TR oS

-

ENHANCED 32-BIT
MICROPROCESSOR
USER'S MANUAL
SECOND EDITION

@ MOTOROLA

Introduction

Data Organization and Addressing Capabilities
Instruction Set

Processing States

Signal Description

On-Chip Cache Memories

Bus Operation

Exception Processing

Memory Management Unit

Coprocessor Interface Description
Instruction Execution Timing

Applications Information

Electrical Characteristics

Ordering Information and Mechanical Data
M68000 Family Summary

Index

@ MOTOROLA

MC68030

ENHANCED 32-BIT
MICROPROCESSOR
USER’S MANUAL
SECOND EDITION

PRENTICE HALL, Englewood Cliffs, N.J. 07632

This document contains information on a new product. Specifications
and information herein are subject to change without notice. Motorola
reserves the right to make changes to any products herein to improve
functioning or design. Although the information in this document has
been carefully reviewed and is believed to be reliable, Motorola does
not assume any liability arising out of the application or use of any
product or circuit described herein; neither does it convey any license
under its patent rights nor the rights of others.

Motorola, Inc. general policy does not recommend the use of its components in life
support applications wherein a failure or malfunction of the component may directly
threaten life or injury. Per Motorola Terms and Conditions of Sale, the user of Motorola
components in life support applications assumes all risk of such use and indemnifies
Motorola against all damages.

© 1989 by Motorola, Inc.

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

0 9 87 6 543 21
ISBN 0-13-5bb951-0 {PRENTICE HALL}
ISBN 0-13-5bk969-3 {MOTOROLAZ}

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

PREFACE

The MC68030 User’s Manual describes the capabilities, operation, and programming of
the MC68030 32-bit second-generation enhanced microprocessor. The manual consists of
the following sections and appendix.

Section 1. Introduction

Section 2. Data Organization and Addressing Capabilities
Section 3. Instruction Set

Section 4. Processing States

Section 5. Signal Description

Section 6. On-Chip Cache Memories

Section 7. Bus Operation

Section 8. Exception Processing

Section 9. Memory Management Unit

Section 10. Coprocessor Interface Description

Section 11. Instruction Execution Timing

Section 12. Applications Information

Section 13. Electrical Specifications

Section 14. Ordering Information and Mechanical Data
Appendix A. M68000 Family Summary

NOTE

In this manual, assertion and negation are used to specify forcing a signal to a
particular state. In particular, assertion and assert refer to a signal that is active
or true; negation and negate indicate a signal that is inactive or false. These terms
are used independently of the voltage level (high or low) that they represent.

The audience of this manual includes system designers, systems programmers, and ap-
plications programmers. Systems designers need some knowledge of all sections, with
particular emphasis on Sections 1, 5, 6, 7, 13, and 14, and Appendix A. Designers who
implement a coprocessor for their system also need a thorough knowledge of Section 10.
Systems programmers should become familiar with Sections 1, 2, 3, 4, 6, 8,9, and 11, and
Appendix A. Applications programmers can find most of the information they need in
Sections 1, 2, 3, 4, 9, 11, and 12, and Appendix A.

From a different viewpoint, the audience for this book consists of users of other M68000
Family members, and those who are not familiar with these microprocessors. Users of the
other family members can find references to similarities to and differences from the other
MOTOROLA microprocessors throughout the manual. However, Section 1 and Appendix
A specifically identify the MC68030 within the rest of the family, and contrast its differences.

MC68030 USER'S MANUAL MOTOROLA
iii

MOTOROLA MC68030 USER'S MANUAL
iv

TABLE OF CONTENTS

Paragraph Page
Number Title Number
-Section 1
Introduction
1.1 FEAtUES. .. vt 1-1
1.2 MC68030 Extensions to the M68000 Familyccoveveviiinivnininene. 1-3
1.3 Programming Model..........coviiiiiiiiiiiiiiiii e 1-3
14 Data Types and Addressing Modes........c..ccceuiveiiiniiiiiiiiiinieniiinenennen. 1-8
1.5 Instruction Set OVEIVIEWccccvviiiiiiiiiiiiiiiiiiie e 1-8
1.6 Virtual Memory and Virtual Machine Concepts.........ccocoevvuneninnennnnen. 1-9
1.6.1 Virtual Memory . ..o e 1-11
1.6.2 Virtual Maching.........oooviiiiiiiiiiiiii e 1-11
1.7 The Memory Management Unitcoooveiniiniiiniiiiiiiiineeen, 1-1
1.8 Pipelined Architecture..........ccoovveiiiiiiiiiiiiiiicn e 1-12
1.9 The Cache MeMOriES......o.vvieiiiiiiiiiiiiiii e 1-12
Section 2
Data Organization and Addressing Capabilities
2.1 INStruction OPerandsccovuveviiiiiiiiiiiieriiiieinre e e enienes 21
2.2 Organization of Data in Registersccocoviviiiiiiniiiiiniininn, 21
2.2.1 Data Registerscccocviiuiiiiiiiiiiiiii 2-2
222 Address Registers...........ccuveiiiiiiiiiiiiiiiiii e 2-3
223 Control RegiSters.......oc.viuieeniiiiiiiie e 2-3
2.3 Organization of Data in Memoryccocevvviiniiiiiniiiiiee e, 24
24 Addressing MOESc.cvuiiiiiiiiiiiiiii 2-6
241 Data Register Direct Mode...........vvviiiiniiiiiinieiiniiiiiiinneiei e 2-7
24.2 Address Register Direct Mode...........ccoveviiiniiiiniiiinninnnen, 2-7
24.3 Address Register Indirect Mode..............cooviiviiiiiiiiiiiiiniinnnen, 2-8
24.4 Address Register Indirect with Postincrement Mode.................... 2-8
245 Address Register Indirect with Predecrement Mode..................... 2-8
24.6 Address Register Indirect with Displacement Mode..................... 2-9
247 Address Register Indirect with Index (8-Bit Displacement) Mode.... 2-10
248 Address Register Indirect with Index (Base Displacement) Mode.... 2-10
249 Memory Indirect Postindexed Modeccoceviviviiinieneninnnnn. 2-11
24.10 Memory Indirect Preindexed Mode..............cocoviiiiiniiiniininnnn, 2-11
241 Program Counter Indirect with Displacement Mode 2-12
24.12 Program Counter Indirect with Index (8-Bit Displacement)............ 2-12
24.13 Program Counter Indirect with Index (Base Displacement) Mode ... 2-13
24.14 Program Counter Memory Indirect Postindexed Mode................. 2-14
2.4.15 Program Counter Memory Indirect Preindexed Mode................... 2-14
2.4.16 Absolute Short Address Mode...........ccoveviiiiiniiiiiiiiiiiian, 2-15
2.4.17 Absolute Long Address Modec..ccuvveiiiniiiininiiiiniineene. 2-16
2.4.18 Immediate Datacoceiiuiiiiiiiiiiiii e 2-16
25 Effective Address Encoding Summarycccoeieiiiiiiiiieneninnenennen. 2-16

MC68030 USER'S MANUAL MOTOROLA
v

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
2.6 Programmer's View of Addressing Modes...........ccoeveviienniininnennen. 2-18
2.6.1 Addressing Capabilitiescoouveiiiviiiiiiiiiiii 2-18
2.6.2 General Addressing Mode Summaryc....oeevevveniiieeiinennenne. 2-23
2.7 M68000 Family Addressing Compatibility.........cccoeviviiiiiiiiininininnnan, 2-27
2.8 Other Data StrUCLUIESoueuieiniiiiiiiiiiie e eenes 2-28
2.8.1 SYSTEM STACK. ...t itieriiiiiiii e 2-28
2.8.2 User Program Stacks........ccoeeviiiiiiiiriiiiiiiniiiiiieeineieiienaneneans 2-28
2.8.3 QUEBUES ..o ettt ettt e e e e e e e e e e e e eaeas 2-29
Section 3
Instruction Set
3.1 Instruction FOrmat........cocvuviiiiiiiiiiiiii e 3-1
3.2 INSErUCtION SUMMAIY «.ovuiiiiii e et aeaes 3-2
3.2.1 Data Movement INStruCtionsccccvvviiiiiiniiiniiiiiieieeieaenes 33
3.2.2 Integer Arithmetic Instructionscovvviiiiniiniiniiinnnn e, 33
3.2.3 Logical INStructions..........ccovuviviiiiiininiiiiiii e 34
3.24 Shift and Rotate INStruCtions........cccvevviviiiiiiiniiiieieiirie e 3-4
3.25 Bit Manipulation INStructionsccoveiiiiiiniiiiiiiiinrcieaene 3-6
3.2.6 Bit Field INStruCtionscccvviviiniiiiiiiiicicr e 3-6
3.2.7 Binary Coded Decimal Instructions.............cccovveveiininiieniininanns 37
3.2.8 Program Control InStructionsceovviiiiiiiiiiiiiiiiinieens 3-8
3.29 System Control INStructions............cocveviiiiiiiiiieiiii s 3-8
3.2.10 Memory Management Unit Instructionsc.coevevivenvnnninnnn.. 3-10
3.2.11 Multiprocessor INStrUCHIONSc.cviviiniiiiniiiiiiini e 3-10
3.3 Instruction Set DetailS.......coooiiiiiiiiiiiiiiiiiiieniii s 3-10
3.31 Notation and FOrmat.........ccoeoiiiiiiiiniiiiiiiii e 3-11
3.3.2 Condition Code RegiSterocoviiiiiiiiiiiiiiiiiiiiieeneeeneeaeaes 3-12
3.33 Instruction DesCriptionscoceviviiiiiiiiiiiiiiei e 3-13
34 Using the CAS and CAS2 INStructionscocvevivvineniiiinieneneinananns 3-193
35 Nested Subroutine Calls.........coviiiiiiiiiiiiiiiiiii e 3-195
3.6 Bit Field INStruCtioNS......ccuvuiiiiiiiiii e 3-196
37 Pipeline Synchronization with the NOP Instruction........................... 3-198
3.8 Condition COAES ...vuvrnieiriiiniii e 3-198
3.8.1 Condition Code Computationcoevvviiiiiiieniniiiieiiieenenaanns 3-198
3.8.2 CoNAItioN TeSES...iuuiririiiiiieiiei ittt e e e aen e 3-200
3.9 Instruction Format Summary.......cccoiiiiiiiiiiiiiiiii e 3-201
Section 4
Processing States

4.1 Privilege LeVelScuvuiiiiiiiiiiiii e 4-1
4.1.1 Supervisor Privilege Level........ccovvvviiiiiiiiiiinii 4-2
4.1.2 User Privilege Levelcocviiiviiiiiiiiiiiiiii e 4-3
4.1.3 Changing Privilege Level......c..cocooviiiniiiiiiiiiin e, 4-3
4.2 AdAress SPace TYPES ..cuvtieiiiiiiiiiiiiiiii ettt arrreneeeenenens 4-4

MOTOROLA MC68030 USER'S MANUAL
Vi

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
4.3 Exception ProCessing..........cooveveviiiiiiiniiiiiiiiiiiiiiiiiei e 4-4
4.3.1 EXCEPLION VECLOIS. . v ittt it e e ans 4-5
4.3.2 Exception Stack Framec.cooiviviiiiiiiiiiiiiiii e 4-5
Section 5
Signal Description
5.1 SIgNal INAeX ..vnieiiii e 5-2
5.2 Function Code Signals (FCO through FC2)...........cccvevvviiiiiiinininininne. 5-2
5.3 Address Bus (A0 through A31)...c.oiiiniiiiiiiriii i 5-2
5.4 Data Bus (DO through D31) ...coiiiiiiiiiiiiiiii i e 5-2
5.5 Transfer Size Signals (SI1Z0, SIZT) ...ccoovviiiviiiii s 5-2
5.6 Bus Control Signals...........ccooeeiiiiiiiiiiiini 5-2
5.6.1 Operand Cycle Start (OCS)ociiiiiiiiiiiiiin e, 5-2
5.6.2 External Cycle Start (ECS)oeiviiiiiiiiiiiicireereer e 5-4
5.6.3 REAA/WIIEE (RW) et ettt a s 5-4
5.6.4 Read-Modify-Write (RMC)..........ooovmiiiiiiiiiiiiiiiiiiieiiniieeeces 5-4
5.6.5 Address Strobe (AS)coiiiiiieiiiireiiiiiee e 5-4
5.6.6 Data Strobe (DS)cvivriiieniiiiiiii e 5-4
5.6.7 Data Buffer Enable (DBEN)ccuiiiiiiiiiiiiiiiniiiiiiiiineinnineenas 5-4
5.6.8 Data Transfer and Size Acknowledge (DSACKO, DSACK1)............. 5-4
5.6.9 Synchronous Termination (STERM)..........coooiiiiiiiiiiiiinneenes 5-5
5.7 Cache Control Signals.......ccc.cccoviiiiiiiiii 5-5
5.7.1 Cache Inhibit Input (CIIN)oeieniiiiiii e 5-5
5.7.2 Cache Inhibit Output (CIOUT)ovvvriiiieiiiieiiie et eeiieeeai e 5-5
5.7.3 Cache Burst Request (CBREQ).........ccovveiiiiiiiiiniiiiiiinceiene, 5-5
574 Cache Burst Acknowledge (CBACK)coevviiiiniiniininiiiiiieenns 5-5
5.8 Interrupt Control Signalsovveiiiiiiiiiii e 5-5
5.8.1 Interrupt Priority Level Signalsc.cooiiiiiiiiiiiniiiinens 5-6
5.8.2 Interrupt Pending (IPEND)ccviiniiiiiiiiiicvece e 5-6
5.8.3 AUtoVeCtor (AVEC) ... oot e 5-6
5.9 Bus Arbitration Control Signals..........cccooooiviiiiiiiiinnn 5-6
5.9.1 Bus Request (BR)coooiiiiiiiii 5-6
5.9.2 BUS Grant (BG) ..ovivieniniininiieaieiieiiiii et enes et ee e e eeeaenes 5-6
593 Bus Grant Acknowledge (BGACK)c.oeuiiiiiiiiiiniiiiiniiniineenn, 5-6
5.10 Bus Exception Control Signals........ccoevviiiiiiiiiniiiniiiiiciencenene 5-6
5.10.1 ReSEt (RESET).....iiiitiiiiiieit ittt e e e e e 5-6
5.10.2 Halt (HALT) vuviiiiiie e e e e e e e eneeas 5-7
5.10.3 BUS Error (BERR) ..ccuiiiiiieiii ittt et eet et eneaneens 5-7
5.11 Emulator Support Signals.......c.oveviieiiviiiiniiiiiie e 5-7
5.11.1 Cache Disable (CDIS).......cc.veeeuieieiiiiiieeiiieiiieeeiieeeineerneeearneeees 5-7
5.11.2 MMU Disable (MMUDIS)......c.couviriiiiiiiiiiiiiiiir e venaenns 5-7
5.11.3 Pipeline Refill (REFILL)......ovvveiiirieitiiiiier i iieieiiereeeananienes 5-7
5.11.4 Internal Microsequencer Status (STATUS)cocovvviiiiiiieniinnnnenns 5-7
5.12 ClOCK (CLK) .. ettt ettt ettt e e e e eenenee 5-8
5.13 Power Supply Connectionscocvviiiiiiiiiiiiei i eeaaeees 5-8
5.14 Signal SUMMArY........coviiiii 5-8

MC68030 USER’'S MANUAL MOTOROLA
vii

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
Section 6
On-Chip Cache Memories
6.1 On-Chip Cache Organization and Operation...........c..ccocoviiinniniinninss 6-1
6.1.1 INStruction Cachecovvvveiiieiiiiii e e 6-3
6.1.2 Data Cache ...couveiinieieiiii e 6-5
6.1.2.1 Write AllOCation.......cocoviiiiiiiiiii i 6-5
6.1.2.2 Read-Modify-Write ACCESSESc.iiviiririiiieiiniiiiiiininaeaanens 6-7
6.1.3 Cache Fillingoocvviiiiiiiiiiii 6-8
6.1.3.1 Single Entry Modeccooeiiiiiiiiiii 6-8
6.1.3.2 Burst Mode Filling......coceiiiiiiiiiiiiiiiiii e 6-12
6.2 CaChne RESEL....iuiiirieiiiiiiie e 6-15
6.3 Cache Controlc.vvieiiniiiii e 6-16
6.3.1 Cache Control Registerccvuviiiiiiiiiiiiiiii e 6-16
6.3.1.1 Write AllOCALEvveniieeiiieii et eae e 6-16
6.3.1.2 Data Burst Enablecccovmviiiiiiiiiiiiiin e 6-16
6.3.1.3 Clear Data Cacheevvinieiiiiiiiinen e 6-16
6.3.1.4 Clear Entry in Data Cachec..ocvvuiiieiiiiiiiiiiiieieienenens 6-16
6.3.1.5 Freeze Data Cache........coovviviiiiiiiiiiiiiiiie e 6-16
6.3.1.6 Enable Data Cachec.coviiiiiiiiii e 6-17
6.3.1.7 Instruction Burst Enable ... 6-17
6.3.1.8 Clear Instruction Cacheccoeviuiiiiiiiiiiiiiiiiieee e, 6-17
6.3.1.9 Clear Entry in Instruction Cacheccoviiiiiiiiiniiininnnnen. 6-17
6.3.1.10 Freeze Instruction Cache.........c.coiviieiiiiiiiiiiiiiinieeeeees 6-17
6.3.1.11 Enable Instruction Cachec.oveiiiiiiiiiiiiiiiiene 6-17
6.3.2 Cache Address Register.......c.covviiiiiiiiiiiiiiiiiiine, 6-17
Section 7
Bus Operation
7.1 Bus Transfer Signals...........cccoviiiiiiiiiiiii e 7-1
7.11 Bus Control Signalso.vuieieiniiiiiiiiiiir i 7-3
7.1.2 AdAress BUS......vuirneniieiet it e et e aeaes 7-3
7.1.3 Address Strobe.........coooiiiiiiiiiiiii 7-4
7.1.4 Data BUS ..oiviiiiiiiiiiii e e 7-4
7.1.5 Data Strobe......ccvviiieiiiiiiii 7-4
7.1.6 Data Buffer Enable..........cooiiiniiiiii e 7-4
7.1.7 Bus Cycle Termination Signals..............ccovviiiiiiiiiininiiininnnn, 7-4
7.2 Data Transfer Mechanismccocviiiiiiiiiiiiiiii e 7-5
7.21 Dynamic BUS SiziNgvvieieiniiiiiniiiiiiiiiiii e neeene e 7-5
7.2.2 Misaligned Operandsc.cccoviuiiiiniiiiiiiiii e 7-11
7.2.3 Effects of Dynamic Bus Sizing and Operand Misalignment........... 7-13
7.2.4 Address, Size, and Data Bus Relationships...........cc.cocvviieiininnne. 7-17
7.25 MC68030 versus MC68020 Dynamic Bus Sizing..........ccovveevenenen. 7-20
7.2.6 Cache Fillingccvvviiiiiiiiiii 7-20
7.2.7 Cache INteractionscccveiiiiiieiiiiiiiii e e ene e nes 7-20
7.2.8 Asynchronous Operation.........ccoviviiiiniiiiiiiiiiiee e, 7-22
7.2.9 Synchronous Operation with DSACKX........c.ccoviciiiiiiiiniiinennne. 7-23
7.2.10 Synchronous Operation with STERMcoooiiiiiiiniinanne. 7-24

MOTOROLA MC68030 USER'S MANUAL
viii

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
7.3 Data Transfer CyCles.......coviuiieiiiiiiiiii e 7-25
7.3.1 Asynchronous Read CyCle........cccevvuiiiiiiiiiiiiiiiiiciiinieceeaens 7-25
7.3.2 Asynchronous Write Cycle..........cccovviiiiiiiiiniininiine e, 7-31
7.3.3 Asynchronous Read-Modify-Write Cycle..........ccooevviiviininininnnn.. 7-36
7.34 Synchronous Read CyCle........c.evuiuiiniiiiniiiiiiiiinei e, 7-40
7.35 Synchronous Write Cycleocuieiiniriiiiiiiiiiini e, 7-43
7.3.6 Synchronous Read-Modify-Write Cycle...........coevviviiiiiiininininen.. 7-44
7.3.7 Burst Operation CycClesvvviuiiiiiiiiiiiiiiiiiiieeeeeene 7-49
7.4 CPU Space CyCIBS....cuviiiiiiiiiieniiiiiiieie e er e e e e e e 7-57
7.41 Interrupt Acknowledge Bus Cyclescvvviviveniiininiiiniiiiiinnne, 7-57
7.41.1 Interrupt Acknowledge Cycle — Terminated Normally 7-58
7.41.2 Autovector Interrupt Acknowledge Cycle.............cccevviinennnn. 7-60
7.41.3 Spurious Interrupt CycCle.......ovviiiiiiiiiiiiiiiinice e, 7-60
7.4.2 Breakpoint Acknowledge CycCle.........ccoviiiiiiiiiiniiiiiiiiicicenene, 7-60
743 Coprocessor Communication Cycles.........ccccovvvviiiiiiniiiiinininene. 7-60
7.5 Bus Exception Control Cyclescocviviiiiiiiiiiiiiiininineinnnienenes 7-61
7.5.1 BUS EITOrs ..ouiniiiiiiiii e 7-67
7.5.2 Retry Operationcouveveiiiiiiiiiieieii e e e e eeeas 7-70
7.5.3 Halt Operationcouveuineniiniiiiiiiie e e e 7-74
754 Double Bus Fault........ccccouininiiiiiiiiinrrcr e 7-76
7.6 Bus Synchronization..........cceeueeiiiiiiiiieiii e 7-77
7.7 Bus Arbitration.........oceveiiiiiiiii e 7-77
7.7.1 BUS REQUEST....vtieiiiiiiii i e e eas 7-80
7.7.2 BUS Grant.....ccoiiuiiiiiiiiiirenr et ee e e e enenens 7-81
7.7.3 Bus Grant Acknowledge.........c..cooviiiiiiiiniiiiiiiiiii e 7-81
774 Bus Arbitration Control.........coeeiieiiiiiiiiiiiiieiierrcreee e 7-81
7.8 Reset Operation........iuvueieinerinieieeiii et e e e e e e e e e 7-83
Section 8
Exception Processing
8.1 Exception Processing SequeNCeccoiuviviiniiiiiniiiiiiiiiiiie, 8-1
8.1.1 Reset EXCEPLION ...ivininiriiiiiniii e e e e 8-3
8.1.2 Bus Error EXCeptioncccoviviiiiiiniiiiii e 8-5
8.1.3 Address Error EXCeptionouvvviiiiiiiiiiiiiiiiiiineiere e aeenes 8-6
8.14 Instruction Trap EXCePLiON......oeivieiiiiiiiiiiiii e 8-6
8.1.5 Illegal Instruction and Unimplemented Instruction Exceptions....... 8-6
8.1.6 Privilege Violation Exception............ccocoeiiiiiiiiiiiiiiiinnnnn 8-7
8.1.7 Trace EXCEPLIONc.ceiviiiiiiiiiiiiiiiiicii e 8-8
8.1.8 Format Error EXCeption........c.covvviiiiiiiniiiiiiiiiniinieieea 89
8.1.9 Interrupt EXCEPLIONScvuiniiiiiiiiiii e e e 8-10
8.1.10 MMU Configuration EXceptioncocovviiiiiiiiiiiiiiiiiiineiineninnes 8-15
8.1.11 Breakpoint Instruction EXception...........cccoviviiiiiiiiniiiiniiiiiininnns 8-15
8.1.12 MUHtiple EXCEPLIONS 1.viviiiieeiieee it eiereie e e e eeaaeenens 8-16
8.1.13 Return from EXCEptioN......ccciviiiiiiiiiiiiii e 8-17

MC68030 USER'S MANUAL MOTOROLA
ix

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
8.2 Bus Fault RECOVEIY......vuititiiiiiiiii it e e e e eeeas 8-19
8.2.1 Special Status WOord........c.oeviiniiiiiiiiiiiiiii e 8-19
8.2.2 Using Software to Complete the Bus Cycles............cceevviiininannnns 8-21
8.2.3 Completing the Bus Cycles with RTEccooviviiiiiiiiinnennenss 8-22
8.3 Coprocessor Considerations.........cvcvvuviiiuiiieiniiiiiiniie e 8-22
8.4 Exception Stack Frame FOrmatscc.cooviviiiiiiiiiiiniiiienens 8-23
Section 9
Memory Management Unit
9.1 Translation Table Structure...........cocvevivivivinininiiininenenen.. Y, 9-5
9.1.1 Translation Control.......cocoviiiiiiiiiiiiiiir e 9-5
9.1.2 Translation Table DesCriptors........c.coeveviviviiiieiiiiiiiiniienieenennes 9-8
9.2 Address Translationcccoviiiiiiiiiiii e 9-9
9.2.1 General Flow for Address Translation...........c..cocviiiiiiiienennnnen. 9-9
9.2.2 Affect of RESET on MMU ... 9-1
9.2.3 Affect of MMUDIS on Address Translation...............c.ocvevvnnene.e. 9-11
9.3 Transparent Translationcoeveiiiiiiiiiiiiiiiir e 9-13
9.4 Address Translation Cache..........ooveiviiiiiiiiiiiii e 9-14
9.5 Translation Table Detailscveveiiiiiiiiiiiiiiiiiiii e 9-15
9.5.1 Descriptor Details.......ccoveiiiiiiiiiiiiii e 9-16
9.5.1.1 Descriptor Field Definitionscoovviiiiiiiiiiiiiieen, 9-16
9.5.1.2 Root Pointer Descriptor.......ccviviiiviiiiiiiiiiiineiecieeeeeaes 9-18
9.5.1.3 Table Descriptor, Short Format............ccocvviviiinivviienenennn. 9-18
9.5.1.4 Table Descriptor, Long Format.............ccoviiiieiininininiinennns 9-18
9.5.1.5 Early Termination Page Descriptor, Short Format.................. 9-18
9.5.1.6 Early Termination Page Descriptor, Long Format.................. 9-19
9.5.1.7 Page Descriptor, Short Format.............coociviiiiiiniinniienenee. 9-20
9.5.1.8 Page Descriptor, Long Formatcocoiiiiiiiiiiiiinininnnen. 9-20
9.5.1.9 Invalid Descriptor, Short Format.............ccoovviiiiiiiiiiiininnn.n. 9-20
9.56.1.10 Invalid Descriptor, Long Formatoccooviiiiiiiniinnnanee. 9-21
9.5.1.11 Indirect Descriptor, Short Format............ccocvviiiiiiiiiiiinnn.e. 9-21
9.6.1.12 Indirect Descriptor, Long Format.........c.ccocviiviiiiiiiininnnnnnn, 9-21
9.5.2 General Table Search..........coooviiiiiiiiiiiii e, 9-22
9.5.3 Variations in Translation Tree Structurecovevvivinieeninnenns 9-25
9.5.3.1 Early Termination and Contiguous Memory...............cccceunun. 9-25
9.6.3.2 INAITECHION . .cetit e e 9-26
9.56.3.3 Table Sharing Between Tasks.........cocvevevininiiiiiiieniniennnnnnn. 9-27
9.5.3.4 Paging of Tables.........covvviiiiiiiiniiiii 9-30
9.5.3.6 Dynamic Allocation of Tables..............cooviiiiiiiiiiiininn.n. 9-30
9.5.4 Detail of Table Search Operations............c.cocvvviiiiiiiininiiennnn, 9-30
9.5.5 ProteCtion . .c.veiie i e 9-30
9.5.5.1 Function Code LOOKUPcvvviiniiiiiiiiiiiieeieee e 9-34
9.5.5.2 Supervisor Translation Treec.cooviiiiiiiiiiiniiininene, 9-34
9.5.5.3 SUPErVISOr ONIY....c.vviiiiiiiiiiiiiiii e 9-36
9.5.5.4 Write Protect......cocoeiniiiiiiiiiii e 9-36
9.6 MC68030 and MC68851 MMU Differences..............ceevvvviiniiiinnnnnnnn. 9-36

MOTOROLA MC68030 USER'S MANUAL
X

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
9.7 (1= Te T] - P 9-39
9.7.1 Root Pointer RegiSters.......c.cuviuieiiieiiiiiiiiiiiiiiii e, 9-39
9.7.2 Translation Control Registercocovvviiiiiiiiiiiiiiiiiieeeens 9-42
9.7.3 Transparent Translation Registers..........c.cccoveviiviniiinininininnnnn., 9-43
9.7.4 MMU Status Register........ovviriiiiiiiiiiiiiii e reneceeaas 9-45
9.7.5 Register Programming Considerationscccveveiiiiiininennn.. 9-45
9.7.5.1 Register Side Effects.......cocoeviiiiiiiiiiiiiiiiii s 9-46
9.7.5.2 MMU Status Register Decodingcccoovivivininiiininnnenenns 9-46
9.7.5.3 MMU Configuration Exception..........cccvvvviieiiiiiiiniiiinnnnnnen.. 9-47
9.8 MMU INSTIUCHIONS ..vivititiiiie e e e e e 9-47
9.9 Defining and Using Page Tables in an Operating System 9-49
9.9.1 Root Pointer RegiSters........c.cvvviiuiiiiiiiiiiiiiiriin e, 9-49
9.9.2 Task Memory Map Definition..........cocovviiiiiiiiiiniiiiiicens 9-50
9.9.3 Impact on MMU Features on Table Definition............................ 9-51
9.9.3.1 Number of Table Levelscovuviiiiiiiiiiiiiiiccrceens 9-51
9.9.3.2 Initial Shift Count.......ccoiviiiiiiii 9-52
9.9.3.3 Limit Fields.....c.ovviieiiii 9-53
9.9.34 Early Termination Page Descriptorscccccooviviiininininnnnns 9-53
9.9.3.5 INdirect DeSCHIPLOrS ...ouvuiieeiieiiiiiii i e aas 9-563
9.9.3.6 Using Unused Descriptor Bits...........cccooviiiiiiiiiiiiiiiiiinnnnnns 9-54
9.10 An Example of Paging Implementation in an Operating System.......... 9-54
9.10.1 System DescCriplion......coovieiiiiiii e 9-54
9.10.2 Allocation ROULINES........coeuiiiiiiniiiiiiiiie e 9-58
9.10.3 Bus Error Handler ROUting.......ccovvveiiiiiiiiiiiinieninc e 9-62
Section 10
Coprocessor Interface Description
10.1 INErOAUCHION ...t 10-1
10.1.1 Interface Features........ocveeeiiriiiiiiiiiiiiiii e e e e eeaen 10-2
10.1.2 Concurrent Operation SUPPOMtcovvviiiiiiiriniiiiiiiiineieieeaan, 10-2
10.1.3 Coprocessor Instruction Format...........ccoveveviviiiiiiiiinininininnnnn., 10-3
10.1.4 Coprocessor System Interface...........cocveviviviviiiiiiiiininininiinennn, 10-4
10.1.4.1 Coprocessor Classificationcccvviiiiiieiiiiiiininenieens 10-4
10.1.4.2 Processor-Coprocessor Interfacecccccvvvviiiiiiinennnns 104
10.1.4.3 Coprocessor Interface Register Selection.................cccoevvunis 10-6
10.2 Coprocessor INStruCtion TYPeS.....cviviiiiiiiiiriiiiiie e eeie e e eeaeaans 10-6
10.2.1 Coprocessor General INStruCtions..........ccvveviviviiiieiinineneneenenen. 10-7
10.2.1.1 FOIMaAt .ot e 10-7
10.2.1.2 ProtOoCOl. ... 10-8
10.2.2 Coprocessor Conditional Instructions..........c.c.covoviviiiiieienennnnnne. 10-9
10.2.2.1 Branch On Coprocessor Condition Instruction 10-10
10.2.2.1.1 o] 11 1] SO PPN 10-10
10.2.2.1.2 Protocolovvnieiii 10-11
10.2.2.2 Set On Coprocessor Condition Instruction.................coeeeeeens 10-11
10.2.2.2.1 FOrmat. .. oo e 10-11
10.2.2.2.2 Protocolouvniiiiiii e 10-12

