
decimal operations. 

Table 3-7. Binary Coded Decimal Operations 
Instruction Operand Syntax 

ABCO On,On 
- (An), - (An) 

NBCO (ea) 

PACK -(An),-(An) 
#(data) 

On,On,#(data) 

SBCO On, On 
-(An).-(An) 

UNPK -(An).-(An) 
#(data) 

On,On,#(data) 

MC68030 USER'S MANUAL 

Operand Size 

8 
8 

8 

16t8 

16. 8 

8 
8 

8. 16 

8. 16 

Operation 

source1o+destination1o+X •destination 

0 # destination1 o - X • destination 

unpackaged source+immediate data• packed destination 

destination10 - source10 - X t destination 

packed source• unpacked source 
unpacked source+ immediate data t 

unpacked destination 

MOTOROLA 
3-7 

• 



• 

3.2.8 Program Control Instructions 

A set of subroutine call and return instructions and conditional and unconditional branch 
instructions perform program control operations. Table 3-8 summarizes these instructions. 

Table 3-8. Program Control Operations 

Instruction Operand Syntax Operand Size Operation 

CONDITIONAL 

Bee (label) 8, 16, 32 if condition true, then PC+ d t PC 

DBcc Dn,(label) 16 if condition false, then Dn - 1 t Dn 
if Dn 4' - 1, then PC + d t PC 

Sec (ea) 8 if condition true, then 1's t destination; else O's t destination 

UNCONDITIONAL 

BRA (label) 8, 16,32 PC+d t PC 

BSR (label) 8, 16,32 SP-4 t SP; PC t (SP); PC+d t PC 

JMP (ea) none destination t PC 

JSR (ea) none SP-4 t SP; PC t (SP); destination t PC 

NOP none none PC+2 t PC 

RETURNS 

RTD #(d) 16 (SP) t PC; SP+4+d t SP 

RTR none none (SP) t CCR; SP+2 t SP; (SP) t PC; SP+4 t SP 

RTS none none (SP) t PC; SP+4 t SP 

Letters cc in the instruction mnemonic opcodes specify testing one of the following con­
dition codes: 

CC - Carry clear 
CS - Carry set 
EQ- Equal 
F - Never true* 
GE - Greater or equal 
GT - Greater than 
HI- High 
LE - Less or equal 

LS - Low or same 
LT - Less than 
Ml- Minus 
NE - Not equal 
PL- Plus 
T - Always true* 
VC - Overflow clear 
VS - Overflow set 

• Not applicable to the Bee or cpBcc instructions. 

3.2.9 System Control Instructions 

Privileged instructions, trapping instructions, and instructions that use or modify the con­
dition code register provide system control operations. Table 3-9 summarizes these in­
structions. The preceding list of condition code representations applies to the TRAPcc 
instruction. All of these instructions cause the processor to flush the instruction pipe. 

Instruction 

ANDI 

EORI 

MOTOROLA 
3-8 

Table 3-9 System Control Operations (Sheet 1 of 2) 

J Operand Syntax J Operand Size J Operation 

PRIVILEGED 

I #(data),SR I 16 Jimmediate data A SR t SR 

l #(data),SR l 16 }immediate data (!) SR t SR 

MC68030 USER'S MANUAL 



Table 3-9 System Control Operations (Sheet 2 of 2) 

Instruction Operand Syntax 

MOVE (ea),SR 
SR,( ea) 

MOVE USP.An 
An, USP 

MOVEC Re, Rn 
Rn,Rc 

MOVES Rn,( ea) 
(ea),Rn 

ORI #(data),SR 

RESET none 

RTE none 

STOP #(data) 

BKPT #(data) 

CHK (ea),Dn 

CHK2 (ea),Rn 

ILLEGAL none 

TRAP #(data) 

TRAP cc none 
#(data) 

TRAPV none 

ANDI #(data),CCR 

EORI #(data),CCR 

MOVE (ea),CCR 
CCR,( ea) 

ORI #(data),CCR 

MC68030 USER'S MANUAL 

Operand Size Operation 

PRIVILEGED 

16 source t SR 
16 SR t destination 

32 USP t An 
32 Ant USP 

32 Re t Rn 
32 Rn t Re 

8, 16, 32 Rn t destination using DFC 
source using SFC t Rn 

16 immediate data V SR t SR 

none assert RESET line 

none (SP) t SR; SP+2 t SP; (SP) t PC; SP+4 t SP; 
Restore stack according to format 

16 immediate data t SR; STOP 

TRAP GENERATING 

none if breakpoint cycle acknowledged, then execute returned 
operation word, else trap as illegal instruction 

16, 32 if Dn <O or Dn>(ea), then CHK exception 

8, 16,32 if Rn <lower bound or Rn>upper bound, then CHK exception 

none SSP -2 t SSP; Vector Offset t (SSP); 
SSP -4 t SSP; PC t (SSP); 
SSP -2 t SSP; SR t (SSP); 
Illegal Instruction Vector Address t PC 

none SSP - 2 t SSP; Format and Vector Offset t (SSP) 
SSP -4 t SSP; PC t (SSP); SSP -2 t SSP; 
SR t (SSP); Vector Address t PC 

TRAP GENERATING (CONTINUED) 

none if cc true, then TRAP exception 
16, 32 

none if V then take overflow TRAP exception 

CONDITION CODE REGISTER 

8 immediate data i\ CCR t CCR 

8 immediate data ® CCR t CCR 

16 source t CCR 
16 CCR t destination 

8 immediate data V CCR t CCR 

MOTOROLA 
3-9 

• 



• 

3.2.10 Memory Management Unit Instructions 

The memory management instructions flush the address translation cache (ATC), load an 
entry into the ATC, load and store memory management unit (MMU) control registers, and 
perform a search of the address translation tables, storing results in the MMU status 
register. Table 3-10 summarizes these instructions. 

Table 3-10. Memory Management Unit Instructions 

Instruction Operand Syntax Operand Size Operation 

PFLUSHA none none Invalidate All ATC Entries 

PFLUSH (FC),#(mask) none Invalidate ATC Entries at Effective Address 
[.(ea)) 

PLO AD (FC),(ea),{R/W} none Create ATC Entry for Effective Address 

PMOVE Rn,(ea) 16,32 register n • destination 
(ea),Rn 16, 32 source • register n 

PTEST (FC),(ea),#(level) none Information about Logical Address • PMMU Status 
{RIW}[.An) 

3.2.11 Multiprocessor Instructions 

The TAS, CAS, and CAS2 instructions coordinate the operations of processors in multi­
processing systems. These instructions use read-modify-write bus cycles to ensure unin­
terrupted updating of memory. Coprocessor instructions control the coprocessor operations. 
Table 3-11 summarizes these instructions. 

Table 3-11. Multiprocessor Operations 

Instruction Operand Syntax Operand Size Operation 

READ-MODIFY-WRITE 

CAS Dc,Du,(ea) 8, 16, 32 destination - De • CC; if Z then Du • destination 
else destination • De 

CAS2 Dc1 :Dc2, Du1 :Du2, 16, 32 dual operand CAS 
(Rn):(Rn) 

TAS (ea) 8 destination - O; set condition codes; 1 • destination [7] 

COPROCESSOR 

cpBcc (label) 16, 32 if cpcc true then PC+ d • PC 

cpDBcc (label),Dn 16 if cpcc false then On - 1 • On 
if On .,;. - 1, then PC+d •PC 

cpGEN User Defined User Defined operand • coprocessor 

cpRESTORE (ea) none restore coprocessor state from (ea) 

cpSAVE (ea) none save coprocessor state at (ea) 

cpScc (ea) 8 if cpcc true, then 1's t destination; else O's t destination 

cpTRAPcc none none if cpcc true then TRAPcc exception 
#(data) 16, 32 

3.3 INSTRUCTION SET DETAILS 

This paragraph contains detailed information about each instruction in the MC68030 in­
struction set. First, it describes the notation and the format of the instruction description. 

MOTOROLA 
3-10 

MC68030 USER'S MANUAL 



Then each instruction is described in detail. The instruction descriptions are arranged in 
alphabetical order by instruction mnemonic. 

3.3.1 Notation and Format 

The instruction descriptions use notational conventions for the operands, the subfields and 
qualifiers, and the operations performed by the instructions. In the syntax descriptions, 
the left operand is the source operand, and the right operand is the destination operand. • 
The notational conventions listed in section 3.2 apply. The following lists contain the 
additional notations used in the instruction descriptions. 

Notation for operands: 
PC-Program counter 
SR-Status register 

V-Overflow condition code 
Immediate Data-Immediate data from the instruction 

Source-Source contents 
Destination-Destination contents 

Vector-Location of exception vector 

By convention, the destination operand is the operand on the right. 

Notation for subfields and qualifiers: 
(bit> of (operand>-Selects a single bit of the operand 
(ea>{offset:width}-Selects a bit field 

((operand>J-The contents of the referenced location 
(operand>10-The operand is binary coded decimal, operations are per­

formed in decimal 
((address register>)-The register indirect operator which indicates that th'e op­

-((address register>) erand register points to the memory location of the instruc­
((address register>)+ tion operand. The optional mode qualifiers are - , +, (d) and 

(d,ix) 
#xxx or #(data>-lmmediate data that follows the instruction word(s) 

Notations for operations that have two operands, written (operand> (op> (operand>. where 
(op> is one of the following: 

•-The source operand is moved to the destination operand 
••-The two operands are exchanged 
+-The operands are added 
--The destination operand is subtracted from the source op-

erand 
*-The operands are multiplied 
/-The source operand is divided by the destination operand 
(-Relational test, true if source operand is less than destination 

operand 
>-Relational test, true if source operand is greater than desti­

nation operand 
shifted by-The source operand is shifted or rotated by the number of 
rotated by positions specified by the second operand 

MC68030 USER'S MANUAL MOTOROLA 
3-11 



• 

Notation for single-operand operations: 
-(operand)-The operand is logically complemented 

(operand)sign-extended-The operand is sign extended, all bits of the upper portion 
are made equal to the high order bit of the lower portion 

(operand)tested-The operand is compared to 0 and the condition codes are 
set appropriately 

Notation for other operations: 
TRAP-Equivalent to Format/Offset Word. (SSP); SSP-2. SSP; PC 

• (SSP); SSP-4 • SSP; SR• (SSP); SSP-2 • SSP; (vector)• 
PC 

STOP-Enter the stopped state, waiting for interrupts 
If (condition) then-The condition is tested. If true, the operations after "then" 
(operations) else are performed. If the condition is false and the optional "else" 

(operations) clause is present, the operations after "else" are performed. 
If the condition is false and else is omitted, the instruction 
performs no operation. Refer to the description of Bee in­
struction as an example. 

3.3.2 Condition Code Register 

The condition code register portion of the status register contains five bits: 
X- Extend 
N - Negative 
Z-Zero 
V- Overflow 
C-Carry 

The last four bits represent a condition of the result of a processor operation. Table 3-11 
lists the effect of each instruction on these bits. The X bit is an operand for multiprecision 
computations; when it is used, it is set to the value of the carry bit. The carry bit and the 
multiprecision extend bit are separate in the M68000 Family to simplify programming 
techniques that use them. Refer to Table 3-4 as an example. 

Program and system control instructions use certain combinations of these bits to control 
program and system flow. Table 3-12 lists the combinations of these bits and their inter­
pretations. 

In the instruction set descriptions, the condition code register is shown as follows: 

x N z v c 

where: 
X (extend) 
Set to the value of the C bit for many arithmetic operations. Otherwise not affected 
or set to a specified result. 

N (negative) 
Set if the most significant bit of the result is set. Cleared otherwise. 

Z (zero) 
Set if the result equals zero. Cleared otherwise. 

MOTOROLA 
3-12 

MC68030 USER'S MANUAL 



V (overflow) 
Set if arithmetic overflow occurs. This implies that the result cannot be represented 
in the operand size. Cleared otherwise. 

C (carry) 
Set if a carry out of the most significant bit of the operands occurs, for an addition. 
Also, set if a borrow occurs in a subtraction. Cleared otherwise. 

The following symbols are shown in the square representing each condition code: 
*=Set according to the result of the operation 

- = Not affected by the operation 
0= Cleared 
1 =Set 
U =Undefined after the operation 

3.3.3 Instruction Descriptions 

Figure 3-2 shows the format of the instruction descriptions. The attributes line specifies 
the size of the operands of an instruction. When an instruction can use operands of more 
than one size, a suffix is used with the mnemonic of the instruction: 

.B-Byte operands . 
. W-Word operands . 
. L-Long operands. 

Table 3-12. Condition Code Computations (Sheet 1 of 2) 

Operations x N z 
ABCD . u ? 

ADD, ADDI, ADDO • . • 

ADDX . • ? 

AND, ANDI, EOR, EORI, - . * 
MOVEQ, MOVE, OR, ORI, 
CLR, EXT, NOT, TAS, TST 

CHK - * u 
CHK2, CMP2 - u ? 

SUB, SUBI, SUBQ . * * 

SUBX . . ? 

CAS, CAS2, CMP, CMPI, - . . 
CMPM 

DIVS, DUVI - . . 
MULS, MULU - * . 

MC68030 USER'S MANUAL 

v c 
u ? 

? ? 

? ? 

0 0 

u u 
u ? 

? ? 

? ? 

? ? 

? 0 

? 0 

Special Definition 

C= Decimal Carry 
Z=Z A Rm A ... A RO 

V = Sm A Om A Rm V Sm A Om A Rm 
C = Sm A Om V Rm A Dm V Sm A Rm 

V = Sm A Om A Rm V Sm A Om A Rm 
C = Sm A Om V Rm A Om V Sm A Rm 
Z = Z A Rm A ... A RO 

Z = (R = LB) V (R = UB) 
C = (LB < = UB) A (IR < LB) V (R > UB)) V (UB < LB) A (R 

> UB) A (R < LB) 

V = Sm A Om A Rm V Sm A Om A Rm 
C = Sm A Om V Rm A Om V Sm A :lm 

V = Sm A Om A Rm V Sm A Om A Rm 
C = Sm A Dm V Rm A Om V Sm A Rm 
Z = Z A Rm A ... A RO 

V = Sm A Om A Rm V Sm A Om A Rm 
C = Sm A Om V Rm A Dm V Sm A Rm 

V = Division Overflow 

V = Multiplication Overflow 

MOTOROLA 
3-13 

• 



• 

Table 3-12. Condition Code Computations (Sheet 2 of 2) 

Operations x N 

SBCD,NBCD * u 

NEG * * 

NEGX * * 

BTST,BCHG,BSET,BCLR - -

BFTST, BFCHG, BFSET, - ? 
BFCLR 

BFEXTS,BFEXTU,BFFFO - ? 

BFINS - ? 

ASL * * 

ASL (R=O) - * 
LSL, ROXL * * 

LSR (r=O) - * 

ROXL (r=O) - * 
ROL - * 

ROL (r=O) - * 
ASR, LSR, ROXR * . 
ASR, LSR (r=O) - . 
ROXR (r=O) - * 

ROR - * 
ROR (r=O) - * 

- = Not Affected 
U = Undefined, Result Meaningless 
? = Other - See Special Definition 
* = General Case 

X=C 
N =Rm 
Z =Rm/\. ... /\. RO 

z v 
? u 

* ? 

? ? 

? -

? 0 

? 0 

? 0 

* ? 

. 0 . 0 

* 0 

* 0 

* 0 

* 0 

* 0 

* 0 

* 0 

* 0 

* 0 

Sm = Source Operand - Most Significant Bit 
Dm = Destination Operand - Most Significant Bit 

MOTOROLA 
3-14 

c 
? 

? 

? 

-
0 

0 

0 

? 

0 

? 

0 

? 

? 

0 

? 

0 

? 

? 

0 

Special Definition 

C = Decimal Borrow 
Z = Z /\.Rm/\. ... /\. Ro 

V = Dm /\.Rm 
C = Dm V Rm 

V = Dm /\.Rm 
C = Dm V Rm 
Z = Z /\.Rm/\. ... /\. Ro 
Z = Dn 

N = Dm 
Z = Dm /\. DM - 1 /\. ... /\. DO 

N =Sm 
Z = Sm /\. Sm - 1 /\. ... /\. SO 

N = Dm 
Z = Dm /\. DM- 1 A ... /\. DO 

V = Dm /\. (Dm-1 V ... VDm-r)VDm /\.(DM-1 V ... +Dm-r) 
C = Dm-r+l 

C = Dm-r+l 

C=X 

C=Dm-r+l 

C=Dr-1 

C=X 

C = Dr-1 

Rm = Result Operand - Most Significant Bit 
R = Register Tested 
n = Bit Number 
r = Shift Count 

LB = Lower bound 
UB = Upper Bound 

/\. = Boolean AND 
V = Boolean OR 

Rm= NOT Rm 

MC68030 USER'S MANUAL 



INSTRUCTION NAME-------------....-~ ABCD Add) 

OPERATION DESCRIPTION-------------~- Operation: Source10 +Destination 

ASSEMBLER SYNTAX FOR THIS INSTRUCTION-------+-Assembler 
Syntax: 

ABCD Dy,Dx 
ABCD - (Ay), - (Ax) 

Attributes: Size = (Byte) 

TEXT DESCRIPTION OF INSTRUCTION OPERATION------+--+-Description: Adds the source opera 
and stores the result in the destinat 
decimal arithmetic. The operands, 
different ways: 

1. Data register to data register: 
in the instruction. 

2. Memory to memory: The op 
mode using the address 

This operation is a byte operation 

CONDITION CODE EFFECTS (SEE 3.8 CONDITION CODES) ____ ..-,_,,,,.Condition Codes: 

-INSTRUCTION FORMAT -SPECIFIES THE BIT PATIERN AND FIELDS 

X N Z v c 

I u I • 
X Set the same as the carry bit. 
N Undefined. 
Z Cleared if the result is non-zero 
V Undefined. 
C Set if a decimal carry was gen~ 

OF THE OPERATION WORD AND ANY OTHER WORDS WHICH ARE Normally the z condition cod 
PART OF THE INSTRUCTION. THE EFFECTIVE ADDRESS EXTEN- operation. This allows success 
SIONS ARE NOT EXPLICITLY ILLUSTRATED. THE EXTENSIONS (IF 1-..... . . · 
THERE ARE ANY) WOULD FOLLOW THE ILLUSTRATED PORTIONS I "' prec1s1on operations. 
OF THE INSTRUCTIONS. FOR THE MOVE INSTRUCTION, THE SOURCE "-. 
EFFECTIVE ADDRESS EXTENSION IS THE FIRST, FOLLOWED BY I 'A-Instruction Format: 
THE DESTINATION EFFECTIVE ADDRESS EXTENSION. 15 14 13 12 11 10 

l 1 l 1 j 0 j 0 j REGISTER Ry 

RIM Field: 0= Data Register to Data Register 

If RIM= 0, Rx and Ry are Data Registers 
If RIM= 1, Rx and Ry are Address Registers f 

MEANINGS AND ALLOWED VALUES OF THE VARIOUS FIELDS RE----+---lnstruction Fields: 
QUIRED BY THE INSTRUCTION FORMAT. Register Ry field - Specifies the d 

If R/M = 0, specifies a data regi 
If RIM = 1, specifies an address 

R/M field - Specifies the operand 
O - the operation is data regist 
1 - the operation is memory to 

Figure 3-2. Instruction Description Format 

MC68030 USER'S MANUAL MOTOROLA 
3-15 

• 



• 

ABCD 

Operation: 

Assembler 
Syntax: 

Attributes: 

Add Decimal with Extend ABCD 

Source10+Destination10+X •Destination 

ABCD Dy,Dx 
ABCD - (Ay), - (Ax) 

Size = (Byte) 

Description: Adds the source operand to the destination operand along with the extend 
bit, and stores the result in the destination location. The addition is performed using 
binary coded decimal arithmetic. The operands, which are packed BCD numbers, can 
be addressed in two different ways: 

1. Data register to data register: The operands are contained in the data registers 
specified in the instruction. 

2. Memory to memory: The operands are addressed with the predecrement ad­
dressing mode using the address registers specified in the instruction. 

This operation is a byte operation only. 

Condition Codes: 

X N Z V C 

• I u I • I u I • 
X Set the same as the carry bit. 
N Undefined. 
Z Cleared if the result is non-zero. Unchanged otherwise. 
V Undefined. 
C Set if a decimal carry was generated. Cleared otherwise. 

NOTE 

Normally the Z condition code bit is set via programming before the start of 
an operation. This allows successful tests for zero results upon completion 
of multiple-precision operations. 

Instruction Format: 

15 14 13 12 11 10 4 3 

I 1 I 1 I 0 I 0 I REGISTER Rx I 1 0 I 0 I 0 I 0 I R/M I REGISTER Ry 

Instruction Fields: 
Register Rx field - Specifies the destination register: 

If R/M = 0, specifies a data register 
If R/M = 1, specifies an address register for the predecrement addressing mode 

R/M field - Specifies the operand addressing mode: 
O - the operation is data register to data register 
1 - the operation is memory to memory 

Register Ry field - Specifies the source register: 
If R/M = 0, specifies a data register 
If R/M = 1, specifies an address register for the predecrement addressing mode 

MOTOROLA 
3-16 

MC68030 USER'S MANUAL 



ADD 
Operation: 

Assembler 
Syntax: 

Attributes: 

Add 

Source+ Destination • Destination 

ADD (ea),Dn 
ADD Dn,(ea) 

Size = (Byte, Word, Long) 

ADD 

Description: Adds the source operand to the destination operand using binary addition, 
and stores the result in the destination location. The size of the operation may be 
specified as byte, word, or long. The mode of the instruction indicates which operand 
is the source and which is the destination as well as the operand size. 

Condition Codes: 

X N Z v c 

• I • I • • I • 

X Set the same as the carry bit. 
N Set if the result is negative. Cleared otherwise. 
Z Set if the result is zero. Cleared otherwise. 
V Set if an overflow is generated. Cleared otherwise. 
C Set if a carry is generated. Cleared otherwise. 

Instruction Format: 

15 14 13 12 11 10 

REGISTER OP-MODE 

Instruction Fields: 

EFFECTIVE ADDRESS 

MODE REGISTER 

Register field - Specifies any of the eight data registers. 
Op-Mode field: 

Byte Word 

000 001 
100 101 

MC68030 USER'S MANUAL 

Long 

010 
110 

Operation 

(ea)+ (On) • (n) 
(Dn) +(ea) • (ea) 

MOTOROLA 
3-17 

• 



• 

ADD Add ADD 
Effective Address Field - Determines addressing mode: 

a. If the location specified is a source operand, all addressing modes are allowed 
as shown: 

Addressing Mode Mode Register Addressing Mode Mode Register 

Dn 000 reg. number:Dn (xxx).W 111 000 

An* 001 reg. number:An (xxx).L 111 001 

(An) 010 reg. number:An #(data) 111 100 

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15,An) 101 reg. number:An (d15,PC) 111 010 

(ds.An.Xn) 110 reg. number:An (ds.PC,Xn) 111 011 

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011 

([bd,An,Xn),od) 110 reg. number:An ([bd,PC,Xn],od) 111 011 

([bd,An),Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011 

*Word and Long only. 

b. If the location specified is a destination operand, only memory alterable address­
ing modes are allowed as shown: 

Addressing Mode Mode Register Addressing Mode Mode Register 

Dn - - (xxx).W 111 000 

An - - (xxx).L 111 001 

(An) 010 reg. number:An #(data) - -

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15,An) 101 reg. number:An (d15.PC) - -

(ds.An,Xn) 110 reg. number:An (ds,PC,Xn) - -
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) - -

([bd,An,Xn).od) 110 reg. number:An ([bd,PC,Xn).od) - -

([bd,An),Xn,od) 110 reg. number:An ([bd,PC],Xn,od) - -

Notes: 
1. The Dn mode is used when the destination is a data register; the destination (ea) 

mode is invalid for a data register. 
2. ADDA is used when the destination is an address register. ADDI and ADDO are 

used when the source is immediate data. Most assemblers automatically make 
this distinction. 

MOTOROLA 
3-18 

MC68030 USER'S MANUAL 



ADDA 

Operation: 

Assembler 
Syntax: 

Attributes: 

Add Address ADDA 
Source+ Destination • Destination 

ADDA (ea), An 

Size = (Word, Long) 

Description: Adds the source operand to the destination address register, and stores 
the result in the address register. The size of the operation may be specified as word 
or long. The entire destination address register is used regardless of the operation 
size. 

Condition Codes: 
Not affected. 

Instruction Format: 

15 14 13 12 11 10 4 

REGISTER OP-MOOE 
EFFECTIVE ADDRESS 

MOOE REGISTER 

Instruction Fields: 
Register field - Specifies any of the eight address registers. This is always the des­

tination. 
Op-Mode field - Specifies the size of the operation: 

011 - Word operation. The source operand is sign-extended to a long operand and 
the operation is performed on the address register using all 32 bits. 

111 - Long operation. 
Effective Address field - Specifies the source operand. All addressing modes are 

allowed as shown: 

Addressing Mode Mode Register 

Dn 000 reg. number:Dn 

An 001 reg. number:An 

(An) 010 reg. number:An 

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d16.An) 101 reg. number:An 

(da.An,Xn) 110 reg. number:An 

(bd,An,Xn) 110 reg. number:An 

([bd,An,Xn],od) 110 reg. number:An 

([bd,Anl.Xn,od) 110 reg. number:An 

MC68030 USER'S MANUAL 

Addressing Mode 

(xxx).W 

(xxx).L 

#(data) 

(d15,PC) 

(da,PC,Xn) 

(bd,PC,Xn) 

([bd,PC,Xn],odj 

([bd,PC],Xn,od) 

Mode 

111 

111 

111 

111 

111 

111 

111 

111 

Register 

000 

001 

100 

010 

011 

011 

011 

011 

MOTOROLA 
3-19 

• 



ADDI 

Operation: 

Assembler 
Syntax: 

•. Attributes: 

Add Immediate ADDI 

Immediate Data+ Destination • Destination 

ADDI #(data),(ea) 

Size = (Byte, Word, Long) 

Description: Adds the immediate data to the destination operand, and stores the result 
in the destination location. The size of the operation may be specified as byte, word, 
or long. The size of the immediate data matches the operation size. 

Condition Codes: 

X N Z V C 

·l·l·l·I· 
X Set the same as the carry bit. 
N Set if the result is negative. Cleared otherwise. 
Z Set if the result is zero. Cleared otherwise. 
V Set if an overflow is generated. Cleared otherwise. 
C Set if a carry is generated. Cleared otherwise. 

Instruction Format: 

15 14 13 12 11 10 

0 l 0 l 0 l 0 l 0 J 1 l 1 l 0 SIZE l EFFECTIVE ADDRESS 

MODE l REGISTER 

WORD DATA 116 BITS) BYTE DATA IS BITS) 

LONG DATA 132 BITS) 

Instruction Fields: 
Size field - Specifies the size of the operation: 

00 - Byte operation. 
01 - Word operation. 
1 O - Long operation. 

MOTOROLA 
3-20 

MC68030 USER'S MANUAL 



ADDI Add Immediate 

Effective Address field - Specifies the destination operand. 
Only data alterable addressing modes are allowed as shown: 

Addressing Mode Mode Register Addressing Mode Mode 

Dn 000 reg. number:Dn (xxx).W 111 

An - - (xxx).l 111 

(An) 010 reg. number:An #(data) -
(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15,An) 101 reg. number:An (d16,PC) -

(d5,An,Xn) 110 reg. number:An (d5,PC,Xn) -

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) -

([bd,An,Xn).od) 110 reg. number:An ([bd,PC,Xn).od) -

([bd,An].Xn,od) 110 reg. number:An ([bd,PC],Xn,od) -

Immediate field - (Data immediately following the instruction): 
If size = 00, the data is the low order byte of the immediate word. 
If size = 01, the data is the entire immediate word. 
If size = 10, the data is the next two immediate words. 

MC68030 USER'S MANUAL 

ADDI 

Register 

000 

001 

-

-

-

-

-

-

MOTOROLA 
3-21 

• 



ADDQ 

Operation: 

Assembler 
Syntax: 

• Attributes: 

Add Quick ADDQ 

Immediate Data+ Destination • Destination 

ADDO #(data),(ea) 

Size = (Byte, Word, Long) 

Description: Adds an immediate value of 1 to 8 to the operand at the destination lo-
cation. The size of the operation may be specified as byte, word, or long. Word and 
long operations are also allowed on the address registers. When adding to address 
registers, the condition codes are not altered, and the entire destination address reg­
ister is used regardless of the operation size. 

Condition Codes: 

X N Z V C 

·l·l·l·I· 
X Set the same as the carry bit. 
N Set if the result is negative. Cleared otherwise. 
Z Set if the result is zero. Cleared otherwise. 
V Set if an overflow occurs. Cleared otherwise. 
C Set if a carry occurs. Cleared otherwise. 

The condition codes are not affected when the destination is an address register. 

Instruction Format: 

15 14 13 12 11 10 

DATA SIZE 
EFFECTIVE ADDRESS 

MODE REGISTER 

Instruction Fields: 
Data field- Three bits of immediate data, 0-7 (with the immediate value 0 representing 

a value of 8). 
Size field - Specifies the size of the operation: 

00 - Byte operation. 
01 - Word operation. 
10 - Long operation. 

MOTOROLA 
3-22 

MC68030 USER'S MANUAL 



ADDQ Add Quick 

Effective Address field - Specifies the destination location. 
Only alterable addressing modes are allowed as shown: 

Addressing Mode Mode Register Addressing Mode 

On 000 reg. number:Dn (xxx).W 

An* 001 reg. number:An (xxx).L 

(An) 010 reg. number:An #(data) 

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15,An) 101 reg. number:An (d15,PC) 

(d9,An,Xn) 110 reg. number:An (d9,PC,Xn) 

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 

([bd,An,XnJ,od) 110 reg. number:An ([bd,PC,Xn],od) 

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 

*Word and Long only. 

MC68030 USER'S MANUAL 

Mode 

111 

111 

-

-
-
-

-

-

ADDQ 

Register 

000 

001 

-

-
-
-
-
-

MOTOROLA 
3-23 

• 



ADDX 
Operation: 

Assembler 
Syntax: 

• Attributes: 

Add Extended ADDX 
Source+ Destination+ X • Destination 

ADDX Dy,Dx 
ADDX - (Ay).- (Ax) 

Size = (Byte, Word, Long) 

Description: Adds the source operand to the destination operand along with the extend 
bit and stores the result in the destination location. The operands can be addressed 
in two different ways: 

1. Data register to data register: The data registers specified in the instruction con­
tain the operands. 

2. Memory to memory: The address registers specified in the instruction address 
the operands using the predecrement addressing mode. 

The size of the operation can be specified as byte, word, or long. 

Condition Codes: 

X N Z V C 

·l·l·l·I· 
X Set the same as the carry bit. 
N Set if the result is negative. Cleared otherwise. 
Z Cleared if the result is non-zero. Unchanged otherwise. 
V Set if an overflow occurs. Cleared otherwise. 
C Set if a carry is generated. Cleared otherwise. 

NOTE 
Normally the Z condition code bit is set via programming before the start of 
an operation. This allows successful tests for zero results upon completion 
of multiple-precision operations. 

Instruction Format: 

15 14 13 12 11 10 

I 1 I 1 I 0 1 I REGISTER Rx I 1 SIZE I 0 0 I R/M I REGISTER Ry 

Instruction Fields: 
Register Rx field - Specifies the destination register: 

If R/M = 0, specifies a data register. 
If R/M = 1, specifies an address register for the predecrement addressing mode. 

Size field - Specifies the size of the operation: 
00 - Byte operation. 
01 - Word operation. 
10 - Long operation. 

MOTOROLA 
3-24 

MC68030 USER'S MANUAL 



ADDX Add Extended 

R/M field - Specifies the operand address mode: 
0 - The operation is data register to data register. 
1 - The operation is memory to memory. 

Register Ry field - Specifies the source register: 
If R/M = 0, specifies a data register. 

ADDX 

If R/M = 1, specifies an address register for the predecrement addressing mode. 

MC68030 USER'S MANUAL MOTOROLA 
3-25 

• 



AND 

Operation: 

Assembler 
Syntax: 

• Attributes: 

And Logical 

Sourcei\Destination • Destination 

AND (ea),Dn 
AND Dn,(ea) 

Size = (Byte, Word, Long) 

AND 

Description: Performs an AND operation of the source operand with the destination 
operand and stores the result in the destination location. The size of the operation can 
be specified as byte, word, or long. The contents of an address register may not be 
used as an operand. 

Condition Codes: 

X N Z V C 

1-l·l·lolo 
X Not affected. 
N Set if the most-significant bit of the result is set. Cleared otherwise. 
Z Set if the result is zero. Cleared otherwise. 
V Always cleared. 
C Always cleared. 

Instruction Format: 

15 14 13 12 11 10 

0 0 REGISTER OP-MOOE 
EFFECTIVE ADDRESS 

MODE REGISTER 

Instruction Fields: 
Register field - Specifies any of the eight data registers. 
Op-Mode field: 

Byte Word 

000 001 
100 101 

MOTOROLA 
3-26 

Long 
010 
110 

Operation 

((ea))A((Dn)) • Dn 
((Dn))A((ea)) • ea 

MC68030 USER'S MANUAL 



AND And Logical AND 

Effective Address field - Determines addressing mode: 
If the location specified is a source operand only data addressing modes are allowed 
as shown: 

Addressing Mode Mode Register Addressing Mode Mode Register 

On 000 reg. number:Dn (xxx).W 111 000 

An - - (xxx).L 111 001 

(An) 010 reg. number:An #(data) 111 100 

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d1s.An) 101 reg. number:An (d15.PC) 111 010 

(d5,An,Xn) 110 reg. number:An (d5,PC,Xn) 111 011 

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011 

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011 

([bd,An).Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011 

If the location specified is a destination operand only memory alterable addressing 
modes are allowed as shown: 

Addressing Mode Mode Register Addressing Mode Mode Register 

Dn - - (xxx).W 111 000 

An - - (xxx).L 111 001 

(An) 010 reg. number:An #(data) - -
(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15,An) 101 reg. number:An (d15,PC) - -

(d5,An,Xn) 110 reg. number:An (d5,PC,Xn) - -
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) - -

([bd,An,Xn),od) 110 reg. number:An ([bd,PC,Xn),od) - -

([bd,An),Xn,od) 110 reg. number:An ([bd,PC),Xn,od) - -

Notes: 
1. The On mode is used when the destination is a data register; the destination 

(ea) mode is invalid for a data register. 
2. Most assemblers use ANDI when the source is immediate data. 

MC68030 USER'S MANUAL MOTOROLA 
3-27 

• 



ANDI 

Operation: 

Assembler 
Syntax: 

• Attributes: 

AND Immediate ANDI 

Immediate DataADestination • Destination 

ANDI #(data),(ea) 

Size = (Byte, Word, Long) 

Description: Performs an AND operation of the immediate data with the destination 
operand and stores the result in the destination location. The size of the operation can 
be specified as byte, word, or long. The size of the immediate data matches the 
operation size. 

Condition Codes: 

X N Z V C 

-l·l·lolo 

X Not affected. 
N Set if the most-significant bit of the result is set. Cleared otherwise. 
Z Set if the result is zero. Cleared otherwise. 
V Always cleared. 
C Always cleared. 

Instruction Format: 

15 14 13 12 11 10 

o I o I o I o I o I o l 1 I o SIZE I 
WORD DATA 116 BITS) 

LONG DATA 132 BITS) 

Instruction Fields: 
Size field - Specifies the size of the operation: 

00 - Byte operation 
01 - Word operation. 
10 - Long operation. 

MOTOROLA 
3-28 

BYTE DATA 18 BITS) 

MC68030 USER'S MANUAL 



ANDI AND Immediate 

Effective Address field - Specifies the destination operand. 
Only data alterable addressing modes are allowed as shown: 

Addressing Mode Mode Register Addressing Mode Mode 

Dn 000 reg. number:Dn (xxx).W 111 

An - - (xxx).L 111 

(An) 010 reg. number:An #(data) -

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15.An) 101 reg. number:An (d15,PC) -

(d9,An,Xn) 110 reg. number:An (d9,PC,Xn) -
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) -

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn].od) -

([bd,An].Xn,od) 110 reg. number:An ([bd,PCJ,Xn,od) -

Immediate field - (Data immediately following the instruction): 
If size = 00, the data is the low order byte of the immediate word. 
If size = 01, the data is the entire immediate word. 
If size = 10, the data is the next two immediate words. 

MC68030 USER'S MANUAL 

ANH 

Register 

000, 

001 i 
I, 

-

-

-

-

-

-

MOTOROLA 
3-29 

• 



• 

A\IDI 
tJ CCR AND Immediate to Condition Codes 

ANDI 
to CCR 

C>eration: SourceACCR • CCR 

ssembler 
yntax: ANDI #(data),CCR 

~ttributes: Size = (Byte) 

Description: Performs an AND operation of the immediate operand with the condition 
codes and stores the result in the low-order byte of the status register. 

Condition Codes: 

X N Z V C 

• I • I • I • I • 
X Cleared if bit 4 of immediate operand is zero. Unchanged otherwise. 
N Cleared if bit 3 of immediate operand is zero. Unchanged otherwise. 
Z Cleared if bit 2 of immediate operand is zero. Unchanged otherwise. 
V Cleared if bit 1 of immediate operand is zero. Unchanged otherwise. 
C Cleared if bit 0 of immediate operand is zero. Unchanged otherwise. 

Instruction Format: 

15 14 13 12 11 

. 0 

MOTOROLA 
3-30 

0 

10 9 4 

1 1 1 

BYTE DATA (8 BITS) 

MC68030 USER'S MANUAL 



ANDI 
to SR 

Operation: 

Assembler 
Syntax: 

Attributes: 

AND Immediate to the Status Register 
(Privileged Instruction) 

If supervisor state 
then SourceASR • SR 
else TRAP 

ANDI #(data),SR 

Size = (Word) 

ANDI 
to SR 

Description: Performs an AND operation of the immediate operand with the contents 
of the status register and stores the result in the status register. All implemented bits 
of the status register are affected. 

Condition Codes: 

X N Z V C 

• I • I • I • I • 

X Cleared if bit 4 of immediate operand is zero. Unchanged otherwise. 
N Cleared if bit 3 of immediate operand is zero. Unchanged otherwise. 
Z Cleared if bit 2 of immediate operand is zero. Unchanged otherwise. 
V Cleared if bit 1 of immediate operand is zero. Unchanged otherwise. 
C Cleared if bit O of immediate operand is zero. Unchanged otherwise. 

Instruction Format: 

15 14 13 12 11 10 

o I o I o I o o I o 
WORO DATA 116 BITS) 

MC68030 USER'S MANUAL 

o I o 

MOTOROLA 
3-31 

• 



• 

ASL,ASR Arithmetic Shift 

Operation: 

Assembler 
Syntax: 

Attributes: 

Destination Shifted by (count)• Destination 

ASd Dx,Dy 
ASd #(data),Dy 
ASd (ea) 
where d is direction, Lor R 

Size = (Byte, Word, Long) 

ASL,ASR 

Description: Arithmetically shifts the bits of the operand in the direction (Lor R) spec-
ified. The carry bit receives the last bit shifted out of the operand. The shift count for 
the shifting of a register may be specified in two different ways: 

1. Immediate - The shift count is specified in the instruction (shift range, 1-8). 
2. Register - The shift count is the value in the data register specified in instruction 

modulo 64. 

The size of the operation can be specified as byte, word, or long. An operand in memory 
can be shifted one bit only, and the operand size is restricted to a word. 

For ASL, the operand is shifted left; the number of positions shifted is the shift count. 
Bits shifted out of the high-order bit go to both the carry and the extend bits; zeros 
are shifted into the low-order bit. The overflow bit indicates if any sign changes occur 
during the shift. 

ASL: : : :~ l 
OPERAND -------

For ASR, the operand is shifted right; the number of positions shifted is the shift count. 
Bits shifted out of the low-order bit go to both the carry and the extend bits; the sign­
bit (MSB) is shifted into the high-order bit. 

MOTOROLA 
3-32 

ASA: 

..----•____.,____I MSB -OPERAND ~]~~: : : 

MC68030 USER'S MANUAL 



ASL,ASR Arithmetic Shift ASL,ASR 

Condition Codes: 

X N Z V C 

• I • I • I • I • 
X Set according to the last bit shifted out of the operand. Unaffected for a shift count 
of zero. 

N Set if the most-significant bit of the result is set. Cleared otherwise. 
Z Set if the result is zero. Cleared otherwise. 
V Set if the most significant bit is changed at any time during the shift operation. 
Cleared otherwise. 

C Set according to the last bit shifted out of the operand. Cleared for a shift count 
of zero. 

Instruction Format (Register Shifts): 

15 14 13 12 11 10 9 

I 1 I 1 I 1 I 0 I COUNT/REGISTER dr I SIZE i/r I a I a I REGISTER 

Instruction Fields (Register Shifts): 
Count/Register field - Specifies shift count or register that contains the shift count: 

If i/r = 0, this field contains the shift count. The values 1-7 represent counts of 1-7; 
value of zero represents a count of 8. 

If i/r = 1, this field specifies the data register that contains the shift count (modulo 
64). 

dr field - Specifies the direction of the shift: 
0 - Shift right. 
1 - Shift left. 

Size field - Specifies the size of the operation: 
00 - Byte operation. 
01 - Word operation. 
10 - Long operation. 

i/r field: 
If i/r = 0, specifies immediate shift count. 
If i/r = 1, specifies register shift count. 

Register field - Specifies a data register to be shifted. 

Instruction Format (Memory Shifts): 

15 14 13 12 11 10 

dr 

Instruction Fields (Memory Shifts): 
dr field - Specifies the direction of the shift: 

0 - Shift right. 
1 - Shift left. 

MC68030 USER'S MANUAL 

EFFECTIVE ADDRESS 

MODE REGISTER 

MOTOROLA 
3-33 

• 



• 

ASL,ASR Arithmetic Shift ASL,ASR 

Effective Address field - Specifies the operand to be shifted. 
Only memory alterable addressing modes are allowed as shown: 

Addressing Mode 

Dn 

An 

(An) 

(An)+ 

-(An) 

(d15,An) 

(da.An,Xn) 

(bd,An,Xn) 

([bd,An,Xn].od) 

([bd,An),Xn,od) 

MOTOROLA 
3-34 

Mode Register 

- -

- -

010 reg. number:An 

011 reg. number:An 

100 reg. number:An 

101 reg. number:An 

110 reg. number:An 

110 reg. number:An 

110 reg. number:An 

110 reg. number:An 

Addressing Mode Mode Register 

(xxx).W 111 000 

(xxx).L 111 001 

#(data) - -

(d15,PC) - -
(da.PC,Xn) - -

(bd,PC,Xn) - -
([bd,PC,Xn],od) - -
([bd,PC],Xn,od) - -

MC68030 USER'S MANUAL 



Bee 

Operation: 

Assembler 
Syntax: 

Attributes: 

Branch Conditionally Bee 

If (condition true) then PC+ d • PC 

Bee (label) 

Size = (Byte, Word, Long) 

Description: If the specified condition is true, program execution continues at location 
(PC)+ displacement. The PC contains the address of the instruction word of the Bee 
instruction plus two. The displacement is a twos complement integer that represents 
the relative distance in bytes from the current PC to the destination PC. If the 8-bit 
displacement field in the instruction word is zero, a 16-bit displacement (the word 
immediately following the instruction) is used. If the 8-bit displacement field in the 
instruction word is all ones ($FF), the 32-bit displacement (long word immediately 
following the instruction) is used. Condition code cc specifies one of the following 
conditions: 
CC carry clear 
CS carry set 
EQ equal 
GE greater or equal 
GT greater than 
HI high 
LE less or equal 

Condition Codes: 
Not affected. 

Instruction Format: 

0100 c 
0101 c 
0111 z 
1100 N•V + N•V 
1110 N•V•Z + N•V•Z 
0010 C·Z 
1111 z + N·V + N•V 

LS low or same 
LT less than 
Ml 
NE 
PL 
vc 
vs 

minus 
not equal 
plus 
overflow clear 
overflow set 

15 14 13 12 11 10 

0 l 1 l 1 l 0 l CONDITION l 8-BIT DISPLACEMENT 

16-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $00 

32-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $FF 

Instruction Fields: 

0011 C+Z 
1101 N•V + N•V 
1011 N 
0110 z 
1010 Ki 
1000 v 
1001 v 

Condition field - The binary code for one of the conditions listed in the table. 
8-Bit Displacement field - Twos complement integer specifying the number of bytes 

between the branch instruction and the next instruction to be executed if the con­
dition is met. 

16-Bit Displacement field - Used for the displacement when the 8-bit displacement 
field contains $00. 

32-Bit Displacement field - Used for the displacement when the 8-bit displacement 
field contains $FF. 

NOTE 
A branch to the immediately following instruction automatically uses the 16-
bit displacement format because the 8-bit displacement field contains $00 
(zero offset). 

MC68030 USER'S MANUAL MOTOROLA 
3-35 

• 



• 

BCHG 

Operation: 

Assembler 
Syntax: 

Attributes: 

Test a Bit and Change 

-((number) of Destination) • Z; 
-((number) of Destination) • (bit number) of Destination 

BCHG Dn,(ea) 
BCHG #(data),(ea) 

Size = (Byte, Long) 

BCHG 

Description: Tests a bit in the destination operand and sets the Z condition code ap-
propriately, then inverts the specified bit in the destination. When the destination is 
a data register, any of the 32 bits can be specified by the modulo 32-bit number. When 
the destination is a memory location, the operation is a byte operation, and the bit 
number is modulo 8. In all cases, bit zero refers to the least-significant bit. The bit 
number for this operation may be specified in either of two ways: 

1. Immediate - The bit number is specified in a second word of the instruction. 
2. Register - The specified data register contains the bit number. 

Condition Codes: 

X N Z V C 

I - I - I • I 
X Not affected. 
N Not affected. 
Z Set if the bit tested is zero. Cleared otherwise. 
V Not affected. 
C Not affected. 

Instruction Format (Bit Number Dynamic, specified in a register): 

15 14 13 12 11 10 8 4 

REGISTER 
EFFECTIVE ADDRESS 

MODE REGISTER 

Instruction Fields (Bit Number Dynamic): 
Register field - Specifies the data register that contains the bit number. 

MOTOROLA 
3-36 

MC68030 USER'S MANUAL 



BCHG Test a Bit and Change BCHG 

Effective Address field - Specifies the destination location. Only data alterable ad­
dressing modes are allowed as shown: 

Addressing Mode Mode Register Addressing Mode Mode Register 

Dn* 000 reg. number:Dn (xxx).W 111 000 

An - - (xxx).L 111 001 

(An) 010 reg. number:An #(data) - -

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d1s.An) 101 reg. number:An (d15,PC) - -
(d3,An,Xn) 110 reg. number:An (d3,PC,Xn) - -

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) - -

([bd,An,Xn].od) 110 reg. number:An ((bd,PC,Xn].od) - -

([bd,An].Xn,od) 110 reg. number:An ((bd,PC],Xn,od) - -

*Long only; all others are byte only. 

Instruction Format (Bit Number Static, specified as immediate data): 

15 14 13 12 11 10 

l 1 I EFFECTIVE ADDRESS 
0 0 0 0 1 0 0 0 0 

MODE l 
0 0 0 0 0 0 0 0 BIT NUMBER 

Instruction Fields (Bit Number Static): 
Effective Address field - Specifies the destination location. 

Only data alterable addressing modes are allowed as shown: 

Addressing Mode Mode Register Addressing Mode Mode 

Dn* 000 reg. number:Dn (xxx).W 111 

An - - (xxx).L 111 

(An) 010 reg. number:An #(data) -

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15,An) 101 reg. number:An (d15,PC) -

(d3,An,Xn) 110 reg. number:An (d3,PC,Xn) -

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) -

((bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) -

([bd,An].Xn,od) 110 reg. number:An ((bd,PC].Xn,od) -

*Long only; all others are byte only. 

Bit Number field - Specifies the bit number. 

MC68030 USER'S MANUAL 

REGISTER 

Register 

000 

001 

-

-

-
-

-

-

MOTOROLA 
3-37 

• 



• 

BCLR 

Operation: 

Assembler 
Syntax: 

Attributes: 

Test a Bit and Clear 

-((bit number) of Destination) • Z; 
0 • (bit number) of Destination 

BCLR Dn,(ea) 
BCLR #(data),(ea) 

Size = (Byte, Long) 

BCLR 

Description: Tests a bit in the destination operand and sets the Z condition code ap-
propriately, then clears the specified bit in the destination. When a data register is the 
destination, any of the 32 bits can be specified by a modulo 32-bit number. When a 
memory location is the destination, the operation is a byte operation, and the bit 
number is modulo 8. In all cases, bit zero refers to the least-significant bit. The bit 
number for this operation can be specified in either of two ways: 

1. Immediate - The bit number is specified in a second word of the instruction. 
2. Register - The specified data register contains the bit number. 

Condition Codes: 

X N Z V C 

I - I - I • I 
X Not affected. 
N Not affected. 
Z Set if the bit tested is zero. Cleared otherwise. 
V Not affected. 
C Not affected. 

Instruction Format (Bit Number Dynamic, specified in a register): 

15 14 13 12 11 10 

REGISTER 
EFFECTIVE ADDRESS 

MODE REGISTER 

Instruction Fields (Bit Number Dynamic): 
Register field - Specifies the data register that contains the bit number. 

MOTOROLA 
3-38 

MC68030 USER'S MANUAL 



BCLR Test a Bit and Clear BCLR 

Effective Address field - Specifies the destination location. 
Only data alterable addressing modes are allowed as shown: 

Addressing Mode Mode Register Addressing Mode Mode Register 

Dn* 000 reg. number:Dn (xxx).W 111 000 

An - - (xxx).L 111 001 

(An) 010 reg. number:An #(data) - -

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15,An) 101 reg. number:An (d15,PC) - -

(ds.An,Xn) 110 reg. number:An (ds,PC,Xn) - -

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) - -
([bd,An,Xn),od) 110 reg. number:An ([bd,PC,Xn],od) - -
([bd,AnJ,Xn,od) 110 reg. number:An ([bd,PCJ,Xn,od) - -

*Long only; all others are byte only. 

Instruction Format (Bit Number Static, specified as immediate data): 

15 14 13 12 11 10 

0 0 0 0 J J EFFECTIVE ADDRESS 
1 0 0 0 1 0 

MODE J 
0 0 0 0 0 0 0 0 BIT NUMBER 

Instruction Fields (Bit Number Static): 
Effective Address field - Specifies the destination location. 

Only data alterable addressing modes are allowed as shown: 

Addressing Mode Mode Register Addressing Mode Mode 

Dn* 000 reg. number:Dn (xxx).W 111 

An - - (xxx).L 111 

(An) 010 reg. number:An #(data) -

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15.Anl 101 reg. number:An (d15,PC) -

(ds,An,Xn) 110 reg. number:An (ds.PC,Xn) -

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) -

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn),od) -

([bd,An],Xn,od) 110 reg. number:An ([bd,PCJ,Xn,od) -
*Long only; all others are byte only. 

Bit Number field - Specifies the bit number. 

MC68030 USER'S MANUAL 

REGISTER 

Register 

000 

001 

-

-
-

-

-

-

MOTOROLA 
3-39 

• 



------------ BfCHG Test Bit Field and Change BFCHG 

~((bit field) of Destination) • (bit field) of Destination 

Assembler 
Syntax: 

• Attributes: 

BFCHG (ea){offset:width} 

Unsized 

Description: Sets the condition codes according to the value in a bit field at the specified 
effective address, then complements the field. 

A field offset and a field width select the field. The field offset specifies the starting 
bit of the field. The field width determines the number of bits in the field. 

Condition Codes: 

X N Z V C 

-l·l·lolo 
X Not affected. 
N Set if the most-significant bit of the field is set. Cleared otherwise. 
Z Set if all bits of the field are zero. Cleared otherwise. 
V Always cleared. 
C Always cleared. 

Instruction Format: 

15 14 13 12 11 10 

I 1 I 0 I 1 I EFFECTIVE ADDRESS 
1 1 1 0 1 0 1 l MOOE REGISTER 

0 0 0 0 Do OFFSET Dw I WIDTH 

Instruction Fields: 
Effective Address field - Specifies the base location for the bit field. Only data register 

direct or control alterable addressing modes are allowed as shown: 

Addressing Mode 

MOTOROLA 
3-40 

Dn 

An 

(An) 

(An)+ 

-(An) 

(d15.An) 

(ds.An,Xn) 

(bd,An,Xn) 

([bd,An,Xn].od) 

([bd.Anl.Xn,od) 

Mode Register 

000 reg. number:Dn 

- -

010 reg. number:An 

- -

- -
101 reg. number:An 

110 reg. number:An 

110 reg. number:An 

110 reg. number:An 

110 reg. number:An 

Addressing Mode Mode Register 

(xxx).W 111 000 

(xxx).L 111 001 

#(data) - -

(d15.PC) - -
(ds,PC.Xn) - -

(bd,PC,Xn) - -

([bd,PC,Xn].od) - -

([bd,PC],Xn,od) - -

MC68030 USER'S MANUAL 



BFCHG Test Bit Field and Change 

Do field - Determines how the field offset is specified. 
0 - The Offset field contains the bit field offset. 

BFCHG 

1 - Bits (8:6] of the extension word specify a data register that contains the offset; 
bits (10:9] are 0. 

Offset field - Specifies the field offset, depending on Do. 
If Do = 0, the Offset field is an immediate operand; the operand value is in the • 

range 0-31. 
If Do = 1, the Offset field specifies a data register that contains the offset. The value 

is in the range of - 231 to 231 -1. 
Dw field - Determines how the field width is specified. 

0 - The Width field contains the bit field width. 
1 - Bits (2:0] of the extension word specify a data register that contains the width; 

bits (3:4] are 0. 
Width field - Specifies the field width, depending on Dw. 

If Dw = 0, the Width field is an immediate operand; an operand value in the range 
1-31 specifies a field width of 1-31, and a value of 0 specifies a width of 
32. 

If Dw = 1, the Width field specifies a data register that contains the width. The value 
is modulo 32; values of 1-31 specify field widths of 1-31, and a value of 
0 specifies a width of 32. 

MC68030 USER'S MANUAL MOTOROLA 
3-41 



BFCLR Test Bit Field and Clear BFCLR 
~ 0 •(bit field) of Destination 

• 
Assembler 
Syntax: 

