

MPW® and Asselllbly
Language
Progralllllling
For the Macintosh®

Scott Kronick

HOWARD W. SAMS &.COMPANY
A Division of Macmillan. Inc.

4300 West 62nd Street

Indianapolis, Indiana 46268 USA

#f
HAYDEN BOOKS

/11-·~~t.~-/

The Macintosh Library provides the most
current, hands-on information for optimal use

of the Macintosh computer. With each new
title we bring you up-to-date information

from outstanding and accomplished
Macintosh Authors.

Advanced Macintosh Pascal™
Paul Goodman

No. 046570, $19.95

How to Write Macintosh™
Software

Scott Knaster
No. 046564, $27.95

MacAccess: Information in
Motion

Gengle and Smith
No. 046567, $21.95

Macintosh™ Multiplan®
Lasselle and Ramsay
No. 046555, $16.95

Personal Publishing with the
Macintosh™ (Featuring
PageMaker Version 2.0)

Second Edition
Terry M. Ulick

No. 048406, $19.95

Basic Microsoft® BASIC for the
Macintosh TM

Coan and Coan
No. 046558, $19.95

MPW and Assembly Language
Programming

Scott Kronick
No. 048409, $24.95

Introduction to Macintosh™
Pascal

Jonathon Simonoff
No. 046562, $19.95

The Macintosh Advisor™
Harriman and Calica
No. 046569, $18.95

Object-Oriented Programming
for the Macintosh™

Kurt J. Schmucker
No. 046565, $34.95

Programming the 68000
Rosenzweig and Harrison

No. 046310, $24.95

The Excel Advanced User's
Guide

Richard Loggins
No. 046626, $19.95

dBASE Mac Programmer's
Reference Guide

Edward C. Jones
No. 048416, $19.95

Macintosh Revealed
Volumes One and Two

Second Edition
Stephen Chernicoff

Nos. 048400, 048401, $24.95 each

For the retailer nearest you, or to order directly from the publisher,
call 800-428-SAMS. In Indiana, Alaska, and Hawaii call 317-298-5699.

MPW® and Assembly
Language Programming
For the Macintosh®

The Macintosh Programmer's Workshop
for Assembly, Pascal, and C
(with Emphasis on Assembly)

©1987 by Scott Kronick

FIRST EDITION
FIRST PRINTING-1987

All rights reserved. No part of this book shall be reproduced, stored in
a retrieval system, or transmitted by any means, electronic,
mechanical, photocopying, recording, or otherwise, without written
permission from the publisher. No patent liability is assumed with
respect to the use of the information contained herein. While every
precaution has been taken in the preparation of this book, the
publisher assumes no responsibility for errors or omissions. Neither is
any liability assumed for damages resulting from the use of the
information contained herein.

International Standard Book Number: 0-672-48409-9
Library of Congress Catalog Card Number: 87-61779

Acquisitions Editor: Greg Michael
Manuscript Editor: Susan Pink Bussiere, Techright
Designer: T. R. Emrick
Cover Art: Celeste Design
Compositor: Shepard Poorman Communications, Indianapolis

Printed in the United States of America

Trademark Acknowledgments

All terms mentioned in this book that are known to be trademarks or
service marks are listed below. In addition, terms suspected of being
trademarks or service marks have been appropriately capitalized.
Howard W. Sams &. Co. cannot attest to the accuracy of this
information. Use of a term in this book should not be regarded as
affecting the validity of any trademark or service mark.

Apple and ImageWriter are registered marks of Apple Computer, Inc.

Mac and MacApp are trademarks of Apple Computer, Inc.

Macintosh, Macintosh Plus, and Macintosh Programmer's Workshop
are trademarks of Macintosh Laboratory, Inc., licensed by Apple
Computer, Inc.

= I ... I < > +
§a "'.00 i /!,. «
» + ! 0 - * &

f...., # A $ '*
To order a disk containing all the example programs used in this book
(plus additional fear and loathing sidetracks and Mac surprises) use the order
form in the back of the book.

I wrote this book without any help from anyone, and if you
believe that, my friends and I have some mosquito-free land in the Everglades
we'd like to sell you.

Martha Lynch, Andy Hertzfeld, Michael Cermak, Sandi Pottberg, David
Rand, Susan Barker, Doug Greene, Allen Cecil, Fred Huxham, Raines
Cohen, Steve Costa, John Heckendom, Kathy Ewing, and the BMUG crowd.

The book is dedicated to my mother, Ruth, and father, Mason.

PART ONE

Chapter 1
Chapter .2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9

PART TWO

Chapter 10
Chapter 11
Chapter 1.2
Chapter 13

Contents

Read Me First ix

The Macintosh Programmer's Workshop 1

I Bought the Disks, Now What? 3
What Are the Fundamental File Commands? 13
Can You Show Me a Program in Assembly? .23
Now How About Pascal and C? 31
What's the Story with Startup and Files in General? 43
Can You Give Me a Perspective on the Entire Command Language? 53
How Do You Do Resources? 63

Who Uses Make and the Structured Commands 71
Arn I Debugging Yet? 85

Up Bit Creek: The Assembly Tutorial

Slots: All the Bits That Fit
See Dick and Jane Grimace: First Lines of Assembly Code
The ABC's of Blocks of Code
Back to the Slot That Got You Here

vii

93

95
101
109
117

Chapter 14
Chapter 15
Chapter 16
Chapter 17
Chapter 18
Chapter 19
Chapter 20
Chapter 21
Chapter 22
Chapter 23

PART THREE

Chapter24
Chapter25

viii Contents

Fourplay: From Head to Tue with Lots of Time for the Middle
The Addresses of Screen Stars
Check the Status of the Stack, Captain
Macintosh Programmers Do It in Windows
Quickdraw Goes Inside the Window
The Mouse Makes CorneredCoin Complete
Momentous Events
Structured Programming with Blocks
The Key to Boarding the Keyboard
Menus: The Literature of Giants

The MPW and Assembly Dictionaries

The MPW Shell Command Language
The 68000 Instruction Set with Directives and Tuolbox Traps

Index

125
133
141
151
161
171
181
189
197
207

219

225
277

331

Read Me First

Here you will find answers to the following questions:

• Exactly who is this book intended for?

• How is this book different from the manuals?

• Why is the emphasis on assembly language?

• Exactly "'.'hat will I learn?

You have in your hands a starter's book using the Macintosh Program -
mer's Workshop (MPW).

That's right-starter's: Programmers who wish to begin using MPW and
programmers who wish to begin using assembly language.

You might have heard that MPW is a sophisticated, professional pro
gramming environment intended for the serious developer. That's like saying
educational TV is intended only for the serious thinker. Don't be snookered
by pretentious programmers. The elegance of MPW benefits learners as
well as developers.

The three sections within this text are designed to

• Provide show-me-how demonstrations of the extensive MPW command
language for assembly, Pascal, and C programming. Programs in each of
the languages are built from the ground up. Later chapters introduce
additional MPW features along with explanations of resources and
debugging.

• Provide a line-by-line, byte-by-byte instruction of Macintosh assembly

ix

X Read Me First

language fundamentals that assumes no previous experience in assem
bly programming. Included are ten fully-explained sample programs
illustrating the Toolbox's mouse events, windows, Quickdraw, and
menus.

• Provide MPW users with two complete dictionaries. The first contains
summary entries for the entire MPW command language. The second
contains the 68000 assembly language instruction set plus all the direc
tives and Toolbox traps used in the example programs.

Unlike the manuals, the instruction here is not inundated with encyclo
pedic chapters listing every conceivable option for every obscure feature.
The elements of MPW and assembly are introduced in the order in which a
starter would use them. For example, you'll create a short, standalone
application in the third chapter.

A large section of this book is devoted to giving a clear understanding
of Macintosh assembly language. A knowledge of assembly principles offers
considerable reward even for programmers who work primarily in Pascal
or C. Assembly directly manipulates the computer's processor and memory,
illustrating programming concepts that are difficult to visualize from within
the higher-level languages like Pascal and C.

Assembly code, when well written, executes faster and uses less space
than code from higher-level languages. MPW provides a convenient means
of linking assembly code with Pascal and C code. Pascal and C programmers
can improve a program's performance by coding in assembly those opera
tions that demand speed.

Macintosh assembly is particularly accessible to all levels of program
mers because so much of the groundwork coding is built into the Toolbox of
the Macintosh ROM. In this text, MPW is illustrated with short assembly
programs that help you write assembly programs of your own and increase
your understanding of Pascal, C, and the hardware that supports all com
puter languages.

As long as you have the MPW disks and a Macintosh computer capable
of running them, you can begin developing programs. You have three sec
tions (none of which presume you are an experienced MPW user or
programmer) to get you going.

Part 1. The Macintosh Programmer's Workshop

The purpose of part 1 is to get a starter up and running with program
development in assembly, Pascal, and C. You can

• Explore the contents of the massive Workshop disk set, discovering
which files a starter will need immediately and which can be set aside.

Xi Read Me First

• Practice building applications in assembly, Pascal, and C. A sample
development session in each language is presented in chapters 3 and 4.

• Experiment with the primary tools of the Workshop Shell, the central
application that allows you to write, compile, and execute your pro
grams from a single place.

• Unveil the potential of MPW, including structured commands, user
defined menus, automated development features, and resource and
debugging tools.

Part 2. Up Bit Creek: The Assembly Tutorial

The purpose of part 2 is to get a starter writing and understanding assem
bly programs by examining individual lines of code in short example pro
grams. (You'll also be entertained by a fear and loathing sidetrack in every
chapter). Here, you can

• Review assembly's use of hexadecimal numbers.

• Witness snapshots of the processor and memory in action.

• Uncover, bit by bit, the low-level instructions that make a computer
perform.

• Write short assembly programs using the Macintosh Tuolbox, including
mouse events, windows, Quickdraw, and menus.

Part 3. The MPW and Assembly Dictionaries

The purpose of part 3 is to keep the MPW user and the starting assembly
programmer fully informed with a quick and complete reference for looking
up new vocabulary. This section contains

• The MPW Shell command language

• The 68000 instruction set with directives and Toolbox traps

Chapter 1

Chapter 2

Chapter 3

PART ONE

The Macintosh
Programmer's
Workshop
The first four chapters in part 1 set up an MPW environment for writing
programs in assembly, Pascal, and C. Chapters 5 and 6 explain the files and
command language that make programming with MPW versatile, powerful,
and convenient. Chapters 7, 8, and 9 provide instruction on advanced MPW
tools, including those that enable you to build resources and debug pro
grams.

I Bought the Disks, Now What?
What have I got and what do I need?
How do I organize my hard drive or floppies?
My drive is read)I how do I start programming?

What Are the Fundamental File Commands?
How do I get a handle on file handling?
What can you tell me about pathnames and parameters?
Where can I find file help when I need it?

Can You Show Me a Program in Assembly?
Can't I just start programming now?
Is it time to create the program from the source code?

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Now How About Pascal and C?
Which files do I need for Pascal and C development?
Can I write a Pascal or C program now?

What's the Story with Startup and Files in General?
What does a programmer need to know about files?
How do you deal with data files and tools?
Whats a command file and why does Startup get top billing?
Tell me what Startup does or do you want your wagon filced?

Can You Give Me a Perspective on the Entire Command
Language?

Can you summarize what I've learned about files thus far?
How about a few words on command format and parameter options?
More on windows, and how come you never mention menus?

How Do You Do Resources?
Certainly MPW hasn't changed the way resources work, right?
How do resources fit in the scheme of MPW programming?
Can you show me how to add a resource to a simple program?
Is this how all resources are compiled?
How does your program code know about resources and how are resources linked?

Who Uses Make and the Structured Commands?
When should I start using MPWs fancy features?
What does Make make?
Why doesn't the computer know how to build programs?
When do the structured commands come in handy?
How about some input on output and vice versa?
What other features are there to further complicate matters?

Am I Debugging Yet?
Where does the debugging process start?
What can the debugger do for me?
Can you show me how the basics work?
Exactly what does the MacsBug output show?

CHAPTER ----~ 1 -- lli!!B!llll!iliBd W ®'1MWt&tfii~ &&iMM!fflW®'*'l§WMM§¥¥'•+ @'W £2m11w&j\iif@ii#11$¥1W

I Bought the Disks,
Nour What?

What have I got and what do I need?

The Macintosh Programmer's Workshop (MPW) is a set of disks that provide
the environment for developing programs in assembly, Pascal, and C. On
these disks are numerous programs and data files that help you build your
own independent, standalone application program.

The core of MPW includes a programming Shell, an assembler, tools,
libraries, and examples. With this core, a programmer can write assembly
language applications.

This book has been updated for use with MPW version 2.0. Users of
earlier MPW versions will find that many MPW elements covered here are
not implemented in their software. The programs used as examples in this
book are not affected by the differences.

The following Macintosh screen illustrations, figures 1-1 to 1-5, show
you the contents of the MPW (version 2.0B1) core disks.

The Pascal and C languages are supplements to MPW. These supple
ments, purchased separately, include compilers, tools, libraries, and exam
ples. Another supplement, called MacApp, is a set of object-oriented libraries
that provide an expandable application, that is, a base for a larger program
ming project.

Program development is easier and more efficient when you use a
Macintosh with large internal memory and disk storage space. The actual
memory and storage requirements vary with the MPW version and the
scope of the project you are undertaking.

3

4 Part One

F-D MPWI 0-
i 15 items 757K in disk I 6K av ail ab le

~ 00 00 00 00 ~

MPW Shell Startup UsierS~ad•Jp Worksheet MPW.Help

00 00 00 D LJ
Quit Resume Suspend SysErrs.Err Examples

D LJ CJ CJ CJ
Libraries: Rlncludes Debuggers Applications Scripts

~
IQl bJ '2l

Figure 1-1

s File Edit Uiew Speci11I
,

Rlncludes Debuggers EK11mples Scripts

i 4 items 757K in disk i 5 items 757K in disk i 6 items 757K in disk i 7 items 757K in disk

OOcmdo.r '5:1 MacsBug [!! Instructions 00 BuildCommands

00 MPWTypes .r 15:1 Milk 1 MB 00 AddMenus 00 BuildMenu

00 SysTypes.r 15:1 Milk2MB [!!Lookup l!J BuildProgr am

OOT•jpes .r 15:1 Milk5MB 00 Startup, etc. 00 CrealeMake

15:1 MilkSMB [!!state 00 Directory Menu

[!! Unix Aliases OOLine
. 00 SetDirectory : :-o Libraries 0

i 7items 757K in disk 16K available .. flpplications

IQ
. . .

~ DRVRRuntime .o ~Runtime .o i 1 item 757K in disk 16K a'lj
. .
~ Interface .o ~ Toollibs .o

.
. .

\ ResEdit
. ..

.
~ Objlib .o OsERD

...

. . ·:i ·· . ~ Performlib .o Q

::~ lQ l2J : ·rrash · ..
.

Figure 1·2

Consult the documentation for your particular MPW version to find its
memory recommendations. The suggested minimum configuration for ver
sion 2.0 is lM RAM, 128K ROM, a hard disk drive, and system 4.1 or newer.
A RAM cache of 3ZK (set from the Control Panel) is suggested. The earlier
1.0 version of MPW can be used with floppy drives .

5 Chapter 1

• File Edit Uiew Special
..

gj. MPW2
i 1 item 776K in dis~ :

: SHk~ :

~r
9K .>Vailable • I

D Tools

i 18 items 776K in disk

~ ~ ~ ~ ~ ~
~

Canon Commando Count CVTObj DeRez DumpCode

~ ~ ~ ~ ~ ~
DumpObj Err Tool Lib Link Make PerformReport

~ ~ ~ Select Translate
~ ~ ~ ~
Print Rez RezDet Search

:;i I !Ql'2J
.

Figure 1·3

r
File Edit Uiem Spei:;ial _

MPW3 ROM Maps

i 2 items 723K in disk 56K avail i 4 items 723K in disk

More Tools ROM Map<
00 ' 00 ~

MacPlusROM.map 00 MacSE:OM.map ~
Macl!ROMB6.map MacllROM .map

D More Tools 0:
i 15 items 723K in disk 56K available

~ ~ ~ ~ ~ ~
Asm Back•Jp Comparieo File Div Ent ab MDSCvt

~ ~ ~ ~ ~ ~
ProcNames ResEqual SetVersion Stdfile SysErr TLACvt

00 00 00
Canon.Diet MDSCvt .Directives TL ACvt .Directives

K;l I
lo..

Figure 1-4

6 Part One

r s File Edit Uiew Special
.,

MPW4 REKamples

i 3 items 641K in dis k 139K availabl i 8 items 641K in disk 139K available

. .
j):· 00 lnstrudior{!) Sample .• OOcount.a 00Memory .a ., :;::::: ::: :: ...

~~ ::::::;;:;:: :::1:i:1:1:1:J:1
OOMakeFile OOsample .r OOcount .r OOstubs .a :1 :1:~:1 :1: Hi :1:1 :::::::::1

AExamples A Includes AStructMacs

-o Rlncludes 0-
i 29 items 641K in disk 139K available

RStructMats 00 ApplDeskBus .a 00 ObjMacros .a 00 5crip\Equ .a OOrimeEqu.a ~
i 3 items 64 1K in disk 00 A Ta lkEqu .a 00 PackMacs .a OOscs 1Eq•J .a OOrooJEqu .a

00 ProgStrucMacs .a
OOFSEqu .a OOPrEqu.a OOsignal.a OOrraps.a

00 FlowCtJMacs .a
00 FSPrivat• .a 00PrinHraps .a OOs1otEqu .a 00 VideoEqu .a

OOFixMath .a OOPrivate .a OOsonyEqu .a

00 S trucSamp le .a 00 Graf3DEqu .a 00 OuickEqu .a OOsound .a OOnPrEqu.a

00 HardwareEqu .a 00ROMEqu .a OOsy sEqu.a

00 ln\Env .a 00 S ANEMacs .a OOsysErr .a IO
. 121 .12121 ~ -

...
""

Figure 1-5

The programs and illustrations in this book were created on a Macin
tosh Plus . The programs are short, and the data files required to create
them are few. Thus, you can write and execute all of the programs with a
minimally configured Macintosh. Again, actual requirements vary with your
MPW version number.

MPW is designed to work with Macintoshes that use either the 68000
processor (standard Mac Plus and Mac SE) or the 68020 processor (Mac II
and board upgrade Macs) . The assembly language instruction set for the
68020 processor is fully supported . The Pascal and C compilers offer op
timizations for using the 68020.

After you possess the minimum memory requirements , you will find
the kilobytes of intrigue and ingenuity in your brain are more important to
good programming than the bytes in your computer.

How do I organize my hard drive or floppies?

The original packaging of MPW version 2.0 is on BOOK, double-sided, HFS
disks. The original packaging of MPW version 1.0 is on 400K, single-sided,
MFS disks . The core disks of either MPW version include everything you

7 Chapter 1

need to write programs in assembly language. The Pascal and C languages
and the MacApp supplement are packaged on separate disks.

You should make copies of all MPW disks, then use the copies to make
the work disks described in the rest of this section. That's right, three sets:
originals, copies, and work disks. Do this now. The original MPW disks
should be safely stored in a cupboard with the picture of your first boy
friend or girlfriend, and used only if your copies are lost.

If you are using a hard disk drive, you can access all information on the
MPW disks by copying their contents onto the hard disk in appropriately
named directories (folders). Unless your hard disk is filled with other mate
rial, all of MPW will fit with plenty of room left over for your own files. (As
always, some file names and sizes could differ from what you see in the
figures if you are using a different MPW version.)

Figure 1-6 shows a hard disk configuration where:

1. You create a new folder named MPW.

2. The contents of all MPW disks, including the Pascal and C disks if
you have them, are copied to the hard disk and put in the new MPW
folder.

3. The System Folder on your hard drive remains outside the MPW
folder.

4. The contents of the folder named More Tuols are put into the folder
named Tuols, then the More Tuols folder is deleted.

5. If you have them, the Pascal compiler and tools (Pascal, PasMat, and
PasRef) and the C compiler (C) are put into the Tuols folder.

6. The program named MacsBug from the Debuggers folder is put
inside the System folder.

7. The files MPW.Help, Quit, Resume, Startup, Suspend, UserStartup,
and Worksheet remain in the same folder as the MPW Shell. Another
Shell text file, MPW.Errs, is automatically created by the Shell and
does not appear on your initial desktop.

8. For version 1.0 users only, the floppy disk and Lisa Startup files
(named Startup.SOOK and Startup.XL) are deleted. (Macintosh XL/Lisa
users should delete Startup, then rename Startup.XL to Startup.)

Most of the figures in this book are screen shots of a Macintosh run-
. ning MPW version 2.0Bl with a hard disk drive. Floppy disk users with

MPW version 1.0 can run all the programs in this book. Version 2.0, how
ever, offers many new features and not all screen shots will look the same.
Even hard disk users might want to look over these floppy disk instructions
to see which files are essential MPW files for creating applications.

8 Part One

""o MPW E!I:
26 ;terns 1 5 ,680K in d;sk 4 ,626K ava;Jable

~ [!] 00 [!] 00 00 00
IQj

MP'w'Shell MP'w'.Help Quit Resume Startup Suspend User Startup

00 D LJ LJ LJ LJ LJ
Workshoot SysErrs .Err Applications D•bu99ors Examplt's LibrarMos Rlncludos

LJ LJ LJ LJ LJ LJ
ROM Maps Scr;pts Tools AExamples A Includes AStructMacs

LJ LJ LJ LJ LJ LJ
CExamples C1ncludes Clibraries PExamples Plnterfaces PL;brades

~
~ El 121

Figure 1·6

If you are using floppy disks and MPW version 1.0, access becomes
trickier. The key to a workable configuration is to build a number of two
disk sets. Each pair of disks provides a standalone, single-language MPW
environment.

The floppy disk configurations shown in the next set of figures contain
the necessary files to follow along with the programs in this book. This
minimum configuration fits on an BOOK drive and a 400K drive (1200K total),
with enough space remaining for your assembly programs .

Users with two BOOK drives can have a complete set of data files (you
can copy the entire Alncludes folder to your floppy). Additional disk drive
space is particularly important for Pascal and C programming. Chapter 4
shows you how to create two-disk sets for Pascal and C programming.

The following three screens, figures 1-7 to 1-9, show a two-disk set for
assembly programming where:

1. Select files are copied from the MPW disks onto one of the two
floppy disks .

.2. Select tools are combined into the folder named Tools .

3. The hard disk and Lisa Startup files (named Startup and Startup .XL)
are deleted.

4. The floppy disk file named Startup .BOOK is renamed Startup.

5. The program named MacsBug, copied from the Debuggers folder, is
placed inside the System folder.

9 Chapter 1

=D MPW EJ;;,;
12 items 717K in disk 56K available

0 ~ 00 00
Sy stem F o Ider MPW Sh•ll MPW .Help Qoit

00 00 D 0
Suspend UserStartup SysErrs.Err Rlncludes

0
Figure 1-7

,.. s File Edit Uiew Speciol

-0
4items

Finder

;i1

5 items

Line

System Folder ~ 0§
717K in disk 56K av ail ab le

~ ~ ~
~

System lma9e'w'riter MaosBug Q
jg 2J

Tools
717K in disk 56K available

Link Make

7 items

OU
100
010

00 00
Resume Startup

0 0
Tools Libraries

..
Rlncludes

3items 717K in disk

[!] 00
MPWTypes.r SysTypes .r

Librories
717K in disk

OU
100
010

OU
100
010

DRVRRuntime .o Interface .o Objlib .o

Print

OU
100
010 D D

Too llib<.o App le Talk SERD

Figure 1-8

My drive is ready, how do I start programming?

~

~
J2j ~

56K available

00
Types.r

56K available

OU
100
010

Runtime.o

.,

....

Tu begin programming, double-click on the application named MPW Shell. A
Worksheet window opens.

Your initial Worksheet window may be filled with a copyright notice,
example instructions, and command information. After you glance through
this information, you might want to print it or save a copy (choose Save a

10 Part One

,. s Fiie Edit Uiew Special
.,

.... -
: : : : :~-~D~~~~~~]R~s~m~=~~~~ij~ei~~~ : : : : : : : : : : : · · ·

241 K in disk 147K available• : : : 11PW : . 2 items

Asm A Includes
:::: .:: ::::::::: ... •.• . :

Rlncludes
2 items 241 Kin disk 147K available

[!) [jJ
SysEqu.a Traps .a

· · · 'Trash · - . - .. - . -
i..·,,,

Figure 1·9

Copy ... from the File menu) under a new name . Then clear the Worksheet
window so that you can begin using the MPW Worksheet with a clean,
uncluttered slate.

In figure 1-10, the Shell has opened to a blank window entitled with the
pathname Silky:MPW:Worksheet . (Silky is the hard disk drive's volume
name .)

The Worksheet window is the starting point for all your programming
activity. It serves as the desktop for the MPW Shell and provides entry to the
entire MPW envir onment. Every file on your disk drives can be accessed
through the Worksheet .

Here are the two most salient features of the Shell's Worksheet:

• The user interface is primarily text oriented and uses an extensive
command language. Although icons are not used, the Shell offers some
menu options (you can create your own, too) and provides a method for
producing informative dialog boxes that make learning and using the
command language easier.

• The empty Worksheet window accepts text for nearly any purpose.
Tasks such as text editing, file organization, program construction, and
program execution can be performed directly in a Worksheet window
using Shell commands.

11 Chapter 1

,.. s File Edit Find Window Marie Directory Build

Silk :MPW:Worlcsheet

MP\v'Shell

Figure 1·10

.,

The Worksheet window accepts program code as well as the commands
to compile, link, and execute the code . Without retur ning to the Finder or
restarting the computer, a program can be written, tested, debugged, ed
ited, and retested.

You can think of the Shell as a combination desktop Finder, word -
processing editor, and programming language executor with a built-in com
mand vocabulary. All language, data, and tool files on your MPW disks are
integrated to work under Shell control.

Another special aspect of the Worksheet window is that it cannot be
closed. When the MPW Shell is running, the Worksheet window is always
open. Copies of the Worksheet can be saved under various file names . All
text files created by MPW are, in essence, Worksheet copies with Worksheet
capabilities.

This is important: The name Worksheet r efers to any Shell window that
is interacting with the Shell . The original Worksheet window always re
mains open, but any active window can be u sed to perform Shell commands
and otherwise work as the original Worksheet.

In upcoming chapters, the command language is explored in more
detail. You will see that the Shell can work both inter actively (type a com
mand, press Enter, and the command is executed) and as a file processor
(type a program or series of commands, save the file, and execute the file) .

12 Part One

The Worksheet reads input and displays output. Your first exercises with
the Shell display output in the Worksheet window.

In part 3's dictionary, you will find that the Shell's input and output
devices are called standard input, standard output, and diagnostic output. By
default, standard input is read from the keyboard. More often, however,
your command specifies that input be read from a file. Both types of output
(diagnostic output refers to the Shell providing information about its opera
tion) are displayed in the active Worksheet.

If you are practicing with unfamiliar commands, you might come
across a command that causes the Shell to stop responding. This happens
when the command is waiting to read standard input, that is, information
typed from the keyboard. Tu exit this situation and have the Shell recognize
your commands interactively again, press the Command/Enter key combina
tion. Command/Enter (or Command/Shift/Return) terminates input with an
end-of-file mark. You will read more about input and output at the end of
chapter 8. Remember, whenever you desire further information about a
command, flip to part 3's dictionary of the entire command language.

CHAPTER

What Are the
Fundalllental
File Collllllands?

How do I get a handle on file handling?

Before you go about creating a file, you should explore a few MPW com·
mands that handle files. These file handling commands make the MPW Shell
a substitute for the Finder. You will practice with three commands, volumes,
directory, and files, to see the contents of your hard or floppy disk.

All Worksheet windows can be used to enter Shell commands. Even if
you have named a Worksheet with a file name, the window retains its
interactive ability to take and respond to commands. If an error occurs, an
error message is displayed on lines following the command.

Some commands are executed silently; others display standard output
in the window. All Shell commands use the Status Panel, a small box in the
bottom-left corner of the active window, to show the Shell's current activity.

When no command is being executed, the status panel displays MPW
Shell, as shown in figure 2-1. Clicking inside the Status Panel is an alternative
to pressing the Enter key.

Type volumes in the Worksheet window, then press Enter. The Enter key
executes the Shell command on the same line as the insertion bar, so it is
important that you do not press the Return key before pressing the Enter key.

You have to look quickly to see the name volumes in the bottom -left
corner Status Panel as the command is executed. Figure 2-2 shows the
output the command produces in the Worksheet window when using a hard
disk drive that has the volume name Silky. If you are using a hard disk

13

14 Part One

allocated as a single volume, your output will show the single volume name.
The volumes command lists only mounted volumes.

MPW Shell

volumes
Silky·

MPWShell

Silky:MPW:Worksheet

Figure 2-1

Silky:MPW:Worksheet

Figure 2-2

Figure 2-3 is the output of the same command when used on a system
with two floppy disks.

• . ..iolumes
Asm ·
11Pl-l .

I

MP''ll' :3hell

MPW:lllorksheet

Figure 2-3

The output of the floppy disk system's volumes command is Asm: and
MPW:. Each of these floppy disks is considered a volume. The disk name and
the volume name are the same.

The colon that follows a volume name is important. Colons help distin
guish volumes, directories, and files. When you specify a volume name, you
must add the trailing colon, or MPW will consider it a file name.

15 Chapter 2

Press Return once (to help readability), then type directory in the Work
sheet window and press the Enter key. Remember to press the Enter key
while the insertion bar is on the same line as the command you want
executed.

You can also execute a command in two steps by:

1. Selecting the command or command lines you want executed. A
selection in the active window appears in inverse, white letters on a
black background .

.2. Pressing the Enter key to execute the selection. (Clicking in the Status
Panel or pressing the Command/Return key combination is equivalent
to pressing the Enter key.) If the selection contains more than one
command line, each command is executed sequentially.

Note: MPW version 2.0 has expanded the methods of directory control
through the use of menus and dialog boxes. After reading the next few
paragraphs that explain the directory command, you might want to flip to
dictionary definitions of the commands directoryMenu and setDirectory. These
commands provide a versatile menu alternative to the window-based com
mand directory.