MC68030 USER'S MANUAL MOTOROLA
Xi

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
10.2.2.3 Test Coprocessor Condition, Decrement and

Branch INStruction.........ccoviiiiiiiiiiiiiiiiicenne e 10-12
10.2.2.3.1 FOPM@t ... uieeie et 10-12
10.2.2.3.2 ProtoCO! ...uviiiiii e 10-13
10.2.2.4 Trap On Coprocessor Conditioncc.coevveviiiiiininiininiennn.. 10-13
10.2.2.4.1 o] 41 1T | S TP PTPRPPPI 10-13
10.2.2.4.2 ProtoCOl o 10-14
10.2.3 Coprocessor Save and Restore Instructions.............c.coeviveienen, 10-14
10.2.3.1 Coprocessor Internal State Framescooovveiiiiiiiiianns. 10-15
10.2.3.2 Coprocessor Format Words..........c.cocvviniiiiiiiiiieeniinnenns 10-16
10.2.3.2.1 Empty/Reset Format Word.............ccooviiiiiiiiiniiiinnnn.n, 10-16
10.2.3.2.2 Not Ready Format Wordccceveiiiiiiiiiiicii e, 10-16
10.2.3.2.3 Invalid Format Wordccooeiiiiiiiiiiiiiiinninee e 10-17
10.2.3.2.4 Valid Format Wordccoooviiiiiiiiiiiiiiinin e 10-17
10.2.3.3 Coprocessor Context Save Instructionccoviiiiiinenss 10-18
10.2.3.3.1 FOrMat ...t e 10-18
10.2.3.3.2 ProtoCol c.veeeiii e 10-18
10.2.34 Coprocessor Context Restore Instruction...........cccoeveeenennnni. 10-19
10.2.3.4.1 o] 41 1T | S PP P TP 10-20
10.2.3.4.2 ProtoCOl ...vueeiiiiii e 10-20
10.3 Coprocessor Interface Register Setcvviviiiiiiiiiiiiiiiiiiiinnenens 10-21
10.3.1 ReSPONSE CIR ..oiviriiiiiiiiiic e e 10-21
10.3.2 Control ClR ..uiniiii i e 10-22
10.3.3 SAVE IR Lt 10-22
10.3.4 ReStOre ClIR....iuiiiiiiiiiieie e e e e e 10-22
10.3.5 Operation Word CIR.......cooriiiiiiiii e 10-22
10.3.6 Command CIR ..ouiiii e 10-23
10.3.7 Condition CIR ...iuiniiiii 10-23
10.3.8 Operand ClIR.. ... e 10-23
10.3.9 Register Select CIRccooiiiiiiiiiiiiii e 10-24
10.3.10 Instruction Address CIRccooiiiiiiiiiiiiiiiiiini e 10-24
10.3.11 Operand Address CIR......ciiiiiiiiiiiiiiiiiiii et e e eeaaes 10-24
10.4 Coprocessor Response Primitives.......cccoeviviviiiieniiiiiiiiiiiinnaenans 10-24
10.4.1 SCANPC L. e 10-24
10.4.2 Coprocessor Response Primitive General Format 10-25
10.4.3 Busy Primitiveccooviiiiiiiii 10-26
10.4.4 NUIL Primitive ..eeviiie e e e e 10-27
10.4.5 Supervisor Check Primitive.......cocoviviiiiniiiiiiiiiniiinini e 10-29
10.4.6 Transfer Operation Word Primitive...........cccovviiiiiniiiiinineninnn, 10-29
10.4.7 Transfer from Instruction Stream Primitivecccoovvvieiieninnn., 10-30
10.4.8 Evaluate and Transfer Effective Address Primitive 10-30
10.4.9 Evaluate Effective Address and Transfer Data Primitive 10-31
10.4.10 Write to Previously Evaluated Effective Address Primitive 10-33
10.4.11 Take Address and Transfer Data Primitive..............cococeiiiniannin. 10-34
10.4.12 Transfer to/from Top of Stack Primitive..........cccoeviviviiivininininnn., 10-35
10.4.13 Transfer Single Main Processor Register Primitive...................... 10-35
10.4.14 Transfer Main Processor Control Register Primitive 10-36

MQTOROLA MC68030 USER'S MANUAL
xii

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
10.4.15 Transfer Multiple Main Processor Registers Primitive.................. 10-36
10.4.16 Transfer Multiple Coprocessor Registers Primitive...................... 10-37
10.4.17 Transfer Status Register and ScanPC Primitiveccceuenls 10-38
10.4.18 Take Pre-Instruction Exception Primitive............c.cocevvivivinininnnn. 10-40
10.4.19 Take Mid-Instruction Exception Primitive.............ccooiviiiiiininnnn, 10-41
10.4.20 Take Post-Instruction Exception Primitivecccevviiiiiininnen. 10-42
10.5 EXCPtIONS. ..ttt e 10-43
10.5.1 Coprocessor Detected EXceptionsccevvvvniiiiniieiniiniinnennnns 10-44
10.5.1.1 Coprocessor Detected Protocol Violationsccceeveinn. 10-44
10.5.1.2 Coprocessor Detected lllegal Command or Condition Words ... 10-45
10.5.1.3 Coprocessor Data Processing Exceptionsccveevenens 10-45
10.5.1.4 Coprocessor System Related Exceptions...........c.ccocvevenienenn. 10-45
10.5.1.5 [1 o T 1 B =Y 4 oY £ T PPN 10-46
10.5.2 Main Processor Detected Exceptionscceennne. e, 10-46
10.5.2.1 Protocol Violations.......c.vvviiiiiiiiiiiiies i 10-46
10.5.2.2 F-Line Emulator EXceptions..........cccvevviviiiiiiiiiiiniiiiiiininennn, 10-47
10.5.2.3 Privilege Violations..........cocvviiiiniiiiiiiiiiiiiecnce e, 10-48
10.5.2.4 CpTRAPcc Instruction Traps......ccvvvvviiiiiiiiiiiiiiiieieneienes 10-49
10.5.2.5 Trace EXCEPLIONS ...ocuiuiinieiiiiit e eiteeeenenenen e eaenaeanenanes 10-49
10.5.2.6 [0] Yo (V] o1 T PP P PP e 10-49
10.5.2.7 Main Processor Detected Format Errors.........cccoovvevniininnnnns 10-50
10.5.2.8 Address and Bus Errors......ccoceviiviiiiiiiiiiiniiiinicniiennenns 10-50
10.5.3 Coprocessor RESEL......ccvviiieiiiiiiiiiiiiiiiiie e 10-51
10.6 COPrOCESSOr SUMIMAIY . .uiuitieee ettt rteetieeateteteieraeneneeerenenes 10-51

Section 11
Instruction Execution Timing

1.1 Performance Tradeoffs.......ccoivviiiiiiiiiiiii e 111
11.2 Resource Schedulingccuvuiviiiiiiiiiiiiiirnr e 111
11.21 [LTeT Y=o TV T=Y 4 1ol SO 11-2
11.2.2 Instruction Pipe........cccoooiiiiiiiiiiiiiiiiiii . 11-2
11.2.3 INSLrUCiON CaACNE ..uiviniiiiiii e e e e e 11-2
11.24 Data CaChe ...cuvuiiiiiiiii i e e 11-2
11.2.5 Bus Controller RESOUICESvvvviviiiiiiiieiiiiiiiiinineneninrcenaneenenes 11-4
11.2.5.1 Instruction Fetch Pending Buffercocovviiiiiiiiinnnn, 11-4
11.2.5.2 Write Pending Buffercccoiiiiiiiiiiiiiiiiiiiiiincneneens 11-4
11.2.5.3 Micro Bus Controller......ocovviiiiniiiiiiiiiiiiiieiee e 11-4
11.2.6 Memory Management Unit..........coooeviiiiiiiiiinininins 11-4
11.3 Instruction Execution Timing Calculationscocovviiiiiiniiininnnn. 11-5
11.3.1 Instruction-Cache Casecvviiiiiiiiiiiiiiiiiiiiinr e 11-5
11.3.2 Overlap and Best Caseovvviviriiiiiiiiiiiriniiiiniieieenenaeaenans 11-56
11.3.3 Average No-Cache Case..........ccviviiiininiiniiiiiiiiiiiiiieeia 11-6-
11.3.4 Actual Instruction Cache Case Execution Time Calculations.......... 11-8
11.4 Effect of Data Cachecovuiuiiiiiiiii e 11-12
115 Effect of Wait States.........iviiiiiiiieiiiiiiii i 11-14
11.6 Instruction Timing Tablesccovuiniiiiiiiiiiiiir e 11-18

MC68030 USER'S MANUAL MOTOROLA
xiii

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
11.6.1 Fetch Effective Address (Fea)coeuvviiiiiiiiiiiiiiiiiiiiiieen, 11-19
11.6.2 Fetch Immediate Effective Address (Flea)............cocovvvviiiiininenene. 11-20
11.6.3 Calculate Effective Address (CEA)coeuieiiniiiiininiiiiiineenans 11-22
11.6.4 Calculate Immediate Effective Address Mode (Clea).................... 11-24
11.6.5 Jump Effective Address Mode...........ccceuviniiniiiiniiniiiiienienenes 11-26
11.6.6 MOVE INSErUCHION .uvvneieeiiiiiee e 11-27
11.6.7 Special Purpose MOVE INStructioncccovevvvviniiiiiniineninnn, 11-28
11.6.8 Arithmetical/Logical InStructions............cocovviiniiiiniiiiiiennenennnnes 11-29
11.6.9 Immediate Arithmetical/Logical Instructionsc..cvveninnenen. 11-30
11.6.10 Binary Coded Decimal and Extended Instructions....................... 11-31
11.6.11 Single Operand INStruCtionS.........ccvuviiiiiiiiniiniiiieane 11-32
11.6.12 Shift/Rotate INStructions.......c..ccvvviiiiiiiiiiiiiiiiii e 11-33
11.6.13 Bit Manipulation Instructionsccooviiviiiiiiniininnen 11-34
11.6.14 Bit Field Manipulation Instructionsoocveviiiiiininiininnnnee, 11-35
11.6.15 Conditional Branch Instructions............cocovviiiiiieiiniinnninininnnes 11-36
11.6.16 Control INSTrUCHIONS ...vuveeriiiniieiieiiie et e e aeanaes 11-37
11.6.17 Exception Related Instructions and Operationsccecevvnnn. 11-38
11.6.18 Save and Restore Operations.........cooeeueuvrienineneneneneneneeeenenes 11-38
11.7 Address Translation Tree Search Timing........c.ccooviiiiiiiiiiiiinniinnns 11-39
11.7.1 MMU Effective Address Calculation...........cocoviviiiiiiiiiininininnn, 11-45
11.7.2 MMU Instruction Timingoeeuiiiiniiineniririieieieeeereaeaeaans 11-46
11.8 INterrupt LatencCyc.oevvviiiniiiiiiiiiiiiiic 11-46
11.9 Bus Arbitration LatenCy......ccoeeiiiiierininiiiiiiiiiieiirirrrr e nenenes 11-47

Section 12
Applications Information

121 Adapting the MC68030 to MC68020 Designs.......c.ccevvvvvinininiiniinnnnns 12-1
12.1.1 Signal ROULINGivuieiiiiiiiiiii e 12-1
12.1.2 Hardware DifferenCes........cooviviiiririiiiiiiiiiiiiieeee e e nenenas 12-2
12.1.3 Software Differences........ccvvviviiiiiiiiiniiiiiiiiiiere e e e 12-3
12.2 Floating-Point UnNitS.......ocveiiiininieiiiiiiei e eeae e e e e e e 12-4
12.3 Byte Select Logic for the MCB8030............ccvviiiiiineniiiiniiiiiieenen, 12-7
12.4 MemMOry INterface..........oiuiuiniiiiiii e e e eea 12-10
12.4.1 Access Time CalculationS.......oviiiiiiiiiiiiiiriiiri e 12-11
12.4.2 Burst Mode CyCleS......ouiviniiiiiiiiiiiiiie et 12-14
125 Static RAM Memory Banksccovviiiiiiiiiiiiiiiiieeeieeeen e 12-14
12.5.1 A Two Clock Synchronous Memory Bank Using SRAMs 12-14
12.5.2 A 2-1-1-1 Burst Mode Memory Bank Using SRAMSs..................... 12-19
12.5.3 A 3-1-1-1 Burst Mode Memory Bank Using SRAMs.............c....... 12-21
12.6 EXternal Caches........ccvuiiiiiiiiiiiiii e 12-24
12.6.1 Cache ImMplementation..........ccvvuviiiiiiiireirrr e eenens 12-25
12.6.2 “Instruction-Only”” External Cache Implementations.................... 12-28
12.7 Debugging Aids.........cccveuiiiiiiiiiiiiiiii 12-28
12.7.1 STATUS and REFILL......uoniiiiiiiiie e 12-28
12.7.2 Real-Time Instruction Tracecocvvviiiiiiiiiiiiiiiiiicnneeeaes 12-30
12.8 Power and Ground Considerationscccoeveiiiiniiiiiininininnnnnen. 12-34

MOTOROLA MC68030 USER'S MANUAL
Xiv

TABLE OF CONTENTS (Concluded)

Paragraph Page
Number Title Number
Section 13
Electrical Characteristics
13.1 Maximum RatingS......vuueeiiiiiiiiie e e 13-1
13.2 Thermal Characteristics — PGA Package...........cocovviviviiininininininnnn, 13-1
13.3 Power Considerations...........ccouveiiiiiiiiiiiiirii e e 13-1
13.4 DC Electrical CharacteristiCsccoeueriiireiiineiriiiinrineiereineneaeanennes 13-2
13.5 AC Electrical Specifications — Clock Input...............cooviviviiiiininin... 13-3
13.6 Preliminary AC Electrical Specifications — Read and Write Cycles....... 13-4
13.7 AC Electrical Specifications Definitionsc.ovviviiiiiiiiiinninnnn. 13-6
Section 14
Ordering Information and Mechanical Data
14.1 Standard MC68030 Ordering Informationcoccevviveiiiniinnnnnen. 14-1
14.2 Pin Assignments — Pin Grid Array (RC Suffix)ccooveiiininnnen. 14-2
14.3 Pin Assignments — Ceramic Surface Mount (FE Suffix)..................... 14-3
14.4 Package DimEeNSIiONS.cccviuviiineniieaiiiieiiiaie et eeeeeaeanes 14-4
Appendix A

M68000 Family Summary

Index

MC68030 USER'S MANUAL MOTOROLA
XV

MOTOROLA MC68030 USER'S MANUAL
Xvi

LIST OF ILLUSTRATIONS

Figure Page
Number Title Number
1-1 MCB8030 BIOCK Diagrami......ccovuiurenenireeniineiineereenearerernenseeenennens 1-2
1-2 User Programming Model.............cooiviiiiiiiiiiiiiiniicceee, 1-4
1-3 Supervisor Programming Model Supplement...............cccoovivinnns 1-6
1-4 Status Register......cocvveiiiiiiiii i 1-7
2-1 Memory Operand AdAressing.........cocovvivieiiiiiiiiieiiiiiiniiiniineenen, 2-4
2-2 Memory Data Organizationcoovviiniiniiniiinin, 2-5
2-3 Single-Effective-Address Instruction Operation Word..................... 2-6
2-4 Using SIZE in the Index Selection........cc.covvviviiiiiiiiiiniininin, 2-19
2-5 Using Absolute Address with Indexesc.ccceevveieiiinieniinannnnn. 2-20
2-6 Addressing Array HemsS......o.cveuieiiiiiiiiiiiiii e 2-21
2-7 Using Indirect Absolute Memory Addressingc....ccceeeienennnen. 2-21
2-8 Accessing an Item in a Structure Using Pointer.............c.coeevennnen, 2-22
2-9 Indirect Addressing, Suppressed Index Registerc..coeennnes 2-22
2-10 Preindexed Indirect Addressing..........ccocoevveviniiiinininiinininiineninnee, 2-23
2-11 Postindexed Indirect Addressingcocvvveniniiiinieiiiiiniieiiiiieanen, 2-23
2-12 Preindexed Indirect with Outer Displacement.................covivinininns 2-24
2-13 Postindexed Indirect Addressing with Outer Displacement.............. 2-24
2-14 M68000 Family Address Extension Words..........cccoeevviiiiiiniininnen, 2-27
3-1 Instruction Word General Formatcocovviiiiiiiiniiininnninenns 3-1
3-2 Instruction Description FOrmat..........cocovvviiiiiiiiiiiniiiniiinenns 3-15
3-3 Linked List INSErtioncocoviviniiiiiiiiii 3-194
3-4 Linked List Deletion......c.covveriniiiiiiiiiiii e 3-195
3-5 Doubly Linked List Insertioncccoovviiiiiiiiiiiiiiiininncen, 3-196
3-6 Doubly Linked List Deletion........ccoovvviriiiiiiiiniiiiiiiiiicrennanens 3-197
4-1 General Exception Stack Frame.........ccooveiveiiiiiiiiiiiiniiiiiieneennes 4-6
5-1 Functional Signal Groupscccovvvviiiiiiiiiiiiineena 5-1
6-1 Internal Caches and the MC68030..........coeuvviniiiiiiiiiiiiiineans 6-2
6-2 On-Chip Instruction Cache Organization................cooeviiiiiinninnn, 6-4
6-3 On-Chip Data Cache Organization..........c.coovveviiiiniiiiiiiiiniiniennen, 6-6
6-4 No-Write-Allocate and Write-Allocate Mode Examples 6-7
6-5 Single Entry Mode Operation — 8-Bit Port.................cooiiiiiiinnns 6-9
6-6 Single Entry Mode Operation — 16-Bit Port...........c.coooviiiininins 6-9
6-7 Single Entry Mode Operation — 32-Bit Port.........c.ccccooiiviininnnnes 6-10

6-8 Single Entry Mode Operation — Misaligned Long Word and

B-Bit POMt...iuiiiiitiiii e 6-10
6-9 Single Entry Mode Operation — Misaligned Long Word and

T6-Bit POt cooiniiiitiie e e 6-11

MC68030 USER’'S MANUAL MOTOROLA
xvii

LIST OF ILLUSTRATIONS (Continued)

Figure Page
Number Title Number

6-10 Single Entry Mode Operation — Misaligned Long Word and

32-Bit DSACKX POt .euuieeriiietiiiii e e e e anenas 6-11
6-11 Burst Operation Cycles and Burst Mode..............ocoecvvviiiniiiiininanns 6-13
6-12 Burst Filling Wrap-Around Examplec.cccoeviviiiiiiiiiiiniiiinineninnnn, 6-13
6-13 Deferred Burst-Filling EXample........c.cooviiiniiiiniiniiiiiiiiiiienenans 6-14
6-14 Cache Control Register........ccooviviuiiiiiiiiiiiiiiiiii e 6-15
6-15 Cache Address RegiSter........cccevieriiiiniiiiiiiiiiiniiieieneiieienreinenenenns 6-17
7-1 Relationship Between External and Internal Signals...........c........... 7-2
7-2 Asynchronous Input Sample Window.............coiviiiiiiiiiiiiiininnnnn, 7-2
7-3 Internal Operand Representation.............ocvevvviiiieiiiiienineneineennnnns 7-6
7-4 MC68030 Interface to Various Port Sizes............ccocvvvveieiniiiiininnns 7-7
7-5 Example of Long-Word Transfer to Word Port.............ccoevevienennnn. 7-9
7-6 Long-Word Operand Write Timing (16-Bit Data Port) 7-10
7-7 Example of Word Transfer to Byte Port............cocvvviviiiniviieninnn.n, 7-11
7-8 Word Operand Write Timing (8-Bit Data Port)c.ccovevininnnen. 7-12
7-9 Misaligned Long-Word Transfer to Word Port Example.................. 7-13
7-10 Misaligned Long-Word Transfer to Word Port..........c.cccvvevenennnen. 7-14
7-11 Misaligned Cachable Long-Word Transfer from Word Port Example 7-15
7-12 Misaligned Word Transfer to Word Port Examplec.c....... 7-15
7-13 Misaligned Word Transfer to Word Port............ccooovvviiiiiiiiiininnnen.. 7-16
7-14 Example of Misaligned Cachable Word Transfer from Word Bus...... 7-17
7-15 Misaligned Long-Word Transfer to Long-Word Port....................... 7-17
7-16 Misaligned Write Cycles to Long-Word Port...........ccocevviiiieineninnn, 7-18
7-17 Misaligned Cachable Long-Word Transfer from Long-Word Bus....... 7-19
7-18 Byte Data Select Generation for 16- and 32-Bit Ports 7-21
7-19 Asynchronous Long-Word Read Cycle Flowchart............c..cceeuenenns 7-26
7-20 Asynchronous Byte-Read Cycle Flowchart.................oovvveenennnene. 7-26
7-21 Asynchronous Byte and Word-Read Cycles — 32-Bit Port................ 7-27
7-22 Long-Word Read — 8-Bit Port, with CIOUT Asserted...................... 7-28
7-23 Long-Word Read — 16-Bit Port and 32-Bit Port..............cccovenennnnen. 7-29
7-24 Asynchronous Write Cycle Flowchartccocoiiiviiiiiniiieniinanen, 7-31
7-25 Asynchronous Read-Write-Read Cycles — 32-Bit Port 7-32
7-26 Asynchronous Byte and Word-Write Cycles — 32-Bit Port............... 7-33
7-27 Long-Word Operand Write — 8-Bit Port...........ccoccvvveiiiiviniininnnnen. 7-34
7-28 Long-Word Operand Write — 16-Bit Port............cocoovveviiiinenneninnnns 7-35
7-29 Asynchronous Read-Modify-Write Cycle Flowchart........................ 7-37
7-30 Asynchronous Byte Read-Modify-Write Cycle — 32-Bit Port

(TAS Instruction, with CIOUT or CIIN Asserted)...........ccccocuenenen. 7-38
7-31 Synchronous Long-Word Read Cycle Flowchart — No Burst Allowed 7-41
7-32 Synchronous Read with CIIN Asserted and CBACK Negated............ 7-42
7-33 Synchronous Write Cycle Flowchart..............cccoveviiiiiniiinnininnns 7-44
7-34 Synchronous Write Cycle with Wait States, CIOUT Asserted............ 7-45
7-35 Synchronous Read-Modify-Write Cycle Flowchart 7-46
7-36 Synchronous Read-Modify-Write Cycle Timing, CIIN Asserted 7-47
7-37 Burst Operation Flowchart — Four Long Words Transferred............ 7-51
7-38 Long-Word Operand Request from $07 with Burst Request

and Wait CYCIBS....oueiiiiiiiii i 7-52

MOTOROLA MC68030 USER'S MANUAL
xviii

LIST OF ILLUSTRATIONS (Continued)

Figure Page
Number Title Number
7-39 Long Word Operand Request from $07 with Burst
Request — CBACK Negated Earlycoovviviiiiiiiiniiiniinenenn., 7-53
7-40 Long-Word Operand Request from $0E — Burst Fill Deferred 7-54
7-41 Long-Word Operand Request from $07 with Burst
Request — CBACK and CIIN Asserted...........cccoevveiiiiiiiiiniinnnn.. 7-55
7-42 MC68030 CPU-Space Address Encodingcccevvevvinininninennnnnn. 7-57
7-43 Interrupt Acknowledge Cycle Flowchart..........c..ccooeviviiiiiiiiininnnnn, 7-58
7-44 Interrupt Acknowledge Cycle Timing........cooviviiiiiiiniiiiiiiniiinininnnns 7-59
7-45 Autovector Operation Timingcoceveviiiiiiiiiiiniiiniiineieieeeeeanans 7-61
7-46 Breakpoint Operation FIOW.........cooviiiiiiiiiiiiniiinn e eans 7-62
7-47 Breakpoint Acknowledge Cycle Timingc.cccvvviviieiniiiiiiiiinnnns 7-63
7-48 Breakpoint Acknowledge Cycle Timing (Exception Signaled) 7-64
7-49 Bus Error without DSACKcooiiiiiiiiiiiir e 7-68
7-50 Late Bus Error with DSACK.......cooiiiiiiiiii e 7-69
7-51 Late Bus Error with STERM — Exception Taken.............cccevvvnenene. 7-70
7-52 Long-Word Operand Request — Late BERR on Third Access........... 7-71
7-53 Long Word Operand Request — BERR on Second Access............... 7-72
7-54 Asynchronous Late Retry........cccooiviiiiiiiiiiiiiiiiiiiiiiin s 7-73
7-55 Synchronous Late Retrycoevevriiiiiiiiiiiiiiiic i ieeeeeaeans 7-74
7-56 Late Retry Operation for @ Burst..........coooeviviiiiinininiiiiiniiiiinnnnns 7-75
7-57 Halt Operation Timing....cccocoeiiiiiiiiiiiin e aeans 7-76
7-58 Bus Synchronization Example.........ccooviiiiiiiiiiininiiiiieans 7-78
7-59 Bus Arbitration Flowchart for Single Request................cocviinene, 7-79
7-60 Bus Arbitration Operation Timing.......coooveviiiiiiiiiniiiiiiiiiieinaans 7-80
7-61 Bus Arbitration State Diagramccocvveviiiiiiiiiiiniiiiiin, weee 71-82
7-62 Single-Wire Bus Arbitration Timing Diagram..........c.ccoevviviiinininnnn, 7-83
7-63 Bus Arbitration Operation (Bus Inactive)c..ccoeeviiiiiiinennnnnan. 7-84
7-64 Initial Reset Operation Timingcccoovuiiiiiiiiiiiinniiiiiieeeanans 7-85
7-65 Processor Generated Reset Operationc.ccevvvviiiniiiiiiinininnnns 7-86
8-1 Reset Operation Flowchart..........cccoviviiiiiiiiiiiiieenn 8-4
8-2 Interrupt Pending Procedure..........ccccooviiiiiiiiiiiiii 8-10
8-3 Interrupt Recognition Examplesccocvviiiiiiiiiiiiiiiiniinnn, 8-12
84 Assertion of IPEND.......cccoviiiiiiiiiiiiiirir e eas 8-12
8-5 Interrupt Exception Processing Flowchart................coooviiiiiiinnnnnn. 8-13
8-6 Examples of Interrupt Recognition and Instruction Boundaries 8-14
87 Breakpoint Instruction Flowchart...........cooooiiiiiiiiiiiiniiiinnen 8-16
8-8 RTE Instruction for Throwaway Four-Word Frames 8-18
© 89 Special Status Word (SSW)......coeviiiiiiiiiiiiiiiiiiicrrr e, 9-20
9-1 MMU Block Diagramc.eevevuiuiereininiiiiiiiiiiinineee e ee s eneaees 9-3
9-2 MMU Programming Modelccoiiiiiiiiiiiiiiiiiinnnn e 94
9-3 Translation Table Treeccvviiiiiieiiiiiiiii e eeeas 9-4
9-4 Example Translation Table Tree........cocvviiiiiiiiiiiiiiiniiineicenaeen 9-6
9-5 Example Translation Table Tree Layout in Memory..............c........ 9-7
9-6 Derivation of Table Index Fields.........ccvvveiiiiiiiiiiiiiiiiiininne, 9-8
9-7 Example Translation Tree Using Different Format Descriptors 9-10
9-8 Address Translation General Flowchart.............c...ccoiviiiiiinnn... 9-12

MC68030 USER'S MANUAL MOTOROLA
Xix

LIST OF ILLUSTRATIONS (Continued)

Figure Page
Number Title Number
9-9 Root Pointer Descriptor FOrmat.........c.cvvviiiieiiiiiiiieniiniieeeaes 9-18
9-10 Short Format Table DesCriptor. ...c.oiiieiriiiiiiiiiiereeieeenenreereenens 9-19
9-1 Long Format Table Descriptorc.ocoiiiiiiiiiiiiii, 9-19

9-12 Short Format Page Descriptor and Short Format Early Termination
Page DeSCrPOrcvveniiiiiiiiiiiii e 9-19
9-13 Long Format Early Termination Page Descriptor................ccovevnen, 9-20
9-14 Long Format Page DesCriptorccovvviniiiiiniiiiiiniinciin, 9-20
9-15 Short Format Invalid DesCriptorc.oviuiiiiiiiiiiiniiniiiieiene, 9-21
9-16 Long Format Invalid Descriptor.........ccovviiiviiiiniiiniiiiiiiiins 9-21
9-17 Short Format Indirect DesCriptorcoovvvviviiiiiiiiiiiiiereeeeee, 9-21
9-18 Long Format Indirect DeSCriptor........c.uvueeirniriineinanienniniiiniienees 9-21
9-19 Simplified Table Search Flowchart...........c.cocoviiiiiiiiiiiiiiiiiinnnn. 9-23
9-20 Five-Level Table Search.......cccoovuiiiiiiiiiiiiiirci e 9-24
9-21 Example Translation Tree Using Contiguous Memory.................... 9-27
9-22 Example Translation Tree Using Indirect Descriptors..................... 9-28
9-23 Example Translation Tree Using Shared Tables...........c..cocoeeneentn, 9-29
9-24 Example Translation Tree with Non-Resident Tables 9-31
9-25 Detailed Flowchart of MMU Table Search Operation...................... 9-32
9-26 Table Search Initialization Flowchartc...ocooiiviiiiin . 9-33
9-27 ATC Entry Creation Flowchart...........cocoooviiiiiiiiiininninn 9-33
9-28 Limit Check Procedure Flowchart...........c..coooviiiiiiiiiiiiniiinenn, 9-34
9-29 Detailed Flowchart of Descriptor Fetch Operation.......................... 9-35
9-30 Logical Address Map Using Function Code Lookup 9-36
9-31 Example Translation Tree Using Function Code Lookup................. 9-37
9-32 Example Translation Tree Structure for Two Tasks Sharing a
Common Supervisor Table.......cooooiiiiiiiiii 9-38
9-33 Example Logical Address Map with Shared Supervisor and
User Address SPaceS.......ocviviiiiiiiiiniiiiiiiiiniiniiin e 9-39
9-34 Example Translation Tree Using S and WP Bits to Set Protection..... 9-40
9-35 Root Pointer Register (CRP, SRP) Formatcccooeveniviiiiieiininne. 9-41
9-36 Translation Control Register (TC) Formatcoovvveiinvininieiinnn.. 9-42
9-37 Transparent Translation Register (TTO or TT1) Format 9-44
9-38 MMU Status Register (MMUSR) Format...........covvveniiiinniniiiennnnnn. 9-45
9-39 MMU Status Interpretation — PTEST Level 0....coovvvvvivininneneininanis 9-47
9-40 MMU Status Interpretation — PTEST Level 7ccoooooiiiiiiiiiiiinnnnnns 9-48
10-1 F-Line Coprocessor Instruction Operation Word.............c.ceeenennnen 10-3
10-2 Asynchronous Non-DMA M68000 Coprocessor Interface
Signal Usage.......co.ovuiiiiniiiiiiiiiiiii 10-5
10-3 MC68030 CPU Space Address Encodingscocvuvevnvnininiennnnnnne 10-6
10-4 Coprocessor Address Map in MC68030 CPU Space 10-6
10-5 Coprocessor Interface Register Set Map.........cccoviviviiiviiiiiiineninnnn. 10-7
10-6 Coprocessor General Instruction Format (cpGEN)coceeuvininnns 10-7
10-7 Coprocessor Interface Protocol for General Category Instructions..... 10-8
10-8 Coprocessor Interface Protocol for Conditional Category Instructions 10-10
10-9 Branch on Coprocessor Condition Instruction (cpBcc.W)................. 10-10
10-10 Branch on Coprocessor Condition Instruction (cpBcc.L).................. 10-10