Attributes: 

~~~ 

BFCLR (ea){offset:width} 

Unsized 

Description: Sets condition codes according to the value in a bit field at the specified 
effective address, and clears the field. 

The field offset and field width select the field. The field offset specifies the starting 
bit of the field. The field width determines the number of bits in the field. 

Condition Codes: 

X N Z V C 

-l·l·lolo 
X Not affected. 
N Set if the most-significant bit of the field is set. Cleared otherwise. 
Z Set if all bits of the field are zero. Cleared otherwise. 
V Always cleared. 
C Always cleared. 

Instruction Format: 

15 14 13 12 11 10 3 

l 0 I 0 I 1 l EFFECTIVE ADDRESS 
1 1 1 0 1 1 1 l MODE REGISTER 

0 0 0 0 Do OFFSET Dw j WIDTH 

Instruction Fields: 
Effective Address field - Specifies the base location for the bit field. Only data register 

direct or alterable control addressing modes are allowed, as shown: 

Addressing Mode 

MOTOROLA 
3-42 

On 

An 

(An) 

(An)+ 

-(An) 

(d15.An) 

(ds.An,Xn) 

(bd,An,Xn) 

([bd,An,Xn].od) 

([bd.An],Xn,od) 

Mode Register 

000 reg. number:Dn 

- -

010 reg. number:An 

- -

- -

101 reg. number:An 

110 reg. number:An 

110 reg. number:An 

110 reg. number:An 

110 reg. number:An 

Addressing Mode Mode Register 

(xxx).W 111 000 

(xxx).L 111 001 

#(data) - -

(d15,PC) - -

(ds.PC,Xn) - -

(bd,PC,Xn) - -

([bd,PC,Xn].od) - -

([bd,PC],Xn,od) - -

MC68030 USER'S MANUAL 



BFCLR Test Bit Field and Clear 

Do field - Determines how the field offset is specified. 
0 - The Offset field contains the bit field offset. 

BFCLR 

1 - Bits [8:6] of the extension word specify a data register that contains the offset; 
bits [10:9] are 0. 

Offset field - Specifies the field offset, depending on Do. • 
If Do = 0, the Offset field is an immediate operand; the operand value is in the 

range of 0-31. 
If Do = 1, the Offset field specifies a data register that contains the offset. The value 

is in the range of - 231 to 231 -1. 
Dw field - Determines how the field width is specified. 

0 - The Width field contains the bit field width. 
1 - Bits [2:0] of the extension word specify a data register that contains the width; 

bits [3:4] are 0. 
Width field - Specifies the field width, depending on Dw. 

If Dw = 0, the Width field is an immediate operand; operand values in the range 
of 1-31 specify a field width of 1-31, and a value of 0 specifies a width 
of 32. 

If Dw = 1, the Width field specifies a data register that contains the width. The value 
is modulo 32; values of 1-31 specify field widths of 1-31, and a value of 
0 specifies a width of 32. 

MC68030 USER'S MANUAL MOTOROLA 
3-43 



BFEXTS Extract Bit Field Signed BFEXTS 
Operation: 

Assembler 
Syntax: 

• Attributes: 

(bit field) of Source • Dn 

BFEXTS (ea){offset:width},Dn 

Unsized 

Description: Extracts a bit field from the specified effective address location, sign ex-
tends to 32 bits, and loads the result into the destination data register. 

The field offset and field width select the bit field. The field offset specifies the starting 
bit of the field. The field width determines the number of bits in the field. 

Condition Codes: 

X N . Z V C 

1-l·l·lolo 
X Not affected. 
N Set if the most-significant bit of the field is set. Cleared otherwise. 
Z Set if all bits of the field are zero. Cleared otherwise. 
V Always cleared. 
C Always cleared. 

Instruction Format: 

15 14 13 12 11 10 8 3 2 

l 1 l I 1 l 1 l 1 l EFFECTIVE ADDRESS 
1 1 0 1 0 1 l MODE REGISTER 

0 REGISTER Do OFFSET Ow J WIDTH 

Instruction Fields: 
Effective Address field - Specifies the base location for the bit field. Only data register 

direct or control addressing modes are allowed as shown: 

Addressing Mode 

MOTOROLA 
3-44 

Dn 

An 

(An) 

(An)+ 

-(An) 

(d15.An) 

(ds.An,Xn) 

(bd,An,Xn) 

([bd,An,Xn),od) 

([bd,An],Xn,od) 

Mode Register 

000 reg. number:Dn 

- -
010 reg. number:An 

- -

- -
101 reg. number:An 

110 reg. number:An 

110 reg. number:An 

110 reg. number:An 

110 reg. number:An 

Addressing Mode Mode Register 

(xxx).W 111 000 

(xxx).L 111 001 

#(data) - -

(d15,PC) 111 010 

(d5,PC,Xn) 111 011 

(bd,PC,Xn) 111 011 

([bd,PC,Xn],od) 111 011 

([bd,PC],Xn,od) 111 011 

MC68030 USER'S MANUAL 



BFEXTS Extract Bit Field Signed 

Register field - Specifies the destination register. 
Do field - Determines how the field offset is specified. 

0 - The Offset field contains the bit field offset. 

BFEXTS 

1 - Bits [8:6] of the extension word specify a data register that contains the offset; 
bits [10:9] are 0. 

Offset field - Specifies the field offset, depending on Do. 
If Do = 0, the Offset field is an immediate operand; the operand value is in the 

range of 0-31. 
If Do = 1, the Offset field specifies a data register that contains the offset. The value 

is in the range of - 231 to 231 -1. 
Dw field - Determines how the field width is specified. 

0 - The Width field contains the bit field width. 
1 - Bits [2:0] of the extension word specify a data register that contains the width; 

bits [4:3] are 0. 
Width field - Specifies the field width, depending on Dw. 

If Dw = 0, the Width field is an immediate operand; operand values in the range 
of 1-31 specify a field width of 1-31, and a value of 0 specifies a width 
of 32. 

If Dw = 1, the Width field specifies a data register that contains the width. The value 
is modulo 32; values of 1-31 specify field widths of 1-31, and a value of 
0 specifies a width of 32. 

MC68030 USER'S MANUAL MOTOROLA 
3-45 

• 



BFEXTU Extract Bit Field Unsigned 

Operation: 

Assembler 
Syntax: 

• Attributes: 

(bit offset) of Source • Dn 

BFEXTU (ea){offset:width},Dn 

Unsized 

BFEXTU 

Description: Extracts a bit field from the specified effective address location, zero ex-
tends to 32 bits, and loads the results into the destination data register. 

The field offset and field width select the field. The field offset specifies the starting 
bit of the field. The field width determines the number of bits in the field. 

Condition Codes: 

X N Z V 

1-l·l·lolo 
X Not affected. 
N Set if the most-significant bit of the source field is set. Cleared otherwise. 
Z Set if all bits of the field are zero. Cleared otherwise. 
V Always cleared. 
C Always cleared. 

Instruction Format: 

15 14 13 12 11 10 

1 1 

0 

MOTOROLA 
3-46 

l 1 l 
REGISTER 

0 1 0 

Do 
l 0 l 1 l 1 l EFFECTIVE ADDRESS 

1 l MODE REGISTER 

OFFSET Owl WIDTH 

MC68030 USER'S MANUAL 



BFEXTU Extract Bit Field Unsigned BFEXfU 
Instruction Fields: 

Effective Address field - Specifies the base location for the bit field. Only dataegister 
direct or control addressing modes are allowed as shown: ! 

Addressing Mode Mode Register Addressing Mode 

Dn 000 reg. number:Dn (xxx).W 

An - - (xxx).L 

(An) 010 reg. number:An #(data) 

(An)+ - -
-(An) - -

(d1s.Anl 101 reg. number:An (d15,PC) 

(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) 

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 

([bd.An,Xn),od) 110 reg. number:An ([bd,PC,Xn],od) 

([bd,An],Xn,od) 110 reg. number:An ([bd,PC),Xn,od) 

Register field - Specifies the destination data register. 
Do field - Determines how the field offset is specified. 

0 - The Offset field contains the bit field offset. 

Mode Regter 

111 Jl 

111 )1 
·! 

- -

111 010 

111 011 

111 011 

111 011 

111 011 

1 - Bits [8:6] of the extension word specify a data register that contai·s the offset; 
bits [10:9] are 0. 

Offset field - Specifies the field offset, depending on Do. 
If Do = 0, the Offset field is an immediate operand; the operand \Alue is in the 

range of 0-31. 
If Do = 1, the Offset field specifies a data register that contains the oftet. The value 

is in the range of -231 to 231 -1. 
Dw field - Determines how the field width is specified. 

0 - The Width field contains the bit field width. 
1 - Bits [2:0] of the extension word specify a data register that contins the width; 

bits [4:3] are 0. 
Width field - Specifies the field width, depending on Dw. 

If Dw = 0, the Width field is an immediate operand; operand vah.es in the range 
of 1-31 specify a field width of 1-31, and a value of 0 s1ecifies a width 
of 32. 

If Dw = 1, the Width field specifies a data register that contains the vidth. The value 
is modulo 32; values of 1-31 specify field widths of 1-3', and a value of 
0 specifies a width of 32. 

MC68030 USER'S MANUAL MOTOROLA 
3-47 

• 



BFiFO 

Operatin: 

Assembir 
Syntax: 

• Attribute: 

Find First One in Bit Field BFFFO 

(bit offset) of Source Bit Scan • Dn 

BFFFO (ea){offset:width},Dn 

Unsized 

DescriptiQ: Searches the source operand for the most-significant bit that is set to a 
value:>f one. The bit offset of that bit (the bit offset in the instruction plus the offset 
of thEfirst one bit) is placed in Dn. If no bit in the bit field is set to one, the value in 
Dn ishe field offset plus the field width. The instruction sets the condition codes 
accorQ"Jg to the bit field value. 

The fad offset and field width select the field. The field offset specifies the starting 
bit of te field. The field width determines the number of bits in the field. 

Condition Cdes: 

X N Z V C 

I - I· I· Io Io 
X Not ffected. 
N Set ithe most significant bit of the field is set. Cleared otherwise. 
Z Set inll bits of the field are zero. Cleared otherwise. 
V Alwa'il cleared. 
C Alwa~ cleared. 

Instruction Fomat: 

15 14 3 12 11 10 

0 

MOTOROLA 
3-48 

REGITER Do 

3 

EFFECTIVE ADDRESS 

MODE REGISTER 

OFFSET Ow WIDTH 

MC68030 USER'S MANUAL 



BFFFO Find First One in Bit Field BFFFO 

Instruction Fields: 
Effective Address field - Specifies the base location for the bit field. Only data register 

direct or control addressing modes are allowed as shown: 

Addressing Mode Mode Register Addressing Mode Mode 

Dn 000 reg. number:Dn (xxx).W 

An - - (xxx).L 

(An) 010 reg. number:An #(data) 

(An)+ - -

-(An) - -

(d15,An) 101 reg. number:An (d15,PC) 

(ds.An.Xn) 110 reg. number:An (d9,PC,Xn) 

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 

Register field - Specifies the destination data register operand. 
Do field - Determines how the field offset is specified. 

0 - The Offset field contains the bit field offset. 

111 

111 

-

111 

111 

111 

111 

111 

Register 

000 

001 

-

010 

011 

011 

011 

011 

1 - Bits [8:6] of the extension word specify a data register that contains the offset; 
bits [10:9] are 0. 

Offset field - Specifies the field offset, depending on Do. 
If Do = 0, the Offset field is an immediate operand; the operand value is in the 

range of 0-31. 
If Do = 1, the Offset field specifies a data register that contains the offset. The value 

is in the range of - 231 to 231 -1. 
Dw field - Determines how the field width is specified. 

0 - The Width field contains the bit field width. 
1 - Bits [2:0] of the extension word specify a data register that contains the width; 

bits [4:3] are 0. 
Width field - Specifies the field width, depending on Dw. 

If Dw = 0, the Width field is an immediate operand; operand values in the range 
of 1-31 specify a field width of 1-31, and a value of 0 specifies a width 
of 32. 

If Dw = 1, the Width field specifies a data register that contains the width. The value 
is modulo 32; values of 1-31 specify field widths of 1-31, and a value of 
0 specifies a width of 32. 

MC68030 USER'S MANUAL MOTOROLA 
3-49 

• 



BFINS 

Operation: 

Assembler 
Syntax: 

• Attributes: 

Insert Bit Field BFINS 

Dn • (bit field) of Destination 

BFINS Dn,(ea){offset:width} 

Unsized 

Description: Inserts a bit field taken from the low-order bits of the specified data register 
into a bit field at the effective address location. The instruction sets the condition codes 
according to the inserted value. 

The field offset and field width select the field. The field offset specifies the starting 
bit of the field. The field width determines the number of bits in the field. 

Condition Codes: 

X N Z V C 

1-l·l·lolo 
X Not affected. 
N Set if the most-significant bit of the field is set. Cleared otherwise. 
Z Set if all bits of the field are zero. Cleared otherwise. 
V Always cleared. 
C Always cleared. 

Instruction Format: 

15 14 13 12 11 10 4 

1 1 l 1 l 0 _l 1 l 1 l 1 J 1 
EFFECTIVE ADDRESS 

1 1 
MODE l REGISTER 

0 REGISTER Do OFFSET Ow j WIDTH 

0 

MOTOROLA 
3-50 

MC68030 USER'S MANUAL 



BFINS Insert Bit Field BFINS 

Instruction Fields: 
Effective Address field - Specifies the base location for the bit field. Only data register 

direct or control alterable addressing modes are allowed as shown: 

Addressing Mode Mode Register Addressing Mode 

Dn 000 reg. number:Dn (xxx).W 

An - - (xxx).L 

(An) 010 reg. number:An #(data) 

(An)+ - -

-(An) - -

(d15,An) 101 reg. number:An (d15.PC) 

(ds.An.Xn) 110 reg. number:An (d9,PC,Xn) 

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn).od) 

([bd,An],Xn,od) 110 reg. number:An ([bd,PC),Xn,od) 

Register field - Specifies the source data register operand. 
Do field - Determines how the field offset is specified. 

0 - The Offset field contains the bit field offset. 

Mode Register 

111 000 

111 001 

- -

- -

- -

- -

- -

- -

1 - Bits [8:6] of the extension word specify a data register that contains the offset; 
bits [10:9] are 0. 

Offset field - Specifies the field offset, depending on Do. 
If Do = 0, the Offset field is an immediate operand; the operand value is in the 

range of 0-31. 
If Do = 1, the Offset field specifies a data register that contains the offset. The value 

is in the range of - 231 to 231 -1. 
Dw field - Determines how the field width is specified. 

0 - The Width field contains the bit field width. 
1 - Bits [2:0] of the extension word specify a data register that contains the width; 

bits [4:3] are 0. 
Width field - Specifies the field width, depending on Dw. 

If Dw = 0, the Width field is an immediate operand; operand values in the range 
of 1-31 specify a field width of 1-31, and a value of O specifies a width 
of 32. 

If Ow = 1, the Width field specifies a data register that contains the width. The value 
is modulo 32; values of 1-31 specify field widths of 1-31, and a value of 
0 specifies a width of 32. 

MC68030 USER'S MANUAL MOTOROLA 
3-51 

• 



BFSET 
Operation: 

Assembler 
Syntax: 

• Attributes: 

Test Bit Field and Set BFSET 
1 s • (bit field) of Destination 

BFSET (ea){offset:width} 

Unsized 

Description: Sets the condition codes according to the value in a bit field at the specified 
effective address, then sets each bit in the field. 

The field offset and the field width select the field. The field offset specifies the starting 
bit of the field. The field width determines the number of bits in the field. 

Condition Codes: 

X N Z V C 

1-l·l·lolo 
X Not affected. 
N Set if the most-significant bit of the field is set. Cleared otherwise. 
Z Set if all bits of the field are zero. Cleared otherwise. 
V Always cleared. 
C Always cleared. 

Instruction Format: 

15 14 13 12 11 10 

1 1 

0 0 

MOTOROLA 
3-52 

1 0 1 1 

0 0 Do 
1 1 l 0 l 1 l EFFECTIVE ADDRESS 

1 l MODE REGISTER 

OFFSET Dw I WIDTH 

MC68030 USER'S MANUAL 



BF SET Test Bit Field and Set BF SET 
Instruction Fields: 

Effective Address field - Specifies the base location for the bit field. Only data register 
direct or control alterable addressing modes are allowed as shown: 

Addressing Mode Mode Register Addressing Mode 

Dn 000 reg. number:Dn (xxx).W 

An - - (xxx).L 

!An) 010 reg. number:An #(data) 

IAnl+ - -

-!An) - -

(d15,An) 101 reg. number:An (d15,PC) 

(dg,An,Xnl 110 reg. number:An (dg,PC,Xn) 

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn).od) 

([bd,An),Xn,od) 110 reg. number:An l[bd,PC].Xn,od) 

Do field - Determines how the field offset is specified. 
0 - The Offset field contains the bit field offset. 

Mode Register 

111 000 

111 001' 

- -

- -

- -

- -

- -

- -

1 - Bits (8:6) of the extension word specify a data register that contains the offset; 
bits (10:9) are 0. 

Offset field - Specifies the field offset, depending on Do. 
If Do = 0, the Offset field is an immediate operand; the operand value is in the 

range of 0-31. 
If Do = 1, the Offset field specifies a data register that contains the offset. The value 

is in the range of - 231 to 231 -1. 
Dw field - Determines how the field width is specified. 

0 - The Width field contains the bit field width. 
1 - Bits (2:0) of the extension word specify a data register that contains the width; 

bits [4:3) are 0. 
Width field - Specifies the field width, depending on Dw. 

If Dw = 0, the Width field is an immediate operand; operand values in the range 
of 1-31 specify a field width of 1-31, and a value of 0 specifies a width 
of 32. 

If Dw = 1, the Width field specifies a data register that contains the width. The value 
is modulo 32; values of 1-31 specify field widths of 1-31, and a value of 
0 specifies a width of 32. 

MC68030 USER'S MANUAL MOTOROLA 
3-53 



BFTST 
Operation: 

Assembler 
Syntax: 

- Attributes: 

Test Bit Field BFTST 
(bit field) of Destination 

BFTST (ea){offset:width} 

Unsized 

Description: Sets the condition codes according to the value in a bit field at the specified 
effective address location. 

The field offset and field width select the field. The field offset specifies the starting 
bit of the field. The field width determines the number of bits in the field. 

Condition Codes: 

X N Z V C 

1-l·l·lolo 
X Not affected. 
N Set if the most-significant bit of the field is set. Cleared otherwise. 
Z Set if all bits of the field are zero. Cleared otherwise. 
V Always cleared. 
C Always cleared. 

Instruction Format: 

15 14 13 12 11 10 9 

1 1 

0 0 

MOTOROLA 
3-54 

1 

0 

0 1 ojojoj1J 

0 Do OFFSET 

EFFECTIVE ADDRESS 
1 

MODE J REGISTER 

Ow j WIDTH 

MC68030 USER'S MANUAL 



BFTST Test Bit Field BFTST 
Instruction Fields: 

Effective Address field - Specifies the base location for the bit field. Only data register 
direct or control addressing modes are allowed as shown: 

Addressing Mode Mode Register Addressing Mode 

On 000 reg. number: On (xxx).W 

An - - (xxx).L 

(An) 010 reg. number:An #(data) 

(An)+ - -

-(An) - -

(d15.An) 101 reg. number:An (d15,PC) 

(ds.An,Xn) 110 reg. number:An (d5,PC,Xn) 

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 

Do field - Determines how the field offset is specified. 
0 - The Offset field contains the bit field offset. 

Mode Register 

111 000 

111 001 

- -

111 010 

111 011 

111 011 

111 011 

111 011 

1 - Bits [8:6] of the extension word specify a data register that contains the offset; 
bits [10:9] are 0. 

Offset field - Specifies the field offset, depending on Do. 
If Do = 0, the Offset field is an immediate operand; the operand value is in the 

range of 0-31. 
If Do = 1, the Offset field specifies a data register that contains the offset. The value 

is in the range of - 231 to 231 -1. 
Dw field - Determines how the field width is specified. 

0 - The Width field contains the bit field width. 
1 - Bits [2:0] of the extension word specify a data register that contains the width; 

bits [4:3] are 0. 
Width field - Specifies the field width, depending on Dw. 

If Dw = 0, the Width field is an immediate operand, operand values in the range 
of 1-31 specify a field width of 1-31, and a value of 0 specifies a width 
of 32. 

If Dw = 1, the Width field specifies a data register that contains the width. The value 
is modulo 32; values of 1-31 specify field widths of 1-31, and a value of 
0 specifies a width of 32. 

MC68030 USER'S MANUAL MOTOROLA 
3-55 

• 



• 

BKPT 

Operation: 

Assembler 
Syntax: 

Attributes: 

Breakpoint 

Run breakpoint acknowledge cycle 
If acknowledged 
then execute returned operation word 
else TRAP as illegal instruction 

BKPT #(data) 

Unsized 

BKPT 

Description: Executes a breakpoint acknowledge bus cycle with the immediate data 
(value 0-7) on bits 2-4 of the address bus and zeros on bits 0 and 1 of the address 

bus. 

The breakpoint acknowledge cycle accesses the CPU space, addressing type 0, and 
provides the breakpoint number specified by the instruction on address lines A2-A4. 
If the external hardware terminates the cycle with DSACKxs or STEAM, the data on 
the bus (an instruction word) is inserted into the instruction pipe and is executed after 
the breakpoint instruction. The breakpoint instruction requires a word to be transferred 
so if the first bus cycle accesses an 8-bit port, a second cycle is required. If the external 
logic terminates the breakpoint acknowledge cycle with BEAR (i.e., no instruction word 
available) the processor takes an illegal instruction exception. Refer to 7 .4.2 Breakpoint 
Acknowledge for details of breakpoint acknowledge cycle operation. 

This instruction supports breakpoints for debug monitors and real-time hardware 
emulators. The exact operation performed by the instruction is implementation-de­
pendent. Typically, this instruction replaces an instruction in a program; that instruc­
tion is returned by the breakpoint acknowledge cycle. 

Condition Codes: 
Not affected. 

Instruction Format: 

15 14 13 12 11 10 4 0 

o I 1 VECTOR 

Instruction Fields: 
Vector field - Contains the immediate data, a value in the range of 0-7. This is the 

breakpoint number. 

MOTOROLA 
3-56 

MC68030 USER'S MANUAL 



BRA 

Operation: 

Assembler 
Syntax: 

Attributes: 

Branch Always BRA 

PC+d. PC 

BRA (label) 

Size = (Byte, Word, Long) 

Description: Program execution continues at location (PC)+ displacement. The PC con-
tains the address of the instruction word of the BRA instruction plus two. The dis­
placement is a twos complement integer that represents the relative distance in bytes 
from the current PC to the destination PC. If the 8-bit displacement field in the instruc­
tion word is zero, a 16-bit displacement (the word immediately following the instruc­
tion) is used. If the 8-bit displacement field in the instruction word is all ones ($FF), 
the 32-bit displacement (long word immediately following the instruction) is used. 

Condition Codes: 
Not affected. 

Instruction Format: 

15 14 13 12 11 10 4 0 

0 l 11 1 l 0 l 0 l ololol 8-BIT DISPLACEMENT 

16-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT= $00 

32-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT= $FF 

Instruction Fields: 
8-Bit Displacement field - Twos complement integer specifying the number of bytes 

between the branch instruction and the next instruction to be executed. 
16-Bit Displacement field - Used for a larger displacement when the 8-bit displace­

ment is equal to $00. 
32-Bit Displacement field - Used for a larger displacement when the 8-bit displace­

ment is equal to $FF. 

NOTE 

A branch to the immediately following instruction automatically uses the 16-
bit displacement format because the 8-bit displacement field contains $00 
(zero offset). 

MC68030 USER'S MANUAL MOTOROLA 
3-57 

• 



• 

BSET 

Operation: 

Assembler 
Syntax: 

Attributes: 

Test a Bit and Set 

-((bit number) of Destination) • Z; 
1 • (bit number) of Destination 

BSET Dn,(ea) 
BSET #(data),(ea) 

Size = (Byte, Long) 

BSET 

Description: Tests a bit in the destination operand and sets the Z condition code ap-
propriately. Then sets the specified bit in the destination operand. When a data register 
is the destination, any of the 32 bits can be specified by a modulo 32-bit number. 
When a memory location is the destination, the operation is a byte operation, and the 
bit number is modulo 8. In all cases, bit zero refers to the least-significant bit. The bit 
number for this operation can be specified in either of two ways: 

1. Immediate - The bit number is specified in the second word of the instruction. 
2. Register - The specified data register contains the bit number. 

Condition Codes: 

X N Z V C 

I - I - I • I 
X Not affected. 
N Not affected. 
Z Set if the bit tested is zero. Cleared otherwise. 
V Not affected. 
C Not affected. 

Instruction Format (Bit Number Dynamic, specified in a register): 

15 14 13 12 11 10 4 

REGISTER 
EFFECTIVE ADDRESS 

MODE REGISTER 

0 

MOTOROLA 
3-58 

MC68030 USER'S MANUAL 



BSET Test a Bit and Set BSET 

Instruction Fields (Bit Number Dynamic): 
Register field - Specifies the data register that contains the bit number. 
Effective Address field - Specifies the destination location. Only data alterable ad­

dressing modes are allowed as shown: 

Addressing Mode Mode Register Addressing Mode Mode Register 

Dn* 000 reg. number:Dn (xxx).W 111 000 

An - - (xxx).L 111 001 

(An) 010 reg. number:An #(data) - -

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15,An) 101 reg. number:An (d15,PC) - -
(d9,An,Xn) 110 reg. number:An (d9,PC,Xn) - -
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) - -

((bd,An,Xn],od) 110 reg. number:An ((bd,PC,XnJ,od) - -
([bd,An],Xn,od) 110 reg. number:An ((bd,PCJ,Xn,od) - -

*Long only; all others are byte only. 

Instruction Format (Bit Number Static, specified as immediate data): 

15 14 13 12 11 10 

EFFECTIVE ADDRESS 
0 0 0 0 1 0 0 0 I 1 I 1 I MODE l REGISTER 

0 0 0 0 0 0 0 BIT NUMBER 

Instruction Fields (Bit Number Static): 
Effective Address field - Specifies the destination location. Only data alterable ad­

dressing modes are allowed as shown: 

Addressing Mode Mode Register 

Dn* 000 reg. number:Dn 

An - -

(An) 010 reg. number:An 

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15,An) 101 reg. number:An 

(d9,An,Xn) 110 reg. number:An 

(bd,An,Xn) 110 reg. number:An 

((bd,An,Xn],od) 110 reg. number:An 

((bd,AnJ,Xn,od) 110 reg. number:An 

*Long only; all others are byte only. 

Bit Number field - Specifies the bit number. 

MC68030 USER'S MANUAL 

Addressing Mode 

(xxx).W 

(xxx).L 

#(data) 

(d15,PC) 

(d9,PC,Xn) 

(bd,PC,Xn) 

([bd,PC,Xn],od) 

([bd,PCJ,Xn,od) 

Mode 

111 

111 

-

-
-

-

-

-

Register 

000 

001 

-

-

-

-

-

-

MOTOROLA 
3-59 

• 



BSR 

Operation: 

Assembler 
Syntax: 

• Attributes: 

Branch to Subroutine BSR 

SP-4 •SP; PC• (SP); PC+d •PC 

BSR (label) 

Size = (Byte, Word, Long) 

Description: Pushes the long word address of the instruction immediately following the 
BSR instruction onto the system stack. The PC contains the address of the instruction 
word plus two. Program execution then continues at location (PC) + displacement. 
The displacement is a twos complement integer that represents the relative distance 
in bytes from the current PC to the destination PC. If the 8-bit displacement field in 
the instruction word is zero, a 16-bit displacement (the word immediately following 
the instruction) is used. If the 8-bit displacement field in the instruction word is all 
ones ($FF), the 32-bit displacement (long word immediately following the instruction) 
is used. 

Condition Codes: 
Not affected. 

Instruction Format: 

15 14 13 12 11 10 

0 l 1I 1 I o I o I o I 0 I 1 L 8-BIT DISPLACEMENT 

16-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT =$00 

32-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT= $FF 

Instruction Fields: 
8-Bit Displacement field - Twos complement integer specifying the number of bytes 

between the branch instruction and the next instruction to be executed. 
16-Bit Displacement field -- Used for a larger displacement when the 8-bit displacement 

is equal to $00. 
32-Bit Displacement field - Used for a larger displacement when the 8-bit displace­

ment is equal to $FF. 

NOTE 

A branch to the immediately following instruction automatically uses the 16-
bit displacement format because the 8-bit displacement field contains $00 
(zero offset). 

MOTOROLA 
3-60 

MC68030 USER'S MANUAL 



BTST 

Operation: 

Assembler 
Syntax: 

Attributes: 

Test a Bit 

- ((bit number) of Destination) • Z; 

BTST Dn,(ea) 
BTST #(data),(ea) 

Size = (Byte, Long) 

BTST 

Description: Tests a bit in the destination operand and sets the Z condition code ap-
propriately. When a data register is the destination, any of the 32 bits can be specified 
by a modulo 32 bit number. When a memory location is the destination, the operation 
is a byte operation, and the bit number is modulo 8. In all cases, bit zero refers to the 
least significant bit. The bit number for this operation can be specified in either of two 
ways: 

1. Immediate - The bit number is specified in a second word of the instruction. 
2. Register - The specified data register contains the bit number. 

Condition Codes: 

X N Z V C 

I - I - I • I 

X Not affected. 
N Not affected. 
Z Set if the bit tested is zero. Cleared otherwise. 
V Not affected. 
C Not affected. 

Instruction Format (Bit Number Dynamic, specified in a register): 

15 14 13 12 11 10 4 3 

EFFECTIVE ADDRESS 
0 0 

0 

REGISTER 
MODE REGISTER 

MC68030 USER'S MANUAL MOTOROLA 
3-61 

• 



• 

BTST Test a Bit BTST 

Instruction Fields (Bit Number Dynamic): 
Register field - Specifies the data register that contains the bit number. 
Effective Address field - Specifies the destination location. Only data addressing 

modes are allowed as shown: 

Addressing Mode Mode Register Addressing Mode Mode Register 

On* 000 reg. number:On (xxx).W 111 000 

An - - (xxx).L 111 001 

(An) 010 reg. number:An #(data) 111 100 

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15,An) 101 reg. number:An (d15,PC) 111 010 

(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) 111 011 

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011 

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011 

([bd,An],Xn,od) 110 reg. number:An ([bd,PC].Xn,od) 111 011 

*Long only; all others are byte only. 

Instruction Format (Bit Number Static, specified as immediate data): 

15 14 13 12 11 10 4 

0 0 0 0 1 0 0 0 0 l 0 l EFFECTIVE ADDRESS 

MODE j REGISTER 

0 0 0 0 0 0 0 0 BIT NUMBER 

Instruction Fields (Bit Number Static): 
Effective Address field - Specifies the destination location. Only data addressing 

modes are allowed as shown: 

Addressing Mode Mode Register 

On 000 reg. number:On 

An - -

(An) 010 reg. number:An 

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15,An) 101 reg. number:An 

(dg,An,Xn) 110 reg. number:An 

(bd,An,Xn) 110 reg. number:An 

([bd,An,Xn],od) 110 reg. number:An 

([bd,An],Xn,od) 110 reg. number:An 

Bit Number field - Specifies the bit number. 

MOTOROLA 
3-62 

Addressing Mode Mode Register 

(xxx).W 111 000 

(xxx).L 111 001 

#(data) - -

(d15,PC) 111 010 

(dg,PC,Xn) 111 011 

(bd,PC,Xn) 111 011 

([bd,PC,Xn],od) 111 011 

([bd,PC],Xn,od) 111 011 

MC68030 USER'S MANUAL 



CAS 
CAS2 
Operation: 

Assembler 
Syntax: 

Attributes: 

Compare and Swap with Operand 

CAS Destination - Compare Operand • cc; 
if Z, Update Operand • Destination 
else Destination • Compare Operand 

CAS2 Destination 1 - Compare 1 • cc; 
if Z, Destination 2 - Compare 2 • cc 
if Z, Update 1 • Destination 1; Update 2 • Destination 2 
else Destination 1 • Compare 1; Destination 2 • Compare 2 

CAS Dc,Du,(ea) 
CAS2 Dc1 :Dc2,Du1 :Du2,(Rn1):(Rn2) 

Size = (Byte*, Word, Long) 

CAS 
CAS2 

Description: CAS compares the effective address operand to the compare operand (De). 
ff the operands are equal, the instruction writes the update operand (Du) to the effective 
address operand; otherwise, the instruction writes the effective address operand to 
the compare operand (De). 

CAS2 compares memory operand 1 (Rn1) to compare operand 1 (Dc1 ). If the operands 
are equal, the instruction compares memory operand 2 (Rn2) to compare operand 2 
(Dc2). If these operands are also equal, the instruction writes the update operands 
(Du1 and Du2) to the memory operands (Rn1 and Rn2). If either comparison fails, the 
instruction writes the memory operands (Rn1 and Rn2) to the compare operands (Dc1 
and Dc2). 

Both operations access memory using read-modify-write cycles; these instructions 
cannot be interrupted. This provides a means of synchronizing several processors. 
Typical applications of these instructions are discussed in 3.4 USING THE CAS AND 
CAS2 INSTRUCTIONS. 

Condition Codes: 

X N Z v c 
I - I • I • • I • 
X Not affected. 
N Set if the result is negative. Cleared otherwise. 
Z Set if the result is zero. Cleared otherwise. 
V Set if an overflow is generated. Cleared otherwise. 
C Set if a borrow is generated. Cleared otherwise. 

*CAS2 cannot use byte operands 

MC68030 USER'S MANUAL MOTOROLA 
3-63 

• 



• 

CAS 
CAS2 Compare and Swap with Operand 

CAS 
CAS2 

Instruction Format: (CAS): 

15 14 13 12 11 10 

l 1 _[ 0 0 0 0 1 SIZE 0 1 

0 0 0 0 0 0 l 0 Du 

Instruction Fields: 
Size field - Specifies the size of the operation. 

01 - Byte operation. 
10 - Word operation. 
11 - Long operation. 

EFFECTIVE ADDRESS 

MODE j REGISTER 

0 1 0 l 0 l De 

Effective Address field - Specifies the location of the memory operand. Only memory 
alterable addressing modes are allowed as shown: 

Addressing Mode Mode Register Addressing Mode Mode Register 

Dn - - (xxx).W 111 000 

An - - (xxx).L 111 001 

(An) 010 reg. number:An #(data) - -
(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15,An) 101 reg. number:An (d15,PC) - -

(dg,An,Xnl 110 reg. number:An (dg,PC,Xnl - -

(bd,An,Xn) 110 reg. number:An (bd,PC,Xnl - -

([bd,An,Xn),od) 110 reg. number:An ([bd,PC,Xn),od) - -

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) - -

Du field - Specifies the data register that contains the update value to be written to 
the memory operand location if the comparison is successful. 

De field - Specifies the data register that contains the value to be compared to the 
memory operand. 

Instruction Format (CAS2): 

15 14 

0 0 1 
D/Al 

D/A2 

MOTOROLA 
3-64 

13 12 11 

0 1 0 1 

Rnl 0 

Rn2 0 

10 

SIZE o I 1 l 1 1 1 1 1 1 o I o 
0 1 0 Dul 0 0 0 Del 

0 l 0 Du2 0 0 0 De2 

MC68030 USER'S MANUAL 



CAS 
CAS2 
Instruction Fields: 

Compare and Swap with Operand 

Size field - Specifies the size of the operation. 
10 - Word operation. 
11 - Long operation. 

CAS 
CAS2 

DIA 1, D/A2 fields- Specify whether Rn1 and Rn2 reference data or address registers, 
respectively. 

0 - The corresponding register is a data register. 
1 - The corresponding register is an address register. 

Rn1, Rn2 fields - Specify the numbers of the registers that contain the addresses of 
the first and second memory operands, respectively. If the operands overlap in 
memory, the results of any memory update are undefined. 

Du1, Du2 fields - Specify the data registers that contain the update values to be 
written to the first and second memory operand locations if the comparison is 

successful. 
Dc1, Dc2 fields - Specify the data registers that contain the test values to be compared 

to the first and second memory operands, respectively. If Dc1 and Dc2 specify the 
same data register and the comparison fails, memory operand 1 is stored in the 
data register. 

Programming Note: 
The CAS and CAS2 instructions can be used to perform secure update operations on 
system control data structures in a multi-processing environment. 

MC68030 USER'S MANUAL MOTOROLA 
3-65 

II 



CHK Check Register Against Bounds CHK 

Operation: 

Assembler 
Syntax: 

• Attributes: 

If Dn < 0 or Dn > Source then TRAP 

CHK (ea),Dn 

Size = (Word, Long) 

Description: Compares the value in the data register specified in the instruction to zero 
and to the upper bound (effective address operand). The upper bound is a twos 
complement integer. If the register value is less than zero or greater than the upper 
bound, a CHK instruction exception, vector number 6, occurs. 

Condition Codes: 

X N Z V C 

J-J•JuJuJu 

X Not affected. 
N Set if Dn < O; cleared if Dn > effective address operand. Undefined otherwise. 
Z Undefined. 
V Undefined. 
C Undefined. 

Instruction Format: 

15 14 13 12 11 

MOTOROLA 
3-66 

10 

REGISTER 

4 0 

SIZE 
EFFECTIVE ADDRESS 

MODE REGISTER 

MC68030 USER'S MANUAL 



CHK Check Register Against Bounds CHK 

Instruction Fields: 
Register field - Specifies the data register that contains the value to be checked. 
Size field - Specifies the size of the operation. 

11 - Word operation. 
10 - Long operation. 

Effective Address field - Specifies the upper bound operand. Only data addressing 
modes are allowed as shown: 

Addressing Mode Mode Register 

Dn 000 reg. number:Dn 

An - -

(An) 010 reg. number:An 

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15.An) 101 reg. number:An 

(dg,An,Xn) 110 reg. number:An 

(bd,An,Xn) 110 reg. number:An 

([bd,An,XnJ,od) 110 reg. number:An 

([bd,An),Xn,od) 110 reg. number:An 

MC68030 USER'S MANUAL 

Addressing Mode 

(xxx).W 

(xxx).L 

#(data) 

(d15,PC) 

(dg,PC,Xn) 

(bd,PC,Xn) 

([bd,PC,Xn],od) 

([bd,PCJ,Xn,od) 

Mode 

111 

111 

111 

111 

111 

111 

111 

111 

Register 

000 

001 

100 

010 

011 

011 

011 

011 

MOTOROLA 
3-67 

II 



• 

CHK2 
Operation: 

Assembler 
Syntax: 

Attributes: 

Check Register Against Bounds 

If Rn < lower bound or 
Rn > upper bound 

then TRAP 

CHK2 (ea),Rn 

Size = (Byte, Word, Long) 

CHK2 

Description: Compares the value in Rn to each bound. The effective address contains 
the bounds pair: the lower bound followed by the upper bound. For signed compar­
isons, the arithmetically smaller value should be used as the lower bound. For unsigned 
comparisons, the logically smaller value should be the lower bound. 

The size of the data and the bounds can be specified as byte, word, or long. If Rn is 
a data register and the operation size is byte or word, only the appropriate low-order 
part of Rn is checked. If Rn is an address register and the operation size is byte or 
word, the bounds operands are sign-extended to 32 bits and the resultant operands 
are compared to the full 32 bits of An. 

If the upper bound equals the lower bound, the valid range is a single value. If the 
register value is less than the lower bound or greater than the upper bound, a CHK 
instruction exception, vector number 6, occurs. 

Condition Codes: 

X N Z V C 

1-lul·lul· 
X Not affected. 
N Undefined. 
Z Set if Rn is equal to either bound. Cleared otherwise. 
V Undefined. 
C Set if Rn is out of bounds. Cleared otherwise. 

Instruction Format: 

15 14 13 12 11 10 

0 0 0 0 SIZE 0 1 1 
EFFECTIVE ADDRESS l 0 l MODE j REGISTER 

DIA 

MOTOROLA 
3-68 

REGISTER 1 0 l 0 0 0 0 0 l 0 o I o l o l 0 

MC68030 USER'S MANUAL 



CHK2 Check Register Against Bounds 

Instruction Fields: 
Size field - Specifies the size of the operation. 

00 - Byte operation 
01 - Word operation. 
10 - Long operation. 

CHK2 

Effective Address field - Specifies the location of the bounds operands. Only control 
addressing modes are allowed as shown: 

Addressing Mode Mode Register Addressing Mode Mode Registe'r 

Dn - - (xxx).W 111 000 

An - - (xxx).L 111 001 

(An) 010 reg. number:An #(data) - -

(An)+ - -
-(An) - -

(d1s.Anl 101 reg. number:An (d1s,PC) 111 010 

(da.An,Xn) 110 reg. number:An (da,PC,Xn) 111 011 

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011 

((bd,An,Xn],od) 110 reg. number:An ((bd,PC,XnJ.od) 111 011 

([bd.An],Xn,od) 110 reg. number:An ([bd,PCJ,Xn,od) 111 011 

DIA field - Specifies whether an address register or data register is to be checked. 
0 - Data register. 
1 - Address register. 

Register field - Specifies the address or data register that contains the value to be 
checked. 

MC68030 USER'S MANUAL MOTOROLA 
3-69 

• 



CLR Clear an Operand CLR 

Operation: 

Assembler 
Syntax: 

• Attributes: 

0 • Destination 

CLR (ea) 

Size = (Byte, Word, Long) 

Description: Clears the destination operand to zero. The size of the operation may be 
specified as byte, word, or long. 

Condition Codes: 

X N z v 
- I I o 

X Not affected. 
N Always cleared. 
Z Always set. 
V Always cleared. 
C Always cleared. 

Instruction Format: 

15 14 13 12 

Instruction Fields: 

11 

c 

10 

SIZE 

Size field - Specifies the size of the operation. 
00 - Byte operation. 
01 - Word operation. 
10 - Long operation. 

EFFECTIVE ADDRESS 

MOOE REGISTER 

Effective Address field - Specifies the destination location. Only data alterable ad­
dressing modes are allowed as shown: 

Addressing Mode 

MOTOROLA 
3-70 

Dn 

An 

(An) 

(An)+ 

-(An) 

(d1s.Anl 

(da.An,Xn) 

(bd,An,Xn) 

([bd.An,Xn].od) 

([bd.Anl.Xn,od) 

Mode Register 

000 reg. number:Dn 

- -

010 reg. number:An 

011 reg. number:An 

100 reg. number:An 

101 reg. number:An 

110 reg. number:An 

110 reg. number:An 

110 reg. number:An 

110 reg. number:An 

Addressing Mode Mode Register 

(xxx).W 111 000 

(xxx).L 111 001 

#(data) - -

(d16,PC) - -

(d9,PC,Xn) - -

(bd,PC,Xn) - -

([bd,PC,Xn],od) - -

([bd,PC),Xn,od) - -

MC68030 USER'S MANUAL 



CMP 
Operation: 

Assembler 
Syntax: 

Attributes: 

Compare CMP 
Destination - Source • cc 

CMP (ea), Dn 

Size = (Byte, Word, Long) 

Description: Subtracts the source operand from the destination data register and sets 
the condition codes according to the result; the data register is not changed. The size 
of the operation can be byte, word, or long. 

Condition Codes: 

X N Z V C 

1-1·1·/·I· 
X Not affected. 
N Set if the result is negative. Cleared otherwise. 
Z Set if the result is zero. Cleared otherwise. 
V Set if an overflow occurs. Cleared otherwise. 
C Set if a borrow occurs. Cleared otherwise. 

Instruction Format: 

15 14 13 12 11 10 

REGISTER OP-MOOE 

Instruction Fields: 
Register field - Specifies the destination data register. 
Op-Mode field: 

Byte Word 

000 001 

MC6803D USER'S MANUAL 

Long 

010 
Operation 

((Dn)) - ((ea)) 

EFFECTIVE ADDRESS 

MODE REGISTER 

MOTOROLA 
3-71 



-

CMP Compare CMP 
Effective Address field - Specifies the source operand. All addressing modes are 

allowed as shown: 

Addressing Mode Mode Register Addressing Mode Mode Register 

Dn 000 reg. number:Dn (xxx).W 111 000 

An* 001 reg. number:An (xxx).L 111 001 

(An) 010 reg. number:An #(data) 111 100 

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15,An) 101 reg. number:An (d15,PCI 111 010 

(ds.An,Xnl 110 reg. number:An lds,PC,Xn) 111 011 

(bd,An,Xn) 110 reg. number:An (bd,PC,Xnl 111 011 

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011 

([bd,An].Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011 

*Word and Long only. 

NOTE 
CMPA is used when the destination is an address register. CMPI is used when 
the source is immediate data. CMPM is used for memory to memory com­
pares. Most assemblers automatically make the distinction. 

MOTOROLA 
3-72 

MC68030 USER'S MANUAL 



CMPA 

Operation: 

Assembler 
Syntax: 

Attributes: 

Compare Address CMPA 
Destination - Source 

CMPA (ea), An 

Size = (Word, Long) 

Description: Subtracts the source operand from the destination address register and 
sets the condition codes according to the result; the address register is not changed. 
The size of the operation can be specified as word or long. Word length source op­
erands are sign extended to 32-bits for comparison. 

Condition Codes: 

X N Z V C 

-/·I·/·/· 
X Not affected. 
N Set if the result is negative. Cleared otherwise. 
Z Set if the result is zero. Cleared otherwise. 
V Set if an overflow is generated. Cleared otherwise. 
C Set if a borrow is generated. Cleared otherwise. 

Instruction Format: 

15 14 13 12 11 10 

REGISTER OP-MODE 
EFFECTIVE ADDRESS 

MODE REGISTER 

Instruction Fields: 
Register field - Specifies the destination address register. 
Op-Mode field - Specifies the size of the operation: 

011 - Word operation. The source operand is sign-extended to a long operand and 
the operation is performed on the address register using all 32 bits. 

111 - Long operation. 

MC68030 USER'S MANUAL MOTOROLA 
3-73 



.. 
CMPA Compare Address CMPA 

Effective Address field - Specifies the source operand. All addressing modes are 
allowed as shown: 

Addressing Mode 

MOTOROLA 
3-74 

Dn 

An 

(An) 

(An)+ 

-(An) 

(d15,Anl 

(da.An.Xn) 

(bd.An.Xn) 

([bd,An,Xnl.od) 

([bd.Anl.Xn,od) 

Mode Register 

000 reg. number:Dn 

001 reg. number:An 

010 reg. number:An 

011 reg. number:An 

100 reg. number:An 

101 reg. number:An 

110 reg. number:An 

110 reg. number:An 

110 reg. number:An 

110 reg. number:An 

Addressing Mode Mode Register 

(xxx).W 111 000 

(xxx).L 111 001 

#(data) 111 100 

(d15,PC) 111 010 

(d9,PC,Xn) 111 011 

(bd,PC,Xn) 111 011 

([bd,PC,Xnl.od) 111 011 

([bd,PC],Xn,od) 111 011 

MC68030 USER'S MANUAL 



CMPI 
Operation: 

Assembler 
Syntax: 

Attributes: 

Compare Immediate CMPI 
Destination - Immediate Data 

CMPI #(data),(ea) 

Size = (Byte, Word, Long) 

Description: Subtracts the immediate data from the destination operand and sets the 
condition codes according to the result; the destination location is not changed. The 
size of the operation may be specified as byte, word, or long. The size of the immediate 
data matches the operation size. 

Condition Codes: 

X N Z V C 

-1·1·1·1· 
X Not affected. 
N Set if the result is negative. Cleared otherwise. 
Z Set if the result is zero. Cleared otherwise. 
V Set if an overflow occurs. Cleared otherwise. 
C Set if a borrow occurs. Cleared otherwise. 

Instruction Format: 

15 14 13 12 11 10 

0 _l 0 l 0 l 0 l 1 l 1 l 0 l 0 SIZE 

WORD DATA (16 BITS) 

LONG DATA (32 BITS) 

Instruction Fields: 
Size field - Specifies the size of the operation: 

00 - Byte operation. 
01 - Word operation. 
10 - Long operation. 

MC68030 USER'S MANUAL 

l EFFECTIVE ADDRESS 

MODE l 
BYTE DATA (B BITS) 

REGISTER 

MOTOROLA 
3-75 

• 



• 

CMPI Compare Immediate CMPI 
Effective Address field - Specifies the destination operand. Only data addressing 

modes, except immediate are allowed as shown: 

Addressing Mode Mode Register Addressing Mode Mode Register 

Dn 000 reg. number:Dn (xxx).W 111 000 

An - - (xxx).L 111 001 

(An) 010 reg. number:An #(data) - -

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15,An) 101 reg. number:An (d15,PC) 111 010 

(d5,An,Xn) 110 reg. number:An (d5,PC,Xn) 111 011 

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011 

([bd,An,Xn].od) 110 reg. number:An ([bd,PC,Xn].od) 111 011 

([bd,An].Xn,od) 110 reg. number:An ([bd,PC].Xn,od) 111 011 

Immediate field - (Data immediately following the instruction): 
If size 00, the data is the low order byte of the immediate word. 
If size 01, the data is the entire immediate word. 
If size 10, the data is the next two immediate words. 

MOTOROLA 
3-76 

MC68030 USER'S MANUAL 



CMPM 
Operation: 

Assembler 
Syntax: 

Attributes: 

Compare Memory CMPM 

Destination - Source • cc 

CMPM (Ay) +,(Ax)+ 

Size = (Byte, Word, Long) 

Description: Subtracts the source operand from the destination operand and sets the 
condition codes according to the results; the destination location is not changed. The 
operands are always addressed with the postincrement addressing mode, using the 
address registers specified in the instruction. The size of the operation may be specified 
as byte, word, or long. 

Condition Codes: 

X N Z V C 

1-1·1·1·1· 
X Not affected. 
N Set if the result is negative. Cleared otherwise. 
Z Set if the result is zero. Cleared otherwise. 
V Set if an overflow is generated. Cleared otherwise. 
C Set if a borrow is generated. Cleared otherwise. 

Instruction Format: 

15 14 13 12 11 10 

I 1 I 0 I 1 I 1 I REGISTER Ax I 1 SIZE 

Instruction Fields: 

REGISTER Ay 

Register Ax field - (always the destination) Specifies an address register in the pos­
tincrement addressing mode. 

Size field - Specifies the size of the operation: 
00 - Byte operation. 
01 - Word operation. 
10 - Long operation. 

Register Ay field - (always the source) Specifies an address register in the postin­
crement addressing mode. 

MC68030 USER'S MANUAL MOTOROLA 
3-77 

• 



• 

CMP2 

Operation: 

Assembler 
Syntax: 

Attributes: 

Compare Register Against Bounds 

Compare Rn < lower-bound or 
Rn > upper-bound 
and Set Condition Codes 

CMP2 (ea),Rn 

Size = (Byte, Word, Long) 

CMP2 

Description: Compares the value in Rn to each bound. The effective address contains 
the bounds pair: the lower bound followed by the upper bound. For signed compar­
isons, the arithmetically smaller value should be used as the lower bound. For unsigned 
comparisons, the logically smaller value should be the lower bound. 

The size of the data and the bounds can be specified as byte, word, or long. If Rn is 
a data register and the operation size is byte or word, only the appropriate low-order 
part of Rn is checked. If Rn is an address register and the operation size is byte or 
word, the bounds operands are sign-extended to 32 bits and the resultant operands 
are compared to the full 32 bits of An. 

If the upper bound equals the lower bound, the valid range is a single value. 

NOTE 
This instruction is identical to CHK2 except that it sets condition codes rather 
than taking an exception when the value in Rn is out of bounds. 

Condition Codes: 

X N Z V C 

X Not affected. 
N Undefined. 
Z Set if Rn is equal to either bound. Cleared otherwise. 
V Undefined. 
C Set if Rn is out of bounds. Cleared otherwise. 

Instruction Format: 

15 14 13 12 11 

0 0 

DIA 

MOTOROLA 
3-78 

I 0 I 0 0 

REGISTER 0 

10 8 

SIZE 0 1 1 

o I o 0 0 0 

4 0 

EFFECTIVE ADDRESS 

MODE l REGISTER 

0 l 0 l 0 l 0 l 0 l 0 

MC68030 USER'S MANUAL 



CMP2 Compare Register Against Bounds 

Instruction Fields: 
Size field - Specifies the size of the operation. 

00 - Byte operation. 
01 - Word operation. 
10 - Long operation. 

CMP2 

Effective Address field - Specifies the location of the bounds pair. Only control ad­
dressing modes are allowed as shown: 

Addressing Mode Mode Register Addressing Mode Mode Register 

Dn - - (xxx).W 111 000 

An - - (xxx).L 111 001 

(An) 010 reg. number:An #(data) - -

(An)+ - -

-(An) - -

(d15,An) 101 reg. number:An (d15,PCI 111 010 

(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) 111 011 

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011 

((bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn),od) 111 011 

((bd,An],Xn,od) 110 reg. number:An ([bd,PC).Xn,od) 111 011 

DIA field - Specifies whether an address register or data register is compared. 
0 - Data register. 
1 - Address register. 

Register field - Specifies the address or data register that contains the value to be 
checked. 

MC68030 USER'S MANUAL MOTOROLA 
3-79 



cpBcc 

Operation: 

Assembler 
Syntax: 

• Attributes: 

Branch on Coprocessor Condition cpBcc 

If cpcc true then scan PC+ d • PC 

cpBcc (label) 

Size = (Word, Long) 

Description: If the specified coprocessor condition is true, program execution continues 
at location scan PC + displacement. The value of the scan PC is the address of the first 
displacement word. The displacement is a twos complement integer that represents 
the relative distance in bytes from the scan PC to the destination PC. The displacement 
can be either 16 bits or 32 bits. The coprocessor determines the specific condition 
from the condition field in the operation word. Refer to 10.4.1 ScanPC for further 
information. 

Condition Codes: 
Not affected. 

Instruction Format: 

15 14 13 12 11 10 

1 l 1 l 1 l 1 l GP-ID 4'000 _L o l 1 l s1zEj COPROCESSOR CONDITION 

OPTIONAL COPROCESSOR-DEFINED EXTENSION WORDS 

WORD OR 

LONG WORD DISPLACEMENT 

Instruction Fields: 
Cp-ld field - Identifies the coprocessor for this operation. Cp-ld of 000 results in an 

F-line exception. 
Size field - Specifies the size of the displacement. 

0 - The displacement is 16 bits. 
1 - The displacement is 32 bits. 

Coprocessor Condition field - Specifies the coprocessor condition to be tested. This 
field is passed to the coprocessor which provides directives to the main processor 
for processing this instruction. 

16-Bit Displacement field - The displacement value occupies 16 bits. 
32-Bit Displacement field - The displacement value occupies 32 bits. 

MOTOROLA 
3-80 

MC68030 USER'S MANUAL 



cpDBcc Test Coprocessor Condition 
Decrement and Branch 

cpDBcc 

Operation: If cpcc false then (On - 1 • On; If On °"' - 1 then scan PC+ d • PC) 

Assembler 
Syntax: 

Attributes: 

cpDBcc Dn,(label) 

Size = (Word) 

Description: If the specified coprocessor condition is true, execution continues with the 
next instruction. Otherwise, the low-order word in the specified data register is dec­
remented by one. If the result is equal to -1, execution continues with the next 
instruction. If the result is not equal to -1, execution continues at the location indicated 
by the value of the scanPC plus the sign extended 16-bit displacement. The value of 
the scanPC is the address of the displacement word. The displacement is a twos 
complement integer that represents the relative distance in bytes from the scanPC to 
the destination PC. The coprocessor determines the specific condition from the con­
dition word which follows the operation word. Refer to 10.4.1 ScanPC for further 
information. 

Condition Codes: 
Not affected. 

Instruction Format: 

15 14 13 12 11 10 4 3 

1 l 1 l 1J 1J CP-ID ~000 l 0 l 0 j 1 j 0 j 0 j 1 j REGISTER 

l 0 l 0 I 0 l COPROCESSOR CONDITION 0 l 0 l 0 l 0 l 0 l 0 l 0 
OPTIONAL COPROCESSOR-OEFINED EXTENSION WORDS 

DISPLACEMENT (16 BIT) 

Instruction Fields: 
Cp-ld field - Identifies the coprocessor for this operation. Cp-ld of 000 results in an 

F-line exception. 
Register field - Specifies the data register used as the counter. 
Coprocessor Condition field - Specifies the coprocessor condition to be tested. This 

field is passed to the coprocessor which provides directives to the main processor 
for processing this instruction. 

Displacement field - Specifies the distance of the branch (in bytes). 

MC68030 USER'S MANUAL MOTOROLA 
3-81 

• 



cpGEN 

Operation: 

Assembler 
Syntax: 

• Attributes: 

Coprocessor General Function cpGEN 

Pass Command Word to Coprocessor 

cpGEN (parameters as defined by coprocessor) 

Unsized 

Description: Transfers the command word that follows the operation word to the spec-
ified coprocessor. The coprocessor determines the specific operation from the com­
mand word. Usually a coprocessor defines specific instances of this instruction to 
provide its instruction set. 

Condition Codes: 
May be modified by coprocessor. Unchanged otherwise. 

Instruction Format: 

15 14 13 12 11 10 

CP-ID HOO 
EFFECTIVE ADDRESS 

MODE REGISTER 

COPROCESSOR-DEPENDENT COMMAND WORD 

OPTIONAL EFFECTIVE ADDRESS OR COPROCESSOR-DEFINED EXTENSION WORDS 

Instruction Fields: 
Cp-ld field - Identifies the coprocessor for this operation. Note that Cp-ld of 000 is 

reserved for MMU instructions. Refer to 9.8 MMU INSTRUCTIONS for details. 
Effective Address field - Specifies the location of any operand not resident in the 

coprocessor. The allowable addressing modes are determined by the operation to 
be performed. 

Coprocessor Command field - Specifies the coprocessor operation to be performed. 
This word is passed to the coprocessor, which in turn provides directives to the 
main processor for processing this instruction. 

MOTOROLA 
3-82 

MC68030 USER'S MANUAL 



cpRESTORE Coprocessor Restore 
Functions 

(Privileged Instruction) 

cpRESTORE 

Operation: 

Assembler 
Syntax: 

Attributes: 

If supervisor state 
then Restore Internal State of Coprocessor 
else TRAP 

cpRESTORE (ea) 

Unsized 

Description: Restores the internal state of a coprocessor usually after it has been saved 
by a preceding cpSAVE instruction. 

Condition Codes: 
Not affected. 

Instruction Format: 

15 14 13 12 11 10 

CP-ID 4'000 
EFFECTIVE ADDRESS 

MODE REGISTER 

Instruction Field: 
Cp-ld field - Identifies the coprocessor that is to be restored. Cp-ld of 000 results in 

an F-line exception. 
Effective Address field - Specifies the location where the internal state of the copro­

cessor is located. Only postincrement or control addressing modes are allowed as 
shown: 

Addressing Mode Mode Register Addressing Mode Mode Register 

Dn - - (xxx).W 111 000 

An - - (xxx).L 111 001 

(An) 010 reg. number:An #(data) - -
(An)+ 011 reg. number:An 

-(An) - -
(d15,An) 101 reg. number:An (d15,PC) 111 010 

(ds.An.Xn) 110 reg. number:An (ds.PC,Xn) 111 011 

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011 

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn].od) 111 011 

([bd,An],Xn,od) 110 reg. number:An ([bd,PC].Xn,od) 111 011 

NOTE 

If the format word returned by the coprocessor indicates "come again", 
pending interrupts are not serviced. 

MC68030 USER'S MANUAL MOTOROLA 
3-83 



• 

cpSAVE Coprocessor Save Function 
(Privileged Instruction) 

Operation: 

Assembler 
Syntax: 

Attributes: 

If supervisor state 
then Save Internal State of Coprocessor 
else TRAP 

cpSAVE (ea) 

Unsized 

cpSAVE 

Description: Saves the internal state of a coprocessor in a format that can be restored 
by a cpRESTORE instruction. 

Condition Codes: 
Not affected. 

Instruction Format: 

15 14 13 12 11 10 4 0 

EFFECTIVE ADDRESS 
CP-ID 4'000 0 

MODE REGISTER 

Instruction Fields: 
Cp-ld field - Identifies the coprocessor for this operation. Cp-ld of 000 results in an 

F-line exception. 

Effective Address field - Specifies the location where the internal state of the copro­
cessor is to be saved. Only predecrement or control alterable addressing modes are 
allowed as shown: 

Addressing Mode 

MOTOROLA 
3-84 

Dn 

An 

(An) 

(An)+ 

-(An) 

(d15.An) 

(da.An.Xn) 

(bd,An,Xn) 

([bd.An,Xn],od) 

([bd.AnJ,Xn,od) 

Mode Register 

- -

- -
010 reg. number:An 

- -
100 reg. number:An 

101 reg. number:An 

110 reg. number:An 

110 reg. number:An 

110 reg. number:An 

110 reg. number:An 

Addressing Mode Mode Register 

(xxx).W 111 000 

(xxx).L 111 001 

#(data) - -

(d15,PC) - -

(d5,PC,Xn) - -
(bd,PC,Xn) - -

([bd,PC,Xn],od) - -
([bd,PC],Xn,od) - -

MC68030 USER'S MANUAL 



cpScc Set on Coprocessor Condition cpScc 
Operation: 

Assembler 
Syntax: 

Attributes: 

If cpcc true then 1 s • Destination 
else Os • Destination 

cpScc (ea) 

Size = (Byte) 

Description: Tests the specified coprocessor condition code; if the condition is true, the 
byte specified by the effective address is set to TRUE (all ones), otherwise that byte 
is set to FALSE (all zeros). The coprocessor determines the specific condition from the 
condition word that follows the operation word. 

Condition Codes: 
Not affected. 

Instruction Format: 

15 14 13 12 11 10 

EFFECTIVE ADDRESS 
1 1 1 1 CP-ID cf 000 0 0 1 l MODE REGISTER 

0 0 0 0 0 l 0 l 0 0 0 0 COPROCESSOR CONDITION 

OPTIONAL EFFECTIVE ADDRESS OR COPROCESSOR-DEFINED EXTENSION WORDS 

Instruction Fields: 
Cp-ld field - Identifies the coprocessor for this operation. Cp-ld of 000 results in an 

F-line exception. 

Effective Address field - Specifies the destination location. Only data alterable ad­
dressing modes are allowed as shown: 

Addressing Mode Mode Register Addressing Mode Mode Register 

Dn 000 reg. number:Dn (xxx).W 111 000 

An - - (xxx).L 111 001 

(An) 010 reg. number:An #(data) - -

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15.An) 101 reg. number:An (d15,PC) - -

(ds.An.Xn) 110 reg. number:An (d5,PC,Xn) - -

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) - -

([bd.An,Xn],od) 110 reg. number:An ([bd,PC,Xn).od) - -

([bd.An],Xn,od) 110 reg. number:An ([bd,PCJ,Xn,od) - -

Coprocessor Condition field - Specifies the coprocessor condition to be tested. This 
field is passed to the coprocessor, which in turn provides directives to the main 
processor for processing this instruction. 

MC68030 USER'S MANUAL MOTOROLA 
3-85 

• 



cpTRAPcc Trap on Coprocessor Condition 

Operation: 

Assembler 
Syntax: 

• Attributes: 

If cpcc true then TRAP 

cpTRAPcc 
cpTRAPcc #(data} 

Unsized or Size = (Word, Long) 

ccTRAPcc 

Description: Tests the specified coprocessor condition code; ifthe selected coprocessor 
condition is true, the processor initiates a cpTRAPcc exception, vector number 7. The 
program counter value placed on the stack is the address of the next instruction. If 
the selected condition is not true, no operation is performed, and execution continues 
with the next instruction. The coprocessor determines the specific condition from the 
condition word that follows the operation word. Following the condition word is a 
user-defined data operand specified as immediate data to be used by the trap handler. 

Condition Codes: 
Not aff~cted. 

Instruction Format: 

15 14 13 12 11 10 9 8 4 2 

1 l 1 l 11 1 l CP-ID oF000 l 0 l 0 l 1 l 1 l 1 l 1 l OP-MODE 

0 l 0 l 0 l 0 l 0 l 0 l 0 l 0 l 0 l 0 l COPROCESSOR CONDITION 

OPTIONAL COPROCESSOR-DEFINED EXTENSION WORDS 

OPTIONAL WORD 

OR LONG WORD OPERAND 

Instruction Fields: 
Cp-ld field - Identifies the coprocessor for this operation. Cp-ld of 000 results in an 

F-line exception. 
Op-Mode field - Selects the instruction form. 

010 - Instruction is followed by one operand word. 
011 - Instruction is followed by two operand words. 
100 - Instruction has no following operand words. 

Coprocessor Condition field - Specifies the coprocessor condition to be tested. This 
field is passed to the coprocessor, which provides directives to the main processor 
for processing this instruction. 

MOTOROLA 
3-86 

MC68030 USER'S MANUAL 



DBcc 

Operation: 

Assembler 
Syntax: 

Attributes: 

Test Condition, Decrement, and Branch 

If condition false then (Dn -1 • Dn; 
If Dn =I= -1 then PC+ d • PC) 

DBcc Dn,(label) 

Size = (Word) 

DBcc 

Description: Controls a loop of instructions. The parameters are: a condition code, a 
data register (counter), and a displacement value. The instruction first tests the con­
dition (for termination); if it is true, no operation is performed. If the termination 
condition is not true, the low-order 16 bits of the counter data register are decremented 
by one. If the result is -1, execution continues with the next instruction. If the result 
is not equal to -1, execution continues at the location indicated by the current value 
of the PC plus the sign-extended 16-bit displacement. The value in the PC is the address 
of the instruction word of the DBcc instruction plus two. The displacement is a twos 
complement integer that represents the relative distance in bytes from the current PC 
to the destination PC. 

Condition code cc specifies one of the following conditions: 
CC carry clear 
CS carry set 
EQ equal 
F never equal 
GE greater or equal 
GT greater than 
HI high 
LE less or equal 

Condition Codes: 
Not affected. 

Instruction Format: 

0100 c 
0101 c 
0111 z 
0001 0 
1100 N•V+N•V 
1110 N•V•Z + N•V•Z 
0010 c·z 
1111 Z + N•V + N•V 

LS low or same 
LT less than 
Ml 
NE 
PL 
T 
vc 
vs 

minus 
not equal 
plus 
always true 
overflow clear 
overflow set 

15 14 13 12 11 10 

CONDITION 1 1 

DISPLACEMENT (16 BITS) 

Instruction Fields: 

0011 C+Z 
1101 N•V + N•V 
1011 N 
0110 z 
1010 N 
0000 1 
1000 v 
1001 v 

REGISTER 

Condition field - The binary code for one of the conditions listed in the table. 
Register field - Specifies the data register used as the counter. 
Displacement field - Specifies the number of bytes to branch. 

MC68030 USER'S MANUAL MOTOROLA 
3-87 

• 



• 

DBcc Test Condition, Decrement, and Branch DBcc 

Notes: 
1. The terminating condition is similar to the UNTIL loop clauses of high-level languages. 

For example: DBMI can be stated as "decrement and branch until minus". 
2. Most assemblers accept DBRA for DBF for use when only a count terminates the loop 

(no condition is tested) . 
3. A program can enter a loop at the beginning or by branching to the trailing DBcc 

instruction. Entering the loop at the beginning is useful for indexed addressing modes 
and dynamically specified bit operations. In this case, the control index count must 
be one less than the desired number of loop executions. However, when entering a 
loop by branching directly to the trailing DBcc instruction, the control count should 
equal the loop execution count. In this case, if a zero count occurs, the DBcc instruction 
does not branch, and the main loop is not executed. 

MOTOROLA 
3-88 

MC68030 USER'S MANUAL 



DIVS 
DIVSL 

Operation: 

Assembler 
Syntax: 

Attributes: 

Signed Divide 

Destination/Source • Destination 

DIVS.W (ea),Dn 
DIVS.L (ea),Dq 
DIVS.L (ea),Dr:Dq 
DIVSL.L (ea),Dr:Dq 

Size = (Word, Long) 

32/16 • 16r:16q 
32/32. 32q 
64/32 • 32r:32q 
32/32 • 32r:32q 

DIVS 
DIVSL 

Description: Divides the signed destination operand by the signed source operand and 
stores the signed result in the destination. The instruction uses one of four forms. The 
word form of the instruction divides a long word by a word. The result is a quotient 
in the lower word (least-significant 16 bits) and the remainder is in the upper word 
(most-significant 16 bits) of the result. The sign of the remainder is the same as the 
sign of the dividend. 

The first long form divides a long word by a long word. The result is a long quotient; 
the remainder is discarded. 

The second long form divides a quad word (in any two data registers) by a long word. 
The result is a long word quotient and a long word remainder. 

The third long form divides a long word by a long word. The result is a long word 
quotient and a long word remainder. 

Two special conditions may arise during the operation: 
1. Division by zero causes a trap. 
2. Overflow may be detected and set before the instruction completes. If the in­

struction detects an overflow, it sets the overflow condition code, and the op­
erands are unaffected. 

Condition Codes: 
X N Z V C 

1-l·l·l·lo 
X Not affected. 
N Set if the quotient is negative. Cleared otherwise. Undefined if overflow or divide 

by zero occurs. 
Z Set if the quotient is zero. Cleared otherwise. Undefined if overflow or divide by 

zero occurs. 
V Set if division overflow occurs; undefined if divide by zero occurs. Cleared oth­

erwise. 
C Always cleared. 

Instruction Format (word form): 

15 14 13 12 11 10 

REGISTER 

MC68030 USER'S MANUAL 

EFFECTIVE ADDRESS 

MODE REGISTER 

MOTOROLA 
3-89 



• 

DIVS 
DIVSL 

Instruction Fields: 

Signed Divide 

DIVS 
DIVSL 

Register field - Specifies any of the eight data registers. This field always specifies 
the destination operand . 

Effective Address field - Specifies the source operand. Only data addressing modes 
are allowed as shown: 

Addressing Mode Mode Register Addressing Mode Mode Register 

Dn 000 reg. number:Dn lxxx).W 111 000 

An - - (xxx).L 111 001 

(An) 010 reg. number:An #(data) 111 100 

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15,An) 101 reg. number:An (d15,PC) 111 010 

(d9,An,Xn) 110 reg. number:An ld9,PC,Xn) 111 011 

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011 

([bd,An,Xn],od) 110 reg. number:An ((bd,PC,Xn].od) 111 011 

([bd,An].Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011 

NOTE 
Overflow occurs if the quotient is larger than a 16-bit signed integer. 

Instruction Format (long form): 

15 14 

0 1 

0 

MOTOROLA 
3-90 

13 12 

I 0 I 0 

REGISTER Dq 

11 10 

1 I 

1 SIZE 

EFFECTIVE ADDRESS 
0 0 0 1 

MODE j REGISTER 

0 0 0 0 0 I o I o I REGISTER Dr 

MC68030 USER'S MANUAL 



DIVS 
DIVSL 

Instruction Fields: 

Signed Divide 

DIVS 
DIVSL 

Effective Address field - Specifies the source operand. Only data addressing modes 
are allowed as shown: 

Addressing Mode Mode Register Addressing Mode Mode Register 

Dn 000 reg. number:Dn (xxx).W 111 000 

An - - (xxx).L 111 001 

(An) 010 reg. number:An #(data) 111 100 

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15.An) 101 reg. number:An (d15,PC) 111 010 

(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) 111 011 

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011 

([bd.An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011 

([bd.An],Xn,od) 110 reg. number:An ([bd,PC),Xn,od) 111 011 

Register Dq field - Specifies a data register for the destination operand. The low 
order 32 bits of the dividend comes from this register, and the 32-bit quotient is 
loaded into this register. 

Size field - Selects a 32 or 64 bit division operation. 
0 - 32-bit dividend is in Register Dq. 
1 - 64-bit dividend is in Dr:Dq. 

Register Dr field -After the division, this register contains the 32-bit remainder. If Dr 
and Dq are the same register, only the quotient is returned. If Size is 1, this field 
also specifies the data register that contains the high order 32 bits of the dividend. 

NOTE 
Overflow occurs if the quotient is larger than a 32-bit signed integer. 

MC68030 USER'S MANUAL MOTOROLA 
3-91 

• 



• 

DIVU 
DIVUL 

Operation: 

Assembler 
Syntax: 

Attributes: 

Unsigned Divide 

Destination/Source • Destination 

DIVU.W (ea),Dn 
DIVU.L (ea),Dq 
DIVU.L (ea),Dr:Dq 
DIVUL.L (ea),Dr:Dq 

Size = (Word, Long) 

32/16 • 16r:16q 
32/32. 32q 
64/32 • 32r:32q 
32/32 • 32r:32q 

DIVU 
DIVUL 

Description: Divides the unsigned destination operand by the unsigned source operand 
and stores the unsigned result in the destination. The instruction uses one of four 
forms. The word form of the instruction divides a long word by a word. The result is 
a quotient in the lower word (least-significant 16 bits) and the remainder is in the 
upper word (most significant 16 bits) of the result. 

The first long form divides a long word by a long word. The result is a long quotient; 
the remainder is discarded. 

The second long form divides a quad word (in any two data registers) by a long word. 
The result is a long word quotient and a long word remainder. 

The third long form divides a long word by a long word. The result is a long word 
quotient and a long word remainder. 

Two special conditions may arise during the operation: 
1. Division by zero causes a trap. 
2. Overflow may be detected and set before the instruction completes. If the in­

struction detects an overflow, it sets the overflow condition code, and the op­
erands are unaffected. 

Condition Codes: 

X N Z V C 

-l·l·l·lo 
X Not affected. 
N Set if the quotient is negative. Cleared otherwise. Undefined if overflow or divide 

by zero occurs. 
Z Set if the quotient is zero. Cleared otherwise. Undefined if overflow or divide by 
zero occurs. 

V Set if division overflow occurs; undefined if divide by zero occurs. Cleared oth­
erwise. 

C Always cleared. 

Instruction Format (word form): 

15 14 

MOTOROLA 
3-92 

13 12 11 10 

REGISTER 
EFFECTIVE ADDRESS 

MODE REGISTER 

MC68030 USER'S MANUAL 



DIVU 
DIVUL 

Instruction Fields: 

Unsigned Divide 

DIVU 
DIVUL 

Register field - Specifies any of the eight data registers. This field always specifies 
the destination operand. 

Effective Address field - Specifies the source operand. Only data addressing modes 
are allowed as shown: 

Addressing Mode Mode Register Addressing Mode Mode Register 

Dn 000 reg. number:Dn (xxx).W 111 000 

An - - (xxx).L 111 001 

(An) 010 reg. number:An #(data) 111 100 

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15,An) 101 reg. number:An (d15,PC) 111 010 

(ds,An,Xn) 110 reg. number:An (ds,PC,Xn) 111 011 

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011 

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011 

([bd,An],Xn,od) 110 reg. number:An ([bd,PCJ,Xn,od) 111 011 

NOTE 
Overflow occurs if the quotient is larger than a 16-bit signed integer. 

Instruction Format (long form): 

15 14 13 12 11 10 

0 1 l 0 l 0 1 1 

0 REGISTER Dq 0 SIZE 

MC68030 USER'S MANUAL 

0 0 0 1 

0 0 0 0 0 

EFFECTIVE ADDRESS 

MOOE l 
1 0 l 0 l 

REGISTER 

REGISTER Dr 

MOTOROLA 
3-93 



• 

DIVU 
DIVUL 

Instruction Fields: 

Unsigned Divide 

DIVU 
DIVUL 

Effective Address field - Specifies the source operand. Only data addressing modes 
are allowed as shown: 

Addressing Mode Mode Register Addressing Mode Mode Register 

Dn 000 reg. number:Dn (xxx).W 111 000 

An - - (xxx).L 111 001 

(An) 010 reg. number:An #(data) 111 100 

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15,An) 101 reg. number:An (d15,PC) 111 010 

(d9.An,Xn) 110 reg. number:An (d9,PC,Xn) 111 011 

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011 

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn),od) 111 011 

([bd.An),Xn,od) 110 reg. number:An ([bd,PC).Xn,od) 111 011 

Register Dq field - Specifies a data register for the destination operand. The low 
order 32 bits of the dividend comes from this register, and the 32-bit quotient is 
loaded into this register. 

Size field - Selects a 32 or 64 bit division operation. 
0 - 32-bit dividend is in Register Dq. 
1 - 64-bit dividend is in Dr:Dq. 

Register Dr field - After the division, this register contains the 32-bit remainder. If Dr 
and Dq are the same register, only the quotient is returned. If Size is 1, this field 
also specifies the data register that contains the high order 32 bits of the dividend. 

NOTE 

Overflow occurs if the quotient is larger than a 32-bit unsigned integer. 

MOTOROLA 
3-94 

MC68030 USER'S MANUAL 



EOR 

Operation: 

Assembler 
Syntax: 

Attributes: 

Exclusive OR Logical EOR 

Source EB Destination • Destination 

EOR Dn,(ea) 

Size = (Byte, Word, Long) 

Description: Performs an exclusive OR operation on the destination operand using the 
source operand and stores the result in the destination location. The size of the op­
eration may be specified to be byte, word, or long. The source operand must be a 
data register. The destination operand is specified in the effective address field. 

Condition Codes: 

X N Z V C 

1-l·l·lolo 
X Not affected. 
N Set if the most-significant bit of the result is set. Cleared otherwise. 
Z Set if the result is zero. Cleared otherwise. 
V Always cleared. 
C Always cleared. 

Instruction Format (word form): 

15 14 13 12 11 10 

REGISTER OP-MODE 
EFFECTIVE ADDRESS 

MODE REGISTER 

Instruction Fields: 
Register field - Specifies any of the eight data registers. 
Op-Mode field: 

Byte Word 

100 101 

MC68030 USER'S MANUAL 

Long 

110 

Operation 

((ea)) EB ((Dn)) •(ea) 

MOTOROLA 
3-95 

• 



• 

EOR Exclusive OR Logical EOR 

Effective Address field - Specifies the destination operand. Only data alterable ad­
dressing modes are allowed as shown: 

Addressing Mode Mode Register Addressing Mode Mode Register 

On 000 reg. number:Dn (xxx).W 111 000 

An - - (xxx).L 111 001 

(An) 010 reg. number:An #(data) - -

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15,An) 101 reg. number:An (d15,PC) - -

(ds.An,Xn) 110 reg. number:An (d9,PC,Xn) - -
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) - -

([bd,An,Xn].od) 110 reg. number:An ([bd,PC,Xn].od) - -

([bd,An],Xn,od) 110 reg. number:An ([bd,PC].Xn,od) - -

NOTE 
Memory to data register operations are not allowed. Most assemblers use 
EORI when the source is immediate data. 

MOTOROLA 
3-96 

MC68030 USER'S MANUAL 



EORI 

Operation: 

Assembler 
Syntax: 

Attributes: 

Exclusive OR Immediate EORI 

Immediate Data E9 Destination • Destination 

EORI #(data),(ea) 

Size = (Byte, Word, Long) 

Description: Performs an exclusive OR operation on the destination operand using the 
immediate data and the destination operand and stores the result in the destination 
location. The size of the operation may be specified as byte, word, or long. The size 
of the immediate data matches the operation size. 

Condition Codes: 

X N Z v c 
- I • I • o I o 

X Not affected. 
N Set if the most significant bit of the result is set. Cleared otherwise. 
Z Set if the result is zero. Cleared otherwise. 
V Always cleared. 
C Always cleared. 

Instruction Format: 

15 14 13 12 11 10 

SIZE 0 l 0 l 0 l 0 l 1 l 0 l 1 l 0 l EFFECTIVJ ADDRESS 
MODE REGISTER 

WORD DATA 116 BITS) 

LONG DATA 132 BITS) 

Instruction Fields: 
Size field - Specifies the size of the operation: 

00 - Byte operation. 
01 - Word operation. 
10 - Long operation. 

MC68030 USER'S MANUAL 

BYTE DATA IB BITS) 

MOTOROLA 
3-97 

• 



• 

EORI Exclusive OR Immediate EORI 

Effective Address field - Specifies the destination operand. Only data alterable ad­
dressing modes are allowed as shown: 

Addressing Mode Mode Register Addressing Mode Mode 

On 000 reg. number:Dn (xxx).W 111 

An - - (xxx).L 111 

(An) 010 reg. number:An #(data) -
(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15.An) 101 reg. number:An (d15,PC) -

(da.An,Xnl 110 reg. number:An (da.PC,Xn) -
(bd,An,Xn) 110 reg. number:An (bd,PC,Xnl -

([bd,An,Xn],odl 110 reg. number:An ([bd,PC,Xn],od) -

([bd,An),Xn,od) 110 reg. number:An ([bd,PC),Xn,od) -

Immediate field - (Data immediately following the instruction): 
If size = 00, the data is the low-order byte of the immediate word. 
If size = 01, the data is the entire immediate word. 
If size = 10, the data is next two immediate words. 

Register 

000 

001 

-

-
-
-
-

-

MOTOROLA 
3-98 

MC68030 USER'S MANUAL 



EORI 
to CCR Exclusive OR Immediate 

to Condition Code 

EORI 
to CCR 

Operation: 

Assembler 
Syntax: 

Attributes: 

Source EB CCR • CCR 

EORI #(data),CCR 

Size = (Byte) 

Description: Performs an exclusive OR operation on the condition code register using 
the immediate operand and stores the result in the condition code register (low-order 
byte of the status register). All implemented bits of the condition code register are 
affected. 

Condition Codes: 

X N Z V C 

• I • I • I • I • 

X Changed if bit 4 of immediate operand is one. Unchanged otherwise. 
N Changed if bit 3 of immediate operand is one. Unchanged otherwise. 
Z Changed if bit 2 of immediate operand is one. Unchanged otherwise. 
V Changed if bit 1 of immediate operand is one. Unchanged otherwise. 
C Changed if bit 0 of immediate operand is one. Unchanged otherwise. 

Instruction Format: 

15 14 13 12 11 10 

1 1 1 

0 0 BYTE DATA (8 BITS) 

MC68030 USER'S MANUAL MOTOROLA 
3-99 

• 



• 

EORI 
to SR 

Operation: 

Assembler 
Syntax: 

Attributes: 

Exclusive OR Immediate to the Status Register 
(Privileged Instruction) 

If supervisor state 
then Source EB SR• SR 
else TRAP 

EORI #(data),SR 

Size = (Word) 

EORI 
to SR 

Description: Performs an exclusive OR operation on the contents of the status register 
using the immediate operand and stores the result in the status register. All imple­
mented bits of the status register are affected. 

Condition Codes: 

X N Z V C 

·l·l·l·I· 
X Changed if bit 4 of immediate operand is one. Unchanged otherwise. 
N Changed if bit 3 of immediate operand is one. Unchanged otherwise. 
Z Changed if bit 2 of immediate operand is one. Unchanged otherwise. 
V Changed if bit 1 of immediate operand is one. Unchanged otherwise. 
C Changed if bit O of immediate operand is one. Unchanged otherwise. 

Instruction Format: 

15 14 13 12 11 10 

o I o 

MOTOROLA 
3-100 

2 

WORD DATA (16 BITS) 

MC68030 USER'S MANUAL 



EXG 
Operation: 

Assembler 
Syntax: 

Attributes: 

Rx •t Ry 

EXG Dx,Dy 
EXG Ax,Ay 
EXG Dx,Ay 
EXG Ay, Ox 

Size = (Long) 

Exchange Registers EXG 

Description: Exchanges the contents of two 32-bit registers. The instruction performs 
three types of exchanges: 

1. Exchange data registers. 
2. Exchange address registers. 
3. Exchange a data register and an address register. 

Condition Codes: 
Not affected. 

Instruction Format: 

15 14 13 12 11 10 

1 I 1 0 I 0 I REGISTER Rx 1 I OP-MODE REGISTER Ry 

Instruction Fields: 
Register Rx field - Specifies either a data register or an address register depending 

on the mode. If the exchange is between data and address registers, this field always 
specifies the data register. 

Op-Mode field - Specifies the type of exchange: 
01000 - Data registers. 
01001 - Address registers. 
10001 - Data register and address register. 

Register Ry field - Specifies either a data register or an address register depending 
on the mode. If the exchange is between data and address registers, this field always 
specifies the address register. 

MC68030 USER'S MANUAL MOTOROLA 
3-101 

• 



• 

EXT 
EXTB 
Operation: 

Assembler 
Syntax: 

Attributes: 

Sign Extend 

Destination Sign-extended • Destination 

EXT.W Dn 
EXT.L Dn 
EXTB.L Dn 

extend byte to word 
extend word to long word 
extend byte to long word 

Size = (Word, Long) 

EXT 
EXTB 

Description: Extends a byte in a data register to a word or a long word, or a word in a 
data register to a long word, by replicating the sign bit to the left. If the operation 
extends a byte to a word, bit [7] of the designated data register is copied to bits [15:8] 
of that data register. If the operation extends a word to a long word, bit [15] of the 
designated data register is copied to bits [31 :16] of the data register. The EXTB form 
copies bit [7] of the designated register to bits [31 :8] of the data register. 

Condition Codes: 

X N Z V C 

1-l·l·lolo 

X Not affected. 
N Set if the result is negative. Cleared otherwise. 
Z Set if the result is zero. Cleared otherwise. 
V Always cleared. 
C Always cleared. 

Instruction Format: 

15 14 13 12 11 10 

OP-MODE 

Instruction Fields: 

4 

o I o I o I 

Op-Mode field - Specifies the size of the sign-extension operation: 
010 - Sign-extend low-order byte of data register to word. 
011 - Sign-extend low-order word of data register to long. 
111 - Sign-extend low-order byte of data register to long. 

Register field - Specifies the data register is to be sign-extended. 

REGISTER 

MOTOROLA 
3-102 

MC68030 USER'S MANUAL 



ILLEGAL Take Illegal Instruction Trap 

Operation: 

Assembler 
Syntax: 

Attributes: 

SSP - 2 • SSP; Vector Offset. (SSP); 
SSP - 4 • SSP; PC. (SSP); 
SSP - 2. SSP; SR. (SSP); 
Illegal Instruction Vector Address • PC 

ILLEGAL 

Unsized 

ILLEGAL 

Description: Forces an illegal instruction exception, vector number 4. All other illegal 
instruction bit patterns are reserved for future extension of the instruction set and 
should not be used to force an exception. 

Condition Codes: 
Not affected 

Instruction Format: 

15 14 13 12 11 10 

MC68030 USER'S MANUAL MOTOROLA 
3-103 

• 



• 

JMP 
Operation: 

Assembler 
Syntax: 

Attributes: 

Destination Address • PC 

JMP (ea) 

Unsized 

Jump JMP 

Description: Program execution continues at the effective address specified by the in-
struction. The addressing mode for the effective address must be a control addressing 
mode. 

Condition Codes: 
Not affected. 

Instruction Format: 

15 14 13 12 11 10 

EFFECTIVE ADDRESS 

MODE REGISTER 

Instruction Fields: 
Effective Address field - Specifies the address of the next instruction. Only control 

addressing modes are allowed as shown: 

Addressing Mode 

MOTOROLA 
3-104 

Dn 

An 

(An) 

(An)+ 

-(An) 

(d15.An) 

(d3,An,Xn) 

(bd,An,Xn) 

([bd,An,Xn).od) 

([bd,An].Xn,od) 

Mode Register 

- -

- -

010 reg. number:An 

- -

- -

101 reg. number:An 

110 reg. number:An 

110 reg. number:An 

110 reg. number:An 

110 reg. number:An 

Addressing Mode Mode Register 

(xxx).W 111 000 

(xxx).L 111 001 

#(data) - -

(d15,PC) 111 010 

(d3,PC,Xn) 111 011 

(bd,PC,Xn) 111 011 

([bd,PC,Xn],od) 111 011 

([bd,PCJ,Xn,od) 111 011 

MC68030 USER'S MANUAL 



JSR Jump to Subroutine JSR 

Operation: 

Assembler 
Syntax: 

Attributes: 

SP - 4 • Sp; PC • (SP) 
Destination Address• PC 

JSR (ea) 

Unsized 

Description: Pushes the long word address of the instruction immediately following the 
JSR instruction onto the system stack. Program execution then continues at the ad­
dress specified in the instruction. 

Condition Codes: 
Not affected. 

Instruction Format: 

15 14 13 12 11 10 

EFFECTIVE ADDRESS 

MODE REGISTER 

Instruction Fields: 
Effective Address field - Specifies the address of the next instruction. Only control 

addressing modes are allowed as shown: 

Addressing Mode Mode Register 

On - -

An - -

(An) 010 reg. number:An 

(An)+ - -
-(An) - -

(d15,An) 101 reg. number:An 

(da.An,Xn) 110 reg. number:An 

(bd,An,Xn) 110 reg. number:An 

([bd,An,Xn].od) 110 reg. number:An 

([bd,An].Xn,od) 110 reg. number:An 

MC68030 USER'S MANUAL 

Addressing Mode 

(xxx).W 

(xxx).L 

#(data) 

(d15,PC) 

(d9,PC,Xn) 

(bd,PC,Xn) 

([bd,PC,Xn].od) 

([bd,PC].Xn,od) 

Mode 

111 

111 

-

111 

111 

111 

111 

111 

Register 

000 

001 

-

010 

011 

011 

011 

011 

MOTOROLA 
3-105 

• 



LEA 

Operation: 

Assembler 
Syntax: 

II Attributes: 

Load Effective Address LEA 

(ea)• An 

LEA (ea).An 

Size = (Long) 

Description: Loads the effective address into the specified address register. All 32 bits 
of the address register are affected by this instruction. 

Condition Codes: 
Not affected. 

Instruction Format: 

15 14 13 12 11 10 

REGISTER 
EFFECTIVE ADDRESS 

MDDE REGISTER 

Instruction Fields: 
Register field - Specifies the address register to be updated with the effective address. 
Effective Address field - Specifies the address to be loaded into the address register. 

Only control addressing modes are allowed as shown: 

Addressing Mode 

MOTOROLA 
3-106 

Dn 

An 

(An) 

(An)+ 

-(An) 

(d15,An) 

(d5,An,Xn) 

(bd,An,Xn) 

([bd,An,Xn).od) 

([bd,An],Xn,od) 

Mode Register 

- -

- -

010 reg. number:An 

- -

- -

101 reg. number:An 

110 reg. number:An 

110 reg. number:An 

110 reg. number:An 

110 reg. number:An 

Addressing Mode Mode Register 

(xxx).W 111 000 

(xxx).L 111 001 

#(data) - -

(d15,PC) 111 010 

(d5,PC,Xn) 111 011 

(bd,PC,Xn) 111 011 

([bd,PC,Xn],od) 111 011 

([bd,PC),Xn,od) 111 011 

MC68030 USER'S MANUAL 



LINK 

Operation: 

Assembler 
Syntax: 

Attributes: 

Link and Allocate 

Sp - 4 •Sp; An• (SP); 
SP• An; SP+d •SP 

LINK An, #(displacement) 

Size = (Word, Long) 

LINK 

Description: Pushes the contents of the specified address register onto the stack. Then 
loads the updated stack pointer into the address register. Finally, adds the displace­
ment value to the stack pointer. For word size operation, the displacement is the sign­
extended word following the operation word. For long size operation, the displacement 
is the long word following the operation word. The address register occupies one long 
word on the stack. The user should specify a negative displacement in order to allocate 
stack area. 

Condition Codes: 
Not affected. 

Instruction Format: 

15 14 13 12 11 10 

1 REGISTER 

WORO DISPLACEMENT 

15 14 13 12 11 10 

o I 1 I o I o I 1 I o I o I o I o I o I o I o I 1 I REGISTER 

HIGH-ORDER DISPLACEMENT 

LOW-ORDER DISPLACEMENT 

Instruction Fields: 
Register field - Specifies the address register for the link. 
Displacement field - Specifies the twos complement integer to be added to the stack 
pointer. 

NOTE 
LINK and UNLK can be used to maintain a linked list of local data and pa­
rameter areas on the stack for nested subroutine calls. 

MC68030 USER'S MANUAL MOTOROLA 
3-107 

• 



II 

LSL,LSR Logical Shift 

Operation: 

Assembler 
Syntax: 

Attributes: 

Destination Shifted by (count) • Destination 

LSd Dx,Dy 
LSd #(data),Dy 
LSd (ea) 
where d is direction, L or R 

Size = (Byte, Word, Long) 

LSL,LSR 

Description: Shifts the bits of the operand in the direction specified (Lor R). The carry 
bit receives the last bit shifted out of the operand. The shift count for the shifting of 
a register is specified in two different ways: 

1. Immediate -The shift count (1-8) is specified in the instruction. 
2. Register - The shift count is the value in the data register specified in the in-

struction modulo 64. 
The size of the operation for register destinations may be specified as byte, word, or 
long. The contents of memory, (ea), can be shifted one bit only, and the operand size 
is restricted to a word. 

The LSL instruction shifts the operand to the left the number of positions specified as 
the shift count. Bits shifted out of the high order bit go to both the carry and the extend 
bits; zeros are shifted into the low-order bit. 

LSL: 

The LSR instruction shifts the operand to the right the number of positions specified 
as the shift count. Bits shifted out of the low order bit go to both the carry and the 
extend bits; zeros are shifted into the high order bit. 

LSA: 

MOTOROLA 
3-108 

- ......-----~l.__oPERA____,No ~l ~: : : 

MC68030 USER'S MANUAL 



LSL,LSR Logical Shift LSL,LSR 

Condition Codes: 

X N Z v c 

• I • I • o I • 
X Set according to the last bit shifted out of the operand. Unaffected for a shift count 

of zero. 
N Set if the result is negative. Cleared otherwise. 
Z Set if the result is zero. Cleared otherwise. 
V Always cleared. 
C Set according to the last bit shifted out of the operand. Cleared for a shift count 

of zero. 

Instruction Format (Register Shifts): 

15 14 13 12 11 10 3 

1 I 1 1 I 0 I COUNT/REGISTER dr I SIZE i/r I o I 1 REGISTER 

Instruction Field (Register Shifts): 
Count/Register field: 

If i/r = 0, this field contains the shift count. The values 1-7 represent shifts of 1-7; 
value of 0 specifies a shift count of 8. 

If i/r = 1, the data register specified in this field contains the shift count (modulo 
64). 

dr field - Specifies the direction of the shift: 
0 - Shift right. 
1 - Shift left. 

Size field - Specifies the size of the operation: 
00 - Byte operation. 
01 - Word operation. 
10 - Long operation. 

i/r field: 
If i/r = 0, specifies immediate shift count. 
If i/r = 1, specifies register shift count. 

Register field - Specifies a data register to be shifted. 

Instruction Format (Memory Shifts): 

15 14 13 12 11 10 

dr 

MC68030 USER'S MANUAL 

4 

EFFECTIVE ADDRESS 

MODE REGISTER 

MOTOROLA 
3-109 

• 



• 

LSL,LSR Logical Shift 

Instruction Fields (Memory Shifts): 
dr field - Specifies the direction of the shift: 

0 - Shift right. 
1 - Shift left. 

LSL,LSR 

Effective Address field - Specifies the operand to be shifted. Only memory alterable 
addressing modes are allowed as shown: 

Addressing Mode 

MOTOROLA 
3-110 

Dn 

An 

(An) 

(An)+ 

-(An) 

(d15.An) 

(da.An,Xn) 

(bd,An,Xn) 

([bd,An,Xn),od) 

([bd,An),Xn,od) 

Mode Register 

- -
- -
010 reg. number:An 

011 reg. number:An 

100 reg. number:An 

101 reg. number:An 

110 reg~ number:An 

110 reg. number:An 

110 reg. number:An 

110 reg. number:An 

Addressing Mode Mode Register 

(xxx).W 111 000 

(xxx).L 111 001 

#(data} - -

(d15,PC) - -

(dg,PC,Xn) - -
(bd,PC,Xn) - -

([bd,PC,Xn),od) - -
([bd,PC),Xn,od) - -

MC68030 USER'S MANUAL 



MOVE 
Operation: 

Assembler 
Syntax: 

Attributes: 

Move Data from Source to Destination MOVE 
Source• Destination 

MOVE (ea),(ea) 

Size = (Byte, Word, Long) 

Description: Moves the data at the source to the destination location, and sets the 
condition codes according to the data. The size of the operation may be specified as 
byte, word, or long. 

Condition Codes: 

X N Z v c 

I - I • I • a I o 

X Not affected. 
N Set if the result is negative. Cleared otherwise. 
Z Set if the result is zero. Cleared otherwise. 
V Always cleared. 
C Always cleared. 

Instruction Format: 

15 14 13 12 11 10 

0 
DESTINATION 

4 

SOURCE 
SIZE 

REGISTER MODE MODE REGISTER 

Instruction Fields: 
Size field - Specifies the size of the operand to be moved: 

01 - Byte operation. 
11 - Word operation. 
10 - Long operation. 

MC68030 USER'S MANUAL MOTOROLA 
3-111 

• 



• 

MOVE Move Data from Source to Destination MOVE 
Destination Effective Address field - Specifies the destination location. Only data 

alterable addressing modes are allowed as shown: 

Addressing Mode Mode Register Addressing Mode Mode Register 

Dn 000 reg. number:Dn (xxx).W 111 000 

An - - (xxx).L 111 001 

(An) 010 reg. number:An #(data) - -

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15.Anl 101 reg. number:An (d15,PC) - -

(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) - -
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) - -

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn].od) - -

([bd,An],Xn,od) 110 reg. number:An ([bd,PC].Xn,od) - -

Source Effective Address field - Specifies the source operand. All addressing modes 
are allowed as shown: 

Addressing Mode Mode Register Addressing Mode Mode Register 

Dn 000 reg. number:Dn (xxx).W 111 000 

An* 001 reg. number:An (xxx).L 111 001 

(An) 010 reg. number:An #(data) 111 100 

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15,An) 101 reg. number:An (d15.PC) 111 010 

(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) 111 011 

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011 

([bd.An,Xn],od) 110 reg. number:An ([bd,PC,Xn].od) 111 011 

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011 

*For byte size operation, address register direct is not allowed. 

Notes: 
1. Most assemblers use MOVEA when the destination is an address register. 
2. MOVEQ can be used to move an immediate 8-bit value to a data register. 

MOTOROLA 
3-112 

MC68030 USER'S MANUAL 



MO VEA 

Operation: 

Assembler 
Syntax: 

Attributes: 

Source • Destination 

MOVEA (ea),An 

Size = (Word, Long) 

Move Address MO VEA 

Description: Moves the contents of the source to the destination address register. The 
size of the operation is specified as word or long. Word-size source operands are sign­
extended to 32-bit quantities. 

Condition Codes: 
Not affected. 

Instruction Format: 

15 14 13 12 11 10 

SIZE 
SOURCE DESTINATION 

REGISTER 
MODE REGISTER 

Instruction Fields: 
Size field - Specifies the size of the operand to be moved: 

11 - Word operation. The source operand is sign-extended to a long operand and 
all 32 bits are loaded into the address register. 

10 - Long operation. 
Destination Register field - Specifies the destination address register. 
Effective Address field - Specifies the location of the source operand. All addressing 

modes are allowed as shown: 

Addressing Mode Mode Register 

On 000 reg. number:Dn 

An 001 reg. number:An 

(An) 010 reg. number:An 

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15,An) 101 reg. number:An 

(d3,An,Xn) 110 reg. number:An 

(bd,An,Xn) 110 reg. number:An 

([bd,An,Xn].od) 110 reg. number:An 

([bd,An].Xn,od) 110 reg. number:An 

MC68030 USER'S MANUAL 

Addressing Mode 

(xxx).W 

(xxx).L 

#(data) 

(d15,PC) 

(d3,PC,Xn) 

(bd,PC,Xn) 

(ibd,PC,Xn].od) 

([bd,PC].Xn,od) 

Mode 

111 

111 

111 

111 

111 

111 

111 

111 

Register 

000 

001 

100 

010 

011 

011 

011 

011 

MOTOROLA 
3-113 

• 



• 

MOVE 
from CCR Move from the 

Condition Code Register 

MOVE 
from CCR 

Operation: CCR • Destination 

Assembler 
Syntax: MOVE CCR,(ea) 

Attributes: Size = (Word) 

Description: Moves the condition code bits (zero extended to word size) to the desti-
nation location. The operand size is a word. Unimplemented bits are read as zeros. 

Condition Codes: 
Not affected. 

Instruction Format: 

15 14 13 12 11 10 

EFFECTIVE ADDRESS 

MODE REGISTER 

Instruction Fields: 
Effective Address field - Specifies the destination location. Only data alterable ad­

dressing modes are allowed as shown: 

Addressing Mode Mode Register Addressing Mode Mode Register 

On 000 reg. number:Dn (xxx).W 111 000 

An - - (xxx).L 111 001 

(An) 010 reg. number:An #(data) - -

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15,An) 101 reg. number:An (d15,PC) - -

(da.An.Xn) 110 reg. number:An (da.PC,Xn) - -
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) - -

((bd.An,Xn],od) 110 reg. number:An ((bd,PC,Xn],od) - -

((bd,An].Xn,od) 110 reg. number:An ([bd,PC),Xn,od) - -

NOTE 

MOVE from CCR is a word operation. ANDI, ORI, and EORI to CCR are byte 
operations. 

MOTOROLA 
3-114 

MC68030 USER'S MANUAL 



MOVE 
to CCR 
Operation: 

Assembler 
Syntax: 

Attributes: 

Source• CCR 

MOVE (ea),CCR 

Size = (Word) 

Move to Condition Codes 

MOVE 
to CCR 

Description: Moves the low-order byte of the source operand to the condition code 
register. The upper byte of the source operand is ignored; the upper byte of the status 
register is not altered. 

Condition Codes: 
X N Z v c 

• I • I • • I • 
X Set to the value of bit 4 of the source operand. 
N Set to the value of bit 3 of the source operand. 
Z Set to the value of bit 2 of the source operand. 
V Set to the value of bit 1 of the source operand. 
C Set to the value of bit O of the source operand. 

Instruction Format: 

15 14 13 12 11 10 6 4 3 2 0 

EFFECTIVE ADDRESS 

MODE REGISTER 

Instruction Fields: 
Effective Address field - Specifies the location of the source operand. Only data 

addressing modes are allowed as shown: 

Addressing Mode Mode Register Addressing Mode Mode Register 

On 000 reg. number:Dn (xxx).W 111 000 

An - - (xxx).L 111 001 

(An) 010 reg. number:An #(data) 111 100 

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15.An) 101 reg. number:An (d15.PC) 111 010 

(da.An.Xnl 110 reg. number:An (da,PC,Xn) 111 011 

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011 

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011 

([bd.An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011 

NOTE 
MOVE to CCR is a word operation. ANDI, ORI, and EORI to CCR are byte 
operations. 

MC68030 USER'S MANUAL MOTOROLA 
3-115 

• 



• 

MOVE 
from SR Move from the Status Register 

(Privileged Instruction) 

Operation: 

Assembler 
Syntax: 

Attributes: 

If supervisor state 
then SR • Destination 
else TRAP 

MOVE SR,(ea) 

Size = (Word) 

MOVE 
from SR 

Description: Moves the data in the status register to the destination location. The des-
tination is word length. Unimplemented bits are read as zeros. 

Condition Codes: 
Not affected. 

Instruction Format: 

15 14 13 12 11 10 

EFFECTIVE ADDRESS 

MODE REGISTER 

Instruction Fields: 
Effective Address field - Specifies the destination location. Only data alterable ad­

dressing modes are allowed as shown: 

Addressing Mode Mode Register Addressing Mode Mode Register 

Dn 000 reg. number: Dn (xxx).W 111 000 

An - - (xxx).L 111 001 

(An) 010 reg. number:An #(data) - -

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15.An) 101 reg. number:An (d15,PC) - -

(da.An,Xn) 110 reg. number:An (da.PC,Xn) - -

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) - -

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) - -
([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) - -

NOTE 
Use the MOVE from CCR instruction to access only the condition codes. 

MOTOROLA 
3-116 

MC68030 USER'S MANUAL 



MOVE 
to SR Move to the Status Register 

(Priviledged Instruction) 

MOVE 
to SR 

Operation: 

Assembler 
Syntax: 

Attributes: 

If supervisor state 
then Source • SR 
else TRAP 

MOVE (ea),SR 

Size = (Word) 

Description: Moves the data in the source operand to the status register. The source 
operand is a word and all implemented bits of the status register are affected. 

Condition Codes: 
Set according to the source operand. 

Instruction Format: 

15 14 13 12 11 10 

EFFECTIVE ADDRESS 

MODE REGISTER 

Instruction Fields: 
Effective Address field - Specifies the location of the source operand. Only data 

addressing modes are allowed as shown: 

Addressing Mode Mode Register 

Dn 000 reg. number:Dn 

An - -

(An) 010 reg. number:An 

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15,An) 101 reg. number:An 

(d5,An,Xn) 110 reg. number:An 

(bd,An,Xn) 110 reg. number:An 

([bd,An,Xn).od) 110 reg. number:An 

((bd,An),Xn,od) 110 reg. number:An 

MC68030 USER'S MANUAL 

Addressing Mode 

(xxx).W 

(xxx).L 

#(data) 

(d15,PC) 

(d5,PC,Xn) 

(bd,PC,Xn) 

((bd,PC,Xn),od) 

([bd,PC).Xn,od) 

Mode 

111 

111 

111 

111 

111 

111 

111 

111 

Register 

000 

001 

100 

010 

011 

011 

011 

011 

MOTOROLA 
3-117 

• 



• 

MOVE 
USP 

Operation: 

Assembler 
Syntax: 

Attributes: 

Move User Stack Pointer 
(Privileged Instruction) 

If supervisor state 
then USP • An or An • USP 
else TRAP 

MOVE USP,An 
MOVE An,USP 

Size = (Long) 

MOVE 
USP 

Description: Moves the contents of the user stack pointer to or from the specified 
address register. 

Condition Codes: 
Not affected. 

Instruction Format: 

15 14 13 12 11 10 

Instruction Fields: 
dr field - Specifies the direction of transfer: 

0 - Transfer the address register to the USP. 
1 - Transfer the USP to the address register. 

o I ctr I REGISTER 

Register field - Specifies the address register for the operation. 

MOTOROLA 
3-118 

MC68030 USER'S MANUAL 



MOVEC Move Control Register 
(Privileged Instruction) 

Operation: 

Assembler 
Syntax: 

Attributes: 

If supervisor state 
then Re • Rn or Rn • Re 
else TRAP 

MOVEC Re.Rn 
MOVEC Rn.Re 

Size = (Long) 

MOVEC 

Description: Moves the contents of the specified control register (Re) to the specified 
general register (Rn) or copies the contents of the specified general register to the 
specified control register. This is always a 32-bit transfer even though the control 
register may be implemented with fewer bits. Unimplemented bits are read as zeros. 

Condition Codes: 
Not affected. 

Instruction Format: 

15 14 13 12 11 10 8 6 

0 0 0 0 1 1 

AID REGISTER CONTROL REGISTER 

Instruction Fields: 
dr field - Specifies the direction of the transfer: 

0 - Control register to general register. 
1 - General register to control register. 

AID field - Specifies the type of general register: 
0 - Data register. 
1 - Address register. 

Register field - Specifies the register number. 
Control Register field - Specifies the control register. 

Hex Control Register 

000 Source Function Code (SFC) register. 
001 Destination Function Code (DFC) register. 
002 Cache Control Register (CACR). 
800 User Stack Pointer (USP). 
801 Vector Base Register (VBR). 
802 Cache Address Register (CAAR). 
803 Master Stack Pointer (MSP). 
804 Interrupt Stack Pointer (ISP). 

Any other code causes an illegal instruction exception. 

MC68030 USER'S MANUAL 

4 2 

dr 

MOTOROLA 
3-119 



• 

MOVEM Move Multiple Registers 

Operation: 

Assembler 
Syntax: 

Attributes: 

Registers • Destination 
Source • Registers 

MOVEM register list,(ea) 
MOVEM (ea),register list 

Size = (Word, Long) 

MOVEM 

Description: Moves the contents of selected registers to or from consecutive memory 
locations starting at the location specified by the effective address. A register is selected 
if the bit in the mask field corresponding to that register is set. The instruction size 
determines whether 16 or 32 bits of each register are transferred. In the case of a 
word transfer to either address or data registers, each word is sign-extended to 32 
bits, and the resulting long word is loaded into the associated register. 

Selecting the addressing mode also selects the mode of operation of the MOVEM 
instruction, and only the control modes, the predecrement mode, and the postincre­
ment mode are valid. If the effective address is specified by one of the control modes, 
the registers are transferred starting at the specified address, and the address is in­
cremented by the operand length (2 or 4) following each transfer. The order of the 
registers is from data register 0 to data register 7, then from address register 0 to 
address register 7. 

If the effective address is specified by the predecrement mode, only a register to 
memory operation is allowed. The registers are stored starting at the specified address 
minus the operand length (2 or 4), and the address is decremented by the operand 
length following each transfer. The order of storing is from address register 7 to 
address register 0, then from data register 7 to data register 0. When the instruction 
has completed, the decremented address register contains the address of the last 
operand stored. In the MC68030, if the addressing register is also moved to memory, 
the value written is the decremented value. 

If the effective address is specified by the postincrement mode, only a memory to 
register operation is allowed. The registers are loaded starting at the specified address; 
the address is incremented by the operand length (2 or 4) following each transfer. The 
order of loading is the same as that of control mode addressing. When the instruction 
has completed, the incremented address register contains the address of the last 
operand loaded plus the operand length. In the MC68030, if the addressing register 
is also loaded from memory, the value loaded is the value fetched plus the operand 
length. 

Condition Codes: 
Not affected. 

Instruction Format: 

15 14 13 12 11 

MOTOROLA 
3-120 

10 9 

dr 

2 

EFFECTIVE ADDRESS 
SIZE MOOE REGISTER 

REGISTER LIST MASK 

MC68030 USER'S MANUAL 



MOVEM Move Multiple Registers MOVEM 
Instruction Field: 

dr field - Specifies the direction of the transfer: 
0 - Register to memory. 
1 - Memory to register. 

Size field - Specifies the size of the registers being transferred: 
0 - Word transfer. 
1 - Long transfer. 

Effective Address field - Specifies the memory address for the operation. For register 
to memory transfers, only control alterable addressing modes or the predecrement 
addressing mode are allowed as shown: 

Addressing Mode Mode Register Addressing Mode Mode Register 

On - - (xxx).W 111 000 

An - - (xxx).L 111 001 

(An) 010 reg. number:An #(data) - -
(An)+ - -
-(An) 100 reg. number:An 

(d15,An) 101 reg. number:An (d15,PC) - -

(da.An,Xn) 110 reg. number:An (d9,PC,Xn) - -

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) - -
([bd,An,Xn),od) 110 reg. number:An ([bd,PC,Xn],od) - -
([bd.An),Xn,od) 110 reg. number:An ([bd,PC),Xn,od) - -

For memory to register transfers, only control addressing modes or the postincrement 
addressing mode are allowed as shown: 

Addressing Mode Mode Register 

On - -
An - -
(An) 010 reg. number:An 

(An)+ 011 reg. number:An 

-(An) - -
(d15.An) 101 reg. number:An 

(d9,An,Xn) 110 reg. number:An 

(bd,An,Xn) 110 reg. number:An 

([bd,An,Xn),od) 110 reg. number:An 

([bd,An],Xn,od) 110 reg. number:An 

MC68030 USER'S MANUAL 

Addressing Mode 

(xxx).W 

(xxx).L 

#(data) 

(d15,PC) 

(d5,PC,Xn) 

(bd,PC,Xn) 

([bd,PC,Xn],od) 

([bd,PC],Xn,od) 

Mode 

111 

111 

-

111 

111 

111 

111 

111 

Register 

000 

001 

-

010 

011 

011 

011 

011 

MOTOROLA 
3-121 

• 



• 

MOVEM Move Multiple Registers MOVEM 

Register List Mask field - Specifies the registers to be transferred. The low order bit 
corresponds to the first register to be transferred; the high-order 'bit corresponds 
to the last register to be transferred. Thus, both for control modes and for the 
postincrement mode addresses, the mask correspondence is: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 

A7 I A6 I A5 I A4 I A3 I A2 I Al I AO I 07 I 06 I 05 I 04 I 03 I 02 I 01 DO 

For the predecrement mode addresses, the mask correspondence is 
reversed: 

15 14 13 12 11 10 

DO I 01 02 03 04 05 06 07 AO Al A2 A3 A4 A5 A6 A7 

NOTE 

An extra read bus cycle occurs for memory operands. This accesses an op­
erand at one address higher than the last register image required. 

MOTOROLA 
3-122 

MC68030 USER'S MANUAL 



MOVEP Move Peripheral Data 

Operation: 

Assembler 
Syntax: 

Attributes: 

Source• Destination 

MOVEP Dx,(d,Ay) 
MOVEP (d,Ay),Dx 

Size = (Word, Long) 

MOVEP 

Description: Moves data between a data register and alternate bytes within the address 
space (typically assigned to a peripheral), starting at the location specified and incre­
menting by two. This instruction is designed for 8-bit peripherals on a 16-bit data bus. 
The high-order byte of the data register is transferred first and the low order byte is 
transferred last. The memory address is specified in the address register indirect plus 
16-bit displacement addressing mode. If the address is even, all the transfers are to 
or from the high order half of the data bus; if the address is odd, all the transfers are 
to or from the low order half of the data bus. The instruction also accesses alternate 
bytes on an 8- or 32-bit bus. 

Example: Long transfer to/from an even address. 

Byte Organization in Register 

31 24 23 16 15 

HI-ORDER MID-UPPER MID-LOWER 

Byte Organization in Memory (Low Address at Top) 

15 

HI-ORDER 

MID-UPPER 

MID-LOWER 

LOW-ORDER 

Example: Word transfer to/from an odd address. 

Byte Organization in Register 

31 24 23 16 15 

HI-ORDER 

Byte Organization in Memory (Low Address at Top) 

15 

HI-ORDER 

LOW-ORDER 

MC68030 USER'S MANUAL 

LOW-ORDER 

LOW-ORDER 

MOTOROLA 
3-123 

• 



• 

MOVEP Move Peripheral Data MOVEP 

Condition Codes: 
Not affected. 

Instruction Format: 

15 14 13 12 11 10 4 3 0 

0 0 DATA REGISTER OP-MOOE ADDRESS REGISTER 

DISPLACEMENT (16 BITS) 

Instruction Fields: 
Data Register field - Specifies the data register for the instruction. 
Op-Mode field - Specifies the direction and size of the operation: 

100- Transfer word from memory to register. 
101 - Transfer long from memory to register. 
110 - Transfer word from register to memory. 
111 - Transfer long from register to memory. 

Address Register field - Specifies the address register which is used in the address 
register indirect plus displacement addressing mode. 

Displacement field - Specifies the displacement used in the operand address. 

MOTOROLA 
3-124 

MC68030 USER'S MANUAL 



MOVEQ Move Quick 

Operation: 

Assembler 
Syntax: 

Attributes: 

Immediate Data• Destination 

MOVEQ #(data),Dn 

Size = (Long) 

MOVEQ 

Description: Moves a byte of immediate data to a 32-bit data register. The data in an 
8-bit field within the operation word is sign extended to a long operand in the data 
register as it is transferred. 

Condition Codes: 

X N Z V C 

1-l·l·lolo 
X Not affected. 
N Set if the result is negative. Cleared otherwise. 
Z Set if the result is zero. Cleared otherwise. 
V Always cleared. 
C Always cleared. 

Instruction Format: 

15 14 13 12 11 10 

REGISTER I o 
Instruction Fields: 

Register field - Specifies the data register to be loaded. 

DATA 

Data field - 8 bits of data, which are sign extended to a long operand. 

MC68030 USER'S MANUAL MOTOROLA 
3-125 

• 



• 

MOVES Move Address Space 
(Privileged Instruction) 

Operation: If supervisor state 

MOVES 

then Rn • Destination [DFC] or Source [SFC) • Rn 
else TRAP 

Assembler 
Syntax: 

Attributes: 

MOVES Rn,(ea) 
MOVES (ea),Rn 

Size = (Byte, Word, Long) 

Description: Moves the byte, word, or long operand from the specified general register 
to a location within the address space specified by the destination function code (DFC) 
register; or, moves the byte, word, or long operand from a location within the address 
space specified by the source function code (SFC) register to the specified general 
register. 

If the destination is a data register, the source operand replaces the corresponding 
low-order bits of that data register, depending on the size of the operation. If the 
destination is an address register, the source operand is sign extended to 32 bits and 
then loaded into that address register. 

Condition Codes: 
Not affected. 

Instruction Format: 

15 14 13 12 11 10 

0 0 l 0 l SIZE 0 1 1 1 0 

AID REGISTER dr 0 0 0 0 l 0 

Instruction Fields: 
Size field - Specifies the size of the operation: 

00 - Byte operation. 
01 - Word operation. 
10 - Long operation. 

MOTOROLA 
3-126 

EFFECTIVE ADDRESS 

MODE l REGISTER 

0 l 0 oJololo 

MC68030 USER'S MANUAL 



MOVES Move Address Space 
(Privileged Instruction) 

MOVES 

Effective Address field - Specifies the source or destination location within the al­
ternate address space. Only memory alterable addressing modes are allowed as 
shown: 

Addressing Mode Mode Register Addressing Mode 

Dn - - (xxx).W 

An - - (xxx).L 

(An) 010 reg. number:An #(data) 

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15.An) 101 reg. number:An (d15,PC) 

(da.An,Xn) 110 reg. number:An (d5,PC,Xn) 

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 

([bd,An,Xn].od) 110 reg. number:An ((bd,PC,Xn],od) 

([bd,AnJ,Xn,od) 110 reg. number:An ((bd,PC],Xn,od) 

AID field - Specifies the type of general register: 
0 - Data register. 
1 - Address register. 

Register field - Specifies the register number. 
dr field - Specifies the direction of the transfer: 

0 - From (ea) to general register. 
1 - From general register to (ea). 

NOTE 

Mode Register 

111 000 

111 001 

- -

- -

- -

- -

- -
- -

For either of the two following examples with the same address register as 
both source and destination 

MOVES.x An,(An) + 
MOVES.x An, - (An) 

the value stored is undefined. The current implementations of the MC68010, 
MC68020, and MC68030 store the incremented or decremented value of An. 

MC68030 USER'S MANUAL MOTOROLA 
3-127 

• 



• 

MULS 

Operation: 

Assembler 
Syntax: 

Attributes: 

Signed Multiply 

Source * Destination • Destination 

MULS.W (ea),Dn 
MULS.L (ea),DI 
MULS.L (ea),Dh:DI 

Size = (Word, Long) 

16x16 • 32 
32x32 • 32 
32 x 32. 64 

MULS 

Description: Multiplies two signed operands yielding a signed result. This instruction 
has a word operand form and a long word operand form. 

In the word form, the multiplier and multiplicand are both word operands, and the 
result is a long word operand. A register operand is the low order word; the upper 
word of the register is ignored. All 32 bits of the product are saved in the destination 
data register. 

In the long form, the multiplier and multiplicand are both long word operands, and 
the result is either a long word or a quad word. The long word result is the low-order 
32 bits of the quad word result; the high order 32 bits of the product are discarded. 

Condition Codes: 

X N Z V C 

1-l·l·l·lo 
X Not affected. 
N Set if the result is negative. Cleared otherwise. 
Z Set if the result is zero. Cleared otherwise. 
V Set if overflow. Cleared otherwise. 
C Always cleared. 

NOTE 
Overflow (V = 1) can occur only when multiplying 32-bit operands to yield a 
32-bit result. Overflow occurs if the high-order 32 bits of the quad word 
product are not the sign extension of the low-order 32 bits. 

Instruction Format (word form): 

15 14 13 12 11 10 

MOTOROLA 
3-128 

0 REGISTER 
EFFECTIVE ADDRESS 

MODE REGISTER 

MC68030 USER'S MANUAL 



MULS Signed Multiply MULS 

Instruction Fields: 
Register field - Specifies a data register as the destination. 
Effective Address field - Specifies the source operand. Only data addressing modes 
are allowed as shown: 

Addressing Mode Mode Register Addressing Mode Mode Register 

Dn 000 reg. number:Dn (xxx).W 111 000 

An - - (xxx).L 111 001 

(An) 010 reg. number:An #(data) 111 100 

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15,An) 101 reg. number:An (d15,PC) 111 010 

(ds.An,Xn) 110 reg. number:An (ds.PC,Xn) 111 011 

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011 

([bd,An,Xn].od) 110 reg. number:An ([bd,PC,Xn].od) 111 011 

([bd.An],Xn,od) 110 reg. number:An ([bd,PC].Xn,od) 111 011 

Instruction Format (long form): 

15 14 13 12 11 10 

0 1 l 0 l 0 1 1 0 0 0 0 
EFFECTIVE ADDRESS 

MODE l REGISTER 

0 REGISTER Dq 1 SIZE 0 0 0 0 0 l 0 l 0 l REGISTER Dr 

Instruction Fields: 
Effective Address field - Specifies the source operand. Only data addressing modes 

are allowed as shown: 

Addressing Mode Mode 

Dn 000 

An -

(An) 010 

(An)+ 011 

-(An) 100 

(d15.An) 101 

(ds.An,Xn) 110 

(bd,An,Xn) 110 

((bd,An,Xn].od) 110 

([bd.Anl.Xn,od) 110 

MC68030 USER'S MANUAL 

Register Addressing Mode 

reg. number:Dn (xxx).W 

- (xxx).L 

reg. number:An #(data) 

reg. number:An 

reg. number:An 

reg. number:An (d15,PC) 

reg. number:An (ds,PC,Xn) 

reg. number:An (bd,PC,Xn) 

reg. number:An ([bd,PC,Xn],od) 

reg. number:An ([bd,PC],Xn,od) 

Mode 

111 

111 

111 

111 

111 

111 

111 

111 

Register 

000 

001 

100 

010 

011 

011 

011 

011 

MOTOROLA 
3-129 



.. 
MULS Signed Multiply MULS 

Register DI field - Specifies a data register for the destination operand. The 32-bit 
multiplicand comes from this register, and the low-order 32 bits of the product are 
loaded into this register. 

Size field - Selects a 32- or 64-bit product. 
0 - 32-bit product to be returned to Register DI. 
1 - 64-bit product to be returned to Dh:DI. 

Register Dh field - If Size is 1, specifies the data register into which the high-order 
32 bits of the product are loaded. If Dh = DI and Size is 1, the results of the operation 
are undefined. Otherwise, this field is unused. 

MOTOROLA 
3-130 

MC68030 USER'S MANUAL 



MULU 

Operation: 

Assembler 
Syntax: 

Attributes: 

Unsigned Multiply 

Source * Destination • Destination 

MULU.W (ea),Dn 
MULU.L (ea),DI 
MULU.L (ea),Dh:DI 

Size = (Word, Long) 

16x16 • 32 
32x32 • 32 
32x32 •64 

MULU 

Description: Multiplies two unsigned operands yielding an unsigned result. This in-
struction has a word operand form and a long word operand form. 

In the word form, the multiplier and multiplicand are both word operands, and the 
result is a long word operand. A register operand is the low-order word; the upper 
word of the register is ignored. All 32 bits of the product are saved in the destination 
data register. 

In the long form, the multiplier and multiplicand are both long word operands, and 
the result is either a long word or a quad word. The long word result is the low-order 
32 bits of the quad word result; the high order 32 bits of the product are discarded. 

Condition Codes: 

X N Z V C 

X Not affected. 
N Set if the result is negative. Cleared otherwise. 
Z Set if the result is zero. Cleared otherwise. 
V Set if overflow. Cleared otherwise. 
C Always cleared. 

NOTE 

Overflow (V = 1) can occur only when multiplying 32-bit operands to yield a 
32-bit result. Overflow occurs if any of the high-order 32 bits of the quad 
word product are not equal to zero. 

Instruction Format (word form): 

15 14 13 12 11 10 9 8 

REGISTER 0 

MC68030 USER'S MANUAL 

4 2 0 

EFFECTIVE ADDRESS 

MODE REGISTER 

MOTOROLA 
3-131 



• 

MULU Unsigned Multiply MULU 

Instruction Fields: 
Register field - Specifies a data register as the destination. 
Effective Address field - Specifies the source operand. Only data addressing modes 

are allowed as shown: 

Addressing Mode Mode Register Addressing Mode Mode Register 

On 000 reg. number: On (xxx).W 111 000 

An - - (xxx).L 111 001 

(An) 010 reg. number:An #(data) 111 100 

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15.An) 101 reg. number:An (d15,PC) 111 010 

(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) 111 011 

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011 

([bd.An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011 

([bd.An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011 

Instruction Format (long form): 

15 14 13 12 11 10 4 3 

I I 0 
EFFECTIVE ADDRESS 

0 1 0 1 1 0 0 0 0 
MODE l REGISTER 

0 REGISTER DI 0 SIZE 0 0 0 0 0 l o I o I REGISTER Oh 

Instruction Fields: 
Effective Address field - Specifies the source operand. Only data addressing modes 

are allowed as shown: 

Addressing Mode 

MOTOROLA 
3-132 

On 

An 

(An) 

(An)+ 

-(An) 

(d15.An) 

(dg,An,Xn) 

(bd,An,Xn) 

([bd,An,Xn],od) 

([bd,An],Xn,od) 

Mode Register 

000 reg. number:On 

- -

010 reg. number:An 

011 reg. number:An 

100 reg. number:An 

101 reg. number:An 

110 reg. number:An 

110 reg. number:An 

110 reg. number:An 

110 reg. number:An 

Addressing Mode Mode Register 

(xxx).W 111 000 

(xxx).L 111 001 

#(data) 111 100 

(d15,PC) 111 010 

(dg,PC,Xn) 111 011 

(bd,PC,Xn) 111 011 

([bd,PC,Xn],od) 111 011 

([bd,PC],Xn,od) 111 011 

MC68030 USER'S MANUAL 



MULU Unsigned Multiply MULU 

Register DI field - Specifies a data register for the destination operand. The 32-bit 
multiplicand comes from this register, and the low-order 32 bits of the product are 
loaded into this register. 

Size field - Selects a 32- or 64-bit product. 
0 - 32-bit product to be returned to Register DI. 
1 - 64-bit product to be returned to Dh:DI. 

Register Dh field - If Size is 1, specifies the data register into which the high-order 
32 bits of the product are loaded. If Dh = DI and Size is 1, the results of the operation 
are undefined. Otherwise, this field is unused. 

MC68030 USER'S MANUAL MOTOROLA 
3-133 



NBCD 

Operation: 

Assembler 
Syntax: 

• Attributes: 

Negate Decimal with Extend NBCD 

0 - (Destination10) - X • Destination 

NBCD (ea) 

Size = (Byte) 

Description: Subtracts the destination operand and the extend bit from zero. The op-
eration is performed using binary coded decimal arithmetic. The packed BCD result 
is saved in the destination location. This instruction produces the tens complement 
of the destination if the extend bit is zero, or the nines complement if the extend bit 
is one. This is a byte operation only. 

Condition Codes: 

X N Z v c 
• I u I • u I • 

X Set the same as the carry bit. 
N Undefined. 
Z Cleared if the result is non-zero. Unchanged otherwise. 
V Undefined. 
C Set if a decimal borrow occurs. Cleared otherwise. 

NOTE 

Normally the Z condition code bit is set via programming before the start of 
the operation. This allows successful tests for zero results upon completion 
of multiple precision operations. 

Instruction Format: 

15 14 13 12 11 10 

EFFECTIVE ADDRESS 

MDDE REGISTER 

MOTOROLA MC68030 USER'S MANUAL 
3-134 



NBCD Negate Decimal with Extend NBCD 

Instruction Fields: 
Effective Address field - Specifies the destination operand. Only data alterable ad­

dressing modes are allowed as shown: 

Addressing Mode Mode Register 

Dn 000 reg. number:Dn 

An - -

(An) 010 reg. number:An 

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d16.Anl 101 reg. number:An 

(d9,An,Xn) 110 reg. number:An 

(bd,An,Xn) 110 reg. number:An 

([bd,An,Xn],od) 110 reg. number:An 

([bd,Anl.Xn,od) 110 reg. number:An 

MC68030 USER'S MANUAL 

Addressing Mode 

(xxx).W 

(xxx).L 

#(data) 

(d16,PC) 

(d9,PC,Xn) 

(bd,PC,Xn) 

([bd,PC,Xn],od) 

([bd,PC],Xn,od) 

Mode 

111 

111 

-

-

-

-

-

-

Register 

000 

001 

-

-

-

-
-
-

MOTOROLA 
3-135 



• 

NEG 
Operation: 

Assembler 
Syntax: 

Attributes: 

Negate NEG 
0 - (Destination) • Destination 

NE_~_(ea) 

Size = (Byte, Word, Long) 

Description: Subtracts the destination operand from zero and stores the result in the 
destination location. The size of the operation is specified as byte, word, or long. 

Condition Codes: 

X N Z V C 

• I • I • I • I • 

X Set the same as the carry bit. 
N Set if the result is negative. Cleared otherwise. 
Z Set if the result is zero. Cleared otherwise. 
V Set if an overflow occurs. Cleared otherwise. 
C Cleared if the result is zero. Set otherwise. 

Instruction Format: 

15 14 13 12 11 10 

SIZE 

Instruction Fields: 
Size field - Specifies the size of the operation. 

00 - Byte operation. 
01 - Word operation. 
10 - Long operation. 

MOTOROLA 
3-136 

4 

EFFECTIVE ADDRESS 

MODE REGISTER 

MC68030 USER'S MANUAL 



NEG Negate NEG 
Effective Address field - Specifies the destination operand. Only data alterable ad­

dressing modes are allowed as shown: 

Addressing Mode Mode Register 

Dn 000 reg. number:Dn 

An - -

(An) 010 reg. number:An 

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d16,An) 101 reg. number:An 

(ds.An.Xn) 110 reg. number:An 

(bd,An,Xn) 110 reg. number:An 

([bd,An,Xn].od) 110 reg. number:An 

([bd.Anl.Xn,od) 110 reg. number:An 

MC68030 USER'S MANUAL 

Addressing Mode 

(xxx).W 

(xxx).L 

#(data) 

(d16,PC) 

(ds.PC,Xn) 

(bd,PC,Xn) 

([bd,PC,Xn].od) 

([bd,PC],Xn,od) 

Mode 

111 

111 

-

-

-

-
-

-

Register 

000 

001 

-

-
-

-

-
-

MOTOROLA 
3-137 



NEGX 

Operation: 

Assembler 
Syntax: 

• Attributes: 

Negate with Extend NEGX 

0 - (Destination) - X • Destination 

NEGX (ea) 

Size = (Byte, Word, Long) 

Description: Subtracts the destination operand and the extend bit from zero. Stores the 
result in the destination location. The size of the operation is specified as byte, word, 
or long. 

Condition Codes: 

X N Z V C 

• I • I • I • I • 

X Set the same as the carry bit. 
N Set if the result is negative. Cleared otherwise. 
Z Cleared if the result is non-zero. Unchanged otherwise. 
V Set if an overflow occurs. Cleared otherwise. 
C Set if a borrow occurs. Cleared otherwise. 

NOTE 

Normally the Z condition code bit is set via programming before the start of 
the operation. This allows successful tests for zero results upon completion 
of multiple precision operations. 

Instruction Format: 

15 14 13 12 11 10 

SIZE 

Instruction Fields: 
Size field - Specifies the size of the operation. 

00 - Byte operation. 
01 - Word operation. 
10 - Long operation. 

MOTOROLA 
3-138 

EFFECTIVE ADDRESS 

MODE REGISTER 

MC68030 USER'S MANUAL 



NEGX Negate with Extend NEGX 
Effective Address field - Specifies the destination operand. Only data alterable ad­

dressing modes are allowed as shown: 

Addressing Mode Mode Register 

Dn 000 reg. number:Dn 

An - -
(An) 010 reg. number:An 

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15,An) 101 reg. number:An 

(d3,An,Xn) 110 reg. number:An 

(bd,An,Xn) 110 reg. number:An 

([bd,An,Xn].od) 110 reg. number:An 

([bd,An).Xn,od) 110 reg. number:An 

MC68030 USER'S MANUAL 

Addressing Mode 

(xxx).W 

(xxx).L 

#(data) 

(d16,PC) 

(d3,PC,Xn) 

(bd,PC,Xn) 

([bd,PC,Xn].od) 

([bd,PC],Xn,od) 

Mode 

111 

111 

-

-

-
-

-

-

Register 

000 

001 

-

-

-
-

-
-

MOTOROLA 
3-139 



NOP None NOP 

Operation: None 

Assembler 
Syntax: NOP 

• Attributes: Unsized 

Description: Performs no operation. The processor state, other than the program counter, 
is unaffected. Execution continues with the instruction following the NOP instruction. 
The NOP instruction does not begin execution until all pending bus cycles are com­
pleted. This synchronizes the pipeline, and prevents instruction overlap. See 3.7 Pipe­
line Synchronization with the NOP Instruction for additional information. 

Condition Codes: 
Not affected. 

Instruction Format: 
15 14 13 12 11 

I o I 1 

MOTOROLA 
3-140 

10 2 

1 I 1 o I o I o I 1 

MC68030 USER'S MANUAL 



NOT 

Operation: 

Assembler 
Syntax: 

Attributes: 

Logical Complement NOT 

- Destination t Destination 

NOT (ea) 

Size = (Byte, Word, Long) 

Description: Calculates the ones complement of the destination operand and stores the 
result in the destination location. The size of the operation is specified as byte, word, 
or long. 

Condition Codes: 

X N z v c 
- I 

X Not affected. 
N Set if the result is negative. Cleared otherwise. 
Z Set if the result is zero. Cleared otherwise. 
V Always cleared. 
C Always cleared. 

Instruction Format: 

15 14 13 12 11 10 

SIZE 
EFFECTIVE ADDRESS 

MODE REGISTER 

Instruction Fields: 
Size field - Specifies the size of the operation. 

00 - Byte operation. 
01 - Word operation. 
10 - Long operation. 

Effective Address field - Specifies the destination operand. Only data alterable ad­
dressing modes are allowed as shown: 

Addressing Mode Mode Register 

Dn 000 reg. number:Dn 

An - -

(An) 010 reg. number:An 

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15,An) 101 reg. number:An 

(ds.An.Xn) 110 reg. number:An 

(bd,An,Xn) 110 reg. number:An 

([bd,An,Xn].od) 110 reg. number:An 

([bd,Anl.Xn,od) 110 reg. number:An 

MC68030 USER'S MANUAL 

Addressing Mode 

(xxx).W 

(xxx).L 

#(data) 

(d15,PC) 

(ds.PC,Xn) 

(bd,PC,Xn) 

([bd,PC,Xn].od) 

([bd,PC].Xn,od) 

Mode 

111 

111 

-

-

-

-

-

-

Register 

000 

001 

-

-

-

-

-
-

MOTOROLA 
3-141 

• 



• 

OR 
Operation: 

Assembler 
Syntax: 

Attributes: 

Inclusive OR Logical 

Source V Destination • Destination 

OR (ea),Dn 
OR Dn.(ea) 

Size = (Byte, Word, Long) 

OR 

Description: Performs an inclusive OR operation on the source operand and the des-
tination operand and stores the result in the destination location. The size of the 
operation is specified as byte, word, or long. The contents of an address register may 
not be used as an operand. 

Condition Codes: 

X N Z V C 

1-l·l·lolo 
X Not affected. 
N Set if the most significant bit of the result is set. Cleared otherwise. 
Z Set if the result is zero. Cleared otherwise. 
V Always cleared. 
C Always cleared. 

Instruction Format: 

15 14 13 12 11 10 

REGISTER OP-MODE 
EFFECTIVE ADDRESS 

MODE REGISTER 

Instruction Fields: 
Register field - Specifies any of the eight data registers. 
Op-Mode field: 

Byte Word 

000 001 
100 101 

MOTOROLA 
3-142 

Long 

010 
110 

Operation 

((ea)) V ((Dn)) • (Dn) 
((Dn)) V ((ea)) • (ea) 

MC68030 USER'S MANUAL 



OR Inclusive OR Logical OR 

Effective Address field - If the location specified is a source operand, only data 
addressing modes are allowed as shown: 

Addressing Mode Mode Register Addressing Mode Mode Register 

On 000 reg. number:On (xxx).W 111 000 

An - - (xxx).L 111 001 

(An) 010 reg. number:An #(data) 111 100 

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15.Anl 101 reg. number:An (d15,PC) 111 010 

(ds.An,Xn) 110 reg. number:An (d9,PC,Xn) 111 011 

(bd.An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011 

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011 

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011 

If the location specified is a destination operand, only memory alterable addressing 
modes are allowed as shown: 

Addressing Mode Mode Register Addressing Mode Mode Register 

On - - (xxx).W 111 000 

An - - (xxx).L 111 001 

(An) 010 reg. number:An #(data) - -

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15.An) 101 reg. number:An (d15,PC) - -
(ds.An.Xn) 110 reg. number:An (d9,PC,Xn) - -
(bd.An,Xn) 110 reg. number:An (bd,PC,Xn) - -

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) - -
([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) - -

Notes: 
1. If the destination is a data register, it must be specified using the destination On 

mode, not the destination (ea) mode. 
2. Most assemblers use ORI when the source is immediate data. 

MC68030 USER~S MANUAL MOTOROLA 
3-143 

• 



ORI 

Operation: 

Assembler 
Syntax: 

• Attributes: 

Inclusive OR ORI 

Immediate Data V Destination • Destination 

ORI #(data),(ea) 

Size = (Byte, Word, Long) 

Description: Performs an inclusive OR operation on the immediate data and the des-
tination operand and stores the result in the destination location. The size of the 
operation is specified as byte, word, or long. The size of the immediate data matches 
the operation size. 

Condition Codes: 

X N Z V C 

1-l·l·lolo 
X Not affected. 
N Set if the most significant bit of the result is set. Cleared otherwise. 
Z Set if the result is zero. Cleared otherwise. 
V Always cleared. 
C Always cleared. 

Instruction Format: 

15 14 13 12 11 10 

0 I 0 I 0 l 0 l 0 l 0 I 0 I 0 SIZE 

WORD DATA (16 BITS) 

LONG DATA (32 BITS) 

Instruction Fields: 
Size field - Specifies the size of the operation. 

00 - Byte operation. 
01 - Word operation. 
10 - Long operation. 

MOTOROLA 
3-144 

4 

I EFFECTIVE ADDRESS 

MODE j REGISTER 

BYTE DATA (8 BITS) 

MC68030 USER'S MANUAL 



ORI Inclusive OR ORI 

Effective Address field - Specifies the destination operand. Only data alterable ad­
dressing modes are allowed as shown: 

Addressing Mode Mode Register Addressing Mode Mode 

On 000 reg. number:Dn (xxx).W 111 

An - - (xxx).L 111 

(An) 010 reg. number:An #(data) -

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15.An) 101 reg. number:An (d15.PC) -

(d5,An,Xn) 110 reg. number:An (d5,PC,Xn) -
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) -

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) -

([bd.An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) -

Immediate field - (Data immediately following the instruction): 
If size = 00, the data is the low-order byte of the immediate word. 
If size = 01, the data is the entire immediate word. 
If size = 10, the data is the next two immediate words. 

MC68030 USER'S MANUAL 

Register 

000 

001 

-

-
-
-
-

-

MOTOROLA 
3-145 

• 



• 

ORI 
to CCR 

Operation: 

Assembler 
Syntax: 

Attributes: 

Inclusive OR Immediate 
to Condition Codes 

Source V CCR • CCR 

ORI #(data),CCR 

Size = (Byte) 

ORI 
to CCR 

Description: Performs an inclusive OR operation on the immediate operand and the 
condition codes and stores the result in the condition code register (low-order byte 
of the status register). All implemented bits ofthe condition code register are affected. 

Condition Codes: 

X N Z V C 

·l·l·l·I· 
X Set if bit 4 of immediate operand is one. Unchanged otherwise. 
N Set if bit 3 of immediate operand is one. Unchanged otherwise. 
Z Set if bit 2 of immediate operand is one. Unchanged otherwise. 
V Set if bit 1 of immediate operand is one. Unchanged otherwise. 
C Set if bit 0 of immediate operand is one. Unchanged otherwise. 

Instruction Format: 

15 14 13 12 11 10 3 

0 0 1 1 

BYTE DATA (8 BITS) 

0 0 

MOTOROLA 
3-146 

MC68030 USER'S MANUAL 



ORI 
to SR 

Operation: 

Assembler 
Syntax: 

Attributes: 

Inclusive OR Immediate to the Status Register 
(Privileged Instruction) 

If supervisor state 
then Source V SR • SR 
else TRAP 

ORI #(data),SR 

Size = (Word) 

ORI 
to SR 

Description: Performs an inclusive OR operation of the immediate operand and the 
contents of the status register and stores the result in the status register. All imple­
mented bits of the status register are affected. 

Condition Codes: 

X N Z V C 

·l·l·l·I· 
X Set if bit 4 of immediate operand is one. Unchanged otherwise. 
N Set if bit 3 of immediate operand is one. Unchanged otherwise. 
Z Set if bit 2 of immediate operand is one. Unchanged otherwise. 
V Set if bit 1 of immediate operand is one. Unchanged otherwise. 
C Set if bit 0 of immediate operand is one. Unchanged otherwise. 

Instruction Format: 

15 14 13 12 11 10 9 4 

1 I 1 

WORD DATA (16 BITS) 

MC68030 USER'S MANUAL 

0 

MOTOROLA 
3-147 



PACK Pack PACK 

Operation: Source (Unpacked BCD)+adjustment •Destination (Packed BCD) 

Assembler 
Syntax: 

• Attributes: 

PACK - (Ax), - (Ay),#(adjustment) 
PACK Dx,Dy,#(adjustment) 

Unsized 

Description: Adjusts and packs the low four bits of each of two bytes into a single byte. 

When both operands are data registers, the adjustment is added to the value contained 
in the source register. Bits [11 :8] and [3:0] of the intermediate result are concatenated 
and placed in bits [7:0] of the destination register. The remainder of the destination 
register is unaffected. 
Source (Dx): 

15 14 13 12 11 10 

x I x I x I x I a I b I c d I x I x I x I x I e I f I g I h 

Add Adjustment Word: 
15 14 13 12 11 10 

16-BIT EXTENSION 

Resulting in: 
15 14 13 12 11 10 

x' I x' I x' I x' a' b' I c' d' I x' x x' x e' I f' g' I h' 

Destination (Dy): 

15 14 13 12 11 10 

u I u I u I u a' b' I c' d' I e' f' I g' I h' 

When the predecrement addressing mode is specified, two bytes from the source are 
fetched and concatenated. The adjustment word is added to the concatenated bytes. 
Bits [3:0] of each byte are extracted. These eight bits are concatenated to form a new 
byte which is then written to the destination. 

Source (Ax): 
4 

Concatenated Word: 

15 14 13 12 11 10 

I x x I x I x I a 

MOTOROLA 
3-148 

b I c d I x I x I x I x I e I 1 I g I h 

MC68030 USER'S MANUAL 



PACK Pack PACK 

Add Adjustment Word: 

15 14 13 12 11 10 9 6 4 3 

16-BIT EXTENSION 

Destination (Ay): 

4 

I 
a' b' I c' I d' I e' I r g' I h' 

Condition Codes: 
Not affected. 

Instruction Format: 

15 14 13 12 11 10 0 

REGISTER Dy/Ay R/M REGISTER Ox/Ax 

16-BIT EXTENSION: ADJUSTMENT 

Instruction Fields: 
Register Dy/Ay field - Specifies the destination register. 

If R/M = 0, specifies a data register. 
If R/M = 1, specifies an address register in the predecrement addressing mode. 

R/M field - Specifies the operand addressing mode. 
0 - The operation is data register to data register. 
1 - The operation is memory to memory. 

Register Dx/Ax field - Specifies the source register. 
If R/M = 0, specifies a data register. 
If R/M = 1, specifies an address register in the predecrement addressing mode. 

Adjustment field - Immediate data word that is added to the source operand. This 
word is zero to pack ASCII or EBCDIC codes. Other values can be used for other 

codes. 

MC68030 USER'S MANUAL MOTOROLA 
3-149 

• 



PEA Push Effective Address PEA 

Operation: 

Assembler 
Syntax: 

• Attributes: 

Sp - 4 • SP; (ea) • (SP) 

PEA (ea) 

Size = (Long) 

Description: Computes the effective address and pushes it onto the stack. The effective 
address is a long word address. 

Condition Codes: 
Not affected. 

Instruction Format: 

15 14 13 12 11 10 8 3 

0 0 0 0 0 0 0 
EFFECTIVE ADDRESS 

MODE REGISTER 

Instruction Fields: 
Effective Address field - Specifies the address to be pushed onto the stack. Only 

control addressing modes are allowed as shown: 

Addressing Mode 

MOTOROLA 
3-150 

On 

An 

(An) 

(An)+ 

-(An) 

(d15.An) 

(d9,An,Xn) 

(bd,An,Xn) 

([bd,An,Xn),od) 

([bd,An),Xn,od) 

Mode Register 

- -
- -
010 reg. number:An 

- -
- -

101 reg. number:An 

110 reg. number:An 

110 reg. number:An 

110 reg. number:An 

110 reg. number:An 

Addressing Mode Mode Register 

(xxx).W 111 000 

(xxx).L 111 001 

#(data) - -

(d15,PC) 111 010 

(d9,PC,Xn) 111 011 

(bd,PC,Xn) 111 011 

([bd,PC,Xn],od) 111 011 

([bd,PC],Xn,od) 111 011 

MC68030 USER'S MANUAL 



Pf LUSH Flush Entry in the ATC 
(Privileged Instruction) 

Pf LUSH 

Operation: 

Assembler 
Syntax: 

Attributes: 

If supervisor state 
then invalidate ATC entries for Destination Addresses 
else TRAP 

PFLUSHA 
PFLUSH (fc),#(mask) 
PFLUSH (fc),#(mask),(ea) 

Unsized 

Description: Invalidates ATC entries. The instruction has three forms. The PFLUSHA 
instruction invalidates all entries. When the instruction specifies a function code (fc) 
and mask (mask), the instruction invalidates all entries for a selected function code or 
codes. When the instruction also specifies an effective address (ea), the instruction 
invalidates the page descriptor forthat effective address entry in each selected function 
code. 

The (mask) operand contains three bits that correspond to the three function code 
bits. Each bit in the mask that is set to one indicates that the corresponding bit of the 
(fc) operand applies to the operation. Each bit in the mask that is zero indicates a bit 
of (fc} and of the function code that is ignored. For example, a mask operand of 100 
causes the instruction to consider only the most-significant bit of the (fc) operand. If 
the (fc) operand is 001, function codes 000, 001, 010, and 011 are selected. 

The (fc) operand is specified in one of the following ways: 
1. Immediate - Three bits in the command word. 
2. Data Register - The three least-significant bits of the data register specified in 

the instruction. 
3. Source Function Code Register. 
4. Destination Function Code Register. 

See SECTION 9 MEMORY MANAGEMENT UNIT for information about the MMU. 

Condition Codes: 
Not affected. 

MMUSR: 
Not affected. 

Instruction Format: 

15 14 13 12 11 10 

1 1 1 1 l 0 I 0 

0 0 1 MODE 

MC68030 USER'S MANUAL 

9 

l 0 l 0 0 0 

0 0 MASK l 

4 

EFFECTIVE ADDRESS 

MODE l 
FC 

REGISTER 

MOTOROLA 
3-151 

• 



• 

PFLUSH Flush Entry in the ATC 
(Privileged Instruction) 

PFLUSH 

Instruction Fields: 
Effective Address field - Specifies a control alterable address. The ATC entry for this 

address is invalidated. Valid addressing modes are: 

Addressing Mode Mode Register Addressing Mode Mode Register 

Dn - - (xxx).W 111 000 

An - - (xxx).L 111 001 

(An) 010 reg. number:An #(data) - -

(An)+ - -

-(An) - -
(d15.An) 101 reg. number:An (d15.PC) - -

(ds.An,Xn) 110 reg. number:An (ds.PC.Xn) - -

(bd,An,Xn) 110 reg. number:An (bd,PC.Xn) - -

([bd,An,Xn].od) 110 reg. number:An ([bd,PC,Xn].od) - -

([bd,An].Xn,od) 110 reg. number:An ([bd,PC].Xn,od) - -

NOTE 

The address field must provide the memory management unit (MMU) with 
the effective address to be flushed from the ATC, not the effective address 
describing where the PFLUSH operand is located. For example, in order to 
flush the ATC entry corresponding to a logical address that is temporarily 
stored on top of the system stack, the instruction 'PFLUSH [(SP)]' must be 
used since 'PFLUSH (SP)' would invalidate the ATC entry mapping the system 
stack (i.e., the effective address passed to the MMU is the effective address 
of the system stack, not the effective address formed by the operand located 
on the top of the stack). 

Mode field - Specifies the type of flush operation: 
001 - Flush all entries. 
100 - Flush by function code only. 
110 - Flush by function code and effective address. 

Mask field - Mask for selecting function codes. Ones in the mask correspond to 
applicable bits; zeros are bits to be ignored. When mode is 001, mask must be 000. 

FC field - Function code of entries to be flushed. When mode is 001, FC must be 
00000. 

10XXX - Function code is specified as bits XXX. 
01 DDD - Function code is specified as bits 2:0 of data register DDD. 
00000 - Function code is specified as SFC register. 
00001 - Function code is specified as DFC register. 

MOTOROLA 
3-152 

MC68030 USER'S MANUAL 



PLO AD 

Operation: 

Assembler 
Syntax: 

Attributes: 

Load an Entry into the ATC 
(Privileged Instruction) 

If supervisor state 
then entry • ATC 
else TRAP 

PLOADR (function code),(ea) 
PLOADW (function code),(ea) 

Unsized 

PLO AD 

Description: Searches the ATC for the specified effective address. Also searches the 
translation table for the descriptor corresponding to the specified effective address. 
A new entry is created as if the MC68030 had attempted to access that address. Sets 
the used and modified bits appropriately as part of the search. The instruction executes 
regardless of the value of the E bit in the translation control (TC) register or the state 
of the MMUDIS signal. Refer to 9.5.2 General Table Search for additional information. 

The (function code) operand is specified in one of the following ways: 
1. Immediate - Three bits in the command word. 
2. Data Register - The three least significant bits of the data register specified in 

the instruction. 
3. Source Function Code Register. 
4. Destination Function Code Register. 

PLOADR causes U bits in the translation tables to be set as if a read access has occurred. 
PLOADW causes U and M bits to be set as if a write access has occurred. 

See SECTION 9 MEMORY MANAGEMENT UNIT for information about the MMU. 

Condition Codes: 
Not affected. 

MMUSR: 
Not affected. 

Instruction Format: 

15 14 13 12 11 10 

1 1 1 1 0 0 

0 0 1 0 0 0 

MC68030 USER'S MANUAL 

0 0 0 0 

R/W 0 0 0 0 l 

EFFECTIVE ADDRESS 

MODE l 
FC 

REGISTER 

MOTOROLA 
3-153 

• 



• 

PLO AD Load an Entry into the ATC 
(Privileged Instruction) 

PLO AD 

Instruction Fields: 
Effective Address field - Specifies the logical address to be translated. Only control 

alterable addressing modes are allowed, as shown: 

Addressing Mode Mode Register Addressing Mode Mode Register 

Dn - - (xxx).W 111 000 

An - - (xxx).L 111 001 

(An) 010 reg. number:An #(data) - -

(An)+ - -

-(An) - -

(d15,An) 101 reg. number:An (d15,PC) - -

(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) - -

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) - -

([bd,An,Xn].od) 110 reg. number:An ([bd,PC,Xn],od) - -

([bd,An),Xn,od) 110 reg. number:An ([bd,PCJ,Xn,od) - -

The (ea) field must specify the effective address to be translated, not the effective 
address of the location of that address. For example, to load an ATC entry for a 
logical address that is stored on the system stack, the correct instruction is PLOAD 
([SP]). PLOAD (SP) loads the ATC entry for a location on the system stack, not the 
entry for the contents of that stack location. 

R/W field - Specifies the type of access to be used for the table search: 
0-Write 
1 - Read 

FC field - Function code of address corresponding to entry to be loaded. 
10XXX - Function code is specified as bits XXX. 
01 DDD - Function code is specified as bits 2:0 of data register DDD. 
00000 - Function code is specified as SFC register. 
00001 - Function code is specified as DFC register. 

MOTOROLA 
3-154 

MC68030 USER'S MANUAL 



PMOVE Move to/from MMU Registers 
(Privileged Instruction) 

Operation: 

Assembler 
Syntax: 

Attributes: 

If supervisor state 
then (Source) • MRn or MRn • (Destination) 

PMOVE MRn,(ea) 
PMOVE (ea),MRn 
PMOVEFD (ea),MRn 

Size = (Word, Long, Quad) 

PMOVE 

Description: Moves the contents of the source effective address to the specified MMU 
register, or moves the contents of the MMU register to the destination effective ad­
dress. 

The instruction is a quad word (8 byte) operation for the CPU root pointer (CRP) and 
the supervisor root pointer (SRP). It is a long word operation for the translation control 
register (TC) and the transparent translation registers (TIO and TI1 ). It is a word 
operation for the MMU status register (MMUSR). 

The PMOVEFD (PMOVE with flush disable) form of this instruction sets the FD bit to 
disable flushing the ATC when a new value is loaded into the SRP, CRP, TIO, TI1 or 
TC register (but not the MMUSR). 

Writing to the following registers has the indicated side effects. 

CPU root pointer 
When the FD bit is zero, flushes the ATC. If the operand value is invalid for a root 
pointer descriptor, the instruction takes an MMU configuration error exception after 
moving the operand to the CRP. 

Supervisor root pointer 
When the FD bit is zero, flushes the ATC. If the value of the operand is invalid as a 
root pointer descriptor, the instruction takes an MMU configuration error exception 
after moving the operand to the SRP. 

Translation control 
When the FD bit is zero, flushes the ATC. Consistency checks are performed on the 
PS and Tix fields, if the E bit value is one. If check fails, the instruction takes an 
MMU configuration exception after moving the operand to the TC. If the checks 
passes, the TC register is loaded with the operand with E clear. 

Transparent translation 
When the FD bit is zero, flushes the ATC. Enables or disables the transparent trans­
lation register according to the E bit written. If the E bit is set to one, the transparent 
translation register is enabled. If the E bit is zero, the register is disabled. 

Refer to SECTION 9 MEMORY MANAGEMENT UNIT for information about the MMU. 

Condition Codes: 
Not affected. 

MMUSR: 
Not affected (unless the MMUSR is specified as the destination operand). 

MC68030 USER'S MANUAL MOTOROLA 
3-155 

• 



• 

PMOVE Move to/from MMU Registers 
(Privileged Instruction) 

PMOVE 

Instruction Format (for SRP, CRP, and TC reqisters): 

15 14 13 12 11 10 4 

l 0 l EFFECTIVE ADDRESS 
1 1 1 1 0 0 0 0 0 l MODE REGISTER 

0 1 0 P REG R/W FD 0 0 0 l 0 l 0 l 0 l 0 l 0 

Instruction Fields (for SRP, CRP, and TC registers): 
Effective Address field - Specifies the memory location for the transfer. Only control 

alterable addressing modes are allowed. 

Addressing Mode Mode Register 

Dn - -

An - -

(An) 010 reg. nurnber:An 

(An)+ - -

-(An) - -

(d15,An) 101 reg. nurnber:An 

(da.An,Xn) 110 reg. nurnber:An 

(bd,An,Xn) 110 reg. nurnber:An 

([bd,An,Xn].od) 110 reg. nurnber:An 

([bd,An].Xn,od) 110 reg. nurnber:An 

P Reg field - Specifies the MMU register: 
000-TC 
010 - SRP 
011 - CRP 

R/W field - Specifies the direction of transfer: 
0 - Memory to MMU register 
1 - MMU register to memory 

Addressing Mode Mode Register 

(xxx).W 111 000 

(xxx).L 111 001 

#(data) - -

(d1s.PC) - -

(d9,PC,Xn) - -

(bd,PC,Xn) - -

([bd,PC,Xn],od) - -

([bd,PC],Xn,od) - -

FD field - Disables flushing of the ATC on writes to MMU registers: 
0 - ATC is flushed 
1 -ATC is not flushed 

Instruction Format (for MMUSR): 

15 14 

1 1 

0 1 

MOTOROLA 
3-156 

13 

1 

1 

12 11 10 

1 0 0 

0 0 0 

EFFECTIVE ADDRESS 
0 0 0 0 

MODE l REGISTER 

R/W 0 0 0 0 l 0 l 0 l 0 l 0 l 0 

MC68030 USER'S MANUAL 



PMOVE Move to/from MMU Registers 
(Privileged Instruction) 

Instruction Fields (for MMUSR): 

PMOVE 

Effective Address field - Specifies the memory location for the transfer. Control al­
terable addressing modes shown for SRP register apply. 

R/W field - Specifies the direction of transfer: 
0 - Memory to MMU status register 
1 - MMU status register to memory 

NOTE 

The syntax of assemblers for the MC68851 use the symbol PSR for the MMU 
status register. 

Instruction Format (for IT registers): 

15 14 13 12 11 10 

1 1 1 1 l 0 l 0 0 0 
EFFECTIVE ADDRESS 

0 0 
MOOE l REGISTER 

0 0 0 P REG R/W FD 0 0 0 I o I o I o I o I 0 

Instruction Fields (for TT registers): 
Effective Address field - Specifies the memory location for the transfer. Control al­

terable addressing modes shown for SRP register apply. 
P Reg field - Specifies the TI register: 

010 - Transparent translation register 0. 
011 - Transparent translation register 1. 

R/W field - Specifies the direction of transfer: 
0 - Memory to MMU status register 
1 - MMU status register to memory 

FD Field - Disables flushing of the ATC: 
0 -ATC is flushed 
1 -ATC is not flushed 

MC68030 USER'S MANUAL MOTOROLA 
3-157 

II 



• 

PT EST 

Operation: 

Assembler 
Syntax: 

Attributes: 

Test a Logical Address 
(Privileged Instruction) 

If supervisor state 
then logical address status • MMUSR 
else TRAP 

PTESTR (function code),(ea),#(level) 
PTESTR (function code),(ea),#(level),An 
PTESTW (function code),(ea),#(level) 
PTESTW (function code),(ea),#(level),An 

Unsized 

PT EST 

Description: This instruction searches the ATC or the translation tables to a specified 
level for the translation descriptor corresponding to the (ea) field and sets the bits of 
the MMU status register (MMUSR) according to the status of the descriptor. Optionally, 
PTEST stores the physical address of the last table entry accessed during the search 
in the specified address register. The PTEST instruction searches the ATC or the trans­
lation tables to obtain status information, but alters neither the used or modified bits 
of the translation tables nor the ATC. When the level operand is zero, transparent 
translation of only either read or write accesses causes the operations of the PTESTR 
and PTESTW to return different results. 

The (function code) operand is specified in one of the following ways: 
1. Immediate - Three bits in the command word. 
2. Data Register - The three least-significant bits of the data register specified in 

the instruction. 
3. Source Function Code Register. 
4. Destination Function Code Register. 

The effective address is the address to test. The (level) operand specifies the level of 
the search. Level 0 specifies searching the ATC only. Values 1-7 specify searching the 
translation tables only. The search ends at the specified level. A level 0 test does not 
return the same MMUSR values as a test at a non-zero level number. 

Execution of the instruction continues to the requested level, or until one of the fol­
lowing conditions is detected: 

• Invalid descriptor. 
• Limit violation. 
• Bus error assertion (physical bus error). 

The instruction accumulates status as it accesses successive table entries. 

When the instruction specifies an ATC search with an address register operand, the 
MC68030 takes an F-line unimplemented instruction exception. 

If an address register parameter is specified for a translation table search, the physical 
address of the last descriptor successfully fetched is loaded into the address register. 
A descriptor is "successfully" fetched if, and only if, all portions of the descriptor can 
be read by the MC68030 without abnormal termination of the bus cycle. If the DT field 
of the root pointer used indicates "page descriptor", the returned address is $0. For 
a long descriptor, the address of the first long word is returned. The size of the 
descriptor (short or long) is not returned, and must be determined from a knowledge 
of the translation table. 

MOTOROLA 
3-158 

MC68030 USER'S MANUAL 



PT EST Test a Logical Address 
(Privileged Instruction) 

PT EST 

See SECTION 9 MEMORY MANAGEMENT UNIT for information about the MMU. 

Condition Codes: 
Not affected. 

MMUSR: 

B s w M T N 

I • • I • I 0 0 0 0 

The MMU status register contains the results of the search. The values in the fields 
of the MMUSR for an ATC search are: 

MMUSRBit PTEST,LevelO 

Bus Error (B) This bit is set if the bus error bit 
is set in the ATC entry for the 
specified logical address. 

Limit (L) This bit is cleared. 

Supervisor Violation (S) This bit is cleared. 

Write Protected (W) The bit is set if the WP bit of the 
ATC entry is set. It is undefined 
if the I bit is set. 

Invalid (I) This bit indicates an invalid 
translation. The I bit is set if the 
translation for the specified log· 
ical address is not resident in the 
ATC, or if the B bit of the cor· 
responding ATC entry is set. 

Modified (M) This bit is set if the ATC entry 
corresponding to the specified 
address has the modified bit set. 
It is undefined if the I bit is set. 

Transparent (T) This bit is set if a match occurred 
in either (or both) of the trans· 
parent translation registers (TTO 
orTT1). 

Number of Levels (N) This 3-bit field is cleared to zero. 

Instruction Field: 

15 14 13 12 11 10 

1 1 1 1 J 0 1 0 0 0 0 

1 0 0 LEVEL R/W A 

MC68030 USER'S MANUAL 

PTEST, Level 1·7 

This bit is set if a bus error is encountered during the table 
search for the PTEST instruction. 

This bit is set if an index exceeds a limit during the table 
search. 

This bit is set if the S bit of a long (S) format table de· 
scriptor or long format page descriptor encountered dur-
ing the search is set, and the FC2 bit of the function code 
specified by the PTEST instruction is not equal to one. 
The S bit is undefined if the I bit is set. 

This bit is set if a descriptor or page descriptor is en-
countered with the WP bit set during the table search. The 
W bit is undefined if the I bit is set. 

This bit indicates an invalid translation. The I bit is set if 
the OT field of a table or a page descriptor encountered 
during the serach is set to invalid, or if either the B or L 
bits of the MMUSR are set during the table search. 

This bit is set if the page descriptor for the specified ad-
dress has the modified bit set. It is undefined if I is set. 

This bit is set to zero. 

This 3-bit field contains the actual number of tables ac-
cessed during the search. 

l 0 l 
REG l 

EFFECTIVE ADDRESS 

MOOE l 
FC 

REGISTER 

MOTOROLA 
3-159 

• 



• 

PT EST Test a Logical Address 
(Privileged Instruction) 

PT EST 

Instruction Fields: 
Effective Address field - Specifies the logical address to be tested. Only control 

alterable addressing modes are allowed as shown: 

Addressing Mode Mode Register Addressing Mode Mode Register 

Dn - - (xxx).W 111 000 

An - - (xxx).L 111 001 

(An) 010 reg. number:An #(data) - -
(An)+ - -
-(An) - -

(d15.An) 101 reg. number:An (d15,PC) - -
(d9,An,Xn) 110 reg. number:An (d9,PC,Xn) - -

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) - -
([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) - -

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) - -

Level field - Specifies the highest numbered level to be searched in the table. When 
this field contains 0, the A field and the Reg field must also be 0. The instruction 
takes an F-line exception when the level field is 0 and the A field is not 0. 

R/W field - Specifies simulating a read or write bus cycle (no difference for MC68030 
MMU): 
0-Write 
1 -Read 

A field - Specifies the address register option: 
0 - No address register. 
1 - Return the address of the last descriptor searched in the address register spec­

ified in the Reg field. 
Reg field - Specifies an address register for the instruction. When the A field contains 

0, this field must contain 0. 
FC field - Function code of address to be tested: 

10XXX - Function code is specified as bits XXX. 
01 DDD - Function code is specified as bits 2:0 of data register DDD. 
00000 - Function code is specified as SFC register. 
00001 - Function code is specified as DFC register. 

MOTOROLA 
3-160 

MC68030 USER'S MANUAL 



RESET 

Operation: 

Assembler 
Syntax: 

Attributes: 

Reset External Devices 
(Privileged Instruction) 

If supervisor state 
then Assert RESET Line 
else TRAP 

RESET 

Unsized 

RESET 

Description: Asserts the RESET signal for 512 clock periods, resetting all external de-
vices. The processor state, other than the program counter, is unaffected and execution 
continues with the next instruction. 

Condition Codes: 
Not affected. 

Instruction Format: 

15 14 13 12 11 

o I 1 

MC68030 USER'S MANUAL 

10 3 

MOTOROLA 
3-161 

• 



• 

ROL 
ROR 
Operation: 

Assembler 
Syntax: 

Attributes: 

Rotate (Without Extend) 

Destination Rotated by (count}• Destination 

ROd Dx,Dy 
ROd #(data},Dy 
ROd (ea} 
where d is direction, L or R 

Size = (Byte, Word, Long) 

ROL 
ROR 

Description: Rotates the bits of the operand in the direction specified (L or R). The 
extend bit is not included in the rotation. The rotate count for the rotation of a register 
is specified in either of two ways: 

1. Immediate -The rotate count (1-8) is specified in the instruction. 
2. Register - The rotate count is the value in the data register specified in the 

instruction, modulo 64. 

The size of the operation for register destinations is specified as byte, word, or long. 
The contents of memory, (ea}; can be rotated one bit only, and operand size is restricted 
to a word. 

The ROL instruction rotates the bits of the operand to the left; the rotate count de­
termines the number of bit positions rotated. Bits rotated out of the high-order bit go 
to the carry bit and also back into the low-order bit. 

The ROR instruction rotates the bits of the operand to the right; the rotate count 
determines the number of bit positions rotated. Bits rotated out of the low-order bit 
go to the carry bit and also back into the high-order bit. 

MOTOROLA 
3-162 

~--<•-1.__~~0P-EM_N_D~~_:-~~~l.....____,.~, C 

MC68030 USER'S MANUAL 



ROL 
ROR 
Condition Codes: 

X N Z V C 

-l·l·lol· 
X Not affected. 

Rotate (Without Extend) 

ROL 
ROR 

N Set if the most significant bit of the result is set. Cleared otherwise. 
Z Set if the result is zero. Cleared otherwise. 
V Always cleared. 
C Set according to the last bit rotated out of the operand. Cleared when the rotate 

count is zero. 

Instruction Format (Register Rotate): 

15 14 13 12 11 10 

COUNT/ 
REGISTER 

Instruction Fields (Register Rotate): 
Count/Register field: 

dr SIZE 
i/r REGISTER 

If i/r = 0, this field contains the rotate count. The values 1-7 represent counts of 1-
7, and 0 specifies a count of 8. 

If i/r = 1, this field specifies a data register that contains the rotate count (modulo 
64). 

dr field - Specifies the direction of the rotate: 
0 - Rotate right. 
1 - Rotate left. 

Size field - Specifies the size of the operation: 
00 - Byte operation. 
01 - Word operation. 
10 - Long operation. 

i/r field - Specifies the rotate count location: 
If i/r = 0, immediate rotate count. 
If i/r = 1, register rotate count. 

Register field'- Specifies a data register to be rotated. 

Instruction Format (Memory Rotate): 

15 14 13 12 11 10 

dr 

MC68030 USER'S MANUAL 

EFFECTIVE ADDRESS 

MODE REGISTER 

MOTOROLA 
3-163 

• 



• 

ROL 
ROR Rotate (Without Extend) 

ROL 
ROR 

Instruction Fields (Memory Rotate): 
dr field - Specifies the direction of the rotate: 

0 - Rotate right. 
1 - Rotate left. 

Effective Address field - Specifies the operand to be rotated. Only memory alterable 
addressing modes are allowed as shown: 

Addressing Mode 

MOTOROLA 
3-164 

Dn 

An 

(An) 

(An)+ 

-(An) 

(d15.An) 

(d9,An,Xn) 

(bd,An,Xn) 

([bd,An,Xn],od) 

([bd,An],Xn,od) 

Mode Register 

- -

- -

010 reg. number:An 

011 reg. number:An 

100 reg. number:,11.n 

101 reg. number:An 

110 reg. number:An 

110 reg. number:An 

110 reg. number:An 

110 reg. number:An 

Addressing Mode Mode Register 

(xxx).W 111 000 

(xxx).L 111 001 

#(data) - -

(d15,PC) - -

(d9,PC,Xn) - -

(bd,PC,Xn) - -

([bd,PC,Xn].od) - -

([bd,PC].Xn,od) - -

MC68030 USER'S MANUAL 



ROXL 
ROXR 
Operation: 

Assembler 
Syntax: 

Attributes: 

Rotate with Extend 

Destination Rotated with X by (count)• Destination 

ROXd Dx,Dy 
ROXd #(data),Dy 
ROXd (ea) 
where d is direction, L or R 

Size = (Byte, Word, Long) 

ROXL 
ROXR 

Description: Rotates the bits of the operand in the direction specified (L or R). The 
extend bit is included in the rotation. The rotate count for the rotation of a register is 
specified in either of two ways: 

1. Immediate - The rotate count (1-8) is specified in the instruction. 
2. Register - The rotate count is the value in the data register specified in the 

instruction, modulo 64. 

The size of the operation for register destinations is specified as byte, word, or long. 
The contents of memory, (ea), can be rotated one bit only, and operand size is restricted 
to a word. 

The ROXL instruction rotates the bits of the operand to the left; the rotate count 
determines the number of bit positions rotated. Bits rotated out of the high-order bit 
go to the carry bit and the extend bit; the previous value of the extend bit rotates into 
the low-order bit. 

The ROXR instruction rotates the bits of the operand to the right; the rotate count 
determines the number of bit positions rotated. Bits rotated out of the low order bit 
go to the carry bit and the extend bit; the previous value of the extend bit rotates into 
the high order bit. 

~--1•MI x 

MC68030 USER'S MANUAL MOTOROLA 
3-165 

• 



• 

ROXL 
ROXR 
Condition Codes: 

X N Z V C 

·l·l·lol· 

Rotate with Extend 

ROXL 
ROXR 

X Set to the value of the last bit rotated out of the operand. Unaffected when the 
rotate count is zero. 

N Set if the most significant bit of the result is set. Cleared otherwise. 
Z Set if the result is zero. Cleared otherwise. 
V Always cleared. 
C Set according to the last bit rotated out of the operand. When the rotate count is 

zero, set to the value of the extend bit. 

Instruction Format (Register Rotate): 

15 14 13 12 11 10 

COUNT/ 
REGISTER 

Instruction Fields (Register Rotate): 
Count/Register field: 

4 

dr SIZE i/r 0 REGISTER 

If i/r = 0, this field contains the rotate count. The values 1-7 represent counts of 1-
7, and 0 specifies a count of 8. 

If i/r = 1, this field specifies a data register that contains the rotate count (modulo 
64). 

dr field - Specifies the direction of the rotate: 
0 - Rotate right. 
1 - Rotate left. 

Size field - Specifies the size of the operation: 
00 - Byte operation. 
01 - Word operation. 
10 - Long operation. 

i/r field - Specifies the rotate count location: 
If i/r = 0, immediate rotate count. 
If i/r = 1, register rotate count. 

Register field - Specifies a data register to be rotated. 

Instruction Format (Memory Rotate): 

15 14 13 12 11 

MOTOROLA 
3-166 

10 

0 

8 

dr 

4 

EFFECTIVE ADDRESS 

MODE REGISTER 

MC68030 USER'S MANUAL 



ROXL 
ROXR 
Instruction Fields (Memory Rotate): 

Rotate with Extend 

dr field - Specifies the direction of the rotate: 
0 - Rotate right. 
1 - Rotate left. 

ROXL 
ROXR 

Effective Address field - Specifies the operand to be rotated. Only memory alterable 
addressing modes are allowed as shown: 

Addressing Mode Mode Register 

On - -
An - -
(An) 010 reg. number:An 

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15,An) 101 reg. number:An 

(da,An,Xn) 110 reg. number:An 

(bd,An,Xn) 110 reg. number:An 

([bd,An,Xn),od) 110 reg. number:An 

([bd,An),Xn,od) 110 reg. number:An 

MC68030 USER'S MANUAL 

Addressing Mode 

(xxx).W 

(xxx).L 

#(data) 

(d15,PC) 

(da,PC,Xn) 

(bd,PC,Xn) 

([bd,PC,Xn],od) 

([bd,PC),Xn,od) 

Mode 

111 

111 

-

-
-
-
-
-

Register 

000 

001 

-

-
-
-
-

-

MOTOROLA 
3-167 

• 



RTD 

Operation: 

Assembler 
Syntax: 

• Attributes: 

Return and Deallocate RTD 

(SP) • PC; SP + 4 + d • SP 

RTD #(displacement) 

Unsized 

Description: Pulls the program counter value from the stack and adds the sign-extended 
16-bit displacement value to the stack pointer. The previous program counter value 
is lost. 

Condition Codes: 
Not affected. 

Instruction Format: 

15 14 13 12 11 10 

1 1 

DISPLACEMENT (16 BITS) 

Instruction Field: 
Displacement field - Specifies the twos complement integer to be sign extended and 

added to the stack pointer. 

MOTOROLA 
3-168 

MC68030 USER'S MANUAL 



RTE Return from Exception 
(Privileged Instruction) 

RTE 

Operation: If supervisor state 
then (SP) • SR; SP + 2 • SP; (SP) • PC; 
SP+ 4 •SP; 
restore state and deallocate stack according to (SP) 
else TRAP 

Assembler 
Syntax: RTE 

Attributes: Unsized 

Description: Loads the processor state information stored in the exception stack frame 
located at the top of the stack into the processor. The instruction examines the stack 
format field in the format/offset word to determine how much information must be 
restored. 

Condition Codes: 
Set according to the condition code bits in the status register value restored from the 
stack. 

Instruction Format: 

15 14 13 12 11 10 4 

Format/Offset word (in stack frame): 

15 14 13 12 11 10 4 

FORMAT I o I o I VECTOR OFFSET 

Format Field of Format/Offset Word: 
Contains the format code, which implies the stack frame size (including the format/ 
offset word). 

0000-Short Format, removes four words. Loads the status register and the program 
counter from the stack frame. 

0001 - Throwaway Format, removes four words. Loads the status register from the 
stack frame and switches to the active system stack. Continues the instruc­
tion using the active system stack. 

0010 - Instruction Error Format, removes six words. Loads the status register and 
the program counter from the stack frame and discards the other words. 

1000 - MC68010 Long Format. The MC68030 takes a format error exception. 
1001 - Coprocessor Mid-Instruction Format, removes 10 words. Resumes execution 

of coprocessor instruction. 
1010 - MC68030 Short Format, removes 16 words and resumes instruction exe­

cution. 
1011 - MC68030 Long Format, removes 46 words and resumes instruction exe­

cution. 
Any other value in this field causes the processor to take a format error exception. 

MC68030 USER'S MANUAL MOTOROLA 
3-169 



• 

RTR 

Operation: 

Assembler 
Syntax: 

Attributes: 

Return and Restore Condition Codes 

(SP)• CCR; SP + 2 •SP; 
(SP) • PC; SP + 4 • SP 

RTR 

Unsized 

RTR 

Description: Pulls the condition code and program counter values from the stack. The 
previous condition codes and program counter values are lost. The supervisor portion 
of the status register is unaffected. 

Condition Codes: 
Set to the condition codes from the stack. 

Instruction Format: 

15 14 13 12 11 10 4 

o I 1 

MOTOROLA MC68030 USER'S MANUAL 
3-170 . 



RTS 

Operation: 

Assembler 
Syntax: 

Attributes: 

Return from Subroutine RTS 

(SP) • PC; SP + 4 • SP 

RTS 

Unsized 

Description: Pulls the program counter value from the stack. The previous program 
counter value is lost. 

Condition Codes: 
Not affected. 

Instruction Format: 

15 14 13 12 11 10 

MC68030 USER'S MANUAL 

o I 1 o I 1 

MOTOROLA 
3-171 

• 



SBCD 

Operation: 

Assembler 
Syntax: 

• Attributes: 

Subtract Decimal with Extend SBCD 

Destination10 - Source10 - X •Destination 

SBCD Dx,Dy 
SBCD - (Ax), - (Ay) 

Size = (Byte) 

Description: Subtracts the source operand and the extend bit from the destination op-
erand and stores the result in the destination location. The subtraction is performed 
using binary coded decimal arithmetic; the operands are packed BCD numbers. The 
instruction has two modes: 

1. Data register to data register: The data registers specified in the instruction con­
tain the operands. 

2. Memory to memory: The address registers specified in the instruction access the 
operands from memory using the predecrement addressing mode. 

This operation is a byte operation only. 

Condition Codes: 
X N Z V C 

• I u I • I u I • 
X Set the same as the carry bit. 
N Undefined. 
Z Cleared if the result is non-zero. Unchanged otherwise. 
V Undefined. 
C Set if a borrow (decimal) is generated. Cleared otherwise. 

NOTE 

Normally the Z condition code bit is set via programming before the start of 
an operation. This allows successful tests for zero results upon completion 
of multiple-precision operations. 

Instruction Format: 

15 14 13 12 11 10 

I 1 I 0 I 0 I 0 I REGISTER Ry I 1 ololololR1M REGISTER Rx 

Instruction Fields: 
Register Dy/Ay field - Specifies the destination register. 

If RIM = 0, specifies a data register. 
If RIM = 1, specifies an address register for the predecrement addressing mode. 

RIM field - Specifies the operand addressing mode: 
0 - The operation is data register to data register. 
1 - The operation is memory to memory. 

Register DxlAx field - Specifies the source register: 
If RIM = 0, specifies a data register. 
If RIM = 1, specifies an address register for the predecrement addressing mode. 

MOTOROLA 
3-172 

MC68030 USER'S MANUAL 



Sec 
Operation: 

Assembler 
Syntax: 

Attributes: 

Set According to Condition 

If Condition True 
then 1 s • Destination 
else Os • Destination 

Sec (ea) 

Size = (Byte) 

Sec 

Description: Tests the specified condition code; if the condition is true, sets the byte 
specified by the effective address to TRUE (all ones). Otherwise, sets that byte to 
FALSE (all zeros). Condition code cc specifies one of the following conditions: 

CC carry clear 0100 C LS low or same 0011 C + Z 
CS carry set 0101 C LT less than 1101 N•V + N•V 
EQ equal 0111 Z Ml minus 1011 N 
F never true 0001 0 NE not equal 0110 Z 
GE greater or equal 1100 N•V + N•V PL plus 1010 N1 
GT greater than 1110 N•V•Z + N•V•Z T always true 0000 V 
HI high 0010 C•Z VC overflow clear 1000 V 
LE less or equal 1111 Z + N•V + N•V VS overflow set 1001 

Condition Codes: 
Not affected. 

Instruction Format: 
15 14 13 12 11 10 

REGISTER 
CONDITION 

EFFECTIVE ADDRESS 

MODE 

Instruction Fields: 
Condition field - The binary code for one of the conditions listed in the table. 
Effective Address field - Specifies the location in which the true/false byte is to be 

stored. Only data alterable addressing modes are allowed as shown: 

Addressing Mode Mode Register Addressing Mode Mode Register 

Dn 000 reg. number:Dn (xxx).W 111 000 

An - - (xxx).L 111 001 

(An) 010 reg. number:An #(data) - -
(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15,An) 101 reg. number:An (d15,PC) - -
(ds.An.Xn) 110 reg. number:An (ds,PC,Xn) - -
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) - -

(Jbd,An,Xn),od) 110 reg. number:An ([bd,PC,Xn].od) - -
(Jbd,An].Xn,od) 110 reg. number:An (Jbd,PC],Xn,od) - -

Note: A subsequent NEG.B instruction with the same effective address can be used 
to change the Sec result from TRUE or FALSE to the equivalent arithmetic value 
(TRUE = 1, FALSE = 0). 

MC68030 USER'S MANUAL MOTOROLA 
3-173 

• 



• 

STOP 

Operation: 

Assembler 
Syntax: 

Attributes: 

Load Status Register and Stop 
(Privileged Instruction) 

If supervisor state 
then Immediate Data • SR; STOP 
else TRAP 

STOP #(data) 

Unsized 

STOP 

Description: Moves the immediate operand into the status register (both user and su-
pervisor portions), advances the program counter to point to the next instruction, and 
stops the fetching and executing of instructions. A trace, interrupt, or reset exception 
causes the processor to resume instruction execution. A trace exception occurs if 
instruction tracing is enabled (TO= 1, T1 =0) when the STOP instruction begins exe­
cution. If an interrupt request is asserted with a priority higher than the priority level 
set by the new status register value, an interrupt exception occurs; otherwise, the 
interrupt request is ignored. External reset always initiates reset exception processing. 

Condition Codes: 
Set according to the immediate operand. 

Instruction Format: 

15 14 13 12 11 10 4 2 

IMMEDIATE DATA 

Instruction Fields: 
Immediate field - Specifies the data to be loaded into the status register. 

MOTOROLA 
3-174 

MC68030 USER'S MANUAL 



SUB 

Operation: 

Assembler 
Syntax: 

Attributes: 

Subtract 

Destination - Source • Destination 

SUB (ea),Dn 
SUB Dn,(ea) 

Size = (Byte, Word, Long) 

SUB 

Description: Subtracts the source operand from the destination operand and stores the 
result in the destination. The size of the operation is specified as byte, word, or long. 
The mode of the instruction indicates which operand is the source, which is the des­
tination, and which is the operand size. 

Condition Codes: 

X N Z V C 

• I • I • I • I • 
X Set to the value of the carry bit. 
N Set if the result is negative. Cleared otherwise. 
Z Set if the result is zero. Cleared otherwise. 
V Set if an overflow is generated. Cleared otherwise. 
C Set if a borrow is generated. Cleared otherwise. 

Instruction Format: 

15 14 13 12 11 10 

OP-MODE 

4 

EFFECTIVE ADDRESS 
REGISTER 

MODE REGISTER 

Instruction Fields: 
Register field - Specifies any of the eight data registers. 
Op-Mode field: 

Byte Word 
000 001 
100 101 

MC68030 USER'S MANUAL 

Long 
010 
110 

Operation 
((Dn)) - ((ea)) • (Dn) 
((ea)) - ((Dn)) •(ea) 

MOTOROLA 
3-175 



.. 
SUB Subtract SUB 

Effective Address field - Determines the addressing mode. If the location specified 
is a source operand, all addressing modes are allowed as shown: 

Addressing Mode Mode Register Addressing Mode Mode Register 

Dn 000 reg. number:Dn (xxx).W 111 000 

An* 001 reg. number:An (xxx).L 111 001 

(An) 010 reg. number:An #(data) 111 100 

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d16.An) 101 reg. number:An (d16,PC) 111 010 

(d5,An,Xn) 110 reg. number:An (d5,PC,Xn) 111 011 

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011 

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011 

([bd,An),Xn,od) 110 reg. number:An ([bd,PC),Xn,od) 111 011 

*For byte size operation, address register direct is not allowed. 

If the location specified is a destination operand, only memory alterable addressing 
modes are allowed as shown: 

Addressing Mode Mode Register Addressing Mode Mode Register 

Dn - - (xxx).W 111 000 

An - - (xxx).L 111 001 

(An) 010 reg. number:An #(data) - -

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d16,An) 101 reg. number:An (d16,PC) - -

(d5,An,Xn) 110 reg. number:An (d5,PC,Xn) - -

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) - -

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn),od) - -

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) - -

Notes: 
1. If the destination is a data register, it must be specified as a destination Dn 

address, not as a destination (ea) address. 
2. Most assemblers use SUBA when the destination is an address register, and SUBI 

or SUBQ when the source is immediate data. 

MOTOROLA 
3-176 

MC68030 USER'S MANUAL 



SUBA Subtract Address SUBA 

Operation: 

Assembler 
Syntax: 

Attributes: 

Destination - Source • Destination 

SUBA (ea),An 

Size = (Word, Long) 

Description: Subtracts the source operand from the destination address register and 
stores the result in the address register. The size of the operation is specified as word 
or long. Word size source operands are sign extended to 32-bit quantities prior to the 
subtraction. 

Condition Codes: 
Not affected. 

Instruction Format: 

15 14 13 12 11 10 

REGISTER OP-MODE 
EFFECTIVE ADDRESS 

MODE REGISTER 

Instruction Fields: 
Register field - Specifies the destination, any of the eight address registers. 
Op-Mode field - Specifies the size of the operation: 

011 - Word operation. The source operand is sign extended to a long operand and 
the operation is performed on the address register using all 32 bits. 

111 - Long operation. 
Effective Address field - Specifies the source operand. All addressing modes are 

allowed as shown: 

Addressing Mode Mode Register 

Dn 000 reg. number:Dn 

An 001 reg. number:An 

(An) 010 reg. number:An 

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

ld15,An) 101 reg. number:An 

(d9,An,Xn) 110 reg. number:An 

(bd,An,Xn) 110 reg. number:An 

l[bd,An,Xn].od) 110 reg. number:An 

([bd,AnJ,Xn,od) 110 reg. number:An 

MC68030 USER'S MANUAL 

Addressing Mode 

lxxx).W 

lxxx).L 

#(data) 

ld15,PC) 

ld9,PC,Xn) 

(bd,PC,Xn) 

([bd,PC,XnJ.od) 

l[bd,PC].Xn,od) 

Mode 

111 

111 

111 

111 

111 

111 

111 

111 

Register 

000 

001 

100 

010 

011 

011 

011 

011 

MOTOROLA 
3-177 

• 



SUBI Subtract Immediate SUBI SUBI 

Operation: Destination - Immediate Data • Destination 

Assembler 
Syntax: 

• Attributes: 

SUBI #(data),(ea) 

Size = (Byte, Word, Long) 

Description: Subtracts the immediate data from the destination operand and stores the 
result in the destination location. The size of the operation is specified as byte, word, 
or long. The size of the immediate data matches the operation size. 

Condition Codes: 

X N Z V C 

·l·l·l·I· 
X Set to the value of the carry bit. 
N Set if the result is negative. Cleared otherwise. 
Z Set if the result is zero. Cleared otherwise. 
V Set if an overflow occurs. Cleared otherwise. 
C Set if a borrow occurs. Cleared otherwise. 

Instruction Format: 

15 14 13 12 11 10 

o l o l o I o 1 o I 1 1 o l o SIZE 

WORD DATA (16 BITS) 

LONG DATA (32 BITS) 

Instruction Fields: 
Size field - Specifies the size of the operation. 

00 - Byte operation. 
01 - Word operation. 
10 - Long operation. 

MOTOROLA 
3-178 

l 
4 3 

EFFECTIVE ADDRESS 

MODE l REGISTER 

BYTE DATA (8 BITS) 

MC68030 USER'S MANUAL 



SUBI Subtract Immediate SUBI SUBI 

Effective Address field - Specifies the destination operand. Only data alterable ad­
dressing modes are allowed as shown: 

Addressing Mode Mode Register Addressing Mode Mode 

On 000 reg. number:Dn (xxx).W 111 

An - - (xxx).L 111 

(An) 010 reg. number:An #(data) -

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15,An) 101 reg. number:An (d15,PC) -

(ds,An,Xn) 110 reg. number:An (da.PC,Xn) -

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) -

([bd,An,Xn].od) 110 reg. number:An ([bd,PC,Xn].od) -

([bd,An].Xn,od) 110 reg. number:An ([bd,PC].Xn,od) -

Immediate field - (Data immediately following the instruction) 
If size 00, the data is the low order byte of the immediate word. 
If size 01, the data is the entire immediate word. 
If size 10, the data is the next two immediate words. 

MC68030 USER'S MANUAL 

Register 

000 

001 

-

-

-

-

-

-

MOTOROLA 
3-179 



SUBQ Subtract Quick SUBQ 

Operation: Destination - Immediate Data • Destination 

Assembler 
Syntax: 

- Attributes: 

SUBQ #(data},(ea) 

Size = (Byte, Word, Long) 

Description: Subtracts the immediate data (1-8) from the destination operand. The size 
of the operation is specified as byte, word, or long. Only word and long operations 
are allowed with address registers, and the condition codes are not affected. When 
subtracting from address registers, the entire destination address register is used, 
regardless of the operation size. 

Condition Codes: 

X N Z V C 

·l·l·l·I· 
X Set to the value of the carry bit. 
N Set if the result is negative. Cleared otherwise. 
Z Set if the result is zero. Cleared otherwise. 
V Set if an overflow occurs. Cleared otherwise. 
C Set if a borrow occurs. Cleared otherwise. 

Instruction Format: 

15 14 13 12 11 10 

0 DATA SIZE 

Instruction Fields: 

EFFECTIVE ADDRESS 

MODE REGISTER 

Data field-Three bits of immediate data; 1-7 represent immediate values of 1-7, and 
0 represents 8. 

Size field - Specifies the size of the operation: 
00 - Byte operation. 
01 - Word operation. 
10 - Long operation. 

MOTOROLA 
3-180 

MC68030 USER'S MANUAL 



SUBQ Subtract Quick SUBQ 

Effective Address field - Specifies the destination location. Only alterable addressing 
modes are allowed as shown: 

Addressing Mode Mode Register 

Dn 000 reg. number:Dn 

An* 001 reg. number:An 

(An) 010 reg. number:An 

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15.Anl 101 reg. number:An 

(ds.An,Xn) 110 reg. number:An 

(bd,An,Xn) 110 reg. number:An 

([bd,An,Xn],od) 110 reg. number:An 

([bd,An],Xn,od) 110 reg. number:An 

*Word and Long only. 

MC68030 USER'S MANUAL 

Addressing Mode 

(xxx).W 

(xxx).L 

#(data) 

(d15,PC) 

(ds.PC,Xn) 

(bd,PC,Xn) 

([bd,PC,Xn].od) 

([bd,PC),Xn,od) 

Mode 

111 

111 

-

-
-

-

-

-

Register 

000 

001 

-

-

-

-

-

-

MOTOROLA 
3-181 

• 



• 

SUBX 
Operation: 

Assembler 
Syntax: 

Attributes: 

Subtract with Extend SUBX 
Destination - Source - X • Destination 

SUBX Dx,Dy 
SUBX - (Ax), - (Ay) 

Size = (Byte, Word, Long) 

Description: Subtracts the source operand and the extend bit from the destination op-
erand and stores the result in the destination location. The instruction has two modes: 

1. Data register to data register: The data registers specified in the instruction con­
tain the operands. 

2. Memory to memory: The address registers specified in the instruction access the 
operands from memory using the predecrement addressing mode. 

The size of the operand is specified as byte, word, or long. 

Condition Codes: 

X N Z V C 

·l·l·l·I· 
X Set to the value of the carry bit. 
N Set if the result is negative. Cleared otherwise. 
Z Cleared if the result is non-zero. Unchanged otherwise. 
V Set if an overflow occurs. Cleared otherwise. 
C Set if a carry occurs. Cleared otherwise. 

NOTE 

Normally the Z condition code bit is set via programming before the start of 
an operation. This allows successful tests for zero results upon completion 
of multiple-precision operations. 

Instruction Format: 

15 14 13 12 11 10 

I 1 0 I 0 I 1 REGISTER Ry I 1 

MOTOROLA 
3-182 

3 

SIZE 0 I 0 I RIM I REGISTER Rx 

MC68030 USER'S MANUAL 



SUBX Subtract with Extend SU·BX 
Instruction Fields: 

Register Dy/Ay field - Specifies the destination register: 
If R/M = 0, specifies a data register. 
If R/M = 1, specifies an address register for the predecrement addressing mode. 

Size field - Specifies the size of the operation: 
00 - Byte operation. 
01 - Word operation. 
10 - Long operation. 

R/M field - Specifies the operand addressing mode: 
0 - The operation is data register to data register. 
1 - The operation is memory to memory. 

Register Ox/Ax field - Specifies the source register: 
If R/M = 0, specifies a data register. 
If R/M = 1, specifies an address register for the predecrement addressing mode. 

MC68030 USER'S MANUAL MOTOROLA 
3-183 



SWAP 

Operation: 

Assembler 
Syntax: 

• Attributes: 

Swap Register Halves SWAP 

Register [31 :16) ••Register [15:0) 

SWAP On 

Size = (Word) 

Description: Exchange the 16-bit words (halves) of a data register. 

Condition Codes: 

X N Z V C 

1-l·l·lolo 
X Not affected. 
N Set if the most-significant bit of the 32-bit result is set. Cleared otherwise. 
Z Set if the 32-bit result is zero. Cleared otherwise. 
V Always cleared. 
C Always cleared. 

Instruction Format: 

15 14 13 12 11 10 

o I o 

Instruction Fields: 
Register field - Specifies the data register to swap. 

MOTOROLA 
3-184 

REGISTER 

MC68030 USER'S MANUAL 



TAS Test and Set an Operand TAS 

Operation: Destination Tested • Condition Codes; 1 • bit 7 of Destination 

Assembler 
Syntax: 

Attributes: 

TAS (ea) 

Size = (Byte) 

Description: Tests and sets the byte operand addressed by the effective address field. 
The instruction tests the current value of the operand and sets the N and Z condition 
bits appropriately. TAS also sets the high order bit of the operand. The operation uses 
a read-modify-write memory cycle that completes the operation without interruption. 
This instruction supports use of a flag or semaphore to coordinate several processors. 

Condition Codes: 

X N Z V 

1-l·l·lolo 
X Not affected. 
N Set if the most significant bit of the operand is currently set. Cleared otherwise. 
Z Set if the operand was zero. Cleared otherwise. 
V Always cleared. 
C Always cleared. 

Instruction Format: 

15 14 13 12 11 10 4 

EFFECTIVE ADDRESS 

MODE REGISTER 

Instruction Fields: 
Effective Address field - Specifies the location of the tested operand. Only data 

alterable addressing modes are allowed as shown: 

Addressing Mode Mode Register 

On 000 reg. number:Dn 

An - -

(An) 010 reg. number:An 

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d15.An) 101 reg. number:An 

(ds.An,Xn) 110 reg. number:An 

(bd,An,Xnl 110 reg. number:An 

([bd,An,Xn],od) 110 reg. number:An 

([bd,An],Xn,od) 110 reg. number:An 

MC68030 USER'S MANUAL 

Addressing Mode 

(xxx).W 

(xxx).L 

#(data) 

(d15,PC) 

(ds.PC,Xn) 

(bd,PC,Xn) 

([bd,PC,Xn].od) 

([bd,PCJ,Xn,od) 

Mode 

111 

111 

-

-
-

-

-

-

Register 

000 

001 

-

-

-

-

-

-

MOTOROLA 
3-185 



---

• 

TRAP 

Operation: 

Assembler 
Syntax: 

Attributes: 

Trap 

SSP - 2 • SSP; Format/Offset• (SSP); 
SSP - 4 • SSP; PC• (SSP); SSP - 2 • SSP; 
SR. (SSP); Vector Address. PC 

TRAP #(vector) 

Unsized 

TRAP 

Description: Causes a TRAP #(vector) exception. The instruction adds the immediate 
operand (vector) of the instruction to 32 to obtain the vector number. The range of 
vector values is 0-15, which provides 16 vectors. 

Condition Codes: 
Not affected. 

Instruction Format: 

15 14 13 12 11 10 

Instruction Fields: 
Vector field - Specifies the trap vector to be taken. 

MOTOROLA 
3-186 

o I o I VECTOR 

MC68030 USER'S MANUAL 



TRAP cc Trap on Condition 

Operation: 

Assembler 
Syntax: 

Attributes: 

If cc then TRAP 

TRAPcc 
TRAPcc.W #(data) 
TRAPcc.L #(data) 

Unsized or Size = (Word, Long) 

TRAP cc 

Description: If the specified condition is true, causes a TRAPcc exception. The vector 
number is 7. The processor pushes the address of the next instruction word (currently 
in the program counter) onto the stack. If the condition is not true, the processor 
performs no operation, and execution continues with the next instruction. The im­
mediate data operand should be placed in the next word(s) following the operation 
word and is available to the trap handler. Condition code cc specifies one of the 
following conditions. 

cc carry clear 0100 c LS low or same 0011 c+z 
cs carry set 0101 c LT less than 1101 N•V+N•V 
EQ equal 0111 z Ml minus 1011 N 
F never true 0001 0 NE not equal 0110 z 
GE greater or equal 1100 N•V+N•V PL plus 1010 N 
GT greater than 1110 N•V•Z + N•V•Z T always true 0000 1 
HI high 0010 C•Z vc overflow clear 1000 v 
LE less or equal 1111 Z+N•V+N•V vs overflow set 1001 v 

Condition Codes: 
Not affected. 

Instruction Format: 

15 14 13 12 11 10 

0 1 1 I o I 1 I CONDITION l 1 l 1l1J1J1l OP-MODE 

OPTIONAL WORO 

OR LONG WORO 

Instruction Fields: 
Condition field - The binary code for one of the conditions listed in the table. 
Op-Mode field - Selects the instruction form. 

010 - Instruction is followed by word-size operand. 
011 - Instruction is followed by long-word-size operand. 
100 - Instruction has no operand. 

MC68030 USER'S MANUAL MOTOROLA 
3-187 



TRAPV 
Operation: 

Assembler 
Syntax: 

• Attributes: 

Trap on Overflow TRAPV 
If V then TRAP 

TRAPV 

Unsized 

Description: If the overflow condition is set, causes a TRAPV exception (vector number 
7). If the overflow condition is not set, the processor performs no operation and 
execution continues with the next instruction. 

Condition Codes: 
Not affected. 

Instruction Format: 

15 14 13 12 11 10 

I o 

MOTOROLA 
3-188 

MC68030 USER'S MANUAL 



TST 

Operation: 

Assembler 
Syntax: 

Attributes: 

Test an Operand TST 

Destination Tested • Condition Codes 

TST (ea) 

Size = (Byte, Word, Long) 

Description: Compares the operand with zero and sets the condition codes according 
to the results of the test. The size of the operation is specified as byte, word, or long. 

Condition Codes: 

X N z v c 
- I 

X Not affected. 
N Set if the operand is negative. Cleared otherwise. 
Z Set if the operand is zero. Cleared otherwise. 
V Always cleared. 
C Always cleared. 

Instruction Format: 

15 14 13 12 11 10 

SIZE 
EFFECTIVE ADDRESS 

MODE REGISTER 

Instruction Fields: 
Size field - Specifies the size of the operation: 

00 - Byte operation. 
01 - Word operation. 
10 - Long operation. 

Effective Address field - Specifies the destination operand. If the operation size is 
word or long, all addressing modes are allowed. If the operation size is byte, only 
data addressing modes are allowed as shown: 

Addressing Mode Mode Register 

Dn 000 reg. number:Dn 

An - -

(An) 010 reg. number:An 

(An)+ 011 reg. number:An 

-(An) 100 reg. number:An 

(d1s.An) 101 reg. number:An 

(da.An,Xn) 110 reg. number:An 

(bd,An,Xn) 110 reg. number:An 

([bd,An,Xn).od) 110 reg. number:An 

([bd,An).Xn,od) 110 reg. number:An 

MC68030 USER'S MANUAL 

Addressing Mode 

(xxx).W 

(xxx).L 

#(data) 

(d16,PC) 

(da.PC,Xn) 

(bd,PC,Xn) 

([bd,PC,Xn).od) 

([bd,PC],Xn,od) 

Mode 

111 

111 

-

111 

111 

111 

111 

111 

Register 

000 

001 

-

010 

011 

011 

011 

011 

MOTOROLA 
3-189 



UNLK 

Operation: 

Assembler 
Syntax: 

• Attributes: 

Unlink UNLK 

UNLK An 

Unsized 

Description: Loads the stack pointer from the specified address register then loads the 
address register with the long word pulled from the top of the stack. 

Condition Codes: 
Not affected. 

Instruction Format: 

15 14 13 12 11 10 

REGISTER 

Instruction Fields: 
Register field - Specifies the address register for the instruction. 

MOTOROLA 
3-190 

MC68030 USER'S MANUAL 



UNPK Unpack BCD UNPK 

Operation: Source (Packed BCD) + adjustment• Destination (Unpacked BCD) 

Assembler 
Syntax: 

Attributes: 

UNPACK - (Ax), - (Ay),#(adjustment} 
UNPK Dx,Dy,#(adjustment} 

Unsized 

Description: Places the two BCD digits in the source operand byte into the lower nibbles 
of two bytes, and places zero bits in the upper nibbles of both bytes. Adds the ad­
justment value to this unpacked value. Condition codes are not altered. 

When both operands are data registers, the instruction unpacks the source register 
contents, adds the extension word, and places the result in the destination register. 
The high word of the destination register is unaffected. 

Source (Dx): 

15 14 13 12 11 10 0 

u I u I u I u I u u I u I u a I b I c d I e I I I g I h 

Intermediate Expansion: 

15 14 13 12 11 10 

0 I 0 I 0 I 0 I a I b I c I d 0 I 0 I 0 0 I e I I g I h 

Add Adjustment Word: 

15 14 13 12 11 10 

16-BIT EXTENSION 

Destination (Dy): 

15 14 13 12 11 10 

v I v I v I v a' b' I c d' I w I w I w I w I e' I I' g' I h' 

When the specified addressing mode is predecrement, the instruction extracts two 
BCD digits from a byte at the source address. After unpacking the digits and adding 
the adjustment word, the instruction writes the two bytes to the destination address. 

Source (Ax): 

4 

a I b [ c [ d [ e [ I [ g [ h 

MC68030 USER'S MANUAL MOTOROLA 
3-191 



• 

UNPK Unpack BCD UNPK 

Intermediate Expansion: 

15 14 13 12 11 10 

o I o I o I o I a I b I c d I o I o I o I o I e I 1 g I h 

Add Adjustment Word: 

15 14 13 12 11 10 

16-BIT EXTENSION 

Destination (Ay): 

w :: I ~: ~: I ~: 

Condition Codes: 
Not affected. 

Instruction Format: 

15 14 13 12 11 10 

REGISTER Dy/Ay 1 1 0 RIM REGISTER Dx/Ax 

16-BIT EXTENSION: ADJUSTMENT 

Instruction Fields: 
Register Dy/Ay field - Specifies the destination register. 

If R/M = 0, specifies a data register. 
If R/M = 1, specifies an address register in the predecrement addressing mode. 

R/M field - Specifies the operand addressing mode. 
0 - The operation is data register to data register. 
1 - The operation is memory to memory. 

Register Dx/Ax field - Specifies the data register. 
If R/M = 0, specifies a data register. 
If R/M = 1, specifies an address register in the predecrement addressing mode. 

Adjustment field - Immediate data word that is added to the source operand. Ap­
propriate constants can be used as the adjustment, to translate from BCD to the 
desired code. The constant used for ASCII is $3030; for EBCDIC, $FOFO. 

MOTOROLA 
3-192 

MC68030 USER'S MANUAL 



3.4 USING THE CAS AND CAS2 INSTRUCTIONS 

The CAS instruction compares the value in a memory location with the value in a data 
register, and copies a second data register into the memory location if the compared values 
are equal. This provides a means of updating system counters, history information, and 
globally shared pointers. The instruction uses a indivisible read-modify-write cycle; after 
CAS reads the memory location, no other instruction can change that location before CAS 
has written the new value. This provides security in single processor systems, in multi­
tasking environments, and in multiprocessor environments. In a single processor system, 
the operation is protected from instructions of an interrupt routine. In a multhtasking 
environment, no other task can interfere with writing the new value of a system variable. 
In a multiprocessor environment, the other processors must wait until the CAS instruction 
completes before accessing a global pointer. 

The following code fragment shows a routine to maintain a count, in location SYS-CNTR, 
of the executions of an operation that may be performed by any process or processor in 
a system. The routine obtains the current value of the count in register DO and stores the 
new count value in register D1. The CAS instruction copies the new count into SYS-CNTR 
if it is valid. But if another user has incremented the count between the time the count 
was stored and the read-modify-write cycle of the CAS instruction, the write portion of the 
cycle copies the new count in SYS-CNTR into DO, and the routine branches to try again. 
The following code sequence guarantees that SYS-CNTR is correctly incremented. 

INUOOP 
MOVE.W 
MOVE.W 
AODQ.W 
CAS.W 
BNE 

SYS_CNTR,DO 
DO.DI 
#1,Dl 
DO,Dl,SYS_CNTR 
INUOOP 

get the old value of the counter 
make a copy of it 
and increment it 
if counter value is still the same, update it 
if not, try again 

The CAS and CAS2 instructions together allow safe operations in the manipulation of 
system linked lists. Controlling a single location, HEAD in the example, manages a last-in­
first-out linked list. If the list is empty, HEAD contains the NULL pointer (O); otherwise, 
HEAD contains the address of the element most recently added to the list. The following 
code fragment illustrates the code for inserting an element. The MOVE instructions load 
the address in location HEAD into DO and into the NEXT pointer in the element being 
inserted, and the address of the new element into D1. The CAS instruction stores the 
address of the inserted element into location HEAD if the address in HEAD remains un­
altered. If HEAD contains a new address, the instruction loads the new address into DO 
and branches to the second MOVE instruction to try again. Figure 3-3 shows the insertion 
operation. 

The CAS2 instruction is similar to the CAS instruction except that it performs two com­
parisons and updates two variables when the results of the comparisons are equal. If the 
results of both comparisons are equal, CAS2 copies new values into the destination ad­
dresses. If the result of either comparison is not equal, the instruction copies the values 
in the destination addresses into the compare operands. 

The next code fragment shows the use of a CAS2 instruction to delete an element from a 
linked list. The first LEA instruction loads the effective address of HEAD into AO. The MOVE 
instruction loads the address in pointer HEAD into DO. The TST instruction checks for an 
empty list, and the BEQ instruction branches to a routine at label SDEMPTY if the list is 
empty. Otherwise, a second LEA instruction loads the address of the NEXT pointer in the 
newest element on the list into A1, and the following MOVE instruction loads the pointer 
contents into D1. The CAS2 instruction compares the address of the newest structure to 
the value in HEAD and the address in D1 to the pointer in the address in A 1. If no element 
has been inserted or deleted by another routine while this routine has been executing, the 

MC68030 USER'S MANUAL MOTOROLA 
3-193 

• 



• 

SIN SERT 
MOVE.L HEAD.DO 

SI LOOP MOVE.L 00.(NExtAl) 
MOVE.L Al.01 
CAS.L 00.01.HEAO 
BNE SILO OP 

BEFORE INSERTING AN ELEMENT: 

ENTRY 

+NEXT 

NEW 

AFTER INSERTING AN ELEMENT: 

HEAD 

NEW 

ENTRY 

HEAD 

ALLOCATE NEW ENTRY, ADDRESS IN A 1 
MOVE HEAD POINTER VALUE TO DO 
ESTABLISH FORWARD LINK IN NEW ENTRY 
MOVE NEW ENTRY POINTER VALUE TD D 1 
IF WE STILL POINT TO TOP OF STACK. UPDATE THE HEAD POINTER 
IF NOT. TRY AGAIN 

ENTRY ENTRY 

+NEXT 

ENTRY 

+NEXT 

Figure 3-3. Linked List Insertion 

results of these comparisons are equal, and the CAS2 instruction stores the new value into 
location HEAD. If an element has been inserted or deleted, the CAS2 instruction loads the 
new address in location HEAD into DO, and the BNE instruction branches to the TST 
instruction to try again. Figure 3-4 shows the deletion of an element from a linked list. 

The CAS2 instruction can also be used to correctly maintain a first-in-first-out doubly-linked 
list. A doubly-linked list needs two controlled locations, LIST-PUT and LIST-GET, which 
contain pointers to the last element inserted in the list and the next to be removed, re­
spectively. If the list is empty, both pointers are NULL (0). 

The following code fragment illustrates the insertion of an element in a doubly-linked list. 
The first two instructions load the effective addresses of LIST-PUT and LIST-GET into 
registers AO and A1, respectively. The next instruction moves the address of the new 
element into register D2. Another MOVE instruction moves the address in LIST-PUT into 
register DO. At label DI LOOP, a TST instruction tests the value in DO, and the BEQ instruction 
branches to the MOVE instruction when DO is equal to zero. Assuming the list is empty, 
this MOVE instruction is executed next; it moves the zero in DO into the NEXT and LAST 
pointers of the new element. Then the CAS2 instruction moves the address of the new 
element into both LIST-PUT and LIST-GET, assuming that both of these pointers still 
contain zero. If not, the BNE instruction branches to the TST instruction at label DILOOP 
to try again. This time, the BEQ instruction does not branch, and the following MOVE 
instruction moves the address in DO to the NEXT pointer of the new element. The CLR 
instruction clears register D1 to zero, and the MOVE instruction moves the zero into the 
LAST pointer of the new element. The LEA instruction loads the address of the LAST pointer 
of the most recently inserted element into register A 1. Assuming the LIST-PUT pointer 
and the pointer in A 1 have not been changed, the CAS2 instruction stores the address of 
the new element into these pointers. Figure 3-5 shows insertion of a new element into a 
doubly-linked list. 

The code fragment to delete an element from a doubly-linked list is similar. The first two 
instructions load the effective addresses of pointers LIST-PUT and LIST-GET into registers 

MOTOROLA 
3-194 

MC68030 USER'S MANUAL 



SDELETE 
LEA HEAD.AD 
MOVE.L (AD).00 

SD LOOP TST.L OD 
SEQ SO EMPTY 
LEA (NEXlOO).Al 
MOVE.L (Al).01 
CAS2.L 00:01.01:01.(AO):(A 1) 
BNE SOLO OP 

SD EMPTY 

BEFORE DELETING AN ELEMENT: 

ENTRY 

HEAD 

AFTER DELETING AN ELEMENT: 

ENTRY 

+NEXT 

HEAD 

LOAD ADDRESS OF HEAD POINTER INTO AO 
MOVE VALUE OF HEAD POINTER INTO 00 
CHECK FOR NULL HEAD POINTER 
IF EMPT'i NOTHING TO DELETE 
LOAD ADDRESS OF FORWARD LINK INTO A 1 
PUT FORWARD LINK VALUE IN 01 
IF STILL POINT TO ENTRY TD BE DELETED. THEN UPDATE HEAD ANO FORWARD POINTERS 
IF NOT. TRY AGAIN 
SUCCESSFUL DELETION. ADDRESS OF DELETED ENTRY IN 00 (MAY BE NULL) 

ENTRY ENTRY 

+NEXT +NEXT 

ENTRY ENTRY 

+NEXT +NEXT 

Figure 3-4. Linked List Deletion 

AO and A1, respectively. The MOVE instruction at label DDLOOP moves the LIST-GET 
pointer into register 01. The BEQ instruction that follows branches out of the routine when 
the pointer is zero. The MOVE instruction moves the LAST pointer of the element to be 
deleted into register 02. Assuming this is not the last element in the list, the Z condition 
code is not set, and the branch to label DDEMPTY does not occur. The LEA instruction 
loads the address of the NEXT pointer of the element at the address in 02 into register 
A2. The next instruction, a CLR instruction, clears register DO to zero. The CAS2 instruction 
compares the address in 01 to the LIST-GET pointer and to the address in register A2. If 
the pointers have not been updated, the CAS2 instruction loads the address in 02 into the 
LIST-GET pointer and zero into the address in register A2. 

When the list contains only one element, the routine branches to the CAS2 instruction at 
label DDEMPTY after moving a zero pointer value into 02. This instruction checks the 
addresses in LIST-PUT and LIST-GET to verify that no other routine has inserted another 
element or deleted the last element. Then the instruction moves zero into both pointers, 
and the list is empty. Figure 3-6 shows the deletion of an element of a doubly-linked list. 

3.5 NESTED SUBROUTINE CALLS 

The LINK instruction pushes an address onto the stack, saves the stack address at which 
the address is stored, and reserves an area of the stack. Using this instruction in a series 
of subroutine calls results in a linked list of stack frames. 

The UNLK instruction removes a stack frame from the end of the list by loading an address 
into the stack pointer and pulling the value atthat address from the stack. When the operand 

MC68030 USER'S MANUAL MOTOROLA 
3-195 

• 



• 

OINSERT !ALLOCATE NEW LIST ENTRY. LOAD ADDRESS INTO A2) 
LEA LIST_PUT.AO LOAD ADDRESS OF HEAD POINTER INTO AO 
LEA LIST_GET.Al LOAD ADDRESS OF TAIL POINTER INTO A 1 
MOVE.L A2.D2 LOAD NEW ENTRY POINTER INTO 02 
MOVE.L IA0).00 LOAD POINTER TO HEAD ENTRY INTO DO 

OILOOP TST.l DO IS HEAD POINTER NULL 10 ENTRIES IN LIST)? 
BEO DI EMPTY IF SO. WE NEED ONLY TO ESTABLISH POINTERS 
MOVE.L 00.(NEXT. A2) PUT HEAD POINTER INTO FORWARD POINTER OF NEW ENTRY 
CLR.L 01 PUT NULL POINTER VALUE IN D 1 
MDVE.L D1.(LAST.A2) PUT NULL POINTER IN BACKWARD POINTER OF NEW ENTRY 
LEA (LAST. 00).A 1 LOAD BACKWARD POINTER OF OLD HEAD ENTRY INTO A 1 
CAS2.l 00:01.02:02.(AO):(A 1) IF WE STILL POINT TO OLD HEAD ENTRY. UPDATE POINTERS 
BNE OILOOP IF NOT. TRY AGAIN 
BRA OIDONE 

DI EMPTY MOVE.L DO.(NEXT.A2) PUT NULL POINTER IN FORWARD POINTER OF NEW ENTRY 
MOVE.l 00,(LAST. A2) PUT NULL POINTER IN BACKWARD POINTER OF NEW ENTRY 
CAS2.l 00:00,02:02.(AO):(A 1) IF WE STILL HAVE NO ENTRIES. SET BOTH POINTERS TO THIS ENTRY 
BNE OILOOP IF NOT. TRY AGAIN 

OIDONE SUCCESSFUL LIST ENTRY INSERTION 

BEFORE INSERTING NEW ENTRY: 

ENTRY ENTRY 

+LAST +NEXT +LAST +NEXT 

LIST_PUT 

AFTER INSERTING NEW ENTRY: 

ENTRY 

+LAST +NEXT 

LIST_PUT UST_GET 

Figure 3-5. Doubly Linked List Insertion 

of the instruction is the address of the link address at the bottom of a stack frame, the 
effect is to remove the stack frame from the stack and from the linked list. 

3.6 BIT FIELD INSTRUCTIONS 

One of the data types provided by the MC68030 is the bit field, consisting of as many as 
32 consecutive bits. A bit field is defined by an offset from an effective address and a width 
value. The offset is a value in the range of - 231 through 231 -1 from the most significant 
bit (bit 7) at the effective address. The width is a positive number, 1 through 32. The most 
significant bit of a bit field is bit O; the bits number in a direction opposite to the bits of 
an integer. 

The instruction set includes eight instructions that have bit field operands. The insert bit 
field (BFINS) instruction inserts a bit field stored in a register into a bit field. The extract 
bit field signed (BFEXTS) instruction loads a bit field into the least significant bits of a 
register and extends the sign to the left, filling the register. The extract bit field unsigned 
(BFEXTU) also loads a bit field, but zero fills the unused portion of the destination register. 

MOTOROLA 
3-196 

MC68030 USER'S MANUAL 



DDELETE 

DDLDOP 

DD EMPTY 

DDDDNE 

LEA 
LEA 
MOVE.L 
BEO 
MOVE.L 
BEO 
LEA 
CLR.l 
CAS2.L 
BNE 
BRA 
CAS2.L 
BNE 

BEFORE DELETING ENTRY: 

AFTER DELETING ENTRY: 

UST_PUtAO 
UST_GET.Al 
(Al).Dl 
DDDONE 
(LAST. D 1 ).D2 
DDEMPTY 
(NEXT. D2).A2 
DO 
01:01.D2:DO.(A 1):(A2) 
DD LOOP 
DDDONE 
D1:01.D2:D2.(A l):(AO) 
DD LOOP 

GET ADDRESS OF HEAD POINTER IN AD 
GET ADDRESS OF TAIL POINTER IN A 1 
MOVE TAIL POINTER INTO D 1 
IF ND LIST. QUIT 
PUT BACKWARD POINTER IN D2 
IF ONLY ONE ELEMENt UPDATE POINTERS 
PUT ADDRESS OF FORWARD POINTER IN A2 
PUT NULL POINTER VALUE IN 00 
IF BOTH POINTERS STILL POINT TO THIS ENTRY. UPDATE THEM 
IF NOt TRY AGAIN 

IF STILL FIRST ENTRY. SET HEAD AND TAIL POINTERS TO NULL 
IF NOt TRY AGAIN 
SUCCESSFUL ENTRY DELETION. ADDRESS OF DELETED ENTRY IN 01 (MAY BE NULL) 

Figure 3-6. Doubly Linked List Deletion 

The set bit field (BFSET) sets all the bits of a field to ones. The clear bit field (BFCLR) 
instruction clears a field. The change bit field (BFCHG) instruction complements all the bits 
in a bit field. These three instructions all test the previous value of the bit field, setting the 
condition codes accordingly. The test bit field (BFTST) tests the value in the field, setting 
the condition codes appropriately without altering the bit field. The find first one in bit field 
(BFFFO) instruction scans a bit field from bit 0 to the right until it finds a bit set to one and 
loads the bit offset of the first set bit into the specified data register. If no bits in the field 
are set, the field offset plus the field width is loaded into the register. 

An important application of bit field instructions is the manipulation of the exponent field 
in a floating point number. In the IEEE standard format, the most significant bit is the sign 
bit of the mantissa. The exponent value begins at the next most significant bit position; 
the exponent field does not begin on a byte boundary. The extract bit field instruction 
(BFEXTU) and the test bit field instruction (BFTST) are the most useful for this application, 
but other bit field instructions can also be used. 

Programming of input and output operations to peripherals requires testing, setting, and 
inserting of bit fields in the control registers of the peripherals. This is another application 
for bit field instructions. However, control register locations are not memory locations; 
therefore, it is not always possible to insert or extract bit fields of a register without affecting 
other fields within the register. 

MC68030 USER'S MANUAL MOTOROLA 
3-197 

• 



• 

Another widely used application for bit field instructions is bit-mapped graphics. Because 
byte boundaries are ignored in these areas of memory, the field definitions used with bit 
field instructions are very helpful. 

3.7 PIPELINE SYNCHRONIZATION WITH THE NOP INSTRUCTION 

Although the no operation (NOP) instruction performs no visible operation, it serves an 
important purpose. It forces synchronization of the instruction pipeline by waiting for all 
pending bus cycles to complete. All previous instructions complete execution before the 
NOP begins. 

3.8 CONDITION CODES 

The five least significant bits of the status register (condition codes) are set or cleared by 
many instructions to indicate the results of the instructions. This section includes: 

1) a table that lists every instruction and how it sets the codes, and 

2) another table that lists the mnemonics for conditional tests and their meanings in 
terms of condition code bits. 

The condition codes were developed to meet two criteria: 

• Consistency - across instructions, uses, and instances 

• Meaningful Results - no change unless it provides useful information 

Consistency across instructions means that all instructions that are special cases of more 
general instructions affect the condition codes in the same way. Consistency across in­
stances means that all instances of an instruction affect the condition codes in the same 
way. Consistency across uses means that conditional instructions test the condition codes 
similarly and provide the same results whether the condition codes are set by a compare, 
test, or move instruction. 

3.8.1 Condition Code Computation 

Most operations take a source operand and a destination operand, compute, and store the 
result in the destination location. Single-operand operations take a destination operand, 
compute, and store the result in the destination location. Table 3-13 lists each instruction 
and how it sets the condition codes. 

MOTOROLA 
3-198 

MC68030 USER'S MANUAL 



Table 3-13. Condition Code Computations (Sheet 1 of 2) 

Operations x N 

ABCD * u 

ADD, ADDI, ADDO * * 

ADDX * * 

AND, ANDI, EOR, EORI, - * 
MOVEQ, MOVE, OR, ORI, 
CLR, EXT, NOT, TAS, TST 

CHK - * 
CHK2, CMP2 - u 

SUB, SUBI, SUBQ * * 

SUBX * * 

CAS, CAS2, CMP, CMPI, - * 
CMPM 

DIVS, DUVI - * 
MULS, MULU - * 
SBCD,NBCD * u 

NEG * * 

NEGX * * 

BTST, BCHG, BSET, BCLR - -
BFTST, BFCHG, BFSET, - ? 
BFCLR 

BFEXTS,BFEXTU,BFFFO - ? 

BFINS - 7 

ASL * * 

ASL (R=O) - * 
LSL, ROXL * * 
LSR (r=O) - * 
ROXL (r=O) - * 
ROL - * 
ROL (r=O) - * 
ASR, LSR, ROXR * * 
ASR, LSR (r=O) - * 
ROXR (r=O) - * 

MC68030 USER'S MANUAL 

z v c 
? u ? 

* ? ? 

? ? ? 

* 0 0 

u u u 
? u ? 

* ? ? 

? ? ? 

* 7 7 

* ? 0 

* ? 0 

7 u ? 

* ? ? 

? ? ? 

? - -
? 0 0 

? 0 0 

7 0 0 

* ? ? 

* 0 0 

* 0 ? 

* 0 0 

* 0 ? 

* 0 7 

* 0 0 

* 0 ? 

* 0 0 

* 0 ? 

Special Definition 

C=Decimal Carry 
Z=ZA Rm/\ ... /\ RO 

V = Sm A Om A Rm V Sm A Om A Rm 
C = Sm /\ Dm V Rm A Om V Sm A Rm 

V = Sm A Om A Rm V Sm A Om A Rm 
C = Sm A Dm V Rm A Om V Sm A Rm 
Z = Z A Rm /\ ... A RO 

Z = (R = LB) V (R = UB) 
C = (LB < = UB) /\ (IR < LB) V (R > UB)) V (UB < LB) A (R > 

UB) A (R <LB) 

V = Sm A Om A Rm V Sm A Om /\ Rm 
C = Sm A Om V Rm A Om V Sm A Rm 

V = Sm A Om A Rm V Sm A Om A Rm 
C = Sm A Om V Rm /\ Om V Sm A Rm 
Z = Z A Rm /\ ... /\ RO 

V = Sm A Om A Rm V Sm A Om A Rm 
C = Sm A Om V Rm A Om V Sm A Rm 

V = Division Overflow 

V = Multiplication Overflow 

C = Decimal Borrow 
Z = Z A Rm /\ ... A Ro 

V =Om A Rm 
C =Om V Rm 

V =Om A Rm 
C = DmVRm 
Z=ZARmA ... /\RO 

Z =On 

N =Om 
Z = Om /\ DM-1 /\ ... /\ DO 

N =Sm 
Z = Sm A Sm - 1 /\ ... /\ SO 

N =Om 
Z = Om A OM -1 /\ ... A DO 

V = DmA(Dm-1 V ... VDm-r)VDm /\ (DM-1 V ... +Dm-r) 
C = Dm-r+1 

C = Dm-r+1 

C=X 

C=Dm-r+1 

C=Dr-1 

C=X 

MOTOROLA 
3-199 

• 



• 

Table 3-13. Condition Code Computations (Sheet 2 of 2) 

Operations x N z v c Special Definition 

ROR - * * 0 ? C = Dr-1 

ROR (r=O) - * 

- = Not Affected 
U = Undefined, Result Meaningless 
? = Other - See Special Definition 
* = General Case 

X=C 
N =Rm 
Z =Rm/\ ... /\ RO 

* 0 

Sm = Source Operand - Most Significant Bit 
Dm = Destination Operand - Most Significant Bit 

3.8.2 Condition Tests 

0 

Rm = Result Operand - Most Significant Bit 
R = Register Tested 
n = Bit Number 
r = Shift Count 

LB = Lower bound 
UB = Upper Bound 
/\ V = Boolean AND 

V = Boolean OR 
Rm= NOT Rm 

Table 3-14 lists the condition names, encodings, and tests for the condition branch and 
set instructions. The test associated with each condition is a logical formula using the 
current states of the condition codes. If this formula evaluates to one, the condition is true. 
If the formula evaluates to zero, the condition is false. For example, the T condition is 
always true, and the EQ condition is true only if the Z bit condition code is currently true. 

MOTOROLA 
3-200 

Table 3-14. Conditional Tests 

Mnemonic 

T* 

F* 

HI 

LS 

CC(HS) 

CS(LO) 

NE 

EQ 

vc 
vs 
PL 

Ml 

GE 

LT 

GT 

LE 

• = Boolean AND 
+ = Boolean OR 
N = Boolean NOT N 

Condition 

True 

False 

High 

Low or Same 

Carry Clear 

Carry Set 

Not Equal 

Equal 

Overflow Clear 

Overflow Set 

Plus 

Minus 

Greater or Equal 

Less Than 

Greater Than 

Less or Equal 

*Not available for the Bee instruction. 

Encoding 

0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

Test 

1 

0 

c·z 
C+Z 

c 
c 
z 
z 
v 
v 
N 

N 

N•V+N•V 

N•V+N•V 

N•V•Z + N•V•Z 

Z+N•V+N•V 

MC68030 USER'S MANUAL 



3.9 INSTRUCTION FORMAT SUMMARY 

The following paragraphs provide a summary of the primary words in each instruction of 
the instruction set. The complete instruction definition consists of the primary words fol­
lowed by the addressing mode operands such as immediate data fields, displacements, 
and index operands. The four most significant bits of the first (or only) primary word provide 
a means of categorizing the instructions. Table 3-15 is an operation code (opcode) map 
that lists an instruction category for each combination of these bits. 

Table 3-15. Operation Code Map 

Bits 15 through 12 Operation 

0000 Bit Manipulation/MOVEP/lmmediate 

0001 Move Byte 

0010 Move Long 

0011 Move Word 

0100 Miscellaneous 

0101 ADDQ/SUBQ/Scc/DBcc/TRAPcc 

0110 Bcc/BSR/BRA 

0111 MOVEQ 

1000 OR/DIV/SBCD 

1001 SUB/SU BX 

1010 (Unassigned, Reserved) 

1011 CMPIEOR 

1100 ANDIMULIABCDIEXG 

1101 ADDIADDX 

1110 Shift/Rotate/Bit Field 

1111 Coprocessor Interface 

The first portion of the instruction summary groups the standard instructions according 
to the opcode map. Instructions that were added in the MC68010, the MC68020, and the 
MC68030 are marked. The next portion documents coprocessor instruction forms. 

MC68030 USER'S MANUAL MOTOROLA 
3-201 

• 



• 

MC68030 INSTRUCTIONS 

ORI 
15 14 13 12 11 10 

SIZE 

WORD DATA (16 BITS) 

LONG DATA (32 BITS) 

Size Field: 00= Byte 01 =Word 10= Long 

ORI to CCR 
15 14 13 12 11 10 

0 

ORI to SR 
15 14 13 12 11 10 

I 
0 0 I 1 

WORD DATA 116 BITS) 

CMP2 
15 14 13 12 11 10 

l 0 l 0 0 0 0 SIZE 0 1 1 

DIA REGISTER 0 o I o 0 0 0 

Size Field: 00= Byte 01 =Word 10= Long 

CHK2 
15 14 13 12 11 10 

l l 0 0 0 0 0 SIZE 0 1 1 

D/A REGISTER 1 o I o 0 0 0 

Size Field: OO=Byte 01 =Word 10=Long 

Bit (Dynamic) 
15 14 13 12 11 10 

0 DATA REGISTER TYPE 

TypeField: OO=TST 10=CLR 01=CHG 11=SET 

MOVEP 
15 14 13 12 11 10 

DATA REGISTER OP-MODE 

DISPLACEMENT 116 BITS) 

Op-Mode Field: 100 =Transfer Word from Memory to Register 
101 =Transfer Long from Memory to Register 
110 =Transfer Word from Register to Memory 
111 =Transfer Long from Register to Memory 

1 

0 

0 

4 

EFFECTIVE ADDRESS 

MODE REGISTER 

BYTE DATA (8 BITS) 

1 1 

BYTE DATA (8 BITS) 

I 1 I 1 

EFFECTIVE ADDRESS 

MODE l REGISTER 

I o I o I o I o I 0 

EFFECTIVE ADDRESS 

MODE l REGISTER 

l 0 0 l 0 l 0 l 0 

EFFECTIVE ADDRESS 

MODE REGISTER 

ADDRESS REGISTER 

MOTOROLA MC68030 USER'S MANUAL 
3-202 



ANDI 
15 14 13 12 11 10 

0 l 0 l 0 l 0 l 0 l 0 l 1 l 0 
SIZE 

WORD DATA (16 BITS) 

LONG DATA (32 BITS) 

Size Field: 00= Byte 01 =Word 10=Long 

ANDI to CCR 
15 14 13 12 11 10 

ANDI to SR 
15 14 13 12 11 10 

I 
0 

WORD DATA (16 BITS) 

SUBI 
15 14 13 12 11 10 

0 l 0 l 0 l 0 l 0 l 1 l 0 l 0 
SIZE 

WORD DATA (16 BITS) 

LONG DATA (32 BITS) 

Size Field: OO=Byte 01 =Word 10=Long 

ADDI 
15 14 13 12 11 10 

SIZE 

WORD DATA (16 BITS) 

LONG DATA (32 BITS) 

SizeField: OO=Byte 01=Word 10=Long 

CAS 

15 14 13 12 11 10 

0 0 0 0 1 SIZE 0 J 1 l 
0 0 0 0 0 0 l 0 Du 

Size Field: 01 =Byte 10=Word 11 =Long 

CAS2 
15 14 13 12 11 10 

SIZE 

D/Al Rnl Dul 

I D/A2 I Rn2 0 I Du2 

Size Field: 10=Word 11 =Long 

MC68030 USER'S MANUAL 

l 

1 I 1 

I 

1 

0 

0 

EFFECTIVE ADDRESS 

MODE l REGISTER 

BYTE DATA (8 BITS) 

4 

1 1 

BYTE DATA (8 BITS) 

I 1 I 1 

EFFECTIVE ADDRESS 

MODE l REGISTER 

BYTE DATA (8 BITS) 

EFFECTIVE ADDRESS 

MODE REGISTER 

BYTE DATA (8 BITS) 

EFFECTIVE ADDRESS 

MODE l REGISTER 

l 0 1 0 l De 

Del 

o I De2 

MOTOROLA 
3-203 

• 



• 

Bit (Static) 
15 14 13 12 11 10 

0 0 0 0 1 0 0 0 Tr 

0 0 0 0 0 0 0 0 

Type Field: OO=TST 10=CLR 01 =CHG 11 =SET 

EORI 
15 14 13 12 11 10 

0 l 0 l 0 l 0 J 1 I 0 l I l 0 SIZE 

WORD DATA (16 BITS) 

LONG DATA 132 BITS) 

Size Field: 00= Byte 01 =Word 10= Long 

EORI to CCR 
15 14 13 12 11 10 

0 

EORI to SR 
15 14 13 12 11 10 

I 
0 I 1 1 1 

WORD DATA 116 BITS) 

CMPI 
15 14 13 12 11 10 

0 l 0 I 0 I 0 I 1 I 1 l 0 l 0 SIZE 

WORD DATA (16 BITS) 

LONG DATA (32 BITS) 

Size Field: OO=Byte 01 =Word 10=Long 

MOVES 
15 14 13 12 11 10 

0 0 J 0 J 0 1 1 1 0 SIZE 

AID REGISTER dr 0 0 0 0 l 0 

dr Field: 0 =EA to Register 1 =Register to EA 

MOVE Byte 
15 14 13 12 11 

Note Register and Mode Locations 

MOTOROLA 
3-204 

10 

DESTINATION 

REGISTER MODE 

l EFFECTIVE ADDRESS 

l MODE REGISTER 

BIT NUMBER 

l EFFECTIVE ADDRESS 

l MODE REGISTER 

BYTE DATA (8 BITS) 

1 1 0 

BYTE DATA 18 BITS) 

I 1 I 1 I 1 1 I 

l EFFECTIVE ADDRESS 

l MODE REGISTER 

BYTE DATA (8 BITS) 

4 

EFFECTIVE ADDRESS 

MODE l REGISTER 

0 l 0 ojojoj 0 

SOURCE 

MODE REGISTER 

MC68030 USER'S MANUAL 



MOVEA Long 
15 14 13 12 11 10 

DESTINATION 
REGISTER 

MOVE Long 
15 14 13 12 11 10 

DESTINATION 

REGISTER MODE 

Note Register and Mode Locations 

MOVEA Word 
15 14 13 12 11 10 

DESTINATION 
REGISTER 

MOVE Word 

DESTINATION 

REGISTER MODE 

Note Register and Mode Locations 

NEGX 

15 14 13 12 11 10 

0 0 SIZE 

Size Field: 00= Byte 01 =Word 10= Long 

MOVE from SR 
15 14 13 12 11 10 

CHK 
15 14 13 12 11 10 

REGISTER SIZE 

Size Field: 10=Long 11 =Word 

LEA 
15 14 13 12 11 10 

REGISTER 

MC68030 USER'S MANUAL 

0 

SOURCE 

MODE REGISTER 

4 

SOURCE 

MODE REGISTER 

4 2 

SOURCE 

MODE REGISTER 

SOURCE 

MODE REGISTER 

0 

EFFECTIVE ADDRESS 

MODE REGISTER 

4 0 

EFFECTIVE ADDRESS 

MODE REGISTER 

EFFECTIVE ADDRESS 

MODE REGISTER 

EFFECTIVE ADDRESS 

MODE REGISTER 

MOTOROLA 
3-205 

• 



• 

CLR 

15 14 13 12 11 10 

SIZE 
EFFECTIVE ADDRESS 

MODE REGISTER 

Size Field: 00= Byte 01 =Word 10= Long 

MOVE from CCR 
15 14 13 12 11 10 

EFFECTIVE ADDRESS 
0 

MODE REGISTER 

NEG 

15 14 13 12 11 10 

SIZE 
EFFECTIVE ADDRESS 

MODE REGISTER 

Size Field: OO=Byte 01 =Word 10= Long 

MOVE to CCR 

15 14 13 12 11 10 

EFFECTIVE ADDRESS 

MODE REGISTER 

NOT 

15 14 13 12 11 10 

SIZE 
EFFECTIVE ADDRESS 

0 
MODE REGISTER 

Size Field: OO=Byte 01 =Word 10= Long 

MOVE to SR 
15 14 13 12 11 10 4 

EFFECTIVE ADDRESS 
0 

MODE REGISTER 

NBCD 

15 14 13 12 11 10 

EFFECTIVE ADDRESS 

MODE REGISTER 

LINK Long 

15 14 13 12 11 10 

o I 1 I o I o I 1 I o I o I o I o I o I o I o I 1 I REGISTER 

MOTOROLA 
3-206 

HIGH-ORDER DISPLACEMENT 

LOW-ORDER DISPLACEMENT 

MC68030 USER'S MANUAL 



SWAP 
15 14 13 12 11 10 9 6 4 

0 1 I 0 I 0 1 I 0 I 0 0 I 1 0 I 0 I 0 I REGISTER 

BKPT 
15 14 13 12 11 10 4 3 

0 I 1 0 I 0 I 1 0 0 I 0 I 1 I 0 0 I 1 VECTOR 

PEA 
15 14 13 12 11 10 4 3 0 

0 0 0 0 
EFFECTIVE ADDRESS 

MOOE REGISTER 

Size Field: OO=Byte 01 =Word lO=Long 

EXT/EXTB 
15 14 13 12 11 10 

I 0 I 1 0 I I 1 0 I 0 I OP-MOOE 0 0 0 I REGISTER 

Op-Mode Field: OlO=Extend Word 011 =Extend Long 111 =Extend Byte Long 

MOVEM Registers to EA 
15 14 13 12 11 10 

0 dr SIZE 

REGISTER LIST MASK 

Size Field: 0 =Word Transfer 1 =Long Transfer 

TST 
15 14 13 12 11 10 

0 SIZE 

Size Field: OO=Byte 01 =Word 10=Long 

TAS 
15 14 13 12 11 10 

0 

ILLEGAL 
15 14 13 12 11 10 

0 I 1 0 I 0 I 1 I 0 1 I 0 I 1 1 

MC68030 USER'S MANUAL 

I 1 I 

4 3 2 0 

EFFECTIVE ADDRESS 

MODE REGISTER 

4 

EFFECTIVE ADDRESS 

MODE REGISTER 

4 0 

EFFECTIVE ADDRESS 

MODE REGISTER 

4 3 0 

1 I 1 I 1 0 I 

MOTOROLA 
3-207 

• 



• 

MULS/MULU Long 
15 14 13 12 11 10 

0 1 I 0 I 0 1 1 0 0 0 0 

0 REGISTER 01 TYPE SIZE 0 0 0 0 

Type Field: 0 = MULU 1 = MULS 
Size Field: O=Longword Product 1 =Quadword Product 

DIVS/DIVU Long 
DIVUUDIVSL 

15 14 13 12 11 

0 1 I 0 I 0 
1 

0 REGISTER Dq TYPE 

Type Field: O=DIVU 1 =DIVS 
Size Field: 0 = Longword Dividend 

MOVEM EA to Registers 
15 14 13 12 11 

10 

1 0 0 0 1 

SIZE 0 0 0 0 

1 =Quadword Dividend 

10 

dr SIZE 

REGISTER LIST MASK 

Size Field: 0 =Word Transfer 1 =Long Transfer 

TRAP 
15 14 13 

I 0 1 I 0 

Link Word 
15 14 13 

UNLK 
15 14 13 

I 0 1 I 0 

MOVE to USP 
15 14 13 

I 0 I 1 I 0 

MOVE from USP 
15 14 

0 I 1 

MOTOROLA 
3-208 

13 

I 0 

12 

0 

12 

12 

I 0 

12 

0 

12 

I 0 

11 10 

I 1 I 1 I 1 0 I 0 I 1 

11 10 

1 1 

WORD DISPLACEMENT 

11 10 

I 1 I 1 I 1 0 I 0 I 1 

11 10 

I 1 I 1 I 1 0 I 0 I 1 

11 10 

I 1 I 1 I 1 0 I 0 I 1 

EFFECTIVE ADDRESS 

MOOE l REGISTER 

0 l o l o I REGISTER Oh 

EFFECTIVE ADDRESS 

MOOE l REGISTER 

0 I o I o I REGISTER Dr 

EFFECTIVE ADDRESS 

MODE REGISTER 

I 0 I 0 I VECTOR 

REGISTER 

3 

I 0 I 1 I 1 REGISTER 

I 1 0 I 0 I REGISTER 

I 1 0 I 1 REGISTER 

MC68030 USER'S MANUAL 



RESET 
15 14 13 12 11 10 

I 0 I 1 0 I 0 I 1 I 1 I 1 0 I 0 I 1 I 1 I 

NOP 
15 14 13 12 11 10 

I 0 1 I 0 I 0 I 1 I 1 I 1 I 0 0 I 1 1 I 

RTE 
15 14 13 12 11 10 

I 0 I 1 0 I 0 I 1 I 1 I 1 0 I 0 I 1 I 1 I 

RTD 
15 14 13 12 11 10 

0 0 

DISPLACEMENT (16 BITS) 

RTS 
15 14 13 12 11 10 

I 0 I 1 0 I 0 I 1 I 1 I 1 0 I 0 I 1 I 1 I 

TRAPV 
15 14 13 12 11 10 

I 0 I 1 0 I 0 I 1 I 1 I 1 0 I 0 I 1 I 1 I 

RTR 
15 14 13 12 11 10 

I 0 1 I 0 I 0 I 1 I 1 I 1 I 0 0 I 1 I 1 I 

MOVEC 
15 14 13 12 11 10 

0 1 

AID REGISTER CONTROL REGISTER 

dr Field: O=Control Register to General Register 
1 =General Register to Control Register 

Control Register Field: $000=SFC $801 =VBR 
$001 =DFC $802=CAAR 
$002=CACR $803=MSP 
$800=USP $804=1SP 

MC68030 USER'S MANUAL 

4 3 

1 I 0 0 

1 0 I 0 

4 2 

1 I 0 0 

4 3 

0 

1 I 0 I 1 

4 3 

1 I 0 I 1 

1 I 0 I 1 

4 3 

0 

I 0 

I 0 

I 1 

0 

I 1 

I 1 

0 

I 0 

0 

I 1 

I 1 

0 

I 1 

0 

I 0 

I 1 

dr 

MOTOROLA 
3-209 

• 



• 

JSR 
15 14 13 12 11 10 

EFFECTIVE ADDRESS 

MODE REGISTER 

JMP 
15 14 13 12 11 10 • 

EFFECTIVE ADDRESS 

MOOE REGISTER 

ADDO 
15 14 13 12 11 10 

DATA SIZE 
EFFECTIVE ADDRESS 

MODE REGISTER 

Data Field: Three bits of immediate data, 1-7 represent immediate values of 1-7, and 0 represents 8. 
Size Field: 00= Byte 01 =Word 10=Long 

Sec 
15 14 13 12 11 10 4 

EFFECTIVE ADDRESS . 1 CONDITION 
MODE REGISTER 

DBcc 
15 14 13 12 11 10 

CONDITION 1 1 REGISTER 

DISPLACEMENT (16 BITS) 

TRAPcc 
15 14 13 12 11 10 

o I 1 I o I 1 I CONDITION I 1 I 1J 1J1I1I OP-MODE 

OPTIONAL WORD 

DR LONG WORD 

Op-Mode Field: OlO=Word Operand 011 =Long Operand 100= No Operand 

SUBO 
15 14 13 12 11 10 

DATA SIZE 
EFFECTIVE ADDRESS 

MODE REGISTER 

Data Field: Three bits of immediate data; 1-7 represent immediate values of 1-7, and 0 represents 8. 
Size Field: OO=Byte Ol=Word lO=Long 

Bee 
15 14 

o I 1 

MOTOROLA 
3-210 

13 

l 1 l 
12 11 10 

0 l CONDITION I 8-BIT DISPLACEMENT 

16-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $00 

. 32-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $FF 

MC68030 USER'S MANUAL 



BRA 
15 14 13 12 11 10 

o I 1 l 1 l 0 l 0 l 0 l 0 l 0 1 8-BIT DISPLACEMENT 

16-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $00 

32-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $FF 

BSR 
15 14 13 12 11 10 

0 1 1 1 1 l 0 l 0 l o L 0 1 1 l 8-BIT DISPLACEMENT 

16-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $00 

32-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $FF 

MOVEQ 
15 14 13 12 11 10 

I o I REGISTER DATA 

Data Field: Data is sign extended to a long operand and all 32 bits are transferred to the data register. 

OR 
15 14 13 12 11 10 

0 REGISTER OP-MODE 
EFFECTIVE ADDRESS 

MODE REGISTER 

Op-Mode Field: 
Byte Word Long Operation 

000 001 010 ((ea))v((Dn)) t (Dn) 
100 101 110 ((Dn))v((ea)) •(ea) 

DIVS/DIVU Word 
15 14 13 12 11 10 

EFFECTIVE ADDRESS 
REGISTER TYPE 

MODE REGISTER 

Type Field: 0 = DIVU 1 =DIVS 

SBCD 

15 14 13 12 11 10 

REGISTER Ry RIM REGISTER Rx 

RIM Field: 0 =Data Register to Data Register 1 =Memory to Memory 

If RIM= 0, Both Registers are Data Registers 
If RIM= 1, Both Registers are Address Registers for the Predecrement Addressing Mode 

PACK 
15 14 13 12 11 10 

REGISTER OylAy 1 1 

16-BIT EXTENSION: ADJUSTMENT 

RIM Field: 0 =Data Register to Data Register 1 =Memory to Memory 

If RIM= 0, Both Registers are Data Registers 

RIM 

If RIM= 1, Both Registers are Address Registers for the Predecrement Addressing Mode 

MC68030 USER'S MANUAL 

REGISTER Ox/Ax 

MOTOROLA 
3-211 

• 



• 

UNPK 
15 14 13 12 11 10 

REGISTER DylAy 1 

16-BIT EXTENSION: ADJUSTMENT 

RIM Field: 0 =Data Register to Data Register 1 =Memory to Memory 

If RIM= 0, Both Registers are Data Registers 

RIM REGISTER Ox/Ax 

If RIM= 1, Both Registers are Address Registers for the Predecrement Addressing Mode 

SUB 
15 14 13 12 11 10 

REGISTER OP-MODE 
EFFECTIVE ADDRESS 

MODE REGISTER 

Op-Mode Field: 
Byte Word Long Operation 

000 001 010 ((Dn))- ((ea)) • (Dn) 
100 101 110 ((ea))-((Dn)) •(ea) 

SUBA 
15 14 13 12 11 10 

REGISTER OP-MODE 
EFFECTIVE ADDRESS 

MODE REGISTER 

Op-Mode Field: 
Word Long Operation 

011 111 ((An))- ((ea))• (An) 

SUBX 
15 14 13 12 11 10 

0 REGISTER Ry SIZE RIM REGISTER Rx 

Size Field: OO=Byte 01 =Word 10=Long 
RIM Field: O= Data Register to Data Register 1 =Memory to Memory 

If R/M = 0, Both Registers are Data Registers 
If RIM= 1, Both Registers are Address Registers for the Predecrement Addressing Mode 

CMP 
15 14 13 

Op-Mode Field: 
Byte 

000 

CMPA 
15 14 13 

Op-Mode Field: 

MOTOROLA 
3-212 

Word 

011 

12 11 

Word 

001 

12 11 

Long 

111 

10 

OP-MODE 
EFFECTIVE ADDRESS 

REGISTER 
MODE REGISTER 

Long Operation 

010 ((Dn))-((ea)) 

10 

DP-MODE 
EFFECTIVE ADDRESS 

REGISTER 
MODE REGISTER 

Operation 

((An))-((ea)) 

MC68030 USER'S MANUAL 



EOR 
15 14 13 12 11 10 

REGISTER OP-MODE 

Op-Mode Field: 
Byte Word Long Operation 

100 101 110 ((ea)) EB ((Dn)) •(ea) 

CMPM 

15 14 13 12 11 10 

I 1 1 I 1 REGISTER Ax I 1 SIZE 

Size Field: OO=Byte 01 =Word 10=Long 

AND 
15 14 13 

Op-Mode Field: 
Byte 

000 
100 

MULS/MULU Word 

15 14 13 

12 

Word 

001 
101 

12 

11 

11 

Type Field: 0= MULU 1 = MULS 

ABCD 
15 14 13 12 11 

0 

10 

REGISTER OP-MODE 

Long Operation 

010 ((ea))A((Dn)) • (Dn) 
110 ((Dn))A((ea)) •(ea) 

10 

REGISTER TYPE 

10 

REGISTER Rx 

RIM Field: 0 =Data Register to Data Register 1 =Memory to Memory 

If RIM= 0, Both Registers are Data Registers 

EFFECTIVE ADDRESS 

MODE REGISTER 

o I 1 REGISTER Ay 

EFFECTIVE ADDRESS 

MODE REGISTER 

EFFECTIVE ADDRESS 

MOOE REGISTER 

I o RIM REGISTER Ry 

If RIM= 1, Both Registers are Address Registers for the Predecrement Addressing Mode 

EXG Data Registers 
15 14 13 12 11 10 

I 1 I 1 I 0 I 0 REGISTER Ox 1 I 

EXG Address Registers 

15 14 13 12 11 10 

I 1 I 1 I 0 I 0 I REGISTER Ax 

EXG Data Register and Address Register 

15 14 13 12 11 10 

1 I o I o I REGISTER Ox 1 I 1 

MC68030 USER'S MANUAL 

1 I o 

o I 1 I 

o I o o I 1 I 

REGISTER Dy 

REGISTER Ay 

REGISTER Ay 

MOTOROLA 
3-213 

• 



• 

ADD 
15 14 13 12 11 10 9 8 6 5 4 3 0 

0 REGISTER OP-MOOE 
EFFECTIVE ADDRESS 

MODE REGISTER 

Op-Mode Field: 
Byte Word Long Operation 

000 001 010 ((ea))+ ((On))• (On) 
100 101 110 ((On))+ ((ea))• (ea) 

ADDA 
15 14 13 12 11 10 3 2 

REGISTER OP-MODE 
EFFECTIVE ADDRESS 

MODE REGISTER 

Op-Mode Field: 
Word Long Operation 

011 111 ((ea))+ ((An))• (An) 

ADDX 
15 14 13 12 11 10 4 

0 REGISTER Rx SIZE 0 R/M REGISTER Ry 

Size Field: OO=Byte 01 =Word 10=Long 
RIM Field: 0 =Data Register to Data Register 1 =Memory to Memory 

If RIM= 0, Both Registers are Data Registers 
If RIM= 1, Both Registers are Address Registers for the Predecrement Addressing Mode 

Shift/Rotate Register 
15 14 13 12 11 10 3 2 0 

I o COUNT/REGISTER dr SIZE 

Count/Register Field: 
If l/R Field= 0, Specifies Shift Count 
If l/R Field= 1, Specifies a Data Register that Contains the Shift Count 

dr Field: 0 =Right 1 =Left 
Size Field: 00 =Byte 01 =Word 10 =Long 
l/R Field: 0 =Immediate Shift Count 1 =Register Shift Count 

l/R TYPE 

Type Field: OO=Arithmetic Shift 01 =Logical Shift 10= Rotate with Extend 11 =Rotate 

Shift/Rotate Memory 
15 14 13 12 11 10 8 4 

REGISTER 

TYPE dr 
EFFECTIVE ADDRESS 

0 
MODE 

Type Field: OO=Arithmetic Shift 01 =Logical Shift 10=Rotate with Extend 11 =Rotate 
dr Field: 0= Right 1 =Left 

REGISTER 

MOTOROLA 
3-214 

MC68030 USER'S MANUAL 



Bit Field 
15 14 13 12 

1 1 l 1 I 0 

0 REGISTER 

Type Field: 000 = BFTST 
001 =BFEXTU 
010=BFCHG 
011 =BFEXTS 

11 10 

1 

Do 

100=BFCLR 
101 = BFFFO 
110=BFSET 
111 =BFINS 

TYPE I 
OFFSET 

I EFFECTIVE ADDRESS 
1 1 

MODE 1 REGISTER 

Ow I WIDTH 

Register Field is 000 for BFTST, BFCHG, BFCLR, and BFSET, Otherwise, Register Field is Destination Register 
Do Field: 0 =Offset is Immediate 1 =Offset is in Data Register 
Ow Field: 0-Width is Immediate 1 =Width is in Data Register 

PMOVE TT Registers 
15 14 13 12 11 10 

1 1 1 1 l 0 l 0 

0 0 0 P REG 

P Reg Field: 
010 - Transparent Translation Register 0 
011 - Transparent Translation Register 1 

0 

R/W 

FD Field: O=Flush Enabled 1 =Flush Disabled 

PLO AD 
15 14 13 12 11 10 

1 1 1 1 0 0 0 

0 0 1 0 0 0 R/W 

FC Field: 
10XXX - Function Code is Specified by Bits XXX 
01000 - Function Code is in Data Register DOD 
00000 - Function Code is in SFC Register 
00001 - Function Code is in DFC Register 

PFLUSH 
15 14 13 12 11 10 

1 1 1 1 I 0 I 0 0 

0 0 

FD 0 

0 0 

0 0 

0 0 l 

0 

0 

0 

0 

0 l 
0 0 1 MODE 0 0 MASK 

Mode Field: 
001 - Flush All Entries 
100 - Flush by Function Code Only 
110 - Flush by Function Code and Effective Address 

Mask Field: Mask for function code. If mode= 001, mask must be 000. 
FC Field: 

10XXX - Function Code is Specified by Bits XXX 
01000- Function Code is in Data Register ODD 
00000 - Function Code is in SFC Register 
00001 - Function Code is in DFC Register 

MC68030 USER'S MANUAL 

0 

0 

3 

EFFECTIVE ADDRESS 

MODE 1 REGISTER 

l 0 l 0 l 0 l 0 l 0 

l 

1 

0 

EFFECTIVE ADDRESS 

MODE 1 REGISTER 

FC 

4 3 

EFFECTIVE ADDRESS 

MODE l 
FC 

REGISTER 

MOTOROLA 
3-215 



• 

PMOVE TC, SRP, and CRP Registers 
15 14 13 

1 1 1 

0 1 0 

P Reg Field: 
000 - TC Register 
010 - SRP Register 
011 - CRP Register 

12 11 10 

1 l 0 l 0 

P REG 

FD Field: 0 =Flush Enabled 1 =Flush Disabled 

PMOVE MMUSR Register 
15 14 13 12 11 10 

1 1 1 1 0 0 

0 1 1 0 0 0 

PT EST 
15 14 13 12 11 10 

1 1 1 1 I 0 I 0 

1 0 0 LEVEL 

0 

RNJ 

0 

RNJ 

0 

RNJ 

Level Field: Specifies Depth of Search in Table 
A Field: 

0 - No address Returned to Address Register 

EFFECTIVE ADDRESS 
0 0 0 

MODE l REGISTER 

FD 0 0 0 l 0 1 0 l 0 l 0 l 

EFFECTIVE ADDRESS 
0 0 0 

MODE j REGISTER 

0 0 0 0 I o 1 o l o I o I 

l I EFFECTIVE ADDRESS 
0 0 0 l MODE REGISTER 

A REG I FC 

1 - Address of Last Table Accessed Returned in Address Register Specified by Register Field 

0 

0 

Reg Field: Address register to which last table address is returned. When A field =0, this field must contain 000. 
FC Field: 

1 OXXX - Function Code is Specified by Bits XXX 
01DDD - Function Code is in Data Register DOD 
00000 - Function Code is in SFC Register 
00001 - Function Code is in DFC Register 

COPROCESSOR INSTRUCTIONS 

cpGEN 
15 14 

cpScc 
15 14 

1 1 

0 0 

MOTOROLA 
3-216 

13 

13 

1 

0 

12 11 10 

CP-ID 4' 000 
EFFECTIVE ADDRESS 

MODE REGISTER 

COPROCESSOR-DEPENDENT COMMAND WORD 

OPTIONAL EFFECTIVE ADDRESS OR COPROCESSOR-DEFINED EXTENSION WORDS 

12 11 10 

EFFECTIVE ADDRESS 
1 CP-ID 4' 000 0 0 1 l MODE REGISTER 

0 0 J 0 l 0 0 0 0 COPROCESSOR CONDITION 

OPTIONAL EFFECTIVE ADDRESS OR COPROCESSOR-DEFINED EXTENSION WORDS 

MC68030 USER'S MANUAL 



cpDBcc 
15 

1 1 0 

14 

1 

0 

cpTRAPcc 
15 14 

1 l 1 

0 l 0 

13 

1 1 

f 0 

13 

l 1 l 
J 0 J 

12 11 10 

1 1 CP-10 4' 000 I 0 I 0 I 1 I 0 I 0 I 1 l REGISTER 
0 o I o I o I 0 I 0 I 0 I COPROCESSOR CONDITION 

OPTIONAL COPROCESSOR-DEFINED EXTENSION WORDS 

DISPLACEMENT (16 BIT) 

12 11 10 

1 l CP-ID HOO l 0 _[ 0 _[ 1 _[ 1 j 1 1 1 j MOOE 

0 l 0 j 0 j 0 j 0 j 0 _[ 0 _[ COPROCESSOR CONDITION 

OPTIONAL COPROCESSOR-DEFINED EXTENSION WORDS 

OPTIONAL WORD 

OR LONG WORD OPERAND 

Mode Field: 010 =Word Operand 011 =Longword Operand 100= No Displacement 

cpBcc 
15 

1 I 
14 

1 I 
13 12 

1 I 1I 

11 10 

CP-10 4' 000 I o I 1 I SIZE I COPROCESSOR CONDITION 

OPTIONAL COPROCESSOR-DEFINED EXTENSION WORDS 

WORD OR 

LONG WORD DISPLACEMENT 

Size Field: 0 =Word Displacement 1 =Longword Displacement 

cpSAVE 
15 14 

cpRESTORE 
15 14 

13 12 

13 12 

MC68030 USER'S MANUAL 

11 

11 

10 

CP-ID 4' 000 

10 

CP-IO 4'000 

EFFECTIVE ADDRESS 

MOOE REGISTER 

EFFECTIVE ADDRESS 

MOOE REGISTER 

MOTOROLA 
3-217 



• 

MOTOROLA 
3-218 

MC68030 USER'S MANUAL 



SECTION 4 
PROCESSING STATES 

This section describes the processing states of the MC68030. It describes the functions of 
the bits in the supervisor portion of the status register, and the actions taken by the 
processor in response to exception conditions. 

Unless the processor has halted, it is always in either the normal or the exception processing 
state. Whenever the processor is executing instructions or fetching instructions or operands 
it is in the normal processing state. The processor is also in the normal processing state 
while it is storing instruction results or communicating with a coprocessor. 

NOTE 

Exception processing refers specifically to the transition from normal processing 
of a program to normal processing of system routines, interrupt routines, and 
other exception handlers. Exception processing includes all stacking operations, 
the fetch of the exception vector, and filling of the instruction pipe caused by an 
exception. It has completed when execution of the first instruction of the exception 
handler routine begins. 

The processor enters the exception processing state when an interrupt is acknowledged, 
when an instruction is traced or results in a trap, or when some other exceptional condition 
arises. Execution of certain instructions or unusual conditions occurring during the exe­
cution of any instructions can cause exceptions. External conditions, such as interrupts, 
bus errors, and some coprocessor responses also cause exceptions. Exception processing 
provides an efficient transfer of control to handlers and routines that process the exceptions. 

A catastrophic system failure occurs whenever the processor receives a bus error or gen­
erates an address error while in the exception processing state. This type of failure halts 
the processor. For example, if during the exception processing of one bus error another 
bus error occurs, the MC68030 has not completed the transition to normal processing and 
has not completed saving the internal state of the machine, so the processor assumes that 
the system is not operational and halts. Only an external reset can restart a halted processor. 
(When the processor executes a STOP instruction, it is in a special type of normal processing 
state, one without bus cycles. It is stopped, not halted.) 

4.1 PRIVILEGE LEVELS 

The processor operates at one of two levels of privilege: the user level or the supervisor 
level. The supervisor level has higher privileges than the user level. Not all processor or 
coprocessor instructions are permitted to execute in the lower-privileged user level, but 
all are available at the supervisor level. This allows a separation of supervisor and user so 
the supervisor can protect system resources from uncontrolled access. The processor uses 
the privilege level indicated by the S bit in the status register to select either the user or 

MC68030 USER'S MANUAL MOTOROLA 
4-1 



.. 

supervisor privilege level and either the user stack pointer or a supervisor stack pointer 
for stack operations. The processor identifies a bus access (supervisor or user mode) via 
the function codes so that differentiation between supervisor and user can be maintained. 
The memory management unit uses the indication of privilege level to control and translate 
memory accesses to protect supervisor code, d<tta, and resources from access by user 
programs. 

In many systems, the majority of programs execute at the user level. User programs can 
access only their own code and data areas and can be restricted from accessing other 
information. The operating system typically executes at the supervisor privilege level. It 
has access to all resources, performs the overhead tasks for the user level programs, and 
coordinates their activities. 

4.1.1 Supervisor Privilege Level 

The supervisor level is the higher privilege level. The privilege level is determined by the 
S bit of the status register; if the S bit is set, the supervisor privilege level applies, and all 
instructions are executable. The bus cycles for instructions executed at the supervisor level 
are normally classified as supervisor references, and the values of the function codes on 
FCO-FC2 refer to supervisor address spaces. 

In a multi-tasking operating system, it is more efficient to have a supervisor stack space 
associated with each user task and a separate stack space for interrupt associated tasks. 
The MC68030 provides two supervisor stacks, master and interrupt; the M bit of the status 
register selects which of the two is active. When the M bit is set to one, supervisor stack 
pointer references (either implicit or by specifying address register A7) access the master 
stack pointer, MSP. The operating system sets the MSP for each task to point to a task­
related area of supervisor data space. This separates task-related supervisor activity from 
asynchronous, 1/0-related supervisor tasks that may be only coincidental to the currently 
executing task. The master stack (MSP) can separately maintain task control information 
for each currently executing user task, and the software updates the MSP pointer when a 
task switch is performed, providing an efficient means for transferring task related stack 
items. The other supervisor stack (ISP) can be used for interrupt control information and 
workspace area as interrupt handling routines require. 

When the M bit is clear, the MC68030 is in the interrupt mode of the supervisor privilege 
level, and operation is the same as in the MC68000, MC68008, and MC6801 O supervisor 
mode. (The processor is in this mode after a reset operation.) All supervisor stack pointer 
references access the interrupt stack pointer (ISP) in this mode. 

The value of the M bit in the status register does not affect execution of privileged instruc­
tions; both master and interrupt modes are at the supervisor privilege level. Instructions 
that affect the M bit are MOVE to SR, ANDI to SR, EORI to SR, ORI to SR and RTE. Also, 
the processor automatically saves the M bit value and clears it in the SR as part of the 
exception processing for interrupts. 

All exception processing is performed at the supervisor privilege level. All bus cycles 
generated during exception processing are supervisor references, and all stack accesses 
use the active supervisor stack pointer. 

MOTOROLA 
4-2 

MC68030 USER'S MANUAL 



4.1 .2 User Privilege Level 

Trle user level is the lower privilege level. The privilege level is determined by the S bit of 
the status register; if the S bit is clear, the processor executes instructions at the user 
privilege level. 

Most instructions execute at either privilege level, but some instructions that have impor­
tant system effects are privileged and can only be executed at the supervisor level. For 
instance, user programs are not allowed to execute the STOP instruction or the RESET 
instruction. To prevent a user program from entering the supervisor privilege level, except 
in a controlled manner, instructions that can alter the S bit in the status register are 
privileged. The TRAP #n instruction provides controlled access to operating system serv­
ices for user programs. 

The bus cycles for an instruction executed at the user privilege level are classified as user 
references, and the values of the function codes on FCO-FC2 specify user address spaces. 
The memory management unit of the processor, when it is enabled, uses the value of the 
function codes to distinguish between user and supervisor activity, and to control access 
to protected portions of the address space. While the processor is at the user level, ref­
erences to the system stack pointer implicitly, or to address register seven (A7) explicitly, 
refer to the user stack pointer (USP). 

4.1.3 Changing Privilege Level 

In order to change from the user to the supervisor privilege level, one of the conditions 
that causes the processor to perform exception processing must occur. This causes a 
change from the user level to the supervisor level and can cause a change from the master 
mode to the interrupt mode. Exception processing saves the current values of the S and 
M bits of the status register (along with the rest of the status register) on the active 
supervisor stack, and then sets the S bit, forcing the processor into the supervisor privilege 
level. When the exception being processed is an interrupt and the M bit is set, the M bit 
is cleared putting the processor into the interrupt mode. Execution of instructions continues 
at the supervisor level to process the exception condition. 

To return to the user privilege level, a system routine must execute one of the following 
instructions: MOVE to SR, ANDI to SR, EORI to SR, ORI to SR, or RTE. The MOVE, ANDI, 
EORI, and ORI to SR and RTE instructions execute at the supervisor privilege level, and 
can modify the S bit of the status register. After these instructions execute, the instruction 
pipeline is flushed and is refilled from the appropriate address space. This is indicated 
externally by the assertion of the REFILL signal. 

The RTE instruction returns to the program that was executing when the exception oc­
curred. It restores the exception stack frame saved on the supervisor stack. If the frame 
on top of the stack was generated by an interrupt, trap, or instruction exception, the RTE 
instruction restores the status register and program counter to the values saved on the 
supervisor stack. The processor then continues execution at the restored program counter 
address and at the privilege level determined by the S bit of the restored status register. 
If the frame on top of the stack was generated by a bus fault (bus error or address error 
exception), the RTE instruction restores the entire saved processor state from the stack. 

MC68030 USER'S MANUAL MOTOROLA 
4-3 

.. 



4.2 ADDRESS SPACE TYPES 

The processor specifies a target address space for every bus cycle with the function code· 
signals according to the type of access required. In addition to distinguishing between 
supervisor/user and program/data, the processor can identify special processor cycles, such 
as the interrupt acknowledge cycle, and the memory management unit can control accesses 
and translate addresses appropriately. Table 4-1 lists the types of accesses defined for the 
MC68030 and the corresponding values of function codes FCO-FC2. 

Table 4-1. Address Space Encodings 

FC2 FC1 FCO Address Space 

0 0 0 (Undefined Reserved)* 

0 0 1 User Data Space 

0 1 0 User Program Space 

0 1 1 (Undefined, Reserved)* 

1 0 0 (Undefined, Reserved)* 

1 0 1 Supervisor Data Space 

1 1 0 Supervisor Program Space 

1 1 1 CPU Space 

*Address space 3 is reserved for user definition, while 0 and 4 are reserved 
for future use by Motorola. 

The memory locations of user program and data accesses are not predefined. Neither are 
the locations of supervisor data space. During reset, the first two long words beginning at 
memory location zero in the supervisor program space are used for processor initialization. 
No other memory locations are explicitly defined by the MC68030. 

A function code of $7 ([FC2:FCO] = 111) selects the CPU address space. This is a special 
address space that does not contain instructions or operands, but is reserved for special 
processor functions. The processor uses accesses in this space to communicate with ex­
ternal devices for special purposes. For example, all M68000 processors use the CPU space 
for interrupt acknowledge cycles. The MC68020 and MC68030 also generate CPU space 
accesses for breakpoint acknowledge and coprocessor operations. 

Supervisor programs can use the MOVES instruction to access all address spaces, including 
the user spaces and the CPU address space. Although the MOVES instruction can be used 
to generate CPU space cycles, this may interfere with proper system operation. Thus, the 
use of MOVES to access the CPU space should be done with caution. 

4.3 EXCEPTION PROCESSING 

An exception is defined as a special condition that pre-empts normal processing. Both 
internal and external conditions cause exceptions. External conditions that cause excep­
tions are interrupts from external devices, bus errors, coprocessor detected errors, and 
reset. Instructions, address errors, tracing, and breakpoints are internal conditions that 
cause exceptions. The TRAP, TRAPcc, TRAPV, cpTRAPcc, CHK, CHK2, RTE, and DIV instruc­
tions can all generate exceptions as part of their normal execution. In addition, illegal 
instructions, privilege violations, and coprocessor protocol violations cause exceptions. 

MOTOROLA 
4-4 

MC68030 USER'S MANUAL 



Exception processing, which is the transition from the normal processing of a program to 
the processing required for the exception condition, involves the exception vector table 
anq an exception stack frame. This section describes the vector table and a generalized 
exception stack frame. Exception processing is discussed in detail in SECTION 8 EXCEP­
TION PROCESSING. Coprocessor detected exceptions are discussed in detail in SECTION 
10 COPROCESSOR INTERFACE DESCRIPTION. 

4.3.1 Exception Vectors 

The vector base register contains the base address of the 1024-byte exception vector table, 
which consists of 256 exception vectors. Exception vectors contain the memory addresses 
of routines that begin execution at the completion of exception processing. These routines 
perform a series of operations appropriate for the corresponding exceptions. Because the 
exception vectors contain memory addresses, each consists of one long word, except for 
the reset vector. The reset vector consists of two long words: the address used to initialize 
the interrupt stack pointer and the address used to initialize the program counter. 

The address of an exception vector is derived from an 8-bit vector number and the vector 
base register (VBR). The vector numbers for some exceptions are obtained from an external 
device; others are supplied automatically by the processor. The processor multiplies the 
vector number by four to calculate the vector offset, which it adds to the VBR. The sum is 
the memory address of the vector. All exception vectors are located in supervisor data 
space, except the reset vector, which is located in supervisor program space. Only the 
initial reset vector is fixed in the processor's memory map; once initialization is complete, 
there are no fixed assignments. Since the VBR provides the base address of the vector 
table, the vector table can be located anywhere in memory; it can even be dynamically 
relocated for each task that is executed by an operating system. Details of exception 
processing are provided in SECTION 8 EXCEPTION PROCESSING, and Table 8-1 lists the 
exception vector assignments. 

4.3.2 Exception Stack Frame 

Exception processing saves the most volatile portion of the current processor context on 
the top of the supervisor stack. This context is organized in a format called the exception 
stack frame. This information always includes a copy of the status register, the program 
counter, the vector offset of the vector, and the frame format field. The frame format field 
identifies the type of stack frame. The RTE instruction uses the value in the format field to 
properly restore the information stored in the stack frame and to deallocate the stack space. 
The general form of the exception stack frame is illustrated in Figure 4-1. Refer to SECTION 
8 EXCEPTION PROCESSING for a complete list of exception stack frames. 

MC68030 USER'S MANUAL MOTOROLA 
4-5 



.. 

MOTOROLA 
4-6 

SP -
15 12 

STATUS REGISTER 

PROGRAM COUNTER 

FORMAT 1 VECTOR OFFSET 

AOOITIONAL PROCESSOR STATE INFORMATION 
12. 6, 12, OR 42 WORDS. IF NEEDED) 

Figure 4-1. General Exception Stack Frame 

MC68030 USER'S MANUAL 



SECTION 5 
SIGNAL DESCRIPTION 

This section contains brief descriptions of the input and output signals in their functional 
groups, as shown in Figure 5-1. Each signal is explained in a brief paragraph with reference 
to other sections that contain more detail about the signal and the related operations. 

NOTE 
In this section and in the remainder of the manual, assertion and negation are 
used to specify forcing a signal to a particular state. In particular, assertion and 
assert refer to a signal that is active or true; negation and negate indicate a signal 
that is inactive or false. These terms are used independently of the voltage level 
(high or low) that they represent. 

FUNCTION COOES { 

AOORESS BUS { 

OATABUS { 

TRANSFER SIZE { 

ASYNCHRONOUS 
BUS CONTROL 

"'"' '""'"' { 

A 

"4 

A 

~ 

A 

~ 

-
~ 

-
~ 

-

... 

MC68030 USER'S MANUAL 

FCO-FC2 

AO-A31 

'"\. 
00-031 -v 

SIZO 

SIZl 

ocs 
ECS MC68030 

R/W 

AMC 

iiS 
as 

OBEN 

OSACKO 

OSACKl 

-
CllN 

CIOUT 

C8REO 

CBACK 

- IPLO 

IPL! 

IPL2 

IPENO 

AVEC 

_Bli 
BG 

BG ACK 

RESET 

- HALT 

- BEAR 

STEAM 

REFILL 

STATUS 

COIS 

,._ MMUOIS 

CLK 

... Vee 

GNO 

~ 

-

-

} 
INTERRUPT 
CONTROL 

} 
BUS ARBITRATION 
CONTROL 

} 
BUS EXCEPTION 
CONTROL 

}-
SYNCHRONOUS 
BUS CONTROL 

} 
EMULATOR 
SUPPORT 

Figure 5-1. Functional Signal Groups 

MOTOROLA 
5-1 



-

5.1 SIGNAL INDEX 

The input and output signals for the MC68030 are listed in Table 5-1. Both the names ancl 
mnemonics are shown, along with brief descriptions of the signals. For more detail on 
each signal, refer to the paragraph in this section named for the signal, and the reference 
in that paragraph to a description of the related operations. 

Guaranteed timing specifications, for the signals listed in Table 5-1, can be found in SEC­
TION 13 ELECTRICAL SPECIFICATIONS. 

5.2 FUNCTION CODE SIGNALS (FCO through FC2) 

These three-state outputs identify the address space of the current bus cycle. Table' 4-1 
shows the relationships of the function code signals to the privilege levels and the address 
spaces. Refer to 4.2 ADDRESS SPACE TYPES for more information. 

5.3 ADDRESS BUS (AO through A31) 

These three-state outputs provide the address for the current bus cycle, except in the CPU 
address space. Refer to 4.2 ADDRESS SPACE TYPES for more information on the CPU 
address space. A31 is the most significant address signal. Refer to 7.1.2 Address Bus for 
information on the address bus and its relationship to bus operation. 

5.4 DATA BUS (DO through D31) 

These three-state bidirectional signals provide the general purpose data path between the 
MC68030 and all other devices. The data bus can transfer 8, 16, 24, or 32 bits of data per 
bus cycle. 031 is the most significant bit of the data bus. Refer to 7.1.4 Data Bus for more 
information on the data bus and its relationship to bus operation. 

5.5 TRANSFER SIZE SIGNALS (SIZO, SIZ1) 

These three-state outputs indicate the number of bytes remaining to be transferred for the 
current bus cycle. With AO, A1, DSACKO, DSACK1, and STERM, SIZO and SIZ1 define the 
number of bits transferred on the data bus. Refer to 7.2.1 Dynamic Bus Sizing for more 
information on the size signals and their use in dynamic bus sizing. 

5.6 BUS CONTROL SIGNALS 

The following signals control synchronous bus transfer operations for the MC68030. 

5.6.1 Operand Cycle Start (OCS) 

This output signal indicates the beginning of the first external bus cycle for an instruction 
prefetch or a data operand transfer. OCS is not asserted for subsequent cycles that are 
performed due to dynamic bus sizing or operand misalignment. Refer to 7.1.1 Bus Control 
Signals for information about the relationship of OCS to bus operation. 

MOTOROLA 
5-2 

MC68030 USER'S MANUAL 



-· Signal Name 

Function Codes 

Address Bus 

Data Bus 

Size 

Operand Cycle Start 

External Cycle Start 

Read/Write 

Read-Modify-Write Cycle 

Address Strobe 

Data Strobe 

Data Buffer Enable 

Data Transfer and 
Size Acknowledge 

Synchronous 
Termination 

Cache Inhibit In 

Cache Inhibit Out 

Cache Burst Request 

Cache Burst 
Acknowledge 

Interrupt Priority Level 

Interrupt Pending 

Autovector 

Bus Request 

Bus Grant 

Bus Grant Acknowledge 

Reset 

Halt 

Bus Error 

Cache Disable 

MMU Disable 

Pipe Refill 

Microsequencer Status 

Clock 

Power Supply 

Ground 

MC68030 USER'S MANUAL 

Table 5-1. Signal Index 

Mnemonic Function 

FCO-FC2 

AO-A31 

00-031 

SIZO/SIZl 

ocs 

ECS 

RiW 

AMC 

AS 

OS 

DBEN 

DSACKO/ 
DSACKl 

STE RM 

CllN 

CIOUT 

CBREO 

CBACK 

IPLO-IPL2 

IPEND 

AVEC 

BR 

BG 

BGACK 

RESET 

HALT 

BEAR 

CDIS 

MMUDIS 

REFILL 

STATUS 

CLK 

~ 
GND 

3-bit function code used to identify the address space of each bus cycle. 

32-bit address bus. 

32-bit data bus used to transfer 8, 16, 24, or 32 bits of data per bus cycle. 

Indicates the number of bytes remaining to be transferred for this cycle. 
These signals, together with AO and A 1, define the active sections of the 
data bus. 

Identical operation to that of ECS except that OCS is asserted only during 
the first bus cycle of an operand transfer. 

Provides an indication that a bus cycle is beginning. 

Defines the bus transfer as a processor read or write. 

Provides an indicator that the current bus cycle is part of an indivisible 
read-modify-write operation. 

Indicates that a valid address is on the bus. 

Indicates that valid data is to be placed on the data bus by an external 
device or has been placed on the data bus by the MC68030. 

Provides an enable signal for external data buffers. 

Bus response signals that indicate the requested data transfer operation 
is completed. In addition, these two lines indicate the size of the external 
bus port on a cycle-by-cycle basis and are used for asynchronous trans-
fers. 

Bus response signal that indicates a port size of 32 bits and that data may 
be latched on the next falling clock edge. 

Prevents data from being loaded into the MC68030 instruction and data 
caches. 

Reflects the Cl bit in ATC entries or TTx register; indicates that external 
caches should ignore these accesses. 

Indicates a burst request for the instruction or data cache. 

Indicates that the accessed device can operate in burst mode. 

Provides an encoded interrupt level to the processor. 

Indicates that an interrupt is pending. 

Requests an autovector during an interrupt acknowledge cycle. 

Indicates that an external device requires bus mastership. 

Indicates that an external device may assume bus mastership. 

Indicates that an external device has assumed bus mastership. 

System reset. 

Indicates that the processor should suspend bus activity. 

Indicates that an erroneous bus operation is being attempted. 

Dynamically disables the on-chip cache to assist emulator support. 

Dynamically disables the translation mechanism of the MMU. 

Indicates when the MC68030 is beginning to fill pipeline. 

Indicates the state of the microsequencer. 

Clock input to the processor. 

Power supply. 

Ground connection. 

MOTOROLA 
5-3 



-

5.6.2 External Cycle Start (ECS) 

This output signal indicates the beginning of a bus cycle of any type. Refer to 7.1.1 Bus 
Control Signals for information about the relationship of ECS to bus operation. 

5.6.3 Read/Write (R/Wl 

This three-state output signal defines the type of bus cycle. A high level indicates a read 
cycle; a low level indicates a write cycle. Refer to 7.1.1 Bus Control Signals for information 
about the relationship of R/W to bus operation. 

5.6.4 Read-Modify-Write Cycle (RMC) 

This three-state output signal identifies the current bus cycle as part of an indivisible read­
modify-write operation; it remains asserted during all bus cycles of the read-modify-write 
operation. Refer to 7.1.1 Bus Control Signals for information about the relationship of RMC 
to bus operation. 

5.6.5 Address Strobe (AS) 

This three-state output indicates that a valid address is on the address bus. The function 
code, size, and read/write signals are also valid when AS is asserted. Refer to 7.1.3 Address 
Strobe for information about the relationship of AS to bus operation. 

5.6.6 Data Strobe (OS) 

During a read cycle, this three-state output indicates that an external device should place 
valid data on the data bus. During a write cycle, the data strobe indicates that the MC68030 
has placed valid data on the bus. During two-clock synchronous write cycles, the MC68030 
does not assert DS. Refer to 7.1.5 Data Strobe for more information about the relationship 
of DS to bus operation. 

5.6.7 Data Buffer Enable (DBEN) 

This output is an enable signal for external data buffers. This signal may not be required 
in all systems. The timing of this signal may preclude its use in a system that supports 
two-clock synchronous bus cycles. Refer to 7.1.6 Data Buffer Enable for more information 
about the relationship of DBEN to bus operation. 

5.6.8 Data Transfer and Size Acknowledge (DSACKO, DSACK1) 

These inputs indicate the completion of a requested data transfer operation. In addition, 
they indicate the size of the external bus port at the completion of each cycle. These signals 
apply only to asynchronous bus cycles. Refer to 7.1.7 Bus Cycle Termination Signals for 
more information on these signals and their relationship to dynamic bus sizing. 

MOTOROLA 
5-4 

MC68030 USER'S MANUAL 



5.6.9 Synchronous Termination (STERM) 

Ibfs input is a bus handshake signal indicating that the addressed port size is 32 bits and 
that data is to be latched on the next falling clock edge for a read cycle. This signal applies 
only to synchronous operation. Refer to 7.1.7 Bus Cycle Termination Signals for more 
information about the relationship of STERM to bus operation. 

5.7 CACHE CONTROL SIGNALS 

The following signals relate to the on-chip caches. 

5.7.1 Cache Inhibit Input (CllN) 

This input signal prevents data from being loaded into the MC68030 instruction and data 
caches. It is a synchronous input signal and is interpreted on a bus-cycle-by-bus-cycle 
basis. CllN is ignored during all write cycles. Refer to 6.1 ON-CHIP CACHE ORGANIZATION 
AND OPERATION for information on the relationship of CllN to the on-chip caches. 

5.7.2 Cache Inhibit Output (CIOUT) 

This three-state output signal reflects the state of the Cl bit in the address translation cache 
entry for the referenced logical address, indicating that an external cache should ignore 
the bus transfer. When the referenced logical address is within an area specified for trans­
parent translation, the Cl bit of the appropriate transparent translation register controls the 
state of CIOUT. Refer to SECTION 9 MEMORY MANAGEMENT UNIT for more information 
about the address translation cache and transparent translation. Also, refer to SECTION 6 
ON-CHIP CACHE MEMORIES for the effect of CIOUT on the internal caches. 

5.7.3 Cache Burst Request (CBREQ) 

This three-state output signal requests a burst mode operation to fill a line in the instruction 
or data cache. Refer to 6.1.3 Cache Filling for filling information and 7.3.7 Burst Operation 
Cycles for bus cycle information pertaining to burst mode operations. 

5.7.4 Cache Burst Acknowledge (CBACK) 

This input signal indicates that the accessed device can operate in the burst mode, and 
can supply at least one more long word for the instruction or data cache. Refer to 7.3.7 
Burst Operation Cycles for information about burst mode operation. 

5.8 INTERRUPT CONTROL SIGNALS 

The following signals are the interrupt control signals for the MC68030. 

5.8.1 Interrupt Priority Level Signals 

These input signals provide an indication of an interrupt condition and the encoding of 
the interrupt level from a peripheral or external prioritizing circuitry. IPL2 is the most 

MC68030 USER'S MANUAL MOTOROLA 
5-5 

• 



• 

significant bit of the level number. For example, since the IPLn signals are active low, IPLO­
IPL2 equal to $5 corresponds to an interrupt request at interrupt level 2. Refer to 8.1.9 
ln~errupt Exceptions for information on MC68030 interrupts. '"'-' 

5.8.2 Interrupt Pending UPEND) 

This output signal indicates that an interrupt request has been recognized internally and 
exceeds the current interrupt priority mask in the status register (SR). This output is for 
use by external devices (coprocessors and other bus masters, for example) to predict 
processor operation on the following instruction boundaries. Refer to 8.1.9 Interrupts Ex­
ceptions for interrupt information. Also, refer to 7.4.1 Interrupt Acknowledge Bus Cycles 
for bus information related to interrupts. 

5.8.3 Autovector (AVEC) 

This input signal indicates that the MC68030 should generate an automatic vector during 
an interrupt acknowledge cycle. Refer to 7.4.1.2 AUTOVECTOR INTERRUPT ACKNOWL­
EDGE CYCLE for more information about automatic vectors. 

5.9 BUS ARBITRATION CONTROL SIGNALS 

The following signals are the three bus arbitration control signals used to determine which 
device in a system is the bus master. 

5.9.1 Bus Request (BR) 

This input signal indicates that an external device needs to become the bus master. This 
is typically a "wire-ORed" input (but does not need to be constructed from open-collector 
devices). Refer to 7.7 BUS ARBITRATION for more information. 

5.9.2 Bus Grant (BG) 

This output indicates that the MC68030 will release ownership of the bus master when the 
current processor bus cycle completes. Refer to 7.7.2 Bus Grant for more information. 

5.9.3 Bus Grant Acknowledge (BGACK) 

This input indicates that an external device has become the bus master. Refer to 7.7.3 Bus 
Grant Acknowledge for more information. 

5.10 BUS EXCEPTION CONTROL SIGNALS 

The following signals are the bus exception control signals for the MC68030. 

5.10.1 Reset (RESET) 

This bidirectional open-drain signal is used to initiate a system reset. An external reset 
signal resets the MC68030 as well as all external devices. A reset signal from the processor 

MOTOROLA 
5-6 

MC68030 USER'S MANUAL 



(asserted as part of the RESET instruction) resets external devices only; the internal state 
of the processor is not altered. Refer to 7.8 RESET OPERATION for a description of reset 
bus operation and 8.1.1 Reset Exception for information about the reset exception. 

5.10.2 Halt (HALT) 

The halt signal indicates that the processor should suspend bus activity or, when used 
with BERR, that the processor should retry the current cycle. Refer to 7.5 BUS EXCEPTION 
CONTROL CYCLES for a description of the effects of HALT on bus operations. 

5.10.3 Bus Error (BERRI 

The bus error signal indicates that an invalid bus operation is being attempted or, when 
used with HALT, that the processor should retry the current cycle. Refer to 7.5 BUS EX­
CEPTION CONTROL CYCLES for a description of the effects of BERR on bus operations. 

5.11 EMULATOR SUPPORT SIGNALS 

The following signals support emulation by providing a means for an emulator to disable 
the on-chip caches and memory management unit and by supplying internal status infor­
mation to an emulator. Refer to SECTION 12 APPLICATIONS INFORMATION for more 
detailed information on emulation support. 

5.11.1 Cache Disable (CDIS) 

The cache disable signal dynamically disables the on-chip caches to assist emulator sup­
port. Refer to 6.1 ON-CHIP CACHE ORGANIZATION AND OPERATION for information about 
the caches; refer to SECTION 12 APPLICATIONS INFORMATION for a description of the 
use of this signal by an emulator. CDIS does not flush the data and instruction caches; 
entries remain unaltered, and become available again when CDIS is negated. 

5.11.2 MMU Disable (MMUDIS) 

The MMU disable signal dynamically disables the translation of addresses by the MMU. 
Refer to 9.4 ADDRESS TRANSLATION CACHE for a description of address translation; refer 
to SECTION 12 APPLICATIONS INFORMATION for a description of the use of this signal 
by an emulator. The assertion of MMUDIS does not flush the address translation cache 
(ATC); ATC entries become available again when MMUDIS is negated. 

5.11.3 Pipeline Refill (REFILL) 

The pipeline refill signal indicates that the MC68030 is beginning to refill the internal 
instruction pipeline. Refer to SECTION 12 APPLICATIONS INFORMATION for a description 
of the use of this signal by an emulator. 

5.11.4 Internal Microsequencer Status (STATUS) 

The microsequencer status signal indicates the state of the internal microsequencer. The 
varying number of clocks for which this signal is asserted indicates instruction boundaries, 

MC68030 USER'S MANUAL MOTOROLA 
5-7 

• 



pending exceptions, and the halted condition. Refer to SECTION 12 APPLICATIONS IN-
~~ description of the use of this signal by an emulator. . 

• 

5.12 CLOCK (CLK) 

'-......._ ....._ 

The clock signal is the clock input to the Me68030. It is a TIL-compatible signal. Refer to 
SECTION 12 APPLICATIONS INFORMATION for suggestions on clock generation and to 
SECTION 13 ELECTRICAL SPECIFICATIONS for electrical specifications. 

5.13 POWER SUPPLY CONNECTIONS 

The Me68030 requires connection to a Vee power supply, positive with respect to ground. 
The Vee connections are grouped to supply adequate current for the various sections of 
the processor. The ground connections are similarly grouped. SECTION 14 ORDERING 
INFORMATION AND MECHANICAL DATA describes the groupings of Vee and ground 
connections, and SECTION 12 APPLICATIONS INFORMATION describes a typical power 
supply interface. 

5.14 SIGNAL SUMMARY 

Table 5-2 provides a summary of the electrical characteristics of the signals discussed in 
this section. 

MOTOROLA 
5-8 

MC68030 USER'S MANUAL 



Signal Function 

Function Codes 

Address Bus 

Data Bus 

Transfer Size 

Operand Cycle Start 

External Cycle Start 

Read/Write 

Read-Modify-Write Cycle 

Address Strobe 

Data Strobe 

Data Buffer Enable 

Data Transfer and Size Acknowledge 

Synchronous Termination 

Cache Inhibit In 

Cache Inhibit Out 

Cache Burst Request 

Cache Burst Acknowledge 

Interrupt Priority Level 

Interrupt Pending 

Autovector 

Bus Request 

Bus Grant 

Bus Grant Acknowledge 

Reset 

Halt 

Bus Error 

Cache Disable 

MMU Disable 

Pipeline Refill 

Microsequencer Status 

Clock 

Power Supply 

Ground 

MC68030 USER'S MANUAL 

Table 5-2. Signal Summary 

Signal Name Input/Output 

FCO-FC2 Output 

AO-A31 Output 

D0-031 Input/Output 

SIZO/SIZ1 Output 

ocs Output 

ECS Output 

RiW Output 

RMC Output 

AS Output 

OS Output 

DBEN Output 

DSACKO/DSACK1 Input 

STEAM Input 

CllN Input 

CIOUT Output 

CBREO Output 

CBACK Input 

IPLO-IPL2 Input 

IPEND Output 

AVEC Input 

BR Input 

BG Output 

BGACK Input 

RESET Input/Output 

HALT Input 

BEAR Input 

CDIS Input 

MMUDIS Input 

REFILL Output 

STATUS Output 

CLK Input 

Vee Input 

GND Input 

Active State 

High 

High 

High 

High 

Low 

Low 

High/Low 

Low 

Low 

Low 

Low 

Low 

Low 

Low 

Low 

Low 

Low 

Low 

Low 

Low 

Low 

Low 

Low 

Low 

Low 

Low 

Low 

Low 

Low 

Low 

-
-

-

Three-State 

Yes 

Yes 

Yes 

Yes 

No 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

-
-

-

Yes 

Yes 

-

-

No 

-
-

No 

-

No 

-
-
-
-
No 

No 

-
-

-

MOTOROLA 
5-9 



-

MOTOROLA 
5-10 

MC68030 USER'S MANUAL 



SECTION 6 
ON-CHIP CACHE MEMORIES 

The MC68030 microprocessor includes a 256-byte on-chip instruction cache and a 256-byte 
on-chip data cache that are accessed by logical (virtual) addresses. These caches improve 
performance by reducing external bus activity and increasing instruction throughput. 

Reduced external bus activity increases overall performance by increasing the availability 
of the bus for use by external devices (in systems with more than one bus master, such 
as a processor and a OMA device) without degrading the performance of the MC68030. 
An increase in instruction throughput results when instruction words and data required 
by a program are available in the on-chip caches, and the time required to access them 
on the external bus is eliminated. Additionally, instruction throughput increases when 
instruction words and data can be accessed simultaneously. 

As shown in Figure 6-1, the instruction cache and the data cache are connected to separate 
on-chip address and data buses. The address buses are combined to provide the logical 
address to the memory management unit (MMU). The MC68030 initiates an access to the 
appropriate cache for the requested instruction or data operand at the same time that it 
initiates an access for the translation of the logical address in the address translation cache 
of the MMU. When a hit occurs in the instruction or data cache and the MMU validates 
the access on a write, the information is transferred from the cache (on a read) or to the 
cache and the bus controller (on a write) appropriately. When a hit does not occur, the 
MMU translation of the address is used for an external bus cycle to obtain the instruction 
or operand. Regardless of whether or not the required operand is located in one of the 
on-chip caches, the address translation cache of the MMU performs logical-to-physical 
address translation in parallel with the cache lookup in case an external cycle is required. 

6.1 ON-CHIP CACHE ORGANIZATION AND OPERATION 

Both on-chip caches are 256-byte direct-mapped caches, each organized as 16 lines. Each 
line consists of four entries, and each entry contains four bytes. The tag field for each line 
contains a valid bit for each entry in the line; each entry is independently replaceable. 
When appropriate, the bus controller requests a burst mode operation to replace an entire 
cache line. The cache control register (CACR) is accessible by supervisor programs to 
control the operation of both caches. 

System hardware can assert the cache disable (CDIS) signal in order to disable both caches. 
The assertion of CDIS disables the caches, regardless of the state of the enable bits in 
CACR. CDIS is primarily intended for use by in-circuit emulators. 

Another input signal, cache inhibit in (CllN), inhibits caching of data reads or instruction 
prefetches on a bus-cycle by bus-cycle basis. Examples of data that should not be cached 
are data for 1/0 devices and data from memory devices that cannot supply a full port width 
of data regardless of the size of the required operand. 

MC68030 USER'S MANUAL MOTOROLA 
6-1 



9' s:: 
"'O 

d 
:::0 
0 
~ 

s: 

i 
0 
c en 
m 
::0 en 
s: 
l> z 
c 
l> .... 

ADDRESS 
BUS 

BUS CONTROL 
SIGNALS 

MICROSEOUENCER ANO CONTROL 

CONTROL 
STORE 

CONTROL 
LOGIC 

INSTRUCTION EXECUTION UNIT 

DATA 
ADDRESS 

BUS 

I 

Figure 6-1. Internal Caches and the MC68030 

CACHE 
HOLDING 
REGISTER 

ICAHR) 

INS11IU&TIUN VL--------~ 
CACHE 

DATA 
CAc;tfE 

SIZE 
MULTIPLEXER 

INTERNAL 
DATA 
BUS 

DATA 
BUS 



Subsequent paragraphs describe how CllN is used during the filling of the caches. 

An output signal, cache inhibit out (CIOUT), reflects the state of the cache inhibit (Cl) bit 
from the MMU of either the ATC entry that corresponds to a specified logical address or 
the transparent translation register that corresponds to that address. Whenever the ap­
propriate Cl bit is set for either a read or a write access and an external bus cycle is required, 
CIOUT is asserted and the instruction and data caches are ignored for the access. This 
signal can also be used by external hardware to inhibit caching in external caches. 

Whenever a read access occurs and the required instruction word or data operand is 
resident in the appropriate on-chip cache (no external bus cycle is required), the MMU is 
completely ignored, unless an invalid translation resides in the MMU at that time (see next 
two paragraphs). Therefore, the state of the corresponding Cl bits in the MMU are also 
ignored. The MMU is used to validate all accesses that require external bus cycles; an 
address translation must be available and valid, protections are checked, and the CIOUT 
signal is asserted appropriately. 

An external access is defined as "cachable" for either the instruction or data cache when 
all the following conditions apply: 

• The cache is enabled with the appropriate bit in the CACR set. 
• The CDIS signal is negated. 

• The CllN signal is negated for the access. 

• The CIOUT signal is negated for the access. 
• The MMU validates the access. 

Because both the data and instruction caches are referenced by logical addresses, they 
should be flushed during a task switch or at any time the logical to physical address 
mapping changes, including when the MMU is first enabled. In addition, if a page descriptor 
is currently marked as valid, and is later changed to the invalid type (due to a context 
switch or a page replacement operation) entries in the on-chip instruction or data cache 
corresponding to the physical page must be first cleared (invalidated). Otherwise (if on­
chip cache entries are valid for pages with descriptors in memory marked invalid), processor 
operation is unpredictable. 

Data read and write accesses to the same address should also have consistent cachability 
status to ensure that the data in the cache remains consistent with external memory. For 
example, if CIOUT is negated for read accesses within a page and the MMU configuration 
is changed so that CIOUT is subsequently asserted for write accesses within the same 
page, those write accesses do not update data in the cache and stale data may result. 
Similarly, when the MMU maps multiple logical addresses to the same physical address, 
all accesses to those logical addresses should have the same cachability status. 

6.1.1 Instruction Cache 

The instruction cache is organized with a line size of four long words, as shown in Figure 
6-2. Each of these long words is considered a separate cache entry as each has a separate 
valid bit. All four entries in a line have the same tag address. Burst filling all four long 
words can be advantageous when the time spent in filling the line is not long relative to 
the equivalent bus-cycle time for four non-burst long word accesses, because of the prob­
ability that the contents of memory adjacent to or close to a referenced operand or in­
struction is also required by subsequent accesses. Dynamic RAMs supporting fast access 

MC68030 USER'S MANUAL MOTOROLA 
6-3 



-

LONG WORD 
SELECT 

...----.--------'-Tr __ ___,1_:r_ ' 
111 I Ill 

F F F A ••• A A A A A A A A A A A A A A A A A A A A A A A A 

C C C 3 •• • 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 ACCESS ADDRESS 

2 1 0 1 ••• 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 

1 OF 16 
SELECT 

TAG 
REPLACE 

TAG VVVV 

VALID 

ENTRY HIT 

DATA TO INSTRUCTION 
CACHE HOLDING REGISTER 

COMPARATOR 
J--------+--- CACHE CONTROL LOGIC 

t----'\_; 

CACHE SIZE = 64 (LONG WORDS) 
LINE SIZE = 4 (LONG WORDS) 
SET SIZE= 1 

LINE HIT 

Figure 6-2. On-Chip Instruction Cache Organization 

modes (page, nibble, or static column) are easily employed to support the MC68030 burst 
mode. 

When enabled, the instruction cache is used to store instruction prefetches (instruction 
words and extension words) as they are requested by the CPU. Instruction prefetches are 
normally requested from sequential memory addresses except when a change of program 
flow occurs (e.g., a branch taken) or when an instruction is executed that can modify the 
Status Register, in which cases the instruction pipe is automatically flushed and refilled. 
The output signal REFILL indicates this condition. For more information on the operation 
of this signal, refer to SECTION 12 APPLICATIONS INFORMATION. 

In the instruction cache, each of the 16 lines has a tag consisting of the 24 most significant 
logical address bits, the FC2 function code bit (used to distinguish between user and 
supervisor accesses), and the four valid bits (one corresponding to each long word). Refer 
to Figure 6-2 for the instruction cache organization. Address bits A4-A7 select one of 16 
lines and its associated tag. The comparator compares the address and function code bits 
in the selected tag with address bits A8-A31 and FC2 from the internal prefetch request to 
determine if the requested word is in the cache. A cache hit occurs when there is a tag 

MOTOROLA 
6-4 

MC68030 USER'S MANUAL 



match and the corresponding valid bit (selected by A2-A3) is set. On a cache hit, the word 
selected by address bit Al is supplied to the instruction pipe. 

When the address and function code bits do not match or the requested entry is not valid, 
a miss occurs. The bus controller initiates a long word prefetch operation for the required 
instruction word and loads the cache entry, provided the entry is cachable. A burst mode 
operation may be requested to fill an entire cache line. If the function code and address 
bits match and the corresponding long word is not valid (but one or more of the other 
three valid bits for that line are set) a single entry fill operation replaces the required long 
word only, using a normal prefetch bus cycle or cycles (no burst). 

6.1.2 Data Cache 

The data cache stores data references to any address space except CPU space (FC = $7), 
including those references made with PC relative addressing modes and accesses made 
with the MOVES instruction. Operation of the data cache is similar to that of the instruction 
cache, except for the address comparison and cache filling operations. The tag of each 
line in the data cache contains function code bits FCO, FC1, and FC2 in addition to address 
bits A8-A31. The cache control circuitry selects the tag using bits A4-A7 and compares it 
to the corresponding bits of the access address to determine if a tag match has occurred. 
Address bits A2-A3 select the valid bit for the appropriate long word in the cache to 
determine if an entry hit has occurred. Misaligned data transfers may span two data cache 
entries. In this case, the processor checks for a hit one entry at a time. Therefore, it is 
possible that a portion of the access results in a hit, and a portion results in a miss. The 
hit and miss are treated independently. Figure 6-3 illustrates the organization of the data 
cache. 

The operation of the data cache differs for read and write cycles. A data read cycle operates 
exactly like an instruction cache read cycle; when a miss occurs, an external cycle is initiated 
to obtain the operand from memory, and the data is loaded into the cache if the access is 
cachable. In the case of a misaligned operand that spans two cache entries, two long words 
are required from memory. Burst mode operation may also be initiated to fill an entire line 
of the data cache. Read accesses from the CPU address space and address translation table 
search accesses are not stored in the data cache. 

The data cache on the MC68030 is a write-through cache. When a hit occurs on a write 
cycle, the data is written both to the cache and to external memory (provided the MMU 
validates the access), regardless of the operand size, and even if the cache is frozen. If the 
MMU determines that the access is invalid, the write is aborted, the corresponding entry 
is invalidated, and a bus error exception is taken. Since the write to the cache completes 
before the write to external memory, the cache contains the new value even if the external 
write terminates in a bus error. The value in the data cache might be used by another 
instruction before the external write cycle has completed, although this should not have 
any adverse consequences. Refer to 7.6 BUS SYNCHRONIZATION for the details of bus 
synchronization. 

6.1.2.1 WRITE ALLOCATION. The supervisor program can configure the data cache for 
either of two types of allocation for data cache entries that miss on write cycles. The state 
of the write allocation (WA) bit in the cache control register specifies either "no write 
allocation" or "write allocation" with partial validation of the data entries in the cache on 
writes. 

MC68030 USER'S MANUAL MOTOROLA 
6-5 

• 



.. 

LONG WORD 
SELECT 

~--------'~~G-------~~~ 
F F F A ••• A A A A A A A A A A A A A A A A A A A A A A A A 

C C C 3 •. • 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 ACCESS AOORESS 

2 1 0 1 ••• 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 

1 OF 16 
SELECT 

TAG 
REPLACE 

TAG VVVV 

VALID 

ENTRY HIT 

DATA TO 
EXECUTION UNIT 

COMPARATOR t-----L-.J"--------1~ CACHE CONTROL LOGIC 

CACHE SIZE = 64 (LONG WORDS) 
LINE SIZE = 4 (LONG WORDS) 
SET SIZE= 1 

LINE HIT 

Figure 6-3. On-Chip Data Cache Organization 

When "no write allocation" is selected (WA=O), write cycles that miss do not alter the 
data cache contents. In this mode, the processor does not replace entries in the cache 
during write operations. The cache is updated only during a write hit. 

When "write allocation" is selected (WA= 1 ), the processor always updates the data cache 
on cachable write cycles, but only validates an updated entry that hits, or an entry that is 
updated with long-word data that is long-word aligned. When a tag miss occurs on a write 
of long-word data that is long-word aligned, the corresponding tag is replaced, and only 
the long word being written is marked as valid. The other three entries in the cache line 
are invalidated when a tag miss occurs on a misaligned long-word write or on a byte or 
word write, the data is not written in the cache, the tag is unaltered, and the valid bit(s) 
are cleared. Thus an aligned long word data write may replace a previously valid entry 
whereas a misaligned data write or a write of data that is not long word may invalidate a 
previously valid entry or entries. 

Write allocation eliminates stale data that may reside in the cache because of either of two 
unique situations: multiple mapping of two or more logical addresses to one physical 
address within the same task, or allowing the same physical location to be accessed by 

MOTOROLA 
6-6 

MC68030 USER'S MANUAL 



both supervisor and user mode cycles. Stale data conditions can arise when operating in 
the "no write allocate" mode, and all the following conditions are satisfied: 

• Multiple mapping (object aliasing) is allowed by the operating system. 

• A read cycle loads a value for an "aliased" physical address into the data cache. 

• A write cycle occurs, referencing the same aliased physical object as above but using 
a different logical address causing a cache miss and no update to the cache (has 
the same page offset). 

• The physical object is then read using the first alias, which provides stale data from 
the cache. 

In this case, the data in the cache no longer matches that in physical memory and is stale. 
Since the write-allocation mode updates the cache during write cycles, the data in the 
cache remains consistent with physical memory. Note that when CIOUT is asserted, the 
data cache is completely ignored, even on write cycles operating in the write-allocation 
mode. Also note that since the CllN signal is ignored on write cycles, cache entries may 
be created for non-cachable data (when CllN is asserted on a write) when operating in the 
write-allocate mode. Figure 6-4 shows the manner in which each mode operates in five 
different situations. 

TAG' 
I 

LOGICAL ADDRESS = FC2-FCO, A31-A8. A 7-A4. A3-A2 

LINE 
SELECT 

($5) 

ENTRY SELECT 

USER DATA. $000010 b0-b3, VO=l b4-b7, Vl=O 

TAG 

NO WRITE ALLOCATE 

EXAMPLE 1: 
USER WORD WRITE OF b2'-b3' TO $00001052 A) START EXTERNAL CYCLE 

(CACHE HIT. ALWAYS UPDATE CACHE AND MEMORY) 8) b2-b3..,_b2'-b3' 

EXAMPLE 2: 
USER LONG WORD WRITE OF b6'-b9' TO $00001056 A) START EXTERNAL CYCLE 

(TAG MATCH, LONG WORD DATA, MISALIGNED. 8) b8-b9'4- b8'-b9' 
b6-b7 RESULT IN A CACHE MISS. 
b8-b9 RESULT IN A CACHE HIT) 

EXAMPLE 3: 
USER LONG WORD WRITE OF b4'-b7' TO $00001054 A) START EXTERNAL CYCLE 

(TAG MATCH. CACHE MISS. LONG WORD DATA. 
LONG WORD ALIGNED) 

EXAMPLE 4: 
USER LONG WORD WRITE OF b4'-b7' TO $00002054 A) START EXTERNAL CYCLE 

(NO TAG MATCH, LONG WORD DATA. LONG WORD ALIGNED) 

EXAMPLE 5: 
USER LONG WORD WRITE OF b6'-b9' TO $00002056 

(NO TAG MATCH. LONG WORD DATA. MISALIGNED) 
A) START EXTERNAL CYCLE 

b8-bB. V2=1 bC-bF, V3=1 

WRITE ALLOCATE 

A) START EXTERNAL CYCLE 
8) b2-b3- b2'-b3' 

A) START EXTERNAL CYCLE 
8) b8-b9'4- b8'-b9' 

A) START EXTERNAL CYCLE 
Bi b4-b7'4-b4'-b7' 
Ci Vl.,_1 

A) START EXTERNAL CYCLE 
8) TAG-TAG' 
Cl b4-b7'4- b4'-b7' 
0) V0-4-0 

Vl-4-1 
V2'4-0 
V3-4-0 

A) START EXTERNAL CYCLE 
B) V2'4-0 

Figure 6-4. No-Write-Allocate and Write-Allocte Mode Examples 

MC68030 USER'S MANUAL MOTOROLA 
6-7 



-

6.1.2.2 READ-MODIFY-WRITE ACCESSES. The read portion of a read-modify-write cycle 
is always forced to miss in the data cache. However, if the system allows internal caching 
of read-modify-write cycle operands (CIOUT and CllN both negated), the processor either 
uses the data read from memory to update a matching entry in the data cache or creates 
a new entry with the read data in the case of no matching entry. The write portion of a 
read-modify-write operation also updates a matching entry in the data cache. In the case 
of a cache miss on the write, the allocation of a new cache entry for the data being written 
is controlled by the WA bit. Table search accesses, however, are completely ignored by 
the data cache; it is never updated for a table search access. 

6.1.3 Cache Filling 

The bus controller can load either cache in either of two ways: 
• Single entry mode 
• Burst fill mode 

In the single entry mode, the bus controller loads a single long-word entry of a cache line. 
In the burst fill mode, an entire line (four long words) can be filled. Refer to SECTION 7 
BUS OPERATION for detailed information about the bus cycles required for both modes. 

6.1.3.1 SINGLE ENTRY MODE. When a cachable access is initiated and a burst mode 
operation is not requested by the MC68030 or is not supported by external hardware, the 
bus controller transfers a single long word for the corresponding cache entry. An entire 
long word is required. If the port size of the responding device is smaller than 32 bits, the 
MC68030 executes all bus cycles necessary to fill the long word. 

When a device cannot supply its entire port width of data regardless of the size of the 
transfer, the responding device must assert the cache inhibit input (CllN) signal consistently. 
For example, a 32-bit port must always supply 32 bits, even for 8- and 16-bit transfers; a 
16-bit port must supply 16 bits, even for 8-bit transfers. The MC68030 assumes that a 32-
bit termination signal for the bus cycle indicates availability of 32 valid data bits, even if 
only 16 or 8 bits are requested. Similarly, the processor assumes that a 16-bit termination 
signal indicates that all 16 bits are valid. If the device cannot supply its full port width of 
data, it must assert CITN for all bus cycles corresponding to a cache entry. 

When a cachable read cycle provides data with both CllN and BERR negated, the MC68030 
attempts to fill the cache entry. Figure 6-5 shows the organization of a line of data in the 
caches. The notation bO, b1, b2, and so forth identifies the bytes within the line. For each 
entry in the line a valid bit in the associated tag corresponds to a long word entry to be 
loaded. Since a single valid bit applies to an entire long word, a single entry mode operation 
must provide a full 32 bits of data. Ports less than 32 bits wide require several read cycles 
for each entry. 

Figure 6-5 shows an example of a byte data operand read cycle starting at byte address 
$03 from an 8-bit port. Provided the data item is cachable, this operation results in four 
bus cycles. The first cycle requested by the MC68030 reads a byte from address $03. The 
8-bit DSACKx response causes the MC68030 to fetch the remainder of the long word starting 
at address $00. The bytes are latched in the following order: b3, bO, b1, and b2. Note that 
during cache loading operations, devices must indicate the same port size consistently 
throughout all cycles for that long word entry in the cache. 

Figure 6-6 shows the access of a byte data operand from a 16-bit port. This operation 
requires two read cycles. The first cycle requests the byte at address $03. If the device 

MOTOROLA 
6-8 

MC68030 USER'S MANUAL 



$00 $04 $08 soc 

TAG VO-V3 

CYCLE SIZE AOORESS COMMENT 

BYTE $03 - THIS IS THE REOUESTEO OPERANO 

3-BYTE $00 - NEXT BYTE FOR COMPLETING CACHE ENTRY 

WORO $01 - NEXT BYTE FOR COMPLETING CACHE ENTRY 

4 BYTE $02 - LAST BYTE TO COMPLETE THE LONG WORO 

Figure 6-5. Single Entry Mode Operation - 8-Bit Port 

$00 $04 $08 soc 

TAG VO-V3 

CYCLE SIZE ADDRESS COMMENT 

BYTE $03 - INCLUDES THE REOUESTEO OPERAND AND THE PREVIOUS BYTE 

WORD $00 - THE REMAINING WORD FOR THE LONG WORD CACHE ENTRY 

Figure 6-6. Single Entry Mode Operation - 16-Bit Port 

responds with a 16-bit DSACKx encoding, the word at address $02 (including the requested 
byte) is accepted by the MC68030. The second cycle requests the word at address $00. 
Since the device again responds with a 16-bit DSACKx encoding, the remaining two bytes 
of the long word are latched, and the cache entry is filled. 

With a 32-bit port, the same operation is shown in Figure 6-7. Only one read cycle is 
required. All four bytes (including the requested byte) are latched during the cycle. 

If a requested access is misaligned and spans two cache entries, the bus controller attempts 
to fill both associated long word cache entries. An example of this is an operand request 
for a long word on an odd-word boundary. The MC68030 first fetches the initial byte(s) of 
the operand (residing in the first long word) and then requests the remaining bytes to fill 
that cache entry (if the port size is less than 32 bits) before it requests the remainder of 
the operand and corresponding long word to fill the second cache entry. If the port size is 
32 bits, the processor performs two accesses, one for each cache entry. 

Figure 6-8 shows a misaligned access of a long word at address $06 from an 8-bit port 
requiring eight bus cycles to complete. Reading this long-word operand requires eight 

MC68030 USER'S MANUAL MOTOROLA 
6-9 

.. 



• 

soo $04 $08 $0C 

TAG VO-V3 I bO I b I I b2 I b3 I I I I I I I I I I I I I I I I 
CYCLE SIZE ADDRESS COMMENT 

BYTE $03 I bD I bl I b2 B - THE ENTIRE LONG WORD MUST BE VALID 

Figure 6-7. Single Entry Mode Operation - 32-Bit Port 

read cycles, since accesses to all eight addresses return 8-bit port-size encodings. These 
cycles fetch the two cache entries that the requested long word spans. The first cycle 
requests a long word at address $06, and accepts the first requested byte (b6). The sub­
sequent transfers of the first long word are performed in the following order: b7, b4, b5. 
The remaining four read cycles transfer the four bytes of the second cache entry. The 
sequence of access for the entire operation is b6, b7, b4, b5, b8, b9, bA, and bB . 

$00 $04 $08 $0C 

TAG VO-V3 I I I I I I I b4 I b5 I b6 I b 1 I I b8 I b9 I bA I bB I I I I I I 
CYCLE SIZE ADDRESS COMMENT 

LONG WORD $06 ED rn - FIRST BYTE OF OPERAND LATCHED 

3-BYTE $07 B rn - SECOND BYTE OF OPERAND 

WORD $04 ED - TO Fill THE CACHE ENTRY AT $04 

4 BYTE $05 B - REMAINDER OF CACHE ENTRY AT $04 

WORD $08 ED - THIRD BYTE OF OPERAND 

BYTE $09 El - LAST BYTE DF OPERAND 

WORO $DA ED - TO Fill CACHE ENTRY AT $08 

BYTE $OB B - REMAINDER OF ENTRY AT $08 

Figure 6-8. Single Entry Mode Operation - Misaligned Long Word and 8-Bit Port 

MOTOROLA 
6-10 

MC68030 USER'S MANUAL 



The next example, shown in Figure 6-9, is a read of a misaligned long word operand from 
devices that return 16-bit DSACKx encodings. The processor accepts the first portion of 
the operand, the word from address $06, and requests a word from address $04 to fill the 
cache entry. Next, the processor reads the word at address $08, the second portion of the 
operand, and stores it in the cache also. Finally, the processor accesses the word at $0A 
to fill the second long word cache entry. 

TAG VO·V3 I I 
CYCLE SIZE ADDRESS 

LONG WORD $06 

WORD $04 

WORD $08 

4 WORD SOA 

$00 $04 SOB $0C 

I I I I 1 b4 I b5 I b6 I b 1 I I bB I b9 I bA I bB I I I I I I 
CD MM ENT 

EB []] - FIRST WORD OF OPERAND LATCHED 

EB - TD Fill THE CACHE ENTRY AT $04 

EE - SECOND WORD OF OPERAND 

EB -TD Fill ENTRY AT$08 

Figure 6-9. Single Entry Mode Operation -
Misaligned Long Word and 16-Bit Port 

Two read cycles are required for a misaligned long-word operand transfer from devices 
that return 32-bit DSACKx encodings. As shown in Figure 6-10, the first read cycle requests 
the long word at address $06 and latches the long word at address $04. The second read 
cycle requests and latches the long word corresponding to the second cache entry, at 
address $08. Two read cycles are also required if STERM is used to indicate a 32-bit port 
instead of the 32-bit DSACKx encoding. 

If all bytes of a long word are cachable, CllN must be negated for all bus cycles required 
to fill the entry. If any byte is not cachable, CllN must be asserted for all corresponding 

TAG VO·V3 I 
CYCLE SIZE ADDRESS 

LONG WORD $06 

2 LONG WORD $08 

$00 $04 $08 

I I I I I I b4 I b5 I b6 I b 1 I I b8 I b9 I bA I bB I 

I b4 I b5 I b6 I b7 I []] 

I 
$0C 

I I I I 
COMMENT 

- FIRST WORD OF OPERAND PLUS 
REST OF ENTRY AT $04 

- SECOND WORD OF OPERAND PLUS 
REST OF ENTRY AT $08 

Figure 6-10. Single Entry Mode Operation -
Misaligned Long Word and 32-Bit DSACKx Port 

MC68030 USER'S MANUAL MOTOROLA 
6-11 



-

bus cycles. The assertion of the CllN signal prevents the caches from being updated during 
read cycles. Write cycles (including the write portion of a read-modify-write cycle) ignore 
the assertion of the CllN signal and may cause the data cache to be altered, depending on 
the state of the cache (whether or not the write cycle hits), the state of the WA bit in the 
CACR, and the conditions indicated by the MMU. 

The occurrence of a bus error while attempting to load a cache entry aborts the entry fill 
operation, but does not necessarily cause a bus error exception. If the bus error occurs on 
a read cycle for a portion of the required operand (not the remaining bytes of the cache 
entry) to be loaded into the data cache, the processor immediately takes a bus error 
exception. If the read cyele in error is made only to fill the data cache (the data is not part 
of the target operand), no exception occurs, but the corresponding entry is marked invalid. 
For the instruction cache, the processor marks the entry as invalid, but only takes an 
exception if the execution unit attempts to use the instruction word(s). 

6.1.3.2 BURST MODE FILLING. Burst mode filling is enabled by bits in the cache control 
register. The data burst enable bit must be set to enable burst filling of the data cache. 
Similarly, the instruction burst enable bit must be setto enable burst filling of the instruction 
cache. When burst filling is enabled, and the corresponding cache is enabled, the bus 
controller requests a burst mode fill operation in either of these cases: 

• A read cycle for either the instruction or data cache misses due to the indexed tag 
not matching 

• A read cycle tag matches but all long words in the line are invalid 

The bus controller requests a burst mode fill operation by asserting the cache burst request 
signal (CBREQ). The responding device may sequentially supply one to four long words 
of cachable data, or it may assert the cache inhibit input signal (CllN) when the data in a 
long word is not cachable. If the responding device does not support the burst mode and 
it terminates cycles with STEAM, it should not acknowledge the request with the assertion 
of the cache burst acknowledge (CBACK) signal. The MC68030 ignores the assertion of 
CBACK during cycles terminated with DSACKx. 

The cache burst request signal (CBREO) requests burst mode operation from the referenced 
external device. To operate in the burst mode, the device or external hardware must be 
able to increment the low order address bits if required, and the current cycle must be a 
32-bit synchronous transfer (STEAM must be asserted) as described in SECTION 7 BUS 
OPERATION. The device must also assert CBACK (at the same time as STEAM) at the end 
of the cycle in which the MC68030 asserts CBAEQ. CBACK causes the processor to continue 
driving the address and bus control signals and to latch a new data value for the next 
cache entry at the completion of each subsequent cycle (as defined by STEAM), for a total 
of up to four cycles (until four long words have been read). 

When a cache burst is initiated, the first cycle attempts to load the cache entry correspond­
ing to the instruction word or data item explicitly requested by the execution unit. The 
subsequent cycles are for the subsequent entries in the cache line. In the case of a misa­
ligned transfer when the operand spans two cache entries within a cache line, the first 
cycle corresponds to the cache entry containing the portion of the operand at the lower 
address. 

Figure 6-11 illustrates the four cycles of a burst operation and shows that the second, third, 
and fourth cycles are run in burst mode. A distinction is made between the first cycle of 

MOTOROLA 
6-12 

MC68030 USER'S MANUAL 



a burst operation and the subsequent cycles because the first cycle is requested by the 
microsequencer and the burst fill cycles are requested by the bus controller. Therefore, 
when data from the first cycle is returned, it is immediately available for the execution unit 
(EU). However, data from the burst fill cycles is not available to the EU until the burst 
operation is complete. Since the microsequencer makes two separate requests for misa­
ligned data operands, only the first portion of the misaligned operand returned during a 
burst operation is available to the EU after the first cycle is complete. The microsequencer 
must wait for the burst operation to complete before requesting the second portion of the 
operand. Normally, the request for the second portion results in a data cache hit unless 
the second cycle of the burst operation terminates abnormally. 

1
•1---------------- BURSTOPERATION---------------· 1 

CYCLE I CYCLE 2 CYCLE 3 CYCLE 4 

FIRST ACCESS Of BURST OPERATION 
REOUIREO OPERAND OR PREFETCH 

BURST fill CYCLE BURST fill CYCLE BURST f ill CYCLE 

BURST MOOE REOUESTEO ANO I 
ACKNOWLEOGEO --+- BURST MOOE BEGINS HERE 

Figure 6-11. Burst Operation Cycles and Burst Mode 

The bursting mechanism allows addresses to wrap around so that the entire four long 
words in the cache line can be filled in a single burst operation, regardless of the initial 
address and operand alignment. Depending on the structure of the external memory sys­
tem, address bits A2 and A3 may have to be incremented externally to select the long 
words in the proper order for loading into the cache. The MC68030 holds the entire address 
bus constant for the duration of the burst cycle. Figure 6-12 shows an example of this 
address wrap-around. The initial cycle is a long word access from address $6. Because the 
responding device returns CBACK and STERM (signaling a 32-bit port), the entire long 
word at base address $04 is transferred . Since the initial address is $06 when CBREQ is 
asserted, the next entry to be burst filled into the cache should correspond to address $08, 
then $0C, and last, $00. This addressing is compatible with existing nibble-mode dynamic 
RAMs, and can be supported by page and static column modes with an external modulo 
4 counter for A2 and A3. 

The MC68030 does not assert CBREQ during the first portion of a misaligned access if the 
remainder of the access does not correspond to the same cache line. Figure 6-13 shows 

soo 

FINAL CACHE ENTRY 
TO BE FILLED 

S04 SOB soc 

FIRST LONG WOAD SECOND CACHE ENTRY THIRD CACHE ENTRY 
ACCESS - INCLUDES TO BE FILLED TO BE FILLED 

FIRST PART OF 
OPERAND REQUIRED 

Figure 6-12. Burst Filling Wrap-Around Example 

MC68030 USER'S MANUAL MOTOROLA 
6-13 

.. 



• 

$00 $04 $08 $0C 

TAG VO-VJ I I I I I I I I I I I I I I I I I bC I bD I bE 0 

$10 $14 $18 

I I 

FIRST LONG WORD CACHEO · 
ND BURST REQUEST 

$1C 

TAG VO·V3 blO bll bl2 bl3 I I I I I I I I I I I I I I I 
SECOND CYCLE • 

BURST REQUESTED 
THE REMAINING CACHE ENTRIES FDR SECOND BLOCK ARE BURSTED 

Figure 6-13. Deferred Burst-Filling Example 

an example in which the first portion of a misaligned access is at address $OF. With a 32-
bit port, the first access corresponds to the cache entry at address $0C, which is filled using 
a single-entry load operation. The second access, at address $10 corresponding to the 
second cache line, requests a burst fill and the processor asserts CBREQ. During this burst 
operation, long words $10, $14, $18, and $1C are all filled, and in that order. 

The processor does not assert CBREQ if any of the following conditions exists: 

• The appropriate cache is not enabled 

• Burst filling for the cache is not enabled 

• The cache freeze bit for the appropriate cache is set 

• The current operation is the read portion of a read-modify-write operation 

• The memory management unit (MMU) has inhibited caching for the current page 

• The cycle is for the first access of an operand that spans two cache lines (crosses 
a modulo 16 boundary) 

Additionally, the assertion of CllN and BERR, and the premature negation of CBACK affect 
burst operation as described in the following paragraphs. 

The assertion of CllN during the first cycle of a burst operation causes the data to be latched 
by the processor and if the requested operand is aligned (the entire operand is latched in 
the first cycle), the data is passed on to the instruction pipe or execution unit. However, 
the data is not loaded into its corresponding cache. In addition, the MC68030 negates 
CBREQ, and the burst operation is aborted. If a portion of the requested operand remains 
to be read (due to misalignment), a second read cycle is initiated at the appropriate address 
with CBREQ negated. 

The assertion of CllN during the second, third, or fourth cycle of a burst operation prevents 
the data during that cycle from being loaded into the appropriate cache and causes CBREQ 
to negate, aborting the burst operation. However, if the data for the cycle contains part of 
the requested operand, the execution unit uses that data. 

The premature negation of the CBACK signal during the burst operation causes the current 
cycle to complete normally, loading the data successfully transferred into the appropriate 
cache. However, the burst operation aborts and CBREQ negates. 

MOTOROLA 
6-14 

MC68030 USER'S MANUAL 



A bus error occurring during a burst operation also causes the burst operation to abort. If 
the bus error occurs during the first cycle of a burst (i.e., before burst mode is entered), 
the data read from the bus is ignored and the entire associated cache line is marked 
"invalid". If the access is a data cycle, exception processing proceeds immediately. If the 
cycle is for an instruction fetch, a bus error exception is made pending. This bus error is 
processed only if the execution unit attempts to use either instruction word. Refer to 11.2.2 
Instruction Pipe for more information about pipeline operation. 

For either cache, when a bus error occurs after the burst mode has been entered (that is, 
on the second cycle or later), the cache entry corresponding to that cycle is marked invalid 
but the processor does not take an exception (the microsequencer has not yet requested 
the data). In the case of an instruction cache burst, the data from the aborted cycle is 
completely ignored. Pending instruction prefetches are still pending and are subsequently 
run by the processor. If the second cycle is for a portion of a misaligned data operand 
fetch and a bus error occurs, the processor terminates the burst operation and negates 
CBREQ. Once the burst terminates, the microsequencer requests a read cycle for the second 
portion. Since the burst terminated abnormally for the second cycle of the burst, the data 
cache results in a miss, and a second external cycle is required. If BERR is again asserted, 
the MC68030 then takes an exception. 

On the initial access of a burst operation, a "retry" (indicated by the assertion of BERR 
and HALT) causes the processor to retry the bus cycle and assert CBREQ again. However, 
signaling a retry with simultaneous BERR and HALT during the second, third, or fourth 
cycle of a burst operation does not cause a retry operation, even if the requested operand 
is misaligned. Assertion of BERR and HALT during burst fill cycles of a burst operation 
causes independent bus error and halt operations. The processor remains halted until 
HALT is negated, and then handles the bus error as described in the previous paragraphs. 

6.2 CACHE RESET 

When a hardware reset of the processor occurs, all valid bits of both caches are cleared. 
The cache enable bits, burst enable bits, and the freeze bits in the cache control register 
(CACR) for both caches (refer to Figure 6-14) are also cleared, effectively disabling both 
caches. The WA bit in the CACR is also cleared. 

31 14 13 8 4 

o o o o o o o o o o o o o o o o o o I WA I DBE I CD I CED I FD I ED I o I o I o I 1BE I c1 I CEI I Fl I El I 
WA = Write Allocate 
DBE = Data Burst Enable 

CD = Clear Data Cache 
CED = Clear Entry in Data Cache 

FD = Freeze Data Cache 
ED = Enable Data Cache 

IBE = Instruction Burst Enable 
Cl = Clear Instruction Cache 

CEI = Clear Entry in Instruction Cache 
Fl = Freeze Instruction Cache 
El = Enable Instruction Cache 

MC68030 USER'S MANUAL 

Figure 6-14. Cache Control Register 

MOTOROLA 
6-15 

• 



.. 

6.3 CACHE CONTROL 

Only the MC68030 cache control circuitry can directly access the cache arrays, but the 
supervisor program can set bits in the CACR to exercise control over cache operations. 
The supervisor also has access to the cache address register (CAAR), which contains the 
address for a cache entry to be cleared. 

6.3.1 Cache Control Register 

The cache control register (CACR), shown in Figure 6-14, is a 32-bit register that can be 
written or read by the MOVEC instruction or indirectly modified by a reset. Five of the bits 
(4-0) control the instruction cache; six other bits (13-8) control the data cache. Each'cache 
is controlled independently of the other, although a similar operation can be performed 
for both caches by a single MOVEC instruction. For example, loading a long word in which 
bits 3 and 11 are set into the CACR clears both caches. Bits 31-14 and 7-5 are reserved for 
Motorola definition. They are currently read as zeros and are ignored when written. For 
future compatibility, writes should not set these bits . 

6.3.1.1 WRITE ALLOCATE. Bit 13, the WA bit, is set to select the write-allocate mode (refer 
to 6.1.2.1 WRITE ALLOCATION) for write cycles. Clearing this bit selects the no write-allocate 
mode. A reset operation clears this bit. The supervisor should set this bit when it shares 
data with the user task, or when any task maps multiple logical addresses to one physical 
address. If the data cache is disabled or frozen, the WA bit is ignored. 

6.3.1.2 DATA BURST ENABLE. Bit 12, the DBE bit, is set to enable burst filling of the data 
cache. Operating systems and other software set this bit when burst filling of the data 
cache is desired. A reset operation clears the DBE bit. 

6.3.1.3 CLEAR DATA CACHE. Bit 11, the CD bit, is set to clear all entries in the data cache. 
Operating systems and other software set this bit to clear data from the cache prior to a 
context switch. The processor clears all valid bits in the data cache at the time a MOVEC 
instruction loads a one into the CD bit of the CACR. The CD bit is always read as a zero. 

6.3.1.4 CLEAR ENTRY IN DATA CACHE. Bit 10, the CED bit, is set to clear an entry in the 
data cache. The index field of the cache address register (CAAR) shown in Figure 6-15, 
corresponding to the index and long word select portion of an address, specifies the entry 
to be cleared. The processor clears only the specified long word by clearing the valid bit 
for the entry at the time a MOVEC instruction loads a one into the CED bit of the CACR, 
regardless of the states of the ED and FD bits. The CED bit is always read as a zero. 

6.3.1.5 FREEZE DATA CACHE. Bit 9, the FD bit, is set to freeze the data cache. When the 
FD bit is set, and a miss occurs during a read or write of the data cache, the indexed entry 
is not replaced. However, write cycles that hit in the data cache cause the entry to be 
updated even when the cache is frozen. When the FD bit is clear, a miss in the data cache 
during a read cycle causes the entry (or line) to be filled, and the filling of entries on writes 
that miss are then controlled by the WA bit. A reset operation clears the FD bit. 

MOTOROLA 
6-16 

MC68030 USER'S MANUAL 



6.3.1.6 ENABLE DATA CACHE. Bit 8, the ED bit, is set to enable the data cache. When it 
is cleared, the data cache is disabled. A reset operation clears the ED bit. The supervisor 
normally enables the data cache, but it can clear ED for system debugging or emulation, 
as required. Disabling the data cache does not flush the entries. If it is enabled again, the 
previously valid entries remain valid, and can be used. 

6.3.1.7 INSTRUCTION BURST ENABLE. Bit 4, the IBE bit, is set to enable burst filling of 
the instruction cache. Operating systems and other software set this bit when burst filling 
of the instruction cache is desired. A reset operation clears the IBE bit. 

6.3.1.8 CLEAR INSTRUCTION CACHE. Bit 3, the Cl bit, is set to clear all entries in the 
instruction cache. Operating systems and other software set this bit to clear instructions 
from the cache prior to a context switch. The processor clears all valid bits in the instruction 
cache at the time a MOVEC instruction loads a one into the Cl bit of the CACR. The Cl bit 
is always read as a zero. 

6.3.1.9 CLEAR ENTRY IN INSTRUCTION CACHE. Bit 2, the CEI bit, is set to clear an entry 
in the instruction cache. The index field of the cache address register (CAAR) shown in 
Figure 6-15, corresponding to the index and long word select portion of an address, specifies 
the entry to be cleared. The processor clears only the specified long word by clearing the 
valid bit for the entry at the time a MOVEC instruction loads a one into the CEI bit of the 
CACR, regardless of the states of the El and Fl bits. The CEI bit is always read as a zero. 

6.3.1.10 FREEZE INSTRUCTION CACHE. Bit 1, the Fl bit, is set to freeze the instruction 
cache. When the Fl bit is set, and a miss occurs in the instruction cache, the entry (or line) 
is not replaced. When the Fl bit is cleared to zero, a miss in the instruction cache causes 
the entry (or line) to be filled. A reset operation clears the Fl bit. 

6.3.1.11 ENABLE INSTRUCTION CACHE. Bit 0, the El bit, is set to enable the instruction 
cache. When it is cleared, the instruction cache is disabled. A reset operation clears the El 
bit. The supervisor normally enables the instruction cache, but it can clear El for system 
debugging or emulation, as required. Disabling the instruction cache does not flush the 
entries. If it is enabled again, the previously valid entries remain valid, and may be used. 

6.3.2 Cache Address Register 

The cache address register (CAAR) is a 32-bit register, shown in Figure 6-15. The index 
field (bits 7-2) contains the address for the "clear cache entry" operations. The bits of this 
field correspond to bits 7-2 of addresses; they specify the index and a long word of a cache 
line. Although only the index field is used currently, all 32 bits of the register are imple­
mented and are reserved for use by Motorola. 

31 8 7 

CACHE FUNCTION ADDRESS 

Figure 6-15. Cache Address Register 

MC68030 USER'S MANUAL 

INDEX 

2 1 

MOTOROLA 
6-17 



• 

MOTOROLA 
6-18 

MC68030 USER'S MANUAL 



SECTION 7 
BUS OPERATION 

This section provides a functional description of the bus, the signals that control it, and 
the bus cycles provided for data transfer operations. It also describes the error and halt 
conditions, bus arbitration, and the reset operation. Operation of the bus is the same 
whether the processor or an external device is the bus master; the names and descriptions 
of bus cycles are from the point of view of the bus master. For exact timing specifications, 
refer to SECTION 13 ELECTRICAL CHARACTERISTICS. 

The MC68030 architecture supports byte, word, and long-word operands allowing access 
to 8-, 16-, and 32-bit data ports through the use of asynchronous cycles controlled by the 
data transfer and size acknowledge inputs (DSACKO and DSACK1 ). 

Synchronous bus cycles controlled by the synchronous termination signal (STERM) can 
only be used to transfer data to and from 32-bit ports. 

The MC68030 allows byte, word, and long-word operands to be located in memory on any 
byte boundary. For a misaligned transfer, more than one bus cycle may be required to 
complete the transfer regardless of port size. For a port less than 32 bits wide, multiple 
bus cycles may be required for an operand transfer due to either misalignment or a port 
width smaller than the operand size. Instruction words and their associated extension words 
must be aligned on word boundaries. The user should be aware that misalignment of word 
or long-word operands can cause the MC68030 to perform multiple bus cycles for the 
operand transfer, and therefore, processor performance is optimized if word and long­
word memory operands are aligned on word or long-word boundaries, respectively. 

7.1 BUS TRANSFER SIGNALS 

The bus transfers information between the MC68030 and an external memory, coprocessor, 
or peripheral device. External devices can accept or provide 8 bits, 16 bits, or 32 bits in 
parallel, and must follow the handshake protocol described in this section. The maximum 
number of bits accepted or provided during a bus transfer is defined as the port width. 
The MC68030 contains an address bus that specifies the address for the transfer and a 
data bus that transfers the data. Control signals indicate the beginning of the cycle, the 
address space and the size of the transfer, and the type of cycle. The selected device then 
controls the length of the cycle with the signal(s) used to terminate the cycle. Strobe signals, 
one for the address bus and another for the data bus, indicate the validity of the address 
and provide timing information for the data. 

The bus can operate in an asynchronous mode identical to the MC68020 bus for any port 
width. The bus and control input signals used for asynchronous operation are internally 
synchronized to the MC68030 clock, introducing a delay. This delay is the time period 
required for the MC68030 to sample an asynchronous input signal, synchronize the input 

MC68030 USER'S MANUAL MOTOROLA 
7-1 

-



-

to the internal clocks of the processor, and determine whether it is high or low. Figure 7-
1 shows the relationship between the clock signal, a typical asynchronous input, and its 
associated internal signal. 

CLK 

EXT 

INT 

-----SYNC DELAY ----..i 

Figure 7-1. Relationship Between External and Internal Signals 

Furthermore, for all asynchronous inputs, the processor latches the level ofthe input during 
a sample window around the falling edge of the clock signal. This window is illustrated in 
Figure 7-2. To ensure that an input signal is recognized on a specific falling edge of the 
clock, that input must be stable during the sample window. If an input makes a transition 
during the window time period, the level recognized by the processor is not predictable; 
however, the processor always resolves the latched level to either a logic high or low 
before using it. In addition to meeting input setup and hold times for deterministic oper­
ation, all input signals must obey the protocols described in this section. 

CLK 

EXT 

tsu 

~ 
SAMPLE 
WINDOW 

Figure 7-2. Asynchronous Input Sample Window 

A device with a 32-bit port size can also provide a synchronous mode transfer. In syn­
chronous operation, input signals are externally synchronized to the processor clock, and 
the synchronizing delay is not incurred. 

Synchronous inputs (STERM, CBACK, and CllN) must remain stable during a sample win­
dow for all rising edges of the clock during a bus cycle, i.e., while address strobe (AS) is 

MOTOROLA 
7-2 

MC68030 USER'S MANUAL 



asserted, regardless of when the signals are asserted or negated, in order to ensure proper 
operation. This sample window is defined in SECTION 13 ELECTRICAL CHARACTERISTICS 
by the synchronous input setup and hold times. 

7.1.1 Bus Control Signals 

The external cycle start (ECS) signal is the earliest indication that the processor is initiating 
a bus cycle. The MC68030 initiates a bus cycle by driving the address, size, function code, 
read/write, and cache inhibit-out outputs and asserting ECS. However, if the processor 
finds the required program or data item in an on-chip cache, or if a miss occurs in the 
address translation cache (ATC) of the memory management unit (MMU), or if the MMU 
finds a fault with the access, the processor aborts the cycle before asserting the address 
strobe (AS). ECS can be used to initiate various timing sequences that are eventually 
qualified with AS. Qualification with AS may be required since, in the case of an internal 
cache hit, an ATC miss, or an MMU fault, a bus cycle may be aborted after ECS has been 
asserted. The assertion of AS ensures that the cycle has not been aborted by these internal 
conditions. 

During the first external bus cycle of an operand transfer the operand cycle start (OCS) 
signal is asserted with ECS. When several bus cycles are required to transfer the entire 
operand, OCS is asserted only at the beginning of the first external bus cycle. With respect 
to OCS, an "operand" is any entity required by the execution unit, whether a program or 
data item. 

The function code signals (FCO-FC2) are also driven at the beginning of a bus cycle. These 
three signals select one of eight address spaces (refer to Table 4-1) to which the address 
applies. Five address spaces are presently defined. Of the remaining three, one is reserved 
for user definition and two are reserved by Motorola for future use. The function code 
signals are valid while AS is asserted. 

At the beginning of a bus cycle, the size signals (SIZO,SIZ1) are driven along with ECS and 
the function code signals. SIZO and SIZ1 indicate the number of bytes remaining to be 
transferred during an operand cycle (consisting of one or more bus cycles) or during a 
cache fill operation from a device wi~h a port size that is less than 32 bits. Table 7-2 shows 
the encoding of SIZO and SIZ1. These signals are valid while AS is asserted. 

The read/write (R/W) signal determines the direction of the transfer during a bus cycle. 
This signal changes state, when required, at the beginning of a bus cycle, and is valid while 
AS is asserted. R/W only transitions when a write cycle is preceded by a read cycle or vice 
versa. The signal may remain low for two consecutive write cycles. 

The read-modify-write cycle signal (RMC) is asserted at the beginning of the first bus cycle 
of a read-modify-write operation, and remains asserted until completion of the final bus 
cycle of the operation. The RMC signal is guaranteed to be negated before the end of state 
0 for a bus cycle following a read-modify-write operation. 

7.1.2 Address Bus 

The address bus signals (AO-A31) define the address of the byte (or the most significant 
byte) to be transferred during a bus cycle. The processor places the address on the bus at 
the beginning of a bus cycle. The address is valid while AS is asserted. 

MC68030 USER'S MANUAL MOTOROLA 
7-3 



.. 

7.1.3 Address Strobe 

The address strobe (AS) is a timing signal that indicates the validity of an address on th:e• 
address bus and of many control signals. It is asserted one half clock after the beginning 
of a bus cycle. 

7.1.4 Data Bus 

The data bus signals (DO-D31) comprise a bidirectional, non-multiplexed parallel bus that 
contains the data being transferred to or from the processor. A read or write operation 
may transfer 8, 16, 24, or 32 bits of data (one, two, three, or four bytes) in one bus cycle. 
During a read cycle, the data is latched by the processor on the last falling edge of the 
clock for that bus cycle. For a write cycle, all 32 bits of the data bus are driven, regardless 
of the port width or operand size. The processor places the data on the data bus one half 
clock cycle after AS is asserted in a write cycle. 

7.1.5 Data Strobe 

The data strobe (DS) is a timing signal that applies to the data bus. For a read cycle, the 
processor asserts DS to signal the external device to place data on the bus. It is asserted 
at the same time as AS during a read cycle. For a write cycle, DS signals to the external 
device that the data to be written is valid on the bus. The processor asserts DS one full 
clock cycle after the assertion of AS during a write cycle. 

7 .1.6 Data Buffer Enable 

The data buffer enable signal (DBEN) can be used to enable external data buffers while 
data is present on the data bus. During a read operation, DBEN is asserted one clock cycle 
after the beginning of the bus cycle, and is negated as OS is negated. In a write operation, 
DBEN is asserted at the time AS is asserted, and is held active for the duration of the cycle. 
In a synchronous system supporting two-clock bus cycles, DBEN timing may prevent its 
use. 

7.1.7 Bus Cycle Termination Signals 

During asynchronous bus cycles, external devices assert the data transfer and size ac­
knowledge signals (DSACKO and/or DSACK1) as part of the bus protocol. During a read 
cycle, this signals the processor to terminate the bus cycle and to latch the data. During a 
write cycle, this indicates that the external device has successfully stored the data and that 
the cycle may terminate. These signals also indicate to the processor the size of the port 
for the bus cycle just completed, as shown in Table 7-1. Refer to 7.3.1 Asynchronous Read 
Cycle for timing relationships of DSACKO and DSACK1. 

For synchronous bus cycles, external devices assert the synchronous termination signal 
(STERM) as part of the bus protocol. During a read cycle, the assertion of STERM causes 
the processor to latch the data. During a write cycle, it indicates that the external device 
has successfully stored the data. In either case, it terminates the cycle, and indicates that 
the transfer was made to a 32-bit port. Refer to 7.3.2 Asynchronous Write Cycle for timing 
relationships of STERM. 

MOTOROLA 
7-4 

MC68030 USER'S MANUAL 



The bus error (SERR) signal is also a bus cycle termination indicator and can be used in 
the absence of DSACKx or STE RM to indicate a bus error condition. It can also be asserted 
in conjunction with DSACKx or STERM to indicate a bus error condition, provided it meets 
the appropriate timing described in this section and in SECTION 13 ELECTRICAL CHAR­
ACTERISTICS. Additionally, the SERR and HALT signals can be asserted together to indicate 
a retry termination. Again, the SERR and HALT signals can be asserted simultaneously, in 
lieu of, or in conjunction with the DSACKx or STERM signals. 

Finally, the autovector (AVEC) signal can be used to terminate interrupt acknowledge cycles, 
indicating that the MC68030 should internally generate a vector number to locate an in­
terrupt handler routine. AVEC is ignored during all other bus cycles. 

7.2 DATA TRANSFER MECHANISM 

The MC68030 architecture supports byte, word, and long-word operands allowing access 
to 8-, 16-, and 32-bit data ports through the use of asynchronous cycles controlled by the 
data tranfer and size acknowledge inputs (DSACKO and DSACK1 ). It also supports syn­
chronous bus cycles to and from 32-bit ports, terminated by STERM. Byte, word, and long­
word operands can be located on any byte boundary, but misaligned transfers may require 
additional bus cycles, regardless of port size. 

When the processor requests a burst mode fill operation, it asserts the cache burst request 
(CBREQ) signal to attempt to fill four entries within a line in one of the on-chip caches. 
This mode is compatible with nibble, static column, or page mode dynamic RAMs. The 
burst fill operation uses synchronous bus cycles, each terminated by STERM, to fetch as 
many as four long words. 

7.2.1 Dynamic Bus Sizing 

The MC68030 dynamically interprets the port size of the addressed device during each bus 
cycle, allowing operand transfers to or from 8-, 16-, and 32-bit ports. During an asynchron­
ous operand transfer cycle, the sla-.1e device signals its port size (byte, word, or long word) 
and indicates completion of the bus cycle to the processor through the use of the DSACKx 
inputs. Refer to Table 7-1 for DSACKx encodings and assertion results. 

Table 7-1. DSACK Codes and Results 

DSACK1 DSACKO Result 

H H Insert Wait States in Current Bus Cycle 

H L Complete Cycle - Data Bus Port Size is 8 Bits 

L H Complete Cycle - Data Bus Port Size is 16 Bits 

L L Complete Cycle - Data Bus Port Size is 32 Bits 

For example, if the processor is executing an instruction that reads a long-word operand 
from a long-word aligned address, it attempts to read 32 bits during the first bus cycle. 
(Refer to 7.2.2 Misaligned Operands for the case of a word or byte address.) If the port 
responds that it is 32 bits wide, the MC68030 latches all 32 bits of data and continues with 
the next operation. If the port responds that it is 16 bits wide, the MC68030 latches the 16 

MC68030 USER'S MANUAL MOTOROLA 
7-5 

• 



• 

bits of valid data and runs another bus cycle to obtain the other 16 bits. The operation for 
an 8-bit port is similar, but requires four read cycles. The addressed device uses the DSACKx 
signals to indicate the port width. For instance, a 32-bit device always returns DSACKx for 
a 32-bit port (regardless of whether the bus cycle is a byte, word, or long-word operation). 

Dynamic bus sizing requires that the portion of the data bus used for a transfer to or from 
a particular port size be fixed. A 32-bit port must reside on data bus bits 0 through 31, a 
16-bit port must reside on data bus bits 16 through 31, and an 8-bit port must reside on 
data bus bits 24 through 31. This requirement minimizes the number of bus cycles needed 
to transfer data to 8- and 16-bit ports and ensures that the MC68030 correctly transfers 
valid data. The MC68030 always attempts to transfer the maximum amount of data on all 
bus cycles; for a long word operation, it always assumes that the port is 32 bits wide when 
beginning the bus cycle. 

The bytes of operands are designated as shown in Figure 7-3. The most significant byte 
of a long-word operand is OPO and OP3 is the least significant byte. The two bytes of a 
word-length operand are OP2 (most significant) and OP3. The single byte of a byte-length 
operand is OP3. These designations are used in the figures and descriptions that follow. 

31 

LONG WORD OPERAND OPO OPl OP2 OP3 
'-~~~-'-~~~-L-~~~....i....~~~-' 

15 0 

WORD OPERAND OP2 OP3 

BYTE OPERAND OP3 

Figure 7-3. Internal Operand Representation 

Figure 7-4 shows the required organization of data ports on the MC68030 bus for 8-, 16-, 
and 32-bit devices. The four bytes shown in Figure 7-4 are connected through the internal 
data bus and data multiplexer to the external data bus. This path is the means through 
which the MC68030 supports dynamic bus sizing and operand misalignment. Refer to 7.2.2 
Misaligned Operands for the definition of misaligned operand. The data multiplexer es­
tablishes the necessary connections for different combinations of address and data sizes. 

The multiplexer takes the four bytes of the 32-bit bus and routes them to their required 
positions. For example, OPO can be routed to 024-031, as would be the normal case, or it 
can be routed to any other byte position in order to support a misaligned transfer. The 
same is true for any of the operand bytes. The positioning of bytes is determined by the 
size (SIZO and SIZ1) and address (AO and A 1) outputs. 

The SIZO and SIZ1 outputs indicate the remaining number of bytes to be transferred during 
the current bus cycle, as shown in Table 7-2. 

The number of bytes transferred during a write or non-cachable read bus cycle is equal to 
or less than the size indicated by the SIZO and SIZ1 outputs, depending on port width and 
operand alignment. For example, during the first bus cycle of a long-word transfer to a 
word port, the size outputs indicate that four bytes are to be transferred although only two 

MOTOROLA 
7-6 

MC68030 USER'S MANUAL 



OPO OPl OP2 OP3 

REGISTER 

MULTIPLEXER t 
INTERNAL TO 

EXTERNAL THE MC68030 
----- 031-024 023-016 015-08 07-00 ----------OATA BUS 

EXTERNAL BUS 

AOORESS i xxxxxxxO BYTE 2 BYTE 3 32-BIT PORT 
INCREASING 

MEMORY 
AOORESSES 

i 
xxxxxxxO 

16-BIT PORT 

xxxxxxxO BYTE 0 

BYTE 1 
8-BIT PORT 

BYTE 2 

BYTE 3 

Figure 7-4. MC68030 Interface to Various Port Sizes 

bytes are moved on that bus cycle. Cacheable read cycles must always transfer the number 
of bytes indicated by the port size. 

The address lines AO and A 1 also affect operation of the data multiplexer. During an operand 
transfer, A2-A31 indicate the long-word base address of that portion of the operand to be 
accessed; AO and A 1 indicate the byte offset from the base. Table 7-3 shows the encodings 
of AO and A 1 and the corresponding byte offsets from the long-word base. 

Table 7-4 lists the bytes required on the data bus for read cycles that are cachable. The 
entries shown as OPn are portions of the requested operand that are read or written during 
that bus cycle and are defined by SIZO, SIZ1, AO and A 1 for the bus cycle. The PRn and 
the Nn bytes correspond to the previous and next bytes in memory, respectively, that must 
be valid on the data bus for the specified port size (long word or word) so that the internal 
caches operate correctly. (For cachable accesses, the MC68030 assumes that all portions 
of the data bus for a given port size are valid.) This same table applies to non-cachable 
read cycles except that the bytes labeled PRn and Nn are not required and can be replaced 
by "don't cares". 

Table 7-2. Size Signal 
Encoding 

SIZ1 SIZO Size 

0 1 Byte 

1 0 Word 

1 1 3 Bytes 

0 0 Long Word 

MC68030 USER'S MANUAL 

Table 7-3. Address Offset 
Encodings 

A1 AO 

0 0 

0 1 

1 0 

1 1 

Offset 

+O Bytes 

+ 1 Byte 

+2 Bytes 

+3 Byte 

MOTOROLA 
7-7 



-

Table 7-4. Data Bus Requirements for Read Cycles 
Byte Port 

Long Word Port Word Port External 
Transfer 

Size Address External Data Bytes Required External Data Bytes Data Bytes 
Size Required Required 

SIZ1 SIZO A1 AO D31:D24 D23:D16 D15:D8 D7:DO D31:D24 D23:D16 D31:D24 

Byte 0 , 0 0 OP3 N I N1 I N2 I I OP3 I N I ~ 
0 , 0 , PR OP3 I N I N1 I I PR I OP3 I B 
0 , , 0 PR1 PR I OP3 I N I I OP3 I N I B 
0 , , , PR2 PR1 I PR I OP31 I PR I OP3 I ~ 

Word , 0 0 0 I OP2 I OP3 I N I N1 OP2 OP3 B 
, 0 0 , I PR I OP2 I OP3 I N PR OP2 B 
, 0 , 0 I PR1 I PR I OP2 I OP3 OP2 OP3 ~ 
, 0 , , I PR2 I PR1 I PR I OP2 PR OP2 B 

3 Byte 1 , 0 0 I OP1 OP2 OP3 I N I OP1 OP2 I ~ 
1 1 0 1 I PR OP1 OP2 I OP3 I PR OP1 I EJ 
1 1 1 0 I PR1 PR OP1 I OP2 I OP1 OP2 I EJ 
, 1 , , I PR2 PR1 PR I OP1 I PR OP1 I EJ 

Long 0 0 0 0 OPO OP1 OP2 I OP3 I OPO OP1 I ~ 
Word 

0 0 0 1 PR OPO OP1 I OP2 I PR OPO I ~ 
0 0 1 0 PR1 PR OPO I OP1 I OPO OP1 I ~ 
0 0 1 1 PR2 PR1 PR I OPO I PR OPO I 8 

NOTE: The bytes labeled as Nn (Next n) and PRn (Previous n) are only required to be valid for cachable read cycles. They 
can be interpreted as don't cares for non-cachable read cycles. 

Table 7-5 lists the combinations of SIZO, SIZ1, AO, and A 1 and the corresponding pattern 
of the data transfer, for write cycles, from the internal multiplexer of the MC68030 to the 
external data bus. 

MOTOROLA 
7-8 

MC68030 USER'S MANUAL 



Table 7-5. MC68030 Internal to External Data Bus Muliplexer - Write Cycles 

Transfer Size Address External Data Bus Connection 
Size SIZ1 SIZO A1 AO 031:024 023:016 

Byte 0 1 x x I OP3 I OP3 

Word 1 0 x 0 I OP2 I OP3 

1 0 x 1 I OP2 I OP2 

3 Byte 1 1 0 0 I OP1 I OP2 

1 1 0 1 I OP1 I OP1 

1 1 1 0 I OP1 I OP2 

1 1 1 1 I OP1 I OP1 

Long Word 0 0 0 0 I OPO OP1 

0 0 0 1 I OPO OPO 

0 0 1 0 I OPO OP1 

0 0 1 1 I OPO OPO 

*Due to the current implementation, this byte is output but never used. 
x =don't care 

015:08 

I OP3 I 

I OP2 I 
I OP3 I 

OP3 I 
OP2 I 
OP1 I 

OP2* I 

I OP2 I 
I OP1 I 
I OPO I 
I OP1* I 

07:00 

OP3 I 

OP3 I 
OP2 I 

OPO* 

OP3 

OP2 

OP1 

OP3 I 
OP2 I 
OP1 I 
OPO I 

NOTE: The OP tables on the external data bus refer to a particular byte of the operand that is written on 
that section of the data bus. 

Figure 7-5 shows the transfer of a long-word operand to a word port. In the first bus cycle, 
the MC68030 places the four operand bytes on the external bus. Since the address is long 
word aligned in this example, the multiplexer follows the pattern in the entry of Table 7-
5 corresponding to SIZO-SIZ1-AO-A 1=0000. The port latches the data on bits 016-031 of 

31 LONG WORD OPERAND 

OPO 

r 
OPI OP2 

D31 DATA BUS D16 

+ 
WORD MEMORY 

MSB LSB 

OPO OPl 

OP2 OP3 

OP3 

MC68030 

SIZl SIZO A 1 AO 

0 

MEMORY CONTROL 

DSACKl DSACKO 

H 

Figure 7-5. Example of Long-Word Transfer to Word Port 

MC68030 USER'S MANUAL MOTOROLA 
7-9 



-

the data bus, asserts DSACK1 (DSACKO remains negated), and the processor terminates 
the bus cycle. It then starts a new bus cycle with SIZO-SIZ1-AO-A 1 = 1010 to transfer the 
remaining 16 bits. The size signals indicate that a word remains to be transferred; AO and 
Al indicate that the word corresponds to an offset of 2 from the base address. The mul­
tiplexer follows the pattern corresponding to this configuration of the size and address 
signals and places the two least significant bytes of the long word on the word portion of 
the bus (D16-D31 ). The bus cycle transfers the remaining bytes to the word-size port. Figure 
7-6 shows the timing of the bus transfer signals for this operation. 

MOTOROLA 
7-10 

so S2 S4 so S2 S4 

CLK 

A2·A31 ~ x 
Al 

AO 

FCO-FC2 J x 
Sill 

SIZO \ 
R/W 

ECS 

ocs \_/ 

AS \ I\ r 
as 

DSACKl _} \ I \ 
DSACKO 

DBEN \ /\. 
024-031 OPO OP2 

D16·D23 DPl OP3 

~H'" ·I· ~H'~ 
LONG WORD OPERAND WRITE TO 16-BIT PORT 

Figure 7-6. Long-Word Operand Write Timing (16-Bit Data Port) 

MC68030 USER'S MANUAL 



Figure 7-7 shows a word transfer to an 8-bit bus port. Like the preceding example, this 
example requires two bus cycles. Each bus cycle transfers a single byte. The size signals 
for the first cycle specify two bytes, and for the second cycle, one byte. Figure 7-8 shows 
the associated bus transfer signal timing. 

15 WORO OPERAND 

OP2 OP3 

031 OATA BUS 024 

~ 
BYTE MEMORY MC68030 MEMORY CONTROL 

SIZl SIZO Al AO OSACKl OSACKO 

88 0 0 0 H 

3 H 

Figure 7-7. Example of Word Transfer to Byte Port 

7.2.2 Misaligned Operands 

Since operands may reside at any byte boundaries, they may be misaligned. A byte operand 
is properly aligned at any address; a word operand is misaligned at an odd address; a 
long word is misaligned at an address that is not evenly divisible by four. The MC68000, 
MC68008, and MC68010 implementations allow long-word transfers on odd-word bound­
aries but force exceptions if word or long-word operand transfers are attempted at odd 
byte addresses. Although the MC68030 does not enforce any alignment restrictions for 
data operands (including PC-relative data addresses), some performance degradation oc­
curs when additional bus cycles are required for long-word or word operands that are 
misaligned. For maximum performance, data items should be aligned on their natural 
boundaries. All instruction words and extension words must reside on word boundaries. 
Attempting to prefetch an instruction word at an odd address causes an address error 
exception. 

Figure 7-9 shows the transfer of a long-word operand to an odd address in word-organized 
memory, which requires three bus cycles. For the first cycle, the size signals specify a long­
word transfer, and the address offset (A2:AO) is 001. Since the port width is 16 bits, only 
the first byte of the long word is transferred. The slave device latches the byte and ac­
knowledges the data transfer, indicating that the port is 16 bits wide. When the processor 
starts the second cycle, the size signals specify that three bytes remain to be transferred 
with an address offset (A2:AO) of 010. The next two bytes are transferred during this cycle. 
The processor then initiates the third cycle, with the size signals indicating one byte re­
maining to be transferred. The address offset (A2:AO) is now 100; the port latches the final 
byte and the operation is complete. Figure 7-10 shows the associated bus transfer signal 
timing. 

Figure 7-11 shows the equivalent operation for a cachable data read cycle. 

MC68030 USER'S MANUAL MOTOROLA 
7-11 



-

MOTOROLA 
7-12 

so S2 S4 so S2 S4 

CLK 

A2-A31 =:x x 
Al 

AO~ I 
FCO-FC2 =x x 

SIZl =1 \ 
SIZO \ I 
RIW 

ECS 

ocs \_/ 

AS 

as 

iiSACiIT 

DSACKO 

DBEN =1 \ n 
D24-D31 DP2 OP3 

D16-D23 OP3 OP3 

D8-Dl5 OP2 OP3 

DD-D7 DP3 OP3 

~·I·~ WORD OPERAND WRITE 

Figure 7-8. Word Operand Write Timing (8-Bit Data Port) 

MC68030 USER'S MANUAL 



31 LONG WORO OPERANO 

OPO I OPl OP2 OP3 

031 OATA BUS 016 

+ 
WORO MEMORY MC68030 MEMORY CONTROL 

MSB LSB SIZl SIZO A2 Al AO OSACKl OSACKO 

xxx OPO 0 0 0 1 H 

OPl OP2 1 H 

OP3 xxx 0 H 

Figure 7-9. Misaligned Long-Word Transfer to Word Port Example 

Figures 7-12 and 7-13 show a word transfer to an odd address in word-organized memory. 
This example is similar to the one shown in Figures 7-9 and 7-10 except that the operand 
is word sized and the transfer requires only two bus cycles. 

Figure 7-14 shows the equivalent operation for a cachable data read cycle. 

Figures 7-15 and 7-16 show an example of a long-word transfer to an odd address in long­
word-organized memory. In this example, a long word access is attempted beginning at 
the least significant byte of a long-word-organized memory. Only one byte can be trans­
ferred in the first bus cycle. The second bus cycle then consists of a three byte access to 
a long word boundary. Since the memory is long word organized, no further bus cycles 
are necessary. 

Figure 7-17 shows the equivalent operation for a cachable data read cycle. 

7 .2.3 Effects of Dynamic Bus Sizing and Operand Misalignment 

The combination of operand size, operand alignment, and port size determine the number 
of bus cycles required to perform a particular memory access. Table 7-6 shows the number 
of bus cycles required for different operand sizes to different port sizes with all possible 
alignment conditions for write cycles and non-cachable read cycles. 

Table 7-6. Memory Alignment and Port Size Influence 
on Write Bus Cycles 

Number of Bus Cycles 

A11AO 00 01 10 

Instruction• 1:2:4 NIA NIA 

Byte Operand 1:1:1 1:1:1 1 :1 :1 

Word Operand 1:1:2 1:2:2 1:1:2 

Long-Word Operand 1:2:4 2:3:4 2:2:4 

Data Port Size 32-Bits: 16-Bits: 8-Bits 
*Instruction prefetches are always two words from a long word boundary. 

MC68030 USER'S MANUAL 

11 

NIA 

1:1:1 

2:2:2 

2:3:4 

MOTOROLA 
7-13 

-



-

CU< 

A2·A31 

Al 

AO 

FCO-FC2 

SIZl 

SIZO 

R/W 

ECS 

ocs 

AS 

iiS 

OSACKl 

OSACKO 

OBEN 

024-031 

016-023 

08-015 

DO·D7 

MOTOROLA 
7-14 

so S2 S4 so S2 S4 so S2 S4 

J x x 

:JC x x 

\_} v v 

\ I \ I \ I 

J \ I\ I\ 
( OPO > < OPl > ( OP3 

( OPO > < OP2 > < OP3 

( OPl > < OPl ) ( OP3 

< OP2 ) < OP2 ) ( OP3 

BYTE WRITE -1- WORD WRITE -1- •m•~=l 
LONG WORD OPERAND WRITE 

Figure 7-10. Misaligned Long-Word Transfer to Word Port 

MC68030 USER'S MANUAL 



31 LONG WORD OPERAND (REGISTER) 

OPO OPl OP2 OP3 

31 CACHE ENTRIES 

I PR OPO OPl OP2 

31 

OP3 N Nl N2 

031 
DATA BUS 

016 

I 
f 

I 

WORD MEMORY MC68030 MEMORY CONTROL 

MSB LSB SIZl SIZO A2 A 1 AO OSACK I OSACKO 

PR OPO 0 0 0 H 

OPl OP2 H 

OP3 N 

NI N2 

Figure 7-11. Misaligned Cachable Long-Word Transfer from Word Port Example 

15 WORO OPERAND 

OP2 

r 
OP3 

031 DATA BUS 016 

+ 
WORD MEMORY MC68030 MEMORY CONTROL 

MSB LSB SIZl SIZO A2 A I AO 

xxx OP2 0 0 1 

OP3 xxx 0 H 

Figure 7-12. Misaligned Word Transfer to Word Port Example 

This table shows that bus cycle throughput is significantly affected by port size and align­
ment. The MC68030 system designer and programmer should be aware of and account 
for these effects, particularly in time-critical applications. 

Table 7-6 shows that the processor always prefetches instructions by reading a long word 
from a long-word address (A2:AO = 000), regardless of port size or alignment. When the 
required instruction begins at an odd word boundary, the processor attempts to fetch the 
entire 32 bits and loads both words into the instruction cache if possible, although the 
second one is the required word. Even if the instruction access is not cached, the entire 

MC68030 USER'S MANUAL MOTOROLA 
7-15 

• 



MOTOROLA 
7-16 

MC68030 USER'S MANUAL 



15 WORO OPERAND !REGISTER) 0 31 CACHE ENTRY 

OP2 J .. _O_P_3 ---:::-:-::-------P-R ____ OP_2 _ __.J 
016 

OP3 

031 

t 
WORD MEMORY MC68030 MEMORY CONTROL 

MSB LSB S/Zl SIZO A2 A 1 AO 

PR OP2 

OP3 

Figure 7-14. Example of Misaligned Cachable Word Transfer from Word Bus 

31 LONG WORD OPERAND 

OPO OPl l OP2 OP3 

031 DATA BUS 00 

LONG WORD MEMORY MC68030 MEMORY CONTROL 

MSB LIMB LMB LSB S/Zl S/ZO A2 A 1 AO 

xxx xxx xxx OPO 0 0 

OPl OP2 OP3 xxx 

Figure 7-15. Misaligned Long-Word Transfer to Long-Word Port 

32 bits are latched into an internal cache holding register from which the two instruction 
words can subsequently be referenced. Refer to SECTION 11 INSTRUCTION EXECUTION 
TIMING for a complete description of the cache holding register and pipeline operation. 

7 .2.4 Address, Size, and Data Bus Relationships 

The data transfer examples show how the MC68030 drives data onto or receives data from 
the correct byte sections of the data bus. Table 7-7 shows the combinations of the size 
signals and address signals AO and A 1 that are used to generate byte enable signals for 
each of the four sections of the data bus for non-cachable read cycles and all write cycles 
if the addressed device requires them. The port size also affects the generation of these 
enable signals as shown in the table. The four columns on the right correspond to the four 
byte enable signals. Letters 8, W, and L refer to port sizes: 8 for 8-bit ports, W for 16-bit 
ports, and L for 32-bit ports. The letter 8, W, or L implies that the byte enable signal should 
be true for that port size. A hyphen (-) implies that the byte enable signal does not apply. 

MC68030 USER'S MANUAL MOTOROLA 
7-17 



-

MOTOROLA 
7-18 

so S2 S4 so S2 S4 

CLK 

A2-A31 =::)( x 
Al 

AO 

FCO-FC2 =::)( x 
Sill 

SIZO 

R/W 

ECS 

ocs -v 
AS \ I \ I 
as 

OSACKl 

OSACKO 

OBEN :J \ n 
024-031 DPD DPl 

016-023 DPO OP2 

08-015 OPl OP3 

00-07 DPO DPl 

~~---+---,.~ 
LONG WORD OPERAND WRITE 

Figure 7-16. Misaligned Write Cycles to Long-Word Port 

MC68030 USER'S MANUAL 



31 LONG WORD OPERAND !REGISTER) 

DPO OPl OP2 DP3 

31 CACHE ENTRIES 

I PR2 PRl PR DPO 

31 

I OPl DP2 

f 
DP3 N 

DATA BUS 
D31 DO 

LONG WORD MEMORY MC68030 MEMORY CONTROL 

MSB UMB LMB LSB SIZl SIZO A2 A 1 AO 

PR2 PRl PR OPD 0 0 0 I 

OPl DP2 OP3 N 

Figure 7-17. Misaligned Cachable Long-Word Transfer from Long-Word Bus 

Table 7-7. Data Bus Write Enable Signals for Byte, Word, and Long-Word Ports 

Transfer Data Bus Active Sections 

Size 
SIZ1 SIZO A1 AO Byte IB) - Word (W) - Long Word (L) Ports 

031:024 023:016 015:08 07:00 

Byte 0 1 0 0 BWL - - -
0 1 0 1 B WL - -
0 1 1 0 BW - L -
0 1 1 1 B w - L 

Word 1 0 0 0 BWL WL - -
1 0 0 1 B WL L -
1 0 1 D BW w L L 
1 0 1 1 B w - L 

3 Byte 1 1 0 0 BWL WL L -
1 1 0 1 B WL L L 
1 1 1 0 BW w L L 
1 1 1 1 B w - L 

Long Word 0 0 0 0 BWL WL L L 
0 0 0 1 B WL L L 
0 0 1 0 BW w L L 
0 0 1 1 B w - L 

The MC68030 always drives all sections of the data bus because at the start of a write 
cycle, the bus controller does not know the port size. The byte enable signals in the table 
apply only to read operations that are not to be internally cached and write operations. 
For cachable read cycles, during which the data is cached, the addressed port must drive 
all sections of the bus on which it resides. 

The table shows that the MC68030 transfers the number of bytes specified by the size 
signals to or from the specified address unless the operand is misaligned, or unless the 
number of bytes is greater than the port width. In these cases, the device transfers the 

MC68030 USER'S MANUAL MOTOROLA 
7-19 



-

greatest number of bytes possible for the port. For example, if the size is four bytes and 
the address offset (A 1 :AO) is 01, a 32-bit slave can only receive three bytes in the current 
bus cycle. A 16- or 8-bit slave can only receive one byte. The table defines the byte enables 
for all port sizes. Byte data strobes can be obtained by combining the enable signals with 
the data strobe signal. Devices residing on 8-bit ports can use the data strobe by itself 
since there is only one valid byte for every transfer. These enable or strobe signals select 
only the bytes required for write cycles or for non-cachable read cycles. The other bytes 
are not selected, which prevents incorrect accesses in sensitive areas such as 1/0. 

Figure 7-18 shows a logic diagram for one method for generating byte data enable signals 
for 16- and 32-bit ports from the size and address encodings and the read/write signal. 

7.2.5 MC68030 versus MC68020 Dynamic Bus Sizing 

The MC68030 supports the dynamic bus sizing mechanism of the MC68020 for asynchron­
ous bus cycles (terminated with DSACKx) with two restrictions. First, for a cachable access 
within the boundaries of an aligned long word, the port size must be consistent throughout 
the transfer of each long word. For example, when a byte port resides at address $00, 
addresses $01, $02, and $03 must also correspond to byte ports. Second, the port must 
supply as much data as it signals as port size, regardless of the transfer size indicated with 
the size signals and the address offset indicated by AO and A 1 for cachable accesses. 
Otherwise, dynamic bus sizing is identical in the two processors. 

7.2.6 Cache Filling 

The on-chip data and instruction caches, described in SECTION 6 ON-CHIP CACHE MEM­
ORIES are each organized as 16 lines of four long word entries each. For each line, a tag 
contains the most significant bits of the logical address, FC2 (instruction cache) or FCO­
FC2 (data cache), and a valid bit for each entry in the line. An entry fill operation loads an 
entire long word accessed from memory into a cache entry. This type of fill operation is 
performed when one entry of a line is not valid and an access is cachable. A burst fill 
operation is requested when a tag miss occurs for the current cycle, or when all four entries 
in the cache line are invalid (provided the cache is enabled and burst filling for the cache 
is enabled). The burst fill operation attempts to fill all four entries in the line. In order to 
support burst filling, the slave device must have a 32-bit port and have a burst mode 
capability; that is, it must acknowledge a burst request with the cache burst acknowledge 
(CBACK) signal. It must also terminate the burst accesses with the synchronous termination 
signal (STERM) and place a long word on the data bus for each transfer. The device may 
continue to supply successive long words, asserting STERM with each one, until the cache 
line is full. For further information about filling the cache, both entry fills and burst mode 
fills, refer to 6.1.3 Cache Filling and 7.3.4 Synchronous Read Cycle, 7.3.5 Synchronous Write 
Cycle, and 7.3.7 Burst Operation Cycles, which discuss the required bus cycles in detail. 

7.2.7 Cache Interactions 

The organization and requirements of the on-chip instruction and data caches affect the 
interpretation of the DSACKx and STERM signals. Since the MC68030 attempts to load all 
data operands and instructions that are cachable into the on-chip caches, the bus may 
operate differently when caching is enabled. Specifically, on cachable read cycles that 

MOTOROLA 
7-20 

MC68030 USER'S MANUAL 



AO 

Al 

SIZO 

Sill 

R/W 

~ 

J -
.---+~+---+-~--+--l~--~)>----~~:::: 

-] 

--
-

----+--+--+---1)-----J ....._.. 

.._-i---1-~-i---ll--~-i---11----1-~ ..... "'\. 

-+-+--i.__ .J~ 

l 
-] -

-

UUD 

UMD 

LMD 

LLD 

LO 

UUD = UPPER UPPER DATA (32-BIT P ORT) 
UMD= UPPER MIDDLE DATA (32-BIT 

Y> LMD = LOWER MIDDLE DATA (32-BIT 
LLD = LOWER LOWER DATA (32-BIT 

Y> 
UD = UPPER DATA (16-BIT PDRn 
LO = LOWER DATA (16-BIT PORn 

NOTE: These select lines can be combined with the address decode circuitry, or all 
can be generated within the same programmed array logic unit. 

Figure 7-18. Byte Data Select Generation for 16- and 32-Bit Ports 

PORT) 
PORT) 
PORT) 

MC68030 USER'S MANUAL MOTOROLA 
7-21 



-

terminate normally, the low-order address signals (AO and A 1) and the size signals do n.ot 
apply. 

The slave device must supply as much aligned data on the data bus as its port size allows, 
regardless of the requested operand size. This means that an 8-bit port must supply a byte, 
a 16-bit port must supply a word, and a 32-bit port must supply an entire long word. This 
data is loaded into the cache. For a 32-bit port, the slave device ignores AO and A 1 and 
supplies the long word beginning at the long-word boundary on the data bus. For a 16-
bit port, the device ignores AO and supplies the entire word beginning at the lower word 
boundary on 016-031 of the data bus. For a byte port, the device supplies the addressed 
byte on 024-031. 

If the addressed device cannot supply port-sized data or if the data should not be cached, 
the device must assert cache inhibit in (CllN) as it terminates the read cycle. If the bus 
cycle terminates abnormally, the MC68030 does not cache the data. For details of inter­
actions of port sizes, misalignments, and cache filling, refer to 6.1.3 Cache Filling. 

The caches can also affect the assertion of the address strobe signal (AS) and the operation 
of a read cycle. The search of the appropriate cache by the processor begins when the 
microsequencer requires an instruction or a data item. At this time, the bus controller may 
also initiate an external bus cycle in case the requested item is not resident in the instruction 
or data cache. If the bus is not occupied with another read or write cycle, the bus controller 
asserts the ECS signal (and the OCS signal, if appropriate). If an internal cache hit occurs, 
the external cycle aborts, and AS is not asserted. This makes it possible to have ECS 
asserted on multiple consecutive clock cycles. Notice that there is a minimum time specified 
from the negation of ECS to the next assertion of ECS (refer to SECTION 13 ELECTRICAL 
CHARACTERISTICS). 

Instruction prefetches can occur every other clock so that if, after an aborted cycle due to 
an instruction cache hit, the bus controller asserts ECS on the next clock, this second cycle 
is for a data fetch. However, data accesses that hit in the data cache can also cause the 
assertion of ECS and an aborted cycle. Therefore, since instruction and data accesses are 
mixed, it is possible to see multiple successive ECS assertions on the external bus if the 
processor is hitting in both caches and if the bus controller is free. Note that if the bus 
controller is executing other cycles, these aborted cycles due to cache hits may not be 
seen externally. Also, OCS is asserted for the first external cycle of an operand transfer. 
Therefore, in the case of a misaligned data transfer where the first portion of the operand 
results in a cache hit (but the bus controller did not begin an external cycle and then abort 
it) and the second in a cache miss, OCS is asserted for the second portion of the operand. 

7.2.8 Asynchronous Operation 

The MC68030 bus may be used in an asynchronous manner. In that case, the external 
devices connected to the bus can operate at clock frequencies different from the clock for 
the MC68030. Asynchronous operation requires using only the handshake lines (AS, DS 
DSACK1, DSACKO, BERR and HALT) to control data transfers. Using this method, AS signals 
the start of a bus cycle, and DS is used as a condition for valid data on a write cycle. 
Decoding the size outputs and lower address lines AO and A 1 provides strobes that select 
the active portion of the data bus. The slave device (memory or peripheral) then responds 
by placing the requested data on the correct portion of the data bus for a read cycle or 
latching the data on a write cycle, and asserting the DSACK1/DSACKO combination that 

MOTOROLA 
7-22 

MC68030 USER'S MANUAL 



corresponds to the port size to terminate the cycle. If no slave responds or the access is 
invalid, external control logic asserts the 8ERR, or 8ERR and HALT signal(s) to abort or 
retry the bus cycle, respectively. 

The DSACKx signals can be asserted before the data from a slave device is valid on a read 
cycle. The length of time that DSACKx may precede data is given by parameter #31, and 
it must be met in any asynchronous system to insure that valid data is latched into the 
processor. (Refer to SECTION 13 ELECTRICAL CHARACTERISTICS for timing parameters.) 
Notice that no maximum time is specified from the assertion of AS to the assertion of 
DSACKx. Although the processor can transfer data in a minimum of three clock cycles 
when the cycle is terminated with DSACKx, the processor inserts wait cycles in clock period 
increments until DSACKx is recognized. 

The 8ERR and/or HALT signals can be asserted after the DSACKx signal(s) is asserted. 
8ERR and/or HALT must be asserted within the time given as parameter #48, after DSACKx 
is asserted in any asynchronous system. If this maximum delay time is violated, the pro­
cessor may exhibit erratic behavior. 

For asynchronous read cycles, the value of CllN is internally latched on the rising edge of 
bus cycle state 4. Refer to 7.3.1 Asynchronous Read Cycle for more details on the states 
for asynchronous read cycles. 

During any bus cycle terminated by DSACKx or 8ERR, the assertion of C8ACK is completely 
ignored. 

7.2.9 Synchronous Operation with DSACKx 

Although cycles terminated with the DSACKx signals are classified as "asynchronous" and 
cycles terminated with STERM are classified as "synchronous", cycles terminated with 
DSACKx can also operate synchronously in that signals are interpreted relative to clock 
edges. 

The devices that use these cycles must synchronize the responses to the MC68030 clock 
in order to be synchronous. Since they terminate bus cycles with the data transfer and size 
acknowledge signals (DSACKx), the dynamic bus sizing capabilities of the MC68030 are 
available. In addition, the minimum cycle time for these cycles is also three clocks. 

To support those systems that use the system clock to generate DSACKx and other asyn­
chronous inputs, the asynchronous input setup time (parameter #47A), and the asynchron­
ous input hold time (parameter #478) are given. If the setup and hold times are met for 
the assertion or negation of a signal, such as DSACKx, the processor can be guaranteed 
to recognize that signal level on that specific falling edge of the system clock. If the assertion 
of DSACKx is recognized on a particular falling edge of the clock, valid data is latched into 
the processor (for a read cycle) on the next falling clock edge provided that the data meets 
the data setup time (parameter #27). In this case, parameter #31 for asynchronous op­
eration can be ignored. The timing parameters referred to are described in SECTION 13 
ELECTRICAL CHARACTERISTICS. Note that if a system asserts DSACKx for the required 
window around the falling edge of S2 and obeys the proper bus protocol by maintaining 
DSACKx (and/or 8ERR/HAL T) until and throughout the clock edge that negates AS (with 
the appropriate asynchronous input hold time specified by parameter #478), no wait states 
are inserted. The bus cycle runs at its maximum speed for bus cycles terminated with 
DSACKx of three clocks per cycle. 

MC68030 USER'S MANUAL MOTOROLA 
7-23 



-

To assure proper operation in a synchronous system when BERR or BEAR and HALT is 
asserted after DSACKx, BERR (and HALT) must meet the appropriate setup time (parameter 
#27 A) prior to the falling clock edge one clock cycle after DSACKx is recognized. This setup 
time is critical, and the MC68030 may exhibit erratic behavior if it is violated. 

When operating synchronously, the data-in setup and hold times for synchronous cycles 
may be used instead of the timing requirements for data relative to the DS signal. 

The value of CllN is latched on the rising edge of bus cycle state 4 for all cycles terminated 
with DSACKx. 

7.2.10 Synchronous Operation with STERM 

The MC68030 supports synchronous bus cycles terminated with the synchronous termi­
nation signal (STEAM). These cycles, for 32-bit ports only, are similar to cycles terminated 
with DSACKx. The main difference is that STEAM can be asserted (and data can be trans­
ferred) earlier than for a cycle terminated with DSACKx causing the processor to perform 
a minimum access time transfer in two clock periods. However, wait cycles can be inserted 
by delaying the assertion of STEAM appropriately. 

Using the synchronous termination signal STEAM instead of the data transfer and size 
acknowledge signals DSACKx in any bus cycle makes the cycle synchronous. Any bus 
cycle is synchronous if: 

1. Neither DSACKx nor the autovector signal AVEC is asserted during the cycle. 

2. The port size is 32 bits. 

3. Synchronous input setup and hold time requirements (speqifications #60 and #61) 
for STEAM are met. 

Burst mode operation requires the use of STEAM to terminate each of its cycles. The first 
cycle of any burst transfer must be a synchronous cycle as described in the preceding 
paragraph. The exact timing of this cycle is controlled by the assertion of STEAM, and wait 
cycles can be inserted as necessary. However, the minimum cycle time is two clocks. If a 
burst operation is initiated and allowed to terminate normally, the second, third, and fourth 
cycles latch data on successive falling edges of the clock at a minimum. Again, the exact 
timing for these subsequent cycles is controlled by the timing of STEAM for each of these 
cycles, and wait cycles can be inserted as necessary. 

Although the synchronous input signals (STEAM, CllN, and CBACK) must be stable for the 
appropriate setup and hold times relative to every rising edge of the clock during which 
AS is asserted, the assertion or negation of CBACK and CllN is internally latched on the 
rising edge of the clock for which STEAM is asserted in a synchronous cycle. 

The STEAM signal can be generated from the address bus and function code value, and 
does not need to be qualified with the AS signal. If STEAM is asserted and no cycle is in 
progress (even if the cycle has begun, ECS is asserted and then the cycle is aborted), 
STEAM is ignored by the MC68030. 

Similarly, CBACK can be asserted independently of the assertion of CBREQ. If a cache burst 
is not requested, the assertion of CBACK is ignored. 

MOTOROLA 
7-24 

MC68030 USER'S MANUAL 



The assertion of CllN is ignored when the appropriate cache is not enabled or when CIOUT 
is asserted. It is also ignored during write cycles or translation table searches. 

NOTE 

STEAM and DSACKx should never be asserted during the same bus cycle. 

7.3 DATA TRANSFER CYCLES 

The transfer of data between the processor and other devices involves the following signals: 

• Address Bus AO through A31 

• Data Bus DO through D31 

• Control Signals 

The address and data buses are both parallel, non-multiplexed buses. The bus master 
moves data on the bus by issuing control signals, and the asynchronous/synchronous bus 
uses a handshake protocol to insure correct movement of the data. In all bus cycles, the 
bus master is responsible for de-skewing all signals it issues at both the start and the end 
of the cycle. In addition, the bus master is responsible for de-skewing the acknowledge 
and data signals from the slave devices. The following paragraphs define read, write, and 
read-modify-write cycle operations. An additional paragraph describes burst mode trans­
fers. 

Each of the bus cycles is defined as a succession of states. These states apply to the bus 
operation and are different from the processor states described in SECTION 4 PROCESSING 
STATES. The clock cycles used in the descriptions and timing diagrams of data transfer 
cycles are independent of the clock frequency. Bus operations are described in terms of 
external bus states. 

7.3.1 Asynchronous Read Cycle 

During a read cycle, the processor receives data from a memory, coprocessor, or peripheral 
device. If the instruction specifies a long-word operation, the MC68030 attempts to read 
four bytes at once. For a word operation, it attempts to read two bytes at once, and for a 
byte operation, one byte. For some operations, the processor requests a three-byte transfer. 
The processor properly positions each byte internally. The section of the data bus from 
which each byte is read depends on the operand size, address signals AO and A1, CllN and 
CIOUT, whether the internal caches are enabled, and the port size. Refer to 7.2.1 Dynamic 
Bus Sizing, 7.2.2 Misaligned Operands, and 7.2.6 Cache Filling for more information on 
dynamic bus sizing, misaligned operands, and cache interactions. 

Figure 7-19 is a flowchart of an asynchronous long-word read cycle. Figure 7-20 is a 
flowchart of a byte read cycle. The following figures show functional read cycle timing 
diagrams specified in terms of clock periods. Figure 7-21 corresponds to byte and word 
read cycles from a 32-bit port. Figure 7-22 corresponds to a long-word read cycle from an 
8-bit port. Figure 7-23 also applies to a long-word read, but from a 16-bit port. 

MC68030 USER'S MANUAL MOTOROLA 
7-25 



-

PROCESSOR EXTERNAL DEVICE 

ADDRESS DEVICE 

11 ASSERT ECS/OCS FOR ONE-HALF CLOCK 
21 SET R/W TO READ 
31 DRIVE ADDRESS ON AO-A31 
41 DRIVE FUNCTION CODE ON FCO-FC2 
51 DRIVE SIZE (SIZO-SIZl) (FOUR BYTES) 
6) CACHE INHIBIT OUT (CIDUT) BECOMES VALID 
71 ASSERT ADDRESS STROBE IASI 
Bl ASSERT DATA STROBE !OSI 
91 ASSERT DATA BUFFER ENABLE (OBENI t----1 PRESENT DATA 

11 DECODE ADDRESS 
21 PLACE DATA ON 00-031 

ACQUIRE DATA t-----1 31 ASSERT DATA TRANSFER AND SIZE ACKNOWLEDGE (OSACKxl' 

1) SAMPLE CACHE INHIBIT IN (CllNI 
2) LATCH DATA 
31 NEGATE AS AND iiS 
41 NEGATE OBEN 1--- TERMINATE CYCLE 

I 1) REMOVE DATA FROM 00-031 
2) NEGATE DSACKx 

START NEXT CYCLE 

Figure 7-19. Asynchronous Long-Word Read Cycle Flowchart 

PROCESSOR EXTERNAL DEVICE 

ADDRESS DEVICE 

1) ASSERT ECS/OCS FOR ONE-HALF CLOCK 
2) SET R/W TO READ 
3) DRIVE ADDRESS ON AO·A31 
4) DRIVE FUNCTION CODE ON FCO·FC2 
5) DRIVE SIZE (SIZO-SIZl) (ONE BYTE) 
6) CACHE INHIBIT OUT 1c1oun BECOMES VAUO 
7) ASSERT ADDRESS STROBE (AS) 
8) ASSERT DATA STROBE (OSI 
9) ASSERT DATA BUFFER ENABLE (OBEN) ~ PRESENT DATA 

1) DECODE ADDRESS 
21 PLACE DATA ON 031-024 OR 

023·016 OR 
015·08 OR 
07-00 

(BASED ON AO.A I.CACHE. ANO BUS WIDTH) 
ACQUIRE DATA t-----1 31 ASSERT DATA TRANSFER ANO SIZE ACKNOWLEDGE (OSACKxl 

11 SAMPLE CACHE INHIBIT IN (CllNI 
2) LATCH DATA 
3) NEGATE AS ANO OS 
4) NEGATE OBEN ~ TERMINATE CYCLE 

I 11 REMOVE DATA FROM DATA BUS 

START NEXT CYCLE 
21 NEGATE OSACKx 

Figure 7-20. Asynchronous Byte-Read Cycle Flowchart 

MOTOROLA 
7-26 

MC68030 USER'S MANUAL 



so S2 S4 so S2 S4 so S2 S4 

CU< 

A2·A31 =x 
Al 

AO 

FCO-FC2 =x 
Sill 

WORO BYTE 

SIZO 

R/W 

ECS 

ocs 

AS 

iiS 

OSACKl 

OSACKO 

OBEN :J \ I \ I \ I 
024-031 C!Q 
016-023 ~ 
08-015 GQ 
00-07 ~ 