Figure 2-4 shows the output the directory command produces in the
Worksheet window.

volumes
Silky :

directory
Si lky : Mf>l.I :
I

MP'tl Shell

Silky:MPW:Worksheet

Figure 2-4

Caution: MPW uses the term directory in two related, yet distinctly differ
ent, ways. In one use, directories are analogous to folders, representing
groups of files accessed through pathnames. However, the command directory
refers to a scope of activity, a kind of primary folder that always represents
a single volume (or floppy disk).

When working with MPW, you must always be concerned with your
scope of activity. MPW won't find files outside its current scope unless their
pathnames are specified. The default directory represents MPW's immediate
file handling scope.

16 Part One

The directory command, with no additional parameters, writes the name
of the MPW default directory to the Worksheet (standard output) window.
The directory command output shows that the file handling scope is currently
set to be the directory whose pathname is Silky:MPW:.

Parameters, by the way, are strings (often file names) that follow com
mand words to give the command a special meaning. Each command's
parameters are explained in the dictionary definitions in part 3.

As noted, you can also show the name of the default directory by
selecting Show Directory from the Directory menu. Figure 2-5 is an example
dialog box that displays directory information.

The default directory is

Silky:MPW:

((OK I

Figure2-5

What can you tell me about pathnames and parameters?

Here are some suggestions for handling MPW files:

1. If you are not familiar with the concept of HFS pathnames, get ready
to become familiar. Beginning users should not use shortcuts. Instead,
spell out full pathnames. A full pathname, which may include zero,
one, two, or more directory names, has the format:

vo/umeName:directoryName 1 :directoryName2 :tile Name

2. Uppercase and lowercase letters are treated the same (but they are
not when you use the C compiler). Each file or directory name must
be less than 32 characters. Names that contain spaces must be
enclosed in quotation marks so that they are considered a single
name. Colons cannot be part of a name.

3. For advanced users: The characters shown in figure 2-6 can be used
to help specify pathnames.

4. Don't forget your colons. Volumes and directories need colons.

17 Chapter Z

?

§

Wildcard character. Match any single character (except

colon or Return).

<- = Option/X) Wildcard character . Match any string of

characters (except colon or Return) .

(§ = Option/6) Selection character. Match currently

selected text in the default window or in the window

given by name.§.

Figure .2-6

Type files in the Worksheet window 1 then press the Enter key. Once
again, remember to press the Enter key while the insertion bar is on the
same line as the command you want executed. Alternately, you can select
the command or commands (white letters on a black background) to execute
the entire selection.

The output of the files command is shown in figure 2-7. (The list of files
is longer than a single windowful can show. The scroll bar lets you see the
entire list.)

The files command, with no parameters, writes the names of the files in
the MPW default directory to the Worksheet window. Notice the use of

fi las
:AExamples:
:Alncludes :
:Appl icalions:
:AStructMacs:
:CExamples:
:Clncludes:
:Clibraries ·
:Debuggers :
:Examples:
:Libraries:
:PExamples:
:Plnterfaces:
·PLibraries:
:Rlncludes:
. :ROM Maps:.
:Scripts:
.Tools:
'MPW Shell"
MPW.Errors
MPW.Help
MPW .Pipe
MPW. Scratch
Quit

MPW Shell

Silky:MPW:Worksheet

Figure 2-7

18 Part One

colons to designate directories. Directories use both preceding and trailing
colons in their names.

You can change the default directory by once again using the directory
command, with parameters. In figure 2-8, the current directory is changed
to Silky:MPW:Libraries:, then the files command outputs only the library files
in its current file handling scope.

volUtnes
S ilky :

directory
Si lky : MPll :

Silky:MPW:Worksheet

directory Si lky :MPll : Libraries:

directory
Si I ky: MP~J:L i brar i es:

fi !es
DRURRunt i""' . o
lnterfcice . o
Objl ib . o
Per·formL i b. o
Runti111e . o
SERO
Toollibs.o

MPW Shell

Figure 2-8

Directories can also be set using the Directory menu. The bottom half
of the Directory menu lists some of the available directories. If you want to
set the default directory to one that is not listed in the menu, choose Set
Directory ... from the top half of the menu and specify the directory in the
resulting dialog box. This sets the directory and adds the directory name to
the list of directories in the bottom half of the Directory menu. The setDirec
tory command, available from the Worksheet window, performs the identical
task.

Figure 2-9 is the dialog box that appears after choosing Set Directory ...
from the Directory menu.

The use of parameters (think of them as command specifications) gives
much more power to the MPW command language. In figure 2-8, the
directory command not only lists the current default directory but, with
parameters, also changes it.

19 Chapter 2

Select Current Directory:

jeMPWI

D Rlncludes
D Rpplications
D RStructMacs
D CEHamples
D Clncludes
D Clibraries
D Debuggers
D EHamples

Figure 2-9

I
=Silky

Dril•(~

Open

n Directory J
(Cancel)

Take a moment to glance through the MPW dictionary in part 3. You
will find that most commands have a variety of optional and required
parameters as well as numerous minus sign (-) options that add even more
versatility.

The files command can also accept parameters. By adding a volume or
directory name as a paramE;;ter, you can specify which files you would like
listed, without changing the default directory.

Try using the command

files Silky:MPW:Tools:

while the default directory remains Silky:MPW:Libraries:.
When your Worksheet gets cluttered with information you no longer

need, select the unwanted text and press the Backspace key. Tu completely
clear a Worksheet, you can choose Select All from the Edit menu, then press
the Backspace key.

Take a few moments now to experiment with the three commands you
have used in this chapter. Look up volumes, directory, and files in the dictionary
to see what options are available. Figure 2-10 shows the volumes and files
commands with minus sign options.

Where can I find file help when I need it?

MPW's help command assists you in using the variety of commands, expres
sions, characters, patterns, selections, and shortcuts. By typing the following
commands, MPW writes summary information about each to the Worksheet.

20 Part One

volumes -I
Name

files -I -r
Name

DRVRRuntime.o
Interface. o
ObjLib.o
Per formLi b. o
Runt ime .o
SERO
ToolLibs.o
I

MP'vl Shell

help Commands
help Expressions
help Characters
help Patterns
help Selections
help Shortcuts

Sillcy:MPW:Worksheet

Drive Size Free Files Dirs

3 20305K 4621K 800 97

Type Crtr Size Flags Last-Mod-Date Creation-llllll
---- ---- ------ ---------- ----------------- ----------- :jljil
OBJ MPS
OBJ MPS
OBJ MPS
OBJ , MPS
OBJ MPS
???? ????
OBJ MPS

Figure .2-10

mm

Ill
mm

Using help Commands provides a list of all available minus sign options and
other parameters . In addition, the help command can be used with any
particular command as its parameter. The output is a list of only that
command's possible parameters. Figure 2-11 is an example of this .

Another tool to facilitate using the commands of the MPW Shell is
called commando. The commando command produces dialog boxes that help
you compose the line-oriented text of the Worksheet. In these dialog boxes,
you can choose parameter pathnames and minus sign options, read help
text, and either execute immediately or write to output the command itself.

You can use the commando interface in two ways:

1. An ellipsis character (. ..) allows immediate Do It execution of a
commando-created command line . (An ellipsis character is produced
by pressing simultaneously the semicolon key and the Option key. Do
not enter three periods.) When you insert the ellipsis character,

21 Chapter 2.

help print
Print [option...) [file ...)

-b
-b2
-bm n[.n)
-c[opies) n
-ff string
-f[ont) name
-from n
-h
-hf[ontJ name
-hs[izeJ n
-l[ines) n
-lm n[.n]
-ls n[.nJ
-md
-n
-nw [-Jn
-p
-page n
-r
-rm n[.nJ
-s[ize) n
-t[abs] n
-title title
-tm n[.n)
-ton
-q quality

< file ~ progress
print a border around the text
alternate form of border
bottom margin in inches (default 0)
print n copies
treat •string• at beginning of line as a formfeed
print using specified font
begin printing with page n
print headers (time, file, page)
print headers using specified font
print headers using specified font size
print n lines per page
left margin in inches (default .2778)
line spacing (2 means double-space)
t use modification date of file for time in header
print line numbers to left of text
width of line numbers, - indicates zero padding
t write progress information to diagnostics
t number pages beginning with n
t print pages in rev~rse order
t right margin in inches (default 0)
t print using specified font size
t consider tabs to be n spaces
t include title in page headers
t top margin in inches (default 0)
t stop printing after page n
• print quality (HIGH, STANDARD, DRAFT)

Figure.2-11

anywhere on the same line as the command's name, execution causes
the commando's dialog box to appear. After you have composed the
command line by answering the dialog box, clicking in the Do It
button executes the command itself .

.2. The word commando permits delayed Worksheet execution of a
commando-created command line. By preceding a command with
commando (instead of using the ellipsis), execution causes the
commando's dialog box to appear. After you have composed the
command line by answering the dialog box, clicking in the Do It
button writes the command line to the Worksheet for execution at a
later time.

In the case of complex commands, commando dialog boxes offer a
variety of menus and controls. These include text fields, radio buttons,
check boxes, pop-up menus, multiple input files and directories, repeatable
options, and nested dialog boxes. Each command has its own commando
interface. Experimenting with various commando commands helps to illus
trate graphically a tool's functionality. MPW also permits users to create a
commando interface for their self-built tools.

Figure 2· 12 is a s;unple commando interface for the Print tool. (You'll see
more of commando in chapter 8.)

22 Part One

Print Options---------~--~---------.
, ... ffeoder·· .. ·········--···-··· .. ··-···; , ... format , ,--Bordet··---·--··-·····-------,

I~ :~:;~~~~;~J:::.:~:~:: B lt~;;~;~j
I m1e L..-;::::.7.-::~:-.7.7.7.:7::.~·:::.:-:.J 11 Line _Spitting D ! ,•nput I
! font ! . In Font I I l '-· ..., .. -·-----
l. !.:.~-~-~~ ... ~~-~-~--L=J!J..j L~~~-1 ~.~-=~--L... ..J !Error. I
[~:~~~:~~:~~j~~~~~] [~~~~~-~~~:~~~-~~:~] More Options...)

l:commond Line
(mt
Help-----------------, [concel]

Print text files on the currentllj selected printw

.__ __________________ ___..n P.;n~n~•--.... 1
~.081

Figure 2-12

As more of MPW's commands are introduced in this book, try using
their commando dialog boxes. Using dialog boxes allows you to spend less
time referencing tool definitions in the dictionary and cuts down on Work
sheet typing errors.

CHAPTER
~--11111i111iillllllllllill~ •lllillllililiililililliiilllll!lllilillilllllllllllllilllllllllllllllllliilillil!BllfiiiE!l!liiili!BiD/illlllilll!ll!lillllllllli!llllllmlillilill!llllllilZlll!!ll!l!!i -~ - 3 j-iHii"W

tt~ -lli'!llil\lilll llllllllllllBlilllrmilll ~ll!lllllll&1$ilillil~~tlllill!llillJlllli!llmMillll!llll4B!i!WlllDllllllllllllllilllllliiiliii!iill§llill!li'llliillllllllllllllllllllillllllB&&&&&&l&!iilmmml!l!EA4&~@

Can You Shour Me a
PrograID
in Asseinbly?

Can't I just start programming now?

In this section you will type, assemble, link, and run an assembly program.
YolJ, do not need to know assembly to create this program; just type in what
you see. Part 2, the assembly tutorial, explains the mechanics of the pro
gram you use here. Creating an assembly program requires four steps:

1. Knowing the directory location of all required files.

2. Entering the program code in a new Worksheet window.

3. Entering a sequence of compile and link commands in the original
Worksheet window.

4. Executing the command sequence.

In the later chapters of part 1, you learn about tools that automate the
process of compiling and linking programs. In particular, the Build menu
offers a commando interface to create and, if desired, execute a command
sequence. The example program in this chapter avoids these tools in the
hope that you will more easily understand the underlying process by manu
ally building your program.

First, clear your current Worksheet or create a new 1 clean Worksheet.
The MPW commands clear and new perform these functions. Alternately, you
can choose New from the File menu to create a new window; a dialog box
asks you to name the new window. A third alternative is to select the entire
contents of the Worksheet and press the Backspace key. This removes the

23

Listing
3·1

24 Part One

contents of the Worksheet, but who cares? You can always repeat the file
handling commands that you used in the last section. (Shortcut note: You
can select text larger than the screen by dragging, by choosing Select All
from the Edit menu, or by the shift key/click method that selects all text
between the cursor and the insertion bar at a shift key/button press.)

Fastidious types always like to keep a clean Worksheet and save only
those Worksheets that contain command sequences likely to be repeated.
Because your command sequences are short in the first few chapters, there
is no need to save the Worksheet. Saving Worksheets can be done either
through the File menu or the Shell's save command.

Now that you have a clean Worksheet, type in the program in listing 3· 1,
CorneredCoin. Th make the typing easier, you can omit the program's com
ments. Comments, which help a programmer understand the code but are
ignored by the assembly process, include any text that follows a semicolon.
You can see in the program that all comments are in the rightmost column.

The indentation and spacing of the program code is important. At the
end of each line of code, press the Return key to get to the next line. Make
sure that the lines of code at the left margin are aligned at your Worksheet's
left margin. That is, do not insert any preceding spaces or tabs. Use the Tab
key to line up the other columns. Uppercase letters serve only for readability.

FlipCoin

INCLUDE 'Traps.a'

MAIN
PEA -4(A5)
InitGraf

-InitFonts
-InitWindows
=Initcursor

SUBQ #4,SP
CLR.L -(SP)
PEA WindowSize
PEA WindowName
ST -(SP)
CLR.W -(SP)
MOVE.L #-1,-(SP)
SF -(SP)
CLR.L -(SP)

NewWindow
=SetPort

PEA CoinSize
_FrameRect

MOVE.L #$006E007A,-(SP)
Move To

PEA CoinLetters
_Drawstring

SystemTask
SUBQ #4,SP
MOVE.L SP,-(SP)

GetMouse
MOVE.L (SP)+,D3

;Program CorneredCoin

;define trap names

;push pointer to Quickdraw globals
;initialize Quickdraw
;initialize font manager
;initialize window manager
;initialize cursor to arrow

;make room for pointer result
;allocate on heap
;push pointer to rectangle
;push pointer to name
;yes, window is visible
;use document window
;put window on top
;no, window has no goAway box
;NIL window refCon
;make the window
;make window current port

;push pointer to rectangle
;draw rectangle frame

;specify integer coordinates
place Quickdraw pen at point
push pointer to string
draw string at pen location

give screen time to resynch
make room for point result
push pointer to result space
get cursor coordinate point
store point in register

Listing
3·1
cont.

25 Chapter 3

TryButton

SUBQ #2,SP
MOVE.L D3,-(SP)
PEA CoinSize
_PtinRect

TST.B (SP)+
BEQ.S T:yButton

PEA CoinSize
_InverRect

SUBQ #2,SP
Button

TST.B (SP)+
BEQ.S FlipCoin

_ExitToShell

make room for boolean result
retrieve cursor point
push pointer to rectangle
see if point is in rectangle

;set z flag accordingly
;branch if z is set (not in rect)

;push pointer to rectangle
;invert rectangle

;make room for boolean result
;see if button is pressed
;set Z flag accordingly
;branch if z is set (no press)

;return to Desktop

WindowSize DC.W
WindowName DC.B

80,60,290,450 ;window bounds (Top,Lft,Bot,Rgt)
•cornered Coin' ;window title

CoinSize DC.W
CoinLetters DC.B

END

80,100,130,290 ;rectangle bounds
'BlackHeads/WhiteTails' ;string in rectangle

;code end directive

Any errors you may have typed are not noticed by the Editor. Only in the
later stages of assembling, linking, or running a program will errors be noted.

After you type in the code, save the code in the MPW folder under the
name Coin.a. Floppy disk users should save the code onto the Asm: disk.

The simplest way to save Coin.a is to choose Save a Copy ... from the File
menu, then answer the dialog box by typing the file name and pressing
Return. The code in the Worksheet is saved in a new window and file named
Coin.a. Beneath the Coin.a window is the ever-present Worksheet window.

The Save As ... item is not available from the Worksheet window because
the Worksheet cannot be closed or replaced. Save As ... replaces a window with
a new file name, whereas Save a Copy ... creates a second window with a new
file name. The Save item saves to disk without a file name change.

At this point, it is easier if you do not put Coin.a into any subfolder. This
will make it easier to find the Coin.a file (one less directory pathname to
specify) when you are ready to compile the source code.

Take note of the .a suffix you appended to the file name Coin. Suffixes
play an important role in identifying the files used in creating an assembly
language application. Certain MPW programs create files with suffixes al
ready attached. Adding other suffixes is the programmer's responsibility.

You are almost ready to assemble and link your code. First, bring the
Worksheet window back on top (click on it).

Hard disk users should make their current directory Silky:MPW: where
Silky is the volume name of the hard disk drive. If necessary, use t~e
command

directory Silky:MPW:

26 Part One

to set the directory, or choose Set Directory ... from the Directory menu and
answer the dialog box.

Floppy disk users should specify the current directory as Asm:. If you
did not do so earlier in the chapter, use the command

directory Asm:

to change the directory to Asm: . Executing the directory command without
parameters displays the current directory.

Now type the three command lines exactly as you see them in figure
3-1. Use the Return key to start a new line, but don't press the Enter key (the
execution starter) yet.

asm -p Coin.a
link -p Coin .a.o - o Coin
Coin

MP"W Shell

Silky:MPW:Worksheet

Figure 3-1

Is it time to create the program from the source code?

You are going to execute each of these command lines individually. To do
this, place the insertion bar on the same line as the command you want
executed, then press the Enter key. If you select all three lines, then press
Enter, all three lines are executed . However, this would make the assembly
process more difficult to follow.

If you want to know more about the asm and link commands, turn to the
dictionary in part 3. The dictionary explains the necessary parameters and
the available minus sign (-) options. Also, part 2, the assembly language
tutorial, explains assembly programming in much more detail.

Any errors found while assembling or linking cause messages to be
displayed in the Worksheet . If an error message specifies a line number,
click back on the Coin.a window and make sure the code appears exactly as
shown in figure 3-1 . If an error message states file not found, make sure you
have your disk and folders set up as shown in chapter 1. Also, make sure
your current default directory is set such that the Coin.a file can be found.

Now execute the first command line in the Worksheet: asm -p Coin.a. The

27 Chapter 3

-p on the command line is an instruction that outputs a progress report of
the assembly (also called the compilation) to the Worksheet. At the end of
this chapter is a listing of the entire, error-free, assembly and link progress
report.

In addition to the progress report, an error message report is output to
the Worksheet if any errors are found. The error message report tells you
in its last line how many errors were encountered.

Correct any assembly errors before attempting to execute the link com
mand line. Oftentimes, a single error in one line of code produces a string of
error messages that scroll down your screen and specify every line of code
as an error. If this happens, just correct the first error reported in the
source code, go back to the Worksheet, and try executing again.

Now execute the second command line: link -p Coin.a.a -o Coin. A progress
report of the link is output to the Worksheet. If all goes well, this command
produces your completed standalone application named Coin.

You might be wondering what is being linked to what, because the idea
of a link normally involves more than one part. For now, assume that your
assembled program is linked to internal files, which results in a standalone
application. Although the Link tool can link more than one assembled pro
gram into a single application, here you are linking a single file.

Correct any linking errors before attempting to execute the third com
mand line. The progress report tells you about any errors that are encoun
tered. Usually linking errors are the result of the linking program being
unable to find the designated files. Proper use of pathnames, either explic
itly or set by a directory command, solves this problem.

Finally, execute the third command line: Coin. This command executes
the standalone application just as if you had double-clicked on the applica -
tion from the Finder. The MPW Shell closes all its windows and gives
complete control of the Macintosh to your application.

Before MPW closes any file that has unsaved changes, the Save As ...
dialog box will appear. You can circumvent this dialog box by choosing Save
from the File menu after you make a change.

The CorneredCoin program simulates a coin toss. Put the cursor over
the cornered coin and it will flip (invert). Move the cursor away and, unless
your reflexes are superhuman, it's a fifty-fifty chance whether the coin will
be BlackHeads or WhiteTails.

Tu exit the application, press the mouse button. The CorneredCoin
program exits to the Shell, returning you to the Worksheet just as you left it.
You can use the files command to see your new application listed among the
contents of your disk.

If you choose Quit from the Shell's File menu, you return to the Finder.
On the desktop, you will find the CorneredCoin application, Coin. In addi
tion to the application icon, the assembly process creates an intermediary

.28 Part One

file, Coin.a.o. When you executed asm, Coin.a.o-a binary compilation of
Coin.a-was created. When you executed link, it was actually Coin.a.o that
was linked into an application. ·

After an application is created, the source code file and the intermedi
ary file are not needed for the application to run. You can drag your
application icon to any disk, and the program will work the same. That is
what is meant by a standalone application. However, you;ll always want to
keep your source files in case you want to alter the program.

Figure 3-2 is the progress report of the compilation and link of the
Coin program.

asm -p Coin.a

MC68020 Assembler - Ver 2.34 (4/1/87)
Copyright Apple Computer, Inc. 1984-1987
All rights reserved. ·

•.. reading Coin.a
... including Silky:MPW:Aincludes:Traps.a
... continuing with Coin.a
#0001

Elapsed time: 5.35 seconds.

Assembly complete - no errors found. 1012 lines.

link -p Coin.a.o -o Coin
MC68000 Linker - v. 2.0Bl Release March 16, 1987

Copyright Apple Computer, Inc. 1985, 1986, 1987
All rights reserved.

Reading files:
1 "Coin.a.o"

Doing active analysis.
Max. depth of search: 1

Size of global data area: O

Input summary:
Read Max Bytes

6 Strings
1 Str Blks 2054
4 16383 Symbols 200
1 ID-Sym Blks 128
1 Files
2 segments
1 Modules
0 32766 Ref. Lists

Total bytes: 2382

1 active and 1 visible entries of 1 read.
2 segments, 1 Jump Table entries.
No data initialization.
1 154 Main

link completed normally

There were 0 errors.

Execution required 6 seconds.

Coin

Figure 3·2

12:29:50 09-Jul-87

Start: 12:30:53 PM 7/9/8

29 Chapter 3

At this point, you might want to print a copy of Coin.a. The following
command, executed from the Worksheet window, prints Coin.a in standard
ImageWriter quality:

print -q standard Coin.a

CHAPTER
P!!llilliillll!lll1il!ill PW ew-r &&&H&M¥¥ttAW¥ti3%f¥i#f#

-·~~ifid

4 fMWiM#AA 4¥¥4

Noft' Hoft' About
Pascal and C?

Which files do I need for Pascal and C development?

The following screen illustrations show you the contents of the version
2.0Bl disks for MPW Pascal (figure 4-1) and MPW C (figure 4-2). The con
tents of the Cincludes folder is shown separately in figure 4-3 because it is
too large to show in the same screen shot as the other folders.

Hard disk users should have the contents of the Pascal, or C, or both
Pascal and C floppy disks on their drives in the MPW folder. If you have not
done so already, put the programs Pascal, PasMat, PasRef, and C in the Tuols
folder. The folders from the Pascal and C disks should be left intact in the
MPW folder.

MPW Pascal stores its ROM/Tuolbox routines in Interface and Library
files; MPW C stores its comparable routines in Include files. Although these
files have different names, all serve essentially the same purpose of storing
names and addresses of prewritten pieces of code (or, in the case of Librar
ies, the code itself) that your programs will use.

The remainder of this section is for floppy disk users using MPW
version 1.0 software, though even hard disk users might want to take note
of the floppy disk setup to become familiar with minimum configurations
needed to construct the sample programs.

Floppy disk users need to build dedicated Pascal or C disks in the same
way that the dedicated assembly language disk was built in chapter 1. The
BOOK disk named MPW: does not change. Only the second disk of the two
disk set is new.

31

32 Part One

File Edit Uiew Special

MPW Pascal PEHamples
ii 6 items 770K iro disk 4K •v4il• ii 13 itHros 770K iro disk

Pascal PasMat PasRef

Plnterfaces PExamplo?s Plibraries

00 lnstructior{!J Memory .p 00 ResEqua l .pOO ResEd .p

00 MakeFile 00 Memory .r 00 ResEqual.rOO ResXXXXEd .p

00 T estPerf.pOO ResEd68K.l!J stubs .a

00 Sampl• .p 00 Sample .r

Plnterfaces
.------------i ii 24 items 770K in disk 4K av.ilable

Plibraries 1==~~~~~~~~~~~~~~~~~~~~~~~~~ ~

ii 3 items 770K in di

[§! Pas lib .o

[§! SANELib.o

[§! SANELib881 .o

00 AppleTalk .p 00MacPrint .p 00Perf.p OOscript .p

00 CursorCtl.p 00 Mem Types .p 00 Picker lntf.p 00 SCSllntf.p

00 ErrM9r .p 00 Objlntf.p 00 Printlraps .p 00 Si9nal.p

00 FixMath.p 00 OSlntf.p 00 Ouickdraw .p 00 Sound.p

00 Graf3D .p 00 Packlntf.p 00 ROMOefs.p 00 Toollntf.p

1-----------i [!J 1ntEnv .p [!) P aslib lntf.p [!) S ANE.p [!)Video lntf.p

1.. ·

Figure 4·1

,. • File Edit IJiew Special ~
MPW C n

ii 41tems 567K in disk 206K available ~

~
: Sflk~ :

D
c CExamples Clibraries Clncludes

1.. ·

§0§ Clibraries §0§

ii 5 items 56 7K in disk 206

[§! Clnterface.o

~ CRuntime.o

[§! CS ANELib .o

~ Math .o

~ StdCLib.o

.M.Pw .c .

CEHamples
ii 10 items 567K in disk 206K available

[!J 1nstructior{!Jcount.c [!)Memory.c [!Jstubs.c

[!) MakeFile [!) Count .r [!)Memory .r [!) TestPerf.c

00 Sample .r 00 Sample .c

·rrash ·

Figure 4·2

.,

33 Chapter 4

~ [Includes ii=

Ii 54 itMiS S6 71(in disk 206K av ailab ~

00 App~hlk.h 00 FixMAth.h 00 Quickdr nt .h OOst.-t .h ~
00 Controls .h l!!Fonts.h 00 Resources .h l!lstdlO.h

OOcType.h 00 Graf3D.h 00 Re tr ace .h 00 String.h

00Desk.h 00 ioctl .h 00 ROMDefs .h 00 Strings .h

00 Desk Bus .h OOusts.h OOsANE.h 00 T extEdit .h

00 Devices .h 00Math.h OOscrap.h OOTirne.h

00 Dialogs.h OOMenus.h 00 Script .h 00 Too lUtils .h

OODisks.h 00 Memory .h OOscs1.h OOrypes.h

l!l Disk lnit .h 00 OSEvents .h OOs.rial.h 00 Values .h

00ErrNo.h 00 OSUtils .h 00 Segload .h OOv.-wgs .h

00 Errors.h 00 Packages.h 00 SetJmp .h OOvideo.h

00 Events.h 00Perf.h 00 s;gn.1.h 00 'Wmdows .h

l!)Fcntl.h 00 Printing.h l!)s1ots.h

OOrnes.h 00PrintTrops.h OOsound.h lo
Figure 4-3

The floppy disk configurations in the next set of figures contain the
necessary files to create the programs in this book. Users with two BOOK
drives can have a complete set of data files (you can copy the Library,
Interface, and Include files to your floppy). BOOK users might want to
provide increased disk space for programs by removing data files that will
not be used .

Note: For Pascal programmers, the minimum configuration will fit on an
BOOK and a 400K drive, but you may not have enough room left on the disk
to create the sample Pascal application shown in this chapter. C program
mers will have plenty of room left for their sample program.

Figure 4-4 shows the core files that a floppy disk user should put on a
dedicated Pascal disk. Figure 4-5 shows the core files that a floppy disk user
should put on a dedicated C disk.

To verify the contents of your disks, type files -r in the Worksheet
window, then press the Enter key. The ·r option displays the contents of
directories.

Remember, the Enter key executes the Shell command on the same line
as the insertion bar. If you press the Return key before the Enter key, the
insertion bar will be on a blank line and nothing will be executed.

34 Part One

,.

... .

,.

... .

• File Edit Uiew Spei;ial

386K in disk 393K available

P Interfaces PL ibr aries

1 item

OU
100
010

Paslib .o

• File

=o
3 items

c

2 items

CRuntime .o

• • 4.

4 items

00
Plibnnies
386K in disk 393K available

MemTypes .p

00
Quickdraw .p

Figure 4-4

Edit Uiew

274K in disk 512K available

J!l!l!!!!!l!l!ll
Clncludes

6 items
Clibraries
274K in disk SI 2K available

OU
100
OiO

C Interface .o

Desk .h

Figure 4-5

,

:MPw :

I
. .

Plnterfaces
386K in disk 393K available

00
OSlntf.p

00
Toollntf.p

:Trash

,

' Clncludes
274K in disk 512K available

00 00
Events .h Fonts.h

00 00
Types .h W-indows .h

. ..

35 Chapter 4

Floppy disk users should make the Pascal or C volume the default
cijrectory by executing the directory Pascal : or directory C: command. An error
message stating that a file or directory cannot be found often occurs be
cause the Shell is searching in a different directory than the one you want.

Can I write a Pascal or C program now?

At this point, the instructions for creating a Pascal or C program are virtu
ally the same as those for creating an assembly program. The single differ
ence is the suffix appended to the text file that holds the source code of
your sample program. This suffix is important for identifying your source
code. By convention, assembly source uses the .a suffix, Pascal source uses
the .p suffix, and C source uses the .c suffix.

Tu avoid repetition and possible confusion, the rest of this chapter
shows instructions using the .p suffix (for Pascal programmers). C program
mers should follow the same instructions, but substitute .c for the .p suffix.

Start with a fresh Worksheet. If you don't want to disturb the contents
of your previous Worksheet, execute the command

new Coin.p

to create a blank window titled Coin.pin which to enter your program. Or
easier yet, select New from the File menu and type the name Coin.p into the
resulting dialog box.

Figure 4-6 shows the blank Worksheet window for your Pascal pro
gra,m. Figure 4-7 is the Worksheet window for your C program.

Silky:MPW:Coin.p

. MP'W Shell

Figure 4-6

In this section you will type, compile, link, and run a Pascal (or C)
program that simulates a coin toss. Creating a Pascal or C program requires
tbe same four steps as creating an assembly program:

Listing
4·1

36 Part One

1. Knowing the directory location of all required files .

.2. Entering the program code in a new Worksheet window.