MOTOROLA MC68030 USER'S MANUAL
XX

LIST OF ILLUSTRATIONS (Continued)

Figure Page
Number Title Number
10-11 Set On Coprocessor Condition (CPSCC) «..vvvrvvriiniiniiriiiiiiiieininneas 10-11

10-12 Test Coprocessor Condition, Decrement and Branch Instruction

FOrmat (CPDBCC) «.vivniniriiiiiiieeie et ie e e e e e e anees 10-12
10-13 Trap On Coprocessor Condition (cpTRAPCC)cccevvveiieiniininncenens 10-13
10-14 Coprocessor State Frame Format in Memoryccccocovvviininnenne, 10-15
10-156 Coprocessor Context Save Instruction Format (cpSAVE)................. 10-18
10-16 Coprocessor Context Save Instruction Protocolc.ceveveniiniinnes 10-19
10-17 Coprocesor Context Restore Instruction Format (cpRESTORE) 10-20
10-18 Coprocessor Context Restore Instruction Protocol......................... 10-20
10-19 Control CIR FOrmat.......ccveuviininieiniiiiiiiiiiiicicneni e 10-22
10-20 Condition CIR FOrmMatccvuiieniiiiniiiiiiiiiiineeicaianenes 10-23
10-21 Operand Alignment for Operand CIR Accesses.........cc.ceeuvreninnnen. 10-23
10-22 Coprocessor Response Primitive Format...............cocoooviiiinin 10-25
10-23 Busy Primitive Format..........ccccoviiiiiiiiiiiiiiini 10-26
10-24 Null Primitive FOrmat........ccocovriveniiniiiiiiiiiiiinini e 10-27
10-25 Supervisor Check Primitive Format...........ccooviviiviiiiiiiinnnn. 10-29
10-26 Transfer Operation Word Primitive Format................coivininnnne. 10-29
10-27 Transfer from Instruction Stream Primitive Format........................ 10-30
10-28 Evaluate and Transfer Effective Address Primitive Format............... 10-30
10-29 Evaluate Effective Address and Transfer Data Primitive Format........ 10-31
10-30 Write to Previously Evaluated Effective Address Primitive Format 10-33
10-31 Take Address and Transfer Data Primitive Format......................... 10-34
10-32 Transfer To/From Top of Stack Primitive Format........................... 10-35
10-33 Transfer Single Main Processor Register Primitive Format.............. 10-35
10-34 Transfer Main Processor Control Register Primitive Format............. 10-36
10-35 Transfer Multiple Main Processor Registers Primitive Format 10-37
10-36 Register Select Mask Format..........cocoiiiiiiiiiiiiiiniinnnn, 10-37
10-37 Transfer Multiple Coprocessor Registers Primitive Format 10-37
10-38 Operand Format in Memory for Transfer to —(An)...........c.cceevenens 10-39
10-39 Transfer Status Register and ScanPC Primitive Format................... 10-39
10-40 Take Pre-Instruction Exception Primitive Format...............c..coeuenee 10-40
10-41 MC68030 Pre-Instruction Stack Frame..............coooviviiininiininnnnn, 10-40
10-42 Take Mid-Instruction Exception Primitive Format 10-41
10-43 MC68030 Mid-Instruction Stack Frame..........c.cococviviiiiniiinininnnn, 10-42
10-44 Take Post-Instruction Exception Primitive Format.......................... 10-42
10-45 MC68030 Post-Instrution Stack Frame.........c.cocvvviviiininininninininnn, 10-43
1141 Block Diagram — Eight Independent Resources..................ccuueeen. 11-3
11-2 Simultaneous Instruction Execution............ccccovvviviviniinininnin. 11-5
11-3 Derivation of Instruction Overlap Timec.cocooviiiviiiiinininiiinnn, 11-6
11-4 Processor Activity — Even Alignment.........c.cccoviviviiiiinininnn, 1-7
11-5 Processor Activity — Odd Alignment............ccoooviiiiiiniininninnnn 11-8
12-1 Signal Routing for Adapting the MC68030 to MC68020 Designs....... 12-2
12-2 32-Bit Data Bus Coprocessor Connection...........ccccveveiiieniniinincnnen, 12-5
12-3 Example MC68881/MC68882 SSI Chip Select Circuits............c....c.... 12-6
12-4 PAL EQUALIONS....ivitieitiiti it iiiie ettt ettt et e e e senanes 12-6

MC68030 USER'S MANUAL MOTOROLA
XXi

LIST OF ILLUSTRATIONS (Concluded)

Figure Page
Number Title Number
12-6 Bus Cycle Timing Diagram........coocoveiiiiiiiiiiiiiininineeeiiicenens 12-7
12-6 Example MC68030 Byte Select PAL System Configuration 12-9
12-7 MC68030 Byte Select PAL EQuUations.........ccccoevevinvineieniininneinnnnes 12-10
12-8 Access Time Computation Diagramcoceeviiiiiiiieneneneiennnnnnnns, 12-12
12-9 Example Two Clock Read, Three Clock Write Memory Bank 12-15
12-10 Example PAL Equations for Two Clock Bank.........c.ccccvevevveniennninns 12-16
12-11 Additional Memory Enable Circuits...........ccoovieiniiiiiiiiinnnnn, 12-17
12-12 Example Two Clock Read and Write Memory Bank 12-18

12-13 Example Example PAL Equation for Two Clock Read and Write Bank 12-18
12-14 Example 2-1-1-1 Burst Mode Memory Bank at 20 MHz, 256K Bytes... 12-20
12-15 Example 3-1-1-1 Pipelined Burst Mode Memory Bank at 20 MHz,

256K BYLES ..euviviniiiiinie et et 12-22
12-16 Additional Memory Enable Circuitcocoevviiiiiivineiiinininanen, 12-23
12-17 Example MC68030 Hardware Configuration with

External Physical Cache.......c.coccoviviriiiiiiiiiineas 12-26
12-18 Example Early-Termination Control Circuit..............cocvvvvvreenenenna. 12-27
12-19 Normal Instruction Boundariesc...coevviiiiiiiiinennininiiiiinennes 12-29
12-20 Trace or Interrupt EXCEption......cccciuiviiieiiiiiiiiiiinneree e eneaenes 12-29
12-21 Other EXCEPLIONS ...uvuininiiiiiiiiiiiiieeie e et ee e ee e e e anes 12-30
12-22 Processor Halted.........ocvveiriiiniiiiiiiieiiriie e e eaens 12-30
12-23 Trace Interface CirCUit..........covvvviiiiiiiiniiiiiiiici e 12-32
12-24 PAL Pin Definitions.......c.vveniiiiiiiiiiiiiiiicie e e e e i 12-34
12-25 Logic EQUAtiONS.......ccvviiiiiiiiiiiini e 12-35
1341 Clock Input Timing Diagramc..oeieiiiiiiiiieineiiieeieieeieinirienans 13-3
13-2 Drive Levels and Test Points for AC Specifications.............c.......... 13-7
13-3 Asynchronous Read Cycle Timing Diagramc..cocoeviiiiieninnnn.n, Foldout-1
13-4 Asynchronous Write Cycle Timing Diagram..............cccovevienennnen.. Foldout-1
13-5 Synchronous Read Cycle Timing Diagram.........c.cccoveieiiniinienennn.. Foldout-2
13-6 Synchronous Write Cycle Timing Diagramc..ccccecieiiiiienennnn.. Foldout-2
13-7 Bus Arbitration Timing Diagram..........ccceiveiiiniiiiiinininrnnrinenennnns Foldout-3
13-8 Other Signal TimiNgS......ccceuviniiiiiiiniiieee e Foldout-3

MOTOROLA : MC68030 USER'S MANUAL
xxii

LIST OF TABLES

Table Page
Number Title Number
1-1 MC68030 Addressing MoOdEsocvviuiiiniiiiiiniiiiiiii e 1-9
1-2 Instruction Set....................: N 1-10
2-1 Effective Address Specification Formats..............cccvviviiiiiiiiiininennn, 2-17
2-2 IS-1/IS Memory Indirection Encodings............cooeiiiiiiinineniiininininene. 2-18
2-3 Effective Addressing Mode Categories............ccoveuveieniiiiniennenienenen, 2-19
31 Data Movement OpPerations.........ceeeviiiiiiiiiiieiinieiiniireeeeeaeneenanns 34
3-2 Integer Arithmetic Operations...........cocviiiniiiiiiiiiiiiiii e 3-5
3-3 Logical OpPerationsceceeiiiuiiniiieiieieiie e eeee e e eeeteenens 3-5
3-4 Shift and Rotate Operationsc.cvvvveiiiiiiiiiiiiniiiir i reerieaeas 3-6
3-5 Bit Manipulation Operations........coceoeviviiiiiiniiiiiinii e 3-7
3-6 Bit Field Operations.......c.cuvevuiriieitiiiiiiiiiien i eteireeiareenen 3-7
3-7 Binary Coded Decimal Operationsc.cvviveviiriiiiininiiiiiiiieninniennenen 3-7
3-8 Program Control Operations........c.ceieviviiiiiiniiiiiiiiniii i ieiee e 3-8
39 System Control Operationsc.vevieiiiiiiiiiii e 3-8
3-10 Memory Management Unit Instructions.............cccovvviiiiiinininens 3-10
3-11 Multiprocessor OpPerationsS........ccocveriiiiriiiiiiiiieniieiieeieieiereeaenn 3-10
3-12 Condition Code Computationsccceuiriririiiiiiiiiiiiniierrrneeenes 3-13
3-13 Condition Code Computationsccceviiiiiiieiiiiiiiiiiiir e 3-199
3-14 Conditional TeStS . .ouivieiritiiiieieereet it r e e anaeenans 3-200
3-15 Operation Code Map ...o.oiiiiiiniiiiiiiiie e eas 3-201
4-1 Address Space Encodings.......ccvevviiiiiiiiiiiiiiiiiiiiiie e, 4-4
5-1 SIgnal INAEX ..vineiiiiiiiii e 5-3
5-2 SigNal SUMMAIY ..ot e e e e 5-9
7-1 DSACK Codes and ReSUItSccvvuiiiiiiiniiiiiiiiieneie e eeneeea e 7-5
7-2 Size Signal ENcodingcovvvviniiiiiiiiii 7-7
7-3 Address Offset ENCOdiNgS.........coeviiniiiiiiiiiiiiiiiiien e 7-7
7-4 Data Bus Requirements for Read Cyclescoovvviviiiiniiiineninenns 7-8
7-5 MC68030 Internal to External Data Bus Multiplexer — Write Cycles 7-9
7-6 Memory Alignment and Port Size Influence on Write Bus Cycles......... 7-13
7-7 Data Bus Write Enable Signals for Byte, Word, and Long-Word Ports... 7-19
7-8 DSACK, BERR, and HALT Assertion ResultS.........ccevviiviiiiiiiiiiniieneens 7-65
7-9 STERM, BERR, and HALT Assertion Results............ccocceviviviniiennnnnnn, 7-66
8-1 Exception Vector ASSIgNMENtS......covveiiiriiiiiiiiiiiiiiieieieieneeeenenenenes 8-2
8-2 Microsequencer STATUS Indications.........ccvvvvveiininiininniiininenenenes 8-3
8-3 Privileged INStrUCtioNS........ccviiiiiiiiiiiiii e ens 8-7
8-4 Tracing Controleuvuiniiinieiiiir e 8-8
8-5 Interrupt Levels and Mask Levels............ccovviiiiiiiiiiiiiiiiicnce e, 8-11

MC68030 USER'S MANUAL MOTOROLA
xxiii

LIST OF TABLES (Continued)

Table Page
Number Title Number
8-6 Exception Priority Groups.....c.cocveveiiiiiiiiniiininiinin 8-17
8-7 Exception Stack Framescocoovviiiviiiiiiiiinin i 8-24
9-1 Size ReSIIICHIONS t.iuiuiniiit ettt 9-8
9-2 Translation Tree Selectioncevviiiiiiiiiiiiiiiiia 9-22
9-3 MMUSR Bit Definitionso.vviuirieiniinieir et e e 9-46
10-1 cpTRAPcc Op-Mode Encodingscooovvviiiiiiniiiiiiiiiiniiiiiians 10-14
10-2 Coprocessor Format Word Encodings.........c...ccceeveviiiiiiiiiiininnnnn, 10-16
10-3 Null Coprocessor Response Primitive Encodingscoovviiinininin, 10-28
10-4 Valid Effective Address Codesccevvviiiiiiiiiiiiiiiiiiiiia 10-31
10-5 Main Processor Control Register Selector Codes.........cocvvviinineninnnn. 10-36
10-6 Exceptions Related to Primitive Processing..............coovvvviiiiinininnnnn, 10-46
121 Data Bus Activity for Byte, Word, and Long Word Ports 12-8
12-2 Memory Access Time EqUatioNScccoevvviiiiviiiiiiiiieneninieieneenen, 12-13

12-3 Calculated taypV Values for Operation at Frequencies

Less Than or Equal to the CPU’s Maximum Frequency Rating 2-13
12-4 Microsequencer STATUS Indications.........c.covveviniiiiniininiinininnnnne. 12-28
12-6 LISt OF Parts ...uiviuniniiiiiriie et e e e e e e e eaees 12-33
12-6 AS and ECSC INdiCationS.....c.uuviuniiiireeiineiineiineenieeeiaerenneerneaeeaes 12-33
12-7 Ve and GND Pin AsSignmentso.vvvviiiiiiiiiiiiiiiiinnneeee, 12-35

MQTOROLA MC68030 USER'S MANUAL
XXiv

SECTION 1
INTRODUCTION

The MC68030 is a second-generation full 32-bit enhanced microprocessor from Motorola.
The MC68030 is a member of the M68000 Family of devices that combines a central
processing unit (CPU) core, a data cache, an instruction cache, an enhanced bus controller,
and a memory management unit in a single VLSI device. The processor is designed to
operate at clock speeds beyond 20 MHz. The MC68030 is implemented with 32-bit registers
and data paths, 32-bit addresses, a rich instruction set, and versatile addressing modes.

The MC68030 is upward object code compatible with the earlier members of the M68000
Family and has the added features of an on-chip memory management unit, a data cache,
and an improved bus interface. It retains the flexible coprocessor interface pioneered in
the MC68020 and provides full IEEE floating-point support through this interface with the
MC68881 or MC68882 Floating-Point Coprocessor. Also, the internal functional blocks of
this microprocessor are designed to operate in parallel, allowing instruction execution to
be overlapped. In addition to instruction execution, the internal caches, the on-chip memory
management unit, and the external bus controller all operate in parallel.

The MC68030 fully supports the nonmultiplexed bus structure of the MC68020, with 32
bits of address and 32 bits of data. The MC68030 bus has an enhanced controller that
supports both asynchronous and synchronous bus cycles and burst data transfers. It also
supports the MC68020 dynamic bus sizing mechanism that automatically determines device
port sizes on a cycle-by-cycle basis as the processor transfers operands to or from external
devices.

A block diagram of the MC68030 is shown in Figure 1-1. The instructions and data required
by the processor are supplied from the internal caches whenever possible. The memory
management unit (MMU) translates the logical address generated by the processor into a
physical address utilizing its address translation cache (ATC). The bus controller manages
the transfer of data between the CPU and memory or devices at the physical address.

1.1 FEATURES

The features of the MC68030 microprocessor are:
® Object Code Compatible with the MC68020 and Earlier M68000 Microprocessors
® Complete 32-Bit Nonmultiplexed Address and Data Buses
® Sixteen 32-Bit General Purpose Data and Address Registers
® Two 32-Bit Supervisor Stack Pointers and Ten Special Purpose Control Registers

® 256-Byte Instruction Cache and 256-Byte Data Cache that can be Accessed Simulta-
neously

® Paged Memory Management Unit that Translates Addresses in Parallel with Instruction
Execution and Internal Cache Accesses

MC68030 USER'S MANUAL MOTOROLA
1-1

¢l

V104010

TVNANVIAN S.H3SN 0£083DN

ADDRESS
BUS

ADDRESS
PADS

PAN

PHYSICAL
ADDRESS

MMy LOGICAL

m
REGISTERS

i

g

BUS CONTROLLER

BUFFER

L—N] rwmrs PENDING l I?asrstcu PmumsJ <:

—]

BUFFER

MICRO BUS
CONTROLLER

$

BUS CONTROL
SIGNALS

DATA
ADDRESS
8US

e—N] D
Y————————] cacit

Figure 1-1. MC68030 Block Diagram

MICROSEQUENCER AND CONTROL
INSTRUCTION PIPE
CACHE
CONTROL % HOLDING
STORE \e REGISTER
{CAHR)
<z INTERNAL
DATA
CONTROL aus
LOGIC
INSTRUCTION
CACHE (N—
N
4
INSTRUCTION EXECUTION UNIT
ADDRESS
8US 3)
ADDRESS A0G
';WN';’:': — noomess | —N] oam Ln] sz <__:> OATA <::>om
SECTION SECTION MULTIPLEXER PADS BUS
SECTION —v/]
PN

® Two Transparent Segments Allow Untranslated Access to Physical Memory to be
Defined for Systems that Transfer Large Blocks of Data between Predefined Physical

Addresses, e.g., Graphics Applications
® Pipelined Architecture with Increased Parallelism Allows Accesses to Internal Caches
to Occur in Parallel with Bus Transfers and Instruction Execution to be Overlapped
® Enhanced Bus Controller Supports Asynchronous Bus Cycles (three clocks minimum),
Synchronous Bus Cycles (two clocks minimum), and Burst Data Transfers (one clock
minimum) all to the Physical Address Space
® Dynamic Bus Sizing Supports 8-, 16-, 32-Bit Memories and Peripherals

® Support for Coprocessors with the M68000 Coprocessor Interface; e.g., Full IEEE Float-
ing-Point Support Provided by the MC68881/MC68882 Floating-Point Coprocessors

® 4-Gigabyte Logical and Physical Addressing Range

® Implemented in Motorola’s HCMOS Technology that Allows CMOS and HMOS (High
Density NMOS) Gates to be Combined for Maximum Speed, Low Power, and Optimum
Die Size

® Processor Speeds Beyond 20 MHz

Both improved performance and increased functionality result from the on-chip imple-
mentation of the MMU and the data and instruction caches. The enhanced bus controller
and the internal parallelism also provide increased system performance. Finally, the im-
proved bus interface, the reduction in physical size, and the lower power consumption
combine to reduce system costs and satisfy cost/performance goals of the system designer.

1.2 MC68030 EXTENSIONS TO THE M68000 FAMILY

In addition to the on-chip instruction cache present in the MC68020, the MC68030 has an
internal data cache. Data that is accessed during read cycles may be stored in the on-chip
cache, where it is available for subsequent accesses. The data cache reduces the number
of external bus cycles when the data operand required by an instruction is already in the
data cache.

Performance is enhanced further because the on-chip caches can be internally accessed
in a single clock cycle. In addition, the bus controller provides a two-clock cycle synchronous
mode and burst mode accesses that can transfer data in as little as one clock per long
word.

The MC68030 enhanced microprocessor contains an on-chip memory management unit
that allows address translation to operate in parallel with the CPU core, the internal caches,
and the bus controller.

Additional signals support emulation and system analysis. External debug equipment can
disable the on-chip caches and the MMU in order to freeze the MC68030 internal state
during breakpoint processing. In addition, the MC68030 indicates:

1. The start of a refill of the instruction pipe
2. Instruction boundaries

3. Pending trace or interrupt processing

4. Exception processing

5. Halt conditions

|
MC68030 USER'S MANUAL MOTOROLA
13

This status and control information allows external debugging equipment to trace the
MC68030 activity and interact nonintrusively with the MC68030 to effectively reduce system

debug effort.

1.3 PROGRAMMING MODEL

The programming model of the MC68030 consists of two groups of registers: the user
model and the supervisor model. This corresponds to the user and supervisor privilege
levels. User programs, executing at the user privilege level, can only use the registers of
the user model. System software executing at the supervisor level uses the control registers
of the supervisor level to perform supervisor functions.

Figure 1-2 shows the user programming model, consisting of sixteen 32-bit general-purpose
registers and two control registers:

® General-purpose 32-bit registers (D0-D7, A0-A7)
® 32-bit program counter (PC)
@ 8-bit condition code register (CCR)

31 16 15 8 7 0

.

1}
D2

D3

— DATA REGISTERS
D4

D5
D6
07

—J
3 16 15 0 —
A0
Al
A2
A3 I— ADDRESS REGISTERS
A4
A5
A6
3 16 15 0 _
[Ji] AT(USP) [— USER STACK POINTER
3 P _

] ke :!- PROGRAM COUNTER
E 0 : CeR L CONDITION CODE REGISTER

Figure 1-2. User Programming Model

MOTOROLA MC68030 USER’S MANUAL
1-4

The supervisor programming model consists of the registers available to the user plus 14
control registers:

® Two 32-bit supervisor stack pointers (ISP and MSP)
® 16-bit status register (SR)

® 32-bit vector base register (VBR)

® 32-bit alternate function code registers (SFC and DFC)
32-bit cache control register (CACR)

32-bit cache address register (CAAR)

64-bit CPU root pointer (CRP)

64-bit supervisor root pointer (SRP)

32-bit translation control register (TC)

32-bit transparent translation registers (TTO and TT1)
16-bit MMU status register (MMUSR)

The user programming model remains unchanged from previous M68000 Family micro-
processors. The supervisor programming model supplements the user programming model
and is used exclusively by the MC68030 system programmers who utilize the supervisor
privilege level to implement sensitive operating system functions, I/O control, and memory
management subsystems. Here, in the supervisor programming model, are all the controls
to access and enable the special features of the MC68030. This segregation was carefully
planned so that all application software is written to run at the nonprivileged user level
and migrates to the MC68030 from any M68000 platform without modification. Since sys-
tem software is usually modified by system programmers when ported to a new design,
the control features are properly placed in the supervisor programming model. For ex-
ample, the transparent translation feature of the MC68030 is new to the family supervisor
programming model for the MC68030 and the two translation registers are new additions
to the family supervisor programming model for the MC68030. Only supervisor code uses
this feature and user application programs remain unaffected.

Registers D0-D7 are used as data registers for bit and bit field (1 to 32 bits), byte (8 bit),
word (16 bit), long word (32 bit), and quad word (64 bit) operations. Registers A0-A6 and
the user, interrupt, and master stack pointers are address registers that may be used as
software stack pointers or base address registers. Register A7 (shown as A7’, and A7" in
Figure 1-3) is a register designation that applies to the user stack pointer in the user privilege
level, and to either the interrupt or master stack pointer in the supervisor privilege level.
In the supervisor privilege level, the active stack pointer (interrupt or master) is called the
supervisor stack pointer (SSP). In addition, the address registers may be used for word
and long word operations. All of the 16 general purpose registers (D0-D7, A0-A7) may be
used as index registers.

The program counter (PC) contains the address of the next instruction to be executed by
the MC68030. During instruction execution and exception processing, the processor au-
tomatically increments the contents of the PC or places a new value in the PC, as appro-
priate.

The status register, SR, (Figure 1-4) stores the processor status. It contains the condition
codes that reflect the results of a previous operation and can be used for conditional
instruction execution in a program. The condition codes are: extend (X), negative (N), zero
(Z), overflow (V), and carry (C). The user byte containing the condition codes is the only

MC68030 USER'S MANUAL MOTOROLA
1-6

3 16 15

0 —
[| | A7"usPr 1— INTERRUPT STACK POINTER
31 16 15 0 —
[[| A7 MSP) |- MaSTER STACK POINTER
15 8 7 0 -
r (CCR) | s |— STATUS REGISTER
3 0 _
| | ver :l— VECTOR BASE REGISTER
3 2 0 -
Ll__ ____________________ SFC I— ALTERNATE FUNCTION
b _
e OFC L CODE REGISTERS
3 0 -
| | CACR |— CACHE CONTROL REGISTER
3 0 -
[] cann | cache apomess ecisTeR
63 32 -
CRP |— CPU ROOT POINTER REGISTER
63 B -
- | SUPERVISOR ROOT POINTER
REGISTER
3 - _J
| TRANSLATION CONTROL
[REGISTER
3 0 —
I] o | TRANSPARENT TRANSLATION
REGISTER 0
31 0 -
[Tm | TRANSPARENT TRANSLATION
REGISTER 1
15 0 _

r J MMUSR]— MMU STATUS REGISTER

Figure 1-3. Supervisor Programming Model Supplement

portion of the status register information available in the user privilege level, and it is
referenced as the CCR in user programs. In the supervisor privilege level, software can
access the full status register, including the interrupt priority mask (three bits) as well as
additional control bits. These bits indicate whether the processor is in:

1. One of two trace modes (T1, T0)
2. Supervisor or user privilege level (S)

3. Master or interrupt mode (M)

The vector base register (VBR) contains the base address of the exception vector table in
memory. The displacement of an exception vector is added to the value in this register to
access the vector table.

MOTOROLA MC68030 USER'S MANUAL
1-6

USER BYTE

SYSTEM BYTE (CONDITION CODE REGISTER)
| |

' ! |
1 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Ti{ro|ls|m|o|i2{n]jw]ofjo|o|x|N|[z]|Vv]|c

l—[—l \—'———l L—— CARRY
TRACE INTERRUPT
ENABLE PRIORITY MASK ———— OVERFLOW

SUPERVISOR/USER ZER0

STATE
NEGATIVE

MASTER/INTERRUPT
STATE

EXTEND

Figure 1-4. Status Register

Alternate function code registers SFC and DFC contain 3-bit function codes. Function codes
can be considered extensions of the 32-bit linear address that optionally provide as many
as eight 4-gigabyte address spaces. Function codes are automatically generated by the
processor to select address spaces for data and program at the user and supervisor privilege
levels, and a CPU address space used for processor functions (for example, coprocessor
communications). Registers SFC and DFC are used by certain instructions to explicitly
specify the function codes for operations.

The cache control register (CACR) controls the on-chip instruction and data caches of the
MC68030. The cache address register (CAAR) stores an address for cache control functions.

The CPU root pointer (CRP) contains a pointer to the root of the translation tree for the
currently executing task of the MC68030. This tree contains the mapping information for
the task’s address space. When the MC68030 is configured to provide a separate address
space for supervisor routines, the supervisor root pointer (SRP) contains a pointer to the
root of the translation tree describing the supervisor’s address space.

The translation control register (TC) consists of several fields that control address trans-
lation. These fields enable and disable address translation, enable and disable the use of
SRP for the supervisor address space, and select or ignore the function codes in translating
addresses. Other fields define the size of memory pages, the number of address bits used
in translation, and the translation table structure.

The transparent translation registers, TTO and TT1, can each specify separate blocks of
memory as directly accessible without address translation. Logical addresses in these areas
become the physical addresses for memory access. Function codes and the eight most
significant bits of the address can be used to define the area of memory and type of access;
either read, write, or both types of memory access can be directly mapped. The transparent
translation feature allows rapid movement of large blocks of data in memory or I/0 space
without disturbing the context of the on-chip address translation cache or incurring delays
associated with translation table lookups. This feature is useful to graphics, controller, and
real time applications.

MC68030 USER'S MANUAL MOTOROLA
1-7

The MMU status register (MMUSR) contains memory management status information
resulting from a search of the address translation cache or the translation tree for a par-
ticular logical address.

1.4 DATA TYPES AND ADDRESSING MODES

Seven basic data types are supported:
® Bits
Bit Fields (Fields of consecutive bits, 1-32 bits long)
BCD Digits (Packed: 2 digits/byte, Unpacked: 1 digit/byte)
Byte Integers (8 bits)
Word Integers (16 bits)
Long Word Integers (32 bits)
Quad Word Integers (64 bits)

In addition, the instruction set supports operations on other data types such as memory
addresses. The coprocessor mechanism allows direct support of floating-point operations
with the MC68881 and MC68882 floating-point coprocessors, as well as specialized user-
defined data types and functions.

The 18 addressing modes, shown in Table 1-1, include nine basic types:
® Register Direct

Register Indirect

Register Indirect with Index

Memory Indirect

Program Counter Indirect with Displacement

Program Counter Indirect with Index

Program Counter Memory Indirect

Absolute

Immediate

The register indirect addressing modes can also postincrement, predecrement, offset, and
index addresses. The program counter relative mode also has index and offset capabilities.
As in the MC68020, both modes are extended to provide indirect reference through mem-
ory. In addition to these addressing modes, many instructions implicitly specify the use of
the condition code register, stack pointer, and/or program counter.

1.5 INSTRUCTION SET OVERVIEW

The instructions in the MC68030 instruction set are listed in Table 1-2. The instruction set
has been tailored to support structured high-level languages and sophisticated operating
systems. Many instructions operate on bytes, words, or long words and most instructions
can use any of the 18 addressing modes.

MOTOROLA MC68030 USER'S MANUAL
1-8

Table 1-1. MC68030 Addressing Modes

Addressing Modes Syntax
Register Direct 1
Data Register Direct Dn
Address Register Direct An
Register Indirect
Address Register Indirect (An)
Address Register Indirect with Postincrement (An) +
Address Register Indirect with Predecrement —(An)
Address Register Indirect with Displacement (dqg.An)

Register Indirect with Index
Address Register Indirect with Index (8-Bit Displacement) | (dg,An,Xn)
Address Register Indirect with Index (Base Displacement) | (bd,An,Xn)

Memory Indirect

Memory Indirect Post-Indexed ([bd,An],Xn,od)

Memory Indirect Pre-Indexed ([bd,An,Xn],od)
Program Counter Indirect with Displacement (d46,PC)
Program Counter Indirect with Index

PC Indirect with Index (8-Bit Displacement) (dg,PC,Xn)

PC Indirect with Index (Base Displacement) (bd,PC,Xn)
Program Counter Memory Indirect

PC Memory Indirect Post-Indexed ([bd,PC],Xn,0d)

PC Memory Indirect Pre-Indexed {[bd,PC,Xn],od)
Absolute

Absolute Short {xxx).W

Absolute Long (xxx).L
Immediate #(data)

NOTES:

Dn = Data Register, D0-D7
An = Address Register, A0-A7
dg, dqig = A twos-complement, or sign-extended displacement; added as part of the
effective address calculation; size is 8 (dg) or 16 (d4g) bits; when omitted,
assemblers use a value of zero.
Xn = Address or data register used as an index register; form is Xn.SIZE*SCALE,
where SIZE is .\W or .L (indicates index register size) and SCALE is 1, 2, 4, or
8 (index register is multiplied by SCALE); use of SIZE and/or SCALE is op-
tional.
bd = A twos-complement base displacement; when present, size can be 16 or 32
bits.
od = Outer displacement, added as part of effective address calculation after any
memory indirection; use is optional with a size of 16 or 32 bits.
PC = Program Counter
(data) = Immediate value of 8, 16, or 32 bits
() = Effective Address
[] = Use as indirect access to long word address.

1.6 VIRTUAL MEMORY AND VIRTUAL MACHINE CONCEPTS

The full addressing range of the MC68030 is 4 gigabytes (4,294,967,296 bytes) in each of
eight address spaces. Even though most systems implement a smaller physical memory,
the system can be made to appear to have a full 4 gigabytes of memory available to each
user program by using virtual memory techniques.