~~~~--+-~---+-~~---i 
Figure 7-21. Asynchronous Byte and Word-Read Cycles - 32-Bit Port 

MC68030 USER'S MANUAL MOTOROLA 
7-27 



-

so S2 S4 so S2 S4 so S2 S4 so 52 54 

CLK 

A2-A31 =x x x x 
Al 

AO 

FCO-FC2 =x x x x 
SIZ1 

LONG WORD 3-BYTE WORD BYTE 

SIZO 

R/W 

ECS -v \_j \_j \_j 

ocs 

AS 

os 

CiiiUf 

DSACK1 

DSACKO 

DBEN ~ \ I \ I \ I \ r 
D24-D31 

D16-D23 

D8-D15 

DO-D7 

ron~o .1. BYTE READ .1. BYTE READ -1- onOM=l 
LONG WORD OPERAND READ FROM 8-BIT PORT 

Figure 7-22. Long-Word Read - 8-Bit Port, with CIOUT Asserted 

MOTOROLA 
7-28 

MC68030 USER'S MANUAL 



so S2 S4 so S2 S4 so S2 S4 

CLK 

A2-A31 J x x 
Al 

AO 

FCO-FC2 J x x 
SIZl 

LONG WORD WORD LONG WORO 

SIZO 

R/W 

ECS 

ocs \_} \_/ 

AS 

as 

OSACKl 

OSACKO 

DBEN 

024-031 OPO 

016-023 OPl 

08-D15 ==> C§: 

D0-07 ==> ~ 

~w""~•-+--·~=t-w~~• ~ FROM 32-BIT PORT 

LONG WORD OPERAND READ FROM 16-BIT PORT 

Figure 7-23. Long-Word Read - 16-Bit Port and 32-Bit Port 

MC68030 USER'S MANUAL MOTOROLA 
7-29 



• 

State 0 
The read cycle starts in state O (SO). The processor drives external cycle start (ECS) 
low, indicating the beginning of an external cycle. When the cycle is the first external 
cycle of a read operation, operand cycle start (OCS) is driven low at the same time. 
During SO, the processor places a valid address on the address bus (AO-A31) and valid 
function codes on FCO-FC2. The function codes select the address space for the cycle. 
The processor drives read/write (R/W) high for a read cycle, and drives data buffer 
enable (DBEN) inactive to disable the data buffers. Size signals SIZO and SIZ1 become 
valid, indicating the number of bytes requested to be transferred. Cache inhibit out 
(CIOUT) also becomes valid, indicating the state of the MMUCI bit in the address 
translation descriptor or in the appropriate nx register. 

State 1 
One-half clock later, in state 1 (S1), the processor asserts the address strobe (AS) 
indicating that the address on the address bus is valid. The processor asserts the data 
strobe (DS) also during S1. In addition, the ECS (and OCS, if asserted) signal is negated 
during S1. 

State 2 
During state 2 (S2), the processor asserts DBEN to enable external data buffers. The 
selected device uses R/W, SIZO-SIZ1, AO-A 1, CIOUT, and DS to place its information 
on the data bus, and drives cache inhibit in (CllN) if appropriate. Any or all of the bytes 
(D24-D31, D16-D23, D8-D15, and DO-D7) are selected by the size signals and AO-A 1. 
Concurrently, the selected device asserts the data transfer and size acknowledge 
(DSACKx) signals. 

State 3 
As long as at least one of the DSACKx signals is recognized by the end of S2 (meeting 
the asynchronous input setup time requirement), data is latched on the next falling 
edge of the clock, and the cycle terminates. If DSACKx is not recognized by the start 
of state 3 (S3), the processor inserts wait states instead of proceeding to states 4 and 
5. In order to ensure that wait states are inserted, both DSACKO and DSACK1 must 
remain negated throughout the asynchronous input setup and hold times around the 
end of S2. If wait states are added, the processor continues to sample the DSACKx 
signals on the falling edges of the clock until one is recognized. 

State 4 
The processor samples CllN at the beginning of state 4 (S4). Since CllN is defined as 
a synchronous input, it must meet the appropriate synchronous input setup and hold 
times on every rising edge of the clock while AS is asserted, whether asserted or 
negated. At the end of S4, the processor latches the incoming data. 

State 5 
The processor negates AS, DS, and DBEN during state 5 (S5). It holds the address 
valid during S5 to provide address hold time for memory systems. R/W, SIZ1 and 
SIZO, and FCO-FC2 also remain valid throughout S5. 

The external device keeps its data and DSACKx signals asserted until it detects the negation 
of AS or DS (whichever it detects first). The device must remove its data and negate DSACKx 
within approximately one clock period after sensing the negation of AS or DS. DSACKx 
signals that remain asserted beyond this limit may be prematurely detected for the next 
bus cycle. 

MOTOROLA 
7-30 

MC68030 USER'S MANUAL 



7 .3.2 Asynchronous Write Cycle 

During a write cycle, the processor transfers data to memory or a peripheral device. 

Figure 7-24 is a flowchart of a write cycle operation for a long-word transfer. The following 
figures show the functional write cycle timing diagrams specified in terms of clock periods. 
Figure 7-25 shows two write cycles (between two read cycles, with no idle time in between) 
for a 32-bit port. Figure 7-2 shows byte and word write cycles to a 32-bit port. Figure 7-27 
shows a long word write cycle to an 8-bit port. Figure 7-28 shows a long-word write cycle 
to a 16-bit port. 

PROCESSOR EXTERNAL DEVICE 

AOORESS DEVICE 

11 ASSERT ECS/OCS FOR ONE-HALF CLOCK 
2) DRIVE ADDRESS ON AO-A31 
31 DRIVE FUNCTION CODE ON FCO-FC2 
4) DRIVE SIZE ISIZO-SlZl) !FOUR BYTES) 
5) SET R/W TO WRITE 
6) CACHE INHIBIT OUT ICIOUT) BECOMES VALID 
1) ASSERT AOORESS STROBE (AS) 
8) ASSERT DATA BUFFER ENABLE IDBEN) 
9) DRIVE DATA LINES DO-D31 

10) ASSERT DATA STROBE IDS) I-- ACCEPT DATA 

1) DECODE ADDRESS 
2) STORE DATA FROM D0-031 

TERMINATE OUTPUT TRANSFER I-- 3) ASSERT DATA TRANSFER AND SIZE ACKNOWLEDGE iDSACKx) 

11 NEGATE AS AND iiS 
2) REMOVE DATA FROM DO-D31 
3) NEGATE OBEN f----- TERMINATE CYCLE 

l 1) NEGATE DSACKx 
START NEXT CYCLE 

Figure 7-24. Asynchronous Write Cycle Flowchart 

State 0 
The write cycle starts in state 0 (SO). The processor drives external cycle start (ECS) 
low, indicating the beginning of an external cycle. When the cycle is the first external 
cycle of a write operation, operand cycle start (OCS) is driven low at the same time. 
During SO, the processor places a valid address on the address bus (AO-A31) and valid 
function codes on FCO-FC2. The function codes select the address space for the cycle. 
The processor drives read/write (R/W) low for a write cycle. Size signals SIZO and SIZ1 
become valid, indicating the number of bytes to be transferred. Cache inhibit out 
(CIOUT) also becomes valid, indicating the state of the MMU Cl bit in the address 
translation descriptor or in the appropriate TTx register. 

State 1 
One-half clock later, in state 1 (S1 ), the processor asserts the address strobe (AS) 
indicating that the address on the address bus is valid. The processor also asserts 
data buffer enable (DBEN) during S1, which can enable external data buffers. In ad­
dition, the ECS (and OCS, if asserted) signal is negated during S1. 

MC68030 USER'S MANUAL MOTOROLA 
7-31 



• 

so S2 S4 so S1 S4 so S1 S4 so S1 Sw Sw S4 

CLK 

A1·A31 

Al 

AO 

FCO·FC1 J x x x 
SIZI 

LONG WORD 

SIZO 

R/W 

EC5 ---v \_) \_) \_} 

iiCS ---v \_) \_) \_} 

AS 

os 

OSACKI \ /\ /\ I \ I 
DSACKO \ /\ /\ I \ I 

DBEN =mJ \ /\ /\ I 
DD·D31 

~READ ·I· WRITE ·I· WRITE ·I· READ WITH WAIT STATES -----..J 
Figure 7-25. Asynchronous Read-Write-Read Cycles - 32-Bit Port 

State 2 
During state 2 ($2), the processor places the data to be written onto the data bus (D0-
031), and samples the data transfer and size acknowledge signals DSACKx at the end 
of S2. 

State 3 
The processor asserts data strobe (DS) during state 3 (S3). This indicates that the data 
is stable on the data bus. As long as at least one of the DSACKx signals is recognized 
by the end of S2 (meeting the asynchronous input setup time requirement), the cycle 
terminates one clock later. If DSACKx is not recognized by the start of state 3 (S3). the 
processor inserts wait states instead of proceeding to states 4 and 5. In order to ensure 
that wait states are inserted, both DSACKO and DSACK1 must remain negated through­
out the asynchronous input setup and hold times around the end of S2. If wait states 
are added, the processor continues to sample the DSACKx signals on the falling edges 
of the clock until one is recognized. The selected device uses R/W, DS, SIZO-SIZ1, and 

MOTOROLA 
7-32 

MC68030 USER'S MANUAL 



so S2 S4 so S2 S4 so S2 S4 

CLK 

A2-A31 J...._ ______ _,X'-______ __.X'--------
Al 

AO 

FCO-FC2 ==x _______ _,X.._ ______ __.X._ ______ _ 

Sill 

WORO BYTE 

SIZO 

R!W 

v v 

024-031 OP2 OP3 OP3 

016-023 OP3 OP3 OP3 

08-015 OP2 OP3 OP3 

00-07 OP3 OP3 OP3 

i.--- WORD WRITE -+-BYTE WRITE -+-BYTE WRITE ----..J 
Figure 7-26. Asynchronous Byte and Word-Write Cycles - 32-Bit Port 

AO-A 1 to latch data from the appropriate byte(s) of the data bus (D24-D31, D16-023, 
D8-D15, and DO-D7). The size signals and AO-A 1 select the bytes of the data bus. If it 
has not already done so, the device asserts DSACKx to signal that it has successfully 
stored the data. 

MC68030 USER'S MANUAL MOTOROLA 
7-33 



-

so S2 S4 so S2 S4 so S2 S4 so S2 S4 

CLK 

A2-A31 =x x x x 
Al 

AJ 

FCO-FC2 =x x x x 
SIZl 

LONG WORD 3-BYTE WORO BYTE 

SIZO 

R/W 

ECS \J \_} \_} \_} 

ocs 

AS 

iiS 

DSACKl 

DSACKO 

DBEN 

024-031 DPO OPl DP2 OP3 

016-023 OPl OPl DPJ OP3 

08-015 OP2 OP2 OP2 OP3 

D0-07 OP3 DP3 OP3 OP3 

rm•" -1- BYTE WRITI: -----+----- BYTE WRITE .J. BYTE WRITE 

LONG WORO OPERAND REAO TO 8-BIT PORT 

Figure 7-27. Long-Word Operand Write - 8-Bit Port 

MOTOROLA 
7-34 

,., 

MC68030 USER'S MANUAL 



so S2 S4 so S2 S4 so S2 S4 

CLK 

A2-A31 =x x x 
Al 

AO 

FCO-FC2 =x x x 
SIZl 

LONG WORO WORO LONG WORO 

SIZO 

R/W 

ECS 

ocs ---v v 
AS 

iiS 

OSACKl 

OSACKO 

OBEN 

024-031 OPO OP2 OPO 

016-023 OPl OP3 OPl 

08-015 OP2 OP2 OP2 

00-07 OP3 OP3 OP3 

~~m----+--·--=t "'" ~""~~ ~ TO 32-BIT PORT 

LONG WORO OPERAND WRITE TO 16-BIT PORT 

Figure 7-28. Long-Word Operand Write - 16-Bit Port 

MC68030 USER'S MANUAL MOTOROLA 
7-35 



-

State 4 
The processor issues no new control signals during state 4 (S4). 