3. Entering a sequence of compile and link commands in the original
Worksheet window.

4. Executing the command sequence.

Sillc_y_:MPW:Coin.c

Figure 4·'7

Pascal programmers should type the program in listing 4-1. C program
mers should type the program in listing 4-2. An important difference be
tween MPW Pascal and MPW C is the use of uppercase and lowercase
letters. Programs in Pascal are not case sensitive; use uppercase letters
wherever you think it makes code easier to read. Programs in Care case
sensitive; the sample program should be typed exactly as shown to avoid
errors. Although the indentation and spacing of Pascal and C program code
does not necessarily affect execution, it is important for program clarity. Use
the Tab key to make the code line up in columns.

Program CorneredCoin;
uses

Memtypes, Quickdraw, OSintf, Toolintf;
var

r:rect;

{----------------DRAW WINDOW---------------}

procedure drawWindow;
var

coinWindow:windowPtr;
windowSize:rect;
windowName:str255;

begin
setRect(windowSize,60,80,450,290);
windowName := •cornered Coin';
coinWindow :; newWindow(nil,windowSize,windowName,true,O,pointer(-1),false,0);
setPort(coinWindow);

end;

(----------------DRAW COIN-----------------}

procedure drawCoin;
begin

setRect(r,100,80,290,130);
frameRect(r);
rnoveTo(l22,lll);
drawString('BlackHeads/WhiteTails')

end;

Listing
4·1
cont.

Listing
4·2

37 Chapter 4

{----------------FLASH COIN----------------}

procedure flash;
var

pt:point;
begin

systemTask;
getMouse(pt);
if ptinRect(pt,r) then

invertRect(r)
end;

{------------------MAIN--------------------}

begin
initGraf(@thePort);
initFonts;
initWindows;
initCursor;
drawwindow;
drawCoin;
repeat

flash
until button

end. ·

/* Cornered Coin */

#include <types.h>
#include <quickdraw.h>
#include <fonts.h>
#include <events.h>
#include <windows.h>
#include <desk.h>

Rect r;

/*--------------------- DRAW WINDOW ---------------------*/

void drawWindow() {
Rect windowSize;
WindowPtr coinwindow;
char *windowName;

SetRect(&windowSize,60,80,450,290);
windowName = "Cornered Coin";
coinwindow = Newwindow(nil,&windowSize,windowName,true,O, (WindowPtr)-1,true,0)
SetPort(coinWindow);

/*--------------------- DRAW COIN ---------------------*/

void drawCoin() {
SetRect(&r,100,80,290,130);
FrameRect(&r);
MoveTo(122,lll);
DrawString("BlackHeads/WhiteTails");

/*--------------------- FLASH COIN ---------------------*/
void flash() {

Point pt;

Listing
4·2
cont.

38 Part One

SystemTask {);
GetMouse(&pt);
if (PtinRect(&pt,&r))

InvertRect (&r);

/* --------------------- MAIN ---------------------*/
main()
{

InitGraf(&qd.thePort) ;
I ni tFonts ();
I nitWindows ();
Ini tCursor {);
drawWindow () ;
drawCoin();
while(!Button()) flash();

As you saw with your assembly language source code, text typed in a
Worksheet is treated only as text, and thus no error checking is performed.
A program is checked for errors only in the later stages of compiling,
linking, and running.

Save the program code onto disk under the name Coin.p (or Coin.c for C
code). The File menu offers the simplest way to save your program code,
though you could return to the original Worksheet and execute the com
mand save Coin .p.

The instructions in the remainder of this chapter are nearly identical to
those you used in creating your assembly program. The MPW environment
changes very little among assembly, Pascal, and C. The only significant
differences are the source code, the longer link command line, and, for
floppy disk users, the file contents of your second work disk.

Now you are ready to assemble and link your code. First, bring the
Worksheet window back on top (click on it). Now type the three command
lines exactly as you see them in the following Pascal illustration (figure 4-8)
or C illustration (figure 4-9). Don't press the Enter key (the execution starter)
just yet.

Silky:MPW:Worksheet
pascal -p Coin .p

I ink -p Coon .p . o ·· {Libraries}""Auntime . o .. {PLibraries}""PasLib .o -o PCoin

PCoin

MPW Shell

Figure 4·8

39 Chapter 4

Silky:MPW:Worksheet
c -p Coin .c

~~:n -p Coin .c.o " {Clibraries} " CRuntime .o " {Clibraries} "Clnterface . o - o CCoin I
·:::::

Hf'\y' St..11]Q}:

Figure 4-9

You will execute each of these command lines individually. Tu do this,
place the insertion bar on the same line as the command you want executed,
then press the Enter key. If you select all three lines and then press Enter, all
three lines would be executed. However, this would make the compilation
process more difficult to follow.

You might be wondering why the link command line has so many words,
braces, and quotation marks . Here are some notes that should help you
understand.

The compiling process (performed by the pascal, c, and asm commands)
translates English-like source code into an intermediary file of binary object
code. The generated object code file name is the source code file name with
an .o suffix .

The linking process for Pascal and C involves libraries of precompiled
code (object files). These libraries hold general-purpose code that helps
support the Macintosh environment and other tasks involved in creating a
standalone application. Relevant pieces of these library files are joined
Uinked) with your intermediary object code.

The library files Runtime .a, PasLib .o, CRuntime.o, and Clnterface .o are
included with your MPW core and language disks, and bear the distinctive
binary icons filled with Os and ls. MPW contains other library files whose
object code in not used by your sample programs. Thus, these files are not
included in the link process.

The peculiar notation of quotation marks, braces, and the words Librar
ies, PLibraries, and CLibraries is MPW shorthand for directory pathnames.
This shorthand notation is set in the Startup files , a topic discussed in
chapter 5. For example, the shorthand pathname

"{Libraries}"Runtime.o

used in the link command line of the Pascal Worksheet could be written for
hard disk users as

40 Part One

Silky: M PW: Libraries: Runtime.a

or, for floppy disk users, as

MPW: Libraries: Runtime.a

If you want to know more about the pascal, c, and link commands, turn
to the dictionary in part 3. The dictionary explains the necessary parame
ters and the minus sign (-) options.

Any errors found while compiling or linking will cause messages to be
output to the Worksheet. If an error is detected, click back on the Coin.p
window and make sure the code appears exactly as you see it in listing 4-1
or 4-2.

Pascal programmers should now execute the first command line in
their Worksheet: pascal ·p Coin.p. C programmers should now execute the
first command line in their Worksheet: c -p Coin.c.

Don't confuse the ·p option with the .p Pascal suffix. The ·p option is
available to both Pascal and C programmers. It is an instruction to the
compiler (called a directive) that outputs a progress report of the compilation
to the Worksheet.

Correct any compilation errors before you attempt to execute the link
command line. The error report, in its last line, tells you how many errors
(if any) were encountered.

Pascal programmers should now execute the second command line: link -p
Coin.p.o "{Libraries} "Runtime.a "{Plibraries} "Paslib.o -o PCoin. C programmers
should now execute their second command line: link ·p Coin.c.o "{Clibraries}
"CRuntime.o "{Clibraries} "Clnterface.o ·o Coin. Again, the ·p option outputs a
progress report of the link to the Worksheet. If all goes well, this command
produces your completed standalone application, named PCoin for a Pascal
program and CCoin for a C program.

Correct any linking errors before attempting to execute the third com
mand line. If any errors are encountered, the linking process halts and
error messages are output onto the Worksheet. Usually, linking errors result
when the linking program is unable to find the designated files. Proper use
of pathnames and making sure the designated files are on your disk solve
this problem.

Finally, Pascal programmers should execute the third command line:
PCoin. C programmers should execute their third command line: CCoin. These
commands execute the standalone application just as if you had double
clicked on the application icon. The MPW Shell closes all of its windows and
gives complete control of the Macintosh to your application.

The Pascal and C Coin programs function identically to the assembly
version. Put the cursor over the cornered coin and it flips (inverts). Move the

41 Chapter 4

cursor away and it's a fifty-fifty chance whether the coin will be BlackHeads
or WhiteTails.

Th exit the application, press the mouse button. The Coin program exits
to the Shell, returning you to the Worksheet just as you left it. You can use
the files command to see your new application listed among the contents of
your disk.

If you choose Quit from the Shell's File menu, you are returned to the
desktop. On the desktop, you will find the Coin application icon. In addition
to the application icon, the Pascal compilation process has created the inter
mediary file, Coin.p.o.

Once again, when you executed the pascal command line, Coin.p.o-a
binary compilation of Coin.p-was created. When you executed link, it was
actually Coin.p.o that was linked into an application.

The same thing occurs in the C compilation process. After choosing
Quit from the Shell's File menu, you return to the Finder. In addition to the
Coin application icon, the intermediary file, Coin.c.o, is displayed. When you
executed the c command line, Coin.c.o-a binary compilation of Coin.c-was
created. When you executed link, it was actually Coin.c.o that was linked into
an application.

After an application is created, the source code file and the intermedi·
ary file are not needed to run the application. You can drag your application
icon to any disk, and the program will work the same. That is what is meant
by a standalone application. However, you'll always want to keep your
source files in case you want to alter the program.

CHAPTER
~

~

~ s -~
~ 'fili'i@'ii%i'@'¥MW§MM¥¥¥@d ! •

What's the Story ftlith
Startup and Files
in General?

What does a programmer need to know about files?

The hardest part of using files is finding them. After you know the location
of a file, it is easy to open, close, change, delete, duplicate, move, rename,
and save it. File handling commands allow you to perform all these tasks
from a Worksheet window. But first you must find the file.

Certain file commands offer help in locating files. You used the com
mand files to list the contents of a particular disk and volumes to list the
volumes (disk drives) that are on-line. With this information, you should be
able to construct the correct pathnames that represent every MPW file.

HFS uses pathnames to access a file. Remember, simple pathnames have
the following format:

volumeName:fileName

If the file is within a directory (folder), the pathname format is

vo/umeName:directoryName:tileName

If the directory is within another directory, the pathname format is

volumeName:outerDirectory:lnnerDirectory:flleName

43

44 Part One

If you have more than two directories, they must be listed in the order that
they are nested.

As you might guess, even with a single directory, pathnames can get
unwieldy. MPW offers many shortcuts for dealing with pathnames. Here are
some hints for dealing successfully with pathnames:

• Full pathnames always begin with a volume (disk) name that ends with
a colon. A colon does not precede a volume name because there is no
preceding layer to a volume. A volume is the file system's starting point.

• Partial pathnames can begin with a directory name, a file name, or
colons. Because volume names must end with a colon, a name that does
not end with a colon must be a directory or file name.

• HFS searches for files by using partial pathnames appended to the
current default directory.

• In the MPW command language, directory (or Show Directory from the
Directory menu) displays the current default directory; volumes displays
the volumes currently on-line; files displays the files in the default volume.

• You can change the default directory with the directory or setDirectory
command. Beginners, however, may find it easier to supply full path
names rather than worry about current defaults.

• MPW allows you to define Shell variables. The set command equates a
variable name with a string value. MPW uses system-wide variables (set
in the Startup file is explained later in this chapter) to search for its
files. These variables work like partial pathnames. Users can set system
wide variables by defining them in the UserStartup file.

Experiment with the file handling commands. Use part 3's dictionary to
learn more about a command's options and parameters. For example, look at
figure 5-1 to see the file command's -r option in use, then look up file in the
dictionary to see what the option is doing.

How do you deal with data files and tools?

By now you have seen that a large percentage of MPW's files are data files
that allow the assembly, Pascal, and C languages to access the Macintosh
ROM and the System file. These data files are in directories that have
Include, Interface, or Library in their names.

A programmer will rarely, if ever, have to enter and change one of these
files. The programmer's responsibility is to make sure the appropriate data
file is on-line and available when it is neeqed.

For example, if an assembly program uses a trap call from the Tuolbox,
the file Traps.a must be on a disk and included (using the assembly directive

45 Chapter 5

files -r
:AExaioples :
:Alncludes :
:Applications:
:ASlruclMacs :
:CExamples:
: C Inch.ides :
:CLibraries:
:Debuggers :
:Examples :
:Libraries :
:PExa111ples :
:Plnlerfaces :
:PLibraries :
:Rlncludes :
' :ROM Maps :
:Scripts :
:Tools:
Coin . a
Coin . c
Coin . p

MP'W Shell

Silky:MPW:Worksheet

l!li!i

Figure 5-1

Include) in the program code . Likewise, if the program uses a system name
such as ScrnBase , the data file that defines the name (SysEqu .a) must be on
line and included with a code directive.

The other MPW files serve a variety of purposes. In addition to the
System Folder, there are languages, example files , debuggers, map files ,
command tools , general command files , Pascal tools, ResEdit, the MPW
Shell, and a small selection of Shell command files.

In the Tuols folders, you will find command tools that work in the same
way as the built-in commands of the MPW Shell. From the user's standpoint,
the single requirement for using external tools is that the file exists in the
Tuols folder. This presents no problem for hard disk users, who should have
plenty of disk space, but floppy disk users have to pick and choose among
tools they want to access.

If you try to perform a Shell command that requires a file that cannot
be found in the Tools folder, you will get an error message to that effect. All
the files that belong in the Tuols folder are shown in chapter l 's screen
illustrations, and are explained in the dictionary. (The Line file is not a tool,
but a command file that selects the line of an error.)

What's a command file and why does Startup get top billing?

Look at figure 5-2 to see which command files are given a special position in
the same folder as the MPW Shell. You might recognize the icon for each of
these files as that of the standard Shell Worksheet file . If you double-click on

46 Part One

any of these files, you will find they are indeed text files displayed in a
Worksheet window in the same manner as your source code files.

:o MPW E!l;o
26 items 15 ,6 75K in disk 4 ,631 K av ail ab le

~ I I • I I I ~

MPW Shell ... 1111 - 1111111 IRMAM

I D CJ CJ CJ LJ CJ Sy sErrs .Err Applications Debuggers Examples Libr.arif>s Rlncludes

CJ CJ CJ CJ LJ CJ
ROM Maps Scripts Tools AEx-•mples Alncludes ASlructMacs

CJ LJ CJ CJ LJ CJ
CExamples Clncludes Clibraries PExamples Plnterfaces Plibraries

~
t21 J2 '2l

Figure 5-2

As you saw in the first three chapters, Worksheet files can be saved
under any file name. When a file is opened, the Worksheet window is titled
with the file name. It's still an ordinary text file with most of the characteris
tics of the original Worksheet. All text files are actually Worksheet clones.
Because each file opens to its own window, the concept of a window and a
file are, for the most part, synonymous .

If you enter program code into a Worksheet window, you might call the
file Program Source Code . If you enter the recipe for Mrs. Fields's chocolate
chip cookies into a Worksheet window, you might call the file Recipe Text. If
you enter a list of commands from the MPW command language, you might
call the file Command File .

The contents of a Worksheet window have no particular significance to
MPW until you try to execute the contents. When you supply program
source code as input to a command that says "execute language, " the text is
evaluated as you would expect. If you supply Mrs. Fields's cookie recipe to a
language command, you will get a long list of syntax errors.

To execute a command file without error, it must follow the syntax
expected by the MPW command language. With this requirement filled,
MPW executes a command file just as it executes a single command typed

47 Chapter 5

into the Worksheet. The ability to put a series of commands into a text file,
then execute all the commands at once, gives MPW programmers a conve
nient means to perform repetitive tasks.

Command files (also called scripts) can be executed in a number of
ways. The most direct method is to enter the command file name in a
Worksheet window, then press the Enter key. This executes all the com
mands within the file just as if the command file name was part of the
command language.

Did you catch that? Command files are e;<.ecuted in the same way as
individual commands-the name of the file is used to e;<.ecute every command
contained within the file.

The Worksheet command files titled Startup, UserStartup, Quit, Sus
pend, and Resume are given prominent position with MPW because they
serve a special purpose to the functioning of the MPW Shell. There is
nothing intrinsically special about the composition of these files-they are
simple text made up of commands. However, the Shell uses these command
files to create the following aspects of your programming environment:

• The Startup and UserStartup files are automatically executed when you
run the Shell application. UserStartup allows the user to insert Startup
commands without altering the original Startup file. The last section of
this chapter goes into this in more detail.

• The Quit file is automatically executed when you exit from the Shell
and return to the Finder.

• The Suspend and Resume files are automatically executed when you
temporarily exit from the Shell to run an application.

As long as these files retain their given names and remain in the same
directory as the MPW Shell, they execute automatically. At this point, they
can be forgotten. You do not need to open, change, or otherwise investigate
any of these files to use MPW.

Tell me what Startup does or do you want your wagon :fixed?

Open the file Startup. You can do this by double-clicking on the Startup icon
from the Finder or by typing Open Startup in the Worksheet window and
pressing Enter.

Figure 5-3 is a printout of the Startup file. (Startup version 1.0 for
floppy disk users is slightly different.)

The listing looks long and complicated. But if you remove all the com
ment lines (they begin with a number sign, #), you will find only four
different types of commands: set, export, alias, and execute. Figure 5-4 is a
printout of Startup without comments.

48 Part One

Startup - MPW Shell Startup File

Copyright Apple Computer, Inc. 1985-1987
All Rights Reserved.

{Boot} - The boot disk. (Predefined.)
Export Boot

{SystemFolder} - The directory that contains System & Finder. (Predefined.}
Export SystemFolder

{ShellDirectory} - The directory that contains MPW Shell. (Predefined.)
Export ShellDirectory

{Active} - The active (topmost) window. (Predefined.)
Export Active

{Target} - The target (previously active) window. (Predefined.)
Export Target

{MPW} - The volume or folder containing the Macintosh Programmer's Workshop.
Set MPW "{Boot}MPW:"
Export MPW

{Commands} - Directories to search for commands.
Set Commands ":,(MPW}Tools:,{MPW}Scripts:,{MPW}Applications:"
Export Commands

{Aincludes) - Directories to search for assembly language include files.
Set Aincludes "{MPW}Aincludes:"
Export Aincludes

{Libraries} - Directory that contains shared libraries.
Set Libraries "{MPW}Libraries:"
Export Libraries

{Cincludes} - Directories to search for c include files:
Set Cincludes "{MPW}Cincludes:"
Export Cincludes

{CLibraries} - Directory that contains c libraries.
Set CLibraries "{MPW}CLibraries:"
Export CLibraries

{Pinterfaces} - Directories to search for Pascal interface files.
Set Pinterfaces "{MPW}Pinterfaces:"
Export Pinterfaces

{PLibraries) - Directory that contains Pascal libraries.
Set PLibraries "{MPW)PLibraries:"
Export PLibraries

{Rincludes) - Directory that contains Rez include files .
. Set Rincludes "{MPW)Rincludes:•

Export Rincludes

{Casesensitive) - If non-zero, pattern matching is case sensitive.
Set CaseSensitive 0
Export CaseSensitive

{Tab) - Default tab setting for new windows.
Set Tab 4
Export Tab

{WordSet) - Character set that defines words for searches and double-clicks.

Set WordSet •a-zA-Z 0-9'
Export WordSet -

{PrintOptions) - Options used by the Print Window and Print Selection menus.
Set PrintOptions '-h'

{Exit) - If non-zero, command files terminate after the first error.
Set Exit 1
Export Exit

Figure 5·3

49 Chapter 5

t {Echo} - If non-zero, conunands are echoed before execution.
Set Echo O
Export Echo

i {Test} - If non-zero, tools and applications are not executed.
Set Test 0
Export Test

i Conunando Support
Export Windows
Export Aliases
Set Conunando Conunando
Export Conunando

ii Aliases
Alias File Target

i The file UserStartup can be used to override definitions made in Startup,
i or to define additional variables, exports, and aliases. UserStartup may
t also be used to define menu items, open windows, etc. The file should be
t located in the directory containing the MPW Shell.

Execute "{ShellDirectory}UserStartup•

Figure G-3 (continued)

Here are the general duties performed by the Startup file:

1. Certain volume, directory, and file variable names predefined in the
Shell application are e-;cported so that they are recognized as entities
available to the command language .

.2. Certain variable names are set to be equivalent to specified string values.

3. A command name is given an alias that serves as an alternate name for
a word or a list of words.

4. A command file is e-;cecuted by specifying its pathname as a parameter.
fl'he execute command provides another way of executing a command
file.)

You can find out more about export, set, alias, and execute by looking up
their definitions in the command dictionary in part 3. Pay particular attention
to the set commands because they illustrate the use of pathnames (and re
present the only difference between the hard disk and floppy disk versions of
Startup). Many of Startup's set commands provide shortcut pathnames.

For example, the hard disk version contains the following command lines:

Set Libraries "{MPW}Libraries"
Export Libraries

The floppy disk version performs the same task with these lines:

Set Libraries "MPW:Libraries"
Export Libraries

50 Part One

Export Boot

Export SystemFolder

Export ShellDirectory

Export Active

Export Target

Set MPW "{Boot}MPW:"
Export MPW

Set Commands ":,{MPW}Tools:,{MPW}Scripts:,{MPW}Applications:"
Export Commands

Set Aincludes "{MPW}Aincludes:"
Export Aincludes

Set Libraries "{MPW}Libraries:"
Export Libraries

Set Cincludes "{MPW}Cincludes:"
Export crncludes

Set CLibraries "{MPW}CLibraries:"
Export CLibraries

Set Pinterfaces "{MPW}Pinterfaces:"
Export Pinterf aces

Set PLibraries "{MPW}PLibraries:"
Export PLibraries

Set Rincludes "{MPW}Rincludes:•
Export Rincludes

Set CaseSensitive 0
Export CaseSensitive

Set Tab 4
Export Tab

Set WordSet •a-zA-Z 0-9'
Export WordSet -

Set PrintOptions '-h'

Set Exit 1
Export Exit

Set Echo 0
Export Echo

Set Test 0
Export Test

Export Windows
Export Aliases
Set Commando Commando
Export Commando

Alias File Target

Execute "{ShellDirectory}UserStartup"

Figure 5·4

Both set command lines equate the variable name Libraries with the string
value in quotation marks. The hard disk version uses braces to specify the

51 Chapter 5

location (partial pathname) of the file. The floppy disk version uses the colon
separator. The second lines export the name Libraries so that its value is
recognized in all command files.

Braces indicate a variable substitution. Quotation marks, in this usage,
delimit (form the boundaries of) the variable substitution.

1b go one step further, MPW is itself a variable name defined in a
preceding set command line. If you look at the first set command in the
Startup printouts, you will see that MPW is equated with

"{Boot}MPW:"

designating the starting volume. If you want to make any changes to the way
the Startup command file creates your working environment, you can add
your own command instructions in the file called UserStartup. UserStartup
works under the same premise as Startup. It provides the MPW Shell with
starting instructions that initialize and tailor the MPW command environ
ment. It allows the user to provide a custom Startup command script with
out altering the original Startup file.

The last command in the Startup file runs UserStartup. As a result, the
commands entered in UserStartup override those used in Startup.

In the version 2.0Bl release of MPW, the UserStartup file contains two
commands, DirectoryMenu and BuildMenu, and lots of comments prefaced with
the # command designator. These two commands execute command files
Qocated in the Scripts folder) that add two menus to the Shell menu bar. You
will read more about these commands in the next chapter and can look
them up in part 3's dictionary.

Figure 5-5 is a printout of UserStartup in its initial state.

i UserStartup - MPW Shell UserStartup File
i
i Copyright Apple Computer, Inc. 1985-1987
i All Rights Reserved.

This file (UserStartup) is executed from the Startup file, and can be used
i to override definitions made in Startup, or to define additional variables,
i · exports, and aliases. UserStartup may also be used to define menu items,
open windows, etc. The file should be located in the directory containing
• the MPW Shell.

Create the Directory menu

The parameters to DirectoryMenu become the initial list of directories
i in the Directory menu. The parameters below specify each of the
Examples directories, and the current directory. Replace them with
i your favorite directories.

DirectoryMenu ·(Files -d -f "{MPW}"•Examples•) ~ Dev:Null' 'Directory'

Create the Build Menu

BuildMenu

Figure lMJ

CHAPTER

6
" A •w;w

Can You Give Me a
Perspective on the
Entire CoDIDiand
Language?

Can you summarize what I've learned about files thus far?

MPW is a programming environment composed of a large number of pro
gram files and data files. As all Macintosh users know, every file has its own
icon in the Finder desktop.

Tu write computer programs in the MPW environment, you must learn
how to manipulate these files. The Finder, itself, allows you to do certain file
manipulations such as listing, copying, renaming, and launching. It does not,
however, perform other important file tasks such as creating and editing
computer programs.

MPW uses a core program, called the Shell, that manipulates files with
much more freedom (and much less friendliness) than the Finder. By launch
ing the Shell, you enter a new MPW desktop consisting of a blank Work
sheet window. The Worksheet accepts text of all sorts, including file
commands that make it unnecessary for an MPW user to return to the
Finder.

Starting with a blank Worksheet, the MPW user begins the process of
creating computer programs. The process can be as simple as:

1. Typing in the source code of a computer program in assembly,
Pascal, or C .

.2. Saving the source code using a file name that ends with the suffix .a,
.p, or .c (depending on the language used). The saved code is given
its own window on top of a blank Worksheet.

53

+

w ,_
AAA

54 Part One

3. Clicking within the Worksheet, then typing a two-line sequence of
MPW commands that compile and link the source code, and create
the standalone application.

The MPW command language also offers complexity for programmers
who want to tailor their programming environment. If you are a beginner
trying to get started with MPW, you don't want to learn everything. You
want to recognize what you can safely avoid learning until later.

A beginner should not expect to know all MPW features before at·
tempting to program. After all, the purpose of a programming environment
is to enhance programming, and any time spent learning the environment is
time away from programming. A compromise-where the MPW environ
ment interferes the least with your programming effort-is necessary.

Don't forget to take advantage of the help command and the commando
dialog box interface. They can save you the time of referencing books when
you want to know particulars about the command language. Use help Com·
mands to get a complete listing of available commands, or use a particular
command name as the help parameter to get summary information about a
single command. Use the commando command when you need dialog box help
to select the proper minus sign options and parameters to command lines.

The Finder desktop offers one of the best perspectives on the MPW
environment as a whole. Better yet, figure 6-1 is a screen shot of Andy

D MPW 0-
26 items 4191K in use 4 762K av ail ab le

~ 00 00 00 00 00 00
MPW Shell MPW.Help OU it Resume Startup Susoend UserStartup

224K 42K 1K 1K 4K 2K 2K

[iJ D 0 0 0 0 0
Worksheet S\j sErrs .Err Applications Debuoaers Ex amoles Libraries Rlncludes

1K 12K 161K 133K 23K 77K 46K

0 0 0 0 0 0
ROMMaos Scriots Tools /\Examoles A Includes AStructMacs

139K 20K 1930K 67K 3651< 203K

0 0 0 0 0 0
CExamoles Clncludes Clibraries PExamoles P Interfaces Plibraries

53K 237K 64K 85K 271K 32K

~soc J""'"lliilJl ·]4']41o~ '2l

Figure 6·1

55 Chapter 6

Hertzfeld's Servant program (a Finder replacement) that shows sizes below
the names of all MPW folders and files.

Your goal as a programmer is to use MPW to create one or more of
your own files. Your programming result might be an application, a tool, a
desk accessory, or anything else a computer can perform. By getting a
handle on the various types of files in MPW, you are well on your way to
grasping the capabilities of the command language.

There are four general categories of commands available in MPW. Any
of the following commands can be executed from a Worksheet window by
typing in the command (or selecting an existing command name) and press
ing Enter. A series of commands can be executed as a unit by selecting the
names of all the commands and pressing Enter.

Built-In commands

The MPW Shell performs file handling, informational output, editing, and
structured sequences through single-word commands. These built-in com
mands, and their parameters and options, are defined in the command
dictionary in part 3.

Tools

Tuols are programs that can be executed from the MPW Shell in the same
manner as built-in commands. Tuols are separate files represented by icons
on your disk. As such, tools can be removed, and new tools can be devised
and added. The tools that come on the MPW disks are defined in the
command dictionary in part 3 and can be accessed through commando
dialog boxes.

Command files

As described in chapter 4, command files (also called scripts) are text files
composed of commands that can be executed as a unit. The Shell uses
command files (for example, Startup and Suspend) to help automate the
editing environment. MPW offers other command files (in the Scripts folder)
to make certain tasks easier for users. You can also create your own com
mand files.

Applications

The MPW Shell can run standalone programs in the same way as the Finder.
The Shell suspends operation while an application is running and resumes
control when the application is exited. Applications run outside the MPW
environment.

56 Part One

How about a few words on command format and
parameter options?

The following dictionary definitions have been taken from part 3 to illus
trate typical built-in commands.

Date Display the clock's date -and time

Date (-a I -s) (·d I ·t)

Writes the date and time from the Macintosh clock to standard output.

Options

-a Shorten the date notation by using three-character abbreviations for the
month and the day of the week.

·d Write only date output.

·s Shorten the date notation by using mm/dd/yy notation and not providing
the day of the week.

·t Write only time output.

Rename Rename disk files and directories

Rename (·c I ·n I -y) name newname

Changes the name of a file or directory from name to newname. If a file
or directory using newname already exists, a dialog box asks confirmation to
overwrite same-name objects.

Options

-c A same-name object conflict halts the command, circumventing a confir
mation dialog box.

-n Do not overwrite same-name objects, circumventing a confirmation dia
log box.

-y Overwrite same-name objects directly, circumventing a confirmation dia
log box.

57 Chapter 6

The following rules will help you use the command language:

• A single word, always stated first, identifies the command. It is the
command name, tool name, command file name, or application name.
Uppercase and lowercase letters are treated the same.

• Parameters are most often one of two types: options or files. Options
are identified by a preceding minus sign (-). Files are given by file
names. Some commands use other kinds of parameters such as directo
ries, numbers, text selections, or special strings.

• Commands must be terminated. A Return character usually ends a
command, though MPW offers alternative terminators for more com
plex command operations.

• Tuxt that is preceded by a number sign (#) is treated as a comment.
Comments are not executed and end at the next Return character.

• At least one space must separate command names, options, and file
names. When a parameter uses a string that contains a space, the string
must be within quotation marks.

• Parameters listed in parentheses are optional; others are required.
MPW's help command lists optional parameters in brackets.

More on windows, and how come you never mention menus?

Menu options offer only a small subset of command language capabilities.
Almost all of MPW's Shell menu options can also be performed by using the
command language. Although the number of options is limited, menus
lessen the need for memorization and allow functions to be performed
directly on the active window.