In a virtual memory system, a user program can be written as if it has a large amount of
memory available, when the physical memory actually present is much smaller. Similarly,

MC68030 USER’'S MANUAL MOTOROLA
1-9

Table 1-2. Instruction Set

Mnemonic Description Mnemonic Description
1 ABCD Add Decimal with Extend MOVE USP | Move User Stack Pointer
ADD Add MOVEC Move Control Register
ADDA Add Address MOVEM Move Multiple Registers
ADDI Add Immediate MOVEP Move Peripheral
ADDQ Add Quick MOVEQ Move Quick
ADDX Add with Extend MOVES Move Alternate Address Space
AND Logical AND - N
ANDI Logical AND Immediate MULS Signed Multiply
ASL, ASR | Arithmetic Shift Left and Right mMuLy Unsigned Multiply
Bcc Branch Conditionally NBCD Negate Decimal with Extend
BCHG Test Bit and Change NEG Negate
BCLR Test Bit and Clear NEGX Negate with Extend
BFCHG Test Bit Field and Change NOP No Operation
BFCLR Test Bit Field and Clear NOT Logical Complement
BFEXTS Signed Bit Field Extract OR Logical Inclusive OR
BFEXTU Unsigned Bit Field Extract ORI Logical Inclusive OR Immediate
BFFFO Bit Field Find First One ORI CCR Logical Inclusive OR Immediate to
BFINS Bit Field Insert Condition Codes
BFSET Test Bit Field and Set ORI SR Logical Inclusive OR Immediate to Status
BFTST Test Bit Field Register
BKPT Breakpoint PACK Pack BCD
i B nd Set PEA Push Effective Address
BSR Branch to Subroutine PFLUSH Flush Entry(ies) in the ATC
BTST Test Bit PFLUSHA Flush All Entries in the ATC
CAS Compare and Swap Operands PL&%&%W Load Entry into the ATC
CAS2 Compare and Swap Dual Operands PMOVE Move to/from MMU Register
CHK Check Register Against Bound PMOVEFD | Move torfrom MMU R 9! rore with Flush
CHK2 Check Register Against Upper and OD‘{seatﬁerom egisters wi us
CLR a Lower Bounds PTESTR, Test a Logical Address
ear PTESTW
CMP Compare
CMPA Compare Address RESET Reset External Devices
CMPI Compare Immediate ROL, ROR Rotate Left and Right
CMPM Compare Memory to Memory ROXL, ROXR | Rotate with Extend Left and Right
CMP2 Compare Register Against Upper and RTD Return and Deallocate
Lower Bounds RTE Return from Exception
DBcc Test Condition, Decrement and Branch 212 Seturn ?"d Rgstt?re dees
DIVS, DIVSL | Signed Divide eturn from Subroutine
DIVU, DIVUL | Unsigned Divide SBCD Subtract Decimal with Extend
EOR Logical Exclusive OR 2%%,, g:’g Conditionally
EORI Logical Exclusive OR Immediate SUB Sub[:ract
EXG Exchange Registers SUBA Subtract Address
EXT, EXTB | Sign Extend SuBI Subtract Immediate
ILLEGAL Take lilegal Instruction Trap SuUBQ Subtract Quick
JMP Jump SUBX Subtract with Extend
JSR Jump to Subroutine SWAP Swap Register Words
LEA Load Effective Address TAS Test Operand and Set
LINK Link and Allocate TRAP Trap .
LSL, LSR | Logical Shift Left and Right TRAPcc Trap Conditionally
TRAPV Trap on Overflow
MOVE Move TST Test Operand
MOVEA Move Address N
MOVE CCR | Move Condition Code Register UNLK Unlink
MOVE SR | Move Status Register UNPK Unpack BCD
COPROCESSOR INSTRUCTIONS
Mnemonic Description Mnemonic Description
cpBcc Branch Conditionally cpRESTORE | Restore Internal State of Coprocessor
cpDBcc Test Coprocessor Condition, cpSAVE Save Internal State of Coprocessor
Decrement and Branch cpScc Set Conditionally
cpGEN Coprocessor General Instruction cpTRAPcc Trap Conditionally

MOTOROLA MC68030 USER'S MANUAL
1-10

a system can be designed to allow user programs to access devices that are not physically
present in the system such as tape drives, disk drives, printers, terminals, and so forth.
With proper software emulation, a physical system can appear to be any other M68000
computer system to a user program and the program can be given full access to all of the
resources of that emulated system. Such an emulated system is called a virtual machine.

1.6.1 Virtual Memory

A system that supports virtual memory has a limited amount of high-speed physical mem-
ory that can be accessed directly by the processor and maintains an image of a much
larger “virtual” memory on a secondary storage device such as a large capacity disk drive.
When the processor attempts to access a location in the virtual memory map that is not
resident in physical memory, a “page fault” occurs. The access to that location is tem-
porarily suspended while the necessary data is fetched from secondary storage and placed
in physical memory. The suspended access is then either restarted or continued.

The MC68030 uses instruction continuation to support virtual memory. When a bus cycle
is terminated with a bus error, the microprocessor suspends the current instruction and
executes the virtual memory bus error handler. When the bus error handler has completed
execution, it returns control to the program that was executing when the error was detected,
re-runs the faulted bus cycle (when required), and continues the suspended instruction.

1.6.2 Virtual Machine

A typical use for a virtual machine system is the development of software, such as an
operating system, for a new machine also under development and not yet available for
programming use. In a virtual machine system, a governing operating system emulates
the hardware of the new machine and allows the new software to be executed and de-
bugged as though it were running on the new hardware. Since the new software is con-
trolled by the governing operating system, it is executed at a lower privilege level than
the governing operating system. Thus, any attempts by the new software to use virtual
resources that are not physically present (and should be emulated) are trapped to the
governing operating system and performed by its software.

In the MC68030 implementation of a virtual machine, the virtual application runs at the
user privilege level. The governing operating system executes at the supervisor privilege
level and any attempt by the new operating system to access supervisor resources or
execute privileged instructions causes a trap to the governing operating system.

Instruction continuation is used to support virtual /0 devices in memory-mapped input/
output systems. Control and data registers for the virtual device are simulated in the
memory map. An access to a virtual register causes a fault and the function of the register
is emulated by software.

1.7 THE MEMORY MANAGEMENT UNIT

The memory management unit (MMU) supports virtual memory systems by translating
logical addresses to physical addresses using translation tables stored in memory. The
MMU stores address mappings in an address translation cache (ATC) that contains the

MC68030 USER'S MANUAL MOTOROLA
-1

most-recently-used translations. When the ATC contains the address for a bus cycle re-
quested by the CPU, a translation table search is not performed. Features of the MMU

include:
1 Inc .
® Multiple Level Translation Tables with Short and Long Format Descriptors for Efficient
Table Space Usage

® Table Searches Automatically Performed in Microcode
22-Entry Fully-Associative ATC

Address Translations and Internal Instruction and Data Cache Accesses Performed in
Parallel

Eight Page Sizes Available Ranging from 256 to 32K Bytes

Two Optional Transparent Blocks

User and Supervisor Root Pointer Registers

Write Protection and Supervisor Protection Attributes

Translations Enabled/Disabled by Software

Translations can be Disabled with External MMUDIS Signal

Used and Modified Bits Automatically Maintained in Tables and ATC

Cache Inhibit Output (CTOUT) Signal can be Asserted on a Page-by-Page Basis
32-Bit Internal Logical Address with Capability to Ignore as many as 15 Upper Address
Bits

® 3-bit Function Code Supports Separate Address Spaces

® 32-Bit Physical Address

The memory management function performed by the MMU is called demand paged mem-
ory management. Since a task specifies the areas of memory it requires as it executes,
memory allocation is supported on a demand basis. If a requested access to memory is
not currently mapped by the system, then the access causes a demand for the operating
system to load or allocate the required memory image. The technique used by the MC68030
is paged memory management because physical memory is managed in blocks of a spec-
ified number of bytes, called page frames. The logical address space is divided into fixed-
size pages that contain the same number of bytes as the page frames. Memory management
assigns a physical base address to a logical page. The system software then transfers data
between secondary storage and memory one or more pages at a time.

1.8 PIPELINED ARCHITECTURE

The MC68030 uses a three-stage pipelined internal architecture to provide for optimum
instruction throughput. The pipeline allows as many as three words of a single instruction
or three consecutive instructions to be decoded concurrently.

1.9 THE CACHE MEMORIES

Due to locality of reference, instructions and data that are used in a program have a high
probability of being re-used within a short time. Additionally, instructions and data oper-
ands that reside in proximity to the instructions and data currantly in use also have a high
probability of being utilized within a short period. To exploit these locality characteristics,
the MC68030 contains two on-chip logical caches, a data cache, and an instruction cache.

MOTOROLA MC68030 USER'S MANUAL
1-12

Each of the caches stores 256 bytes of information, organized as 16 entries, each containing

a block of four long words (16 bytes). The processor fills the cache entries either one long :
word at a time or, during burst mode accesses, four long words consecutively. The burst
mode of operation not only fills the cache efficiently, but also captures adjacent instruction

or data items that are likely to be required in the near future due to locality characteristics

of the executing task.

The caches improve the overall performance of the system by reducing the number of bus
cycles required by the processor to fetch information from memory and by increasing the
bus bandwidth available for other bus masters in the system. Addition of the data cache
in the MC68030 extends the benefits of cache techniques to all memory accesses. During
a write cycle, the data cache circuitry writes data to a cached data item as well as to the
item in memory, maintaining consistency between data in the cache and that in memory.
However, writing data that is not in the cache may or may not cause the data item to be
stored in the cache, depending on the write allocation policy selected in the cache control
register (CACR).

MC68030 USER’'S MANUAL MOTOROLA
1-13

MOTOROLA MC68030 USER’S MANUAL
1-14

SECTION 2
DATA ORGANIZATION AND ADDRESSING CAPABILITIES

Most external references to memory by a microprocessor are either program references
or data references; they either access instruction words or operands (data items) for an
instruction. Program references are references to the program space, the section of memory
that contains the program instructions and any immediate data operands that reside in
the instruction stream. Refer to SECTION 3 INSTRUCTION SET SUMMARY for descriptions
of the instructions in the program space. Data references refer to the data space, the section
of memory that contains the program data. Data items in the instruction stream can be
accessed with the program counter relative addressing modes, and these accesses are
classified as program references. A third type of external reference used for coprocessor
communications, interrupt acknowledge cycles, and breakpoint acknowledge cycles is
classified as a CPU space reference. The MC68030 automatically sets the function codes
to access the program space, the data space, or the CPU space for special functions as
required. The function codes can be used by the memory management unit to organize
separate program (read only) and data (read-write) memory areas.

This section describes the data organization and addressing capabilities of the MC68030.
It lists the types of operands used by instructions, and describes the registers and their
use as operands. Next the section describes the organization of data in memory and the
addressing modes available to access data in memory. Last, the section describes the
system stack and user program stacks and queues.

2.1 INSTRUCTION OPERANDS

The MC68030 supports a general purpose set of operands to serve the requirements of a
large range of applications. Operands of MC68030 instructions may reside in registers, in
memory, or within the instructions themselves. An instruction operand might also reside
in a coprocessor. An operand may be a single bit, a bit field of from 1 to 32 bits in length,
a byte (8 bits), a word (16 bits), a long word (32 bits), or a quad word (64 bits). The operand
size for each instruction is either explicitly encoded in the instruction or implicitly defined
by the instruction operation. Coprocessors are designed to support special computation
models that require very specific, but widely varying data operand types and sizes. Hence,
coprocessor instructions can specify operands of any size.

2.2 ORGANIZATION OF DATA IN REGISTERS

The eight data registers can store data operands of 1, 8, 16, 32, and 64 bits, addresses of
16 or 32 bits, or bit fields of 1 to 32 bits. The seven address registers and the three stack
pointers are used for address operands of 16 or 32 bits. The control registers (SR, VBR,
SFC, DFC, CACR, CAAR, CRP, SRP, TC, TT0, TT1, and MMUSR) vary in size according to
function. Coprocessors may define unique operand sizes and support them with on-chip
registers accordingly.

MC68030 USER'S MANUAL MOTOROLA
2-1

2.2.1 Data Registers

Each data register is 32 bits wide. Byte operands occupy the low order 8 bits, word operands
the low order 16 bits, and long word operands the entire 32 bits. When a data register is
used as either a source or destination operand, only the appropriate low-order byte or
word (in byte or word operations, respectively) is used or changed; the remaining high-

2 order portion is neither used nor changed. The least significant bit of a long word integer
is addressed as bit zero and the most significant bit is addressed as bit 31. For bit fields,
the most significant bit is addressed as bit zero and the least significant bit is addressed
as the width of the field minus one. If the width of the field plus the offset is greater than
32, the bit field wraps around within the register. The following shows the organization of
various types of data in the data registers.

Bit (0=Modulo (Offset)<31, Offset of 0=MSB)

I 2 10
[mse [] [s |
Byte
3 3 15 7 0
l High Order Byte Middle High Byte Middle Low Byte | Low Order Byte
16-Bit Word
3 15 0
(High Order Word Low Order Word
Long Word
3 0
l Long Word 1
Quad Word
83 2
| ms8 | Any Dx |
3 0
' Any Dy [s8]

Bit Field (0<Offset<32, 0<Width=<32)
3 | Width

I
| Offset [msg .- s8]

Note: If width +offset<32, bit field wraps around within the register.

Unpacked BCD (a=MSB)
31 7 6 5 4 3 2 1 0

L [x [« [x [xfafo]eclea]

31 1 6 5 4 3 2 1 0

l | e [ol clafeltfo]n]

Data Organization in Data Registers

MOTOROLA MC68030 USER'S MANUAL
2-2

Quad word data consists of two long words: for example, the product of 32-bit multiply
or the quotient of 32-bit divide operations (signed and unsigned). Quad words may be
organized in any two data registers without restrictions on order or pairing. There are no
explicit instructions for the management of this data type, although the MOVEM instruction
can be used to move a quad word into or out of the registers.

Binary coded decimal (BCD) data represents decimal numbers in binary form. Although
many BCD codes have been devised, the BCD instructions of the M68000 Family support
formats in which the four least significant bits consist of a binary number having the
numeric value of the corresponding decimal number. Two BCD formats are used.‘In the
unpacked BCD format, a byte contains one digit; the four least significant bits contain the
binary value and the four most significant bits are undefined. Each byte of the packed BCD
format contains two digits; the least significant four bits contain the least significant digit.

2.2.2 Address Registers

Each address register and stack pointer is 32 bits wide and holds a 32-bit address. Address
registers cannot be used for byte-sized operands. Therefore, when an address register is
used as a source operand, either the low order word or the entire long word operand is
used, depending upon the operation size. When an address register is used as the desti-
nation operand, the entire register is affected regardless of the operation size. If the source
operand is a word size, it is first sign-extended to 32 bits, and then used in the operation
to an address register destination. Address registers are used primarily for addresses and
to support address computation. The instruction set includes instructions that add to,
subtract from, compare, and move the contents of address registers. The following shows
the organization of addresses in address registers.

31 15 0
l Sign Extended l 16-Bit Address Operand
31 0
| Full 32-Bit Address Operand]

Address Organization in Address Registers

2.2.3 Control Registers

The control registers described in this section contain control information for supervisor
functions and vary in size. With the exception of the user portion of the status register
(condition code register CCR) they are accessed only by instructions at the supervisor
privilege level.

The status register (SR), shown in Figure 1-4, is 16 bits wide. Only 12 bits of the status
register are defined; all undefined values are reserved by Motorola for future definition.
The undefined bits are read as zeros and should be written as zeros for future compatibility.
The lower byte of the status register is the condition code register (CCR). Operations to
the CCR can be performed at the supervisor or user privilege level. All operations to the
status register and condition code register are word-size operations, but for all CCR op-
erations the upper byte is read as all zeros and is ignored when written, regardless of
privilege level.

MC68030 USER'S MANUAL MOTOROLA
2-3

The supervisor programming model (Figure 1-3) shows the control registers. The cache
control register (CACR) provides control and status information for the on-chip instruction
and data caches. The cache address register (CAAR) contains the address for cache control
functions. The vector base register (VBR) provides the base address of the exception vector
table. All operations involving the CACR, CAAR, and VBR are long word operations, whether
these registers are used as the source or the destination operand.

The alternate function code registers (SFC and DFC) are 32-bit registers with only bits 2:0
implemented that contain the address space values (FC0-FC2) for the read or write operands
of MOVES, PLOAD, PFLUSH, and PTEST instructions. The MOVEC instruction is used to
transfer values to and from the alternate function code registers. These are long word
transfers; the upper 29 bits are read as zeros and are ignored when written.

The remaining control registers in the supervisor programming model are used by the
memory management unit. The CPU root pointer (CRP) and supervisor root pointer (SRP)
contain pointers to the user and supervisor address translation trees. Transfers of data to
and from these 64-bit registers are quad word transfers. The translation control register
(TC) contains control information for the memory management unit. The MC68030 always
uses long word transfers to access this 32-bit register. The transparent translation registers
TTO and TT1 also contain 32 bits each; they identify memory areas for direct addressing
without address translation. Data transfers to and from these registers are long word
transfers. The MMU status register (MMUSR) stores the status of the MMU after execution
of a PTEST instruction. It is a 16-bit register and transfers to and from the MMUSR are
word transfers. Refer to SECTION 9 MEMORY MANAGEMENT UNIT for more detail.

2.3 ORGANIZATION OF DATA IN MEMORY

Memory is organized on a byte-addressable basis where lower addresses correspond to
higher-order bytes. The address, N, of a long word data item corresponds to the address
of the mostsignificant byte of the highest-order word. The lower-order word is located at
address N + 2, leaving the least significant byte at address N + 3 (refer to Figure 2-1).

31 23 15 7 0
LONG WORD $00000000
WORD $00000000 WORD $00000002
BYTE $00000000 i BYTE $00000001 BYTE $00000002 [BYTE $00000003
LONG WORD $00000004
WORD $00000004 WORD $00000006
BYTE $00000004 I BYTE $00000005 BYTE $00000006 J BYTE $00000007

' LONG WORD $FFFFFFFC

WORD $FFFFFFFC

BYTE SFFFFFFFC BYTE SFFFFFFFD

WORD $FFFFFFFE
BYTE SFFFFFFFE l BYTE SFFFFFFFF

Figure 2-1. Memory Operand Address

MOTOROLA MC68030 USER'S MANUAL
2-4

Notice that the MC68030 does not require data to be aligned on word boundaries (refer
to Figure 2-2) but the most efficient data transfers occur when data is aligned on the same
byte boundary as its operand size. However, instruction words must be aligned on word
boundaries.

The data types supported in memory by the MC68030 are: bit and bit field data; integer
data of 8, 16, or 32 bits; 32-bit addresses; and binary coded decimal data (packed and

BIT DATA
07 07

7 0
| BYTE n-1 765 4[3]210 BYTEn+1 BTEn+2 |
k)

BASE ADDRESS ~ BIT NUMBER

BIT FIELD DATA BASE BIT

7 0|7 0|7 ¥ 0|7 0
[eviEa- BYTEn [oi23 . wi]]
f—— OFFSET - — - - ———— OFFSET ——————-}t—— WIDTH ——>
L..-32-1 0120,
BASE ADDRESS

BYTE INTEGER DATA

7 0|7 07 0|7 0
BYTE n-1 MSB BYTEn LSB BYTE n+1 BiEns2 |
)
ADDRESS
WORD INTEGER DATA
7 0|7 0|7 o7 07 0
R WORD INTEGER BYTE n+2 BYTE n+3
)
ADDRESS
LONG WORD INTEGER DATA
7 0|7 0]7 07 0)7 07 0
| BYTE n-1 LONG WORD INTEGER BYTE n+4 |
1
ADDRESS
ADDRESS QUAD WORD DATA
7 07 . 0|7 07 07 07 0
[BYTE n-1
QUAD WORD
BYTE n+8 J

PACKED BINARY-CODED DATA

7 07 443 07 07 0
BYTE n-1 MSD LSD BYTE n+1 BYTE n+2 |
ADDRESS
UNPACKED BINARY-CODED DATA
7 0|7 4|3 07 4|3 07 0
[BYTE n-1 XX MSD XX LSD BYTE n+2
ADDRESS

XX = USER-DEFINED VALUE
Figure 2-2. Memory Data Organization

MC68030 USER'S MANUAL MOTOROLA
2-5

unpacked). These data types are organized in memory as shown in Figure 2-2. Note that
all of these data types can be accessed at any byte address.

Coprocessors can implement any data types and lengths up to 255 bytes. For example,
the MC68881/MC68882 Floating-Point Coprocessors support memory accesses for quad-
word sized items (double-precision floating-point values).

A bit operand is specified by a base address that selects one byte in memory (the base
byte) and a bit number that selects the one bit in this byte. The most significant bit of the
byte is bit seven.

A bit field operand is specified by:
1. A base address that selects one byte in memory,

2. A bit field offset that indicates the leftmost (base) bit of the bit field in relation to the
most significant bit of the base byte, and

3. A bit field width that determines how many bits to the right of the base bit are in the
bit field.

The most significant bit of the base byte is bit field offset 0, the least significant bit of the
base byte is bit field offset 7, and the least significant bit of the previous byte in memory
is bit offset — 1. Bit field offsets may have values in the range of —23" to 231 -1, and bit
field widths may range between 1 and 32 bits.

2.4 ADDRESSING MODES

The addressing mode of an instruction can specify the value of an operand (with an
immediate operand), or a register that contains the operand (with the register direct ad-
dressing mode), or how the effective address of an operand in memory is derived. An
assembler syntax has been defined for each addressing mode.

Figure 2-3 shows the general format of the single effective address instruction operation
word. The effective address field specifies the addressing mode for an operand that can
use one of the numerous defined modes. The (ea) designation is composed of two 3-bit
fields: the mode field and the register field. The value in the mode field selects one, or a
set of addressing modes. The register field specifies a register for the mode, or a sub-
mode for modes that do not use registers.

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS
X | x X
O R R L e MODE | REGISTER

Figure 2-3. Single-Effective-Address Instruction Operation Word

Many instructions imply the addressing mode for one of the operands. The formats of
these instructions include appropriate fields for operands that use only one addressing
mode.

The effective address field may require additional information to fully specify the operand
address. This additional information, called the effective address extension, is contained
in an additional word or words and is considered part of the instruction. Refer to 2.5

MOTOROLA MC68030 USER'S MANUAL
2-6

EFFECTIVE ADDRESS ENCODING SUMMARY for a description of the extension word for-
mats.

The notational conventions used in the addressing mode descriptions in this section are:

EA—Effective address
An—Address register n
Example: A3 is address register 3
Dn—Data register n
Example: D5 is data register 5
Xn.SIZE*SCALE—Denotes index register n (data or address), the index size (W for'word,
L for long word), and a scale factor (1, 2, 4, or 8, for no, word, long
word, or 8 for quad word scaling, respectively).
PC—The program counter
dn—Displacement value, n bits wide
bd—Base displacement
od—Outer displacement
L—Long word size
W—Word size
()—Identify an indirect address in a register
[]—Identify an indirect address in memory

When the addressing mode uses a register, the register field of the operation word specifies
the register to be used. Other fields within the instruction specify whether the register
selected is an address or data register and how the register is to be used.

2.4.1 Data Register Direct Mode

In the data register direct mode, the operand is in the data register specified by the effective
address register field.

GENERATION: EA =Dn

ASSEMBLER SYNTAX: On

MODE: 000

REGISTER: n 3 0
DATA REGISTER: On — OPERAND B

NUMBER OF EXTENSION WORDS:

0

2.4.2 Address Register Direct Mode

In the address register direct mode, the operand is in the address register specified by the
effective address register field.

GENERATION: EA = An

ASSEMBLER SYNTAX: An

MODE: 001

REGISTER: n 3 S
ADDRESS REGISTER: An —={ OPERAND l
NUMBER OF EXTENSION WORDS: 0

MC68030 USER'S MANUAL

MOTOROLA
2-7

2.4.3 Address Register Indirect Mode

In the address register indirect mode, the operand is in memory and the address of the
operand is in the address register specified by the register field.

GENERATION: EA = (An)

ASSEMBLER SYNTAX: {An)

MODE: 010 31 0

REGISTER: n

ADDRESS REGISTER: An ='l MEMORY ADDRESS —l
3 ! 0

MEMORY ADDRESS: | OPERAND |

NUMBER OF EXTENSION WORDS: 0

2.4.4 Address Register Indirect with Postincrement Mode

In the address register indirect with postincrement mode, the operand is in memory, and
the address of the operand is in the address register specified by the register field. After
the operand address is used, it is incremented by one, two, or four depending on the size
of the operand: byte, word, or long word. Coprocessors may support incrementing for any
size of operand, up to 255 bytes. If the address register is the stack pointer and the operand
size is byte, the address is incremented by two rather than one to keep the stack pointer
aligned to a word boundary.

GENERATION: EA = (An)
An = An + SIZE
ASSEMBLER SYNTAX: {An) +
MODE: on
REGISTER: n 3t 0
ADDRESS REGISTER: An > MEMORY ADDRESS |
OPERAND LENGTH (1, 2, OR 4): =é><——
3 0
MEMORY ADDRESS: E OPERAND |

NUMBER OF EXTENSION WORDS: 0

2.4.5 Address Register Indirect with Predecrement Mode

In the address register indirect with predecrement mode, the operand is in memory and
the address of the operand is in the address register specified by the register field. Before
the operand address is used, it is decremented by one, two, or four depending on the
operand size: byte, word, or long word. Coprocessors may support decrementing for any
operand size up to 255 bytes. If the address register is the stack pointer and the operand
size is byte, the address is decreménted by two rather than one to keep the stack pointer
aligned to a word boundary.

MOTOROLA MC68030 USER'S MANUAL
2-8

GENERATION: An = An - SIZE
EA = (An)
ASSEMBLER SYNTAX: - (An)
MODE: 100 3 0
REGISTER: n
ADDRESS REGISTER: An > MEMORY ADDRESS |
[
OPERAND LENGTH (1, 2, OR 4): - 2
3 0
MEMORY ADDRESS: { OPERAND |

NUMBER OF EXTENSION WORDS: 0

2.4.6 Address Register Indirect with Displacement Mode

In the address register indirect with displacement mode, the operand is in memory. The
address of the operand is the sum of the address in the address register plus the sign-
extended 16-bit displacement integer in the extension word. Displacements are always
sign extended to 32 bits prior to being used in effective address calculations.

GENERATION; EA = (An) + d1g
ASSEMBLER SYNTAX: {d15.An)
MODE: 101
REGISTER: " 3 o
ADDRESS REGISTER: An =|' MEMORY ADDRESS]
3 15 0
DISPLACEMENT: E SIGN EXTENDED L INTEGER
31 0
MEMORY ADDRESS: | OPERAND 1

NUMBER OF EXTENSION WORDS: 1

MC68030 USER'S MANUAL MOTOROLA
2-9

2.4.7 Address Register Indirect with Index (8-Bit Displacement) Mode

This addressing mode requires one extension word that contains the index register indi-
cator and an 8-bit displacement. The index register indicator includes size and scale in-
formation. In this mode, the operand is in memory. The address of the operand is the sum
of the contents of the address register, the sign extended displacement value in the low
order eight bits of the extension word, and the sign extended contents of the index register
(possibly scaled). The user must specify the displacement, the address register, and the
index register in this mode.

GENERATION: EA = (An) + (X0} + dg
ASSEMBLER SYNTAX: (dg. An, X0 SIZE *SCALE)
MODE: 110
3 0
REGISTER: n
ADDRESS REGISTER: An »{ MEMORY ADDRESS |
3 7 0
DISPLACEMENT: [SIGN EXTENDED | INTEGER IL
3 0
INDEX REGISTER: [SIGN EXTENDED VALUE
SCALE: | SCALE VALUE
3 0
MEMORY ADDRESS: | OPERAND |

NUMBER OF EXTENSION WORDS: 1

2.4.8 Address Register Indirect with Index (Base Displacement) Mode

This addressing mode requires an index register indicator and an optional 16- or 32-bit
sign-extended base displacement. The index register indicator includes size and scaling
information. The operand is in memory. The address of the operand is the sum of the
contents of the address register, the scaled contents of the sign-extended index register,
and the base displacement.

In this mode, the address register, the index register, and the displacement are all optional.
If none is specified, the effective address is zero. This mode provides a data register indirect
address when no address register is specified and the index register is a data register (Dn).

GENERATION: EA = (An) + (Xn) + bd
ASSEMBLER SYNTAX: {bdAn, Xn. SIZE *SCALE)
MODE: 110 . 0
REGISTER: " K
ADDRESS REGISTER: A > MEMORY ADDRESS |
3 0
BASE DISPLACEMENT: | SIGN EXTENDED VALUE | +
31 0
INDEX REGISTER: | SIGN EXTENDED VALUE
SCALE: | SCALE VALUE
31 0
MEMORY ADDRESS: (OPERAND]
NUMBER OF EXTENSION WORDS: 1,2, OR 3
MOTOROLA MC68030 USER'S MANUAL

2-10

2.4.9 Memory Indirect Postindexed Mode

In this mode, the operand and its address are in memory. The processor calculates an
intermediate indirect memory address using the base register (An) and base displacement
(bd). The processor accesses a long word at this address and adds the index operand
(Xn.SIZE*SCALE) and the outer displacement to yield the effective address. Both displace-
ments and the index register contents are sigh extended to 32 bits.

In the syntax for this mode, brackets enclose the values used to calculate the intermediate
memory address. All four user-specified values are optional. Both the base and ‘outer
displacements may be null, word, or long word. When a displacement is omitted or an
element is suppressed, its value is taken as zero in the effective address calculation.

GENERATION: EA = (bd + An) + Xn.SIZE *SCALE + od
ASSEMBLER SYNTAX: ([bd.An] Xn.SIZE *SCALE.od) - 0
MODE: 110
ADDRESS REGISTER: An »{ MEMORY ADDRESS |
3 0
BASE DISPLACEMENT: [SIGN EXTENDED VALUE
3 0
r INDIRECT MEMORY ADDRESS |
. POTN;rS 10)
| VALUE AT INDIRECT MEMORY ADDRESS |
3 0
INDEX REGISTER: E SIGN EXTENDED VALUE
SCALE: | SCALE VALUE
31 0
OUTER DISPLACEMENT: | SIGN EXTENDED VALUE
31 0
EFFECTIVE ADDRESS: [OPERAND |

NUMBER OF EXTENSION WORDS: 1, 2,3,4,0R5

2.4.10 Memory Indirect Preindexed Mode

In this mode, the operand and its address are in memory. The processor calculates an
intermediate indirect memory address using the base register (An), a base displacement
(bd), and the index operand (Xn.SIZE * SCALE). The processor accesses a long word at
this address and adds the outer displacement to yield the effective address. Both displace-
ments and the index register contents are sign extended to 32 bits.

In the syntax for this mode, brackets enclose the values used to calculate the intermediate
memory address. All four user-specified values are optional. Both the base and outer

MC68030 USER'S MANUAL MOTOROLA
2-1

displacements may be null, word, or long word. When a displacement is omitted or an
element is suppressed, its value is taken as zero in the effective address calculation.