State 5 
The processor negates AS and DS during state 5 (S5). It holds the address and data 
valid during S5 to provide address hold time for memory systems. R/W, SIZO and 
SIZ1, FCO-FC2, and DBEN also remain valid throughout S5. 

The external device must keep DSACKx asserted until it detects the negation of AS or DS 
(whichever it detects first). The device must negate DSACKx within approximately one­
clock period after sensing the negation of AS or DS. DSACKx signals that remain asserted 
beyond this limit may be prematurely detected for the next bus cycle. 

7.3.3 Asynchronous Read-Modify-Write Cycle 

The read-modify-write cycle performs a read, conditionally modifies the data in the arith­
metic logic unit, and may write the data out to memory. In the MC68030 processor, this 
operation is indivisible, providing semaphore capabilities for multi-processor systems. 
During the entire read-modify-write sequence the MC68030 asserts the RMC signal to 
indicate that an indivisible operation is occurring. The MC68030 does not issue a bus grant 
(BG) signal in response to a bus request (BR) signal during this operation. The read portion 
of a read-modify-write operation is forced to miss in the data cache because the data in 
the cache would not be valid if another processor had altered the value being read. How­
ever, read-modify-write cycles may alter the contents of the data cache, as described in 
6.1.2. Data Cache. 

No burst filling of the data cache occurs during a read-modify-write operation. 

The test and set (TAS) and compare and swap (CAS and CAS2) instructions are the only 
MC68030 instructions that utilize read-modify-write operations. Depending on the compare 
results of the CAS and CAS2 instructions, the write cycle(s) may not occur. Table search 
accesses required for the memory management unit (MMU) are always read-modify-write 
cycles to the supervisor data space. During these cycles, a write does not occur unless a 
descriptor is updated. No data is internally cached for table search accesses since the MMU 
uses physical addresses to access the tables. Refer to SECTION 9 MEMORY MANAGEMENT 
UNIT for information about the MMU. 

Figure 7-29 is a flowchart of the asynchronous read-modify-write cycle operation. Figure 
7-30 is an example of a functional timing diagram of a TAS instruction specified in terms 
of clock periods. 

State 0 
The processor asserts external cycle start (ECS) and operand cycle start (OCS) in state 
0 (SO) to indicate the beginning of an external cycle. The processor also asserts RMC 
in SO to identify a read-modify-write cycle. The processor places a valid address on 
the address bus (AO-A31) and valid function codes on FCO-FC2. The function codes 
select the address space for the operation. Size signals SIZO-SIZ1 become valid in SO 
to indicate the operand size. The processor drives the read/write signal R/W high for 
the read cycle, and sets the cache inhibit out signal (CIOUT) according to the value of 
the MMU Cl bit in the address translation descriptor or in the appropriate TTx register. 

MOTOROLA 
7-36 

MC68030 USER'S MANUAL 



PROCESSOR EXTERNAL DEVICE 

LOCK BUS 

1) ASSERT READ-MODIFY-WRITE CYCLE (RMC) 

j_ 
ADDRESS DEVICE 

1) ASSERT ECS/OSC FOR ONE-HALf CLOCK 
21 SET R/W TO REAO 
31 ORIVE AOORESS ON AO-A31 
4) DRIVE FUNCTION COOE ON FCO-FC2 --5) ORIVE SIZE (SIZO-SIZl I 
61 CACHE INHIBIT OUT (CIOUT) BECOMES VALID 
71 ASSERT AOORESS STROBE (ASI 
81 ASSERT OATA STROBE (OS) 

9) ASSERT OATA SUFFER ENABLE (OBEN) r-- PRESENT DATA 

IJ OECOOE AOORESS 
21 PLACE OATA ON 00-031 
31 ASSERT OATA TRANSFER 

ACOUIRE OATA ~ ANO SIZE ACKNOWLEDGE (OSACKxl 

® 
1) SAMPLE CACHE INHIBIT JN (CJIN) 
2) LATCH OATA IF CAS2 INSTRUCTION ANO 
3) NEGATE AS ANO iiS ONLY ONE OPERAND READ. 
41 NEGATE OBEN THEN GO TO @: IF 
5) START DATA MODIFICATION r-- TERMINATE CYCLE OPERANDS 00 NOT MATCH • 

THEN GO TO @: ELSE 

11 REMOVE DATA FROM 00-031 
GOTO@ 

START OUTPUT TRANSFER 21 NEGATE OSACKx r-- ® © 1-----i 

1) ASSERT ECS/OCS FOR ONE-HALf CLOCK 
2) DRIVE AOORESS ON A0-A31 (IF DIFFERENT! 
3) DRIVE SIZE (SIZO-SIZl I l 4) SET R/W TO WRITE 
5) CIOUT BECOMES VALID 

~ 

6) ASSERT AS 
7) ASSERT OBEN 
8) PLACE OATA ON 00-031 
9) ASSERT iiS r-- ACCEPT OATA 

1 I OECOOE AOORESS 
21 STORE OATA FROM 00-031 ® 

TERMINATE OUTPUT TRANSFER ~ 3) ASSERT OSACKx 
IF CAS2 INSTRUCTION ANO 

1) NEGATE AS ANO iiS ONLY ONE OPERAND 
21 REMOVE OATA FROM 00-031 WRITIEN. THEN GO TO @: 
3) NEGATE OBEN r-- TERMINATE CYCLE ELSE GO TO CD 

II NEGATE OSACKx r-- CD 
UNLOCK BUS 

1 I NEGATE RMC -- 1 1 
START NEXT CYCLE 

Figure 7-29. Asynchronous Read-Modify-Write Cycle Flowchart 

MC68030 USER'S MANUAL MOTOROLA 
7-37 

• 



• 

SO S2 S4 Si Si SB SB SlO Sll SO 

CLK ___J1___JL__Jl_--~------___J(_ 
A2-A31 J ________ _ 

Al 

AO _......._ _______ _ 
FCO-FC2 J ________ _ 

SIZl 

SIZO ~ 

R/W 

--------y--_ _____________ ___A___ 

c= 
r= 

----====-===x= r= 
c= --,.___ ___ _ ----~ 

r--________ J 

ECS~--~------~ 

AS~--~------~ 

iiS ~--~------~ 

CIOUT ~---------

\.__-.JI 

024-031 ==>---------
016-023 ==>---------
08-015 ~ 

00-07 ==:>>---------

-----~r-------
,--­________ ! 

,------­____ ! 

r---
----' 

~r----

< OP3 >-----
< OP3 >----
< OP3 >----
< OP3 >-----

\ I 
\..__.../ 

Jl"'" .. f-------- INDIVISIBLE CYCLE -------< .. .ii ~ NEXTCYCLE 

Figure 7-30. Asynchronous Byte Read-Modify-Write Cycle - 32-Bit Port 
(TAS Instruction, with CIOUT or CINN Asserted) 

MOTOROLA 
7-38 

MC68030 USER'S MANUAL 



State 1 
One-half clock later, in state 1 (S1), the processor asserts address strobe (AS) indicating 
that the address on the address bus is valid. The processor asserts data strobe (DS) 
also during S1. In addition, the ECS (and OCS, if asserted) signal is negated during 
S1. 

State 2 
During state 2 (S2), the processor drives DBEN active to enable external data buffers. 

The selected device uses R/W, SIZO-SIZ1, AO-A 1, and DS to place information on the 
data bus. Any or all of the bytes (D24-D31, D16-D23, D8-D15, and DO-D7) are selected 
by the size signals and AO-A 1. Concurrently, the selected device may assert the data 
transfer and size acknowledge (DSACKx) signals. 

State 3 
As long as at least one of the DSACKx signals is recognized by the end of S2 (meeting 
the asynchronous input setup time requirement), data is latched on the next falling 
edge of the clock, and the cycle terminates. If DSACKx is not recognized by the start 
of state 3 (S3), the processor inserts wait states instead of proceeding to states 4 and 
5. In order to ensure that wait states are inserted, both DSACKO and DSACK1 must 
remain negated throughout the asynchronous input setup and hold times around the 
end of S2. If wait states are added, the processor continues to sample the DSACKx 
signals on the falling edges of the clock until one is recognized. 

State 4 
The processor samples the level of CllN at the beginning of state 4 (S4). At the end 
of S4, the processor latches the incoming data. 

State 5 
The processor negates AS, DS, and DBEN during state 5 (S5). If more than one read 
cycle is required to read in the operand(s), states SO through S5 are repeated for each 
read cycle. When finished reading, the processor holds the address, R/W, and FCO­
FC2 valid in preparation for the write portion of the cycle. 

The external device keeps its data and DSACKx signals asserted until it detects the 
negation of AS or DS (whichever it detects first). The device must remove the data 
and negate DSACKx within approximately one clock period after sensing the negation 
of AS or DS. DSACKx signals that remain asserted beyond this limit may be prema­
turely detected for the next portion of the operation. 

Idle States 
The processor does not assert any new control signals during the idle states, but it 
may internally begin the modify portion of the cycle at this time. States 6 through 11 
are omitted if no write cycle is required. If a write cycle is required, the R/W signal 
remains in the read mode until state 6 to prevent bus conflicts with the preceding read 
portion of the cycle; the data bus is not driven until state 8. 

State 6 
The processor asserts ECS and OCS in state 6 (S6) to indicate that another external 
cycle is beginning. The processor drives R/W low for a write cycle. CIOUT also becomes 
valid, indicating the state of the MMU Cl bit in the address translation descriptor or 
in a relevant TTx register. Depending on the write operation to be performed, the 
address lines may change during state 6. 

MC68030 USER'S MANUAL MOTOROLA 
7-39 

• 



• 

State 7 
In state 7 (S7), the processor asserts address strobe (AS) indicating that the address 
on the address bus is valid. The processor also asserts data buffer enable (DBEN), 
which can be used to enable data buffers, during S7. In addition, the ECS (and OCS,if 
asserted) signal is negated during S7. 

State 8 
During state 8 (S8) the processor places the data to be written onto the data bus (DO­
D31 ). 

State 9 
The processor asserts the data strobe (DS) during state 9 (S9). This indicates that the 
data is stable on the data bus. As long as at least one of the DSACKx signals is 
recognized by the end of S8 (meeting the asynchronous input setup time requirement), 
the cycle terminates one clock later. If DSACKx is not recognized by the start of S9, 
the processor inserts wait states instead of proceeding to states 1 O and 11. In order 
to ensure that wait states are inserted, both DSACKO and DSACK1 must remain negated 
throughout the asynchronous input setup and hold times around the end of S8. If wait 
states are added, the processor continues to sample DSACKx signals on the falling 
edges of the clock until one is recognized. 

The selected device uses R/W, DS, SIZO-SIZ1, and AO-A 1 to latch data from the ap­
propriate section(s) of the data bus (D24-D31, D16-D23, D8-D15, and DO-D7). The size 
signals and AO-A 1 select the data bus sections. If it has not already done so, the device 
asserts DSACKx when it has successfully stored the data. 

State 10 
The processor issues no new control signals during state 10 (S10). 

State 11 
The processor negates AS and DS during state 11 (S11 ). It holds the address and data 
valid during S11 to provide address hold time for memory systems. R/W and FCO-FC2 
also remain valid throughout S11. 

If more than one write cycle is required, states S6 through S11 are repeated for each 
write cycle. 

The external device keeps DSACKx asserted until it detects the negation of AS or DS 
(whichever it detects first). The device must remove its data and negate DSACKx within 
approximately one-clock period after sensing the negation of AS or DS. 

7.3.4 Synchronous Read Cycle 

A synchronous read cycle is terminated differently from an asynchronous read cycle; 
otherwise, the cycles assert and respond to the same signals, in the same sequence. The 
synchronous termination signal (STERM) rather than DSACKx is asserted by the addressed 
external device to terminate a synchronous read cycle. STERM must meet the synchronous 
setup and hold times with respect to all rising edges of the clock while AS is asserted, and 
therefore does not need to be synchronized by the processor. Only devices with 32-bit 
ports may assert STE RM. STERM is also used with the cache burst request signal (CBREQ) 
and the cache burst acknowledge signal (CBACK) during burst mode operation. It is pro­
vided to allow a two-clock (minimum) bus cycle for 32-bit ports and single-clock (minimum) 
burst accesses, although wait states can be inserted for these cycles as well. Therefore, a 

MOTOROLA 
7-40 

MC68030 USER'S MANUAL 



synchronous cycle terminated with STERM with one wait cycle is a three-clock bus cycle. 
However, note that STERM is asserted one-half clock later than DSACKx would be for a 
similar asynchronous cycle with zero wait cycles (also three clocks). Thus if dynamic bus 
sizing is not needed, STERM can be used to provide more decision time in an external 
cache design than is available with DSACKx for three-clock accesses. 

Figure 7-31 is a flowchart of a synchronous long-word read cycle. Byte and word operations 
are similar. Figure 7-32 is a functional timing diagram of a synchronous long-word read 
cycle. 

State 0 
The read cycle starts with state 0 (SO). The processor drives external cycle start (ECS) 
low, indicating the beginning of an external cycle. When the cycle is the first cycle of 
a read operand operation, operand cycle start (OCS) is driven low at the same time. 
During SO, the processor places a valid address on the address bus (AO-A31) and valid 
function codes on FCO-FC2. The function codes select the address space for the cycle. 
The processor drives read/write (R/W) high for a read cycle, and drives data buffer 
enable (DBEN) inactive to disable the data buffers. Size signals SJZ1 and SIZO become 
valid, indicating the number of bytes to be transferred. Cache inhibit out (CIOUT) also 
becomes valid, indicating the state of the MMU Cl bit in the address translation de­
scriptor or in the appropriate TTx register. 

State 1 
One-half clock later, in state 1 (S1 ), the processor asserts the address strobe (AS) 
indicating that the address on the address bus is valid. The processor also asserts the 
data strobe (DS) during S1. If the burst mode is enabled for the appropriate on-chip 

PROCESSOR EXTERNAL DEVICE 

ADDRESS DEVICE 

1) ASSERT ECS/OCS FOR ONE-HALF CLOCK 
2) SET R/WTO READ 
3) DRIVE ADDRESS ON AO-A31 
4) DRIVE FUNCTION CODE ON FCO-FC2 
Si DRIVE SIZE (SIZO-SIZl) (FOUR BYTES) 
6) CACHE INHIBIT OUT (CIOUT) BECOMES VALID 
7) ASSERT ADDRESS STROBE (AS) 
8) ASSERT CACHE BURST REQUEST (CBREO) (IF BURST POSSIBLE) 
9) ASSERT DATA STROBE (OSI 

10) ASSERT DATA BUFFER ENABLE (OBEN) I-- PRESENT DATA 

1) DECODE ADDRESS 
2) PLACE DATA ON 00-031 

ACQUIRE DATA 14-- 3) ASSERT SYNCHRONOUS TERMINATION (STEAM) 

1) SAMPLE CACHE INHIBIT IN (CllN) 
ANO CACHE BURST ACKNOWLEDGE (CBACK) 

2) LATCH DATA 
3) NEGATE AS ANO iiS 
4) NEGATE OBEN I-- TERMINATE CYCLE 

I 1) REMOVE DATA FROM 00-031 

START NEXT CYCLE 
2) NEGATE STEAM 

Figure 7-31. Synchronous Long-Word Read Cycle Flowchart - No Burst Allowed 

MC68030 USER'S MANUAL MOTOROLA 
7-41 

• 



• 

AO-A31 =x=== 
FCO-FC2 =x=== 

SIZl :J 
SIZO ~ 

R/W j 

ECS~ 

ocs~ 

AS~ 

iiS~ 

OSACKl j 

OSACKO j 

CIOUT j 

CBACK j 

00-031 ) ( __ _ 

7-32. Synchronous Read with CllN Asserted and CBACK Negated 

cache, and all four long words of the cache entry are invalid, (i.e., four long words 
can be read in), CBREQ is asserted. In addition, the ECS (and OCS,if asserted) signal 
is negated during S1. 

State 2 
The selected device uses R/W, SIZO-SIZ1, AO-A1, and CIOUT to place its information 
on the data bus. Any or all of the byte sections of the data bus (D24-D31, 016-023, 
08-015, and D0-07) are selected by the size signals and AO-A1. During S2, the processor 
drives DBEN active to enable external data buffers. In systems that use two-clock 

MOTOROLA 
7-42 

MC68030 USER'S MANUAL 



synchronous bus cycles, the timing of DBEN may prevent its use. At the beginning of 
state 2 (S2), the processor samples the level of STERM. If STERM is recognized, the 
processor latches the incoming data at the end of S2. If the selected data is not to be 
cached for the current cycle, or if the device cannot supply 32 bits, cache inhibit in 
(CllN) must be asserted at the same time as STERM. In addition, the state of CBACK 
is latched when STERM is recognized. 

Since CllN, CBACK, and STERM are synchronous signals, they must meet the syn­
chronous input setup and hold times for all rising edges of the clock while AS is 
asserted. If STERM is negated at the beginning of S2, wait states are inserted after S2 
and STERM is sampled on every rising edge thereafter until it is recognized. Once 
STERM is recognized, data is latched on the next falling edge of the clock (corre­
sponding to the beginning of state 3). 

State 3 
The processor negates AS, DS, and DBEN during state 3 (S3). It holds the address 
valid during S3 to simplify memory interfaces. R/W, SIZ1 and SIZO, and FCO-FC2 also 
remain valid throughout S3. 

The external device must keep its data asserted throughout the synchronous hold 
time for data from the beginning of S3. The device must remove its data within one 
clock after asserting STERM, and negate STERM within two clocks after asserting 
STERM; otherwise the processor may inadvertently use STERM for the next bus cycle. 

7.3.5 Synchronous Write Cycle 

A synchronous write cycle is terminated differently from an asynchronous write cycle and 
the data strobe may not be useful. Otherwise, the cycles assert and respond to the same 
signals, in the same sequence. The synchronous termination signal (STERM) is asserted 
by the external device to terminate a synchronous write cycle. The discussion of STERM 
in the preceding section applies to write cycles as well as to read cycles. 

DS is not asserted for two-clock synchronous write cycles, so the clock (CLK) may be used 
as the timing signal for latching the data. In addition, there is no time from the latest 
assertion of AS and the required assertion of STERM for any two-clock synchronous bus 
cycle. The system must take care to qualify a memory write with the assertion of AS in 
order to ensure that the write is not aborted by internal conditions within the MC68030. 

Figure 7-33 is a flowchart of a synchronous write cycle. Figure 7-34 is a functional timing 
diagram of the operation with wait states. 

State O 
The write cycle starts with state 0 (SO). The processor drives external cycle start (ECS) 
low, indicating the beginning of an external cycle. When the cycle is the first cycle of 
a write operation, operand cycle start (OCS) is driven low at the same time. During 
SO, the processor places a valid address on the address bus (AO-A31) and valid function 
codes on FCO-FC2. The function codes select the address space for the cycle. The 
processor drives read/write (R/W) low for a write cycle. Size signals SIZO and SIZ1 
become valid, indicating the number of bytes to be transferred. Cache inhibit out 
(CIOUT) also becomes valid, indicating the state of the MMU Cl bit in the address 
translation descriptor or in the appropriate TTx register. 

MC68030 USER'S MANUAL MOTOROLA 
7-43 

• 



• 

PROCESSOR EXTERNAL DEVICE 

ADDRESS DEVICE 

1) ASSERT ECS/OCS FOR ONE-HALF CLOCK 
21 DRIVE ADDRESS ON AO-A31 
3) DRIVE FUNCTION CODE ON FCO-FC2 
4) DRIVE SIZE (SIZO-SIZl) (FOUR BYTES) 
5) SET R/W TO WRITE 
6) CACHE INHIBIT OUT (CIOUT) BECOMES VALID 
7) ASSERT ADDRESS STROBE (AS) 
8) ASSERT DATA BUFFER ENABLE (DBEN) 
9) DRIVE DATA LINES DO-D31 

10) ASSERT DATA STROBE (OS) (IF WAIT STATES) i-------1 ACCEPT DATA 

1) DECODE ADDRESS 
2) STORE DATA FROM DO-D31 

TERMINATE OUTPUT TRANSFER I-- 3) ASSERT SYNCHRONOUS TERMINATION (STERM) 

11 NEGATE AS (AND OS) 
2) REMOVE DATA FROM OO-D31 
3) NEGATE DBEN ~ TERMINATE CYCLE 

I 11 NEGATE STEAM 
START NEXT CYCLE 

Figure 7-33. Synchronous Write Cycle Flowchart 

State 1 
One-half clock later, in state 1 (S1 ), the processor asserts the address strobe (AS) 
indicating that the address on the address bus is valid. The processor also asserts 
data buffer enable (DBEN) during S1, which may be used to enable the external data 
buffers. In addition, the ECS (and OCS,if asserted) signal is negated during S1. 

State 2 
During state 2 (S2), the processor places the data to be written onto the data bus (D0-
031 ). 

The selected device uses R/W, CLK, SIZO-SIZ1, and AO-A 1 to latch data from the ap­
propriate section(s) of the data bus (024-031, 016-023, 08-015, and D0-07). The size 
signals and AO-A 1 select the data bus sections. The device asserts STERM when it has 
successfully stored the data. If the device does not assert STE RM by the rising edge 
of S2, the processor inserts wait states until it is recognized. The processor asserts 
the data strobe (DS) at the end of S2 if wait states are inserted. Note that for zero wait 
state synchronous write cycles, DS is not asserted. 

State 3 
The processor negates AS (and DS, if necessary) during state 3 (S3). It holds the 
address and data valid during S3 to simplify memory interfaces. R/W, SIZ1 and SIZO, 
FCO-FC2, and DBEN also remain valid throughout S3. 

The addressed device must negate STERM within two-clock periods after asserting it 
or the processor may use STERM for the next bus cycle. 

7.3.6 Synchronous Read-Modify-Write Cycle 

A synchronous read-modify-write operation differs from an asynchronous read-modify­
write operation only in the terminating signal of the read and write cycles, and in the use 

MOTOROLA 
7-44 

MC68030 USER'S MANUAL 



SO Sl S2 Sw Sw SJ 

CLK ___fL.Jl.__jL_ 

AO-A31 J ______ _ 
FCO-FC2 .=:::::x ______ _ 

Sill~ 

SIZO ~ 

R/W 7\ ______ _ 
ECS -----v-­
OCS -----v--
AS \ r 
TIS ~ 

OSACKl 

00-031 )~-----< .... __ _ 
OBEN j ''-----

Figure 7-34. Synchronous Write Cycle with Wait States, CIOUT Asserted 

of the clock (CLK) in the write cycle instead of the data strobe for latching data. Like the 
asynchronous operation, the synchronous read-modify-write operation is indivisible. Al­
though the operation is synchronous, the burst mode is never used during read-modify­
write cycles. 

Figure 7-35 is a flowchart of the synchronous read-modify-write operation. Timing for the 
cycle is shown in Figure 7-36. 

MC68030 USER'S MANUAL MOTOROLA 
7-45 

• 



• 

PROCESSOR EXTERNAL OEVICE 

LOCK BUS 

1) ASSERT READ-MODIFY-WRITE CYCLE (RMC) 

I 
START INPUT TRANSFER 

1) ASSERT ECS/DCS FOR ONE-HALF CLOCK 
2) DRIVE R/W TO READ 
3) DRIVE FUNCTION CODE ON FCO-FC2 
4) DRIVE ADDRESS ON AD-A31 
5) DRIVE SIZE (SIZO-SIZl) 
6) CACHE INHIBIT OUT (CIDUT) BECOMES VALID 
7) ASSERT ADDRESS STROBE (AS) 
8) ASSERT DATA STROBE (OS) 
9) ASSERT DATA BUFFER ENABLE (OBEN) r-- PRESENT DATA 

1) DECODE ADDRESS 
2) PLACE DATA ON D0-031 
3) ASSERT SYNCHRONOUS TERMINATION 

TERMINATE INPUT TRANSFER '4----1 (STE RM) 
@ 

1) SAMPLE CACHE INHIBIT IN (CUN) 
2) LATCH OATA IF CAS2 INSTRUCTION ANO 
3) NEGATE AS ANO iiS ONLY ONE OPERANO REAO. 
4) NEGATE DBEN THEN GO TO @: IF 
5) START OATA MOOIFICATION r-- TERMINATE CYCLE OPERANOS 00 NOT MATCH. 

THEN GO TO @: ELSE 

1) REMOVE DATA FROM D0-031 
GOTO@ 

START OUTPUT TRANSFER 2) NEGATE STERM 
~ ® © 1--i 

1) ASSERT ECS/OCS FOR ONE-HALF CLOCK 
2) SET R/W TO WRITE 
3) DRIVE ADDRESS ON AO-A31 (IF DIFFERENT) l 4) DRIVE SIZE (SIZO-SIZl I 

~ 

5) CIOUT BECOMES VALID 
6) ASSERT AS 
7) ASSERT DBEN 
8) PLACE DATA ON D0-031 
9) ASSERT OS (IF WAIT STATES) r-- ACCEPT DATA 

1) OECODE ADDRESS 
2) STORE DATA FROM D0-031 ® 

TERMINATE OUTPUT TRANSFER I-- 3) ASSERT STERM 

IF CAS2 INSTRUCTION AND 
1) NEGATE AS (AND OS) ONLY ONE OPERAND 
2) REMOVE OATA FROM D0-031 WRITIEN. THEN GO TO @ 
3) NEGATE DBEN f-- TERMINATE CYCLE ELSE GO TO (D 

1) NEGATE STERM I-- © 
UNLOCK BUS 

1) NEGATE RMC ~ 

1 I 
START NEXT CYCLE 

Figure 7-35. Synchronous Read-Modify-Write Cycle Flowchart 

MOTOROLA 
7-46 

MC68030 USER'S MANUAL 



SO Sl S2 S3 Si Si S4 S5 S6 S7 

CLK _JLJ-u-1._ ___ JLrL_ 

AO·A31 -V --y--_J\ __ _.A__ 

FCO·FC2 ==x..__ _____ _ 
Sill~ 

SIZO ~ 

R/W 

RMC ~-------

--~ 

---~ 

ECS ----v------~ 

ocs ----v------~ 

iiS~---~ 

iiS~-

CUN~---

00-031 ~ --------<=== 
OBEN j \_} 

Figure 7-36. Synchronous Read-Modify-Write Cycle Timing, CllN Asserted 

State 0 
The processor asserts external cycle start (ECS) and operand cycle start (OCS) in state 
0 (SO) to indicate the beginning of an external operand cycle. The processor also 
asserts RMC in SO to identify a read-modify-write cycle. The processor places a valid 
address on the address bus (AO-A31) and valid function codes on FCO-FC2. The function 
codes select the address space for the operation. Size signals SIZO-SIZ1 become valid 

MC68030 USER'S MANUAL MOTOROLA 
7-47 

• 



• 

in SO to indicate the operand size. The processor drives the read/write (R/W) signal 
high for a read cycle, and sets the cache inhibit out signal (CIOUT) to the value of the 
MMU Cl bit in the address translation descriptor or in the appropriate TTx register. 
The processor drives data buffer enable (DBEN) inactive to disable the data buffers. 

State 1 
One-half clock later, in state 1 (S1 ), the processor asserts the address strobe (AS) 
indicating that the address on the address bus is valid. The processor also asserts the 
data strobe (DS) during S1. In addition, the ECS (and OCS, if asserted) signal is negated 
during S1. 

State 2 
The selected device uses R/W, SIZO-SIZ1, AO-A 1, and CIOUT to place its information 
on the data bus. Any or all of the byte sections (D24-D31, D16-D23, D8-D15, and DO­
D7) are selected by the size signals and AO-A 1. During S2, the processor drives DBEN 
active to enable external data buffers. In systems that use two clock synchronous bus 
cycles, the timing of DBEN may prevent its use. At the beginning of state 2 (S2), the 
processor samples the level of STERM. If STERM is recognized, the processor latches 
the incoming data. If the selected data is not to be cached for the current cycle, or if 
the device cannot supply 32 bits, cache inhibit in (CllN) must be asserted at the same 
time as STERM . 

Since CllN and STERM are synchronous signals, they must meet the synchronous 
input setup and hold times for all rising edges of the clock while AS is asserted. If 
STERM is negated at the beginning of S2, wait states are inserted after S2, and STERM 
is sampled on every rising edge thereafter until it is recognized. Once STERM is 
recognized, data is latched on the next falling edge of the clock (corresponding to the 
beginning of state 3). 

State 3 
The processor negates AS, DS, and DBEN during state 3 (S3). If more than one read 
cycle is required to read in the operand(s), states SO through S3 are repeated accord­
ingly. When finished with the read cycle, the processor holds the address, R/W, and 
FCO-FC2 valid in preparation for the write portion of the cycle. 

The external device must keep its data asserted throughout the synchronous hold 
ti1 .e for data from the beginning of S3. The device must remove the data within one­
clock cycle after asserting STERM to avoid bus contention. It must also negate STERM 
within two clocks after asserting STERM; otherwise the processor may inadvertently 
use STERM for the next bus cycle. 

Idle States 
The processor does not assert any new control signals during the idle states, but it 
may begin the modify portion of the cycle at this time. The R/W signal remains in the 
read mode until state 4 to prevent bus conflicts with the preceding read portion of 
the cycle; the data bus is not driven until state 6. 

State 4 
The processor asserts ECS and OCS in state 4 (S4) to indicate that an external cycle 
is beginning. The processor drives R/W low for a write cycle. CIOUT also becomes 
valid, indicating the state of the MMU Cl bit in the address translation descriptor or 
in the appropriate TT register. Depending on the write operation to be performed, the 
address lines may change during S4. 

MOTOROLA 
7-48 

MC68030 USER'S MANUAL 



State 5 
In state 5 (S5), the processor asserts the address strobe (AS) indicating that the address 
on the address bus is valid. The processor asserts data buffer enable (DBEN) also 
during S5, which can be used to enable external data buffers. 

State 6 
During state 6 (S6), the processor places the data to be written onto the data bus (DO­
D31 ). 

The selected device uses R/W, CLK, SIZO-SIZ1, and AO-A 1 to latch data from the ap­
propriate byte(s) of the data bus (D24-D31, D16-D23, D8-D15, and DO-D7). The size 
signals and AO-A 1 select the data bus sections. The device asserts STERM when it has 
successfully stored the data. If the device does not assert STERM by the rising edge 
of S6, the processor inserts wait states until it is recognized. The processor asserts 
the data strobe (DS) at the end of S6, if wait states are inserted. Note that for zero 
wait state synchronous write cycles, DS is not asserted. 

State 7 
The processor negates AS (and DS, if necessary) during state 7 (S7). It holds the 
address and data valid during S7 to simplify memory interfaces. R/W and FCO-FC2 
also remain valid throughout S7. 

If more than one write cycle is required, states S8 through S11 are repeated for each 
write cycle. 

The external device must negate STERM within two clock periods after asserting it, 
or the processor may inadvertently use STERM for the next bus cycle. 

7.3.7 Burst Operation Cycles 

The MC68030 supports a burst mode for filling the on-chip instruction and data caches. 

The MC68030 provides a set of handshake control signals for the burst mode. When a miss 
occurs in one of the caches, the MC68030 initiates a bus cycle to obtain the required data 
or instruction stream fetch. If the data or instruction can be cached, the MC68030 attempts 
to fill a cache entry. Depending on the alignment for a data access, the MC68030 may 
attempt to fill two cache entries. The processor may also assert the cache burst request 
signal (CBREQ) to request a burst fill operation. That is, the processor can fill additional 
entries in the line. The MC68030 allows a burst of as many as four long words. 

The mechanism that asserts the CBREQ signal for burstable cache entries is enabled by 
the data burst enable (DBE) and instruction burst enable (IBE) bits of the cache control 
register (CACR) for the data and instruction caches, respectively. Either of the following 
conditions cause the MC68030 to initiate a cache burst request (and assert CBREQ) for a 
cacheable read cycle: 

• The logical address and function code signals of the current instruction or data fetch 
do not match the indexed tag field in the respective instruction or data cache. 

• All four long words corresponding to the indexed tag in the appropriate cache are 
marked invalid. 

However, the MC68030 does not assert CBREQ during the first portion of a misaligned 
access if the remainder of the access does not correspond to the same cache line. Refer 
to 6.1.3.1 Single Entry Mode for details. 

MC68030 USER'S MANUAL MOTOROLA 
7-49 

• 



• 

If the appropriate cache is not enabled or if the cache freeze bit for the cache is set, the 
processor does not assert CBREQ. CBREQ is not asserted during the read cycles of any 
read-modify-write operation nor during any write cycles. 

The MC68030 allows burst filling only from 32-bit ports that terminate bus cycles with the 
synchronous termination signal (STEAM) and respond to CBREQ by asserting the cache 
burst acknowledge signal (CBACK). When the MC68030 recognizes STEAM and CBACK 
and it has asserted CBREQ, it maintains address strobe (AS), data strobe (DS), read/write 
(R/W), the address bus (AO-A31 ), function codes (FCO-FC2), and size signals (SIZO-SIZ1) in 
their current state throughout the burst operation. The processor continues to accept data 
on every clock during which STEAM is asserted until the burst is complete or an abnormal 
termination occurs. 

CBACK indicates that the addressed device can respond to a cache burst request by sup­
plying one more long word of data in the burst mode. It can be asserted independently of 
the CBREQ signal, and burst mode is only initiated if both of these signals are asserted 
for a synchronous cycle. If the MC68030 executes a full burst operation and fetches four 
long words, CBREQ is negated after STEAM is asserted for the third cycle, indicating that 
the MC68030 only requests one more long word (the fourth cycle). CBACK can then be 
negated, and the MC68030 latches the data for the fourth cycle and completes the cache 
line fill. 

The following conditions can abort a burst fill: 

• Cache inhibit in (CllN) asserted, 

• Bus error (BERR) asserted, or 

• CBACK negated prematurely. 

The processing of a bus error during a burst fill operation is described in 7.5.1 Bus Errors. 
For the purposes of halting the processor or arbitrating the bus away from the processor 
with a bus request (BR), a burst operation is a single cycle since address strobe (AS) remains 
asserted during the entire operation. If the HALT signal is asserted during a burst operation, 
the processor halts at the end of the operation. Refer to 7.5.3 Halt Operation for more 
information about the halt operation. An alternate bus master requesting the bus with BR 
may become bus master at the end of the operation provided the BR signal is asserted 
early enough to be internally synchronized before another processor cycle begins. Refer 
to 7.7 BUS ARBITRATION for more information about bus arbitration. 

The simultaneous assertion of BERR and HALT during a bus cycle normally indicates that 
the cycle should be retried. However, during the second, third, or fourth cycle of a burst 
operation, this signal combination indicates a bus error condition which aborts the burst 
operation. In addition, the processor remains in the halted state until HALT is negated. For 
information about bus error processing, refer to 7.5.1. Bus Errors. 

Figure 7-37 is a flowchart of the burst operation. The following timing diagrams show 
various burst operations. Figure 7-38 shows burst operations for long word requests with 
two wait states inserted in the first access and one wait cycle inserted in the subsequent 
accesses. Figure 7-39 shows a burst operation that fails to complete normally due to CBACK 
negating prematurely. Figure 7-40 shows a burst operation that is deferred because the 
entire operand does not correspond to the same cache line. Figure 7-41 shows a burst 
operation aborted by the cache inhibit in signal (CllN). Because CBACK corresponds to the 
next cycle, three long words are transferred even though CBACK is only asserted for two 
clock periods. 

MOTOROLA 
7-50 

MC68030 USER'S MANUAL 



PROCESSOR EXTERNAL DEVICE 

ADDRESS DEVICE 

1) ASSERT ECS/OCS FOR ONE-HALF CLOCK 
2) SET R/W TO READ 
3) DRIVE ADDRESS ON AO-A31 
4) DRIVE FUNCTION CODE ON FCO-FC2 
5) DRIVE SIZE (SIZO-SIZl) (FOUR BYTES) 
6) CACHE INHIBIT OUT ICIDUn BECOMES VALID 
7) ASSERT ADDRESS STROBE (AS) 

8) ASSERT CACHE BURST REQUEST (CBREO) 
9) ASSERT OATA STROBE (OSI 

14-t 10) ASSERT OATA BUFFER ENABLE iOBEN) 1----1 PRESENT DATA 

1) OECOOE ADDRESS 
2) PLACE DATA ON 00-031 
3) ASSERT SYNCHRONOUS TERMINATION (STERM) 

ACQUIRE DATA ~ 4) ASSERT CACHE BURST ACKNOWLEDGE (CBACK) 

1) SAMPLE CACHE INHIBIT IN (CllNJ 
ANO CACHE BURST ACKNOWLEDGE (CBACK) 

21 LATCH DATA 1------i TERMINATE CYCLE 

I J REMOVE DATA FROM 00-031 
2) NEGATE STERM (If NECESSARY! 
3) NEGATE CBACK (IF NECESSARY) 

ENO OF BURST 
WHEN 4 LONG WORDS TRANSFERRED J l UNTIL 4 LONG WORDS TRANSFERRED 

11 NEGATE AS ANO OS 
2) NEGATE OBEN 

l 
START NEXT CYCLE 

Figure 7-37. Burst Operation Flowchart - Four Long Words Transferred 

The burst operation sequence begins with states 0-3, which are very similar to those for 
a synchronous read cycle except that CBREQ is asserted. States 4-9 perform the final three 
reads for a complete burst operation. 

State O 
The burst operation starts with state 0 (SO). The processor drives external cycle start 
(ECS) low, indicating the beginning of an external cycle. When the cycle is the first 
cycle of a read operation, operand cycle start (OCS) is driven low at the same time. 
During SO, the processor places a valid address on the address bus (AO-A31) and valid 
function codes on FCO-FC2. The function codes select the address space for the cycle. 
The processor drives read/write (R/W) high indicating a read cycle, and drives data 
buffer enable (DBEN) inactive to disable the data buffers. Size signals SIZ1 and SIZO 
become valid, indicating the number of operand bytes to be transferred. Cache inhibit 
out (CIOUT) also becomes valid, indicating the state of the Cl bit in the address trans­
lation descriptor or in the appropriate TTx register. 

State 1 
One-half clock later, in state 1 (S1 ), the processor asserts the address strobe (AS) 
indicating that the address on the address bus is valid. The processor also asserts the 

MC68030 USER'S MANUAL MOTOROLA 
7-51 



• 

CLK 

A4-A31 

A3 

AO-A2 

FCO-FC2 

SIZO-SIZl 

R/W 

ECS 

ocs 

AS 

os 

STE RM 

CllN 

CIOUT 

CBREO 

CBACK 

D0-031 

DBEN 

SO S 1 S2 Sw Sw Sw Sw Sw Sw S3 Sw Sw S4 S5 Sw Sw SB S7 Sw Sw SB S9 

01 10 11 

VALUE OF A3:A2 INCREMENTED BY THE SYSTEM HARDWARE 

Figure 7-38. Long-Word Operand Request from $07 with 
Burst Request and Wait Cycle 

00 

data strobe (DS) during S1. CBREQ is also asserted, indicating that the MC68030 can 
perform a burst operation into one of its caches and can read in four long words. In 
addition, the ECS (and OCS,if asserted) signal is negated during S1. 

State 2 
The selected device uses R/W, SIZO-SIZ1, AO-A 1, and CIOUT to place the data on the 
data bus. (The first cycle must supply the long word at the corresponding long-word 

MOTOROLA 
7-52 

MC68030 USER'S MANUAL 



so S2 S4 S6 

CLK 

A4-A31 =:x 
A3 ~ 

AO-A2 :J 
FCO-FC2 =x 

SIZO-SIZl -~-..a..----------
R/W =.J 

0 
I , _____ ,f 

_____ J 

' r 

I 
I 
I 

\ I r 
-.----. I I I ---

CBACK I \I I v VALUE OF CBACK 
I_ ______ ~ ___ -j CONTROL NEXT CYCLE 

00-031 

OBEN j \ 0 r 
01 ID I 11 

VALUE OF AJ:A2 INCREMENTED BY THE SYSTEM HARDWARE 

NOTES: 
1. Assertion of CBACK causes data to be placed on 00-031. 
2. Continued assertion of CBACK causes data to be placed on 00-031. 
3. Negation of CBACK cause AS to be negated. 

Figure 7-39. Long-Word Operand Request from $07 with 
Burst Request - CBACK Negated Early 

boundary.) All of the byte sections (024-031, 016-023, 08-015, and D0-07) of the data 
bus must be driven since the burst operation latches 32 bits on every cycle. During 
S2, the processor drives DBEN active to enable external data buffers. In systems that 
use two-clock synchronous bus cycles, the timing of DBEN may prevent its use. At 
the beginning of state 2 (S2), the processor tests the level of STEAM. If STEAM is 
recognized, the processor latches the incoming data at the end of S2. CBACK must 

MC68030 USER'S MANUAL MOTOROLA 
7-53 



SO Sl S2 Sw Sw S3 SO Sl S2 Sw Sw S3 Sw Sw S4 SS Sw Sw S6 S7 Sw Sw SB SS 

\_) 

--~~~r--\-~~~~~~~~~~~~~~~~ 

~~-r--\ r 

PREVIOUS CACHE BLOCK + NEXT CACHE BLOCK - START BURST CYCLE 

Figure 40. Long-Word Operand Request from $OE - Burst Fill Deferred 

be asserted when STERM is recognized in order for the burst operation to proceed. 
If the data for the current cycle is not to be cached, cache inhibit in (CllN) must be 
asserted at the same time as STERM. The assertion of CllN also has the effect of 
aborting the burst operation. 

Since CllN, CBACK, and STERM are synchronous signals, they must meet the syn­
chronous input setup and hold times for all rising edges of the clock while AS is 

MOTOROLA 
7-54 

MC68030 USER'S MANUAL 



SO S2 S4 

CLK _s-L__fl_fl__ 

AO-A31 =x..__ _____ _ 
FCO-FC2 =x ________ _ 

SIZl ~ 

SIZO ~ 

R!W =.J 
ECS~ 

ocs~ 

\....._ ____ r 
\ I 

\,__ _ __,/ 
\....._ _ __,! 

DO-D31~ 

01 

''----1' 
10 1 

BURST MODE ENDS. 
DATA NOT CACHED 

VALUE OF A3:A2 INCREMENTED BY THE SYSTEM HARDWARE 

Figure 41. Long-Word Operand Request from $07 with 
Burst Request - CBACK and CINN Asserted 

asserted. If STERM is negated at the beginning of S2, wait states are inserted after 
S2, and STERM is sampled on every rising edge of the clock thereafter until it is 
recognized. Once STERM is recognized, data is latched on the next falling edge of the 
clock (corresponding to the beginning of state 3). 

MC68030 USER'S MANUAL MOTOROLA 
7c55 



-

State 3 
The processor maintains AS, DS, and DBEN asserted during state 3 (S3). It also holds 
the address valid during S3 for continuation of the burst. R/W, SIZ1 and SIZO, and 
FCO-FC2 also remain valid throughout S3. 

The external device must keep the data driven throughout the synchronous hold time 
for data from the beginning of S3. The device must negate STERM within one clock 
after asserting STERM; otherwise the processor may inadvertently use STERM pre~ 
maturely for the next burst access. STERM need not be negated if subsequent accesses 
do not require wait cycles. 

State 4 
At the beginning of state 4 (S4), the processor tests the level of STERM. This state 
signifies the beginning of burst mode, and the remaining states correspond to burst 
fill cycles. If STERM is recognized, the processor latches the incoming data at the end 
of S4. This data corresponds to the second long word of the burst. If STE RM is negated 
at the beginning of S4, wait states are inserted instead of S4 and S5, and STERM is 
sampled on every rising edge of the clock thereafter until it is recognized. As for 
synchronous cycles, the states of CBACK and CllN are latched at the time STERM is 
recognized. The assertion of CBACK at this time indicates that the burst operation 
should continue, and the assertion of CllN indicates that the data latched at the end 
of S4 should not be cached and that the burst should abort. 

State 5 
The processor maintains all the signals on the bus driven throughout state 5 for 
continuation of the burst. The same hold times for STERM and data as described for 
S3 apply here. 

State 6 
This state is identical to state 4 except that once STERM is recognized, the third long 
word of data for the burst is latched at the end of S6. 

State 7 
During this state, the processor negates the CBREQ signal, and the memory device 
may negate CBACK. Aside from this, all other bus signals driven by the processor 
remain driven. The same hold times for STERM and data as described for S3 apply 
here as well. 

State 8 
This state is identical to state 4 except that CBREQ is negated, indicating that the 
processor cannot continue to accept more data after this. The data latched at the end 
of S8 corresponds to the fourth long word of the burst. 

State 9 
The processor negates AS, DS, and DBEN during SS. It holds the address, R/W, SIZO, 
SIZ1, and FCO-FC2 valid throughout S9. The same hold time requirements for data 
described for S3 apply here. 

Note that the address bus of the MC68030 remains driven to a constant value for the 
duration of a burst transfer operation (including the first transfer before burst mode is 
entered). If an external memory system requires incrementing of the long word base 
address in order to supply successive long words of information, this function must be 
performed by external hardware. Additionally, in the case of burst transfers that cross a 

MOTOROLA 
7-56 

MC68030 USER'S MANUAL 



16-byte boundary (i.e., the first long word transferred is not located at A3/A2 = 00) lhe. 
external hardware must correctly control the continuation or termination of the burst trans­
fer as desired. The burst may be terminated by negating CBACK during the transfer of the 
most significant long word of the 16-byte image (A3/A2 = 11) or may be continued (with 
CBACK asserted) by providing the long word located at A3/A2 = 00 (i.e., the count sequence 
wraps back to zero and continues as necessary). The MC68030's caches assume the higher 
order address lines, A4-A31, remain unchanged as the long word accesses wrap back 
around to A3/A2 = 00. 

7.4 CPU SPACE CYCLES 

The function codes (FCO-FC2) select user and supervisor program and data areas, as listed 
in Table 4-1. The area selected by function code FCO-FC2 = $7 is classified as the CPU space. 
The interrupt acknowledge, breakpoint acknowledge, and coprocessor communication cycles 
described in the following sections utilize CPU space. 

The CPU space type is encoded on address signals A 16-A 19 during a CPU space operation 
and indicates the function that the processor is performing. On the MC68030, three of the 
encodings are implemented as shown in Figure 7-42. All unused values are reserved by 
Motorola for future additional CPU space types. 

BREAKPOINT 
ACKNOWLEDGE 

COPROCESSOR 
COMM. 

INTERRUPT 
ACKNOWLEDGE 

FUNCTION 
COOE 

AOORESS BUS 

31 

000000000000 0000 00000000000 

31 13 

0000000000000010 CPIO 00000000 

31 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

CPU SPACE 
TYPE FIELD 

Figure 7-42. MC68030 CPU-Space Address Encoding 

7.4.1 Interrupt Acknowledge Bus Cycles 

BKPT # 0 0 

CP REG 

1 0 

LEVEL 

When a peripheral device signals the processor (with the IPLO-IPL2 signals) that the device 
requires service, and the internally synchronized value on these signals indicates a higher 
priority than the interrupt mask in the status register (or that a transition has occurred in 
the case of a level 7 interrupt), the processor makes the interrupt a pending interrupt. Refer 
to 8.1.9 Interrupt Exceptions for details on the recognition of interrupts. 

The MC68030 takes an interrupt exception for a pending interrupt within one instruction 
boundary (after processing any other pending exception with a higher priority). The fol­
lowing paragraphs describe the various kinds of interrupt acknowledge bus cycles that can 
be executed as part of interrupt exception processing. 

MC68030 USER'S MANUAL MOTOROLA 
7-57 



• 

7.4.U INTERRUPT ACKNOWLEDGE CYCLE - TERMINATED NORMALLY. When the 
MC68030 processes an interrupt exception, it performs an interrupt acknowledge cycle to 
obtain the number of the vector that contains the starting location of the interrupt service 
routine. 

Some interrupting devices have programmable vector registers that contain the interrupt 
vectors for the routines they use. The following paragraphs describe the interrupt acknowl­
edge cycle for these devices. Other interrupting conditions or devices cannot supply a 
vector number, and use the autovector cycle described in 7.4.1.2 AUTO VECTOR INTERRUPT 
ACKNOWLEDGE CYCLE. 

The interrupt acknowledge cycle is a read cycle. It differs from the asynchronous read cycle 
described in 7.3.1 Asynchronous Read Cycle or the synchronous read cycle described in 
7.3.4 Synchronous Read Cycle in that it accesses the CPU address space. Specifically, the 
differences are: 

1. The function codes (FCO-FC2) are set to seven (FCO/FC1/FC2=111) for CPU address 
space. 

2. Address signals A 1, A2, and A3 are set to the interrupt request level (the inverted 
values of IPLO, IPL 1, and IPL2, respectively). 

3. The CPU space type field (address signals A 16-A 19) is set to $F, the interrupt ac­
knowledge code. 

4. Other address signals (A20-A31, A4-A 15, and AO) are set to 1. 

The responding device places the vector number on the data bus during the interrupt 
acknowledge cycle. Beyond this, the cycle is terminated normally with either STERM or 
DSACKx. Figure 7-43 is the flowchart of the interrupt acknowledge cycle. 

PROCESSOR INTERRUPTING OEVICE 

ACKNOWLEDGE INTERRUPT r---r REQUEST INTERRUPT 

1) INTERRUPT PENOING (IPENO) RECOGNIZED BY CURRENT INSTRUCTION -
WAIT FOR INSTRUCTION BOUNOARY 

21 SET RtW TO REAO 
3) SET FUNCTION COOE TO CPU SPACE 
4) PlACE INTERRUPT LEVEL ON A 1. A2. ANO A3. 

TYPE FIELD = INTERRUPT ACKNOWLEDGE (IACK) 
5) SET SIZE TO BYTE 
6) NEGATE IPENO 
71 ASSERT ADDRESS STROBE IASI ANO DATA STROBE !OSI ~ PROVIDE VECTOR INFORMATION 

1 I PlACE VECTOR NUMBER ON LEAST SIGNIFICANT BYTE 
OF DATA PORT (OEPENOS ON PORT SIZE) 

2) ASSERT OATA TRANSFER ANO SIZE ACKNOWLEDGE (OSACKx) 
- OR-

ACQUIRE VECTOR NUMBER i.--- ASSERT SYNCHRONOUS TERMINATION (STERM) 

1) lATCH VECTOR NUMBER 
2) NEGATE AS ANO iiS 

~ RELEASE 

1 1) REMOVE VECTOR NUMBER FROM DATA BUS 

CONTINUE INTERRUPT EXCEPTION PROCESSING 
2) NEGATE OSACKx 

Figure 7-43. Interrupt Acknowledge Cycle Flowchart 

MOTOROLA 
7-58 

MC68030 USER'S MANUAL 



Figure 7-44 shows the timing for an interrupt acknowledge cycle terminated witn DSACKx~ .. 

MC68030 USER'S MANUAL MOTOROLA 
7-59 



-

7.4.1.2 AUTOVECTOR INTERRUPT ACKNOWLEDGE CYCLE. When the interrupting device 
cannot supply a vector number, it requests an automatically generated vector, or "auto­
vector". Instead of placing a vector number on the data bus and asserting the data transfer 
and size acknowledge signals (DSACKx) or the synchronous termination signal (STERM), 
the device asserts the autovector signal (AVEC) to terminate the cycle. Neither STERM or 
DSACKx may be asserted during an interrupt acknowledge cycle terminated by AVEC. 

The vector number supplied in an autovector operation is derived from the interrupt level 
of the current interrupt. When the AVEC signal is asserted instead of DSACK or STERM 
during an interrupt acknowledge cycle, the MC68030 ignores the state of the data bus and 
internally generates the vector number, the sum of the interrupt level plus 24 ($18). There 
are seven distinct autovectors that can be used, corresponding to the seven levels of 
interrupt available with signals IPLO-IPL2. Figure 7-45 shows the timing for an autovector 
operation. 

7.4.1.3 SPURIOUS INTERRUPT CYCLE. When a device does not respond to an interrupt 
acknowledge cycle with AVEC, STERM, or DSACKx, the external logic typically returns the 
bus error signal (BERR). The MC68030 automatically generates the spurious interrupt vector 
number, 24, instead of the interrupt vector number in this case. If the halt signal HALT is 
also asserted, the processor retries the cycle. 

7 .4.2 Breakpoint Acknowledge Cycle 

The breakpoint acknowledge cycle is generated by the execution of a breakpoint instruction 
(BKPT). The breakpoint acknowledge cycle allows the external hardware to provide an 
instruction word directly into the instruction pipeline as the program executes. This cycle 
accesses the CPU space, with a type field of zero, and provides the breakpoint number 
specified by the instruction on address lines A2-A4. If the external hardware terminates 
the cycle with DSACKx or STERM, the data on the bus (an instruction word) is inserted 
into the instruction pipe replacing the breakpoint opcode, and is executed after the break­
point acknowledge cycle completes. The breakpoint instruction requires a word to be 
transferred so if the first bus cycle accesses an 8-bit port, a second cycle is required. If the 
external logic terminates the breakpoint acknowledge cycle with BERR (i.e., no instruction 
word available) the processor takes an illegal instruction exception. Figure 7-46 is a flow­
chart of the breakpoint acknowledge cycle. Figure 7-47 shows the timing for a breakpoint 
acknowledge cycle that returns an instruction word. Figure 7-48 shows the timing for a 
breakpoint acknowledge cycle that signals an exception. 

7.4.3 Coprocessor Communication Cycles 

The MC68030 coprocessor interface provides instruction-oriented communication between 
the processor and as many as seven coprocessors. The bus communication required to 
support coprocessor operations uses the MC68030 CPU space, with a type field of $2. 

Coprocessor accesses use the MC68030 bus protocol except that the address bus supplies 
access information rather than a 32-bit address. The CPU space type field (address signals 
A16-A19) for a coprocessor operation is $2. Address signals A13-A15 contain the copro­
cessor identification number (Cp-ID), and address signals AO-A4 specify the coprocessor 
interface register to be accessed. Coprocessor accesses to a Cp-ID of zero correspond to 

MOTOROLA 
7-60 

MC68030 USER'S MANUAL 



Figure 7-45. Autovector Operation Timing 

MMU instructions and are not generated by the MC68030 as a result of the coprocessor 
interface. These cycles can only be generated by the MOVES instruction. Refer to SECTION 
10 COPROCESSOR INTERFACE DESCRIPTION for further information. 

7.5 BUS EXCEPTION CONTROL CYCLES 

The MC68030 bus architecture requires assertion of either DSACKx or STERM from an 
external device to signal that a bus cycle is complete. DSACKx, STERM, or AVEC is not 

MC68030 USER'S MANUAL MOTOROLA 
7-61 



-

PROCESSOR EXTERNAL DEVICE 

BREAKPOINT ACKNOWLEDGE 

1 J SET R/W TO READ 
2) SET FUNCTION CODE TO CPU SPACE 
3) PLACE CPU SPACE TYPE 0 ON A16-A19 
4) PLACE BREAKPOINT NUMBER ON A2-A4 
5) SET SIZE TO WORD 
6) ASSERT ADDRESS STROBE (AS) AND DATA STROBE (OS) ~ 1) PLACE REPLACEMENT OPCODE ON DATA BUS 

2) ASSERT DATA TRANSFER AND SIZE ACKNOWLEDGE (DSACKx) 
OR SYNCHRONOUS TERMINATION (STEAM) 

- OR -

IF DSACKx OR STEAM ASSERTED: 14--- 11 ASSERT BUS ERROR (BERRI TO INITIATE EXCEPTION PROCESSING 
1) LATCH DATA 
2) NEGATE AS AND OS 
31 GOTO@ 

IF BERR ASSERTED: 
1) NEGATE AS AND OS 
2) GOTO@ @ ® 

l l 
1) PLACE LATCHED DATA IN INSTRUCTION PIPELINE 

SLAVE NEGATES DSACKx. STERM OR BERR 
2) CONTINUE PROCESSING 

J 1) INITIATE ILLEGAL INSTRUCTION PROCESSING L 
J 

Figure 7-46. Breakpoint Operation Flow 

asserted in these cases: 

• The external device does not respond. 

• No interrupt vector is provided. 

• Various other application dependent errors occur. 

External circuitry can provide the bus error signal (BERR) when no device responds by 
asserting DSACKx, STE RM, or AVEC within an appropriate period oftime after the processor 
asserts the address strobe (AS). This allows the cycle to terminate and the processor to 
enter exception processing for the error condition. 

The memory management unit (MMU) can also detect an internal bus error. This occurs 
when the processor attempts to access an address in a protected area of memory (a user 
program attempts to access supervisor data, for example), or after the MMU receives a 
bus error while searching the address table for an address translation description. 

Another signal that is used for bus exception control is the halt signal (HALT). This signal 
can be asserted by an external device for debugging purposes to cause single bus cycle 
operation, or (in combination with BERR) a retry of a bus cycle in error. 

In order to properly control termination of a bus cycle for a retry or a bus error condition, 
DSACKx, BERR, and HALT can be asserted and negated with the rising edge of the MC68030 
clock. This assures that when two signals are asserted simultaneously, the required setup 
time (#47A) and hold time (#478) for both of them is met for the same falling edge of the 

MOTOROLA 
7-62 

MC68030 USER'S MANUAL 



MC68030 USER'S MANUAL MOTOROLA 
7-63 



-

so S2 Sw Sw Sw S4 so S2 S4 

CLK ____ __n_n__JL_ 

AO-A31 =x ---=x 
FCO-FC2 =x ----=x 

SIZO-SIZl =::x ____ =x 
R/W ----, 
ECS \._/ --~ 

ocs \._/ ----~ 

AS ~ I ---~ 

as ~ I ----~ 

DSACKl 

DSACKO 

DBEN =1 \ I ---~ 

00-031 

BERR \ r----
HALT 

I -+ INTERNAL +-r-- READ WITH BUS ERROR ASSERTED PROCESSING STACK WRITE 

Figure 7-48. Breakpoint Acknowledge Cycle Timing (Exception Signaled) 

processor clock. (Refer to SECTION 13 ELECTRICAL CHARACTERISTICS for timing require­
ments.) This or some equivalent precaution should be designed into the external circuitry 
that provides these signals. 

The acceptable bus cycle terminations for asynchronous cycles are summarized in relation 
to DSACKx assertion as follows (case numbers refer to Table 7-8). 

Normal Termination: 
DSACKx is asserted, BERR, and HALT remain negated (case 1 ). 

Halt Termination: 
HALT is asserted at same time, or before DSACKx, and BERR remains negated 
(case 2). 

Bus Error Termination: 
BEiiR is asserted in lieu of, at the same time, or before DSACKx (case 3) or after 
DSACKx (case 4) and HALT remains negated; BERR is negated at the same time 
or after DSACKx. 

MOTOROLA 
7-64 

MC68030 USER'S MANUAL 



Table 7-8. DSACK, BERR, and HALT Assertion Results 

Asserted on Rising 
Case Control Edge of State Result 
No. Signal N N+2 

1 DSACKx A s Normal cycle terminate and continue. 
BERR NA NA 
HALT NA x 

2 DSACKx A s Normal cycle terminate and halt. Continue when HALT negated. 
BERR NA NA 
HALT A/S s 

3 DSACKx NA/A x Terminate and take bus error exception, possibly deferred. 
BERR A s 
HALT NA NA 

4 DSACKx A x Terminate and take bus error exception, possibly deferred. 
BERR NA A 
HALT NA NA 

5 DSACKx NA/A x Terminate and retry when HALT negated. 
BERR A s 
HALT A/S s 

--
6 DSACKx A x Terminate and retry when HALT negated. 

BERR NA A 
HALT NA A 

LEGEND: 
N - The number of current even bus state (e.g., S2, S4, etc.) 
A - Signal is asserted in this bus state 
NA- Signal is not asserted in this state 
X - Don't care 
S - Signal was asserted in previous state and remains asserted in this state 

Retry Termination: 
HALT and SERR are asserted in lieu of, at the same time, or before DSACKx (case 
5); or after DSACKx (case 6); BERR is negated at the same time or after DSACKx, 
HALT may be negated at the same time, or after BERR. 

Table 7-8 shows various combinations of control signal sequences and the resulting bus 
cycle terminations. To ensure predictable operation, BERR and HALT should be negated 
according to specifications #28 and #57 in SECTION 13 ELECTRICAL CHARACTERISTICS. 
DSACKx, BERR, and HALT may be negated after AS. If DSACKx or BERR remain asserted 
into S2 of the next bus cycle, that cycle may be terminated prematurely. 

The termination signal for a synchronous cycle is the synchronous termination signal 
(STEAM). An analogous set of bus cycle termination cases exists in relationship to STE RM 
assertion. Note that STEAM and DSACKx must never both be asserted in the same cycle. 
STEAM has setup time (#60) and hold time (#61) requirements relative to each rising edge 
of the processor clock while AS is asserted. Bus error and retry terminations during burst 
cycles operate as described in 6.1.3.2 BURST MODE FILLING, 7.5.1 Bus Error, and 7.5.2 
Retry Operation. 
For STEAM, the bus cycle terminations are summarized as follows (case numbers refer to 
Table 7-9). 

Normal Termination: 
STEAM is asserted, BERR, and HALT remain negated (case 1 ). 

Halt Termination: 
HALT is asserted before STEAM and BERR remains negated (case 2). 

MC68030 USER'S MANUAL MOTOROLA 
7-65 



-

Bus Error Termination: 
SERR is asserted in lieu of, at the same time, or before STERM (case 3) or after 
STERM (case 4) and HALT remains negated; BERR is negated at the same time 
or after STERM. 

Retry Termination: 
HALT and SERR are asserted in lieu of, at the same time, or before STERM (case 
5); or after STERM (case 6); BERR is negated at the same time or after STERM, 
HALT may be negated at the same time, or after BERR. 

Table 7-9. STEAM, BERR, and HALT Assertion Results 

Asserted on Rising 
Case Control Edge of State Result 
No. Signal N N+2 

1 STE RM A - Normal cycle terminate and continue. 
SERR NA -
HALT NA -

2 STE RM NA A Normal cycle terminate and halt. Continue when HALT negated. 
SERR NA NA 
HALT AIS s 

3 STE RM NA A Terminate and take bus error exception, possibly deferred. 
SERR AIS s 
HALT NA NA 

4 STE RM A - Terminate and take bus error exception, possibly deferred. 
SERR A -

HALT NA -
5 STE RM NA A Terminate and retry when HALT negated. 

SERR A s 
HALT AIS s 

6 STE RM A - Terminate and retry when HALT negated. 
SERR A -
HALT A -

LEGEND: 
N - The number of current even bus state (e.g., S2, S4, etc.) 
A - Signal is asserted in this bus state 
NA- Signal is not asserted in this state 
X - Don't care 
S - Signal was asserted in previous state and remains asserted in this state 
- - State N + 2 not part of bus cycle 

EXAMPLE A: 
A system uses a watch-dog timer to terminate accesses to an unpopulated address 
space. The timer asserts BERR after time out (case 3). 

EXAMPLE B: 
A system uses error detection and correction on RAM contents. The designer may: 

1. Delay DSACKx until data is verified, and assert BERR and HALT simultaneously 
to indicate to the processor to automatically retry the error cycle (case 5), or if 
data is valid assert DSACKx (case 1 ). 

2. Delay DSACKx until data is verified, and assert BERR with or without DSACKx if 
data is in error (case 3). This initiates exception processing for software handling 
of the condition. 

3. Return DSACKx prior to data verification. If data is invalid, BERR is asserted on 
the next clock cycle (case 4). This initiates exception processing for software 
handling of the condition. 

MOTOROLA 
7-66 

MC68030 USER'S MANUAL 



4. Return DSACKx prior to data verification; if data is invalid, assert BERR and HALT 
on the next clock cycle (case 6). The memory controller can then correct the RAM 
prior to or during the automatic retry. 

7.5.1 Bus Errors 

The bus error signal can be used to abort the bus cycle and the instruction being executed. 
BERR takes precedence over DSACKx or STERM provided it meets the timing constraints 
described in SECTION 13 ELECTRICAL CHARACTERISTICS. If BERR does not meet these 
constraints, it may cause unpredictable operation of the MC68030. If BERR remains asserted 
into the next bus cycle, it may cause incorrect operation of that cycle. 

When the bus error signal is issued to terminate a bus cycle, the MC68030 may enter 
exception processing immediately following the bus cycle, or it may defer processing the 
exception. The instruction prefetch mechanism requests instruction words from the bus 
controller and the instruction cache before it is ready to execute them. If a bus error occurs 
on an instruction fetch, the processor does not take the exception until it attempts to use 
that instruction word. Should an intervening instruction cause a branch, or should a task 
switch occur, the bus error exception does not occur. 

The bus error signal is recognized during a bus cycle in either of the following cases: 

• DSACKx (or STERM) and HALT are negated and BERR is asserted. 

• HALT and BERR are negated and DSACKx is asserted. BERR is then asserted within 
one clock cycle (HALT remains negated). 

• BERR is asserted and recognized on the next falling clock edge following the rising 
clock edge on which STERM is asserted and recognized (HALT remains negated). 

When the processor recognizes a bus error condition, it terminates the current bus cycle 
in the normal way. Figure 7-49 shows the timing of a bus error for the case in which neither 
DSACKx nor STERM is asserted. Figure 7-50 shows thetiming for a bus error that is asserted 
after DSACKx. Exceptions are taken in both cases. (Refer to 8.1.2 Bus Error Exception for 
details of bus error exception processing.) When BERR is asserted during a read cycle that 
supplies data to either on-chip cache, the data in the cache is marked invalid. However, 
when a write cycle that writes data into the data cache results in an externally generated 
bus error, the data in the cache is not marked invalid. 

In the second case, where BERR is asserted after DSACKx is asserted, BERR must be 
asserted within specification #48 (refer to SECTION 13 ELECTRICAL CHARACTERISTICS) 
for purely asynchronous operation, or it must be asserted and remain stable during the 
sample window, defined by specifications #27A and #478, around the next falling edge 
of the clock after DSACKx is recognized. If BERR is not stable at this time, the processor 
may exhibit erratic behavior. BERR has priority over DSACKx. In this case, data may be 
present on the bus, but may not be valid. This sequence may be used by systems that 
have memory error detection and correction logic and by external cache memories. 

The assertion of BERR described in the third case (recognized after STERM) has require­
ments similar to those described in the preceding paragraph. BERR must be stable through­
out the sample window for the next falling edge of the clock, as defined by specifications 
#27A and #28A. Figure 7-51 shows the timing for this case. 

MC68030 USER'S MANUAL MOTOROLA 
7-67 



MOTOROLA 
7-68 

MC68030 USER'S MANUAL 



so S2 Sw Sw S4 so S2 S4 

CLK ____ SL.JL....IL._ 

AO-A31 =x x======x 
FCO-FC2 =x x::=~====x 

SIZO-SIZl =x x::======x 
R/W -"\ ,----, 
ECS -v ---~ 

ocs -v ---~ 

liS ~ I ---~ 

as ----~ 

OSACKl _J \ ,----
OSACKO _J \ ,----

OBEN ~ \ I --~ 

00-031 

IPLO-IPL2 

BERR J \ 1----
HALT 

~ -+ INTERNAL +-WRITE WITH BUS ERROR ASSERTED PROCESSING STACK WRITE 

Figure 7-50. Late Bus Error with DSACKX 

A bus error occurring during a burst fill operation is a special case. If a bus error occurs 
during the first cycle of a burst, the data is ignored, the entire cache line is marked invalid 
and the burst operation is aborted. If the cycle is for an instruction fetch, a bus error 
exception is made pending. This bus error is processed only if the execution unit attempts 
to use either of the two words latched during the bus cycle. If the cycle is for a data fetch, 
the bus error exception is taken immediately. Refer to SECTION 11 INSTRUCTION EXE­
CUTION TIMING for more information about pipeline operation. 

When a bus error occurs after the burst mode has been entered (that is, on the second 
access or later), the processor terminates the burst operation, and the cache entry corre­
sponding to that cycle is marked invalid but the processor does not take an exception, as 
shown in Figure 7-52. If the second cycle is for a portion of a misaligned operand fetch, 

MC68030 USER'S MANUAL MOTOROLA 
7-69 



-

CLK 

AO-A31 

FCO-FC2 

SIZO-SIZl 

so S2 Sw Sw Sw S3 so S2 

____ ..JL..fL_ 

_____ x=====~--=x 
...__ ____ x=====~....___-=x 

=:x ...___ _____ x=====~--
R/W ~ ~---~~~~~~~~__,r------"""'\_~~~ 

ECS~ 

ocs~ 

AS 

as 

STERM :J 
OBEN :J 

00-031 

BERR :J 
HALT 

---~ 

---~ 

----~ 

\_ 

\ r---
\ ~-----'I --~ 

----~ 

\ ,----

I---""""""'"''""°'""'""-+ .~~=G +- "'""'ITT 
Figure 7-51. Late Bus Error with STERM - Exception Taken 

the processor runs another read cycle for the second portion with CBREQ negated, as 
shown in Figure 7-53. If BERR is asserted again, the MC68030 then takes an exception. The 
MC68030 supports late bus errors during a burst fill operation; the timing is the same 
relative to STERM and the clock as for a late bus error in a normal synchronous cycle. 

7.5.2 Retry Operation 

When the BERR and HALT signals are both asserted by an external device during a bus 
cycle, the processor enters the retry sequence. A delayed retry can also occur, similar to 
the delayed bus error signal described previously, both for synchronous and asynchronous 
cycles. 

The processor terminates the bus cycle, places the control signals in their inactive state 
and does not begin another bus cycle until the HALT signal is negated by external logic. 
After a synchronization delay, the processor retries the previous cycle using the same 

MOTOROLA 
7-70 

MC68030 USER'S MANUAL 



so S2 S4 SS 

CU< 

A4-A31 =:x 
A3 \ 

AO-AZ :J 
FCO-FC2 =:x 

SIZO·SIZl \ 

R/W :J 
ECS 

ocs 

AS \ r 
as \ r 

STE RM 

CllN 

CIOUT 

CBREO \ r 
CBACK \ r 

00-031 

DBEN _J \ r 
SERR _J \__ 

HALT 

I 
~ LATE SERR ENOS BURST; 

NO EXCEPTION TAKEN 
0111 1000 0 

VALUE OF A3:AO INCREMENTED BY THE SYSTEM HARDWARE 

Figure 7-52. Long-Word Operand Request - Late BERR on Third Access 

MC68030 USER'S MANUAL MOTOROLA 
7-71 



-

CU( 

AO·AJI ==x.__ _________________ ~ AJ:AO ~ 1000 

FCO-FC2 ==x-----------------x:==:::::x-----------
SIZO·SIZI 

R/W 

m:s 

AS~ '-~~~~~~~~~~~--'~-

iiS~ '-~~~~~~~~~~~--'~-~~~~~~~~~~ 
OSACKI 

DSACKO 

STE RM 

CiiN 

CIOUT 

CBREO ~ 

CBACK 

00·031 ) >----------~~>--------~----------......(~ 

OBEN j \ 
BERR 

HALT 

I BURST ABORTED t INTERNAL t RERUN CYCLE TO GET lAST 
BUS ERROR ASSERTED PROCESSING J BYTES OF OPERAND 

0111 1000 

VALUE OF AJ:AO INCREMENTED BY THE SYSTEM HARDWARE 

Figure 7-53. Long-Word Operand Request - BERR on Second Access 

access information (address, function code, size, etc.) The SERR signal should be negated 
before S2 of the read cycle in order to ensure correct operation of the retried cycle. Figure 
7-54 shows a retry operation of an asynchronous cycle, and Figure 7-55 shows a retry 
operation of a synchronous cycle. 

The processor retries any read or write cycle of a read-modify-write operation separately; 
the read-modify-write cycle signal (RMC) remains asserted during the entire retry sequence. 

On the initial access of a burst operation, a retry (indicated by the assertion of SERR and 
HALT) causes the processor to retry the bus cycle and assert CSREQ again. Figure 7-56 

MOTOROLA 
7-72 

MC68030 USER'S MANUAL 



SO Sl S2 S3 Sw Sw S4 S5 

CLK 

AO-A31 

FCO-FC2 

SIZO-SIZl 

R/W 

Ecs-V 

ocs-V 

~ ~--------'/ 
\...__ _ ___,/ 

so 

v 
v 

S2 S4 

\ ....... __ ___,/ 

~ 

00-031 ~;i-----< ..... ____ ...... ~.·-----DA_TA_Bu_s_ND_T_DR_1v_EN _____ •-11ik..,. ___ _ 

f.- WRITE CYCLE RETRY SIGNALED ___. .... 1 .... ----- HALT ------mo!lo ... 1 .. -- RETRY CYCLE -----.j 
Figure 7-54. Asynchronous Late Retry 

shows a late retry operation that causes an initial burst operation to be repeated. However, 
signaling a retry with simultaneous BERR and HALT during the second, third, or fourth 
cycle of a burst operation does not cause a retry operation, even if the requested operand 
is misaligned. Assertion of BERR and HALT during a subsequent cycle of a burst operation 
causes independent BERR and HALT operations. The external bus activity remains halted 
until HALT is negated and the processor acts as previously described for the bus error 
during a burst operation. 

Asserting the bus request signal (BR) along with BERR and HALT provides a relinquish 
and retry operation. The MC68030 does not relinquish the bus during a read-modify-write 
operation. Any device that requires the processor to give up the bus and retry a bus cycle 
during a read-modify-write cycle must assert BERR and BR only (HALT must not be in­
cluded). The bus error handler software should examine the read-modify-write bit in the 
special status word (refer to 8.2.1 Special Status Word) and take the appropriate action to 
resolve this type of fault when it occurs. 

MC68030 USER'S MANUAL MOTOROLA 
7-73 



• 

CLK 

AO-AJl 

FCO-FC2 

SIZO·SIZl 

R/W 

ECS 

ocs 

AS 

as 

STE RM 

DO-DJl 

BERR 

HALT 

so Sl 

\.__/ 

\.__/ 

_/ 

S2 SJ 

\__} 

SO Sl S2 S3 

v 
v 

L_f 

J-< ) >-----------------<< ...... ~~ 

h READ CYCLE .. 1 .. -.-.!-------HALT _____ ._,. .... 1.11- RETRY CYCLE ~ 
RETRY SIGNALED 

Figure 7-55. Synchronous Late Retry 

7 .5.3 Halt Operation 

When the halt signal (HALT) is asserted and BERR is not asserted, the MC68030 halts 
external bus activity at the next bus cycle boundary. HALT by itself does not terminate a 
bus cycle. Negating and reasserting HALT in accordance with the correct timing require­
ments provides a single step (bus cycle to bus cycle) operation. The HALT signal affects 
external bus cycles only, so a program that resides in the instruction cache and performs 
no data writes (or reads that miss in the data cache) may continue executing, unaffected 
by the HALT signal. 

The single-cycle mode allows the user to proceed through (and debug) external processor 
operations, one bus cycle at a time. Figure 7-57 shows the timing requirements for a single­
cycle operation. Since the occurrence of a bus error while HALT is asserted causes a retry 
operation, the user must anticipate retry cycles while debugging in the single-cycle mode. 
The single-step operation and the software trace capability allow the system debugger to 
trace single bus cycles, single instructions, or changes in program flow. These processor 
capabilities, along with a software debugging package, give complete debugging flexibility. 

MOTOROLA 
7-74 

MC68030 USER'S MANUAL 



CLK 

AO-A31 

FCO-FC2 

SIZO-SIZl 

R/W 

ECS 

ocs 

AS 

iiS 

STEAM 

CllN 

CIOUT 

00-031 

so Sl S2 S3 SO Sl S2 S3 S4 

=x 
=x 
=x 

.__~~~~~~~~~~~~~~~~---x-~~~~~~­

..._~~~~~~~~~~~~~~~~---x-~~~~~~~ 

.__~~~~~~~~~~~~~~~~Jx-~~~~~~-

-v 
-v 
~ 

~ 

\_} 

\_) 

v 
'-------
\,,_ ____ _ 

'------

~READ ------1--.. --- HALT -------·I--.. - RETRY ---.J 
Figure 7-56. Late Retry Operation for a Burst 

When the processor completes a bus cycle with the HALT signal asserted, the data bus 
(D0-031) is placed in the high-impedance state, and bus control signals are driven inactive 
(not high-impedance state); the address, function code, size, and read/write signals remain 
in the same state. The halt operation has no effect on bus arbitration (refer to 7.7 BUS 
ARBITRATION). When bus arbitration occurs while the MC68030 is halted, the address and 
control signals are also placed in the high-impedance state. Once bus mastership is returned 
to the MC68030, if HALT is still asserted, the address, function code, size, and read/write 
signals are again driven to their previous states. The processor does not service interrupt 
requests while it is halted, but it may assert the IPEND signal as appropriate. 

MC68030 USER'S MANUAL MOTOROLA 
7-75 

• 



• 

so S2 S4 so S2 S4 

CLK 

=x ' )----AO-A31 
/ 

FCO-FC2 =x ' >--- --
/ 

=x ' SIZO-SIZl >-----
/ 

R!W __) ' ...__ __ 

ECS v 
ocs v 

AS \ ~,...___ ~ 
tiS \ ~'...___ ~ 

OSACKl 

OSACKO 

OBEN =1 \ ~---

00-031 c= 
BERR 

HALT 

Bil ' I 
\__ _ __/ 

\ ilG \__ 

--, 
BGACK \ 

f.- .. ., + HALTd 
!ARBITRATION PERMIITEO f.-·~·~ 
WHILE THE PROCESSOR 

IS HALTED) 

Figure 7-57. Halt Operation Timing 

7.5.4 Double Bus Fault 

When a bus error or an address error occurs during the exception processing sequence 
for a previous bus error, a previous address error, or a reset exception, the bus or address 
error causes a double bus fault. For example, the processor attempts to stack several words 

MOTOROLA 
7-76 

MC68030 USER'S MANUAL 



containing information about the state of the machine while processing a bus error ex­
ception. If a bus error exception occurs during the stacking operation, the second error is 
considered a doub~e bus fault. Only an external reset operation can restart a halted pro­
cessor. However, bus arbitration can still occur (refer to 7.7 BUS ARBITRATION). 

The MC68030 indicates that a double bus fault condition has occurred by asserting the 
STATUS signal continuously until the processor is reset. The processor asserts STATUS 
for one, two, or three clock periods to signal other microsequencer status indications. Refer 
to SECTION 12 APPLICATIONS INFORMATION for a description of the interpretation of the 
STATUS signal. 

A second bus error or address error that occurs after exception processing has completed 
(during the execution of the exception handler routine, or later) does not cause a double 
bus fault. A bus cycle that is retried does not constitute a bus error or contribute to a 
double bus fault either. The processor continues to retry the same bus cycle as long as 
the external hardware requests it. 

7.6 BUS SYNCHRONIZATION 

The MC68030 overlaps instruction execution; that is, during bus activity for one instruction, 
instructions that do not use the external bus can be executed. Due to the independent 
operation of the on-chip caches relative to the operation of the bus controller, many sub­
sequent instructions can be executed, resulting in seemingly non-sequential instruction 
execution. When this is not desired and the system depends on sequential execution 
following bus activity, the NOP instruction can be used. The NOP instruction forces in­
struction and bus synchronization in that it freezes instruction execution until all pending 
bus cycles have completed. 

An example of the use of the NOP instruction forth is purpose is the case of a write operation 
of control information to an external register, where the external hardware attempts to 
control program execution based on the data that is written with the conditional assertion 
of BERR. If the data cache is enabled and the write cycle results in a hit in the data cache, 
the cache is updated. That data in turn may be used in a subsequent instruction before 
the external write cycle completes. Since the MC68030 cannot process the bus error until 
the end of the bus cycle, the external hardware has not successfully interrupted program 
execution. In order to prevent a subsequent instruction from executing until the external 
cycle completes, a NOP instruction can be inserted after the instruction causing the write. 
In this case, bus error exception processing proceeds immediately after the write before 
subsequent instructions are executed. This is an irregular situation, and the use of the NOP 
instruction for this purpose is not required by most systems. 

Note that even in a system with error-detection/correction circuitry, the NOP is not required 
for this synchronization. Since the MMU always checks the validity of write cycles before 
they proceed to the data cache and are executed externally, the MC68030 is guaranteed 
to write correct data to the cache. Thus, there is no danger in subsequent instructions 
using erroneous data from the cache before an external bus error signals an error. 

A bus synchronization example is given in Figure 7-58. 

7.7 BUS ARBITRATION 

The bus design of the MC68030 provides for a single bus master at any one time: either 
the processor or an external device. One or more of the external devices on the bus can 

MC68030 USER'S MANUAL MOTOROLA 
7-77 



• 

so 

WRITE TO D CACHE 

MOVE.L DD.IAD) 

Sw 

EXTERNAL WRITE 

D. CACHE READ 

MOVE.L (A0),01 

NOP PREVENTS EXECUTION OF SUBSEQUENT 
INSTRUCTIONS UNTIL MOVE.L DD.(AO) 
WRITE CYCLE COMPLETES 

Figure 7-58. Bus Synchronization Example 

have the capability of becoming bus master. Bus arbitration is the protocol by which an 
external device becomes bus master; the bus controller in the MC68030 manages the bus 
arbitration signals so that the processor has the lowest priority. External devices that need 
to obtain the bus must assert the bus arbitration signals in the sequences described in the 
following paragraphs. Systems that include several devices that can become bus master 
require external circuitry to assign priorities to the devices, so that when two or more 
external devices attempt to become bus master at the same time, the one having the 
highest priority becomes bus master first. The sequence of the protocol is: 

1. An external device asserts the bus request signal. 

2. The processor asserts the bus grant signal to indicate that the bus becomes available 
at the end of the current bus cycle. 

3. The external device asserts the bus grant acknowledge signal to indicate that it has 
assumed bus mastership. 

The bus request signal (BR) may be issued any time during a bus cycle, or between cycles. 
The bus grant signal (BG) is asserted in response to BR; it is usually asserted as soon as 
BR has been synchronized and recognized, except when the MC68030 has made an internal 
decision to execute a bus cycle. Then, the assertion of BG is deferred until the bus cycle 
has begun. Additionally, BG is not asserted until the end of a read-modify-write operation 
(when RMC is negated) in response to a BR signal. When the requesting device receives 
BG and more than one external device can be bus master, the requesting device should 
begin whatever arbitration is required. The external device asserts the bus grant acknowl­
edge signal (BGACK) when it assumes bus mastership, and maintains BGACK during the 
entire bus cycle (or cycles) for which it is bus master. The following conditions must be 
met for an external device to assume mastership of the bus through the normal bus 
arbitration procedure: 

• It must have received BG through the arbitration process. 

• Address strobe (AS) must be negated indicating that no bus cycle is in progress, and 
the external device must ensure that all appropriate processor signals have been placed 
in the high-impedance state (by observing specification #7 in SECTION 13 ELECTRICAL 
CHARACTERISTICS). 

• The termination signal (DSACKx or STERM) for the most recent cycle must have 
become inactive, indicating that external devices are off the bus (optional, refer to 
7.7.3 Bus Grant Acknowledge). 

MOTOROLA 
7-78 

MC68030 USER'S MANUAL 



• BGACK must be inactive, indicating that no other bus master has claimed ownership 
of the bus. 

Figure 7-59 is a flowchart showing the detail involved in bus arbitration for a single device. 
Figure 7-60 is a timing diagram for the same operation. This technique allows processing 
of bus requests during data transfer cycles. 

The timing diagram shows that BR is negated at the time that BGACK is asserted. This 
type of operation applies to a system consisting of the processor and one device capable 
of bus mastership. In a system having a number of devices capable of bus mastership, the 
bus request line from each device can be wire-ORed to the processor. In such a system, 
more than one bus request could be asserted simultaneously. 

The timing diagram in Figure 7-60 shows that BG is negated a few clock cycles after the 
transition of the bus grant acknowledge signal. However, if bus requests are still pending 
after the negation of bus grant, the processor asserts another bus grant within a few clock 
cycles after it was negated. This additional assertion of bus grant allows external arbitration 
circuitry to select the next bus master before the current bus master has finished with the 
bus. The following paragraphs provide additional information about the three steps in the 
arbitration process. 

Bus arbitration requests are recognized during normal processing, RESET assertion, HALT 
assertion, and even when the processor has halted due to a double bus fault. 

PROCESSOR REQUESTING OEVICE 

REQUEST THE BUS 

GRANT BUS ARBITRATION I+----- 1) ASSERT BUS REQUEST (BR) 

1) ASSERT BUS GRANT (BG) 

~ ACKNOWLEDGE BUS MASTERSHIP 

1) EXTERNAL ARBITRATION OETERMINES NEXT BUS MASTER 
2) NEXT BUS MASTER WAITS FOR CURRENT CYCLE TO COMPLETE 
3) NEXT BUS MASTER ASSERTS BUS GRANT ACKNOWLEDGE (BGACK) 

TO BECOME NEW MASTER 

TERMINATE ARBITRATION ~ 4) BUS MASTER NEGATES iiR 

11 NEGATE BG AND WAIT FOR BGACK TO BE NEGATED 
OPERATE AS BUS MASTER 

1) PERFORM DATA TRANSFERS (READ AND WRITE CYCLES) 

l 
RELEASE BUS MASTERSHIP 

RE·ARBITRATE OR RESUME PROCESSOR OPERATION ~ 1) NEGATE BGACK 

Figure 7-59. Bus Arbitration Flowchart for Single Request 

MC68030 USER'S MANUAL MOTOROLA 
7-79 



• 

so sz S4 so sz 

CLK 

AO-A31 =x < ---~~~~~~->~~~~~~~~~~~~~~~~~--<""'-~~~~ 

FCO-FCZ ==x < --~~~~~--J>>~~~~~~~~~~~~~~~~--<....._~~~-

SIZO-SIZl J < ...._~~~~~~~>>~~~~~~~~~~~~~~~~--<....._~~~-

R/W 

ECS \_/ 

ocs \_/ 

AS 

iiS 

OSACKl 

OSACKO 

OBEN =1 
00-031 

8R 

iiG 

BG ACK 

v 
v 

\ ~~~-('~~~~~~~~~~~~~~ 

\ ~~f' ~ 

\ 

PROCESSOR --1 ~OMAOEVICE~ ~PROCESSOR 
Figure 7-60. Bus Arbitration Operation Timing 

7.7.1 Bus Request 

External devices capable of becoming bus masters request the bus by asserting the bus 
request (BR) signal. This can be a wire-ORed signal (although it need not be constructed 
from open-collector devices) that indicates to the processor that some external device 
requires control of the bus. The processor is effectively at a lower bus priority level than 
the external device and relinquishes the bus after it has completed the current bus cycle 
(if one has started). 

If no acknowledge is received while the bus request signal is active, the processor remains 
bus master once the bus request is negated. This prevents unnecessary interference with 

MOTOROLA 
7-80 

MC68030 USER'S MANUAL 



ordinary processing ifthe arbitration circuitry inadvertently responds to noise or an external 
device determines that it no longer requires use of the bus before it has been granted 
mastership. 

7.7.2 Bus Grant 

The processor asserts bus grant (BG) as soon as possible after receipt of the bus request. 
This is immediately following internal synchronization except during a read-modify-write 
cycle or following an internal decision to execute a bus cycle. During a read-modify-write 
cycle, the processor does not assert bus grant until the entire operation has completed. 
The read-modify-write cycle signal (RMC) is asserted to indicate that the bus is locked. In 
the case an internal decision to execute another bus cycle, BG is deferred until the bus 
cycle has begun. 

The bus grant signal may be routed through a daisy-chained network or through a specific 
priority-encoded network. The processor allows any type of external arbitration that follows 
the protocol. 

7.7.3 Bus Grant Acknowledge 

Upon receiving BG, the requesting device waits until address strobe (AS), data transfer 
and size acknowledge (DSACKx) (or synchronous termination, STERM), and bus grant 
acknowledge (BGACK) are negated before asserting its own BGACK. The negation of the 
AS indicates that the previous master releases the bus after specification #7 (refer to 
SECTION 13 ELECTRICAL CHARACTERISTICS). The negation of DSACKx or STERM indi­
cates that the previous slave has completed its cycle with the previous master. Note that 
in some applications DSACKx might not be used in this way. 

General purpose devices are then connected to be dependent only on AS. When BGACK 
is asserted, the device is the bus master until it negates BGACK. Bus grant acknowledge 
should not be negated until all bus cycles required by the alternate bus master are com­
pleted. Bus mastership terminates at the negation of BGACK. The bus request from the 
granted device should be negated after BGACK is asserted. If a bus request is still pending 
after the assertion of BGACK, another bus grant is asserted within a few clocks of the 
negation of the bus grant, as described in the 7.7.4 Bus Arbitration Control. Note that the 
processor does not perform any external bus cycles before it reasserts bus grant in this 
case. 

7.7.4 Bus Arbitration Control 

The bus arbitration control unit in the MC68030 is implemented with a finite state machine. 
As discussed previously, all asynchronous inputs to the MC68030 are internally synchro­
nized in a maximum of two cycles of the processor clock. 

As shown in Figure 7-61, input signals labeled Rand A are internally synchronized versions 
of the bus request and bus grant acknowledge signals respectively. The bus grant output 
is labeled G and the internal high-impedance control signal is labeled T. If T is true, the 
address, data, and control buses are placed in the high-impedance state after the next 
rising edge following the negation of address strobe (AS) and the read-modify-write-cycle 
(RMC) signal. All signals are shown in positive logic (active high) regardless of their true 
active voltage level. 

MC68030 USER'S MANUAL MOTOROLA 
7-81 



- R · BUS REQUEST 
A • BUS GRANT ACKNOWLEDGE 
G · BUS GRANT 
T · THREE-STATE CONTROL TO BUS CONTROL LOGIC 
X • DON'T CARE 

NOTE: The BG output will not be asserted while RMC is asserted. 

Figure 7-61. Bus Arbitration State Diagram 

State changes occur on the next rising edge of the clock after the internal signal is valid. 
The BG signal transitions on the falling edge of the clock after a state is reached during 
which G changes. The bus control signals (controlled by T) are driven by the processor 
immediately following a state change, when bus mastership is returned to the MC68030. 

State 0, at the top center of the diagram, in which G and T are both negated, is the state 
of the bus arbiter while the processor is bus master. Request R and acknowledge A keep 
the arbiter in state 0 as long as they are both negated. When a request R is received, both 
grant G and signal Tare asserted (in state 1 at the top left). The next clock causes a change 
to state 2 at the lower left, in which G and Tare held. The bus arbiter remains in that state 
until acknowledge A is asserted or request R is negated. Once either occurs, the arbiter 
changes to the center state, state 3, and negates grant G. The next clock takes the arbiter 
to state 4, at the upper right, in which grant G remains negated and signal T remains 
asserted. With acknowledge A asserted, the arbiter remains in state 4 until A is negated 
or request R is again asserted. When A is negated, the arbiter returns to the original state, 
state 0, and negates signal T. This sequence of states follows the normal sequence of 
signals for relinquishing the bus to an external bus master. Other states apply to other 
possible sequences of combinations of R and A. As shown by the path from state 0 to 
state 4, BGACK alone can be used to place the processor's external bus buffers in the high 
impedance state, providing single-wire arbitration capability. 

The RMW sequence is normally indivisible to support semaphore operations and multi­
processor synchronization. During this indivisible sequence, the MC68030 asserts the RMC 

MOTOROLA 
7-82 

MC68030 USER'S MANUAL 



signal and causes the bus arbitration state machine to ignore bus requests (assertions of 
BR) that occur after the first read cycle of the RMW sequence by not issuing bus grants 
(asserting BG). 

In some cases, however, it may be necessary to force the MC68030 to release the bus 
during an RMW sequence. One way for an alternate bus master to force the MC68030 to 
release the bus applies only to the first read cycle of an RMW sequence. The MC68030 
allows normal bus arbitration during this read cycle; a normal relinquish and retry operaton 
(asserting BERR, HALT, and BR at the same time) is used. Note that this method applies 
only to the first read cycle of the RMW sequence, but this method preserves the integrity 
of the RMW sequence without imposing any constraint on the alternate bus master. 

A second method is single-wire arbitration, the timing of which is shown in Figure 7-62. 
An alternate master forces the MC68030 to release the bus by asserting BGACK and waits 
for AS to negate before taking the bus. It applies to all bus cycles of an RMW sequence, 
but can cause system integrity problems if used improperly. The alternate bus master must 
guarantee the integrity of the RMW sequence by not altering the contents of memory 
locations accessed by the RMW sequence. Note that for the method to operate properly, 
AS must be observed to be negated (high) on two consecutive clock edges before the 
alternate bus master takes the bus. Waiting for this condition ensures that any current or 
pending bus activity has completed or has been preempted. 

A timing diagram of the bus arbitration sequence during a processor bus cycle is shown 
in Figure 7-60. The bus arbitration sequence while the bus is inactive (i.e., executing internal 
operations such as a multiply instruction) is shown in Figure 7-63. 

NOTE: The alternate bus master must sample AS high on two consecutive rising edges of the clock (after BGACK is recognized 
low) before taking the bus. 

Figure 7-62. Single-Wire Bus Arbitration Timing Diagram 

7.8 RESET OPERATION 

The reset signal (RESET) is a bidirectional signal with which an external device resets the 
system or the processor resets external devices. When power is applied to the system, 
external circuitry should assert RESET for a minimum of 100 ms. after Vee is within 

MC68030 USER'S MANUAL MOTOROLA 
7-83 



• 

tolerance. Figure 7-64 is a timing diagram of the power-up reset operation, showing the 
relationships between RESET, Vee. and bus signals. The clock signal is required to be 
stable by the time Vee reaches the minimum operating specification. During the reset 
period, the entire bus (except for non-three-statable signals, which are driven to their 
inactive state) three-states. Once RESET negates, all control signals are driven to their 
inactive state, the data bus is in read mode, and the address bus is driven. After this, the 
first bus cycle for RESET exception processing begins. 

S4 so 

CLK 

AO-A31 

FCO-FC2 

SIZO-SIZl 

R/W 

ECS 

ocs 

AS 

i.iS __} ' 
DSACKl 

DSACKO 

DBEN 

00-031 

BGACK 

''"""'' I """"'"' • I · ~ON PERMlffiD WHILE THE •m~•• "'"'-+-'"''""' 
PROCESSOR IS INACTIVE OR HALTED) 

Figure 7-63. Bus Arbitration Operation (Bus Inactive) 

MOTOROLA 
7-84 

MC68030 USER'S MANUAL 



The external RESET signal resets the processor and the entire system. Except for the initial 
reset, RESET should be asserted for at least 520 clock periods to ensure that the processor 
resets. Asserting RESET for ten clock periods is sufficient for resetting the processor logic; 
the additional clock periods prevent a reset instruction from overlapping the external RESET 
signal. 

Resetting the processor causes any bus cycle in progress to terminate as if DSACKx, BERR, 
or STERM had been asserted. In addition, the processor initializes registers appropriately 
for a reset exception. Exception processing for a reset operation is described in 8.1.1 Reset 
Exception. 

When a reset instruction is executed, the processor drives the RESET signal for 512 clock 
cycles. In this case, the processor resets the external devices of the system, and the internal 
registers of the processor are unaffected. The external devices connected to the RESET 
signal are reset at the completion of the reset instruction. An external RESET signal that 
is asserted to the processor during execution of a reset instruction must extend beyond 
the reset period of the instruction by at least eight clock cycles in order to reset the 
processor. Figure 7-65 shows the timing information for the reset instruction . 

CLK 

p~~~T~ --------------t=======""-.. -1-------Vcc ~I >520 CLOCKS 

-, OCKS __J - I 
RESET I I ~ r-- 4 CLOCKS --i 

BUS CYCLES xxxxxxxxxxxxxxxxxxxxxxxxxx>ooo--.J"~ I All CONTROL SIGNALS c~ 
I ENTIRE BUS INACTIVE. DATA BUS IN ISP 

HIGH IMPEDANCE READ MODE, ADDRESS REAO 
BUS DRIVEN STARTS 

xxxxx BUS STATE UNKNOWN 

Figure 7-64. Initial Reset Operation Timing 

MC68030 USER'S MANUAL MOTOROLA 
7-85 

• 



• 

so S2 S4 

AO·A31 =::::x-------------------
FCO-FC2 ::J(.__ _________________ _ 

SIZO·SIZl ::J(.__ _________________ _ 

R/W 

ECS \_} 

ocs \_} 

AS __r----\ -----
as __r----\~---

OSACKO ~------~ 

DBEN ~ '---~ 
00-031 J----<....._ ___ _,>------------

so S2 

v 
v 
-~ 

--~ 

_ _) 

~REAO~ I RESET INTERNAL 512 CLOCKS I RESUME NORMAL _, r-- OPERATION 

MOTOROLA 
7-86 

Figure 7-65. Processor Generated Reset Operation 

MC68030 USER'S MANUAL 



SECTION 8 
EXCEPTION PROCESSING 

Exception processing is defined as the activities performed by the processor in preparing 
to execute a handler routine for any condition that causes an exception. In particular, 
exception processing does not include execution of the handler routine itself. An intro­
duction to exception processing, as one of the processing states of the MC68030 processor, 
was given in SECTION 4 PROCESSING LEVELS. This section describes exception processing 
in detail, describing the processing for each type of exception. It describes the return from 
an exception and bus fault recovery. This section also describes the formats of the exception 
stack frames. For details of MMU-related exceptions, refer to SECTION 9 MEMORY MAN· 
AGEMENT UNIT. For more detail on protocol violation and coprocessor-related exceptions, 
refer to SECTION 10 COPROCESSOR INTERFACE DESCRIPTION. Also, for more detail on 
exceptions defined for floating-point coprocessors, refer to the user's manual for the 
MC68881/MC68882. 

8.1 EXCEPTION PROCESSING SEQUENCE 

Exception processing occurs in four functional steps. However, all individual bus cycles 
associated with exception processing (vector acquisition, stacking, etc.) are not guaranteed 
to occur in the order in which they are described in this section. Nonetheless, all addresses 
and offsets from the stack pointer are guaranteed to be as described. 

The first step of exception processing involves the status register. The processor makes 
an internal copy of the status register. Then the processor sets the S bit, changing to the 
supervisor privilege level. Next, the processor inhibits tracing of the exception handler by 
clearing the T1 and TO bits. For the reset and interrupt exceptions, the processor also 
updates the interrupt priority mask. 

In the second step, the processor determines the vector number of the exception. For 
interrupts, the processor performs an interrupt acknowledge cycle (a read from the CPU 
address space type $F; see Figures 7-45 and 7-46) to obtain the vector number. For co­
processor-detected exceptions, the vector number is included in the coprocessor exception 
primitive response. (Refer to SECTION 10 COPROCESSOR INTERFACE DESCRIPTION for 
a complete discussion of coprocessor exceptions.) For all other exceptions, internal logic 
provides the vector number. This vector number is used in the last step to calculate the 
address of the exception vector. Throughout this section, vector numbers are given in 
decimal notation. 

For all exceptions other than reset, the third step is to save the current processor context. 
The processor creates an exception stack frame on the active supervisor stack and fills it 
with context information appropriate for the type of exception. Other information may also 
be stacked, depending on which exception is being processed and the state of the processor 
prior to the exception. If the exception is an interrupt and the M bit of the status register 
is set, the processor clears the M bit in the status register, and builds a second stack frame 
on the interrupt stack. 

MC68030 USER'S MANUAL MOTOROLA 
8-1 

• 



• 

The last step initiates execution of the exception handler. The processor multiplies the 
vector number by four to determine the exception vector offset. It adds the offset to the 
value stored in the vector base register to obtain the memory address of the exception 
vector. Next, the processor loads the program counter (and the interrupt stack pointer (ISP) 
for the reset exception) from the exception vector table in memory. After prefetching the 
first three words to fill the instruction pipe, the processor resumes normal processing at 
the address in the program counter. Table 8-1 contains a description of all the exception 
vector offsets defined for the MC68030. 

Table 8-1. Exception Vector Assignments 

Vector Vector Offset 
Number{s) Hex Space 

0 000 SP 
1 004 SP 
2 008 SD 
3 ooc SD 

4 010 SD 
5 014 SD 
6 018 SD 
7 OlC SD 

8 020 SD 
9 024 SD 

10 028 SD 
11 02C SD 

12 030 SD 
13 034 SD 
14 038 SD 
15 03C SD 

16 040 SD 
Through 

23 05C SD 

24 060 SD 
25 064 SD 
26 068 SD 
27 06C SD 

28 070 SD 
29 074 SD 
30 078 SD 
31 07C SD 

32 080 SD 
Through 

47 OBC SD 

48 oco SD 
49 OC4 SD 
50 oc0 SD 
51 occ SD 

52 ODO SD 
53 OD4 SD 
54 ODB SD 
55 ODC SD 

56 OEO SD 
57 OE4 SD 
58 OE8 SD 

59 OEC SD 
Through 

63 OFC SD 

64 100 SD 
Through 

255 255 SD 

SP = Supervisor Program Space 
SD = Supervisor Data Space 

MOTOROLA 
8-2 

Assignment STATUS 
Asserted 

Reset Initial Interrupt Stack Pointer -
Reset Initial Program Counter -
Bus Error Yes 
Address Error Yes 

Illegal Instruction No 
Zero Divide No 
CHK, CHK2 Instruction No 
cpTRAPcc, TRAPcc, TRAPV Instructions No 

Privilege Violation No 
Trace Yes 
Line 1010 Emulator No 
Line 1111 Emulator No 

(Unassigned, Reserved) -
Coprocessor Protocol Violation No 
Format Error No 
Uninitialized Interrupt Yes 

Unassigned, Reserved -

Spurious Interrupt Yes 
Level 1 Interrupt Autovector Yes 
Level 2 Interrupt Autovector Yes 
Level 3 Interrupt Autovector Yes 

Level 4 Interrupt Autovector Yes 
Level 5 Interrupt Autovector Yes 
Level 6 Interrupt Autovector Yes 
Level 7 Interrupt Autovector Yes 

TRAP #0-15 Instruction Vectors No 

FPCP Branch or Set on Unordered Condition No 
FPCP Inexact Result No 
FPCP Divide by Zero No 
FPCP Underflow No 

FPCP Operand Error No 
FPCP Overflow No 
FPCP Signaling NAN No 
Unassigned, Reserved No 

MMU Configuration Error No 
Defined for MC68851 not used by MC68030 -
Defined for MC68851 not used by MC68030 -

Unassigned, Reserved -

User Defined Vectors (192) Yes 

MC68030 USER'S MANUAL 



As shown in Table 8-1, the first 64 vectors are defined by Motorola and 192 vectors are 
reserved for interrupt vectors defined by the user. However, external devices may use 
vectors reserved for internal purposes at the discretion of the system designer. 

The MC68030 provides the STATUS signal to identify instruction boundaries and some 
exceptions. As shown in Table 8-2, STATUS indicates an instruction boundary and excep­
tions to be processed, depending on the state of the internal microsequencer. In addition, 
STATUS indicates when an MMU address translation cache miss has occurred and the 
processor is about to begin a table search access for the logical address that caused the 
miss. Instruction-related exceptions do not cause the assertion of STATUS as shown in 
Table 8-1. For STATUS signal timing information, refer to SECTION 12 APPLICATIONS 
INFORMATION. 

Table 8-2. Microsequencer STATUS Indications 

Asserted for Indicates 

1 Clock Sequencer at instruction boundary - will begin execution of next instruction. 

2 Clocks Sequencer at instruction boundary but will not begin the next instruction immediately due to: 
• pending trace exception 

OR 
• pending interrupt exception 

3 Clocks MMU address translation cache miss - processor to begin table serach 
OR 

Exception processing to begin for: 
• reset OR 
• bus error OR 
• address error OR 
• spurious interrupt OR 
• autovectored interrupt OR 
• F-line instruction (no coprocessor responded) 

Continuously Processor halted due to double bus fault. 

8.1.1 Reset Exception 

Assertion by external hardware of the RESET signal causes a reset exception. For details 
on the requirements for the assertion of RESET, refer to 7.8 RESET OPERATION. 

The reset exception has the highest priority of any exception; it provides for system ini­
tialization and recovery from catastrophic failure. It aborts any processing in progress when 
it is recognized, and that processing cannot be recovered. Figure 8-1 is a flowchart of the 
reset exception, which performs the following operations: 

1. Clears both trace bits in the status register to disable tracing. 

2. Places the processor in the interrupt mode of the supervisor privilege level by setting 
the supervisor bit and clearing the master bit in the status register. 

3. Sets the processor interrupt priority mask to the highest priority level (level seven). 

4. Initializes the vector base register to zero ($00000000). 

5. Clears the enable, freeze, and burst enable bits for both on-chip caches and the write­
allocate bit for the data cache in the cache control register. 

6. Invalidates all entries in the instruction and data caches. 

7. Clears the enable bit in the translation control register and the enable bits in both 
transparent translation registers of the MMU. 

MC68030 USER'S MANUAL MOTOROLA 
8-3 

• 



• 

s -- 1 
M .._ 0 

TO.Tl.._ 0 

12:10 -- $7 

VBR .._ $0 
CACR .._ $0 

INSTRUCTION AND DATA CACHE 
ENTRIES INVAUOATED 

FETCH VECTOR #0 

OTHERWISE 

SP - (VECTOR #0) 

FETCH VECTOR #1 

OTHERWISE 

PC - (VECTOR#l) 

PREFETCH 3 WORDS 

OTHERWISE 
BEGIN INSTRUCTION EXECUTION 

cb 

(DOUBLE BUS FAULT! 

ASSERT STATUS 
CONTINUOUSLY 

EXIT 

(OOUBLE BUS FAULT) 

ASSERT STATUS 
CONTINUOUSLY 

EXIT 

BUS ERROR OR ADORESS ERROR 

(DOUBLE BUS FAULT) 

ASSERT STATUS 
CONTINUOUSLY 

EXIT 

Figure 8-1. Reset Operation Flowchart 

8. Generates a vector number to reference the reset exception vector (two long words) 
at offset zero in the supervisor program address space. 

9. Loads the first long word of the reset exception vector into the interrupt stack pointer. 

10. Loads the second long word of the reset exception vector into the program counter. 

MOTOROLA 
8-4 

MC68030 USER'S MANUAL 



After the initial instruction prefetches, program execution begins at the address in the 
program counter. The reset exception does not flush the address translation cache (ATC), 
nor does it save the value of either the program counter or the status register. 

As described in 7.5.4 Double Bus Fault, if bus error or address error occur during the 
exception processing sequence for a reset a double bus fault occurs. The processor halts, 
and the STATUS signal is asserted continuously, to indicate the halted condition. 

Execution of the reset instruction does not cause a reset exception, nor does it affect any 
internal registers, but it does cause the MC68030 to assert the RESET signal, resetting all 
xternal devices. 

8.1.2 Bus Error Exception 

A bus error exception occurs when external logic aborts a bus cycle by asserting the BERR 
input signal. If the aborted bus cycle is a data access, the processor immediately begins 
exception processing. If the aborted bus cycle is an instruction prefetch, the processor may 
delay taking the exception until it attempts to use the prefetched information. The assertion 
of the BERR signal during the second, third, or fourth access of a burst operation does not 
cause a bus error exception, but the burst is aborted. Refer to 6.1.3.2 BURST MODE FILLING 
and 7.5.1 Bus Errors for details on the effects of bus errors during burst operation. 

A bus error exception also occurs when the MMU detects that a successful address trans­
lation is not possible. Furthermore, when an ATC miss occurs and an external bus cycle 
is required, the MMU must abort the bus cycle, search the translation tables in memory 
for the mapping, and then retry the bus cycle. If a valid translation for the logical address 
is not available due to a problem encountered during the table search (the attempt to 
access the appropriate page descriptor in the translation tables for that page), a bus error 
exception occurs when the aborted bus cycle is retried. 

The problem encountered could be a limit violation, an invalid descriptor, or the assertion 
of the BERR signal during a bus cycle used to access the translation tables. A miss in the 
ATC causes the processor to automatically initiate a table search but does not cause a bus 
error exception unless one of the specific conditions mentioned above is encountered. 

The processor begins exception processing for a bus error by making an internal copy of 
the current status register. The processor then enters the supervisor privilege level (by 
setting the S bit in the status register), and clears the trace bits. The processor generates 
exception vector number 2, for the bus error vector. It saves the vector offset, program 
counter, and the internal copy of the status register on the stack. The saved program counter 
value is the logical address of the instruction that was executing at the time the fault was 
detected. This is not necessarily the instruction that initiated the bus cycle, since the pro­
cessor overlaps execution of instructions. The processor also saves the contents of some 
of its internal registers. The information saved on the stack is sufficient to identify the 
cause of the bus fault and recover from the error. 

For efficiency, the MC68030 uses two different bus error stack frame formats. When the 
bus error exception is taken at an instruction boundary, less information is required to 
recover from the error, and the processor builds the short bus fault stack frame as shown 
in Table 8-7. When the exception is taken during the execution of an instruction, the 
processor must save its entire state for recovery, and uses the long bus fault stack frame 

MC68030 USER'S MANUAL MOTOROLA 
8-5 

• 



.. 

shown in Table 8-7. The format code in the stack frame distinguishes the two stack frame 
formats. Stack frame formats are described in detail in 8.4 EXCEPTION STACK FRAME 
FORMATS. 

If a bus error occurs during the exception processing for a bus error, address error, or 
reset, or while the processor is loading internal state information from the stack during 
the execution of an RTE instruction, a double bus fault occurs and the processor enters 
the halted state as indicated by the continuous assertion of the STATUS signal. In this 
case, the processor does not attempt to alter the current state of memory. Only an external 
RESET can restart a processor halted by a double bus fault. 

8.1.3 Address Error Exception 

An address error exception occurs when the processor attempts to prefetch an instruction 
from an odd address. This exception is similar to a bus error exception, but is internally 
initiated. A bus cycle is not executed and the processor begins exception processing im­
mediately. After exception processing commences, the sequence is the same as that for 
bus error exceptions described in the preceding paragraphs, except that the vector number 
is 3 and the vector offset in the stack frame refers to the address error vector. Either a 
short or long bus fault stack frame may be generated. If an address error occurs during 
the exception processing for a bus error, address error, or reset, a double bus fault occurs. 

8.1.4 Instruction Trap Exception 

Certain instructions are used to explicitly cause trap exceptions. The TRAP #n instruction 
always forces an exception, and is useful for implementing system calls in user programs. 
The TRAPcc,TRAPV, cpTRAPcc, CHK, and CHK2 instructions force exceptions if the user 
program detects an error, which may be an arithmetic overflow or a subscript value that 
is out of bounds. 

The DIVS and DIVU instructions force exceptions if a division operation is attempted with 
a divisor of zero. 

When a trap exception occurs, the processor copies the status register internally, enters 
the supervisor privilege level, and clears the trace bits. If tracing is enabled for the instruc­
tion that caused the trap, a trace exception is taken after the RTE instruction from the trap 
handler is executed, and the trace corresponds to the trap instruction; the trap handler 
routine is not traced. The processor generates a vector number according to the instruction 
being executed; for the TRAP #n instruction, the vector number is 32 plus n. The stack 
frame saves the trap vector offset, the program counter, and the internal copy cf the status 
register on the supervisor stack. The saved value of the program counter is the logical 
address of the instruction following the instruction that caused the trap. For all instruction 
traps other than TRAP #n, a pointer to the instruction that caused the trap is also saved. 
Instruction execution resumes at the address in the exception vector after the required 
instruction prefetches. 

8.1.5 Illegal Instruction and Unimplemented Instruction Exceptions 

An illegal instruction is an instruction that contains any bit pattern in its first word that 
does not correspond to the bit pattern of the first word of a valid MC68030 instruction, or 

MOTOROLA 
8-6 

MC68030 USER'S MANUAL 



a MOVEC instruction with an undefined register specification field in the first extension 
word. An illegal instruction exception corresponds to vector number 4, and occurs when 
the processor attempts to execute an illegal instruction. 

An illegal instruction exception is also taken if a breakpoint acknowledge bus cycle {de­
scribed in 7.4.2 Breakpoint Acknowledge Cycle) is terminated with the assertion of the bus 
error signal. This implies that the external circuitry did not supply an instruction word to 
replace the BKPT instruction word in the instruction pipe. 

Instruction word patterns with bits [15:12] equal to $A are referred to as unimplemented 
instructions with A-line opcodes. When the processor attempts to execute an unimple­
mented instruction with an A-line opcode, an exception is generated with vector number 
10, permitting efficient emulation of unimplemented instructions. 

Instructions that have word patterns with bits [15: 12] equal to $F, bits [11 :9) equal to $0, 
and defined word patterns for subsequent words are legal MMU instructions. Instructions 
that have bits [15: 12] of the first words equal to $F and bits [11 :9] equal to $0 but undefined 
patterns in the following words are treated as unimplemented instructions with F-line 
opcodes when execution is attempted in supervisor mode. When execution of the same 
instruction is attempted in user mode, a privilege violation exception is taken. The exception 
vector number for an unimplemented instruction with an F-line opcode is number 11. 

The word patterns with bits [15: 12) equal to $F and bits [11 :9] not equal to zero are used 
for coprocessor instructions. When the processor identifies a coprocessor instruction, it 
runs a bus cycle referencing CPU space type $2 {refer to 4.2 ADDRESS SPACE TYPES) and 
addressing one of seven coprocessors (1-7, according to bits [11 :9)). If the addressed 
coprocessor is not included in the system and the cycle terminates with the assertion of 
the bus error signal, the instruction takes an unimplemented instruction {F-line opcode) 
exception. The system can emulate the functions of the coprocessor with an F-line exception 
handler. Refer to SECTION 10 COPROCESSOR INTERFACE DESCRIPTION for more details. 

Exception processing for illegal and unimplemented instructions is similar to that for in­
struction traps. When the processor has identified an illegal or unimplemented instruction, 
it initiates exception processing instead of attempting to execute the instruction. The pro­
cessor copies the status register, enters the supervisor privilege level, and clears the trace 
bits, disabling further tracing. The processor generates the vector number, either 4, 10, or 
11, according to the exception type. The illegal or unimplemented instruction vector offset, 
current program counter, and copy of the status register are saved on the supervisor stack, 
with the saved value of the program counter being the address of the illegal or unimple­
mented instruction. Instruction execution resumes at the address contained in the exception 
vector. It is the responsibility of the handling routine to adjust the stacked program counter 
if the instruction is emulated in software or is to be skipped on return from the handler. 

8.1.6 Privilege Violation Exception 

In order to provide system security, the instruc­
tions listed in Table 8-3 are privileged. An attempt 
to execute one of the privileged instructions while 
at the user privilege level causes a privilege vi­
olation exception. Also, a privilege violation ex­
ception occurs if a coprocessor requests a 
privilege check and the processor is at the user 
level. 

MC68030 USER'S MANUAL 

Table 8-3. Privileged Instructions 

ANDI TO SR 
EOR to SR 
cpRESTORE 
cpSAVE 
MOVE from SR 
MOVE toSR 
MOVE USP 
MOVEC 
MOVES 

ORI to SR 
PFLUSH 
PLOAD 
PMOVE 
PTEST 
RESET 
RTE 
STOP 

MOTOROLA 
8-7 

.. 



• 

Exception processing for privilege violations is similar to that for illegal instructions. When 
the processor identifies a privilege violation, it begins exception processing before exe­
cuting the instruction. The processor copies the status register, enters the supervisor priv­
ilege level, and clears the trace bits. The processor generates vector number 8, the privilege 
violation exception vector, and saves the privilege violation vector offset, the current pro­
gram counter value, and the internal copy of the status register on the supervisor stack. 
The saved value of the program counter is the logical address of the first word of the 
instruction that caused the privilege violation. Instruction execution resumes after the 
required prefetches from the address in the privilege violation exception vector. 

8.1. 7 Trace Exception 

To aid in program development, thP. M68000 processors include an instruction-by-instruc­
tion tracing capability. The MC68030 can be programmed to trace all instructions or only 
instructions that change program flow. In the trace mode, an instruction generates a trace 
exception after it completes execution, allowing a debugger program to monitor execution 
of a program. 

The T1 and TO bits in the supervisor portion of the status register control tracing. The state 
of these bits when an instruction begins execution determines whether the instruction 
generates a trace exception after the instruction completes. Clearing both T bits disables 
tracing, and instruction execution proceeds normally. Clearing the T1 bit and setting the 
TO bit causes an instruction that forces a change of flow to take a trace exception. Instruc­
tions that increment the program counter normally do not take the trace exception. In­
structions that are traced in this mode include all branches, jumps, instruction traps, returns, 
and coprocessor instructions that modify the program counter flow. This mode also in­
cludes status register manipulations, because the processor must re-prefetch instruction 
words to fill the pipe again any time an instruction that can modify the status register is 
executed. The execution of the BKPT instruction causes a change of flow if the opcode 
replacing the BKPT is an instruction that causes a change of flow (i.e., a jump, branch, 
etc.). Setting the T1 bit and clearing the TO bit causes the execution of all instructions to 
force trace exceptions. Table 8-4 shows the trace mode selected by each combination of 
bits T1 and TO. 

Table 8-4. Tracing Control 

Tl TO Tracing Function 

0 0 No Tracing 

0 1 Trace on Change of Flow IBRA, JMP, etc.) 

1 0 Trace on Instruction Execution !Any Instruction) 

1 1 Undefined, Reserved 

In general terms, a trace exception is an extension to the function of any traced instruction. 
That is, the execution of a traced instruction is not complete until the trace exception 
processing is completed. If an instruction does not complete due to a bus error or address 
error exception, trace exception processing is deferred until after the execution of the 
suspended instruction is resumed and the instruction execution completes normally. If an 
interrupt is pending at the completion of an instruction, the trace exception processing 
occurs before the interrupt exception processing starts. If an instruction forces an exception 

MOTOROLA 
8-8 

MC68030 USER'S MANUAL 



as part of its normal execution, the forced exception processing occurs before the trace 
exception is processed. See 8.1.12 Multiple Exceptions for a more complete discussion of 
exception priorities. 

When the processor is in the trace mode and attempts to execute an illegal or unimple­
mented instruction, that instruction does not cause a trace exception since it is not executed. 
This is of particular importance to an instruction emulation routine that performs the 
instruction function, adjusts the stacked program counter to skip the unimplemented in­
struction, and returns. Before returning, the trace bits of the status register on the stack 
should be checked. If tracing is enabled, the trace exception processing should be emulated 
also, in order for the trace exception handler to account for the emulated instruction. 

The exception processing for a trace starts at the end of normal processing for the traced 
instruction, and before the start of the next instruction. The processor makes an internal 
copy of the status register, and enters the supervisor privilege level. It also clears the TO 
and T1 bits of the status register, disabling further tracing. The processor supplies vector 
number 9 for the trace exception, and saves the trace exception vector offset, program 
counter value, and the copy of the status register on the supervisor stack. The saved value 
of the program counter is the logical address of the next instruction to be executed. In­
struction execution resumes after the required prefetches from the address in the trace 
exception vector. 

The STOP instruction does not perform its function when it is traced. A STOP instruction 
that begins execution with T1=1 and TO= 0 forces a trace exception after it loads the status 
register. Upon return from the trace handler routine, execution continues with the instruc­
tion following the STOP, and the processor never enters the stopped condition. 

8.1.8 Format Error Exception 

Just as the processor checks that prefetched instructions are valid, the processor (with the 
aid of a coprocessor, if needed) also performs some checks of data values for control 
operations, including the coprocessor state frame format word for a cpRESTORE instruc­
tion, and the stack frame format for an RTE instruction. 

The RTE instruction checks the validity of the stack format code. For long bus cycle fault 
format frames, the RTE instruction also compares the internal version number of the 
processor to that contained in the frame at memory location SP+ 54 (SP+ $36). This check 
ensures that the processor can correctly interpret internal state information from the stack 
frame. 

The cpRESTORE instruction passes the format word of the coprocessor state frame to the 
coprocessor for validation. If the coprocessor does not recognize the format value, it signals 
the MC68030 to take a format error exception. Refer to SECTION 10 COPROCESSOR IN­
TERFACE DESCRIPTION for details of coprocessor-related exceptions. 

If any of the checks previously described determine that the format of the stacked data is 
improper, the instruction generates a format error exception. This exception saves a short 
format stack frame, generates exception vector number 14, and continues execution at the 
address in the format exception vector. The stacked program counter value is the logical 
address of the instruction that detected the format error. 

MC68030 USER'S MANUAL MOTOROLA 
8-9 

• 



• 

8.1.9 Interrupt Exceptions 

When a peripheral device requires the services of the MC68030, or is ready to send infor­
mation that the processor requires, it may signal the processor to take an interrupt excep­
tion. The interrupt exception transfers control to a routine that responds appropriately. 

The peripheral device uses the active low interrupt priority level signals (IPLO-IPL2) to signal 
an interrupt condition to the processor and to specify the priority of that condition. The 
three signals encode a value of zero through seven (IPLO is the least significant bit). High 
levels on all three signals correspond to no interrupt requested (level O) and low levels on 
IPLO-IPL2 correspond to interrupt request level 7. Values one through seven specify one 
of seven levels of prioritized interrupts; level seven has the highest priority. External cir­
cuitry can chain or otherwise merge signals from devices at each level, allowing an unlim­
ited number of devices to interrupt the processor. 

The IPLO-IPL2 interrupt signals must maintain the interrupt request level until the MC68030 
acknowledges the interrupt in order to guarantee that the interrupt is recognized. The 
MC68030 continuously samples the IPLO-IPL2 signals on consecutive falling edges of the 
processor clock in order to synchronize and debounce these signals. An interrupt request 
that is held constant for two consecutive clock periods is considered a valid input. Although 
the protocol requires that the request remain until the processor runs an interrupt ac­
knowledge cycle for that interrupt value, an interrupt request that is held for as short a 
period as two clock cycles could be recognized. 

The status register of the MC68030 contains an interrupt priority mask (12, 11, 10, bits 10-
8). The value in the interrupt mask is the highest priority level that the processor ignores. 
When an interrupt request has a priority higher than the value in the mask, the processor 
makes the request a pending interrupt. Figure 8-2 is a flowchart of the procedure for making 
an interrupt pending. 

When several devices are connected to the same interrupt level, each device should hold 
its interrupt priority level constant until its corresponding interrupt acknowledge cycle to 
ensure that all requests are processed. 

MOTOROLA 
8-10 

OTHERWISE 

RESET 

SAMPLE AND SYNCH 
IPL2:1PLO 

(COMPARE INTERRUPT LEVEL 
WITH STATUS REGISTER MASKI 

ASSERT IPENO 

Figure 8-2. Interrupt Pending Procedure 

MC68030 USER'S MANUAL 



Table 8-5 lists the interrupt levels, the states of IPL2-IPLO that define each level, and the 
mask value that allows an interrupt at each level. 

Table 8-5. Interrupt Levels and Mask Values 

Requested Control Line Status Interrupt Mask Level 
Interrupt Level IP2 IP1 IPO Required for Recognition 

o• High High High NIA* 

1 High High Low 0 

2 High Low High 0-1 

3 High Low Low 0-2 

4 Low High High 0-3 

5 Low High Low 0-4 

6 Low Low High 0-5 

7 Low Low Low 0-7 

*Indicates that no interrupt is requested. 

Priority level seven, the nonmaskable interrupt (NMI), is a special case. Level seven inter­
rupts cannot be masked by the interrupt priority mask and they are transition sensitive. 
The processor recognizes an interrupt request each time the external interrupt request 
level changes from some lower level to level seven, regardless of the value in the mask. 
Figure 8-3 shows two examples of interrupt recognitions, one for level six and one for 
level seven. When the MC68030 processes a level 6 interrupt, the status register mask is 
automatically updated with a value of 6 before entering the handler routine so that sub­
sequent level six interrupts are masked. Provided no instruction that lowers the mask value 
is executed, the external request can be lowered to level three and then raised back to 
level six and a second level six interrupt is not processed. However, if the MC68030 is 
handling a level seven interrupt (status register mask set to 7) and the external request is 
lowered to level three and than raised back to level seven, a second level seven interrupt 
is processed. The second level seven interrupt is processed because the level seven in­
terrupt is transition sensitive. A level seven interrupt is also generated by a level comparison 
if the request level and mask level are at seven and the priority mask is then set to a lower 
level (with the MOVE to SR or RTE instruction, for example). As shown in Figure 8-3 for 
level six interrupt request level and mask level, this is the case for all Interrupt levels. 

Note that a mask value of six and a mask value of seven both inhibit request levels of one 
through six from being recognized. In addition, neither masks a transition to an interrupt 
request level of seven. The only difference between mask values of six and seven occurs 
when the interrupt request level is seven and the mask value is seven. If the mask value 
is lowered to six, a second level seven interrupt is recognized. 

The MC68030 asserts the interrupt pending signal (IPEND) when it makes an interrupt 
request pending. Figure 8-4 shows the assertion of IPEND relative to the assertion of an 
interrupt level on the IPL lines. IPEND signals to external devices that an interrupt exception 
will be taken at an upcoming instruction boundary (following any higher-priority exception). 

The state of the IPEND signal is internally checked by the processor once per instruction, 
independently of bus operation. In addition, it is checked during the second instruction 
prefetch associated with exception processing. Figure 8-5 is a flowchart of the interrupt 
recognition and associated exception processing sequence. 

MC68030 USER'S MANUAL MOTOROLA 
8-11 



-

EXTERNAL IPL2:1PLO SR MASK (12:!0) ACTION 

LEVEL 6 EXAMPLE: 

100 ($3) 101 ($5) INITIAL CONDITIONS 

IF 001 ($6) THEN 110 ($6) ANO LEVEL 6 INTERRUPT (LEVEL COMPARISON) 

IF 100 ($3) ANO STILL 110 ($6) THEN NO ACTION 

IF 001 ($6) ANO STILL 110 ($6) THEN NO ACTION 

IF STILL 001 ($6) ANO RTE SO THAT 101 ($5) THEN LEVEL 6 INTERRUPT (LEVEL COMPARISON) 

LEVEL 7 EXAMPLE: 

100 ($3) 101 ($5) INITIAL CONDITIONS 

IF 000 ($7) THEN 111 ($7) ANO LEVEL 7 INTERRUPT (TRANSITION) 

IF 100 ($3) ANO STILL 111 ($7) THEN NO ACTION 

IF 000 ($7) ANO STILL 111 ($7) THEN LEVEL 7 INTERRUPT (TRANSITION) 

IF STILL 000 ($7) ANO RTE SO THAT 101 ($5) THEN LEVEL 7 INTERRUPT (LEVEL COMPARISON) 

Figure 8-3. Interrupt Recognition Examples 

CLK 

iPls RECOGNIZED 

iPLs 
SYNCHRONIZED 

COMPARE REQUEST 
WITH MASK IN SR 

ASSERT IPENO 

Figure 8-4. Assertion of IPEND 

In order to predict the instruction boundary during which a pending interrupt is processed, 
the timing relationship between the assertion of IPEND for that interrupt and the assertion 
of STATUS must be examined. Figure 8-6 shows two examples of interrupt recognition. 
The first assertion of STATUS after IPEND is denoted as STATO. The next assertion of 

MOTOROLA 
8-12 

MC68030 USER'S MANUAL 



ONCE PER INSTRUCTION 

(CHECK RELATIONSHIP BETWEEN IPENO ANO STATUS) 

OTHERWISE 

c6 
IPEND BEFORE STATUS 

I 
STATO - THIS INSTRUCTION BOUNDARY 
STAT! - NEXT INSTRUCTION BOUNDARY 

l 

THESE 
INOIVIOUAL 

BUS CYCLES 
MAY OCCUR 

IN ANY OROER 

WAIT FOR STATO OR STAT!• 
INDICATE 'INTERRUPT TO BE PROCESSED' 

(ASSERT STATUS FOR 2 CLOCKS) 

1 
NEGATE IPEND 

EXECUTE INTERRUPT ACKNOWLEDGE CYCLE 

I 
TEMP - SR 

TO.Tl - 0 
UPDATE 12:10 

-(SP) - TEMP 
-(SP) - PC 

- (SP) - FORMAT WORD 

•EXPLAINED FURTHER IN TEXT 

- (SP) - OTHER EXCEPTION DEPENDENT INFORMATION 

M = 0 
PC - VECTOR TABLE ENTRY 

PREFETCH 3 WORDS 

END OF EXCEPTION PROCESSING 
FOR THE INTERRUPT 

M = 1 

TEMP - SR 

BEGIN EXECUTION OF THE INTERRUPT HANDLER 
ROUTINE OR PROCESS A HIGHER PRIORITY 
EXCEPTION 

Figure 8-5. Interrupt Exception Processing Flowchart 

STATUS is denoted as STAT1. If STA TO begins on the falling edge of the clock immediately 
following the clock edge that caused !PEND to assert (as shown in example 1), STAT1 is 
at least two clocks long and, when there are no other pending exceptions, the interrupt is 
acknowledged at the boundary defined by STAT1. If IPEND is asserted with more setup 
time to STATO, the interrupt may be acknowledged at the boundary defined by STATO (as 
shown in example 2). In that case, STA TO is asserted for two clocks signaling this condition. 

If no higher priority interrupt has been synchronized, the !PEND signal is negated during 
state 0 (SO) of an interrupt acknowledge cycle (refer to 7.4.1.1 INTERRUPT ACNOWLEDGE 

MC68030 USER'S MANUAL MOTOROLA 
8-13 



.. 

CLK 

CLK 

STATO 
STAT! _ ___. _ __... PROCEED TO INTERRUPT 

EXCEPTION PROCESSING 

EXAMPLE 1: INTERRUPT EXCEPTION SIGNALED DURING STAT! 

STATO ____ ..._ __ PROCEED TO INTERRUPT 
EXCEPTION PROCESSING 

EXAMPLE 2: INTERRUPT EXCEPTION SIGNALED OURING STATO 

Figure 8-6. Examples of Interrupt Recognition and Instruction Boundaries 

CYCLE - TERMINATED NORMALLY) and at this time, the IPLx signals for the interrupt 
being acknowledged can be negated. 

When processing an interrupt exception, the processor first makes an internal copy of the 
status register, sets the privilege level to supervisor, suppresses tracing, and sets the 
processor interrupt mask level to the level of the interrupt being serviced. The processor 
attempts to obtain a vector number from the interrupting device using an interrupt ac­
knowledge bus cycle with the interrupt level number output on pins A1-A3 of the address 
bus. For a device that cannot supply an interrupt vector, the autovector signal (AVEC) can 
be asserted and the MC68030 uses an internally generated autovector, which is one of 
vector numbers 25-31, that corresponds to the interrupt level number. If external logic 
indicates a bus error during the interrupt acknowledge cycle, the interrupt is considered 
spurious, and the processor generates the spurious interrupt vector number, 24. Refer to 
7.4.1 Interrupt Acknowledge Bus Cycles for complete interrupt bus cycle information. 

Once the vector number is obtained, the processor saves the exception vector offset, 
program counter value, and the internal copy of the status register on the active supervisor 
stack. The saved value of the program counter is the logical address of the instruction that 
would have been executed had the interrupt not occurred. If the interrupt was acknowl­
edged during the execution of a coprocessor instruction, further internal information is 
saved on the stack so that the MC68030 can continue executing the coprocessor instruction 
when the interrupt handler completes execution. 

MOTOROLA 
8-14 

MC68030 USER'S MANUAL 



If the M bit of the status register is set, the processor clears the M bit and creates a 
throwaway exception stack frame on top of the interrupt stack as part of interrupt exception 
processing. This second frame contains the same program counter value and vector offset 
as the frame created on top of the master stack, but has a format number of 1 instead of 
0 or 9. The copy of the status register saved on the throwaway frame is exactly the same 
as that placed on the master stack except that the S bit is set in the version placed on the 
interrupt stack. (It may or may not be set in the copy saved on the master stack.) The 
resulting status register (after exception processing) has the S bit set and the M bit cleared. 

The processor loads the address in the exception vector into the program counter, and 
normal instruction execution resumes afterthe required prefetches forthe interrupt handler 
routine. 

Most M68000 Family peripherals use programmable interrupt vector numbers as part of 
the interrupt request/acknowledge mechanism of the system. If this vector number is not 
initialized after reset and the peripheral must acknowledge an interrupt request, the pe­
ripheral usually returns the vector number for the uninitialized interrupt vector, 15. 

8.1.10 MMU Configuration Exception 

When the MC68030 executes a PMOVE instruction that attempts to move invalid data into 
the TC, CRP, or SRP register of the MMU, the PMOVE instruction causes an MMU config­
uration exception. The exception is a post-instruction exception; it is processed after the 
instruction completes. The processor generates exception vector number 56 when an MMU 
configuration exception occurs. Refer to SECTION 9 MEMORY MANAGEMENT UNIT for a 
description of the valid configurations for the MMU registers. 

The processor copies the status register, enters the supervisor privilege level, and clears 
the trace bits. The processor saves the vector offset, the scanPC value (which points to the 
next instruction), and the copy of the status register on the supervisor stack. It also saves 
the logical address of the PMOVE instruction on the stack. Then the processor resumes 
normal instruction execution after the required prefetches from the address in the exception 
vector. 

8.1.11 Breakpoint Instruction Exception 

In order to use the MC68030 in a hardware emulator, it must provide a means of inserting 
breakpoints in the emulator code, and of performing appropriate operations at each break­
point. For the MC68000 and MC68008, this can be done by inserting an illegal instruction 
at the breakpoint and detecting the illegal instruction exception from its vector location. 
However, since the vector base register on the MC68010, MC68020, and MC68030 allows 
arbitrary relocation of exception vectors, the exception address cannot reliably identify a 
breakpoint. The MC68020 and MC68030 processors provide a breakpoint capability with a 
set of breakpoint instructions, $4848-$484F, for eight unique breakpoints. The breakpoint 
facility also allows external hardware to monitor the execution of a program residing in 
the on-chip instruction cache without severe performance degradation. 

When the MC68030 executes a breakpoint instruction, it performs a breakpoint acknowl­
edge cycle (read cycle) from CPU space type $0 with address lines A2-A4 corresponding 
to the breakpoint number. Refer to Figure 7-44 for the CPU space type $0 addresses, and 
7.4.2 Breakpoint Acknowledge Cycle for a description of the breakpoint acknowledge cycle. 

MC68030 USER'S MANUAL MOTOROLA 
8-15 



.. 

The external hardware can return either BERR, DSACKx, or STERM with an instruction 
word on the data bus. If the bus cycle terminates with BERR, the processor performs illegal 
instruction exception processing. If the bus cycle terminates with DSACKx or STE RM, the 
processor uses the data returned to replace the breakpoint instruction in the internal in­
struction pipe, and begins execution of that instruction. The remainder of the pipe remains 
unaltered. In addition, no stacking or vector fetching is involved with the execution of the 
instruction. Figure 8-7 is a flowchart of the breakpoint instruction execution. 

PIPE STAGE 0 - INSTRUCTION WORD ON DATA BUS 
EXECUTE INSTRUCTION WORD 

A16-A19- SO 

A2-A4 - BREAKPOINT NUMBER 

INITIATE READ BUS CYCLE 

TAKE ILLEGAL INSTRUCTION 
EXCEPTION 

Figure 8-7. Breakpoint Instruction Flowchart 

8.1.12 Multiple Exceptions 

When several exceptions occur simultaneously, they are processed according to a fixed 
priority. Table 8-6 lists the exceptions, grouped by characteristics. Each group has a priority, 
from 0 through 4. Priority 0 has the highest priority. 

As soon as the MC68030 has completed exception processing for a condition when another 
exception is pending, it begins exception processing for the pending exception instead of 
executing the exception handler for the original exception condition. Also, whenever a bus 
error or address error occurs, its exception processing takes precedence over lower priority 
exceptions and occurs immediately. For example, if a bus error occurs during the exception 
processing for a trace condition, the system processes the bus error and executes its handler 
before completing the trace exception processing. However, most exceptions cannot occur 
during exception processing, and very few combinations of the exceptions shown in Table 
8-6 can be pending simultaneously. 

The priority scheme is very important in determining the order in which exception handlers 
execute when several exceptions occur at the same time. As a general rule, the lower the 

MOTOROLA 
8-16 

MC68030 USER'S MANUAL 



Table 8-6. Exception Priority Groups 

Group/ Exception and 
Priority Relative Priority Characteristics 

0 0.0- Reset Aborts all processing (instruction or excep· 
tion) and does not save old context. 

1 1.0 -Address Error Suspends processing (instruction or excep· 
1.1 - Bus Error tion) and saves internal context. 

2 2.0 - BKPT #n, CHK, CHK2, cp Mid-Instruction, Cp Pro· Exception processing is part of instruction 
tocol Violation, cpTRAPcc, Divide by Zero, RTE, execution. 
TRAP #n, TRAPV, MMU Configuration 

3 3.0 - Illegal Instruction, Line A, Unimplemented Line F, Exception processing begins before instruc-
Privilege Violation, cp Pre-Instruction lion is executed. 

4 4.0 - cp Post-Instruction Exception processing begins when current 
4.1 -Trace instruction or previous exception process-
4.2 - Interrupt ing is completed. 

0.0 is the highest priority, 4.2 is the lowest. 

As soon as the MC68030 has completed exception processing for a condition when another 
exception is pending, it begins exception processing for the pending exception instead of 
executing the exception handler for the original exception condition. Also, whenever a bus 
error or address error occurs, its exception processing takes precedence over lower priority 
exceptions and occurs immediately. For example, if a bus error occurs during the exception 
processing for a trace condition, the system processes the bus error and executes its handler 
before completing the trace exception processing. However, most exceptions cannot occur 
during exception processing, and very few combinations of the exceptions shown in Table 
8-6 can be pending simultaneously. 

The priority scheme is very important in determining the order in which exception handlers 
execute when several exceptions occur at the same time. As a general rule, the lower the 
priority of an exception, the sooner the handler routine for that exception executes. For 
example, if simultaneous trap, trace, and interrupt exceptions are pending, the exception 
processing for the trap occurs first, followed immediately by exception processing for the 
trace and then for the interrupt. When the processor resumes normal instruction execution, 
it is in the interrupt handler, which returns to the trace handler, which returns to the trap 
exception handler. This rule does not apply to the reset exception; its handler is executed 
first even though it has the highest priority, because the reset operation clears all other 
exceptions. 

8.1.13 Return from Exception 

After the processor has completed exception processing for all pending exceptions, the 
processor resumes normal instruction execution at the address in the vector for the last 
exception processed. Once the exception handler has completed execution, the processor 
must return to the system context prior to the exception (if possible). The RTE instruction 
returns from the handler to the previous system context for any exception. 

When the processor executes an RTE instruction, it examines the stack frame on top of 
the active supervisor stack to determine if it is a valid frame and what typ_e of context 
restoration it requires. This section describes the processing for each of the stack frame 
types; refer to 8.3 COPROCESSOR CONSIDERATIONS for a description of the stack frame 
type formats. 

MC68030 USER'S MANUAL MOTOROLA 
8-17 



-

For a normal four word frame, the processor updates the status register and program 
counter with the data read from the stack, increments the stack pointer by eight, and 
resumes normal instruction execution. 

For the throwaway four word stack, the processor reads the status register (SR) value from 
the frame, increments the active stack pointer by eight, updates the SR with the value read 
from the stack, and then begins RTE processing again, as shown in Figure 8-8. The processor 
reads a new format word from the stack frame on top of the active stack (which may or 
may not be the same stack used for the previous operation) and performs the proper 
operations corresponding to that format. In most cases, the throwaway frame is on the 
interrupt stack and when the SR value is read from the stack, the S and M bits are set. In 
that case, there is a normal four word frame or a ten-word coprocessor mid-instruction 
frame on the master stack. However, the second frame may be any format (even another 
throwaway frame) and may reside on any of the three system stacks. 

For the six word stack frame, the processor restores the status register and program counter 
values from the stack, increments the active supervisor stack pointer by twelve, and re­
sumes normal instruction execution. 

For the coprocessor mid-instruction stack frame the processor reads the status register, 
program counter, instruction address, internal register values, and the evaluated effective 

MOTOROLA 
8-18 

TAKE FORMAT 
ERROR EXCEPTION 

ENTRY 

TEMP - (SP)+ 
READ FORMAT WORD 

OTHERWISE 

OTHERWISE 

FORMAT CODE= $1 

(THROWAWAY FRAME) 

SR.__ TEMP 
SP.__ SP+6 

h ... "'"'. ~ ...... ,, .... , 
OTHERWISE l 

PC.- (SP)+ 
OTHER FORMATS SP .__ SP + 6 

SR.__ TEMP 

cb 
Figure 8-8. RTE Instruction for Throwaway Four-Word Frame 

MC68030 USER'S MANUAL 



address from the stack, restores these values to the corresponding internal registers, and 
increments the stack pointer by twenty. The processor then reads from the response register 
of the coprocessor that initiated the exception to determine the next operation to be per­
formed. Refer to SECTION 10 COPROCESSOR INTERFACE DESCRIPTION for details of 
coprocessor related exceptions. 

For both the short and long bus fault stack frames, the processor first checks the format 
value on the stack for validity. In addition, for the long stack frame, the processor compares 
the version number in the stack with its own version number. The version number is located 
in the most significant nibble (bits 15 through 12) of the word at location SP+$36 (hex­
adecimal) in the long stack frame. This validity check is required in a multiprocessor system 
to ensure that the data is properly interpreted by the RTE instruction. The RTE instruction 
also reads from both ends of the stack frame to make sure it is accessible. If the frame is 
invalid or inaccessible, the processor takes a format error or a bus error exception, re­
spectively. Otherwise, the processor reads the entire frame into the proper internal reg­
isters, deallocates the stack, and resumes normal processing. Once the processor begins 
to load the frame to restore its internal state, the assertion of the BERR signal causes the 
processor to enter the halted state with the continuous assertion of the STATUS signal. 
Refer to 8.2 BUS FAULT RECOVERY for a description of the processing that occurs after 
the frame is read into the internal registers. 

If a format error or bus error exception occurs during the frame validation sequence of the 
RTE instruction, either due to any of the errors previously described or due to an illegal 
format code, the processor creates a normal four word or a bus cycle fault stack frame 
below the frame that it was attempting to use. In this way, the faulty stack frame remains 
intact. The exception handler can examine or repair the faulty frame. In a multiprocessor 
system, the faulty frame can be left to be used by another processor of a different type 
(for example, an MC68010, MC68020, or a future M68000 processor) when appropriate. 

8.2 BUS FAULT RECOVERY 

An address error exception or a bus error exception indicates a bus fault. The saving of 
the processor state for a bus error or address error is described in 8.1.2 Bus Error Exception, 
and the restoring of the processor state by an RTE instruction is described in 8.1.13 Return 
from Exception. 

Processor accesses of either data items or the instruction stream can result in bus errors. 
When a bus error exception occurs while accessing a data item, the exception is taken 
immediately after the bus cycle terminates. Bus errors reported by the on-chip MMU are 
also processed immediately. A bus error occurring during an instruction stream access is 
not processed until the processor attempts to use the information (if ever) that the access 
should have provided. For instruction faults, when the short format frame applies, the 
address of the pipe stage B word is the value in the program counter plus four, and the 
address of the stage C word is the value in the program counter plus two. For the long 
format, the long word at SP+ $24 contains the address of the stage B word; the address 
of the stage C word is the address of the stage B word minus two. Address error faults 
occur only for instruction stream accesses, and the exceptions are taken before the bus 
cycles are attempted. 

8.2.1 Special Status Word 

The internal special status word (Figure 8-9) is one of several registers saved as part of 
the bus fault exception stack frame. Both the short bus cycle fault format and the long bus 

MC68030 USER'S MANUAL MOTOROLA 
8-19 



.. 

cycle fault format include this word, at offset $A. The bus cycle fault stack frame formats 
are described in detail at the end of this section. 

15 14 13 12 11 10 

FC FB RC RB x I x I x 
FC - Fault on Stage C of the Instruction Pipe 
FB - Fault on Stage B of the Instruction Pipe 
RC - Rerun Flag for Stage C of the Instruction Pipe* 
RB - Rerun Flag for Stage B of the Instruction Pipe* 
OF - Fault/Rerun Flag for Data Cycle* 
RM - Read-Modify-Write on Data Cycle 
RW - Read/Write for Data Cycle - 1 =Read, O= Write 
SIZE - Size Code for Data Cycle 
FCO-FC2 - Address Space for Data cycle 

*1 = Rerun Faulted bus Cycle, or Run Pending Prefetch 

0 =Do Not Rerun Bus Cycle 
X =For Internal Use Only 

OF RM RW SIZE 

Figure 8-9. Special Status Word (SSW) 

x I FC2-FCO 

The special status word (SSW) information indicates whether the fault was caused by an 
access to the instruction stream, data stream, or both. The high order half of the SSW 
contains two status bits each for the B and C stages of the instruction pipe. The fault bits 
(FB and FC) indicate that the processor attempted to use a stage (B or C) and found it to 
be marked as invalid due to a bus error on the prefetch for that stage. The fault bits can 
be used by a bus error handler to determine the cause(s) of a bus error exception. The 
rerun flag bits (RB and RC) are set to indicate that a fault occurred during a prefetch for 
the corresponding stage. A rerun bit is always set when the corresponding fault bit is set. 
The rerun bits indicate that the word in a stage of the instruction pipe is invalid, and the 
state of the bits can be used by a handler to repair the values in the pipe after an address 
error or a bus error, if necessary. If a rerun bit is set when the processor executes an RTE 
instruction, the processor may execute a bus cycle to prefetch the instruction word for the 
corresponding stage of the pipe (if it is required). If the rerun and fault bits are set for a 
stage of the pipe, the RTE instruction automatically reruns the prefetch cycle for that stage. 
The address space for the bus cycle is the program space for the privilege level indicated 
in the copy of the status register on the stack. If a rerun bit is cleared, the words on the 
stack for the corresponding stages ofthe pipe are accepted as valid; the processor assumes 
that there is no prefetch pending for the corresponding stage and that software has repaired 
or filled the image of the stage, if necessary. 

If an address error exception occurs, the fault bits written to the stack frame are not set 
(they are only set due to a bus error, as previously described), and the rerun bits alone 
show the cause of the exception. Depending on the state of the pipeline, either RB and RC 
are both set, or RC alone is set. If it is desired to correct the pipeline contents and continue 
execution of the suspended instruction, software must place the correct instruction stream 
data in the stage C and/or stage B images as requested by the rerun bits, and clear the 
rerun bits. The least significant half of the SSW applies to data cycles only. If the DF bit of 
the SSW is set, a data fault has occurred, and caused the exception. If the DF bit is set 
when the processor reads the stack frame, it reruns the faulted data access; otherwise, it 
assumes that the data input buffer value on the stack is valid for a read or that the data 
has been correctly written to memory for a write (or that no data fault occurred). The RM 
bit of the SSW identifies a read-modify-write operation and the RW bit indicates whether 
the cycle was a read or write operation. The SIZ field indicates the size of the operand 

MOTOROLA 
8-20 

MC68030 USER'S MANUAL 



access and the FC field specifies the address space for the data cycle. Data and instruction 
stream faults may be pending simultaneously; the fault handler should be able to recognize 
any combination of the FC, FB, RC, RB and OF bits. 

8.2.2 Using Software to Complete the Bus Cycles 

One method of completing a faulted bus cycle is to use a software handler to emulate the 
cycle. This is the only method for correcting address errors. The handler should emulate 
the faulted bus cycle in a manner that is transparent to the instruction that caused the 
fault. For instruction stream faults, the handler may need to run bus cycles for both the B 
and C stages of the instruction pipe. The RB and RC bits identify the stages that may require 
a bus cycle; the FB and FC bits indicate that a stage was found to be invalid when an 
attempt was made to use its contents. Those stages must be repaired. For each faulted 
stage, the software handler should copy the instruction word from the proper address 
space as indicated by the S bit of the copy of the status register saved on the stack to the 
image of the appropriate stage in the stack frame. In addition, the handler must clear the 
rerun bit associated with the stage that it has corrected. The handler should not change 
the fault bits FB and FC. 

In order to repair data faults (indicated by OF= 1 ), the software should first examine the 
RM bit in the SSW to determine if the fault was generated during a read-modify-write 
operation. If RM= 0, the handler should then check the R/W bit of the SSW to determine 
if the fault was caused by a read or a write cycle. For data write faults, the handler must 
transfer the properly sized data from the data output buffer (DOB) on the stack frame to 
the location indicated by the data fault address in the address space defined by the SSW. 
(Both the DOB and the data fault address are part of the stack frame, at SP+$18 and 
SP+ $10, respectively.) Data read faults only generate the long bus fault frame and the 
handler must transfer properly sized data from the location indicated by the fault address 
and address space to the image of the data input buffer (DIB) at location SP+$2C of the 
long format stack frame. Byte, word, and 3-byte operands are right-justified in the 4-byte 
data buffers. In addition, the software handler must clear the OF bit of the SSW to indicate 
that the faulted bus cycle has been corrected. 

In order to emulate a read-modify-write cycle, the exception handler must first read the 
operation word at the program counter address (SP+ 2 of the stack frame). This word 
identifies the CAS, CAS2, or TAS instruction that caused the fault. Then the handler must 
emulate this entire instruction (which may consist of up to four long word transfers) and 
update the condition code portion of the status register appropriately, because the RTE 
instruction expects the entire operation to have been completed if the RM bit (in SSW) is 
set and the DF bit (in SSW) is cleared. This is true even if the fault occurred on the first 
read cycle. 

To emulate the entire instruction, the handler must save the data and address registers 
for the instruction (with a MOVEM instruction, for example). Next, the handler reads and 
modifies (if necessary) the memory location. It clears the OF bit in the SSW of the stack 
frame, modifies the condition codes in the status register copy, and the copies of any data 
or address registers required for the CAS and CAS2 instructions. Last, the handler restores 
the registers that it saved at the beginning of the emulation. Except for the data input 
buffer (DIB), the copy of the status register, and the special status word, the handler should 
not modify a bus fault stack frame. The only bits in the special status word that may be 
modified are OF, RB, and RC; all other bits, including those defined for internal use, must 
remain unchanged. 