Menus act upon the active (topmost) window. This contrasts with simi
larly functioning Shell commands that act upon the target window. By de
fault, the target window is the second window from the top.

Tu illustrate this difference, consider the copy function. When this com
mand is executed from the Edit menu, it copies the selection from the active
window. When it is executed from a Worksheet command line, it copies the
selection from the window that is layered one below the active window.

Mac users will quickly recognize selections in the active window-they
are shown in inverse, white letters on a black background. When such a
selection is in a nonactive window, such as the second-from-top target
window, the selection is highlighted (boxed) by a rectangular outline. Figure
6-2 shows an example of selections in both the active and target windows.

You can create an example of text highlighting in two windows by open
ing any two windows (use New from the File menu or new from the Work-

58 Part One

,.. s File Edit Find Window Mark Directory Build

.. ...

INCLUDE 'Traps .a '

MAIN
PEA -4 (A5)
_lnilGraf
_lnitFonls
_lni Ulindows
_In i lCursor

SUBQ •4, SP
CLR . L - <SP >

Silk :MPW:Coin.a
; Program Cor neredCoin

; define t rap names

; initialize Quickdraw
; initialize font manager
; initialize window manager
· initialize cursor to arrow

; make room for pointer result
·al locale on he

Silky:MPW:Worksheet
copy § • the symbol § <Oplion/6) represents current selection

paste§ Silky : MP~:~orksheel
_lni lGraf
_lni lFonls
_lni Ulindows
_In i lCursor

~Shell

; initialize Qu ickdraw
; initialize font manager
;initialize window manager
;initialize cursor to arrow

Figure 6-2

. ... ·_,,

sheet) and arranging them so they do not completely overlap. When you type
in text, select the text, then click in the other window, the selected text of the
background window becomes highlighted in the boxed fashion .

Again, the command language equivalents to the menu commands oper
ate, by default, on the target window. For example, executing copy from the
Worksheet copies the boxed selection in the target window onto the
Clipboard. Executing copy from the Edit menu copies the inverse selection
from the active window onto the Clipboard .

You can override the default use of the target window by providing a
window parameter to a Worksheet command. Any other window can be
specified as the target window by providing the window's name as a param
eter. For example, copy Coin.a copies the selection from window Coin.a onto
the Clipboard.

Here is a review of the MPW menu commands that may be unfamiliar.

File menu

The File menu's New ... command produces a dialog box in which to specify
the file name and directory location of the new file you want to create .

The File menu offers three commands to save files. The Save command
saves the contents of a file to disk without any change of file name. The Save
as ... command saves the contents of a file to disk by producing a dialog box

S9 Chapter 6

in which to specify a new file (and window) name. The Save a copy ...
command works the same as Save as ... except the name of the active win·
dow does not change to the new file name. It truly saves a copy without
changing your current work file in any way.

The File menu offers an Open Selection item whenever a file name is
selected within a window. This is a shortcut that bypasses the Open ...
command's dialog box.

The Print Window/Print Selection command prints the contents of a
window or a selection within a window. The default menu item name is
Print Window. If a selection has been made, however, the menu item ap
pears as Print Selection.

The Print commands substitute a global shell variable called PrintOp·
tions, defined in the Startup file, for the Print dialog box. These options
include number of copies to print, pages to print, print quality, font and font
size, headers, titles, borders, and order of printing. You can change these
printing options (the Startup file specifies headers) by setting PrintOptions
in the UserStartup command file with the minus sign options described
under Print in the dictionary.

Edit menu

The Edit menu's Format ... command produces a dialog box that allows you
to change tab size, automatically indent (after a Return, text lines up with
the previous line), and show the invisible characters in figure 6-3. The
system's fonts are also shown.

Return

0 Space

li Tab

l All other control characters

Figure 6·3

The Align command makes currently selected text line up vertically
with the top line of the selection.

The Shift Left and Shift Right commands move blocks of currently
selected text according to tab boundaries, leaving alignment within the
block intact.

The Edit menu's Execute command operates the same as pressing the
Enter key (but is different than execute in the text command language).

60 Part One

Find menu

The Find menu offers numerous options to find and replace text within the
active (topmost) window. The Find Same and Replace Same items are short
cuts for repeating operations without displaying dialog boxes. Switches al
low operations for Search Backward, Entire Word, Case Sensitive, and
Selection Expression. Using the Selection Expression switch, the wildcard
characters in figure 6-4 can be used to find text patterns.

?

[charList]

[~charList]

Window menu

Match any single character (except Return).

(* = Option/X) Match any string of characters
(except Return) .

Match any character in the list.

<~ = Option/L) Match any character not in the
list.

Figure 6-4

The top half of the Window menu offers Tile Windows and Stack Windows,
two methods of displaying multiple windows on the screen. The bottom half
of the menu offers the names of all open windows-a check marks the active
window, a bullet marks the target window, and an underline marks a
window that has been changed since the window was last saved. When you
select a window name, the window appears topmost as the active window.

Mark menu

The top half of the Mark menu offers two commands for identifying sections
of text by name. The Mark ... command produces a dialog box in which to
assign a name (called a marker) to a previously selected section of text. The
Unmark ... command produces a dialog box that allows you to delete the
association of the name and marked text.

The bottom half of the Mark menu offers the names of current mark
ers. When you select a marker name, the Shell jumps to the marked text in
the same manner as the Find command.

Directory menu

The top half of the Directory menu offers two commands. The Show Direc
tory command displays the current default directory in an alert box. The
Set Directory ... command produces a dialog box in which you assign the
default directory and add its name to the bottom of the Directory menu.

61 Chapter 6

The bottom half of the Directory menu offers the names of currently
available directories. Available directories include those assigned by the Set
Directory menu item and the setDirectory text command, and those specified
in the UserStartup command file (initially set for Example folder files and
the default directory). When you select a directory name, the directory is
set as the current default directory.

Build menu

The Build menu offers commands to select a program for building and to
perform the build. The Create Build Commands ... item produces a com
mando dialog box in which you enter the name and select the source files of
the program you want to build. A makefile is created (with the suffix .make
appended) using the MPW make tool. The makefile contains the simple
commands necessary to build the program.

The Build .. . and Full Build .. . items execute the program build com
mands. Full Build ... creates a complete set of files, whereas Build ... creates
only the files modified since the last build.

The Show Build Commands .. . and Show Full Build Commands .. . items
write the program build commands to the Worksheet without executing
them. Show Full Build Commands ... displays a complete set of files , whereas
Show Build Commands ... displays only the files modified since the last build.

,. s File Edit Find Window Mork Directory Build Date Scott
.,

.. . · ~ ·
Silky:MPW:Worksheet

addMenu Date "Show Date· date

Thursday, June 11, 1987 12 :30 : 15 AM

addMenu Scott "Run Coin/R" Coin

MPWShell

L -~

Figure 6-5

62 Part One

Custom menus

The command language allows you to install and delete your own menus to
perform operations the same as if you executed the text from a Worksheet
window. The addMenu and deleteMenu commands, described in the dictionary,
create and dispose of user-defined menus. Figure 6-5 is an example of the
addMenu command in which the menu titles Date and Scott are added to the
menu bar.

CHAPTER - ift!@W*H - W1$1M rteti - 7 M§ro *H&W•+ --~ il$ih4ik4 \iM#+M!

Hoftl Do You
Do Resources?

S¥Htt wg

Q@&&

Note: The next three chapters, beginning with this one, contain more
advanced MPW material. If you are a beginning assembly language
programmer, skip these chapters until you are well into part 2. In part 2,
you will be advised when it might be a good idea to come back and study
these advanced topics. If you are already familiar with Macintosh resources,
the Shell's fancy features, and the MacsBug debugger, you might want to
skim the material in the next three chapters to see what is of interest. An
example of using resources in an assembly language program is shown in
chapter 23.

Certainly MPW hasn't changed the way resources work, right?

Sorry, icon-face. MPW supplies a new resource compiler called Rez and a
resource decompiler called DeRez. Resources, the Macintosh mini-language
that works as an adjunct to assembly, Pascal, C, and other language code,
increase an application's adaptability to the needs of the user.

Some of the more common program features that result from resource
programming are windows, menus, dialog boxes, icons, and strings. Al
though these program features could be produced without using the re
source mini-language, any feature modification is drastically complicated
compared to how resource-based features are modified.

MPW resources are manipulated using two tools and an application:

63

& Eh

64 Part One

Rez Creates a linkable resource file by compiling a text file called
a resource description file.

DeRez Translates a resource file back into the text of the resource
description file .

ResEdit Edits an existing or new resource file graphically.

The best way to learn about resources is to look at examples. The
resource mini-language has strict syntax requirements and bears little re
semblance to English or computer languages. The DeRez tools and the
ResEdit application are much better teaching tools than a manual's written
explanation .

How do resources fit in the scheme of MPW programming?

Take a look at figure 7-1, a Worksheet window that contains rez as part of the
command sequence. (Note: The example program used in chapters 7, 81 and
23 is named 14Menu.)

Silky:MPW:Worksheet
osm 14Menu . o

link 14Menu .o.o -o 14Menu . code

rez :Rlncludes :Types . r 14Menu . r -o 14Menu

14Menu

MPWShell J2l

Figure 7-1

Your programming experiences in previous chapters have shown you
the purpose of asm and link, the first words on the top two lines of the
command sequence . The last line starts with rez, the command name of
MPW's resource compiler.

When executed, rez performs an action that is similar to asm (the Pascal
and C compile commands, too) and link combined . Here are the similarities
and one difference. Like asm, rez requires source code (a Worksheet text file)
as an input parameter, translating it into object code output. Like link, rez
joins code files (resource code files) to help produce a standalone applica
tion. But unlike asm and link, rez compiles and links only resources. The
contents allowed in resources are described in the next section.

60 Chapter 7

The Rez compiler, and resources in general, offers a great deal more
potential than is illustrated by the example in this book (here and in chapter
23). You have many ways to investigate this potential. In addition to using
DeRez and ResEdit, you can print out the .r data files on your MPW disk
that contain templates for a large number of predefined resources.

Remember, resources are a Macintosh mini-language that works as an
adjunct to MPW assembly, Pascal, and C. Writing source code for resources
presents the same difficulties as writing source code for other languages.
You have to use a special vocabulary and a special syntax. 1b gain familiarity
with the vocabulary and syntax, examine the use of resources in other
programs. Memorizing rules won't work.

Can you show me how to add a resource to a simple program?

Here you will look at a resource description file that, when compiled by Rez,
creates a menu.

The resource description file can contain five different kinds of state·
ments. Only two of these statements are necessary to create a menu (resource
and include), but here is a list of all five types:

type Provides a resource type declaration where the pattern of
resource data is established as a template.

resource Provides resource data that fills the pattern set by a previous
type declaration.

include Includes resources that are part of a separate file.

read Includes resources that are read from the data fork of a file.

data Provides resource data that is unpatterned.

The resource description file can contain comments as long as they are
enclosed with the delimiters /* and *I. Comments are ignored by the Rez
compiler.

In the example in this section, you will see two kinds of statements:
resource and include. Every resource definition requires a type declaration, but
you do not need to define the type explicitly. Instead, you instruct Rez (by
specifying a parameter) to include the necessary type declaration from a file
of such declarations. The Types.r file, located in the Rlncludes folder, con
tains the template for the 'MENU' resource declaration.

The type declaration in Types.r provides the resource template. The
resource definition fills the template with data for a particular resource. First,
figure 7-2 is the type 'MENU' declaration in Types.r.

Figure 7.3 is the resource definition that is typed in and saved under the
name 14Menu.r.

66 Part One

Silky:MPW:R I ncludes:Types.r

boolean
pstring
wide array

pstring;
byte no Icon; ~= : ~~~ ~~ : ~ !11111
char noKey = "\OxOO", /* Key equivalent or */

char
hierarchicalMenu =
noMark = "\Ox()()" '
check= "\Ox12";

" \Ox1B " ; ~= ~~~~~h ~~ :n~ d : ~ ::m:

fill bit;
unsigned bitstringl?J

plain;

/* of hierarchical ~enu *I !!!Iii

} ;

/* Style
} ;
byte = O;

MP'«' Shell

Figure 7·2

Silky:MPW: 14Menu.r
resource ' MENU ' <129, "F'i le" , preload) (

129 .. tex tMenuProc .. al I Enabled,. enabled .. "Fi le " ..
{

"Quit." ,
nolcon , noKey , noMark, plain

\ .

"
include "14Menu .code " ;

MP'«' Shell

Figure 7·3

v

Here are some observations about this example resource description
file.

1. You have typed in a resource definition according to the syntax rules
of the MPW resource description mini -language .

2. The resource definition is made up of resource data that fills the
type 'MENU' template. The template , found in the Types.r file , is
necessary as the resource type declaration.

67 Chapter 7

3. The grammar rules for all resource statements are stringent.
Punctuation and syntax notation characters must be written as
shown. The use of uppercase for words that are part of the
description mini-language is optional.

4. The template and the data that fills it specify the menu ID, the ID of
the menu definition procedure (def proc), the item enable flags, the
menu enable flag, the menu title, the item title, the icon number, the
key equivalent, the marking character, and the style.

The Rlncludes folder contains three resource template files for stan
dard resource types. The resource types commonly used in applications are
defined in the file Types.r. The resource types used for system and tools
programming are defined in the files SysTypes.r and MPWTypes.r.

In addition to the standard resource types, MPW allows you to create
custom resources and offers a command that operates in reverse of the rez
command. The deRez command creates a resource description file (the origi
nal .r text file) from an existing resource.

The output of the deRez command is written to standard output. Figure
7-4 is an example of the deRez command decompiling the menu resource in
the application 14Menu.

Is this how all resources are compiled?

The simple resource example shown in the previous section (figure 7-1) uses
the rez command after the asm and link commands. You can also compile
resources before assembling and linking. In this section, you will see an,
alternative method of using rez. Again, the resource file 14Menu.r is com
piled independently of the source code 14Menu.a. This alternative method is
used by the commando-based Build menu described in the next chapter.

Here, in figure 7-5, is an alternative command sequence for chapter 23's
sample program (produced by the Show Full Build Commands ... option of
the Build menu).

The first difference you will see is the use of the -append option on the
rez command line. The -append option causes the compiled output to be
appended to (rather than substituted for) the output file.

The second difference is that Types.r, containing the menu type declara
tion, is missing. Actually, it isn't missing; it's being specified in a different
location. In this alternative method, the resource templates file is included as
part of the resource definition. Look at the first line of the revised resource
definition file 14Menu.r in figure 7-6 to see how Types.r is specified.

Both methods are really accomplishing the same objective. In the first
method (figure 7-1), the Types.r file is included as a parameter of the rez

68 Part One

Executing the ... deRez command line produced a commando dialog box fr om
which the input files 14Menu and Types . r were selected .

... deRez
r e source ' MENU' (129, "File", preload) {

129 ,
textMenuProc,
all Enabled,
enabled,
"File ",
{ /* array: 1 elements */

/* [l] */
"Quit 11

, noicon , plain

];

data 'CODE' (0 , purgeable) {

];

$ " 0000 0028 0000 0200 0000 0008 0000 0020 "
$"0000 3F3C 0001 A9F0 "

data 'CODE' (1, "Main ", locked, pre load) (

};

$ " 0000 0001 4860 FFFC A86E A8FE A850 A912 "
$ "A930 203C 0000 FFFF A032 594F 42A7 487A"
s· ooco 487A OOC4 50E7 4267 2F3C FFFF FFFF "
$ " 51E7 42A7 A913 A873 3F3C OOOA A89C 594F"
$"3F3C 0081 A98F 4267 A935 A937 A984 554F"
$ " 3F3C FFFF 4860 0108 A970 4AlF 67EE 6108"
$ " 4A2D Ol18 67E6 A9F4 3020 0108 5340 6706"
$ " 422D Ol18 4E75 554F 2F2D Ol12 4860 OllA"
$ " A92C 301F OC40 0003 671C 5340 66E2 594F "
$"2F2D 0112 A93D 321F 301F 4A41 6702 187C"
$ " 0001 Ol18 4E75 4860 0112 A871 2A2D 0112 "
$ " 2805 554F A973 4AlF 6786 594F 2FOF A972"
$ " 261F 8644 67EC 45ED 0100 2485 2544 0004 "
$ " 2FOA A887 2543 0004 2FOA A887 2803 6002 "
$"0050 003C 0122 01C2 1840 656E 7573 3A20 "
$ "4 C69 7465 7261 7475 7265 206F 6620 4769 "
$ " 616E 7473 0000 0000 0000 0000 0000 0000"
$ " 0000 0000 0000 0000 0000 0000 0000 0000"
$ " 0000"

Figure 7·4

Silky:MPW:Worksheet

• 6 :37 :40 PM----- Build commands for 14Menu .
Rez -append 14Menu r -o 14Menu
Asm 14Menu . a
Link -w -l APPL -c '???? ' ~

14Menu.a.o ~
"Si lky : MPW :Libraries : "lnlerface o ~
''S i lky : t1Pl-l :Libraries : "Runtime . o b
-o 14Menu

MPW Shell

Figure 7-5

/ * ... (. * I
/* .. ?< .. ©. * /

/ * Hm . . ®n® . ®P© . * /
/* ©O < t2Y08BHz */
/* ·oHz.fP . 8g/< */
I* Q.8B©.®s?< .. ®uYO * /
I* ?<.A©08g©5©7©YUO * /
/* ?< .. Hm .. ©pJ . g . a . */
/* J- .. g . ©.0 - .. S@g . */
/* 8 - . . NuUO/ - .. Hm .. * /
/* © , 0 .. @ .. g.S@f. YO * /
/* I - . . ©=2. 0. JAg". I * /
/* NuHm .. ®q*- .. */
I* I. UO©sJ. gdYO/ . ©r *I
/ * & • dDr- E . . . $0%0 . . *I
/* I .® %C .. I . ®L. (. . " * I
I* .P.< . " . -, . Menus: */
/* Literature of Gi */
/* ants */
/* * /
/* .. */

69 Chapter 7

~o Silky:MPW: I 4Menu.r
•include "Types .r"

resource "MEfiU' (129, "Fi le", pre load) {
·129, textMen•JProc , al !Enabled , enabled , "Fi le" ,
{

"Quit" ,
nole:on , n0Ke1:J, noMark , plain

} ;

MP'W Shell

Figure 7-6

command. In the second method (figure 7-6), the Types.r file is included by
the resource directive #include (the #indicates a text file) .

The link command is also presented differently. In the first method, the
output file of the link command (specified with the ·o option) is an intermedi
ary application file called 14Menu .code. The original resource definition file
(figure 7-3) uses the directive include "14Menu .code", the last line of code, to
link to the intermediary file and produce the final application.

In the second method, this intermediary file is not used. (The directive
include "14Menu .code" is omitted from the resource definition file.) The
rez command appends its compiled resource to the 14Menu file (which is in
an intermediary stateli then the asm and link commands complete the appli
cation so that the output file of the link is the final application.

You should also notice that the link command has a few additional
options that specify file characteristics . (You can look these up in part 3's
dictionary.) Note in figure 7-5 that the long command line has been broken
up into five Worksheet lines. This is made possible by the character at the
end of the line (produced by pressing Option/D). This character, at a line's
end, indicates that the command continues on the next line.

How does your program code know about resources and how are
resources linked?

The Macintosh ROM uses a set of Toolbox calls that provide access to resources.
The program illustrated in chapter 23 of part 2, the assembly tutorial, demon
strates this access for a menu resource . Briefly, here is the process:

1. The Menu manager (or any other manager applicable to your
resource task) is initialized by the procedure InitMenus .

70 Part One

2. The function GetRMenu uses a menu resource ID parameter to read
the appropriate Rez-compiled resource, and returns a handle
(location address) of the significant information.

3. After the location of the menu information is available, Toolbox calls
such as InsertMenu and DrawMenuBar can create the menu on the
screen.

CHAPTER
ll!llllll1l!ll! riJlilllllllllllliB111111!111 ~li!EiB. !l!ililili!!ll!ll!l!llli-mQjiiMll!iiiililBl!mlll!lllllllilllilllllllllilllllliiii!i!!m!!!liii!l!!!lll&\¥#¥i~·1!11li@iljjjl!illllllll!lm•~tmw~etmtllliltll.......U!mll!ml~'!!i!l!lilll!l!ll!l!!ll!liml

lil!lll!l!l!ill -~ - 8
Q@jQWipWMllMM@ f'

~ IUlll!!l!.'lliil!llllllll!IBll llllilllllilii!lllillllli!Bii!nlill!lllliillllllllllll!l*#•••itliq•&iiD~&~•"•AUmf@'iii§iilllii!~i!1ii¥11!1!i\l'Bl'~*!!!!l!!lll'illllll!nll!llllllllllllllllilllllllliB~'e&¥tW!ilill'!lilBl'il@iilll1llilllMil!!ll!l!llll

Who Uses Make and
the Structured
CoDIDiands?

Note: As was stated at the beginning of the last chapter, the last three
chapters in part 1 contain more advanced MPW material. If you are a
beginning assembly language programmer, skip these chapters until you
have made progress with part 2. If you are already familiar with advanced
Shell features, you might want to skim the material here.

When should I start using MPW's fancy features?

Foremost, the purpose of a programming environment's fancy features is to
speed development. Fancy features make a better final product only to the
extent that the saved time allows the programmer to work more on code
writing and less on code mechanics. When you feel you are wasting a lot of
time waiting for the computer to compile, link, and run your code, you
might start investigating how an MPW feature might speed the process.

Don't forget the price to pay: You have to learn how the fancy features
work. Before you jump in writing makefiles and structured command files
to process your twenty-line sample programs, be sure you understand ex
actly what the fancy feature is doing. Otherwise, you could introduce new
problems into your program that cannot be identified quickly.

The fancy feature explanations covered in the remainder of this chap
ter are intended to inform you of the options available for further study.
Only through practice will the use of these features become easy enough

'71

72 Part One

that development time will be reduced. Programmers working with long
and complex projects will benefit the most.

First, a few comments on commands and their structure. A command is
made up of one or more words, separated by spaces or tabs, with the last
word terminated by a special character, usually Return. The first word is the
command name. Subsequent words are parameters to the command. Param
eters are most often options (specified with minus sign or letter notation) or
file names. The dictionary shows the required and optional parameters for
all Shell commands. Optional parameters are surrounded by parentheses.

When you execute a command, the command name appears in the
Status Panel in the bottom-left corner of the active window, and a status
value is returned in the {Status} variable predefined by the Shell. A corn·
rnand that returns a zero status value has been executed successfully; a
nonzero value usually signifies a type of error.

Commands and parameters can be referenced numerically. The corn·
rnand name is considered parameter 0 stored in variable { 0}, and each
parameter can be referenced in the sequential variables { 1}, { 2}, and so on.

In addition to the Return character, commands can be terminated by a
semicolon, a pipe symbol, or branching operators as follows:

commandOne ; commandTwo The commands are executed sequen -
tially with multiple commands allowed
on a single line.

commandOne I commandTwo The output of commandOne is piped
through as the input to commandTwo.

commandOne && commandTwo commandTwo is performed only if com
mandOne succeeds as shown by a zero
status value.

commandOne 11 commandTwo commandTwo is performed only if com
mandOne fails as shown by a nonzero
status value.

You can include comments anywhere within a file or window without
affecting operation by preceding the text of the comment with a number
symbol (#). Each line that has a comment must show the number symbol
because comments are always terminated by the Return character.

What does Make make?

In developing a program, a programmer creates many files. For example, to
produce the program Coin, you created three files: Coin.a, Coin.a.a, and
Coin, itself. By adding a single resource as shown ih the last chapter, you

73 Chapter 8

would add two more files: Coin.r. and Coin.code. Changes to any one of
these files would require that Coin be rebuilt through the compilation, link,
and Rez (resource) process.

The make tool automates the programmer's building process. (Later in
this chapter you will see the automation taken one step further with the
createMake and build commands from the Build menu.) Tu use the make
tool, a programmer must create a set of instructions that establish the
building process. These instructions are saved in a file referred to as a
makefile. In the example that follows, the makefile is named 14Menu.make.

The make tool performs these services for the programmer:

• It keeps track of all the files and commands that are necessary to build
a program.

• It establishes the dependencies of the component files. That is, it estab
lishes which files depend on which other files for their makeup (for
example, object file Coin.a.a depends on source code file Coin.a for its
makeup).

• When one component is updated, it allows you to selectively update
only the components that depend on the updated component. Unaffect
ed components are left intact without undergoing unneeded interac
tion.

• The execution of a makefile produces an automated, streamlined com
mand file that, itself, is available for execution.

A simple makefile uses the format shown in figure 8-1. The Option/F
character translates to "is a function of." Thus, a dependency is established:
targetFile is a function of prerequisiteFile. If prerequisiteFile is missing or is
newer than targetFile, then targetFile needs to be rebuilt.

targetFile f prerequisiteFile
commandList

(f = Option/Fl

Figure 8·1

The rebuilding process is established by the commandList ... line. Com
mand lines are always indented by a space or tab. When the dependency on
the top line indicates that rebuilding is needed, the command lines that
follow indicate the appropriate action that needs to be taken.

After a makefile is created and saved using the previous format, the
make command, called from the Worksheet window, uses the makefile as its
parameter. The make command has the following format:

74 Part One

make (optionList) (targetFileList)

The -f makefile option (-f 14Menu.make is used in the example to follow)
causes the command to read information from the parameter makefile.
Other options are explained in part 3's dictionary. Uf the -f makefile option
was omitted, the command would try to read information from a default file
named Makefile.)

The targetFileList parameter specifies the end product that is being
built. In the case of a single dependency, the targetFile is the first Ueftmost)
file in the makefile. When the makefile consists of three dependencies,
however, such as in the following example, it is necessary to establish the
ultimate target of the make process (the application 14Menu).

Note: Executing the make command does not cause the commands in
CommandList to be executed. Executing make causes the needed rebuilding
commands to be displayed in standard output.

If you want the make output to be redirected to a command file instead
of standard output, you can add the redirection parameter, > fileName, to
the make command line . This technique is shown in a later figure .

The following three screens show the process of creating and executing
a makefile that will build the Coin program. Here is a step-by-step summary
of the make process:

1. Create and save a makefile such as 14Menu.make . See figure 8-2. A
makefile consists of two kinds of lines: dependency lines and
command lines. Command lines are indented by a space or tab.

-o Silky:MPW: I 4Menu.make
14Menu .a.o f 14Menu .a

"Jsm 14Menu .a
14Menu .code f 14Menu.a.o

I ink 14Menu .a . o -o 14Menu .code
14Menu f 14Menu.r 14Menu.code

rez .. {Rlncludesi .. Types . r 14Menu . r -o 14Menu

MPWShell lQ(

Figure 8-2

z. Execute the make command from a Worksheet window. You will want
to supply the make command with the -f makefile option, in which
makefile is the name of the dependency information file you saved in
step 1. Also, you will want to specify the targetFile parameter. See
figure 8-3.

75 Chapter 8

Silky:MPW:Worksheet
make -f 14Menu .make 14Menu

MPW Shell

Figure 8·3

3. The output of the make command is displayed in standard output and
consists of the command lines necessary to rebuild the target, as
shown in figure 8-4. You can execute these commands by selecting
them and pressing the Enter key.

make -f 14Menu .make 14Menu
asm 14Menu . a

Silky:MPW:Worksheet

I ink 1411enu. a . o -o 1411enu. code
r.,z "'Si lk•J : MPW : Rlncltld.,s: "T•Jpes . r 14Menu . r -o 14M.,nu

MPW She II ..E2J_

Figure 8-4

Figure 8-5 shows the make command using a redirection parameter. The
> 14MenuAuto addition to the command line causes output to be directed
to (in this case, create) a command file rather than standard output. By
executing the 14MenuAuto command file (the second line of the Worksheet),
you can complete the automated build process .

Why doesn't the computer know how to build programs?

For simple programs that do not use programmer-designed dependencies,
the make process, itself, can be automated . The commands to do so are
available from the command language (createMake, buildProgram, and buildCom
mands). It is simpler, however, to use the commando interface of the Build
menu items.

76 Part One

,. s File Edit Find Window Mark Directory Build
.,

. -
Silky:MPlll:Worksheet

make -f 14Menu . make 14Menu -' 14MenuAuto ~
14t1enuAuto

~
~ ~ 1£

Silky:MPW: 14MenuRuto
asm 14Menu .a
link 14Menu . a . o -o 14Menu . code
rez "Si l ky : MP1J : Alncludes : "Types . r 14Menu . r -o 14Menu

MPWSh~ll

i... · • ·~

Figure 8-5

Here are the steps for automatically creating a makefile and the four
options for using the makefile to build programs:

1. Choose Create Build Commands ... from the Build menu . The
commando dialog box in figure 8-6 appears.

rCreateMake Options-- -------------------,

Program Name

l
Source Files

Files ...

f Command Line
CreateMake

J
;-· Program Type -···-,

@ Rpplication

QTool

0DR
. ···································

reate a simple makefile for building an application , tool, or desk
ccessory . The m~kefile is for use by the Build menu. ~
Help

J (u

Figure 8-6

Cancel

t n~n teMnl<e ,
2 .0B1

77 Chapter 8

2. Type in the name you want to give your application in the Program
Name box. The sample program from chapter 23 is named 14Menu.

3. Press the Source Files button to produce a file dialog box.

4. One by one, select the source files from the upper list and press the
Add button to include the file in the Source Files list. Figure 8-7
shows the dialog box with the two source files for 14Menu added.

la MPWI

I) 14Menu.a =Silky

CJ REHamples l: j(H ~

D Rlncludes [h"h•<~
CJ Applications
D RStructMacs -........

CJ CEHamples Done
CJ Clncludes
D Clibraries cancel

Source Files: f 4Menu.o

~ ' 3 fldd llliild'I
Remoue

Figure 8-7

5. Press the Done button to return to the CreateMake dialog box. Refer
to figure 8-8. You can see, in the Command Line box, the text of the
command that will be executed by pressing the CreateMake button.

6. Press the CreateMake button to create a makefile with the name
program.make. Remember, the make and createMake commands do not
execute their makefile contents. They simply create the makefile.

7. (This step is optional. It is not part of the build, yet it lets you see
the simple makefile dependencies and command lines.) Open the
newly created makefile by typing open 14Menu.make in the
Worksheet. The screen shown in figure 8-9 appears.

8. Choose Show Full Build Commands ... from the Build menu. A dialog
box asks you to name or confirm the application you want to build
by clicking in the Okay box.