GENERATION: EA = (bd + An + Xn.SIZE *SCALE) + od
ASSEMBLER SYNTAX: {[bd, An, Xn.SIZE *SCALE] od) - 0
MODE: 10
ADDRESS REGISTER: An — MEMORY ADDRESS |
3 0
BASE DISPLACEMENT: | SIGN EXTENDED VALUE -} +
3 0
INDEX REGISTER; | SIGN EXTENDED VALUE
SCALE: | SCALE VALUE
3 0
[INDIRECT MEMORY ADDRESS |
POINTS TO
3 0
| VALUE AT INDIRECT MEMORY ADDRESS |
3 0
OUTER DISPLACEMENT: | SIGN EXTENDED VALUE 1 o+
3 0
EFFECTIVE ADDRESS: [OPERAND |

NUMBER OF EXTENSION WORDS: 1,2, 3,4 OR5

2.4.11 Program Counter Indirect with Displacement Mode

In this mode, the operand is in memory. The address of the operand is the sum of the
address in the program counter and the sign-extended 16-bit displacement integer in the
extension word. The value in the program counter is the address of the extension word.
The reference is a program space reference and is only allowed for reads (refer to 4.2
ADDRESS SPACE TYPES).

GENERATION: EA = (PC) + dyg
ASSEMBLER SYNTAX:)
MODE: m . 0
REGISTER: 010
PROGRAM COUNTER: =|' ADDRESS OF EXTENSION WORD |
3 15 0
. T “arn exrennen
DISPLACEMENT: L SGNEKTENDED _L INTEGER
3 0
MEMORY ADDRESS: [OPERAND |

NUMBER OF EXTENSION WORDS: 1

2.4.12 Program Counter Indirect with Index (8-Bit Displacement)

This mode is similar to the address register indirect with index (8-bit displacement) mode
described in 2.4.7 Address Register Indirect with Index (8-Bit Displacement Mode), but the
PC is used as the base register. The operand is in memory. The address of the operand is
the sum of the address in the program counter, the sign extended displacement integer

MOTOROLA MC68030 USER'S MANUAL
2-12

in the lower eight bits of the extension word, and the sized, scaled, and sign-extended
index operand. The value in the PC is the address of the extension word. This reference
is a program space reference and is only allowed for reads. The user must include the
displacement, the PC, and the index register when specifying this addressing mode.

GENERATION: EA = (PC) + (Xn) + dg
ASSEMBLER SYNTAX: (dg, PC, Xn.SIZE *SCALE)
MODE: m
3 0
REGISTER: on
PROGRAM COUNTER: ’ll ADDRESS OF EXTENSION WORD]
3 7 0
DISPLACEMENT: [SIGN EXTENDED l INTEGER Il »(+
T 0
INDEX REGISTER: L SIGN EXTENDED VALUE
SCALE: L SCALE VALUE
3 0
MEMORY ADDRESS: | OPERAND |

NUMBER OF EXTENSION WORDS: 1

2.4.13 Program Counter Indirect with Index (Base Displacement) Mode

This mode is similar to the address register indirect with index (base displacement) mode
described in 2.4.8 Address Register Indirect with Index (Base Displacement Mode), but the
PC is used as the base register. It requires an index register indicator and an optional 16-
or 32-bit sign-extended base displacement. The operand is in memory. The address of the
operand is the sum of the contents of the PC, the scaled contents of the sign-extended
index register, and the base displacement. The value of the PC is the address of the first
extension word. The reference is a program space reference and is only allowed for reads
(refer to 4.2 ADDRESS SPACE TYPES).

In this mode, the program counter, the index register, and the displacement are all optional.
However, the user must supply the assembler notation “ZPC"” (zero value is taken for the
PC) to indicate that the PC is not used. This allows the user to access the program space,
without using the PC in calculating the effective address. The user can access the program
space with a data register indirect access by placing ZPC in the instruction and specifying
a data register (Dn) as the index register.

GENERATION: EA = (PC) + (Xn) + bd
ASSEMBLER SYNTAX: {bd, PCXn. SIZE *SCALE)
MODE: i . 0
REGISTER: on
PROGRAM COUNTER: —{ ADDRESS OF EXTENSION WORD |
3 0
BASE DISPLACEMENT: L SIGN EXTENDED VALUE } +
3 0
INDEX REGISTER: [SIGN EXTENDED VALUE
SCALE: | SCALE VALUE
3 0
MEMORY ADDRESS: [OPERAND |
NUMBER OF EXTENSION WORDS: 1, 2, OR 3
MC68030 USER'S MANUAL MOTOROLA

2-13

2.4.14 Program Counter Memory Indirect Postindexed Mode

This mode is similar to the memory indirect postindexed mode described in 2.4.9 Memory
Indirect Postindexed Mode, but the PC is used as the base register. Both the operand and
operand address are in memory. The processor calculates an intermediate indirect memory
address by adding a base displacement (bd) to the PC contents. The processor accesses
a long word at that address and adds the scaled contents of the index register and the
optional outer displacement (od) to yield the effective address. The value of the PC used
in the calculation is the address of the first extension word. The reference is a program
space reference and is only allowed for reads (refer to 4.2 ADDRESS SPACE TYPES).

In the syntax for this mode, brackets enclose the values used to calculate the intermediate
memory address. All four user-specified values are optional. However, the user must supply
the assembler notation ZPC (zero value is taken for the PC) to indicate that the PC is not
used. This allows the user to access the program space, without using the PC in calculating
the effective address. Both the base and outer displacements may be null, word, or long
word. When a displacement is omitted or an element is suppressed, its value is taken as
zero in the effective address calculation.

GENERATION: EA = (bd + PC) + Xn.SIZE*SCALE + od
ASSEMBLER SYNTAX: {[bd,PC], Xn.SIZE *SCALE.od)
MODE: "
3 0
REGISTER FIELD: an
PROGRAM COUNTER: »{ ADDRESS OF EXTENSION WORD |
3 0
BASE DISPLACEMENT: | SIGN EXTENDED VALUE
31 0
L INDIRECT MEMORY ADDRESS |
POINTS TO
3) 0
L VALUE AT INDIRECT MEMORY ADDRESS IN PROGRAM SPACE |
3 0
INDEX REGISTER: | SIGN EXTENDED VALUE
f SCALE VALUE
3 0
OUTER DISPLACEMENT: | SIGN EXTENDED VALUE } +
31 0
EFFECTIVE ADDRESS: | OPERAND |
NUMBER OF EXTENSION WORDS: 1,2, 3, 4, OR 6

2.4.15 Program Counter Memory Indirect Preindexed Mode

This mode is similar to the memory indirect preindexed mode described in 2.4.10 Memory
Indirect Preindexed Mode, but the PC is used as the base register. Both the operand and
operand address are in memory. The processor calculates an intermediate indirect memory
address by adding the PC contents, a base displacement (bd), and the scaled contents of
an index register. The processor accesses a long word at that address and adds the optional
outer displacement (od) to yield the effective address. The value of the PC is the address

MOTOROLA MC68030 USER'S MANUAL
2-14

of the first extension word. The reference is a program space reference and is only allowed
for reads (refer to 4.2 ADDRESS SPACE TYPES).

in the syntax for this mode, brackets enclose the values used to calculate the intermediate

memory address. All four user-specified values are optional. However, the user must supply

the assembler notation ZPC (zero value is taken for the PC) to indicate that the PC is not

used. This allows the user to access the program space, without using the PC in calculating -2
the effective address. Both the base and outer displacements may be null, word, or long

word. When a displacement is omitted or an element is suppressed, its value is taken as

zero in the effective address calculation.

GENERATION: EA = (bd + PC + Xn.SIZE*SCALE) + od
ASSEMBLER SYNTAX: {[bd.PC.Xn SIZE *SCALEL od)
MODE: it . 0
::glg;f\nMF(I:%SNTEH: o o ADDRESS OF EXTENSION WORD |
3 0
BASE DISPLACEMENT: | SIGN EXTENDED VALUE |- »(+
3 0
INDEX REGISTER: | SIGN EXTENDED VALUE
SCALE VALUE
3 0
| INDIRECT MEMORY ADDRESS |
POINTS TO
3) 0
[VALUE AT INDIRECT MEMORY ADDRESS IN PROGRAM SPACE |
3 0
OUTER DISPLACEMENT: | SIGN EXTENDED VALUE } o+
3 0
EFFECTIVE ADDRESS: [OPERAND |

NUMBER OF EXTENSION WORDS: 1,23, 40R5

2.4.16 Absolute Short Address Mode

In this addressing mode, the operand is in memory and the address of the operand is in
the extension word. The 16-bit address is sign extended to 32 bits before it is used.

GENERATION: EA GIVEN

ASSEMBLER SYNTAX: (LW

MODE: m

REGISTER: 000 'f _________ 15 0

EXTENSION WORD: > SIGNEXTENDED MEMORY ADDRESS |
31 1] 0

MEMORY ADDRESS: | OPERAND |

NUMBER OF EXTENSION WORDS: 1

MC68030 USER'S MANUAL MOTOROLA
2-15

2.4.17 Absolute Long Address Mode

In this mode, the operand is in memory and the address of the operand occupies the two
extension words following the instruction word in memory. The first extension word con-
tains the high order part of the address; the low order part of the address is the second
extension word.

GENERATION: EA GIVEN

ASSEMBLER SYNTAX: o)L

MODE: m " 0

REGISTER: 001

FIRST EXTENSION WORD: =l' ADDRESS HIGH l

15 0

SECOND EXTENSION WORD: =|r ADDRESS LOW]
s Y Y 0
[CONCATENATION]
31 Y 0

MEMORY ADORESS: | OPERAND J

NUMBER OF EXTENSION WORDS: 2

2.4.18 Immediate Data
In this addressing mode, the operand is in one or two extension words:

Byte Operation
Operand is in the low order byte of the extension word

Word Operation
Operand is in the extension word

Long Word Operation
The high order 16 bits of the operand are in the first extension word; the low order
16 bits are in the second extension word.

Coprocessor instructions can support immediate data of any size. The instruction word is
followed by as many extension words as are required.

Generation: Operand given

Assembler Syntax: #xxx

Mode Field: m

Register Field: 100

Number of Extension Words: 1 or 2, except for coprocessor instructions

2.5 EFFECTIVE ADDRESS ENCODING SUMMARY

Most of the addressing modes use one of the three formats shown in Table 2-1. The single
effective address instruction is in the format of the instruction word. The encoding of the
mode field of this word selects the addressing mode. The register field contains the general
register number or a value that selects the addressing mode when the mode field contains
“111". Table 2-3 shows the encoding of these fields. Some indexed or indirect modes use
the instruction word followed by the brief format extension word. Other indexed or indirect

MOTOROLA MC68030 USER'S MANUAL
2-16

Table 2-1. Effective Address Specification Formats
Single Effective Address Instruction Format
% 14 13 12 n 1w 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS
MODE REGISTER

X X X X X X X X X X

Brief Format Extension Word
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

[oa] Recister SCALE | 0 | DISPLACEMENT]

Full Format Extension Word(s)
15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0

oa | mecisteR [wa | scate | 1 [Bs | s | mosize [o] s
BASE DISPLACEMENT (0, 1, OR 2 WORDS)
OUTER DISPLACEMENT (0, 1, OR 2 WORDS)
Field Definition Field Definition
Instruction: BS Base Register Suppress:
Register General Register Number 0=Base Register Added
Extensions: 1=Base Register Suppressed
Register Index Register Number IS Index Suppress:
D/A Index Register Type 0=Evaluate and Add Index Operand
0=Dn 1=Suppress Index Operand
1=An BD SIZE Base Displacement Size:
WiL Word/Long Word Index Size 00 =Reserved
0=Sign Extended Word 01 =Null Displacement
1=Long Word 10 =Word Displacement
Scale Scale Factor 11=Long Displacement
00=1 ns Index/Indirect Selection:
01=2 Indirect and Indexing Operand Deter-
10=4 mined in Conjunction with Bit 6, Index
11=8 Suppress

modes consist of the instruction word and the full format of extension words. The longest
instruction for the MC68030 contains ten extension words. It is a MOVE instruction with
full format extension words for both the source and destination effective addresses, and
with 32-bit base displacements and 32-bit outer displacements for both addresses. How-
ever, coprocessor instructions can have any number of extension words. Refer to the
coprocessor instruction formats in SECTION 10 COPROCESSOR INTERFACE DESCRIPTION.

For effective addresses that use the full format, the index suppress (IS) bit and the index/
indirect selection (I/IS) field determine the type of indexing and indirection. Table 2-2 lists
the indexing and indirection operations corresponding to all combinations of IS and l/IS
values.

Effective address modes are grouped according to the use of the mode. They can be
classified as follows:
Data A data addressing effective address mode is one that refers to data operands.

Memory A memory addressing effective address mode is one that refers to memory
operands.

MC68030 USER'S MANUAL MOTOROLA

2-17

Table 2-2. IS-I/IS Memory Indirection Encodings

IS Index/Indirect Operation

0 000 No Memory Indirection

0 001 Indirect Preindexed with Null Outer Displacement
0 010 Indirect Preindexed with Word Outer Displacement
0 on Indirect Preindexed with Long Outer Displacement
0 100 Reserved

0 101 Indirect Postindexed with Null Outer Displacement
0 110 Indirect Postindexed with Word Outer Displacement
0 m Indirect Postindexed with Long Outer Displacement
1 000 No Memory Indirection

1 001 Memory Indirect with Null Outer Displacement

1 010 Memory Indirect with Word Outer Displacement

1 011 Memory Indirect with Long Outer Displacement

1 100-111 Reserved

Alterable An alterable addressing effective address mode is one that refers to alterable
(writable) operands.

Control A control addressing effective address mode is one that refers to memory
operands without an associated size.

Table 2-3 shows the categories to which each of the effective addressing modes belong.

These categories are sometimes combined, forming new categories that are more restric-
tive. Two combined classifications are alterable memory or data alterable. The former
refers to those addressing modes that are both alterable and memory addresses, and the
latter refers to addressing modes that are both data and alterable.

2.6 PROGRAMMER'S VIEW OF ADDRESSING MODES

Extensions to the indexed addressing modes, indirection, and full 32-bit displacements
provide additional programming capabilities for both the MC68020 and the MC68030. This
section describes addressing techniques that exploit these capabilities and summarizes
the addressing modes from a programming point of view.

Several of the addressing techniques described in this section use data registers and
address registers interchangeably. While the MC68030 provides this capability, its per-
formance has been optimized for addressing with address registers. The performance of
a program that uses address registers in address calculations is superior to that of a
program that similarly uses data registers. The specification of addresses with data registers
should be used sparingly (if at all), particularly in programs that require maximum per-
formance.

2.6.1 Addressing Capabilities

In both the MC68020 and the MC68030, setting the base register suppress (BS) bit in the
full format extension word (Table 2-1) suppresses use of the base address register in

MOTOROLA MC68030 USER’S MANUAL
2-18

Table 2-3. Effective Addressing Mode Categories

Address Modes Mode | Register Data Memory Control | Alterable |Assembler Syntax

Data Register Direct 000 reg. no. X — — X Dn
Address Register Direct 001 reg. no. — —_ —_ X An
Address Register Indirect 010 reg. no. X X X X (An)
Address Register Indirect 2

with Postincrement 011 reg. no. X X — X (An) +
Address Register Indirect

with Predecrement 100 reg. no. X X — X ~(An)
Address Register Indirect '

with Displacement 101 reg. no. X X X X (d16.An)
Address Register Indirect with

Index (8-Bit Displacement) 110 reg. no. X X X X (dg,An,Xn)
Address Register Indirect with

Index (Base Displacement) 110 reg. no. X X X X (bd,An,Xn)
Memory Indirect Postindexed 110 reg. no. X X X X ([bd,An],Xn,od)
Memory Indirect Preindexed 110 reg. no. X X X X ([bd,An,Xn],o0d)
Absolute Short 111 000 X X X X (xxx).W
Absolute Long 11 001 X X X X (xxx).L
Program Counter Indirect

with Displacement 11 010 X X X — (d16.PC)
Program Counter Indirect with

Index (8-Bit) Displacement 1M oM X X X — (dg,PC,Xn)
Program Counter Indirect with

Index (Base Displacement) m 011 X X X — (bd,PC,Xn)
PC Memory Indirect

Postindexed 1M1 011 X X X — ([bd,PC],Xn,od
PC Memory Indirect

Preindexed m o1 X X X — ([bd,PC,Xn],0d)
Immediate m 100 X X — — #(data)

calculating the effective address. This allows any index register to be used in place of the
base register. Since any of the data registers can be index registers, this provides a data
register indirect form (Dn). The mode could be called register indirect (Rn), since either a
data register or an address register can be used. This addressing mode is an extension to
the M68000 family because the MC68030 and MC68020 can use both the data registers
and the address registers to address memory. The capability of specifying the size and
scale of an index register (Xn.SIZE*SCALE) in these modes provides additional addressing
flexibility. Using the SIZE parameter, either the entire contents of the index register can
be used, or the least significant word can be sign extended to provide a 32-bit index value
(refer to Figure 2-4).

o VLS)

N 16 15 0

o | V//77777777777777777]

- USED IN ADDRESS CALCULATION

Figure 2-4. Using SIZE in the Index Selection

MC68030 USER'S MANUAL MOTOROLA
2-19

For both the MC68020 and the MC68030, the register indirect modes can be extended
further. Since displacements can be 32 bits wide, they can represent absolute addresses
or the results of expressions that contain absolute addresses. This allows the general
register indirect form to be (bd,Rn), or (bd,An,Rn) when the base register is not suppressed.
Thus, an absolute address can be directly indexed by one or two registers (refer to Figure

2-5). SYNTAX: (bd. An, Rn)

/L1111

/ ¥ /

Figure 2-5. Using Absolute Address with Indexes

Scaling provides an optional shifting of the value in an index register to the left by zero,
one, two, or three bits before using it in the effective address calculation (the actual value
in the index register remains unchanged). This is equivalent to multiplying the register by
one, two, four, or eight for direct subscripting into an array of elements of corresponding
size using an arithmetic value residing in any of the 16 general registers. Scaling does not
add to the effective address calculation time. -However, when combined with the appro-
priate derived modes, it produces additional capabilities. Arrayed structures can be ad-
dressed absolutely and then subscripted, (bd,Rn*scale), for example. Optionally, an address
register that contains a dynamic displacement can be included in the address calculation
(bd,An,Rn*scale). Another variation that can be derived is (An,Rn*scale). In the first case,
the array address is the sum of the contents of a register and a displacement, as shown
in Figure 2-6. In the second example, An contains the address of an array and Rn contains
a subscript.

The memory indirect addressing modes use a long word pointer in memory to access an
operand. Any of the modes previously described can be used to address the memory
pointer. Because the base and index registers can both be suppressed, the displacement
acts as an absolute address, providing indirect absolute memory addressing (refer to Figure
2-7).

The outer displacement (od) available in the memory indirect modes is added to the pointer
in memory. The syntax for these modes is ([bd,An],Xn,od) and ([bd,An,Xn],od). When the
pointer is the address of a structure in memory and the outer displacement is the offset
of an item in the structure, the memory indirect modes can access the item efficiently (refer
to Figure 2-8).

MOTOROLA . MC68030 USER'S MANUAL
2-20

SYNTAX: MOVE.W (A5,A6.L*SCALE),(A7)
WHERE:

A5 = ADDRESS OF ARRAY STRUCTURE
A6 = INDEX NUMBER OF ARRAY ITEM
A7 = STACK POINTER

SIMPLE ARRAY RECORD OF 2 WORDS

15 i 0) (SCALE = 2) .
R I
e AN

/ / / /

RECORD OF 4 WORDS RECORD OF 8 WORDS
(SCALE = 4) (SCALE = 8)

0

BE
N

NOTE: Regardless of array structure, software increments index by the Z Z
appropriate amount to point to next record.

Figure 2-6. Addressing Array items

SYNTAX: ([bd])

b ——— POINTER L DATA ITEM

/ / / /

Figure 2-7. Using Indirect Absolute Memory Addressing

MC68030 USER’'S MANUAL MOTOROLA
2-21

Th— SYNTAX: ([An].od)

MEMORY STRUCTURE

Ay ————» POINTER

DATA ITEM

/ / / /

Figure 2-8. Accessing an Item in a Structure Using Pointer

Memory indirect addressing modes are used with a base displacement in five basic forms:
1. [bd,An] — Indirect, suppressed index register
2. ([bd,An,Xn]) — Preindexed indirect
3. ([bd,An],Xn) — Postindexed indirect
4. ([bd,An,Xn],od) — Preindexed indirect with outer displacement
5. ([bd,An],Xn,od — Postindexed indirect with outer displacement

The indirect, suppressed index register mode, Figure 2-9, uses the contents of register An
as an index to the pointer located at the address specified by the displacement. The actual
data item is at the address in the selected pointer.

SYNTAX: ([bd.An))

POINTER LIST

bd ———

POINTER L DATA ITEM

/ / /

Figure 2-9. Indirect Addressing, Suppressed Index Register

The preindexed indirect mode, Figure 2-10, uses the contents of An as an index to the
pointer list structure at the displacement. Register Xn is the index to the pointer, which
contains the address of the data item.

MOTOROLA MC68030 USER'S MANUAL
2-22

SYNTAX: ([bd.An.Xn))

POINTER LIST

bd ————— I

l
| DATA ITEM

/ / / /

Figure 2-10. Preindexed Indirect Addressing

The postindexed indirect mode, Figure 2-11, uses the contents of An as an index to the
pointer list at the displacement. Register Xn is used as an index to the structure of data
items located at the address specified by the pointer. Figure 2-12 shows the preindexed
indirect addressing with outer displacement mode.

SYNTAX: ([bd.An}.Xn)

POINTER LIST POST-INDEXED STRUCTURE
bd ————»1
An |
Xn
POINTER DATA ITEM

/ / / /

Figure 2-11. Postindexed Indirect Addressing

The postindexed indirect mode with outer displacement, Figure 2-13, uses the contents of
An as an index to the pointer list at the displacement. Register Xn is used as an index to
the structure of data structures at the address in the pointer. The outer displacement (od)
is the displacement of the data item within the selected data structure.

2.6.2 General Addressing Mode Summary

The addressing modes described in the previous section are derived from specific com-
binations of options in the indexing mode, or a selection of two alternate addressing modes.
For example, the addressing mode called register indirect (Rn) assembles as the address

MC68030 USER’'S MANUAL MOTOROLA
2-23

SYNTAX: ([bd. An,Xn].od)

POINTER LIST

bd

An

:

Xn

:

POINTER

/

/

STRUCTURE

Y

DATA ITEM

/

Figure 2-12. Preindexed Indirect with Outer Displacement

SYNTAX: ([bd,An].Xn,od)
POST-INDEXED STRUCTURE

POINTER LIST WITH OUTER DISPLACEMENT
bd ———>>
od
An ‘
[
Xn
POINTER DATA ITEM

/ / /

Figure 2-13. Postindexed Indirect Addressing with Outer Displacement

register indirect if the register is an address register. If Rn is a data register, the assembler
uses the address register indirect with index mode using the data register as the indirect
register and suppresses the address register by setting the base suppress bit in the effective
address specification. Assigning an address register as Rn provides higher performance
than using a data register as Rn. Another case is (bd,An) which selects an addressing mode
depending on the size of the displacement. If the displacement is 16 bits or less, the address
register indirect with displacement mode (d16,An) is used. When a 32-bit displacement is
required, the address register indirect with index (bd,An,Xn) is used with the index register
suppressed.

It is useful to examine the derived addressing modes available to a programmer (without
regard to the MC68030 effective addressing mode actually encoded) because the program-
mer need not be concerned about these decisions. The assembler can choose the more
efficient addressing mode to encode.

MOTOROLA MC68030 USER'S MANUAL

2-24

In the list of derived addressing modes that follows, common programming terms are
used. These definitions apply:

pointer — Long word value in a register or in memory which represents an

address.
base — A pointer combined with a displacement to represent an address.
index — A constant or variable value added into an effective address calcula-

tion. A constant index is a displacement. A variable index is always
represented by a register containing the value.

disp — Displacement, a constant index.

subscript — The use of any of the data or address registers as a variable index
subscript into arrays of items 1, 2, 4, or 8 bytes in size.

relative — An address calculated from the program counter contents. The ad-
dress is position independent and is in program space. All other ad-
dresses but psaddr are in data space.

addr — An absolute address.

psaddr — An absolute address in program space. All other addresses but PC
relative are in data space.

preindexed — All modes from absolute address through program counter relative.
postindexed — Any of the following modes:
addr — Absolute address in data space.
psaddr,ZPC =~ — Absolute address in program space.
An — Register pointer.
disp,An — Register pointer with constant displacement.
addr,An — Absolute address with single variable name.
disp,PC — Simple PC relative.

The addressing modes defined in programming terms which are derivations of the ad-
dressing modes provided by the MC68030 architecture are:

Immediate Data — #data:
The data is a constant located in the instruction stream.

Register Direct — Rn:
The contents of a register is the operand.

Scanning Modes:
(An)+
Address register pointer automatically incremented after use.
—(An)
Address register pointer automatically decremented before use.

MC68030 USER'S MANUAL MOTOROLA
2-25

Absolute Address:
(addr)
Absolute address in data space.

(psaddr,ZPC)
Absolute address in program space. Symbol ZPC suppresses the PC, but retains PC-
relative mode to directly access the program space.

Register Pointer:
(Rn)
Register as a pointer.
(disp,Rn)
Register as a pointer with constant index (or base address).

Indexing:
(An,Rn)
Register pointer An with variable index Rn.
{disp,An,Rn)
Register pointer with constant and variable index (or a base address with a variable
index).

(addr,Rn)
Absolute address with variable index.

(addr,An,Rn)
Absolute address with 2 variable indexes.

Subscripting:

(An,Rn*scale)
Address register pointer subscript.

(disp,An,Rn*scale)
Address register pointer subscript with constant displacement (or base address with
subscript).

(addr, Rn*scale)
Absolute address with subscript.

(addr,An,Rn*scale)
Absolute address subscript with variable index.

Program Relative:
(disp,PC)
Simple PC relative.
(disp,PC,Rn)
PC relative with variable index.
(disp,PC,Rn*scale)
PC relative with subscript.

Memory Pointer:
([preindexed])
Memory pointer directly to data operand.

([preindexed],disp)
Memory pointer as base with displacement to data operand.

MOTOROLA MC68030 USER'S MANUAL
2-26

([postindexed],Rn)
Memory pointer with variable index.

([postindexed],disp,Rn)
Memory pointer with constant and variable index.

([postindexed],Rn*scale)

Memory pointer subscripted.
([postindexed], disp, Rn*scale)

Memory pointer subscripted with constant index.

2.7 M68000 FAMILY ADDRESSING COMPATIBILITY

Programs can be easily transported from one member of the M68000 processor family to
another in an upward compatible fashion. The user object code of each early member of
the family is upward compatible with newer members, and can be executed on the newer
microprocessor without change. The address extension word(s) are encoded with the
information that allows the MC68020/MC68030 to distinguish the new address extensions
to the basic M68000 Family architecture. The address extension words for the early MC68000/
008/010 microprocessors and for the newer 32-bit MC68020/MC68030 microprocessors are
shown in Figure 2-14. Notice the encoding for SCALE used by the MC68020/MC68030 is a
compatible extension of the M68000 architecture. A value of 0 for SCALE is the same
encoding for both extension words; hence software that uses this encoding is both upward
and downward compatible across all processors in the product line. However, the other
values of SCALE are not found in both extension formats; so, while software can be easily
migrated in an upward compatible direction, only non-scaled addressing is supported in
a downward fashion. If the MC68000 were to execute an instruction that encoded a scaling
factor, the scaling factor would be ignored and not access the desired memory address.
The earlier microprocessors have no knowledge of the extension word formats imple-
mented by newer processors, and while they do detect illegal instructions, they do not
decode invalid encodings of the extension words as exceptions.

MC68000/MC68008/MC68010 Address
Extension Word

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0
[oa] reosteR [wi[o [o [o | DISPLACEMENT INTEGER
D/A: 0 = Data Register Select
1 = Address Register Select
WiL: 0 = Word-Sized Operation
1 = Long-Word-Sized Operation

MC68020/MC68030 Address
Extension Word

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0
[o] REGISTER | wi | scate [o | DISPLACEMENT INTEGER |
D/A: 0 = Data Register Select SCALE: 00 = Scale Factor 1 (Compatible with MC68000)
1 = Address Register Select 01 = Scale Factor 2 (Extension to MC68000)
WIL: 0 = Word-Sized Operation 10 = Scale Factor 4 (Extension to MC68000)
1 = Long-Word-Sized Operation 11 = Scale Factor 8 (Extension to MC68000)

Figure 2-14. M68000 Family Address Extension Words

MC68030 USER'S MANUAL MOTOROLA
2-27

2.8 OTHER DATA STRUCTURES

Stacks and queues are widely used data structures. The MC68030 implements a system
stack and also provides instructions that support the use of user stacks and queues.

2.8.1 System Stack

Address register seven (A7) is used as the system stack pointer (SP). Any of the three
system stack registers is active at any one time. The M and S bits of the status register
determine which stack pointer is used. When S=0 indicating user mode (user privilege
level), the user stack pointer (USP) is the active system stack pointer and the master and
interrupt stack pointers cannot be referenced. When S=1 indicating supervisor mode (at
supervisor privilege level) and M =1, the master stack pointer (MSP) is the active system
stack pointer. When S=1 and M =0, the interrupt stack pointer (ISP) is the active system
stack pointer. This mode is the MC68030 default mode after reset and corresponds to the
MC68000, MC68008, and MC68010 supervisor mode. The term supervisor stack pointer
(SSP) refers to the master or interrupt stack pointers, depending on the state of the M bit.
When M =1, the term SSP (or A7) refers to the MSP address register. When M =0, the term
SSP (or A7) refers to the ISP address register. The active system stack pointer is implicitly
referenced by all instructions that use the system stack. Each system stack fills from high
to low memory.

A subroutine call saves the program counter on the active system stack, and the return
restores it from the active system stack. During the processing of traps and interrupts, both
the program counter and the status register are saved on the supervisor stack (either master
or interrupt). Thus, the execution of supervisor level code is independent of user code and
the condition of the user stack; conversely, user programs use the user stack pointer
independently of supervisor stack requirements.

In order to keep data on the system stack aligned for maximum efficiency, the active stack
pointer is automatically decremented or incremented by two for all byte-size operands
moved to or from the stack. In long-word-organized memory, aligning the stack pointer
on a long word address significantly increases the efficiency of stacking exception frames,
subroutine calls and returns, and other stacking operations.

2.8.2 User Program Stacks

The user can implement stacks with the address register indirect with postincrement and
predecrement addressing modes. With address register An (n=0 through 6), the user can
implement a stack that is filled either from high memory to low memory or from low
memory to high. Important considerations are:

® Use the predecrement mode to decrement the register before its contents are used
as the pointer to the stack.

® Use the postincrement mode to increment the register after its contents are used as
the pointer to the stack.

® Maintain the stack pointer correctly when byte, word, and long word items are mixed
in these stacks.

MOTOROLA MC68030 USER'S MANUAL
2-28

To implement stack growth from high to low memory, use:
—(An) to push data on the stack,
(An)+ to pull data from the stack.

For this type of stack, after either a push or a pull operation, register An points to the top
item on the stack. This is illustrated as:

LOW MEMORY
(FREE)
An TOP OF STACK

{ : /

BOTTOM OF STACK
HIGH MEMORY

To implement stack growth from low to high memory, use:
(An)+ to push data on the stack,
—(An) to pull data from the stack.

In this case, after either a push or pull operation, register An points to the next available
space on the stack. This is illustrated as:.

LOW MEMORY
BOTTOM GF STACK

/ : /

TOP OF STACK
An ——p (FREE)
HIGH MEMORY

2.8.3 Queues

The user can implement queues with the address register indirect with postincrement or
predecrement addressing modes. Using a pair of address registers (two of AQ through A6),
the user can implement a queue which is filled either from high memory to low memory,
or from low memory to high. Two registers are used because queues are pushed from
one end and pulled from the other. One register, An, contains the “put” pointer; the other,
Am, the “get” pointer.