MC68030 USER'S MANUAL MOTOROLA 
8-21 



-

Address error faults must be repaired in software. Address error faults can be distinguished 
from bus error faults by the value in the vector offset field of the format word. 

8.2.3 Completing the Bus Cycles with RTE 

Another method of completing a faulted bus cycle is to allow the processor to rerun the 
bus cycles during execution of the RTE instruction that terminates the exception handler. 
This method cannot be used to recover from address errors. The RTE instruction is always 
executed. Unless the handler routine has corrected the error and cleared the fault (and 
cleared the rerun and DF bits of the special status word) the RTE instruction can complete 
the bus cycle(s). If the DF bit is still set at the time of the RTE execution, the faulted data 
cycle is rerun by the RTE instruction. If the fault bit for a stage of the pipe is set and the 
corresponding rerun bit was not cleared by the software, the RTE reruns the associated 
instruction prefetch. The fault occurs again unless the cause of the fault, such as a non­
resident page in a virtual memory system, has been corrected. If the rerun bit is set for a 
stage of the pipe and the fault bit is cleared, the associated prefetch cycle may or may not 
be run by the RTE instruction (depending on whether the stage is required). 

If a fault occurs when the RTE instruction attempts to rerun the bus cycle(s), the processor 
creates a new stack frame on the supervisor stack after deallocating the previous frame, 
and address error or bus error exception processing starts in the normal manner. 

The read-modify-write operations of the MC68030 can also be completed by the RTE in­
struction that terminates the handler routine. The rerun operation executed by the RTE 
instruction with the DF bit of the SSW set reruns the entire instruction. If the cause of the 
error has been corrected, the handler does not need to emulate the instruction, but can 
leave the DF bit set and execute the RTE instruction. 

Systems programmers and designers should both be aware that the memory management 
unit of the MC68030 treats any bus cycle with RMC asserted as a write operation for 
protection checking regardless of the state of R/W signal. Otherwise, the potential for 
partially destroying system pointers with CAS and CAS2 instructions exists since one 
portion of the write operation could take place and the remainder be aborted by a bus 
error. 

8.3 COPROCESSOR CONSIDERATIONS 

Exception handler programmers should consider carefully whether to save and restore the 
context of a coprocessor at the beginning and end of handler routines for exceptions that 
can occur during the execution of a coprocessor instruction (i.e., bus errors, interrupts, 
and coprocessor-related exceptions). The nature of the coprocessor and the exception 
handler routine determines whether or not saving the state of one or more coprocessors 
with the cpSAVE and cpRESTORE instructions is required. If the coprocessor allows multiple 
coprocessor instructions to be executed concurrently, it may require its state to be saved 
and restored for all coprocessor-generated exceptions regardless of whether or not the 
coprocessor is accessed during the handler routine. The MC68882 Floating-Point Copro­
cessor is an example of this type of coprocessor. The MC68881 Floating-Point Coprocessor, 
on the other hand, requires FSAVE and FRESTORE instructions within an exception handler 
routine only if the exception handler itself uses the coprocessor. 

MOTOROLA 
8-22 

MC68030 USER'S MANUAL 



8.4 EXCEPTION STACK FRAME FORMATS 

The MC68030 provides six different stack frames for exception processing. The set of frames 
includes the normal four and six word stack frames, the four word throwaway stack frame, 
the coprocessor mid-instruction exception stack frame, and the short and long bus fault 
stack frames. 

When the MC68030 writes or reads a stack frame, it uses long word operand transfers 
wherever possible. Using a long-word-aligned stack pointer with memory that is on a 32-
bit port greatly enhances exception processing performance. The processor does not nec­
essarily read or write the stack frame data in sequential order. 

The system software should not depend on a particular exception generating a particular 
stack frame. For compatibility with future devices, the software should be able to handle 
any type of stack frame for any type of exception. 

Table 8-7 summarizes the stack frames defined for the M68000 Family. 

MC68030 USER'S MANUAL MOTOROLA 
8-23 



-

Table 8-7. Exception Stack Frames (Sheet 1 of 2) 

Stack Frames 

1S 0 

SP- STATUS REGISTER 

•S02 
PROGRAM COUNTER 

-sos 0 0 0 oj VECTOR OFFSET 

FOUR WORD STACK FRAME • FORMAT SO 

IS 0 

SP~ STATUS REGISTER 

•S02 
PROGRAM COUNTER 

•SOS 0 0 0 1J VECTOR OFFSET 

THROWAWAY FOUR WORD STACK FRAME· FORMAT SI 

11 0 

SP- STATUS REGISTER 

•S02 
PROGRAM COUNTER 

+SOS a 0 1 oj VECTOR OFFSET 

•SOB 
INSTRUCTION ADDRESS 

SIX WORD STACK FRAME FORMAT S2 

11 0 

SP- STATUS REGISTER 

•S02 
PROGRAM COUNTER 

•SOS 1 0 0 iJ VECTOR OFFSET 

+SOB 
INSTRUCTION ADDRESS 

•SOC 

INTERNAL REGISTERS. 
4 WORDS 

t-$12 

COPROCESSOR MIO-INSTRUCTION STACK FRAME 110 WOROSI FORMAT SS 

MOTOROLA 
8-24 

Exception Types (Stacked PC Points to) 

• Interrupt (Next instruction( 
• Format Error IRTE or cpRESTORE instruction) 
• TRAP #N (Next instruction) 
• Illegal Instruction (Illegal instruction( 
• A-Line Instruction (A-line instruction( 

• F-Line Instruction IF-line instruction) 
• Privilege Violation [First word of instruction causing 

Privilege Violation) 

• Coprocessor (Op-Word of instruction that 
Pre-Instruction returned the Take Pre-Instruction 

primitive) 

• Created on Interrupt Stack (Next instruction - same 
during interrupt exception as on master stack) 
processing when transition 
from master state to 
interrupt state occurs 

• CHK (Next instruction for all these 
• CHK2 exceptions( 
• cpTRAPcc 
• TRAPcc INSTRUCTION ADDRESS 
• TRAPV is the address of the 
• Trace instruction tht caused the 
• Zero Divide exception 
• MMU Configuration 
• Coprocessor Post-Instruction 

• Coprocessor (Next word to be fetched 
Mid-Instruction from instruction stream 

• Main-Detected for all these exceptions( 
Protocol Violation 

INSTRUCTION ADDRESS • Interrupt Detected 
is the address of the During Coprocessor 
instruction that caused the Instruction (supported 

with 'null come again exception 

with interrupts 
allowed' primitive) 

MC68030 USER'S MANUAL 



Table 8-7. Exception Stack Frames (Sheet 2 of 2) 

Stack Frames 

15 0 

SP -..j STATUS REGISTER 

+502 
PROGRAM COUNTER 

+$06 I 0 1 ol VECTOR OFFSET 

+SOS INTERNAL REGISTER 

+SOA SPECIAL STATUS REGISTER· 

+SOC INSTRUCTION PIPE STAGE C 

•SOE INSTRUCTION PIPE STAGE B 

+$10 
DATA CYCLE FAULT ADDRESS 

+$12 

+$14 INTERNAL REGISTER 

+$16 INTERNAL REGISTER 

+SIS 
OATA OUTPUT BUFFER 

•SIA 

+SIC INTERNAL REGISTER 

+SH INTERNAL REGISTER 

SHORT BUS CYCLE FAULT STACK FRAME 116 WOROSI FORMAT SA 

15 0 

SP -..j STATUS REGISTER 

•S02 
PROGRAM COUNTER 

+$06 I 0 I 1} VECTOR OFFSET 

•SOB INTERNAL REGISTER 

•SOA SPECIAL STATUS REGISTER 

•SOC INSTRUCTION PIPE STAGE C 

•SOE INSTRUCTION PIPE STAGE B 

+S\O 
OATA CYCLE FAULT ADORESS 

+$12 

+$14 INTERNAL REGISTER 

•SIG INTERNAL REGISTER 

+$18 
DATA OUTPUT BUFFER 

->SIA 

•SIC 

INTERNAL REGISTERS. 4 WORDS 

•S22 

+$24 
STAGE B ADDRESS 

•S2B 
INTERNAL REGISTERS. 2 WORDS 

+S2A 

+$2C 
DATA INPUT BUFFER 

+$30 

INTERNAL REGISTERS. 3 WORDS 

•S36 

•S3B VERSION# l INTERNAL INFORMATION 

INTERNAL REGISTERS. 
IB WOROS 

•SSA 

LONG BUS CYCLE FAULT STACK FRAME 146 WOROSI FORMAT SB 

MC68030 USER'S MANUAL 

Exception Types (Stacked PC Points to) 

• Address Error or 
Bus Error - Execution 
Unit at Instruction 
Boundary 

• Address Error or 
Bus Error - Instruction 
Execution in Progress 

!Next instruction) 

!Address of instruction in 
execution when fault 
occurred - may not be 
the instruction that 
generated the faulted 
bus cycle) 

MOTOROLA 
8-25 



MOTOROLA 
8-26 

MC68030 USER'S MANUAL 



SECTION 9 
MEMORY MANAGEMENT UNIT 

The MC68030 includes a memory management unit (MMU) that supports a demand paged 
virtual memory environment. The memory management is "demand" in that programs 
do not specify required memory areas in advance, but request them by accessing logical 
addresses. The physical memory is paged, meaning that it is divided into blocks of equal 
size, called page frames. The logical address space is divided into pages of the same size. 
The operating system assigns pages to page frames as they are required to meet the needs 
of programs. 

The principal function of the MMU is the translation of logical addresses to physical ad­
dresses using translation tables stored in memory. The MMU contains an address trans­
lation cache (ATC) in which recently-used logical to physical address translations are stored. 
As the MMU receives each logical address from the CPU core, it searches the ATC for the 
corresponding physical address. When the translation is not in the ATC, the processor 
searches the translation tables in memory for the translation information. The address 
calculations and bus cycles required for this search are performed by microcode and 
dedicated logic in the MC68030. In addition, the MMU contains two transparent translation 
registers (TTO and TT1) that identify blocks of memory that can be accessed without trans­
lation. The features of the MMU are: 

• 32-Bit Logical Address Translated to 32-Bit Physical Address with 3-Bit Function Code 

• Supports Two-Clock Cycle Processor Accesses to Physical Address Spaces 

• Addresses Translated in Parallel with Accesses to Data and Instruction Caches 

• On-Chip Fully Associative 22 Entry ATC 

• Translation Table Search Controlled by Microcode 

• Eight Page Sizes: 256, 512, 1K, 2K, 4K, 8K, 16K and 32K Bytes 

• Separate User and Supervisor Translation Table Trees Are Supported 

• Two Independent Blocks Can Be Defined as Transparent (Untranslated) 

• Multiple Levels of Translation Tables 

• 0-15 Upper Logical Address Bits Can Be Ignored (Using Initial Shift) 

• Portions of Tables Can Be Undefined (Using Limits) 

• Write Protection and Supervisor Protection 

• History Bits Automatically Maintained in Page Descriptors 

• Cache Inhibit Output (CIOUT) Signal Asserted on Page Basis 

• External Translation Disable Input Signal (MMUDIS) 

• Subset of Instruction Set Defined by MC68851 

The MMU completely overlaps address translation time with other processing activity when 
the translation is resident in the ATC. ATC accesses operate in parallel with the on-chip 
instruction and data caches. 

MC68030 USER'S MANUAL MOTOROLA 
9-1 



-

Figure 9-1 is a block diagram of the MC68030 showing the relationship of the MMU to the 
execution unit and the bus controller. For an instruction or operand access, the MC68030 
simultaneously searches the caches and searches for a physical address in the ATC. If the 
translation is available, the MMU provides the physical address to the bus controller and 
allows the bus cycle to continue. When the instruction or operand is in either of the on­
chip caches on a read cycle, the bus controller aborts the bus cycle before address strobe 
is asserted. Similarly, the MMU causes a bus cycle to abort before the assertion of address 
strobe when a valid translation is not available in the ATC or when an invalid access is 
attempted. 

An MMU disable input signal (MMUDIS) is provided that dynamically disables address 
translation for emulation, diagnostic, or other purposes. 

The programming model of the MMU (Figure 9-2) consists of two root pointer registers, 
a control register, two transparent translation registers, and a status register. These reg­
isters can only be accessed by supervisor programs. The CPU root pointer register points 
to an address translation tree structure in memory that describes the logical to physical 
mapping for user accesses, or for both user and supervisor accesses. The supervisor root 
pointer register optionally points to an address translation tree structure for supervisor 
mappings. The translation control register is comprised of fields that control the translation 
operation. Each transparent translation register can define a block of logical addresses that 
are used as physical addresses (without translation). The MMU status register contains 
accumulated status information from a translation performed as a part of a PTEST instruc­
tion. 

The address translation cache (ATC) in the MMU is a fully associative cache that stores 22 
logical to physical address translations and associated page information. It compares the 
logical address and function code internally supplied by the processor with all tag entries 
in the ATC. When the access address and function code matches a tag in the ATC {a hit 
occurs) and no access violation is detected, the ATC outputs the corresponding physical 
address to the bus controller, which continues the external bus cycle. Function codes are 
routed to the bus controller unmodified. 

Each ATC entry contains a logical address, a physical address, and status bits. Among the 
status bits are the write-protect and cache inhibit bits. 

When the ATC does not contain the translation for a logical address {a miss occurs) and 
an external bus cycle is required, the MMU aborts the access and causes the processor to 
initiate bus cycles that search the translation tables in memory for the correct translation. 
If the table search completes without any errors, the MMU stores the translation in the 
ATC and provides the physical address for the access, allowing the bus controller to retry 
the original bus cycle. 

An MMU translation table has a tree structure with the base of the first table defined by 
a root pointer descriptor. The root pointer descriptor of the current translation table is 
resident in one of two root pointer registers. The general tree structure is shown in Figure 
9-3. Table entries at the upper levels of a tree point to other tables. The table leaf entries 
are page frame addresses. All addresses stored in the translation tables are physical ad­
dresses; the translation tables reside in the physical address space. 

MOTOROLA 
9-2 

MC68030 USER'S MANUAL 



s: 
C') 
CJ) 
co 
Q 
w 
Q 

c 
(fl 
m :a 
en 
s: 
)> 
2 
c 
)> 
r-

s: 
0 
-I 
0 
:0 
0 c.o r-w l> 

ADDRESS 
BUS 

r-n 
~ 

G 

BUS CONTROLLER 

BUS CONTROL 
SIGNALS 

MICRDSEDUENCER ANO CONTROL 

CONTROL 
STORE 

CONTROL 
lOGIC 

INSTRUCTION 
ADDRESS 

BUS 

EXECUTION UNIT 

OATA 

ADDRESS 
BUS 

Figure 9-1. MMU Block Diagram 

I 

CACHE 
HOLDING 
REGISTER 

ICAHRI 

INSTRUCTION v•------~ 
CACHE 

DATA 
CACHE 

SIZE 
MULTIPLEXER 

INTERNAl 
DATA 
BUS 

DATA 
BUS 



-

63 

CPU ROOT 

POINTER 

31 

63 

SUPERVISOR ROOT 

POINTER 

31 

31 

TRANSLATION CONTROL 

31 

TRANSPARENT TRANSLATION 0 

31 

TRANSPARENT TRANSLATION 1 

15 

MMU STATUS (MMUSR) 

Figure 9-2. MMU Programming Model 

ROOT POINTER - .--------. 

Figure 9-3. Translation Table Tree 

32 

32 

AOORESS 
TRANSLATION 
CONTROL 
REGISTERS 

} 
STATUS 
INFORMATION 
REGISTER 

POINTER 
TABLES 

PAGE 
TABLES 

System software selects the parameters for the translation tables by configuring the trans­
lation control register (TC) appropriately. The function codes or a portion of the logical 
address can be defined as the index into the first level of lookup in the table. The TC register 
specifies how many bits of the logical address are used as the index for each level of the 
lookup (as many as 15 bits can be used at a given level). 

MOTOROLA 
9-4 

MC68030 USER'S MANUAL 



9.1 TRANSLATION TABLE STRUCTURE 

The M68030 uses the ATC and translation tables stored in memory to perform the trans­
lation from a logical to a physical address. Translation tables for a program are loaded 
into memory by the operating system. 

The general translation table structure supported by the MC68030 is a tree structure of 
tables. The pointer tables form the branches of the tree. These tables contain the base 
addresses of other tables. Page descriptors can reside in pointer tables and in that case 
are called early termination descriptors. The tables at the leaves of the tree are called page 
tables. Only a portion of the translation table for the entire logical address space is required 
to be resident in memory at any time: specifically, only the portion of the table that 
translates the logical addresses that the currently executing process(es) use(s) must be 
resident. Portions of translation tables can be dynamically allocated as the process requires 
additional memory. 

As shown in Figure 9-4, the root pointer for a table is a descriptor that contains the base 
address of the top level table for the tree. The pointer tables and page tables also consist 
of descriptors. A descriptor in a pointer table typically contains the base address of a table 
at the next level of the tree. A table descriptor can also contain limits for the index into 
the next table, protection information, and history information pertaining to the descriptor. 
Each table is indexed by a field extracted from the logical address. In the example shown 
in Figure 9-4, the A field of the logical address, $00A, is added to the root pointer value to 
select a descriptor at the A level of the translation tree. The selected descriptor points to 
the base of the appropriate page table, and the B field of the logical address ($006) is added 
to this base address to select a descriptor within the page table. A descriptor in a page 
table contains the physical base address of the page, protection information, and history 
information for the page. A page descriptor can also reside in a pointer table or even in a 
root pointer in order to define a contiguous block of pages. A two-level page task is shown. 
The 32-bit logical address space is divided into 4096 segments of 1024 bytes each. 

Figure 9-5 shows a possible layout of this example translation tree in memory. 

9.1.1 Translation Control 

The translation control register (TC) defines the size of pages in memory, selects the root 
pointer register to be used for supervisor accesses, indicates whether the top level of the 
translation tree is indexed by function code, and specifies the number of logical address 
bits used to index into the various levels of the translation tree. The initial shift (IS) field 
of the TC register defines the size of the logical address space; it contains the number of 
most significant address bits that are ignored in the translation table lookup. For example, 
if the IS field is set to 0, the logical address space is 232 bytes. On the other hand, if the 
IS field is set to 15, the logical address space contains only 232_215 bytes. 

The page size (PS) field of the TC register specifies the page size for the system. The 
number of pages in the system is equal to the logical address space divided by the page 
size. The maximum number of pages that can be defined by a translation tree is greater 
than 16 million (232;28). The minimum number is 4 (217;215). The function code can also 
be used in the table lookup, defining as many as seven regions of the above size (FC = 0-
6). The entire range of the logical address space(s) can be defined by translation tables of 
many sizes. The MC68030 provides flexibility that simplifies the implementation of large 
translation tables. 

MC68030 USER'S MANUAL MOTOROLA 
9-5 



-

A B PS 

EXAMPLE ADDRESS $00A01AOO I 0 0 0 0 0 0 0 D 1 0 1 0 I 0 0 0 D D 0 0 1 1 0 Ix x x x x x x x x x I 

ROOT POINTER 

$A $6 

ENTRY $ODA ... , -----~ '"m $000 '-, ------'r- :~~~;~~ME 

A LEVEL TABLES 
i4K ENTRIES) 

B LEVEL TABLES 
14K TABLES MAXIMUM. 1 K ENTRIES/TABLE) 

Figure 9-4. Example Translation Table Tree 

TABLE $0 
B LEVEL 

TABLE $ODA 
B LEVEL 

TABLE $FFf 
B LEVEL 

The use of a tree structure with as many as five levels of tables provides granularity in 
translation table design. The LIMIT field of the root pointer can limit the value of the first 
index and limits the actual number of descriptors required. Optionally, the top level of the 
structure can be indexed by function code bits. In this case, the pointer table at this level 
contains eight descriptors. The next level of the structure (or the top level when the FCL 
bit of the TC register is set to zero) is indexed by the most significant bits of the logical 
address. (disregarding the number of bits specified by the IS field). The number of logical 
address bits used for this index is specified by the TIA field of the TC register. If, for example, 

MOTOROLA 
9-6 

MC68030 USER'S MANUAL 



A PS 

EXAMPLE AOORESS $00A01AOO I 0 0 0 0 0 0 0 0 1 0 1 0 I 0 0 0 0 0 0 0 1 1 0 Ix x x x x x x x x x I 

ROOT POINTER 

$10000 

$A $6 

$10000 li--------1 

$1002811----'"$3.;...70;.;.00.;;..._---I 

$13FFC~ 
$14000~ 

$17FFC li--------1 

$37000 li--------1 

$370181 FRAME ADDRESS 

A LEVEL TABLE 
(4-BYTE ENTRIES) 

B LEVEL TABLE $0 
(4-BYTE ENTRIES) 

B LEVEL TABLE $00A 
(4-BYTE ENTRIES) 

Figure 9-5. Example Translation Tree Layout in Memory 

the TIA field contains the value 5, the index for this level contains five bits, and the pointer 
table at this level contains at most 32 descriptors. 

Similarly, the TIB, TIC, and TID fields of the TC register define the indexes for lower levels 
of the translation table tree. When one of these fields contains zero, the remaining Tix 
fields are ignored; the last non-zero Tix field defines the index into the lowest level of the 
tree structure. The tables selected by the index at this level are page tables; every descriptor 
in these tables is (or represents) a page descriptor. Figure 9-6 shows how the Tix fields of 
the TC register apply to a function code and logical address. 

For example, a TC register in which the FCL bit is set to one, the TIA field contains 5, the 
TIB field contains 9, and the TIC and TID fields contain zero defines a three-level translation 
tree. The top level is indexed by the function code, the next level by 5 logical address bits, 
and the bottom level by 9 logical address bits. If the TIC field contained 9 instead of zero, 
the translation tree would have four levels, and the two bottom levels would each be 
indexed by 9-bit portions of the logical address. 

MC68030 USER'S MANUAL MOTOROLA 
9-7 



.. 

LOGICAL AOORESS 

FC IS 

·I 
+TIA 

·I 
+TIB 

·I 
+TIC 

·I 
+TIO + PS 

01 A OFFSET 

31 

Figure 9-6. Derivation of Table Index Fields 

The following equation for fields in the TC register must be satisfied: 
IS+PS+TIA+TIB1+TIC1+TID1 = 32 

That is, every bit of the logical address either addresses a byte within the page, is part of 
the index at some level of the address table, or is explicitly ignored by initial shift. 

Table 9-1 lists the valid sizes of the table indexes at each of the levels indexed by the Tix 
fields, and the position of each table index within the logical address. When the function 
code is also used to select a descriptor, a total of five levels can be defined by the logical 
address. The function code lookup level and levels B, C, and D can be suppressed. 

Table 9-1. Size Restrictions 

Field Starting Bit Position Size Restrictions 

A 31-IS 1-15 (TIA must be greater than zero; mini-
mum of2 ifTIB=O) 

B 31-IS-TIA 0-15 

c 31-IS-TIA-TIB 0-15 (ignored if TIB is zero) 

D 31-IS-TIA-TIB-TIC 0-15 (ignored if TIB or TIC is zero) 

9.1.2 Translation Table Descriptors 

The address translation trees consist of tables of descriptors. These descriptors can be one 
of four basic types: table descriptors, page descriptors (normal or early termination), invalid 
descriptors, or indirect descriptors. Each of these descriptors has both a long format and 
a short format representation. 

A root pointer descriptor defines the root of a tree and can be a table descriptor or an early 
termination page descriptor. A table descriptor points to a descriptor table in memory that 
defines the next lower level in the translation tree. An early termination page descriptor 
causes immediate termination of the table search and contains the physical address of an 
area in memory that contains page frames corresponding to contiguous logical addresses 
(Refer to 9.5.3.1 EARLY TERMINATION AND CONTIGUOUS MEMORY). 

Tables at intermediate levels of a translation tree contain descriptors that are similar to 
the root pointer descriptors. They can contain table descriptors or early termination page 
descriptors, and can also contain invalid descriptors. 

NOTE 1. If any of these fields is zero, the remaining fields are ignored. 

MOTOROLA 
9-8 

MC68030 USER'S MANUAL 



The descriptor tables at the lowest level of a translation tree can only contain page de­
scriptors, indirect descriptors, and invalid descriptors. A page descriptor in the lowest level 
of a translation tree defines the physical address of a page frame in memory that corre­
sponds to the logical address of a page. An indirect descriptor contains a pointer to the 
actual page descriptor, and can be used when a single page descriptor is accessed by two 
or more logical addresses. 

To enhance the flexibility of translation table design, descriptors (except for root pointer 
descriptors) can be either short or long format. The short format descriptors consist of one 
long word, and have no index limiting capabilities or supervisor only protection. The long 
format descriptors consist of two long words and contain all defined descriptor fields for 
the MC68030. The pointer and page tables can each contain either short or long format 
descriptors, but no single table can contain both sizes. Tables at different levels of the 
translation tree can contain different formats of descriptors. Tables at the same level can 
also contain descriptors of different formats, but all descriptors in a particular pointer table 
or page table must be of the same format. Figure 9-7 shows a translation tree that uses 
several different format descriptors. 

All descriptors contain a descriptor type (OT) field, which identifies the descriptor or spec­
ifies the size of the descriptors in the table to which the descriptor points. It is always the 
two least significant bits of the most significant (or only) long word of a descriptor. 

Invalid descriptors can be used at any level of the translation tree except the root. When 
a table search for a normal translation encounters an invalid descriptor, the processor takes 
a bus error exception. The invalid descriptor can be used to identify either a page or branch 
of the tree that has been stored on an external device and is not resident in memory, or 
a portion of the translation table that has not yet been defined. In these two cases, the 
exception routine can either restore the page from disk or add to the translation table . 

All long format descriptors and short format invalid descriptors include one or two unused 
fields. The operating system can use these fields for its own purposes. For example, the 
operating system can encode these fields to specify the type of invalid descriptor. Alter­
nately, the external device address of a page that is not resident in main memory can be 
stored in the unused field. 

9.2 ADDRESS TRANSLATION 

The function of the MMU is to translate logical addresses to physical addresses according 
to control information stored by the system in the MMU registers and in translation table 
trees resident in memory. 

9.2.1 General Flow for Address Translation 

A CPU space address (FCO-FC2 = $7) is a special case that is immediately used as a physical 
address without translation. For other accesses, the translation process proceeds as fol­
lows: 

1. Search the on-chip data and instruction caches for the required instruction word or 
operand on read accesses. 

2. Compare the logical address and function code to the transparent translation param­
eters in the transparent translation registers, and use the logical address as a physical 
address for the memory access when one or both of the registers match. 

MC68030 USER'S MANUAL MOTOROLA 
9-9 

.. 



• 

A PS 

EXAMPLE AOORESS $00A01AOO I 0 0 0 0 0 0 0 0 1 0 1 0 I 0 0 0 0 0 0 0 1 1 0 I x x x x x x x x x x I 

ROOT POINTER 

OT = 'VALID 4 BYTE' 
OT = 'INVALID' 

ENTRY $DOA OT = 'VAUO 8 BYTE' 

OT = 'VALID 4 BYTE' 

A LEVEL TABLES 
(4K ENTRIES) 

$A $6 

ENTRY $0061,_ ------tr ::.~..:;:" 

B LEVEL TABLES 
(4K TABLES MAXIMUM. 1 K ENTRIES/TABLE} 

TABLE$0 
B LEVEL 
(SHORT FORMAT 
DESCRIPTORS} 

TABLE $00A 
B LEVEL 
(LONG FORMAT 
DESCRIPTORS} 

TABLE $FFF 
B LEVEL 
(SHORT FORMAT 
DESCRIPTORS} 

Figure 9-7. Example Translation Tree Using Different Format Descriptors 

3. Compare the logical address and function code to the tag portions of the entries in 
the ATC and use the corresponding physical address for the memory access when a 
match occurs. 

4. When no on-chip cache hit occurs (on a read), and no TTx register matches or valid 
ATC entry matches, initiate a table search operation to obtain the corresponding 

MOTOROLA 
9-10 

MC68030 USER'S MANUAL 



physical address from the corresponding translation tree, create a valid ATC entry for 
the logical address, and repeat step 3. 

Figure 9-8 is a general flowchart for address translation. The top branch of the flowchart 
applies to CPU space accesses (FCO-FC2 = $7). The next branch applies to read accesses 
only. When either of the on-chip caches hits (contains the required data or instruction), no 
memory access is necessary. The third branch applies to transparent translation. The 
bottom three branches apply to ATC translation as follows. If the requested access misses 
in the ATC, the memory cycle is aborted, and a table search operation proceeds. An ATC 
entry is created after the table search, and the access is retried. If an access hits in the 
ATC, but a bus error was detected during the table search that created the ATC entry, the 
memory access is aborted, and a bus error exception is taken. 

If an access results in an ATC hit, but the access is either a write or read-modify-write 
access and the page is write-protected, the memory cycle is also aborted, and a bus error 
exception is taken. For a write or read-modify-write access, when the modified bit of the 
ATC entry is not set, the memory cycle is aborted, a table search proceeds to set the 
modified bit in both the page descriptor in memory and in the ATC, and the access is 
retried. If the modified bit of the ATC entry is set and the bus error bit is not, and assuming 
that neither Tix register matches and the access is not to CPU space, the ATC provides 
the address translation to the bus controller under two conditions: 1) if a read access does 
not hit in either on-chip cache, and 2) if a write or read-modify-write access is not write­
protected. 

The preceding description of the general flowchart specifies several conditions that cause 
the memory cycle to be aborted. In these cases, the bus cycle is aborted before the assertion 
of AS. 

9.2.2 Effect of RESET on MMU 

When the MC68030 is reset by the assertion of the RESET signal, the E bits of the TC and 
Tix registers are cleared, disabling address translation. This causes logical addresses to 
be passed through as physical addresses to the bus controller. This allows an operating 
system to set up the translation tables and MMU registers, as required. After it has initialized 
the translation tables and registers, the E bit of the TC register can be set, enabling address 
translation. A reset of the processor does not invalidate any entries in the ATC. An MMU 
instruction (such as PMOVE) that flushes the ATC must be executed in order to flush all 
existing valid entries from the ATC after a reset operation and before translation is enabled. 

9.2.3 Effect of MMUDIS on Address Translation 

The assertion of MMUDIS prevents the MMU from performing searches of the ATC and 
the execution unit from performing table searches. With address translation disabled, 
logical addresses are used as physical addresses. When an initial access to a long word 
aligned data operand that is larger than the addressed port size is performed, the successive 
bus cycles for additional portions of the operand always use the same higher-order address 
bits that were used for the initial bus cycle (changing AO and A 1 appropriately). Thus if 
MMUDIS is asserted during this type of operation, the disabling of address translation 
does not become effective until the entire transfer is complete. Note that the assertion of 
MMUDIS does not affect the operation of the transparent translation registers. 

MC68030 USER'S MANUAL MOTOROLA 
9-11 

• 



• 

c 

( ___ EN"TTR_Y __ ) 

Cl TEMPI- 0 
CITEMP2- 0 

"0"4 r OTHERWISE 
PA-LA 
CIOUT-0 

I 
(~_E_x1T __ ) 

REAO ACCESS _c WRITE OR RMW ACCESS 

INSTRUCTION OR OTHERWISE 
DATA CACHE HIT 

( __ Exl_T _) 

LA MATCHES WITH ITx 

ABORT CYCLE 

TABLE SEARCH 
OPERATION 

MOTOROLA 
9-12 

OTHERWISE 

ATC MISS ATC HIT 

[(~P==lil~RND 1 
(WRITE OR RMW CYCLE)) 

....---.....__ __ ......, 
ABORT CYCLE 

TAKE BUS ERROR 
EXCEPTION 

(M = 0) AND 
(WRITE OR RMW CYCLE) 

OTHERWISE 

OTHERWISE 

I 
PA - ATC ENTRY [PA) 

d; 

~""'"~ 
OTHERWISE Cl TEMPI - no[CI) 

LA MATCHED WITH m 

I 
OTHERWISE Cl TEMP2 ..__ m [Cl) 

v 
PA-LA 

CIOUT - Cl TEMPI V Cl TEMP2 

I 
( __ Ex_1T_) 

Figure 9-8. Address Translation General Flowchart 

MC68030 USER'S MANUAL 



9.3 TRANSPARENT TRANSLATION 

Two independent transparent translation registers (TIO and TT1) in the MMU optionally 
define two blocks of the logical address space that are directly translated to the physical 
address spaces. The MMU does not explicitly check write protection for the addresses in 
these blocks, but a block can be specified as transparent only for read cycles. The blocks 
of addresses defined by the TTx registers include at least 16M bytes of logical address 
space; the two blocks can overlap, or they can be separate. 

The following description of the address comparison assumes that both TIO and TT1 are 
enabled; however, each TTx register can be independently disabled. A disabled TTx register 
is completely ignored. 

When the MMU receives an address to be translated, the function code and the eight high­
order bits of the address are compared to the block of addresses defined by TIO and TT1. 
The address space block for each TTx register is defined by the base function code, the 
function code mask, the logical base address, and the logical address mask. When a bit in 
a mask field is set, the corresponding bit of the base function code or logical base address 
is ignored in the function code and address comparison. Setting successively higher order 
bits in the address mask increases the size of the transparently translated block. 

The address for the current bus cycle and a TTx register address match when the function 
code bits and address bits, (not including masked bits), are equal. Each TTx register can 
specify read accesses or write accesses as transparent. In that case, the internal read/write 
signal must match the R/W bit in the TTx register in order for the match to occur. The 
selection of the type of access (read or write) can also be masked. The read/write mask 
bit, RWM, must be set for transparent translation of addresses used by instructions that 
execute read-modify-write operations. Otherwise, neither the read nor write portions of 
read-modify-write operations are mapped transparently with the TTx registers, regardless 
of the function code and address bits for the individual cycles within a read-modify-write 
operation. 

By appropriately configuring a transparent translation register, flexible transparent map­
ping can be specified. For instance, to transparently translate user program space with a 
TTx register, the RWM bit of the register is set to 1, the FC BASE is set to $2, and the FC 
MASK is set to $0. To transparently translate supervisor data read accesses of addresses 
$00000000-$0FFFFFFF, the LOGICAL BASE ADDRESS field is set to $OX, the LOGICAL 
ADDRESS MASK is set to $OF, the R/W bit is set to 1, the RWM bit is set to 0, the FC BASE 
is set to $5, and the FC MASK field is set to $0. Since only read cycles are specified by the 
TTx register for this example, write accesses for this address range can be translated with 
the translation tables and write-protection can be implemented as required. 

Each TTx register can specify that the contents of logical addresses in its block should not 
be stored in either an internal or external cache. The cache inhibit out signal (CIOUT) is 
asserted when an address matches the address specified by a TTx register and the cache 
inhibit bit in that TTx register is set. CIOUT is used by the on-chip instruction and data 
caches to inhibit cacheing of data associated with this address. The signal is available to 
external caches for the same purpose. 

For an access, if either of these registers match, the access is transparently translated. If 
both registers match, the Cl bits are ORed together to generate the CIOUT signal. 

Transparent translation can also be implemented by the translation tables of the translation 
trees if the physical addresses of pages are set equal to the logical addresses. 

MC68030 USER'S MANUAL MOTOROLA 
9-13 

• 



• 

9.4 ADDRESS TRANSLATION CACHE 

The address translation cache (ATC) is a 22-entry fully associative (content addressable) 
cache that contains address translations in a form similar to the corresponding page de­
scriptors in memory, in order to provide fast address translation of a recently-used logical 
address. 

The MC68030 is organized such that the translation time of the ATC is always completely 
overlapped by other operations, and thus no performance penalty is associated with ATC 
searches. The address translation occurs in parallel with on-chip instruction and data cache 
accesses before an external bus cycle begins. 

If possible, when the ATC stores a new address translation, it replaces an entry that is no 
longer valid. When all entries in the ATC are valid, the ATC selects a valid entry to be 
replaced, using a pseudo least-recently-used algorithm. The ATC uses a validity bit and an 
internal history bit to implement this replacement algorithm. ATC hit rates are application 
dependent, but hit rates ranging from 98% to greater than 99% can be expected. 

Each ATC entry consists of a logical address and information from a corresponding page 
descriptor that contains the physical address. The 28-bit logical (or tag) portion of each 
entry consists of three fields: 

27 26 24 23 

I v FC LOGICAL ADDRESS 

V-VALID 
This bit indicates the validity of the entry. If V is set, this entry is valid. This bit is set 
when the MC68030 loads an entry. A flush operation clears the bit. Specifically, any 
of these operations clears the V bit of an entry: 

• A PMOVE instruction with the FD bit equal to zero that loads a value into the CRP, 
SRP, TC, no, or TI1 register. 

• A PFLUSHA instruction. 

• A PFLUSH instruction that selects this entry. 

• A PLOAD instruction for a logical address and FC that matches the tag for this 
entry. The instruction writes a new entry (with the V bit set) for the specified 
logical address. 

• The selection of this entry for replacement by the replacement algorithm of the 
ATC. 

FC - FUNCTION CODE 
This three-bit field contains the function code bits (FCO-FC2) corresponding to the 
logical address in this entry. 

LOGICAL ADDRESS 
This 24-bit field contains the most significant logical address bits for this entry. All 24 
bits of this field are used in the comparison of this entry to an incoming logical address 
when the page size is 256 bytes. For larger page sizes, the appropriate number of least 
significant bits of this field are ignored. 

MOTOROLA 
9-14 

MC68030 USER'S MANUAL 



Each logical portion of an entry has a corresponding 28-bit physical (or data) portion. The 
physical portion contains these fields: 

27 26 25 24 23 

I B I Cl WP M I PHYSICAL ADDRESS 

B - BUS ERROR 
This bit is set for an entry if a bus error, an invalid descriptor, a supervisor violation, 
or a limit violation is encountered during the table search corresponding to this entry. 
When B is set, a subsequent access to the logical address causes the MC68030 to take 
a bus error exception. Since an ATC miss causes an immediate retry of the access 
after the table search operation, the bus error exception is taken on the retry. The B 
bit remains set until a PFLUSH instruction or a PLOAD instruction for this entry in­
validates the entry, or until the replacement algorithm for the ATC replaces it. 

Cl - CACHE INHIBIT 
This bit is set when the cache inhibit bit of the page descriptor corresponding to this 
entry is set. When the MC68030 accesses the logical address of an entry with the Cl 
bit set, it asserts the cache inhibit out signal (CIOUT) during the corresponding bus 
cycle. This signal inhibits cacheing in the on-chip caches and can also be used for 
external caches. 

WP - WRITE PROTECT 
This bit is the write protect bit. It is set when a WP bit is set in any of the descriptors 
encountered during the table search for this entry. Setting a WP bit in a table descriptor 
write-protects all pages accessed with that descriptor. When the WP bit is set, a write 
access or a read-modify-write access to the logical address corresponding to this entry 
causes a bus error exception to be taken immediately. 

M-MODIFIED 
This bit is the modified bit. It is set when a valid write access to the logical address 
corresponding to the entry occurs. If the M bit is clear and a write access to this logical 
address is attempted, the MC68030 aborts the access and initiates a table search, 
setting the M bit in the page descriptor, invalidating the old ATC entry, and creating 
a new entry with the M bit set. The MMU then allows the original write access to be 
performed. This assures that the first write operation to a page sets the M bit in both 
the ATC and the page descriptor in the translation tables even when a previous read 
operation to the page had created an entry for that page in the ATC with the M bit 
clear. 

PHYSICAL ADDRESS 
This 24-bit field contains the physical address bits (A8-A31) from the page descriptor 
corresponding to the logical address. When the page size is larger than 256 bytes, not 
all bits in the physical address field are used. All page index bits of the logical address 
are transferred to the bus controller without translation. 

9.5 TRANSLATION TABLE DETAILS 

The details of translation tables and their use include detailed descriptions of the descrip­
tors, table searching, translation table structure variations, and the protection techniques 
available with the MC68030 MMU. 

MC68030 USER'S MANUAL MOTOROLA 
9-15 

.. 



.. 

9.5.1 Descriptor Details 

The descriptor details include detailed descriptions of the short and long format descriptors 
used in the translation trees. The fields that apply to all descriptors are described in the 
first paragraph. 

9.5.1.1 DESCRIPTOR FIELD DEFINITIONS. All descriptor fields are used in more than one 
type of descriptor. This section lists these fields and describes the use of each field. 

DT 

u 

WP 

This two-bit field contains the descriptor type; the first two types apply to the descriptor 
itself. The other two types apply to the descriptors in the table at the next level of the 
tree. The values are defined as follows: 

$0 INVALID 
This code identifies the current descriptor as an invalid descriptor. A table 
search ends when an invalid descriptor is encountered. 

$1 PAGE DESCRIPTOR 
This code identifies the current descriptor as a page descriptor. The page de­
scriptor is a normal page descriptor when it resides in a page table (in the 
bottom level of the translation tree). A page descriptor at a higher level is an 
early termination page descriptor. A table search ends when a page descriptor 
of either type is encountered. 

$2 VALID 4 BYTE 
This code specifies that the next table to be accessed contains short format 
descriptors. The MC68030 multiplies the index for the next table by four to 
access the next descriptor. (Short format descriptors must be long-word aligned.) 
When used in a page table (bottom level of an translation tree), this code 
identifies an indirect descriptor that points to a short format page descriptor. 

$3 VALID 8 BYTE 
This code specifies that the next table to be accessed contains long format 
descriptors. The MC68030 multiplies the index for the next table by eight to 
access the next descriptor. (Long format descriptors must be quad-word aligned.) 
When used in a page table (bottom level of an address translation tree), this 
code identifies an indirect descriptor that points to a long format page descrip­
tor. 

This bit is automatically set by the processor when a descriptor is accessed in which 
the U bit is clear except after a supervisor violation is detected. In a page descriptor 
table, this bit is set to indicate that the page corresponding to the descriptor has been 
accessed. In a pointer table, this bit is set to indicate that the pointer has been accessed 
by the MC68030 as part of a table search. Note that a pointer may be fetched, and its 
U bit set, for an address to which access is denied at another level of the tree. Updates 
of the U bit are performed before the MC68030 allows a page to be accessed. The 
processor never clears this bit. 

This bit provides write protection. The states of all WP bits encountered during a table 
search are logically ORed, and the result is copied to the ATC entry at the end of a 
table search for a logical address. During a table search for a PTEST instruction, the 

MOTOROLA 
9-16 

MC68030 USER'S MANUAL 



Cl 

LIU 

processor copies this result into the MMU status register (MMUSR). When WP is set, 
the MC68030 does not allow the logical address space mapped by that descriptor to 
be written by any program (i.e., this protection is absolute). If the WP bit is clear, the 
MC68030 allows write accesses using this descriptor (unless access is restricted at 
some other level of the translation tree). 

This bit is set to inhibit cacheing of items within this page by the on-chip instruction 
and data caches and, also, to cause the assertion of the CIOUT signal by the MC68030 
for bus cycles accessing items within this page. 

This bit specifies the type of limit in the LIMIT field. When the LIU bit is set, the LIMIT 
field contains the unsigned lower limit; the index value for the next level of the tree 
must be greater than or equal to the value in the LIMIT field. When the bit is cleared, 
the limit is an unsigned upper limit, and the index value must be less than or equal 
to the LIMIT. An out-of-bounds access causes the B bit in the ATC entry for the address 
to be set, and causes the table search to abort. 

LIMIT 

M 

This 15-bit field contains a limit to which the index portion of an address is compared 
to detect an out-of-bounds index. The limit check applies to the index into the table 
at the next lower level of the translation tree. If the descriptor is an early termination 
page descriptor, the limit field is still used as a check on the next index field of the 
logical address. 

This bit identifies a modified page. The MC68030 sets the M bit in the corresponding 
page descriptor before a write operation to a page for which the M bit is zero, except 
after a descriptor with the WP bit set is encountered, or after a supervisor violation is 
encountered. An access is considered to be a write for updating purposes if either the 
R/W or RMC signal is low. The MC68030 never clears this bit. 

PAGE ADDRESS 

s 

This 24-bit field contains the physical base address of a page in memory. The low­
order bits of the address are supplied by the logical address. When the page size is 
larger than 256 bytes, one or more of the least significant bits of this field are not 
used. The number of unused bits is equal to the PS field value in the TC register minus 
eight. 

This bit identifies a pointer table or a page as a supervisor-only table or page. When 
the S bit is set, only programs operating at the supervisor privilege level are allowed 
to access the portion of the logical address mapped by this descriptor. If this bit is 
clear, accesses using this descriptor are not restricted to supervisor-only unless the 
access is restricted by some other level of the translation tree. 

TABLE ADDRESS 
This 28-bit field contains the physical base address of a table of descriptors. The low­
order bits of the address are supplied by the logical address. 

DESCRIPTOR ADDRESS 
This 30-bit field contains the physical address of a page descriptor. This field is only 
used in short and long format indirect descriptors. 

MC68030 USER'S MANUAL MOTOROLA 
9-17 



.. 

UNUSED 
The bits in this field are not used by the MC68030, and may be used by the system 
software for its own purposes. 

RESERVED 
Descriptor fields designated by a "1" or a "O" are reserved by Motorola for future 
definition. These bits should be consistently written as either a "1" or a "O" as ap­
propriate. In the root pointers, these bits are not alterable. In memory-resident de­
scriptors, the values in these fields are neither checked nor altered by the MC68030. 
Use of these bits by system software for any purpose may not be supported in future 
products. 

9.5.1.2 ROOT POINTER DESCRIPTOR. A root pointer descriptor contains the address of 
the top level pointer table of a translation tree. This type of descriptor is loaded into the 
CRP and SRP registers with the PMOVE instruction. The field descriptions in the preceding 
section apply to corresponding fields of the CRP and SRP with two minor exceptions. A 
descriptor type code of $00 (invalid) is not allowed; an attempt to load zero into the DT 
field of the CRP or SRP register results in an MMU configuration exception. Also, when 
the FCL field of the TC register is set, the UU and LIMIT fields of the root pointer registers 
are unused. Figure 9-9 shows the root pointer descriptor format. 

63 

LIU 

15 

LIMIT 

00000000000 OT 

TABLE ADDRESS (PA31-PA16) 

TABLE ADDRESS (PA15-PA4) 

L/U - LOWER OR UPPER PAGE RANGE 
OT - DESCRIPTOR TYPE 
LIMIT - LIMIT ON TABLE INDEX FOR THIS TABLE ADDRESS 

UNUSED 

TABLE ADDRESS - ADDRESS OF TABLE AT NEXT LEVEL OR PAGE OFFSET IF OT= 1 

Figure 9-9. Root Pointer Descriptor Format 

48 

9.5.1.3 TABLE DESCRIPTOR, SHORT FORMAT. The field descriptions in 9.5.1.1 DESCRIP­
TOR FIELD DEFINITIONS apply to corresponding fields of this descriptor. Figure 9-10 shows 
the format of the short format table descriptor. 

9.5.1.4 TABLE DESCRIPTOR, LONG FORMAT. The field descriptions in 9.5.1.1 DESCRIPTOR 
FIELD DEFINITIONS apply to corresponding fields of this descriptor. During address com­
putations, the MC68030 internally replaces the UNUSED field with zeros. Figure 9-11 shows 
the format of the long format table descriptor. 

9.5.1.5 EARLY TERMINATION PAGE DESCRIPTOR, SHORT FORMAT. The short format 
early termination page descriptor contains the page descriptor code in the DT field but 

MOTOROLA 
9-18 

MC68030 USER'S MANUAL 



31 4 3 

TABLE ADDRESS I STATUS I 
28 

,I, 
3 2 1 0 

Figure 9-10. Short Format Table Descriptor 

31 30 16 15 0 31 4 3 

LIMIT STATUS TABLE ADDRESS I UNUSED I 
16 16 32 

/ 15 14 13 12 11 10 9 B 7 6 5 4 3 2 o I 

Figure 9-11. Long Format Table Descriptor 

resides in a pointer table. That is, the table in which an early termination page descriptor 
is located is not at the bottom level of the address translation tree. The field descriptions 
in 9.5.1.1 DESCRIPTOR FIELD DEFINITIONS apply to corresponding fields of this descriptor. 
Figure 9-12 shows the format of the short format early termination page descriptor. 

31 8 7 

PAGE ADDRESS STATUS 

24 

I 1 6 5 4 3 2 

Figure 9-12. Short Format Page Descriptor and 
Short Format Early Termination Page Descriptor 

9.5.1.6 EARLY TERMINATION PAGE DESCRIPTOR, LONG FORMAT. The long format early 
termination page descriptor contains the page descriptor code in the DT field but resides 
in a pointer table like the short format early termination page descriptor. The field descrip­
tions in 9.5.1.1 DESCRIPTOR FIELD DEFINITIONS apply to corresponding fields of this 

MC68030 USER'S MANUAL MOTOROLA 
9-19 



-

descriptor. Figure 9-13 shows the format of the long format early termination page de­
scriptor. The LIMIT field of the long format descriptor provides a means of limiting the 
number of pages to which the descriptor applies. 

31 30 16 15 0 31 8 7 

M LIMIT STATUS PAGE ADDRESS UNUSED 

16 16 32 

1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 o I 

Figure 9-13. Long Format Early Termination Page Descriptor 

9.5.1.7 PAGE DESCRIPTOR, SHORT FORMAT. The short format page descriptor is used in 
the page tables (the bottom level of the address table). The field descriptions in 9.5.1.1 
DESCRIPTOR FIELD DEFINITIONS apply to the corresponding fields of this descriptor. The 
short format of the page descriptor is identical to that of the short format early termination 
page descriptor shown in Figure 9-12. 

9.5.1.8 PAGE DESCRIPTOR, LONG FORMAT. The long format page descriptor is also used 
in the page tables. The field descriptions in 9.5.1.1 DESCRIPTOR FIELD DEFINITIONS apply 
to the corresponding fields of this descriptor. Figure 9-14 shows the format of the long 
format page descriptor. 

31 16 15 0 31 8 7 

UNUSED STATUS PAGE ADDRESS UNUSED 

16 16 32 

15 14 13 12 11 10 9 8 7 6 5 4 3 

Figure 9-14. Long Format Page Descriptor 

9.5.1.9 INVALID DESCRIPTOR, SHORT FORMAT. The short format invalid descriptor con­
sists only of a DT field that contains zeros, identifying it as an invalid descriptor. It can be 
used at any level of the address translation tree except at the root pointer level. The 30-
bit unused field is available to the operating system to identify unallocated portions of the 
table or portions of the table that reside on an external device. For example, the disk 

MOTOROLA 
9-20 

MC68030 USER'S MANUAL 



address of disk-resident tables or pages can be stored in this field. Figure 9-15 shows the 
format of a short format invalid descriptor. 

31 2 1 0 

UNUSED I OT I 
Figure 9-15. Short Format Invalid Descriptor 

9.5.1.10 INVALID DESCRIPTOR, LONG FORMAT. The long format invalid descriptor is used 
in pointer and page tables that contain long format descriptors. It is used in the same way 
as the short format invalid descriptor in the preceding section. The first long word contains 
the DTfield in the lowest order bits. The second long word is an unused field, also available 
to the operating system. Figure 9-16 shows the format of the long format invalid descriptor. 

31 2 1 0 31 

UNUSED UNUSED 

Figure 9-16. Long Format Invalid Descriptor 

9.5.1.11 INDIRECT DESCRIPTOR, SHORT FORMAT. The short format indirect descriptor 
does not have a unique descriptor type code. Rather, it resides in a page table (the bottom 
level of the address translation tree) that contains short format descriptors and is neither 
a page descriptor nor an invalid descriptor. The descriptor type field contains either the 
code for a valid 4-byte descriptor or for a valid 8-byte descriptor, depending upon the size 
of the referenced page descriptor. The field descriptions in 9.5.1.1 DESCRIPTOR FIELD 
DEFINITIONS apply to the corresponding fields of this descriptor. Figure 9-17 shows the 
format of a short format indirect descriptor. 

31 2 1 0 

DESCRIPTOR ADORESS I OT I 
Figure 9-17. Short Format Indirect Descriptor 

9.5.1.12 INDIRECT DESCRIPTOR, LONG FORMAT. The long format indirect descriptor has 
all the attributes of the short format indirect descriptor described in the preceding section. 
The only differences are that it is used in a page table that contains long format descriptors 
and that it has two unused fields. The field descriptions in 9.5.1.1 DESCRIPTOR FIELD 
DEFINITIONS apply to corresponding fields of this descriptor. Figure 9-18 shows the format 
of a long format indirect descriptor. 

31 2 1 0 31 

UNUSED DESCRIPTOR ADDRESS 

Figure 9-18. Long Format Indirect Descriptor 

MC68030 USER'S MANUAL 

2 1 0 

MOTOROLA 
9-21 



-

9.5.2 General Table Search 

When the address translation cache (ATC) does not contain a descriptor for the logical 
address of a processor access and a translation is required, the MC68030 searches the 
translation tables in memory and obtains the physical address and status information for 
the page corresponding to the logical address. When a table search is required, the CPU 
suspends instruction execution activity and at the end of a successful table search, stores 
the address mapping in the ATC and retries the access. The access then results in a match 
(it hits) and the translated address is transferred to the bus controller (provided no excep­
tions were encountered). 

The table search begins by selecting the translation tree, using function code bit FC2 and 
the SRE bit of the TC register as shown in Table 9-2. The SRE bit is set to enable the 
supervisor root pointer, and function code bit FC2 is set for supervisor level accesses. The 
translation tree with its root defined by the SRP register is selected only when SRE and 
FC2 are both set. Otherwise, the translation table with its root defined by register CRP is 
selected. A simplified flowchart of the table search procedure is shown in Figure 9-19. 

Table 9-2. Translation Tree Selection 

Translation Table 
FC2 SRE Root Pointer 

0 0 CRP 

0 1 CRP 
1 0 CRP 
1 1 SRP 

The table search procedure uses physical addresses to access the translation tables. The 
read-modify-write (RMC) signal is asserted on the first bus cycle of the search and remains 
asserted throughout, ensuring that the entire table search completes without interruption. 

The first bus cycle of the search uses the table address field of the appropriate root pointer 
as the base address of the first table. The low-order bits of the address are supplied by 
the logical address. The table is indexed by either the function code or the set of logical 
address bits defined by the TIA field of the TC register. The FCL field of the TC register 
determines whether or not the function code is used. In either case, the descriptor type 
field of the root pointer selects the scale factor (or multiplier) for the index. 

The first access obtains a descriptor. If the descriptor is a table descriptor, the MC68030 
again accesses memory. The next access uses the table address in the descriptor as the 
base address for the next table. The low-order bits of the address are supplied by the 
logical address. The table is indexed by a set of bits from the logical address using a scale 
factor determined by the descriptor type code in the descriptor. If the first table access 
used the function code, the second access uses the bits selected by the TIA field of the TC 
register. Otherwise, the second access uses the bits selected by the TIB field. 

Additional accesses are performed, using the logical address bits specified in TIB, TIC, or 
TIO in order, until an access obtains a page descriptor or an invalid descriptor, or a limit 
violation occurs. At this point, whether all levels of the address table have been accessed 
or not, the table search is over. The page descriptor contains the physical address and 
other information needed for the ATC entry; the MC68030 creates the ATC entry and retries 
the original bus access. 

MOTOROLA 
9-22 

MC68030 USER'S MANUAL 



ENTRY 

DETERMINE ROOT POINTER TO BE USED 
ANO SET x =A 

OT ¥ 'PAGE DESCRIPTOR' 

OTHERWIS~ 
FCL SET 

FETCH DESCRIPTOR AT 
TABLE ADDRESS+ (fC"SIZE) 

OT= 'PAGE DESCRIPTOR' 

OT = 'PAGE DESCRIPTOR' 

FETCH DESCRIPTOR AT 
TABLE ADDRESS + (TIX-SIZE) 

OT= 'PAGE DESCRIPTOR' 
OT ='INVALID' OTHERWISE 

NO MORE Tl• FIEL~ 
!MUST BE INDIRECT) MORE Tix FIELDS 

INDIRECT DESCRIPTOR 
FETCH DESCRIPTOR POINTED TO 

BY PREVIOUS DESCRIPTOR 

NEXT x 

(x = B. C. DI 

OTHERWISE 

CREATE INVALID 
ATC ENTRY 18 BIT SETI 

EXIT 

OT = 'PAGE DESCRIPTOR' 

CREATE VALID ATC ENTRY 
PAGE FRAME AOORESS = UNUSED LOGICAL PAGE ADDRESS (If ANY) 

+ ADDRESS FIELD FROM LAST DESCRIPTOR FETCHED 
(SIGNED ADDITION) 

"SIZE" IS THE SIZE (IN BYTES) OF THE DESCRIPTOR 
AT THE PARTICULAR TABLE LEVEL 

Figure 9-19. Simplified Table Search Flowchart 

MC68030 USER'S MANUAL MOTOROLA 
9-23 

• 



• 

Figure 9-20 shows a table search using the function code and all four Tix fields. 

The MC68030 enforces a limit on the index value for the next level of a table search when 
long format descriptors are used. 

The root pointer includes a limit field that applies when the function code lookup is not 
used (the FCL bit of the TC register is zero). The index used to access the next level table 
is compared to the contents of the limit field. The limit field effectively reduces the portion 
of the address space to which a descriptor applies, and also reduces the size of the trans­
lation table. The index must reside within the range defined by the limit field. The limit 
can be a lower limit or an upper limit according to the LIU bit value. When the LIU bit is 
set, the limit is a lower limit, and an index less than the limit is out of bounds. When the 

MOTOROLA 
9-24 

FC LEVEL 
TABLE 

ENTRY #5 ,__ _ ___. 

B 
A LEVEL B LEVEL 
TABLES TABLES 

(8 TABLES (128 TABLES 
MAXIMUM. MAXIMUM. 

16 ENTRIES/ 16 ENTRIES/ 
TABLE) TABLE) 

ENTRY 
#4 t-----1 

PAGE 
c:::::::::::::J ENTRY c==i--- FRAME 
C==:J #8 ~ ADDRESS 

B B 
C LEVEL D LEVEL 
TABLES TABLES 

(2K TABLES (32K TABLES 
MAXIMUM. MAXIMUM. 

16 ENTRIES/ 16 ENTRIES/ 
TABLE) TABLE) 

Figure 9-20. Five Level Table Search 

MC68030 USER'S MANUAL 



UU bit is zero, the limit is an upper limit, and an index greater than the limit is out of 
bounds. The limit field is effectively disabled if UU is set and the limit field contains zero, 
or if UU is clear and the limit field contains $7FFF. 

During a table search for an normal translation or a PLOAD instruction, if a limit violation 
is detected, the ATC is loaded with an entry having the B (bus error) bit set. If a limit 
violation is detected during a table search for a PTEST instruction, the I (invalid) and L 
(limit) bits are set in the MMUSR. 

During a table search the U bit in each descriptor that is encountered is checked and set 
if it is not set already. Similarly, when the table search is for a write access, and the M bit 
of the page descriptor is clear, the processor sets the bit if the table search does not 
encounter a set WP bit or a supervisor violation. Since the read-modify-write (RMC) signal 
is asserted throughout the entire table search operation, the read and write operations to 
update the history bits are guaranteed to be uninterrupted. 

A table search terminates successfully when a page descriptor is encountered. The oc­
currence of an invalid descriptor, a limit violation, or a bus error also terminates a table 
search and the MC68030 takes an exception on the retry of the cycle because of these 
conditions. The exception routine should distinguish between anticipated conditions and 
true error conditions. The routine can correct an invalid descriptor that indicates a non­
resident page or one that identifies a portion of the translation table yet to be allocated. 
A limit violation or a bus error due to a system malfunction may result in an error message 
and termination of the task. 

9.5.3 Variations in Translation Table Structure 

Many aspects of the MMU translation tree structure are software configurable, allowing 
the system designer flexibility to optimize the performance of the MMU for a particular 
system. The following paragraphs discuss the variations of the tree structure from the 
general structure discussed previously. 

9.5.3.1 EARLY TERMINATION AND CONTIGUOUS MEMORY. The MC68030 MMU provides 
the ability to map a contiguous range of the logical address space (an integral number of 
logical pages) to an equivalent contiguous physical address range with a single descriptor. 
This is done by placing the code for "page descriptor" ($1) in the descriptor type (DT) field 
of a descriptor at a level of the tree that would normally contain a table pointer, thereby 
deleting a sub-tree of the table. 

The table search ends when the search encounters a page descriptor, whether the page 
descriptor is in a page descriptor table at the lowest level of the translation tree or not. 

Termination of the table search by a page descriptor in a pointer descriptor table (i.e., the 
MC68030 has not encountered a Tix field of zero) is called an early termination. The ter­
minating page descriptor is called an early termination page descriptor. 

An early termination page descriptor takes the place of many page descriptors in a trans­
lation table. It applies to all pages that would exist on the branch on which the descriptor 
has been placed, and on any branches from that branch. An early termination page de­
scriptor can be used where contiguous pages in physical memory correspond to contiguous 

MC68030 USER'S MANUAL MOTOROLA 
9-25 

II 



• 

logical pages. If an early termination page descriptor is of the long format, the limit field 
is applied to the next index field of the logical address. This allows the number of pages 
mapped contiguously to be restricted. Refer to 9.1.2 Translation Table Descriptors for 
additional information. 

If n low-order bits of the logical page address are unused when a page descriptor encoding 
is encountered, the single descriptor creates a mapping of a contiguous region of the 
logical address space starting at the logical page address (with n unused bits set to zero) 
to a contiguous region in the physical address space starting atthe page frame base address 
with a size of 2ps., bytes. 

When a search is made for a logical address to which an early termination page descriptor 
applies, the MC68030 creates an entry in the ATC for the logical address; the physical 
address in the ATC entry is the sum of the page address field in the descriptor plus an 
offset. The offset is the logical address with the bits used in the search set to zero. 

Although the early termination page descriptor creates a contiguous logical-to-physical 
mapping without having to maintain individual descriptors in the translation tree for each 
page that is a member of the contiguous region, the ATC contains one entry for each page 
mapped. These entries are created internally each time a page boundary (as determined 
by the page size) is crossed in the contiguous region. Figure 9-21 shows an example 
translation table with a portion of the logical address space translated as a contiguous 
block. 

Note that the DT field can be set to "page descriptor" at any level of the translation tree 
including the root pointer level. Setting the DT field of a root pointer to "page descriptor" 
creates a direct mapping from the logical to the physical address space with a constant 
offset as determined by the value in the table address field of the root pointer. 

9.5.3.2 INDIRECTION. The MC68030 provides the ability to replace an entry in a page table 
with a pointer to an alternate entry. The indirection capability allows multiple tasks to share 
a physical page while maintaining only a single set of history information for the page 
(i.e., the "modified" indication is maintained only in the single descriptor). The indirection 
capability also allows the page frame to appear at arbitrarily different addresses in the 
logical address spaces of each task. 

Using the indirection capability, single entries or entire tables can be shared between 
multiple tasks. Figure 9-22 shows two tasks sharing a page using indirect descriptors. 

When the MC68030 has completed a normal table search (has exhausted all index fields 
of the logical page address), it examines the descriptor type field of the last entry fetched 
from the translation tables. If the DT field contains a "valid long" ($2) or "valid short" ($3) 
encoding, this indicates that the address contained in the highest order 30 bits of the table 
address field of the descriptor is a pointer to the page descriptor that is to be used to map 
the logical address. The processor then fetches the page descriptor of the indicated format 
from this address and uses the page address field of the page descriptor as the physical 
mapping for the logical address. 

The page descriptor located at the address given by the indirect descriptor must not have 
a DT field with a long or short encoding (it must either be a "page descriptor" or "invalid"). 
Other:Vl(ise, the descriptor is treated as invalid and the MC68030 creates an ATC entry with 
an error condition signaled (bit set). 

MOTOROLA 
9-26 

MC68030 USER'S MANUAL 



A B PS 

EXAMPLE ADDRESS $00A01AOO I 0 0 0 0 0 0 0 0 1 0 1 0 I 0 0 0 0 0 0 0 1 1 0 Ix x x x x x x x x x I 

ROOT POINTER 

$A $6 

TABLE $0 
B LEVEL 

A B PS 

I 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 1 1 0 I 1 0 0 0 0 0 0 0 0 0 I $00001 AOO 

: I 1 o o o o o o o o o o o I o o o o o o o o o o Io o o o o o o a a o I $sooooooo 
ENTRY $00A I $8000()001 (OT= $1} I = 

: Li:i 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 1 1 0 I 1 0 0 0 0 0 0 0 0 0 I $800001AOO 

A LEVEL TABLES 
(4K ENTRIES) 

EARLY TERMINATION Of TABLE SEARCH· PAGE DESCRIPTOR ENCOUNTERED 
(LOGICAL ADDRESS RANGE $DOAODODO TO $00Afffff MAPPED 

TO PHYSICAL ADDRESS RANGE $80ADOOOO TO $80Afffff) 

B LEVEL TABLES 
(4K TABLES MAXIMUM. 1 K ENTRIES/TABLE) 

TABLE $fff 
B LEVEL 

Figure 9-21. Example Translation Tree Using Contiguous Memory 

9.5.3.3 TABLE SHARING BETWEEN TASKS. A page or pointer table can be shared between 
tasks by placing a pointer to the shared table in the address translation tables of more 
than one task. The upper (non-shared) tables can contain different settings of protection 
bits allowing different tasks to use the area with different permissions. In Figure 9-23 two 
tasks share the memory translated by the table at the B level. Note that task "A" cannot 
write to the shaded area. Task "B", however, has the WP bit clear in its pointer to the 
shared table, so it can read and write the shared area. Also note that the shared area 
appears at different logical addresses for each task. · 

MC68030 USER'S MANUAL MOTOROLA 
9-27 

• 



.. 

A B PS 

EXAMPLE ADDRESS $00A01AOO I 0 0 0 0 0 0 0 0 1 0 1 0 I 0 0 0 0 0 0 0 1 1 0 I x x x x x x x x x x I 
$A $6 

ROOT POINTER 

MOTOROLA 
9-28 

ENTRY $00A 1-------1 

TASK 'A' 
A LEVEL TABLES 

(4K ENTRIES) 

TASK 'B' 
A LEVEL TABLES 

(4K ENTRIES) 

ENTRY $06 $10000 (OT = $3) 

ABSOLUTE PHYSICAL ADDRESS OF 
PAGE DESCRIPTOR 

PAGE FRAME ADDRESS 

Figure 9-22. Example Translation Tree Using Indirect Descriptors 

MC6B030 ·USER'S MANUAL 



A B ~ 

EXAMPLE ADDRESS $00A01AOO I 0 0 0 0 0 0 0 0 1 0 1 0 I 0 0 0 0 0 0 0 1 1 0 I x x x x x x x x x x I 

ROOT POINTER 

ENTRY $DOA WP SET 

TASK 'A' 
A LEVEL TABLES 

(4K ENTRIES) 

WP CLEAR 

TASK 'B' 
A LEVEL TABLES 

( 4K ENTRIES) 

SA $6 

TASK 'A' 
B LEVEL TABLES 

(4K TABLES MAXIMUM. 1 K ENTRIES/TABLE) 

PAGE FRAME ADDRESS 
ENTRY $06 I I'- (SHARED BY 'A' ANO 'B') 

i-_ ------ti (WRITE-PROTECTED FROM TASK 'A') 

TASK 'B' 
B LEVEL TABLES 

(4K TABLES MAXIMUM. 1 K ENTRIES/TABLE) 

Figure 9-23. Example Translation Tree Using Shared Tables 

IVIC680:30 USER[S MANUAL MOTOROLA 
9-29 

• 



• 

9.5.3.4 PAGING OF TABLES. It is not required that the entire address translation tree for 
an active task be resident in main memory at once. In the same way that only the working 
set of pages must reside in main memory, only the tables that describe the resident set 
of pages need be available in main memory. This paging of tables is implemented by 
placing the "invalid" code ($0) in the DT field of the table descriptor that points to the 
absent table(s). When a task attempts to use an address that would be translated by an 
absent table, the MC68030 is unable to locate a translation and takes a bus error exception 
when the execution unit retries the bus cycle that caused the table search to be initiated. 

It is the responsibility of the system software to determine that the "invalid" code in the 
descriptor corresponds to non-resident tables. This determination can be facilitated by 
using the "unused" bits in the descriptor to store status information concerning the "in­
valid" encoding. When the MC68030 encounters an "invalid" descriptor, it makes no inter­
pretation (or modification) of any fields of this descriptor other than the DT field, allowing 
the operating system to store systam-defined information in the remaining bits. Typical 
information that is stored includes the reason for the "invalid" encoding (tables paged­
out, region not allocated, ... , etc.) and possibly the disk address for non-resident tables. 

Figure 9-24 shows an address translation table in which only a single page table (table n) 
is resident and all other page tables are not resident. 

9.5.3.5 DYNAMIC ALLOCATION OF TABLES. Similar to the case of paged tables, it is not 
required that a complete translation tree exist for an active task. The translation tree can 
be dynamically allocated by the operating system based on requests for access to particular 
areas. 

As in the case of demand paging, it is difficult, if not impossible, to predict the areas of 
memory that are used by a task over any extended period of time. Instead of attempting 
to predict the requirements of the task, the operating system performs no action for a task 
until a "demand" is made requesting access to a previously unused area or an area that 
is no longer resident in memory. This same technique can be used to efficiently create a 
translation tree for a task. 

For example, consider an operating system that is preparing the system to execute a 
previously unexecuted task that has no translation tree. Rather than guessing what the 
memory usage requirements of the task are, the operating system creates a translation 
tree for the task that maps one page corresponding to the initial value of the program 
counter for that task, and possibly, one page corresponding to the initial stack pointer of 
the task. All other branches of the translation tree for this task remain unallocated until 
the task requests access to the areas mapped by these branches. This technique allows 
the operating system to construct a minimal translation tree for each task conserving 
physical memory utilization and minimizing operating system overhead. 

9.5.4 Detail of Table Search Operations 

The table search operations described in this section is shown in detail in Figures 9-25 
through 9-29. 

9.5.5 Pro\ection 

M68000 Family processors provide an indication of the context in which they are operating 
on a cycle-by-cycle basis by means of the function code signals. These signals identify 

MOTOROLA 
9-30 

MC68030 USER'S MANUAL 



A B PS 

EXAMPLE ADDRESS $OOA01AOO Io o a o a o o o 1 o 1 o Io o o o o o o 1 1 o I x x x x x x , , , , I 

ROOT POINTER 

OT = 'INVALID' 
OT = 'INVALID' 

ENTRY SODA 1-..::D~T ....;= S::.:2..::0::..:R S:::3~ 
OT = 'INVALID' 

OT = 'INVALID' 
OT = 'INVALID' 

A LEVEL TABLES 
(4K ENTRIES) 

$A $6 

ENTRY $0061 J- PAGE FRAME 
1-: ------1! ADDRESS 

1-------11 ' 

B LEVEL TABLES 
(4K TABLES MAXIMUM. 1 K ENTRIES/TABLE) 

Figure 9-24. Example Translation Tree with Non-Resident Tables 

TABLE #0 
B LEVEL 
(PAGED OUT OR 
NOT ALLOCATED) 

TABLE #n 
B LEVEL 

TABLE #m 
B LEVEL 
(PAGED OUT OR 
NOT ALLOCATED) 

accesses to the user program space, the user data space, the supervisor program space, 
and the supervisor data space. The function code signals can be used for protection mech­
anisms by setting the function code lookup (FCL) bit in the translation control (TC) register. 

The MC68030 MMU provides the capability for separate translation trees for supervisor 
and user spaces to be used. When the supervisor root pointer enable bit (SRE) in the TC 

MC68030 USER'S MANUAL MOTOROLA 
9-31 



-

ENTRY 

INITIALIZE ROOT POINTER SELECTION TRUTH TABLE 

DETERMINE ROOT POINTER TO BE USED 
(REFER TO TRUTH TABLE AT RIGHT) 

x-·A· 
v- 'RP' 

__:_a (CHECK DESCRIPTOR TYPE OF ROOT POINTER! 
oT = 'PAGE oEscffiProR· I 
~ OT = '4 BYTE' DR 'B BYTE' 

TYPE - 'EARLY' SIZE - 4 ORB 

LASLSIZE - B 
CREATE ATC ENTRY 

FC2 SRE ROOT 

D D CRP 
0 1 CRP 
1 0 CRP 
1 1 SRP 

--6-._ (PERFORM FUNCTION CODE LOOKUP If REQUIRED) 

FCL =I FCL = 0 

OT = 'PAGE DESCRIPTOR' OT = 'INVALID' r OT = ·4 BYTE' OR 'B BYTE' ----., 

TYPE - 'EARLY' TYPE - 'INVALID. 

CREATE ATC ENTRY 

(ENTERING A LEVEL TABLE SEARCH) 

v-'A' 

(REPEAT SEARCH) 

(CHECK DESCRIPTOR TYPE) ----'-,.....-
OT= 'PAGE DESCRIPTOR' OT = ·4 BYTE' OR '8 BYTE' 

_[ 

OT= 'INVALID' ----.., 

X 

~ ·o· x c ·o· TYPE - INVALID L~~;t; ~RS~E 
~ = CREATE ATC ENTRY .-<J...... 

x - NEXT~x = B. C. 0) J ~x = D x : N:X~ : B c. 0) ....6... TYPE - 'NORMAL' _/'\_ 

Tix = 0 Tix ¥ 0 ---- ,,_,,- Tix ¥ 0 
("" --, Tix = 0 

TYPE - 'NORMAL' TYPE - 'EARLY' 

MOTOROLA 
9-32 

TYPE - 'INDIRECT' 

FETCH DESCRIPTOR 

OT = 'PAGE DESCRIPTOR' 
CREATE ATC ENTRY 

.. - .. IS THE ASSIGNMENT OPERATOR 

CREATE ATC ENTRY 

Figure 9-25. Detailed Flowchart of MMU Table Search Operation 

MC68030 USER'S MANUAL 



INITIALIZE FOR TABLE SEARCH (INITIALIZE ACCRUED STATUS) 

ACC..§TATUS (WPJ - 0 

ACCJlTATUS [SJ - 0 

RETURN 

Figure 9-26. Table Search Initialization Flowchart 

CREATE ATC ENTRY 

I TYPE~=-'IN-V-AL-10~· ~--TY--PE ='EARLY' 
TYPE = 'INDIRECT' TYPE = 'NORMAL' 

CREATE ATC ENTRY WITH 
B BIT SET 

EXIT TABLE SEARCH 

PERFORM LIMIT CHECK 

PFA = LPA + TA FIELD OF 
DESCRIPTOR FETCHED AT 

TREE LEVEL y 

ABBREVIATIONS USED 

PFA = PAGE FRAME ADDRESS 
LPA: = UNUSED FIELDS OF LOGICAL PAGE ADDRESS 
TA: =TABLE ADDRESS FIELD OF A TABLE DESCRIPTOR 

I 
PFA = PAGE ADDRESS FIELD OF 

DESCRIPTOR FETCHED INDIRECTLY FROM 
TREE LEVEL x 

CREATE ATC ENTRY USING PFA FROM ABOVE 
AND ACCRUED STATUS 

EXIT TABLE SEARCH 

Figure 9-27. ATC Entry Creation Flowchart 

I 
PFA = PAGE ADDRESS FIELD OF 

DESCRIPTOR FETCHED AT 
TREE LEVEL x 

register is set, the root pointer register for the supervisor space translation tree is selected 
for supervisor program or data accesses. 

The translation table trees contain both mapping and protection information. Each table 
and page descriptor includes a write-protect (WP) bit, which can be set to provide write 
protection at any level. Each long format table and page descriptor also contains a super­
visor-only (S) bit, which can limit access to programs operating at the supervisor privilege 
level. 

MC68030 USER'S MANUAL MOTOROLA 
9-33 



-

PERFORM LIMIT CHECK 

y = 'RP' OTHERWISE 

FCL=l~ 
OTHERWISE 

(LIMIT CHECK NOT REOUIREDI 

RETURN 

LASlJilZE = 4 

!LIMIT CHECK NOT REQUIRED) 

LAST SIZE = 8 

- .2:FORM LIMIT CHECK) 

RETURN L/U = 0 l/U = 1 

L l 
c .:C"; ~"":,"y:,:<O·, ~''"'I ) 

CREATE ATC ENTRY 

Figure 9-28. Limit Check Procedure Flowchart 

The protection mechanisms can be used individually or in any combination to protect: 

• Supervisor program and data spaces from access by user programs. 

• User program and data spaces from access by other user programs or supervisor 
programs (except with the MOVES instruction). 

• Supervisor and user program spaces from write accesses (except by the super­
visor using the MOVES instruction). 

• One or more pages of memory from write accesses. 

9.5.5.1 FUNCTION CODE LOOKUP. One way of protecting supervisor and user spaces from 
unauthorized access is to set the FCL bit in the TC register. This effectively segments the 
logical address space into a supervisor program space, a supervisor data space, a user 
program space, and a user data space, as shown in Figure 9-30. Each task has an address 
translation tree with unique mappings for the logical addresses in its user spaces. The 
translation tables for mapping the supervisor spaces can be copied into each task's trans­
lation tree. Figure 9-31 shows a translation tree using function code lookup, and Figure 9-
32 shows translation trees for two tasks that share common supervisor spaces. 

9.5.5.2 SUPERVISOR TRANSLATION TREE. A second protection mechanism uses a su­
pervisor translation tree. A supervisor translation tree protects supervisor programs and 
data from access by user programs, and user programs and data from access by supervisor 
programs. Access is granted to the supervisor programs which can access any area of 
memory with the move address space (MOVES) instruction. When the SRE bit in the TC 

MOTOROLA 
9-34 

MC68030 USER'S MANUAL 



FETCH DESCRIPTOR & 
UPDATE HISTORY ANO STATUS 

FETCH 4 OR 8 BYTE DESCRIPTOR AT 
PA = TA + (INDEX.SIZE) 

(INDEX = FC. TIA, TIB. TIC. OR TIO) 
OR AT 

PA = DESCRIPTOR ADDRESS 
(INDIRECT DESCRIPTOR) 

OTHERWISE 

r-NoRMAL TERMINATION OF All BUS ACTIVITY 

TYPE - 'INVALID' 

CREATE ATC ENTRY (CHECK DESCRIPTOR TYPE) 

OT = 'PAGE DESCRIPTOR' OT= '4 BYTE' OR '8 BYTE' 

OT= ·1~VAL10· ~ 

C RETURN ) 
U BIT SET U BIT CLEAR 

WRITE OPERATION READ OPERATION 

MANO r--- ----, 
U BITS SET .-0. M OR U BIT CLEAR U BIT CLEAR --0- U BIT SET 

OTHERWISE 

0oRMAL TERMINATION OF All BUS ACTIVITY 

TYPE - 'INVALID' I 
CREATE ATC ENTRY SIZE = 4 -6-.. SIZE = B 

"""ru•tw•I _ [,,.ru""'' ' "' l 
OTHERWISE 

.--NORMAL TERMINATION OF All BUS ACTIVITY 

TYPE - 'INVALID' I 
CREATE ATC ENTRY SIZE ; 4 -6-. SIZE = 8 ACCJ>TATUS(SJ - ACCJ>TATUS(SJ VS 

"'-'"'"""'' _ [,.ru""''' •• l 
ACCJ>TATUS[CIJ - Cl 

ACC_STATUS[S] - ACl;_STATUS[SJ VS 
ACC_STATUS[WPJ - ACC_STATUS(WPJ V WP 

ACCJ>TATUS(CIJ - Cl 

RETURN 

ACCJ>TATUS(WPJ - ACCJ>TATUSJWPJ V WP 

RETURN 

"V" IS THE LOGICAL OR OPERATOR 

Figure 9-29. Detailed Flowchart of Descriptor Fetch Operation 

MC68030 USER'S MANUAL MOTOROLA 
9-35 



32 

SUPERVISOR 
PROGRAM 

SPACE 

32 
2 

SUPERVISOR 
DATA 

SPACE 

32 

USER 
PROGRAM 

SPACE 

32 

USER 
DATA 

SPACE 

Figure 9-30. Logical Address Map Using Function Code Lookup 

register is set, the translation tree pointed to by the SRP is selected for all supervisor level 
accesses. This translation tree can be common to all tasks. This technique segments the 
logical address space into user and supervisor areas without adding the function code 
level to the translation trees. 

9.5.5.3 SUPERVISOR ONLY. A third mechanism protects supervisor programs and data 
without segmenting the logical address space into supervisor and user address spaces. 
The long formats of table descriptors and page descriptors contain S bits to protect areas 
of memory from access by user programs. When a table search for a user access encounters 
an S bit set in any table or page descriptor, the table search is completed and an ATC 
descriptor corresponding to the logical address is created with the B bit set. The subsequent 
retry of the user access results in a bus error exception being taken. The S bit can be used 
to protect the entire area of memory defined in a branch of the translation tree or only 
one or more pages from user program access. 

9.5.5.4 WRITE PROTECT. The MC68030 provides write protection independently of the 
segmented address spaces for programs and data. All table and page descriptors contain 
WP bits to protect areas of memory from write accesses of any kind. When a table search 
encounters a WP bit set in any table or page descriptor, the table search is completed and 
an ATC descriptor corresponding to the logical address is created with the WP bit set. The 
subsequent retry of the write access results in a bus error exception being taken. The WP 
bit can be used to protect the entire area of memory defined in a branch of the translation 
tree, or only one or more pages from write accesses. Figure 9-33 shows a memory map 
of the logical address space organized to use supervisor-only and write-protect bits for 
protection. Figure 9-34 shows an example translation tree for this technique. 

9.6 MC68030 AND MC68851 MMU DIFFERENCES 

The MC68851 Paged Memory Management Unit provides memory management for the 
MC68020 as a coprocessor. The on-chip MMU of the MC68030 provides many of the features 

MOTOROLA 
9-36 

MC68030 USER'S MANUAL 



CPU ROOT 
!UNDEFINED. RESERVEO) 

POINTER 
4 USER DATA SPACE 

USER PROGRAM SPACE 
$C !USER DEFINED. RESERVED) 

$10 !UNDEFINED. RESERVED! 
$14 SUPERVISOR OATA SPACE 

$18 SUPERVISOR PROGRAM SPACE 
$1C CPU SPACE (UNMAPPED! 

AOORESS OF FIRST TABLE POINTER = 
CPU ROOT POINTER+ !FUNCTION CODE •SIZEI 

USER DATA SPACE BRANCH 

USER PROGRAM SPACE BRANCH 

SUPERVISOR OATA SPACE BRANCH 

SUPERVISOR PROGRAM SPACE BRANCH 

TABLE INOEX AT THIS LEVEL USES 
LOGICAL AODRESS FIELD SPECIFIED 

BY TIA FIELD OF TRANSLATION CONTROL 
REGISTER 

Figure 9-31. Example Translation Tree Using Function Code Lookup 

of the MC68020/MC68851 combination. The following functions of the MC68851 are not 
available in the MC68030 MMU: 

• Access Levels 
• Breakpoint Registers 
• Root Pointer Table 

• Aliases for Tasks 
• Lockable Entries in the ATC 
• ATC Entries Defined as Shared 

Globally 

In addition, the following features of the MC68030 MMU differ from the MC68020/MC68851 
pair: 

• 22-Entry ATC 
• Reduced Instruction Set 
• Only Control-Alterable Addressing Modes Supported for MMU Instructions 

MC68030 USER'S MANUAL MOTOROLA 
9-37 



-

CPU 
ROOT POINTER 

FOR TASK 'A' 

CPU 
ROOT POINTER 

FOR TASK 'B' 

- (UNDEFINED. RESERVED) 

4 USER DATA SPACE 

8 USER PROGRAM SPACE 

$C !USER DEFINED. RESERVED) 
$10 (UNDEFINED. RESERVED! 
$14 SUPERVISOR DATA SPACE 
$18 SUPERVISOR PROGRAM SPACE 1-----i 
$1C CPU SPACE (UNMAPPED) 

I 
I 

I 

ADDRESS OF FIRST TABLE POINTER = 
CPU RODT POINTER + (FUNCTION CODE •SIZE) 

--1 (UNDEFINED. RESERVED) 

4 USER DATA SPACE 

8 USER PROGRAM SPACE 

$C (USER DEFINED. RESERVED) 

$10 (UNDEFINED. RESERVED) 

$14 SUPERVISOR DATA SPACE 

$18 SUPERVISOR PROGRAM SPACE !------< 
$1C CPU SPACE (UNMAPPED) 

USER OATA SPACE BRANCH 

[ 

I ~ 
USER PROGRAM SPACE BRANCH 

[ 

I ~ 
USER DATA SPACE BRANCH 

L 

I ~ 
USER PROGRAM SPACE BRANCH 

[ 

I ~ 
SUPERVISOR DATA SPACE BRANCH 

L 

I ~ 
SUPERVISOR PROGRAM SPACE BRANCH 

L 

TRANSLATION TABLE 
FOR TASK 'A' 

TRANSLATION TABLE 
FOR TASK 'B' 

TRANSLATION TABLE 
FOR All SUPERVISOR 
ACCESSES 

Figure 9-32. Example Translation Tree Structure for Two Tasks 

MOTOROLA 
9-38 

MC68030 USER'S MANUAL 



32 
2 

SUPERVISOR 
AND 

USER SPACE 

THIS AREA SUPERVISOR-ONLY. 
REAO-ONLY 

THIS AREA SUPERVISOR-ONLY. 
REAO/WRITE 

THIS AREA SUPERVISOR OR USER. 
REAO-ONLY 

THIS AREA SUPERVISOR OR USER. 
REAO/WRITE 

Figure 9-33. Example Logical Address Map with Shared Supervisor 
and User Address Spaces 

In general, the MC68030 is program compatible with the MC68020/MC68851 combination. 
However, in a program for the MC68030, the following instructions must be avoided or 
emulated in the exception routine for F-line unimplemented instructions: PVALID, PFLUSHR, 
PFLUSHS, PBcc, PDBcc, PScc, PTRAPcc, PSAVE, PRESTORE, and PMOVE for unsupported 
registers (CAL, VAL, SCC, BAD, BACx, DRP, and AC). Additionally, the effective addressing 
modes supported on the MC68851 that are not emulated by the MC68030 must be simulated 
or avoided. 

9.7 REGISTERS 

The registers of the MMU described here are part of the supervisor programming model 
for the MC68030. 

The six registers that control and provide status information for address translation in the 
MC68030 are the CPU root pointer register (CRP), the supervisor root pointer register (SRP), 
the translation control register (TC), two independent transparent translation control reg­
isters (TIO and TI1 ), and the MMU status register (MMUSR). These registers can be ac­
cessed directly only by programs that execute at the supervisor level. 

9.7.1 Root Pointer Registers 

The supervisor root pointer (SRP) is used for supervisor accesses only, and it is enabled 
or disabled in software. The CPU root pointer (CRP) corresponds to the current translation 
table for user space (when the SRP is enabled) or for both user and supervisor space (when 
the SRP is disabled). The CRP is a 64-bit register that contains the address and related 
status information of the root of the translation table tree for the current task. When a new 
task begins execution, the operating system typically writes a new root pointer descriptor 
to the CRP. A new translation table address implies that the contents of the address trans­
lation cache (ATC) may no longer be valid. Therefore, the instruction that loads the CRP 
can optionally flush the ATC. 

MC68030 USER'S. MANUAi.. MOTOROLA 
9-39 



-

CPU ROOT 
POINTER 

S=l, WP=l 

S=l. WP=O 

S=O, WP=l 

S=O. WP=O 

TABLE INDEX AT THIS LEVEL USES 
LOGICAL ADDRESS FIELD SPECIFIED 

BY TIA FIELD OF TRANSLATION CONTROL 
REGISTER 

THIS BRANCH SUPERVISOR-ONLY 
READ-ONLY 

1-------1~ 
THIS BRANCH SUPERVISOR-ONLY 

READ/WRITE 

1-------1~ 
THIS BRANCH SUPERVISOR/USER 

READ-ONLY 

--~ 
THIS BRANCH SUPERVISOR/USER 

READ/WRITE 

1-------1~ 

TABLE INDEX AT THIS LEVEL USES 
LOGICAL ADDRESS FIELD SPECIFIED 

BY TIB FIELD OF TRANSLATION CONTROL 
REGISTER 

Figure 9-34. Example Translation Tree Using S and WP Bits to Set Protection 

The SRP is a 64-bit register that optionally contains the address and related status infor­
mation of the root of the translation table for supervisor area accesses. The SRP is used 
when operating at the supervisor privilege level only when the supervisor root pointer 
enable bit (SRE) of the translation control register (TC) is set. The instruction that loads 
the SRP can optionally flush the ATC. The format of the CRP and SRP is shown in Figure 
9-35 and defines the following fields: 

Lower/Upper (UU) 
· Specifies that the value contained in the limit field is to be used as the unsigned lower 
limit ofrndexes into the translation tables when this bit is set. When this bit is clear, 
the limit field is the unsigned upper limit of the translation table indexes. 

MOTOROLA 
9-40 

MC68030 USER'S MANUAL 



Limit 

63 

L/U 

15 

LIMIT 

0 0 0 0 

TABLE ADDRESS iPA31-PA 161 

TABLE ADDRESS (PA 15-PA41 

L/U - LOWER OR UPPER PAGE RANGE 
OT - DESCRIPTOR TYPE 
LIMIT - LIMIT ON TABLE INDEX FOR THIS TABLE ADDRESS 

OT 

UNUSED 

TABLE ADDRESS - ADDRESS OF TABLE AT NEXT LEVEL OR PAGE OFFSET IF OT= 1 

48 

Figure 9-35. Root Pointer Register (CRP, SRP) Format 

Specifies a maximum or minimum value for the index to be used at the next level of 
table search (the function code level cannot be limited). To suppress the limit function, 
the LIU bit is cleared and the limit field is set to ones ($7FFF in the word containing 
both fields), or the L/U bit is set and the limit field is cleared ($8000 in that word). 

Descriptor Type (DT) 
Specifies the type of descriptor contained in either the root pointer or in the first level 
of the translation table identified by the root pointer. The values are: 

$0 INVALID 
This value is not allowed at the root pointer level. When a root pointer register 
is loaded with an invalid root pointer descriptor, an MMU configuration ex­
ception is taken. 

$1 PAGE DESCRIPTOR 
A translation table for this root pointer does not exist. The MC68030 internally 
calculates an ATC entry (page descriptor) for accesses using this root pointer 
within the current page by adding (unsigned) the value in the table address 
field to the incoming logical address. This results in direct mapping with a 
constant offset (the table address). For this case, the processor performs a limit 
check regardless of the state of the FCL bit in the TC register. 

$2 VALID 4-BYTE 
The translation table at the root of the translation tree contains short format 
descriptors. The MC68030 must scale the table index for this level of the table 
search by four bytes, in order to access the next descriptor. 

$3 VALID 8-BYTE 
The translation table at the root of the translation tree contains long format 
descriptors. The MC68030 must scale the table index for this level of the table 
search by eight bytes, in order to access the next descriptor. 

Table Address 
Contains the physical base address (in bits 4-31) of the translation table at the root 
pointer level. When the DT field contains $1, the value in the table address fie.Id is the 
offset used to calculate the physical address for the page descriptor. The table address 
field can contain zero (for zero offset). 

MC68030,l!SER'S MANUAl. MOTOROLA 
9-41 



-

Unused 
Bits 0-3 of the root pointer are not used and are ignored when written. All other unused 
bits must always be zeros. 

9.7.2 Translation Control Register 

The translation control register (TC) is a 32-bit register that contains the control fields for 
address translation. All unimplemented fields of this register are read as zeros and must 
always be written as zeros. 

Writing to this register optionally causes a flush of the entire ATC. When written with the 
E bit (bit 31) set (translation enabled), a consistency check is performed on the values of 
PS, IS, and Tix as follows. The Tix fields are added together until a zero field is reached, 
and this sum is added to PS and IS. The total must be 32, or an MMU configuration exception 
(refer to 9.7.5.3 MMU CONFIGURATON EXCEPTION) is taken. If an MMU configuration 
exception occurs, the TC register is updated with the data, and the E bit is cleared. The 
translation control register is shown in Figure 9-36. 

31 25 24 20 

E 0 0 0 0 0 SRE FCL PS 

TIA TIS TIC 

15 12 

E - ENABLE 
SRE - SUPERVISOR ROOT POINTER ENABLE 
FCL - FUNCTION CODE LOOKUP ENABLE 
PS - PAGE SIZE 
IS - INITIAL SHIFT 
TIA. TIS. TIC. TIO - TABLE INDICES 

16 

IS 

TIO 

Figure 9-36. Translation Control Register (TC) Format 

The fields are: 

Enable (E) 
This bit enables and disables address translation: 

0 - Translation disabled 
1 - Translation enabled 

A reset operation clears this bit. When translation is disabled, logical addresses are 
used as physical addresses. The MMU instructions (PTEST, PLOAD, PMOVE, PFLUSH) 
can be executed successfully regardless of the state of the E bit. Additionally, the TC 
register can be updated with a value whose E bit is set; even if the E bit is set. The 
state of the E bit does not affect the use of the transparent translation registers. 

Supervisor Root Pointer Enable (SRE) 
This bit controls the use of the supervisor root pointer register (SRP): 

0 - SRP disabled 
1 - SRP enabled 

When the SRP is disabled, both user and supervisor accesses use the translation table 
defined by the CRP. When the SRP is enabled, user accesses use the CRP, and su­
pervisor area accesses use the SRP. 

MOTOROLA 
9-42 

MC68030 USER'S MANUAL 



Function Code Lookup (FCL) 
This bit enables the use of function code lookup for searching the address translation 
tables: 

0 - Function code lookup disabled 
1 - Function code lookup enabled 

When function code lookup is disabled, the first level of pointer tables within the 
translation table structure is indexed by the logical address field defined by TIA. When 
function code lookup is enabled, the first table of the translation table structure is 
indexed by function code. In this case, the limit field of CRP or SRP is ignored. 

Page Size (PS) 
This four-bit field specifies the system page size: 

1000 - 256 bytes 
1001 - 512 bytes 
1010-1K bytes 
1011 - 2K bytes 
1100 - 4K bytes 
1101 - 8K bytes 
1110 - 16K bytes 
1111 - 32K bytes 

All other bit combinations are reserved by Motorola for future use; an attempt to load 
other values into this field of the TC register causes an MMU configuration exception. 

Initial Shift (IS) 
This four-bit field contains the number of high-order bits of the logical address that 
are ignored during table search operations. The field contains an integer, 0-15, which 
sets the effective size of the logical address to 32-17 bits, respectively. Since all 32 
bits of the address are compared during address translation, bits ignored due to initial 
shift cannot have random values. They must be specified and be consistent with the 
translation table values in order to ensure that subsequent address translations match 
the corresponding entries in the ATC. 

Table Index (TIA, TIB, TIC, and TID) 
These four-bit fields specify the numbers of logical address bits used as the indexes 
for the four possible levels of the translation tables (not including the optional level 
indexed by the function codes). The index into the highest level table (following the 
function code, when used) is specified by TIA, and the lowest level, by TID. The fields 
contain integers, 0-15. When a zero value in a Tix field is encountered during a table 
search operation, the search is over, unless the indexed descriptor is a table (indirect) 
descriptor. 

9.7.3 Transparent Translation Registers 

The transparent translation registers (TIO and TI1) are 32-bit registers that define blocks 
of logical address space that are transparently translated. Logical addresses in a trans­
parently translated block are used as physical addresses, without modification, and without 
protection checking. The minimum size block that can be defined by either Tix register is 
16 megabytes of logical address space. The two Tix registers can specify blocks that 
overlap. The Tix registers operate independently of the E bit in the TC register and the 
state of the MMUDIS signal. A transparent translation register is shown in Figure 9-37. 

MC68030 USER'S MANUAL MOTOROLA 
9-43 



.. 

31 24 23 16 

LOGICAL ADDRESS BASE LOGICAL ADDRESS MASK 

0 0 0 0 Cl R/W RWM 0 FC BASE FC MASK 

15 

LOGICAL ADDRESS BASE - VALUE OF A31-A24 THAT DEFINES TRANSPARENT BLOCK 
LOGICAL ADDRESS MASK - BITS A31-A24 TO BE IGNORED 

E - ENABLE 
Cl - CACHE INHIBIT 
R/W - READ/WRITE 
RWM - READ WRITE MASK 
FC BASE - FUNCTION CODE VALUE FOR TRANSPARENT BLOCK 
FC MASK - FUNCTION CODE BIT.S TO BE IGNORED 

Figure 9-37. Transparent Translation Register (TIO and TI1) Format 

The fields of the transparent translation register are: 

Enable (E) 
This bit enables transparent translation of the block defined by this register: 

0 - Transparent translation disabled 
1 - Transparent translation enabled 

A reset operation clears this bit. 

Cache Inhibit (Cl) 
This bit inhibits cacheing for the transparent block: 

0 - Cacheing allowed 
1 - Cacheing inhibited 

When this bit is set, the contents of a matching address are not stored in the internal 
instruction or data cache. Additionally, the cache inhibit out signal (CIOUT) is asserted 
when this bit is set and a matching address is accessed, signaling external caches to 
inhibit cacheing for those accesses. 

Read/Write (R/W) 
This bit defines the type of access that is transparently translated (for a matching 
address): 

0 - Write accesses transparent 
1 - Read accesses tranparent 

Read/Write Mask (RWM) 
This bit masks the R/W field: 

0 - R/W field used 
1 - R/W field ignored 

When RWM is set to one, both read and write accesses of a matching address are 
transparently translated. For transparent translation of read-modify-write cycles with 
matching addresses, RWM must be set to one. If the RWM bit equals zero, neither the 
read nor the write of any read-modify-write cycle is transparently translated with the 
Tix register. 

Function Code Base (FC BASE) 
This three-bit field defines the base function code for accesses to be transparently 
translated with this register. Addresses with function codes that match the FC BASE 
field (and are otherwise eligible) are transparently translated. 

MOTOROLA 
9-44 

MC68030 USER'S MANUAL 



Function Code Mask (FC MASK) 
This three-bit field contains a mask for the FC BASE field. Setting a bit in this field 
causes the corresponding bit of the FC BASE field to be ignored. 

LOGICAL ADDRESS BASE 
This eight-bit field is compared with address bits A24-A31. Addresses that match in 
this comparison (and are otherwise eligible) are transparently translated. 

LOGICAL ADDRESS MASK 
This eight-bit field contains a mask for the LOGICAL ADDRESS BASE field. Setting a 
bit in this field causes the corresponding bit of the LOGICAL ADDRESS BASE field to 
be ignored. Blocks of memory larger than 16 Mbytes can be transparently translated 
by setting some of the logical address mask bits to ones. Normally, the low order bits 
of this field are set to define contiguous blocks larger than 16 Mbytes, although this 
is not required. 

9.7.4 MMU Status Register 

The MMU status register (MMUSR) is a 16-bit register that contains the status information 
returned by execution of the PTEST instruction. The PTEST instruction searches either the 
ATC (PTEST with level O) or the translation tables (PTEST with levels of 1-7) to determine 
status information about the translation of a specified logical address. The MMUSR is 
shown in Figure 9-38. 

15 14 13 12 11 10 9 8 7 6 

B -- BUS ERROR 
L - LIMIT VIOLATION 
S - SUPERVISOR-ONLY 
W - WRITE-PROTECTED 

1-INVALIO 
M -MODIFIED 
T - TRANSPARENT ACCESS 
N - NUMBER OF LEVELS 

Figure 9-38. MMU Status Register (MMUSR) Format 

The bits in the MMUSR have different meanings for the two kinds of PTEST instructions, 
as shown in Table 9-3. 

9.7.5 Register Programming Considerations 

If the entries in the address translation cache (ATC) are no longer valid when a reset 
operation occurs, an explicit flush operation must be specified by the software. The as­
sertion of RESET disables translations by clearing the E bits of the TC and TTx registers, 
but it does not flush the ATC. Flushing of the ATC is optional under control of the FD bit 
of the PMOVE instruction that loads a new value into the SRP, CRP, TTO, TT1, or TC register. 

The programmer of the MMU must be aware of effects resulting from loading certain 
registers. A subsequent section describes these effects. The MMUSR values lend them­
selves to the use of a case structure for branching to appropriate routines in a bus error 

MC68030 USER'S MANUAL MOTOROLA 
9-45 



.. 

Table 9-3. MMUSR Bit Definitions 

MMUSR Bit PTEST,LevelO PTEST, Level 1·7 

Bus Error (B) This bit is set if the bus error bit is This bit is set if a bus error is encountered during the table 
set in the ATC entry for the speci- search for the PTEST instruction. 
fied logical address. 

Limit (L) This bit is cleared. This bit is set if an index exceeds a limit during the table 
search. 

Supervisor Violation (S) This bit is cleared. This bit is set if the S bit of a long (S) format table descriptor 
or long format page descriptor encountered during the search 
is set, and the FC2 bit of the function code specified by the 
PTEST instruction is not equal to one. The S bit is undefined 
if the I bit is set. 

Write Protected (W) This bit is set if the WP bit of the This bit is set if a descriptor or page descriptor is encountered 
ATC entry is set. It is undefined if with the WP bit set during the table search. The W bit is 
the I bit is set. undefined if the I bit is set. 

Invalid (I) This bit indicates an invalid trans- This bit indicates an invalid translation. The I bit is set if the 
lation. The I bit is set if the trans- DT field of a table or a page descriptor encountered during 
lation for the specified logical the serach is set to invalid, or if either the B or L bits of the 
address is not resident in the ATC, MMUSR are set during the table search. 
or if the B bit of the corresponding 
A TC entry is set. 

Modified (M) This bit is set if the ATC entry cor- This bit is set if the page descriptor for the specified address 
responding to the specified ad- has the modified bit set. It is undefined if I is set. 
dress has the modified bit set. It is 
undefined if the I bit is set. 

Transparent (T) This bit is set if a match occurred This bit is set to zero. 
in either (or both) ofthe transparent 
translation registers (TTO or TT1 ). If 
the T bit is set, all remaining 
MMUSR bits are undefined. 

Number of Levels (N) This 3-bit field is cleared to zero_ This 3-bit field contains the actual number of tables accessed 
during the search. 

handler. An example of a flowchart that implements this technique is shown in another 
section. A third section describes the conditions that result in MMU exceptions. 

9.7.5.1 REGISTER SIDE EFFECTS. The PMOVE instruction is used to load or read any of 
the MMU registers (CRP, SRP, TC, MMUSR, TIO, and TI1 ). Since loading the root pointers, 
the translation control register, or the transparent translation registers with new values 
can cause some or all of the address translations to change, it may be desired to flush the 
ATC of its contents any time these registers are written. The opcodes of the PMOVE 
instructions that write to CRP, SRP, TC, TIO and TI1 contain a flush disable (FD) bit that 
optionally flushes the ATC when these instructions are executed. If the FD bit equals one, 
the ATC is not flushed when the instruction is executed. If the FD bit equals zero, the ATC 
is flushed during the execution of the PMOVE instruction. 

9.7.5.2 MMU STATUS REGISTER DECODING. The seven status bits in the MMU status 
register (MMUSR) indicate conditions to which the operating system should respond. In 
a typical bus error handler routine, the flows shown in Figures 9-39 and 9-40 can be used 
to determine the cause of an MMU fault. The PTEST instructions set the bits in the MMUSR 
appropriately, and the program can branch to the appropriate code segment for the con­
dition. Figure 9-39 shows the flow for a PTEST instruction for the ATC (level 0), and Figure 
9-40 shows the flow for a PTEST instruction that accesses an address translation tree (levels 
1-7). 

MOTOROLA 
9-46 

MC68030 USER'S MANUAL 



LIMIT VIOLATION 
OR WRITE PROTECT VIOLATION 

OR INVALID DESCRIPTOR 
OR BUS ERROR ON TABLE ACCESS 

EXECUTE PTEST 
LEVEL 7 

PTEST <le>. <ea>. 0 

BRANCH TO WRITE 
VIOLATION CODE 

(.__N_o_T M_M_u _ _,) 

Figure 9-39. MMU Status Interpretation PTEST Level 0 

9.7.5.3 MMU CONFIGURATION EXCEPTION. The exception vector table in the MC68030 
assigns a vector for an MMU configuration error exception. The configuration exception 
occurs as the result of loading invalid data into the TC, SRP, or CRP register. 

When the TC register is loaded with the E bit set, the MMU performs a consistency check 
of the values in all the four-bit fields. The values in the Tix fields are added until the first 
0 is encountered. The values in the PS and IS fields are added to the sum of the Tix fields. 
If the sum is not equal to 32, the PMOVE instruction causes an MMU configuration excep­
tion. The instruction also causes a configuration exception when a reserved value ($0-$7) 
is placed in the PS field of the TC register. 

A PMOVE instruction that loads either the CRP or the SRP causes an MMU configuration 
exception if the new value of the DT field is zero (invalid). In this case, the register is loaded 
with the new value before the exception is taken. 

9.8 MMU INSTRUCTIONS 

The MC68030 instruction set includes four privileged instructions that perform MMU op­
erations. A brief description of each of these instructions follows. For detailed descriptions 
of these instructions, refer to SECTION 3 INSTRUCTION SET. 

MC68030 USER'S MANUAL MOTOROLA 
9-47 



-

PTEST <le>. <ea>. 7 

,.,~ 
~ l=O 

,., ,.. ~ 
S= 1 S=O 

BRANCH TO LIMIT 
VIOLATION CODE 

BRANCH TO SUPERVISOR 
VIOLATION CODE 

B= 1 B=O 

BRANCH TO BUS ERROR 
DURING TABLE SEARCH CODE 

BRANCH TO PAGE FAULT OR 
INVALID DESCRIPTOR COOE 

WP=l WP=O 

-~~-~ 
CYCLE INDICATED IN M = 1 M = 0 

STACK FRAME ( ~ 
BRANCH TO WRITE MODIFIED PAGE 

VIOLATION CODE I NOT MMU c NOTMMU ) 

Figure 9-40. MMU Status Interpretation PTEST Level 7 

The PMOVE instruction transfers data between a CPU register or memory location and any 
one of the six MMU registers. The operating system uses the PMOVE instruction to control 
and monitor MMU operation by manipulating and reading these registers. Optionally, a 
PMOVE instruction flushes the ATC when it loads a value into the TC, SRP, CRP, no, or 
n1 register. 

The PFLUSH instruction flushes (invalidates) address translation descriptors in the ATC. 
PFLUSHA, a version of the PFLUSH instruction, flushes all entries. The PFLUSH instruction 
flushes all entries with a specified function code, or the entry with a specified function 
code and logical address. 

The PLOAD instruction performs a table search operation for a specified function code and 
logical address and then loads the translation for the address into the ATC. The operating 
system can use this instruction to initialize the ATC to minimize table searching during 
program execution. Any existing entry in the ATC that translates the specified address is 
flushed. The pre-load can be executed for either read or write attributes. If the write attribute 
is selected (PLOADW), the MC68030 performs the table search and updates all history 
information in the translation tables (used and modified bits) as if a write operation to that 
address had occurred. Similarly, if the read attribute is selected (PLOADR), the history 
information in the translation table (used bit) is updated as if a read operation had occurred. 
The PLOAD instruction does not alter the MMUSR. 

MOTOROLA 
9-48 

MC68030 USER'S MANUAL 



The PTEST instruction either searches the ATC or performs a table search operation for a 
specified function code and logical address, and sets the appropriate bits in the MMUSR 
to indicate conditions encountered during the search. The physical address of the last 
descriptor fetched can be returned in an address register. The exception routines of the 
operating system can use this instruction to identify MMU faults. The PTEST instruction 
does not alter the ATC. 

This instruction is primarily used in bus error handling routines. For example, if a bus error 
has occurred, the handler can execute an instruction such as: 

PTESlW · #1,([A7, offset]),#7,AO 
This instruction requests that the MC68030 search the translation tables for an address in 
user data space (#1) and examine protection information. This particular logical address 
is obtained from the exception stack frame ([A7, offset]). The MC68030 is instructed to 
search to the bottom of the table (#7 - there cannot be more than six levels) and return 
the physical address of the last table entry used in register AO. After executing this instruc­
tion, the handler can examine the MMUSR for the source of the fault, and use AO to access 
the last descriptor. Note that the PTESTR and PTESlW instructions have identical results 
except for PTESTO when either TTx register matches the logical address, and the R/W bit 
of that register is not masked. 

The MMU instructions use the same opcodes and coprocessor id as the corresponding 
instructions of the MC68851. All F-line instructions with CP-ID = 0 (including MC68851 in­
structions) that the MC68030 does not support automatically cause F-line unimplemented 
instruction exceptions when their execution is attempted in the supervise mode. If exe­
cution of a unimplemented F-line instruction with CPID=O is attempted in the user mode, 
the MC68030 takes a privilege violation exception. F-line instructions with a coprocessor 
id other than zero are executed as coprocessor instructions by the MC68030. 

9.9 DEFINING AND USING PAGE TABLES IN AN OPERATING SYSTEM 

Many factors must be considered when determining how to use the MMU in an operating 
system. The MC68030 provides the flexibility required to be able to optimize an operating 
system for many system implementations. The example operating system described in 
the next section presents one approach to operating system design, with many of the trade­
offs discussed. 

9.9.1 Root Pointer Registers 

An operating system can use the CPU root pointer (CAP) register alone or both the CRP 
and the supervisor root pointer (SRP) registers to point to the top level address translation 
table(s). The choice depends on the complexity of the memory layout for the system. When 
only the CRP is used, it must point to a translation table that maps all supervisor and user 
references. However, the supervisor and user translation tables can be separate even when 
only the CRP register is used. When the index to the top level translation table is the 
function code value (FCL in TC register is set), supervisor and user tables are separate at 
all lower levels. With proper structuring of the address tables, both methods can provide 
the same functionality, but each has its advantages. 

When the translation tables use the CRP and function code lookup, supervisor and user 
accesses are separate, and each task can have different supervisor and user mappings. 

MC68030 USER'S MANUAL MOTOROLA 
9-49 



-

Alternatively, the entries in the function code tables that correspond to the supervisor 
spaces for each task can all point to the same tables to provide a common mapping for 
all supervisor references. 

When the mapping of the supervisor address space is identical for all tasks, the SRP can 
be used in conjunction with the CRP to provide a more simple and efficient way to define 
the mapping. This technique suppresses the use of the function code (unless the program 
and data spaces require distinct mappings) and separates supervisor and user accesses 
at the root pointer level of the translation tables. A single translation table maps all su­
pervisor accesses without maintaining a large number of supervisor pointers in the trans­
lation tables for each task and results in reduced bus activity for table searches. 

9.9.2 Task Memory Map Definition 

The MC68030 provides several different means by which the supervisor can access the 
user address spaces. The supervisor can access any user address, regardless of how the 
virtual space is partitioned, with the MOVES (move space) instruction. Some systems 
provide a complete 4-gigabyte virtual memory map for each task. Indeed, an operating 
system that runs other operating systems in a virtual machine environment must provide 
a complete map to accurately emulate the full addressing range for the subordinate op­
erating system. 

With the large address space of the MC68030, each individual user task or all user tasks 
can share the address space with the operating system. One method of performing this 
function is implemented in the example operating system in the next section. Sharing the 
address space provides direct access to user data items by the operating system. Another 
advantage of this mapping method is that tasks can easily share code. Common routines 
such as file 110 handlers and arithmetic conversion packages can be written re-entrantly 
and be restricted to read-only access from all user tasks in the system. 

The simplest example of a shared virtual address space system is one in which each user 
and supervisor process is given a unique virtual address range within the single 4-gigabyte 
virtual address space. In other words, the system has only one linear virtual address space; 
all processes run somewhere in that space. Only one translation table tree is required for 
the entire system, but each task can have individual tables if desired. With the common 
tree approach, the operating system can access any item of any task without modifying 
the root pointer. Otherwise, only the currently active task is immediately accessible, which 
often is adequate. To switch tasks, the operating system only has to update the user 
program and user data pointers in the highest level translation table indexed by the function 
code. This gives each task access to its own data only. This scheme has the advantages 
of simple table management and easy sharing of common items by giving them the same 
virtual address for all tasks in the system. This scheme might be ideal for real-time systems 
that do not require more complexity in memory management facilities. 

The next logical step toward increased operating system complexity, with shared user and 
supervisor virtual memory maps, is to keep the supervisor addresses separate, but to give 
each user task its own use of the remainder of the virtual space. For example, each user 
task could have the virtual memory space from zero to 512 megabytes; the operating 
system programs and data would occupy the remainder of the space, from 512 megabytes 
up to 4 gigabytes. Each user task has its own set of translation tables. The supervisor root 
pointer may or may not be used, depending on whether the user tables also map the 

MOTOROLA 
9-50 

MC68030 USER'S MANUAL 



supervisor space. As in the preceding method, the user cannot access the operating system 
portion of the address space unless the operating system allows it, or wishes to share 
common routines. The advantages of this scheme are that it provides a much larger virtual 
address space for each user task, and it avoids virtual memory fragmentation problems. 
Disadvantages of this scheme include the requirement for slightly more complex table 
management, and the restriction of operating system access to only the current user task. 

There are few absolute rules in the use of the MC68030 MMU. In general, the statement 
regarding restricting operating system access to only one user task using the scheme 
described in the preceding paragraph holds true. However, by using the entire 4-gigabyte 
virtual address space and cross mapping the address space, the supervisor can access 
each user task space as a distinct portion of its own supervisor map. If each user task is 
limited to a 16-megabyte virtual address space and the supervisor only requires a 16 
megabyte address space, 256 such address spaces can be mapped simultaneously. The 
supervisor translation tables can include each of these spaces, and the supervisor can 
access each task using indexed addressing with a register that contains the proper constant 
for a particular task. This constant provides a supervisor-to-user virtual address conversion. 
A systems programmer can implement some very sophisticated functions that exploit the 
flexibility of the MMU. 

The most complex systems and those that implement virtual machine capability, com­
pletely separate the virtual address spaces of the supervisor and all user tasks, or possibly 
even those of individual supervisor tasks. Each user or supervisor task has its own virtual 
memory space starting at zero and extending to 4 gigabytes. Using the function code, a 
4-gigabyte address space for the program and another for its data can be provided for 
each task. Both the SRP and the CRP are probably used, since nothing is common among 
the various spaces. The operating system uses the MOVES instruction to interact with the 
user space. The advantages of this implementation are the maximum availability of the 
virtual space and a complete logical separation of addresses. Virtual machine implemen­
tations require maximum availability of virtual space. The disadvantages being the more 
complex table management and the more restrictive accesses to other address spaces. 

9.9.3 Impact of MMU Features on Table Definition 

The features of the MMU that impact table definition are usually considered after deciding 
how to map memory for the tasks. For some systems, these features can affect the mapping 
decision and should be considered when making that decision. 

9.9.3.1 NUMBER OF TABLE LEVELS. The MMU supports from zero to five levels (six levels 
with the use of indirection) in the address translation tables. The zero level case being that 
of early termination at the root pointer. This provides a limit check on the range of physical 
addresses for the system. It is used primarily in systems that require the limit check on 
physical addresses. 

Systems that support large page sizes or that require only limited amounts of virtual 
memory space can use single level tables. A single level translation tree with 32K-byte 
pages may be the best choice for systems that are primarily numerically intensive (i.e., the 
system is involved in arithmetic manipulations rather than data movement) where the 
overhead of virtual page faults and paging 1/0 must be minimized. This type of system 
can map a 16-megabyte address space with only 2K bytes of page table space. With this 
much mapped address space, table search time becomes insignificant. 

MC68030 USER'S MANUAL MOTOROLA 
9-51 



At another extreme is a single-user business system that only needs a 2-megabyte virtual 
address space. A 512 byte page size might be best for this system, because the block size 
formats of many Winchester hard disk file systems is 512 bytes. A page table that completely 
maps the 2-megabyte space requires only 16K bytes of memory, and the ATC entries directly 
map 11 K bytes of virtual space at any one time. The page tables for this system and the 
one described in the preceding paragraph are small enough to be permanently allocated 
in the operating system data area. They incur virtually no management or swapping over­
head. 

A two level address translation table provides a lower page level similar to the page tables 
in the two preceding paragraphs and additional direction at a higher level. For example, 
in a system using 32K-byte pages and 512-entry page tables, the upper level translation 
table contains 256 entries of short format descriptors, requiring 1 K bytes for the table. Each 
of the upper table entries maps a 16-megabyte region of the virtual address space. The 
primary advantage of a two-level table for large "number-crunching" system is the op­
erating system designer's ability to make a trade-off between page size and table size. The 
system designer may choose a smaller page size to fit the block sizes on available 1/0 
devices, yet keep the tables manageable. However, the designer must also consider the 
performance penalty associated with smaller page sizes. Systems with smaller page sizes 
have a higher frequency of page faults requiring more table search time and paging 1/0. 
With the flexibility of the MC68030 MMU, the designer has enough choices to optimize 
table structure design and page size. 

Three level translation tables are useful when the operating system makes heavy use of 
shared memory spaces and/or shared page tables. Sophisticated systems often share 
translation tables or program and data areas defined at the page table level. When a table 
entry can point to a translation table also used by a different task, sharing memory areas 
becomes efficient. The direct access to user address space by the supervisor is an example 
of sharing memory. 

Some artificial intelligence systems require very large virtual address spaces with only 
small fragments of memory allocated among these widely differing addresses. This frag­
mentation is due to the complex and recursive actions the system performs on lists of 
data. These actions require the system to constantly allocate and free sophisticated pointers 
and linked lists in the memory map. The fragmentation suggests a small page size to utilize 
memory most efficiently. However, small pages in a large virtual memory map require 
relatively large translation tables. For example, to map 4 gigabytes of virtual address space 
with 256 byte pages, the page tables alone require 64 megabytes. With a three- or four­
level table structure, the number of actual translation table entries can be drastically re­
duced. The designer can use invalid descriptors to represent blocks of unused addresses, 
and the limit fields in valid descriptors to minimize the sizes of pointer and page tables. 
In addition, paging of the address tables themselves reduces memory requirements. 

9.9.3.2 INITIAL SHIFT COUNT. The initial shift field (IS) of the translation control register 
(TC) can decrease the size of translation tables. When the required virtual address space 
can be addressed with fewer than 32 bits, the IS field reduces the size of the virtual address 
space by discarding the appropriate number of the most significant logical address bits. 
This technique inhibits the system's ability to detect very large illegal (i.e., out-of-bounds) 
addresses. Using the full 32-bit address and reducing the table size with invalid descriptors 
and limited pointer and page table sizes prevents this problem. 

MOTOROLA 
9-52 

MC68030 USER'S MANUAL 



9.9.3.3 LIMIT FIELDS. Except for a table indexed by function code, every pointer and page 
table can have a defined limit on its size. Defining limits provides flexibility in the operating 
system and saves memory in the translation tables. The limit field of a table descriptor 
limits the size of the table to which it points. The limit can be either an upper or a lower 
limit, using either the lower or higher addresses within the range of the table. Since a task 
seldom requires the maximum number of possible virtual pages, this reduction in table 
size is practical. 

For example, when an operating system uses 4K-byte pages and runs numerous small 
tasks that average SOK bytes each in size, each task requires a 20-entry page table. The 
system can limit the size of each table to 80 bytes, or 800 bytes for ten tasks. Without the 
limit, an operating system running ten of these tasks would require 40K bytes of space for 
the page tables alone (one table per page). 

Memory savings required for translation tables is especially significant for artificial intel­
ligence systems these systems tend to require very large memory maps. By using limit 
fields, each table is only as large as the number of active entries within it. This limit can 
change as the table grows. For higher level tables, each table only grows as the additional 
entries require. The use of three or four levels of tables facilitates the management of these 
tables. 

9.9.3.4 EARLY TERMINATION PAGE DESCRIPTORS. A page descriptor residing in a pointer 
table is an early termination page descriptor mapping an entire block of pages. That is, it 
maps a contiguous range of virtual addresses to a contiguous range of physical addresses. 
For example, an operating system could reserve a 32K byte area for special supervisor I/ 
0 peripheral devices. This area can be mapped with a single early termination descriptor 
to save translation table size and table search overhead. The descriptor can use the limit 
field to reduce the size of the contiguous block when the block size is smaller than the 
virtual address space that the particular descriptor represents. The MC68030 creates mul­
tiple ATC entries (one for each page) for the range of virtual addresses represented by the 
early termination descriptor as the pages are accessed. 

An operating system can use an early termination page descriptor to map a contiguous 
block of memory for each task (both program and data). The tasks can be relocated by 
changing the physical address portion of the descriptor. This scheme is useful when the 
tasks in a system consist of one or a few sequential blocks of memory that can be swapped 
as a group. The operating system memory map can treat the entire address space within 
these blocks as a uniform virtual space available for all tasks. The system only requires 
one translation table; by the use of limit fields and early termination page descriptors, it 
maps complete segments of memory. 

9.9.3.5 INDIRECT DESCRIPTORS. An indirect descriptor is a table descriptor residing in a 
page table. It points to another page descriptor in the translation tree. Using an indirect 
descriptor for a page makes the page common to several tasks. History information for a 
common page is maintained in only one descriptor. Access to the page sets the used (U) 
bit, and a write operation to the page sets the M (modified) bit for that page. When the 
operating system is searching for an available page, it simply checks the page table con­
taining the descriptor for the common page to determine its status. With other methods 
of page sharing, the system would have to check page tables for all sharing tasks to 
determine the status of the common page. 

MC68030 USER'S MANUAL MOTOROLA 
9-53 



-

9.9.3.6 USING UNUSED DESCRIPTOR BITS. In general, the bits in the unused fields of 
many types of descriptors are available to the operating system for its own purposes. The 
invalid descriptor, in particular, uses only two bits of the 32 (short) or 64 (long) bits available 
with that format. An operating system typically uses these fields for the software flags 
indicating whether the virtual address space is allocated and whether an image resides on 
the paging device. These fields often also contain the physical address of the image. 

The operating system also often maintains information in an unused field about a page 
resident in memory. This information may be an aging counter or some other indication 
of the page's frequency of use. This information helps the operating system to identify the 
pages that are least likely to impact system performance if they are re-allocated. The system 
should first use physical page frames that are not allocated to a virtual page. Next it should 
use pages with the longest time since the most recent access. Pages that do not have the 
M (modified) bit set should be taken first, since they do not need to be copied to the paging 
device (the existing image remains valid). 

An aging counter can be set up in an unused field of a page descriptor. The system can 
periodically check the U (used) bit for the page and increment the count when the page 
has not been used since the previous check. The system can identify the least recently 
used page from the counts in the aging counter. When the counter for a page overflows, 
the system can list the page in a queue of least recently used pages from which it chooses 
the next page to be re-allocated. 

Many schemes afford the operating system designer a variety in selecting a page to be 
taken. One operating system scans page tables starting at the lowest priority task looking 
for aged pages to steal. Another system maintains a system-wide list of all page frames 
as they are used and scans the list starting at the oldest to find a page to steal. A sophis­
ticated system keeps a working set model of active pages for each individual task. From 
this information it can swap a complete block of pages in and out with a single 1/0 operation. 
The method chosen can have a dramatic impact on limiting page fault overhead in a heavily­
used system. 

9.10 AN EXAMPLE OF PAGING IMPLEMENTATION IN AN OPERATING SYSTEM 

This section describes an example operating system design that illustrates some of the 
MMU features. The description suggests alternatives to provide variations of the design. 
Memory management algorithms that can be implemented to derive the actual code are 
shown. A bus error handler routine is shown also. Implementing the algorithms develops 
the basic code for the memory management services of an operating system. 

9.10.1 System Description 

The example system has the ability to map a large virtual memory task space, which is 
required for execution of predominantly numerically intensive processing tasks. Most of 
these tasks do not need more than 16 megabytes of memory, but the system can supply 
a larger virtual memory space (as large as 496 megabytes) to the occasional task that 
requires more. The system uses the relatively large page size of 8K bytes to minimize 
thrashing and translation table searches. With a larger page size, fewer descriptors can 
map a large area of virtual memory. Also, in a given period of time, the MC68030 expe­
riences fewer ATC misses, and performs fewer table searches. The larger page size requires 

MOTOROLA 
9-54 

MC68030 USER'S MANUAL 



the paging 1/0 operations to transfer larger blocks of data, and sometimes only a small 
part of the page is actually used. However, preliminary software model simulations show 
that SK-byte pages provide optimum performance for this type of processing. 

The average task for this system is a compiler or text editor that requires only 192K bytes 
of memory, or 24 SK-byte pages. Using short page descriptors, the page table occupies 
96 bytes. 

Page tables can reside at any 16-byte boundary; the limit fields of the MMU can provide 
the area needed without requiring excess space. This results in an address table area small 
enough to be completely resident in physical memory. The operating system does not 
need to page the table areas. 

The paging hardware of many computer systems requires lower-level tables to reside at 
page boundaries, effectively using one or more entire pages. This requires SOK bytes for 
the page tables forten tasks (10tables, one 8K-byte page per table). Then, when the memory 
required for an upper level of tables is added, at a minimum of BK bytes per task, the total 
comes to over 160K bytes. Table base addresses in the MC68030 are zero modulo 16 
addresses. This results in a dramatic savings of memory for address table space; instead 
of using SOK bytes for the page tables for ten tasks, (10 tables, one BK-byte page per table), 
the MC68030 needs 960 bytes. Instead of 8K bytes per task for the upper level of tables, 
the tables require 2560 bytes in the MC68030. The fragmentation that may occur in allo­
cating smaller tables could increase the memory requirement but would still remain less 
than 160K bytes. 

The translation table tree for the example system consists of two levels. The upper level 
is a fixed table that contains 32 entries, each of which is a long format table descriptor 
that points to a lower level page table. Each page table maps as many as 16 megabytes 
of virtual address space. Since the upper level table is small (256 bytes), it can easily fit in 
the main control block of the task. When the system dispatches a new task, it loads a 
pointer to the upper level table for the task into the CRP register. Each lower level table 
consists of 0 to 2048 short format page descriptors. The limit entry in the table descriptor 
for a page table determines the size of the table. For the average 192K-byte task, the upper 
level table usually has one valid entry, and this entry points to a lower level table with an 
average size of 96 bytes. A task that requires more than 16 megabytes uses more than 
one valid entry in the higher level table. 

In a typical computer system, with 64K bytes of boot and diagnostics ROM, a 64K 1/0 area, 
and 1 megabyte of RAM, the physical mapping appears as follows: 

LOW MEMORY 

MC68030 USER'S MANUAL 

0 I BOOT ANO DIAGNOSTICS ROM 
64K ._ __________ __, 

UNMAPPED 

JM ....------------. 

HARDWARE 1/0 

2M 1-------------1 
SYSTEM RAM 

3M "-------------' 

MOTOROLA 
9-55 



-

The operating system must control memory allocation for physical memory (page frames) 
to hold the pages of virtual memory. All available physical memory is divided into page 
frames, each of which can hold a page of virtual memory. A system with 4 megabytes of 
actual memory is divided into 512 8K-byte frames that can theoretically hold 512 pages of 
active virtual memory at any one time. Usually operating system components (exception 
handlers, the kernel, private memory pool) permanently reside in some of the memory. 
Only the remaining page frames are available for virtual memory pages. 

The operating system maintains a linked list of all unallocated page frames. One simple 
way to do this is for each unallocated frame to contain a pointer to the next frame. The 
operating system takes the first page frame on the list when a frame is required. An 
operating system primitive called GetFrame performs this function and returns the physical 
address of an available frame. When all frames are allocated, GetFrame steals a frame 
from another task. GetFrame first looks for an unmodified frame to steal. An unmodified 
frame could be stolen without waiting for the page to be copied back to the external storage 
device that stores virtual page images. (This device is called the paging device or the 
backing store.) If no unmodified page frame is available, GetFrame must wait while the 
system copies a modified page to the paging device, then steals the page frame and returns 
to the caller with the physical address. 

Next, the operating system needs physical memory management routines to allocate and 
free supervisor work memory. The routine must allocate pieces of memory on boundaries 
of at least modulo 16, the requirement for address translation tables. Typically, this type 
of routine allocates pieces of certain sizes. GetReal is the allocation routine; ReturnReal is 
the return routine. They use physical addresses. 

With physical memory allocation provided for, the operating system must be able to man­
age virtual memory for all tasks. To do this, the system must be aware of the virtual memory 
map. It must know the total amount of virtual memory space, how much is allocated, and 
which areas ar~ available to be assigned to tasks. The virtual memory map looks like this: 

MOTOROLA 
9-56 

LOW MEMORY 

lM 

2M 

3M 

16M 

52BM 

OS KERNEL 

HARDWARE 1/0 

DIRECT MAPPED 
(LOGICAL = PHYSICAL) 

UNUSED 

USER PROGRAM/DATA/STACK 
(496M) 

MC68030 USER'S MANUAL 



Virtual addresses for this virtual memory are subdivided: 

31 

xxxu uuuu 1111 1111 111 o 0000 0000 0000 

x - Ignored (3 bits) 
u - Upper level index (5 bits), Maps 32 long table entries 
I - Lower level index (11 bits), Maps 2048 short page entries 

The translation table structure consists of: 
CRP • upper level table in the task control block, which contains 32 long pointers: 

[O] • lower level table common to all tasks; maps all operating system areas (first four 
megabytes of virtual space). This common table contains 512 short page entries 
(2K bytes). 

[1] •lower level table for first 16 megabytes of user program/data/stack area. 

[31]. lower level table for last 16 megabytes (of 496 total) of user program/data/stack 
area. 

The user program can only access virtual addresses starting at 16 megabytes and extending 
upward to the limit of 512 megabytes. The code, the data, and the stacks for user tasks 
are allocated in this area of virtual memory. Supervisor programs can access the entire 
virtual map; they can access addresses that directly access the 1/0 ports as well as the 
entire physical memory at untranslated addresses. The address tables are set up so that 
virtual addresses are equal to the physical addresses for the supervisor between 1 and 3 
megabytes. Folding the physical address space into the virtual space greatly simplifies 
operations that use physical addresses. The folding does not necessarily mean that the 
virtual addresses are the same as the physical addresses. For example, the boot/diagnostic 
ROM at physical address zero could be assigned a virtual address of 3 megabytes. However, 
any external bus masters or circuitry (such as breakpoint registers) resident on the physical 
side of the bus must have physical addresses. This requires the overhead of operating 
system code to perform address translation. 

This virtual memory map provides supervisor addresses that are unique with respect to 
user addresses; all supervisor routines can directly access any user area without being 
restricted to certain instructions or addressing modes. The separate user and supervisor 
maps suggest that two root pointers should be used, one for the supervisor map and one 
for the user map. However, the supervisor must be able to access user translation tables 
for proper access to user data items. With separate root pointers, the supervisor table 
structure must be linked to that of the user. To do this requires an additional level of table 
lookup (function code level) for the supervisor address table. 

This example uses a simpler scheme instead. Only the CPU root pointer is used, and for 
each task, the first entry of the upper level table (for the supervisor portion, the first 16 
megabytes of virtual address space) points to the same lower level table. This common 
lower-level table has supervisor protection and maps the entire virtual operating system, 
physical 110, and physical memory areas. This scheme avoids the requirement for extra 
lookup levels or pointer manipulations during a task switch to furnish correct access across 
the user/supervisor boundary. All the operating system has to do when creating the address 
table for a new task is to set the first upper-level table entry to point to the common page 
table of the supervisor. 

MC68030 USER'S MANUAL MOTOROLA 
9-57 



-

To solve the problem of accounting for virtual memory areas assigned to a user task, the 
operating system uses the existing translation tables to identify these areas. When a valid 
descriptor points to a given virtual address page, this 8K byte page of memory have been 
allocated. This scheme provides areas of memory that are multiples of the SK-byte page 
size. Due to the 8K granularity, this scheme would be inadequate for tasks that continually 
request and return virtual memory space. As a result, some other technique would be used 
(perhaps auxiliary tables to show virtual space availability). The tasks in this system seldom 
request additional memory space; any request made is for a large area. This scheme 
suffices. The application programs and utilities that run in the UNIX (r) environment have 
similar requirements for memory. 

The operating system primitive GetVirtual allocates virtual memory space for tasks. The 
input parameter is a block size, in bytes; returns the virtual address for the new block. 
GetVirtual first checks that the requested size is not too large. Then it scans the translation 
tables looking for an unallocated virtual memory area large enough to hold the requested 
block. If it does not find enough space, GetVirtual attempts to increase the page table size 
to its maximum. If this does not provide the space, GetVirtual returns an error indication. 
When the routine finds enough virtual space for the block, it sets the page descriptors for 
the block to virgin status (invalid, but allocated). When these pages are first used, a page 
fault is generated. The operating system allocates a page frame for the page and replaces 
the descriptor with a valid page descriptor. The status (indicated by a software flag in the 
invalid descriptor) tells the operating system that the paging device does not have a page 
image for this page; no read operation from the paging device is required. 

When the status of an invalid descriptor indicates that a page image must be read in, 
primitive SwaplnPage reads in the image. The input parameter for this routine is the invalid 
descriptor, which contains the disk address of the page image. Before returning, Swap­
lnPage replaces the invalid descriptor with a valid page descriptor that contains the page 
address. The page is now ready for use. 

These routines provide many of the functions required for the memory management serv­
ices of an operating system, but a complete memory management system requires a 
complementary function for each routine. The complementary function usually performs 
the same steps in the reverse order. The complement of GetVirtual could be ReturnVirtual; 
for SwaplnPage the complement might be SwapOutPage. These counterparts can be de­
rived to perform similar steps in the reverse order. 

9.10.2 Allocation Routines 

This section describes the central routine Vallocate, which user programs call to obtain 
memory. In this section (and the next), a loose high-level language syntax is used for the 
code. The code takes many liberties to enhance readability. For example, the code assigns 
descriptive strings for return status values. These strings typically represent binary values. 
Also, the code uses empty brackets to represent obvious subscripts in loops that scan 
tables. In such a loop, the subscript on the second line is obvious: 

for Upper-Table-Index= 1 to 31 do 
if Upper-Table [Upper-Table-lndex].Status =invalid then ... 

In the code shown here, the second line is: 
if Upper-Table [].Status= invalid then ... 

The code uses flag operations that are assumed to be defined elsewhere in the system. 
They may imply more complex operations than bit manipulations. For example, page table 

MOTOROLA 
9-58 

MC68030 USER'S MANUAL 



status of invalid virgin can be implemented with an invalid descriptor instead of the page 
descriptor and a software flag bit in the descriptor that indicates the page is allocated but 
has never been used (the paging device has no page image). 

Vallocate has a single input parameter, the required memory size in bytes. It returns status 
information and the virtual address of the start of the area (if the memory is allocated). To 
simplify the routine, it always returns a multiple of the system page size and never allocates 
a block that crosses a 16-megabyte boundary. It could allocate a portion of a page by 
implementing a control structure to subdivide a page, but if the control structure were 
within the allocated page, the user could corrupt it. The block could cross a 16-megabyte 
boundary if the routine included code to keep track of consecutive free blocks when scan­
ning the lower-level tables, each of which represents 16 megabytes of address space. Once 
the total area is located, Vallocate allocates the consecutive blocks and returns the address 
of the lowest block. 

The 32 upper-level table entries are long pointer types; each represents 16 megabytes of 
virtual address space. Each entry is either invalid (has no lower page tables) or allocated 
(has lower page tables and a limit field that defines the table size). By convention, the first 
entry maps the supervisor address space and has supervisor protection. The routine never 
modifies this first entry. The 31 entries after the first are available to be allocated as user 
address space. 

A routine similar to this that linearly extends (grows) a previously allocated memory block 
could be written. A stack is a good example. The operating system can allocate the top of 
the memory (the thirty-second upper level table entry) as a stack that grows downward 
from the highest address. If a task needs several large stacks, a 16-megabyte block can be 
used for each stack, with a software flag set to indicate growth in a downward direction. 

The logic of Vallocate is: 

1. Validate the request and calculate number of pages required. 

2. Scan each upper table entry's lower page tables (where they exist) looking for 
an adequate group of unallocated pages. 

3. If no space is found, see if the lower table is less than its maximum size and if 
the block can be alloccated by expanding it at the end. 

4. If still no space is found, use the next free upper table entry and initialize its new 
lower level page table to allocate the block here. 

5. Set allocated page entries to indicate virgin status (allocated, invalid, and not 
swapped out). 

6. Return status. If status is OK, also return virtual address. 

MC68030 USER'S MANUAL MOTOROLA 
9-59 



• 

e code for Vallocate is: 

Valloca SlzelnBytes, VlrtualAddressReturned, Status); 

I* The following are global to all routines 

I* Symbolicly define the upper level pointer table 

Declare Upper_Table[32] Record of 
Status=(unallocated, allocated), 
Limit_Field=(O to 4k), 
Pointer; 

r lower table here or not 
r limit for lower page table 
/*address of lower page table if allocated 

., 

., 

., ., ., 
I* Symbolicly define the lower level page table •1 

Declare Lower_Table[O to Limit_Field] Based Record of 
Status=(invalid_unallocated, /*not allocated to User •1 

invalid_paged_out, /*allocated but paged out •1 
invalid_virgin, /*allocated but not yet used •1 
valid_in_memory), /*allocated and in memory •1 

Pointer; /*physical address or disk address of page •1 

Declare Upper_ Table_lndex, Lower_Level_lndex; /*table indexes •1 

Declare NumPages; r number of pages required to hold request •1 

Status = "Out of virtual Memory"; r default result status to this error • / 

if SizelnBytes > 16 megabytes then exit Vallocate; 

NumPages = (SizelnBytes+PageSize-1)/PageSize; I* Pages needed 

I* Scan User eligible page tables 

for Upper_Table_lndex = 1to31 do 
If Upper_Table[].Status =allocated then call SearchPageTable; 
If Status = "OK" then Exit Vallocate; 
end; 

I* Block not found so find upper level entry unallocated and call SearchPageTable that will 'expand' •1 

., 

., 

r the null table to hold the block. ·1 

for Upper_Table_lndex = 1to31 
If Upper_Table[].Status =unallocated then call SearchPageTable; 

r No more virtual space, exit leaving Status= "out of virtual memory" ., 
exit Vallocate; 

Procedure SearchPageTable; 

r Scan table pointed to by upper level index to see if it can hold the block. If not, see if it can be •1 
r be expanded. If successful then set flags in the page entries, set status to "OK" and User's •1 
r virtual address • , 

MOTOROLA 
9-60 

Declare Maxfound; r Count of consecutive free blocks found ., 
Maxfound = O; 
For Lower_Level_lndex =Oto Upper_Table[].Limit_Field 

MC68030 USER'S MANUAL 



/*count consecutive free pages until Maxfound met or not */ 
If Lower_Table[].Status = invalid_unallocated then do 

Maxfound = Maxfound+ 1 ; 
if Maxfound >= NumPages then do 

/*Found! Now flag the page entries, update the MC68030 and */ 
/* return the User's virtual address */ 

end; 

while (Maxfound > 0) do 

end; 

Lower_Table[].Status = invalid_virgin; 
Lower_Level_lndex = Lower_Level_lndex-1; 

Status = "OK"; 
VirtualAddressReturned = 

Upper_Level_lndex*16Meg + 
Lower_Level_lndex*Sk; 

PLOAD (VirtualAddressRetumed); 
exit SearchPageTables; 
end; 

/* allocated page hit so start counting from zero again 
else Maxfound = O; 

., 
/* If we get here there was not room. See if we can expand the page table to hold the new block*/ 
/*If so grow ii and set the new page entries as virgin */ 

If Upper_ Table[).Limil + NumPages < 4k then do 
Newlimit = Upper_Table[).Limil + NumPages; 

/* We can grow the page table! First get area for new table 
Call GetReal(4*Newlimit, NewPageTable); 

I* Now copy the first part of the old table into the new 
for Lower_Table_lndex = 0 to Upper_Table[).Limil 

NewPageTable->Lower_ Table[)= Lower_ Table[) 

I* Return the old table and install the new table pointer 
Call ReturnReal(4*Upper_Table[].Limit, Upper_ Table[].Pointer); 

Upper_Table[).Pointer = NewPageTable; 

., 

., 

., 

I* Set returned virtual address and load ii replacing the old */ 
VirtualAddressReturned = Upper_Level_lndex*16Meg + Lower_Level_lndex*Sk; 
PLOAD (VirtualAddressReturned) I* refresh MC68030 */ 

I* Set all the new entries at the end to virgin status *I 
While (Lower_ Table_lndex < Newlimil) do 

Lower_Table_lndex = Lower_Table_lndex + 1; 
Lower_ Table[].Status = invalid_virgin; 
end; 

/*Set OK status and return with ii */ 
Status= "OK"; 
exit SearchPageTables; 
end; 

/*cannot expand the table. return with status unchanged (failed) */ 
end SearchPageTabtes; 

MC68030 USER'S MANUAL MOTOROLA 
9-61 



-

9.10.3 Bus Error Handler Routine 

The r~~tlne~that processes bus error exceptions is the most critical part of the memory 
management services provided by the example operating system. This routine must de­
termine the validity of page faults, and perform the necessary processing. It must identify 
the conditions that aborted the executing task. The PTEST instruction can investigate the 
cause of a bus error by performing a table search using the address and type of access 
that produced the error, accumulating status information during the search. 

When the PTEST instruction does not find any error, the bus error was most likely a 
malfunction (for example, a transient memory failure). The operating system must respond 
appropriately. 

The table search performed by the PTEST instruction may end in a bus error termination. 
Either the address translation tables are not correctly built or main memory has failed 
(either a transient or permanent failure). 

A supervisor protection violation or a write protection violation usually indicates that the 
task generating the exception attempted to access an area of the virtual-address space that 
is not part of the task's address space. The operating system usually recovers from such 
an error by terminating (aborting) the task. 

When the PTEST instruction returns the invalid status, the bus error is a page fault, and 
the operating system must identify the specific type of page fault. When the limit violation 
bit returned by the PTEST instruction is set, the task that took the exception was trying to 
access a page that has not been allocated. The example system aborts the task in this case. 
In other systems, this is an implicit request for more virtual memory, particularly if the 
reference is in a stack area. 

When no limit violation occurred, a descriptor is invalid. Typically, the descriptor contains 
software flags that provide relevant information. The example operating system checks to 
see if the invalid descriptor is in an upper level or a lower level table. When the descriptor 
is in the upper level table, the task was attempting to access unallocated virtual memory, 
and the system aborts the task. When the descriptor is in a lower level table, the system 
checks software flags to identify the invalid descriptor. 

When the software flags indicate that the descriptor corresponds to an unallocated page, 
the system aborts the task. When the descriptor refers to a virgin page (allocated, but not 
yet accessed), and the request for the page was a read request, the page is actually invalid 
because the read operation reads unknown data. However, the example operating system 
does not consider the type of request, but assigns a physical page frame to the page and 
writes the page descriptor to the page table. Some systems clear virgin pages to zero. 

When the software flags indicate that the page is allocated and the image has been copied 
to the paging device, the operating system assigns a page frame, reads the page image 
into the frame, and writes the page descriptor to the page table. Another possible type of 
invalid descriptor is one that requires special processing, such as one that refers to a virtual 
1/0 device area in a virtual machine. 

Obtaining a page frame for a virtual page may be an obvious operation. However, when 
no idle page frame is available, the system must steal one. If the page in the stolen frame 
has been modified in memory, the system must save the page image on the paging device. 

MOTOROLA 
9-62 

MC68030 USER'S MANUAL 



The system must alter the translation table of the task that loses the frame to show that 
the page is allocated and swapped out. Typically, the translation table entry shows the 
address of the page image on the paging device. 

The method a system uses to select a page frame to steal varies a great deal from system 
to system. A simple system may just steal a page from the lowest priority task. More 
advanced systems select the page frame that has not been accessed for the longest time. 
This process, called aging, is done in several ways. One method uses bits of the page 
descriptor as an aging counter. Periodically, the operating system examines the U (used) 
bits and increments the count for pages that have not been used. The system maintains 
a list of pages with aging counters that have overflowed. The pages on this list are available 
for stealing. 

Some systems keep a separate list of pages that have not been modified since the page 
image was read from memory. The page frames that contain these pages can be stolen 
without swapping out, because the existing page image on the paging device remains 
valid. 

Page stealing software can involve many dynamics of the system. It can consider task 
priority, 1/0 activity, working-set determinations, the number of executing tasks, a thrashing 
level, and other factors. 

The example bus error exception routine is called BusErrorHandler. It is more general than 
Vallocate because it relies on several operating system dependent items. The variable 
pointer VictimTask is assumed to point to a table from a task that is losing a page frame. 
This assumption is necessary because control block layout and the method of searching 
for and finding other tasks in the example operating system are not defined. The code is 
further simplified by omitting the function code value and the read/write status, which do 
not affect the basic logic of the program. 

MC68030 USER'S MANUAL MOTOROLA 
9-63 



-

r Paging Bus Error Handler for example O.S. 

Procedure BusErrorHandler (BusErrAddress); 

., 

r Global Variables to all code ., 
Declare TableEntry; f Pointer returned by PTEST instruction 

r pointing to the lowest level entry in the 
r translation tables. 

., ., ., 
/* Use MC68030 PTEST instruction to get fault status and table entry */ 
case PTEST (BusErrAddress,TableEntry) of 

r Bus Error -translation table is invalid or memory hardware problems. Terminate the task. */ 
B: AbortTask("lnvalid table or memory hardware error"); 

r Supervisor Violation - task tried accessing restricted memory *I 
S: AbortTask("Attempted access of Supervisor-only memory"); 

r Write Protected - tried writing into read-only memory */ 
W: AbortTask("Attempted write into read-only memory"); 

r Limit Violation - tried accessing unmapped virtual space. This happens in our example */ 
r O.S. when accessing within a 16 megabyte segment in User memory past what is */ 
r currently allocated for the lower page table as determined by the upper level limit field. */ 
L: AbortTask("lnvalid address'~; 

r Invalid - pointer Indicates invalid. Must determine status. */ 

MOTOROLA 
9-64 

I: begin 

r If upper level entry then that 16 Meg chunk of the virtual space is unallocated 
r and has no page tables. 
If TableEntry is upper level then AbortTask("lnvalid address"); 

., ., 
r We are at a page table entry. Look at software flags. */ 

r If this page unallocated to the User then abort task * / 
If EntryStatus=invalid_unallocated then 

AbortTask("lnvalid Address"); 

r If this page is virgin then assign to it a physical frame *I 
if EntryStatus = invalid_virgin then do 

GetFrame(TableEntry); r address returned in entry */ 
PLOAD (BusErrAddress); r update MC68030 entry */ 
exit BusErrorHandler; r done so continue task */ 
end do; 

r If this page is swapped out then read it back in * / 
if EntryStatus = invalid_swapped_out then do 

r first get a frame to hold the new page * / 
DiskAddress = TableEntry.Pointer; r disk location */ 

GetFrame(TableEntry); r address returned in entry */ 

r Now read in the virtual page Image *I 
call SwapPageln(TableEntry,DiskAddress); 
PLOAD (BusErrAddress); r update MC68851 entry */ 
exit BusErrorHandler; r done so continue task */ 
encl do; 

MC68030 USER'S MANUAL 



end begin; 

r No MC68030 status bits on. Must be memory maHunction or RMW cycle with no ·1 
r ATC entry ·1 
Otherwise: If Stack_Frame shows RMW instruction (SSW) then 

r ATC did not have descriptor loaded and MC68030 cannot •1 
r search tables to load it. Explicitly load ii and allow the task to •I 
r continue normally •1 

Begin 
PLOAD (BusErrAddress); r update ATC •1 
exit BueErrorHandler; r done so re-execute instruction ·1 
end Begin 

Else: AbortTask("Memory MaHunction"); 

end case; 

Procedure GetFrame(FrameTableEntry); 

r This module returns the address of a physical frame in the passed table entry. It obtains one ·1 
r from the free frame list. If none there it scans a queue pointing to pages that have been •1 
r recorded as having aged by not being accessed frequently. It first tries to find a read-only •1 
r page in the queue but if none ii returns the first (oldest) entry after swapping the page out •I 
r to disk and altering the translation tables of the owning task. If nothing in the queue it waits •I 
r for some other task to free a frame by terminating or deallocating memory •I 

Restart: 
if Free_Frame_Queue NOT null then 

Dequeue first entry and return its value. 

if Aged_Frame_Queue NOT null then begin 

r First try to find a read-only page 
If scanning finds read-only page then use and dequeue it 

else dequeue the first entry (which is the oldest); 

Find owning task and the frames current page entry; 

·1 

r Invalidate owning task's page •1 
PFLUSH (User_Space,VictimTask.VirtualAddress); 

r If modified page swap it out. SwapPageOut either gives control to other tasks •I 
r during the 1/0 or copies the page returning immediately. ·1 
If modified then call SwapPageOut(VictimTask.TableEntry); 
r Disk address now in Victim's page entry ·1 

r Now set the old task's page status and return the frame •1 
VictimTask.TableEntry.Status = invalid_swapped_out; 
return physical frame value; 
end do; 

r At this point we can use some other stealing method but we just wait until another task frees ·1 
r a frame by terminating or freeing memory. •1 
call wait (Free_Frame); 
go to Restart; 

MC68030 USER'S MANUAL MOTOROLA 
9-65 



-

end GetFrame; 

Procedure SwapPageln (SwaplnTableEntry,DlskAddress); 
r This procedure takes the disk address and reads the page from the paging external media •1 
r into the physical address residing in the table entry pointer. */ 
end SwapPageln; 

Procedure SwapPageOut(SwapoutTableEntry); 
r This procedure performs output on the external paging device and then replaces the */ 
r physical page frame address in the page entry pointer field with the disk address of the */ 
r block holding the image of the page. ., 
end SwapPageOut; 

Procedure AbortTask(TennlnatlonMsg); 
r This procedure terminates the current task and issues a diagnostic message. */ 
end AbortTask; 

end BusErrorHandler; 

MOTOROLA 
9-66 

MC68030 USER'S MANUAL 



SECTION 10 
COPROCESSOR INTERFACE DESCRIPTION 

The M68000 Family of general purpose microprocessors provides a level of performance 
that satisfies a wide range of computer applications. Special purpose hardware, however, 
can often provide a higher level of performance for a specific application. The coprocessor 
concept allows the capabilities and performance of a general-purpose processor to be 
enhanced for a particular application without encumbering the main processor architecture. 
A coprocessor can efficiently meet specific capability requirements that must typically be 
implemented in software by a general-purpose processor. With a general-purpose main 
processor and the appropriate coprocessor(s), the processing capabilities of a system can 
be tailored to a specific application. 