78 Part One

,CreateMake Options----------------------,

Program Name

I 14Men~
Source Files

[Files ...

Ct·eateMake 14Menu 14Menu.a 14Menu.r
f Command Line

r··Program Type 1
® Rpplication '

OTool

oon

~Help J ._(~!!!ca!!!n!!!ce!!!I ~~) reate a simple makefile for building an application, tool , or desk ;,. ·
ccessory The makefile is for use by the Build menu . n CreateMake B
~-----------------------~ 2 .081

Figure 8-8

,. s File Edit Find Window Mark Directory Build

.

Silky:MPW:Worksheet
open 14Menu .make f :

-0 Silky:MPW: 14Menu.make 0-
• Fi le: 14Menu .make QJ • Target : 14Menu
• Sources : 14Menu .a 14Menu .r
• Created : Friday, June 12, 1987 6 :49 : 17 PM

14Menu . a .o f 14Menu .make 14Menu . a
Asm 14Menu . a

14Menu ff 14Menu . make 14Menu . r
Rez -append 14Menu .r -o 14Menu

1-----1 14Menu ff 14Menu .make 14Menu .a.o

I.-..! Link -w -t APPL -c '????' d
14Menu . a . o 3
"{Libraries}" lnterface . o a . .

.. . ·· (L ibrar i es} "Runl.i me . o d
-o 14Menu ...

MPW Shell ~ ~
L' .

Figure 8·9

.,

9. Click in the Okay box. The screen in figure 8-10 appears. The
command lines neccesary to build the application are displayed in the
standard output Worksheet and are available for execution.

In addition to the Show Full Build Commands ... option, the Build menu

79 Chapter 8

Silky:MPW:Worksheet

• 2:37:23 AM----- Build cottmands for 14Menu .
Rez -append 14Menu.r - o 14Menu
Asm 14Menu.a
Link -w -t APPL -c '????' ~

14Menu .a .o 3
"Si lky:MPW:Libraries:" Interface .o 3
"Si lky :MPW:Librar ies : "Runlime.o 3
-o 14Menu

MP'vl Shell

Figure 8-10

offers three other options that produce similar results. The Show Build Com
mands ... option displays only the files modified since the last build. Like the
Show Full Build Commands ... option, it causes the program build commands
to be written to the Worksheet without being immediately executed.

The Build ... and Full Build ... items cause the program build commands
to be executed instead of written to the standard output Worksheet. A
progress report of the execution is written to output. Full Build ... creates a
complete set of files, whereas Build ... creates only the files modified since
the last build.

When do the structured commands come in handy?

MPW has adopted a characteristic of programming languages called struc
tured commands. Structured commands allow a set of simple commands to
be treated as a single block and executed according to rules that apply only
to that block.

A structured command differs from a series of simple commands be
cause the structure dictates the order of execution. Simple commands are
executed in sequential order. MPW allows structured commands to be used
interactively and as part of a command file. Execution begins after the
entire structured command is read.

Pascal and C programmers should recognize the structured commands
from their Pascal and C equivalents. The format of the structured com
mands requires Return characters (or semicolons) as line delimiters. The
following is a description of MPW's structured commands and their format.

Begin ... End brackets a group of commands so that they are treated as
a single unit.

80 Part One

Begin
command list

End

Parentheses are also used to group commands into a single unit.
If ... End evaluates a boolean expression (true values are nonzero and

non-null) and, if true, executes one or more commands following the expres
sion. Else and Else If can be used with If for further conditional execution.

If expression
command list

(Else If expression
command list)

(Else
command list)

End

For ... In ... End executes a set of commands once for each item in a
word list. A given name represents the current value of the word in wordList.

For name In wordlist
command list

End

Loop ... End executes a set of commands repeatedly until a Break com
mand exits the loop.

Loop
command list

End

Break ends execution of the innermost For or Loop command, and exits
the structure.

Break (If expression)

Continue causes the innermost For or Loop command to end its current
iteration and continue with its next iteration.

Continue (If expression)

Exit ends execution of its host command file. The optional parameter
number returns the status value of the command file. Exit also ends com·
mand execution interactively.

Exit (number) (If expression)

81 Chapter 8

How about some input on output and vice versa?

Your practice with entering commands and programs into a Worksheet has
shown you that the Shell can work both interactively (type a command,
press Enter, and the command is executed) and as a file processor (type a
program or series of commands, save the file, and execute the file). In each
case, the Shell takes input and gives output. Input generally has come from a
parameter file, and output generally has gone to a Worksheet window.

The Shell's input and output devices are actually internal files. The Shell
uses three open files called standard input, standard output, and diagnostic
output. By default, standard input is read from the keyboard, and both
standard output and diagnostic output are displayed in the active Work
sheet.

Certain commands read standard input (for example, catenate without
parameters) and, consequently, must be terminated explicitly by holding
down the Command/Enter key combination (or Command/Shift/Return).
While these commands are running, their name appears in the Status Panel
in the bottom-left corner of a Worksheet window. Only after Command/
Enter is pressed will control return to the Shell.

The two types of output are often interleaved in the Worksheet
window. You can distinguish between them by thinking of standard out
put as the requested result and diagnostic output as by-product informa
tion that evaluates the result. Diagnostic output contains status values
(error codes) corresponding to the performance of the previously exe
cuted command.

The assembling and compiling commands asm, pascal, and c, when used
with -p (the progress information option), produce a large amount of diag
nostic output describing the performance of the assembly or compilation.
With these commands, the standard output of the assembly or compilation is
sent to an .o object file, and the diagnostic output is sent to a Worksheet
window.

The Shell's input and output can be redirected from their standard files
to chosen files. The following symbols redirect input and output:

< file Reads standard input from the named file.

> file Standard output creates the named file, replacing the con
tents of any previous file of that name.

> > file Appends standard output to the named file, or creates the
file if it does not already exist.

;;::: file The contents of the named file are replaced with diagnostic
output.

;;::: ;;::: file Appends diagnostic output to the named file.

8.2 Part One

What other features are there to further complicate matters?

Here's a list of additional Shell features that allow a more specialized and
intricate programming environment. The MPW manual provides reference
material on these features.

User-Defined variables

Creating variables or modifying the Shell's predefined variables makes
MPW's parameters, default _settings, status code, and user data easier to
remember and manipulate. The commands set, unset, and export (explained in
their dictionary entries) define, modify, and transmit variables. Also, the
Startup file provides an example of the use of predefined and command file
variables.

Command substitution

A command typed within single back quotation marks ('command') is re·
placed by the command's output when the command is executed. For exam·
pie, the command Print 'Files' prints the output of the Files command.

Special quoting

Because the MPW Shell uses special characters to perform Shell functions
(for example,? is a wildcard character), the use of different types of quota·
tion marks enables you to disable the effect of special characters or insert
invisible characters in text. The symbols in figure 8-11 can be used as
quotation marks.

ii char

'string'

"string"

/string/ or \string\

Quote only the single character that follows il,
the Option/D character.

Use the enclosed string literally, with no
substitutions.

Use the enclosed string literally, but allow
ilchar, variable substitutions, and command
substitutions.

Use the entire string and its quotation marks
literally, allowing substitutions.

Figure 8·11

83 Chapter 8

File name generation

Special characters within words are used to represent a file name pattern.
(The Find command uses the same wildcard characters to find text patterns.)
A list of file names that match the pattern replace the word. The characters
in figure 8· 12 possess these wildcard characteristics.

[charList]

[~charList]

Match any single character (except colon or

Return).

(= = Option/X) Match any string of characters

(except colon or Return).

Match any character in the list.

(~ = Option/L) Match any character not in the

list.

Figure 8·12

CHAPTER

9

ADI I Debugging Yet?

Note: This chapter is largely a reference to MacsBug, a debugging utility.
If you are a beginning assembly language programmer, skip this chapter
until you have made progress with part 2 and want to know more about
debugging. If you are already familiar with debuggers, you might want to
skim the material here.

Where does the debugging process start?

One of the files that comes with MPW is named MacsBug. MacsBug is not a
standalone application; it installs itself when the Macintosh is turned on or
reset. The installation has two prerequisites:

1. The MacsBug file retains its original name (i.e., don't change MacsBug
to McBug or anything else).

2. The MacsBug file is in the current System Folder of a startup disk.

When MacsBug is installed in this manner, every subsequent startup of
the Macintosh automatically installs MacsBug. Tu verify the installation, the
startup screen that reads "Welcome to Macintosh" now includes the message
"MacsBug Installed."

After MacsBug is installed, the program sits dormant in RAM (memory).
The Macintosh is free to run other programs. The debugger is transparent
and relatively unobtrusive. MacsBug takes control of the Macintosh only when

85

86 Part One

you activate the debugger (the easiest method is to press the Interrupt button
of the Programmer's Switch). If you followed the disk configuration instruc
tions in chapter 1 and since then have restarted the Macintosh, MacsBug will
be installed and available for use. You are ready to examine the debugger.

What can the debugger do for me?

Programmers use debuggers in the way that biologists use microscopes.
Debuggers show program activity performed by the hardware's compo
nents: snapshots of processors and memory. These stop-action glimpses can
help a programmer discover a bridge between a specific line of written code
and the action that line is producing.

Before a biologist becomes a biologist, the microscope is an important
learning tool. The same is true for debuggers. MacsBug illustrates how a
computer works in the nitty-gritty world of assembly language. Output from
MacsBug is used right from the beginning of part 2, the assembly language .
tutorial.

All programmers should understand what a debugger offers them. For
assembly programmers, the benefits are obvious: the bridge from code to
code action is direct. Pascal and C programmers can derive the same benefit
from using MacsBug, though the task requires an intimate knowledge of
how Pascal and C relate to assembly language.

Can you show me how the basics work?

You can experiment with MacsBug while running any program, including
the MPW Shell. Press the Interrupt (rear) button on the Programmer's
Switch, and MacsBug takes control over the screen, producing output simi
lar to the following:

401 F52: SUBQ.L #$2,A?
PC = 00401 F52 SR = 00002004 TM = 0000084A
DO = 00000000 01 = 00000002 02 = 00000000 03 = 00000000
04 = 00000000 05 = 00000000 06 = 00000000 07 = 00000000
AO = OOF80000 A 1 = OOOEF9F2 A2 = 00000000 A3 = OOOEFC1A
A4 = OOOOFF5E A5 = OOOEFBF8 A6 = OOOEE5AO A?= OOOEF9EC
>

You can switch between the original application screen and the Macs
Bug output by pressing the tilde/opening quote key (- ') in the keyboard's
upper-left corner. A press of any character key displays the MacsBug output.

87 Chapter 9

Because the debugger works as a bridge between code and code results,
it is important for the programmer to determine exactly where the debug
ger freezes the program and takes control of the screen. The Interrupt
button does not provide a way of stopping execution at a specific line of
code. Therefore, a programmer often wants to put in the program code a
debugger instruction that automatically activates the debugger when that
line of code is executed.

Activating MacsBug from within the program code differs depending on
the language used. Here are example calls to enter Macsbug from each
language:

Assembly _Debugger

Pascal Debugger

c Debugger()

Exactly what does the MacsBug output show?

The MacsBug output in the previous section shows the disassembled current
instruction in the upper-right corner, the address of the current instruction
in the upper-left corner (and in the PC register), and the contents of each of
the registers in the rows below. The greater than symbol (>) acts as a prompt
awaiting a user command. The MacsBug command language offers numerous
one-character and two-character commands to manipulate debugger output.
Many commands use parameters to specify the desired action.

There are six groups of MacsBug commands: general, memory,
breaks, A-Traps, heap zone, and disassembly. The following list, by group,
ought to help a beginner discover the debugger's potential. Parenthesized
parameters are optional. The more advanced commands are listed without
explanation.

General

General commands provide MacsBug help information or provide general
control operations for exiting MacsBug.

?
Show a list of available commands and their parameters.

DV
Display version information of MacsBug.

RB
Reboot the system as if the reset button had been pressed.

ES
Exit to the current Shell, usually the MPW Shell or Finder.

88 Part One

EA
Exit to the current application.

Memory

Memory commands display or manipulate specific slots of memory.

CV expr
Convert the expression (el{pr) and show it in the format of unsigned hex,
signed hex, signed decimal, text, and binary.

DM (address (number))
Display memory starting at the given address. Number, rounded to the
nearest 16 bytes, specifies the number of bytes to display. Omitting the
parameters on subsequent calls causes the next 16 bytes to be displayed.

SM address exprlist
Set memory starting at address with the given expressions.

DB (address)
The byte at address is displayed.

SB address (expr)
Set byte at address to expression or, if no expression is given, to 0.

Dn (expr)
Data register n is displayed or, if an expression is provided, set to the
expression.

An (expr)
Address register n is displayed or, if an expression is provided, set to the
expression.

PC (expr)
The program counter is displayed or, if an expression is provided, set to the
expression.

SR (expr)
The status register is displayed or, if an expression is provided, set to the
expression.

TD
Perform a total display of the registers and the PC, as well as a disassembly
of the next instruction to be executed.

Fn (expr)
Floating data register.

Fl (expr)
Floating instruction address register.

FC (expr)
Floating control register.

89 Chapter 9

FS (expr)
Floating status register.

CS (address1 (address2))
Checksum.

Break

Break commands perform a variety of stop-and-go functions that allow the
debugger to pinpoint particular sections of code as a program executes.

BR (address (count))
A breakpoint is set at the given address, stopping execution at its first
occurrence. The count parameter allows program execution to bypass the
breakpoint for a given number of repetitions. Omitting both parameters
displays all breakpoints-eight are allowed.

CL (address)
Clear the breakpoint at the given address. Omitting the parameter clears all
breakpoints.

G (address)
Execution goes (continues), beginning at the next instruction or, if given, the
instruction of the parameter address.

GT address
Execution goes (continues) till the given address. The given address functions
as a breakpoint for one break only. The program counter provides the first
instruction to be executed.

T
Trace through code by executing a single instruction. The instructions
within a trap call are considered a single instruction.

S (number)
Step through code by executing the given number of instructions. Omitting
the parameter executes one instruction. The instructions within a trap call
are considered individually rather than as a single instruction.

SS (address1 (address2))
Step spy.

ST address
Step through code till the given address. The instructions within a trap call
are stepped through individually rather than as a single instruction.

MR (offset)
Magic return.

DX
Debugger exchange.

90 Part One

A· Trap

A-Trap commands follow the action of the trap calls in the Macintosh ROM.
Six parameters can be used to specify the conditions under which specific
traps are to be followed. Traps can be identified by a number, a range of
numbers, a range of memory addresses, and a range of values in data
register 0. The command G (go) used after an A-Trap command will begin
the A-Trap displays.

BA (trap1 (trap2 (addrsss1 (addrsss2 (01 (02))))))
Break in application.

AA (trap1 (trap2 (addrsss1 (addrsss2 (01 (02))))))
Application A-Trap trace.

AB (trap1 (trap2 (addrsss1 (addrsss2 (01 (02))))))
A-Trap break.

AT (trap1 (trap2 (addrsss1 (addrsss2 (01 (02))))))
A-Trap trace.

AH (trap1 (trap2 (addrsss1 (addrsss2 (01 (02))))))
A-Trap heap zone check.

AR (trap1 (trap2 (addrsss1 (address2 (01 (02))))))
A-Trap record.

AS addrsss1 (address2)
A-Trap spy.

AX
A-Trap clear.

Heap zone

Heap zone commands manipulate the current heap zone, an area of mem
ory whose dimensions are initially set for use by the application.

HX (address)
Heap exchange.

HC
Heap check.

HS (trap1 trap2)
Heap scramble.

HD (mask)
Heap dump.

HT (mask)
Heap total.

SC
Stack crawl.

91 Chapter 9

Disassembler

Disassembler commands help to reverse the assembly process-object code
is interpreted by the symbols, subjects, and instructions of the source code.

sx
Symbol exchange.

SD (address)
Symbol dump.

DH number
Disassembles a hex byte, word, or long word, providing as output the
instruction that corresponds to the number value.

ID (address)
Instructions are disassembled at the given address. Omitting address causes
the next logical location to be used by default.

IL (address (number))
Instruction list.

F address count data (mask)
Find.

WH expr
Where.

More tips

Unlike program code, all numbers represented in the debugger are hex
unless otherwise indicated. The dollar sign ($) can proceed hex numbers if
desired. The number sign (#) must precede a decimal number. The plus and
minus signs (+ and -) are used for signed hex representation (study signed
versus unsigned hex for math use). The less than symbol (<) sign-extends a
hex word to a long word.

In addition to numbers, MacsBug uses strings, symbols, and expres
sions. A string of one to four characters is stored as a hex long word. Two
character symbols represent address registers, data registers, the program
counter, and the current Quickdraw port. The dot symbol (.) indicates the
last referenced address. The following operations are used in expressions:

+ Addition or assertion

Subtraction or negation

@ or * Indirection prefix

& Address prefix

< Sign extended addition or sign extension prefix

Here is some additional information that will give you more MacsBug
capabilities after you become familiar with its basic use.

92 Part One

• MacsBug can also be entered by FKEYs and INIT resources.

• Strings can be added to traps.

• MacsBug can be taken out of RAM by renaming the MacsBug file, then
restarting the Macintosh. Also, you can stop the MacsBug file from
being installed by holding down the mouse button when restarting the
Macintosh.

• MacsBug takes up 43K of RAM and could interfere with some applica
tions, especially on a 512K Macintosh.

Practice using the debugger. Always have backup copies of your disks
because debugger experimentation often causes unrecoverable failures.
With luck, you'll be able to restart your application, return to the Shell, and
reboot, or turn off the Macintosh and have the disk reboot. At worst (boot
blocks damaged), you will have to reinitialize your disk.

Chapter 10

Chapter 11

Chapter 12

Chapter 13

PART TWO

Up Bit Creek: The
Assembly Tutorial
Each chapter in part 2 contains three sections. The first two sections pre
sent technical instructions on writing MPW assembly language programs.
The third section offers a fear and loathing diversion-sometimes light
hearted, always forthright-to enliven the task of learning assembly.

Slots: All the Bits That Fit
Slot is my name, hex is my game
Different slots for those delicate spots
Wet feet on bit creek

See Dick and Jane Grimace: First Lines of Assembly Code
A sneak peek at a slot mover
Never enough Fourplay
To bore a cabbage to coleslaw

The ABC's of Blocks of Code
A review of terms for the memory blocked
More explicit blocks of Fourplay
The Moss Man revealed

Back to the Slot That Got You Here
Give me memory or give me ... I forget

Chapter 14

Chapter 15

Chapter 16

Chapter 17

Chapter 18

Chapter 19

Chapter 20

Chapter 21

Chapter 22

Chapter 23

Examine the slot from inside and out
Letters and the Oakland bus stop

Fourplay: From Head to Toe with Lots of Time
for the Middle

Play it again, Peat
Line by line, every block on its body
The depths and dips of science

The Addresses of Screen Stars
Suffix to say
Bits of the postman's leg
Conversations on computers

Check the Status of the Stack, Captain
A stack at the International House of Carbohydrates
Status symbols for the weird
The publishing connection

Macintosh Programmers Do It in Windows
Initialize the universe, make way on the stack
New instructions and pseudos
For the girls to see

Quickdraw Goes Inside the Window
WindowMaker recapsulated
Move Bach to the strings, Guido
Science and compatibility: Walking to Long's

The Mouse Makes CorneredCoin Complete
Trapped again
Point in rectangle: A boolean delight
The Los Alamos Sluggers (part 1 of 5)

Momentous Events
Remembering the Great Equate
Waiting for the big event
The Los Alamos Sluggers (part 2 of 5)

Structured Programming with Blocks
Playing the fields
Discovering your special points
The Los Alamos Sluggers (part 3 of 5)

The Key to Boarding the Keyboard
Events of many flavors
Fancier graphics through registers
The Los Alamos Sluggers (part 4 of 5)

Menus: The Literature of Giants
Garnering resources
Waiter, there's a mouse in my menu
The Los Alamos Sluggers (part 5 of 5)

~ I-· I < > -+

CHAPTER
- ~!&Rl!llliill'Jfij IM1\ij®@ m •rm iii@i@&@¥1iitft¥?tf&M¥MfrJt*¥t~¥¥:# 444 A4A4444A4&AA&@k.i@l#M --- 10 - tffi"fMtMjHB #&±itit&¥¥t®$tt@ ii 1 G f frifWit@' M&fHH ---. lllaunllil ~4&&¥¥&¥¥%@•1JiM1~wm wmna

Slots: All the Bits
That Fit

Slot is my name, hex is my game

*? AMA

~ ~:~~~~: --! -d ~ $ \ *
Get ready. You are going to see a picture that represents everything a
computer knows. By the time you understand each element of this picture,
you'll understand how a computer works. Upcoming chapters describe the
picture's elements in detail. For now, you are asked only to recognize the
primary element: hexadecimal (hex) numbers.

Assembly language programmers use hex numbers constantly. The
material in this book does not require a lot of hex arithmetic. Proficiency in
assembly programming, however, does require a thorough understanding
of it.

Hexadecimal is a counting system based on 16 different digits. The digits
look like this:

0 1 2 3 4 5 6 7 8 9 A B C D E F

The first 10 digits are the same as those used in the decimal numbering
system. The numeric quantities 10, 11, 12, 13, 14, and 15-which require 2
digits to be expressed in decimal form-are represented by A, B, C, D, E, and
F in hex form.

In program code, hex numbers are preceded by a dollar sign ($). For
example, $A is equivalent to the decimal number 10. $Fis equivalent to 15.
$4 is equivalent to 4. Later, you will see how to express hex numbers larger
than $F (decimal 15).

95

96 Part Two

=I-· I < > +
Different slots for those delicate spots

---- !!~~~~= ---!.., t ~ $ \ ~

The following is a snapshot of the Macintosh as it manipulates hex numbers.
(All numbers are in hex. Only program code requires the dollar sign.) This
snapshot, and the others that follow, can be reproduced using the MacsBug
debugger, as described in chapter 9.

401F52: SUBO.L #$2,A7
PC= 00401 F52 SR = 00002004 TM = 0000084A
DO = 00000000 01=00000002 D2 = 00000000 03 = 00000000
04 = 00000000 05 = 00000000 06 = 00000000 07 = 00000000
AO = OOF80000 A 1 = OOOEF9F2 A2 = 00000000 A3 = OOOEFC1A
A4 = OOOOFF5E A5 = OOOEFBF8 A6 = OOOEE5AO A7 = OOOEF9EC

>

This snapshot displays a very small part of the Macintosh's memory. Yet this
small part is particularly important because of the 6-digit number on the left
side of the top line. This number is the current value of the program counter
(PC). Immediately below the 6-digit number, this information is repeated:

PC = 00401 F52

A Macintosh functions by manipulating single slots of information. The
68000 processor, the heart of the machine, can keep track of only one slot at
any one moment. The program counter identifies the slot that will be acted
on by the processor.

Everything a computer knows is stored in slots. The program counter
itself is a slot. It so happens that the PC slot contains information about the
slot being acted on by the processor.

The two most important revelations about slots are:

• All the information a computer knows is contained in slots.

• When slots refer to other slots, they use addresses or, in a few special
cases, names.

The 68000 processor uses eighteen special slots, called registers, that
are identified by two-character names. Ordinary slots have no names; they
are referenced by hex numbers representing addresses. Register slots are
convenient, speedily accessed storage. Ordinary slots are the primary com
ponents of the Macintosh's memory. The names of the registers are shown in
figure 10-1.

Refer back to the snapshot, and you will see that the contents of these
special slots are hex numbers. The snapshot is representative of all com-

97 Chapter 10

Register Names

PC = Progr am Counter

SR = Status Register

AO , Al , A2 , A3 , A4 , AS , A6 , A7 = Address Registers

DO , Dl , D2 , D3, D4 , DS , D6 , D7 = Data Registers

SP = Stack Pointer (same as A7)

Figure 10·1

puter memory: information is stored numerically, and the most common
numeric form used in assembly language programming is hexadecimal.

The following fear and loathing section introduces the word bit, a com
mon programming term that designates the smallest unit of computer infor
mation. Slots are filled with bits of information . That's all the technical gruel
for now.

Wet feet on bit creek

Machines are very intelligent. Spaniels are fairly intelligent.
Woodchucks have sharp teeth, but routinely err when solving
binary arithmetic problems. Where do people fit in?

Before people were intelligent, they could count only to two.
Starting with zero, they would say, "Zero, one, uh, let's go hunting
for a bit to eat." Ever since, a bit has come to represent the value
0 or 1.

Counting fingers and toes had not been discovered yet. Peo
ple had two hands, two feet, two eyes, two ears. Men had two of
something that women did not and women had two of something
that men did not. Nature provided men and women with an
instinct for one important kind of togetherness, but only after
their intelligence evolved could they put two and two together.

Machines are very intelligent, but nature did not bless them
with the fun things given to men and women. As a result, ma
chines lead boring lives. They can put two and two together till
hell serves Haagen Dazs. Yet they always sleep alone at night.
Would you like to be a machine?

98 Part Two

Study the following illustration (which ought to be familiar
from the last section), titled Nude Ascending a Staircase:

401F52: SUBQ.L #$2,A7
PC= 00401 F52 SR = 00002004 TM = 0000084A
DO = 00000000 01=00000002 02 = 00000000 03 = 00000000
04 = 00000000 05 = 00000000 06 = 00000000 07 = 00000000
AO = OOFBOOOO A 1 = OOOEF9F2 A2 = 00000000 A3 = OOOEFC1A
A4 = OOOOFF5E A5 = OOOEFBFB A6 = OOOEE5AO A7 = OOOEF9EC

>

Machines appreciate the aesthetics of abstract art. People like to
look at nudes. Are you contemplating the subtle nuances of hex
adecimal notation as the artist intended, or are you trying to find
the person on the staircase?

In the March 1987 issue of High Tekkie Times, the journal of
semiconductor paraphernalia for those under the influence of
recreational substances, a critique of Nude Ascending a Staircase
appeared. The review was written by Hunter S. Kafka, a media
correspondent whose previous work delved into the deevolution
ary work of his great grandfather, Franz. The younger Kafka had
provided credible evidence that through sustained psychophar
macological technique, one could indeed turn into a giant lizard.

Writes Kafka: "In Nude Ascending a Staircase, we have the
cubist's classic lines confronting the neo-impressionism of a post
modern romanticist. Of course, on an entirely different level, we
see a snapshot of a two-bit computer program, splayed open, its
disassembled guts assaulting the visual senses.

"Of one thing we can be certain: the artist has intense con
tempt for humanity. The work reflects a vulgar rendition of
anatomical features without the slightest hint of warmth and
compassion. The digits line up like wanton fingers. The lewd
abbreviations suggest acts that exceed binary decency. The por
trayal of characters locked into garish equations offends nature's
symmetry, demeaning both subject and medium under the flimsy
guise of abstraction.

"That voyeurism has penetrated the microprocessor arena
should come as no surprise. Every since the microscope began
revealing single cells, science has made a point of unearthing
disgusting art forms. Imagination has been picked bare by al
gorithmic vultures. No tourniquet can arrest this flow of numer
ics. If the injury must be fought-and I dare say it must-we shall

99 Chapter 10

attackwth an arti~~fervor, withgossip, andwth innuen~() to
make electronic cam.rasses such asNude Ascending a Staircase the
laughing stock. of every chic.gallery, boutique, .and ef;l,tery irl;the
Iand:" ·::;•

The next montl),High Tekkie. Times published. this lett~r in
response:

c''.;i~--,

Editor; :.. ..· ... · .. ·.· r . · ·. . ..•...... ·
Kafka missed ;the. point in his critique of Nude Ascendirtg a

Staircase. The artist never intended. the work to be viewed as an
end Product. Rather, it's a pursuitof pleasure from the heart'.of a
youn' ~ac~e'. ~ilf~ Ii rai9;bow1 ~e woI'k paiIJ,~S, · sh~ed tn'i!lp(}~
rles with resplend~hues of· code·, . ..•... . · ·• · ·

For instance, look at the item titled PC. (Kafka calls them
equations, which oug}lt to tell you something about the•irian
whose prior writings in the field of pharmacology chronicled. his

'flle1>.t1~¥ tnap.~~~n~. f vi~its,. "'1:~ere h~ inha~Ef~. the.19k Vf}~?r~
off fre&,h copies of>. em Bride.) Here, memory is displ~ed
starting at the curreJ.lf value of t~e program c?unter ·(PC).

Although the ipi~mory of a machine might seem as c0nvo
luted as the table talk of twenty-two trial lawyers, certaintools
i:p<1:l<ei. · · moI';g ob~ ·0~1.~asie~, NQtic;e the ~~gj~ ~utnl>~~ .OJ.l ·
the to·.··.··.· e. 1This .· < \ ·.· ays the "throb· of the heart" .captur8cd in
time. ~ith each ~~· a new ~emory image ~pririgs for~' Tu
you, ;the· charactersc:•Below may be gibberish. But to a macliine,
they might carry the memory of its first day out of the carton,
.llcilllire?(• car~~seci., .. tly ;Stripp~d·····.of•packi~g. mat'7}1'ials1;1~<1:I1ci·
plugge~· into a gro / d outlet. . ·... · ..

S()~e say PC st~ds for progr'am counter. ~ers believ~~t is
short fqr passion ·co"nsummated. In either case, the artist has .
drawn a

1
picture. th~f,illustrates, across a single line, the cur:r-ent

throb·~~· a · mf;l,c;hine~:?~ear·t1and·~·· specific·· 11}.eiilory asso~!l~ed··
with that throb. 'I'}tij, is just an. example of the artful magn.ifi
Gence tlj.at KafkaJ~·to.x;~cogp,~'7} in his woi;9Y wo.l).ass ...
such as these show the heart pouring hexadecimal lifebloo a
young lllachine. If, f~r only a moment, Kafka would1 lift his ~g-

. a~dledt,?ead,. ~ •. VVO~~ discover a.refreshing perSpEfgl:i,Ve. /il;~QVe
the ritn.of ~s loWiy!.:011sci0usness. ·· · ··· .. · ><

Mfi,v· . .ptl·~·.5~w·•··

m I·- I < > +

CHAPTER --~ -- 11 -~
See Dick and Jane
Grilllace: First Lines
of Asse01bly Code

A sneak peek at a slot mover
!~~~~~: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-

Later in this section you will see a single line of assembly language code, but
first, a little background on computer architecture.