To implement growth of the queue from low to high memory, use:
(An)+ to put data into the queue,
(Am)+ to get data from the queue.

After a “put’” operation, the “put’” address register points to the next available space in
the queue, and the unchanged “get’”” address register points to the next item to be removed

MC68030 USER'S MANUAL MOTOROLA
2-29

from the queue. After a “get’’ operation, the “‘get” address register points to the next item
to be removed from the queue, and the unchanged “put” address register points to the
next available space in the queue. This is illustrated as:

LOW MEMORY
LAST GET (FREE)
2 GET (Am)+ —»] NEXT GET
°
.
[]
LAST PUT
PUT (An)+ ——» (FREE)
HIGH MEMORY

To implement the queue as a circular buffer, the relevant address register should be checked
and adjusted, if necessary, before performing the “put’’ or “get”” operation. The address
register is adjusted by subtracting the buffer length (in bytes) from the register.

To implement growth of the queue from high to low memory, use:
—(An) to put data into the queue,
—(Am) to get data from the queue.

After a “put” operation, the “put”’ address register points to the last item placed in the
queue, and the unchanged “get’” address register points to the last item removed from
the queue. After a ““get” operation, the “‘get’” address register points to the last item
removed from the queue, and the unchanged “put” address register points to the last item
placed in the queue. This is illustrated as:

LOW MEMORY
(FREE)
PUT -(An) —> LAST PUT
°
o
°
NEXT GET
GET ~(Am) ——>»] LAST GET (FREE)
HIGH MEMORY

To implement the queue as a circular buffer, the “‘get” or “put” operation should be
performed first, and then the relevant address register should be checked and adjusted, if

necessary. The address register is adjusted by adding the buffer length (in bytes) to the
register contents.

MOTOROLA MC68030 USER'S MANUAL
2-30

SECTION 3
INSTRUCTION SET

This section describes the set of instructions provided in the MC68030 microprocessor,
and shows how to use them. It includes descriptions of the instruction format and the
operands used by instructions. After a summary of the instructions by category, the section
provides a detailed description of the operation of each instruction, in alphabetical order.
Programming information for specific instructions is next, followed by a description of
condition code computation and an instruction format summary.

3.1 INSTRUCTION FORMAT

All instructions consist of at least one word; some have as many as 11 words as shown
in Figure 3-1. The first word of the instruction, called the operation word, specifies the
length of the instruction and the operation to be performed. The remaining words, called
extension words, further specify the instruction and operands. These words may be im-
mediate operands, extensions to the effective address mode specified in the operation
word, branch displacements, bit number or bit field specifications, special register speci-
fications, trap operands, pack/unpack constants, argument counts, or coprocessor condition
codes.

Besides the operation code, which specifies the function to be performed, an instruction
defines the location of every operand for the function. Instructions specify an operand
location in one of three ways:

® Register Specification — A register field of the instruction contains the number of the

register.

o Effective Address — An effective address field of the instruction contains address mode
information.

® Implicit Reference — The definition of an instruction implies the use of specific reg-
isters.
15 0

OPERATION WORD
(ONE WORD, SPECIFIES OPERATION AND MODES)

SPECIAL OPERAND SPECIFIERS
(IF ANY, ONE OR TWO WORDS)

IMMEDIATE OPERAND OR SOURCE EFFECTIVE ADDRESS EXTENSION
(IF ANY, ONE TO FIVE WORDS)

DESTINATION EFFECTIVE ADDRESS EXTENSION
(IF ANY, ONE TO FIVE WORDS)

Figure 3-1. Instruction Word General Format

MC68030 USER'S MANUAL MOTOROLA
3-1

The register field within an instruction specifies the register to be used. Other fields within
the instruction specify whether the register selected is an address or data register and how
the register is to be used. Section 2 contains detailed register information.

Effective address information includes the registers, displacements, and absolute ad-

dresses for the effective address modes. Section 2 describes the effective address modes
in detail.

Certain instructions are operations for specific registers. These instructions imply the re-
quired registers.

3.2 INSTRUCTION SUMMARY

The instructions form a set of tools to perform the following operations:

Data Movement Bit Field Manipulation

Integer Arithmetic Binary Coded Decimal Arithmetic
Logical Program Control

Shift and Rotate System Control

Bit Manipulation Multiprocessor Communications

The complete range of instruction capabilities combined with the addressing modes de-
scribed previously provide flexibility for program development.

The following notations are used in this Section. In the operand syntax statements of the
instruction descriptions, the operand on the right is the destination operand.

An = any address register, A0-A7
Dn = any data register, D0-D7
Rn = any address or data register
CCR =condition code register (lower byte of status register)
cc = condition codes from CCR
SR = status register
cpcc = coprocessor condition code
SP = active stack pointer
USP = user stack pointer
ISP = supervisor/interrupt stack pointer
MSP = supervisor/master stack pointer
SSP = supervisor (master or interrupt) stack pointer
DFC = destination function code register
SFC = source function code register
Rc = control register (VBR, SFC, DFC, CACR, CAAR)
MRc = MMU register (SRP, CRP, TC, TTO, TT1)
MMUSR = MMU status register
d =displacement; d1g is a 16-bit displacement
(ea) = effective address
list = list of registers, for example, D0-D3
#(data) =immediate data; a literal integer
{offset:width} = bit field selection
label = assembly program label
[7] = bit 7 of an operand
[31:24] = bits 31 through 24 of operand (high order byte of a register)

e __|
MOTOROLA MC68030 USER'S MANUAL
3-2

X =extend (X) bit in CCR
N = negative (N) bit in CCR
Z=Zero (Z) bit in CCR
V = overflow (V) bit in CCR
C=carry (C) bit in CCR
+ =arithmetic addition or post-increment indicator
— =arithmetic subtraction or pre-decrement indicator
* = arithmetic multiplication
/ = arithmetic division or conjunction symbol
~ =invert; operand is logically complemented
A =logical AND
V =logical OR
® =logical exclusive OR
Dc = data register, D0-D7 used during compare
Du = data register, D0-D7 used during update
Dr, Dg = data registers, remainder or quotient of divide
Dh, DI =data registers, high or low order 32 bits of product
MSW = most significant word
LSW = least significant word
MSB = most significant bit
FC =function code
{R/W} =read or write indicator
[An] = address extensions

3.2.1 Data Movement Instructions

The MOVE instruction with its associated addressing modes is the basic means of trans-
ferring and storing addresses and data. MOVE instructions transfer byte, word, and long
word operands from memory to memory, memory to register, register to memory, and
register to register. Address movement instructions (MOVE or MOVEA) transfer word and
long word operands and ensure that only valid address manipulations are executed. In
addition to the general MOVE instructions there are several special data movement in-
structions: move multiple registers (MOVEM), move peripheral data (MOVEP), move quick
(MOVEQ), exchange registers (EXG), load effective address (LEA), push effective address
(PEA), link stack (LINK), and unlink stack (UNLK). Table 3-1 is a summary of the data
movement operations.

3.2.2 Integer Arithmetic Instructions

The arithmetic operations include the four basic operations of add (ADD), subtract (SUB),
multiply (MUL), and divide (DIV) as well as arithmetic compare (CMP, CMPM, CMP2), clear
(CLR), and negate (NEG). The instruction set includes ADD, CMP, and SUB instructions for
both address and data operations with all operand sizes valid for data operations. Address
operands consist of 16 or 32 bits. The clear and negate instructions apply to all sizes of
data operands.

Signed and unsigned MUL and DIV instructions include:

® Word multiply to produce a long word product
® | ong word multiply to produce a long word or quad word product

MC68030 USER'S MANUAL MOTOROLA
3-3

Table 3-1. Data Movement Operations

Instruction Operand Syntax | Operand Size Operation

EXG Rn, Rn 32 Rn ¢ Rn

LEA (ea),An 32 (ea) » An

LINK An,#(d) 16, 32 Sp-4 » SP; An » (SP); SP# An; SP+d » SP

MOVE (ea),(ea) 8, 16, 32 source # destination

MOVEA (ea),An 16,32 » 32

MOVEM list,(ea) 16, 32 listed registers § destination

(ea),list 16, 32 # 32 source # listed registers

MOVEP " On, (d16.An) 16,32 Dn[31:24] » (An+d); Dn[23:16] # (An+d+2);

Dn[15:8] » (An+d+4); Dn[7:0] (An+d+6)
(d16,An),Dn (An+d) # Dn[31:24]; (An+d+2) » Dn [23:16];

(An+d+4) » Dn[15:8]; (An+d+6) » Dn[7:0]

MOVEQ #(data),Dn 8932 immediate data » destination

PEA (ea) 32 SP-4 » SP; (ea) » (SP)

UNLK An 32 An » SP; (SP) # An; SP+4 » SP

® Division of along word dividend by a word divisor (word quotient and word remainder)

® Division of a long word or quad word dividend by a long word divisor (long word
quotient and long word remainder)

A set of extended instructions provides multi-precision and mixed size arithmetic. These
instructions are: add extended (ADDX), subtract extended (SUBX), sign extend (EXT), and
negate binary with extend (NEGX). Refer to Table 3-2 for a summary of the integer arith-
metic operations.

3.2.3 Logical Instructions

The logical operation instructions (AND, OR, EOR, and NOT) perform logical operations
with all sizes of integer data operands. A similar set of immediate instructions (ANDI, ORI,
and EORI) provide these logical operations with all sizes of immediate data. The TST
instruction compares the operand with zero arithmetically, placing the result in the con-
dition code register.

Table 3-3 summarizes the logical operations.

3.2.4 Shift and Rotate Instructions

The arithmetic shift instructions ASR and ASL and logical shift instructions LSR and LSL
provide shift operations in both directions. The ROR, ROL, ROXR, and ROXL instructions
perform rotate (circular shift) operations, with and without the extend bit. All shift and
rotate operations can be performed on either registers or memory.

Register shift and rotate operations shift all operand sizes. The shift count may be specified
in the instruction operation word (to shift from 1-8 places) or in a register (modulo 64 shift
count).

MOTOROLA MC68030 USER'S MANUAL
3-4

Table 3-2. Integer Arithmetic Operations

Instruction Operand Syntax Opérand Size Operation
ADD Dn,(ea) 8, 16, 32 source + destination § destination
(ea),Dn 8, 16, 32
ADDA (ea),An 16, 32
ADDI #(data),(ea) 8, 16, 32 immediate data + destination » destination
ADDQ #(data),(ea) 8,16, 32
ADDX Dn,Dn 8, 16, 32 source + destination + X # destination
—{An), - (An) 8, 16, 32
CLR (ea) 8, 16, 32 0 » destination 3
CwmP (ea),Dn 8, 16, 32 destination — source
CMPA (ea),An 16, 32
CMPI #(data),(ea) 8, 16, 32 destination — immediate data
CMPM (An) +,(An) + 8, 16, 32 destination — source
CMP2 (ea),Rn 8, 16, 32 lower bound (= Rn (= upper bound
DIVS/DIVU (ea),Dn 32/16 § 16:16 | destination/source » destination (signed or unsigned)
(ea),Dr:Dq 64/32 % 32:32
(ea),Dq 32/32 9 32
DIVSU/DIVUL (ea),Dr:Dq 32/32 # 32:32
EXT Dn 8916 sign extended destination # destination
Dn 16 32
EXTB Dn 8932
MULS/MULU (ea),Dn 16x 16 $ 32 [source*destination » destination (signed or unsigned)
(ea),DI 32x32 932
(ea),Dh:DI 32x329 64
NEG (ea) 8, 16, 32 0 — destination » destination
NEGX (ea) 8, 16, 32 0 - destination — X » destination
SuB (ea),Dn 8, 16, 32 destination = source # destination
Dn,(ea) 8, 16, 32
SUBA (ea),An 16, 32
susl #(data),(ea) 8, 16, 32 destination — immediate data » destination
suBQ #(data),(ea) 8, 16, 32
SUBX Dn,Dn 8, 16, 32 destination — source — X # destination
—(An), - (An) 8, 16, 32
Table 3-3. Logical Operations
Instruction Operand Syntax | Operand Size Operation
AND (ea),Dn 8, 16, 32 source A destination # destination
Dn,(ea) 8, 16, 32
ANDI #(data),(ea) 8, 16, 32 immediate data A destination # destination
EOR Dn,{ea) 8, 16, 32 source ® destination » destination
EORI #(data),(ea) 8, 16, 32 immediate data @ destination # destination
NOT (ea) 8, 16, 32 ~ destination » destination
OR (ea),Dn 8, 16, 32 source V destination » destination
Dn,(ea) 8, 16, 32
ORI #(data),(ea) 8, 16, 32 immediate data V destination # destination
TST (ea) 8, 16, 32 source — 0 to set condition codes

Memory shift and rotate operations shift word-length operands one bit position only. The
SWAP instruction exchanges the 16-bit halves of a register. Performance of shift/rotate

MC68030 USER'S MANUAL MOTOROLA
3-5

instructions is enhanced so that use of the ROR and ROL instructions with a shift count of
eight allows fast byte swapping. Table 3-4 is a summary of the shift and rotate operations.

Table 3-4. Shift and Rotate Operations

Instruction Operand Syntax | Operand Size Operation
ASL Dn,Dn 8, 16, 32
#(data),Dn 8, 16, 32
o v | x/C je—€————]e—0
ASR Dn,Dn 8, 16, 32
#(data),Dn 8, 16, 32 ,:>|_l—>J——>| x/C |
(ea) 16
LSL Dn,Dn 8, 16, 32
#(data),Dn 8, 16, 32
—
(ea) 16 X/C 0
LSR Dn,Dn 8, 16, 32
#(data),Dn 8, 16, 32
(ea) 16 0 —»f[———— > |—»{x/c]
ROL Dn,Dn 8, 16, 32
#(data),Dn 8, 16, 32 I I I
(ea) 16 I c D
ROR Dn,Dn 8, 16, 32
#(data),Dn 8, 16, 32
(ea) 6 ———
ROXL Dn,Dn 8, 16, 32
#(data),Dn 8, 16, 32
(ea) 16 [c I‘—I—‘H—"‘ﬂ‘—{ X |*_,
ROXR Dn,Dn 8, 16, 32
#(data),Dn 8, 16, 32
P e X —
SWAP Dn 32 v
| msw [isw |
A1

3.2.5 Bit Manipulation Instructions

Bit manipulation operations are accomplished using the following instructions: bit
test(BTST), bit test and set(BSET), bit test and clear(BCLR), and bit test and change (BCHG).
All bit manipulation operations can be performed on either registers or memory. The bit
number is specified as immediate data or in a data register. Register operands are 32 bits
long, and memory operands are 8 bits long. In Table 3-5, the summary of the bit manip-
ulation operations, Z refers to bit 2, the zero bit of the status register.

3.2.6 Bit Field Instructions

The MC68030 supports variable length bit field operations on fields of up to 32 bits. The
bit field insert (BFINS) instruction inserts a value into a bit field. Bit field extract unsigned

MOTOROLA MC68030 USER’'S MANUAL
3-6

Table 3-5. Bit Manipulation Operations

Instruction Operand Syntax | Operand Size Operation
BCHG Dn,(ea) 8, 32 ~ ((bit number) of destination) $ Z » bit of destination
#(data),(ea) 8, 32
BCLR Dn,(ea) 8, 32 ~ ((bit number) of destination) $ Z;
#(data),(ea) 8, 32 0 » bit of destination
BSET Dn,(ea) 8, 32 ~ ((bit number) of destination) » Z;
#(data),(ea) 8, 32 1 » bit of destination
BTST Dn,(ea) 8, 32 ~ {(bit number) of destination) » Z
#(data) (ea) 8,32 3

(BFEXTU) and bit field extract signed (BFEXTS) extract a value from the field. Bit field find
first one (BFFFO) finds the first bit that is set in a bit field. Also included are instructions
that are analogous to the bit manipulation operations; bit field test (BFTST), bit field test
and set (BFSET), bit field test and clear (BFCLR), and bit field test and change (BFCHG).
Table 3-6 is a summary of the bit field operations.

Table 3-6. Bit Field Operations

Instruction Operand Syntax Operand Size Operation

BFCHG (ea) {offset:width} 1-32 ~ Field » Field

BFCLR (ea) {offset:width} 1-32 0's » Field

BFEXTS (ea) {offset:width},Dn 1-32 Field # Dn; Sign Extended

BFEXTU (ea) {offset:width},Dn 1-32 Field » Dn; Zero Extended

BFFFO (ea) {offset:width},Dn 1-32 Scan for first bit set in Field; offset $ Dn
BFINS Dn,(ea) {offset:width} 1-32 Dn » Field

BFSET (ea) {offset:width} 1-32 1's ¢ Field

BFTST (ea) {offset:width} 1-32 Field MSB » N; ~ (OR of all bits in field) # Z

NOTE: All bit field instructions set the N and Z bits as shown for BFTST before performing the specified operation.

3.2.7 Binary Coded Decimal Instructions

Five instructions support operations on binary coded decimal numbers. The arithmetic
operations on packed binary coded decimal numbers are: add decimal with extend (ABCD),
subtract decimal with extend (SBCD), and negate decimal with extend (NBCD). PACK and
UNPACK instructions aid in the conversion of byte encoded numeric data, such as ASCII
or EBCDIC strings, to BCD data and vice versa. Table 3-7 is a summary of the binary coded
decimal operations.

Table 3-7. Binary Coded Decimal Operations

Instruction Operand Syntax | Operand Size Operation
ABCD Dn,Dn 8 source1(+destinationqg + X # destination
—(An), - (An) 8
NBCD (ea) 8 0 # destinationqp — X # destination
PACK —(An), - (An) 1698 unpackaged source +immediate data # packed destination
#(data)
Dn,Dn, #(data) 1698
SBCD Dn,Dn 8 destinationqg — source1g — X # destination
—(An), - (An) 8
UNPK —(An), - (An) 8916 packed source » unpacked source
#(data) unpacked source + immediate data §»
Dn,Dn,#(data) 8916 unpacked destination

MC68030 USER'S MANUAL MOTOROLA
37

3.2.8 Program Control Instructions

A set of subroutine call and return instructions and conditional and unconditional branch
instructions perform program control operations. Table 3-8 summarizes these instructions.

Table 3-8. Program Control Operations

Instruction | Operand Syntax I Operand Size | Operation
CONDITIONAL
Bec (label) 8, 16, 32 if condition true, then PC+d » PC
’ DBcc Dn,(label) 16 if condition false, then Dn—1 » Dn
if Dn# —~1, then PC+d » PC
Scc (ea) 8 if condition true, then 1’s § destination; else 0's # destination
UNCONDITIONAL
BRA (label) 8, 16, 32 PC+d#PC
BSR (label) 8, 16, 32 SP—4 8 SP; PC # (SP); PC+d » PC
JMP (ea) none destination # PC
JSR (ea) none SP—4 » SP; PC » (SP); destination » PC
NOP none none PC+2#PC
RETURNS

RTD #(d) 16 (SP)# PC; SP+4+d # SP
RTR none none (SP) # CCR; SP+2 » SP; (SP) » PC; SP+4 » SP
RTS none none (SP) # PC; SP+4 » SP

Letters cc in the instruction mnemonic opcodes specify testing one of the following con-

dition codes:
CC — Carry clear LS — Low or same
CS — Carry set LT — Less than
EQ — Equal MI — Minus
F — Never true* NE — Not equal
GE — Greater or equal PL — Plus
GT — Greater than T — Always true*
HI — High VC — Overflow clear
LE — Less or equal VS — Overflow set

* Not applicable to the Bcc or cpBcc instructions.

3.2.9 System Control Instructions

Privileged instructions, trapping instructions, and instructions that use or modify the con-
dition code register provide system control operations. Table 3-9 summarizes these in-
structions. The preceding list of condition code representations applies to the TRAPcc
instruction. All of these instructions cause the processor to flush the instruction pipe.

Table 3-9 System Control Operations (Sheet 1 of 2)

Instruction I Operand Syntax | Operand Size | Operation
PRIVILEGED
ANDI #(data),SR 16 immediate data A SR # SR
EORI #(data),SR 16 immediate data ® SR #» SR

MOTOROLA MC68030 USER'S MANUAL
3-8

Table 3-9 System Control Operations (Sheet 2 of 2)

Instruction I Operand Syntax | Operand Size I Operation
PRIVILEGED

MOVE (ea),SR 16 source # SR

SR,(ea) 16 SR » destination
MOVE USP,An 32 USP » An

An,USP 32 An » USP
MOVEC Rc,Rn 32 Rc # Rn

Rn,Rc 32 Rn # Rc 3
MOVES Rn,(ea) 8, 16, 32 Rn # destination using DFC

(ea),Rn source using SFC # Rn
ORI #(data),SR 16 immediate data V SR » SR
RESET none none assert RESET line
RTE none none (SP) » SR; SP+2 9 SP; (SP) » PC; SP+4 » SP;

Restore stack according to format
STOP #(data) 16 immediate data » SR; STOP
TRAP GENERATING
BKPT #(data) none if breakpoint cycle acknowledged, then execute returned
operation word, else trap as illegal instruction

CHK (ea),Dn 16, 32 if Dn <0 or Dn>(ea), then CHK exception
CHK2 (ea),Rn 8, 16, 32 if Rn <lower bound or Rn>upper bound, then CHK exception
ILLEGAL none none SSP ~2 # SSP; Vector Offset § (SSP);

SSP —4 9 SSP; PC » (SSP);
SSP —2 » SSP; SR » (SSP);
Illegal Instruction Vector Address § PC

TRAP #(data) none SSP —2 » SSP; Format and Vector Offset » (SSP)
SSP -4 » SSP; PC » (SSP); SSP —2 » SSP;
SR » (SSP); Vector Address » PC

TRAP GENERATING (CONTINUED)

TRAPcc none none if cc true, then TRAP exception
#(data) 16, 32
TRAPV none none if V then take overflow TRAP exception
CONDITION CODE REGISTER
ANDI #(data),CCR 8 immediate data A CCR » CCR
EORI #(data),CCR 8 immediate data @ CCR » CCR
MOVE (ea),CCR 16 source # CCR
CCR,(ea) 16 CCR # destination
ORI #(data),CCR 8 immediate data V CCR » CCR

MC68030 USER'S MANUAL MOTOROLA
39

3.2.10 Memory Management Unit Instructions

The memory management instructions flush the address translation cache (ATC), load an
entry into the ATC, load and store memory management unit (MMU) control registers, and
perform a search of the address translation tables, storing results in the MMU status
register. Table 3-10 summarizes these instructions.

Table 3-10. Memory Management Unit Instructions

Instruction Operand Syntax | Operand Size Operation
PFLUSHA none none Invalidate All ATC Entries
PFLUSH (FC),#(mask) none Invalidate ATC Entries at Effective Address
[{ea)]
PLOAD (FC),(ea),{R/W} none Create ATC Entry for Effective Address
PMOVE Rn,(ea) 16, 32 register n § destination
(ea),Rn 16, 32 source § register n
PTEST (FC)(ea),#(level) none Information about Logical Address # PMMU Status
{R/W}[.An]

3.2.11 Multiprocessor Instructions

The TAS, CAS, and CAS2 instructions coordinate the operations of processors in multi-
processing systems. These instructions use read-modify-write bus cycles to ensure unin-
terrupted updating of memory. Coprocessor instructions control the coprocessor operations.
Table 3-11 summarizes these instructions.

Table 3-11. Multiprocessor Operations

Instruction | Operand Syntax | Operand Size | Operation
READ-MODIFY-WRITE
CAS ' Dc,Du,(ea) 8, 16, 32 destination — Dc » CC; if Z then Du » destination
else destination » Dc
CAS2 Dc1:Dc2, Du1:Du2, 16, 32 dual operand CAS
(Rn):(Rn)
TAS (ea) 8 destination — 0; set condition codes; 1 # destination [7]
COPROCESSOR
cpBcc (label) 16, 32 if cpce true then PC+d ¢ PC
cpDBcc (label),Dn 16 if cpcc false then Dn — 19 Dn
ifDn # — 1, then PC+d » PC
cpGEN User Defined User Defined |operand » coprocessor
cpRESTORE (ea) none restore coprocessor state from (ea)
cpSAVE (ea) none save coprocessor state at (ea)
cpSce (ea) 8 if cpce true, then 1's # destination; else 0's # destination
cpTRAPcc none none if cpcc true then TRAPcc exception
#(data) 16, 32

3.3 INSTRUCTION SET DETAILS

This paragraph contains detailed information about each instruction in the MC68030 in-
struction set. First, it describes the notation and the format of the instruction description.

MOTOROLA MC68030 USER'S MANUAL
3-10

Then each instruction is described in detail. The instruction descriptions are arranged in
alphabetical order by instruction mnemonic.

3.3.1 Notation and Format

The instruction descriptions use notational conventions for the operands, the subfields and
qualifiers, and the operations performed by the instructions. In the syntax descriptions,
the left operand is the source operand, and the right operand is the destination operand.

The notational conventions listed in section 3.2 apply. The following lists contain the 3
additional notations used in the instruction descriptions.

Notation for operands:
PC—Program counter
SR—Status register
V—Overflow condition code
Immediate Data—Immediate data from the instruction
Source—Source contents
Destination—Destination contents

Vector—Location of exception vector

By convention, the destination operand is the operand on the right.

Notation for subfields and qualifiers:
(bit) of (operand)—Selects a single bit of the operand
(ea){offset:width}—Selects a bit field
((operand))—The contents of the referenced location
(operand)10—The operand is binary coded decimal, operations are per-
formed in decimal
((address register))—The register indirect operator which indicates that thie op-
—((address register)) erand register points to the memory location of the instruc-
((address register)) + tion operand. The optional mode qualifiers are —, +, (d) and
(d,ix)
#xxx or #(data)—Immediate data that follows the instruction word(s)

Notations for operations that have two operands, written (operand) (op) (operand), where
{op) is one of the following:
#»—The source operand is moved to the destination operand
#—The two operands are exchanged
+—The operands are added
——The destination operand is subtracted from the source op-
erand
*—The operands are multiplied
/—The source operand is divided by the destination operand
(—Relational test, true if source operand is less than destination
operand
y—Relational test, true if source operand is greater than desti-
nation operand
shifted by—The source operand is shifted or rotated by the number of
rotated by positions specified by the second operand

MC68030 USER'S MANUAL MOTOROLA
3-11

Notation for single-operand operations:
~(operand)—The operand is logically complemented
(operand)sign-extended—The operand is sign extended, all bits of the upper portion
are made equal to the high order bit of the lower portion
(operand)tested—The operand is compared to 0 and the condition codes are
set appropriately

Notation for other operations:

TRAP—Equivalent to Format/Offset Word #» (SSP); SSP-2 » SSP; PC
3 » (SSP); SSP-4 » SSP; SR » (SSP); SSP-2 » SSP; (vector) #
PC

STOP—Enter the stopped state, waiting for interrupts
If (condition) then—The condition is tested. If true, the operations after “then”
(operations) else are performed. If the condition is false and the optional “‘else”
(operations) clause is present, the operations after “else’ are performed.
If the condition is false and else is omitted, the instruction
performs no operation. Refer to the description of Bcc in-
struction as an example.

3.3.2 Condition Code Register

The condition code register portion of the status register contains five bits:

X — Extend

N — Negative
Z — Zero

V — Overflow
C — Carry

The last four bits represent a condition of the result of a processor operation. Table 3-11
lists the effect of each instruction on these bits. The X bit is an operand for multiprecision
computations; when it is used, it is set to the value of the carry bit. The carry bit and the
multiprecision extend bit are separate in the M68000 Family to simplify programming
techniques that use them. Refer to Table 3-4 as an example.

Program and system control instructions use certain combinations of these bits to control

program and system flow. Table 3-12 lists the combinations of these bits and their inter-
pretations.

In the instruction set descriptions, the condition code register is shown as follows:
X N z v c

1 [[[|

where:
X (extend)

Set to the value of the C bit for many arithmetic operations. Otherwise not affected
or set to a specified result.

N (negative)
Set if the most significant bit of the result is set. Cleared otherwise.

Z (zero)
Set if the result equals zero. Cleared otherwise.

MOTOROLA MC68030 USER'S MANUAL
3-12

V (overflow)
Set if arithmetic overflow occurs. This implies that the result cannot be represented
in the operand size. Cleared otherwise.

C (carry)
Set if a carry out of the most significant bit of the operands occurs, for an addition.
Also, set if a borrow occurs in a subtraction. Cleared otherwise.

The following symbols are shown in the square representing each condition code:
* = Set according to the result of the operation
— = Not affected by the operation
0=_Cleared

1=Set
U = Undefined after the operation

3.3.3 Instruction Descriptions

Figure 3-2 shows the format of the instruction descriptions. The attributes line specifies
the size of the operands of an instruction. When an instruction can use operands of more
than one size, a suffix is used with the mnemonic of the instruction:

.B—Byte operands.
.W—Word operands.
.L—Long operands.

Table 3-12. Condition Code Computations (Sheet 1 of 2)

Operations X N z \") C Special Definition

ABCD * U ? U ? |C=Decimal Carry
Z=ZARmA...ARO

ADD, ADDI, ADDQ * | * | *[?] ? |V=5mADmMARMVSmADmARmM
C=SmADmMmVRmADmMYSmARmM

ADDX * | | 2?2] ? |V=5mADmARmMYVYSmADmARm
C=SmADmVRmADmMYVYSmARmM
Z=ZARmA...AROD

AND, ANDI,EOR,EORI, | — | * | * { 0 | 0

MOVEQ, MOVE, OR, ORI,

CLR, EXT, NOT, TAS, TST

CHK — | *Juju]u

CHK2, CMP2 —|ufl?2]|uUu|? |zZ=(R=LBV(R=UB
C=(LB<=UB)A(R<LB)V(R>UB)VI(UB<LB)A(R

> UB)A (R<LB)

SUB, SUBI, SUBQ * [| * | 2 | 2?2 |V=SmADmARmMVSmADmARm
C=SmADMVRMADmMYSmARm

SUBX * [| 2] 2| 2?2 |V=SmADmARmMVSmADmARm
C =SmADmVRmADmMYSmARmM
Z=ZARmA...ARO

CAS,CAS2,CMP,CMPI, | — | * | * | 2 | 2 [V=SmADmARmMVSmADmARm

CMPM C=SmADmVRmMADmMYSmARmM

DIVS, DUVI — * * ? 0 |V = Division Overflow

MULS, MULU — * * ? 0 |V = Multiplication Overflow

MC68030 USER'S MANUAL MOTOROLA
3-13

Table 3-12. Condition Code Computations (Sheet 2 of 2)

Operations X N z \ Cc Special Definition
SBCD, NBCD * U ? U ? |C = Decimal Borrow
Z=ZARmA...ARo
NEG * * * ? ? |[V=DmARm
C = Dm VRm
NEGX * * ? ? ? |V =DmARmM
C = DmVRm _
Z=ZARmA...ARO
3 BTST,BCHG,BSET,BCLR| — | — | ? | — | — |Z=Dn
BFTST, BFCHG, BFSET, — ? ? 0 0 (N=Dm .
BFCLR Z=DmADM-1A...ADO
BFEXTS, BFEXTU, BFFFO| — ? ? 0 0 [N=Sm o
Z=SmASmM-1A...ASO
BFINS — ? ? 0 0 [N =Dm _
Z=DmADM-1TA...ADO
ASL * * * ? ? |[V=DmADmM-1V...VDm-r)VDMA(DM-1V...+Dm-r)
C =Dm-r+1
ASL (R=0) — * * 0 0
LSL, ROXL * * * 0 ? |C=Dm-r+1
LSR (r=0) — * * 0 0
ROXL (r=0) — * * 0 ? |C=X
ROL — * * 0 ? [C=Dm-r+1
ROL (r=0) — * * 0 0
ASR, LSR, ROXR * * * 0 ? |C=Dr-1
ASR, LSR (r=0) — * * 0 0
ROXR (r=0) — * * 0 ? |C=X
ROR — * * 0 ? [C=Dr-1
ROR (r=0) — * * 0 0
— = Not Affected Rm = Result Operand — Most Significant Bit
U = Undefined, Result Meaningless R = Register Tested
? = Other — See Special Definition n = Bit Number
* = General Case r = Shift Count
X=C LB = Lower bound
N = Rm _ UB = Upper Bound
=RmA...ARO A = Boolean AND
Sm = Source Operand — Most Significant Bit __V = Boolean OR
Dm = Destination Operand — Most Significant Bit Rm = NOT Rm

MOTOROLA MC68030 USER'S MANUAL
3-14

INSTRUCTION NAME *ABCD Add

OPERATION DESCRIPTION —» Operation: Source10 + Destination
ASSEMBLER SYNTAX FOR THIS INSTRUCTION —» Assembler ABCD Dy,Dx

Syntax: ABCD —(Ay), —(Ax)

Attributes: Size = (Byte)
TEXT DESCRIPTION OF INSTRUCTION OPERATION » Description: Adds the source opera

and stores the result in the destinat
decimal arithmetic. The operands,
different ways:
1. Data register to data register:
in the instruction.