The MC68030 supports the M68000 coprocessor interface described in this section. The 
section is intended for designers who are implementing coprocessors to interface with the 
MC68030. 

The designer of a system that uses one or more Motorola coprocessors (the MC68881 or 
MC68882 Floating Point Coprocessor, for example) does not require a detailed knowledge 
of the M68000 coprocessor interface. Motorola coprocessors conform to the interface de­
scribed in this section. Typically, they implement a subset of the interface, and that subset 
is described in the coprocessor user's manual. These coprocessors execute Motorola de­
fined instructions that are described in the user's manual for each coprocessor. 

10.1 INTRODUCTION 

The distinction between standard peripheral hardware and a M68000 coprocessor is im­
portant from a perspective of the programming model. The programming model of the 
main processor consists of the instruction set, register set, and memory map available to 
the programmer. An M68000 coprocessor is a device or set of devices that communicates 
with the main processor through the protocol defined as the M68000 coprocessor interface. 
The programming model for a coprocessor is different than that for a peripheral device. 
A coprocessor adds additional instructions, and generally additional registers and data 
types to the programming model that are not directly supported by the main processor 
architecture. The additional instructions are dedicated coprocessor instructions that utilize 
the coprocessor capabilities. The necessary interactions between the main processor and 
the coprocessor that provide a given service are transparent to the programmer. That is, 
the programmer does not need to know the specific communication protocol between the 
main processor and the coprocessor because this protocol is implemented in hardware. 
Thus, the coprocessor can provide capabilities to the user without appearing separate from 
the main processor. 

In contrast, standard peripheral hardware is generally accessed through interface registers 
mapped into the memory space of the main processor. To use the services provided by 
the peripheral, the programmer accesses the peripheral registers with standard processor 

MC68030 USER'S MANUAL MOTOROLA 
10-1 

-



-

instructions. While a peripheral could conceivably provide capabilities equivalent to a 
coprocessor for many applications, the programmer must implement the communication 
protocol between the main processor and the peripheral necessary to use the peripheral 
hardware. 

The communication protocol defined for the M68000 coprocessor interface is described in 
10.2 COPROCESSOR INSTRUCTION TYPES. The algorithms that implement the M68000 
coprocessor interface are provided in the microcode of the MC68030 and are completely 
transparent to the MC68030 programmer's model. For example, floating-point operations 
are not implemented in the MC68030 hardware. In a system utilizing both the MC68030 
and the MC68881 or MC68882 Floating-Point Coprocessor, a programmer can use any of 
the instructions defined for the coprocessor without knowing that the actual computation 
is performed by the MC68881 or MC68882 hardware. 

10.1.1 Interface Features 

The M68000 coprocessor interface design incorporates a number of flexible capabilities. 
The physical coprocessor interface uses the main processor external bus, which simplifies 
the interface since no special purpose signals are involved. With the MC68030, a copro­
cessor can use either the asynchronous or synchronous bus transfer protocol. Since stand­
ard bus cycles transfer information between the main processor and the coprocessor, the 
coprocessor can be implemented in whatever technology is available to the coprocessor 
designer. A coprocessor can be implemented as a VLSI device, as a separate system board, 
or even as a separate computer system. 

Since the main processor and a M68000 coprocessor can communicate using the asyn­
chronous bus, they can operate at different clock frequencies. The system designer can 
choose the speeds of a main processor and coprocessor that provide the optimum per­
formance for a given system. If the coprocessor uses the synchronous bus interface, all 
coprocessor signals and data must be synchronized with the main processor clock. Both 
the MC68881 and MC68882 floating-point coprocessors use the asynchronous bus hand­
shake protocol. 

The M68000 coprocessor interface also facilitates the design of coprocessors. The copro­
cessor designer must only conform to the coprocessor interface, and does not need an 
extensive knowledge of the architecture of the main processor. Also, the main processor 
can operate with a coprocessor without having explicit provisions made in the main pro­
cessor for the capabilities of that coprocessor. This provides a great deal of freedom in 
the implementation of a given coprocessor. 

10.1.2 Concurrent Operation Support 

The programmer's model for the M68000 Family of microprocessors is based on sequential, 
non-concurrent instruction execution. This implies that the instructions in a given sequence 
must appear to be executed in the order in which they occur. In order to maintain a uniform 
programmer's model, any coprocessor extensions should also maintain the model of se­
quential, non-concurrent instruction execution at the user level. Consequently, the pro­
grammer can assume that the images of registers and memory affected by a given instruction 
have been updated when the next instruction in the sequence accessing these registers 
or memory locations is executed. 

MOTOROLA 
10-2 

MC68030 USER'S MANUAL 



The M68000 coprocessor interface provides full support of all operations necessary for 
non-concurrent operation of the main processor and its associated coprocessors. Although 
the M68000 coprocessor interface allows concurrency in coprocessor execution, the co­
processor designer is responsible for implementing this concurrency while maintaining a 
programming model based on sequential non-concurrent instruction execution. 

For example, if the coprocessor determines that instruction "B" does not use or alter 
resources to be altered or used by instruction "A", instruction "B" can be executed con­
currently (if the execution hardware is also available). Thus, the required instruction in­
terdependencies and sequences of the program are always respected. The MC68882 
coprocessor offers concurrent instruction execution while the MC68881 coprocessor does 
not. However, the MC68030 can execute instructions concurrently with coprocessor in­
struction execution in the MC68881. 

10.1.3 Coprocessor Instruction Format 

The instruction set for a given coprocessor is defined by the design of that coprocessor. 
When a coprocessor instruction is encountered in the main processor instruction stream, 
the MC68030 hardware initiates communication with the coprocessor and coordinates any 
interaction necessary to execute the instruction with the coprocessor. A programmer needs 
to know only the instruction set and register set defined by the coprocessor in order to 
use the functions provided by the coprocessor hardware. 

The instruction set of an M68000 coprocessor uses a subset of the F-line operation words 
in the M68000 instruction set. The operation word is the first word of any M68000 Family 
instruction. The F-line operation word contains ones in bits 15 through 12 ([15: 12] = 1111; 
refer to Figure 10-1); the remaining bits are coprocessor and instruction dependent. The 
F-line operation word may be followed by as many extension words as are required to 
provide additional information necessary for the execution of the coprocessor instruction. 

15 14 13 12 11 10 

Cp-ID TYPE TYPE DEPENDENT 

Figure 10-1. F-line Coprocessor Instruction Operation Word 

As shown in Figure 10-1, bits 9 through 11 of the F-line operation word encode the copro­
cessor identification code (CplD). The MC68030 uses the coprocessor identification field to 
indicate the coprocessor to which the instruction applies. F-line operation words, in which 
the Cp-ID is zero, are not coprocessor instructions for the MC68030. If the Cp-ID (bits 9 
through 11) and the type field (bits 6 through 8) contain zeros, the instruction accesses the 
on-chip memory management unit of the MC68030. Instructions with a Cp-ID of zero and 
a non-zero type field are unimplemented instructions that cause the MC68030 to begin 
exception processing. The MC68030 never generates coprocessor interface bus cycles with 
the Cp-ID equal to zero (except via the MOVES instruction). 

Cp-ID codes of 001-101 are reserved for current and future Motorola coprocessors and Cp­
ID codes of 110-111 are reserved for user defined coprocessors. The Motorola Cp-ID code 
that is currently defined is 001 for the MC68881 or MC68882 Floating Point coprocessor. 
By default, Motorola assemblers will use Cp-ID code 001 when generating the instruction 
operation codes for the MC68881 or MC68882 coprocessor instructions. 

MC68030 USER'S MANUAL MOTOROLA 
10-3 

-



-

The encoding of bits 0 through 8 of the coprocessor instruction operation word is dependent 
on the particular instruction being implemented (refer to 10.2 COPROCESSOR INSTRUC­
TION TYPES). 

10.1.4 Coprocessor System Interface 

The communication protocol between the main processor and coprocessor necessary to 
execute a coprocessor instruction uses a group of interface registers called coprocessor 
interface registers resident within the coprocessor. By accessing one of these interface 
register, the MC68030 hardware initiates coprocessor instructions. The coprocessor uses 
a set of response primitive codes and format codes defined for the M68000 coprocessor 
interface to communicate status and service requests to the main processor through these 
registers. The coprocessor interface registers are also used to pass operands between the 
main processor and the coprocessor. The coprocessor interface register set, response 
primitives, and format codes are discussed in 10.3 COPROCESSOR INTERFACE REGISTER 
SET and 10.4 COPROCESSOR RESPONSE PRIMITIVES. 

10.1.4.1 COPROCESSOR CLASSIFICATION. M68000 coprocessors can be classified into two 
categories depending on their bus interface capabilities. The first category, non-OMA co­
processors, consists of coprocessors that always operate as bus slaves. The second cat­
egory, OMA coprocessors, consists of coprocessors that operate as bus slaves while 
communicating with the main processor across the coprocessor interface, but also have 
the ability to operate as bus masters and directly control the system bus. 

If the operation of a coprocessor does not require a large portion of the available bus 
bandwidth or has special requirements not directly satisfied by the main processor, that 
coprocessor can be efficiently implemented as a non-OMA coprocessor. Since non-OMA 
coprocessors always operate as bus slaves, all external bus-related functions that the 
coprocessor requires are performed by the main processor. The main processor transfers 
operands from the coprocessor by reading the operand from the appropriate coprocessor 
interface register (CIR) and, then, writing the operand to a specified effective address with 
the appropriate address space specified on the function code lines. Likewise, the main 
processor transfers operands to the coprocessor by reading the operand from a specified 
effective address (and address space) and, then, writing that operand to the appropriate 
CIR using the coprocessor interface. The bus interface circuitry of a coprocessor operating 
as a bus slave is not as complex as that of a device operating as a bus master. 

To improve the efficiency of operand transfers between memory and the coprocessor, a 
coprocessor that requires a relatively high amount of bus bandwidth or has special bus 
requirements can be implemented as a OMA coprocessor. OMA coprocessors can operate 
as bus masters. The coprocessor provides all control, address, and data signals necessary 
to request and obtain the bus, and then performs OMA transfers using the bus. OMA 
coprocessors, however, must still act as bus slaves when they require information or 
services of the main processor using the M68000 coprocessor interface protocol. 

10.1.4.2 PROCESSOR-COPROCESSOR INTERFACE. Figure 10-2 is a block level diagram of 
the signals involved in an asynchronous non-OMA M68000 coprocessor interface. The 
synchronous interface is similar. Since the Cp-10 on signals A13-A15 of the address bus 
is used with other address signals to select the coprocessor, the system designer can use 
several coprocessors of the same type and assign a unique Cp-10 to each one. 

MOTOROLA 
10-4 

MC68030 USER'S MANUAL 



. c FCO-FC2 _L 
,~ 

COPROCESSOR 
DECODE 

cs 
COPROCESSOR 

A19-A13 L LOGIC• 
T 

AS 
iiS 

MAIN PROCESSOR R/W 

MC68030 ----~ 
_L DSACK 1 /DSACKO 

' A4-A1 _L_ 

I 

D31-DO _L 
I 

FCO-FC2 = 111 --+- CPU SPACE CYCLE 
A 19-A 16 = 0010 --+- COPROCESSOR ACCESS IN CPU SPACE 
A15-A13 = xxx --+- COPROCESSOR IDENTIFICATION 

ASYNCHRONOUS 
BUS 

INTERFACE 
LOGIC 

A4-A 1 = rrrr --+- COPROCESSOR INTERFACE REGISTER SELECTOR 

•chip select logic may be integrated into the coprocessor 

Address lines not specified above are ··o·· during coprocessor access 

Figure 10-2. Asynchronous Non-OMA M68000 Coprocessor Interface Signal Usage 

The MC68030 accesses the registers in the coprocessor interface register set using standard 
asynchronous or synchronous bus cycles. Thus, the bus interface implemented by a co­
processor for its interface register set must satisfy the MC68030 address, data, and control 
signal timing. The MC68030 timing information for read and write cycles is illustrated in 
Figures 13-5 through 13-8 on foldout pages in the back of this manual. The MC68030 never 
requests a burst operation during a coprocessor (CPU space) bus cycle, nor does it internally 
cache data read or written during coprocessor (CPU space) bus cycles. The MC68030 bus 
operation is described in detail in SECTION 7 BUS OPERATION. 

During coprocessor instruction execution, the MC68030 executes CPU space bus cycles to 
access the interface register set of a coprocessor. The MC68030 drives the three function 
code outputs high (FC2: FCO = 111) identifying a CPU space bus cycle. The coprocessor 
interface register set is mapped into CPU space in the same manner that a peripheral 
interface register set is generally mapped into data space. The information encoded on 
the function code lines and address bus of the MC68030 during a coprocessor access is 
used to generate the chip select signal for the coprocessor being accessed. Other address 
lines select a register within the interface set. The information encoded on the function 
code and address lines of the MC68030 during a coprocessor access is illustrated in Figure 
10-3. 

Address signals A 16-A 19 specify the CPU space cycle type for a CPU space bus cycle. The 
types of CPU space cycles currently defined for the MC68030 are interrupt acknowledge, 
breakpoint acknowledge, and coprocessor access cycles. CPU space type $2 (A19:A16=0010) 
specifies a coprocessor access cycle. 

Signals A 13-A 15 of the MC68030 address bus specify the coprocessor identification code 
(Cp-ID) for the coprocessor being accessed. This code is transferred from bits 9-11 of the 

MC68030 USER'S MANUAL MOTOROLA 
10-5 



-

FUNCTION 
COOE 

31 
ADDRESS BUS 

19 15 12 4 

B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 Cp-10 0 0 0 0 0 0 0 0 CIR REGISTER 

I 
CPU SPACE 
TYPE FIELD 

Figure 10-3. MC68030 CPU Space Address Encodings 

coprocessor instruction operation word (refer to Figure 10-1) to the address bus during 
each coprocessor access. Thus, decoding the MC68030 function code signals and bits A13-
A19 of the address bus provides a unique chip select signal for a given coprocessor. The 
function code signals and A16-A19 indicate a coprocessor access; A13-A15 indicate which 
of the possible seven coprocessors (001 through 111) is being accessed. Bits A20-A31 and 
A5-A12 of the MC68030 address bus are always zero during a coprocessor access. 

The MC68010 can emulate coprocessor access cycles in CPU space using the MOVES 
instruction. 

10.1.4.3 COPROCESSOR INTERFACE REGISTER SELECTION. Figure 10-4 shows that the 
value on the MC68030 address bus during a coprocessor access addresses a unique region 
of the main processor's CPU address space. Signals AO-A4 of the MC68030 address bus 
select the coprocessor interface register (CIR) being accessed. The register map for the 
M68000 coprocessor interface is shown in Figure 10-5. The individual registers are de­
scribed in detail in 10.3 COPROCESSOR INTERFACE REGISTER SET. 

CPU SPACE ADDRESS 

20000 

2001F 

22000 

2201F 

24000 

7 
~ 

2EOOO 

2E01F 

INTERFACE REGISTER SET 

RESERVED 

INTERFACE REGISTER SET 

RESERVED 

. . . 
INTERFACE REGISTER SET 

RESERVED 

'7 
L 

} 

ADDRESS SPACE FOR 
MEMORY 
MANAGEMENT 
UNIT 

} 
ADDRESS SPACE FOR 
COPROCESSOR WITH 
Cp-IO = 1 

} 
ADDRESS SPACE FOR 
COPROCESSOR WITH 
Cp-10 = 7 

Figure 10-4. Coprocessor Address Map in MC68030 CPU Space 

10.2 COPROCESSOR INSTRUCTION TYPES 

The M68000 coprocessor interface supports four categories of coprocessor instructions: 
general, conditional, context save, and context restore. The category name indicates the 

MOTOROLA 
10-6 

MC68030 USER'S MANUAL 



00 

04 

08 

oc 
10 

14 

18 

lC 

31 15 

RESPONSE• CONTROL• 

SAVE* RESTORE* 

OPERATION WORD COMMAND* 

I RESERVED) CONDITION* 

OPERAND• 

REGISTER SELECT !RESERVED) 

INSTRUCTION ADDRESS 

OPERAND ADDRESS 

Figure 10-5. Coprocessor Interface Register Set Map 

type of operations provided by the coprocessor instructions in the category. The instruction 
category also determines the coprocessor interface register (CIR) accessed by the MC68030 
to initiate instruction and communication protocols between the main processor and the 
coprocessor necessary for instruction execution. 

During the execution of instructions in the general or conditional categories, the copro­
cessor uses the set of coprocessor response primitive codes defined for the MC68000 
coprocessor interface to request services from and indicate status to the main processor. 
During the execution of the instructions in the context save and context restore categories, 
the coprocessor uses the set of coprocessor format codes defined for the M68000 copro­
cessor interface to indicate its status to the main processor. 

10.2.1 Coprocessor General Instructions 

The general coprocessor instruction category contains data processing instructions and 
other general purpose instructions for a given coprocessor. 

10.2.1.1 FORMAT. Figure 10-6 shows the format of a general type instruction. 

15 14 13 12 11 1D 4 

11 1 _L 1 1 1 1 Cp-ID l o I o I 0 l EFFECTIVE ADDRESS 

COPROCESSOR COMMAND 

OPTIONAL EFFECTIVE ADDRESS OR COPROCESSOR-DEFINED EXTENSION WORDS 

Figure 10-6. Coprocessor General Instruction Format (cpGENl 

The mnemonic cpGEN is a generic mnemonic used in this discussion for all general in­
structions. The mnemonic of a specific general instruction usually suggests the type of 
operation it performs and the coprocessor to which it applies. The actual mnemonic and 
syntax used to represent a coprocessor instruction is determined by the syntax of the 
assembler or compiler that generates the object code. 

A coprocessor general type instruction consists of at least two words. The first word of 
the instruction is an F-line operation code (bits [15: 12) = 1111 ). The Cp-ID field of the F-line 

MC68030 USER'S MANUAL MOTOROLA 
10-7 

• 



-

operation code is used during the coprocessor access to indicate which of the coprocessors 
in the system executes the instruction. During accesses to the coprocessor interface reg­
isters (refer to 10.1.4.2 PROCESSOR-COPROCESSOR INTERFACE), the processor places the 
Cp-ID on address lines A13-A15. 

Bits [8:6] = 000 indicate that the instruction is in the general instruction category. Bits 0-5 
of the F-line operation code sometimes encodes a standard M68000 effective address 
specifier (refer to 2.5 EFFECTIVE ADDRESS ENCODING SUMMARY). During the execution 
of a cpGEN instruction, the coprocessor can use a coprocessor response primitive to request 
that the MC68030 perform an effective address calculation necessary for that instruction. 
Using the effective address specifier field of the F-line operation code, the processor then 
determines the effective addressing mode. If a coprocessor never requests effective address 
calculation, bits 0-5 can have any value (don't cares). 

The second word of the general type instruction is the coprocessor command word. The 
main processor writes this command word to the command CIR to initiate execution of 
the instruction by the coprocessor. 

An instruction in the coprocessor general instruction category optionally includes a number 
of extension words following the coprocessor command word. These words can provide 
additional information required for the coprocessor instruction. For example, if the copro­
cessor requests that the MC68030 calculate an effective address during coprocessor in­
struction execution, information required for the calculation must be included in the 
instruction format as effective address extension words. 

10.2.1.2 PROTOCOL. The execution of a cpGEN instruction follows the protocol shown in 
Figure 10-7. The main processor initiates communication with the coprocessor by writing 

MAIN PROCESSOR 

Ml RECOGNIZE COPROCESSOR INSTRUCTION F-LINE 
OPERATION WORD 

M2 WRITE COPROCESSOR COMMAND WORD TO 
COMMAND CIR 

M3 READ COPROCESSOR RESPONSE PRIMITIVE 
CODE FROM RESPONSE CIR 
1) PERFORM SERVICE REQUESTED BY RESPONSE 

PRIMITIVE 
2) IF !COPROCESSOR RESPONSE PRIMITIVE 

INDICATES "COME AGAIN") GO TO M3 
!SEE NOTE 1) 

M4 PROCEED WITH EXECUTION OF NEXT INSTRUCTION 
!SEE NOTE 2) 

- Cl 

C2 -
C3 

C4 

C5 

COPROCESSOR 

DECODE COMMAND WORD ANO INITIATE 
COMMAND EXECUTION 

WHILE !MAIN PROCESSOR SERVICE IS REQUIRED) 
DO STEPS 1) AND 2) BELOW 
1) REQUEST SERVICE BY PLACING APPROPRIATE 

RESPONSE PRIMITIVE CODE IN RESPONSE CIR 
2) RECEIVE SERVICE FROM MAIN PROCESSOR 

REFLECT "'NO COME AGAIN" IN RESPONSE CIR 

COMPLETE COMMAND EXECUTION 

REFLECT "PROCESSING FINISHED" STATUS IN 
RESPONSE CIR 

NOTES: 1. "Come Again" indicates that further service of the main processor is being requested 
by the coprocessor 

2. The next instruction should be the operation word pointed to by the Scan PC at this point. 
The operation of the MC68030 ScanPC is discussed in 10.4. 1 ScanPC 

Figure 10-7. Coprocessor Interface Protocol for General Category Instructions 

MOTOROLA 
10-8 

MC68030 USER'S MANUAL 



the instruction command word to the command CIR. The coprocessor decodes the com­
mand word to begin processing the cpGEN instruction. Coprocessor design determines 
the interpretation of the coprocessor command word; the MC68030 does not attempt to 
decode it. 

While the coprocessor is executing an instruction, it requests any required services from 
and communicates status to the main processor by placing coprocessor response primitive 
codes in the response CIR. After writing to the command CIR, the main processor reads 
the response CIR and responds appropriately. When the coprocessor has completed the 
execution of an instruction or no longer needs the services of the main processor to execute 
the instruction, it provides a response to release the processor. The main processor can 
then execute the next instruction in the instruction stream. However, if a trace exception 
is pending, the MC68030 does not terminate communication with the coprocessor until 
the coprocessor indicates that it has completed all processing associated with the cpGEN 
instruction (refer to 10.5.2.5 TRACE EXCEPTIONS). 

The coprocessor interface protocol shown in Figure 10-7 allows the coprocessor to define 
the operation of each general category instruction. That is, the main processor initiates 
the instruction execution by writing the instruction command word to the command CIR 
and by reading the response CIR to determine its next action. The execution of the copro­
cessor instruction is then defined by the internal operation of the coprocessor and by its 
use of response primitives to request services from the main processor. This instruction 
protocol allows a wide range of operations to be implemented in the general instruction 
category. 

10.2.2 Coprocessor Conditional Instructions 

The conditional instruction category provides program control based on the operations of 
the coprocessor. The coprocessor evaluates a condition and returns a true/false indicator 
to the main processor. The main processor completes the execution of the instruction 
based on this true/false condition indicator. 

The implementation of instructions in the conditional category promotes efficient use of 
both the main processor's and the coprocessor's hardware. The condition specified for the 
instruction is related to the coprocessor operation and is, therefore, evaluated by the 
coprocessor. The instruction completion following the condition evaluation is, however, 
directly related to the operation of the main processor. The main processor performs the 
change of flow, the setting of a byte, or the TRAP operation, since its architecture explicitly 
implements these operations for its instruction set. 

Figure 10-8 shows the protocol for a conditional category coprocessor instruction. The 
main processor initiates execution of an instruction in this category by writing a condition 
selector to the condition CIR. The coprocessor decodes the condition selector to determine 
the condition to evaluate. The coprocessor can use response primitives to request that the 
main processor provide services required for the condition evaluation. After evaluating the 
condition, the coprocessor returns a true/false indicator to the main processor by placing 
a Null primitive (refer to 10.4.4 Null Primitive) in the response CIR. The main processor 
completes the coprocessor instruction execution when it receives the condition indicator 
from the coprocessor. 

MC68030 USER'S MANUAL MOTOROLA 
10-9 

• 



MAIN PROCESSOR COPROCESSOR 

Ml RECOGNIZE COPROCESSOR INSTRUCTION HINE 
OPERATION WORO 

M2 WRITE COPROCESSOR CONOITION SELECTOR TO 
CONOITION CIR 

M3 READ COPROCESSOR RESPONSE PRIMITIVE CODE 
FROM RESPONSE CIR 
l) PERFORM SERVICE REOUESTED BY RESPONSE 

PRIMITIVE 
2) IF (COPROCESSOR RESPONSE PRIMITIVE 

INDICATES "COME AGAIN") GO TO M3 
(SEE NOTE l) 

M4 COMPLETE EXECUTION OF INSTRUCTION BASED ON 
THE TRUE/FALSE CONDITION INDICATOR 
RETURNED IN THE RESPONSE CIR 

- Cl 

C2 -
CJ 

C4 

OECODE CONDITION SELECTOR AND INITIATE 
CONDITION EVALUATION 

WHILE (MAIN PROCESSOR SERVICE IS REOUIRED 
00 STEPS l) AND 2) BELOW 

l) REOUEST SERVICE BY PLACING APPROPRIATE 
RESPONSE PRIMITIVE CODE IN RESPONSE CIR 

2) RECEIVE SERVICE FROM MAIN PROCESSOR 

COMPLETE CONDITION EVALUATION 

REFLECT "NO COME AGAIN" STATUS WITH TRUE/FALSE 
CONDITION INDICATOR IN RESPONSE CIR 

NOTES: 1. All coprocessor response primitives, except the Null primitive, that allow the "Come Again" 
primitive attribute must indicate "Come Again" when used during the execution of a 
conditional category instruction. If a "Come Again" attribute is not indicated in one of these 
primitives. the main processor will initiate protocol violation exception processing (see 10.6.2. 1 
PROTOCOL VIOLATIONS) 

Figure 10-8. Coprocessor Interface Protocol for Conditional Category Instructions 

10.2.2.1 BRANCH ON COPROCESSOR CONDITION INSTRUCTION. The conditional instruc­
tion category includes two formats of the M68000 Family branch instruction. These in­
structions branch on conditions related to the coprocessor operation. They execute similarly 
to the conditional branch instructions provided in the M68000 Family instruction set. 

10.2.2.1.1 Format. Figure 10-9 shows the format of the branch on coprocessor condition 
instruction that provides a word length displacement. Figure 10-10 shows the format of 
the instruction that includes a long-word displacement. 

15 14 13 12 11 10 

l l l J Cp-IO I I I I CONDITION SELECTOR 

OPTIONAL COPROCESSOR-OEFINEO EXTENSION WORDS 

Figure 10-9. Branch on Coprocessor Condition Instruction (cpBcc.W) 

15 14 13 12 11 10 4 

1 l 1 l 1J 1 l Cp·IO I o I 1 I 1 l CONDITION SELECTOR 

OPTIONAL COPROCESSOR-DEFINED EXTENSION WORDS 

DISPLACEMENT - HIGH 

DISPLACEMENT - LOW 

Figure 10-10. Branch On Coprocessor Condition Instruction (cpBcc.L) 

MOTOROLA 
10-10 

MC68030 USER'S MANUAL 



The first word of the branch on coprocessor condition instruction is the F-line operation 
word. Bits (15: 12] = 1111 and bits (11 :9] contain the identification code of the coprocessor 
that is to evaluate the condition. The value in bits (8:6] identifies either the word or the 
long-word displacement format of the branch instruction, which is specified by the cpBcc.W 
or cpBcc.L mnemonic, respectively. 

Bits [0-5] of the F-line operation word contain the coprocessor condition selector field. The 
MC68030 writes the entire operation word to the condition CIR to initiate execution of the 
branch instruction by the coprocessor. The coprocessor uses bits (0-5) to determine which 
condition to evaluate. 

If the coprocessor requires additional information to evaluate the condition, the branch 
instruction format can include this information in extension words. Following the F-line 
operation word, the number of extension words is determined by the coprocessor design. 
The final word(s) of the cpBcc instruction format contains the displacement used by the 
main processor to calculate the destination address when the branch is taken. 

10.2.2.1.2 Protocol. Figure 10-8 shows the protocol for the cpBcc.L and cpBcc.W instruc­
tions. The main processor initiates the instruction by writing the F-line operation word to 
the condition CIR to transfer the condition selector to the coprocessor. The main processor 
then reads the response CIR to determine its next action. The coprocessor can return a 
response primitive to request services necessary to evaluate the condition. If the copro­
cessor returns the false condition indicator, the main processor executes the next instruc­
tion in the instruction stream. If the coprocessor returns the true condition indicator, the 
processor adds the displacement to the MC68030 scanPC (refer to 10.4.1 ScanPC) to de­
termine the address of the next instruction for the main processor to execute. The scan PC 
must be pointing to the location of the first word of the displacement in the instruction 
stream when the address is calculated. The displacement is a twos complement integer 
that can be either a 16-bit word or a 32-bit long word. The processor sign-extends the 16-
bit displacement to a long word value for the destination address calculation . 

10.2.2.2 SET ON COPROCESSOR CONDITION INSTRUCTION. The set on coprocessor con­
dition instructions set or reset a flag (a data alterable byte) according to a condition eval­
uated by the coprocessor. The operation of this instruction is similar to the operation of 
the Sec instruction in the M68000 Family instruction set. Although the Sec instruction and 
the cpScc instruction do not explicitly cause a change of program flow, they are often used 
to set flags that control program flow. 

10.2.2.2.1 Format. Figure 10-11 shows the format of the set on coprocessor condition 
instruction, denoted by the cpScc mnemonic. 

15 14 13 12 11 10 4 

1 l 1 1 1 I 1 I Cp-ID I o l 0 l 1 l EFFECTIVE ADDRESS 

l CONDITION SELECTOR 

OPTIONAL COPROCESSOR-DEFINED EXTENSION WORDS 

OPTIONAL EFFECTIVE ADDRESS EXTENSION WORDS I0-5 WORDS) 

Figure 10-11. Set On Coprocessor Condition (cpScc) 

MC68030 USER'S MANUAL MOTOROLA 
10-11 

• 



-

The first word of the cpScc instruction is the F-line operation word. This word contains the 
Cp-ID field in bits [9-11) and 001 in bits [8:6) to identify the cpScc instruction. The lower 
six bits of the F-line operation word are used to encode an M68000 Family effective ad­
dressing mode (refer to 2.5 EFFECTIVE ADDRESS ENCODING SUMMARY). 

The second word of the cpScc instruction format contains the coprocessor condition se­
lector in bits [0-5). Bits [6-15) of this word are reserved by Motorola and should be zero to 
ensure compatibility with future M68000 products. This word is written to the condition 
CIR to initiate the cpScc instruction. 

If the coprocessor requires additional information to evaluate the condition, the instruction 
can include extension words to provide this information. The number of these extension 
words, which follow the word containing the coprocessor condition selector field, is de­
termined by the coprocessor design. 

The final portion of the cpScc instruction format contains zero to five effective address 
extension words. These words contain any additional information required to calculate the 
effective address specified by bits [0-5) of the F-line operation word. 

10.2.2.2.2 Protocol. Figure 10-8 shows the protocol for the cpScc instruction. The MC68030 
transfers the condition selector to the coprocessor by writing the word following the F-line 
operation word to the condition CIR. The main processor then reads the response CIR to 
determine its next action. The coprocessor can return a response primitive to request 
services necessary to evaluate the condition. The operation of the cpScc instruction de­
pends on the condition evaluation indicator returned to the main processor by the copro­
cessor. When the coprocessor returns the false condition indicator, the main processor 
evaluates the effective address specified by bits [0-5) of the F-line operation word and sets 
the byte at that effective address to FALSE (all bits cleared). When the coprocessor returns 
the true condition indicator, the main processor sets the byte at the effective address to 
TRUE (all bits set to one). 

10.2.2.3 TEST COPROCESSOR CONDITION, DECREMENT AND BRANCH INSTRUCTION. 
The operation of the test coprocessor condition, decrement and branch instruction is similar 
to that of the DBcc instruction provided in the M68000 Family instruction set. This operation 
uses a coprocessor evaluated condition and a loop counter in the main processor. It is 
useful for implementing DO-UNTIL constructs used in many high level languages. 

10.2.2.3.1 Format. Figure 10-12 shows the format of the test coprocessor condition, dec­
rement and branch instruction, denoted by the cpDBcc mnemonic. 

15 14 13 12 11 10 

1 l 1 l 1 l 1 l Cp-ID l 0 l 0 l 1 _[ 0 _[ 0 l 1 _l EFFECTIVE ADDRESS 

MOTOROLA 
10-12 

(RESERVED) l CONDITION SELECTOR 

OPTIONAL COPROCESSOR-DEFINED EXTENSION WORDS 

DISPLACEMENT 

Figure 10-12. Test Coprocessor Condition, Decrement and Branch 
Instruction Format (cpDBcc) 

MC68030 USER'S MANUAL 



The first word of the cpDBcc instruction is the F-line operation word. This word contains 
the CP-ID field in bits [9-11] and 001001 in bits [8:3] to identify the cpDBcc instruction. Bits 
[0:2] of this operation word specify the main processor data register used as the loop 
counter during the execution of the instruction. 

The second word of the cpDBcc instruction format contains the coprocessor condition 
selector in bits [0-5] and should contain zeros in bits [6-15] to maintain compatibility with 
future M68000 products. This word is written to the condition CIR to initiate execution of 
the cpDBcc instruction by the coprocessor. 

If the coprocessor requires additional information to evaluate the condition, the cpDBcc 
instruction can include this information in extension words. These extension words follow 
the word containing the coprocessor condition selector field in the cpDBcc instruction 
format. 

The last word of the instruction contains the displacement for the cpDBcc instruction. This 
displacement is a twos complement 16-bit value that is sign extended to long word size 
when it is used in a destination address calculation. 

10.2.2.3.2 Protocol. Figure 10-8 shows the protocol for the cpDBcc instructions. The MC68030 
transfers the condition selector to the coprocessor by writing the word following the op­
eration word to the condition CIR. The main processor then reads the response CIR to 
determine its next action. The coprocessor can use a response primitive to request any 
services necessary to evaluate the condition. If the coprocessor returns the true condition 
indicator, the main processor executes the next instruction in the instruction stream. If the 
coprocessor returns the false condition indicator, the main processor decrements the low­
order word of the register specified by bits [0-2] of the F-line operation word. If this register 
contains minus one ( -1) after being decremented, the main processor executes the next 
instruction in the instruction stream. If the register does not contain minus one ( -1) after 
being decremented, the main processor branches to the destination address to continue 
instruction execution. 

The MC68030 adds the displacement to the scanPC (refer to 10.4.1 ScanPC) to determine 
the address of the next instruction. The scanPC must point to the 16-bit displacement in 
the instruction stream when the destination address is calculated. 

10.2.2.4 TRAP ON COPROCESSOR CONDITION. The trap on coprocessor condition instruc­
tion allows the programmer to initiate exception processing based on conditions related 
to the coprocessor operation. 

10.2.2.4.1 Format. Figure 10-13 shows the format of the trap on coprocessor condition 
instruction, denoted by the cpTRAPcc mnemonic. 

15 14 13 12 11 10 

1 J 1 I 1I 1I Cp-10 I a I a T 1I 1I 1 I 1 I OP-MODE 

I RESERVED) I CONDITION SELECTOR 

OPTIONAL COPROCESSOR-DEFINED EXTENSION WORDS 

OPTIONAL WORD 

OR LONG WORD OPERAND 

Figure 10-13. Trap On Coprocessor Condition (cpTRAPcc) 

MC68030 USER'S MANUAL MOTOROLA 
10-13 



-

The F-line operation word contains the CP-ID field in bits (9-11] and 001111 in bits (8:3] to 
identify the cpTRAPcc instruction. Bits [0-2] of the cpTRAPcc F-line operation word specify 
the number of optional operand words in the instruction format. The instruction format 
can include zero, one, or two operand words. 

The second word of the cpTRAPcc instruction format contains the coprocessor condition 
selector in bits [0-5] and should contain zeros in bits [6-15] to maintain compatibility with 
future M68000 products. This word is written to the condition CIR of the coprocessor to 
initiate execution of the cpTRAPcc instruction by the coprocessor. 

If the coprocessor requires additional information to evaluate a condition, the instruction 
can include this information in extension words. These extension words follow the word 
containing the coprocessor condition selector field in the cpTRAPcc instruction format. 

The operand words of the cpTRAPcc F-line op­
eration word follow the coprocessor-defined 
extension words. These operand words are not 
explicitly used by the MC68030, but can be used 
to contain information referenced by the cp­
TRAPcc exception handling routines. The valid 
encodings for bits [0-2] of the F-line operation 
word and the corresponding numbers of op­
erand words are listed in Table 10-1. Other en­
codings of these bits are invalid for the 
cpTRAPcc instruction. 

Table 10-1. cpTRAPcc Op-Mode 
Encodings 

Optional Words in 
Op-Mode Instruction Format 

010 One 

011 Two 

100 Zero 

10.2.2.4.2 Protocol. Figure 10-8 shows the protocol for the cpTRAPcc instructions. The 
MC68030 transfers the condition selector to the coprocessor by writing the word following 
the operation word to the condition CIR. The main processor then reads the response CIR 
to determine its next action. The coprocessor can, using a response primitive, request any 
services necessary to evaluate the condition. If the coprocessor returns the true condition 
indicator, the main processor initiates exception processing for the cpTRAPcc exception 
(refer to 10.5.2.4 cpTRAPcc INSTRUCTION TRAPS). If the coprocessor returns the false 
condition indicator, the main processor executes the next instruction in the instruction 
stream. 

10.2.3 Coprocessor Save and Restore Instructions 

The coprocessor context save and context restore instruction categories in the M68000 
coprocessor interface support multi-tasking programming environments. In a multi-tasking 
environment, the context of a coprocessor may need to be changed asynchronously with 
respect to the operation of that coprocessor. That is, the coprocessor may be interrupted 
at any point in the execution of an instruction in the general or conditional category in 
order to begin context change operations. 

In contrast to the general and conditional instruction categories, the context save and 
context restore instruction categories do not use the coprocessor response primitives. A 
set of format codes defined by the M68000 coprocessor interface communicates status 
information to the main processor during the execution of these instructions. These co­
processor format codes are discussed in detail in 10.2.3.2 COPROCESSOR FORMAT WORDS. 

MOTOROLA 
10-14 

MC68030 USER'S MANUAL 



10.2.3.1 COPROCESSOR INTERNAL STATE FRAMES. The context save (cpSAVE) and con­
text restore (cpRESTORE) instructions transfer an internal coprocessor state frame between 
memory and a coprocessor. This internal coprocessor state frame represents the state of 
coprocessor operations. Using the cpSAVE and cpRESTORE instructions, it is possible to 
interrupt coprocessor operation, save the context associated with the current operation, 
and initiate coprocessor operations with a new context. 

A cpSAVE instruction stores a coprocessor's internal state frame as a sequence of long 
word entries in memory. Figure 10-14 shows the format of a coprocessor state frame. 

During execution of the cpSAVE instruction, the MC68030 calculates the state frame ef­
fective address from information in the operation word of the instruction and stores a 
format word at this effective address. The processor writes the long words that form the 
coprocessor state frame to descending memory addresses beginning with the address 
specified by the sum of the effective address and the format word length field multiplied 
by four. During execution of the cpRESTORE instruction, the MC68030 reads the format 
word and long words in the state frame from ascending addresses beginning with the 
effective address specified in the instruction operation word. 

The processor stores the coprocessor format word at the lowest address of the state frame 
in memory, and this word is the first word transferred for both the cpSAVE and the cp­
RESTORE instructions. The word following the format word does not contain information 
relevant to the coprocessor state frame, but serves to keep the information in the state 
frame a multiple of four bytes in size. The number of entries following the format word 
(at higher addresses) is determined 

The information in a coprocessor state frame describes a context of operation for that 
coprocessor. This description of a coprocessor context includes the program invisible state 
information and, optionally, the program visible state information. The program invisible 
state information consists of any internal registers or status information that cannot be 
accessed by the program, but is necessary for the coprocessor to continue its operation 
at the point of suspension. Program visible state information includes the contents of all 
registers that appear in the coprocessor programming model and that can be directly 
accessed using the coprocessor instruction set. The information saved by the cpSAVE 
instruction must include the program invisible state information. If cpGEN instructions are 

SAVE RESTORE 
ORO ER ORO ER 

31 23 15 

FORMAT l LENGTH I (UNUSEO. RESERVEO) 

COPROCESSOR-DEPENDENT INFORMATION 

n-1 

n-2 

. 

. 

. 

Figure 10-14. Coprocessor State Frame Format in Memory 

MC68030 USER'S MANUAL MOTOROLA 
10-15 

.. 



-

provided to save the program visible state of the coprocessor, the cpSAVE and cpRESTORE 
instructions should only transfer the program invisible state information to minimize in­
terrupt latency during a save or restore operation. 

10.2.3.2 COPROCESSOR FORMAT WORDS. The coprocessor communicates status infor­
mation to the main processor during the execution of cpSAVE and cpRESTORE instructions 
using coprocessor format words. The format words defined for the M68000 coprocessor 
interface are listed in Table 10-2. 

Table 10-2. Coprocessor Format Word Encodings 

Format Code Length Meaning 

00 xx Empty/Reset 

01 xx Not Ready, Come Again 

02 xx Invalid Format 

03-oF xx Undefined, Reserved 

10-FF Length Valid Format, Coprocessor Defined 

The upper byte of the coprocessor format word contains the code used to communicate 
coprocessor status information to the main processor. The MC68030 recognizes four types 
of format words: empty/reset, not ready, invalid format, and valid format. The MC68030 
interprets the reserved format codes ($03-$0F) as invalid format words. The lower byte of 
the coprocessor format word specifies the size in bytes (which must be a multiple of four) 
of the coprocessor state frame. This value is only relevant when the code byte contains 
the valid format code (refer to 10.2.3.2.4 Valid Format Word). 

10.2.3.2.1 Empty/Reset Format Word. The coprocessor returns the empty/reset format 
code during a cpSAVE instruction to indicate that the coprocessor contains no user-specific 
information. That is, no coprocessor instructions have been executed since either a previous 
cpRESTORE of·an empty/reset format code or the previous hardware reset. If the main 
processor reads the empty/reset format word from the save CIR during the initiation of a 
cpSAVE instruction, it stores the format word at the effective address specified in the 
cpSAVE instruction, and executes the next instruction. 

When the main processor reads the empty/reset format word from memory during the 
execution of the cpRESTORE instruction, it writes the format word to the restore CIR. The 
main processor then reads the restore CIR and, if the coprocessor returns the empty/reset 
format word, executes the next instruction. The main processor can initialize the copro­
cessor by writing the empty/reset format code to the restore CIR. When the coprocessor 
receives the empty/reset format code, it terminates any current operations and waits for 
the main processor to initiate the next coprocessor instruction. In particular, after the 
cpRESTORE of the empty/reset format word, the execution of a cpSAVE should cause the 
empty/reset format word to be returned when a cpSAVE instruction is executed before any 
other coprocessor instructions. Thus, an empty/reset state frame consists only of the format 
word and the following reserved word in memory (refer to Figure 10-14). 

10.2.3.2.2 Not Ready Format Word. When the main processor initiates a cpSAVE instruction 
by reading the save CIR, the coprocessor can delay the save operation by returning a not 
ready format word. The main processor then services any pending interrupts and reads 

MOTOROLA 
10-16 

MC68030 USER'S MANUAL 



the save CIR again. The not ready format word delays the save operation until the copro­
cessor is ready to save its internal state. The cpSAVE instruction can suspend execution 
of a general or conditional coprocessor instruction; the coprocessor can resume execution 
of the suspended instruction when the appropriate state is restored with a cpRESTORE. If 
no further main processor services are required to complete coprocessor instruction ex­
ecution, it may be more efficient to complete the instruction and thus reduce the size of 
the saved state. The coprocessor designer should consider the efficiency of completing 
the instruction or of suspending and later resuming the instruction when the main processor 
executes a cpSAVE instruction. 

When the main processor initiates a cpRESTORE instruction by writing a format word to 
the restore CIR, the coprocessor should usually terminate any current operations and 
restore the state frame supplied by the main processor. Thus, the not ready format word 
should usually not be returned by the coprocessor during the execution of a cpRESTORE 
instruction. If the coprocessor must delay the cpRESTORE operation for any reason, it can 
return the not ready format word when the main processor reads the restore CIR. If the 
main processor reads the not ready format word from the restore CIR during the cp­
RESTORE instruction, it reads the restore CIR again without servicing any pending inter­
rupts. 

10.2.3.2.3 Invalid Format Word. When the format word placed in the restore CIR to initiate 
a cpRESTORE instruction does not describe a valid coprocessor state frame, the copro­
cessor returns the invalid format word in the restore CIR. When the main processor reads 
this format word during the cpRESTORE instruction, it writes the abort mask to the control 
CIR and initiates format error exception processing. The two least significant bits of the 
abort mask are 01; the fourteen most significant bits are undefined. 

A coprocessor should usually not place an invalid format word in the save CIR when the 
main processor initiates a cpSAVE instruction. A coprocessor, however, may not be able 
to support the initiation of a cpSAVE instruction while it is executing a previously initiated 
cpSAVE or cpRESTORE instruction. In this situation, the coprocessor can return the invalid 
format word when the main processor reads the save CIR to initiate the cpSAVE instruction 
while either another cpSAVE or cpRESTORE instruction is executing. If the main processor 
reads an invalid format word from the save CIR it writes the abort mask to the control CIR 
and initiates format error exception processing (refer to 10.5.1.5 FORMAT ERRORS). 

10.2.3.2.4 Valid Format Word. When the main processor reads a valid format word from 
the save CIR during the cpSAVE instruction, it uses the length field to determine the size 
of the coprocessor state frame to save. The length field in the lower eight bits of a format 
word is relevant only in a valid format word. During the cpRESTORE instruction, the main 
processor uses the length field in the format word read from the effective address in the 
instruction to determine the size of the coprocessor state frame to restore. 

The length field of a valid format word, representing the size of the coprocessor state 
frame, must contain a multiple of four. If the main processor detects a value that is not a 
multiple of four in a length field during the execution of a cpSAVE or cpRESTORE instruc­
tion, the main processor writes the abort mask (refer to 10.2.3.2.3 Invalid Format Word) to 
the control CIR and initiates format error exception processing. 

MC68030 USER'S MANUAL MOTOROLA 
10-17 

-



-

10.2.3.3 COPROCESSOR CONTEXT SAVE INSTRUCTION. The M68000 coprocessor context 
save instruction category consists of one instruction. The coprocessor context save in­
struction, denoted by the cpSAVE mnemonic, saves the context of a coprocessor dynam­
ically without relation to the execution of coprocessor instructions in the general or 
conditional instruction categories. During the execution of a cpSAVE instruction, the co­
processor communicates status information to the main processor by using the copro­
cessor format codes. 

10.2.3.3.1 Format. Figure 10-15 shows the format of the cpSAVE instruction. The first word 
of the instruction is the F-line operation word, which contains the coprocessor identification 
code in bits (9-11) and an M68000 effective address code in bits [0-5). The effective address 
encoded in the cpSAVE instruction is the address at which the state frame associated with 
the current context of the coprocessor is saved in memory. 

15 14 13 12 11 10 4 

Cp-ID 1 EFFECTIVE ADDRESS 

EFFECTIVE ADDRESS EXTENSION WORDS (0·5 WORDS) 

Figure 10-15. Coprocessor Context Save Instruction Format (cpSAVE) 

The control alterable and pre-decrement addressing modes are valid for the cpSAVE in­
struction. Other addressing modes cause the MC68030 to initiate F-line emulator exception 
processing as described in 10.5.2.2 F-LINE EMULATOR EXCEPTIONS. 

The instruction can include as many as five effective address extension words following 
the cpSAVE instruction operation word. These words contain any additional information 
required to calculate the effective address specified by bits (0-5) of the operation word. 

10.2.3.3.2 Protocol. Figure 10-16 shows the protocol for the coprocessor context save 
instruction. The main processor initiates execution of the cpSAVE instruction by reading 
the save CIR. Thus, the cpSAVE instruction is the only coprocessor instruction that begins 
by reading from a CIR. (All other coprocessor instructions write to a CIR to initiate execution 
of the instruction by the coprocessor.) The coprocessor communicates status information 
associated with the context save operation to the main processor by placing coprocessor 
format codes in the save CIR. 

If the coprocessor is not ready to suspend its current operation when the main processor 
reads the save CIR, it returns a "not ready" format code. The main processor services any 
pending interrupts and then reads the save CIR again. After placing the not ready format 
code in the save CIR, the coprocessor should either suspend or complete the instruction 
it is currently executing. 

Once the coprocessor has suspended or completed the instruction it is executing, it places 
a format code representing the internal coprocessor state in the save CIR. When the main 
processor reads the save CIR, it transfers the format word to the effective address specified 
in the cpSAVE instruction. The lower byte of the coprocessor format word specifies the 
number of bytes of state information, not including the format word and associated null 
word, to be transferred from the coprocessor to the effective address specified. If the state 
information is not a multiple of four bytes in size, the MC68030 initiates format error 
exception processing (refer to 10.5.1.5 FORMAT ERRORS). The coprocessor and main 

MOTOROLA 
10-18 

MC68030 USER'S MANUAL 



MAIN PROCESSOR 

Ml RECOGNIZE COPROCESSOR INSTRUCTION F-LINE 
OPERATION WORO 

M2 REAO SAVE CIR TO INITIATE THE cpSAVE INSTRUCTION 

M3 IF I FORMAT= NOT REAOY) DO STEPS 1) ANO 2) BELOW 
1) SERVICE PENOING INTERRUPTS 
2) GO TO M2 

M3 EVALUATE EFFECTIVE AOORESS SPECIFIED IN F-LINE 
OPWORO ANO STORE FORMAT WORO AT 
EFFECTIVE ADDRESS 

M4 IF !FORMAT= EMPTY) GO TO M5 
ELSE, TRANSFER NUMBER OF BYTES INOICATED 
IN FORMAT WORO FROM OPERAND CIR TO 
EFFECTIVE ADDRESS 

M5 PROCEED WITH EXECUTION OF NEXT INSTRUCTION 

Cl -
C2 

CJ 

COPROCESSOR 

IF (NOT REAOY TO BEGIN CONTEXT SAVE OPERATION) 
DO STEPS 1) ANO 2) BELOW 

1) PLACE NOT REAOY FORMAT CODE IN SAVE CIR 
2) SUSPENO OR COMPLETE CURRENT OPERATIONS 

PLACE APPROPRIATE FORMAT WORD IN SAVE CIR 

TRANSFER NUMBER OF BYTES INOICATEO IN 
FORMAT WORD THROUGH OPERAND CIR 

Figure 10-16. Coprocessor Context Save Instruction Protocol 

processor coordinate the transfer of the internal state of the coprocessor using the operand 
CIR. The MC68030 completes the coprocessor context save by repeatedly reading the 
operand CIR and writing the information obtained into memory until all the bytes specified 
in the coprocessor format word have been transferred. Following a cpSAVE instruction, 
the coprocessor should be in an idle state, that is, not executing any coprocessor instruc­
tions. 

The cpSAVE instruction is a privileged instruction. When the main processor identifies a 
cpSAVE instruction, it checks the supervisor bit in the status register to determine whether 
it is operating atthe supervisor privilege level. If the MC68030 attempts to execute a cpSAVE 
instruction while at the user privilege level (status register bit [13] = O), it initiates privilege 
violation exception processing without accessing any of the coprocessor interface registers 
(refer to 10.5.2.3 PRIVILEGE VIOLATIONS). 

The MC68030 initiates format error exception processing if it reads an invalid format word 
(or a valid format word whose length field is not a multiple of four bytes) from the save 
CIR during the execution of a cpSAVE instruction (refer to 10.2.3.2.3 Invalid Format Word). 
The MC68030 writes an abort mask (refer to 10.2.3.2.3 Invalid Format Word) to the control 
CIR to abort the coprocessor instruction prior to beginning exception processing. Figure 
10-16 does not include this case since a coprocessor usually returns either a not ready or 
a valid format code in the context of the cpSAVE instruction. The coprocessor can return 
the invalid format word, however, if a cpSAVE is initiated while the coprocessor is executing 
a cpSAVE or cpRESTORE instruction and the coprocessor is unable to support the sus­
pension of these two instructions. 

10.2.3.4 COPROCESSOR CONTEXT RESTORE INSTRUCTION. The M68000 coprocessor 
context restore instruction category includes one instruction. The coprocessor context 
restore instruction, denoted by the cpRESTORE mnemonic, forces a coprocessor to ter­
minate any current operations and to restore a former state. During the execution of a 
cpRESTORE instruction, the coprocessor can communicate status information to the main 
processor by placing format codes in the restore CIR. 

MC68030 USER'S MANUAL .MOTOROLA 
10-19 

-



.. 

10.2.3.4.1 Format. Figure 10-17 shows the format of the cpRESTORE instruction. 

15 14 13 12 11 10 

Cp-ID 1 EFFECTIVE ADDRESS 

EFFECTIVE ADDRESS EXTENSION WORDS I0-5 WORDS) 

Figure 10-17. Coprocessor Context Restore Instruction Format (cpRESTORE) 

The first word of the instruction is the F-line operation word, which contains the coprocessor 
identification code in bits (9-11] and an M68000 effective addressing code in bits [0-5]. The 
effective address encoded in the cpRESTORE instruction is the starting address in memory 
where the coprocessor context is stored. The effective address is that of the coprocessor 
format word that applies to the context to be restored to the coprocessor. 

The instruction can include as many as five effective address extension words following 
the first word in the cpRESTORE instruction format. These words contain any additional 
information required to calculate the effective address specified by bits [0-5] of the operation 
word. 

All memory addressing modes except the pre-decrement addressing mode are valid. Invalid 
effective address encodings cause the MC68030 to initiate F-line emulator exception proc­
essing (refer to 10.5.2.2 F-LINE EMULATOR EXCEPTIONS). 

10.2.3.4.2 Protocol. Figure 10-18 shows the protocol for the coprocessor context restore 
instruction. When the main processor executes a cpRESTORE instruction, it first reads the 
coprocessor format word from the effective address in the instruction. This format word 
contains a format code and a length field. During cpRESTORE operation, the main processor 

Ml 

M2 

M3 

M4 

M5 

MS 

M7 

MAIN PROCESSOR COPROCESSOR 

RECOGNIZE COPROCESSOR INSTRUCTION F-LINE 
OPERATION WORO 

READ COPROCESSOR FORMAT CODE FROM EFFECTIVE 
AOORESS SPECIFIED IN OPERATION WORD 

WRITE COPROCESSOR FORMAT WORO TO RESTORE CIR - Cl TERMINATE CURRENT OPERATIONS ANO EVALUATE 
FORMATWORO 

C2 IF (INVALIO FORMAT) PLACE INVALID FORMAT CODE 
REAO RESTORE CIR - IN THE RESTORE CIR 

IF (FORMAT = INVALID FORMAT) WRITE $0001 
ABORT CODE TO CONTROL CIR ANO INITIATE FORMAT 
ERROR EXCEPTION PROCESSING (SEE NOTE 1) 

IF (FORMAT= EMPTY /RESET) GO TO M7 C3 IF (VALID FORMAT) RECEIVE NUMBER OF BYTES 
ELSE. TRANSFER NUMBER OF BYTES SPECIFIED BY INDICATED IN FORMAT WORD THROUGH OPERAND CIR 
FORMAT WORD TO OPERAND CIR (SEE NOTE 2) 

PROCEED WITH EXECUTION OF NEXT INSTRUCTION 

NOTES: 1. See 10.6.1.5 FORMAT ERROR 
2. The MC68030 uses the length field in the format word read during M2 to determinethe number 

of bytes to read from memory and write to the operand CIR 

Figure 10-18. Coprocessor Context Restore Instruction Protocol 

MOTOROLA 
10-20 

MC68030 USER'S MANUAL 



retains a copy of the length field to determine the number of bytes to be transferred to 
the coprocessor during the cpRESTORE operation and writes the format word to the restore 
CIR in order to initiate the coprocessor context restore. 

When the coprocessor receives the format word in the restore CIR, it must terminate any 
current operations and evaluate the format word. If the format word represents a valid 
coprocessor context as determined by the coprocessor design, the coprocessor returns 
the format word to the main processor through the restore CIR and prepares to receive 
the number of bytes specified in the format word through its operand CIR. 

After writing the format word to the restore CIR the main processor continues the cp­
RESTORE dialog by reading that same register. If the coprocessor returns a valid format 
word, the main processor transfers the number of bytes specified by the format word at 
the effective address to the operand CIR. 

If the format word written to the restore CIR does not represent a valid coprocessor state 
frame, the coprocessor places an invalid format word in the restore CIR and terminates 
any current operations. The main processor receives the invalid format code, writes an 
abort mask (refer to 10.2.3.2.3 Invalid Format Word) to the control CIR, and initiates format 
error exception processing (refer to 10.5.1.5 FORMAT ERRORS). 

The cpRESTORE instruction is a privileged instruction. When the main processor accesses 
a cpRESTORE instruction, it checks the supervisor bit in the status register. If the MC68030 
attempts to execute a cpRESTORE instruction while at the user privilege level (status 
register bit [13) = 0), it initiates privilege violation exception processing without accessing 
any of the coprocessor interface registers (refer to 10.5.2.3 PRIVILEGE VIOLATIONS). 

10.3 COPROCESSOR INTERFACE REGISTER SET 

The instructions of the M68000 coprocessor interface use registers of the coprocessor 
interface register (CIR) set to communicate with the coprocessor. These coprocessor in­
terface registers are not directly related to the coprocessor's programming model. 

Figure 10-4 is a memory map of the coprocessor interface register set. The registers denoted 
by asterisks (*) must be included in a coprocessor interface that implements coprocessor 
instructions in all four categories. The complete register model must be implemented if 
the system uses all of the coprocessor response primitives defined for the M68000 copro­
cessor interface. 

The following paragraphs contain detailed descriptions of the registers. 

10.3.1 Response CIR 

The coprocessor uses the 16-bit response CIR to communicate all service requests (copro­
cessor response primitives) to the main processor. The main processor reads the response 
CIR to receive the coprocessor response primitives during the execution of instructions in 
the general and conditional instruction categories. The offset from the base address of the 
CIR set for the response CIR is $00. Refer to 10.4 COPROCESSOR RESPONSE PRIMITIVES. 

MC68030 USER'S MANUAL MOTOROLA 
10-21 

-



-

10.3.2 Control CIR 

The main processor writes to the 2-bit control CIR to acknowledge coprocessor requested 
exception processing or to abort the execution of a coprocessor instruction. The offset 
from the base address of the CIR set for the control CIR is $02. The control CIR occupies 
the two least significant bits of the word at that offset. The fourteen most significant bits 
of the word are undefined. Figure 10-19 shows the format of this register. 

15 14 13 12 11 10 9 3 

(UNDEFINED, RESERVED) XA AB 

Figure 10-19. Control CIR Format 

When the MC68030 receives one of the three take exception coprocessor response pri­
mitives, it acknowledges the primitive by writing the exception acknowledge mask (102) 
to the control CIR, which sets the exception acknowledge (XA) bit. The MC68030 writes 
the abort mask (012), which sets the abort (AB) bit, to the control CIR to abort any copro­
cessor instruction that is in progress. (The most significant 14 bits of both masks are 
undefined.) The MC68030 aborts a coprocessor instruction when it detects one of the 
following exception conditions: 

• An F-line emulator exception condition after reading a response primitive 

• A privilege violation exception as it performs a supervisor check in response to a 
supervisor check primitive 

• A format error exception when it receives an invalid format word or a valid format 
word that contains an invalid length 

10.3.3 Save CIR 

The coprocessor uses the 16-bit save CIR to communicate status and state frame format 
information to the main processor while executing a cpSAVE instruction. The main pro­
cessor reads the save Cl R to initiate execution of the cpSAVE instruction by the coprocessor. 
The offset from the base address of the CIR set for the save CIR is $04. Refer to 10.2.3.2 
COPROCESSOR FORMAT WORDS. 

10.3.4 Restore CIR 

The main processor initiates the cpRESTORE instruction by writing a coprocessor format 
word to the 16-bit restore register. During the execution of the cpRESTORE instruction, the 
coprocessor communicates status and state frame format information to the main pro­
cessor through the restore CIR. The offset from the base address of the CIR set for the 
restore CIR is $06. Refer to 10.2.3.2 COPROCESSOR FORMAT WORDS. 

10.3.5 Operation Word CIR 

The main processor writes the F-line operation word of the instruction in progress to the 
16-bit operation word CIR in response to a transfer operation word coprocessor response 
primitive (refer to 10.4.6 Transfer Operation Word Primitive). 

MOTOROLA 
10-22 

MC68030 USER'S MANUAL 



The offset from the base address of the CIR set for the operation word CIR is $08. 

10.3.6 Command CIR 

The main processor initiates a general category instruction by writing the instruction com­
mand word, which follows the instruction F-line operation word in the instruction stream, 
to the 16-bit command CIR. The offset from the base address of the CIR set for the command 
CIR is $0A. 

10.3.7 Condition CIR 

The main processor initiates a conditional category instruction by writing the condition 
selector to the 16-bit condition CIR. The offset from the base address of the CIR set for the 
condition CIR is $OE. Figure 10-20 shows the format of the condition CIR. 

15 14 13 12 11 10 4 0 

(UNDEFINED, RESERVED) CONDITION SELECTOR 

Figure 10-20. Condition CIR Format 

10.3.8 Operand CIR 

When the coprocessor requests the transfer of an operand, the main processor performs 
the transfer by reading from or writing to the 32-bit operand CIR. The offset from the base 
address of the CIR set for the operand CIR is $10. 

The MC68030 aligns all operands transferred to and from the operand CIR to the most 
significant byte of this CIR. The processor performs a sequence of long word transfers to 
read or write any operand larger than four bytes. If the operand size is not a multiple of 
four bytes, the portion remaining after the initial long word transfers is aligned to the most 
significant byte of the operand CIR. Figure 10-21 shows the operand alignment used by 
the MC68030 when accessing the operand CIR. 

31 23 15 

BYTE OPERAND NO TRANSFER 

WORD OPERAND NO TRANSFER 

THREE BYTE OPERAND NO TRANSFER 

LONG WORD OPERAND 

TEN -

BYTE -

OPERAND NO TRANSFER 

Figure 10-21. Operand Alignment for Operand CIR Accesses 

MC68030 USER'S MANUAL MOTOROLA 
10-23 

-



-

10.3.9 Register Select CIR 

When the coprocessor requests the transfer of one or more main processor registers, or 
a group of coprocessor registers, the main processor reads the 16-bit register select CIR 
to identify the number or type of registers to be transferred. The offset from the base 
address of the CIR set for the register select CIR is $14. The format of this register depends 
on the primitive that is currently using it. Refer to 10.4 COPROCESSOR RESPONSE PRI­
MITIVES. 

10.3.10 Instruction Address CIR 

When the coprocessor requests the address of the instruction it is currently executing, the 
main processor transfers this address to the 32-bit instruction address CIR. Any transfer 
of the scanPC is also performed through the instruction address CIR (refer to 10.4.17 
Transfer Status Register and ScanPC Primitive). The offset from the base address of the 
CIR set for the instruction address CIR is $18. 

10.3.11 Operand Address CIR 

When a coprocessor requests an operand address transfer between the main processor 
and the coprocessor, the address is transferred through the 32-bit operand address CIR. 
The offset from the base address of the CIR set for the operand address CIR is $1 C. 

10.4 COPROCESSOR RESPONSE PRIMITIVES 

The response primitives are primitive instructions that the coprocessor issues to the main 
processor during the execution of a coprocessor instruction. The coprocessor uses re­
sponse primitives to communicate status information and service requests to the main 
processor. In response to an instruction command word written to the command CIR or a 
condition selector in the condition CIR, the coprocessor returns a response primitive in the 
response CIR. Within the general and conditional instruction categories, individual instruc­
tions are distinguished by the operation of the coprocessor hardware and, also by services 
specified by coprocessor response primitives and provided by the main processor. 

Subsequent paragraphs, beginning with 10.4.2 Coprocessor Response Primitive General 
Format, consist of detailed descriptions of the M68000 coprocessor response primitives 
supported by the MC68030. Any response primitive that the MC68030 does not recognize 
causes it to initiate protocol violation exception processing (refer to 10.5.2.1 PROTOCOL 
VIOLATIONS). This processing of undefined primitives supports emulation of extensions 
to the M68000 coprocessor response primitive set by the protocol violation exception 
handler. Exception processing related to the coprocessor interface is discussed in 10.5 
EXCEPTIONS. 

10.4.1 ScanPC 

Several of the response primitives involve the scanPC, and many of them require the main 
processor to use it while performing services requested. These paragraphs describe the 
scanPC and tell how it operates. 

MOTOROLA 
10-24 

MC68030 USER'S MANUAL 



During the execution of a coprocessor instruction, the program counter in the MC68030 
contains the address of the F-line operation word of that instruction. A second register, 
called the scanPC, sequentially addresses the remaining words of the instruction. 

If the main processor requires extension words in order to calculate an effective address 
or destination address of a branch operation, it uses the scan PC to address these extension 
words in the instruction stream. Also, if a coprocessor requests the transfer of extension 
words, the scanPC addresses the extension words during the transfer. As the processor 
references each word, it increments the scanPC to point to the next word in the instruction 
stream. When an instruction is completed, the processor transfers the value in the scanPC · 
to the program counter to address the operation word of the next instruction. 

The value in the scanPC when the main processor reads the first response primitive after 
beginning to execute an instruction depends on the instruction being executed. For a cpGEN 
instruction, the scanPC points to the word following the coprocessor command word. For 
the cpBcc instructions, the scanPC points to the word following the instruction F-line op­
eration word. For the cpScc, cpTRAPcc, and cpDBcc instructions, the scan PC points to the 
word following the coprocessor condition specifier word. 

If a coprocessor implementation uses optional instruction extension words with a general 
or conditional instruction, the coprocessor must use these words consistently so that the 
scanPC is updated accordingly during the instruction execution. Specifically, during the 
execution of general category instructions, when the coprocessor terminates the instruction 
protocol, the MC68030 assumes that the scanPC is pointing to the operation word of the 
next instruction to be executed. During the execution of conditional category instructions, 
when the coprocessor terminates the instruction protocol, the MC68030 assumes that the 
scanPC is pointing to the word following the last of any coprocessor defined extension 
words in the instruction format. 

10.4.2 Coprocessor Response Primitive General Format 

The M68000 coprocessor response primitives are encoded in a 16-bit word that is trans­
ferred to the main processor through the response CIR. Figure 10-22 shows the format of 
the coprocessor response primitives. 

15 14 13 12 11 10 

CA PC DR FUNCTION PARAMETER 

Figure 10-22. Coprocessor Response Primitive Format 

The encoding of bits [0-12] of a coprocessor response primitive depends on the individual 
primitive. Bits [13-15], however, specify optional additional operations that apply to most 
of the primitives defined for the M68000 coprocessor interface. 

Bit [15], the CA bit, specifies the "come again" operation of the main processor. When the 
main processor reads a response primitive from the response CIR with the come again bit 
set to one, it performs the service indicated by the primitive and then reads the response 
CIR again. Using the CA bit, a coprocessor can transfer several response primitives to the 
main processor during the execution of a single coprocessor instruction. 

MC68030 USER'S MANUAL MOTOROLA 
10-25 



Bit [4] the PC bit, specifies the pass program counter operation. When the main processor 
reads a primitive with the PC bit set from the response CIR, the main processor immediately 
passes the current value in its program counter to the instruction address CIR as the first 
operation in servicing the primitive request. The value in the program counter is the address 
of the F-line operation word of the coprocessor instruction currently executing. The PC bit 
is implemented in all of the coprocessor response primitives currently defined for the 
M68000 coprocessor interface. 

When an undefined primitive or a primitive that requests an illegal operation is passed to 
the main processor, the main processor initiates exception processing for either an F-line 
emulator or a protocol violation exception (refer to 10.5.2 Main Processor Detected Ex­
ceptions). If the PC bit is set in one of these response primitives, however, the main 
processor passes the program counter to the instruction address CIR before it initiates 
exception processing. 

When the main processor initiates a cpGEN instruction that can be executed concurrently 
with main processor instructions, the PC bit is usually set in the first primitive returned by 
the coprocessor. Since the main processor proceeds with instruction stream execution 
once the coprocessor releases it, the coprocessor must record the instruction address to 
support any possible exception processing related to the instruction. Exception processing 
related to concurrent coprocessor instruction execution is discussed in 10.5.1 Coprocesssor 
Detected Exceptions. 

Bit [13L the DR bit, is the direction bit. It applies to operand transfers between the main 
processor and the coprocessor. If DR= 0, the direction of transfer is from the main processor 
to the coprocessor (main processor write). If DR= 1, the direction of transfer is from the 
coprocessor to the main processor (main processor read). If the operation indicated by a 
given response primitive does not involve an explicit operand transfer, the value of this 
bit depends on the particular primitive encoding. 

- 10.4.3 Busy Primitive 

The busy response primitive causes the main processor to reinitiate a coprocessor instruc­
tion. This primitive applies to instructions in the general and conditional categories. Figure 
10-23 shows the format of the busy primitive. 

15 14 13 12 11 10 

I 1 PC I 1 o I o I o ololololololo 

Figure 10-23. Busy Primitive Format 

This primitive uses the PC bit as previously described. 

Coprocessors that can operate concurrently with the main processor but cannot buffer 
write operations to their command or condition CIR use the busy primitive. A coprocessor 
may execute a cpGEN instruction concurrently with an instruction in the main processor. 
If the main processor attempts to initiate an instruction in the general or conditional in­
struction category while the coprocessor is concurrently executing a cpGEN instruction, 
the coprocessor can place the busy primitive in the response CIR. When the main processor 
reads this primitive, it services pending interrupts (using a pre-instruction exception stack 

MOTOROLA 
10-26 

MC68030 USER'S MANUAL 



frame, refer to Figure 10-41 ). The processor then restarts the general or conditional co­
processor instruction that it had attempted to initiate earlier. 

The busy primitive should only be used in response to a write to the command or condition 
CIR. It should be the first primitive returned after the main processor attempts to initiate 
a general or conditional category instruction. In particular, the busy primitive should not 
be issued after program visible resources have been altered by the instruction. (Program 
visible resources include coprocessor and main processor program-visible registers and 
operands in memory, but not the scanPC.) The restart of an instruction after it has altered 
program visible resources causes those resources to have inconsistent values when the 
processor reinitiates the instruction. 

The MC68030 responds to the busy primitive differently in a special case that can occur 
during a breakpoint operation (refer to 8.1.12 Multiple Exceptions). This special case occurs 
when a breakpoint acknowledge cycle initiates a coprocessor F-line instruction, the copro­
cessor returns the busy primitive in response to the instruction initiation, and an interrupt 
is pending. When these three conditions are met, the processor re-executes the breakpoint 
acknowledge cycle after the interrupt exception processing has been completed. A design 
that uses a breakpoint to monitor the number of passes through a loop by incrementing 
or decrementing a counter may not work correctly under these conditions. This special 
case may cause several breakpoint acknowledge cycles to be executed during a single 
pass through a loop. 

10.4.4 Null Primitive 

The null coprocessor response primitive communicates coprocessor status information to 
the main processor. This primitive applies to instructions in the general and conditional 
categories. Figure 10-24 shows the format of the null primitive. 

15 14 13 12 11 10 

CA PC 0 I 0 I IA I 0 I 0 I 0 o I o 0 I PF TF 

Figure 10-24. Null Primitive Format 

This primitive uses the CA and PC bits as previously described. 

Bit [8], the IA bit, specifies the interrupts allowed optional operation. This bit determines 
whether the MC68030 services pending interrupts prior to re-reading the response CIR 
after receiving a null primitive. Interrupts are allowed when the IA bit is set. 

Bit [1 ], the PF bit, shows the "processing finished" status of the coprocessor. That is, PF= 1 
indicates that the coprocessor has completed all processing associated with an instruction. 

Bit [OJ, the TF bit, indicates the true/false condition during the execution of a conditional 
category instruction. TF = 1 is the true condition specifier and TF = 0 is the false condition 
specifier. The TF bit is only relevant for null primitives with CA=O that are used by the 
coprocessor during the execution of a conditional instruction. 

The MC68030 processes a null primitive with CA= 1 in the same manner whether executing 
a general or conditional category coprocessor instruction. If the coprocessor sets CA and 

MC68030 USER'S MANUAL MOTOROLA 
10-27 



IA to one in the null primitive, the main processor services pending interrupts (using a 
mid-instruction stack frame, refer to Figure 10-43) and reads the response CIR again. If the 
coprocessor sets CA to one and IA to zero in the null primitive, the main processor reads 
the response CIR again without servicing any pending interrupts. 

A null, CA= 0 primitive provides a condition evaluation indicator to the main processor 
during the execution of a conditional instruction and ends the dialogue between the main 
processor and coprocessor for that instruction. The main processor completes the exe­
cution of a conditional category coprocessor instruction when it receives the primitive. The 
PF bit is not relevant during conditional instruction execution since the primitive itself 
implies completion of processing. 

Usually, when the main processor reads any primitive that does not have CA= 1 while 
executing a general category instruction, it terminates the dialogue between the main 
processor and coprocessor. If a trace exception is pending, however, the main processor 
does not terminate the instruction dialogue until it reads a null, CA=O, PF= 1 primitive 
from the response CIR (refer to 10.5.2.5 TRACE EXCEPTIONS). Thus, the main processor 
continues to read the response CIR until it receives a null, CA= 0, PF= 1 primitive, and then 
performs trace exception processing. When IA= 1, the main processor services pending 
interrupts before reading the response CIR again. 

A coprocessor can be designed to execute a cpGEN instruction concurrently with the 
execution of main processor instructions and, also, buffer one write operation to either its 
command or condition CIR. This type of coprocessor issues a null primitive with CA= 1 
when it is concurrently executing a cpGEN instruction, and the main processor initiates 
another general or conditional coprocessor instruction. This primitive indicates that the 
coprocessor is busy and the main processor should read the response CIR again without 
reinitiating the instruction. The IA bit of this null primitive usually should be set in order 
to minimize interrupt latency while the main processor is waiting for the coprocessor to 
complete the general category instruction. 

- Table 10-3 summarizes the encodings of the null primitive. 

Table 10-3. Null Coprocessor Response Primitive Encodings 

CA PC IA PF TF General Instructions Conditional Instructions 

x 1 x x x Pass Program Counter to Instruction Same as general Category 
Address CIR, Clear PC Bit and Proceed with 
Operation Specified by CA. .IA, PF, and TF 
Bits 

1 0 0 x x Re-Read Response CIR, Do Not Service Same as General Category 
Pending Interrupts 

1 0 1 x x Service Pending Interrupts and Re-Read the Same as General Category 
Response CIR 

0 0 0 0 c If (Trace Pending) Re-Read Response CIR Main Processor Completes Instruction 
Else, Execute Next Instruction Execution Based on TF; c 

0 0 1 0 c If (Trace Pending) Service Pending Main Processor Completes Instruction 
Interrupts and Re-Read Response CIR Execution Based on TF; c 

Else, Execute Next Instruction 

0 0 x 1 c Coprocessor Instruction Completed; Service Main Processor Completes Instruction 
Pending Exceptions or Execute Next Execution Based on TF; c. 
Instruction 

x ; Dont't Care 
c ; 1 or 0 Depending on Coprocessor Condition Evaluation 

MOTOROLA 
10-28 

MC68030 USER'S MANUAL 



10.4.5 Supervisor Check Primitive 

The supervisor check primitive verifies that the main processor is operating in the super­
visor state while executing a coprocessor instruction. This primitive applies to instructions 
in the general and conditional coprocessor instruction categories. Figure 10-25 shows the 
format of the supervisor check primitive. 

15 14 13 12 11 10 

I 1 PC o I o I o I o o I o o I o I o 

Figure 10-25. Supervisor Check Primitive Format 

This primitive uses the PC bit as previously described. Bit [15] is shown as 1, but during 
execution of a general category instruction this primitive performs the same operations 
regardless of the value of bit [15]. If this primitive is issued with bit [15] = 0 during a 
conditional category instruction, however, the main processor initiates protocol violation 
exception processing. 

When the main processor reads the supervisor check primitive from the response CIR, it 
checks the value of the S bit in the status register. If S = 0 (main processor operating at 
user privilege level), the main processor aborts the coprocessor instruction by writing an 
abort mask (refer to 10.3.2 Control CIR) to the control CIR. The main processor then initiates 
privilege violation exception processing (refer to 10.5.2.3 PRIVILEGE VIOLATIONS). If the 
main processor is at the supervisor privilege level when it receives this primitive, it reads 
the response CIR again. 

The supervisor check primitive allows privileged instructions to be defined in the copro­
cessor general and conditional instruction categories. This primitive should be the first 
one issued by the coprocessor during the dialog for an instruction that is implemented as 
privileged. 

10.4.6 Transfer Operation Word Primitive 

The transfer operation word primitive requests a copy of the coprocessor instruction op­
eration word for the coprocessor. This primitive applies to general and conditional category 
instructions. Figure 10-26 shows the format of the transfer operation word primitive. 

15 14 13 12 11 10 

CA PC o I o I o o I o I o I o I o 

Figure 10-26. Transfer Operation Word Primitive Format 

This primitive uses the CA and PC bits as previously described. If this primitive is issued 
with CA=O during a conditional category instruction, the main processor initiates protocol 
violation exception processing. 

When the main processor reads this primitive from the response CIR, it transfers the F­
line operation word of the currently executing coprocessor instruction to the operation 
word CIR. The value of the scanPC is not affected by this primitive. 

MC68030 USER'S MANUAL MOTOROLA 
10-29 

.. 



• 

10.4.7 Transfer from Instruction Stream Primitive 

The transfer from instruction stream primitive initiates transfers of operands from the 
instruction stream to the coprocessor. This primitive applies to general and conditional 
category instructions. Figure 10-27 shows the format of the transfer from instruction stream 
primitive. 

15 14 13 12 11 10 

CA PC LENGTH 

Figure 10-27. Transfer From Instruction Stream Primitive Format 

This primitive uses the CA and PC bits as previously described. If this primitive is issued 
with CA= 0 during a conditional category instruction, the main processor initiates protocol 
violation exception processing. 

Bits [0-7] of the primitive format specify the length, in bytes, of the operand to be transferred 
from the instruction stream to the coprocessor. The length must be an even number of 
bytes. If an odd length is specified, the main processor initiates protocol violation exception 
processing (refer to 10.5.2.1 PROTOCOL VIOLATIONS). 

This primitive transfers coprocessor defined extension words to the coprocessor. When 
the main processor reads this primitive from the response CIR, it copies the number of 
bytes indicated by the length field from the instruction stream to the operand CIR. The first 
word or long word transferred is at the location pointed to by the scan PC when the primitive 
is read by the main processor, and the scanPC is incremented after each word or long 
word is transferred. When execution of the primitive has completed, the scan PC has been 
incremented by the total number of bytes transferred and points to the word following the 
last word transferred. The main processor transfers the operands from the instruction 
stream using a sequence of long-word writes to the operand CIR. If the length field is not 
an even multiple of four bytes, the last two bytes from the instruction stream are transferred 
using a word write to the operand CIR. 

10.4.8 Evaluate and Transfer Effective Address Primitive 

The evaluate and transfer effective address primitive evaluates the effective address spec­
ified in the coprocessor instruction operation word and transfers the result to the copro­
cessor. This primitive applies to general category instructions. If this primitive is issued by 
the coprocessor during the execution of a conditional category instruction, the main pro­
cessor initiates protocol violation exception processing. Figure 10-28 shows the format of 
the evaluate and transfer effective address primitive. 

15 14 13 12 11 10 

CA PC I 0 I 0 I 1 a I 1 olo/olololo o I o I o 

Figure 10-28. Evaluate and Transfer Effective Address Primitive Format 

This primitive uses the CA and PC bits as previously described. 

MOTOROLA 
10-30 

MC68030 USER'S MANUAL 



When the main processor reads this primitive while executing a general category instruc­
tion, it evaluates the effective address specified in the instruction. At this point, the scanPC 
contains the address of the first of any required effective address extension words. The 
main processor increments the scanPC by two after it references each of these extension 
words. After the effective address is calculated, the resulting 32-bit value is written to the 
operand address CIR. 

The MC68030 only calculates effective addresses for control alterable addressing modes 
in response to this primitive. If the addressing mode in the operation word is not a control 
alterable mode, the main processor aborts the instruction by writing a $0001 to the control 
CIR and initiates F-line emulation exception processing (refer to 10.5.2.2 F-LINE EMULATOR 
EXCEPTIONS). 

10.4.9 Evaluate Effective Address and Transfer Data Primitive 

The evaluate effective address and transfer data primitive transfers an operand between 
the coprocessor and the effective address specified in the coprocessor instruction operation 
word. This primitive applies to general category instructions. If the coprocessor issues this 
primitive during the execution of a conditional category instruction, the main processor 
initiates protocol violation exception processing. Figure 10-29 shows the format of the 
evaluate effective address and transfer data primitive. 

15 14 13 12 11 10 4 3 0 

CA PC DR I 1 o I VALID EA LENGTH 

Figure 10-29. Evaluate Effective Address and Transfer Data Primitive Format 

This primitive uses the CA, PC, and DR bits as previously described . 

The valid effective address field (bits [8-10]) of the primitive format specifies the valid 
effective address categories for this primitive. If the effective address specified in the 
instruction operation word is not a member of the class specified by bits [8-10], the main 
processor aborts the coprocessor instruction by writing an abort mask (refer to 10.3.2 
Control CIR) to the control CIR, and by initiating F-line emulation exception processing. 
Table 10-4 lists the valid effective address field encodings. 

000 

001 

010 

011 

100 

101 

110 

111 

MC68030 USER'S MANUAL 

Table 10-4. Valid Effective 
Address Codes 

Control Alterable 

Data Alterable 

Memory Alterable 

Alterable 

Control 

Data 

Memory 

Any Effective Address (No Restriction) 

MOTOROLA 
10-31 

-



-

Even when the valid effective address fields specified in the primitive and in the instruction 
operation word match, the MC68030 initiates protocol violation exception processing if the 
primitive requests a write to a non-alterable effective address. 

The length in bytes of the operand to be transferred is specified by bits [0-7] of the primitive 
format. Several restrictions apply to operand lengths for certain effective addressing modes. 
If the effective address is a main processor register (register direct mode), only operand 
lengths of one, two, or four bytes are valid; all other lengths (zero, for example) cause the 
main processor to initiate protocol violation exception processing. Operand lengths of zero 
through 255 bytes are valid for the memory addressing modes. 

The length of zero through 255 bytes does not apply to an immediate operand. The length 
of an immediate operand must be one byte or an even number of bytes (less than 256), 
and the direction of transfer must be to the coprocessor; otherwise, the main processor 
initiates protocol violation exception processing. 

When the main processor receives this primitive during the execution of a general category 
instruction, it verifies that the effective address encoded in the instruction operation word 
is in the category specified by the primitive. If so, the processor calculates the effective 
address using the appropriate effective address extension words at the current scanPC 
address and increments the scan PC by two for each word referenced. The main processor 
then transfers the number of bytes specified in the primitive between the operand CIR and 
the effective address using long-word transfers whenever possible. Refer to 10.3.8 Operand 
CIR for information concerning operand alignment for transfers involving the operand CIR. 

The DR bit specifies the direction of the operand transfer. DR= 0 requests a transfer from 
the effective address to the operand CIR and DR= 1 specifies a transfer from the operand 
CIR to the effective address. 

If the effective addressing mode specifies the predecrement mode, the address register 
used is decremented by the size of the operand before the transfer. The bytes within the 
operand are then transferred to or from ascending addresses beginning with the location 
specified by the decremented address register. In this mode, if A7 is used as the address 
register and the operand length is one byte, A7 is decremented by two to maintain a word 
aligned stack. 

For the postincrement effective addressing mode, the address register used is incremented 
by the size of the operand after the transfer. The bytes within the operand are transferred 
to or from ascending addresses beginning with the location specified by the address 
register. In this mode, if A7 is used as the address register and the operand length is one 
byte, A7 is incremented by two after the transfer to maintain a word aligned stack. Trans­
ferring odd length operands longer than one byte using the - (A7) or (A7) + addressing 
modes can result in a stack pointer that is not word aligned. 

The processor repeats the effective address calculation each time this primitive is issued 
during the execution of a given instruction. The calculation uses the current contents of 
any required address and data registers. The instruction must include a set of effective 
address extension words for each repetition of a calculation that requires them. The pro­
cessor locates these words at the current scanPC location and increments the scanPC by 
two for each word referenced in the instruction stream. 

The MC68030 sign extends a byte or word size operand to a long word value when it is 
transferred to an address register (AO-A7) using this primitive with the register direct 

MOTOROLA 
10-32 

MC68030 USER'S MANUAL 



effective addressing mode. A byte or word size operand transferred to a data register (DO­
D7) only overwrites the lower byte or word of the data register. 

10.4.10 Write to Previously Evaluated Effective Address Primitive 

The write to previously evaluated effective address primitive transfers an operand from 
the coprocessor to a previously evaluated effective address. This primitive applies to gen­
eral category instructions. If the coprocessor uses this primitive during the execution of a 
conditional category instruction, the main processor initiates protocol violation exception 
processing. Figure 10-30 shows the format of the write to previously evaluated effective 
address primitive. 

15 14 13 12 11 10 

CA PC o I o I LENGTH 

Figure 10-30. Write to Previously Evaluated Effective Address Primitive Format 

This primitive uses the CA and PC bits as previously described. 

Bits [0-7] of the primitive format specify the length of the operand in bytes. The MC68030 
transfers operands between zero and 255 bytes in length. 

When the main processor receives this primitive during the execution of a general category 
instruction, it transfers an operand from the operand CIR to an effective address specified 
by a temporary register within the MC68030. When a previous primitive for the current 
instruction has evaluated the effective address, this temporary register contains the eval­
uated effective address. Primitives that store an evaluated effective address in a temporary 
register of the main processor are the evaluate and transfer effective address, evaluate 
effective address and transfer data, and transfer multiple coprocessor registers primitives. 
If this primitive is used during an instruction in which the effective address specified in 
the instruction operation word has not been calculated, the effective address used for the 
write is undefined. Also, if the previously evaluated effective address was register direct, 
the address written to in response to this primitive is undefined. 

The function code value during the write operation indicates either supervisor or user data 
space depending on the value of the S bit in the MC68030 status register when the processor 
reads this primitive. While a coprocessor should request writes to only alterable effective 
addressing modes, the MC68030 does not check the type of effective address used with 
this primitive. For example, if the previously evaluated effective address was program 
counter relative and the MC68030 is at the user privilege level (S = 0 in status register), the 
MC68030 writes to user data space at the previously calculated program relative address 
(the 32-bit value in the temporary internal register of the processor). 

Operands longer than four bytes are transferred in increments of four bytes (operand parts) 
when possible. The main processor reads a long-word operand part from the operand CIR 
and transfers this part to the current effective address. The transfers continue in this manner 
using ascending memory locations until all of the long-word operand parts are transferred, 
and any remaining operand part is then transferred using a one-, two-, or three-byte transfer 
as required. The operand parts are stored in memory using ascending addresses beginning 
with the address in the MC68030 temporary register. 

MC68030 USER'S MANUAL MOTOROLA 
10-33 

.. 



-

The execution of this primitive does not modify any of the registers in the MC68030 pro­
grammer's model, even if the previously evaluated effective address mode is the prede­
crement or postincrement mode. If the previously evaluated effective addressing mode 
used any of the MC68030 internal address or data registers, the effective address value 
used is the final value from the preceding primitive. That is, this primitive uses the value 
from an evaluate and transfer effective address, evaluate effective address and transfer 
data, or transfer multiple coprocessor registers primitive without modification. 

The take address and transfer data primitive described in the next section does not replace 
the effective address value that has been calculated by the MC68030. The address that the 
main processor obtains in response to the take address and transfer data primitive is not 
available to the write to previously evaluated effective address primitive. 

A coprocessor can issue an evaluate effective address and transfer data primitive followed 
by this primitive to perform a "read-modify-write" operation that is not indivisible. The 
bus cycles for this operation are normal bus cycles that can be interrupted, and the bus 
can be arbitrated between the cycles. 

10.4.11 Take Address and Transfer Data Primitive 

The take address and transfer data primitive transfers an operand between the coprocessor 
and an address supplied by the coprocessor. This primitive applies to general and con­
ditional category instructions. Figure 10-31 shows the format of the take address and 
transfer data primitive. 

15 14 13 12 11 10 

CA PC DR 1 I LENGTH 

Figure 10-31. Take Address and Transfer Data Primitive Format 

This primitive uses the CA, PC, and DR bits as previously described. If the coprocessor 
issues this primitive with CA= O during a conditional category instruction, the main pro­
cessor initiates protocol violation exception processing. 

Bits [0-7] of the primitive format specify the operand length, which can be from zero to 
255 bytes. 

The main processor reads a 32-bit address from the operand address CIR. The processor 
transfers the operand, using a series of long-word transfers, between this address and the 
operand CIR. The DR bit determines the direction of the transfer. The processor reads or 
writes the operand parts to ascending addresses starting at the address from the operand 
address CIR. If the operand length is not a multiple of four bytes, the final operand part is 
transferred using a one-, two-, or three-byte transfer as required. 

The function code used with the address read from the operand address CIR indicates 
either supervisor or user data space according to the value of the S bit in the MC68030 
status register. 

MOTOROLA 
10-34 

MC68030 USER'S MANUAL 



10.4.12 Transfer to/from Top of Stack Primitive 

The transfer to/from top-of-stack primitive transfers an operand between the coprocessor 
and the top of the currently active main processor stack (refer to 2.8.1 System Stack). This 
primitive applies to general and conditional category instructions. Figure 10-32 shows the 
format of the transfer to/from top of stack primitive. 

15 14 13 12 11 10 

CA PC DR I 0 I 1 I 1 I 1 o I LENGTH 

Figure 10-32. Transfer To/From Top of Stack Primitive Format 

This primitive uses the CA, PC, and DR bits as previously described. If the coprocessor 
issues this primitive with CA=O during a conditional category instruction, the main pro­
cessor initiates protocol violation exception processing. 

Bits [0-7] of the primitive format specify the length in bytes of the operand to be transferred. 
The operand may be one, two, or four bytes in length; other length values cause the main 
processor to initiate protocol violation exception processing. 

If DR= 0, the main processor transfers the operand from the currently active system stack 
to the operand CIR. The implied effective address mode used for the transfer is the (A7) + 
addressing mode. A one-byte operand causes the stack pointer to be incremented by two 
after the transfer to maintain word alignment of the stack. 

If DR= 1, the main processor transfers the operand from the operand CIR to the currently 
active stack. The implied effective address mode used for the transfer is the -(A7) ad­
dressing mode. A one-byte operand causes the stack pointer to be decremented by two 
before the transfer to maintain word alignment of the stack. 

10.4.13 Transfer Single Main Processor Register Primitive 

The transfer single main processor register primitive transfers an operand between one 
of the main processor's data or address registers and the coprocessor. This primitive applies 
to general and conditional category instructions. Figure 10-33 shows the format of the 
transfer single main processor register primitive. 

This primitive uses the CA, PC, and DR bits as previously described. If the coprocessor 
issues this primitive with CA= 0 during a conditional category instruction, the main pro­
cessor initiates protocol violation exception processing. 

15 14 13 12 11 10 

CA PC DR 0 I 0 I 0 I 0 I 0 I 0 I D/A REGISTER 

Figure 10-33. Transfer Single Main Processor Register Primitive Format 

Bit [3]. the DIA bit, specifies whether the primitive transfers an address or data register. 
DIA= 0 indicates a data register and D/A = 1 indicates an address register. Bits [2-0] contain 
the register number. 

MC68030 USER'S MANUAL MOTOROLA 
10-35 

-



-

If DR= 0, the main processor writes the long-word operand in the specified register to the 
operand CIR. If DR= 1, the main processor reads a long-word operand from the operand 
CIR and transfers it to the specified data or address register. 

10.4.14 Transfer Main Processor Control Register Primitive 

The transfer main processor control register primitive transfers a long-word operand be­
tween one of its control registers and the coprocessor. This primitive applies to general 
and conditional category instructions. Figure 10-34 shows the format of the transfer main 
processor control register primitive. This primitive uses the CA, PC, and DR bits as pre­
viously described. If the coprocessor issues this primitive with CA= 0 during a conditional 
category instruction, the main processor initiates protocol violation exception processing. 

15 14 13 12 11 10 

CA PC DR o I 1 o I o o I o I o I o o I o 

Figure 10-34. Transfer Main Processor Control Register Primitive Format 

When the main processor receives this primitive, it reads a control register select code 
from the register select CIR. This code determines which main processor control register 
is transferred. Table 10-5 lists the valid control register select codes. If the control register 
select code is not valid, the MC68030 initiates protocol violation exception processing (refer 
to 10.5.2.1 PROTOCOL VIOLATIONS). 

Table 10-5. Main Processor Control 
Register Selector Codes 

Hex Control Register 

xOOO Source Function Code (SFC) Register 

x001 Destination Function Code (DFC) Register 

x002 Cache Control Register (CACR) 

x800 User Stack Pointer (USP) 

x801 Vector Base Register (VBR) 

x802 Cache Address Register (GAAR) 

x803 Master Stack Pointer (MSP) 

x804 Interrupt Stack Pointer (ISP) 

All other codes cause a protocol violation exception 

After reading a valid code from the register select CIR. if DR= 0, the main processor writes 
the long-word operand from the specified control register to the operand CIR. If DR= 1, 
the main processor reads a long-word operand from the operand CIR and places it in the 
specified control register. 

10.4.15 Transfer Multiple Main Processor Registers Primitive 

The transfer multiple main processor registers primitive transfers long-word operands 
between one or more of its data or address registers and the coprocessor. This primitive 

MOTOROLA 
10-36 

MC68030 USER'S MANUAL 



applies to general and conditional category instructions. Figure 10-35 shows the format of 
the transfer multiple main processor registers primitive. 

15 14 13 12 11 10 4 

CA PC DR o I o I o I o o I o o I o I o 

Figure 10-35. Transfer Multiple Main Processor Registers Primitive Format 

This primitive uses the CA, PC, and DR bits as previously described. If the coprocessor 
issues this primitive with CA=O during a conditional category instruction, the main pro­
cessor initiates protocol violation exception processing. 

When the main processor receives this primitive it reads a 16-bit register select mask from 
the register select CIR. The format of the register select mask is shown in Figure 10-36. A 
register is transferred if the bit corresponding to the register in the register select mask is 
set to one. The selected registers are transferred in the order DO-D7 and then AO-A7. 

15 14 13 12 11 10 

A7 A6 A5 A4 A3 A2 A 1 AO 07 06 05 D4 D3 D2 I Dl DO 

Figure 10-36. Register Select Mask Format 

If DR= 0, the main processor writes the contents of each register indicated in the register 
select mask to the operand CIR using a sequence of long-word transfers. If DR= 1, the main 
processor reads a long-word operand from the operand CIR into each register indicated 
in the register select mask. The registers are transferred in the same order regardless of 
the direction of transfer indicated by the DR bit. 

10.4.16 Transfer Multiple Coprocessor Registers Primitive 

The transfer multiple coprocessor registers primitive transfers from zero to sixteen oper­
ands between the effective address specified in the coprocessor instruction and the co­
processor. This primitive applies to general category instructions. If the coprocessor issues 
this primitive during the execution of a conditional category instruction, the main processor 
initiates protocol violation exception processing. Figure 10-37 shows the format of the 
transfer multiple coprocessor registers primitive. 

15 14 13 12 11 10 

CA PC DR 0 I 0 I 0 I 0 I 1 LENGTH 

Figure 10-37. Transfer Multiple Coprocessor Registers Primitive Format 

This primitive uses the CA, PC, and DR bits as previously described. 

Bits [7-0] of the primitive format indicate the length in bytes of each operand transferred. 
The operand length must be an even number of bytes; odd length operands cause the 

MC68030 USER'S MANUAL MOTOROLA 
10-37 

-



-

MC68030 to initiate protocol violation exception processing (refer to 10.5.2.1 PROTOCOL 
VIOLATIONS). 

When the main processor reads this primitive, it calculates the effective address specified 
in the coprocessor instruction. The scanPC should be pointing to the first of any necessary 
effective address extension words when this primitive is read from the response CIR; the 
scanPC is incremented by two for each extension word referenced during the effective 
address calculation. For transfers from the effective address to the coprocessor (DR= O), 
the control addressing modes and the postincrement addressing mode are valid. For trans­
fers from the coprocessor to the effective address (DR= 1), the control alterable and prede­
crement addressing modes are valid. Invalid addressing modes cause the MC68030 to 
abort the instruction by writing an abort mask (refer to 10.3.2 Control CIR) to the control 
CIR and to initiate F-line emulator exception processing (refer to 10.5.2.2 F-LINE EMULATOR 
EXCEPTIONS). 

After performing the effective address calculation, the MC68030 reads a 16-bit register 
select mask from the register select CIR. The coprocessor uses the register select mask to 
specify the number of operands to transfer; the MC68030 counts the number of ones in 
the register select mask to determine the number of operands. The order of the ones in 
the register select mask is not relevant to the operation of the main processor. As many 
as 16 operands can be transferred by the main processor in response to this primitive. The 
total number of bytes transferred is the product of the number of operands transferred 
and the length of each operand specified in bits [0-7] of the primitive format. 

If DR= 1, the main processor reads the number of operands specified in the register select 
mask from the operand CIR and writes these operands to the effective address specified 
in the instruction using long-word transfers whenever possible. If DR= 0, the main pro­
cessor reads the number of operands specified in the register select mask from the effective 
address and writes them to the operand CIR. 

For the control addressing modes, the operands are transferred to or from memory using 
ascending addresses. For the postincrement addressing mode, the operands are read from 
memory with ascending addresses also, and the address register used is incremented by 
the size of an operand after each operand is transferred. The address register used with 
the (An)+ addressing mode is incremented by the total number of bytes transferred during 
the primitive execution. 

For the predecrement addressing mode, the operands are written to memory with de­
scending addresses, but the bytes within each operand are written to memory with as­
cending addresses. As an example, Figure 10-38 shows the format in long-word oriented 
memory for two 12-byte operands transferred from the coprocessor to the effective address 
using the - (An) addressing mode. The processor decrements the address register by the 
size of an operand before the operand is transferred. It writes the bytes of the operand to 
ascending memory addresses. When the transfer is complete, the address register has 
been decremented by the total number of bytes transferred. The MC68030 transfers the 
data using long-word transfers whenever possible. 

10.4.17 Transfer Status Register and Scan PC Primitive 

Both the transfer status register and the scanPC primitive transfers values between the 
coprocessor and the main processor status register. On an optional basis, the scanPC also 

.MOTOROLA 
10-38 

MC68030 USER'S MANUAL 



31 23 15 

An - 2 *LENGTH = FINAL An - OPl. BYTE 10) 

OPl. BYTE IL-1) 

An-LENGTH - OPO. BYTE 10) 

OPO. BYTE IL-1) 

INITIALAn -

NOTE: OPO. Byte 10) is the first byte written to memory 
OPO, Byte IL-1) is the last byte of the first operand written to memory 
OP1, Byte 10) is the first byte of the second operand written to memory 
OP1, Byte IL-1) is the last byte written to memory 

Figure 10-38. Operand Format in Memory for Transfer to -(An) 

makes transfers. This primitive applies to general category instructions. If the coprocessor 
issues this primitive during the execution of a conditional category instruction, the main 
processor initiates protocol violation exception processing. Figure 10-39 shows the format 
of the transfer status register and scanPC primitive. 

15 14 13 12 11 10 

CA PC DR SP o I o I o o I o I o o I o 

Figure 10-39. Transfer Status Register and ScanPC Primitive Format 

This primitive uses the CA, PC, and DR bits as previously described. 

Bit [8]. the SP bit, selects the scanPC option. If SP= 1, the primitive transfers both the 
scan PC and status register. If SP= 0, only the status register is transferred. 

If SP= 0 and DR= 0, the main processor writes the 16-bit status register value to the operand 
CIR. If SP= 0 and DR= 1, the main processor reads a 16-bit value from the operand CIR 
into the main processor status register. 

If SP= 1 and DR= 0, the main processor writes the long-word value in the scan PC to the 
instruction address CIR and then writes the status register value to the operand CIR. If 
SP= 1 and DR= 1, the main processor reads a 16-bit value from the operand CIR into the 
status register and then reads a long-word value from the instruction address CIR into the 
scan PC. 

With this primitive, a general category instruction can change the main processor program 
flow by placing a new value in the status register, in the scanPC, or new values in both 
the status register and the scanPC. By accessing the status register, the coprocessor can 
determine and manipulate the main processor condition codes, supervisor status, trace 
modes, selection of the active stack, and interrupt mask level. 

The MC68030 discards any instruction words that have been prefetched beyond the current 
scan PC location when this primitive is issued with DR= 1 (transfer to main processor). The 

MC68030 USER'S MANUAL MOTOROLA 
10-39 

-



-

MC68030 then refills the instruction pipe from the scanPC address in the address space 
indicated by the status register S bit. 

If the MC68030 is operating in the trace on change of flow mode {T1 :TO in the status register 
contains 01) when the coprocessor instruction begins to execute, and this primitive is issued 
with DR= 1 {from coprocessor to main), the MC68030 prepares to take a trace exception. 
The trace exception occurs when the coprocessor signals that it has completed all proc­
essing associated with the instruction. Changes in the trace modes due to the transfer of 
the status register to main take effect on execution of the next instruction. 

10.4.18 Take Pre-Instruction Exception Primitive 

The take pre-instruction exception primitive initiates exception processing using a copro­
cessor-supplied exception vector number and the pre-instruction exception stack frame 
format. This primitive applies to general and conditional category instructions. Figure 10-
40 shows the format of the take preinstruction exception primitive. 

15 14 13 12 11 10 4 

0 I PC o I o I VECTOR NUMBER 

Figure 10-40. Take Pre-Instruction Exception Primitive Format 

The primitive uses the PC bit as previously described. Bits [0-7] contain the exception vector 
number used by the main processor to initiate exception processing. 

When the main processor receives this primitive, it acknowledges the coprocessor excep­
tion request by writing an exception acknowledge mask {refer to 10.3.2 Control CIR) to the 
control CIR. The MC68030 then proceeds with exception processing as described in 8.1 
EXCEPTION PROCESSING SEQUENCE. The vector number for the exception is taken from 
bits [0-7] of the primitive, and the MC68030 uses the four word stack frame format shown 
in Figure 10-41. 

15 14 13 12 11 10 9 5 4 

SP- STATUS REGISTER 

+02 
PROGRAM COUNTER 

+06 0 0 0 oI VECTOR NUMBER 

Figure 10-41. MC68030 Pre-Instruction Stack Frame 

The value of the program counter saved in this stack frame is the F-line operation word 
address of the coprocessor instruction during which the primitive was received. Thus, if 
the exception handler routine does not modify the stack frame, an RTE instruction causes 
the MC68030 to return and re-initiate execution of the coprocessor instruction. 

The take pre-instruction exception primitive can be used when the coprocessor does not 
recognize a value written to either its command CIR or condition CIR to initiate a coprocessor 

MOTOROLA 
10-40 

MC68030 USER'S MANUAL 



instruction. This primitive can also be used if an exception occurs in the coprocessor 
instruction before any program-visible resources are modified by the instruction operation. 
This primitive should not be used during a coprocessor instruction if program-visible 
resources have been modified by that instruction. Otherwise, since the MC68030 re-initiates 
the instruction when it returns from exception processing, the restarted instruction receives 
the previously modified resources in an inconsistent state. 

One of the most important uses of the take pre-instruction exception primitive is to signal 
an exception condition in a cpGEN instruction that was executing concurrently with the 
main processor's instruction execution. If the coprocessor no longer requires the services 
of the main processor to complete a cpGEN instruction and the concurrent instruction 
completion is transparent to the programmer's model, the coprocessor can release the 
main processor by issuing a primitive with CA= 0. The main processor usually executes 
the next instruction in the instruction stream, and the coprocessor completes its operations 
concurrently with the main processor operation. If an exception occurs while the copro­
cessor is executing an instruction concurrently, the exception is not processed until the 
main processor attempts to initiate the next general or conditional instruction. After the 
main processor writes to the command or condition CIR to initiate a general or conditional 
instruction, it then reads the response CIR. At this time, the coprocessor can return the 
take pre-instruction exception primitive. This protocol allows the main processor to proceed 
with exception processing related to the previous concurrently executing coprocessor in­
struction and then return and re-initiate the coprocessor instruction during which the ex­
ception was signaled. The coprocessor should record the addresses of all general category 
instructions that can be executed concurrently with the main processor and that support 
exception recovery. Since the exception is not reported until the next coprocessor instruc­
tion is initiated, the processor usually requires the instruction address to determine which 
instruction the coprocessor was executing when the exception occurred. A coprocessor 
can record the instruction address by setting PC= 1 in one of the primitives it uses before 
releasing the main processor. 

10.4.19 Take Mid-Instruction Exception Primitive 

The take mid-instruction exception primitive initiates exception processing using a copro­
cessor supplied exception vector number and the mid-instruction exception stack frame 
format. This primitive applies to general and conditional category instructions. Figure 10-
42 shows the format of the take mid-instruction exception primitive. 

15 14 13 12 11 10 4 

I o PC o I 1 1 I I 0 I I VECTOR NUMBER 

Figure 10-42. Take Mid-Instruction Exception Primitive Format 

This primitive uses the PC bit as previously described. Bits [70] contain the exception vector 
number used by the main processor to initiate exception processing. 

When the main processor receives this primitive, it acknowledges the coprocessor excep­
tion request by writing an exception acknowledge mask (refer to 10.3.2 Control CIR) to the 
control CIR. The MC68030 then performs exception processing as described in 8.1 EXCEP­
TION PROCESSING SEQUENCE. The vector number for the exception is taken from bits 
[0-7) of the primitive and the MC68030 uses the ten-word stack frame format shown in 
Figure 10-43. 

MC68030 USER'S MANUAL MOTOROLA 
10-41 

-



-

15 14 13 12 11 10 9 5 4 

SP- STATUS REGISTER 

+02 

SCAN PC 

+06 1 0 0 1J VECTOR NUMBER 

+08 
PROGRAM COUNTER 

+OC INTERNAL REGISTER 

+OE OPERATION WORD 

+10 
EFFECTIVE ADDRESS 

Figure 10-43. MC68030 Mid·lnstructionStack Frame 

The program counter value saved in this stack frame is the operation word address of the 
coprocessor instruction during which the primitive is received. The scanPC field contains 
the value of the MC68030 scanPC when the primitive is received. If the current instruction 
does not evaluate an effective address prior to the exception request primitive, the value 
of the effective address field in the stack frame is undefined. 

The coprocessor uses this primitive to request exception processing for an exception during 
the instruction dialog with the main processor. If the exception handler does not modify 
the stack frame, the MC68030 returns from the exception handler and reads the response 
CIR. Thus, the main processor attempts to continue executing the suspended instruction 
by reading the response CIR and processing the primitive it receives. 

10.4.20 Take Post-Instruction Exception Primitive 

The take post-instruction exception primitive initiates exception processing using a copro­
cessor-supplied exception vector number and the post-instruction exception stack frame 
format. This primitive applies to general and conditional category instructions. Figure 10-
44 shows the format of the take postinstruction exception primitive. 

15 14 13 12 11 10 

0 I PC o I , o I VECTOR NUMBER 

Figure 10-44. Take Post-Instruction Exception Primitive Format 

This primitive uses the PC bit as previously described. Bits [07] contain the exception vector 
number used by the main processor to initiate exception processing. 

When the main processor receives this primitive, it acknowledges the coprocessor excep­
tion request by writing an exception acknowledge mask (refer to 10.3.2 Control CIR) to the 

MOTOROLA 
10-42 

MC68030 USER'S MANUAL 



control CIR. The MC68030 then performs exception processing as described in 8.1 EXCEP­
TION PROCESSING SEQUENCE. The vector number for the exception is taken from bits 
[0-7] of the primitive and the MC68030 uses the six-word stack frame format. shown in 
Figure 10-45. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 

SP- STATUS REGISTER 

+02 
SCAN PC 

+06 0 0 1 oj VECTOR NUMBER 

+08 
PROGRAM COUNTER 

Figure 10-45. MC68030 Post-Instruction Stack Frame 

The value in the main processor scanPC at the time this primitive is received is saved in 
the scanPC field of the post-instruction exception stack frame. The value of the program 
counter saved is the F-line operation word address of the coprocessor instruction during 
which the primitive is received. 

When the MC68030 receives the take post-instruction exception primitive, it assumes that 
the coprocessor either completed or aborted the instruction with an exception. If the ex­
ception handler does not modify the stack frame, the MC68030 returns from the exception 
handler to begin execution at the location specified by the scan PC field of the stack frame. 
This location should be the address of the next instruction to be executed. 

The coprocessor uses this primitive to request exception processing when it completes or 
aborts an instruction while the main processor is awaiting a normal response. For a general 
category instruction, the response is a release; for a conditional category instruction, it is 
an evaluated true/false condition indicator. Thus, the operation ofthe MC68030 in response 
to this primitive is compatible with standard M68000 Family instruction related exception 
processing (for example, the divide-by-zero exception). 

10.5 EXCEPTIONS 

Various exception conditions related to the execution of coprocessor instructions may 
occur. Whether an exception is detected by the main processor or by the coprocessor, the 
main processor coordinates and performs exception processing. Servicing these copro­
cessor related exceptions is an extension of the protocol used to service standard M68000 
Family exceptions. That is, when either the main processor detects an exception or is 
signaled by the coprocessor that an exception condition has occurred, the main processor 
proceeds with exception processing as described in 8.1 EXCEPTION PROCESSING SE­
QUENCE. 

MC68030 USER'S MANUAL MOTOROLA 
10-43 

-



-

10.5.1 Coprocessor Detected Exceptions 

Exceptions that the coprocessor detects, also those that the main processor detects, are 
usually classified as coprocessor detected exceptions. These exceptions can occur during 
M68000 coprocessor interface operations, internal operations, or other system related 
operations of the coprocessor. 

Most coprocessor detected exceptions are signaled to the main processor through the use 
of one of the three take exception primitives defined for the M68000 coprocessor interface. 
The main processor responds to these primitives as previously described. However, not 
all coprocessor detected exceptions are signaled by response primitives. Coprocessor de­
tected format errors during the cpSAVE or cpRESTORE instruction are signaled to the main 
processor using the invalid format word described in 10.2.3.4.3 Invalid Format Words. 

10.5.1.1 COPROCESSOR DETECTED PROTOCOL VIOLATIONS. Protocol violation excep­
tions are communication failures between the main processor and coprocessor across the 
M68000 coprocessor interface. Coprocessor detected protocol violations occur when the 
main processor accesses entries in the coprocessor interface register set in an unexpected 
sequence. The sequence of operations that the main processor performs for a given co­
processor instruction or coprocessor response primitive has been described previously in 
this section. 

A coprocessor can detect protocol violations in various ways. According to the M68000 
coprocessor interface protocol, the main processor always accesses the operation word, 
operand, register select, instruction address, or operand address CIRs synchronously with 
respect to the operation of the coprocessor. That is, the main processor accesses these 
five registers in a certain sequence, and the coprocessor expects them to be accessed in 
that sequence. As a minimum, all M68000 coprocessors should detect a protocol violation 
ifthe main processor accesses any of these five registers when the coprocessor is expecting 
an access to either the command or condition CIR. Likewise, if the coprocessor is expecting 
an access to th~ command or condition CIR and the main processor accesses one of these 
five registers, the coprocessor should detect and signal a protocol violation. 

According to the M68000 coprocessor interface protocol, the main processor can perform 
a read of either the save or response CIRs or a write of either the restore or control CIRs 
asynchronously with respect to the operation of the coprocessor. That is, an access to one 
of these registers without the coprocessor explicitly expecting that access at that point can 
be a valid access. Although the coprocessor can anticipate certain accesses to the restore, 
response, and control coprocessor interface registers, these registers can be accessed at 
other times also. 

The coprocessor cannot signal a protocol violation to the main processor during the ex­
ecution of cpSAVE or cpRESTORE instructions. If a coprocessor detects a protocol violation 
during the cpSAVE or cpRESTORE instruction, it should signal the exception to the main 
processor when the next coprocessor instruction is initiated. 

The main philosophy of the coprocessor detected protocol violation is that the coprocessor 
should always acknowledge an access to one of its interface registers. If the coprocessor 
determines that the access is not valid, it should assert DSACKx to the main processor and 
signal a protocol violation when the main processor next reads the response CIR. If the 
coprocessor fails to assert DSACKx the main processor waits for the assertion of that signal 

MOTOROLA 
10-44 

MC68030 USER'S MANUAL 



(or some other bus termination signal) indefinitely. The protocol previously described 
ensures that the coprocessor cannot halt the main processor. 

The coprocessor can signal a protocol violation to the main processor with the take mid­
instruction exception primitive. To maintain consistency, the vector number should be 13, 
as it is for a protocol violation detected by the main processor. When the main processor 
reads this primitive, it proceeds as described in 10.4.19 Take Mid-Instruction Exception 
Primitive. If the exception handler does not modify the stack frame, the MC68030 returns 
from the exception handler and reads the response CIR. 

10.5.1.2 COPROCESSOR DETECTED ILLEGAL COMMAND OR CONDITION WORDS. Illegal 
coprocessor command or condition words are values written to the command CIR or 
condition CIR that the coprocessor does not recognize. If a value written to either of these 
registers is not valid, the coprocessor should return the take pre-instruction exception 
primitive in the response CIR. When it receives this primitive, the main processor takes a 
pre-instruction exception as described in 10.4.18 Take Pre-Instruction Exception Primitive. 
If the exception handler does not modify the main processor stack frame, an RTE instruction 
causes the MC68030 to re-initiate the instruction that took the exception. The coprocessor 
designer should ensure that the state of the coprocessor is not irrecoverably altered by an 
illegal command or condition exception if the system supports emulation of the unrec­
ognized command or condition word. 

All Motorola M68000 coprocessors signal illegal command and condition words by re­
turning the take pre-instruction exception primitive with the F-line emulator exception 
vector number 11. 

10.5.1.3 COPROCESSOR DATA PROCESSING EXCEPTIONS. Exceptions related to the in­
ternal operation of a coprocessor are classified as data processing related exceptions. These 
exceptions are analogous to the divide-by-zero exception defined by M68000 micropro- -
cessors and should be signaled to the main processor using one of the three take exception ... 
primitives containing an appropriate exception vector number. Which of these three pri-
mitives is used to signal the exception is usually determined by the point in the instruction 
operation where the main processor should continue the program flow after exception 
processing. Refer to 10.4.18 Take Pre-Instruction Exception Primitives, 10.4.19 Take Mid-
Instruction Exception Primitive, and 10.4.20 Take Post-Instruction Exception Primitive. 

10.5.1.4 COPROCESSOR SYSTEM RELATED EXCEPTIONS. System related exceptions de­
tected by a DMA coprocessor include those associated with bus activity, and any other 
exceptions (interrupts, for example) occurring external to the coprocessor. The actions 
taken by the coprocessor and the main processor depend on the type of exception that 
occurs. 

When an address or bus error is detected by a DMA coprocessor, the coprocessor should 
store any information necessary for the main processor exception handling routines in 
system accessible registers. The coprocessor should place one of the three take exception 
primitives encoded with an appropriate exception vector number in the response CIR. 
Which of the three primitives is used depends upon the point in the coprocessor instruction 
at which the exception was detected, and the point in the instruction execution at which 
the main processor should continue after exception processing. 

MC68030 USER'S MANUAL MOTOROLA 
10-45 



.. 

10.5.1.5 FORMAT ERRORS. Format errors are the only coprocessor detected exceptions 
that are not signaled to the main processor with a response primitive. When the main 
processor writes a format word to the restore CIR during the execution of a cpRESTORE 
instruction, the coprocessor decodes this word to determine if it is valid (refer to 10.2.3.3 
COPROCESSOR CONTEXT SAVE INSTRUCTION). If the format word is not valid, the co­
processor places the invalid format code in the restore CIR. When the main processor reads 
the invalid format code, it aborts the coprocessor instruction by writing an abort mask 
(refer to 10.3.2 Control CIR) to the control CIR. The main processor then performs exception 
processing using a four word pre-instruction stack frame and the format error exception 
vector number 14. Thus, if the exception handler does not modify the stack frame, the 
MC68030 restarts the cpRESTORE instruction when the RTE instruction in the handler is 
executed. If the coprocessor returns the invalid format code when the main processor reads 
the save CIR to initiate a cpSAVE instruction, the main processor performs format error 
exception processing as outlined for the cpRESTORE instruction. 

10.5.2 Main Processor Detected Exceptions 

A number of exceptions related to coprocessor instruction execution are detected by the 
main processor instead of the coprocessor (they are still serviced by the main processor). 
These exceptions can be related to the execution of coprocessor response primitives, 
communication across the M68000 coprocessor interface, or the completion of conditional 
coprocessor instructions by the main processor. 

10.5.2.1 PROTOCOL VIOLATIONS. The main processor detects a protocol violation when 
it reads a primitive from the response CIR that is not a valid primitive. The protocol violations 
that can occur in response to the primitives defined for the M68000 coprocessor interface 
are summarized in Table 10-6 . 

Table 10-6. Exceptions Related to Primitive Processing 

Primitive 

Busy 

NULL 

Supervisory Check* 
Other: Privilege Violation if "S" Bit= 0 

Transfer Operation Word* 

Transfer from Instruction Stream* 
Protocol: If Length Field is Odd !Zero Length Legal) 

Evaluate and Transfer Effective Address 
Protocol: If Used with Conditional Instruction 
F-Line: If EA in Op-Word is NOT Control Alterable 

Evaluate Effective Address and Transfer Data 
Protocol: 

1. If Used with Conditional Instructions 
2. Length is Not 1, 2, or 4 ad EA= Register Direct 
3. If EA= Immediate and Length Odd and Greater Than 1 
4. Attempt to Write to Non-Alterable Address Even if Address Declared Legal in 

Primitive 
F-Line: Valid EA Field Does Not Match EA in Op-Word 

Write to Previously Evaluated Effective Address 
Protocol: If Used with Conditional Instruction 

MOTOROLA 
10-46 

Protocol F-Line Other 

x 

x 

x 
x 

x 

x 

x 

MC68030 USER'S MANUAL 



Table 10-6. Exceptions Related to Primitive Processing (Continued) 

Primitive 

Busy 

Take Address and Transfer Data* 

Transfer To/From Top-of-Stack* 
Protocol: Length Field Other Than 1, 2, or 4 

Transfer To/From Main Processor Register* 

Transfer To/From Main Processor Control Register 
Protocol: Invalid Control Register Select Code 

Transfer Multiple Main Processor Registers* 

Transfer Multiple Coprocessor Registers 
Protocol: 

1. If Used with Conditional Instructions 
2. Odd Length Value 

F-Line: 
1. EA Not Control Alterable or (An)+ for CP to Memory Transfer 
2. EA Not Control Alterable or -(An) for Memory to CP Transfer 

Transfer Status and/or ScanPC 
Protocol: If Used with Conditional Instruction 
Other: 

1. Trace - Trace Made Pending if MC68020 in "Trace on Change of Flow" Mode 
and DR=1 

2. Address Error - If Odd value Written to ScanPC 

Take Pre-Instruction, Mid-Instruction, or Post-Instruction Exception 
Exception Depends on Vector Supplies in Primitive 

*Use of this primitive with CA=O will cause protocol violation on conditional instructions. 

Abbreviations: 
EA = Effective Address 
CP = Coprocessor 

Protocol F-Line Other 

x 

x 

x 

x 

x 

x 

x x x 

When the MC68030 detects a protocol violation, it does not automatically notify the co­
processor of the resulting exception by writing to the control CIR. The exception handling 
routine may, however, use the MOVES instruction to read the response CIR and thus 
determine the primitive that caused the MC68030 to initiate protocol violation exception 
processing. The main processor initiates exception processing using the mid-instruction 
stack frame (refer to Figure 10-43) and the coprocessor protocol violation exception vector 
number 13. If the exception handler does not modify the stack frame, the main processor 
reads the response CIR again following the execution of an RTE instruction to return from 
the exception handler. This protocol allows extensions to the M68000 coprocessor interface 
to be emulated in software by a main processor that does not provide hardware support 
for these extensions. Thus, the protocol violation is transparent to the coprocessor if the 
primitive execution can be emulated in software by the main processor. 

10.5.2.2 F-LINE EMULATOR EXCEPTIONS. The F-line emulator exceptions detected by the 
MC68030 are either explicitly or implicitly related to the encodings of F-line operation words 
in the instruction stream. If the main processor determines that an F-line operation word 
is not valid, it initiates F-line emulator exception processing. Any F-line operation word 
with bits [8:6) = 110 or 111 causes the MC68030 to initiate exception processing without 
initiating any communication with the coprocessor for that instruction. Also, an operation 
word with bits [8:6) = 000101 that does not map to one of the valid coprocessor instructions 
in the instruction set (SECTION 3 INSTRUCTION SET SUMMARY) causes the MC68030 to 
initiate F-line emulator exception processing. If the F-line emulator exception is either of 

MC68030 USER'S MANUAL MOTOROLA 
10-47 

-



-

these two situations, the main processor does not write to the control CIR prior to initiating 
exception processing. 

F-line exceptions can also occur if the operations requested by a coprocessor response 
primitive are not compatible with the effective address type in bits [0-5] of the coprocessor 
instruction operation word. The F-line emulator exceptions that can result from the use of 
the M68000 coprocessor response primitives are summarized in Table 10-6. lfthe exception 
is caused by receiving an invalid primitive, the main processor aborts the coprocessor 
instruction in progress by writing an abort mask (refer to 10.3.2 Control CIR) to the control 
CIR prior to F-line emulator exception processing. 

Another type of F-line emulator exception occurs when a bus error occurs during the 
coprocessor interface register access that initiates a coprocessor instruction. The main 
processor assumes that the coprocessor is not present and takes the exception. 

When the main processor initiates F-line emulator exception processing, it uses the four 
word pre-instruction exception stack frame (refer to Figure 10-41) and the F-line emulator 
exception vector number 11. Thus, if the exception handler does not modify the stack 
frame, the main processor attempts to restart the instruction that caused the exception 
after it executes an RTE instruction to return from the exception handler. 

If the cause of the F-line exception can be emulated in software, the handler stores the 
results of the emulation in the appropriate registers of the programmer's model and in the 
status register field of the saved stack frame. The exception handler adjusts the program 
counter field of the saved stack frame to point to the next instruction operation word and 
executes the RTE instruction. The MC68030 then executes the instruction following the 
instruction that was emulated. 

The exception handler should also check the copy of the status register on the stack to 
determine whether tracing is on. If tracing is on, the trace exception processing should 
also be emulated. Refer to 8.1.7 Trace Exception for additional information. 

10.5.2.3 PRIVILEGE VIOLATIONS. Privilege violations can result from the cpSAVE and 
cpRESTORE instructions and, also, from the supervisor check coprocessor response pri­
mitive. The main processor initiates privilege violation exception processing if it attempts 
to execute either the cpSAVE or cpRESTORE instruction when it is in the user state (S = 0 
in status register). The main processor initiates this exception processing prior to any 
communication with the coprocessor associated with the cpSAVE or cpRESTORE instruc­
tions. 

If the main processor is executing a coprocessor instruction in the user state when it reads 
the supervisor check primitive, it aborts the coprocessor instruction in progress by writing 
an abort mask (refer to 10.3.2 Control CIR) to the control CIR. The main processor then 
performs privilege violation exception processing. 

If a privilege violation occurs, the main processor initiates exception processing using the 
four word pre-instruction stack frame (refer to Figure 10-41) and the privilege violation 
exception vector number 8. Thus, if the exception handler does not modify the stack frame, 
the main processor attempts to restart the instruction during which the exception occurred 
after it executes an RTE to return from the handler. 

MOTOROLA 
10-48 

MC68030 USER'S MANUAL 



10.5.2.4 cpTRAPcc INSTRUCTION TRAPS. If, during the execution of a cpTRAPcc instruc­
tion, the coprocessor returns the TRUE condition indicator to the main processor with a 
null primitive, the main processor initiates trap exception processing. The main processor 
uses the six-word post-instruction exception stack frame (refer to Figure 10-45) and the 
trap exception vector number 7. The scanPC field of this stack frame contains the address 
of the instruction following the cpTRAPcc instruction. The processing associated with the 
cpTRAPcc instruction can then proceed, and the exception handler can locate any imme­
diate operand words encoded in the cpTRAPcc instruction using the information contained 
in the six-word stack frame. If the exception handler does not modify the stack frame, the 
main processor executes the instruction following the cpTRAPcc instruction after it executes 
an RTE instruction to exit from the handler. 

10.5.2.5 TRACE EXCEPTIONS. The MC68030 supports two modes of instruction tracing, 
discussed in 8.1.7 Trace Exception. In the trace on instruction execution mode, the MC68030 
takes a trace exception after completing each instruction. In the trace on change of flow 
mode, the MC68030 takes a trace exception after each instruction that alters the status 
register or places an address other than the address of the next instruction in program 
counter. 

The protocol used to execute coprocessor cpSAVE, cpRESTore, or conditional category 
instructions does not change when a trace exception is pending in the main processor. 
The main processor performs a pending trace on instruction execution exception after 
completing the execution of that instruction. If the main processor is in the trace on change 
of flow mode, and an instruction places an address other than that of the next instruction 
in the program counter, the processor takes a trace exception after it executes the instruc­
tion. 

If a trace exception is not pending during a general category instruction, the main processor 
terminates communication with the coprocessor after reading any primitive with CA=O. 
Thus, the coprocessor can complete a cpGEN instruction concurrently with the execution 
of instructions by the main processor. When a trace exception is pending, however, the 
main processor must ensure that all processing associated with a cpGEN instruction has 
been completed before it takes the trace exception. In this case, the main processor con­
tinues to read the response CIR and service the primitives until it receives either a null, 
CA= 0, PF= 1 primitive or until exception processing caused by a take post-instruction 
exception primitive has completed. The coprocessor should return the null, CA= 0 primitive 
with PF= 0 while it is completing the execution of the cpGEN instruction. The main pro­
cessor may service pending interrupts between reads of the response CIR if IA= 1 in these 
primitives (refer to Table 10-3). This protocol ensures that a trace exception is not taken 
until all processing associated with a cpGEN instruction has completed. 

If T1:TO=01 in the MC68030 status register (trace on change of flow) when a general 
category instruction is initiated, a trace exception is taken for the instruction only when 
the coprocessor issues a transfer status register and scan PC primitive with DR= 1 during 
the execution of that instruction. In this case, it is possible that the coprocessor is still 
executing the cpGEN instruction concurrently when the main processor begins execution 
of the trace exception handler. A cpSAVE instruction executed during the trace on change 
of flow exception handler could thus suspend the execution of a concurrently operating 
cpGEN instruction. 

10.5.2.6 INTERRUPTS. Interrupt processing, discussed in 8.1.9 Interrupt Exceptions, can 
occur at any instruction boundary. Interrupts are also serviced during the execution of a 

MC68030 USER'S MANUAL MOTOROLA 
10-49 

• 



general or conditional category instruction under either of two conditions. If the main 
processor reads a null primitive with CA= 1 and IA= 1, it services .any pending interrupts 
prior to reading the response CIR. Similarly, if a frace exception is pending during cpGEN 
instruction execution and the main processor reads a null primitive with CA=O, IA= 1, and 
PF= 0 (refer to 10.5.2.5 TRACE EXCEPTIONS) the main processor services pending inter­
rupts prior to reading the response CIR again. 

The MC68030 uses the ten-word mid-instruction stack frame when it services interrupts 
during the execution of a general or conditional category coprocessor instruction. Since it 
uses this stack frame, the main processor can perform all necessary processing and then 
return to read the response CIR. Thus, it can continue the coprocessor instruction during 
which the interrupt exception was taken. 

The MC68030 also services interrupts if it reads the not ready format word from the save 
CIR during a cpSAVE instruction. The MC68030 uses the normal four word pre-instruction 
stack frame when it services interrupts after reading the not ready format word. Thus, the 
processor can service any pending interrupts and execute an RTE to return and re-initiate 
the cpSAVE instruction by reading the save CIR. 

10.5.2.7 MAIN PROCESSOR DETECTED FORMAT ERRORS. The MC68030 can detect a 
format error while executing a cpSAVE or cpRESTORE instruction if the length field of a 
valid format word is not a multiple of four bytes in length. If the MC68030 reads a format 
word with an invalid length field from the save CIR during the cpSAVE instruction, it aborts 
the coprocessor instruction by writing an abort mask (refer to 10.3.2 Control CIR) to the 
control CIR and initiates format error exception processing. If the MC68030 reads a format 
word with an invalid length field from the effective address specified in the cpRESTORE 
instruction, the MC68030 writes that format word to the restore CIR and then reads the 
coprocessor response from the restore CIR. The MC68030 then aborts the cpRESTORE 
instruction by writing an abort mask (refer to 10.3.2 Control CIR) to the control CIR and 
initiates format error exception processing. 

The MC68030 uses the four word pre-instruction stack frame and the format error vector 
number 14 when it initiates format error exception processing. Thus, if the exception 
handler does not modify the stack frame, the main processor attempts to restart the in­
struction during which the exception occurred after it executes an RTE to return from the 
handler. 

10.5.2.8 ADDRESS AND BUS ERRORS. Coprocessor instruction related bus faults can occur 
during main processor bus cycles to CPU space to communicate with a coprocessor or 
during memory cycles run as part of the coprocessor instruction execution. If a bus error 
occurs during the coprocessor interface register access that is used to initiate a coprocessor 
instruction, the main processor assumes that the coprocessor is not present and takes an 
F-line emulator exception as described in 10.5.2.2 F-LINE EMULATOR EXCEPTIONS. That 
is, the processor takes an F-line emulator exception when a bus error occurs during the 
initial access to a CIR by a coprocessor instruction. If a bus error occurs on any other 
coprocessor access or on a memory access made during the execution of a coprocessor 
instruction, the main processor performs bus error exception processing as described in 
8.1.2 Bus Error Exceptions. After the exception handler has corrected the cause of the bus 
error, the main processor can return to the point in the coprocessor instruction at which 
the fault occurred. 

MOTOROLA 
10-50 

MC68030 USER'S MANUAL 



An address error occurs if the MC68030 attempts to prefetch an instruction from an odd 
address. This can occur if the calculated destination address of a cp8cc or cpD8cc instruc­
tion is odd, or if an odd value is transferred to the scan PC with the transfer status register 
and the scanPC response primitive. If an address error occurs, the MC68030 performs 
exception processing for a bus fault as described in 8.1.3 Address Error Exception. 

10.5.3 Coprocessor Reset 

Either an external reset signal or a RESET instruction can reset the external devices of a 
system. The system designer can design a coprocessor to be reset and initialized by both 
reset types or by external reset signals only. To be consistent with the MC68030 design, 
the coprocessor should be affected by external reset signals only and not by RESET in­
structions, because the coprocessor is an extension to the main processor programming 
model, and to the internal state of the MC68030. 

10.6 COPROCESSOR SUMMARY 

Coprocessor instruction formats are included with the instruction formats in 3.9 INSTRUC­
TION FORMAT SUMMARY. 

The M68000 coprocessor response primitive formats are shown in this section. Any re­
sponse primitive with bits [13:8]=$00 or $3F causes a protocol violation exception. Re­
sponse primitives with bits [13:8] = $08, $18-$18, $1 F, $28-$28, and $38-38 currently cause 
protocol violation exceptions, but are undefined and reserved for future use by Motorola. 

BUSY 

15 14 13 12 11 10 

I 1 PC I 1 0 I 0 I 1 0 I 0 I 0 I 

TRANSFER MULTIPLE COPROCESSOR REGISTERS 

15 14 13 12 11 10 

CA PC DR 0 I 0 I 0 I 0 I 1 

TRANSFER STATUS REGISTER AND SCANPC 

15 14 13 12 11 10 9 8 7 

I CA I PC I DR I 0 I 0 I 0 I 1 I SP I 0 

SUPERVISOR CHECK 

15 14 13 12 11 10 

I 1 PC 0 I 0 I 0 I 1 0 I 0 I 0 I 

MC68030 USER'S MANUAL 

0 I 0 I 0 I 0 

4 

LENGTH 

0 I 0 I 0 I 0 

0 I 0 I 0 I 0 

I 0 I 

I 0 I 

I 0 I 

0 

0 

0 

I 0 

I 0 

I 0 

MOTOROLA 
10-51 

m 



• 

TAKE ADDRESS AND TRANSFER DATA 

15 14 13 12 11 10 

CA PC OR 0 I 0 I 1 I 0 I 1 

TRANSFER MULTIPLE MAIN PROCESSOR REGISTERS 

15 14 13 12 11 10 

CA PC DR 0 I 0 I 1 I 1 0 I 0 I 0 

TRANSFER OPERATION WORD 

15 14 13 12 11 10 

CA PC 0 I 0 I 0 I 1 I 1 1 I 0 I 0 

NULL 

15 14 13 12 11 10 

CA PC 0 I 0 I 1 0 I 0 I IA I 0 I 0 

EVALUATE AND TRANSFER EFFECTIVE ADDRESS 

15 14 13 12 11 10 

CA PC 0 I 0 I 1 0 I 1 0 I 0 I 0 

TRANSFER SINGLE MAIN PROCESSOR REGISTER 

15 14 13 12 11 10 9 8 7 6 

I CA I PC I DR I 0 I 1 I 1 I 0 I 0 I 0 I 0 

TRANSFER MAIN PROCESSOR CONTROL REGISTER 

15 14 13 12 11 10 

CA PC DR I 0 I 1 I 1 0 I 1 

TRANSFER TO/FROM TOP OF STACK 

15 14 13 12 11 10 9 

I CA I PC I DR I 0 I 1 I 1 I 1 I 0 I 

TRANSFER FROM INSTRUCTION STREAM 

15 14 13 12 11 10 

CA PC 0 I 0 I 1 I 1 I 1 I 1 

MOTOROLA 
10-52 

0 I 0 

I 

I 

I 

I 

I 

LENGTH 

0 I 0 I 0 I 0 I 0 I 0 

0 I 0 I 0 I 0 I 0 I 0 

0 I 0 0 I 0 I PF I TF 

0 I 0 I 0 I 0 I 0 I 0 

3 

0 I 0 I 0/A I REGISTER 

0 I 0 I 0 I 0 I 0 I 0 

LENGTH 

LENGTH 

MC68030 USER'S MANUAL 



EVALUATE EFFECTIVE ADDRESS AND TRANSFER DATA 

15 14 13 12 11 10 

CA PC DR 1 I 0 I VALID EA LENGTH 

TAKE PRE-INSTRUCTION EXCEPTION 

15 14 13 12 11 10 

I 0 PC 0 I 1 I 1 I 1 o I o I VECTOR NUMBER 

TAKE MID-INSTRUCTION EXCEPTION 

15 14 13 12 11 10 

0 I PC 0 I 1 I 1 I 1 I 0 I 1 VECTOR NUMBER 

TAKE POST-INSTRUCTION EXCEPTION 

15 14 13 12 11 10 

I 0 PC 0 I 1 I 1 I 1 I 1 o I VECTOR NUMBER 

WRITE TO PREVIOUSLY EVALUATED EFFECTIVE ADDRESS 

15 14 13 12 11 10 

CA PC I 1 o I o I o o I o I LENGTH 

MC68030 USER'S MANUAL MOTOROLA 
10-53 

-



-

MOTOROLA 
10-54 

MC68030 USER'S MANUAL 



SECTION 11 
INSTRUCTION EXECUTION TIMING 

This section describes the instruction execution and operations (table searches, etc.) of the 
MC68030 in terms of external clock cycles. It provides accurate execution and operation 
timing guidelines but not exact timings for every possible circumstance. This approach is 
used since exact execution time for an instruction or operation is highly dependent on 
memory speeds and other variables. The timing numbers presented in this section allow 
the assembly language programmer or compiler writer to predict actual cache-case and 
average no-cache case timings needed to evaluate the performance of the MC68030. Ad­
ditionally, the timings for exception processing, context switching, and interrupt processing 
are included so that designers of multi-tasking or real-time systems can predict task switch 
overhead, maximum interrupt latency, and similar timing parameters. 

In this section, instruction and operation times are shown in clock cycles in order to elim­
inate clock frequency dependencies. 

11.1 PERFORMANCE TRADE-OFFS 

The MC68030 maximizes average performance at the expense of worst case performance. 
The time spent executing one instruction can vary from zero to over 100 clocks. Factors 
affecting the execution time are the preceding and following instructions, the instruction 
stream alignment, residency of operands and instruction words in the caches, residency 
of address translations in the address translation cache, and operand alignment. 

In order to increase the average performance of the MC68030, certain trade-offs were made 
to increase best case performance and to decrease the occurrence of worst case behavior . 
For example, burst filling increases performance by prefetching data for later accesses, 
but it commits the external bus controller and a cache for a longer period. 

The MC68030 can overlap data writes with instruction cache reads, data cache reads, and/ 
or microsequencer execution. Instruction cache reads can be overlapped with data cache 
fills and/or microsequencer activity. Similarly, data cache reads can be overlapped with 
instruction cache fills and/or microsequencer activity. The execution of an instruction that 
only accesses on-chip registers can be overlapped entirely with a concurrent data write 
generated by a previous instruction, if prefetches generated by that instruction are resident 
in the instruction cache. 

11.2 RESOURCE SCHEDULING 

Some of the variability in instruction execution timings results from the overlap of resource 
utilization. The processor can be viewed as consisting of eight independently scheduled 
resources. Since very little of the scheduling is directly related to instruction boundaries, 
it is impossible to make accurate estimates of the time required to execute a particular 

MC68030 USER'S MANUAL MOTOROLA 
11-1 

• 



Ill 

instruction without knowing the complete context within which the instruction is executing. 
The position of these resources within the MC68030 is shown in Figure 11-1. 

11.2.1 Microsequencer 

The microsequencer is either executing microinstructions or awaiting completion of ac­
cesses that are necessary in order to continue executing microcode. The bus controller is 
responsible for all bus activity. The microsequencer controls the bus controller, instruction 
execution, and internal processor operations such as calculation of effective addresses and 
setting of condition codes. The microsequencer initiates instruction word prefetches and 
controls the validation of instruction words in the instruction pipe. 

11.2.2 Instruction Pipe 

The MC68030 contains a three-word instruction pipe where instruction opcodes are de­
coded. As shown in Figure 11-1, instruction words (instruction operation words and all 
extension words) enter the pipe at stage B and proceed to stages C and D. An instruction 
word is completely decoded when it reaches stage D of the pipe. Each of the pipe stages 
has a status bit that reflects whether the word in the stage was loaded with data from a 
bus cycle that was terminated abnormally. Stages of the pipe are only filled in response 
to specific prefetch requests issued by the microsequencer. 

Words are loaded into the instruction pipe from the cache holding register. While the 
individual stages of the pipe are only 16 bits wide, the cache holding register is 32 bits 
wide and contains the entire long word. This long word is obtained from the instruction 
cache or the external bus in response to a prefetch request from the microsequencer. When 
the microsequencer requests an even-word (long-word aligned) prefetch, the entire long 
word is accessed from the instruction cache or the external bus and loaded into the cache 
holding register, and the high-order word is also loaded into stage B of the pipe. The 
instruction word for the next sequential prefetch can then be accessed directly from the 
cache holding register, and no external bus cycle or instruction cache access is required. 
The cache holding register provides instruction words to the pipe regardless of whether 
the instruction cache is enabled or disabled. 

Prefetch requests are submitted to the cache holding register, the instruction cache, and 
the bus controller simultaneously. Thus, even if the instruction cache is disabled, an in­
struction prefetch may hit in the cache holding register and cause an external bus cycle 
to be aborted. 

11.2.3 Instruction Cache 

The instruction cache services the instruction prefetch portion of the microsequencer. The 
prefetch of an instruction that hits in the on-chip instruction cache causes no delay in 
instruction execution since no external bus activity is required for the prefetch. The in­
struction cache also interacts with the external bus during instruction cache fills following 
instruction cache misses. 

11.2.4 Data Cache 

The data cache services data reads and is updated on data writes. Data operands required 
by the execution unit that are accessed from the data cache cause no delay in instruction 

MOTOROLA 
11-2 

MC68030 USER'S MANUAL 



s: 
~ 
00 

~ 
0 

c en 
m 
::11:1 en 
s: 
l> z 
c 
l> ,.... 

$: 
0 
-l 
0 
::0 

__. 0 
-;-',.... 
wl> 

ADDRESS 
BUS 

BUS CONTROLLER 

BUS CONTROL 
SIGNALS 

MICROSEOUENCER AND CONTROL 

UATA 
ADDRESS 

BUS 

Figure·11-1·. Block Diagram - Eight Independent Resources 

I 

CACHE 
HOLDING 
REGISTER 

ICAHR) 

SIZE 

INTERNAL 
DATA 
BUS 

DATA 
BUS 



• 

execution due to external bus activity for the data fetch. The data cache also interacts with 
the external bus during data cache fills following data cache misses. 

11.2.5 Bus Controller Resources 

Prefetches that miss in the instruction cache cause an external memory cycle to be per­
formed. Similarly, when data reads miss in the on-chip data cache, an external memory 
cycle is required. The time required for either of these bus cycles may be overlapped with 
other internal activity. 

The bus controller and microsequencer can operate on an instruction concurrently. The 
bus controller can perform a read or write while the microsequencer controls an effective 
address calculation or sets the condition codes. The microsequencer may also request a 
bus cycle that the bus controller cannot perform immediately. In this case, the bus cycle 
is queued and the bus controller runs the cycle when the current cycle is complete. 

The bus controller consists of the micro bus controller, the instruction fetch pending buffer, 
and the write pending buffer. These three resources carry out all writes and reads that 
miss in the on-chip caches. 

11.2.5.1 INSTRUCTION FETCH PENDING BUFFER. The instruction prefetch mechanism 
includes a single long-word instruction fetch-pending buffer. Interlocks are provided to 
prevent this buffer from being overwritten by an instruction prefetch request before a 
previously requested prefetch is completed. 

11.2.5.2 WRITE PENDING BUFFER. The MC68030 incorporates a single write pending buffer, 
allowing the microsequencer to continue execution after the request for a write cycle 
proceeds to the bus controller. Interlocks prevent the microsequencer from overwriting 
this buffer. 

11.2.5.3 MICRO BUS CONTROLLER. The micro bus controller performs the bus cycles issued 
to the bus controller by the rest of the processor. It implements any dynamic bus sizing 
required and also controls burst operations. 

When prefetching instructions from external memory, the micro bus controller utilizes 
long-word read cycles. The processor reads two words, which may load two instructions 
at once or two words of a multi-word instruction into the cache holding register (and the 
instruction cache if it is enabled and not frozen). A special case occurs when prefetch, that 
corresponds to an instruction word at an odd-word boundary, is not found in the cache 
holding register (e.g., due to a branch to an odd-word location) with an instruction cache 
miss. From a 32-bit memory, the MC68030 reads both the even and odd words associated 
with the long-word base address in one bus cycle. From an 8- or 16-bit memory, the 
processor reads the even word before the odd word. Both the even and odd word are 
loaded into the cache holding register (and the instruction cache if it is enabled and not 
frozen). 

11.2.6 Memory Management Unit 

The MC68030 includes a memory management unit (MMU) thattranslates logical addresses 
to physical addresses for external accesses when required. The MMU uses an address 

MOTOROLA 
11-4 

MC68030 USER'S MANUAL 



translation cache (ATC) to store recently-used translations. When the physical address 
corresponding to a logical address resides in the ATC, the address translation time is 
completely overlapped with on-chip cache accesses and has no effect on instruction timing. 

When the ATC does not contain the translation for a logical address, the processor performs 
a table search operation to external memory. The amount of time required for a table 
search depends on the structure of the address translation tree and whether a non-resident 
portion of the translation tree is required. 

The MMU supports demand-paged virtual memory. When a table search terminates with 
an exception, indicating that the requested instruction or data is not resident, additional 
time to bring the appropriate page into memory is required. The time required is dependent 
on the handling routine for the exception. 

11.3 INSTRUCTION EXECUTION TIMING CALCULATIONS 

The instruction-cache case timing, overlap, average no-cache case timing, and actual in­
struction-cache case execution time calculations are discussed in the following paragraphs. 

11.3.1 Instruction-Cache Case 

The instruction-cache case time (CC) for an instruction is the total number of clock periods 
required to execute the instruction, provided all the corresponding instruction prefetches 
are resident in the on-chip instruction cache. All bus cycles are assumed to take two clock 
periods. The instruction-cache case time does not assume any overlap with other instruc­
tions nor does it take into account hits in the on-chip data cache. The overall instruction­
cache case time for some instructions is divided into the instruction-cache case time for 
the required effective address calculation (CCea) and the instruction-cache case time for 
the remainder of the operation (CCop). The instruction-cache case times for all instructions 
and addressing modes are listed in the tables of 11.6 INSTRUCTION TIMING TABLES. 

11.3.2 Overlap and Best Case 

Overlap is the time, measured in clock periods, that an instruction executes concurrently 
with the previous instruction. In Figure 11-2, a portion of instructions A and B execute 
simultaneously. The overlap time decreases the overall execution time for the two instruc­
tions. Similarly, an overlap period between instructions B and C reduces the overall exe­
cution time of these two instructions. 

r ---- INSTRUCTION A ---"""4 

~ - - - - INSTRUCTION B ----1 

r ----INSTRUCTION C ---"""4 

OVERLAP OVERLAP 

Figure 11-2. Simultaneous Instruction Execution 

MC68030 USER'S MANUAL MOTOROLA 
11-5 

Ill 



.. 

Each instruction contributes to the total overlap time. As shown in Figure 11-2, a portion 
of time at the beginning of the execution of instruction B can overlap the end of the 
execution time of instruction A. This time period is called the head of instruction B. The 
portion of time at the end of instruction A that can overlap the beginning of instruction B 
is called the tail of instruction A. The total overlap time between instructions A and B 
consists of the lesser of the tail of instruction A or the head of instruction B. Refer to the 
instruction timing tables in 11.6 INSTRUCTION TIMING TABLES for head and tail times. 

Figure 11-3 shows the timing relationship of the factors that comprise the instruction-cache 
case time for either an effective address calculation (CCea) or for an operation (CCop). In 
Figure 11-12, the best-case execution time for instruction B occurs when the instruction­
cache case times for instruction B and instruction A overlap so that the head of instruction 
B is completely overlapped with the tail of instruction A. 

HEAD 

CACHE CASE 

READ/WRITE BUS 
TIME OR SYNC 

JJCOOE TIME 

BEST CASE 

WRITE BUS TIME 

TAIL 

Figure 11-3. Derivation of Instruction Overlap Time 

The nature of the instruction overlap and the fact that the heads of some instructions equal 
the total instruction-cache case time for those instructions makes a zero net execution time 
possible. The execution time of an instruction is completely absorbed by overlap with the 
previous instruction . 

11.3.3 Average No-Cache Case 

The average no-cache case (NCC) time for an instruction takes into account the time re­
quired for the microcode to execute plus the time required for all external bus activity. 
This time is calculated assuming both caches miss and the associated instruction prefetches 
require one external bus cycle per two instruction prefetches. Refer to 11.2.2 Instruction 
Pipe. The average no-cache case time also assumes no overlap. All bus cycles are assumed 
to take two clock periods. Average no-cache case times for instructions and effective 
address calculations are listed in 11.6 INSTRUCTION TIMING TABLES. Because the no­
cache case times assume no overlap, the head and tail values listed in these tables do 
not apply to the no-cache case values. 

Since the actual no-cache case time depends on the alignment of prefetches associated 
with an instruction, both alignment cases were considered and the value shown in the 
table is the average of the odd-word-aligned case and the even-word-aligned case (rounded 
up to an integral number of clocks). Similarly, the number of prefetch bus cycles is the 
average of these two cases rounded up to an integral number of bus cycles. 

MOTOROLA 
11-6 

MC68030 USER'S MANUAL 



The effect of instruction alignment on timing is illustrated by the following example. The 
assumptions referred to in 11.6 INSTRUCTION TIMING TABLES apply. Both the data cache 
and instruction cache miss on all accesses. 

1. 
2. 

MOVE.L 
CMPl.W 

Instruction 
(d15,An,Dn),Dn 
#<data>.W,(d15,An) 

The instruction stream is positioned with even alignment in 32-bit memory as: 

Address n 
n+4 
n+8 
n + 12 

MOVE 
d15 

#(data.W) 
... 

EA Ext 
CMPI 
d15 
. .. 

Figure 11-4 shows processor activity for even alignment of the given instruction stream. 
It shows the activity of the external bus, the bus controller, and the sequencer. 

CLK 

BUS 
ACTIVITY 

BUS 
CONTROLLER 

SEQUENCER 

IDLE 

I( PREFETCH f---REA_o_t PREFETCH >i 

l PREFETCH 1 READ FROM PRE FETCH 
n+B (d15.An,Dn) n+ 12 

CALCULATE AND FETCH 
PERFORM 

SOURCE EA 
MOVE 

FOR MOVE 

10 11 12 13 14 15 16 

1
(..__R_EAO---Jt PREFETCH >i 

IDLE l READ FROM PRE FETCH 
IDLE ld15.An) n+ 16 

CALCULATE AND FETCH PERFORM 
SOURCE EA IDLE 

CMPI 
FOR CMPI 

INSTRUCTION 
EXECUTION 

TIME 
MOVE.L ld15,An,Dn),Dn CMPl.W #(data).W,(d15.An) 

CLK 
COUNT 

LEGEND: 
MOVE.L ld15,An,Dn),Dn C=:J 

#(data).W,(d15.Anl C=:J 

Figure 11-4. Processor Activity- Even Alignment 

Figure 11-5 shows processor activity for odd alignment. The instruction stream is positioned 
in 32-bit memory as: 

Address n 
n+4 
n+8 
n+ 12 

.. ' 

EA Ext 
CMPI 
d15 

MOVE 
d15 

#(data.W) 
... 