Some people think computers have brains. That's dumb. Computers
don't have brains. They only have hearts. They don't think; they pump. The
heart of a computer is called its processor. The 68000 is one type of proces
sor, just like rock is one type of music.

People's hearts are made of muscle. A computer's heart is made of a
silicon and metal processor chip. People's hearts are filled with feelings and
emotion. A computer's heart is filled with mailbox slots.

Envision a post office. Envision the wall filled with post office box slots.
Well, those slots are what fills a computer's heart. Luckily, a computer's
processor uses electricity to push mail into and out of slots instead of relying
on postal employees. If a processor relied on postal employees, you would
have to wait until the computer finished reading the current issue of People
magazine before it paid any attention to you.

The 68000 heart consists of not much more than eighteen special
mailbox slots that push information into and out of a large number of
ordinary mailbox slots. These special slots are called registers. Think of them
as the heart's primary veins and arteries.

Numbers such as 128K, 512K, lM, and 4M refer to the thousands (K) or
millions (M) of mailbox slots in which a machine can collect and deliver

101

102 Part Two

information. The number of ordinary slots is also known as the amount of
memory that a computer possesses. Ordinary slots do not reside in the
68000 heart. Instead, they sit on other silicon and metal chips and act like
the subsidiary veins and arteries throughout your body. Instead of blood,
slots transmit numbers.

The names of the eighteen special registers within the 68000 heart are
shown to the left of the equals signs in Nude Ascending a Staircase. See
figure 11-1. Registers DO through D7 are called data registers. Registers AO
through A 7 are called address registers. (The A 7 register is also called the
stack pointer (SP), which you'll use later.) Register PC is called the program
counter. Register SR is called the status register. In later chapters, you
will discover the purpose of these registers as you use them in your pro
gramming.

401 F52: SUBQ.L ""$2,A 7
PC:00401F52 SR:00002004 TM:OOOOOB4A
DO:OOOOOOOO D1:00000002 D2:00000000 D3=00000000
D4=00000000 D5:00000000 D6:00000000 07:00000000
AO:OOFBOOOO A1=000EF9F2 A2:00000000 A3=000EFC 1 A
A4=0000FF5E A5:000EFBF8 A6:000EE5AO A7=000EF9EC

PC = Program Counter SR = Status Register

DO, Dl, D2, D3, D4, DS, D6, D7 = Data Registers

AO, Al, A2, A3, A4, AS, A6, A7 = Address Registers

SP = Stack Pointer (same as A7)

TM = Trace Marker (a MacsBug tool, not a register)

Figure 11·1

The numbers and letters to the right of the register names and the
equals signs are the current contents of these special mailbox slots. Note that
each slot has eight character positions. The contents of the slots are num -
hers expressed in hexadecimal, or base 16, notation.

You saw in a previous section that hex numbers range from Oto 15, and
are represented by 16 characters:

0 1 2 3 4 5 6 7 8 9 A B C D E F

•I - I < > •

103 Chapter 11

The hex characters 0 through 9 are easy to remember because they are the
same as decimal numbers. The trickier numbers are A through F, which
correspond to the decimal numbers 10 through 15, respectively.

For now, that's all you need to know about registers. They are special
mailbox slots that have names. Most hold 8-digit hex numbers as their
contents. The purpose of nearly all assembly instructions in a computer
program is to shovel numbers into and out of one or more of these registers.
Remember, the 68000 processor is the heart, the registers are the primary
veins and arteries, the ordinary slots are the subsidiary veins and arteries,
and the numbers (often in hex format) are the blood.

This is an example of a line of code a programmer types on the key·
board to create an assembly language program:

MOVE.L D1,(A1)+

Dl and Al are the names of special register slots. MOVE.Lis one instruction
from a set of instructions that manipulate the 68000 processor and its
memory slots. The example line of code also uses a space, a comma, paren
theses, and a plus sign. Your task is to understand how these components
work together to manipulate information in slots.

Because everything that a computer knows is contained in slots, pro
grams are written to manipulate slots. Pascal, C, and other programming
languages manipulate slots implicitly. Assembly language, from which other
languages are created, manipulates slots explicitly.

If you are guessing that this example of assembly language code was
chosen as an introduction because it is among the simpler, you are wrong. It
is among the more difficult. You are not expected at this point to understand
what the code does. The purpose of this chapter is to reaffirm two facets of
programming that you already know.

• Slots (register slots in the processor and hex address slots in memory)
hold all the information a computer knows.

• Assembly language moves, rearranges, tests, adds, subtracts, multiplies,
divides, inverts, shifts, branches to, compares, and otherwise manipu
lates slots.

Never enough Fourplay

---- !+~;~~= ---!.., ... s \ 1*

Get ready. You are going to see a complete assembly language program. Its
name is Fourplay. If computer languages give you hives, make believe Four·
play is the best paragraph from a French novel titled Pleasures Among the
Alps. The translation to English might disappoint you. But you will see that

Listing
11·1

104 Part Two

programs, like dirty books, can be written without months of monastic
discipline, deprivation, dispossession, or worse yet, attending school.

The code (called the source code) of Fourplay is shown in listing 11-1.

Four Loop

Wait

INCLUDE 'Traps.a'
INCLUDE 'SysEqu.a'

MAIN
MOVE.L ScrnBase,Al
MOVE.W #5471,DO
MOVE.L #$44444444,Dl

MOVE.L Dl, (Al)+
DBRA DO,FourLoop

SUBQ #2,SP
Button

TST.B (SP)+
BEQ.S Wait

ExitToShell
END

;Program FourPlay

;define Toolbox traps
; define ScrnBase

;load screen base address
;screen size in long words
;screen pattern 01000100

;begin screen fill
;put pattern on screen
;loop until size exhausted

;begin button wait
;make room on stack
;call button trap
;set z flag accordingly
;loop if z is set (no press)

;return to Desktop/Shell
;code end directive

When you run Fourplay, the Macintosh screen fills with thin black lines
on a white background. When you press the mouse button, the program
ends and the screen returns to the Shell format. Figure 11-2 is a picture of
the Macintosh screen after you run Fourplay.

The contents of the Fourplay program are aligned in four columns.
When you type Fourplay onto the screen of the computer, use the Tab key to
keep the columns orderly.

Take a moment to examine some of the abbreviated instructions in the
second column of Fourplay:

MOVE.L
MOVE.W
DBRA
SUBQ
TST.B
BEQ.S

These are members of the primary instruction set (for all computers using
the 68000 microprocessor) that controls the register and memory slots
(remember the mailbox analogy) of a computer. All primary instructions,
plus many more instructions specific to the Macintosh computer, are de
scribed in the dictionary in part 3. Feel free to flip to part 3 whenever you
get curious about a particular instruction. For now, you should recognize
that assembly instructions are aligned in a single column.

105 Chapter 11

111 111111 ·1
1

11 ·11 11 1

1
1111111111111111111I!11111 11111 1 11 I

I ,11J111 I,, 11. I I "II 11 1111 11,ii) 11111111, 11 I 1 111111 ' I

Ill 1111
1
,11 I

1

llli 11!1il I' 111, 1. I ! 1 1 11 l Iii I 1111 I I '

11111 II 1111 11 I I I I I I 11 I
I 1 'I I' Ii' 111 I 11 1111 11 111 i

II 11 11 11 ' 11
1

' 11 11 I II 11111111111111 ' 1
1

1111111111111111111111111,111 ,,1111 11111111111111111111111111111111111 I I
1r1

1
11

1
1

1
111

1111 1111111111 1111 11111 1111111 I I 11 I I I II 1111111111111111111111111111111 I
11 1111 111111111111111111111111111111 I

Figure 11-.2

Here are two more instructions in the second column:

_Button
_ExitToShell

These are members of an additional instruction set, particular to the Macin
tosh, that enhances the writing of assembly programs. This type of instruc
tion accesses the Macintosh Toolbox, a powerful, built-in resource that
Macintosh programs use often. You can recognize a Toolbox instruction by
the underscore character, which always precedes the instruction's name.

Here are the three remaining instructions in the second column:

MAIN
INCLUDE
END

These are directives to the MPW assembler. Directives give information
about a program's structure and contents to help an assembler efficiently
build a standalone application.

Because 68000, Toolbox, and directive instructions belong in the second
column of an assembly program, you might be wondering what goes in the
first, third, and fourth columns. A quick glance at Fourplay shows you that

106 Part Two

the first column has words, the third column has a mix of numbers, names,
and symbols, and the fourth column has short phrases.

The four columns of an assembly program could be titled:

Label Instruction Subject Comment

A parallel in English grammar is:

Martha says: Come to house, Mr Moss. (begin the fun)

Each column has a distinct purpose:

First column Labels who is speaking.

Second column Instructs which action to perform.

Third column Provides the subject to be acted upon.

Fourth column Makes a comment about the purpose of the other
columns.

The same sentence, closer to assembly's grammar, is:

MarthaSays: MOVE.W MrMoss,myHouse ;begin the fun

Or, substituting the number one for Mr. Moss and address register A 1 for
Martha's house:

MarthaSays: MOVE.W #1,Al ;Moss to Martha's for fun

Another name commonly used for instructions is operation. Another
name commonly used for subject is operands. If you feel comfortable using a
prissy word like operand, then use it. But sculptors use tools to bend solids,
musicians use instruments to tweak sound, and programmers use instruc
tions to manipulate subjects.

our cojnputer. ~pi~nce textbook would bore a cabl>,age to
· · · · " bo •. tedi<>l:Jli thblg~~c•:J°he . l>~e:r to

. . . . , ·· .. ·•. en e ·· ... t;tse of $¢1lools i$:io edu~e. we ·
like Mr. Mo~~ Fear arid Loathif1.g with 68000 As~mbly Lariguage,

. ent' . .· Je sets ,.bad precedent. We;need a serious
ne .·. .. · ays~thes~ject. "'f~·· ,,,.

·::1we wapt a l>ookltliat ooneentrates.on structured program
mll:lg. We w~t a book ~t is clear and compre~stve. We want
a• ~ijO~ tq~~~ables.~tudeht$i;tq und~$tand ··~·· fun~ental.
ctmCepts :of.~J'()gram#iilig1 and provides• examples of go()(Jtech-

107 Chapter 11

at ~~~s tfi~. instr\l~tlii set'~d
go~ principles. That's pedagQgic,

. .
0~~1:t,fa:.scien~;l\s

and acit pompohs under the
.why we· chose to use Htiµter
· ;.fr!+.ry as·~.~ text~~pk··

. ht the facts and nothing but
e. ~re is so IDUCh to learn, so. we

. oµl;1'JJ~lor{ult~stomst.~~r~
« ·:\~~ :' . , , ·:.,'~~

1Dbly. !a~guag~; ~struct;0n·
·' is\f:l~!:~~·. into}~e ID~!ifpry

truetiori uses the indii>ect
ode;'~'he long.\Vord c0~tents of.Dl

· by:'.~;·~onteP.t~·1of ad~ss
. rem~ttted by"~ long wdrd.

t.hethinks she is hot stnff.
'.~:~·, '·/;;~; .;: .·· ·.<(,:if'":~'. . . ,-./~,:-:·· ,''

it m a:donut named D:l;Ne
.A:l street, but she's nOt home. She's

So the, boy walks d,...., ... , .,,.h,

r don'Ut Dl ta;'Uie aa
do\Yb 'donut Oi, rmgs fue

o. the house ne~ door.• The
' p.e~*Wis th~.~pay's a~ns

o the SlOt addr~Ss point~tl to
the .. slot address is mere•

m I I < > +

S 0 .. ""; A«
» + ! 0 ~ * &
f _,, ~ $ \,,,.

CHAPTER

12

The ABC's of Blocks
of Code

A review of terms for the memory blocked

There is more to Fourplay than can be covered in this small section, but you
should be able to follow the path of program execution, as well as identify
the five functional blocks of code. Lines have been added to Fourplay to
mark the five blocks. But first, we'll review some common programming
terms.

Whats a block?
A block is a series of lines of program code that accomplishes a task in

the same way that a paragraph is a series of sentences that conveys a
message. A programmer separates code into blocks for clarity. MPW allows
more formal blocks called modules and segments for enhancing large pro
grams.

Whats an assembler?
An assembler is a program that reads assembly language code, then

organizes the code into a ready-to-run program. A programmer types code
into the computer using an editor such as the MPW Shell, then directs the
assembler to construct the program. An assembler reads assembly code in
the same way that a Pascal compiler reads Pascal code or a C compiler reads
C code.

What is program e}(.ecution?
A computer executes program code by performing the tasks, line by

line, that the programmer has typed.

109

Listing
12-1

110 Part Two

What is the path of program e;<ecution?
Each line of a program's code tells the computer, either implicitly or

explicitly, which line of code to execute next. The order in which lines of
code are performed is the path of execution. Unless otherwise directed,
execution begins with the topmost line of code.

Listing 12-1 shows Fourplay separated into blocks. An upcoming chap
ter contains a complete, line-by-line explanation of how the commands of
Fourplay fill the screen with thin black lines on a white background.

;-----------------------------------BLOCK 1-------------------------

INCLUDE 'Traps.a•
INCLUDE 'SysEqu.a•

;Program FourPlay

;define Toolbox traps
;define ScrnBase

;-----------------------------------BLOCK 2-------------------------

MAIN
MOVE.L ScrnBase,Al
MOVE.W 15471,DO
MOVE.L 1$44444444,Dl

;load screen base address
;screen size in long words
;screen pattern 01000100

;-----------------------------------BLOCK 3-------------------------

FourLoop
MOVE.L Dl, (Al)+
DBRA DO,FourLoop

;begin screen fill
;put pattern on screen
;loop until size exhausted

;-----------------------------------BLOCK 4-------------------------

Wait
SUBQ 12,SP

Button
TST.B (SP)+
BEQ.S Wait

;begin button wait
;make room on stack
;call button trap
;set z flag accordingly
;loop if z is set (no press)

;-----------------------------------BLOCK 5--------------------------

ExitToShell
END

;return to Desktop/Shell
;code end directive

The five blocks of Fourplay, from top to bottom, do the following:

• Block 1 equates memory slot addresses with English names. (Otherwise,
the addresses would have to be referred to by hex numbers.)

• Block 2 puts numeric data representing the screen location, the screen
size, and the black-and-white dot pattern into register slots.

• Block 3 moves the selected dot pattern into the first screen address slot,
then repeats the process for each successive screen address slot.

• Block 4 tests to see if the user has pressed the Macintosh mouse button,
and continually repeats the test until the button has been pressed.

• Block 5 returns the screen to the Shell format and marks the end of the
assembly code.

111 Chapter 12

- I ... I < > ..
More explicit blocks of Fourplay

~::~·~= ----------------~---
This section reviews Fourplay, a short computer program that consists of
seventeen lines of code that a programmer has typed on a computer key
board. The programmer has grouped the lines into five blocks to help
illustrate the tasks the program performs. Lines preceded by a semicolon
(the semicolon does not affect the execution of the program in any way) help
the programmer easily distinguish the five blocks.

The overall task of Fourplay is to fill the computer screen with a
pattern of thin vertical lines, then return the screen to normal when the
user presses the mouse button. In the previous chapter, you saw an illus
tration of the thin lines in the screen display after Fourplay was executed.

The following section is a more detailed explanation of the task that
each block of code performs. It shows how five smaller tasks accomplish
Fourplay's overall task. Unless you already know assembly language, you
should not expect to understand the individual lines of code.

Block 1

The first block contains two INCLUDE statement directives. INCLUDE directs
the computer to search small dictionaries so that certain terms used in the
code are equated with appropriate hex slot addresses. The small dictionar
ies used in Fourplay are 'Traps.a' and 'SysEqu.a', and are represented as files
on an MPW disk.

Block 2

The second block of code contains a MAIN directive and three MOVE state
ments. MAIN gives the assembler a starting point for 68000 and Tuolbox code.
The instructions MOVE.Wand MOVE.L place the subject matter of the source
(notated before the comma) into the destination (notated after the comma).
MOVE commands fill register slots with values. The values in these slots help
determine screen location, size, and content.

Block 3

The third block contains three lines. In the reference column, FourLoop
marks the beginning of a loop that clears the screen except for thin black
lines. This block is called a loop because the three lines are executed repeat
edly to make the pattern fill the entire screen. Because the DBRA instruction
has an automatic decrement feature, this repetition takes place without the
programmer having to retype commands over and over.

112 Part Two

Block 4

The fourth block begins with the reference marker Wait. The Wait loop waits
for the user to press the mouse button. The commands in this loop are
repeated until the button is pressed.

Block 5

The last block contains two statements. The Tuolbox instruction _ExitToShell
executes the current Shell program. The last line, containing the directive
END, signals to the assembler that the end of the code has been reached.

113 Chapter 12

-a ,~,~!~~~~_::~ ., ···: . :·.:-·: ·:,,:,: ,·
u thinlt:Qf a ·(Xlill · . . as yourbar's cassette .deck, tl:teil• a

con;i:p~r prQ~~~. a ca~~tte tape . .tou can buy prerecopc;led
J"':J>El • · · co · · .,9- ·. ··. rs, g~ ,s, spr~~5P:eets, ·so
~.q~i . . . n ;ij • *'s on· h to :r~jljl'Ci y > <

pro~s: .co . ·1~~ are a special kind-ofblankf4pe.
:I'· They f,ion't. do ~ ~~ on their own, yet they are spe·

.ci ~ec,f. · \.~:rogra~.rou typ~fin: · •• d&:L.
. • :0 reJl•. . ;._whatf;'.IJ.prografiif :,,.,•· ·

· X:}ll'ograni.~tllformatitin that coihputers play, just like n;tu· ·
sic is·iAformation,~at cas~edecks p-~; People cpilate mus.,c.by

· tw · · · str' · · ·· · . hollow':Jnstrum. · ·
·progr~·by t. "

114 Part Two

ing commands on a computer keyboard, then making the com
puter organize those commands into a ready-to-run program.

So after I've got a computer and a language that's like a blank
cassette tape, I type in peculiar looking commands to create a
program?

Simple as rhubarb pie. First, you enter the commands, also
called the program code. Then, if you are using assembly lan
guage, you make the computer organize the commands by a
process called assembling and linking. Then you or anyone else is
ready to run the program.

And after I know how to program, I can make zillions of
dollars and drive a BMW and take vacations where only attractive
people go?

I don't see why not.
It sounds too good to be true. Whats the catch?
You don't want to know.
Yes, I do. This could be a career decision. Computers are hot.

I've seen the future of the good life and its name is computers. We'll
be able to feed the hungry, shelter the homeless, heal the sick.
Computers are wonderful. So whats the catch?

I hate to be the one to tell you this, but scientific studies
have shown unequivocally that computer programming destroys
brain cells and causes chromosome damage. A corporate white
wash has kept the public ignorant, but this will change as casual
ties mount. With the advent of personal computers, the
programming base has grown large enough to substantiate what
programming pioneers feared all along: People who program
become the walking dead. Mutant time bombs. Zombies.

I don't believe you. It can't be. I know programmers and they're
not ... well, they don't seem . . . I mean, still, whats this about
chromosome damage?

Impaired reproductive capacities. Some of these people are
so bad off they can't even meet a mate. They sit home every night
in front of a cathode ray tube . Turn off their computers, and
they go for Ted Koppel's Nightline show and Late Night with -David
Letterman. Very sad.

But what about you? You program. You've written books about
programming. You're saying you're brain damaged?

I was fortunate. I met a kind, intelligent woman who discov
ered me wasting away. I was given an experimental rehabilitation
treatment for silicon abuse. She spent entire nights by my side.

You mean your treatment was ... that.

115 Chapter 12

Not all medicine is disagreeable.
Are you recovered now? Was any of the damage permanent?

Do you still program? How can you teach programming to people
while knowing what will happen to them? What happens to those
people who never find a mate? Who is this woman?

a I .. I < > +
§a•.,.· A«

» + ! 0 ~ * '
f-,' A s \;ii:

CHAPTER

13

Back to the Slot That
Got You Here

Give me memory or give me ... I forget

So far, computer memory and the hex numbers that address this memory
have been referred to as mailbox or memory slots. This name is as good as
any, but 68000 assembly programmers conventionally use names such as
bits, nibbles, bytes, words, and long words. Each of these words refers to a
distinct size of memory slot, as shown in figure 13-1.

The numbers 128K, 512K, 1M, and 4M refer to bytes. You might think of
a byte as a standard-sized memory slot. A conversion chart for other slot
sizes would tell you: 8 bits to a byte, 2 nibbles to a byte, 2 bytes to a word,
and 4 bytes to a long word. But, at this point, just think of a byte as a
memory unit addressed by each hex number. Thus:

$0 1st byte

$1 2d byte

$2 3d byte

$A 11th byte

$8 12th byte

$1FFFE 127,999th byte

$1FFFF 128,000th byte

117

118 Part Two

$7FFFF 512,000t:h byte

$FFFFF 1,024,000th byte

$3FFFFF 4,096,000th byte

31
30
29
28
27
26
25
24
23
22
21
20
19
18
1 7
16
15
14
13
12
11
10

9
B
7
6
5
4
3
2
1
0

Slot Sizes in Bits

. _._
I -I
bit nibble byte word long

word

Figure 13·1

Hex numbers are used both to address slots and to represent the
contents of slots. Any one of the byte-sized slots in memory can represent a
decimal number from 0 to 255. In hex notation, a byte-sized slot can rep·
resent a number from #$0 to #$FF.

By custom, a single byte is represented by 2 hex digits (a leading o is added
if necessary). Often, however, you will see hex digits displayed in groups of
either 4 or 8 digits. These longer numbers represent slot sizes larger than the
byte-sized slot. Four hex digits (2 bytes) represent a single word. Eight hex digits
(4 bytes) represent a single long word. Figures 13·2 and 13·3 show you the slot
capacities of ordinary memory and the special registers.

The following notes should help you keep the idea of bytes from putting
the bite on you.

• Slots have addresses and contents. Both addresses and contents are often
expressed with hex numbers. When you are working with slots, you must
know whether you are dealing with the slot's address or its contents.

119 Chapter 13

3i
30
29
28
27
26
25
24
23
22
2i
20
19
i0
17
i6
is
14
13
12
11
10
9
8
7
6
5
4
3
2
i
0

Memory Slot Capacities (decimal) (hex)

3i
30
29
28
27
26
25
24
23
22
2i
20
i9
i0
i 1
i6
is
i4
i3
i2
11
io

9
8
7
6
5
4
3
2
i
0

_l0-32"1Lil_O~FFFFFFF

i

i
i
i
i
i
i
i
i
i
i
i
i
i

0-65K O::so;}fFF([i
i i
i 1
i i
i i
i i
i i
i i

0-255 SO~F 1 i
i i i
i i i
i i i

o-i5 o~ i i i
Ii i i i
Ii i i i

o-i so::.Ii _I_i i i i
Ii _I_i i

bit nibble byte

Figure 13·.2

i

word
i

long
word

Register Capacities

..l!l-32fil.ill- FFFFFFFU

each bit is a 0 QL1 fl@l_
i
1
l
l
l
l
l
l
l
i
l
l
l
l
1
l

SR (status
register)

A0-A7
SP
D0-07
PC

Figure 13·3

i
i
1
i
i
i
i
i
i
i
i
i
l
i
i
i
i
1
l
l
l
l
l
l
l
l
l
l
l
l
l
1

(addresses)
(stack pointer)

(data)
(program counter)

~ I , .. I < > >

120 Part Two

• A byte is a slot size that can hold 2 hex digits.

• Each byte-sized slot has a unique address.

• Because a byte-sized slot can hold only 2 hex digits and a hex address
usually requires more than 2 hex digits, a byte-sized slot often is too
small to contain a hex address.

• A long word is a slot size that can hold 8 hex digits. This is the slot size
most often used to hold hex addresses.

• Assembly instructions use the suffixes .B, .W, and .L to refer to byte,
word, and long word slots, respectively.

.B

.w

.L

$FF

$FFFF

$FFFFFFFF

byte

word

long word

Examine the slot from inside and out

---- ::~~~~= ---/ _,, ~ $ \ It

Take a look at a slightly expanding, familiar work of art.

401F52: SUBQ.L #$2,A7
PC= 00401 F52 SR = 00002004 TM= 0000084A
DO = 00000000 D1 = 00000002 D2 = 00000000 D3 = 00000000
D4 = 00000000 D5 = 00000000 D6 = 00000000 D7 = 00000000
AO = OOF80000 A 1 = OOOEF9F2 A2 = 00000000 A3 = OOOEFC1A
A4 = OOOOFF5E A5 = OOOEFBF8 A6 = OOOEE5AO A7 = OOOEF9EC
>DM CC60

OOCC60 4A1F 67F8 A9F4 0000 0020 0000 011C 0000

The bottom line of Nude Ascending a Staircase gives a straightforward
glimpse of computer architecture. The line is chock-full of hex numbers.

The data on this line represents a very small portion of the Macintosh's
large memory. Or to maintain the mailbox metaphor, this line displays a byte
slot address followed by the contents of a handful of ordinary mailbox slots.

Here is the example line:

OOCC60 4A1F 67F8 A9F4 0000 0020 0000 011C 0000

The leftmost number is the slot address of the first byte of a series of
consecutive memory slots. A computer's memory contains so many memory
slots that numbered addresses are used to identify most of the slots. Only
the special register slots have two-character names such as DO, D1, DZ, AO,
A 1, PC, and SR.

121 Chapter 13

The question that might be going through your mind is: How many slots
of which size are represented by the example line? The answer is: You can
interpret the slot size in any of three ways-byte, word, or long word.

Here is the same line interpreted according to slot size:

16 bytes:

4A 1F 67 F8 A9 F4 00 00 00 20 00 00 01 1C 00 00

8 words:

4A 1 F 67F8 A9F4 0000 0020 0000 011 C 0000

4 long words:

4A1F67F8 A9F40000 00200000 011COOOO

When interpreted as 4 long word slots, the contents of a memory
address take the same form as the contents of the special register slots. You
can see the similarity (8-digit hex numbers) by looking at any of the register
slots in Nude Ascending a Staircase.

At this time, it is important for you to be able to correlate the byte slot
address (OOCC60) with the memory contents shown beside it. The byte slot
address is the address of only a single byte-sized slot. Therefore, the slot
contents that OOCC60 addresses is 4A, the first byte-sized slot displayed.

The second byte-sized slot displayed, lF, has the address OOCC61. Tu

show every single address of every single byte, however, would take up too
much room on the screen. Therefore, Nude Ascending a Staircase displays
slots in 16-byte increments, with each new slot address (always in the
leftmost column) 16 larger than the prior address.

If you prefer to interpret the displayed memory as word slots, the
addresses perform the same function. The first word-sized slot is addressed
by OOCC60, the second word-sized slot is addressed by OOCC62, the third
word-sized slot is addressed by OOCC64, and so on in 2-byte (1-word) incre
ments.

Likewise, interpreting the size of the slots as long word, the first slot is
addressed by OOCC60, the second slot is addressed by OOCC64, the third slot
is addressed by OOCC68, and so on in 4-byte Uong word) increments.

Now is a good time to reflect on what you have read:

• Computers are made up of slots.

• Special slots are called registers. They have two-character names, such
as DO, D4, Al, and A3.

• Ordinary slots are called memory. They are identified by hex numbers
representing addresses.

• The content of both special and ordinary slots is information that can
be expressed as hex numbers.

122 Part Two

• Sometimes the content of a slot is the address of another slot.

• Slots can have different sizes. Byte, word, and long word are size names
for slots.

Slot addresses allow a programmer to locate specific information any
where in the computer's memory. Everything a computer knows can be
tracked down by locating the information's address.

You can see an example of this fu the following five lines taken from an
alternate version of Nude Ascending a Staircase. Here you can see a portion
of Fourplay's program code stored in memory.

OOCC5C: SUBQ.W
OOCC5E: TOOLBOX
OOCC60: TST.B
OOCC62: BEQ.S

#$2,A7
$A97 4 ; Button
(A7)+
*·00006 ;0000 CC56

When MPW assembles Fourplay, it stores a modified form of Fourplay's
code in memory slots. Although this code is not identical to the source code
you entered (the assembler modifies the code for internal efficiency), you
should be able to recognize the modified code as Fourplay's fourth block.

The memory slot addresses of each line of code are in the left column.
For example, the Tuolbox instruction _Button is at hex address $00CC5E.
Notice that here, the hex addresses of each line of code increment by 2
bytes. That's because each of these lines of source code needs two byte-sized
slots to be stored in memory.

You might be wondering how a particular memory slot can show lines of
program code in one instance, but show hex numbers in another instance.
Code and hex numbers represent the same information expressed in different
formats. Translating assembly language code into hex code (and ultimately
into machine-readable binary code) is one part of what an assembler does.

For example, in the program code TST.B (A7) + the hex code translation
(stored at address $00CC60) is 4A lF. Depending on how you wish to view
Nude Ascending a Staircase, you can see memory displayed as code or hex.
(Look back to the chapter on debugging, chapter 9, to see how to manipu
late pictures such as Nude Ascending a Staircase.)

Lett~\and the Qd(J,~nd bus: stop

Dear·.Mr. ·Moss,
I was greatly disturbed by your flippant remarks on. brain

daJDag~~l~on't know which you displayed more-your in$ensi-
,..J

123 Chapter 13

tivity or your ignor~ce. The pe~ple, and the fatriilies of those
people, who sufferfromthe manyforms of brain ~amag~ ~u,rely.>
would notfind this.topicasourcepfhumor or ligl;i~eart~~Ji\~s~.·iBi
Perhaps if you visited a rehabilitation center for the mentally
disabled or donat~<:l sollleof yoP:ro time ~~ w~~~~ with these

people,. your ·persr~ctive·•·'\N:c;>uld c~~ge.. , >·····.····· .. ··•·••···· ·.··•··. ;~: •
Brain damage is a horrible disease that can cripple and kill,

and oftentimes sentence•its victims and their famili7s to a.life of)
pain, anguish, and devastating hardship. It is no lllOre funnyJ:han ; ·•
cancer, heart disease, or severe :irijury. I think you owe your ·
readers an apology.
Sincerely, ••>·
Hunter S. Kafka

Dear Mr .. Kafka,
Your letter made Ille sad. I wali.tto answer you with a child's

favorite response: l. dicl.11'tmea~~M do jt. ButI'in afraid you
wouldn't understand, You might erroneously thili.k·that l'lll a.polo• •
gizing for my insensitivity and ignorance. I'm not: What makes
me sad is.that thE)\.y()rdslwrote.~llcl the ~orcls ypu read were
not the satne. · ·· · '

They might look the $.lime. They might sound the same. But
inside our heads, they are as differenf as chicken soµp and.
chicken feathers.1 wish th<lt the words braiTfdamage thatf'(Wrote
and that you read were m~re alike. Then ~e computer program-

m e .. rs I wrot. e.. a.· bo .. u ... t .. woul·····. d.; •.•. : .•. P pt be confusedwith the unfortunate
people you read:about · · ·· ;.