2. Memory to memory: The op
mode using the address

This operation is a byte operation

CONDITION CODE EFFECTS (SEE 3.8 CONDITION coDES) —— —>Condition Codes:
X N z

v T vl

X Set the same as the carry bit.
N Undefined.
Z Cleared if the result is non-zero
V Undefined.
C Set if a decimal carry was gen
INSTRUCTION FORMAT — SPECIFIES THE BIT PATTERN AND FIELDS o
OF THE OPERATION WORD AND ANY OTHER WORDS WHICH ARE Normally the Z condition cod
PART OF THE INSTRUCTION. THE EFFECTIVE ADDRESS EXTEN- : ;
operation. This allows success|
SIONS ARE NOT EXPLICITLY ILLUSTRATED. THE EXTENSIONS (IF peratio i
THERE ARE ANY) WOULD FOLLOW THE ILLUSTRATED PORTIONS \ precision operations.
OF THE INSTRUCTIONS. FOR THE MOVE INSTRUCTION, THE SOURCE \
EFFECTIVE ADDRESS EXTENSION IS THE FIRST, FOLLOWED BY Instruction Format:
THE DESTINATION EFFECTIVE ADDRESS EXTENSION. B w13 12N 10

[7 T 1] o] o] recisteRRy

R/M Field: 0= Data Register to Data Register

If R"M =0, Rx and Ry are Data Registers
If RM =1, Rx and Ry are Address Registers f

MEANINGS AND ALLOWED VALUES OF THE VARIOUS FIELDS RE-———> Instruction Fields:

QUIRED BY THE INSTRUCTION FORMAT. Reg'ster Ry f|e|d —_ Spec|f|es the d
If RM = 0, specifies a data regi
If R’'M = 1, specifies an address

R/M field — Specifies the operand
0 — the operation is data regist
1 — the operation is memory tq

Figure 3-2. Instruction Description Format

|
MC68030 USER'S MANUAL MOTOROLA
3-15

ABCD Add Decimal with Extend ABCD

Operation: Source10+ Destination109+ X # Destination

Assembler ABCD Dy,Dx
Syntax: ABCD —(Ay), —(Ax)

Attributes: Size = (Byte)

Description: Adds the source operand to the destination operand along with the extend
bit, and stores the result in the destination location. The addition is performed using
binary coded decimal arithmetic. The operands, which are packed BCD numbers, can
be addressed in two different ways:

1. Data register to data register: The operands are contained in the data registers
specified in the instruction.
2. Memory to memory: The operands are addressed with the predecrement ad-
dressing mode using the address registers specified in the instruction.
This operation is a byte operation only.

Condition Codes:

Set the same as the carry bit.

Undefined.

Cleared if the result is non-zero. Unchanged otherwise.
Undefined.

Set if a decimal carry was generated. Cleared otherwise.

O<NZX

NOTE

Normally the Z condition code bit is set via programming before the start of
an operation. This allows successful tests for zero results upon completion
of multiple-precision operations.

Instruction Format:

5 4 13 12 m 1 9 8 1 & 5 4 3 2 1 0
[v T v] o] o] necisteRRx | 1+ | o] o [o | o [wM] REGISTER Ry

Instruction Fields:
Register Rx field — Specifies the destination register:
If R/'M = 0, specifies a data register
If RM = 1, specifies an address register for the predecrement addressing mode
R/M field — Specifies the operand addressing mode:
0 — the operation is data register to data register
1 — the operation is memory to memory
Register Ry field — Specifies the source register:
If R/M = 0, specifies a data register
If R'M = 1, specifies an address register for the predecrement addressing mode

MOTOROLA MC68030 USER'S MANUAL
3-16

ADD Add ADD

Operation: Source + Destination » Destination

Assembler ADD (ea),Dn
Syntax: ADD Dn,(ea)

Attributes: Size = (Byte, Word, Long)

Description: Adds the source operand to the destination operand using binary addition,
and stores the result in the destination location. The size of the operation may be
specified as byte, word, or long. The mode of the instruction indicates which operand
is the source and which is the destination as well as the operand size.

Condition Codes:

X Set the same as the carry bit.

N Set if the result is negative. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.

V Set if an overflow is generated. Cleared otherwise.
C Set if a carry is generated. Cleared otherwise.

Instruction Format:

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS
MODE REGISTER

1 1 0 1 REGISTER 0P-MODE

Instruction Fields:
Register field — Specifies any of the eight data registers.
Op-Mode field:
Byte Word Long Operation

000 001 010 (ea)+(Dn) # (n)
100 101 110 (Dn)+{ea) » (ea)

MC68030 USER’'S MANUAL MOTOROLA
3-17

ADD ADD

Effective Address Field — Determines addressing mode:
a. If the location specified is a source operand, all addressing modes are allowed

as shown:
Addressing Mode | Mode Register Addressing Mode | Mode Register

Dn 000 reg. number:Dn (xxx).W 1 000
An* 001 reg. number:An (xxx).L 1 001
(An) 010 reg. number:An #(data) 1M1 100

(An) + 011 reg. number:An

—(An) 100 reg. number:An
(d16,An) 101 reg. number:An (d16.PC) m 010
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) 111 011
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) m 011
([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011
([bd,An],Xn,od) 110 reg. number:An ([bd,PC),Xn,0d) m 011

*Word and Long only.

b. If the location specified is a destination operand, only memory alterable address-
ing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn — — (xxx).W m 000
An — - (xxx).L m 001
(An) 010 reg. number:An #(data) —_ —
(An) + 011 reg. number:An
—(An) 100 reg. number:An
(d16,An) 101 reg. number:An (d16.PC) — —
(dg.An,Xn) 110 reg. number:An (dg,PC,Xn) — —
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —
([bd,An,Xn],od) 110 reg. number:An {[bd,PC,Xn],od) — —
([bd,An],Xn,od) 110 reg. number:An ([bd,PC}],Xn,0d) — —
Notes:

1. The Dn mode is used when the destination is a data register; the destination (ea)
mode is invalid for a data register.

2. ADDA is used when the destination is an address register. ADDI and ADDQ are
used when the source is immediate data. Most assemblers automatically make
this distinction.

MOTOROLA MC68030 USER'S MANUAL
3-18

ADDA ADDA

Operation: Source + Destination » Destination
Assembler
Syntax: ADDA (ea), An

Attributes: Size = (Word, Long)

Description: Adds the source operand to the destination address register, and stores
the result in the address register. The size of the operation may be specified as word
or long. The entire destination address register is used regardless of the operation
size.

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS
1o | P-MOD
! REGISTER 0P-MODE MODE | RecisTER

Instruction Fields:
Register field — Specifies any of the eight address registers. This is always the des-
tination.
Op-Mode field — Specifies the size of the operation:
011 — Word operation. The source operand is sign-extended to a long operand and
the operation is performed on the address register using all 32 bits.
111 — Long operation.
Effective Address field — Specifies the source operand. All addressing modes are
allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 reg. number:Dn {xxx).W m 000
An 001 reg. number:An {xxx).L 1m 001
(An) 010 reg. number:An #(data) m 100
(An) + on reg. number:An
~(An) 100 reg. number:An
(d16,An) 101 reg. number:An (d16,PC) m 010
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) 1 01
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) m 011
([bd,An,Xn],od) 110 reg. number:An (Ibd,PC,Xn],od) 1 011
([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 11 011

MC68030 USER'S MANUAL MOTOROLA
3-19

ADDI Add Immediate ADDI

Operation: Immediate Data + Destination » Destination
Assembler
Syntax: ADDI #(data),(ea)

. Attributes: Size = (Byte, Word, Long)

Description: Adds the immediate data to the destination operand, and stores the result
in the destination location. The size of the operation may be specified as byte, word,
or long. The size of the immediate data matches the operation size.

Condition Codes:

Set the same as the carry bit.

Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Set if an overflow is generated. Cleared otherwise.
Set if a carry is generated. Cleared otherwise.

O<NZX

Instruction Format:

% w13 12 u 1w 8 8§ 71 & 5 4 3 2 1 0
o lolololol T 1, e EFFECTIVE ADDRESS
MODE | RecisTER
WORD DATA (16 BITS) BYTE DATA (8 BITS)
LONG DATA (32 BITS)

Instruction Fields:
Size field — Specifies the size of the operation:
00 — Byte operation.
01 — Word operation.
10 — Long operation.

MOTOROLA MC68030 USER'S MANUAL
3-20

ADDI Add Immediate ADDI

Effective Address field — Specifies the destination operand.
Only data alterable addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register

Dn 000 reg. number:Dn (xxx).W m 000
, - - wort | 1
(An) 010 #(data)

reg. number:An — —

(An) + 011 reg. number:An

—(An) 100 reg. number:An
(d16,An) 101 reg. number:An (d16.PC) — —
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) — —
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —
{[bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) — —
([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) — —

Immediate field — (Data immediately following the instruction):
If size = 00, the data is the low order byte of the immediate word.
If size = 01, the data is the entire immediate word.
If size = 10, the data is the next two immediate words.

MC68030 USER’'S MANUAL MOTOROLA
3-21

ADDQ Add Quick ADDQ

Operation: Immediate Data+ Destination » Destination
Assembler
Syntax: ADDQ #(data),(ea)

Attributes: Size = (Byte, Word, Long)

Description: Adds an immediate value of 1 to 8 to the operand at the destination lo-
cation. The size of the operation may be specified as byte, word, or long. Word and
long operations are also allowed on the address registers. When adding to address
registers, the condition codes are not altered, and the entire destination address reg-
ister is used regardless of the operation size.

Condition Codes:
X N

EEEEES NN

Set the same as the carry bit.

Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Set if an overflow occurs. Cleared otherwise.
Set if a carry occurs. Cleared otherwise.

O<NZX

The condition codes are not affected when the destination is an address register.

Instruction Format:

15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS
MODE REGISTER

0 1 0 1 DATA 0 SIZE

Instruction Fields:
Data field — Three bits of immediate data, 0-7 (with the immediate value 0 representing
a value of 8).
Size field — Specifies the size of the operation:
00 — Byte operation.
01 — Word operation.
10 — Long operation.

MOTOROLA MC68030 USER'S MANUAL
3-22

ADDQ Add Quick ADDQ

Effective Address field — Specifies the destination location.
Only alterable addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 reg. number:Dn (xxx).W 1M1 000
An* 001 reg. number:An (xxx).L m 001

(An) 010 reg. number:An #(data) — —
(An)+ 011 reg. number:An
~(An) 100 reg. number:An

(d1g,An) 101 reg. number:An (d16,PC) — —

(dg.An,Xn) 110 reg. number:An (dg,PC,Xn) — —

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) — —

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) — —

*Word and Long only.

MC68030 USER'S MANUAL MOTOROLA
3-23

ADDX Add Extended ADDX

Operation: Source + Destination + X » Destination

Assembler ADDX Dy,Dx
Syntax: ADDX —(Ay), — (Ax)

Attributes: Size = (Byte, Word, Long)

Description: Adds the source operand to the destination operand along with the extend
bit and stores the result in the destination location. The operands can be addressed
in two different ways:

1. Data register to data register: The data registers specified in the instruction con-
tain the operands.
2. Memory to memory: The address registers specified in the instruction address
the operands using the predecrement addressing mode.
The size of the operation can be specified as byte, word, or long.

Condition Codes:

Set the same as the carry bit.

Set if the result is negative. Cleared otherwise.
Cleared if the result is non-zero. Unchanged otherwise.
Set if an overflow occurs. Cleared otherwise.

Set if a carry is generated. Cleared otherwise.

O<NZX

NOTE
Normally the Z condition code bit is set via programming before the start of
an operation. This allows successful tests for zero results upon completion
of multiple-precision operations.

Instruction Format:

5 w 13 12 n 1w 9 & 1 6 5 4 3 2 1 0
[T v] o] 1] nreesterrx | 1 | sze | o | o [wm]| RecISTER Ry

Instruction Fields:
Register Rx field — Specifies the destination register:
If RI'M = 0, specifies a data register.
If R/'M = 1, specifies an address register for the predecrement addressing mode.
Size field — Specifies the size of the operation:
00 — Byte operation.
01 — Word operation.
10 — Long operation.

MOTOROLA MC68030 USER'S MANUAL
3-24

ADDX Add Extended ADDX

R/M field — Specifies the operand address mode:
0 — The operation is data register to data register.
1 — The operation is memory to memory.
Register Ry field — Specifies the source register:

If R/M = 0, specifies a data register. .
If R/IM = 1, specifies an address register for the predecrement addressing mode.

MC68030 USER’S MANUAL MOTOROLA
3-25

A N D And Logical AN D

Operation: SourceADestination » Destination

Assembler AND (ea),Dn
Syntax: AND Dn,(ea)

Attributes: Size = (Byte, Word, Long)

Description: Performs an AND operation of the source operand with the destination
operand and stores the result in the destination location. The size of the operation can
be specified as byte, word, or long. The contents of an address register may not be
used as an operand.

Condition Codes:

X N z v c
— [+l -Jolo

Not affected.

Set if the most-significant bit of the result is set. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Always cleared.
Always cleared.

O<NZZX

Instruction Format:

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS
MODE REGISTER

1 1 0 0 REGISTER OP-MODE

Instruction Fields:
Register field — Specifies any of the eight data registers.
Op-Mode field:
Byte Word Long Operation
000 001 010 ((ea)) A({Dn)) » Dn
100 101 110 ((Dn))A((ea)) » ea

MOTOROLA MC68030 USER'S MANUAL
3-26

A N D And Logical A N D

Effective Address field — Determines addressing mode:
If the location specified is a source operand only data addressing modes are allowed

as shown:
Addressing Mode | Mode Register Addressing Mode | Mode Register

Dn 000 reg. number:Dn xxx).W 1M 000
An — — (xxx).L m 001
(An) 010 reg. number:An #(data) m 100

(An) + o1 reg. number:An

—(An) 100 reg. number:An
(d16,An) 101 reg. number:An (d16,PC) 1m 010
(dg.An,Xn) 110 reg. number:An (dg,PC,Xn) m 01
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011
([bd,An,Xn],0d) 110 reg. number:An {[bd,PC,Xn],0d) 111 01
([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) m 011

If the location specified is a destination operand only memory alterable addressing
modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn — — (xxx).W 11 000
An — - (xxx).L m 001
(An) 010 reg. number:An #(data) — —
(An)+ 011 reg. number:An
-{An) 100 reg. number:An
(d16,An) 101 reg. number:An (d16.PC) — —
(dg,An,Xn) 110 reg. number:An (dg,PC.Xn) — —
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) —_ -
([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) — —
({[bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) — —
Notes:

1. The Dn mode is used when the destination is a data register; the destination
(ea) mode is invalid for a data register.
2. Most assemblers use ANDI when the source is immediate data.

MC68030 USER'S MANUAL MOTOROLA
3-27

ANDI AND Immediate ANDI

Operation: Immediate DataADestination » Destination
Assembler
Syntax: ANDI #(data),(ea)

Attributes: Size = (Byte, Word, Long)

Description: Performs an AND operation of the immediate data with the destination
operand and stores the result in the destination location. The size of the operation can
be specified as byte, word, or long. The size of the immediate data matches the
operation size.

Condition Codes:

—
|
*
*
o

Not affected.

Set if the most-significant bit of the result is set. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Always cleared.

Always cleared.

O<NZX

Instruction Format:

15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0
EFFECTIVE ADDRESS
0 0 0 1 0 SIZE
0 0 0 MODE REGISTER
WORD DATA (16 BITS) BYTE DATA (8 BITS)
LONG DATA (32 BITS)

Instruction Fields:
Size field — Specifies the size of the operation:
00 — Byte operation
01 — Word operation.
10 — Long operation.

MOTOROLA MC68030 USER'S MANUAL
3-28

ANDI AND Immediate ANDI

Effective Address field — Specifies the destination operand.
Only data alterable addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 reg. number:Dn (xxx).W m 000.
An — — (xxx).L 11 001 !
(An) 010 reg. number:An #(data) — — \‘
(An) + 011 reg. number:An
~(An) 100 reg. number:An
(d16.An) 101 reg. number:An (d16.PC) — —
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) — —
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —
([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) — —
({[bd,An)],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) — —

Immediate field — (Data immediately following the instruction):
If size = 00, the data is the low order byte of the immediate word.

If size = 01, the data is the entire immediate word.
If size = 10, the data is the next two immediate words.
MC68030 USER'S MANUAL - MOTOROLA

3-29

A\DI ANDI
t CCR AND Immediate to Condition Codes to CCR

Oeration: SourceACCR » CCR

ssembler
yntax: ANDI #(data),CCR

Attributes: Size = (Byte)

Description: Performs an AND operation of the immediate operand with the condition
codes and stores the result in the low-order byte of the status register.

Condition Codes:

*
*
*

Cleared if bit 4 of immediate operand is zero. Unchanged otherwise.
Cleared if bit 3 of immediate operand is zero. Unchanged otherwise.
Cleared if bit 2 of immediate operand is zero. Unchanged otherwise.
Cleared if bit 1 of immediate operand is zero. Unchanged otherwise.
Cleared if bit 0 of immediate operand is zero. Unchanged otherwise.

O<NZX

Instruction Format:

5 14 13 12 n w0 ¢ 8 71 & 5 4 3 2 1 0
o JoJ ol oo lol 1 JoJoJol i a1 J1]oTlo
0o J ol ol ol of[o]o BYTE DATA (8 BITS)

ol

MOTOROLA MC68030 USER'S MANUAL
3-30 :

ANDI ANDI
tO SR AND Immediate to the Status Register tO SR

(Privileged Instruction)

Operation: If supervisor state

then SourceASR » SR

else TRAP
Assembler
Syntax: ANDI #(data),SR

Attributes: Size = (Word)

Description: Performs an AND operation of the immediate operand with the contents
of the status register and stores the result in the status register. All implemented bits
of the status register are affected.

Condition Codes:

Cleared if bit 4 of immediate operand is zero. Unchanged otherwise.
Cleared if bit 3 of immediate operand is zero. Unchanged otherwise.
Cleared if bit 2 of immediate operand is zero. Unchanged otherwise.
Cleared if bit 1 of immediate operand is zero. Unchanged otherwise.
Cleared if bit 0 of immediate operand is zero. Unchanged otherwise.

O<NZX

Instruction Format:

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0

o o JoJ ol ool tJTolol r T Tl 1T 1To]o

WORD DATA (16 BITS)

- |
MC68030 USER'S MANUAL MOTOROLA
3-31

ASL,ASR Avithmetic Shif ASL,ASR

Operation: Destination Shifted by (count) » Destination
Assembler ASd Dx,Dy
Syntax: ASd #(data),Dy

ASd (ea)

where d is direction, L or R

Attributes: Size = (Byte, Word, Long)

Description: Arithmetically shifts the bits of the operand in the direction (L or R) spec-

ified. The carry bit receives the last bit shifted out of the operand. The shift count for
the shifting of a register may be specified in two different ways:
1. Immediate — The shift count is specified in the instruction (shift range, 1-8).
2. Register — The shift count is the value in the data register specified in instruction
modulo 64.

The size of the operation can be specified as byte, word, or long. An operand in memory
can be shifted one bit only, and the operand size is restricted to a word.

For ASL, the operand is shifted left; the number of positions shifted is the shift count.
Bits shifted out of the high-order bit go to both the carry and the extend bits; zeros
are shifted into the low-order bit. The overflow bit indicates if any sign changes occur
during the shift.

E—«»——l OPERAND fe—— o |

ASL:

For ASR, the operand is shifted right; the number of positions shifted is the shift count.
Bits shifted out of the low-order bit go to both the carry and the extend bits; the sign-
bit (MSB) is shifted into the high-order bit.

ASR: —= ws | OPERAND I——«
]
—]

MOTOROLA MC68030 USER'S MANUAL

3-32

AS L,ASR Arithmetic Shift AS L,ASR

Condition Codes:
X N z v c
Ll -T-1T-7-]

X Set according to the last bit shifted out of the operand. Unaffected for a shift count

of zero.

N Set if the most-significant bit of the result is set. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.

V Set if the most significant bit is changed at any time during the shift operation.
Cleared otherwise.

C Set according to the last bit shifted out of the operand. Cleared for a shift count
of zero.

Instruction Format (Register Shifts):

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[+ [v] +] o] countmeaisteR | dr | size | ir | o | o | REGISTER

Instruction Fields (Register Shifts):
Count/Register field — Specifies shift count or register that contains the shift count:
If i/r = 0, this field contains the shift count. The values 1-7 represent counts of 1-7;
value of zero represents a count of 8.
If i/r = 1, this field specifies the data register that contains the shift count (modulo

64).
dr field — Specifies the direction of the shift:
0 — Shift right.
1 — Shift left.

Size field — Specifies the size of the operation:
00 — Byte operation.
01 — Word operation.
10 — Long operation.
i/r field:
If i/r = 0, specifies immediate shift count.
If i/r = 1, specifies register shift count.
Register field — Specifies a data register to be shifted.

Instruction Format (Memory Shifts):

15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS
MODE REGISTER

Instruction Fields (Memory Shifts):
dr field — Specifies the direction of the shift:
0 — Shift right.
1 — Shift left.

MC68030 USER'S MANUAL MOTOROLA
3-33

ASL,ASR Avithmetic Shitt ASL,ASR

Effective Address field — Specifies the operand to be shifted.
Only memory alterable addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register

Dn — — (xxx).W 1 000

An — — {xxx).L 1M1 001

. (An) 010 reg. number:An #(data) — —
(An) + (AR reg. number:An
—{An) 100 reg. number:An

(d16.An) 101 reg. number:An (d16,PC) — —

(dg,An,Xn) 110 reg. number:An (dg.PC,Xn) — —

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) —_ —_

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn),od) — —

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) — —

MOTOROLA MC68030 USER'S MANUAL
3-34

BCC Branch Conditionally BCC

Operation: If (condition true) then PC+d » PC

Assembler

Syntax: Bcc (label)

Attributes: Size = (Byte, Word, Long)
Description: If the specified condition is true, program execution continues at location

(PC)+displacement. The PC contains the address of the instruction word of the Bcc
instruction plus two. The displacement is a twos complement integer that represents
the relative distance in bytes from the current PC to the destination PC. If the 8-bit
displacement field in the instruction word is zero, a 16-bit displacement (the word
immediately following the instruction) is used. If the 8-bit displacement field in the
instruction word is all ones ($FF), the 32-bit displacement (long word immediately
following the instruction) is used. Condition code cc specifies one of the following

conditions:

CC carry clear 0100 C LS low or same 0011 C+2Z _

CS carry set 0101 C LT less than 1101 NeV+NsV

EQ equal 01z __ Ml minus 1011 N

GE greater or equal 1100 NeV+NeV NE not equal 0110 Z

GT greater than 1110 NeVeZ 4 NeVeZ PL plus 1010 N

HI high 0010 CzZ2 _ _ VC overflow clear 1000 V

LE less or equal 1111 Z4+ NV + NV VS overflow set 1001 V
Condition Codes:

Not affected.
Instruction Format:

5 ¥ 13 12 1 w9 8 7 6 5 4 3 2 1 0

o o [1] o] CONDITION 8-BIT DISPLACEMENT

16-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $00
32-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $FF

Instruction Fields:

Condition field — The binary code for one of the conditions listed in the table.

8-Bit Displacement field — Twos complement integer specifying the number of bytes
between the branch instruction and the next instruction to be executed if the con-
dition is met.

16-Bit Displacement field — Used for the displacement when the 8-bit displacement
field contains $00.

32-Bit Displacement field — Used for the displacement when the 8-bit displacement
field contains $FF.

NOTE

A branch to the immediately following instruction automatically uses the 16-
bit displacement format because the 8-bit displacement field contains $00
(zero offset).

MC68030 USER'S MANUAL MOTOROLA
3-35

BCHG Test a Bit and Change BCHG

Operation: ~({(number) of Destination) b Z;
~((number) of Destination) » (bit number) of Destination

Assembler BCHG Dn,(ea)
- Syntax: BCHG #(data),(ea)
3
Attributes: Size = (Byte, Long)

Description: Tests a bit in the destination operand and sets the Z condition code ap-
propriately, then inverts the specified bit in the destination. When the destination is
a data register, any of the 32 bits can be specified by the modulo 32-bit number. When
the destination is a memory location, the operation is a byte operation, and the bit
number is modulo 8. In all cases, bit zero refers to the least-significant bit. The bit
number for this operation may be specified in either of two ways:

1. Immediate — The bit number is specified in a second word of the instruction.
2. Register — The specified data register contains the bit number.

Condition Codes:

X Not affected.
N Not affected.
Z Set if the bit tested is zero. Cleared otherwise.
V Not affected.
C Not affected.

Instruction Format (Bit Number Dynamic, specified in a register):

15 14 13 12 " 10 9 8 17 6 5 4 3 2 1 0

EFFECTIVE ADDRESS
MODE | REGISTER

0 0 0 0 REGISTER 1 0 1

Instruction Fields (Bit Number Dynamic):
Register field — Specifies the data register that contains the bit number.

MOTOROLA MC68030 USER'S MANUAL
3-36

BCH G Test a Bit and Change BCHG

Effective Address field — Specifies the destination location. Only data alterable ad-
dressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn* 000 reg. number:Dn (xxx).W m 000
An — — (xxx).L 11 001
(An) 010 reg. number:An #(data) — -
(An) + 01 reg. number:An
—{An) 100 reg. number:An
(d16,An) 101 reg. number:An (d16,PC) — —
(dg,An,Xn) 10 reg. number:An (dg,PC,Xn) — —
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —
([bd,An,Xn],od) 110 reg. number:An {[bd,PC,Xn],0d) — —
([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,o0d) — —

*Long only; all others are byte only.

Instruction Format (Bit Number Static, specified as immediate data):

15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 0 0 0 ! EFFECTIVE ADDRESS
MODE REGISTER
0 0 0 0 0 0 0 0 BIT NUMBER

Instruction Fields (Bit Number Static):
Effective Address field — Specifies the destination location.
Only data alterable addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn* 000 reg. number:Dn (xxx).W M 000
An — — (xxx).L m 001
(An) 010 reg. number:An #(data) — —
(An) + 011 reg. number:An
—(An) 100 reg. number:An
(d16.An) 101 reg. number:An (d16.PC) — —
(dg,An,Xn) 110 reg. number:An (dg,PC.Xn) — —
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) . —
([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) — —
([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) — —

*Long only; all others are byte only.

Bit Number field — Specifies the bit number.

MC68030 USER'S MANUAL MOTOROLA
3-37

BCLR Test a Bit and Clear A BCLR

Operation: ~(({bit number) of Destination) » Z;
0 » (bit number) of Destination

Assembler BCLR Dn,{ea)
- Syntax: BCLR #(data)(ea)
3
Attributes: Size = (Byte, Long)

Description: Tests a bit in the destination operand and sets the Z condition code ap-
propriately, then clears the specified bit in the destination. When a data register is the
destination, any of the 32 bits can be specified by a modulo 32-bit number. When a
memory location is the destination, the operation is a byte operation, and the bit
number is modulo 8. In all cases, bit zero refers to the least-significant bit. The bit
number for this operation can be specified in either of two ways:

1. Immediate — The bit number is specified in a second word of the instruction.
2. Register — The specified data register contains the bit number.

Condition Codes:

X Not affected.
N Not affected.
Z Set if the bit tested is zero. Cleared otherwise.
V Not affected.
C Not affected.

Instruction Format (Bit Number Dynamic, specified in a register):

15 14 13 12 1" 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS
MODE REGISTER

0 0 0 0 REGISTER 1 1 0

Instruction Fields (Bit Number Dynamic):
Register field — Specifies the data register that contains the bit number.

MOTOROLA MC68030 USER'S MANUAL
3-38

BCLR Test a Bit and Clear BCLR

Effective Address field — Specifies the destination location.
Only data alterable addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode Mode Register
Dn* 000 reg. number:Dn (xxx).W m 000
An — — (xxx).L 111 001

(An) 010 reg. number:An #(data) - —
(An)+ 011 reg. number:An
—(An) 100 reg. number:An

(d16.An) 101 reg. number:An (d16,PC) — —

(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) — —

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],0d) — —

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) — —

*Long only; all others are byte only.

Instruction Format (Bit Number Static, specified as immediate data):

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS
MODE | ReGISTER
o ol ol o[o] oo /o BIT NUMBER

0 0 0 0 1 0 0 0 1 0

Instruction Fields (Bit Number Static):
Effective Address field — Specifies the destination location.
Only data alterable addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn* 000 reg. number:Dn (xxx).W 11 000
An — — {xxx).L m 001
(An) 010 reg. number:An #(data) — _
(An) + 011 reg. number:An
—(An) 100 reg. number:An
(d16.An) 101 reg. number:An (d16.PC) — —
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) — -
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —
([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) — —
([bd,An},Xn,od) 110 reg. number:An {[bd,PC],Xn,od) — —_

*Long only; all others are byte only.
Bit Number field — Specifies the bit number.
|

MC68030 USER'S MANUAL MOTOROLA
3-39

—— BFCHG

Test Bit Field and Change

Operation: ~((bit field) of Destination) ¥ (bit field) of Destination
Assembler ~;
Syntax: BFCHG (ea){offset:width}

Attributes: Unsized

BFCHG

Description: Sets the condition codes according to the value in a bit field at the specified

effective address, then complements the field.

A field offset and a field width select the field. The field offset specifies the starting
bit of the field. The field width determines the number of bits in the field.

Condition Codes:

X N z v c
-l [-Tolo]
X Not affected.

N

z

V Always cleared.

C Always cleared.

Instruction Format:

Set if the most-significant bit of the field is set. Cleared otherwise.
Set if all bits of the field are zero. Cleared otherwise.