Comparing the two alignments, the execution time of the MOVE instruction is eight clocks 
for even alignment and ten clocks for odd alignment, an average of nine clocks. Referring 

MC68030 USER'S MANUAL MOTOROLA 
11-7 

• 



• 

10 11 12 13 14 15 16 

CLK 

BUS 
ACTIVITY 1( READ f PREFETCH )I 

1
( PREFETCH t'--RE_Ao__,t PREFETCH >i 

BUS 
CONTROLLER 

SEQUENCER 

INSTRUCTION 
EXECUTION 

TIME 

CLK 
COUNT 

IDLE I READ FROM PREFETCH 
IDLE PREFETCH I READ FROM PREFETCH 

ld15.An,Dnl n+8 n + 12 ld15,An) n + 16 

CALCULATE ANO FETCH PERFORM CALCULATE AND FETCH PERFORM 
SOURCE EA IDLE MOVE SOURCE EA CMPI 
FOR MOVE FOR CMPI 

MOVE.L ld15,An,Dn),On CMPl.W #(data).W,ld15,An) 

~1 
LEGEND: 

MOVE.L ld15,An,Dn),On CJ 
#(data).W,ld15,An) CJ 

Figure 11-5. Processor Activity - Odd Alignment 

to the table in 11.6.6 MOVE Instruction and the table in 11.6.1 Fetch Effective Address, the 
average no-cache case time is 2 + 7 = 9 clocks. A similar calculation can be made of the 
CMPI instruction which has an average no-cache case time of seven clocks. 

The average no-cache case timing rather than the maximum no-cache case timing gives 
a closer approximation of the actual timing of an instruction stream, in many cases. The 
total execution time of the two instructions in the previous example is 16 clocks for both 
even and odd alignment. Adding the average no-cache case timing of the given instructions 
also gives 16 clocks (9+7=16 clocks). It should be noted again that the NCC time assumes 
no overlap. Therefore, the actual execution time of an instruction stream may be less than 
that given by adding the NCC times. To factor in the effect of wait states for the no-cache 
case, refer to 11.5 EFFECT OF WAIT STATES. 

11.3.4 Actual Instruction-Cache Case Execution Time Calculations 

The overall execution time for an instruction may depend on the overlap with the previous 
and following instructions. Therefore, in order to calculate instruction execution time es­
timations, the entire code sequence to be evaluated must be analyzed as a whole. To derive 
the actual instruction-cache case execution times for an instruction sequence (under the 
assumptions listed in 11.6 INSTRUCTION TIMING TABLES), the instruction-cache case 
times listed in the tables must be used and the proper overlap must be subtracted for the 
entire sequence. The formula for this calculation is: 

CC1 + [CC2- min(H2,T1 )] + [(CC3- min(H3,T2ll + ... 
Equation 11-1 

where: 
CCn is the instruction-cache case time for an instruction, 
T n is the tail time for an instruction, 
Hn is the head time for an instruction, and 
min(a,b) is the minimum of parameters a and b. 

MOTOROLA 
11-8 

MC68030 USER'S MANUAL 



The instruction-cache case time for most instructions is composed of the instruction-cache 
case time for the effective address calculation (CCea) overlapped with the instruction-cache 
case time for the operation (CCop). The more specific formula is: 

where: 

CCea1 + [CCop1 -min(Hop1,Tea1 )] + [CCea2-min(Hea2,Top1 )] + 
[CCop2- min(Hop2,Tea2ll + [CCea3-min(Hea3,Top2)J + ... 

Equation 11-2 

CCean is the effective address time for the instruction-cache case, 
CCopn is the instruction-cache case time for the operation portion of an instruction, 
Tean is the tail time for the effective address of an instruction, 
Hopn is the head time for the operation portion of an instruction, 
Topn is the tail time for the operation portion of an instruction, 
Hean is the head time for the effective address of an instruction, and 
min(a,b) is the minimum of parameters a and b. 

The instructions that require the instruction-cache case, head, and tail of an effective ad­
dress (CCea, Hea, and Tea) to be overlapped with CCop, Hop, and Top are footnoted in 
11.6 INSTRUCTION TIMING TABLES. 

The actual instruction-cache case execution time for a stream of instructions can be com­
puted using equation 11-1 or the general equation 11-2. Equation 11-1 is used unless the 
instruction-cache case, head, and tail of an effective address are required. 

An example using a series of instructions that require equation 11-1 to calculate the in­
struction-cache case execution time follows. The assumptions referred to in 11.6 INSTRUC­
TION TIMING TABLES apply. 

Instruction 
1. AOO.L A1,01 
2. SUBA.L 01,A2 

Referring to the timing table in 11.6.8 Arithmetic/Logical Instructions, the head, tail, and 
instruction-cache case (CC) times for AOO.L A 1,01 and SUBA.L 01 ,A2 are found. There is 
no footnote directing the user to add an effective address time for either instruction. Since 
both of the instructions use register operands only, there is no need to add effective address 
calculation times. Therefore, the general equation, 11-1, can be used for both. 

1. AOO.L A1,01 

2. SUBA.L 01 ,A2 

NOTE 

Head 

2 

4 

Tail 

0 

0 

cc 
2 

4 

The underlined numbers show the typical pattern for the comparison of head and 
tail in the following equation. 

The following computations use equation 11-1: 

Execution Time = CC1 + [CC2- min(H2,T1 )] 
= 2 + [4- min(4,0)] 
= 2+ [4-0] 
= 6 clocks 

MC68030 USER'S MANUAL MOTOROLA 
11-9 

Ill 



• 

Instructions that require the addition of an effective address calculation time from an 
appropriate table use the general equation 11-2 to calculate the actual CC time. The CCea, 
Hea, and Tea values must be extracted from the appropriate effective address table (either 
fetch effective address, fetch immediate effective address, calculate effective address, cal­
culate immediate effective address, or jump effective address) as indicated, and included 
in equation 11-2. All of the following instructions except the last require general equation 
11-2. The last instruction uses equation 11-1. 

1. 
2. 
3. 
4. 
5. 

ADD.L 
AND.L 
MOVE.L 
TAS 
NEG 

Instruction 
-(A1),D1 
D1,([A2]) 
(A6),(8,A 1) 
(A3)+ 
D3 

Using the appropriate operation and effective address tables from 11.6 INSTRUCTION 
TIMING TABLES: 

Head Tail cc 
1. ADD.L -(A1),D1 

Fetch Effective Address (fea) -(An) 2 2 4 

ADD EA,Dn 0 0 2 

2. AND.L D1,([A2]) 
fea ([BJ) 4 0 10 

AND Dn,EA 0 3 

3. MOVE.L (A6),(8,A 1) 
tea (An) 3 

MOVE Source,(d16,An) 2 0 4 

4. TAS (A3)+ 
Calc_ulate Effective Address Cea 0 0 2 

(An)+ 

TAS Mem 3 0 12 

5. NEG D3 2 0 2 

The following calculations use equations 11-2 and 11-1: 
Execution Time = CCea1 + [CCop1 - min(Hop1 ,Tea1 )] + [CCea2- min(Hea2,Top1 )] + 

[CCop2- min(Hop2,Tea2ll + [CCea3- min(Hea3,Top2)] + 
[CCop3- min(Hop3,Tea3)] + [CCea4- min(Hop4,Top3)] + 
[CCop4- min(Hop4,Top3)] + [CCop5- min(Hop5,Top4)] 

= 4 + (2- min(0,2)] + [10- min(4,0)] + [3- min(0,0)] + [3- min(1, 1 )] + 
[4- min(2, 1 )] + (2 - min(O,O)] + [12 - min(3,0)] + (2 - min(2,0)] 

= 4+2+10+3+2+3+2+12+2 

= 40 clock periods 

Notice that the last instruction did not require the general equation 11-2 since there were 
no effective address (ea) additions. Therefore, equation 11-1 is used: 

MOTOROLA 
11-10 

MC68030 USER'S MANUAL 



When using the fetch immediate effective address (fiea) or the calculate immediate effective 
address (ciea) tables, the size of the data is significant in the timing calculations. For each 
effective address, a line is listed for word data, #<data>.W, and for long data, #<data>.L. 

The total head of some effective address types extends through the effective address 
calculation and includes the head of the operation. These effective address calculations 
are marked in the head column as follows: 

X+op head 

where: 
X is the head of the effective address alone. 

An example using the fiea table and the X +op head notation is: 

1. 
2. 

EORl.W 
ADDl.L 

1. EORl.W #$400,-(A1) 
fiea #<data>.W,-(An) 

EORI #<data> ,Mem 

2. ADDl.L #$6000FF,D1 
fiea #<data>.L,D1 

ADDI #<data> ,Dn 

Instruction 
#$400,-(A1) 
#$6000FF,D1 

Head 

2 
0 

4+ op head 
6 

2(op head) 

The following calculations use the general equation 11-2: 

Tail 

2 

0 
0 

0 

cc 

4 

3 

4 
4 

2 

Execution Time = CCea1 + [CCop1 - min(Hop1,Tea1l + [CCea2-min(Hea2,Top1 )] + 
[CCop2 - min(Hop2,Tea2ll 

= 4 + (3- min(0,2)] + (4- min(6, 1 )] + (2 - min(2,0)] 

=4+3+3+2 

= 12 clock periods 

Note that for the head of fiea #<data>.L,D1, 4+op head, the resulting head of 6 is larger 
than the instruction-cache case time of the fetch. A negative number for the execution time 
of that portion could result (e.g., 4- min(6,6) = -2). This result would produce the correct 
execution time since the fetch was completely overlapped and the operation was partially 
overlapped by the same tail. No changes in the calculation for the operation execution 
time are required. 

Many two-word instructions (e.g., MULU.L, DIV.L, BFSET, etc.) include the fetch im­
mediate effective address (fiea) time or the calculate immediate effective address (ciea) 
time in the execution time calculation. The timing for immediate data of word length 
(#<data>. W) is used for these calculations. If the instruction has a source and a desti­
nation, the source EA is used for the table lookup. If the instruction is single operand, 
the effective a~dress of that operand is used. 

MC68030 USER'S MANUAL MOTOROLA 
11-11 

• 



• 

The following example includes multi-word instructions that refer to the fetch immediate 
effective address and calculate immediate effective address tables in 11.6 INSTRUCTION 
TIMING TABLES. 

1. 

2. 

3. 

1. MULU.L 
2. BFCLR 
3. DIVS.L 

MULU.L (D7),D1 :D2 
fiea #<data>.W,Dn 

MULL EA, Dn 

BFCLR $6000{0:8} 
fiea #<data>.W,$XXX.W 

BFCLR Mem( <5 bytes) 

DIVS.L #$10000,D3:D4 

Instruction 
(D7),D1 :D2 
$6000{0:8} 
#$10000,D3:D4 

Head 

2+ op head 
4 

2(op head) 

4 

6 

fiea #<data>.W,#<data>.L 6+op head 
6 

DIVS.L EA,Dn O(op head) 

Use the general equation 11-2 to compute: 

Tail cc 

0 2 
0 2 

0 44 

2 6 

0 14 

0 6 
0 6 

0 90 

Execution Time = CCea1 + [CCop1 - min(Hop1,Tea1 )) + [CCea2-min(Hea2,Top1 )) + 
[CCop2- min(Hop2,Tea2ll + [CCea3- min(Hea3,Top2ll + 
[CCop3- min(Hop3,Tea3)) 

= 2+ [44-min(2,0)) + [6-min(4,0)] + [14-min(6,2)) + [6-min(6,0)) + 
[90- min(O,O)] 

= 2 + 44 + 6 + 12 + 6 + 90 

= 160 clock periods 

NOTE 

This CC time is a maximum since the times given for the MULU.L and DIVS.L are 
maximums. 

11.4 EFFECT OF DATA CACHE 

When the data accesses required by an instruction are in the data cache, reading these 
operands requires no bus cycles, and the execution time for the instruction may be min­
imized. Write accesses, however, always require bus cycles, because the data cache is a 
write-through cache. 

The effect of the data cache on operand read accesses can be factored into the actual 
instruction execution time as follows. 

MOTOROLA 
11-12 

MC68030 USER'S MANUAL 



When a data cache hit occurs for the data fetch corresponding to either the fetch effective 
address table or the fetch immediate effective address table in 11.6 INSTRUCTION TIMING 
TABLES, the following rules apply: 

1a. if Tailt=O: No change in timing. 

1 b. if Tai It= 1: Tail= Tailt-1 
CC=CCt-1 

1c. ifTailt>1: Tail=Tailt-(Tailt-1) =1 
CC=CCt-(Tailt-1) 

where: 
Tailt and CCt are the values listed in the tables. 

2. If the EA mode is memory indirect (two data reads), the Tail and CC time are 
calculated as for one data read. 

NOTE 

Data cache hits cannot easily be accounted for in instruction and operation timings 
that include an operand fetch in the CCop (e.g., BFFFO and CHK2). The effect of 
a data cache hit on such CCop's has been ignored for computational purposes. 

RMC cycles (e.g., TAS and CAS) are forced to miss on data cache reads. Therefore, 
a data cache hit has no effect on these instructions. 

The following example assumes data cache hits. The lines that are corrected for data cache 
hits are printed in boldface type. These lines are used to calculate the instruction-cache 
case execution time. References are to the preceding rules. 

1. ADD.L 
2. AND.L 
3. MOVE.L 
4. TAS 

1. ADD.L -(A1),D1 
Fetch Effective Address 
tea -(An) 
*1c 
*ADD EA,Dn 

2. AND.L D1 ,([A2)) 
*1a & 2 fea ([BJ) 
*AND Dn,EA 

3. MOVE.L (A6),(8,A1) 
tea (An) 
*1b 
*MOVE Source, (d15,An) 

4. TAS (A3)+ 
*Cea (An)+ 
*TAS Mem 

*Corrected for data cache hits. 

MC68030 USER'S MANUAL 

Instruction 
-(A1),D1 
D1,([A2)) 
(A6),(8,A 1) 
(A3) 

Head 

2 
2 
0 

4 
0 

1 
2 

0 
0 

Tail 

2-1 
1 
0 

0 
1 

1-1 
0 
0 

0 
0 

cc 

4-1(1/0/0) 
3(1/0/0) 
2(0/0/1) 

10(2/0/0) 
3(0/0/1) 

3-1 (110/0) 
2(1/0/0) 
4(0/0/1) 

2(0/0/0) 
12(1/0/1) 

MOTOROLA 
11-13 

• 



• 

NOTE 

It is helpful to include the number of operand reads and writes along with the 
number of instruction accesses in the CC column for computing the effect of data 
cache hits on execution time. 

The following computations use the general equation 11-2: 

Execution Time = CCea1 + [CCop1 - min(Hop1,Tea1 )] + [CCea2-min(Hea2,Top1)] + 
[CCop2- min(Hop2,Tea2ll + [CCea3- min(Hea3,Top2)] + 
[CCop3- min(Hop3,Tea3)] + [CCea4- min(Hea4,Top3)] + 
[CCop4- min(Hop4,Tea4)] 

= 3+ (2-min(O, 1)] + (10- min(4,0)] + (3-min(O,O)] + [2-min(1,1 )] + 
(4- min(2,0)] + (2- min(O,O)] + (12- min(O,O)] 

=3+2+10+3+1+4+2+12 

= 37 clock periods 

11.5 EFFECT OF WAIT STATES 

The constraints of a system design may require the insertion of wait states in memory 
cycles. When the bus or the memory device requires many wait states, instruction execution 
time is increased. However, one or two wait states may have little effect on instruction 
timing. Often the only effect of one or more wait states is to reduce bus idle time. 

The effect of wait states on data accesses states may be accounted for in the instruction­
cache case timings. 

To add the effect of wait states on data accesses: 

1 a. For non-memory-indirect effective address timings that include an operand 
read, add the number of wait states (in clocks) to the tail and instruction-cache 
case (CC) times. The head is not affected. 

1 b. For memory-indirect effective address timings that use the calculate <ea> 
tables and have only one data read (for the address fetch) add the number of 
wait states to the CC time only. The head and tail are not affected. 

1c. For memory-indirect effective address timings (fetch <ea>) that have two data 
reads (for the address fetch), add the number of wait states for two reads to 
the CC time. Add the number of wait states for one data read to the tail. The 
head is not affected. 

2a. For operation timings that include a data read (e.g., BFFFO) and TAS), add the 
number of wait states to the CC time only. Neither the head nor the tail are 
affected. 

NOTE 

The CC timing and tail of the MOVEM instruction are special cases for both 
data reads and writes. Equations for both the CC timing and the tail as a 
function of wait states are footnoted in the table in 11.6.7 Special Purpose 
MOVE Instruction. 

MOTOROLA 
11-14 

MC68030 USER'S MANUAL 



2b. If the operation has more than one data read, add the total amount of wait 
states for all reads to the CC time. Neither the head nor the tail are affected. 
Refer to preceding note. 

3a. For operation timings that include a data write, the number of wait states is 
added to the tail and the CC time. The head is not affected. Refer to preceding 
note. 

3b. If there is more than one write in the operation, the tail is only increased by 
the wait states for one write. The CC timing is increased by the total amount 
of wait states for all writes. Refer to preceding note. 

The following example calculates the cache-case instruction execution time for the specified 
instruction stream with two wait states (four-clock reads and writes). The lines that are 
corrected for wait states are printed in boldface type and are used to calculate the instruction 
execution time. References are to the preceding rules. 

1. MOVE.L 
2. ADD.L 
3. BFCLR 
4. BFTST 
5. MOVEM 

Wait States = 2 

1. MOVE.L ($800,A2,D3),(A5,D2) 
tea (d15,An,Xn) 
*1a 
MOVE Source,(8) 
*3a 

2. ADD.L D1,([$30,A4]) 
tea ([d15,B]) 
*1c 
ADD Dn,EA 
*3a 

3. BFCLR ($20,A5){1 :5} 
*ciea #<data>.W,(d15,An) 
Single EA Format 
BFCLR Mem (< 5 bytes) 
*2a & 3a 

4. BFTST ($10,A3,D3){31 :31} 
*ciea (d1s,An,Xn) 
BFTST Mem (5 bytes) 
*2b 

5. MOVEM ([A1,D1]),A1-A4 
ciea ([BJ) 
*1b 
MOVEM EA,RL 
*2a & 2b 

*Corrected for wait states. 

MC68030 USER'S MANUAL 

Instruction 
($800,A2,D3),(A5,D2) 
D1 ,([$30,A4]) 
($20,A5){1 :5}- (<5 bytes) 
($10,A3,D3){31 :31}- (5 bytes) 
([A1,D1]),A1-A4 - 4 registers 

Head Tail 

4 0+2 
4 2 
4 0+2 
4 2 

4 0+2 
4 2 
0 1+2 
0 3 

10 0 

6 0+2 
6 2 

14 0 
6 0 
6 0 

6 0 
6 0 
2 0 
2 0 

cc 

6+2(1/0/0) 
8(1/0/0) 

8 + 2(0/0/1) 
10(0/0/1) 

12 + 4(2/0/0) 
16(2/0/0) 

3+ 2(0/0/1) 
5(0/0/1) 

4(0/0/0) 

14 + 4(1/0/1) 
18(1/0/1) 

8(0/0/0) 
14+4(2/0/0) 

18(2/0/0) 

12 + 2(1/0/0) 
14(1/0/0) 

24 + 0(4/0/0) 
24(4/0/0) 

MOTOROLA 
11-15 



• 

NOTE 

It is helpful to include the number of operand read and writes along with the 
number of instruction accesses in the CC column for computing the effect of wait 
states on execution time. 

Using the general equation 11-2, calculate as follows: 

Execution Time = CCea1 + [CCop1 - min(Hop1 ,Tea1 )) + [CCea2- min(Hea2,Top1 )) + 
[CCop2- min(Hop2,Tea2)] + [CCea3- min(Hea3,Top2)] + 
[CCop3- min(Hop3,Tea3)] + [CCea4- min(Hea4,Top3)] + 
[CCop4- min(Hop4,Tea4)] + [CCea5- min(Hea5,Top4)] + 
[CCop5- min(Hop5,Tea5)] 

= 8 + [10- min(4,2)] + [16- min(4,2)] + 
[5- min(0,2)] + [4- min(10,3)] + [18-min(6,0)] + [8-min(14,2)] + 
[18-min(6,0)] + [14-min(6,0)] + 
[24- min(2,0)] 

= 8 + 8 + 14 + 5 + 1 + 18 + 6 + 18 + 14 + 24 

= 116 clock periods 

The next example is the data cache hit example from 11.4 EFFECT OF DATA CACHE with 
two wait states per cycle (four-clock read/write). Hits in the data cache and instruction cache 
are assumed. Three lines are shown for each timing. The first is the timing from the 
appropriate table. The second is the timing adjusted for a data cache hit. The third adds 
wait states only to write operations, since the read operations hit in the cache and cause 
no delay. The third line for each timing is used to calculate the instruction cache execution 
time; it is shown in boldface type. 

1. ADD.L -(A1),D1 
fea -(An) 
* 
** 
ADD.L EA,Dn 
* 
** 

2. AND.L D1,([A1 )) 
fea ([BJ) 
* 
*** 
AND Dn,EA 
* 
** 

MOTOROLA 
11-16 

1. ADD.L 
2. AND.L 
3 . MOVE.L 
4. TAS 

Instruction 
-(A1),D1 
D1,([A2]) 
(A6),(8,A 1) 
(A3)+ 

Head Tail cc 

2 2 4(1/0/0) 
2 1 3(1/0/0) 
2 1 3(1/0/0) 

0 0 2(0/1/0) 
0 0 2(0/1/0) 
0 0 2(0/1/0) 

4 0 10(110/0) 
4 0 10(110/0) 
4 0 12(1/0/0) 

0 1 3(0/0/1) 
0 1 3(0/0/1) 
0 3 5(0/0/1) 

MC68030 USER'S MANUAL 



Head 
3. MOVE.L (A6),(8,A1) 

fea (An) 1 
* 1 
** 1 

MOVE Source,(d16,An) 2 
* 2 
** 2 

4. TAS (A3)+ 
Cea (An) 0 
* 0 
** 0 

TAS Mem 3 
* 3 
** 3 

NOTES: 
*Corrected for data cache hits. 

**Corrected for wait states also (only on data writes). 
***No data cache hit assumed for address fetch. 

Using the general equation 11-2, calculate as follows: 

Tail cc 

1 3(110/0) 
0 2(1/0/0) 
0 2(1/0/0) 

0 4(0/0/1) 
0 4(0/0/1) 
2 6(0/0/1) 

0 2(0/0/0) 
0 2(0/0/0) 
0 2(0/0/0) 

0 12(1/0/1) 
0 12(1/0/1) 
0 14(1/0/1) 

Execution Time = CCea1 + [CCop1 -min(Hea1,Top1 )] + [CCea2-min(Hea2,Top1 )] + 
[CCop2- min(Hop2,Tea2)J + [CCea3- min(Hea3,Top2)J + 
[CCop3- min(Hop3,Tea3)) + [CCea4- min(Hea4,Top3)] + 
[CCop4- min(Hop4,Tea4)] 

= 3 + [2 - min(O, 1 )Jm + [12- min(4,0)) + 
[5-min(O,O)] + [2-min(1,3)] + 
[6- min(2,0)] + [2 - min(0,2)] + 
[14- min(3,0) 

=3+2+12+5+1+6+2+14 

= 45 clock periods 

A similar analysis can be constructed for the average no-cache case. Since the average 
no-cache case time assumes two clock periods per bus cycle (i.e., no wait states), the timing 
given in the tables does not apply directly to systems with wait states. To approximate the 
average no-cache case time for an instruction or effective address with W wait states, use 
the following formula: 

NCC=NCCt+(# of data reads and writes)•W+(max. #of instruction accesses)•W 

where: 

NCCt is the no-cache case timing value from the appropriate table. 

The number of data reads, data writes, and maximum instruction accesses are found 
in the appropriate table. 

The average no-cache case timing obtained from this formula is equal to or greater than 
the actual no-cache case timing since the number of instruction accesses used is a max­
imum (the values in the tables are always rounded up) and no overlap is assumed. 

MC68030 USER'S MANUAL MOTOROLA 
11-17 



-

11.6 INSTRUCTION TIMING TABLES 

All the following assumptions apply to the times shown in the tables in this section: 
• All memory accesses occur with two clcick bus cycles and no wait states. 
• All operands in memory, including the system stack, are long word aligned. 
• A 32-bit bus is used for communications between the MC68030 and system memory. 
• The data cache is not enabled. 
• No exceptions occur (except as specified). 
• Required address translations for all external bus cycles are resident in the address 

translation cache. 

Four values are listed for each instruction and effective address: 
1. Head, 
2. Tail, 
3. Instruction-cache case (CC) when the instruction is in the cache but has no overlap, 

and 
4. Average no-cache case (NCC), when the instruction is not in the cache or the cache 

is disabled and there is no instruction overlap. 

The only instances for which the size of the operand has any effect are the instructions 
with immediate operands and the ADDA and SUBA instructions. Unless specified other­
wise, immediate byte and word operands have identical execution times. 

The instruction-cache case and average no-cache case columns of the instruction timing 
tables contain four sets of numbers, three of which are enclosed in parentheses. The outer 
number is the total number of clocks for the given cache case and instruction. The first 
number inside the parentheses is the number of operand read cycles performed by the 
instruction. The second value inside the parentheses is the maximum number of instruction 
bus cycles performed by the instruction, including all prefetches to keep the instruction 
pipe filled. Becc;iuse the second value is the average of the odd-word-aligned case and the 
even-word-aligned case (rounded up to an integral number of bus cycles), it is always 
greater than or equal to the actual number of bus cycles (one bus cycle per two instruction 
prefetches). The third value within the parentheses is the number of write cycles performed 
by the instruction. One example from the instruction timing table is: 

Total Number of Clocks ____ T .... 21 r 
Number of Read Cycles -

3 I O) 

Maximum Number of Instruction Access Cycles ________ __. 

Number of Writes Cycles -----------' 

The total numbers of bus activity clocks and internal clocks (not overlapped by bus activity) 
·of the instruction in this example are derived as follows: 

(2 Reads•2 Clocks/Read)+ (3 Instruction Accesses•2 Clocks/Access)+ 
(O Writes•2 Clocks/Write)= 10 Clocks of Bus Activity 

MOTOROLA 
11-18 

21 Total Clocks-10 Bus Activity Clocks= 11 Internal Clocks 

MC68030 USER'S MANUAL 



The example used here is taken from a no cache-case 'fetch effective address' time. The 
addressing mode is ([d32,BJ,l,d32). The same addressing mode under the instruction-cache 
case execution time entry is 18(2/0/0). For the instruction-cache case execution time, no 
instruction accesses are required because the cache is enabled, and the sequencer does 
not have to access external memory for the instruction words. 

The first five timing tables deal exclusively with fetching and calculating effective addresses 
and immediate operands. The remaining tables are instruction and operation timings. Some 
instructions use addressing modes that are not included in the corresponding instruction 
timings. These cases refer to footnotes that indicate the additional table needed for the 
timing calculation. All read and write accesses are assumed to take two clock periods. 

11.6.1 Fetch Effective Address (fea) 

The fetch effective address table indicates the number of clock periods needed for the 
processor to calculate and fetch the specified effective address. The effective addresses 
are divided by their formats (refer to 2.5 Effe~ive Address Encoding Summary). For in­
struction-cache case and for no-cache case, the total number of clock cycles is outside the 
parentheses. The number of read, prefetch, and write cycles are given inside the paren­
theses as (r/p/w). The read, prefetch, and write cycles are included in the total clock cycle 
number. 

All timing data assumes two clock reads and writes. 

Address Mode Head 

SINGLE EFFECTIVE ADDRESS INSTRUCTION FORMAT 

% On -
% An -

(An) 1 

(An)+ 0 

-(An) 2 

(dtJ!.An) or (<!J..6!.PC) 2 

(xxx).W 2 

(xxx).L 1 

#(data).B 2 

#(data}.W 2 

#(data).L 4 

BRIEF FORMAT EXTENSION WORD 

I (da.An,Xn) or (da,PC,Xn) 4 

FULL FORMAT EXTENSION WORD(S) 

(~An) or (<!J..6!.PC) 2 

ldi£,An,Xn) or l<!J..6!.PC,Xn) 4 

U<!J..6!.An)) or U<!J..6!.PC)) 2 

U<!J..6!.An),Xn) or U<!.1.fuPCJ,Xn) 2 

U<!J..6!.An).~ or ([~PC).~ 2 

U<!J..6!.An],Xn,~ or ([~PC],Xn.~ 2 

U<!J..6!.AnJ,<!32) or ([~PC),~ 2 

([<!J..6!.An],Xn.~ or ([~PC],Xn,<!32) 2 

(8) 4 

(~Bl 4 

(c:IJ2,B) 4 

MC68030 USER'S MANUAL 

Tail I I-Cache Case I No-Cache Case I 

- 0 (0/0/0) 

- 0 (0/0/0) 

1 3 (1/0/0) 

1 3 (1/0/0) 

2 4 (1/0/0) 

2 4 (1/0/0) 

2 4 (1/0/0) 

0 4 (1/0/0) 

0 2 (0/0/0) 

0 2 (0/0/0) 

0 4 (0/0/0) 

2 6 (1/0/0) 

0 6 (1/0/0) 

0 6 (1/0/0) 

0 10 (2/0/0) 

0 10 (210/0) 

0 12 (210/0) 

0 12 (2/0/0) 

0 12 (210/0) 

0 12 (2/0/0) 

0 6 (1/0/0) 

0 8 (1/0/0) 

0 12 (1/0/0) 

0 (0/0/0) 

0 (0/0/0) 

3 (1/0/0) 

3 (1/0/0) 

4 (1/0/0) 

4 (1/1/0) 

4 (1/1/0) 

5 (1/1/0) 

2 (0/1/0) 

2 (0/1/0) 

4 (0/1/0) 

6 (1/1/0) 

7 (1/1/0) 

7 (1/1/0) 

10 (211/0) 

10 (211/0) 

13 (21210) 

13 (21210) 

14 (2/2/0) 

14 (2/210) 

7 (1/1/0) 

10 (111/0) 

13 (1/210) 

MOTOROLA 
11-19 



-

11.6.1 Fetch Effective Address (fea) (Continued) 

Address Mode Head Tail 

FULL FORMAT EXTENSION WORD(S) (CONTINUED) 

([BJ) 4 0 

([B],I) 4 0 

([BJ,d'!Q) 4 0 

([BJ,1.C!N) 4 0 

([B],d32) 4 0 

([BJ.1,<!32) 4 0 

([<!1.fi.BJ) 4 0 

([<!1fi,BJ.I) 4 0 

([ <!lfi.B l.cti£) 4 0 

([dj_5,B],I,~ 4 0 

([<!1.fi.BJ.~ 4 0 

([<!1fi,Bl.1.~) 4 0 

([~,BJ) 4 0 

([~BJ.I) 4 0 

([~B],C!N) 4 0 

([~B].l,d'!Q) 4 0 

([~BJ.<!32) 4 0 

([~Bl.I.~) 4 0 

B = Base Address; 0, An, PC, Xn, An+ Xn, PC+ Xn. Form does not affect timing. 
I= Index; 0, Xn 

%= No Clock Cycles incurred by Effective Address Fetch. 

I-Cache Case I No-Cache Case 

10 (2/0/0) 10 (2/1/0) 

10 (2/0/0) 10 (2/1/0) 

12 (2/0/0) 13 (2/1/0) 

12 (2/0/0) 13 (2/1/0) 

12 (2/0/0) 14 (2/2/0) 

12 (2/0/0) 14 (2/2/0) 

12 (2/0/0) 13 (2/1/0) 

12 (2/0/0) 13 (2/1/0) 

14 (2/0/0) 16 (2/2/0) 

14 (2/0/0) 16 (2/2/0) 

14 (2/0/0) 17 (2/2/0) 

14 (2/0/0) 17 (2/2/0) 

16 (2/0/0) 17 (2/2/0) 

16 (2/0/0) 17 (2/2/0) 

18 (2/0/0) 20 (2/2/0) 

18 (2/0/0) 20 (2/2/0) 

18 (2/0/0) 21 (2/3/0) 

18 (2/0/0) 21 (2/3/0) 

NOTE: Xn cannot be in B and I at the same time. Scaling and size of Xn does not affect timing. 

11.6.2 Fetch Immediate Effective Address (fiea) 

The fetch immediate effective address table indicates the number of clock periods needed 
for the proces~or to fetch the immediate source operand and to calculate and fetch the 
specified destination operand. In the case of two word instructions, this table indicates the 
number of clock periods needed forthe processor to fetch the second word of the instruction 
and to calculate and fetch the specified source operand or single operand. The effective 
addresses are divided by their formats (refer to 2.5 Effective Address Encoding Summary). 
For instruction-cache case and for no-cache case, the total number of clock cycles is outside 
the parentheses. The number of read, prefetch, and write cycles are given inside the 
parentheses as {r/p/w). The read, prefetch, and write cycles are included in the total clock 
cycle number. 

All timing data assumes two clock reads and writes. 

Address Mode 

SINGLE EFFECTIVE ADDRESS INSTRUCTION FORMAT 

% #(data).W,Dn 

% #(data).L,Dn 

#(data).W,(An) 

#(data).L,(An) 

#(data).W,(An) + 

#(data).L,(An) + 

#(data).W, - (An) 

MOTOROLA 
11-20 

Head 

2+op head 

4+op head 

1 

1 

2 

4 

2 

Tail I-Cache Case I No-Cache Case 

0 2 101010) 2 (0/1/0) 

0 4 101010) 4 (0/110) 

1 3 11/0/0) 4 (1/1/0) 

0 4 (1/0/0) 5 (1/1/0) 

1 5 11/0/0) 5 (1/1/0) 

1 7 (1/0/0) 7 (1/1/0) 

2 411/0/0) 4 (1/1/0) 

MC68030 USER'S MANUAL 



11.6.2 Fetch Immediate Effective Address (fiea) (Continued) 

Address Mode Head Tail 

SINGLE EFFECTIVE ADDRESS INSTRUCTION FORMAT (CONTINUED) 

#(data).L, - (An) 2 0 

#(data).W,(<!.J..fuAn) 2 0 

#(data).L,(<!.J..fuAn) 4 0 

#(data).W,$XXX.W 4 2 

#(data).L,$XXX.W 6 2 

#(data).W,$XXX.L 3 0 

#(data).L,$XXX.L 5 0 

#(data).W,#(data).L 6+op head 0 

BRIEF FORMAT EXTENSION WORD 

#(data).W,(da.An,Xn) or (d ,PC,Xn) 6 2 

#(data).L,(d8.An,Xn) or (d ,PC,Xn) 8 2 

FULL FORMAT EXTENSION WORD(S) 

#(data).W,(dt6'An) or (dt6'PC) 4 0 

#(data).L,(dj_fuAn) or (C!lfuPC) 6 0 

#(data).W,(C!lfuAn,Xn) or (cti£,PC,Xn) 6 0 

#(data).L,(d_lfuAn,Xn) or 1<!16'PC,Xn) 8 0 

#(data).W,([dt6'An]) or ([dw,PCJ) 4 0 

#(data).L,([<!16'An]) or ([dw,PCJ) 6 0 

#(data).W,([dt6'An],Xn) or H<!t6oPCJ,Xn) 4 0 

#(data).L,([dw,An].Xn) or ([d_.lfuPC].Xn) 6 0 

#(data).W,([dw,An].~ or {[<!.J..fuPCJ,d1.2) 4 0 

#(data).L,([dw,An],~ or ([dt6'PCJ,d1.2) 6 0 

#(data).W,([dw,An],Xn,d15) or ([<!16'PC],Xn,~ 4 0 

#(data).L,([dw,An].Xn,d1.2) or ([<!16'PCJ,Xn,d1.2) 6 0 

#(data).W,([dw,Anl.c!3z) or ([~PCJ,d32) 4 0 

#(data).L,([dw,Anl.c!3z) or ([~PCJ,d32) 6 0 

#(data).W,([d15,An],Xn,c!3z) or ([<!16'PC].Xn,c!3_2) 4 0 

#(data).L,([dj_5,An],Xn,c!3z) or ([dj_Q.PC],Xn,c!3z) 6 0 

#(data).W,(8) 6 0 

#(data).L,(8) 8 0 

#(data).W,(C!lfu8) 6 0 

#(data).L,(dt6'8) 8 0 

#(data).W,(c!3_2.8) 10 0 

#(data).L,(~3i.8) 12 0 

#(data).W,([8]) 6 0 

#(data).L,([8]) 8 0 

#(data).W,([8],I) 6 0 

#(data).L,([8],I) 8 0 

#(data).W,([8],<!1.6) 6 0 

#(data). L,( [ 8 J,dJ..6) 8 0 

#(data).W,([8],I,~ 6 0 

#(data).L,([8],l,d 1fil 8 0 

#(data) .W ,([8] .c!3z) 6 0 

#(data).L,([8J,c!3z) 8 0 

#(data).W,([8J,l,c!3z) 6 0 

#(data).L,([8],l,':!Jz1 8 0 

MC68030 USER'S MANUAL 

I-Cache Case I No-Cache Case 

4 (1/0/0) 

4 (1/0/0) 

6 (1/0/0) 

6 (1/0/0) 

8 (1/0/0) 

6 (1/0/0) 

8 (1/0/0) 

6 (0/0/0) 

8 (110/0) 

10 (1/0/0) 

8 (1/0/0) 

10 (1/0/0) 

8 (1/0/0) 

10 (1/0/0) 

12 (2/0/0) 

14 (2/0/0) 

12 (2/0/0) 

14 (2/0/0) 

14 (2/0/0) 

16 (2/0/0) 

14 (2/0/0) 

16 (2/0/0) 

14 (210/0) 

16 (2/0/0) 

14 (2/0/0) 

16 (2/0/0) 

8 (1/0/0) 

10 (1/0/0) 

10 (1/0/0) 

12 (1/0/0) 

14 (1/0/0) 

16 (1/0/0) 

12 (2/0/0) 

14 (2/0/0) 

12 (2/0/0) 

14 (2/0/0) 

14 (2/0/0) 

16 (2/0/0) 

14 (2/0/0) 

16 (2/0/0) 

14 (2/0/0) 

16 (2/0/0) 

14 (2/0/0) 

16 (2/0/0) 

5 (1/1/0) 

5 (1/1/0) 

8 (1/2/0) 

6 (1/1/0) 

8 (1/2/0) 

7 (1/2/0) 

9 (1/2/0) 

6 (0/2/0) 

8 (112/0) 

10 (1/2/0) 

9 (1/2/0) 

11 (1/2/0) 

9 (1/2/0) 

11 (1/2/0) 

12 (2/2/0) 

14 (2/2/0) 

12 (2/2/0) 

14 (2/2/0) 

15 (2/2/0) 

17 (2/3/0) 

15 (2/2/0) 

17 (2/3/0) 

16 (2/3/0) 

18 (2/3/0) 

16 (2/3/0) 

18 (213/0) 

9 (1/1/0) 

11 (1/2/0) 

12 (1/2/0) 

14 (1/2/0) 

16 (1/2/0) 

18 (1/3/0) 

12 (2/1/0) 

14 (2/2/0) 

12 (2/1/0) 

14 (2/2/0) 

15 (2/2/0) 

17 (2/2/0) 

15 (2/2/0) 

17 (2/2/0) 

16 (212/0) 

18 (2/3/0) 

16 (2/2/0) 

18 (2/3/0) 

MOTOROLA 
11-21 



11.6.2 Fetch Immediate Effective Address (fiea) (Continued) 

Address Mode Head Tail 

FULL FORMAT EXTENSION WORD(S) (CONTINUED) 

#(data).W,([~B]) 6 0 

#(data).L,([~B]) 8 0 

#(data).W,([c:Jia,Bl.11 6 0 

#(data).L,([<!J..6!BJ,ll 8 0 

#(data).W,([<!J..6!BJ,~ 6 0 

#(data).L,({<!J..6!BJ.~ 8 0 

#(data).W,([<!J..6!B],l,'!16! 6 0 

#(data).L,([<!J..6!BJ,l.<!16.! 8 0 

#(data).W,([<!J..6!BJ.~ 6 0 

#(data).L,([<!J..6!BJ.~ 8 0 

#(data).W,([<!J..6!BJ,I,~ 6 0 

#(data).L,([~B],l,<!Jzl 8 0 

#(data).W,([~B]) 6 0 

#(data).L,([~B]) 8 0 

#(data).W,([~Bl.11 6 0 

#(data).L,([~B],I) 8 0 

#(data).W,([~B],djfil 6 0 

#(data).L,({dJ2,BJ,d15) 8 0 

#(data).W,([c1J2.BJ,I,~ 6 0 

#(data).L,({dJ2,B],I,~ 8 0 

#(data).W,([~BJ,<!Jzl 6 0 

#(data).L,([d32.Bl.<!Jzl 8 0 

#(data).W,([~BJ,1,<!Jzl 6 0 

#(data).L,([~B],l,<!Jzl 8 0 

B = Base Address: 0, An, PC, Xn, An+ Xn, PC+ Xn. Form does not affect timing. 
I= Index: 0, Xn 

I.Cache Case I No-Cache Case I 

14 (2/0/0) 15 (2/210) 

16 (210/0) 17 (2/210) 

14 (2/0/0) 15 (2/210) 

16 (210/0) 17 (2/210) 

16 (2/0/0) 18 (2/210) 

18 (210/0) 20 (213/0) 

16 (2/0/0) 18 (2/210) 

18 (210/0) 20 (213/0) 

16 (2/0/0) 19 (2/3/0) 

18 (2/0/0) 21 (2/3/0) 

16 (2/0/0) 19 (213/0) 

18 (2/0/0) 21 (2/3/0) 

18 (2/0/0) 19 (2/210) 

20 (2/0/0) 21 (213/0) 

18 (2/0/0) 19 (21210) 

20 (2/0/0) 21 (213/0) 

20 (210/0) 22 (213/0) 

22 (210/0) 24 (213/0) 

20 (210/0) 22 (2/3/0) 

22 (2/0/0) 24 (213/0) 

20 (210/0) 23 (213/0) 

22 (2/0/0) 25 (214/0) 

20 (210/0) 23 (21310) 

22 (210/0) 25 (21410) 

%= Total Head for Fetch Immediate Effective Address timing includes the Head Time for the Operation. 

NOTE: Xn cannot be. in Band I at the same time. Scaling and size of Xn does not affect timing. 

11.6.3 Calculate Effective Address (cea) 

The calculate effective address table indicates the number of clock periods needed for the 
processor to calculate the specified effective address. Fetch time is only included for the 
first level of indirection on memory indirect addressing modes. The effective addresses 
are divided by their formats (refer to 2.5 Effective Address Encoding Summary). For in­
struction-cache case and for no-cache case, the total number of clock cycles is outside the 
parentheses. The number of read, prefetch, and write cycles are given inside the paren­
theses as (r/p/w}. The read, prefetch, and write cycles are included in the total clock cycle 
number. 

All timing data assumes two clock reads and writes. 

MOTOROLA 
11-22 

MC68030 USER'S MANUAL 



11.6.3 Calculate Effective Address (cea) (Continued) 

Address Mode Head Tail 

SINGLE EFFECTIVE ADDRESS INSTRUCTION FORMAT 

% On - -
% An - -

(An) 2+op head 0 

(An)+ 0 0 

-(An) 2+op head 0 

(dJ.fuAn) or (<!J..2!PC) 2+op head 0 

(xxx).W 2+op head 0 

(xxx).L 4+op head 0 

BRIEF FORMAT EXTENSION WORD 

I (d8,An,Xn) or (d8,PC,Xn) I 4+op head I 0 

FULL FORMAT EXTENSION WORD(S) 

(d...1.fu.An) or (<!J..2!PC) 2 0 

(~An,Xn) or (~PC,Xn) 6+op head 0 

([«!16,An)) or ([d_ifuPCJ) 2 0 

([c:l_i6,AnJ,Xn) or ([d_ifuPC).Xn) 2 0 

([djfuAnJ,dtfil or ([~PC].dtfil 2 0 

([d_ui.AnJ,Xn,c!1s) or ([dj5,PC).Xn,<!12) 2 0 

([dw,AnJ,d:W or ([~PC).~ 2 0 

([~AnJ,Xn,~ or ([~PCJ,Xn,~ 2 0 

(B) 6+op head 0 

(~B) 4 0 

(~B) 4 0 

([BJ) 4 0 

([BJ.I) 4 0 

([BJ,cftfil 4 0 

([B],l,<!12) 4 0 

([BJ.~) 4 0 

([BJ,I,~ 4 0 

([dJ.fuB)) 4 0 

([dJ.fuBl.I) 4 0 

([dJ.fuBl.<!12) 4 0 

([~B].1,cftfil 4 0 

([~BJ,c!a2) 4 0 

([~BJ,l,c!32) 4 0 

([~BJ) 4 0 

([~BJ.I) 4 0 

([~BJ,d15) 4 0 

([ ~ B J.l.d 1fil 4 0 

([~BJ,~) 4 0 

([~BJ.I.~ 4 0 

B; Base address; 0, An, PC, Xn, An+ Xn, PC+ Xn. Form does not affect timing. 
I ; Index; 0, Xn 

% ; No clock cycles incurred by Effective Address Calculation. 

I-Cache Case I No-Cache Case 

0 (0/0/0) 0 (0/0/0) 

0 (0/0/0) 0 (0/0/0) 

2 (0/0/0) 2 (0/0/0) 

2 (0/0/0) 2 (0/0/0) 

2 (0/0/0) 2 (0/0/0) 

2 (0/0/0) 2 (0/1/0) 

2 (0/0/0) 2 (0/1/0) 

4 (0/0/0) 4 (0/1/0) 

4 (0/0/0) 4 (0/1/0) 

6 (0/0/0) 6 (0/1/0) 

6 (0/0/0) 6 (0/1/0) 

10 (1/0/0) 10 (1/1/0) 

10 (1/0/0) 10 (1/1/0) 

12 (1/0/0) 13 (1/2/0) 

12 (1/0/0) 13 (1/2/0) 

12 (1/0/0) 13 (1/2/0) 

12 (1/0/0) 13 (1/2/0) 

6 (0/0/0) 6 (0/1/0) 

8 (0/0/0) 9 (0/1/0) 

12 (0/0/0) 12 (0/2/0) 

10 (1/0/0) 10 (1/1/0) 

10 (1/0/0) 10 (1/1/0) 

12 (1/0/0) 13 (1/1/0) 

12 (1/0/0) 13 (1/1/0) 

12 (1/0/0) 13 (1/2/0) 

12 (2/0/0) 13 (112/0) 

12 (1/0/0) 13 (1/1/0) 

12 (1/0/0) 13 (111/0) 

14 (1/0/0) 16 (1/2/0) 

14 (1/0/0) 16 (1/2/0) 

14 (1/0/0) 16 (1/2/0) 

14 (1/0/0) 16 (1/2/0) 

16 (1/0/0) 17 (1/2/0) 

16 (1/0/0) 17 (1/2/0) 

18 (1/0/0) 20 (1/2/0) 

18 (1/0/0) 20 (1/2/0) 

18 (1/0/0) 20 (113/0) 

18 (1/0/0) 20 (1/3/0) 

NOTE: Xn cannot be in Band I at the same time. Scaling and size of Xn does not affect timing. 

MC68030 USER'S MANUAL MOTOROLA 
11·23 



-

11.6.4 Calculate Immediate Effective Address Mode (ciea) 

The calculate immediate effective address table indicates the number of clock periods 
needed for the processor to fetch the immediate source operand and calculate the specified 
destination effective address. In the case of two word instructions, this table indicates the 
number of clock periods needed for the processor to fetch the second word of the instruction 
and calculate the specified source operand or single operand. Fetch time is only included 
for the first level of indirection on memory indirect addressing modes. The effective ad­
dresses are divided by their formats (refer to 2.5 Effective Address Encoding Summary). 
For instruction-cache case and for no-cache case, the total number of clock cycles is outside 
the parentheses. The number of read, prefetch, and write cycles are given inside the 
parentheses as (r/p/w). The read, prefetch, and write cycles are included in the total clock 
cycle number. 

All timing data assumes two clock reads and writes. 

Address Mode 

SINGLE EFFECTIVE ADDRESS INSTRUCTION FORMAT 

% #(data).W,Dn 

% #(data).l,Dn 

% #(data).W,(An) 

% #(data).L,(Anl 

#(data).W,(An) + 

#(data).L,(An) + 

% #(data).W, - (An) 

% #(data).l, - (An) 

% #(data).W.(d15.Anl 

% #(data).L,(dJ.Q,An) 

% #(data).W,$XXX.W 

% #(data).L,$XXX.W 

% #(data).W,$XXX.L 

% #(data).L,$XXX.L 

BRIEF FORMAT EXTENSION WORD 

% #(data).W,(d .An,Xnl or (ds,PC,Xnl 

% #(data).L,(ds.An,Xn) or (d ,PC,Xn) 

FULL FORMAT EXTENSION WORD(S) 

#(data).W,(<!1£,An) or (d15,PC) 

#(data).L,(d1_6.An) or (d1fi.PC) 

% #(data).W,(d1_6,An,Xn) or (d1_6.PC,Xn) 

% #(data).l,(<!1£,An,Xn) or (d1_6.PC,Xn) 

#(data).W,([<!1£,An]) or ([<!1£,PCJ) 

#(data).L,([<!J..fuAnJ) or ([<!1£,PC]) 

#(data).W,([dJ.fuAn].Xn) or ([<!1£,PCJ,Xn) 

#(data).L,([dJ.fuAn].Xn) or ([<!1£,PC].Xn) 

#(data).W,([<!J..fuAnl.C!lfil or ([dj_5,PCJ.d1fil 

#(data).l,([d15,Anl.dlfil or ([d_16.PCJ,dlfil 

#(data).W,([dj_fuAn],Xn,C!lfil or ([d,J_fuPC],Xn,dlfil 

#(data).l,([<!J..fuAn].Xn,dlfil or ([<!1£,PC],Xn,<!_lfil 

#(data).W,([d,J_fuAn).~) or ([<!1£,PC].~ 

#(data).L,([d,J_fuAn].~ or ([<!1£,PCJ.~ 

#(data).W,([d,J_fuAn],Xn.~) or ([d,J_fuPC],Xn,d3Z1 

MOTOROLA 
11-24 

Head 

2+op head 

4+op head 

2+op head 

4+op head 

2 

4 

2+op head 

4+op head 

4+op head 

6+op head 

4+op head 

6+op head 

6+op head 

8+op head 

6+op head 

8+op head 

4 

6 

8+op head 

10+op head 

4 

6 

4 

6 

4 

6 

4 

6 

4 

6 

4 

Tail I-Cache Case I No-Cache Case 

0 2 (0/0/0) 2 (0/1/0) 

0 4 (0/0/0) 4 (0/1/0) 

0 2 (0/0/0) 2 (0/1/0) 

0 4 (0/0/0) 4 (0/1/0) 

0 4 (0/0/0) 4 (0/1/0) 

0 6 (0/0/0) 6 (0/1/0) 

0 2 (0/0/0) 2 (0/1/0) 

0 4 (0/0/0) 4 (0/1/0) 

0 4 (0/0/0) 4 (0/1/0) 

0 6 (0/0/0) 7 (0/2/0) 

0 4 (0/0/0) 4 (0/1/0) 

0 6 (0/0/0) 6 (0/2/0) 

0 6 (0/0/0) 6 (0/2/0) 

0 8 (0/0/0) 8 (0/2/0) 

0 6 (0/0/0) 6 (0/2/0) 

0 8 (0/0/0) 8 (0/2/0) 

0 8 (0/0/0) 8 (0/2/0) 

0 10 (0/0/0) 10 (0/2/0) 

0 8 (0/0/0) 8 (0/2/0) 

0 10 (0/0/0) 10 (0/2/0) 

0 12 (1/0/0) 12 (1/2/0) 

0 14 (1/0/0) 14 (1/1/0) 

0 12 (1/0/0) 12 (1/2/0) 

0 14 (1/0/0) 14 (1/1/0) 

0 14 (110/0) 15 (1/2/0) 

0 16 (1/0/0) 17 (1/3/0) 

0 14 (110/0) 15 (1/2/0) 

0 16 (110/0) 17 (1/3/0) 

0 14 (110/0) 16 (1/3/0) 

0 16 (1/0/0) 17 (1/3/0) 

0 14 (110/0) 15 (1/3/0) 

MC68030 USER'S MANUAL 



11.6.4 Calculate Immediate Effective Address Mode (ciea) (Continued) 

Address Mode Head Tail I-Cache Case I No-Cache Case 

FULL FORMAT EXTENSION WORD(S} (CONTINUED} 

#(data).L,([ciifuAnJ,Xn,da.2) or ([d15,PC],Xn,dJ2) 6 0 

% #(data).W,(B} 8+op head 0 

% #(data).L,(B} 10+op head 0 

#(data).W,(~B) 6 0 

#(data).L,(d_15,B) 8 0 

#(data).W,(~,B} 6 0 

#(data).L,(d32,Bl 8 0 

#(data).W,([BJ) 6 0 

#(data).L,([B]) 8 0 

#(data).W,([B],I} 6 0 

#(data).L,([B],I} 8 0 

#(data).W,([B],~ 6 0 

#(data).L,([B],d 1fil 8 0 

#(data).W,([BJ,1,dlfil 6 0 

#(data).L,([BJ,I,~ 8 0 

#(data).W,([BJ.<!3_2) 6 0 

#(data).L,([BJ,c!32) 8 0 

#(data).W,([B],1,c!3z) 6 0 

#(data).L,([BJ,1,c!3z) 8 0 

#(data).W,([d15,BJ) 6 0 

#(data).L,([dlfuBll 8 0 

#(data).W,([d15,B],I) 6 0 

#(data).L,([d1_fuB],I) 8 0 

#(data).W,([dt.fuB],qw 6 0 

#(data). L,( [ <!.J..2,B] ,d 1..2) 8 0 

#(data).W,([<!.J..2,BJ,1,dlfil 6 0 

#(data).L,([difuBJ,l,'!.12! 8 0 

#(data).W,([<!.J..2,BJ.c!3z) 6 0 

#(data).L,([<!.J..2,BJ,~2) 8 0 

#(data).W,([~B],1,d:R) 6 0 

#(data).L,([~B],I,~) 8 0 

#(data).W,([~B]) 6 0 

#(data).L,([~B]) 8 0 

#{data).W,([~B],I) 6 0 

#(data).L,([~BJ,I) 8 0 

#(data).W,([~B],d1.2) 6 0 

#(data).L,([~BJ,<!.1_5) 8 0 

#(data).W,([~BJ,l,d1.2) 6 0 

#(data).L,([~B],l,d15) 8 0 

#(data).W,([~BJ,c!3z) 6 0 

#(data).L,([d32,BJ,~2) 8 0 

#(data).W,([d_32,B],l,d32J 6 0 

#(data).L,([dJ2'BJ,l,d32) 8 0 

B = Base address; 0, An, PC, Xn, An+ Xn, PC+ Xn. Form does not affect timing. 
I= Index; 0, Xn 

% = Total Head for Address Timing includes the Head Time for the Operation. 

16 (110/0} 

8 (0/0/0) 

10 (0/0/0} 

10 (0/0/0} 

12 (0/0/0} 

14 (0/0/0} 

16 (0/0/0} 

12 (110/0} 

14 (1/0/0} 

12 (1/0/0} 

14 (1/0/0) 

14 (1/0/0) 

16 (1/0/0} 

14 (1/0/0) 

16 (2/0/0) 

14 (1/0/0} 

16 (1/0/0} 

14 (1/0/0) 

16 (1/0/0) 

14 (1/0/0) 

16 (1/0/0) 

14 (1/0/0) 

16 (1/0/0) 

16 (1/0/0) 

18 (1/0/0) 

16 (1/0/0) 

18 (1/0/0) 

16 (1/0/0) 

18 (1/0/0) 

16 (1/0/0) 

18 (1/0/0) 

18 (1/0/0) 

20 (1/0/0) 

18 (1/0/0) 

20 (1/0/0) 

20 (1/0/0) 

22 (1/0/0) 

20 (1/0/0) 

22 (1/0/0) 

20 (1/0/0) 

22 (110/0) 

20 (1/0/0) 

22 (1/0/0) 

NOTE: Xn cannot be in B and I at the same time. Scaling and size of Xn does not affect timing. 

MC68030 USER'S MANUAL 

17 (1/3/0} 

8 (0/1/0) 

10 (0/2/0} 

11 (0/2/0} 

13 (0/2/0} 

15 (0/2/0} 

17 (0/3/0) 

12 (111/0} 

14 (1/2/0} 

12 (1/1/0) 

14 (1/2/0) 

15 (1/2/0) 

17 (1/2/0} 

15 (1/2/0) 

17 (1/2/0} 

15 (1/2/0} 

17 (1/3/0} 

15 (1/2/0) 

17 (1/3/0) 

15 (1/2/0) 

17 (112/0) 

15 (1/2/0) 

17 (1/2/0) 

18 (1/2/0) 

20 (1/3/0) 

18 (1/2/0) 

20 (1/3/0) 

18 (1/3/0) 

20 (1/3/0) 

18 (1/3/0) 

20 (1/3/0) 

19 (1/2/0) 

21 (1/3/0) 

19 (1/2/0) 

21 (1/3/0) 

22 (1/3/0) 

24 (1/3/0) 

22 (1/3/0) 

24 (1/3/0) 

22 (1/3/0) 

24 (1/4/0) 

22 (1/3/0) 

24 (114/0) 

MOTOROLA 
11-25 



-

11.6.5 Jump Effective Address Mode 

The jump effective address table indicates the number of clock periods needed for the 
processor to calculate the specified effective address for the JMP or JSR instructions. Fetch 
time is only included for the first level of indirection on memory indirect addressing modes. 
The effective addresses are divided by their formats (refer to 2.5 Effective Address Encoding 
Summary). For instruction-cache case and for no-cache case, the total number of clock 
cycles is outside the parentheses. The number of read, prefetch, and write cycles are given 
inside the parentheses as (r/p/w). The read, prefetch, and write cycles are included in the 
total clock cycle number. 

All timing data assumes two clock reads and writes. 

Address Mode Head Tail I-Cache Case I No-cache case I 
SINGLE EFFECTIVE ADDRESS INSTRUCTION FORMAT 

% (An) 2+op head 0 2 (0/0/0) 2 (0/0/0) 

% (<!16,_An) 4+op head 0 4 (0/0/0) 4 (0/0/0) 

% (xxx).W 2+op head 0 2 (0/0/0) 2 (0/0/0) 

% (xxx).L 2+op head 0 2 (0/0/0) 2 (0/0/0) 

BRIEF FORMAT EXTENSION WORD 
J % (dg,An,Xn) or (dg,PC,Xn) J s+op head J 0 6 (0/0/0) 6 (0/0/0) 

FULL FORMAT EXTENSION WORD(S) 
(d..1Ji!An) or (<!16,_PC) 2 0 6 (0/0/0) 6 (0/0/0) 

% (<!J..12,An,Xn) or (<!16,_PC,Xn) 6+op head 0 6 (0/0/0) 6 (0/0/0) 

([<!16,_An)) or ([<!16,_PC)) 2 0 10 (1/0/0) 10 (1/1/0) 

([C!1Jl,An),Xn) or Uciiti.PC),Xn) 2 0 10 (1/0/0) 10 (1/1/0) 

([~AnJ.ciisl or ([d_1_6,PCJ,d1sl 2 0 12 (1/0/0) 12 (1/1/0) 

([~AnJ,Xn,<!Jfil or ([~PCJ,Xn,<!1.fil 2 0 12 (110/0) 12 (1/1/0) 

([<!J..6,_AnJ,<!32) or ([d_ig,PCJ,<!32) 2 0 12 (1/0/0) 12 (1/1/0) 

([<!16,_An],Xn,<!32) or ([<!16,_PC],Xn,<!32) 2 0 12 (110/0) 12 (111/0) 

% (B) 6+op head 0 6 (0/0/0) 6 (0/0/0) 

(<!JfuBl 4 0 8 (0/0/0) 9 (0/1/0) 

(~B) 4 0 12 (0/0/0) 13 (0/1/0) 

([BJ) 4 0 10 (1/0/0) 10 (1/1/0) 

([BJ.II 4 0 10 (1/0/0) 10 (1/1/0) 

([BJ,difil 4 0 12 (1/0/0) 12 (1/1/0) 

([BJ.I.~ 4 0 12 (1/0/0) 12 (1/1/0) 

([BJ,<!32) 4 0 12 (1/0/0) 12 (1/1/0) 

([B],o:!32) 4 0 12 (110/0) 12 (1/1/0) 

([B),l,<!32) 4 0 12 (1/0/0) 12 (1/1/0) 

([djfuB)) 4 0 12 (110/0) 13 (1/1/0) 

([~B),I) 4 0 12 (1/0/0) 13 (1/1/0) 

([~BJ.~ 4 0 14 (1/0/0) 15 (1/1/0) 

([ <!16,_B),l,difil 4 0 14 (1/0/0) 15 (1/1/0) 

([<!16,_Bl.~ 4 0 14 (1/0/0) 15 (1/1/0) 

([ <!16,_BJ,l,<!32) 4 0 14 (1/0/0) 15 (1/1/0) 

([~BJ) 4 0 16 (1/0/0) 17 (1/2/0) 

([~B),I) 4 0 16 (1/0/0) 17 (1/2/0) 

([~32.BJ,djD) 4 0 18 (1/0/0) 19 (1/210) 

([d32.BJ,l.<!1.fil 4 0 18 (1/0/0) 19 (1/210) 

([~BJ.~ 4 0 18 (1/0/0) 19 (1/2/0) 

([~B],1,<!32) 4 0 18 (1/0/0) 19 (1/2/0) 

B= Base address; 0, An, PC, Xn, An+Xn, PC+Xn. Form does not affect timing. 
I= Index; 0, Xn 

% = Total Head for Effective Address Timing includes the Head Time for the Operation. 

NOTE: Xn cannot be in Band I at the same time. Scaling and size of Xn does not affect timing. 

MOTOROLA 
11-26 

MC68030 USER'S MANUAL 



11.6.6 MOVE Instruction 

The MOVE instruction timing table indicates the number of clock periods needed for the 
processor to calculate the destination effective address and perform the MOVE or MOVEA 
instruction, including the first level of indirection on memory indirect addressing modes. 
The fetch effective address table is needed on most MOVE operations (source, destination 
dependent). The destination effective addresses are divided by their formats (refer to 2.5 
Effective Address Encoding Summary). For instruction cache case and for no-cache case, 
the total number of clock cycles is outside the parentheses. The number of read, prefetch, 
and write cycles are given inside the parentheses as (r/p/w). The read, prefetch, and write 
cycles are included in the total clock cycle number. 

All timing data assumes two clock reads and writes. 

MOVE Source.Destination Head 

SINGLE EFFECTIVE ADDRESS INSTRUCTION FORMAT 

MOVE Rn, Dn 2 

MOVE Rn, An 2 

* MOVE EA,An 0 

* MOVE EA,Dn 0 

MOVE Rn.(An) 0 

* MOVE SOURCE, (An) 2 

MOVE Rn.(An)+ 0 

* MOVE SOURCE, (An)+ 2 

MOVE Rn, - (An) 0 

* MOVE SOURCE, -(An) 2 

* MOVE EA, (~An) 2 

* MOVE EA.XXX.W 2 

* MOVE EA,XXX.L 0 

BRIEF FORMAT EXTENSION WORD 

I * MOVE EA, (dg,An,Xn) 4 

FULL FORMAT EXTENSION WORD(S) 

* MOVE EA, (~An) or (~PC) 2 

* MOVE EA, (~An,Xn) or (~PC,Xn) 2 

* MOVE EA, ([<!16.An],Xn) or ([~PC],Xn) 2 

* MOVE EA,([~n],<hfi) or ([~PC],cli6_) 2 

* MOVE EA,([~n],Xn,cljjj_) or ([~PC],Xn,cli6_) 2 

* MOVE EA,([~n],c!a2_) or ([~PC],c!a2_) 2 

* MOVE EA.([~An],Xn,c!a2_) or ([~PC],Xn,c!a2_) 2 

* MOVE EA.(B) 4 

* MOVEEA.(~B) 4 

* MOVE EA.(cJa2,B) 4 

* MOVE EA,([B]) 4 

* MOVE EA,([B],I) 4 

* MOVE EA,([B],<hfi) 4 

* MOVE EA.([B],l,difil 4 

* MOVE EA,([B],<!32) 4 

* MOVE EA,([B],I,~ 4 

* MOVE EA.([~B]) 4 

* MOVE EA,([~B],I) 4 

* MOVE EA,([~Bl.<!16! 4 

* MOVE EA,([~B],1,<!lfil 4 

* MOVE EA,([~B],~ 4 

MC68030 USER'S MANUAL 

Tail 

0 

0 

0 

0 

1 

0 

1 

0 

2 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

I-Cache Case I No-Cache Case I 

2 (0/0/0) 

2 (0/0/0) 

2 (0/0/0) 

2 (0/0/0) 

3 (0/0/1) 

4 (0/0/1) 

3 (0/0/1) 

4 (0/0/1) 

4 (0/0/1) 

4 (0/0/1) 

4 (0/0/1) 

4 (0/0/1) 

6 (0/0/1) 

6 (0/0/1) 

8 (0/0/1) 

8 (0/0/1) 

10 (1/0/1) 

12 (1/0/1) 

12 (1/0/1) 

14 (1/0/1) 

14 (1/0/1) 

8 (0/0/1) 

10 (0/0/1) 

14 (0/0/1) 

10 (1/0/1) 

10 (1/0/1) 

12 (1/0/1) 

12 (1/0/1) 

14 (1/0/1) 

14 (1/0/1) 

12 (1/0/1) 

12 (1/0/1) 

14 (1/0/1) 

14 (1/0/1) 

16 (1/0/1) 

2 (0/1/0) 

2 (0/1/0) 

2 (0/1/0) 

2 (0/110) 

4 (0/1/1) 

5 (0/1/1) 

4 (0/1/1) 

5 (0/1/1) 

4 (0/1/1) 

5 (0/1/1) 

5 (011/1) 

5 (0/111) 

7 (0/211) 

7 (0/1/1) 

9 (0/211) 

9 (0/2/1) 

11 (1/211) 

14 (1/2/1) 

14 (1/211) 

16 (1/3/1) 

16 (1/3/1) 

9 (0/1/1) 

12 (0/211) 

16 (0/2/1) 

11 (1/1/1) 

11 (1/1/1) 

14 (1/2/1) 

14 (1/2/1) 

16 (1/2/1) 

16 (112/1) 

14 (1/211) 

14 (1/211) 

17 (1/211) 

17 (1/2/1) 

19 (1/3/1) 

MOTOROLA 
11-27 



.. 

11.6.6 MOVE Instruction (Continued) 

MOVE Source.Destination 

FULL FORMAT EXTENSION WORD(S) (CONTINUED) 

* . . . 
* . 
* 

Rn 

MOVE EA,([d1.fuB],I,~ 

MOVE EA,([~B)) 

MOVE EA,([~B],I) 

MOVE EA,([~Bl.dl.61 

MOVE EA,([~2.BJ,l,dl.61 

MOVE EA,([~2.BJ.d32_) 

MOVE EA,l[dJ2,B].l,c:Ja2) 

Add Fetch Effective Address Time 
Is a Data or Address Register 

11.6.7 Special Purpose MOVE Instruction 

Head Tail I-Cache Case No-Cache Case 

4 0 16 (1/0/1) 19 (1/3/1) 

4 0 16 (110/1) 18 (1/2/1) 

4 0 16 (110/1) 18 (1/2/1) 

4 0 18 (1/0/1) 21 (1/311) 

4 0 18 (110/1) 21 (1/3/1) 

4 0 20 (1/0/1) 23 (1/3/1) 

4 0 20 (1/0/1) 23 (1/3/1) 

SOURCE Is Memory or Immediate Data Address Mode 
EA Is any Effective Address 

The special purpose MOVE timing table indicates the number of clock periods needed for 
the processor to fetch, calculate, and perform the special purpose MOVE operation on the 
control registers or specified effective address. Footnotes indicate when to account for the 
appropriate effective address times. The total number of clock cycles is outside the paren­
theses. The number of read, prefetch, and write cycles are given inside the parentheses 
as (r/p/w). The read, prefetch, and write cycles are included in the total clock cycle number. 

All timing data assumes two clock reads and writes. 

Instruction 

EXG Ry.Rx 

MOVEC Cr,Rn 

MOVEC Rn.Cr-A 

MOVEC Rn,Cr-8 

MOVE CCR,Dn . MOVE CCR,Mem 

MOVE Dn,CCR . MOVE EA, CCR 

MOVE SR,Dn . MOVE SR,Mem 

# MOVE EA.SR 

O/o + MOVEM EA,RL 

%+ MOVEM RL,EA 

MOVEP.W Dn,(d!.Q,An) 

MOVEP.W (d15,An),Dn 

MOVEP.L Dn,(d!.Q,An) 

MOVEP.L (d15,An),Dn 

% MOVES EA, Rn 

% MOVES Rn,EA 

MOVE USP.An 

MOVE An.USP 

SWAP Dn 

CR -A Control Registers USP, VBR, CAAR, MSP, and ISP + 
CR - B Control Registers SFC, DFC, and CACR 
n Number of Register to Transfer (n>O) 
RL Register List 
* Add Calculate Effective Address Time 
# Add Fetch Effective Address Time 
% Add Calculate Immediate Address Time 

MOTOROLA 
11-28 

Head Tail I-Cache Case No-Cache Case 

4 0 4 (0/0/0) 4 (0/1/0) 

6 0 6 (0/0/0) 6 (0/1/0) 

6 0 6 (0/0/0) 6 (0/1/0) 

4 0 12 (0/0/0) 12 (0/1/0) 

2 0 4 (0/0/0) 4 (0/1/0) 

2 0 4 (0/0/1) 5 {0/1/1) 

4 0 4 (0/0/0) 4 (0/1/0) 

0 0 4 {0/0/0) 4 (0/1/0) 

2 0 4 (0/0/0) 4 (0/1/0) 

2 0 4 (0/0/1) 5 {0/111) 

0 0 8 (0/0/0) 10 (0/2/0) 

2 0 8 + 4n (n/0/0) 8+4n (n/1/0) 

2 0 4 + 2n (0/0/n) 4+ 2n (0/1/n) 

4 0 10 101012) 10 (0/1/2) 

2 0 10 12/0/0) 10 (2/1/0) 

4 0 14 I0/0/4) 14 (011/4) 

2 0 1414/0/0) 14 (4/110) 

3 0 7 11/0/0) 7 (1/1/0) 

2 1 51010/1) 6 (0/1/1) 

4 0 41010/0) 4 (0/1/0) 

4 0 4 (0/0/0) 4 (0/1/0) 

4 0 4 (0/0/0) 4 (011/0) 

MOVEM EA,RL - For n Registers (n > 0) and w Wait States 
I-Cache Case Timing = w,,;;: 2: (8+4n) 

w > 2: l8+4n)+(w-2)n 
Tail= 0 for all Wait States 
MOVEM RL,EA- For n Registers In > 0) and w Wait States 

I-Cache Case Timing = w ,,;;: 2: (4+ 2n) +In -1 )w 
w > 2: (4+2n)+(n-1)w+(w-2) 

Tail= w.;: 2: (n-1)w 
w > 2: (n)w+(n){w-2) 

MC68030 USER'S MANUAL 



11.6.8 Arithmetical/Logical Instructions 

The arithmetical/logical operation timing table indicates the number of clock periods needed 
forthe processor to perform the specified arithmetical/logical instruction using the specified 
addressing mode. Footnotes indicate when to account for the appropriate fetch effective 
address or fetch immediate effective address times. For instruction cache case and for no­
cache case, the total number of clock cycles is outside the parentheses.The number of 
read, prefetch, and write cycles are given inside the parentheses as (r/p/w). The read, 
prefetch, and write cycles are included in the total clock cycle number. 

All timing data assumes two clock reads and writes. 

Instruction 

ADD Rn,Dn 

ADDA.W Rn.An 

ADDA.L Rn.An 

* ADD EA,Dn 

* ADD.W EA.An 

* ADDA.L EA.An 

* ADD Dn,EA 

AND Dn,Dn 

* AND EA,Dn 

* AND Dn,EA 

EOR Dn,Dn 

* EOR Dn,EA 

OR Dn,Dn 

* OR EA,Dn 

* OR Dn,EA 

SUB Rn,Dn 

* SUB EA,Dn 

* SUB Dn,EA 

SUBA.W Rn.An 

SUBA.L Rn.An 

* SUBA.W EA.An 

* SUBA.L EA.An 

CMP Rn,Dn 

* CMP EA,Dn 

CMPA Rn.An 

* CMPA EA.An 

** + CMP2 EA, Rn 

* + MULS.W EA,Dn 
•• + MULS.L EA,Dn 

* + MULU.W EA,Dn 

** + MULU.L EA,Dn 

+ DIVS.W Dn,Dn 

* + DIVS.W EA,Dn 

** + DIVS.L Dn,Dn 

** + DIVS.L EA,Dn 

+ DIVU.W Dn,Dn 

* + DIVU.W EA,Dn 
•• + DIVU.L Dn,Dn 

** + DIVU.L EA,Dn 

*Add Fetch Effective Address Time 
**Add Fetch Immediate Effective Address Time 

MC68030 USER'S MANUAL 

Head Tail l·Cache Case No-Cache Case 

2 0 2 (0/0/0) 2 (0/1/0) 

4 0 4 (0/0/0) 4 (0/1/0) 

2 0 2 (0/0/0) 2 (0/1/0) 

0 0 2 (0/0/0) 2 (0/1/0) 

0 0 4 (0/0/0) 4 (0/1/0) 

0 0 2 (0/0/0) 2 (0/1/0) 

0 1 3 (0/0/1) 4 (0/1/1) 

2 0 2 (0/0/0) 2 (0/1/0) 

0 0 2 (0/0/0) 2 (0/1/0) 

0 1 3 (0/0/1) 4 (0/1/1) 

2 0 2 (0/0/0) 2 (0/1/0) 

0 1 3 (0/0/1) 4 (0/1/1) 

2 0 2 (0/0/0) 2 (0/1/0) 

0 0 2 (0/0/0) 2 (0/1/0) 

0 1 3 (0/0/1) 4 (0/1/1) 

2 0 2 (0/0/0) 2 (0/1/0) 

0 0 2 (0/0/0) 2 (0/1/0) 

0 1 3 (0/0/1) 4 (0/1/1) 

4 0 4 (0/0/0) 4 (0/1/0) 

2 0 2 (0/0/0) 2 (0/1/0) 

0 0 4 (0/0/0) 4 (0/1/0) 

0 0 2 (0/0/0) 2 (011/0) 

2· 0 2 (0/0/0) 2 (0/1/0) 

0 0 2 (0/0/0) 2 (0/1/0) 

4 0 4 (0/0/0) 4 (0/1/0) 

0 0 4 (0/0/0) 4 (0/1/0) 

2 0 20 (1/0/0) 20 (1/1/0) 

2 0 28 (0/0/0) 28 (0/1/0) 

2 0 44 (0/0/0) 44 (0/1/0) 

2 0 28 (0/0/0) 28 (0/1/0) 

2 0 44 (0/0/0) 44 (0/1/0) 

2 0 56 (0/0/0) 56 (0/1/0) 

0 0 56 (0/0/0) 56 (0/1/0) 

6 0 90 (0/0/0) 90 (0/1/0) 

0 0 90 (0/0/0) 90 (0/1/0) 

2 0 44 (0/0/0) 44 (0/1/0) 

0 0 44 (0/0/0) 44 (0/1/0) 

6 0 78 (0/0/0) 78 (0/1/0) 

0 0 78 (0/0/0) 78 (0/1/0) 

+Indicates Maximum Time (Acutal time is data dependent) 

MOTOROLA 
11-29 

• 



-

11.6.9 Immediate Arithmetical/Logical Instructions 

The immediate arithmetical/logical operation timing table indicates the number of clock 
periods needed for the processor to fetch the source immediate data value, and perform 
the specified arithmetic/logical operation using the specified destination addressing mode. 
Footnotes indicate when to account for the appropriate fetch effective or fetch immediate 
effective address times. For instruction-cache case and for no-cache case, the total number 
of clock cycles is outside the parentheses. The number of read, prefetch, and write cycles 
are given inside the parentheses as (r/p/w). The read, prefetch, and write cycles are included 
in the total clock cycle number. 

All timing data assumes two clock reads and writes. 

Instruction 

MOVEQ #(data),Dn 

ADDQ #(data),Rn . ADDQ #(data),Mem 

SUBQ #(data),Rn . SUBQ #(data),Mem .. ADDI #(data),Dn .. ADDI #(data),Mem .. ANDI #(data),Dn .. ANDI #(data),Mem .. EORI #(data),Dn .. EORI #(data),Mem 

** ORI #(data),Dn 

** ORI #(data),Mem .. SUBI #(data),Dn 

** SUBI #(data),Mem 

** CMPI #(data),Dn 

** CMPI #(data),Mem 

•Add Fetch Effective Address Time 
**Add Fetch Immediate Effective Address Time 

MOTOROLA 
11-30 

Head 

2 

2 

0 

2 

0 

2 

0 

2 

0 

2 

0 

2 

0 

2 

0 

2 

0 

Tail I-Cache Case No-Cache Case 

0 2 (0/0/0) 2 (0/1/0) 

0 2 (0/0/0) 2 (0/1/0) 

1 3 (0/0/1) 4 (0/1/1) 

0 2 (0/0/0) 2 (0/1/0) 

1 3 (0/0/1) 4 (0/1/1) 

0 2 (0/0/0) 2 (0/1/0) 

1 3 (0/0/1) 4 (0/1/1) 

0 2 (0/0/0) 2 (0/1/0) 

1 3 (0/0/1) 4 (0/1/1) 

0 2 (0/0/0) 2 (0/1/0) 

1 3 (0/0/1) 4 (0/1/1) 

0 2 (0/0/0) 2 (0/1/0) 

1 3 (0/0/1) 4 (0/1/1) 

0 2 (0/0/0) 2 (0/110) 

1 3 (0/0/1) 4 (0/111) 

0 2 (0/0/0) 2 (0/1/0) 

0 2 (0/0/0) 2 (0/1/0) 

MC68030 USER'S MANUAL 



11.6.10 Binary Coded Decimal and Extended Instructions 

The binary coded decimal and extended instruction table indicates the number of clock 
periods needed for the processor to perform the specified operation using the given ad­
dressing modes. No additional tables are needed to calculate total effective execution time 
for these instructions. For instruction-cache case and for no-cache case, the total number 
of clock cycles is outside the parentheses. The number of read, prefetch, and write cycles 
are given inside the parentheses as (r/p/w). The read, prefetch, and write cycles are included 
in the total clock cycle number. 

All timing data assumes two clock reads and writes. 

Instruction Head 

ABCD Dn,Dn 0 

ABCD - (An), - (An) 2 

SBCD Dn,Dn 0 

SBCD - (An), - (An) 2 

ADDX Dn,Dn 2 

ADDX - (An), - (An) 2 

SUBX Dn,Dn 2 

SUBX -(An),-(An) 2 

CMPM (An)+ ,(An)+ 0 

PACK Dn,Dn,#(data) 6 

PACK - (An), - (An),#(data) 2 

UNPK Dn,Dn,#(data) 8 

UNPK - (An), - (An),#(data) 2 

MC68030 USER'S MANUAL 

Tail I-Cache Case 

0 4 (0/0/0) 

1 13 (210/1) 

0 4 (0/0/0) 

1 13 (2/0/1) 

0 2 (0/0/0) 

1 9 (2/0/1) 

0 2 (0/0/0) 

1 9 (2/0/1) 

0 8 (2/0/0) 

0 6 (0/0/0) 

1 11 (1/0/1) 

0 8 (0/0/0) 

1 11 (1/0/1) 

No-Cache Case 

4 (0/1/0) 

14 (2/1/1) 

4 (0/1/0) 

14 (2/1/1) 

2 (0/1/0) 

10 (2/1/1) 

2 (0/1/0) 

10(2/1/1) 

8 (2/1/0) 

6 (0/1/0) 

11 (1/1/1) 

8 (0/1/0) 

11 (1/111) 

MOTOROLA 
11-31 

• 



Ill 

11.6.11 Single Operand Instructions 

The single operand instructions table indicates the number of clock periods needed for the 
processor to perform the specified operation on the given addressing mode. Footnotes 
indicate when it is necessary to account for the appropriate effective address time. For 
instruction-cache case and for no-cache case, the total number of clock cycles is outside 
the parentheses. The number of read, prefetch, and write cycles are given inside the 
parentheses as (r/p/w). The read, prefetch, and write cycles are included in the total clock 
cycle number. 

All timing data assumes two clock reads and writes. 

Instruction 

CLR Dn 

** CLR Mem 

NEG Dn 

* NEG Mem 

NEGX Dn 

* NEGX Mem 

NOT Dn 

* NOT Mem 

EXT Dn 

NBCD Dn 

Sec Dn 

** Sec Mem 

TAS Dn .. TAS Mem 

TST Dn . TST Mem 

*Add Fetch Effective Address Time 
**Add Calculate Effective Address Time 

MOTOROLA 
11-32 

Head 

2 

0 

2 

0 

2 

0 

2 

0 

4 

0 

4 

0 

4 

3 

0 

0 

Tail l·Cache Case No·Cache Case 

0 2 (0/0/0) 2 (0/1/0) 

1 3 (0/0/1) 4 (0/1/1) 

0 2 (0/0/0) 2 (0/1/0) 

1 3 (0/0/1) 4 (0/1/1) 

0 2 (0/0/0) 2 (0/1/0) 

1 3 (0/0/1) 4 (0/1/1) 

0 2 (0/0/0) 2 (0/1/0) 

1 3 (0/0/1) 4 (0/1/1) 

0 4 (0/0/0) 4 (0/1/0) 

0 6 (0/0/0) 6 (0/1/0) 

0 4 (0/0/0) 4 (0/1/0) 

1 5 (0/0/1) 5 (0/1/1) 

0 4 (0/0/0) 4 (0/1/0) 

0 12 (110/1) 12 (1/1/1) 

0 2 (0/0/0) 2 (0/1/0) 

0 2 (010/0) 2 (0/1/0) 

MC68030 USER'S MANUAL 



11.6.12 Shift/Rotate Instructions 

The shift/rotate instruction table indicates the number of clock periods needed for the 
processor to perform the specified operation on the given addressing mode. Footnotes 
indicate when it is necessary to account for the appropriate effective address time. The 
number of bits shifted does not affect the execution time, unless noted. For instruction­
cache case and for no-cache case, the total number of clock cycles is outside the paren­
theses. The number of read, prefetch, and write cycles are given inside the parentheses 
as (r/p/w). The read, prefetch, and write cycles are included in the total clock cycle number. 

All timing data assumes two clock reads and writes. 

Instruction Head 

LSd #(data),Dy 

% LSd Dx,Dy 

+ LSd Dx,Dy . LSd Mem by 1 

ASL #(data),Dy 

ASL Dx,Dy . ASL Mem by 1 

ASR #(data),Dy 

% ASR Ox, Dy 

+ ASR Dx,Dy . ASR Mem by 1 

ROd #(data),Dy 

ROd Ox, Dy . ROd Mem by 1 

ROXd On . ROXd Mem by 1 

d Is direction of shift/rotate; Lor R 
Add Fetch Effective Address Time 

% Indicates shift count is less than or equal to the size of data 
+ Indicates shift count is greater than size of data 

MC68030 USER'S MANUAL 

4 

6 

8 

0 

2 

4 

0 

4 

6 

10 

0 

4 

6 

0 

10 

0 

Tail I-Cache Case 

0 4 (0/0/0) 

0 6 (0/0/0) 

0 8 (0/0/0) 

0 4 (0/0/1) 

0 6 (0/0/0) 

0 8 (0/0/0) 

0 6 (0/0/1) 

0 4 (0/0/0) 

0 6 (0/0/0) 

0 10 (0/0/0) 

0 4 (0/0/1) 

0 6 (0/0/0) 

0 8 (0/0/0) 

0 6 (0/0/1) 

0 12 (0/0/0) 

0 4 (0/0/0) 

No-Cache Case 

4 (0/1/0) 

6 (0/1/0) 

8 (0/1/0) 

4 (0/1/1) 

6 (0/1/0) 

8 (0/1/0) 

6 (0/1/1) 

4 (0/1/0) 

6 (0/1/0) 

10 (0/1/0) 

4 (0/1/1) 

6 (0/1/0) 

8 (0/1/0) 

6 (0/1/1) 

12 (0/1/0) 

4 (0/110) 

MOTOROLA 
11-33 

• 



• 

11.6.13 Bit Manipulation Instructions 

The bit manipulation instructions table indicates the number of clock periods needed for 
the processor to perform the specified bit operation on the given addressing mode. Foot­
notes indicate when it is necessary to account for the appropriate effective address time. 
For instruction-cache case and for no-cache case, the total number of clock cycles is outside 
the parentheses. The number of read, prefetch, and write cycles are given inside the 
parentheses as (r/p/w). The read, prefetch, and write cycles are included in the total clock 
cycle number. 

All timing data assumes two clock reads and writes. 

Instruction 

BTST #(data),Dn 

BTST Dn,Dn 

# BTST #(data),Mem . BTST Dn,Mem 

BCHG #(data),Dn 

BCHG Dn,Dn 

# BCHG #(data),Mem . BCHG Dn,Mem 

BCLR #(data),Dn 

BCLR Dn,Dn 

# BCLR #(data),Mem . BCLR Dn,Mem 

BSET #(data),Dn 

BSET Dn,Dn 

# BSET #(data),Mem . BSET Dn,Mem 

*Add Fetch Effective Address time 
#Add Fetch Immediate Effective Address time 

MOTOROLA 
11-34 

Head 

4 

4 

0 

0 

6 

6 

0 

0 

6 

6 

0 

0 

6 

6 

0 

0 

Tail I-Cache Case No-Cache Case 

0 4 (0/0/0) 4 (0/1/0) 

0 4 (0/0/0) 4 (0/1/0) 

0 4 (OiO/O) 4 (0/1/0) 

0 4 (0/0/0) 4 (0/1/0) 

0 6 (0/0/0) 6 (0/1/0) 

0 6 (0/0/0) 6 (0/1/0) 

0 6 (0/0/1) 6 (0/1/1) 

0 6 (0/0/1) 6 (0/1/1) 

0 6 (0/0/0) 6 (0/1/0) 

0 6 (0/0/0) 6 (0/1/0) 

0 6 (0/0/1) 6 (0/1/1) 

0 6 (0/0/1) 6 (0/1/1) 

0 6 (0/0/0) 6 (01110) 

0 6 (0/0/0) 6 (01110) 

0 6 (0/0/1) 6 (0/1/1) 

0 6 (0/0/1) 6 (0/1/1) 

MC68030 USER'S MANUAL 



11.6.14 Bit Field Manipulation Instructions ~-

The bit field manipulation instructions table indicates the number of clock~ded 
for the processor to perform the specified bit field operation usi-ng-11'19 given addressing 
mode. Footnotes indicate when it is necessary to account for the appropriate effective 
address time. For instruction-cache case and for no-cache case, the total number of clock 
cycles is outside the parentheses. The number of read, prefetch, and write cycles are given 
inside the parentheses as (r/p/w). The read, prefetch, and write cycles are included in the 
total clock cycle number. 

All timing data assumes two clock reads and writes. 

Instruction Head Tail I-Cache Case No-Cache Case 

BFTST Dn 8 0 8 (0/0/0) 8 (01110) . BFTST Mem (<5 Bytes) 6 0 10 (110/0) 10 (1/1/0) . BFTST Mem (5 Bytes) 6 0 14 (2/0/0) 14 (2/110) 

BFCHG Dn 14 0 14 {0/0/0) 14 (0/1/0) . BFCHG Mem (<5 Bytes) 6 0 14 (1/0/1) 14 (11111) . BFCHG Mem (5 Bytes) 6 0 22 (2/0/2) 22 (2/1/2) 

BFCLR Dn 14 0 14 {0/010) 14 (01110) . BFCLR Mem (<5 Bytes) 6 0 14 (11011) 14 (111/1) . BFCLR Mem (5 Bytes) 6 0 22 (21012) 22 (21112) 

BFSET Dn 14 0 14 (010/0) 14 {0/1/0) . BFSET Mem (<5 Bytes) 6 0 14 (110/1) 14 (11111) . BFSET Mem (5 Bytes) 6 0 22 (210/2) 22 (2/112) 

BFEXTS Dn 10 0 10 (010/0) 10 {0/1/0) . BFEXTS Mem (<5 Bytes) 6 0 12 (110/0) 12 (1/110) . BFEXTS Mem (5 Bytes) 6 0 18 (2/010) 18 (211/0) 

BFEXTU Dn 10 0 10 (01010) 10 (011/0) . BFEXTU Mem (<5 Bytes) 6 0 12 (1/010) 12 (11110) . BFEXTU Mem (5 Bytes) 6 0 18 (2/0/0) 18 (21110) 

BFINS Dn 12 0 12 (01010) 12 (011/0) . BFINS Mem (<5 Bytes) 6 0 12 (11011) 12 (111/1) . BFINS Mem (5 Bytes) 6 0 18 (210/2) 18 {2/112) 

BFFFO Dn 20 0 20 (01010) 20 (0/110) . BFFFO Mem (<5 Bytes) 6 0 22 (110/0) 22 (11110) . BFFFO Mem (5 Bytes) 6 0 28 (21010) 28 (2/110) 

•Add Calculate Immediate Effective Address time 

NOTE: A bit field of 32 bits may span 5 bytes that require two operand cycles to access, or may span 4 bytes that require 
only one operand cycle to access. 

MC68030 USER'S MANUAL MOTOROLA 
11-35 

• 



~ . 11.6.15 Conditional Branch Instructions 

• 

The conditional branch instructions table indicates the number of clock periods needed for 
the processor to perform the specified branch on the given branch size, with complete 
execution times given. No additional tables are needed to calculate total effective execution 
time for these instructions. For instruction-cache case and for no-cache case, the total 
number of clock cycles is outside the parenthees. The number of read, prefetch, and write 
cycles are given inside the parentheses as (r/p/w). The read, prefetch, and write cycles are 
included in the total clock cycle number. 

All timing data assumes two clock reads and writes. 

Bee 

Bcc.B 

Bcc.W 

Bcc.L 

DBcc 

DBcc 

DBcc 

MOTOROLA 
11-36 

Instruction Head 

(Taken) 6 

(Not Taken) 4 

(Not Taken) 6 

(Not Taken) 6 

(cc= False, Count Not Expired) 6 

(cc= False, Count Expired) 10 

(cc=True) 6 

Tail I-Cache Case No-Cache Case 

0 6 (0/0/0) 8 (0/2/0) 

0 4 (0/0/0) 4 (0/1/0) 

0 6 (0/0/0) 6 (0/1/0) 

0 6 (0/0/0) 8 (0/2/0) 

0 6 (0/0/0) 8 (0/2/0) 

0 10 (0/0/0) 13 (0/3/0) 

0 6 (0/0/0) 8 (0/1/0) 

MC68030 USER'S MANUAL 



11.6.16 Control Instructions 

The control instructions table indicates the number of clock periods needed for ~he. pro­
cessor to perform the specified operation. Footnotes indicate when it is necessary·tci ac­
count for the appropriate effective address time. For instruction-cache case and for no­
cache case, the total number of clock cyclces is outside the parentheses. The number of 
read, prefetch, and write cycles are given inside the parentheses as (r/p/w). The read; 
prefetch, and write cycles are included in the total clock cycle number. 

All timing data assumes two clock reads and writes. 

Instruction 

ANDI to SR 

EORI to SR 

ORI to SR 

ANDI to CCR 

EORI to CCR 

ORI to CCR 

BSR 

## CAS (Successful Compare) 

## CAS (Unsuccessful Compare) 

+ CAS2 (Successful Compare) 

+ CAS2 (Unsuccessful Compare) 

CHK Dn,Dn (No Exception) 

+ CHK Dn,Dn (Exception Taken) 

* CHK EA,Dn (No Exception) 

* + CHK EA,Dn (Exception Taken) 

# + CHK2 Mem,Rn (No Exception) 

#+ CHK2 Mem,Rn (Exception Taken) 

% JMP 

% JSR 

** LEA 

LINK.W 

LINK.L 

NOP 

** PEA 

RTD 

RTR 

RTS 

UNLK 

+ Indicates Maximum Time 
* Add Fetch Effective Address Time 

Add Calculate Effective Address Time 
# Add Fetch Immediate Address Time 

## Add Calculate Immediate Address Time 
% Add Jump Effective Address Time 

MC68030 USER'S MANUAL 

Head 

4 

4 

4 

4 

4 

4 

2 

1 

1 

2 

2 

8 

4 

0 

0 

2 

2 

4 

0 

2 

0 

2 

0 

0 

2 

1 

1 

0 

Tail I-Cache Case 

0 12 (0/0/0) 

0 12 (0/0/0) 

0 12 (0/0/0) 

0 12 (0/0/0) 

0 12 (0/0/0) 

0 12 (0/0/0) 

0 6 (0/0/1) 

0 13 (1/0/1) 

0 11 (1/0/0) 

0 24 (2/0/2) 

0 24 (2/0/0) 

0 8 (0/0/0) 

0 28 (1/0/4) 

0 8 (0/0/0) 

0 28 (1/0/4) 

0 18 (1/0/0) 

0 40 (2/0/4) 

0 4 (0/0/0) 

0 4 (0/0/1) 

0 2 (0/0/0) 

0 4 (0/0/1) 

0 6 (0/0/1) 

0 2 (0/0/0) 

2 4 (0/0/1) 

0 10 (1/0/0) 

0 12 (2/0/0) 

0 9 (1/0/0) 

0 5 (110/0) 

No-Cache Case 

14 (0/2/0) 

14 (0/2/0) 

14 (0/2/0) 

14 (0/2/0) 

14 (0/2/0) 

14 (0/2/0) 

9 (0/2/1) 

13 (1/1/1) 

11 (1/1/0) 

26 (2/2/2) 

24 (2/2/0) 

8 (0/1/0) 

30 (1/3/4) 

8 (0/1/0) 

30 (1/3/4) 

18 (1/1/0) 

42 (2/3/4) 

6 (0/2/0) 

7 (0/2/1) 

2 (0/1/0) 

5 (0/1/1) 

7 (0/2/1) 

2 (0/1/0) 

4 (0/1/1) 

12 (1/2/0) 

14 (2/2/0) 

11 (1/2/0) 

5 (1/1/0) 

MOTOROLA 
11-37 

• 



• 

11.6.17 Exception Related Instructions and Operations 

The exception related instructions and operations table indicates the number of clock 
periods needed for the processor to perform the specified exception related action. No 
additional tables are needed to calculate total effective execution time for these operations. 
For instruction-cache case and for no-cache case, the total number of clock cycles is outside 
the parentheses. The number of read, prefetch, and write cycles are given inside the 
parentheses as (r/p/w). The read, prefetch, and write cycles are included in the total clock 
cycle number. 

All timing data assumes two clock reads and writes. 

Instruction Head Tail I-Cache Case No-Cache Case 

BKPT 1 0 9 (1/0/0) 9 (1/0/0) 

Interrupt (I-Stack) 0 0 23 (2/0/4) 24 (2/2/4) 

Interrupt (M-Stack) 0 0 33 (2/0/8) 34 (2/2/8) 

RESET Instruction 0 0 518 (0/0/0) 518 (0/1/0) 

STOP 0 0 8 (0/0/0) 8 (0/2/0) 

TRACE 0 0 22 (1/0/5) 24 (112/5) 

TRAP #n 0 0 18 (1/0/4) 20 (1/2/4) 

Illegal Instruction 0 0 18 (1/0/4) 20 (1/2/4) 

A-Line Trap 0 0 18 (1/0/4) 20 (1/214) 

F-Line Trap 0 0 18 (1/0/4) 20 (1/2/4) 

Privilege Violation 0 0 18 (1/0/4) 20 (1/2/4) 

TRAPcc (Trap) 2 0 22 (1/0/5) 24 (1/2/5) 

TRAPcc (No Trap) 4 0 4 (0/0/0) 4 (0/1/0) 

TRAPcc.W (Trap) 5 0 24 (1/0/5) 26 (1/3/5) 

TRAPcc.W (No Trap) 6 0 6 (0/0/0) 6 (0/1/0) 

TRAPcc.L (Trap) 6 0 26 (1/0/5) 28 (1/3/5) 

TRAPcc.L (No Trap) 8 0 8 (0/0/0) 8 (0/2/0) 

TRAPV (Trap) 2 0 22 (1/0/5) 24 (1/2/5) 

TRAPV (No Trap) 4 0 4 (0/0/0) 4 (0/1/0) 

11.6.18 Save and Restore Operations 

The save and restore operations table indicates the number of clock periods needed for 
the processor to perform the specified state save, or return from exception, with complete 
execution times and stack length given. No additional tables are needed to calculate total 
effective execution time for these operations. For instruction-cache case and for no-cache 
case, the total number of clock cycles is outside the parentheses. The number of read, 
prefetch, and write cycles are given inside the parentheses as (r/p/w). The read, prefetch, 
and write cycles are included in the total clock cycle number. 

All timing data ssumes two clock reads and writes. 

Operation 

Bus Cycle Fault (Short) 

Bus Cycle Fault (Long) 

RTE (Normal-4 Word) 

RTE (Six-Word) 

RTE (Throwaway) 

RTE (Coprocessor) 

RTE (Short Fault) 

RTE (Long Fault) 

MOTOROLA 
11-38 

Head 

0 

0 

1 

1 

1 

1 

1 

1 

Tail I-Cache Case No-Cache Case 

0 36 (1/0/10) 38 (1/2/10) 

0 62 (1/0/24) 64 (1/2/24) 

0 18 (4/0/0) 20 (4/2/0) 

0 18 (4/0/0) 20 (412/0) 

0 12 (4/0/0) 12 (4/0/0) 

0 26 (7/0/0) 26 (712/0) 

0 36 (10/0/0) 26 (10/2/0) 

0 76 (25/0/0) 76 (25/2/0) 

MC68030 USER'S MANUAL 



11.7 Address Translation Tree Search Timing 

The time required for a search of the address translation tree depends on the configuration 
of the tree structure and the descriptors in the tree, the states of the used (U) and modified 
(M) bits in the descriptors, bus cycle time, and other factors. The large number of variables 
involved implies that search time can best be calculated by a program. To determine the 
time required for the MC68030 to perform the table search for a specific configuration, the 
following interactive program can be used. It is a shell script suitable for use with sh(1) 
on either UNIX (tm) System V or BSD 4.2. To use the program, run the script and answer 
the questions aboutthe system configuration and current state. The values shown in square 
brackets at the ends of the question lines are the default values that the program uses 
when carriage returns are entered. 

The shell script assumes that the data bus between the MC68030 and memory is 32 bits 
wide. To calculate the search time for a narrower bus, enter the appropriate multiple of 
the bus cycle time in response to the bus cycle time prompt. Use the time required for 
two bus cycles in the case of a 16-bit data bus. Use the time required for four bus cycles 
in the case of an 8-bit data bus. 

The times provided by this program include all phases of the translation tree search. With 
various mask versions of the MC68030, times may differ slightly from those calculated by 
the program. 

####################################################################################### 

This Shell script is suitable for use with sh(l) on either System V or 
BSD 4.2. When run, it will prompt for several parameters, print a 
configuration message, and then print the number of clocks and bus 
cycles required for the table search. Questions may be answered with 
a carriage return, and the default in square brackets will be selected. 

The following things should be noted by the user: 

1. This script gives an approximation for the time taken for a table 

# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

search and associated overhead for a miss in the ATC. The exact time 
will vary with the instruction sequence being executed at the time of the 
miss, and may vary plus or minus 2 clocks (see pre-walk overhead, below) . 

2. It will give accurate times for normal table walks (due to misses 
in the ATC) and for PLOAD table walks but not for PTEST table walks. 
Table walks due to the PTEST instruction will be somewhat longer. 

3. It does little error checking. It is possible to describe 
inconsistent and impossible configurations in the script. 

echo -n "Enter bus cycle time (in clocks) [2): • 
read bus 
if test ! "$bus"; then 

bus=2 
fi 

echo -n "Enter l if there is a function code lookup, 0 otherwise [OJ: • 
read f cl 
if test ! "$fcl"; then 

fcl=O 
fi 

echo -n "Enter number of long descriptors (page and pointer), including FCL ones [l]: " 
read long 
if test ! "$long"; then 

long=l 
fi 

MC68030 USER'S MANUAL MOTOROLA 
11-39 

.. 



Ill 

echo -n "Enter nwnber of short descriptors (page or pointer), including FCL ones (l]: " 
read short 
if test ! "$short"; then 

short=l 
fi 

echo -n "Enter 1 if there is a long indirect descriptor, 0 otherwise [0]: " 
'read 1 ind 
if test ! "$1 ind"; then 

1 ind=O 
fi 

echo -n "Enter 1 if there is a short indirect descriptor, 0 otherwise [OJ: " 
read s ind 
if test ! "$s ind"; then 

s ind=O 
fi 

echo -n "Enter nwnber of cleared ubits encountered in pointer descriptors [OJ: " 
read pointer ubits 
if test ! "$pointer ubits"; then 

pointer_ubits=O 
fi 

echo -n "Enter 1 if the page descriptor ubit and/or rnbit is clear, 0 otherwise [OJ: " 

read page m ubit 
if test !-"$page m ubit"; then 

page_m_ubit;;O 
fi 

echo -n "Enter 1 if the page descriptor is encountered unexpectedly, 0 otherwise (0) : " 
read et 
if test ! "$et"; then 

et=O 
fi 

echo -n "Enter 1 if the page descriptor is long (and no rp et) (0): " 
read long page 
if test !-"$long page"; then 

long_page;;O 
fi 

#############################################t########t###t##t######################### 
# 
# Print Config~ration message. 
# 

levels='expr $short + $long + $l_ind + $s_ind' 

if test $fcl -eq l; then 
tmpl=" (one for FCL)" 

else 
tmpl;;" 11 

fi 

outl="Configuration: $levels levels $tmpl 

if test $long -ne O ; then 
outl="$outl $long long descriptor(s) n 

fi 

if test $short -ne 0 ; then 
outl="$outl $short short descriptor(s)" 
fi 

if test $1 ind -eq 1 ; then 
outl=0 $outl long indirection" 

elif test $s ind -eq 1 ; then 
outl="$outl short indirection" 

fi 

MOTOROLA 
11-40 

- n 

MC68030 USER'S MANUAL 



if test $pointer ubits -ne 0 ; then 
out2="$out2 $pointer_ubits pointer ubits clear, • 

fi 

if test $page m ubit -eq 1 ; then 
out2="$out2-page ubit and/or mbit clear, • 

fi 

if test $et -eq 1 ; then 
out2="$out2 early termination, • 

fi 

if test $long page -eq 1 ; then 
out2="$out2 page is long;" 

else 
out2="$out2 page is short;• 

fi 

out3="$bus clock bus cycle time.• 

echo 
echo $outl 
echo n 

echo • 
• $out2 
• $out3 

ttttt#t###t#################t##############################################tt#t######t# 
# 
# Calculate result. 
t 
t Variables: 
t 
t 
t 
# 
t 
ti 
t 
t 
t 
t 
ti 
t 

cough the number of clocks from the start of the bus cycle that will miss to 
the first clock of the first micro-instruction. 

startup -- microcode startup overhead common to all flows 

termination -- microcode termination overhead common to all flows 

bus max 4 bus max 3 the maximum value of the bus cycle time (in clocks) and 

bus reads=O 
bus-writes=O 
ind-clocks=O 

4 or 3, respectively. 

ti time from BEGINNING of bus cycle which misses to first box 
# this is 6 to 9 clocks depending on i- and ct-state at miss-- use 7 as average 
cough=7 

# 4 boxes of startup, when no FCL. 
startup=B 

# 4 boxes of termination. 
termination=B 

t Bus accesses begin sooner if FCL - no limit check. 
if test $fcl -eq 1 ; then 

startup='expr $startup - 2' 
fi 

#calculate max((bus-4),0) for overlap 
bus_max_4='expr $bus - 4' 

if test $bus max 4 -lt O; then 
bus::::max::::4=0 

fi 

MC68030 USER'S MANUAL MOTOROLA 
11-41 



-

#calculate max((bus-3),0) for overlap 
bus_max_3='expr $bus - 3' 

if test $bus max 3 -lt 0; then 

fi 
bus:max:3=0 

overhead='expr $cough+ $startup+ $termination' 

# nwnber of clock due to long descriptors 
l_clocks='expr $long\* \( 6 +$bus+ $bus_max_4 \)' 

#long page is one box less than long pointer 
if test $long_page -eq l; then 

l_clocks='expr $!_clocks - 2' 
fi 

bus_reads='expr $bus_reads +\($long\* 2 \)' 

# number of clock due to short descriptors 
s clocks='expr $short \* \ ( 3 + $bus \)' 
bus_reads='expr $bus_reads +$short' 

# total clocks due to descriptor fetches 
t_clocks='expr $l_clocks + $s_clocks' 

if test $t clocks -eq 0 ; then 
if test $et -ne 1 ; then 

echo Error: 0 bus accesses must imply unexpected page encountered. 

fi 

fi 
et=O 

# now caculate clocks due to setting u bits in pointer descriptor 

u clocks='expr $pointer ubits \* \( 4 +$bus max 3 \)' 
bus_writes='expr $bus_writes + $pointer_ubits + $page_m_ubit' 

# clocks due to setting u/m bits in page descriptor 
page clocks='expr $page m ubit \* \( 2 +$bus max 3 \)' 
bus_writes='expr $bus_writes + $page_m_ubit' - -

# clocks due to indirect level (long) 
if test $1 ind -ne O; then 

fi 

ind clocks= 'expr 2 + \ ( $bus \ * 2 \) ' 
bus=reads='expr $bus_reads + 2' 

# clocks due to indirect level (short) 
if test $s ind -ne 0; then 

ind clocks='expr 3 +$bus' 
bus=reads='expr $bus_reads + l' 

fi 

# early termination penalty 
if test $et -eq 1; then 

et_delay=3 
else 

et_delay=O 
fi 

MOTOROLA 
11-42 

MC68030 USER'S MANUAL 



################################################################################# 
# 
# Perform the calculation. 
# 

clocks='expr $overhead \ 
+ $1 clocks \ 
+ $s-clocks \ 
+ $u-clocks \ 
+ $page clocks \ 
+ $ind clocks \ 
+ $et_delay' 

out=" Clocks required (from beginning of missed bus cycle): $clocks" 
echo 
echo $out 

write_accesses='expr $pointer_ubits + $page_m_ubit' 

out=" Bus Reads: 
echo $out 

print total=O 
if test $write accesses -ne 0 

fi 

out=" Bus Writes: 
echo $out 
print_total=l 

then 

bus_accesses='expr $bus_reads + $write_accesses' 

if test $print total -eq 1 ; then 
out=" Total Bus Cycles: 
echo $out 

fi 

$bus reads" 

$write_accesses" 

$bus_accesses" 

The following table gives some sample times obtained using the shell script. Each row of 
the table indicates a translation table configuration. The identifier on each row consists of 
five positions. Each position may have either an "x" meaning that there is no table at the 
level, an "S" meaning that the table at the level is composed of short format descriptors, 
or an "L" meaning that the table at the level is composed of long format descriptors. The 
format of the entires is: 

Function Code Table 

Level A Table 

Level B Table 

Level C Table 

Level D Table 

MC68030 USER'S MANUAL 

xx/ xx 

MOTOROLA 
11-43 



-

Each entry in the table consists of three numbers that give the number of clock cycles, the 
number of bus reads, and the number of bus writes required for a table search. An RMC 
cycle to set the U bit is counted as one read and one write. The format of the entires is: 

xx! xx! xx 

Number of Clock Cycles J T 
Number of Read Bus Cycles =-...J 
Number of Write Bus Cycles -------' 

The table is calculated based on the following assumptions: 
1. Bus cycle time is two clock cycles, 
2. There are no indirect descriptors, 
3. There are no page descriptors encountered unexpectedly (no early termination), and 
4. The memory port is 32 bits wide. 

MOTOROLA 
11-44 

Table 
Format 

Llxxx 

LLLxx 

LLLLx 

LLLLL 

SSxxx 

SSS xx 

SSSSx 

sssss 
xSSxx 

xSLxx 

xLSxx 

xLLxx 

xSSSx 

xSSLx 

xSLSx 

xSLLx 

xLSSx 

xLSLx 

xLLSx 

xLLLx 

All U and M Bits 
Must be Set 

41/4/2 

53/6/3 

65/8/4 

77/10/5 

371212 

46/3/3 

55/4/4 

64/5/5 

39/2/2 

401312 

421312 

431412 

48/3/3 

49/4/3 

51/4/3 

52/5/3 

51/4/3 

52/5/3 

54/5/3 

55/6/3 

Page U and M Bits No U and M Bits 
Only Must be Set Must be Set 

37/4/1 35/4/0 

45/6/1 431610 

53/8/1 51/8/0 

61/10/1 59/10/0 

33/2/1 31/2/0 

38/3/1 36/3/0 

43/4/1 41/4/0 

48/5/1 46/5/0 

35/2/1 331210 

36/3/1 341310 

38/3/1 36/3/0 

39/4/1 371410 

40/3/1 38/3/0 

41/4/1 391410 

43/4/1 41/4/0 

44/5/1 44/5/0 

43/4/1 411410 

44/5/1 42/5/0 

46/5/1 441510 

47/6/1 45/6/0 

MC68030 USER'S MANUAL 



11.7.1 MMU Effective Address Calculation 

The calculate effective address table for MMU instructions lists the numbers of clock periods 
needed for the processor to calculate various effective addresses. Fetch time is only in­
cluded for the first level of indirection on memory indirect addressing modes. The total 
number of clock cycles is outside the parentheses. This total includes the numbers of read, 
prefetch, and write cycles, which are shown inside the parentheses as (r/pr/w). 

Address Mode Head 

(An) 4+op head 

(d15,An) 4+op head 

(xxx).W 4+op head 

(xxx).L 6+op head 

(ds,An,Xn) 4+op head 

FULL FORMAT EXTENSION WORD(S) 

(d15,An) 4 

(d15,An,Xn) 4 

([d15,An]) 4 

([d15,An],Xn) 4 

([d15,An],d15) 2 

([d15,An],Xn,d15) 4 

([d15,An],d32) 4 

([d15,An),Xn,d32) 4 

(B) 8+op head 

(d15,B) 6 

(d32,B) 6 

([BJ) 6 

([B],I) 6 

((B],d15) 6 

([B],l,d15) 6 

([B],d32) 6 

([B],l,d32) 6 

([d15,B)) 6 

((d15,B],I) 6 

([d15.BJ.d15) 6 

([d15,B],l,d15) 6 

([d15.BJ,d32) 6 

([d15,BJ,l,d32) 6 

([d32,B)) 6 

([d32,BJ.I) 6 

([d32,BJ.d15) 6 

([d32,BJ.l,d15) 6 

((d32,BJ,d32) 6 

([d32.Bl.l,d32) 6 

B = Base address; 0, An, Xn, An+ Xn. Form does not affect timing. 
I= Index; 0, Xn 

Tail I-Cache Case 

0 4 (0/0/0) 

0 4 (0/0/0) 

0 4 (0/0/0) 

0 6 (0/0/0) 

0 4 (0/0/0) 

0 8 (0/0/0) 

0 8 (0/0/0) 

0 12 (1/0/0) 

0 12 (1/0/0) 

0 12 (1/0/0) 

0 12 (1/0/0) 

0 14 (1/0/0) 

0 14 (1/0/0) 

0 8 (0/0/0) 

0 10 (0/0/0) 

0 16 (0/0/0) 

0 12 (1/0/0) 

0 12 (1/0/0) 

0 12 (1/0/0) 

0 12 (1/0/0) 

0 14 (1/0/0) 

0 14 (1/0/0) 

0 14 (1/0/0) 

0 14 (1/0/0) 

0 14 (1/0/0) 

0 14 (1/0/0) 

0 16 (1/0/0) 

0 16 (1/0/0) 

0 20 (1/0/0) 

0 20 (1/0/0) 

0 20 (1/0/0) 

0 20 (110/0) 

0 22 (1/0/0) 

0 22 (1/0/0) 

*No separation on Effective Address and Operation in timing. Head and Tail are the operation's. 
NOTE: Xn cannot be in B and I at the same time. Scaling and size of Xn does not affect timing. 

MC68030 USER'S MANUAL 

No-Cache Case 

4 (01110) 

4 (0/1/0) 

4 (0/1/0) 

6 (0/2/0) 

4 (0/1/0) 

8 (0/2/0) 

8 (0/2/0) 

12 (1/2/0) 

12 (1/2/0) 

12 (1/2/0) 

12 (1/2/0) 

14 (1/3/0) 

14 (1/3/0) 

8 (0/1/0) 

10 (0/2/0) 

16 (0/2/0) 

12 (1/1/0) 

12 (1/1/0) 

12 (1/2/0) 

12 (1/2/0) 

14 (1/2/0) 

14 (1/2/0) 

14 (1/2/0) 

14 (112/0) 

14 (1/2/0) 

14 (1/2/0) 

16 (1/3/0) 

16 (1/3/0) 

20 (1/2/0) 

20 (1/2/0) 

20 (1/3/0) 

20 (1/3/0) 

22 (113/0) 

22 (1/3/0) 

MOTOROLA 
11-45 



-

11.7.2 MMU Instruction Timing 

The MMU instruction timing table lists the numbers of clock periods needed for the MMU 
to perform the MMU instructions. The total number of clock cycles is outside the paren­
theses. It includes the numbers of read, prefetch, and write cycles, which are shown inside 
the parentheses as (r/pr/w). 

Instruction Head Tail I-Cache Case No-Cache Case 

PMOVE (from CRP, SRP)* 0 0 4 (0/0/2) 5 (0/1/2) 

PMOVE (to CRP, SRP, valid)* 0 0 12 (2/0/0) 14 (2/2/0) 

PMOVE (to CRP, SRP, invalid),. 0 0 28 (3/0/4) 30 (3/2/4) 

PMOVE (from no, n1 )* 0 0 8 (0/0/1) 8 (0/1/1) 

PMOVE (to no, n1 )* 0 0 12 (1/0/0) 14 (1/2/0) 

PMOVE (from MMUSR)* 2 0 4 (0/0/1) 5 (0/1/1) 

PMOVE (to MMUSR)* 0 0 6 (1/0/0) 6 (1/1/0) 

PMOVE (from TC)* 2 0 4 (0/0/1) 5 (0/1/1) 

PMOVE (to TC, valid)2• 0 0 38 (1/0/0) 40 (1/2/0) 

PMOVE (to TC, invalid)3• 0 0 56 (2/0/4) 58 (2/2/4) 

PMOVE (to TC)4• 0 0 14 (1/0/0) 16 (1/2/0) 

PFLUSHA 0 0 12 (0/0/0) 14 (0/2/0) 

PFLUSH (fc),#(mask) (fc is immediate or data register) 0 0 16 (0/0/0) 18 (0/2/0) 

PFLUSH (fc),#(mask) (fc is in SFC or DFC register) 0 0 20 (0/0/0) 22 (0/2/0) 

PFLUSH (fc),#(mask),(ea) (fc is immediate or data regis- 0 0 16 (0/0/0) 18 (0/2/0) 
ter)* 

PFLUSH (fc),#(mask),(ea) (fc is in SFC or DFC register)* 0 0 20 (0/0/0) 22 (0/2/0) 

PLOAD[R:W) (fc),(ea) (fc is immediate or data register)** 0 0 8 (0/0/0) 10 (0/2/0) 

PLOAD[R:W) (fc),(ea) (fc is in SFC or DFC register)** 0 0 12 (0/0/0) 14 (0/2/0) 

PTEST[R:W] (fc),(ea),#6 * *** 0 0 88 (12/0/0) 88 (12/1/0) 

PTEST[R:W] (fc),(ea),#0* 0 0 22 (0/0/0) 22 (0/1/0) 

NOTES: 
1. Attempt to load invalid root pointer. 
2. Translation enabled. 
3. Number is maximum, assuming valid page size but Tix fields do not add up to 32. Translation enabled. 
4. Translation disabled. 

*Add the appropriate effective address calculation time. 
**Add the appropriate effective address calculation time and the table search time. 

***Number given is the maximum for a six level table (FC lookup, a, b, c, and d levels with indirect level, all long descriptors). 

11.8 Interrupt Latency 

In real-time systems, the response time required for a processor to service an interrupt is 
a very important factor pertaining to overall system performance. Processors in the M68000 
Family support asynchronous assertion of interrupts and begin processing them on sub­
sequent instruction boundaries. The average interrupt latency is quite short, but the max­
imum latency is often critical because real-time interrupts cannot require servicing in less 
than the maximum interrupt latency. The maximum interrupt latency for the MC68030 
alone is approximately 200 clock cycles (for the MOVEM.L ([d32,An],Xn,d32), DO-D7/AO-A7 
instruction where the last data fetch is aborted with a bus error), but when the MMU is 
enabled, some operations can take several times longer to execute. 

MOTOROLA 
11-46 

MC68030 USER'S MANUAL 



Interrupt latency in systems using the MMU is affected by the length of the main processor 
instructions, the address translation tree configuration, the number of translation tree 
searches required by the instructions, the access time of main memory, and the width of 
the data bus connecting the MC68030 to main memory. It is important to note that the 
address translation tree configuration is under software control and can strongly affect the 
system interrupt latency. The maximum interrupt latency for a given system configuration 
can be computed by adding the length of the longest main processor instruction to the 
time required for the maximum number of translation tree searches that the instruction 
could require. For the MC68030 microprocessor, one instruction of particular interest is a 
memory-to-memory move with memory indirect addressing for both the source and des­
tination, with all of the code and data items crossing page boundaries. The assembler 
syntax for this instruction is: 

MOVE.L (od,[bd,An,Rm)),(od,[bd,An,Rm)) 

This instruction can cause ten address translation tree searches: two for the instruction 
stream, two for the source indirect address, two for the destination indirect address, two 
for the operand fetch, and two for the destination write. System software can reduce the 
maximum number of translation searches by placing additional restrictions on generated 
code. For example, if the language translators in the system only generate long words 
aligned on long-word boundaries, the indirect address and operands can cause only one 
translation search each. This reduces the number of searches for the instruction to a 
maximum of six. 

11.9 Bus Arbitration Latency 

In a system that uses the MMU, the bus arbitration latency is affected by several factors. 
The MC68030 does not relinquish the physical bus while it is performing a read-modify­
write operation. Since the address translation search is an extended read-modify-write 
operation, the no-cache case latency is incurred by the longest address translation search 
required by the system. 

Another bus arbitration delay occurs when a coprocessor or other device delays or fails 
to assert DSACKx or STERM signals to terminate a bus cycle. The maximum delay in this 
case is undefined; it depends on the length of the delay in asserting the signals. 

MC68030 USER'S MANUAL MOTOROLA 
11-47 

.. 



• 

MOTOROLA 
11-48 

MC68030 USER'S MANUAL 



SECTION 12 
APPLICATIONS INFORMATION 

This section provides guidelines for using the MC68030. First, it discusses the requirements 
for adapting the MC68030 to MC68020 designs. Then, it describes the use of the MC68881 
and MC68882 coprocessors with the MC68030. The byte select logic is described next, 
followed by memory interface information. A description of external caches, the use of the 
STATUS and REFILL signals, and power and ground considerations complete the section. 

12.1 ADAPTING THE MC68030 TO MC68020 DESIGNS 

Perhaps the easiest way to first utilize the MC68030 is in a system designed forthe MC68020. 
This is possible due to the complete compatibility of the asynchronous buses of the MC68020 
and MC68030. This section describes how to configure an adapter for the MC68030 to 
allow insertion into an existing MC68020-based system. Software and architectural differ­
ences between the two processors are also discussed. The need for an adapter is absolute 
because the MC68020 and MC68030 are NOT pin compatible. Use of the adapter board 
provides the immediate capability for evaluating the programmer's model and instruction 
set of the MC68030, and for developing software to utilize the MC68030's additional en­
hanced features. This adapter board also provides a relatively simple method for increasing 
the performance of an existing MC68020 or MC68020/MC68851 system by insertion of a 
more advanced 32-bit MPU with an on-chip data cache, and an on-chip MMU. The adapter 
board does not support of the synchronous bus interface of the MC68030 and thus per­
formance measurements for the MC68030 used in this manner may be misleading when 
compared to a system designed specifically for the MC68030. 

The adapter board plugs into the CPU socket of an MC68020 target system, drawing power, 
ground and clock signals through the socket and running bus cycles in a fashion compatible 
with the MC68030. The only support hardware necessary is a single 1 Kohm pull up resistor 
and two capacitors for decoupling power and ground on the adapter board. 

12.1.1 Signal Routing 

Figure 12-1 shows the complete schematic for routing the signals of the MC68030 to the 
MC68020 header. All signals common to both processors are directly routed to the cor­
responding signal of the other processor. The signals on the MC68030 that do not have a 
compatible signal on the MC68020 are either pulled up or left unconnected: 

Pulled Up 

STE RM 
CBACK 
CiTN 
MMUDIS 

No Connect 

STATUS 
REFILL 
CBREQ 
CIOUT 

MC68030 USER'S MANUAL MOTOROLA 
12-1 



• 

MC68030 MC68020 HEADER 

- STATUS BR BR -REFILL iiG iiG 
BG ACK BGACK 

----- IPL2 IPL2 I------' 
IPll HALT HALT WIT 
IPLO BERR BERR IPLO 

IPENO IPENO 

AVEC OSACKl OSACKl AVEC 

OSACKO OSACKO 
CLK CLK 

SIZO SllO 
RESET Sill Sill RESET 

ECS RMC RMC ECS 
ocs OBEN OBEN ocs 

R/W R!W 
CDIS iiS iiS CDIS 

- CIDUT AS AS 
- CBREO 

1 k CBACK 00-031 00-031 
MMUDIS 

~ 
? 

CllN FCO-FC2 FCO-FC2 

STERM AO-A31 AO-A31 

Figure 12-1. Signal Routing for Adapting the MC68030 to MC68020 Designs 

12.1.2 Hardware Differences 

Before enabling the on-chip caches of the MC68030, an important system feature must be 
checked. Because of the MC68030 cache organization and implementation, cachable read 
bus cycles are expected to transfer the entire port width of data (as indicated by the DSACKx 
encoding) regardless of how many bytes are actually requested by the SIZX pins. The 
MC68020 did not have this requirement and system memory banks or peripherals may or 
may not supply the amount of data required by the MC68030. If the target system does 
not supply the full port width with valid data for any cachable instruction or data access 
the user should either designate that area of memory as non-cachable (with the MMU) or 
not enable the corresponding on-chip cache(s). In some systems, modifying the target 
system hardware may also be an option; frequently, the byte select logic is generated by 
a single PAL, which might easily be replaced or reprogrammed to select all bytes during 
read cycles from multi-byte ports. 

The HALT input-only signal of the MC68030 is slightly different than the bidirectional HALT 
signal of the MC68020. However, this should not cause any problems beyond eliminating 

MOTOROLA 
12-2 r 

MC68030 USER'S MANUAL 



an indication to the external system (e.g., lighting an LED) that the processor has halted 
due to a double bus fault. 

When used in a system originally designed for both an MC68020 and an MC68851, the 
MC68851 may be left in the system or removed (and replaced with a jumpered header). 
However, if left in the system, the MC68851 is not accessible to the programmer with the 
M68000 coprocessor interface. All MMU instructions access the MC68030's on-chip MMU. 
This is true even if the MC68030's MMUDIS signal is asserted. The benefit in removing the 
MC68851 is that the minimum asynchronous bus cycle time to the physical bus is reduced 
from four clock cycles to three. 

If the MC68851 is removed and replaced with a jumpered header, the following MC68851 
signals may need special system-specific consideration: CLI, RMC, LBRO, LBG, LBGACK, 
and LBGI. During translation table searches the MC68851 asserts the CLI (Cache Load 
Inhibit) signal but not RMC, while the MC68030 asserts RMC but not CIOUT. In simple 
MC68020/MC68851 systems without logical bus arbitration or logical caches, the MC68851 's 
jumper can have the following signals connected together: 

LAS* PAS 
LBRO * PBR 
L8GT * PBG 
LBGACK * =ps~G~A~C~K 

LA(S-31) * PA(S-31) 
CLI * no connect, or LAS 

CLI has two connection options because some systems may use CLI to qualify the occur­
rence of CPU space cycles since the MC68851's PAS does not assert. 

12.1.3 Software Differences 

The instruction cache control bits in the cache control register (CACR) of the MC68030 are 
in the identical bit positions as the corresponding bits as the MC68020's CACR. However, 
the MC68030 has additional control bits for burst enable, and data cache control. Because 
this adapter board does not support synchronous bus cycles (and thus burst mode) enabling 
burst mode through the CACR does not affect system operation in any way. Refer to 
SECTION 6 ON-CHIP CACHE MEMORIES for more information on the bit positions and 
functions of the CACR bits. 

When used in a system originally designed for an MC68020 a difference a programmer 
must be aware of is that the MC68030 does not support the CALLM and RTM instructions 
of the MC68020. If code is executed on the MC68030 using either the CALLM or RTM 
instructions, an unimplemented instruction exception is taken. If no MMU software de­
velopment capability is desired, and the cache behavior described under hardware differ­
ences is understood, the user may ignore the MC68030 MMU. 

When the adapter is used in a system originally designed for the MC68020/MC68851 pair, 
the software differences described below also apply. The MC68030's MMU offers a subset 
of the MC68851 features. The features not supported by the MC68030 MMU are listed 
below: 

• On-chip breakpoint registers 
• Task aliasing 
• Instructions: PBcc, PDBcc, PRESTORE, PSAVE, PScc, PTRAPcc, PVALID 

MC68030 USER'S MANUAL MOTOROLA 
12-3 



m 

Only control-alterable addressing modes are allowed for MMU instructions on the MC68030. 

A feature new to the MC68030 MMU (and not on the MC68851) is the transparent translation 
of 2 logical address blocks with the transparent translation registers. See SECTION 9 MEM­
ORY MANAGEMENT UNIT. 

12.2 FLOATING-POINT UNITS 

Floating point support for the MC68030 is provided by the MC68881 Floating-Point Copro­
cessor and the MC68882 Enhanced Floating-Point Coprocessor. Both devices offer a full 
implementation of the IEEE Standard for Binary Floating-Point Arithmetic (754). The MC68882 
is a pin and software compatible upgrade of the MC68881, with an optimized MPU interface 
that provides over 1.5 times the performance of the MC68881 at the same clock frequency. 

Both coprocessors provide a logical extension to the integer data processing capabilities 
of the main processor. They contain a very high performance floating-point arithmetic unit 
and a set of floating-point data registers that are utilized in a manner that is analagous to 
the use of the integer data registers of the processor. The MC68881/MC68882 instruction 
set is a natural extension of all earlier members of the M68000 Family, and supports all of 
the addressing modes and data types of the host MC68030. The programmer perceives 
the MC68030/coprocessor execution model as if both devices are implemented on one 
chip. In addition to supporting the full IEEE Standard, the MC68881 and MC68882 provide 
a full set of trigonometric and transcendental functions, on-chip constants and a full 80-
bit extended precision real data format. 

The interface of the MC68030 to the MC68881 or the MC68882 is easily tailored to system 
cost/performance needs. The MC68030 and the MC68881/MC68882 communicate via stand­
ard asynchronous M68000 bus cycles. All data transfers are performed by the main pro­
cessor at the request of the MC68881/MC68882; thus memory management, bus errors, 
address errors, and bus arbitration function as if the MC68881/MC68882 instructions are 
executed by the main processor. The floating-point unit and the processor may operate at 
different clock speeds, and up to seven floating-point coprocessors may reside in an MC68030 
system simultaneously. 

Figure 12-2 illustrates the coprocessor interface connection of an MC68881/MC68882 to an 
MC68030 (uses entire 32-bit data bus). The MC68881/MC68882 is configured to operate 
with a 32-bit data bus when both the AO and SIZE pins are connected to Vee. Refer to the 
MC68881/MC68882 User's Manual for configuring the MC68881/MC68882 for smaller data 
bus widths. Note that the MC68030 cache inhibit input (CllN) signal is not used for the 
coprocessor interface because the MC68030 does not cache data obtained during CPU 
space accesses. 

The chip select (CS) decode circuitry is asynchronous logic that detects when a particular 
floating-point coprocessor is addressed. The MC68030 signals used by the logic include 
the function code signals (FC2-FCO), and the address lines (A19-A13). Refer to SECTION 
10 COPROCESSOR INTERFACE DESCRIPTION for more information concerning the en­
coding of these signals. All or just a subset of these lines may be decoded depending on 
the number of coprocessors in the system, and the degree of redundant mapping allowed 
in the system. 

The major concern of a system designer is to design a CS interface that meets the AC 
electrical specifications for both the MC68030 (MPU) and the MC68881/MC68882 (FPCP) 

MOTOROLA 
12-4 

MC68030 USER'S MANUAL 



MC68030 

FCO-FC2 

A20-A31 
A16-A19 
A13-A15 
A5-A12 

A1-A4 
AO 

AS 
iiS 

R!W 

024-031 
016-023 
08-015 
00-07 

OSACKO 
OSACKl 

CllN 

t 
MAIN PROCESSOR 

CLOCK 

t--

t--

t--

~ 

~ 

1--

..... 
CHIP 

SELECT ..... 
DECODE 

Vee~ 
..... 

Vee -.i 

..... 

..... 

~ 

MC68881 /MC68882 

cs 

SIZE 
A1-A4 
AO 

AS 
iiS 
R/W 

024-031 
016-023 
08-015 
00-07 

OSACKO 
OSACKl 

T 
COPROCESSOR 

CLOCK 

Figure 12-2. 32-Bit Data Bus Coprocessor Connection 

without adding unnecessary wait states to FPCP accesses. The following maximum spec­
ifications (relative to CLK low) meet these objectives: 

tCLK low to AS low,,;(MPU Spec 1-MPU Spec 47A-FPCP Spec 19) 

tCLK low to CS low,,;(MPU Spec 1 - MPU Spec 47 A- FPCP Spec 19) 

( 1) 

(2) 

Even though requirement (1) is not met under worst case conditions, if the MPU AS is 
loaded within specifications and the AS input to the FPCP is unbuffered, the requirement 
is met under typical conditions. Designing the CS generation circuit to meet requirement 
(2) provides the highest probability that accesses to the FPCP occur without unnecessary 
wait states. A PAL 16L8 (Figure 12-3) with a maximum propagation delay of 10 ns, pro­
grammed according to the equations in Figure 12-4, can be used to generate CS. For a 25 
MHz system, tCLK low to CS low is less than or equal to 10 ns when this design is used. 
Should worst case conditions cause tCLK low to AS low to exceed requirement (1 ), one 
wait state is inserted in the access to the FPCP; no other adverse effect occurs. Figure 12-
5 shows the bus cycle timing for this interface. Refer to MC68881/MC68882 Floating-Point 
Coprocessor User's Manual for FPCP specifications. 

The circuit that generates CS must meet another requirement. When a nonfloating-point 
access immediately follows a floating-point access, CS (for the floating-point access) must 
be negated before AS and DS (for the subsequent access) are asserted. The PAL circuit 
previously described also meets this requirement. 

For example, if a system has only one coprocessor, the full decoding of the ten signals 
(FCO-FC2 and A13-A19) provided by the PAL equations in Figure 12-4 is not absolutely 
necessary. It may be sufficient to use only FCO-FC1 and A 16-A 17. FC1-FCO indicate when 

MC68030 USER'S MANUAL MOTOROLA 
12-5 



-

PAL 1618 

CLK 

AS 

FC2 

FCl 

FCO 

A19 

A18 

A17 

A16 

GND 

PAL16l8 
10 ns 

Vee 

NC 

NC 

NC 

NC 

A13 

A14 

CLKD 

cs 
A15 

Figure 12-3. Chip-Select Generation PAL 

FPCP CS GENERATION CIRCUITRY FOR 25 MHz OPERATION 
MOTOROLA INC., AUSTIN, TEXAS 
CLK AS FC2 FC1 FCO A19 A18 A17 A16 GND 

Vee A15 /CS /CLKD A14 A13 NC NC NC NC 

cs = FC2 * FC1 * FCO ;cpu space = $7 
* /A19 * /A18 * A17 * /A16 ;coprocessor access = $2 
* /A15 * /A14 * A13 ;coprocessor id = $1 
*/CLK ;qualified by MPU clock low 

+ FC2 * FC1 * FCO ;cpu space = $7 
* /A19 * /A18 * A17 * /A16 ;coprocessor access = $2 
* /A15 * /A14 * A13 ;coprocessor id = $1 
*/AS ;qualified by address strobe low 

+ FC2 * FC1 * FCO 
* /A19 * /A18 * A17 * /A16 ;coprocessor access = $2 
* /A15 * /A14 * A13 ;coprocessor id = $1 
* /CLKD ;qualified by CLKD (delayed CLK) 

CLKD = CLK 

Description: There are three terms to the CS generation. The first term denotes the earliest time 
CS can be asserted. The second term is used to assert CS until the end of the FPCP access. The 
third term is to ensure that no race condition occurs in case of a late AS. 

Figure 12-4. PAL Equations 

a bus cycle is operating in either CPU space ($7) or user-defined space ($3), and A 16-A 17 
encode CPU space type as coprocessor space ($2). A13-A15 can be ignored in this case 
because they encode the coprocessor identification code (Cp-ID) used to differentiate be­
tween multiple coprocessors in a system. Motorola assemblers always default to a Cp-ID 
of $1 for floating-point instructions; this can be controlled with assembler directives if a 
different Cp-ID is desired or if multiple coprocessors exist in the system. 

MOTOROLA 
12-6 

MC68030 USER'S MANUAL 



0 FPCP SPECIFICATION D MPU SPECIFICATION 

Figure 12-5. Bus Cycle Timing Diagram 

12.3 BYTE SELECT LOGIC FOR THE MC68030 

The architecture of the MC68030 allows it to support byte, word, and long word operand 
transfers to any 8-, 16-, or 32-bit data port regardless of alignment. This feature allows the 
programmer to write code that is not bus-width specific. When accessed, the peripheral 
or memory subsystem reports its actual port size to the processor, and the MC68030 then 
dynamically sizes the data transfer accordingly, using multiple bus cycles when necessary. 
Hardware designers also have the flexibility to choose implementations independent of 
software prejudices. The following paragraphs describe the generation of byte select con­
trol signals that enable the dynamic bus sizing mechanism, the transfer of differently sized 
operands and the transfer of misaligned operands to operate correctly. 

The following signals control the MC68030 operand transfer mechanism: 
• A 1, AO = Address lines. The most significant byte of the operand to be transferred is 

addressed directly. 
• SIZ1, SIZO = Transfer size. Output ofthe MC68030. These indicate the number of bytes 

of an operand remaining to be transferred during a given bus cycle. 
• R/W = Read/Write. Output of the MC68030. For byte select generation in MC68030 -

systems, R/W must be included in the logic if the data from the device is 
cachable. 

==....,..-:=-=-• DSACK1, DSACKO = Data Transfer and Size Acknowledge. Driven by an asynchronous 
port to indicate the actual bus width of the port. 

• STERM = Synchronous Termination. Driven by a 32-bit synchronous port only. 

The MC68030 assumes that 16-bit ports are situated on data lines 016-031, and that 8-bit 
ports are situated on data lines D24-D31. This ensures that the following logic works 
correctly with the MC68030's on-chip internal-to-external data bus multiplexer. Refer to 
SECTION 7 BUS OPERATION for more details on the dynamic bus sizing mechanism. 

The need for byte select signals is best illustrated by an example. Consider a long word 
write cycle to an odd address in word-organized memory. The transfer requires three bus 
cycles to complete. The first bus cycle transfers the most significant byte of the long word 

MC68030 USER'S MANUAL MOTOROLA 
12-7 



.. 

on D16-D23. The second bus cycle transfers a word on D16-D31, and the last bus cycle 
transfers the least significant byte of the original long word on D24-D31. In order not to 
overwrite those bytes which are not used these transfers, a unique byte data strobe must 
be generated for each byte when using devices with 16- and 32-bit port widths. 

For non-cachable read cycles and all write cycles, the required active bytes of the data bus 
for any given bus transfer are a function of the the size (SIZ1/SIZO) and lower address (A 1/ 
AO) outputs and are shown in Table 12-1. Individual strobes or select signals can be gen­
erated by decoding these four signals for every bus cycle. Devices residing on 8-bit ports 
can utilize Data Strobe (DS) alone since there is only one valid byte for any transfer. 

Table 12-1. Data Bus Activity for Byte, Word, and Long Word Ports 

Data Bus Active Sections 
Transfer 

SIZ1 SIZO A1 AO Byte (B) - Word (W) - Long Word (L) Ports 
Size 

031-024 023-016 015-08 07-DO 

0 1 0 0 BWL - - -

Byte 0 1 0 1 B WL - -
0 1 1 0 BW - L -

0 1 1 1 B w - L 

1 0 0 0 BWL WL - -

Word 1 0 0 1 B WL L -
1 0 1 0 BW w L L 
1 0 1 1 B w - L 

1 1 0 0 BWL WL L -

Three-Byte 1 1 0 1 B WL L L 
1 1 1 0 BW w L L 
1 1 1 1 B w - L 

0 0 0 0 BWL WL L L 

Long Word 0 0 0 1 B WL L L 
0 0 1 0 BW w L L 
0 0 1 1 B w - L 

During cachable read cycles, the addressed device must provide valid data over its full bus 
width (as indicated by DSACKx or STEAM). While instructions are always prefetched as 
long-word-aligned accesses, data fetches can occur with any alignment and size. Because 
the MC68030 assumes that the entire data bus port size contains valid data, cachable data 
read bus cycles must provide as much data as signaled by the port size during a bus cycle. 
To satisfy this requirement, the R/W signal must be included in the byte select logic for 
the MC68030. 

Figure 12-6 shows a block diagram of an MC68030 system with two memory banks. The 
PAL provides memory mapped byte select signals for an asynchronous 32-bit port, and 
unmapped byte select signals that are available to other memory banks or ports. Figure 
12-7 provides sample equations for the PAL. 

The PAL equations and circuits presented here are not intended to be the optimal imple­
mentation for every system. Depending on the CPU's clock frequency, memory access 
times, and system architecture, different circuits may be required. 

MOTOROLA 
12-8 

MC68030 USER'S MANUAL 



I 
c: en 
m 

~ 
~ 
2 c: 
l> 
I"'" 

s: 
~ 
::c 

-"0 
...., .... 
ch)> 

MC68030 

SIZO 
SIZl 

AO 
Al 

FCO dY-FCl -

AO-A31 fl ~ 
iiS 

R/W 
00-031 

' 

....,. LLUA 

LMD~ 

UMDJ 

PAL16L8 ruuo~ 

UUOA CONTROL 

} 
UMDA SYNCHRONOUS MODE AND 

LMDA AND ADDRESS 

LLDA BURST MODE 

CPU 
r-- CONTROL LOGIC 

UUDB ;:D>- ,,-
UMDB 

~ LMDB D-LLDB 

~ --
1 1 1 1 32-BIT BURST MODE PORT 

32-BIT PORT w I w I w I w I 

A2-A31 1-J 1--' 

00-07 08-015 016-023 024-031 00-07 08-015 016-023 024-031 

J 1 
7 

J J 
Figure 12-6. Example MC68030 Byte Select PAL System Configuration 

I 



.. 

PAL16L8 
U1 
MC68030 BYTE DATA SELECT GENERATION FOR 32-BIT PORTS, MAPPED AND UNMAPPED. 
MOTOROLA INC., AUSTIN, TEXAS 
AO A1 SIZO SIZ1 Fm A18 A19 A20 A21 GND 
/CPU /UUDA /UMDA /LMDA /LLDA /UUDA /UMDB /LMDB /LLDB VCC 

UUDA=RW 
+/AO*/A1 

UMDA=RW 
+AO* /A1 
+/A1 * /SIZO 
+/A1 * SIZ1 

LMDA=RW 
+/AO*A1 
+ /A1 * /SIZO * /SIZ1 
+ /A1 * SIZO * SIZ1 
+ /A1 *AO* /SIZO 

LLDA=RW 
+AO* A1 
+ AO * SIZO * SIZ1 
+ /SIZO * /SIZ1 
+A1 *SIZ1 

UUDB"' RW */CPU* (addressb) 
+/AO. /A1 • /CPU. (addressb) 

UMDB = RW */CPU * (addressb) 
+AO* /A1 */CPU• (addressb) 
+ /A1 • /SIZO. /CPU. (addressb) 
+ /A1 • SIZ1 • /CPU. (addressb) 

LMDB = RW. /CPU • (acldressb) 
+/AO. A1 • /CPU. (addressb) 

;enable upper byte on read of 32-bit port 
;directly addressed, any size 
;enable upper middle byte on read of 32-bit port 
;directly addressed, any size 
;word aligned, size byte or three byte 
;word aligned, size is word or long word 
;enable lower middle byte on read of 32-bit port 
;directly addressed, any size 
;word aligned, size is long word 
;word aligned, size is three byte 
;word aligned, size is word or long word 
;enable lower byte on read of 32-bit port 
;directly addressed, any size 
;odd alignment, three byte size 
;size is long word, any address 
;word aligned, word or three byte size 

;enable upper byte on read of 32-bit port 
;directly addressed, any size 
;enable upper middle byte on read of 32-bit port 
;directly addressed, any size 
;word aligned, size byte or three byte 
;word aligned, size is word or long word 
;enable lower middle byte on read of 32-bit port 
;directly addressed, any size 

+ /A1 • /SIZO. /SIZ1 • /CPU. (addressb) 
+ /A1 • SIZO. SIZ1 • /CPU. (acldressb) 
+ /A1 • AO. /SIZO. /CPU. (addressb) 

;word aligned, size is long word 
;word aligned, size is three byte 
;word aligned, size is word or long word 
;enable lower byte on read of 32-bit port 
;directly addressed, any size 

LLDB - RW • /CPU • (acldressb) 
+AO• A1 */CPU• (addressb) 
+AO• SIZO • SIZ1 •/CPU • (addressb) 
+ /SIZO * /SIZ1 •/CPU • (addressb) 
+ A1 • SIZ1 • /CPU. (addressb) 

;odd alignment, three byte size 
;size is long word, any address 
;word aligned, word or three byte size 

DESCRIPTION: Byte select signals for writing. On reads, all bytes selects are asserted if the respective 
memory block Is addressed. The Input signal /CPU prevents byte select assertion during CPU space 
cycles and Is derived from NANDing FCO-FC1 or FCO-FC2. The label, (addressb), is a designer-selectable 
combination of address lines used to generate the proper address decode for the system's memory bank. 
With the address lines given here the decode block size is 256K bytes. A similar address might be 
included In the equations for UUDA, UMDA, etc. if the designer wishes them to be memory mapped also. 

Figure 12-7. MC68030 Byte Select PAL Equations 

12.4 MEMORY INTERFACE 

The MC68030 is capable of running three types of external bus cycles as determined by 
the cycle termination and handshake signals (refer to SECTION 7 BUS OPERATION). These 
three types of bus cycles are: 

MOTOROLA 
12-10 

MC68030 USER'S MANUAL 



1. Asynchronous cycles, terminated by the DSACKx signals, have a minimum duration 
of three processor clock periods in which up to four bytes are transferred. 

2. Synchronous cycles, terminated by the STERM signal, have a minimum duration of 
two processor clock periods in which up to four bytes are transferred. 

3. Burst operation cycles, terminated by the STERM and CBACK signals, have a duration 
of as little as five processor clock periods in which up to four long words (16 bytes) 
are transferred. 

During read operations, M68000 processors latch data on the last falling clock edge of the 
bus cycle, one half clock before the bus cycle ends (burst mode is a special case). Latching 
data here, instead of the next rising clock edge helps to avoid data bus contention with 
the next bus cycle, and allows the MC68030 to receive the data into its execution unit 
sooner for a net performance increase. 

Write operations also use this data bus timing to allow data hold times from the negating 
strobes and again to avoid any bus contention with the following bus cycle. This usually 
allows the system to be designed with a minimum of bus buffers and latches. 

One of the benefits of the MC68030's on-chip caches is that the effect of external wait 
states on performance is lessened because the caches are always accessed in fewer than 
"no wait states" regardless of the external memory configuration. This feature makes the 
MC68030 (and MC68020) unique among other general purpose microprocessors. 

12.4.1 Access Time Calculations 

The timing paths that are typically critical in any memory interface are illustrated and 
defined in Figure 12-8. For burst transfers, the first long word transferred also uses these 
parameters, but the subsequent transfers are different and are discussed in 12.4.2 Burst 
Mode Cycles. 

The type of device that is interfaced to the MC68030 determines exactly which of the paths 
is most critical. The address-to-data paths are typically the critical paths for static devices 
since there is no penalty for initiating a cycle to these devices and later validating that 
access with the appropriate bus control signal. Conversely, the address-strobe-to-data­
valid path is often most critical for dynamic devices since the cycle must be validated 
before an access can be initiated. For devices that signal termination of a bus cycle before 
data is validated (e.g., error detection and correction hardware, and some external caches) 
in order to improve performance, the critical path may be from the address or strobes to 
the assertion of BERR (or BERR and HALT). Finally, the address-valid-to-DSACKx or STERM­
asserted path is most critical for very fast devices and external caches, since the time 
available between when the address is valid and when DSACKx or STE RM must be asserted 
to terminate the bus cycle is minimal. Table 12-2 provides the equations required to cal­
culate the various memory access times assuming a 50 percent duty cycle clock. 

During asynchronous bus cycles, DSACK1 and DSACKO are used to terminate the current 
bus cycle. In true asynchronous operations such as accesses to peripherals operating at a 
different clock frequency, either or both signals may be asserted without regard to the 
clock, and then data must be valid a certain amount oftime later as defined by specification 
#31. With a 16.67 MHz processor, this time is 50 ns after DSACKx asserts and with a 20.0 
MHz processor, this time is 43 ns after DSACK asserts (both numbers vary with the actual 
clock frequency). 

MC68030 USER'S MANUAL MOTOROLA 
12-11 



.. 

so S1 S2 so 

CLK 

'""' ==t--------__,X.....__ 
OSACKO/OSACK 1 

00-031 

NOTE: This diagram illustrates access time calculations only. DSACKO/DSACK1 and STERM should 
never be asserted together during the same bus cycle. 

Paramter Description System Equation 

a Address Valid to DSACKx Asserted tAVDL 12-1 
b Address Strobe Asserted to DSACKx Asserted tsADL 12-2 
c Address Valid to STEAM Asserted tAVSL 12-3 
d Address Strobe Asserted to STEAM Asserted tSASL 12-4 
e Address Valid to BE RR/HALT Asserted tAVBHL 12-5 
f Address Strobe Asserted to BEAR/HALT Asserted tsABHL 12-6 
g· Address Valid to Data Valid tAVDV 12-7 
h Address Strobe Asserted to Data Valid tsADV 12-8 

Figure 12-8. Access Time Computation Diagram 

However, many local memory systems do not operate in a truly asynchronous manner 
because the memory control logic can either be related to the MC68030's clock or worst 
case propagation delays are known, and thus asynchronous setup times for the DSACKx 
signals can be guaranteed. The timing requirements for this pseudo-synchronous DSACKx 
generation is governed by the equation for tAVDL· 

Synchronous cycles use the STERM signal to terminate the current bus cycle. In bus cycles 
of equal length, STERM has more relaxed timing requirements than DSACKx since an 
additional 30 ns is available when comparing tAvsL(or tSASLl to tAVDL (or tSADLl· The 
only additional restriction is that STERM must meet the setup and hold times as defined 
by specifications #60 and #61 respectively for all rising edges of the clock during a bus 
cycle. The value for tSASL when the total number of clock periods (N) equals two in Table 

MOTOROLA 
12-12 

MC68030 USER'S MANUAL 



Table 12-2. Memory Access Time Equations at 20 MHz 

(12-1) tAVDL =(N-1)•t1 -t2-t6-t47A 
(12-2) lSADL = (N-2)•11 -19-147 A 

(12-3) IAVSL =(N-1)•11 -t6-t60 
(12-4) ISASL = (N-1 )•11 -t3-t9-t60 

(12-5) tAVBHL = N•t1 -t2-t6-t27A 
(12-6) tSABHL =(N-1)•t1 -t9-t27A 

(12-7) tAvDv=N•t1 -t2-t6-t27 
(12-8) tsADv=!N-1)·t1 -t9-t27 

where: 
tX = Refers 10 AC Electrical Specification #X 
t1 = The Clock Period 
12 = The Clock Low Time 
t3 = The Clock High Time 
16 = The Clock High to Address Valid Time 
19 = The Clock Low to AS Low Delay 
127 = The Data-In to Clock Low Setup Time 
t27A =The BERR/HALT to Clock Low Setup Time 
t47A = The Asynchronous Input Setup Time 
160 = The Synchronous Input to CLK High Setup Time 

N=2 

-
-

21 ns 
1 ns 

40 ns 
20 ns 

46 ns 
26 ns 

N = The Total Number of Clock Periods in the Bus Cycle (Non-Burst) 
(N;;.2 for Synchronous Cycles; N;;.3 for Asynchronous Cycles) 

N=3 N=4 

46 ns 96 ns 
26 ns 76 ns 

71 ns 121 ns 
51 ns 101 ns 

90 ns 140 ns 
70 ns 120 ns 

96 ns 146 ns 
76 ns 126 ns 

N=S N=6 

146 ns 196 ns 
126 ns 176 ns 

171 ns 221 ns 
151 ns 201 ns 

190 ns 240 ns 
170 ns 220 ns 

196 ns 246 ns 
176 ns 226 ns 

12-2 requires further explanation. Because the calculated value of this access time, Equation 
12-4, is zero under certain conditions, hardware cannot always qualify STERM with AS at 
all frequencies. However, such qualification is not a requirement for the MC68030. STE RM 
can be generated by the assertion of ECS, the falling edge of SO, or most simply by the 
output(s) of an address decode or comparator logic. Note that other devices in the system 
may require qualification of the access with AS since the MC68030 has the capability to 
initiate bus cycles and then abort them before the assertion of AS. 