I wantto call you a dUndering lUnkhead for even thinking I
Iajght be attempting hun:i~r at the expen8c7 of the dis~b~~~.i But
you wrote a tempered, co11,Siderate letter With intentions l"~gree ····
with fully. Perhaps you would grant me tb.!:l same benefit if you

reread my~?:~d~; • . . . :• ... ·. ... i •.. • • .)·
You mi.ghthe interested to· krtow how•if occutred to. Jif:l that

the phrase brain damage applied to my work. There was a•year
long period in n:Iyearlyt~enties when L~clnot speak toljl.~y~.ne.
I did not speak b(:lcause l~s unhappy al1cl•had nothing I Wanted
to· say. I watched TV in·· my tiny studio apartment, took short
walks to the library, and wrote a.few an~y short stories{

During that year I noticed I had a hole in one of tny•t0,eth,
bicuspid. In the hole was decay, and it hurtwhen I poked i.Jisjde it
with an opf:)ned P~}Jer cliJi1(~o I decided tg;~~e the .county~~lfare
dentist. I had very little Ill.oney. ·· ·.

124 Part Two

. You hageto getto Highland Hospi4tl at 7 A,.M. and wait about
four hours to see the county qentist. So at 6:30 A.M. I was stand
ing at the bus stop on Oakland's MacArthur Boulevard, waiting
for :the 57 Southbound. The only other person at th13 bus stop
was a tall, slightly pltimp woman with olive skin, close to my age.
She was nicely dressed in a business suit, a white blouse with a
big bow, and a black velvet hat that had plastic flowers in it. She
smelled strongly of perfume, and she was smiling, not at me but
as if some thought was pleasing her. When our eyes met, her
smile opened slightl;r, and she said to me, "It's a lovely morning,
isn't it?" · · ·

I said yes. My voice cracked with its first word in a long
time. I gave my best attempt at a smile. It was not half as buoyant
as hers.

Her voice was loud and full, though I detected an impedi
ment as she continued to speak. "I've ghat a doctor's appointment
to go to thizz morning. Ordinarily, I'd bE):going to work1 but I had
to mizz thizz mornfug."

I told her I was going to a doctor's appointment also. She
went on to tell me about her parents, her house, her job at the
'Center, anQ now much she enjoyed being Outdoors on nice days.
She asked me questions about my family and what I liked to do.
The impediment in her speech seemed to go away the more she
spoke. When I noticed she had some trouble with her leg that
made her shift her weight awkwardly, I assumed that was the
reason for her doctor's visit.

She was unusually cheerful and talkative for a woman stand
ing beside a strange man at an Oakland bus stop at 6:30 A.M., but
I knew that a person with my lifestyle should hardly be the judge
of l,musual behavior. Her warmth and smile charmed me. I had
spok6n only a few words-she had done most of, the talking-but
the last thing I said to her before the bus came and took us away
has stuck in my mincJ. I said it without thinking. I couldn't think
because I had been stunned by what she had told me as an
afterthought to her story about how she happened to be going to
the doctor today.

This sweet, bright woman said to me, "I haw brain damage."
And I said back, "We all do.•

• I~· I < > +

CHAPTER
111111111!11111 l!llll!llllllllll!!il!lllllllll EiAiiB!ll!!l!!!llllllllli!il!llllillllllll!lllil!lillllll!lill!llllll!lllllllllllllllllllllllllllEMU~--llllllll!llllllilM!llilllllllllllBf&i¥i&ia!!·fi~l!lllllilllll!!i!ili

~ N1Mfti£MWAf¥¥ii%1§iilM!ifiiii@Ni4i?JMh414f&hMM -- 14 - ...
~ lllllllllEIBllilillll m!fll!!!\lji!!il!iilBt:••l!!ll'lle@~iiiiiilil!il!fi#illlllll!ll4§~®HWf'iillllMIR!l!ll!llllm@g•~·gBl'/l~l"lllllllllllllll!!llll!lli!llllllllll!l!l!!lllllllillllllllliiillll!llli!i!mlllllllli!ll!

Fourplay: Frolll Head
to Toe UTith Lots of
Tillle for the Middle

Play it again, Peat

--- ~~~~:~= ---1 As\;io

For the work of figuring out seventeen lousy lines of programming
gibberish, you can tell your family and friends that you basically understand
how a computer understands language. That's right, seventeen lines of code.
If through your childhood you have taken seventeen bites of creamed spin
ach, boiled rutabaga, or unbuttered brussel sprouts, you certainly can sur
vive seventeen lines of 68000 assembly.

This is the last you will see of the original Fourplay program. The
explanation in this chapter is expanded to help you understand the conse
quences of each instruction. Remember to use the dictionary in part 3 when
you need more information about an instruction.

Before any number in assembly code, the following rules apply.

• The number sign (#) indicates that the number is a quantitative value (as
opposed to a memory slot address).

• The number sign alone indicates that the number is a quantitative value
expressed in decimal.

• The dollar sign ($) indicates that the number is a hex value (as opposed
to a decimal value).

• The dollar sign alone indicates that the number is a hex address.

• Thgether, the number and dollar signs (#$) indicate that the number
represents a quantitative value expressed in hexadecimal.

125

Listing
14·1

~ I ... I < > t

s a .. - ; .i!l. «

» + ! 0 - * &

f-d"S\;i>

126 Part Two

Listing 14-1 is the source code for the Fourplay program. Figure 14-1 is
the screen display produced by running the program.

FourLoop

Wait

INCLUDE 'Traps.a'
INCLUDE 'SysEqu.a'

MAIN
MOVE.L ScrnBase,Al
MOVE.W #5471,DO
MOVE.L #$44444444,Dl

MOVE.L Dl, (Al)+
DBRA DO,FourLoop

SUBQ #2,SP
Button

TST.B (SP)+
BEQ.S Wait

ExitToShell
END

;Program FourPlay

;define Toolbox traps
; define ScrnBase

;load screen base address
;screen size in long words
;screen pattern 01000100

;begin screen fill
;put pattern on screen
;loop until size exhausted

;begin button wait
;make room on stack
;call button trap
;set Z flag accordingly
;loop if Z is set (no press)

;return to Desktop/Shell
;code end directive

Line by line, every block on its body

Block 1

INCLUDE 'Traps.a'
INCLUDE 'SysEqu.a'

INCLUDE is a special kind of instruction called a directive. Directives are
special because they operate on the assembly process rather than on mem
ory slots. MPW, like all assemblers, defines its own directives. This contrasts
with the 68000 instruction set, which remains the same among all 68000
assemblers.

INCLUDE directs the assembler to look for definitions kept in a separate
file. In this case, the file names are 'Traps.a' and 'SysEqu.a'. These files should
be on your assembly language disk already. Be sure to include the single
quotation marks in your code.

The files 'Traps.a' and 'SysEqu.a' are definition files that allow assembly
programmers to use English-like words such as ScrnBase, _Button, and _Exit·
ToShell instead of hard-to-remember and easy-to-mistype hex slot addresses.
In the definition files, each English-like word is equated with a slot address.
The INCLUDE directive allows the assembler to automatically substitute the
proper slot address.

127

Block2

MAIN
MOVE.L
MOVE.W
MOVE.L

Chapter 14

ScrnBase,A1
#5471,00
#$44444444,01

Figure 14·1

MAIN is the assembler directive that designates the start of the main
code module. Code modules are more significant in larger programs be·
cause they allow programmers to split programming tasks into smaller,
discrete parts.

MOVE.L ScrnBase,A1 places the hex address represented by the sys·
tern term ScrnBase (defined by INCLUDE 'SysEqu.a') into address register Al.
MOVE.W #5417,00 places the decimal number 5417 into data register
DO. MOVE.L $44444444,01 places the hex number $44444444 into data regis
ter Dl.

The MOVE instruction moves a subject (notated before the comrria) into a
destination (notated after the comma). The L and .W suffixes of the MOVE
command indicate the slot size to be affected. The L suffix indicates a long
word-sized move (4 bytes, the entire size of an address or data register). The .W
suffix indicates a word-sized move (2 bytes, half the size of a data register).

In upcoming chapters, you will see the significance of the numbers

128 Part Two

#5471 and #$44444444. These numbers are put into data register slots to
calculate the size of the Macintosh screen and determine the pattern of
black and white dots to fill the screen.

Block 3

Fourloop
MOVE.L D1,(A1) +
DBRA DO,Fourloop

In the reference column, Fourloop marks the position of the code to which
program execution will loop back after the two instructions are performed.
MOVE.L D1,(A1) + places the contents of data register D1 into a mem
ory address specified by (A 1) + . (The particular addresss specified by (A 1) + is
discussed in an upcoming chapter.) DBRA DO,Fourloop decrements the contents
of data register DO by 1. It then checks to see if DO now equals -1 and, if not,
branches (redirects program execution) to the reference marker Fourloop.

Remember, the initial values of Al, DO, and D1 are set by the MOVE
instructions in the previous block of code. Use the dictionary in part 3 if you
need more help understanding instructions such as MOVE and DBRA.

This block of code is called a loop because program flow loops back to a
previously recognized reference marker. As a result, the MOVE.L D1,(A1) +
and DBRA DO,Fourloop statements are performed repeatedly until the DBRA
instruction decrements the value of DO to -1, whereby program flow con
tinues at the next consecutive statement-no longer branching to the refer
ence marker Fourloop (dropping out of the loop).

Block 4

Wait
SUBQ #2,SP
_Button
TST.B (SP)+
BEQ.S Wait

The fourth block begins with the reference marker Wait. This loop waits
for the user to press the mouse button to end the program. (A Macintosh
uses a mouse; another computer might use a keyboard key.) The code to
accomplish this task involves four statements.

Some of the details in this block involve advanced topics, so don't get
hung up trying to understand what has not been explained. The important
parts are recognizing the logical flow of statements and becoming familiar
with the format.

129 Chapter 14

SUB.a #2,SP performs a subtraction on a special register called
the stack pointer (SP). The decimal value 2 is subtracted from the value
represented by SP, and the result is stored as the new value of SP. This
subtraction sets a place in memory-called the stack-that the following
instruction uses to store its subject matter.

Next, the Toolbox instruction _Button is performed. The Toolbox, partic
ular to Macintosh computers, supplements the 68000 instruction set with a
large number of useful commands. There is no subject matter necessary for
Toolbox instructions because the source and destination of their subjects are
found in the stack pointer and other registers.

TST.B tests the subject matter (providing a yes or no response) left on
the stack by the _Button instruction, and records the result in yet another
register called the status register. The parentheses and the plus sign beside
the stack pointer symbol, (SP)+, are discussed in an upcoming chapter. You
might have noticed that the status register is not referenced in the subject
matter. Many instructions, including TST, affect the status register implicitly.

BEQ.S evaluates the status register, using the yes or no result to either
branch to the marker Wait or drop out of the loop to the last block.

Block 5

_ExitToShell
END

The last block contains two statements. The Tuolbox instruction _ExitToShell
returns the screen to the Shell from which the program began. The assembly
directive END signals to the assembler that the end of the code is reached.

You have used a sequence of assembly statements to alter the Macintosh
screen and, at the user's control, return the screen to the Shell. (Although the
statements might look odd, the path of programming logic is straightforward.)
You accomplished this by directly manipulating the registers and memory
slots that make up the Macintosh hardware. You "spoke" with a language
much closer to what a machine understands than PASCAL, BASIC, FORTH,
LOGO, LISP, LUST, or others made up by hobnosed university professors.

Tb.~ (l~pth~.¥f!:~flps ()f SG~~nce.
' - - - ,_ ,I - ~- ' -,,,-,";j-3;8- '> ·-' ' - --- __ ,_

. ' .. fe~~ner. ~~· a ·~~qe.f ~~rj~ ... NQ· ?~~J'~~~f~ ~?'.~·
sc:ieJ1C8/Qr physf iJe, ·OJ.' televi~~on and telenijone stl
Coinputers don't 11ee .·i e word scie~ce attached t~ them:· . \

·Scie11ce is. foJ,>:~d~;µ11der. thirte~. Scien~e e~plains•lleave~;'.'.

130 Part Two

and earth, the body, mind and spirit. It explains why magnets
pick up staples and why gases rise in the bathtub. Science ex
plains everything to a child under thirteen except why mom and
dad's bedroom door is sometimes locked at night. The bedroom
door mystery can be explained satisfactorily only by becoming
thirteen, fourteen, and fifteen.

At thirteen, science begins to dissolve into innumerable
fields of ignorance. A child knows that science must have the
answer, whereas an adult knows that science's answer is less fun
than food, sleep, sex, fresh air, and playing with the dog. The
remnants of science are left for a group of experts who have
narrowed their talents to the point that they can't walk and chew
gum at the same time.

Some people believe that personal computers will help make
science more important to adults . No, the innumerable fields of
ignorance will never again solidify to a child's concept of science.
But the quotient of pleasure that an adult derives from dabbling in
one or more aspects of science could be increased dramatically.

Personal computers might allow the branches of science to
be approached without the expense, boredom, pretentiousness,
and pipe smoke of college professors, and the gloomy libraries
that hold their recorded knowledge. In turn, the treasured few
instructors with wit and warmth could allot more time to fine
tuning their comic delivery and urbane nuances. Schools and
colleges would retain their primary objective of bringing to
gether single people in search of a mate.

Computers are handy machines. But they are not a relevant
subdivision of science. If science must be subdivided, it ought to
be done under the categories established by the bumper sticker,
"You live, you get sick, then you die."

You live.
This is science at its best. It includes trees, birds, flowers,

and ice cream. It also includes 68000 assembly programming and
the budding romance of a boy and a girl at the rose garden.
Endowed with adventure and pleasure, intricacy and intimacy, an
explorer might be lucky enough to fill up seventy years worth of
scientific knowing. (And almost as many years of the biblical
variety.)

You get sick.
This is how most people think of science. It's through vi

ruses, bacteria, genetic mutation, toxic chemicals, environmental
pollution, nuclear weapons, radiation, lasers, and the dreaded

131 Chapter 14

unknown origin. (The next major scientific discovery will be that
viruses are visitors from outer space who enter our bodies for
observation and experimentation.)

Then you die.
Euphemistically known as "kicking the bucket," "croaking,"

"meeting one's maker," "passing away," and "buying the farm,"
this is the one component of science whose study no one escapes.
From the viewpoint of the one to whom it matters the most, it's
where science has the least satisfactory answers. (PS: Don't count
on computers to help you here.)

•I ... I < > +
s a ; 11 «

)) + ! 0 - • '
J...,' As\~

Listing
15-1

CHAPTER

15

The Addresses of
Screen Stars

Suffix to say

This chapter, and each one hereafter in part 2, begins with the source code
of a complete assembly program. The LightsOut program (in listing 15-1) is
nearly the same as Fourplay. Only two changes have been made. First, the
screen pattern of #$7F7F7F7F7F is substituted for $#44444444 so that a
new effect is created when the program is run. See figure 15-1. Second, new
reference names are used with no effect on the program's operation. The
similarity of the two programs will give you a chance to examine in greater
depth the characteristics of data and addresses.

INCLUDE
INCLUDE

MAIN
MOVE.L
MOVE.W
MOVE.L

DoLoop
MOVE.L
DBRA

TryButton
SUBQ

Button
TST.B
BEQ.S

133

'Traps.a•
'SysEqu.a'

ScrnBase,Al
#5471,DO
#$7F7F7F7F,Dl

Dl, (Al)+
DO,DoLoop

#2,SP

(SP)+
TryButton

;Program LightsOut

;define Toolbox traps
;define ScrnBase

load screen base address
screen size in long words
screen pattern 01111111

begin screen fill
put pattern on screen
loop until size exhausted

begin button wait
make room on stack
call button trap
set z flag accordingly
loop if z is set (no press)

Listing
15-1
cont.

134 Part Two

ExitToShell
END

;return to Desktop/Shell
;code end directive

Figure 15-1

Between the primary 68000 commands and the Macintosh Toolbox
calls, there are hundreds of instructions in assembly. Each instruction has
distinct data and address needs. Faced with a problem this immense, a
beginning programmer must adopt the proper attitude, first propagated by
the venerable A. E. Neuman: What? Me Worry?

Also helpful is the reminder that assembly manipulates register and
memory slots. After you understand these devices, and the numbers that
occupy them, your programming task becomes surmountable.

Take a look at these two numbers:

#$44444444
#$7F7F7F7F

Here are the characteristics that should be going through your mind.

• The number sign (#) means the number is a numeric value, not a
memory address.

135 Chapter 15

• The dollar sign ($) means the number is a hex number. You do not need
to translate every hex number you see into decimal.

• There are 8 digits in each of these numbers.

• The sixteen data and address registers (slots DO-D7 and AO-A7) can each
hold up to 8 hex digits.

• The name for this length of data is a long word.

Find the following line in the code of LightsOut:

MOVE.L #$7F7F7F7F,D1

The MOVE instruction places the subject matter of the source (notated before
the comma) into the subject matter of the destination (notated after the
comma). The long word data #$7F7F7F7F is moved into the register slot Dl.

The .L suffix of the MOVE instruction indicates the extent, or length, of
the transfer. The .L suffix is short for long word. The .W suffix is short for
word. The .B suffix is short for byte. These suffixes are used with many
instructions to indicate the extent in size to which the subject matter is
affected.

There is also the .S suffix, short for short, though it serves only in the
context of short branches rather than a measurement of subject matter.

Here are some more observations about MOVE. L #$7F7F7F7F, D1. Because
#$7F7F7F7F is a long word, it makes sense that there is an .L suffix on
MOVE.L. Trying to move a long word value with MOVE.W or MOVE.B would
undoubtedly cause problems.

Dl is a data register capable of holding a long word value, so it should
have no trouble accommodating #$7F7F7F7F. If Dl holds a value prior to the
MOVE.L command, the old value of Dl is wiped out.

#$7F7F7F7F is a number. Dl is a register (a slot). The statement MOVE.L
D1,#$7F7F7F7F would not make sense. You cannot transfer a register (or
anything) into a number. The destination of a MOVE instruction must be some
sort of slot.

The statement MOVE.L D1,D2 would make sense. You can transfer the long
word contents of register Dl into register D2. After the execution of MOVE.L
D1,D2, the original contents of Dl are not erased or changed. The MOVE
command simply places a copy of the source into the destination.

You will have lots of opportunities to practice with bytes, words, and
long words. Long words might be the easiest to understand because they fill
up all the space in the data or address register slot. Bytes and words only fill
part of the space of a register slot, so you have to figure out which part of
the register is occupied by the byte or word.

The problem of how to keep track of bytes, words, and long words
becomes more acute when dealing with memory slots. Horror of horrors, it

M I ... I < :> +

136 Part Two

turns out that assembly programmers must sometimes count bytes. For
example, if you put a long word at address $4, then the next highest
available address is $8. Remember, memory is counted in bytes, and a long
word occupies 4 bytes.

Bits of the postman's leg

--- ~~~~~~= --f -..# "s \ ~

In the previous section you examined long words, the length capacity of
your data and address registers. At some point in your programming, you'll
remember all the size relationships, such as 32 bits to a long word, 16 bits to
a word, 8 bits to a byte, and so on. More importantly, you should recognize
that a bit can take one of two values: 0 or 1.

Here is a row of 4 bits equivalent to $7:

0111

Here is a row of 8 bits equivalent to $7F:

01111111

Here is a row of 32 bits (a long word) equivalent to $7F7F7F7F:

01111111 01111111 01111111 01111111

If all the bits that a lM Macintosh could store were printed here, this book
would be heavier than the mood at an IBM sales conference.

The small-screened Macintosh reserves over 160,000 bits (20K bytes) of
its memory to display black or white dots on its screen. These dots create all
the graphics, including text, that you see on the screen. A single bit corre
sponds to a single dot. If the screen bit equals 0, the dot is white, and if the
screen bit equals 1, the dot is black.

If you assigned all the screen memory bits to 1, the Macintosh screen
turns black. Likewise, if all screen memory is assigned values of 0, the
screen turns white. In LightsOut, the pattern set by $7F (01111111) turns the
screen black with thin white lines.

Examine the following code in LightsOut:

MOVE.L
MOVE.W
MOVE.

ScrnBase,A 1
#5471,DO
#$7F7F7F7F,D1

The system term ScrnBase (defined in the 'SysEqu.a' file) references the lowest

137 Chapter 15

address of the portion of memory devoted to creating the Macintosh screen.
Above this base address are 5,471 long words of memory, each containing 32
bits assigned values of O or 1, that map the black and white dots of the
screen. By assigning the bit pattern of #$7F7F7F7F to all 5,471 long words of
screen memory, the entire screen is painted.

Try changing the screen pattern of LightsOut. You already saw the
pattern #$44444444 used in Fourplay. You might want to try to make the
screen entirely black. If you can accurately predict how the screen will
appear by the hex number you choose, you'll have gone a long way toward
understanding the bit, byte, word, and long word mathematics of assembly.

Figure 15-2 is the screen map of Fourplay, where each long word has
the value 01000100. Remember, 5,472 long words multiplied by 4 bytes per
long word equals 21,888 bytes.

Screen Map

01000100 01000100 01000100 01000100

address of
screen -7
base byte 1-----+-----i-;*"1-----+-----i i~nn

inn: 01000100

t
342 rows of
bytes

01000100 01000100 01000100

01000100 01000100 n::n 01000100 01000100

01000100 01000100 :::::: 01000100 01000100

::
'•'1'1'1'1'1'1'1'1'1'1'1'1'•';'•'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'•'•'•'•'•'•'•
;:;:;:;n:;:;:;:;:;:;:;n:;:;:;:;:;:;n:;:;:;n:;:;n:;:;n:;:;:ii;i;n:;:;:;:

01000100

01000100

01000100

01000100

01000100 ::n:: 01000100 01000100

01000100 in::: 01000100 01000100

01000100 nnn 01000100 01000100

01000100 inn: 01000100 01000100

L__ 64 bytes * 8 pixels ~ A
~per byte= 512 pixels~ ·I·

address of last
(64 by 342 = 21888 bytes)

scree~ byte

Figure 15·2

Tu rehash a few old topics: Assembly programmers manipulate regis
ters and memory slots. Registers have names like A4, D2, and SP. Memory
slots are referenced by addresses. Because memory slots come in many sizes
(bits through long words), an exact knowledge of which memory slot to
manipulate becomes crucial.

Consequently, the method of addressing memory slots represents a
large part of any programming task. Take a look at the memory map in
figure 15-3. Near the top of the curves, find the portion of memory that
holds the screen information. In the preceding section, you saw that this
section of memory was addressed using ScrnBase, a system equate term that
represents the bottom address of screen memory. From this base address,

138 Part Two

you were able to address the next 5,471 long words of memory above the
base address that map the rest of the screen.

---~system error use~
~ mam sound buffer,,,_ hi9h memory

screen buffer ~

~alternate screen b:)ffer _ ~
=• e te sound buffer~-2====E::=;=::;~

::~:
~ ~uickdra.,.gobals ~
apohcallonglobals- ~l =~stack~

lov memory ~·§

~system lobals~ ~
===:::::=s stem heap apphcahon heap~

Figure 15·3

Figure 15-4 shows screen memory displayed in a more slot-like format.

Screen Memory
address of
last long -7 ..A.
word t-~~~~~~~~~fll'~ ... ·~....-~~~~~~~~~-1

t
5472 long
words of

screen
base
address

screen pattern in hex $44444444, or in binary

~ %01000100 01000100 01000100 01000100 --,,____, ______ ~
Figure 15·4

The statement that helps you address all the long words of memory
above the ScrnBase address is:

MOVE.L D1,(A1)+

139 Chapter 15

This form of addressing is one of many different ways of addressing mem -
ory. How many different ways are there? Who the heck cares? This isn't a
book of statistics. If you tried to read about all methods of addressing at
once, you'd forget about the first long before you got to the last. (When Mr.
Moss starts getting surly you know a fear and loathing sidetrack is near.)

The command MOVE.L D1,(A1) + places the long word contents of regis
ter Dl into the location specified by register Al, and then increments the
address of that location by a long word. This is called postincrement indirect
addressing. This addressing mode results in the following. The contents of
Dl are not placed into register Al because the parentheses around Al
indicate an indirection. The destination specified by (A 1) is not the register
itself, but the location addressed by the contents of A 1. For example 1 if D 1
contained #7 and Al contained $300, the statement's indirection would move
the value 7 to memory location $300.

The plus sign after (A1) indicates a postincrement of the contents of Al.
The address contained in Al is incremented by one unit after the MOVE takes
place. For example, if Dl contained #7 and Al contained $300, the state
ment's postincrement indirection would move the value 7 to memory loca -
tion $300, then increment the contents of Al by a long word. Dl still
contains #71 memory location $300 also contains #7, and Al contains $304.
The unit of increment for the statement is 4 bytes (a long word).

At this point, you may be able to see the convenience of this kind of
addressing for the task of filling all 20K of screen memory. With the ScrnBase
address (the original contents of Al) automatically incremented by the (A1) +
addressing mode, you can repeatedly move the pattern (stored in Dl) until
the entire screen is filled.

The statement DBRA DO,Doloop keeps a count of the exact number of
repetitions necessary to fill the screen. The original value of DO is assigned
to #5471, the number of long words Oess the one already filled) in screen
memory. The DBRA instruction (test condition, decrement, and branch) sub
tracts 1 from DO before each branch to Doloop. It continues to do so 5,471
times, until the test condition shows DO equal to -1, which results in no
branch.

The Macintosh 2 and Macintoshes using full page displays have a differ
ent screen size than #5472 long words. If you run Fourplay, LightsOut, or
the next chapter's program on a machine with a different screen size, the
effect is different. But current, and likely future, Macintoshes use the system
term ScrnBase as the name for the bottom address of screen memory. Also,
the system equate term ScreenBits.bounds can be accessed to find the exact
boundary coordinates of the current screen in use.

This illustrates an important lesson in Macintosh programming: Protect
your programs from system obsolescence. Mr. Moss has chosen to use a
creaky device only because it allows you to write extremely short sample

140 Part Two

programs without creating windows. All programs after chapter 16 are
done in Macintosh windows, as should yours.

Con.Jel'Sations on computers

-~---------------------
'. c{~y '~~stiqn ~fthe l\:iy / ,•

Who would you mbst like to replace your keyboard with?
Asbd at, ibe Ber,"ley Macintosh Vsers Group
,._/.~>c·:·> / >~:;;f:'.-'o. ·;y/··:f>' . , ,.~> ,,~;_,;,: , ,,.,:.;:·,.;: .. :_.<\

Turn Bellin~, age 18, English major, junior
•·· .. ·.•.. l)wyl ff~~· I('.paryl ~ab<WaS my !¢yboard~ I woulci

·•···: be wm1ng tC> ·ijpe m:•me 1'\bfltifB00~~1incycld~dia. Ini each lali~
guage. With aiinual supplements. Make'that daily.

ste Weiitlietly, ~t24, biS~emi~tl'y, gradi~te stti<leht
How about Kris Kristofferson or Willie Nelson? It would be

nice.w have a:feybo@that s~s. I'd use w~ durW,g1he day~
arid•~m at~ht: · ·:"".;• 1: it. ..~\< ·~1 ·"·

.\Milter McnlbeneJ,: age 54~,civil eQgineer ~ .•.• ·· ...
' •if%u.ar~l~ldxig.~bo 1-&>bid like'l;tO have;fuy hari& on{&&'

. answer would be my Wife. There is no one else I would. even
.~· It'S ~oci to.~~ ~ihc•80~ yoµ'.~9W·
, :.<i·1~~:!h:~·· ·/··!it-:< J" >.:<~~:,_,;:·~,~.,:.. ._·<~~~r::·~ :.~~,~~;·.·

''

~~hael:Q'~steip¥;age z~i«~c.~muntant •. . · ,•
'Jiat '.lVi~ews~~ (Jailiµe Oh~ woll]d be nice. Sh~§

smaiij artictilate•. She seem§ like someC>ne you eou.ld count on. i
' . :Qer.:keys.~d .~r.get swP1t.

: ·.<~·~f;'"'~~'. . ::,j~:·:1>< ';~·~·~:.:~\·.~· « . :'·"}: .·

·.•·••Mr. Moss,·age 17~d holding, gardener
>·'·.··. . . M3r 'brain·l.<et the~tertake ipput ~y .. o~wµ~e tht:t
·~: µeck~::.Siit of .j.t,.1f'Fhen ~e co~ter ·t:~ oh~' whh:jt:want~

for a,byboarcl• It WQtild probably fall in love With my girlfriend.

=I_ I < > •
§a"'""; a«
» + ! (l ~ • &

f--.fA$\ ..

Listing
16-1

CHAPTER

16

Check the Status of
the Stack, Captain

A Stack at the International House of Carbohydrates

The NotOverYet program in listing 16-1 makes a final revismn to Fourplay.
Instead of moving a long word pattern into screen memory, you use the NOT
instruction to invert all the dots on the screen. Figure 16-1 is the screen display
produced by running NotOverYet. Much of the code from Fourplay and Lights
Out remains intact, giving you a familiar setting to examine the all-important
stack and the ever-present status register. (If you think variations on Fourplay
have gone on too long, Mr. Moss and his girlfriend outvote you two to one.)

INCLUDE 'Traps.a'
INCLUDE 'SysEqu.a'

MAIN
MOVE.L ScrnBase,Al
MOVE.W #5471,DO

Doinvert
NOT.L (Al)+
DBRA DO,Doinvert

TryButton
SUBQ #2,SP
Button

TST.B (SP)+
BEQ.S TryButton

ExitToShell
END

141

;Program NotOverYet

;define Toolbox traps
;define ScrnBase

;load screen base address
;screen size in long words

;begin screen inversion
;invert one long word
;loop until size exhausted

;begin button wait
;make room on stack
;call button trap
;set z flag accordingly
;loop if z is set (no press)

;return to Desktop/Shell
;code end directive

142 Part Two

Figure 16·1

NotOverYet uses one less instruction than its forerunners. The MOVE.L
instruction that places the screen pattern into register Dl is omitted. Instead
of inserting a long word pattern into screen memory, this program changes
the value of each screen bit, effectively changing all black dots to white, and
white dots to black.