15 14 13 12 " 10 9 8 6 5 4 2 1 0
EFFECTIVE ADDRESS
1 1 1 0 1 0 1 0 1
MODE REGISTER
0 0 0 0 Do OFFSET Dw WIDTH

Instruction Fields:

Effective Address field — Specifies the base location for the bit field. Only data register
direct or control alterable addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 reg. number:Dn (xxx).W m 000
An — — (xxx).L m 001
(An) 010 reg. number:An #(data) — —
(An) + — —
—(An) — —_

(d16,An) 101 reg. number:An (d16.PC) - =
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) — —
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —_

({[bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) — —
([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) — —

MOTOROLA
3-40

MC68030 USER'S MANUAL

B FC H G Test Bit Field and Change B FCH G

Do field — Determines how the field offset is specified.
0 — The Offset field contains the bit field offset.
1 — Bits [8:6] of the extension word specify a data register that contains the offset;
bits [10:9] are 0.
Offset field — Specifies the field offset, depending on Do. .
If Do = 0, the Offset field is an immediate operand; the operand value is in the
range 0-31.
If Do = 1, the Offset field specifies a data register that contains the offset. The value
is in the range of —231 t0 231-1.
Dw field — Determines how the field width is specified.
0 — The Width field contains the bit field width.
1 — Bits [2:0] of the extension word specify a data register that contains the width;
bits [3:4] are 0.
Width field — Specifies the field width, depending on Dw.
If Dw = 0, the Width field is an immediate operand; an operand value in the range
1-31 specifies a field width of 1-31, and a value of 0 specifies a width of
32.
If Dw = 1, the Width field specifies a data register that contains the width. The value
is modulo 32; values of 1-31 specify field widths of 1-31, and a value of
0 specifies a width of 32.

MC68030 USER'S MANUAL MOTOROLA
. 341

B BFCLR Test Bit Field and Clear BFCLR

W\o # (bit field) of Destination

Assembler
Syntax: BFCLR (ea){offset:width}
3 Attributes: Unsized

Description: Sets condition codes according to the value in a bit field at the specified
effective address, and clears the field.

The field offset and field width select the field. The field offset specifies the starting
bit of the field. The field width determines the number of bits in the field.

Condition Codes:

L
X Not affected.

N Set if the most-significant bit of the field is set. Cleared otherwise.
Z Set if all bits of the field are zero. Cleared otherwise.

V Always cleared.

C Always cleared.

Instruction Format:

%5 1w 13 12 n w 9 & 1 & 5 4 3 2 1 0
EFFECTIVE ADDRE
1 1 1 0 1 1 0 0 1 1 EC DDRESS
MODE | RecISTER
0 | o[o] o] Do OFFSET ow | WIDTH

Instruction Fields:
Effective Address field — Specifies the base location for the bit field. Only data register
direct or alterable control addressing modes are allowed, as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 reg. number:Dn (xxx).W m 000
An — — {xxx).L 111 001
(An) 010 reg. number:An #(data) — —
(An) + — —
—(An) — -

(d16.An) 101 reg. number:An (d16.,PC) — —
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) — —
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —

([bd,An,Xn},od) 110 reg. number:An ([bd,PC,Xn],0d) — —
({[bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) — —

MOTOROLA MC68030 USER'S MANUAL
3-42

BFC LR Test Bit Field and Clear BFCLR

Do field — Determines how the field offset is specified.
0 — The Offset field contains the bit field offset.
1 — Bits [8:6] of the extension word specify a data register that contains the offset;
bits [10:9] are 0.
Offset field — Specifies the field offset, depending on Do.
If Do = 0, the Offset field is an immediate operand; the operand value is in the
range of 0-31.
If Do = 1, the Offset field specifies a data register that contains the offset. The value
is in the range of —231 to 231-1.
Dw field — Determines how the field width is specified.
0 — The Width field contains the bit field width.
1 — Bits [2:0] of the extension word specify a data register that contains the width;
bits [3:4] are 0.
Width field — Specifies the field width, depending on Dw.
If Dw = 0, the Width field is an immediate operand; operand values in the range
of 1-31 specify a field width of 1-31, and a value of 0 specifies a width
of 32.
If Dw = 1, the Width field specifies a data register that contains the width. The value
is modulo 32; values of 1-31 specify field widths of 1-31, and a value of
0 specifies a width of 32.

MC68030 USER’'S MANUAL MOTOROLA
3-43

BFEXTS Extract Bit Field Signed BFEXTS

Operation: (bit field) of Source » Dn

Assembler
Syntax: BFEXTS (ea){offset:width},Dn

Attributes: Unsized

Description: Extracts a bit field from the specified effective address location, sign ex-
tends to 32 bits, and loads the result into the destination data register.

The field offset and field width select the bit field. The field offset specifies the starting
bit of the field. The field width determines the number of bits in the field.

Condition Codes:

|

Not affected.

Set if the most-significant bit of the field is set. Cleared otherwise.
Set if all bits of the field are zero. Cleared otherwise.

Always cleared.

Always cleared.

O<NZX

Instruction Format:

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS
MODE REGISTER
0 REGISTER Do OFFSET Dw WIDTH

1 1 1 0 1 0 1 1 1 1

Instruction Fields:
Effective Address field — Specifies the base location for the bit field. Only data register
direct or control addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 reg. number:Dn (xxx).W m 000
An —_ — {xxx).L m 001
(An) 010 reg. number:An #(data) — —
(An) + — —
—{An) — —

(d16,An) 101 reg. number:An (d16.PC) 1M 010
(dg,An,Xn) 110 reg. number:An (dg.PC.Xn) 1M 011
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) m 011

({[bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 11 011
{[bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) m 011

MOTOROLA MC68030 USER'S MANUAL
3-44

BFEXTS Extract Bit Field Signed BFEXTS

Register field — Specifies the destination register.
Do field — Determines how the field offset is specified.
0 — The Offset field contains the bit field offset.
1 — Bits [8:6] of the extension word specify a data register that contains the offset;

bits [10:9] are 0. y
Offset field — Specifies the field offset, depending on Do.

If Do = 0, the Offset field is an immediate operand; the operand value is in the
range of 0-31.
If Do = 1, the Offset field specifies a data register that contains the offset. The value
is in the range of —231to 231-1.
Dw field — Determines how the field width is specified.
0 — The Width field contains the bit field width.
1 — Bits [2:0] of the extension word specify a data register that contains the width;
bits [4:3] are 0.
Width field — Specifies the field width, depending on Dw.
If Dw = 0, the Width field is an immediate operand; operand values in the range
of 1-31 specify a field width of 1-31, and a value of 0 specifies a width
of 32.
If Dw = 1, the Width field specifies a data register that contains the width. The value
is modulo 32; values of 1-31 specify field widths of 1-31, and a value of
0 specifies a width of 32. ,

L __ |
MC68030 USER'S MANUAL MOTOROLA
3-45

BFEXTU Extract Bit Field Unsigned BFEXTU

Operation: (bit offset) of Source » Dn
Assembler
Syntax: BFEXTU (ea){offset:width},Dn

Attributes: Unsized

Description: Extracts a bit field from the specified effective address location, zero ex-
tends to 32 bits, and loads the results into the destination data register.

The field offset and field width select the field. The field offset specifies the starting
bit of the field. The field width determines the number of bits in the field.

Condition Codes:

X Not affected.

N Set if the most-significant bit of the source field is set. Cleared otherwise.
Z Set if all bits of the field are zero. Cleared otherwise.

V Always cleared.

C Always cleared.

Instruction Format:

5 4 13 12 u 1w 9 8 1 & 5 4 3 2 1 0
EFFECTIVE ADDRESS
T T T N T I O O I O N IR T
MODE | RecISTER
0 REGISTER Do OFFSET Dw WIDTH

MOTOROLA MC68030 USER'S MANUAL
3-46

BFEXTU Extract Bit Field Unsigned BFEX‘- U

Instruction Fields: "
Effective Address field — Specifies the base location for the bit field. Only data’glster
direct or control addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Regtel'
Dn 000 reg. number:Dn {xxx).W m 0
An — — {xxx).L m N
(An) 010 reg. number:An #(data) — —
(An) + — —
—(An) — —_ ;
(d16.An) 101 reg. number:An (d16.PC) 11 010
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) 1M1 011
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 1M 011
([bd,An,Xn),od) 110 reg. number:An ([bd,PC,Xn],od) 11 011
([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,0d) 111 011

Register field — Specifies the destination data register.
Do field — Determines how the field offset is specified.
0 — The Offset field contains the bit field offset.
1 — Bits [8:6] of the extension word specify a data register that contais the offset;
bits [10:9] are 0.
Offset field — Specifies the field offset, depending on Do.
If Do = 0, the Offset field is an immediate operand; the operand vlue is in the
range of 0-31.
If Do = 1, the Offset field specifies a data register that contains the oftet. The value
is in the range of —231to 231-1
Dw field — Determines how the field width is specified.
0 — The Width field contains the bit field width.
1 — Bits [2:0] of the extension word specify a data register that contins the width;
bits [4:3] are 0.
Width field — Specifies the field width, depending on Dw.
If Dw = 0, the Width field is an immediate operand; operand valus in the range
of 1-31 specify a field width of 1-31, and a value of 0 siecifies a width
of 32.
If Dw = 1, the Width field specifies a data register that contains the vidth. The value
is modulo 32; values of 1-31 specify field widths of 1-3; and a value of
0 specifies a width of 32.

MC68030 USER'S MANUAL MOTOROLA
' 3-47

BFEF O Find First One in Bit Field BFF FO

Operatin: (bit offset) of Source Bit Scan # Dn
Assembyr
Syntax: BFFFO (ea){offset:width},Dn

Attribute: Unsized

Descriptia: Searches the source operand for the most-significant bit that is set to a
valuexf one. The bit offset of that bit (the bit offset in the instruction plus the offset
of théirst one bit) is placed in Dn. If no bit in the bit field is set to one, the value in
Dn ishe field offset plus the field width. The instruction sets the condition codes
accormg to the bit field value.

The fid offset and field width select the field. The field offset specifies the starting
bit of te field. The field width determines the number of bits in the field.

Condition Cdes:

IR I

X Not fected.

N Set ithe most significant bit of the field is set. Cleared otherwise.
Z Set ifill bits of the field are zero. Cleared otherwise.

V Alwas cleared.

C Alwasy cleared.

Instruction Fomat:

5 4 3 12 n w 9 8 71 6 5 4 3 2 1 0
. A A P T A EFFECTIVE ADDRESS

MODE | RecISTER
0 REGITER Do OFFSET Dw WIDTH

MOTOROLA MC68030 USER'S MANUAL
3-48

BFFFO Find First One in Bit Field BFFFO

Instruction Fields:
Effective Address field — Specifies the base location for the bit field. Only data reglster
direct or control addressing modes are allowed as shown: .

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 reg. number:Dn (xxx).W m 000
An — - (xxx).L m 00r1
(An) 010 reg. number:An #(data) — —
(An) + — —
_(An) p— pa—

(d1s,An) 101 reg. number:An (d16.PC) m 010
(dg,An,Xn) 110 reg. number:An (dg,PC.Xn) m 011
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 on

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],0d) m 011
([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,0d) m 011

Register field — Specifies the destination data register operand.
Do field — Determines how the field offset is specified.
0 — The Offset field contains the bit field offset.
1 — Bits [8:6] of the extension word specify a data register that contalns the offset;
bits [10:9] are 0.
Offset field — Specifies the field offset, depending on Do.
If Do = 0, the Offset field is an immediate operand; the operand value is in the
range of 0-31.
If Do = 1, the Offset field specifies a data reglster that contains the offset. The value
is in the range of —231t0 231
Dw field — Determines how the field width is specified.
0 — The Width field contains the bit field width.
1 — Bits [2:0] of the extension word specify a data register that contains the width;
bits [4:3] are 0.
Width field — Specifies the field width, depending on Dw.
If Dw = 0, the Width field is an immediate operand; operand values in the range
of 1-31 specify a field width of 1-31, and a value of 0 specifies a width
of 32.
If Dw = 1, the Width field specifies a data register that contains the width. The value
is modulo 32; values of 1-31 specify field widths of 1-31, and a value of
0 specifies a width of 32.

MC68030 USER'S MANUAL ‘ MOTOROLA
3-49

BF'NS Insert Bit Field BFI NS

Operation: Dn » (bit field) of Destination

Assembler

Syntax: BFINS Dn,(ea){offset:width}

Attributes: Unsized

Description: Inserts a bit field taken from the low-order bits of the specified data register

into a bit field at the effective address location. The instruction sets the condition codes
according to the inserted value.

The field offset and field width select the field. The field offset specifies the starting
bit of the field. The field width determines the number of bits in the field.

Condition Codes:
X N z v c

=1 -T-Tolo]

Not affected.

Set if the most-significant bit of the field is set. Cleared otherwise.
Set if all bits of the field are zero. Cleared otherwise.

Always cleared.

Always cleared.

O<NZX

Instruction Format:

5 14 13 12 u w0 9 & 7 & 5 4 3 2 1 0
1 e 1 a1 L EFFECTIVE ADDRESS

MODE REGISTER
0 REGISTER Do OFFSET ow | WIDTH

MOTOROLA MC68030 USER'S MANUAL
3-50

BFINS

Instruction Fields:

Effective Address field — Specifies the base location for the bit field. Only data register
direct or control alterable addressing modes are allowed as shown:

Insert Bit Field

BFINS

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 reg. number:Dn {xxx).W 111 000
An — — (xxx).L 111 001
(An) 010 reg. number:An #(data) - —_
(An) + - -
—(An) — -

(d16,An) 101 reg. number:An (d16.PC) — —
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) — —
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —

({bd,An,Xn],od) 110 reg. number:An ({bd,PC,Xn],od) — —
([bd,An),Xn,od) 110 reg. number:An ([bd,PC},Xn,o0d) . -

Register field — Specifies the source data register operand.
Do field — Determines how the field offset is specified.
0 — The Offset field contains the bit field offset.

1 — Bits [8:6] of the extension word specify a data register that contains the offset;

bits [10:9] are 0.
Offset field — Specifies the field offset, depending on Do.

If Do = 0, the Offset field is an immediate operand; the operand value is in the
range of 0-31.
If Do = 1, the Offset field specifies a data register that contains the offset. The value
is in the range of —231t0 231-1.

Dw field — Determines how the field width is specified.
0 — The Width field contains the bit field width.

1 — Bits [2:0] of the extension word specify a data register that contains the width;

bits [4:3] are 0.
Width field — Specifies the field width, depending on Dw.

If Dw = 0, the Width field is an immediate operand; operand values in the range
of 1-31 specify a field width of 1-31, and a value of 0 specifies a width

of 32.

If Dw = 1, the Width field specifies a data register that contains the width. The value
is modulo 32; values of 1-31 specify field widths of 1-31, and a value of

0 specifies a width of 32.

MC68030 USER'S MANUAL

MOTOROLA

3-51

B FS ET Test Bit Field and Set B FS ET

Operation: 1s » (bit field) of Destination
Assembler
Syntax: BFSET (ea)offset:width}

Attributes: Unsized

Description: Sets the condition codes according to the value in a bit field at the specified
effective address, then sets each bit in the field.

The field offset and the field width select the field. The field offset specifies the starting
bit of the field. The field width determines the number of bits in the field.

Condition Codes:
z v c

N N

Not affected.

Set if the most-significant bit of the field is set. Cleared otherwise.
Set if all bits of the field are zero. Cleared otherwise.

Always cleared.

Always cleared.

O<NZX

Instruction Format:

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0
EFFECTIVE ADDRESS
1 1 1 0 1 1 1 0 1 1
MODE REGISTER
0 0 0 0 Do OFFSET Dw WIDTH

MOTOROLA MC68030 USER'S MANUAL
3-562

B FS ET Test Bit Field and Set B FS ET

Instruction Fields:
Effective Address field — Specifies the base location for the bit field. Only data register
direct or control alterable addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register)
Dn 000 reg. number:Dn (xxx).W 1M 000
An — — (xxx).L m oot1’
(An) 010 reg. number:An #(data) — —
(An) + — —
(An) —— R
(d16.An) 101 reg. number:An (d16,PC) — —
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) —_ —
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —
({bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],0d) — —
([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,o0d) — —

Do field — Determines how the field offset is specified.
0 — The Offset field contains the bit field offset.
1 — Bits [8:6] of the extension word specify a data register that contains the offset;
bits [10:9] are 0.
Offset field — Specifies the field offset, depending on Do.
If Do = 0, the Offset field is an immediate operand; the operand value is in the
range of 0-31.
If Do = 1, the Offset field specifies a data register that contains the offset. The value
is in the range of —231t0 231-1.
Dw field — Determines how the field width is specified.
0 — The Width field contains the bit field width.
1 — Bits [2:0] of the extension word specify a data register that contains the width;
bits [4:3] are 0.
Width field — Specifies the field width, depending on Dw.
If Dw = 0, the Width field is an immediate operand; operand values in the range
of 1-31 specify a field width of 1-31, and a value of 0 specifies a width
of 32.
If Dw = 1, the Width field specifies a data register that contains the width. The value
is modulo 32; values of 1-31 specify field widths of 1-31, and a value of
0 specifies a width of 32.

MC68030 USER'S MANUAL MOTOROLA
3-63

B FTST Test Bit Field B FTST

Operation: (bit field) of Destination
Assembler

Syntax: BFTST (ea){offset:width}
Attributes: Unsized

Description: Sets the condition codes according to the value in a bit field at the specified
effective address location.

The field offset and field width select the field. The field offset specifies the starting
bit of the field. The field width determines the number of bits in the field.

Condition Codes:

L

X Nz v ¢
— [-JTofo |

Not affected.

Set if the most-significant bit of the field is set. Cleared otherwise.
Set if all bits of the field are zero. Cleared otherwise.

Always cleared.

Always cleared.

O<NZX

Instruction Format:

5 W 13 12 n 1w 9 & 1 & 5 4 3 2 1 0
EFFECTIVE ADDRESS

MODE | ReGIsTER

0o [o [o] o[no OFFSET Dw WIDTH

1 1 1 0 1 0 0 0 1 1

MOTOROLA MC68030 USER'S MANUAL
3-54

B FTST ‘ Test Bit Field BFTST

Instruction Fields:
Effective Address field — Specifies the base location for the bit field. Only data register
direct or control addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 reg. number:Dn (xxx).W m 000
An — — (xxx).L m 001
(An) 010 reg. number:An #(data) — —
(An) + — —
—(An) — —

(d16,An) 101 reg. number:An (d16,PC) M 010
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) m oM
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 11 [N

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) m 011
([bd,An},Xn,od) 110 reg. number:An ([bd,PC],Xn,o0d) m 01

Do field — Determines how the field offset is specified.
0 — The Offset field contains the bit field offset.
1 — Bits [8:6] of the extension word specify a data register that contains the offset;
bits [10:9] are 0.
Offset field — Specifies the field offset, depending on Do.
If Do = 0, the Offset field is an immediate operand; the operand value is in the
range of 0-31.
If Do = 1, the Offset field specifies a data register that contains the offset. The value
is in the range of —231t0 231-1.
Dw field — Determines how the field width is specified.
0 — The Width field contains the bit field width.
1 — Bits [2:0] of the extension word specify a data register that contains the width;
bits [4:3] are 0.
Width field — Specifies the field width, depending on Dw.
If Dw = 0, the Width field is an immediate operand, operand values in the range
of 1-31 specify a field width of 1-31, and a value of 0 specifies a width
of 32.
If Dw = 1, the Width field specifies a data register that contains the width. The value
is modulo 32; values of 1-31 specify field widths of 1-31, and a value of
0 specifies a width of 32.

MC68030 USER’'S MANUAL MOTOROLA
3-65

B KPT Breakpoint B KPT

Operation: Run breakpoint acknowledge cycle

If acknowledged
then execute returned operation word
else TRAP as illegal instruction

Assembler
Syntax: BKPT #(data)

Attributes: Unsized

Description: Executes a breakpoint acknowledge bus cycle with the immediate data

bus.

(value 0-7) on bits 2-4 of the address bus and zeros on bits 0 and 1 of the address

The breakpoint acknowledge cycle accesses the CPU space, addressing type 0, and
provides the breakpoint number specified by the instruction on address lines A2-A4.
If the external hardware terminates the cycle with DSACKxs or STERM, the data on
the bus (an instruction word) is inserted into the instruction pipe and is executed after
the breakpoint instruction. The breakpoint instruction requires a word to be transferred
so if the first bus cycle accesses an 8-bit port, a second cycle is required. If the external
logic terminates the breakpoint acknowledge cycle with BERR (i.e., no instruction word
available) the processor takes an illegal instruction exception. Refer to 7.4.2 Breakpoint
Acknowledge for details of breakpoint acknowledge cycle operation.

This instruction supports breakpoints for debug monitors and real-time hardware
emulators. The exact operation performed by the instruction is implementation-de-
pendent. Typically, this instruction replaces an instruction in a program; that instruc-
tion is returned by the breakpoint acknowledge cycle.

Condition Codes:

Not affected.

Instruction Format:

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0

[oJ v JoJo 1 JoJoJoJolrTolol] 1] VECTOR |

Instruction Fields:

Vector field — Contains the immediate data, a value in the range of 0-7. This is the
breakpoint number.

MOTOROLA MC68030 USER'S MANUAL

3-56

B RA Branch Always B RA

Operation: PC+d#» PC

Assembler
Syntax: BRA (label)

Attributes: Size = (Byte, Word, Long)

Description: Program execution continues at location (PC) + displacement. The PC con-
tains the address of the instruction word of the BRA instruction plus two. The dis-
placement is a twos complement integer that represents the relative distance in bytes
from the current PC to the destination PC. If the 8-bit displacement field in the instruc-
tion word is zero, a 16-bit displacement (the word immediately following the instruc-
tion) is used. If the 8-bit displacement field in the instruction word is all ones ($FF),
the 32-bit displacement (long word immediately following the instruction) is used.

Condition Codes:
Not affected.

Instruction Format:

5 14 13 12 n w0 9 8 7 & 5 4 3 2 1 0
o [v 1 JToJoJloJ o] o] 8-BIT DISPLACEMENT

16-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $00

32-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $FF

Instruction Fields:
8-Bit Displacement field — Twos complement integer specifying the number of bytes
between the branch instruction and the next instruction to be executed.
16-Bit Displacement field — Used for a larger displacement when the 8-bit displace-
ment is equal to $00.
32-Bit Displacement field — Used for a larger displacement when the 8-bit displace-
ment is equal to $FF.

NOTE

A branch to the immediately following instruction automatically uses the 16-
bit displacement format because the 8-bit displacement field contains $00
(zero offset).

MC68030 USER’'S MANUAL MOTOROLA
3-67

BS ET Test a Bit and Set BS ET

Operation: ~{(bit number) of Destination) # Z;

1 » (bit number) of Destination

Assembler BSET Dnea)
- Syntax: BSET #(data),(ea)
3
Attributes: Size = (Byte, Long)

Description: Tests a bit in the destination operand and sets the Z condition code ap-

propriately. Then sets the specified bit in the destination operand. When a data register
is the destination, any of the 32 bits can be specified by a modulo 32-bit number.
When a memory location is the destination, the operation is a byte operation, and the
bit number is modulo 8. In all cases, bit zero refers to the least-significant bit. The bit
number for this operation can be specified in either of two ways:
1. Immediate — The bit number is specified in the second word of the instruction.
2. Register — The specified data register contains the bit number.

Condition Codes:

X Not affected.
N Not affected.
Z Set if the bit tested is zero. Cleared otherwise.
V Not affected.
C Not affected.

Instruction Format (Bit Number Dynamic, specified in a register):

15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

o | o | oo REGISTER N I
Gl MODE | RecIsTER

MOTOROLA MC68030 USER'S MANUAL

3-58

BS ET Test a Bit and Set BS ET

Instruction Fields (Bit Number Dynamic):
Register field — Specifies the data register that contains the bit number.
Effective Address field — Specifies the destination location. Only data alterable ad-
dressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register 3
Dn* 000 reg. number:Dn {xxx).W m 000
An — — {xxx).L m 001
(An) 010 reg. number:An #(data) — —
(An) + on reg. number:An
—(An) 100 reg. number:An
(d1g.An) 101 reg. number:An (d16,PC) — —
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) — —_
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —
({[bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) — —
([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) — —

*Long only; all others are byte only.

Instruction Format (Bit Number Static, specified as immediate data):

15 14 13 12 1" 10 9 8 1 6 5 4 3 2 1 0

0 0 0 0 1 0 0 0 1 1 EFFECTIVE ADDRESS
MODE | REGISTER
o o jojojojo]eo BIT NUMBER

Instruction Fields (Bit Number Static):
Effective Address field — Specifies the destination location. Only data alterable ad-
dressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register

Dn* 000 reg. number:Dn (xxx).W m 000
An — — {xxx).L 111 001
(An) 010 reg. number:An #(data) — -

(An) + 011 reg. number:An

- (An) 100 reg. number:An
(d16,An) 101 reg. number:An (d16,PC) — —
(dg.An,Xn) 110 reg. number:An (dg,PC,Xn) — —
(bd,An,Xn) 10 reg. number:An (bd,PC,Xn) — —
([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],0d) — —
([bd,An],Xn,od) 110 reg. number:An ([bd,PCJ,Xn,od) — —

*Long only; all others are byte only.

Bit Number field — Specifies the bit number.

MC68030 USER'S MANUAL MOTOROLA
3-59

BSR Branch to Subroutine BSR

Operation: SP—4 9 SP; PC» (SP); PC+d » PC

Assembler
Syntax: BSR (label)

Attributes: Size = (Byte, Word, Long)

Description: Pushes the long word address of the instruction immediately following the
BSR instruction onto the system stack. The PC contains the address of the instruction
word plus two. Program execution then continues at location (PC) + displacement.
The displacement is a twos complement integer that represents the relative distance
in bytes from the current PC to the destination PC. If the 8-bit displacement field in
the instruction word is zero, a 16-bit displacement (the word immediately following
the instruction) is used. If the 8-bit displacement field in the instruction word is all
ones ($FF), the 32-bit displacement (long word immediately following the instruction)
is used.

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12 n 10 9 8 1 6 5 4 3 2 1 0

o [1 [v T ol ool o] | 8-BIT DISPLACEMENT
16-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $00
32-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $FF

Instruction Fields:
8-Bit Displacement field — Twos complement integer specifying the number of bytes
between the branch instruction and the next instruction to be executed.
16-Bit Displacement field -- Used for a larger displacement when the 8-bit displacement
is equal to $00.
32-Bit Displacement field — Used for a larger displacement when the 8-bit displace-
ment is equal to $FF.

NOTE

A branch to the immediately following instruction automatically uses the 16-
bit displacement format because the 8-bit displacement field contains $00
(zero offset).

MOTOROLA MC68030 USER'S MANUAL
3-60

BTST

Operation:

Assembler BTST Dn,{ea)
Syntax: BTST #(data),(ea)
Attributes: Size = (Byte, Long)

Test a Bit

— ((bit number) of Destination) » Z;

BTST

Description: Tests a bit in the destination operand and sets the Z condition code ap-
propriately. When a data register is the destination, any of the 32 bits can be specified
by a modulo 32 bit number. When a memory location is the destination, the operation
is a byte operation, and the bit number is modulo 8. In all cases, bit zero refers to the
least significant bit. The bit number for this operation can be specified in either of two

ways:

1. Immediate — The bit number is specified in a second word of the instruction.
2. Register — The specified data register contains the bit number.

Condition Codes:

X N C

I B e

Not affected.
Not affected.

Not affected.
Not affected.

O<NZX

Set if the bit tested is zero. Cleared otherwise.

Instruction Format (Bit Number Dynamic, specified in a register):

15 14 13 12 n 10

9

8

7

6

5

4 3 2

1 0

0 0 0 0 REGISTER

1

0

0

EFFECTIVE ADDRESS

MODE REGISTER

MC68030 USER’'S MANUAL

MOTOROLA
3-61

BTST Test a Bit BTST

Instruction Fields (Bit Number Dynamic):
Register field — Specifies the data register that contains the bit number.
Effective Address field — Specifies the destination location. Only data addressmg
modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn* 000 reg. number:Dn {xxx).W 111 000
An — — (xxx).L m 001
(An) 010 reg. number:An #(data) 1 100
(An) + on reg. number:An
—(An) . 100 reg. number:An
(d16.An) 101 reg. number:An (d16,PC) m 010
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) 1M1 01
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) m 011
([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],0d) m 011
([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

*Long only; all others are byte only.

Instruction Format (Bit Number Static, specified as immediate data):

15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0

ol ololol 1l ololo] ol e EFFECTIVE ADDRESS
MODE | REGISTER
0 J o jJojJoJojJo]Oo]eo BIT NUMBER

Instruction Fields (Bit Number Static):
Effective Address field — Specifies the destination location. Only data addressing
modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 reg. number:Dn (xxx).W 111 000
An —_ — (xxx).L 111 001
(An) 010 reg. number:An #(data) — —
(An) + 01 reg. number:An
—(An) 100 reg. number:An
(d16,An) 101 reg. number:An (d16,PC) m 010
(dg,An,Xn) 110 reg. number:An (dg,PC.Xn) M o
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) mm 011
([bd,An,Xn],od) 110 reg. number:An {[bd,PC,Xn],0d) 1 011
{[bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Bit Number field — Specifies the bit number.

MOTOROLA MC68030 USER'S MANUAL
3-62

CAS CAS
CASZ Compare and Swap with Operand CASZ

Operation: CAS Destination — Compare Operand » cc;
if Z, Update Operand » Destination
else Destination » Compare Operand
CAS2 Destination 1 — Compare 1 » cc;
if Z, Destination 2 — Compare 2 » cc

if Z, Update 1 » Destination 1; Update 2 » Destination 2
else Destination 1 » Compare 1; Destination 2 » Compare 2

Assembler CAS Dc,Du,{ea)
Syntax: CAS2 Dc1:Dc2,Dut:Du2,(Rn1):(Rn2)

Attributes: Size = (Byte*, Word, Long)

Description: CAS compares the effective address operand to the compare operand (Dc).
If the operands are equal, the instruction writes the update operand (Du) to the effective
address operand; otherwise, the instruction writes the effective address operand to
the compare operand (Dc).

CAS2 compares memory operand 1 (Rn1) to compare operand 1 (Dc1). If the operands
are equal, the instruction compares memory operand 2 (Rn2) to compare operand 2
(Dc2). If these operands are also equal, the instruction writes the update operands
(Du1 and Du2) to the memory operands (Rn1 and Rn2). If either comparison fails, the
instruction writes the memory operands (Rn1 and Rn2) to the compare operands (Dc1
and Dc2).

Both operations access memory using read-modify-write cycles; these instructions
cannot be interrupted. This provides a means of synchronizing several processors.
Typical applications of these instructions are discussed in 3.4 USING THE CAS AND
CAS2 INSTRUCTIONS.

Condition Codes:

Not affected.

Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Set if an overflow is generated. Cleared otherwise.
Set if a borrow is generated. Cleared otherwise.

O<NZX

*CAS2 cannot use byte operands

MC68030 USER'S MANUAL MOTOROLA
3-63

CAS CAS
CASZ Compare and Swap with Operand CASZ

Instruction Format: (CAS):

15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS
MODE REGISTER
0o ool ool o]o Du 0o [o] o Dc

Instruction Fields:
Size field — Specifies the size of the operation.
01 — Byte operation.
10 — Word operation.
11 — Long operation.
Effective Address field — Specifies the location of the memory operand. Only memory
alterable addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn — — (xxx).W 111 000
An — — (xxx).L 111 001
(An) 010 reg. number:An #(data) — —
(An) + 011 reg. number:An
—(An) 100 reg. number:An
(d16.An) 101 reg. number:An (d16.PC) — —
(dg.An,Xn) 110 reg. number:An (dg,PC,Xn) — —
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —
([bd,An,Xn],0d) 110 reg. number:An ([bd,PC,Xn),0d) — —
([<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>