Another way to optimize the CPU-to-memory access times in a system is to use a clock 
frequency less than the rated maximum of the specific MC68030 device. Table 12-3 provides 
calculated tAVDV (Equation 12-7) results for an MC68030RC16 and MC68030RC20 operating 
at various clock frequencies. If the system uses other clock frequencies, the above equations 
can be used to calculate the exact access times. 

Table 12-3. Calculated tAVDV Values for Operation at Frequencies -
Less Than or Equal to the CPU's Maximum Frequency Rating 

Equation 12-7 ~ MC68030RC20 MC68030RC25 

Clocks Per Bus Wait Clock at Clock at Clock at Clock at Clock at 
Cycle (N) and Type States 16.67 MHz 20 MHz 16.67 MHz 20 MHz 25 MHz 

2 Clock Synchronous 0 61 46 68 53 
38 
-

3 Clock Synchronous 1 121 96 128 103 78 
3 Clock Asynchronous 0 121 96 128 103 78 

4 Clock Synchronous 2 181 146 188 153 1118 
4 Clock Asynchronous 1 181 146 188 153 118 

5 Clock Synchronous 3 241 196 248 203 158 
5 Clock Asynchronous 2 241 196 248 203 158 

6 Clock Synchronous 4 301 246 308 253 198 
6 Clock Asynchronous 3 301 246 308 253 198 

MC68030 USER'S MANUAL MOTOROLA 
12-13 



-

12.4.2 Burst Mode Cycles 

The memory access times for burst mode bus cycles follow the above equations for the 
first access only. For the subsequent (second, third and fourth) accesses, the memory 
access time calculations depend on the architecture of the burst mode memory system. 

Architectural trade-offs include the width of the burst memory, and the type of memory 
used. If the memory is 128 bits wide, the subsequent operand accesses do not affect the 
critical timing paths. For example, if a 3-1-1-1 burst accesses 128-bit wide memory, the 
first access is governed by the equations in Table 12-2 for N equal to three. The subsequent 
accesses also use these values as a base, but have additional clock periods added in. The 
second access has one additional clock period, the third access has two additional clock 
periods and the fourth has three additional clock periods. Thus the access time for the first 
cycle determines the critical timing paths. 

Memory that is 64-bits wide, presents a compromise between the two configurations listed 
above in both access times and parts, count. 

12.5 STATIC RAM MEMORY BANKS. 

When the MC68030 is operating at a high clock frequency, a no wait state external memory 
system will most likely be composed of static RAMs. The following paragraphs discuss 
three static memory banks which may be used as shown or as a starting point for an 
external cache design. The designs offer different levels of performance, bus utilization, 
and cost. 

12.5.1 A Two Clock Synchronous Memory Bank Using SRAMs. 

The MC68030 normally attains its highest performance when the external memory system 
can support a .two clock synchronous bus protocol. This section describes a complete 
memory bank containing 64K bytes that can operate with a 20 MHz MC68030 using two­
clock accesses. Also discussed are several options and minor alterations to reduce cost or 
power consumption. 

Figure 12-9 shows the complete memory bank and its connection to the MC68030. As 
drawn, the required parts include: 

(8) 16K x 4 SRAMs, 35 ns access time with separate 1/0 pins 
(4) 74F244 buffers 
(2) 74F32 OR gates 
(1) PAL 16L8D (or equivalent) 

The system must also provide any STERM consolidation circuitry as required (for instance 
by the presence of multiple synchronous memory banks or ports). In Figure 12-9, this 
consolidation circuitry is shown as an AND gate. 

The memory bank can be divided into three sections: 
1. The byte select and address decode section (provided by the PAL). 
2. The actual memory section (SRAMs). 
3. The buffer section. 

MOTOROLA 
12-14 

MC68030 USER'S MANUAL 



20 MHz 
CLOCK 

GENERATION 

CLK 

MC68030 

CLK 

00-031 

AO-A31 

A5 

SIZO t--------1 

SIZl t--------1 

RiW t--------t 

32 

A2-A15 

so 

OAS ROCS 
A30 
AlB uucs 
A17 UMCS 
A16 LMCS 
Al LLCS 
AO 
SIZO TERM 
SIZl 
R/W 

BYTE SELECT ANO ADDRESS 
DECODE PAL16L80 

74F32 

EN 

<1 

14 

74F32 

STEAM t---------<i OTHER SYSTEM ......___p------ STEAM SIGNALS 

SYSTEM STEAM 
CONSOLIDATION CIRCUITRY 

32 

0 Q 0 0 0 Q 0 0 

TWO TWO TWO TWO 
16K x 4 16K x 4 16K x 4 16K x 4 
SRA Ms SRAMs SRAMs SRA Ms 

w I WI W I W I 

- - -- - - -

Figure 12-9. Example Two Clock Read, Three Clock Write Memory Bank 

The first section consists of two 74F32 OR gates, a 74F74 D-type flip flop, and a PAL 16L8D. 
Example PAL equations are provided in Figure 12-10. The PAL generates six memory 
mapped signals; four byte select signals for write operations, a buffer control signal, and 
the cycle termination signal. The byte select signals are only asserted during write oper­
ations when the processor is addressing the 64K bytes contained in the memory bank, and 
then only when the appropriate byte (or bytes) is being written to as indicated by the SIZO, 
SIZ1, AO and A 1 signals. The four signals, UUCS, UMCS, LMCS and LLCS, control data 
bits D24-D31, D16-023, D8-D15 and DO-D7 respectively. AS is used to qualify the byte select 
signals to avoid spurious writes to memory before the address is valid. During read op­
erations, the read chip select (RDCS) signal, qualified with AS, controls the data buffers 
only (since the memory is already enabled with its E input grounded). The last signal 

MC68030 USER'S MANUAL MOTOROLA 
12-15 



-

UUCS=/AO */Al 8 /RW */A16*/A17*/A18*A30* 

UMCS=AO */Al* /RW * /A16*/A17*/A18*A30* 
+/Al * /SIZO • /RW * /A16*/A17*/A18*A30* 
+/Al *SIZl • /RW * /A16*/A17*/A18*A30* 

LMCS=/AO *Al • /RW • /A16*/A17*/A18*A30* 
+/Al * /SIZO • /SIZl * /RW * /A16*/A17*/A18*A30* 

+/Al* SIZO * SIZl * /RW • /A16*/A17*/A18*A30* 
+/A 1 * AO * /SIZO * /RW */A 16*/A 17*/A 18*A30* 

LLCS=AO *Al /RW * /A16*/A17*/A18*A30* 
+AO* SIZO *SIZl * /RW * /A16*/A17*/A18*A30* 
+/SIZO * /SIZl • /RW * /A16*/A17*/A18*A30* 
+Al* SIZl * /RW * /A16*/A17*/A18*A30* 

RDCS = /A16*/A 17*/A18*A30*RW 
+/A15 * /A17 * /A18*A30* /RW*DAS 

;directly addressed, any size 

;directly addressed, any size 
;word aligned, size byte or three byte 
;word aligned, size is word or long word 

;directly addressed, any size 
;word aligned, size is long word 
;word aligned, size is three byte 
;word aligned, size is word or long word 

; directly addressed, any size 
;odd alignment, three byte size 
;size is long word, any address 
;word aligned, word or three byte size 

; immediate STEAM with proper address 
;write cycles take three clocks 

DESCRIPTION: Byte select signals. The byte select signals are asserted only during write operations when the particular byte is being written. 
The synchronous bank of memory is always enabled, and writes are controlled by W on the memory. RDCS is for buffer 
control and only asserts for read operations. TERM is the cycle termination signals to the MC68030. 

Figure 12-10. Example PAL Equations for Two Clock Bank 

generated by the PAL is the TERM signal. As its equation shows, TERM consists of two 
events: one for read cycles, and the other for write cycles. For read cycles. TERM is an 
address decode signal that is asserted whenever the address corresponds to the encoded 
memory-mapped bank of SRAM. For write operations, a delayed form of AS (DAS) is used 
to qualify the same address decode, which lengthens write operations to three clock cycles. 
The DAS signal generation is delayed from the clock edge by running the clock signal 
through two 74F32 OR gates before connecting to the 74F74 D-type flip flop. This guarantees 
that the maximum propagation delay to generate the TERM signal does not violate the 
synchronous input hold time of the MC68030. By increasing write operation to three clock 
cycles, the MC68030 can easily meet the specified data setup time to the SRAMs before 
the negation of the write strobes (W). TERM is then connected to the system's STERM 
consolidation circuity. The consolidation circuitry should have no more than 15 nanose­
conds of propagation delay. If the system has no other synchronous memory or ports, 
TERM may be connected directly to STERM. 

The second section contains the memory devices. Eight devices are used, but some designs 
may wish to increase this to support EDAC, or to increase density. The most important 
feature of the memory devices used in this design is the separate data-in and data-out 
pins, which allow the SRAMs to be enabled before address decode is complete without 
causing data bus contention. The enable pins on the SRAMs have been grounded for both 
simplicity and improved memory access timing. If the designer wishes to include some 
type of enable circuitry to take advantage of low bus utilization for lower power con­
sumption, the timing in this design will be preserved if the memory's E signal is asserted 
before the falling edge of state SO (at the same time as or before the address becomes 
valid). Two possible enable circuits are shown in Figure 12-11. 

The third section of the memory bank is the data buffers. The data buffers are shown as 
74F244, but 74AS244s may also be used. The RDCS signal qualified with AS controls the 
data buffers during read operations as described above. 

MOTOROLA 
12-16 

MC68030 USER'S MANUAL 



Vee Vee 

74F74 74F74 

PR PR 

Vee 0 0 I TERM 0 I 

A5 eLK Q eLK eLK Q 

eLR eLR 

EeS EeS 

Figure 12-11. Additional Memory Enable Circuits 

To maximize performance both read and write operations should be capable of completing 
in two clock cycles. Figure 12-12 shows a two clock read and write memory bank. The 
required parts include: 

(8) 16K x 4 SRAMs, 25 ns access time with separate 1/0 pins 
(4) 74F244 buffers 
(2) 74F32 OR gates 
(1) PAL 16L8D (or equivalent) 
(1) 74F74 D-type flip flop 
(2) 74F373 transparent latches 
(1) 74AS21 AND gate 
(1) 74F04 inverter 

The structure of this design is very similiar to the previous design and can similarly be 
divided into three main sections: 

1. The byte select and address decode section (provided by the PAL). 
2. The actual memory section (SRAMs). 
3. The buffer/latch section (address and data). 

The same PAL equations listed in Figure 12-10 are used with the exception of the TERM 
signal. Figure 12-13 shows the equation for TERM, which is used by the two clock read 
and write design. 

TERM is simply an address decode signal in this design because both read and write 
operations complete in two clock periods. The other signals generated by the PAL have 
already been discussed in the previous design and are not repeated here. A latched version 
of AS is generated by a 74F74 D-type flip flop and used to qualify the individual byte select 
signals from the PAL. The required SRAM data setup time on write cycles is ensured by 
keeping the write strobes (W) active to the SRAMs until the rising edge of the clock which 
completes the MC68030 write operation. 

The memory section in this design uses 25 nanoseconds SRAMs rather than the 35 na­
noseconds SRAMs used in the previous design. The faster SRAMs compensate for the 
74F373 transparent latches used on the address lines. Since the memory write operations 
complete after the MC68030 write bus cycle, both address and data are latched and held 
valid to the SRAMs until the write strobes (W) negate. During read operations the trans­
parent latches on the address lines remain in the transparent mode allowing the SRAMs 

MC68030 USER'S MANUAL MOTOROLA 
12-17 

-



-

MC68030 

CLK 

20 MHz 
CLOCK 

GENERATION 

CLK 

74F04 

74F32 

LE 

74F373 

EN 

<J 32 

74F373 

LA2-LA 15 
A2·Al5 14 

AO-A31 -....-----------r---t 
LE 

A8 .--+--+------.,...._~ 

--

~---t> CP 0 D---f-------. 
co 

SIZO 1-----1 
SIZl 1-----1 
RtW1-----1 

NC 
A30 
Al8 
Al7 
Al6 
Al 
AO 
SIZO 
SIZl 
R/W 

RDCS 

uucs 
UMCS 
LMCS 
ucs 

TtRM 

Bm SELECT AND ADDRESS 
DECODE PAL16L80 

STEAM t------oc OTHER SYSTEM ....__p------ STEAM SIGNALS 

SYSTEM STEAM 
CONSOLIDATION CIRCUITRY 

74F32 

D Q 0 0 0 Q 0 Q 

TWO TWO TWO TWO 
16K x 4 16K x 4 16K x 4 16K x 4 
SRA Ms SRA Ms SRA Ms SRAMs 

w I w I w I w I 

- - -- - - -

Figure 12-12. Example Two Clock Read and Write Memory Bank 

TERM = /A16 * /A17 * /A16 * A30 ;immediate STERM for both reads and writes 

Figure 12-13. Example PAL Equation for Two Clock Read and Write Bank 

to provide data through the 74F244 buffers in time to meet the specified data setup time 
to the MC68030. 

Not all systems require the performance of 20 MHz two clock bus cycles, nor will all systems 
be able to afford the fast devices. Fortunately, several small changes to this design could 

MOTOROLA 
12-18 

MC68030 USER'S MANUAL 



assist designers with different cost/performance ratios. The simplest and most direct method 
is to reduce the clock frequency of the MC68030. For instance, if the clock frequency is 
below approxrmately 18.1 MHz, the same.control logic supports two clock bus cycles with 
45 ns memory (55 ns if < 15.8 MHz). If 20 MHz is still the frequency of choice, the designer 
may choose to run three clock bus cycles. This can be accomplished with the addition of 
a flip flop to delay the TERM signal by one clock. The resulting memory access time is 
over 85 ns with a 20 MHz processor running with three clock bus cycles. 

12.5.2 A 2-1-1-1 Burst Mode Memory Bank Using SRAMs 

The MC68030 normally attains its lowest bus utilization when the external memory system 
can support a 2-1-1-1 burst protocol. However, exceptions to this can occur. For instance, 
when a large amount of memory accesses are not governed by the locality of reference 
principles, burst accesses may not decrease bus utilization. This section describe.s a com­
plete 2-1-1-1 memory bank with 256K bytes that can operate with a 20 MHz MC68030. Non­
burst reads and all write cycles execute in two clocks. 

Figure 12-14 shows the complete memory bank and its connection to the MC68030. The 
required parts include: 

(32) 64Kx 1 SRAMs 25 ns access time (Motorola's MCM6287-25 or equivalent) 
(2) 74ALS244 buffers 
(4) 74AS373 latches 
(2) 74F32 OR gates 
(4) 74F191 counters 
(1) PAL 16L8D (or equivalent) 
(1) 74F04 inverter 

The system must also provide any STEAM or CBACK consolidation circuitry as required 
(for instance due to the presence of multiple synchronous memory banks or ports). In 
Figure 12-14, this consolidation circuitry is shown as an AND gate. 

The memory bank can be divided into four sections: 
1. The byte select and address decode section (provided by the PAL). 
2. The burst address generator (provided by the counters). 
3. The actual memory section (SRAMs). 

4. The buffer section (address and data). 

The first section is completely contained within the PAL 16L8D. The PAL equations are the 
same as those provided in Figure 12-8 for the two-clock read, three-clock write memory 
bank, although slightly modified to support the larger block of memory (use A18-A20 
instead of A16-A18). The PAL generates six memory mapped signals: four byte select 
signals for write operations, a buffer control signal, and the cycle termination signal. The 
byte select signals are only asserted during write operations when the processor is ad­
dressing the 256K bytes contained in the memory bank, and then only when the appropriate 
byte or bytes is being written to as indicated by the SIZO, SIZ1, AO, and A 1 signals. The 
four signals, UUCS, UMCS, LMCS, and LLCS, control data bits D24-D31, D16-D23, D8-15, 
and DO-D7 respectively. AS is used to qualify the byte select signals to avoid spurious 
writes to memory before the address is valid. During read operations, the read chip select 
(RDCS) signal, qualified with AS, controls the data latches only (since the memory is already 
enabled with its E input grounded). The last signal generated by the PAL is the l"ERM 

MC68030 USER'S MANUAL MOTOROLA 
12-19 

-



-

20 MHz 74F32 

CLOCK 
GENERATION 

CLK iiC 32 

MC68030 
0 0 

CLK 
CLK 

D0-031 
32 

CBRED 
BURST ADDRESS A2BO·A2B3 

GENERATION A3BO·A3B3 A2BO 
(SEE BELOW) 

74ALS244 

A4-A15 12 [> AO-A31 

EN 
A3BO A3B1 A3B2 

w I w I w 
AS 

OAS RDCS 74F32 

A30 
A20 uucs 
A19 UMCS 
AlB LMCS 
Al LLCS 
AO 

SIZO SIZO TERM 
SIZl SIZl 
Rfli R!W 

BYTE SELECT ANO ADDRESS 
DECODE PAL16L8D 

STERM 1---------a.._~_p---t---------- OTHER STERM OR 

CBACK 1---------cf~r>---+---------- CBACK SIGNALS 

SYSTEM STERM/CBACK 
CONSOLIDATION CIRCUITRY 

74F191 

CBREO -----a CE 
AS PL 
A2 PO 
A3 Pl 

CLK CP 
U/D 

00 01 

>----e-<:J CE 
>----e-<:J PL 
t----e--1 PO 
t----e--1 Pl 
1-----e--1 CP 

74F191 

U;o 
OD lll 

A3BO 

i----e....a CE 
i----e....a PL 
1-----e>--1 PO 
1-----e>--1 Pl 
1-----e>--1 CP 

74F191 

U/D 
no 01 

A3Bl 

t----e....a IT 
t----e....a PL 
t----e>--1 PO 
t----e>--1 Pl 
t----e>--1 CP 

74F191 

U;o 
ao m 

A3B2 

A3B3 

I w T 

A3B3 "-------+---"------I---'.._-----+--_,,_-- A3BO·A3B3 
A2BO A2B1 A2B2 A2B3 "'--------->.---------'..__ _______ _,,_ ____ A2BO·A2B3 

BURST ADDRESS GENERATOR (ONE COUNTER PER EIGHT MEMORY DEVICES). 

Figure 12-14. Example 2-1-1-1 Burst Mode Memory Bank at 20 MHz, 256K Bytes 

MOTOROLA 
12-20 

MC68030 USER'S MANUAL 



signal. As the equation shows, TERM consists of two events: one for read cycles, and the 
other for write cycles. For read cycles, TERM is an address decode signal that is asserted 
whenever the address corresponds to the encoded memory-mapped bank of SRAM. Write 
operations use the DAS signal to qualify the address decode, which lengthens write cycles 
to three clock periods. If a two-clock write cycle is required, this design can be modified 
to incorporate the address and data latches used in Figure 12-12. TERM is connected to 
the system's STERM and CBACK consolidation circuitry such that both are asserted when 
TERM is asserted. The consolidation circuitry should have a maximum propagation delay 
of 15 ns or less. If the system has no other synchronous memory or ports, TERM can be 
connected directly to STERM, and CBACK may be grounded. 

The second section is the burst address generator which contains the four counters and 
the inverter. The counters serve to both buffer the MC68030's address lines (A2 and A3) 
and to provide the next long word address during a burst operation. The 74F191s are 
asynchronously preset at the beginning of every bus cycle when AS is negated. When AS 
asserts, the counting is dependent on the CBREO signal and the CLK signal. During writes, 
CBREO is always negated and the counters serve only as address buffers. During reads, 
if CBREO asserts, the current value of counter bits 01 :00 are incremented on every falling 
clock edge of the MC68030's clock after AS asserts. Four counters are used to provide 
enough drive capability to avoid an additional buffer propagation delay. Each counter drives 
eight memory devices. 

The third section contains the memory devices. The most important feature of the memory 
devices used in this design is the separate data-in and data-out pins, which allow the 
SRAMs to be constantly enabled before address decode is complete without causing data 
bus contention. If the designer wishes to include some type of enable circuitry to take 
advantage of low bus utilization, the timing in this design will be preserved if the memory's 
E signal is asserted within 13 ns after the falling edge of state SO. 

The fourth and last section of the memory bank is the address and data buffers. The address 
buffers are shown as 74ALS244s, but 74AS244s and 74F244s are also acceptable. Two 
inputs to the address buffers remain unused allowing the possibility for expansion up to 
1 MEG bytes without any additional devices when SRAMs of suitable density become 
available. The RDCS signal qualified with AS controls the data buffers during read oper­
ations. The address buffers are always enabled. 

Some modifications to this design can improve performance. Specifically, circuitry to con­
trol CBACK and thus prevent or discontinue a burst cycle is a simple addition. The circuitry 
should have two functions: first to prevent wrap around, and second to prevent bursting 
when a data operand crosses a long word boundary. 

Not all systems require the performance of 20 MHz 2-1-1-1 burst cycles, nor will all systems 
be able to afford the fast devices of this design. If the clock frequency is below approximately 
17.5 MHz, the same support logic supports 2-1-1-1 burst cycles with 35 ns memory. If 20 
MHz is still the frequency of choice, the designer may choose to run 3-1-1-1 burst cycles. 

12.5.3 A 3-1-1-1 Burst Mode Memory Bank Using SRAMs. 

Figure 12-15 shows the complete 3-1-1-1 memory bank with 256K bytes that can operate 
with a 20 MHz MC68030. The required parts include: 

(32) 64K x 1 SRAMs 35 ns access time (Motorola's MCM6287-35 or equivalent) 
(4) 74ALS244 buffers 

MC68030 USER'S MANUAL MOTOROLA 
12-21 



-

20 MHz 74F32 -CLOCK ~4AS374 GENERATION 

CLK oc 

MC68030 r- D 32.L 
I 

CLK 
CLK I-------< .....___ 

OO-D31 
32.L 

I l l 

.V.-· +-0 t_p-Jo lf.-o BURST ADDRESS A1BO-A183 
CBREO 

.---I 
GENERATION A3BO-A383 A2BO A281 A2B1 
(SEE BELOW) 

[ 
74ALS244 

EIGHT EIGHT EIGHT EIGHT 
64K x 1 64K x 1 64K x 1 64K x 1 

A4-A15 12.L [> SRAMs SRAMs SRAMs SRA Ms 
AO-A31 7 t-f-- r--1 r- f--' 

EN ~ A~ A~ A~ 

tt WT W T - T w 

~ - TI u r-r -
- - - -

- NC ROCS 74F31 

~ 5Y-A30 

~ A10 uucs 

~ UMCS -A19 

11 ~ AlB LMCS 

t== Al LLCS 1-------, 
......__/ 

AO 5Y SIZO SIZO TERM 1---i 
SlZl SIZl 
R/W R/W ~ -

BYTE SELECT AND ADDRESS 
OECOOE PAL16LBO ~14 /:;.Vee 

so 
0 0 t--1--i 

-t>o-+cP 0 

STE RM ~ tJ OTHER STERM OR 
CBACK SIGNALS 

CBACK ' c:: --..--
SYSTEM STERM/CBACK 

CONSOLIOATION CIRCUITRY 

74F191 74F191 74F191 74F191 

CBREO -. - CE CE CE CE 

~ PL PL PL PL 
A2 ~ PO -. PO ---- PO PO 
A3 ~ Pl Pl ~ Pl .. Pl 

CLK CP CP CP ~ CP 

_c-- LI/O 
~ 

U/O 

~ 
U/D 

~ 
TI;o 

00 01 00 01 00 01 00 01 
- l \__AJBO 

- I 1_113Bl - I _iA3B2 - lA383 
A3BO-A383 

A2BO IA2Bl l_A181 lA2B3 
A2BO-A283 

BURST ADDRESS GENERATOR (ONE COUNTER PER EIGHT MEMORY DEVICES). 

Figure 12-15. Example 3-1-1-1 Pipelined Burst Mode Memory Bank at 20 MHz, 256K Bytes 

MOTOROLA 
12-22 

MC68030 USER'S MANUAL 



(4) 74F374 latches 
(2) 74F32 OR gates 
(4) 74F191 counters 
(1) PAL16L8D (or equivalent) 
(2) inverters 
(1) flip flop 

The structure of this memory bank is very similiar to the 2-1-1-1 memory bank described 
in 12.5.2 A 2-1-1-1 Burst Mode Memory Bank Using SRAMs. In fact, the PAL and address 
buffers are exactly the same. The PAL equations are provided in Figure 12-10. The most 
important differences occur in the data latches which are now flip flops. Also, the D-type 
flip flop has been moved from the input side of the PAL to the TERM output. 

The data flip flops allow the long words out of the memory to be pipelined such that setup 
and hold times are easier to satisfy. The memory devices are generating the next long 
word of data even before the MC68030 has latched the "current" long word. This alteration 
eases access timing requirements such that 35 ns memory can be used with a clock 
frequency of 20 MHz. If the clock frequency is less than 17 MHz, 45 ns memory can be 
used. Another benefit of the slower cycle, is a relaxed timing requirement for the enable 
inputs of the SRAMs. Although Figure 12-15 has all the SAAM chip enables grounded, the 
timing in this design will be preserved if the memory's E signal is asserted within 10 ns 
after the rising edge of state S2. Figure 12-16 shows four possible enable circuits. 

Vee Vee 

74F74 74F74 

PR AS 

Vee 0 Q I (BUFFERED) 
PR 

TERM 0 Q I 
---I 

AS eLK a eLK eLK a 
TERM 

eLR (BUFFERED) eLR 

EeS ----' EeS ----' 

Figure 12-16. Additional Memory Enable Circuits 

The flip flop connected to the TERM signal serves two purposes: first, the TERM signal is 
delayed at the beginning of the cycle to insert the wait state for the first long word, and 
second, the burst address generator is also prevented from incrementing the long word 
base address until the first long word has been latched by the 74F374s. 

The performance enhancing modifications described for the 2-1-1-1 design also apply to 
this design. Specifically, circuitry to control CBACK and thus prevent or discontinue a burst 
cycle can be added. The circuitry should have two functions: first to prevent wraparound, 
and second to prevent bursting when a data operand crosses a long word boundary. 
Another enhancement might be to alter the TERM control circuitry with the addition of a 
write latch mechanism to run two clock writes. 

The critical path for the 3-1-1-1 memory bank is not the first long word access as in the 2-
1-1-1 memory bank, but rather the subsequent long words during burst cycles. No alter­
native architecture can correct the critical path for the 2-1-1-1 burst cycle. However, for 3-
1-1-1 burst cycles the designer might consider memory banks which are 64 or 128 bits 

MC68030 USER'S MANUAL MOTOROLA 
12-23 

-



-

wide. In this manner, the access time for the subsequent long words can be hidden un­
derneath the access of the previous long word(s). 

12.6 EXTERNAL CACHES 

In order to provide lower average access times to memory, some systems implement 
caches local to the main processor that store recently-used instructions and/or data. For 
the MC68030, several architectural options are available to the cache designer. The primary 
decisions are whether to configure the cache as an asynchronous or synchronous device 
and whether the cache accesses are terminated early (before the cache look-up is complete) 
or only after validation. 

The MC68030 late BERR/HALT facility allows an external device to signal completion of a 
bus cycle by asserting DSACKx or STERM and later (approximately one clock period or 
one half clock, respectively) aborting or retrying that cycle if an error condition is detected. 
As one critical access path in many memory structures is the assertion of DSACKx/STERM 
to avoid additional wait states, the late abort capability allows the memory controller to 
terminate a bus cycle before data is valid on the processor data bus. If the data validation 
fails, the memory controller can then abort (BERR) or retry (SERR/HALT) the cycle. This 
technique is useful in memory error detection schemes where the cycle can be terminated 
as soon as data becomes available and the error checking can take place during the period 
between the signaling of termination of the cycle and the latching of data by the processor 
with a late retry or abort signaled upon error indication. Likewise, this technique can be 
used in cache implementations where the cache tag validation cannot be completed before 
termination of the cycle must be signaled but the validation is completed before late abort 
or retry must be indicated. 

The major consideration in choosing whether or not to utilize late cycle retry for an external 
cache miss is the overhead involved in retrying a bus cycle after a miss in the cache. The 
minimum pena.ity is the four clock periods required to retry the cycle (two clocks during 
which the miss is detected and two clocks idle bus time), assuming that the bus control 
strobes (BERR and HALT) are negated soon enough after the completion of the aborted 
cycle that the next cycle can begin immediately. In evaluating this overhead, the projected 
cache miss rate determines the percentage of cycles that must be retried. Additionally, the 
degree of parallelism in the system should be considered. If, after a cache miss, it is possible 
to continue the bus cycle to main memory while the processor is retrying the cycle, it is 
possible to avoid some, or all, of the performance penalty associated with late retry (al­
though the control circuitry required may be more complex). 

For a two clock bus or burst capability, use of the synchronous bus is mandated, but for 
a three or more clock, non-burst cache the choice of synchronous versus asynchronous 
operation must be made. If the bus cycle is terminated only after validation, use of the 
synchronous bus is recommended since the address valid to STERM asserted timing re­
quirement is longer than the address valid to DSACK asserted timing for bus cycles of the 
same length. If the cache implements late cycle retry the choice of which bus control mode 
to use is less important and depends on system-specific features and control structures. 
Some external caches might use both synchronous and asynchronous transfers: synchron­
ous for hits and asynchronous for misses or vice versa. The following discussion assumes 
that the external cache uses the synchronous two clock protocol, but most statements also 
apply to the asynchronous protocol. 

MOTOROLA 
12-24 

MC68030 USER'S MANUAL 



If the MC68030 MMU is disabled, all bus cycles use logical addresses. If the MMU is enabled, 
the external address bus uses physical addresses (including directly mapped logical-to­
physical addresses from the transparent translation (ITx) registers). These two modes of 
operation, logical and physical, affect the maintenance of external caches. For example, 
when the external cache uses physical addresses, the cache need not be flushed on each 
context switch. Since each task in a system may have its own unique mapping of the logical 
address space, a logical cache must be flushed of all entries any time the logical-to-physical 
mapping of the system changes (as occurs during a context switch). Since there is only a 
single physical address space, this problem does not occur with a physical cache as all 
references to a particular operand must utilize the same physical address. 

The intended cache size should be evaluated when considering the utility of allowing 
multiple tasks to maintain cache entries. If the cache is relatively small, and the time 
between context switches is large, each task will tend to fill the cache and to remove all 
entries created during the execution of previous tasks. Conversely, if the cache size is 
relatively large and the period between context switches is relatively small, the cache may 
provide an efficient sharing of entries. 

12.6.1 Cache Implementation 

An example organization of an external cache is shown in Figure 12-15. With this orga­
nization, the cache timing controller does not terminate a bus cycle until the cache has 
had sufficient time to validate the access as a "hit" or a "miss". When a "hit" decision is 
made, the cache controller asserts the STERM signal and also blocks propagation of AS 
(A) to the external system. If the cache decision cannot be completed before AS would 
normally be asserted by the MC68030, some provision must be made to delay the prop­
agation of AS until the decision is valid. Otherwise, spurious assertions of the AS signal 
are likely to occur. 

The cache control circuit (8) contains all logic required to clear or create cache entries. 
Also contained in (B) is the decision logic required to determine whether a hit or miss has 
occurred and the timing logic that is required to prevent propagation of the "hit" signal 
until the lookup and compare circuitry has had sufficient time to generate a valid decision. 
The critical path in the design of this cache is from the output of valid address by the 
MC68030 to the assertion of STERM by the cache controller (Equation 12-3). After a cache 
hit decision has been made, the hit signal directly drives the STERM signal. Qualifying 
STERM with AS is not necessary assuming the appropriate setup and hold times are 
respected when AS is asserted. Operating at 20 MHz with no wait states, 21 nanoseconds 
are available from the presentation of valid address by the MC68030 to the assertion of 
STERM by the cache controller while 46 nanoseconds are available from valid address to 
data valid at the processor. 

If the access times cannot be met due to the particular cache architecture, size, cost, or 
other consideration, the system designer may choose to utilize an early termination ap­
proach, as discussed above, that increases the decision time available to the cache con­
troller by meeting the critical path from address valid to BERR/HAL T asserted (Equation 
12-5). The only required changes to the cache structure shown in Figure 12-17 is the 
generation of STERM. Figure 12-18 shows an example circuit that could be positioned 
between the MC68030 and the external cache to provide the early-termination or late-retry 
function. 

MC68030 USER'S MANUAL MOTOROLA 
12-25 



.. 

OUTPUT 

TAG STORE. 
ENABLE...., 

CACHE HIT !ACTIVE LOW) COMPARE. OATA 

~ 
ANO WRITE STORE 

CONTROL © 

AS 

0M 
~{ STEAM 

MC68030 

FCO-FC2 
SIZO-SIZl 

AO-A31 
CBREO 
CBACK 

R/W 
RMC 

CIOUT 
AS 
liS 

STE RM 1/0 DEVICES. 

BEAR CONTROL 

HALT ANO 
BUFFERING 

RESET 
CLK 

00-031 

iiii 
8G 

BGACK 

CllN 
DSACKO/OSACK I 

Figure 12-17. Example MC68030 Hardware Configuration with External Physical Cache 

Normally, as soon as AS is asserted, circuit (C) immediately asserts the STERM signal to 
terminate the bus cycle, assuming that the cache will produce a valid "hit" later in the 
cycle. Circuit (C) also prevents the early termination from occurring from those cycles that 
access operands that are non-cachable or had missed in the cache on the previous cycle 
(and have not already been retried). In this example, (C) prevents early termination of all 
CPU space accesses, all write cycles (assuming a write-through cache is implemented), 
cycles with CIOUT asserted and all cycles that missed in the cache on the previous cycle 
and were not accesses to non-cachable locations. The flip-flop in (C) latches the termination 
condition of the current bus cycle at the rising edge of AS and this status is used during 
the next cycle. Other conditions to suppress early termination may be included as required 
by a particular system but propagation delays must be carefully considered in order that 
the output of (C) be valid before the rising edge of state S1 (see Equation 12-3). 

MOTOROLA 
12-26 

MC68030 USER'S MANUAL 



r-------------------------, 

FCO 

CIOUT 
R/W 

CACHE HIT 
® 

!ACTIVE HIGH) 

RESET 

PR 
0 0 

CLK 0 

I 
I 
I 

© L ______ ---- -------------:..J 
r--------, 

CD .__ ________ :J 

Figure 12-18. Example Early-Termination Control Circuit 

The late-termination circuit is formed by the gates (D) and (E). If the current cycle is 
accessing a cachable location, as determined by the output of (C), and a cache hit has not 
occurred (D), then the BERR and HALT signals are driven low (E). 

Note that the logic depicted in Figure 12-18 is designed to support a cache operating with 
no wait states. A provision for generating wait states may be included by placing additional 
timing stages between (C) and the MC68030 to delay propagation of this output by the 
required number of clock periods. 

In order to minimize the potential for delays in retrying a bus cycle, the negation path of 
the bus error and halt signals should be carefully controlled. Light capacitive loading of 
these signals lines as well as the use of a properly-sized pullup resistor for any open 
collector drivers, or some equivalent method, is recommended. 

The available cache tag lookup, compare, and logic delay (D) and (E) time for this imple­
mentation is given by Equation 12-5 (40 nanoseconds at 20.0 MHz no wait states). 

A further design consideration is the response of the main memory controller to accesses 
that miss in the cache and are retried. During a retry operation, and in the absence of 
arbitration for the logical bus, the MC68030 continously drives the address bus with the 
address that caused the retry to be signaled. This presents the designer with the opportunity 
to utilize this information in order to continue (or initiate) the access in the main memory 
(by latching the state of the AS signal during the initial bus cycle and holding it asserted 
for the duration of the retry) and thus decreasing the overhead associated with retrying 
the cycle. 

MC68030 USER'S MANUAL MOTOROLA 
12-27 



-

12.6.2 "Instruction-Only" External Cache Implementations 

In some cases, particularly in multi-processing systems where cache coherence is a con­
cern, it is desirable to store only instruction operands since they are not considered to be 
alterable and, hence, cannot generate stale data. In general, this is feasible with the MC68000 
architecture as long as PC-relative addressing modes are not used. This restriction allows 
program and data accesses to be distinguished externally by decoding the function code 
signals. 

12.7 DEBUGGING AIDS 

The MC68030 supports the monitoring of internal microsequencer activity with the STATUS 
and REFILL signals. The use of these signals is described in the following paragraph. A 
useful device to aid programming debugging is described in 12.7.2 Real-Time Instruction 
Trace. 

12.7.1 STATUS and REFILL 

The MC68030 provides the STATUS and REFILL signals to identify internal microsequencer 
activity associated with the processing of data in the pipeline. Since bus cycles are inde­
pendently controlled and scheduled by the bus controller, information concerning the 
processing state of the microsequencer is not available by monitoring bus signals by 
themselves. The internal activity identified by the STATUS and REFILL signals include 
instruction boundaries, some exception conditions, when the microsequencer has halted, 
and instruction pipeline refills. STATUS and REFILL track only the internal microsequencer 
activity and are not directly related to bus activity. 

As shown in Table 12-4, the number of consecutive clocks during which STATUS is asserted 
indicates an instruction boundary, an exception to be processed or that the processor has 
halted. Note that the processor halted condition is an internal error state in which the 
microsequencer has shut itself down due to a double bus fault and is not related to the 
external assertion of the HALT input signal. The HALT signal only affects bus operation, 
not the microsequencer. 

Asserted for 

1 Clock 

2 Clocks 

3 Clocks 

Continuously 

MOTOROLA 
12-28 

Table 12-4. Microsequencer STATUS Indications 

Indicates 

Sequencer at instruction boundary - will begin execution of next instruction 

Sequencer at instruction boundary but will not begin thenext instruction immediately due to: 
• pending trace exception 

OR 
• pending interrupt exception 

MMU address translation cache miss - processor to begin table search 
OR 

Exception processing to begin for: 
• reset OR 
• bus error OR 
• address error OR 
• spurious interrupt OR 
• autovectored interrupt OR 
• F-line instruction (no coprocessor responded) 

Processor halted due to double bus fault 

MC68030 USER'S MANUAL 



The REFILL signal identifies when the microsequencer requests an instruction pipeline 
refill. Refill requests are a result of having to break sequential instruction execution to 
handle non-sequential events. Both exceptions and instructions can cause the assertion of 
REFILL. Instructions that cause refills include branches, jumps, instruction traps, returns, 
coprocessor general instructions that modify the program counter flow, and status register 
manipulations. Logical and arithmetic operations which affect the condition codes of the 
status register do not result in a refill request. However, operations like the "MOVE <ea>,SR" 
instruction which updates the status register cause a refill request since this can change 
the program space as defined by the function codes. When the program space changes, 
the processor must fetch data from the new space to replace data already prefetched from 
the old program space. Similarly, operations which affect the address translation mech­
anism of the Memory Management Unit (MMU) cause a refill request. An instruction like 
the "PMOVE <ea>,TC", which changes the translation control register, requires the pro­
cessor to fetch data from the new address translation base. The 'Test Condition, Decrement, 
and Branch" instruction (DBcc) causes two refill requests when the condition being tested 
is false. To optimize branching performance, the DBcc instruction requests a refill before 
the condition is tested. If the condition is false, another refill is requested to continue with 
the next sequential instruction. 

Figure 12-19 illustrates the relation between the CLK signal and normal instruction bound­
aries as identified by the STATUS signal. STATUS asserting for one clock cycle identifies 
normal instruction boundaries. Note that the assertion of REFILL does not necessarily 
correspond to the assertion of STATUS. Both STATUS and REFILL assert and negate from 
the falling edge of the CLK signal. 

Figure 12-19. Normal Instruction Boundaries 

Figure 12-20 shows a normal instruction boundary followed by a trace or interrupt exception 
boundary. STATUS asserting for two clock cycles identifies a trace or interrupt exception. 
Instruction boundary information is still present since both trace and interrupt exceptions 
are processed only at instruction boundaries. Before the exception handler instructions 
are prefetched, the REFILL signal asserts (not shown) to identify a change in program flow. 

INSTRUCTION PENDING TRACE OR 
BOUNDARIES ------------.T-------,1 INTERRUPT EXCEPTION 

+ + PROCESSING 

CLK 

\ __ ___,/ \ ____ / 
Figure 12-20. Trace or Interrupt Exception 

MC68030 USER'S MANUAL MOTOROLA 
12-29 



.. 

Figure 12-21 illustrates the assertion of the STATUS signal for other exception conditions 
which include MMU address translation cache miss, reset, bus error, address error, spu­
rious interrupt, autovectored interrupt, and F-line instruction when no coprocessor re­
sponds. Exception processing causes STATUS to assert for three clock cycles to indicate 
that normal instruction processing has stopped. Instruction boundaries cannot be deter­
mined in this case since these exceptions are processed immediately, not just at instruction 
boundaries. 

CLK 

Figure 12-21. Other Exceptions 

Figure 12-22 shows the assertion of STATUS indicating that the processor has halted due 
to a double bus fault. Once a bus error has occurred, any additional bus error exception 
occurring before the execution of the first instruction of the bus error handler routine 
constitutes a double bus fault. The processor also halts if it receives a bus error or address 
error during the vector table read operations or the prefetch for the first instruction after 
an external reset. STATUS remains asserted until the processor is reset. 

CLK 

Figure 12-22. Processor Halted 

12.7.2 Real-Time Instruction Trace 

Microprocessor based systems used for real-time applications typically lack development 
aids for program debug. The real-time environment does not allow program instruction 
execution to arbitrarily stop to handle debugging events. These systems include control 
applications where mechanical events cannot halt such as robotics, automotive and in­
dustrial control and emulator systems which may need to keep the target system executing 
in real-time. 

To solve the problems inherent with real-time systems, the MC68030 incorporates extra 
hardware based features to enhance program debug. Real-time systems cannot take ad­
vantage of the trace exception mechanism built into all M68000 Family processors since 
this takes processing time away from real-time events. Additional output pins have been 
incorporated into the MC68030 to gain real-time visibility into the processor. Tracing ca­
pability can be added by decoding MC68030 control signals to detect which cycles are 
important for tracking. Post analysis of collected data allows for program debug. 

Several problems exist with an external trace mechanism. These problems include deter­
mining which cycles are important for tracking program flow, detecting if instructions 

MOTOROLA 
12-30 

MC68030 USER'S MANUAL 



obtained in prefetch operations are discarded by the execution unit, and the inability of 
external trace circuitry to capture accesses to on-chip cache memories. 

External trace hardware used for program debug must be synchronized to the MC68030 
bus activity. Since all clock cycles are not traced in a program debug environment, the 
trace hardware requires a sampling signal. For external read and write operations trace 
sampling occurs when the data bus contains valid data. Two modes of external bus op­
eration are possible: the synchronous mode where the system returns the STEAM signal, 
and the asynchronous mode in which the system responds with the DSACK1 and/or the 
DSACKO signals. Both modes of bus operation need to generate a sampling signal when 
valid data is present on the bus. This allows for tracing data flow in and out of the processor, 
which is the basis for tracking program execution. 

The pipelined architecture of the MC68030 prefetches instructions and operands to keep 
the three stages of the instruction pipe full. The pipeline allows concurrent operations to 
occur for up to three words of a single instruction or for up to three consecutive instructions. 
While sequential instruction execution is the norm, it is possible that prefetched data is 
not used by the execution unit due to a non-sequential event. The STATUS signal allows 
trace hardware to mark the progress of the execution unit as it processes program memory 
operands and allows marking of some exceptions. Non-sequential events, where the entire 
pipeline needs to reload before continuing execution, are marked by the REFILL signal. 

External hardware typically has no visibility into on-chip cache memory operations. How­
ever, the MC68030 provides a local address reference to increase visibility. Write operations 
are totally visible since the MC68030 implements a write-through policy allowing external 
hardware to capture data. For read operations from on-chip cache memories, the least 
significant byte of the address bus provides a local address reference. 

The MC68030 begins an external cycle by driving the address bus and asserting the external 
cycle start (ECS) signal. Address strobe (AS) asserts later in the cycle to validate the address. 
If a hit occurs in the cache or the cache holding register, then the external cycle is aborted 
and AS is not asserted. In addition, the low order address bits (AO-A7) are not involved in 
the address translation process performed by the on-chip memory management unit (MMU) 
creating a local address reference which can be used by trace functions. All read cycles 
from the on-chip cache memories cannot be captured externally since the cache access 
does not depend on the availability of the external bus. 

Figure 12-23 shows a trace interface circuit which can be used with a logic analyzer for 
program debug. The nine input signals (DSACK1, DSACKO, CLK, AS, RESET, STATUS, 
REFILL, STEAM and ECS) are connected to the MC68030 processor in the system under 
development. Six output signals are generated to aid in capturing and analyzing data. In 
addition to connecting the logic analyzer to the address bus, the data bus, and the bus 
control signals, the trace interface signals SAMPLE, PHALT, FILL, EP, IE and ECSC should 
also be connected. The external clock probe of the logic analyzer connects to the system 
CLK signal for synchronization. Setting up the logic analyzer for data capture requires that 
samples be taken on the falling edge of the CLK signal when the SAMPLE signal is high. 
Table 12-5 lists the parts required to implement this circuit. 

The sample signal (SAMPLE) is an active high signal which qualifies the next falling edge 
of the CLK signal as the sampling point. Five types of conditions cause SAMPLE to assert: 

1. An external bus cycle. 
2. An internal cache hit including a hit in the cache holding register. 

MC68030 USER'S MANUAL MOTOROLA 
12-31 

• 



;;;; s: 
~~ 

0 
:::0 
0 
s;: 

s: 
0 
en 
00 

8 
0 

c 
U) 
m 
::0 en 
s: 
> z c 
> r-

4 Vee 

DSACKO 

74FOO 

~h3 
~' -

iID:CKl 

CLK 

AS 
iiESEi' 

STATUS 4 

REFILL 10 -
r Vee ~ 

2 

13 

.-!!-j 12 

-=--

STEAM 

ECS 

I 
l ~Vee 

..6_4 74F74 

2 SD 5 DSOO 
D 0 

3 
CP ii ~ co 
j1 

110 74F74 74FOO 
4- 6 DSACK 

12 SD 
0 9 DSOl .:L:l '-

D 
~ 

11 r> CP 

co 
op!-

_]'13 DSACK 

CLK 

AS 
iiESEi' 

74F114 
STATUSO 

REFILLO 

SDl ECSO 

STERMO SD2 i2----01 
Jl 

ITT P!--Kl 
02 iJ!-

Ci' 
02 1-.. B 

J2 

K2 jVtc j Vee co 
~ ~O 74F74 _J1 ~ .1J_4 74F74 

SD 5 D SD o~ D 0 t--

B ECSO L"- . .,,__ t"- ·~ CD CD 

11 '13 

J 

Figure 12-23. Trace Interface Circuit 

4 vcc 

PAL16R6D 

20 
~ Vee 

2 
I 18 PHALT 

3 0 
FILL I 17 

4 0 
EP I 16 

5 0 
IE I 15 

6 0 
I 14 

7 I o~ SECS 
B 0 

I 
9 

SAMPLE I 19 
10 

1 
CP 10 

12 CLKOUT 

11 iiE J Vss 

-

~o me 6 

/' -



Table 12-5. List of Parts 

Quantity Part Part Description 

1 74FOO Quad 2 Input NAND Gate 

1 74F114 Dual JK Negative Edge-Triggered Flip-Flop 

2 74F74 Dual D-Type Positive Edge-Triggered Flip-Flop 

1 PAL 16R6D Programmable Logic Array, Ultra High Speed 

3. An instruction boundary. 
4. Exception processing as marked by the EP signal discussed below. 
5. The processor halting. 

The remaining five output signals are used to qualify the information collected. 

The Processor Halt (PHALT) signal indicates that the MC68030 has received a double bus 
fault and needs a reset operation to continue processing. PHAL T asserts after the assertion 
of STATUS for greater than three clock cycles and generates a SAMPLE signal. 

The FILL signal indicates a break in sequential instruction execution. FILL is a latched version 
of the REFILL signal and remains asserted until a sample is collected as indicated by the 
assertion of SAMPLE. The assertion of FILL does not generate a SAMPLE signal. 

The exception pending (EP) signal indicates that the MC68030 is beginning exception 
processing for either a reset, bus error, address error, spurious interrupt, autovectored 
interrupt, F-line instruction, MMU address translation cache miss, trace exception or in­
terrupt exception. The EP signal asserts after STATUS negates from a two or three clock 
cycle assertion. The assertion of EP does generate a SAMPLE signal. 

The instruction executed (IE) signal indicates the execution unit has just finished processing 
an instruction. The IE signal asserts after STATUS negates from a one clock cycle assertion. 
The assertion of IE also generates a SAMPLE signal. 

The external cycle start condition (ECSC) signal is used in conjunction with the AS signal 
to determine if the address bus and data bus are valid in the current trace sample. Table 
12-6 lists the possible combinations of AS and ECSC and shows what parts of the traced 
address and data bus are valid. The assertion of ECSC does not generate a SAMPLE signal. 

Table 12-6. AS and ECSC Indications 

AS ECSC Indicates 

0 0 Both Address and Data Bus are Valid 

0 1 Both Address and Data Bus are Valid 

1 0 Address Bits (AO-A7) are Valid 
Address Bits (A8-A31) are Invalid 
Data Bus is Invalid 

1 1 Both Address and Data Bus are Invalid 

Figure 12-24 shows the pin definitions for the PAL 16R6 package used in the trace circuit. 
These definitions are used by the PAL equations listed in Figure 12-25. 

MC68030 USER'S MANUAL MOTOROLA 
12-33 



.. 

/*******************************************************/ 
/* This device generates a sampling signal for tracing processor activity on 
/* an instruction level basis for the MC68030. In the pin definitions and 
/* equations listed below the following symbols are used: 
I* Symbol Definition 
!* ! Logical NOT 
/* # Logical OR 
!* & Logical AND 
/* In addition, the '.d' extension on signal names refers to the 'D' input of 
/* the internal PAL flip flop. 
/*******************************************************/ 
/* Allowable Target Device Types : PAL 16R6D High Speed PAL 
/*******************************************************/ 
/** Inputs **/ 
PIN 1 elk 
PIN 2 DSACK 
PIN 3 CLK 
PIN 4 !AS 
PIN 5 !RESET 
PIN 6 !STATUSQ 
PIN 7 !REFILLQ 
PIN 8 !ECSQ 
PIN 9 !STERMQ 

/** Outputs 
PIN 19 
PIN 18 
PIN 17 
PIN 16 
PIN 15 
PIN 14 
PIN 13 
PIN 12 

**/ 
SAMPLE 
PHALT 
FILL 
EP 
IE 
SC 
secs 
CLKOUT 

/* same as pin 3 CLK 
/* Data Strobe Acknowledge 
/* MPU Clock Signal 
/* Address Strobe 
I* System Reset Signal 
/* Latched STATUS Signal 
I* Latched REFILL Signal 
/* Latched ECS Signal 
/* Latched STERM Signal 

/* Sample Signal 
I* Processor Halted 
/* REFILL received 
I* Exception Pending 
/* Instruction Executed 
/* status complete 
/* sampled ECS signal 
I* Delayed CLK Signal 

Figure 12-24. PAL Pin Definitions 

12.8 POWER AND GROUND CONSIDERATIONS 

* 
* 
* 
* 
* 
* 
* 
* 
* 

* 

*I 
*/ 
*I 
*I 
*/ 
*/ 
*/ 
*/ 
*I 

*/ 
*/ 
*/ 
*I 
*/ 
*I 
*/ 
*/ 

The MC68030 is fabricated in Motorola's advanced HCMOS process, contains approxi­
mately 275,000 total transistor sites, and is capable of operating at clock frequencies of up 
to 33.33 MHz. While the use of CMOS for a device containing such a large number of 
transistors allows significantly reduced power consumption in comparison to an equivalent 
NMOS circuit, the high clock speed makes the characteristics of power supplied to the 
device very important. The power supply must be able to supply large amounts of instan­
taneous current when the MC68030 performs certain operations, and it must remain within 
the rated specification at all times. In order to meet these requirements, more detailed 
attention must be given to the power supply connection to the MC68030 than is required 
for NMOS devices that operate at slower clock rates. 

In order to supply a solid power supply interface, ten Vee pins and fourteen GND pins are 
provided. This allows two Vee and four GND pins to supply the power for the address 
bus, two Vee and four GND pins to supply the data bus, while the remaining Vee and 
GND pins are used by the internal logic, and clock generation circuitry. Table 12-7 lists the 
Vee and GND pin assignments. 

MOTOROLA 
12-34 

MC68030 USER'S MANUAL 



!** Intermediate Equations **/ /* State PHALT SC 
so !PHALT & !SC & !EP & !IE; I* 0 0 0 
S1 !PHALT & !SC & !EP & IE; /* 1 0 0 
S2 !PHALT & !SC & EP & IE; /* 2 0 0 
S3 !PHALT & !SC & EP & !IE; I* 3 0 0 
S4 PHALT & SC & EP & IE; I* 4 1 1 
S5 !PHALT & SC & !EP & IE; /* 5 0 1 
S6 !PHALT & SC & EP & IE; I* 6 0 1 
S7 !PHALT & SC & EP & !IE; I* 7 0 1 

!** Logic Equations **/ 
!SAMPLE =!SC & !AS & !SECS # 

!SC & !DSACK & !STERMQ & !SECS # 
!SC & AS & !DSACK & !STERMQ & SECS; 

!PHALT.d 

!SC.d 

!EP.d 

!IE.d 

!SECS.d 

!CLKOUT 

!FILL.d 

= !STATUSQ # !EP # IE # RESET; 

= RESET # 
so # 
S1 & STATUSQ # 
S2 & STATUSQ # 
S4 & !STATUSQ # 
SC & !PHALT; 

RESET # 
so # 
S1 & !STATUSQ # 
S4 & !STATUSQ # 
SC & !PHALT; 

RESET # 
SO & !STATUSQ # 
S2 & STATUSQ # 
S3 & !STATUSQ # 
SC & !STATUSQ; 

= !ECSQ; 

= !CLK; 

= !REFILLQ & SAMPLE # 
!FILL & !REFILLQ # 
RESET; 

Figure 12-25. Logic Equations 

Table 12-7. Vee and GND Pin Assignments 

Pin Group Vee GND 

Address Bus C6, 010 C5, C7, C9, E11 

Data Bus L6, K10 J11, L9, L7, L5 

ECS, SIZx, OS, AS, DBEN, CBREQ, R/W K4 J3 

FCO-FC2, RMC, OCS, CIOUT, BG 04 E3 

Internal Logic, RESET, STATUS, REFILL, Misc. HJ, F2, F11, H 11 LB, G3, F3, G11 

MC68030 USER'S MANUAL 

EP IE */ 
0 0 *I 
0 1 */ 
1 1 */ 
1 0 */ 
1 1 *I 
0 1 */ 
1 1 */ 
1 0 */ 

MOTOROLA 
12-35 

-



m 

In order to reduce the amount of noise in the power supplied to the Me68030 and to provide 
for instantaneous current requirements, common capacitive decoupling techniques should 
be observed. While there is no recommended layout for this capacitive decoupling, it is 
essential that the inductance between these devices and the Me68030 be minimized in 
order to provide sufficiently fast response time to satisfy momentary current demands and 
to maintain a constant supply voltage. It is suggested that a combination of low, middle, 
and high frequency, high quality capacitors be placed as close to the Me68030 as possible 
(for example, a set of 10 microfarad, 0.1 microfarad, and 330 picofarad capacitors in parallel 
provides filtering for most frequencies prevalent in a digital system). Similar decoupling 
techniques should also be observed for other VLSI devices in the system. 

In addition to the capacitive decoupling of the power supply, care must be taken to ensure 
a low-impedence connection between all Me68030 Vee and GND pins and the system 
power supply planes. Failure to provide connections of sufficient quality between the 
Me68030 power supply pins and the system supplies will result in increased assertion 
delays for external signals, decreased voltage noise margins, and potential errors in internal 
logic. 

MOTOROLA 
12-36 

MC68030 USER'S MANUAL 



SECTION 13 
ELECTRICAL CHARACTERISTICS 

This section contains electrical specifications and associated timing information for the 
MC68030. 

13.1 MAXIMUM RATINGS 

Rating Symbol Value Unit 

Supply Voltage Vee -0.3 to + 7.0 v 
Input Voltage Vin -0.5 to + 7.0 v 
Operating Temperature Range TA 0 to 70 oc 

Storage Temperature Range Tstg -55 to 150 oc 

13.2 THERMAL CHARACTERISTICS- PGA PACKAGE 

Characteristic Symbol Value Rating 

Thermal Resistance - Ceramic oc/W 
Junction to Ambient 0JA 30* 
Junction to Case 0JC 15* 

*Estimated 

13.3 POWER CONSIDERATIONS 

This device contains protective circuitry 
against damage due to high static voltages 
or electrical fields; however, it is advised that 
normal precautions be taken to avoid appli­
cation of any voltages higherthan maximum­
rated voltages to this high-impedance circuit. 
Reliability of operation is enhanced if unused 
inputs are tied to an appropriate logic voltage 
level (e.g., either GND or Vee). 

The average chip-junction temperature, T J, in °C can be obtained from: 

where: 
TA 
0JA 
Po 
PINT 
P110 

T J =TA+ (Po • 0JA) 

=Ambient Temperature, °C 
=Package Thermal Resistance, Junction-to-Ambient, °C/W 
= P1NT+P110 
= lccxVcc, Watts - Chip Internal Power 
=Power Dissipation on Input and Output Pins - User Deter­

mined 

For most applications P11o<P1NT and can be neglected. 

(1) 

The following is an approximate relationship between Po and T J (if P110 is neglected): 
Po= K-:-(T J + 273°C) (2) 

Solving equations (1) and (2) for K gives: 
K=Po·(TA+273°C)+0JA•Po2 (3) 

where K is a constant pertaining to the particular part. K can be determined from equation 
(3) by measuring Po (at equilibrium) for a known TA Using this value of K, the values of 
Po and T J can be obtained by solving equations (1) and (2) iteratively for any value of TA· 

MC68030 USER'S MANUAL MOTOROLA 
13-1 

IEll 



Ill 

The total thermal resistance of a package (6JAl can be separated into two components, 
6JC and 6CA· representing the barrier to heat flow from the semiconductor junction to the 
package (case) surface (6Jcl and from the case to the outside ambient (6cAl· These terms 
are related by the equation: 

6JA = 6JC + 6CA (4) 

6JC is device related and cannot be influenced by the user. However, 6CA is user dependent 
and can be minimized by such thermal management techniques as heat sinks, ambient air 
cooling, and thermal convention. Thus, good thermal management on the part of the user 
can significantly reduce 6cA so that 6JA approximately equals 6JC· Substitution of 6JC for 
6JA in equation (1) will result in a lower semiconductor junction temperature. 

Values for thermal resistance presented in this document, unless estimated, were derived 
using the procedure described in Motorola Reliability Report 7843, "Thermal Resistance 
Measurement Method for MC68XX Microcomponent Devices," and are provided for design 
purposes only. Thermal measurements are complex and dependent on procedure and 
setup. User derived values for thermal resistance may differ. 

13.4 DC ELECTRICAL CHARACTERISTICS 
(Vcc=5.0 Vdc±5%; GND=O Vdc; TA=O to 70°C) 

Characteristic 

Input High Voltage 

Input Low Voltage 

Input Leakage Current BERR, BR, BGACK, CLK, IPLO-IPL2, AVEC, 
GND .;; Vin .;; V CC CDIS, DSACKO, DSACK1 

HALT, RESET 

Hi-Z (Off-State) Leakage Current AO-A31, AS, DBEN, DS, DO-D31, FCO-FC2, 
(a 2.4 V/0.5 V RiW, RMC, SIZO-SIZ1 

Output High Voltage AO-A31, AS, BG, DO-D31, DBEN, DS, ECS, R/W, IPEND, 
loH=400 µA OCS, RMC, SIZO-SIZ1, FCO-FC2, 

CBREQ, CIOUT, STATUS, REFILL 

Output Low Voltage 
10 L =3.2 mA AO-A31, FCO-FC2, SIZO-SIZ1, BG, DO-D31 
loL =5.3 mA CBREO, AS, DS, R/W, RMC, DBEN, IPEND 
loL =2.0 mA STATUS, REFILL, CIOUT, ECS, OCS 
loL =10.7 mA RESET 

Power Dissipation (TA= O'C) 

Capacitance (see Note) 
Vin=OV, TA=25°C,f=1 MHz 

Load Capacitance EC5, OCS 
CIOUT, STATUS, REFILL 

All Other 

NOTE: Capacitance is periodically sampled rather than 100% tested. 

MOTOROLA 
13-2 

Symbol Min Max Unit 

V1H 2.0 Vee v 
VIL GND 0.8 v 

-0.5 

1in -2.5 2.5 µA 

-20 20 

1Ts1 -20 20 µA 

VoH 2.4 - v 

Vol v 
- 0.5 
- 0.5 
- 0.5 
- 0.5 

Po - 2.6 w 
Cin - 20 pF 

CL - 50 pF 
70 
130 

MC68030 USER'S MANUAL 



13.5 AC ELECTRICAL SPECIFICATIONS - CLOCK INPUT (see Figure 13-1) 

20 MHz 25MHz 
Num. Characteristic 

Min Max Min Max 

Frequency of Operation 12.5 20 12.5 25 

1 Cycle Time Clock 50 80 40 80 

2,3 Clock Pulse Width Measured from 1.5 V to 1.5 V 23 57 19 61 

4, 5 Clock Rise and Fall Times - 5 - 4 

Figure 13-1. Clock Input Timing Diagram 

MC68030 USER'S MANUAL 

33.33 MHz Unit 

Min 

20 

30 

14 

-

Max 

33.33 MHz 

80 ns 

66 ns 

3 ns 

MOTOROLA 
13-3 

• 



Ill 

13.6 AC ELECTRICAL SPECIFICATIONS - READ AND WRITE CYCLES 
(Vcc=5.0 Vdc ±5%; GND=O Vdc; TA=O to 70°C; see Figures 13-3 through 13-8) 

Num. Characteristic 

6 Clock High to Function Code, Size, RMC, IPEND, CIOUT, 
Address Valid 

GA Clock High to ECS, OCS Asserted 

68 Function Code, Size, RMC, IPEND, CIOUT, 
Address Valid to Negating Edge of ECS 

7 Clock High to Function Code, Size, RMC, CIOUT, Address, 
Data High Impedance 

8 Clock High to Function Code, Size, RMC, IPEND, CIOUT, 
Address Invalid 

9 Clock Low to AS, DS Asserted, C8REQ Valid 

9A1 AS to DS Assertion Skew (Read) 

9814 AS Asserted to DS Asserted (Write) 

10 ECS Width Asserted 

10A OCS Width Asserted 

1087 ECS, OCS Width Negated 

11 Function Code, Size, RMC, CIOUT, Address Valid to AS 
Asserted (and DS Asserted, Read) 

12 Clock Low to AS, DS, C8REQ Negated 

12A Clock Low to ECS/OCS Negated 

13 AS, DS Negated to Function Code, Size, RMC CIOUT, 
Address Invalid 

14 AS (and DS Read) Width Asserted (Asynchronous Cycle) 

14A11 DS Width Asserted (Write) 

148 AS (and DS, Read) Width Asserted (Synchronous Cycle) 

15 AS, DS Width Negated 

15A8 DS Negated to AS Asserted 

16 Clock High to AS, DS, RiW, D8EN, C8REQ High Impedance 

17 AS, DS Negated to RiW Invalid 

18 Clock High to R/W High 

20 Clock High to R/W Low 

21 RiW High to AS Asserted 

22 RiW Low to DS Asserted (Write) 

23 Clock High to Data-Out Valid 

24 Data-Out Valid to Negating Edge of AS 

2511 AS, DS Negated to Data-Out Invalid 

25A9,11 DS Negated to D8EN Negated (Write) 

2511 Data-Out Valid to DS Asserted (Write) 

27 Data-In Valid to Clock Low (Setup) 

27A Late 8ERR/HAL T Asserted to Clock Low (Setup) 

2512 AS, DS Negated to DSACKx, 8ERR, HALT, AVEC 
Negated (Asynchronous Hold) 

2BA12 Clock Low to DSACKx, 8ERR, HALT, AVEC Negated 
(Synchronous Hold) 

2912 AS, DS Negated to Data-In Invalid (Asynchronous Hold) 

MOTOROLA 
13-4 

20MHz 25MHz 33.33 MHz 

Min Max Min Max Min Max Unit 

0 25 0 20 0 14 ns 

0 15 0 15 0 12 ns 

4 - 3 - 3 - ns 

0 50 0 40 0 30 ns 

0 - 0 - 0 - ns 

3 20 3 18 2 10 ns 

-10 10 -10 10 -8 8 ns 

32 - 27 - 22 - ns 

15 - 10 - 8 - ns 

15 - 10 - 8 - ns 

10 - 5 - 5 - ns 

10 - 7 - 5 - ns 

0 20 0 18 0 10 ns 

0 20 0 18 0 15 ns 

10 - 7 - 5 - ns 

85 - 70 - 45 - ns 

38 - 30 - 23 - ns 

35 - 30 - 23 - ns 

38 - 30 - 23 - ns 

30 - 25 - 18 - ns 

- 50 - 40 - 30 ns 

10 - 7 - 5 - ns 

0 25 0 20 0 15 ns 

0 25 0 20 0 15 ns 

10 - 7 - 5 - ns 

60 - 47 - 35 - ns 

- 25 - 20 - 14 ns 

8 - 5 - 3 - ns 

10 - 7 - 5 - ns 

10 - 7 - 5 - ns 

10 - 7 - 5 - ns 

4 - 2 - 1 - ns 

10 - 5 - 3 - ns 

0 50 0 40 0 30 ns 

12 85 8 70 6 50 ns 

0 - 0 - 0 - ns 

MC68030 USER'S MANUAL 



13.6 AC ELECTRICAL SPECIFICATIONS (Continued) 

20 MHz 25MHz 33.33 MHz 
Num. Characteristic Min Max Min Max Min Max Unit 

29A12 AS, OS Negated to Data-In High Impedance - 50 - 40 - 30 ns 

3012 Clock Low to Data-In Invalid (Synchronous Hold) 12 - 8 - 6 - ns 

30A12 Clock Low to Data-In High Impedance (Read followed by Write) - 75 - 60 - 45 ns 

31 2 DSACKx Asserted to Data-In Valid (Asynchronous Data Setup) - 43 - 28 - 20 ns 

31A3 DSACKx Asserted to DSACKx Valid (Skew) - 10 - 7 - 5 ns 

32 RESET Input Transition Time - 1.5 - 1.5 - 1.5 Clks 

33 Clock Low to BG Asserted 0 25 0 20 0 15 ns 

34 Clock Low to BG Negated 0 25 0 20 0 15 ns 

35 BR Asserted to BG Asserted (RMC Not Asserted) 1.5 3.5 1.5 3.5 1.5 3.5 Clks 

37 BGACK Asserted to BG Negated 1.5 3.5 1.5 3.5 1.5 3.5 Clks 

37A BGACK Asserted to BR Negated 0 1.5 0 1.5 0 1.5 Clks 

396 BG Width Negated 75 - 60 - 45 - ns 

39A BG Width Asserted 75 - 60 - 45 - ns 

40 Clock High to DBEN Asserted (Read) 0 25 0 20 0 18 ns 

41 Clock Low to DBEN Negated (Read) 0 25 0 20 0 18 ns 

42 Clock Low to DBEN Asserted (Write) 0 25 0 20 0 18 ns 

43 Clock High to DBEN Negated (Write) 0 25 0 20 0 18 ns 

44 RiW Low to DBEN Asserted (Write) 10 - 7 - 5 - ns 

455 DBEN Width Asserted Asynchronous Read 50 - 40 - 30 - ns 
Asynchronous Write 100 - 80 - 60 -

45A9 DBEN Width Asserted Synchronous Read 10 - 5 - 5 - ns 
Synchronous Write 50 - 40 - 30 -

46 RiW Width Asserted (Asynchronous Write or Read) 125 - 100 - 75 - ns 

46A RiW Width Asserted (Synchronous Write or Read) 75 - 60 - 45 - ns 

47A Asynchronous Input Setup Time to Clock Low 4 - 2 - 2 - ns 

47B Asynchronous Input Hold Time from Clock Low 12 - 8 - 6 - ns 

484 DSACKx Asserted to BERR, HALT Asserted - 20 - 25 - 18 ns 

53 Data-Out Hold from Clock High 3 - 3 - 2 - ns 

55 RiW Asserted to Data Bus Impedance Change 25 - 20 - 15 - ns 

56 RESET Pulse Width (Reset Instruction) 512 - 512 - 512 - Clks 

57 BERR Negated to HALT Negated (Rerun) 0 - 0 - 0 - ns 

5810 BGACK Negated to Bus Driven 1 - 1 - 1 - Clks 

5910 BG Negated to Bus Driven 1 - 1 - 1 - Clks 

6013 Synchronous Input Valid to Clock High (Setup Time) 4 - 2 - 2 - ns 

6113 Clock High to Synchronous Input Invalid (Hold Time) 12 - 8 - 6 - ns 

62 Clock Low to STATUS, REFILL Asserted 0 25 0 20 0 15 ns 

63 Clock Low to STATUS, REFILL Negated 0 25 0 20 0 15 ns 

NOTES: 
1. This number can be reduced to 5 nanoseconds if strobes have equal loads. 
2. If the asynchronous setup time (#47A) requirements are satisfied, the DSACKx low to data setup time (#31) and 

DSACKx low to BERR low setup time (#48) can be ignored. The data must only satisfy the data-in clock low setup 
time (#27) for the following clock cycle and BERR must only satisfy the late BERR low to clock low setup time (#27A) 
for the following clock cycle. 

3. This parameter specifies the maximum allowable skew between DSACKO to DSACK1 asserted or DSACK1 to DSACKO 
asserted; specification #47A must be met by DSACKO or DSACK1. 

MC68030 USER'S MANUAL MOTOROLA 
13-5 

-



Ill 

NOTES (Continued) 
4. This specification applies to the first (DSACKO or DSACK1) DSACKx signal asserted. In the absence of DSACKx, BERR 

is an asynchronous input using the asynchronous input setup time (#47A). 
5. DBEN may stay asserted on consecutive write cycles. 
6. The minimum values must be met to guarantee proper operation. If this maximum value is exceeded, BG may be 

reasserted. 
7 This! specification indicates the minimum high time for ECS and OCS in the event of an internal cache hit followed 

immediately by another cache hit, a cache miss, or an operand cycle. 
8. This specification guarantees operation with the MC68881/MC68882, which specifies a minimum time for DS negated 

to AS asserted (specification #13A in the MC6888TIMC68882 User's Manual). Without this specification, incorrect 
interpretation of specifications #9A and #15 would indicate that the MC68030 does not meet the MC68881/MC68882 
requirements. 

9. This specification allows a system designer to guarantee data hold times on the output side of data buffers that have 
output enable signals generated with DBEN. The timing on DBEN precludes its use for synchronous READ cycles with 
no wait states. 

10. These specifications allow system designers to guarantee that an alternate bus master has stopped driving the bus 
when the MC68030 regains control of the bus after an arbitration sequence. 

11. DS will not be asserted for synchronous write cycles with no wait states. 
12. These hold times are specified with respect to strobes (asynchronous) and with respect to the clock (synchronous). 

The designer is free to use either time. 
13. Synchronous inputs must meet specifications #60 and #61 with stable logic levels for all rising edges of the clock 

while AS is asserted. These values are specified relative to the high level of the rising clock edge. The values originally 
published were specified relative to the low level of the rising clock edge. 

14. This specification allows system designers to qualify the CS signal of an MC68881/MC68882 with AS (allowing 7 ns 
for a gate delay) and still meet the CS to DS setup time requirement (spec 88) of the MC68881/MC68882. 

Timing diagrams (Figures 13-3 through 13-8) are located 
on foldout pages at the end of this document. 

13.7 AC ELECTRICAL SPECIFICATIONS DEFINITIONS 

The AC specifications presented consist of output delays, input setup and hold times, and 
signal skew times. All signals are specified relative to an appropriate edge of the MC68030 
clock input and, possibly, relative to one or more other signals. 

The measurement of the AC specifications is defined by the waveforms in Figure 13-2. In 
order to test the parameters guaranteed by Motorola, inputs must be driven to the voltage 
levels specified in Figure 13-2. Outputs of the MC68030 are specified with minimum and/ 
or maximum limits, as appropriate, and are measured as shown. Inputs to the MC68030 
are specified with minimum and, as appropriate, maximum setup and hold times, and are 
measured as shown. Finally, the measurements for signal-to-signal specifications are also 
shown. 

Note that the testing levels used to verify conformance of the MC68030 to the AC speci­
fications does not affect the guaranteed DC operation of the device as specified in the DC 
electrical characteristics. 

MOTOROLA 
13-6 

MC68030 USER'S MANUAL 



OUTPUTS (1) CLK 

OUTPUTS (2) CLK 

INPUTS (3) CLK 

INPUTS (4) CLK 

AU SIGNALS (5) 

NOTES: 

VALID 
OUTPUTn 

DRIVE 
TD2.4V -

DRIVE-
TD 0.5 V 

DRIVE 
TD 2.4 V 

t 

2.0 v 
0.8 v 

VALID 
OUTPUT n+l 

VALID 
OUTPUT n 

2.0V VALID 
0.8V INPUT 

2.0 v 
0.8 v 

2.0 v 
0.8 v 

2.0 v VALID 
0.8 v OUTPUTn+l 

-DRIVE 
TO 2.4 V 

-DRIVE 
TD 0.5 V 

1 - This output timing is applicable to all parameters specified relative to the rising edge of the clock 
2 - This output timing is applicable to all parameters specified relative to the falling edge of the clock 
3 - This input timing is applicable to all parameters specified relative to the rising edge of the clock 
4 - This input timing is applicable to all parameters specified relative to the falling edge of the clock 
5 - This timing is applicable to all parameters specified relative to the assertion/negation of another signal 

LEGEND: 
A - Maximum output delay specification 
B - Minimum output hold time 
C - Minimum input setup time specification 
D - Minimum input hold time specification 
E - Signal valid to signal valid specification (maximum or minimum) 
F - Signal valid to signal invalid specification (maximum or minimum) 

Figure 13-2. Drive Levels and Test Points for AC Specifications 

MC68030 USER'S MANUAL MOTOROLA 
13-7 

-



IEI 

MOTOROLA 
13-8 

MC68030 USER'S MANUAL 



Figure 13-8. Other Signal Timings 

MOTOROLA 
Foldout-3 



so Sl S2 SJ S4 S5 

CLK 

AO-A31 

00-031 

FCO-FC2 

SIZO-SIZl 

ECS 

ocs 

AS 

iiS 

R/W 

OBEN 

OSACKO 

OSACKl 

35 

Bi'i 

iiG 

39 

BGACK 

Figure 13-7. Bus Arbitration Timing Diagram 

MC68030 USER'S MANUAL 



so Sl S2 S3 so Sl S2 

CU< 

AO-A31, FCO-FC2 ----1~ 1rt--,_-;--""""1'"'.'.'.'ll. ,------­
SIZO-SIZl 

RIW 

00-031 

Figure 13-6. Synchronous Write Cycle Timing Diagram 

MOTOROLA 
Foldout-2 



so Sl S2 SJ so Sl S2 

CLK 

AO-A31, FCO-FC2 _ ___,'""""- lr+---+--+---+--1 ------­
SIZO-SIZ1 --~"""l'l"'l----+--4--~ "-=-------

R/W 

00-031 

Figure 13-5. Synchronous Read Cycle Timing Diagram 

MC68030 USER'S MANUAL 



CLK 

AO-A31, FCO-FC2 
SIZO-SIZ1 

R/W 

00·031 

so Sl S2 SJ S4 SS so 

Figure 13-4. Asynchronous Write Cycle Timing Diagram 

MOTOROLA 
Foldout-1 



so Sl S2 SJ S4 S5 

CLK 

AO·A31, FCO-FC2 

SIZO·SIZl 

RMC 

ECS 

ocs 

iiS 

iiS 

RtW 

OBEN 

OSACKO 

OSACKl 

00-031 

iiiiiii 

HALT 

ALL 
ASYNCHRONOUS 

INPUTS 

CllN 

CllREO \ 
Figure 13-3. Asynchronous Read Cycle Timing Diagram 

MC68030 USER'S MANUAL 



• Introduction 

.. Data Organization and Addressing Capabilities 

.. Instruction Set 

.. Processing States 

• Signal Description 

.. On-Chip Cache Memories 

- Bus Operation 

- Exception Processing 

- Memory Management Unit 

- Coprocessor Interface Description 

.. Instruction Execution Timing 

.. Applications Information 

- Electrical Characteristics 

- Ordering Information and Mechanical Data 

M68000 Family Summary 

Index 



MOTOROLA 
INDEX-14 

MC68030 USER'S MANUAL 



User Privilege Level, 4-1, 4-3 
User Program Stack, 2-28 

-V-

Valid Format Word, 10-17 
Vallocate Routine, 9-58 
VBR, 1-6, 2-4 
Vee Pin Assignments, 12-35 
Vector 

Base Register, 1-6, 2-4 
Numbers, Exception, 8-1 

Vectors, Exception, 4-5 
Virtual Machine, 1-11 
Virtual Memory, 1-11, 9-57 

WA Bit, 6-16 
Wait States, 11-14 
Window, 

-W-

Asynchronous Sample, 7-2 
Synchronous Sample, 7-2 

MC68030 USER'S MANUAL 

Word, Special Status, 8-19 
Word Read Cycle, Asynchronous, 32-Bit Port, 

Timing, 7-27 
Word to Byte Transfer, 7-11 
Word to Long Word Transfer, Misaligned 7-15 
Word to Word Transfer, Misaligned Cachable, 

7-17 
Word Write Cycle, Asynchronous, 32-Bit Port, 

Timing, 7-33 
Word Write Timing, 7-12 
Write Allocate Bit, 6-16 
Write Cycle, 

Asynchronous, 7-31 
Flowchart, 7-31 
32-Bit Port, Timing, 7-32 

Synchronous, 7-43 
Flowchart, 7-44 

Wait States, CIOUT Asserted, Timing, 7-45 
Write Pending Buffer, 11-4 
Write Protection, 9-36 
Write Timing, 

Long Word, 7-10 
Word, 7-12 

Write to Previously Evaluated Effective Address 
Primitive, 10-33 

MOTOROLA 
INDEX-13 



Timing (Continued) 
Bus Synchronization, 7-78 
Halt Operation, 7-76 
Initial Reset, 7-85 
Interrupt Acknowledge Cycle, 7-59 
Long Word, 

Operand Request, Burst, CBACK and CllN 
Asserted, 7-55 

Operand Request, Burst Fill Deferred, 7-54 
Operand Request, Burst Request, CBACK 

Negated, 7-53 
Operand Request, Burst Request, Wait States, 

7-52 
Read Cycle, 16-Bit Port, 7-29 
Read Cycle, 32-Bit Port, 7-29 
Read Cycle, 8-Bit Port, CIOUT Asserted, 7-28 
Write, 7-10 
Write Cycle, 16-Bit Port, 7-35 
Write Cycle, 8-Bit Port, 7-34 

Misaligned 
Long Word to Word Transfer, 7-14 
Word to Word Transfer, 7-16 

Processor Generated Reset, 7-86 
Retry Operation, Late, 

Asynchronous, 7-73 
Burst, 7-75 
Synchronous, 7-74 

Synchronous 
Read Cycle, CllN Asserted, CBACK Negated, 

7-42 
Read-Modify-Write Cycle, CINN Asserted 7-47 
Write Cycle, Wait States, CIOUT Asserted, 7-45 

Table Search, 11-39 
Write, Long Word, 7-10 
Write, Word, 7-12 

Timing Diagrams, AC Electrical, Foldouts 
Timing Table, 

Arithmetic/Logical Instruction, 11-29 
Immediate, 11-'30 

Binary Coded Decimal Instruction, 11-31 
Bit Field Instruction, 11-35 
Bit Manipulation Instruction, 11-34 
Calculate Effective Address, 11-22 
Calculate Immediate Effective Address, 11-24 
Conditional Branch Instruction, 11-36 
Control Instruction, 11-37 
Exception Related 

Instruction, 11-38 
Operation, 11-38 

Extended Instruction, 11-31 
Fetch Effective Address, 11-19 
Fetch Immediate Effective Address, 11-20 
Jump Effective Address, 11-26 
MMU 

Effective Address, 11-45 
Instruction, 11-46 

MOVE Instruction, 11-27 
Special Purpose, 11-28 

Restore Operation, 11-38 
Save Operation, 11-38 
Shift/Rotate Instruction, 11-33 
Single Operand Instruction, 11-32 
Table Search, 11-44 

MOTOROLA 
INDEX-12 

Trace Exception, 8-8, 10-49 
Signals, 12-29 

Trade-Offs, Performance, 11-1 
Transfer, 

Long Word to Long Word, Misaligned Cacheable, 
7-19 

Long Word to Word, 7-9 
Misaligned 

Cacheable Word to Long Word, 7-15 
Cacheable Word to Word, 7-17 
Long Word to Long Word, 7-17 
Long Word to Word, 7-13 
Word to Word, 7-15 
Word to Word, Timing, 7-16 

Word to Byte, 7-11 
Transfer from Instruction Stream Primitive, 10-30 
Transfer Main Processor Control Register Primitive, 

10-36 
Transfer Multiple Coprocessor Registers Primitive, 

10-37 
Transfer Multiple Main Processor Registe.rs 

Primitive, 10-36 
Transfer ·operation Word Primitive, 10-29 
Transfer Single Main Processor Register Primitive, 

10-35 
Transfer Size Signals, 5-2, 7-3, 7-6, 7-19, 7-30ff, 

12-2, 12-7, 12-15 
Transfer Status Register and ScanPC Primitive, 

10-38 
Transfer to/from Top of Stack Primitive, 10-35 
Translation, Address, 9-9 
Translation Control Register, 1-7, 2-4, 9-5, 9-42 
Translation Table Descriptors, 9-8, 9-16 
Translation Table Tree, 9-4, 9-6~ 9-7, 9-10, 9-22, 

9-34, 9-38, 9-49 
Translation Tree, Supervisor, 9-34 

Protection Example, 9-40 
Transparent Translation Registers, 1-7, 2-4, 9-13, 

9-43, 12-25 
Trap on Coprocessor Condition Instruction, 10-13 
Tree, Translation Table, 9-4, 9-6, 9-7, 9-10, 9-22, 

9-34, 9-38, 9-49 
TTO, 1-7, 2-4, 9-13, 9-43, 12-25. 
TT1, 1-7, 2-4, 9-13, 9-43, 12-25 
Two Clock Synchronous Static RAM, 12-14 through 

12-18 
Two Task Translation Tree Example, 9-38 
Types, 

Address Space, 4-4 
Data, 1-8 

-U-

Unimplemented Instruction Exception, 8-6 
Unit, 

Execution, 6-12 
Memory Management, 1-11, 7-3, 7-30, 7-36ff, 9-1, 

11-4, 12-3 
Units, Floating Point, 12-4 
Unused Descriptor Bits, 9-54 

MC68030 USER'S MANUAL 



SRP, 1-7, 2-4, 9-18, 9-39, 9-41. 9-49 
Stack, 

System, 2-28 
User Program, 2-28 

Stack Frame, 
Exception, 4-5, 8-23 
Mid-Instruction, 10-42 
Post-Instruction, 10-43 
Pre-Instruction, 10-40 

State, 
Diagram, Bus Arbitration, 7-82 
Exception Processing, 4-1 
Halted, 4-1 
Normal Processing, 4-1 

State Frames, Coprocessor, 10-15 
States, Wait, 11-14 
Static RAM, 12-14 through 12-23 

Burst Mode, 12-19 through 12-21 
Pipelined Burst Mode, 12-21 through 12-23 
Two Clock Synchronous, 12-14 through 12-18 

Status Register, 1-5, 2-3, 6-4, 8-8, 8-10, 8-14 
Status Word, Special, 8-19 
STATUS Signal, 5-7, 7-77, 8-3, 8-12, 8-19, 12-1, 

12-28 through 12-31, 12-33 
STERM Signal, 5-4, 6-10, 6-12, 7-2, 7-4, 7-5, 7-20ff, 

12-1, 12-7, 12-8, 12-11through12-14, 12-16, 
12-19, 12-21, 12-24 through 12-26 

STOP Instruction, 8-9 
Structure Addressing, 2-22 
Subroutine Calls, Nested, 3-195 
Summary, 

Addressing Mode, 2-23 
Coprocessor Instruction, 10-51 through 10-53 
Effective Address Encoding, 2-16 
Instruction Format, 3-201 through 3-217 
M68000 Family, A-1 through A-3 
Signal, 5-9 

Supervisor Check Primitive, 10-29 
Supervisor Only Protection, 9-36 
Supervisor 

Privilege Level, 4-1, 4-2 
Root Pointer, 1-7, 2-4, 9-18, 9-39, 9-41, 9-49 
Translation Tree, 9-34 

SwapPageln Routine, 9-66 
Synchronization, 

Bus, 7-77 
Pipeline, 3-198 

Synchronous 
Bus Operation, 7-23, 7-24 
Cycle Signal Assertion Results, 7-66 
Long Word Read Cycle Flowchart, 7-41 
Read Cycle, 7-40 
CllN Asserted, CBACK Negated, 
Timing, 7-42 
Read-Modify-Write Cycle, 7-44 
Read-Modify-Write Cycle, CllN Asserted, Timing, 

7-47 
Read-Modify-Write Cycle Flowchart, 7-46 
Sample Window, 7-2 
Termination Signal, 5-5, 6-11, 6-12, 6-13, 7-2, 7-4, 

7-5, 7-20ff, 12-1, 12-7, 12-8, 12-11 through 
12-14, 12-16, 12-19, 12-21, 12-24 through 12-26 

MC68030 USER'S MANUAL 

Synchronous (Continued) 
Write Cycle, 

Wait States, CIOUT Asserted, Timing, 7-45 
Flowchart, 7-44 

System 
Control Instructions, 3-8 
Stack, 2-28 

-T-
Table 

Dynamic Allocation, 9-30 
Index 

Derivation, 9-8 
Size Restrictions, 9-8 

Levels, Number of, 9-51 
Paging, 9-30, 9-31 

Example, 9-31 
Sharing, 9-27, 9-29 

Example, 9-29 
Table Search, 9-22, 9-24 

Flowchart, 
Detailed, 9-32 
Simplified, 9-23 

Initialization Flowchart, 9-33 
Timing, 11-39 

Seri pt, 11-39 
Table, 11-44 

Tables, Instruction Timing, 11-18 
Take Address and Transfer Data Primitive, 10-34 
Take Mid-Instruction Exception Primitive, 10-41 
Take Post-Instruction Exception Primitive, 10-42 
Take Pre-Instruction Exception Primitive, 10-40 
TAS Instruction, 7-36 
Task Memory Map Definition, 9-50 
TC, 1-7, 2-4, 9-5, 9-42 
Termination, Early, 9-25, 9-53 
Test and Set Instruction, 7-36 
Test Coprocessor Condition, Decrement and 

Branch Instruction, 10-12 
Tests, Condition, 3-200 
Thermal Characteristics, 13-1 
Timing, 

Asynchronous 
Byte Read Cycle, 32-Bit Port, 7-27 
Byte Read-Modify-Write Cycle, 32-Bit Port, 7-38 
Byte Write Cycle, 32-Bit Port, 7-33 
Read Cycle, 32-Bit Port, 7-32 
Word Read Cycle, 32-Bit Port, 7-27 
Word Write Cycle, 32-Bit Port, 7-33 
Write Cycle, 32-Bit Port, 7-32 

Autovector Interrupt Acknowledge Cycle, 7-61 
Breakpoint Acknowledge Cycle, 7-63 

Exception Signaled, 7-64 
Bus Arbitration, 7-80 

Bus Inactive, 7-84 
Bus Error, 

Late, STERM, 7-70 
Late, Third Access, 7-71 
Late, With DSACKx, 7-69 
Second Access, 7-72 
Without DSACKx, 7-68 

MOTOROLA 
INDEX-11 



Side Effects, MMU Register, 9-46 
Signal, 

Address Strobe, 5-4, 7-2, 7-3, 7-22ff, 12-5, 12-13, 
12-15, 12-16, 12-19, 12-25 through 12-27, 12-31, 
12-33 

AS, 5-4, 7-2, 7-3, 7-22ff, 12-5, 12-13, 12-15, 12-16, 
12-19, 12-25 through 12-27, 12-31, 12-33 

Autovector, 5-6, 7-5, 7-24, 7-60ff, 8-14 
AVEC, 5-6, 7-5, 7-24, 7-60ff, 8-14 
BERR, 5-7, 6-8, 7-5, 7-22ff, 8-5, 8-16, 8-19, 12-11, 

12-24, 12-25, 12-27 
BG, 5-6, 7-36, 7-78ff 
BGACK, 5-6, 7-78ff 
BR, 5-6, 7-36, 7-50, 7-73ff 
Bus Error, 5-7, 6-8, 7-5, 7-22ff, 8-5, 8-16, 8-19, 

12-11, 12-24, 12-25, 12-27 
Bus Grant, 5-6, 7-36, 7-78ff 
Bus Grant Acknowledge, 5-6, 7-78ff 
Bus Request, 5-6, 7-36, 7-50, 7-73ff 
Cache Burst Acknowledge, 5-5, 6-12, 7-2, 7-20ff, 

12-1, 12-19, 12-21, 12-23 
Cache Burst Request, 5-5, 6-12, 7-5, 7-24, 7-40ff, 

12-1, 12-21 
Cache Disable, 5-7, 6-1 
Cache Inhibit Input, 5-5, 6-1, 6-7, 6-8, 6-11, 6-12, 

7-2, 7-22ff, 12-1, 12-4 
Cache Inhibit Output, 5-5, 6-3, 6-7, 7-25ff, 9-1, 

9-13, 12-1, 12-3, 12-26 
CBACK, 5-5, 6-12, 7-2, 7-20ff, 12-1, 12-19, 12-21, 

12-23 
CBREQ, 5-5, 6-12, 7-5, 7-24, 7-40ff, 12-1, 12-21 
CDIS, 5-7, 6-1 
CllN, 5-5, 6-1, 6-7, 6-8, 6-11, 6-12, 7-2, 7-22ff, 12-1, 

12-4 
CIOUT, 5-5, 6-3, 6-7, 7-25ff, 9-1, 9-13, 12-1, 12-3, 

12-26 
CLK, 5-8, 7-43ff, 12-29, 12-31 
Clock, 5-8, 7-43ff; 12-29, 12-31 
Coprocessor, Chip Select, 12-4, 12-6 
Data Buffer Enable, 5-4, 7-4, 7-25ff 
Data Strobe, 5-4, 7-4, 7-22ff, 12-8 
DBEN, 5-4, 7-4, 7-25ff 
OS, 5-4, 7-4, 7-22ff, 12-8 
DSACKO, 5-4, 6-8, 6-12, 7-4, 7-5, 7-20ff, 12-2, 12-7, 

12-8, 12-11, 12-12, 12-24, 12-31, 12-33 
DSACK1, 5-4, 6-8, 6-12, 7-4, 7-5, 7-20ff, 12-2, 12-7, 

12-8, 12-11, 12-12, 12-24, 12-31, 12-33 
ECS, 5-4, 7-3, 7-22ff, 12-13, 12-31 
External Cycle Start, 5-4, 7-3, 7-22ff, 12-12, 12-31 
Halt, 5-7, 7-4, 7-22ff, 12-2, 12-11, 12-24, 12-25, 

12-27, 12-28 
HALT, 5-7, 7-5, 7-22ff, 12-2, 12-11, 12-24, 12-25, 

12-27' 12-28 
Internal Microsequencer Status, 5-7, 7-77, 8-3, 

8-12, 8-19, 12-1, 12-28 through 12-31, 12-33 
Interrupt Pending, 5-6, 8-11, 8-13 
IPEND, 5-6, 8-11, 8-13 
MMU Disable, 5-7, 9-1, 9-2, 9-11, 12-1 
MMUDIS, 5-7, 9-1, 9-2, 9-11, 12-1 
OCS, 5-2, 7-3, 7-22ff 
Operand Cycle Start, 5-2, 7-3, 7-22ff 

MOTOROLA 
INDEX-10 

Signal (Continued) 
Pipeline Refill, 5-7, 6-4, 12-1, 12-28, 12-29, 12-31, 

12-33 
RiW, 5-4, 7-3, 7-30ff, 12-7 
Read-Modify-Write, 5-4, 7-3, 7-36ff, 12-3 
Read/Write, 5-4, 7-3, 7-30ff, 12-7 
REFILL, 5-7, 6-4, 12-1, 12-28, 12-29, 12-31, 12-33 
Reset, 5-6, 7-79ff, 9-11, 9-45, 12-31 
RESET, 5-6, 7-79ff, 9-11, 9-45, 12-31 
RMC, 1-3, 5-4, 7-3, 7-36ff, 12-3 
SIZO, 5-2, 7-3, 7-7, 7-19, 7-30ff, 12-2, 12-7, 12-15 
SIZ1, 5-2, 7-3, 7-7, 7-19, 7-30ff, 12-2, 12-7, 12-15 
STATUS, 5-7, 7-77, 8-3, 8-12, 8-19, 12-1, 

12-28 through 12-31, 12-33 
STERM, 5-4, 6-10, 6-12, 7-2, 7-4, 7-5, 7-20ff, 12-1, 

12-7, 12-8, 12-11through12-14, 12-16, 12-19, 
12-21, 12-24 through 12-26 

Synchronous Termination, 5-5, 6-11, 6-12, 6-13, 7-2, 
7-4, 7-5, 7-20ff, 12-1, 12-7, 12-8, 12-11 through 
12-14, 12-16, 19-19, 12-21, 12-24 through 12-26 

Signal Assertion Results, Asynchronous Cycle, 
7-65, 7-66 

Signal Groups, 5-1 
Signal Index, 5-3 
Signal Routing, Adapter Board, 12-1 
Signal Summary, 5-9 
Signals, 

AO-Al, 7-6, 7-7, 7-17ff, 12-7, 12-15 
AO-A31, 5-2, 7-3, 7-30ff, 12-4 
Bus Control, 7-3 
Bus Transfer, 7-1 
Data Bus Write Enable, 7-19 
Data Transfer and Size Acknowledge, 5-4, 6-8, 

6-12, 7-4, 7-5, 7-20ff, 12-2, 12-7, 12-8, 12-11 
12-12, 12-24, 12-31 

00-031, 5-2, 7-4, 7-32ff, 12-7, 12-15 
FCO-FC2, 5-2, 6-5, 7-3, 7-30ff, 12-4 
Function Code, 5-2, 6-5, 7-3, 7-30ff, 12-4 
Instruction Boundary, 12-29 
Interrupt Exception, 12-29 
lnterr~riority Level, 5-5, 7-57ff, 8-10 
IPLO-IPL2, 5-5, 7-57ff, 8-10 
MC68851, 12-3 
Other Exception, 12-30 
Processor Halted, 12-30 
Trace Exception, 12-29 
Transfer Size, 5-2, 7-3, 7-6, 7-19, 7-30ff, 12-2, 

12-7, 12-15 
Single Entry Cache Filling, 6-8 
Single Operand Instruction Timing Table, 11-32 
Size Restrictions, Table Index, 9-8 
Size Signal Encoding, 7-7 
Sizing, Dynamic Bus, 7-5, 7-13, 7-20 
SIZO Signal, 5-2, 7-3, 7-7, 7-19, 7-30ff, 12-2, 12-7, 

12-15 
SIZ1 Signal, 5-2, 7-3, 7-7, 7-19, 7-30ff, 12-2, 12-7, 

12-15 
Software Bus Fault Recovery, 8-21 
Space, CPU, 7-57, 7-60, 10-5ff 
Special Status Word, 8-19 
Spurious Interrupt Cycle, 7-60 
SR, 1-5, 2-3, 6-4, 8-8, 8-10, 8-14 

MC68030 USER'S MANUAL 



Processor Resource Block Diagram, 11-3 
Program control Instructions, 3-8 
Program Counter 

Indirect Displacement Mode, 2-12 
Indirect Index (Base Displacement) Mode, 2-13 
Indirect Index (8-Bit Displacement) Mode, 2-12 
Memory Indirect Postindexed Mode, 2-14 
Memory Indirect Preindexed Mode, 2-14 

Programming Model, 1-4, 9-4 
MMU, 9-4 

Protection, 9-30 
Supervisor Only, 9-36 
Write, 9-36 

Protocol 
Processor General Instruction, 10-8 
Violations, 

Coprocessor Detected, 10-44 
Main Processor Detected, 10-46 

-0-
Queue, 2-29 

-R­
RNV Signal, 5-4, 7-3, 7-30ff, 12-7 
RAM, Static, 12-14 through 12-23 
Ratings, Maximum, 13-1 
Read Cycle, 

Asynchronous, 32-Bit Port, Timing, 7-32 
Data Bus Requirements, 7-8 
Synchronous, 7-40 

CllN Asserted, CBACK Negated, Timing, 7-42 
Read-Modify-Write 

Accesses, 6-7 
Cycle, 

Asynchronous, 7-36 
Asynchronous, Byte, 32-Bit Port, Timing, 7-38 
Asynchronous, Flowchart, 7-37 
Synchronous, 7-44 
Synchronous, CllN Asserted, Flowchart, 7-47 
Synchronous, Flowchart, 7-46 

Signal, 5-4, 7-3, 7-36ff, 12-3 
Read/Write Signal, 5-4, 7-3, 7-30ff, 12-7 
Real Time Instruction Trace, 12-30 through 12-35 
Recovery, 

Bus Fault, 8-19 
RTE, 8-22 
Software, 8-21 

REFILL Signal, 5-7, 6-4, 12-1, 12-28, 12-29, 12-31, 
12-33 

Register, 
Cache Address, 1-7, 2-4, 6-17 
Cache Control, 1-7, 2-4, 6-1, 6-12, 6-15, 6-16 
Condition Code, 2-3, 3-12 
Coprocessor Interface, 10-6, 10-21 
MMU Status, 1-8, 2-4, 9-45, 9-46, 9-47, 9-48 
Status, 1-5, 2-3, 6-4, 8-8, 8-10, 8-14 
Translation Control, 1-7, 2-4, 9-5, 9-42 
Vector Base, 1-6, 2-4 
Data Organization, 2-1 

Register Select CIR, 10-24 

MC68030 USER'S MANUAL 

Registers, 
Address, 1-5, 2-3 
Data, 1-5, 2-2 
Function Code, 1-7, 2-4 
Transparent Translation, 1-7, 2-4, 9-13, 9-43, 
12-25 

Representation, Internal Operand, 7-6 
Request, Bus, 7-80 
Requirements, Data Bus, Read Cycle, 7-8 
Reset, 

Cache, 6-15 
Coprocessor, 10-51 
Exception, 8-3, 8-4 
Operation, 7-83 
Signal, 5-6, 7-79ff, 9-11, 9-45, 12-31 

RESET Signal, 5-6, 7-79ff, 9-11, 9-45, 12-31 
Resource Scheduling, 11-1 
Response CIR, 10-21 
Restore CIR, 10-22 
Restore Operation Timing Table, 11-38 
Retry Operation, 7-70 

Late, 
Asynchronous, Timing, 7-73 
Burst, Timing, 7-75 
Synchronous, Timing, 7-74 

Return from Exception, 8-17 
RMC Signal, 1-3, 5-4, 7-3, 7-36ff, 12-3 
Root Pointer Descriptor, 9-18 
Rotate Instructions, 3-4 
Routine, 

AbortTask, 9-66 
Bus Error, 9-62 
GetFrame, 9-65 
SwapPageln, 9-66 
Vallocate, 9-58 

RTE 
Bus Fault Recovery, 8-22 
Instruction, 8-17 

-S-
Save CIR, 10-22 
Save Operation Timing Table, 11-38 
ScanPC, 10-11, 10-13, 10-24 
Scheduling, Resource, 11-1 
Script, Table Search Timing, 11-39 
Search, Table, 9-22, 9-24 
Sequence, Exception Processing, 8-1 
Set, Instruction, 1-8, 1-10 
Set on Coprocessor Condition Instruction, 10-11 
SFC, 1-7, 2-4 
Shared Supervisor/User Address Space Logical 

Address Map, 9-39 
Sharing, Table, 9-27, 9-29 
Shift Instructions, 3-4 
Shift/Rotate Instruction Timing Table, 11-33 
Short Format 

Early Termination Page Descriptor, 9-18 
Indirect Descriptor, 9-21 
Invalid Descriptor, 9-20 
Page Descriptor, 9-20 
Table Descriptor, 9-18 

MOTOROLA 
INDEX-9 



Mode (Continued) 
Memory Indirect 

Postindexed, 2-11 
Preindexed, 2-11 

Program Counter 
Indirect Displacement, 2-12 
Indirect Index (Base Displacement), 2-13 
Indirect Index (8-Bit Displacement), 2-12 
Memory Indirect Postindexed, 2-14 
Memory Indirect Preindexed, 2-14 

Model, Programming, 1-4, 9-4 
Modes, Addressing, 1-8, 2-6 
Move Address Space Instruction, 7-61 
MOVE Instruction, 

Special Purpose, Timing Table, 11-28 
Timing Table, 11-27 

MOVES Instruction, 7-61 
Multiple Exceptions, 8-16 
Multiplexer, Data Bus, Internal to External, 7-9 
Multiprocessor Instructions, 3-10 
M68000 Family, 1-3, 2-28 

Summary, A-1 through A-3 

-N-

Nested Subroutine Calls, 3-195 
No Operation Instruction, 7-77 
Non-OMA Coprocessor, 10-4 
NOP Instruction, 7-77 
Normal Processing State, 4-1 
Not Ready Format Word, 10-16 
Notation, Instruction Description, 3-2, 3-11 
Null Primitive, 10-27, 10-28 
Number of Table Levels, 9-51 

-0-

OCS Signal, 5-2, 7-3, 7-22ff 
Operand, Misaligned, 7-11, 7-13 
Operand Address CIR, 10-24 
Operand CIR, 10-23 
Operand Cycle Start Signal, 5-2, 7-3, 7-22ff 
Operands, 2-1 
Operation, 

Burst, 7-49 
Concurrent, 10-2 
Halt, 7-74 
Reset, 7-83 
Retry, 7-70 

Operation Word CIR, 10-22 
Operations, Bit Field, 3-196 
Ordering Information, 14-1 
Organization, 

Cache, 6-1 
Data Port, 7-6 
Memory Data, 2-4 
Register Data, 2-1 

Other Exception Signals, 12-30 
Overlap, 11-5 

MOTOROLA 
INDEX-8 

-P-

Package Dimensions, 14-2 
Paging, 

Table, 9-30, 9-31 
Implementation Example System, 9-54 

PC Bit, 10-26 
Performance Trade-Offs, 11-1 
Pin Assignment, 14-1, 14-2 
Pin Assignments, 

GND, 12-35 
Vee. 12-35 

Pipeline, 1-12, 11-2 
Pipeline Refill Signal, 5-7, 6-4, 12-1, 12-28, 12-29, 

12-31, 12-33 
Pipeline Synchronization, 3-198 
Pipelined Burst Mode Static RAM, 12-21 through 

12-23 
Pointer, 

CPU Root, 1-7, 2-4, 9-18, 9-39, 9-41, 9-49 
Supervisor Root, 1-7, 2-4, 9-18, 9-39, 9-41, 9-49 

Post-Instruction Stack Frame, 10-43 
Power Considerations, 12-34, 13-1 
Power Supply Connections, 5-8 
Pre-Instruction Stack Frame, 10-40 
Primitive, 

Busy, 10-26 
Coprocessor Response, 10-8, 10-24 
Evaluate and Transfer Effective Address, 10-30 
Evaluate Effective Address and Transfer Data, 

10-31 
Null, 10-27, 10-28 
Supervisor Check, 10-29 
Take Address and Transfer Data, 10-34 
Take Mid-Instruction Exception, 10-41 
Take Post-Instruction Exception, 10-42 
Take Pre-Instruction Exception, 10-40 
Transfer from Instruction Stream, 10-30 
Transfer Main Processor Control Register, 10-36 
Transfer Multiple Coprocessor Registers, 10-37 
Transfer Multiple Main Processor Registers, 

10-36 
Transfer Operation Word, 10-29 
Transfer Single Main Processor Register, 10-35 
Transfer Status Register and ScanPC, 10-38 
Transfer to/from Top of Stack, 10-35 
Write to Previously Evaluated Effective Address, 

10-33 
Primitive Processing Exception, 10-46 
Priority, Exception, 8-16 
Privilege Level, 

Changing, 4-3 
Supervisor, 4-1, 4-2 
User, 4-1, 4-3 

Privilege Violation Exception, 8-7, 10-48 
Privileged Instructions, 8-7 
Processing, Exception, 4-4 
Processor Activity, 

Even Alignment, 11-7 
Odd Alignment, 11-8 

Processor Generated Reset Timing, 7-86 
Processor Halted Signals, 12-30 

MC68030 USER'S MANUAL 



-J-

Jump Effective Address Timing Table, 11-26 

-L-
Late Bus Error, 

STERM, Timing, 7-70 
Third Access, Timing, 7-71 
With DSACKx, Timing, 7-69 

Late Retry Operation, Burst, Timing, 7-75 
Latency, 

Bus Arbitration, 11-47 
Interrupt, 11-46 

Levels, Interrupt, 8-10 
Limit Check Procedure Flowchaart, 9-34 
Limit Fields, 9-53 
Linked List 

Deletion Example, 3-193 
Insertion Example, 3-193 

Logic, Byte Select, 12-7, 12-9, 12-10 
Logical Address Map, 

Function Code Lookup, 9-36 
Shared Supervisor/User Address Space, 
9-39 

Logical Instructions, 3-4 
Long Format 

Early Termination Page Descriptor, 9-19 
Indirect Descriptor, 9-21 
Invalid Descriptor, 9-21 
Page Descriptor, 9-20 
Table Descriptor, 9-18 

Long Word Operand ~uest, 
Burst, CBACK and CllN Asserted, Timing, 7-55 
Burst Fill Deferred, Timing, 7-54 
Burst Request 

CBACK Negated, Timing, 7-53 
Wait States, Timing, 7-52 

Long Word Read Cycle, 
Asynchronous, Flowchart, 7-26 
Synchronous, Flowchart, 7-41 
16-Bit Port, Timing, 7-29 
32-Bit Port, Timing, 7-29 
8-Bit Port, CIOUT Asserted, Timing, 7-28 

Long Word to Long Word Transfer, 
Misaligned, 7-17 

Cacheable, 7-19 
Long Word to Word Transfer, 7-9 

Misaligned, 7-13 
Long Word Write Cycle, 

16-Bit Port, Timing, 7-35 
8-Bit Port, Timing, 7-34 

Lookup, Function Code, 9-34, 9-36, 9-37, 9-49 

-M-
Machine, Virtual, 1-11 
Main Processor Detected 

Format Errors, 10-50 
Protocol Violations, 10-46 

MC68030 USER'S MANUAL 

Maximum Ratings, 13-1 
MC68020 

Adapter Board, 12-1 
Hardware Differences, 12-2 
Software Differences, 12-3 

MC68851 Signals, 12-3 
MC68881 Coprocessor, 12-4 
MC68882 Coprocessor, 12-4 
Mechanism, Data Transfer, 7-5 
Memory, 

Contiguous, 9-25, 9-27 
Interface, 12-10 
Virtual, 1-11, 9-57 

Memory Access Time Calculations, 12-11 through 
12-14 

Memory Data Organization, 2-4 
Memory Indirect Postindexed Mode, 2-11 
Memory Indirect Preindexed Mode, 2-11 
Memory Management Unit, 1-11, 7-3, 7-30, 7-36ff, 

9-1, 11-4, 12-3 
Micro Bus Controller, 11-4 
Microsequencer, 11-2 
Mid-Instruction Stack Frame, 10-42 
Misaligned 

Cacheable 
Long Word to Long Word Transfer, 7-19 
Word to Long Word Transfer, 7-15 
Word to Word Transfer, 7-17 

Long Word to Long Word Transfer, 7-17 
Long Word to Word Transfer, 7-13 

Timing, 7-14 
Operand, 7-11, 7-13 
Word to Word Transfer, 7-15 
Word to Word Transfer Timing, 7-16 

MMU, 1-11, 7-3, 7-30, 7-36ff, 9-1, 11-4, 12-3 
Block Diagram, 9-2 
Configuration Exception, 8-15, 9-47 
Differences, 9-36 
Disable Signal, 5-7, 9-1, 9-3, 9-11, 12-1 
Effective Address Timing Table, 11-45 
Instruction Timing Table, 11-46 
Instructions, 3-10, 9-47 
Programming Model, 9-4 
Register Side Effects, 9-46 
Status Register, 1-8, 2-4, 9-45, 9-46, 9-47, 9-48 

Decoding, 9-46, 9-47, 9-48 
MMUDIS Signal, 5-7, 9-1, 9-2, 9-11, 12-1 
MMUSR, 1-8, 2-4, 9-45, 9-46, 9-47, 9-48 
Mode, 

Absolute 
Long Address, 2-16 
Short Address, 2-15 

Address Registers 
Direct, 2-7 
Indirect, 2-8 
Indirect Displacement, 2-9 
Indirect Index (Base Displacement), 2-10 
Indirect Index (8-Bit Displacement), 2-10 
Indirect Postincrement, 2-8 
Indirect Predecrement, 2-8 

Data Register Direct, 2-7 

MOTOROLA 
INDEX-7 



-G-
General Description, 1-1 
GetFrame Routine, 9-65 
GND Pin Assignments, 12-35 
Grant, Bus, 7-81 
Ground Considerations, 12-34 
Groups, Signal, 5-1 

Halt Operation, 7-74 
Timing, 7-76 

-H-

Halt Signal, 5-7, 7-5, 7-22ff, 12-2, 12-11, 12-24, 
12-25, 12-27, 12-28 

HALT Signal, 5-7, 7-5, 7-22ff, 12-2, 12-11, 12-24, 
12-25, 12-27, 12-28 

Halted State, 4-1 

-1-
IBE Bit, 6-17 
Identification Code, Coprocessor, 10-3 
Illegal Instruction Exception, 8-6 
Immediate Data, 2-16 
Implementation, External Cache, 12-24 through 

12-28 
Index, Signal, 5-3 
Indexed Addressing, 2-19, 2-20 
Indirect Absolute Memory Addressing, 2-21 
Indirect Addressing, 2-22, 2-23 
Indirection, 9-26, 9-53 

Example, 9-28 
Information, Ordering, 14-1 
Initial Reset Timing, 7-85 
Initial Shift Count, 9-52 
Input Delay, 7-1 
Instruction, 

BKPT, 7-60, 8-15, 8-16 
Branch on Coprocessor Condition, 10-10 
Breakpoint, 7-60, 8-15, 8-16 
CAS, 7-36 
CAS2, 7-36 
Compare and Swap, 7-36 
Coprocessor Context Restore, 10-19 
Coprocessor Context Save, 10-18 
cpBcc, 10-10 
cpDBcc, 10-12 
cpRESTORE, 8-22, 10-19 
cpSAVE, 8-22, 10-17, 10-18 
cpScc, 10-11 
cpTRAPcc, 10-13 
Move Address Space, 7-61 
MOVES, 7-61 
No Operation, 7-77 
NOP, 7-77 
RTE, 8-17 
Set on Coprocessor Condition, 10-11 
STOP, 8-9 
TAS, 7-36 
Test and Set, 7-36 

MOTOROLA 
INDEX-6 

Instruction (Continued) 
Test Coprocessor Condition, Decrement and 
Branch, 10-12 
Trap on Coprocessor Condition, 10-13 

Instruction Address CIR, 10-24 
Instruction Boundary Signals, 12-29 
Instruction Burst Enable Bit, 6-17 
Instruction Cache, 1-12, 6-1, 6-3, 11-2 

Case, 11-5 
Time Formula, 11-8, 11-9 

Instruction Description 
Format, 3-15 
Notation, 3-2, 3-11 

Instruction Descriptions, 3-16 through 3-192 
Instruction Fetch Pending Buffer, 11-4 
Instruction Format, 3-1 

Summary, 3-201 through 3-217 
Instruction Only External Cache, 12-28 
Instruction Set, 1-8, 1-10 
lnsruction Timing Tables, 11-18 
Instruction Trace, Real Time, 12-30 through 12-35 
Instruction Trap Exception, 8-6 
Instructions, 

Binary Coded Decimal, 3-7 
Bit Field, 3-6 
Bit Manipulation, 3-6 
Coprocessor, 3-10 

Conditional, 10-9 
General, 10-7 

Data Movement, 3-3 
Integer Arithmetic, 3-3 
Logical, 3-4 
MMU, 3-10, 9-47 
Multiprocessor, 3-10 
Privileged, 8-7 
Program Control, 3-8 
Rotate, 3-4 
Shift, 3-4 
System Control, 3-8 

Integer Arithmetic Instructions, 3-3 
Interactions, Cache, 7-20 
Interface, 

Coprocessor, 10-1, 10-4 
Memory, 12-10 

Internal Microsequencer Status Signal, 5-7, 7-77, 
8-3, 8-12, 8-19, 12-1, 12-28 through 12-31, 
12-33 

Internal Operand Representation, 7-6 
Internal to External Data Bus Multiplexer, 7-9 
Interrupt Acknowledge Cycle, 7-57 

Flowchart, 7-58 
Timing, 7-59 

Interrupt 
Cycle, Spurious, 7-60 
Exception, 8-10, 10-49 

Signals, 12-29 
Latency, 11-46 
Levels, 8-10 

Interrupt Pending Signal, 5-6, 8-11, 8-13 
Interrupt Priority Level Signals, 5-5, 7-57ff, 8-10 
Invalid Format Word, 10-17 
IPEND Signal, 5-6, 8-11, 8-13 
IPLO-IPL2 Signals, 5-5, 7-57ff, 8-10 

MC68030 USER'S MANUAL 



Entry, Address Translation Cache, 9-14 
Errors, Bus, 7-67 
EU, 6-12 
Evaluate and Transfer Effective Address Primitive, 

10-30 
Evaluate Effective Address and Transfer Data 

Primitive, 10-31 
Example, 

CAS Instruction, 3-193 
CAS2 Instruction, 3-193 
Contiguous Memory, 9-27 
Doubly-Linked List 

Deletion, 3-194 
Insertion, 3-194 

Function Code Lookup, 9-37 
Indirection, 9-28 
Linked List 

Deletion, 3-193 
Insertion, 3-193 

Protection, Translation Tree, 9-40 
System Paging Implementation, 9-54 
Table Paging, 9-31 
Table Sharing, 9-29 
Two Task Translation Tree, 9-38 

Exception, 
Address Error, 8-6, 10-51 
Breakpoint Instruction, 8-15 
Bus Error, 8-5, 10-50 
cpTRAPcc Instruction, 10-49 
Format Error, 8-9 
Illegal Instruction, 8-6 
Instruction Trap, 8-6 
Interrupt, 8-10, 10-49 
MMU Configuration, 8-15, 9-47 
Priority, 8-16 
Privilege Violation, 8-7, 10-48 
Processing, 4-4 

Sequence, 8-1 
State, 4-1 

Reset, 8-3, 8-4 
Return from, 8-17 
Stack Frame, 4-5, 8-23 
Trace, 8-8, 10-49 
Unimplemented Instruction, 8-6 
Vector 

Assignments, 8-2 
Numbers, 8-1 

Vectors, 4-5 
Exception Related 

Instruction Timing Table, 11-38 
Operation Timing Table, 11-38 

Exceptions, 
Bus, 7-61 
Coprocessor Data Processing, 10-45 
Coprocessor Detected, 10-44 
Coprocessor System Related, 10-45 
F-Line Emulator, 8-7, 10-47, 10-50 
Multiple, 8-16 
f?rimitive Processing, 10-46 

Execution Time Calculations, 11-5ff 
Execution Unit, 6-12 
Extended Instruction Timing Table, 11-31 

MC68030 USER'S MANUAL 

External Cache, 12-24 through 12-28 
Implementation, 12-24 through 12-28 
Instruction Only, 12-28 

External Cycle Start Signal, 5-4, 7-3, 7-22ff, 12-12, 
12-31 

-F-
F-Line, 10-3 

Emulator Exceptions, 8-7, 10-47, 10-50 
Fault, Double Bus, 7-76, 8-5 
FCO-FC2 Signals, 5-2, 6-5, 7-3, 7-30ff, 12-4 
FD Bit, 6-16 
Fetch Effective Address Timing Table, 11-19 
Fetch Immediate Effective Address Timing Table, 

11-20 
Fl Bit, 6-17 
Fields, Limit, 9-53 
Floating Point Units, 12-4 
Flowchart, 

Address Translation, General, 9-12 
Asynchronous Byte Read Cycle, 7-26 
Asynchronous Long Word Read Cycle, 7-26 
Asynchronous Read-Modify-Write Cycle, 7-37 
Asynchronous Write Cycle, 7-31 
ATC Entry Creation, 9-33 
Breakpoint Acknowledge, 7-62 
Burst Operation, 7-51 
Bus Arbitration, 7-79 
Descriptor Fetch Operation, 9-35 
Interrupt Acknowledge Cycle, 7-58 
Limit Check Procedure, 9-34 
Synchronous Long Word Read Cycle, 7-41 
Synchronous Read-Modify-Write Cycle, 7-46 

Table Search 
Detailed, 9-32 
Initialization, 9-33 
Simplified, 9-23 

Format, 
Coprocessor Instruction, 10-3 
Coprocessor Response Primitive, 10-25 
Instruction, 3-1 
Instruction Description, 3-15 

Format Error Exception, 8-9 
Format Errors, 

Coprocessor Detected, 10-46 
Main Processor Detected, 10-50 

Format Word, 
Empty/Reset, 10-16 
Invalid, 10-17 
Not Ready, 10-16 
Valid, 10-17 

Format Words, Coprocessor, 10-16 
Formula, Instruction Cache Case Time, 11-8, 11-9 
Freeze Data Cache Bit, 6-16 
Freeze Instruction Cache Bit, 6-17 
Function Code Lookup, 9-34, 9-36, 9-37, 9-49 

Example, 9-37 
Logical Address Map, 9-36 

Function Code Registers, 1-7, 2-4 
Function Code Signals, 5-2, 6-5, 7-3, 7-30ff, 12-4 

MOTOROLA 
INDEX-5 



cpDBcc Instruction, 10-12 
cpRESTORE Instruction, 8-22, 10-19 
cpSAVE Instruction, 8-22, 10-17, 10-18 
cpScc Instruction, 10-11 
cpTRAPcc Instruction, 10-13 
cpTRAPcc Instruction Exception, 10-49 
CPU Root Pointer, 1-7, 2-4, 9-18, 9-39, 9-41, 9-49 
CPU Space, 7-57, 7-60, 10-5ff 
CPU Space Address Encoding, 7-57 
CRP, 1-7, 2-4, 9-18, 9-39, 9-41, 9-49 
CS Coprocessor Signal, 12-4, 12-6 
Cycle, 

Asynchronous Read, 7-25 
Breakpoint Acknowledge, 7-60 
Burst, 7-49, 12-14 
Coprocessor Communication, 7-60 
Interrupt Acknowledge, 7-57 
Interrupt Acknowledge, Autovector, 7-60 

Cycles, Data Transfer, 7-25 

-D-
Data, Immediate, 2-16 
Data Buffer Enable Signal, 5-4, 7-4, 7-25ff 
Data Burst Enable Bit, 6-16 
Data 

Bus, 5-2, 7-4, 7-32ff, 12-7, 12-15 
Activity, 12-8 
Requirements, Read Cycle, 7-8 
Write Enable Signals, 7-19 

Cache, 1-12, 6-1, 6-5, 11-2, 11-12 
Movement Instructions, 3-3 
Port Organization, 7-6 
Register Direct Mode, 2-7 
Registers, 1-5, 2-2 
Select, Byte, 7-21 
Transfer 

Cycles, 7-25 
Transfer Mechanism, 7-5 

Types, 1-7 
Data Strobe Signal, 5-4, 7-4, 7-22ff, 12-8 
Data Transfer and Size Acknowledge Signals, 5-4, 

6-8, 6-12, 7-4, 7-5, 7-20ff, 12-2, 12-7, 12-8, 
12-11, 12-12, 12-24, 12-31 

DBE Bit, 6-16 
DBEN Signal, 5-4, 7-4, 7-25ff 
DC Electrical Characteristics, 13-2 
Debugging Aids, 12-28 
Decoding, MMU Status Register, 9-46, 9-47, 9-48 
Definition, Task Memory Map, 9-50 
Definitions, AC Electrical Specifications, 13-6 
Delay, Input, 7-1 
Derivation, Table Index, 9-8 
Description, General, 1-1 
Descriptions, Instruction, 3-16 through 3-192 
Descriptor, 

Bits, Unused, 9-54 
Fetch Operation Flowchart, 9-35 
Indirect, 

Long Format, 9-21 
Short Format, 9-21 

MOTOROLA 
INDEX-4 

Descriptor (Continued) 
Invalid, 

Long Format, 9-21 
Short Format, 9-20 

Page, Early Termination, 
Long Format, 9-19 
Short Format, 9-18 

Page, 
Long Format, 9-20 
Short Format, 9-20 

Root Pointer, 9-18 
Table, 

Long Format, 9-18 
Short Format, 9-18 

Descriptors, Translation Table, 9-8, 9-16 
DFC, 1-7, 2-4 
Diagram, Block, 1-2, 9-3 
Differences, 

MC68020 Hardware, 12-2 
MC68020 Software, 12-3 
MMU, 9-36 

Dimensions, Package, 14-2 
DMA Coprocessor, 10-4 
Double Bus Fault, 7-76, 8-5 
Doubly-Linked List 

Deletion Example, 3-194 
Insertion Example, 3-194 

DR Bit, 10-26 
DS Signal, 5-4, 7-4, 7-22ff, 12-8 
DSACKO Signal, 5-4, 6-8, 6-12, 7-4, 7-5, 7-20ff, 12-2, 

12-7, 12-8, 12-11, 12-12, 12-24, 12-31 
DSACK1 Signal, 5-4, 6-8, 6-12, 7-4, 7-5, 7-20ff, 12-2, 

12-7, 12-8, 12-11, 12-12, 12-24, 12-31 
Dynamic Allocation, Table, 9-30 
Dynamic Bus Sizing, 7-5, 7-13, 7-20 
DO-D31Signals,5-2, 7-4, 7-32ff, 12-7, 12-15 
DO-D7, 1-5 

-E-
Early Termination, 9-25, 9-53 
Early Termination Control, 12-27 
ECS Signal, 5-4, 7-3, 7-22ff, 12-13, 12-31 
ED Bit, 6-17 
Effective Address Encoding Summary, 2-16 
El Bit, 6-17 
Electrical Characteristics, 13-1 

DC, 13-2 
Electrical Specifications, 

AC, 
Clock Input, 13-3 
General, 13-5 
Definitions, 13-6 
Read/Write Cycles, 13-4 

Empty/Reset Format Word, 10-16 
Enable Data Cache Bit, 6-17 
Enable Instruction Cache Bit, 6-17 
Encoding, 

Address Offset, 7-7 
Size Signal, 7-7 

MC68030 USER'S MANUAL 



Cache Burst Request Signal, 5-5, 6-12, 7-5, 7-24, 
7-40ff, 12-1, 12-21 

Cache Control Register, 1-7, 2-4, 6-1, 6-12, 6-15, 
6-16 

Cache Disable Signal, 5-7, 6-1 
Cache Inhibit Input Signal, 5-5, 6-1, 6-7, 6-8, 6-11, 

6-12, 7-2, 7-22ff, 12-1, 12-4 
Cache Inhibit Output Signal. 5-5, 6-3, 6-7, 7-25ff, 

9-1, 9-13, 12-1, 12-3, 12-26 
CACR, 1-7, 2-4, 6-1, 6-12, 6-15, 6-16 
Calculate Effective Address Timing Table, 11-22 
Calculate Immediate Effective Address Timing 

Table, 11-24 
Calculations, Execution Time, 11-5ff 
Capabilities, Addressing, 2-18 
CAS Instruction, 7-36 

Example, 3-193 
Case, 

Actual Instruction Cache, 11-8 
Average No Cache, 11-6 
Best, 11-5 
Instruction Cache, 11-5 

CAS2 Instruction, 7-36 
Example, 3-193 

CBACK Signal, 5-5, 6-12, 7-2, 7-20ff, 12-1, 12-19 
12-21, 12-23 

CBREQ Signal, 5-5, 6-12, 7-5, 7-24, 7-40ff, 12-1, 
12-21 

CCR, 2-3, 3-12 
CD Bit, 6-16 
CDIS Signal, 5-7, 6-1 
CED Bit, 6-16 
CEI Bit, 6-17 
Changing Privilege Level, 4-3 
Characteristics, 

Electrical, 13-1 
DC, 13-2 

Thermal, 13-1 
Chip Select Coprocessor Signal, 12-4, 12-6 
Cl Bit, 6-17 
CllN Signal, 5-5, 6-1, 6-7, 6-8, 6-11, 6-12, 7-2, 7-22ff, 

12-1, 12-4 
CIOUT Signal, 5-5, 6-3, 6-7, 7-25ff, 9-1, 9-13, 12-1, 

12-3, 12-26 
CIR, 10-6, 10-21 

Command, 10-23 
Condition, 10-23 
Control, 10-22 
Instruction Address, 10-24 
Operand, 10-23 
Operand Address, 10-24 
Operation Word, 10-22 
Register Select, 10-24 
Response, 10-21 
Restore, 10-22 
Save, 10-22 

Clear Data Cache Bit, 6-16 
Clear Entry in Data Cache Bit, 6-16 
Clear Entry in Instruction Cache Bit, 6-17 
Clear Instruction Cache Bit, 6-17 
CLK Signal, 5-8, 7-43ff, 12-29, 12-31 
Clock Signal, 5-8, 7-43ff, 12-29, 12-31 

MC68030 USER'S MANUAL 

Command CIR, 10-23 
Command Words, Illegal, Coprocessor Detected, 

10-45 
Compare and Swap Instruction, 7-36 
Compatibility, M68000 Addressing, 2-27 
Computation, Condition Code, 3-198 
Concurrent Operation, 10-2 
Condition CIR, 10-23 
Condition Code 

Computation, 3-198 
Register, 2-3, 3-12 

Condition Tests, 3-200 
Condition Words, Illegal, Coprocessor Detected, 

10-53 
Conditional Branch Instruction Timing Table, 11-36 
Connections, Power Supply, 5-8 
Considerations, 

Ground, 12-34 
Power, 12-34, 13-1 

Contiguous Memory, 9-25, 9-27 
Example, 9-27 

Control, 
Bus Arbitration, 7-81 
Early Termination, 12-27 

Control CIR, 10-22 
Control Instruction Timing Table, 11-37 
Controller, 

Bus, 11-4 
Micro Bus, 11-4 

Coprocessor, 
Communication Cycle, 7-60 
Conditional Instructions, 10-9 
Context Restore Instruction, 10-19 
Context Save Instruction, 10-18 
Data Processing Exceptions, 10-45 
DMA, 10-4 
Format Words, 10-16 
General Instruction Protocol, 10-8 
General Instructions, 10-7 
Identification Code, 10-3 
Instruction Format, 10-3 
Instruction Summary, 10-51 through 10-53 
Instructions, 3-10 
Interface, 10-1, 10-4 
MC68881, 12-4 
MC68882, 12-4 
Non-DMA, 10-4 
Reset, 10-51 
Response Primitive, 10-8, 10-24 
Response Primitive Format, 10-25 
State Frames, 10-15 
System Related Exceptions, 10-45 

Coprocessor Detected 
Exceptions, 10-44 
Format Errors, 10-46 
Illegal Command Words, 10-45 
Illegal Condition Words, 10-45 
Protocol Violations, 10-44 

Coprocessor Interface Register, 10-6, 10-21 
Count, Initial Shift, 9-52 
Cp-ID, 7-62, 10-3 
cpBcc Instruction, 10-10 

MOTOROLA 
INDEX-3 



Bit, 
CA, 10-25 
CD, 6-16 
CED, 6-16 
CEI, 6-17 
Cl, 6-17 
Clear Data Cache, 6-16 
Clear Entry in Data Cache, 6-16 
Clear Entry in Instruction Cache, 6-17 
Clear Instruction Cache, 6-17 
Data Burst Enable, 6-16 
DBE, 6-16 
DR, 10-26 
ED, 6-17 
El, 6-17 
Enable Data Cache, 6-17 
Enable Instruction Cache, 6-17 
FD, 6-16 
Fl, 6-17 
Freeze Data Cache, 6-16 
Freeze Instruction Cache, 6-17 
IBE,6-17 
Instruction Burst Enable, 6-17 
PC, 10-26 
WA, 6-16 
Write Allocate, 6-16 

Bit Field 
Instruction Timing Table, 11-35 
Instructions, 3-6 
Operations, 3-196 

Bit Manipulation 
Instruction Timing Table, 11-34 
Instructions, 3-6 

BKPT Instruction, 7-60, 8-15, 8-16 
Block Diagram, 1-2, 9-3 

MMU, 9-3 
Processor Resource, 11-3 

BR Signal, 5-6, 7-3!J, 7-50, 7-73ff 
Branch on Coprocessor Condition Instruction, 10-10 
Breakpoint Acknowledge, 8-7 

Cycle, 7-60 
Exception Signaled, Timing, 7-64 
Timing, 7-63 

Flowchart, 7-62 
Breakpoint Instruction, 7-60, 8-15, 8-16 

Exception, 8-15 
Buffer, 

Instruction Fetch Pending, 11-4 
Write Pending, 11-4 

Burst 
Cycle, 7-49, 12-14 
Mode 

Cache Filling, 6-12 
Static RAM, 12-19-12-21 

Operation, 7-49 
Flowchart, 7-51 

Bus, 
Address, 5-2, 7-3, 7-30ff, 12-4 
Arbitration, 7-77 

Bus Inactive, Timing, 7-84 
Control, 7-81 
Flowchart, 7-79 

MOTOROLA 
INDEX-2 

Bus, 
Arbitration (Continued) 

Latency, 11-47 
State Diagram, 7-82 
Timing, 7-80 

Control Signals, 7-3 
Controller, 11-4 
Data, 5-2, 7-4, 7-32ff, 12-7, 12-15 
Error, 

Late, STEAM, Timing, 7-70 
Late, Third Access, Timing, 7-71 
Late, With DSACKx, Timing, 7-69 
Second Access, Timing, 7-72 
Exception, 8-5, 10-50 
Routine, 9-62 
Signal, 5-7, 6-8, 7-4, 7-22ff, 8-5, 8-16, 8-19, 

12-11, 12-24, 12-25, 12-27 
Without DSACKx Timing, 7-68 

Errors, 7-67 
Exceptions, 7-61 
Fault Recovery, 8-19 
Operation, 

Asynchronous, 7-22 
Synchronous, 7-23, 7-24 

Synchronization, 7-77 
Timing, 7-78 

Transfer Signals, 7-1 
Bus Grant, 7-81 

Signal, 5-6, 7-36, 7-78ff 
Bus Grant Acknowledge, 7-81 

Signal, 5-6, 7-78ff 
Bus Request, 7-80 

Signal, 5-6, 7-36, 7-50, 7-73ff 
Busy Primitive, 10-26 
Byte 

Data Select, 7-21 
Read Cycle, Asynchronous, 

Flowchart, 7-26 
32-Bit Port, Timing, 7-27 

Select Logic, 12-7, 12-9, 12-10 
Write Cycle, Asynchronous, 32-Bit Port, Timing, 

7-33 

CA Bit, 10-25 
CAAR, 1-7, 2-4, 6-17 
Cache, 

-C-

Address Translation, 7-3, 9-2, 9-14 
Data, 1-12, 6-1, 6-5, 11-2, 11-12 
External, 12-24 through 12-28 
Filling, 7-20 

Burst Mode, 6-12 
Single Entry, 6-8 

Instruction, 1-12, 6-1, 6-3, 11-2 
Interactions, 7-20 
Organization, 6-1 
Reset, 6-15 

Cache Address Register, 1-7, 2-4, 6-17 
Cache Burst Acknowledge Signal, 5-5, 6-12, 7-2, 

7-20ff, 12-1, 12-19, 12-21, 12-23 

MC68030 USER'S MANUAL 



INDEX 

-A-

Abort Task Routine, 9-66 
Absolute Long Address Mode, 2-16 
Absolute Short Address Mode, 2-15 
AC Electrical Specifications, 

Clock Input, 13-3 
Definitions, 13-6 
General, 13-5 
Read/Write Cycles, 13-4 

AC Electrical Timing Diagrams, Foldouts 
Access Time Calculations, Memory, 12-11 through 

12-14 
Accesses, Read-Modify-Write, 6-7 
Acknowledge, Breakpoint, 8-7 
Activity, 

Data Bus, 12-8 
Processor, 

Even Alignment, 11-7 
Odd Alignment, 11-8 

Actual Instruction Cache Case, 11-8 
Adapter Board, 

MC68020, 12-1 
Signal Routing, 12-1 

Address Bus, 5-2, 7-3, 7-30ff, 12-4 
Address Encoding, CPU Space, 7-57 
Address Error Exception, 8-6, 10-51 
Address Offset Encoding, 7-7 
Address Register 

Direct Mode, 2-7 
Indirect Displacement Mode, 2-9 
Indirect Index (Base Displacement) Mode, 2-10 
Indirect Index (8-Bit Displacement) Mode, 2-10 
Indirect Mode, 2-8 
Indirect Postincrement Mode, 2-8 
Indirect Predecrement Mode, 2-8 

Address Registers, 1-5, 2-3 
Address Space Types, 4-3 
Address Strobe Signal, 5-4, 7-2, 7-3, 7-22ff, 12-5, 

12-13, 12-15, 12-16, 12-19, 12-25 through 12-27, 
12-31, 12-33 

Address Translation, 9-10 
Cache, 7-3, 9-2, 9-14 
Cache Entry, 9-14 
General Flowchart, 9-12 

Addressing, 
Capabilities, 2-18 
Compatibility, M68000, 2-27 
Indexed, 2-19, 2-20 
Indirect, 2-22, 2-23 
Indirect Absolute Memory, 2-21 
Mode Summary, 2-23 
Modes, 1-8, 2-6 
Structure, 2-22 

MC68030 USER'S MANUAL 

Aids, Debugging, 12-28 
Arbitration, Bus, 7-77 
Arithmetic/Logical Instruction, 

Immediate, Timing Table, 11-30 
Timing Table, 11-29 

AS Signal, 5-4, 7-2, 7-3, 7-22ff, 12-5, 12-13, 12-15, 
12-16, 12-19, 12-25 through 12-27, 12-31, 12-33 

Assignment, Pin, 14-1, 14-2 
Assignments, Exception Vector, 8-2 
Asynchronous 

Bus Operation, 7-22 
Byte 

Read Cycle, 32-Bit Port, Timing, 7-27 
Read Cycle Flowchart, 7-26 
Read-Modify-Write Cycle, 32-Bit Port, Timing, 

7-38 
Write Cycle, 32-Bit Port, Timing, 7-33 

Cycle Signal Assertion Results, 7-65, 7-66 
Long Word Read Cycle Flowchart, 7-26 
Read Cycle, 7-25 

32-Bit Port, Timing, 7-32 
Read-Modify-Write Cycle, 7-36 

Flowchart, 7-37 
Sample Window, 7-2 
Word 

Read Cycle, 32-Bit Port, Timing, 7-27 
Write Cycle, 32-Bit Port, Timing, 7-33 

Write Cycle, 7-31 
32-Bit Port, Timing, 7-32 
Flowchart, 7-31 

ATC, 7-3, 9-3, 9-14 
Entry, 9-14 

Creation Flowchart, 9-33 
Autovector Interrupt Acknowledge Cycle, 7-60 

Timing, 7-61 
Autovector Signal, 5-6, 7-5, 7-24, 7-60ff, 8-14 
AVEC Signal, 5-6, 7-5, 7-24, 7-60ff, 8-14 
Average No Cache Case, 11-6 
AO-A1 Signals, 7-6, 7-7, 7-17ff, 12-7, 12-15 
AO-A31 Signals, 5-2, 7-3, 7-30ff, 12-4 
AO-A7, 1-5 

-B-
BERR Signal, 5-7, 6-8, 7-5, 7-22ff, 8-5, 8-16, 8-19, 

12-11, 12-24, 12-25, 12-27 
Best Case, 11-5 
BG Signal, 5-6, 7-36, 7-78ff 
BGACK Signal, 5-6, 7-78ff 
Binary Coded Decimal Instruction Timing Table, 

11-31 
Binary Coded Decimal Instructions, 3-7 

MOTOROLA 
INDEX-1 



MC68020 and MC68030 Instruction Set Extensions 

Bee 
BFxxxx 

BKPT 
BRA 
BSR 
CALLM 
CAS,CAS2 
CHK 
CHK2 
CMPI 
CMP2 
cp 
DIVS/DIVU 
EXTB 
LINK 
MOVEC 
MULS/MULU 
PACK 
PF LUSH 
PLOAD 
PMOVE 
PTEST 
RTM 
TST 
TRAP cc 
UNPK 

Supports 32-Bit Displacements 
Bit Field Instructions (BFCHG, BFCLR, BFEXTS, BFEXTU, BFFFO, BFINS, BFSET, 
BFTST) 
New Instruction Functionality 
Supports 32-Bit Displacements 
Supports 32-Bit Displacements 
New Instruction (MC68020 only) 
New Instructions 
Supports 32-Bit Operands 
New Instruction 
Supports Program Counter Relative Addressing Modes 
New Instruction 
Coprocessor Instructions 
Supports 32-Bit and 64-Bit Operands 
Supports 8-Bit Extend to 32 Bits 
Supports 32-Bit Displacement 
Supports New Control Registers 
Supports 32-Bit Operands 
New Instruction 
MMU Instruction (MC68030 only) 
MMU Instruction (MC68030 only) 
MMU Instruction (MC68030 only) 
MMU Instruction (MC68030 only) 
New Instruction (MC68020 only) 
Supports Program Counter Relative Addressing Modes 
New Instruction 
New Instruction 

MC68030 USER'S MANUAL MOTOROLA 
A-3 



Stack Pointers 
MC68000, 
MC68008, and 
MC68010 

MC68020 and 
MC68030 

Status Register Bits 
MC68000, 
MC68008, and 
MC68010 

MC68020 and 
MC68030 

USP,SSP 

USP, SSP (MSP, ISP) 

T, S, 10/11112, X/N/Z/V/C 

TO/T1, S, M, 10/11/12, X/N/Z/V/C 

Function Code/Address Space 
MC68000 and 
MC68008 FCO-FC2 = 7 is Interrupt Acknowledge, Only 

MC68010, 
MC68020, and 
MC68030 

Indivisible Bus Cycles 
MC68000, 
MC68008, and 
MC68010 

MC68020 and 
MC68030 

Stack Frames 
MC68000 and 
MC68008 

MC68010 

MC68020 and 
MC68030 

Addressing Modes 
MC68020 and 
MC68030 extensions: 

MOTOROLA 
A-2 

FCO-FC2 = 7 is CPU Space 

Use AS Signal 

Use RMC Signal 

Support Original Set 

Supports Formats $0, $8 

Support Formats $0, $1, $2, $9, $A, $B 

Memory indirect addressing modes, scaled index, and larger 
displacements. Refer to specific data sheets for details. 

MC68030 USER'S MANUAL 



APPENDIX A 
M68000 FAMILY SUMMARY 

This Appendix summarizes the characteristics of the microprocessors in the M68000 Family. 
The M68000 Programmer's Reference Manual includes more detailed information about 
MC68000 and MC68010 differences. 

MC68000 MC68008 MC68010 MC68020 

Data Bus Size (Bits) 16 8 16 8,16,32 
Address Bus Size (Bits) 24 20 24 32 
Instruction Cache 

(in words) 31 128 
Data Cache (in words) 

Note 1. The MC68010 supports a 3-word cache for the loop mode. 

Virtual Memory/Machine 
MC68010, 
MC68020, and Provide Bus Error Detection, Fault Recovery 
MC68030 

MC68030 On-chip MMU 

Coprocessor Interface 
MC68000, 
MC68008, and Emulated in software 
MC68010 

MC68020 and 
MC68030 In Microcode 

Word/Long Word Data Alignment 
MC68000, 

MC68030 

8,16,32 
32 

128 
128 

MC68008, and Word/Long Data, Instructions, and Stack Must be Word Aligned 
MC68010 

MC68020 and 
MC68030 

Control Registers 
MC68000 and 
MC68008 

MC68010 

MC68020 

MC68030 

MC68030 USER'S MANUAL 

Only Instructions Must be Word Aligned 
(Data Alignment Improves Performance) 

None 

SFC,DFC,VBR 

SFC,DFC,VBR,CACR,CAAR 

SFC,DFC,VBR,CACR,CAAR,CRP,SRP, TC, TTO, TT1,PSR 

MOTOROLA 
A-1 



MOTOROLA 
14-6 

MC68030 USER'S MANUAL 



MC68030 
FE Suffix Package 

Case 831-01 

DIM 
A 
B 
c 
D 
G 
H 
J 
K 
L 
M 
R 
s 
v 

v 

1-t I 0.20 I0.008) ® I T I x ® - y ® I z ® I 

i i-- A ~ I 
ltl.05110.0201® ITlx®-Y®jz® I 

~---1--l...Jlll~~IJl~.W(JJillilllllWllWWllWU!JlKI 

PINI 
IDENT 

-41 
*"-'"""""'!-----+---- L 

~:J 
L L_l+lo.5110.0201® ITlx®-Y@lz® I 

I t I 0.20 10.008) ® I T I x ® - y ® I z ® I -1 rR J H 
~-W-__,____~J i ~ 

MILLIMETERS 
MIN MAX 

21.85 22.86 
21.85 22.86 
3.94 4.31 
0.204 0.292 

0.64 BSC 
0.64 0.88 
0.13 0.20 
0.51 0.76 

20.32 REF 
oo so 

0.64 -
27.31 27.55 
27.31 27.55 

INCHES 
MIN MAX 

0.860 0.900 
0.860 0.900 
0.155 0.170 
0.0080 0.0115 

0.025 BSC 
0.025 0.035 
0.005 0.008 
0.020 0.030 

0.800 REF 
oo so 

0.025 -
1.075 1.085 
1.075 1.085 

I-$ I 0.20 IO 008) ® I T I x ® - y ® I z ® I 

NOTES: 
1. DIMENSIONING AND TOLERANCING 

PER ANSI Y14.5M, 1982. 
2. CONTROLLING DIMENSION: INCH. 
3. DIM A AND B DEFINE MAXIMUM CERAMIC BODY 

DIMENSIONS INCLUDING GLASS PROTRUSION 
AND MISMATCH OF CERAMIC BODY TOP AND 
BOTTOM. 

4. DATUM PLANE -W- IS LOCATED AT THE 
UNDERSIDE OF LEADS WHERE LEADS EXIT 
PACKAGE BODY. 

5. DATUMS X-Y AND Z TO BE DETERMINED 
WHERE CENTER LEADS EXIT PACKAGE BODY AT 
DATUM-W-. 

6. DIM SAND V TO BE DETERMINED AT SEATING 
PLANE, DATUM -T-. 

7. DIM A AND B TO BE DETERMINED AT DATUM 
PLANE -W-. 

MC68030 USER'S MANUAL MOTOROLA 
14-5 

• 



• 

14.4 PACKAGE DIMENSIONS 

MC68030 
RC Suffix Package 

Case 789C-01 

MOTOROLA 
14-4 

~SEATING 

G 

n 
_, ~~ 

N @@@@@@@@@@ o 

M @)@@@)@)@)@)@@)@) o•H++--~ 
L @@@@@@@@@@@ o o 

K @@@@@ @@@@ G 
J ®©® ®®® 
H @@@) @@@ 

I -A- I 

NOTES: 

G @@@ @@@ 
F@)@@@ @@@@ 
E @@@ @@@ t D @@@@@ @@@@ l e®@©®®®®®®®®®® 
e®@®®©®®©®®®®® 
A@@@@@@@@@@@@@ 

I--- 1 2 J 4 5 6 7 8 9 10 11 12 13 

D I + I <b 0.13 (0.005) ®I T I A@ I B@ I 
128 PL 

1. A AND BARE DATUMS AND TIS A DATUM 
SURFACE. 

2. DIMENSIONING AND TOLERANCING PER Y14.5M, 
1982. 

3. CONTROLLING DIMENSION: INCH. 

MILLIMETERS INCHES 
DIM MIN MAX MIN MAX 
A 34.04 35.05 1.340 1.380 
B 34.04 35.05 1.340 1.380 
c 2.54 3.81 0.100 0.150 
D 0.44 0.55 0.017 0.022 
G 2.54 BSC 0.100 BSC 
K 4.32 4.95 0.170 0.195 

MC68030 USER'S MANUAL 



14.3 PIN ASSIGNMENTS - CERAMIC SURFACE MOUNT (FE SUFFIX) 

Vee 
GND 

BR 
AO 
Al 

A31 
A30 

GND 
A29 

A28 
A27 

A26 

Vee 
A25 
A24 

A23 
A22 

GND 
A21 

A20 
A19 

A18 
A17 

A16 
A15 

A14 

GND 
A13 
A12 
All 
AlO 

Vee 
NC 

*NC - Do not connect to this pin. 

MC68030 USER'S MANUAL 

Vee 
Vee 
031 

030 
029 

028 
GND 
027 
026 

025 
024 

Vee 
023 

022 
021 

020 
GND 
019 
018 

017 

016 

GND 
015 

014 
013 

012 
GND 
011 
010 
09 
DB 

Vee 
NC 

MOTOROLA 
14-3 

Ill 



Ill 

14.2 PIN ASSIGNMENTS - PIN GRID ARRAY (RC SUFFIX) 

The Vee and GND pins are separated into three groups to provide individual power supply 
connections for the address bus buffers, data bus buffers, and all other output buffers and 
internal logic. 

N 

M 

L 

K 

J 

H 

G 

E 

D 

c 

B 

A 

0 0 0 0 0 0 0 0 0 00 0 0 
08 031 028 026 025 023 021 019 018 016 015 013 011 

0 0 0 0 
DBEN EeS 029 027 

0 0 0 0 

0 0 0 0 0 0 0 
024 022 020 017 014 012 09 

0 0 0 0 0 00 

0 
06 

0 
03 

ellN SIZO R/W 030 GND Vee GND GND GND 010 07 
0 
04 

0 
02 

0 0 0 0 0 
CBREQ OS SIZl Vee NC* 

0 0 0 
CBACK AS GND 

0 0 0 
BERR HALT Vee 

0 0 0 
STERM DSACKl GND 

0 0 0 0 
DSACKO Vee GND NC* 

0 0 0 
CLK AVEC GND • . 
0 0 0 0 0 
FC2 . FCO DCS •• ·vcc NC* . 
0 0 0 0 0 0 

BDTIDM 
VIEW 

0 0 0 

0 0 
vcc 05 

0 

0 
01 

0 

0 
DO 

0 
GND STATUS REFILL 

0 0 0 
Vee CDIS IPLO 

0 0 0 
GND IPL2 IPLl 

0 0 0 0 
NC* Vee RESET MMUDIS 

0 0 0 
GND 

0 0 
vcc A6 

0 0 

NC* IPEND 

0 0 
A3 A2 

0 0 
Fel CIDUT •BGACK Al GND Vee GND A18 GND All A9 A5 

0 
AS 

A4 

0 
A7 

o .o· o o 0 0 0 0 0 0 0 
RMC ':• BG A31 A29 A27 A25 A22 A20 A16 A14 A12 

0 0 0 0 0 0 0 0 0 0 0 0 0 
BR AO A30 A28 A26 A24 A23 A21 A19 A17 A15 A13 AlO 

3 4 7 8 9 10 11 12 13 

*NC - Do not connect to this pin. 

Pin Group Vee GND 

Address Bus C6, D10 C5, C7, C9, E11 

Data Bus L6, K10 J11, L9, L7, L5 

ECS, SIZx, DS, AS, DBEN, CBREO, RiW K4 J3 

FCO-FC2, RMC, OCS, CIOUT, BG D4 E3 

Internal Logic, RESET, STATUS, REFILL, Misc. H3, F2, F11, H11 LB, G3, F3, G11 

MOTOROLA 
14-2 

MC68030 USER'S MANUAL 



SECTION 14 
ORDERING INFORMATION AND MECHANICAL DATA 

This section contains the pin assignments and package dimensions of the MC68030. In 
addition, detailed information is provided to be used as a guide when ordering. 

14.1 STANDARD MC68030 ORDERING INFORMATION 

Frequency 
Package Type (MHz) Temperature 

Pin Grid Array 20.0 0°C to 70°C 
RC Suffix 25.0 0°C to 70°C 

33.33 0°C to 70°C 

Ceramic Surface 20.0 0°c to 70°C 
Mount 25.0 0°C to 70°C 

FE Suffix 33.33 0°c to 70°C 

MC68030 USER'S MANUAL 

Order Number 

MC68030RC20 
MC68030RC25 
MC68030RC30 

MC68030FE20 
MC68030FE25 
MC68030FE30 

MOTOROLA 
14-1 

• 



"· 

PRENTICE HALL, Englewood Cliffs, N.J. 07632 

I . ' 

ISBN 0-13-566951 