Without a screen pattern, there is no need to use Dl. Consequently, the
statement NOT.L (A1) + requires just a single subject. You might remember
that the previous two programs use a MOVE.L D1,(A1)+ command to place a
screen pattern into the screen's memory locations . The NOT.L instruction
uses the contents of its single long word subject, and inverts all 32 bits.

The addressing mode of NOT.L (A1)+ remains the same as MOVE.L
D1,(A1) +. The parentheses around Al, followed by a plus sign, indicate
postincrement indirect addressing. This is a convenient, automatic means of
inverting the bits of all 5 ,4 71 long words of screen memory above the
ScrnBase address.

Chapter 15 explained how the subject of indirect addressing was not
the address in register Al, but the contents of the memory location ad
dressed by Al. The postincrement feature adds a single unit (in this case, a
long word) to Al's address, so that the next time the instruction is per
formed, the subject is the contents of the next higher memory location.

The only other change in NotOverYet is the reference name that marks
the screen changing loop. You can choose any name to mark a section of

143 Chapter 16

code. You'll reward yourself, however, if you select a name that clearly
reflects the activity of the code. Also, if you decide to change a reference
name, make sure to update the subject matter of all instructions that branch
to that reference.

If you run NotOverYet from the MPW Shell, you'll get a different result
than if you first return to the Finder desktop and run the program. Try moving
windows and icons on the desktop, and run NotOverYet again. It's strange to
run a program and have the screen be inverted rather than redrawn, but you
really get the sense of directly manipulating screen memory.

You have already read about Tuolbox instructions. Here are some obser
vations to refresh your memory.

• Toolbox instructions are always preceded with the underscore char
acter.

• The subject matter of a Tuolbox instruction, unlike a 68000 instruction,
is not listed in the adjacent column. Instead, separate 68000 instructions
listed before the Tuolbox instruction place subject matter on the stack
or in a register. Thus, when the Tuolbox is called, instructions automati
cally find their subject matter.

• For most Toolbox instructions, you must prepare the stack or registers
with the appropriate subject matter. You can use the dictionary in part
3 to look up the subjects needed by the Toolbox calls in this book.

The only subject matter necessary for the _Button instruction is a 2-byte space
left open on the stack to store the boolean (yes/no) result. The statement SUBQ
#2,SP provides this space by subtracting #2 from the stack pointer.

The stack is a group of consecutive memory locations. These memory
locations are ordinary in every way except they use the stack pointer (SP), a
special register that provides quick and economical access to the contents of
these locations. The stack pointer holds a single address at any one time. And,
within limits, it can be moved up or down to point to any of the stack's memory
locations. Figure 16-2 shows the stack as a downward pointing arrow. The stack
pointer register contains the address of the slot at the arrow's tip.

Understanding how to manipulate the stack and the stack pointer gives
you access to nearly all Tuolbox commands. Here are some notes on their use.

The stack pointer helps define the size of the stack because it always
points to the extensible boundary of the stack. The other boundary of the
stack is a base address, that is, it cannot extend or compact the stack.

Because the stack pointer always points to the movable boundary, moving
the stack pointer away from the other boundary makes the stack grow 1 and
moving the stack pointer toward the other boundary makes the stack shrink.

You can move the stack pointer yourself, or the computer can do it
automatically. When you push subjects onto the stack, the stack grows.
When you remove subjects from the stack, the stack shrinks.

144 Part Two

stack base~
address -,

SP (or A7)
contains
long word -7
address of
this byte (

(

Stack Memory

slot contents at stack base

.. ~
~ slot contents at stack pointer

J slot contents not on stack

J slot contents not on stack

Figure 16·2

On the Macintosh, the stack's base address boundary has a higher
memory address than the movable boundary represented by the stack
pointer. Like the drill of an oilwell, the stack grows downward in memory
and shrinks upward toward the base. The stack pointer represents the tip of
the drill.

This last note helps explain the statement SUBQ #2,SP preceding the
_Button instruction. Because the _Button call needs stack space to store the
result of its button press test, SUBQ #2,SP complies by extending the stack by
2 bytes. SUBQ (subtract quick) subtracts #2 from SP (the stack pointer) and
stores the result in SP. See figure 16·3.

stack base~
address -,

SP (or A7)
contains
long word ~
address of 7
this byte

Stack Memory after SOBQ #2, SP

slot contents at stack base

.. ~
.Y. slot contents at stack...e.ointer

Figure 16·3

The effect is that the tip of the oilwell drill has sunk 2 bytes deeper into
memory, extending the stack. The contents of those 2 bytes of memory are

.. I~· ! < > +
5 d,.""'; A«
» + ! 0 - *Ii:

I-.#".$\,..

145 Chapter 16

not affected. In other words, the tip of the drill has been sunk a distance of
2 bytes, but the dirt, rock, oil, water, IBM dress code, or other fossil contents
of those 2 bytes of earth have yet to be investigated.

Figure 16-4, an illustration of all RAM memory, shows the stack contents
growing downwards and the source code growing upwards.

128K, 512K,
lM, 4M, or~
larger ,
address

SP (or A7) ~

address /

PC address~
(current /
instruction)

Address 0 7

I ... -• T

RAM Memory

system contents

program stack contents

program source code (application heap)

system contents

Figure 16-4

Status symbols for the weird

The _Button call examines the status of the mouse's button, and puts a word's
worth of information on the stack for the programmer to retrieve and act
upon. If the button is being pressed when the _Button call is executed, the
word put on the stack is nonzero.

Otherwise, the word put on the stack equals zero, that is, all 16 bits of
the word are set to:

#0000000000000000

The _Button instruction does not require all 16 bits of a word to com
munciate whether or not the button has been pressed. Actually, a single bit
should suffice because both the button result and a bit's value are boolean in
nature (true or false, 1 or 0). But the memory of the Macintosh is most easily
accessed along word boundaries, that is, even byte addresses. So, though
you will examine bits and bytes individually, you will pick and choose bits
and bytes from the word and long word addresses in which they are
contained.

The statement TST.B (SP)+ tests a byte-length value of its subject matter
(in this case, the contents of the location pointed to by the stack pointer),

146 Part Two

then increments the stack pointer by 2 bytes. You should recognize the
addressing mode of (SP) + as postincrement indirect, the same mode that
helped you increment the screen addresses.

The indirection indicated by the parentheses means you are testing not
the address in the stack pointer, but the contents of the location addressed
by the stack pointer. The plus sign outside the parentheses means you are
incrementing the address in the stack pointer.

Remember, adding to the stack pointer is like lifting the oilwell drill out
of the ground-the stack shrinks, and all memory contents deeper than the
drill tip (SP) are lost.

You might think the plus sign would increment the stack pointer by only
1 byte because the instruction TST.B indicates a byte-length instruction. Good
thinking. The assembler, however, is smart enough to know that addresses
must be accessed on word boundaries (even, as opposed to odd, byte ad
dresses), so an additional byte is automatically added.

At this point, you have lost the _Button results that were put on, then
popped off, the stack. Of course, the TST.B instruction is worthless if its test
results aren't stored somewhere. This storage place is called the status
register.

The status register has the following special qualities:

• The register is only 16 bits (1 word) long. All other registers are 32 bits
in length.

• The register is manipulated implicitly by 68000 and Toolbox instruc
tions. That is, the status register cannot be the subject matter of an
instruction.

• Nearly every bit of the register's 16 bits performs a special task. These
tasks are discussed as they are needed and used by your programs.

• Whereas the bits of other registers are usually taken as a whole to
represent a number or an address, the bits of the status register are
individual boolean tests of the microprocessor's current status.

The statement TST.B (SP)+ pops the _Button results off the stack, but it
records the boolean result in a single bit of the status register. This bit is
called the Z, or zero, bit. If the byte popped off the stack equals 0, the Z bit
is set to 1. If the byte popped off the stack equals anything else but 0, the
value of the Z bit is 0.

TST.B tests only a single byte, yet 2 bytes were put on, and popped off,
the stack. You might be wondering which of the 2 bytes is tested, and how to
tell the bytes apart. The names given to the 2 bytes of a word are high-order
byte and low-order byte. The high-order byte has the higher memory ad
dress. When representing part of a word length number, the high -order
byte contains the higher value digits. Here are examples of the same value
represented three ways:

147 Chapter 16

full number

% 1101011100101010

$D72A

55082 (decimal value)

high order

% 11010111

$07

55040

low order

%00101010

$2A

42

A long word can also be divided according to its high-order and low
order words. For example, for the hex long word $4B38D72A, the high
order word is $4B38 and the low order word is $D72A. The high-order byte
of the high-order word is $4B. The low-order byte of the high-order word is
$38, and so on.

On paper, numbers are written left to right, high order to low order. In
the Macintosh's memory, numbers are stored bottom to top, high order
below low order. Once again, if you picture the oilwell drill as the stack,
you'll see that the drill tip-the stack pointer-points to the deeper byte
address, which is the high-order byte.

The TST. B instruction uses as its subject matter the first byte pointed to
by the stack pointer. As such, the high-order byte is tested for a zero value.
This is just what you want, because the _Button call returns its boolean
result in the high-order byte of the returned word.

If the button has not been pressed, the high-order byte is O, and the TST.B
instruction sets the Z bit of the status register to 1. Remember, the Z bit says,
"If my value is 1, then yes, I reflect a zero value. If my value is 0, then no, I do
not reflect a zero value." Only when the button has been pressed, and the
high-order byte is nonzero, will TST.B leave the Z bit unset (0).

The last instruction of the TryButton loop, BEQ.S (branch equal zero, short),
examines the Z bit to determine whether or not to branch to its subject
matter. The branch to the reference marker TryButton occurs only if the Z
flag is set. (1). Otherwise, no branch occurs, and program execution drops
out of the loop to the instruction _ExitToShell.

As you might expect, the loop repeats over and over until the button
has been pressed and the following take place.

1. _Button returns a nonzero high-order byte of its word result .

.2. The Z bit is unset (0). TST.B has tested the high-order byte and found
it to be nonzero.

3. The branch to TryButton does not occur because the condition for
BEQ.S to branch (Z equals 0) has not been met.

This concludes experiments with Fourplay and its offshoots. If talk of
the stack and the status register has not sent you back to playing harmonica
in the hills of Kentucky, you've got clear sailing ahead. But, come to think of
it, Mr. Moss doesn't know how to play the harmonica and doesn't own a
sailboat, so he might as well start work on his new novel.

148 Part Two

Heck, maybe he'll just expand upon the stories in the upcoming
chapters.

The publishing·c9nne~:tion

The following is the gist of a June 14, 1987 telephone conversa
tion between Mr. l\IJ:OSSJl.lld hi~ 13~itor, Ignatius Kafka (}Iun~13r's
brother), concerning the partially· completed manuscript of Fear
and Loathing with 68000 Assembly Language.

Kafka: Hello1 Peat?
Moss: Yeah. HiJggy~ Did y0\1 get my little package?
Kafka: Yes, I did. I've just been reading it over. There are a

couple of things I'd like to talk about with you.
:Moss: Uh,-huh~ -;-,,~-,-:

Kafka: It's not e:Kactly whatT expected.
Moss: Uh huh.
Kafka: twas wo11~~ring,:. Wijer13 are y~µ expecting tq gg ~~th

this? I was thinking aboutwhatlw;i.d of re<!der you were trying,i:o
reach.

1\'1oss: Geez. You.~~~· ~o~~one wh.oJikes torea.d, I g~~ss.
Maybe someone·wno.\>Vantsto·I0arn somlilthing about.program·
ming.

Kafka:. There ~ee?1s to be two different patJ:is, here: ~n1e
about• these·· people •. <llld their ~ories, and another th~t's filled
with technical information. I'mnot sure it works together. ..

Moss: Me neithei Did you read all the chapters I sent?
Kafka: Yes, I looked them·~ over.
Moss: And you khow about the way boys and girls met in

Estonia around the turn of the century, and about the way the
Great Plains Indians could tell if a couple would be compatible,
and the strange beha.vior of the Los Alamos Sluggers.

Kafka: Don't get me wrong. l enjoyed the stories, but I'm
unsure of how they help the technical programming aspect.
They don't seem to ac.t~l to the lll)derstanding of assembly's. diffl·
cult concepts. ··

Moss: But you read the chapters, right?
Kafka: Yes, I rea.cJ. what you sent.
Moss: So you know something about hexa:decim<tl numbers

and the mailbox memory slots that hold them? And you saw the
little program called Fourplay that pushed numbers into and out

149 Chapter 16

of the slots to make the computer screen a pattern of thin black
lines?

Kafka: Yes. On their own, the programming sections seemed
fine.

Moss: It sounds like you understand a lot. Do you really
think that if every section of every chapter was about 68000
assembly programming, you would have been able to remember
more than you do now?

Kafka: Well, maybe not me. But someone who had pur
chased the book for the purpose of learning assembly language
might.

Moss: C'mon, do you think I'd take the time to write a whole
book just for some geeks who want to learn assembly language?
You already read that it causes brain damage. This way, you've
got a book that lets you understand an aspect of head trauma
without running into a wall.

Kafka: We've got to look at the market. Who's going to buy
this?

Moss: Anyone who wants an offbeat science book. More
people would read about science if it wasn't pretentiously be
queathed by all-knowing weenies. Here you get a chance to see
how a computer works without being bored silly. Heck, I'm sure
I'll be able to get everyone in the Berkeley Macintosh Users
Group to buy a copy. That's four thousand books right there.

Kafka: Are you sure?
Moss: Sure, I'm sure.

"I ... I < > ..
§Cl•"" : A«

» + ~ 0 - * '
f _,, "$ \ ..

Listing
1'7·1

CHAPTER

17
~ f~N@j@tiJJ#$f¥M¥%¥$.¥¥@!@Mg,ee&?§§t@Ntft§i##@@1~

tgf#M@M@J MV~SM+&#fii¥&M#WM'Mi*4¥W®~WN!Mit&jwj)l

Macintosh
Prograllliners Do It
in WindoUTs

Initialize the universe, make way on the stack

The code in WindowMaker, listing 17-1, draws a bona fide Macintosh win
dow, then waits for a button press to end the program. See figure 17-1. The
programs you write will use windows for nearly all onscreen activity. In
building a window, you'll find that the Tuolbox does the hard work, while
your job is to take care of the stack.

151

INCLUDE 'Traps.a'

MAIN
PEA -4 (AS)
InitGraf

-InitFonts
-InitWindows
=InitCursor

SUBQ 114,SP
CLR.L -(SP)
PEA SizeWindow
PEA NameWindow
ST -(SP)
CLR.W -(SP)
MOVE.L 11-1,-(SP)
SF -(SP)
CLR.L -(SP)

NewWindow
-SetPort

;Program WindowMaker

;define trap names

push pointer to Quickdraw globals
initialize Quickdraw
initialize font manager
initialize window manager
initialize cursor to arrow

make room for pointer result
allocate on heap
push pointer to rectangle
push pointer to name
yes, window is visible
use standard document window
put window on top
no, window has no goAway box
NIL window refCon
make the window
make window current port

zMHHFHHMA

Listing
17-1
cont.

152 Part Two

TryButton SUBQ #2,SP
Button

TST.B (SP)+
BEQ.S TryButton

ExitToShell

make room for boolean result
see if button is pressed
set Z flag accordingly
branch if z is set (no press)

;return to" Desktop/Shell

SizeWindow DC.W
NameWindow DC.B

80,60,290,450 ;window bounds (Top,Lft,Bot,Rgt)
'Empty Window' ;window title

END ;code end directive

r

Empty Window

.,

1.. ·,.

Figure 17-1

In the beginning (Before Documentation), Macintosh programmers saw
a strange PEA -4,(AS) at the start of every program that escaped Cupertino.
Few knew why, but the consensus was "better keep it there." Certain faiths
believe that when God created the Earth, the skies, and their inhabitants,
She first pushed the effective address 4 bytes before the AS pointer, then
initialized the Toolbox managers.

In a few chapters, you will know more about the special use of AS. Now,
you just need to know about some of the Tuolbox's _ lnit calls. In short, each
_l nit instruction runs a short program that prepares Quickdraw, Font, Win
dow, and Cursor instructions for your use, unscrambling any prior values.

From previous chapters, you are familiar with the INCLUDE 'Traps.a' direc
tive, which associates your Toolbox instruction names with addresses in the

153 Chapter 17

'Ibolbox code. The name derives from the fact that Macintosh incorporates its
'Ibolbox instructions into 68000 code through a trapping mechanism. The
instructions that use the 'Ibolbox are called trap instructions, or traps. Do you
remember from the last three chapters that you made space on the stack
before the _Button trap for its boolean result? The statement SUBQ #2,SP
extended the stack for _Button by moving the stack pointer down 2 bytes.

Now you will do a similar preparation for _NewWindow, a 'Ibolbox trap
that creates a new window. But the preparation of the stack is much more
extensive when creating a window than it is when testing the mouse button.
The _ NewWindow trap needs subject matter to provide eight characteristics
that determine how the window looks and acts. In addition to characteris
tics, _NewWlndow needs a result space on the stack to store a pointer to the
window it will create.

A pointer is a long word address telling you where some other informa
tion is stored. You might think of a pointer as a reference marker that has no
name.

Look at the third block of code, which begins with SUBQ #4,SP and ends
with _SetPort. The eleven statements in this block create and draw a new
window by:

1. Extending the stack by 4 bytes to make room for the long word
result of _NewWindow (a pointer to the new window) .

.2. Extending the stack with all the subjects (eight characteristics, eight
statements) that determine how the new window looks and acts.

3. Calling the _NewWindow trap, which automatically retrieves (and
removes) the eight subjects from the stack, stores the data
somewhere in memory, returns a long word pointer to the stack in
the space provided by the first statement, and draws the window.
The pointer represents an address where the new window's
characteristics are stored.

4. Calling the _SetPort trap, which automatically retrieves (and removes)
its single subject from the stack (the long word pointer left by
_NewWindow), uses that address to find the window's characteristics,
and sets the environment for all activity to be done inside the
window.

Again, you can see that every 'Ibolbox instruction has individual re
quirements. Some need stack space to return a result (for example, _Button
and _NewWindow); some do not (for example, _SetPort and _ExitToShell). A
complex call such as _NewWindow requires a result space and eight subjects
to be pushed onto the stack to provide characteristics for its window.
Furthermore, the subjects must be of a particular type, and must be pushed
onto the stack in a particular order.

The dictionary in part 3 is invaluable when you want to refresh your

154 Part Two

memory about the requirements for a Tuolbox trap used in this book. A
listing of the required subject matter for all Toolbox traps can be found in
Apple's reference volume Inside Macintosh.

Read the program comments beside each statement (comments always
begin with a semicolon) to find out which window characteristic is being
pushed onto the stack. Briefly, here are the subjects (in correct order) that
_NewWindow requires, and the means by which the subjects are placed on the
stack:

1. A space for the pointer result. Subtract 4 from the stack pointer for
a long word result .

.2. A pointer to where to store the window data. Clear a long word for
a NIL pointer.

a. A rectangle to give the window's size and location. Push the effective
address of a type rect constant.

4. A string to give the window's name. Push the effective address of a
type string constant.

5. A byte to indicate if the window should be drawn or left invisible.
Set the byte to the boolean value true so the window is visible.

6. An integer to indicate the definition ID for the window's type. Clear a
word because ID #0 defines a standard document window.

7. A pointer to indicate the window's plane. Move the value # -1 to
place the new window in front of all other windows.

8. A byte to indicate if the window should have a go-away box. Set the
byte to the boolean value false because a go-away box is not drawn.

9. A long integer to give a reference value for use by the application.
Clear a long word for a zero value.

That may seem like a lot of characteristics to draw a window on the
screen. But consider how much work would be required to address screen
memory directly-drawing and keeping track of window frames, go-away
boxes, size boxes, window planes, and more. The single Toolbox trap _New
Window performs many instructions on the basis of the eight characteristics
you push onto the stack.

It is your responsibility to know the size, type, and sequence of subjects
to push on the stack. Many subject types are predefined by the Toolbox, so
you are asked to know not only assembly language, but also Macintosh
software design. For the little extra work, you get a lot of extra power.

For example, you have to look up the window definition ID constant
that corresponds to one of the six predefined window structures: standard
document window, alert box, plain box, plain box with shadow, document
window without size box, and rounded-corner window. But after you have a
table of those predefined constants in front of you (see _NewWindow in part

•/ ... :

155 Chapter 17

3's dictionary), you can choose a window by selecting a single number (or
using the system constant name).

After all the subjects have been pushed onto the stack, the statement
_NewWindow does the rest of your work. The trap call draws the window,
empties the stack of all subjects, and leaves a result pointer to the new
window record in the space allocated by SUBQ #4,SP. The stack pointer,
which always sits at the tip of the stack drill, points to the window record,
the only remaining contents of the stack.

The statement _SetPort takes a long word subject from the stack (the
window record pointer left by _NewWindow), and sets a grafFort based on
that window record. This grafFort is a standard window environment in
which the graphics system of the Toolbox (Quickdraw) operates. The
_SetPort statement cleans the stack of its subject, leaving the stack empty
(the same as before you started using the stack).

New instructions and pseudos

~:;~:~: --[-d ~ s \,.

WindowMaker uses a handful of new instructions and one new addressing
mode. You could flip to part 3 to find out what each new instruction does.
But, because this is still an early chapter, another few paragraphs on putting
subject matter into and out of memory and registers seems worthwhile.
Here are the new instructions:

CLR.L
PEA
ST
SF
DC.W
DC.B

Take a look at the bottom instructions first. DC, short for define con
stant, is not a primary 68000 instruction, but a directive to the assembler.
DC.W sets aside word-sized memory space for its subject-four integers that
define a rectangle's coordinates. DC.B sets aside byte-sized memory space for
the ten characters of its subject.

SizeWindow references the type rect constant, whose global coordinates
(top, left, bottom, and right) are 80, 60, 290, and 450. NameWindow references
the string constant, which contains the characters of the window's title,
Empty Window, between the single quotation marks. The memory space
occupied by these constants can be accessed through their names,
SizeWindow and NameWindow. These names represent the effective address of
the location of their contents.

156 Part Two

As a result, when the statement PEA SizeWindow is executed, the effective
address of the defined rectangle is pushed onto the stack. Don't be confused
by the fact that SizeWindow is defined at the bottom of the program code, but
is referenced near the top. The assembler is smart enough to seek out
definitions, and install them in memory, before it attempts to execute pri
mary instructions.

Likewise, when you need to put the string title subject onto the stack,
you only need to push the effective address of NameWindow, the constant
defined with the DC. B directive. As you might have guessed by now, PEA
stands for push effective address.

The three remaining undiscussed instructions invoke no surprises.
CLR.L -(SP) adds to the stack a long word whose bits are all 0. CLR
is short for clear. ST -(SP) adds to the stack a byte whose bits are all 1. ST,
short for set true, is one of many set according to condition instructions you
will find in part 3 under Sec.

SF -(SP) adds on the stack a byte whose bits are all 0. SF, short
for set false, is also one of the Sec instructions.

Both CLR and SF add a value whose bits are all O. If you are wondering if
there is more than one way to accomplish the same result, the answer is yes.
But that is not to say that all ways are equally efficient. For example, the SF
instruction takes less time to execute than CLR.B. But SF requires a byte-sized
subject, so CLR.L works better for clearing a long word space.

Speed and space are constraints that wary programmers always re
member when building code. Of course, programming artists tend to get a
bit heady about their ability to keep code short and fast. If Moses had come
down from Mt. Sinai with the Tun Commandments and handed them to a
programming artist, the artist would say: "That's pretty good, but I could do
it with fewer instructions."

You probably had no problems figuring out the addressing mode -(SP)
that the instructions CLR.L, ST, and SF use to push values on the stack. This
mode, called indirect with decrement, first subtracts a unit value from the
stack pointer, then decrements not the stack pointer itself, but the contents
of the memory location addressed by the stack pointer.

The indirection, indicated by the parentheses, means the register's con
tents give the effective location. The minus sign before the parentheses
indicates the decrement takes place before the instruction's execution. And
no doubt you remember that the stack acts like an oilwell drill. Thus, its
stack pointer (drillbit) must be decremented in memory to extend the stack's
size.

The block of code that waits for the button press is identical to the code
in previous chapters. You can guess what would happen if it wasn't in
cluded. The window would be drawn, and immediately thereafter-before
you could recognize the window-you would be returned to the Shell.

157 Chapter 17

For thegirls·t!i)see

JP. the Estoniart to~s of Stakentz, Glosen, and Werbbe, now a
part of the Soviet Umon, acustom was observed on the Sunday
~fterno9ns qf May .~d s.e:Q}{3~~eJ.'· On ~ese afternoons, unmar
ried males satin frolit of IBeir homes. Or, if their homes were in
the outskirts,they S<;lt by th·~c9rri.~rof the nearest thoroughfare
connecting the toWJ).s. Th~y sat on wb.!ltever.•was convenient
~ee stump,box, blB.f11ret, or step-set their hands on their knees,
and PeJ.'cheQ. t~ems,J'}"es like. groundedpwls.

Most of the boys and the few older;.men chose to sit alone. If
~.er~ '\-\'~r.e t'\-\'o br()th~rs ft9m the same• home, more than likely
they wo'Uld sit ·at a µ~tance. Elders might have suggested that the
boys use this time t?delib~}'ate on theirgoodn~ss and productiv
ity. Yet sitting was· aii,act ofindividualis~n, ·and. whatever sugges
p.ons a boy might.hear would be reason enough to seek a
Q.ifferellt traip Of tb_g:µght.

As a·14-year-old/Charles Moss remembered sitting in front
?f. his ~9me the y~~ bef9re . he and . his family emigrated to.
America~ The .year@ght have been 1904. By 1915, most people in
t.hese towns had fle? the ?C>untry rath~r thar1 give their ~oung
men to the csar's army for lifetime c<i>nscription. The s:µnday
afternoon sit in May and September had no more participants.

For fifty.five Ytr~l's, u~ he µied irr1980,. Charles Mossham"
mered auto bodies in his repair shop in. Schenectady; New York.
~:mong J:iis ~.~P.~fi~ to~rs were Rod Serling, Kurt Vonnegut,
(ind R,obert lfof£ ld. Serling and Vonnegut became best
known for their w,Ijting. ~ffeI}.wald~as the engineer at the
(Tener<;iJ Elect).'ic C()~?~pany:.w;he>devised the modern electronic
tube, which would l:>ecome the primary component in the first
t ...•. e l .. evisio.I}..... and .•.. the f .. J#st .. C()i:pputer ·>->: ,'• ;· .. ·,,;:,,,<, ·,

Just before M()ss died, he .could not remember knowing
~yone ll~~e? Se!'~~ or Vonnegut or Hoffenwald. He could not
recognize his own •grandchild, Peat, though a feeling slightly·
more powerful than memory made their togetherness comforta
ble. An .old .~al} "X~9se memory spanaverages the length of a
single sente11ce mal<es conversation challenging. Peat knew bet
ter than. to ask his•fP'anc.ttf!-~er anytb_~ abo.ut thelast q\larter
century. Instead, he asked llis grandfather what he remembered
about Russia.

"I sat on ·the st~J}tby our home. I was young to be sitting."

158 Part Two

"Ym1 were sittingin Russia. Why were you young to be
~i~ing?.!k:reatasked.

· · "For Sunday sitting. For tile girls to see."
> "\i)}t;"Vere sitting in Russiji on Sunday for girls. What. did the

~rls w~t to see?" ·
.. · "Me." His grandfather laughed. 'Twas a boy. This is how girls

,_-__ _, ___ -.--_ -, w

a b~ffery ofreiteration and questions, Peat pried a
lll~id St()~.)' Of~~ CUStOIµ that disappeared along With the inhabi·
~~ntso~~}'le thf~e)llstonian towns. In the waya peacock struts his
·colors, the solitary, meditative sitting displayed a boy's ability to
~~U~9~: 'While .. tlie boys showed themselves. entrenched in

· tl11.ougl1t; the:.girls walked freely, alone or.together, able to tease,
taunt, entice, or otherwise distract the boys without retort. Girls
;lj~Q. rtll~.1 .. qpp9r.tlJnity •to see who was available among the three 1>·· ,. ·····;} .• ' •. ·· ..•... ,'•
towns. By knowing where a boy lived, a girl could arrange with
.~eto~ lmsy~pdy fo~.~ "cohlcidental" mee~ng.
·;•:• "Yq't.jwere~itting~Russ~~, Grandpa. Fo;r a Sunday sit.Then
tile girls came by. Wh~t did tl'tey say?"
•·:·;'· .. '.'.'W~~.the.~~ls ma<:Je funof us. l'ried to make us smile. We
j'.Voitld barely gi~e them.a look, They'd say, 'Hey silly boy, whatcha
~?.fbouts() hard.?.'Andwe'd ignore the.m. Make believe we
;~~Q. ip:i;~~rtant.·i~atters to co.I1sider, But we'd rern,embe~· who
talked tu us. How their voices.sounded. In a couple days, when

r a ~rcut ()r to th~ store, guess who just happened to
e

Charles Moss gave a big smile. In a few moments he forgot
~11¥.~~.~~s .smjljP~· The nervousness came back. While he.had
talked, four other members of the family had stopped what they
:"V~f e d~!~ to ~()Jl1e near. Later, they told Peat it was the lopgest

• th(Jt1ght•Grandpa had. spoken. in years. ,Now Grandpa saw himself
at the t:enter of attention and lie didn.'t know why. He was embar
f~~~~p, p~~a~se lie forgot who .the young man was. With the

<utieasy snliie of one who does not understand, he looked to his
wife for help.

* *
'?4ere. is·~Httle ~hite lie in theprevi011s story. Robert Hoffe11wald
\\fas not•tl'le pri~aryd~signeripf the l'Iloder11 electronic tube. He
was the parking atterul;mt at :the main lot of General Electric's
}';~B\ll:~I1 Stre.~tentr~ce. T1Jeprimary desigper 9fthe II1odern
,electronic;: tube.·migb:t. •J:lave b:e.en Rudolph the Red-Nosed Rein-

159 Chapter 17

deer, which is not to diminish the importance of Hoffenwald's
contribution.

Without his expertise, the real designer might have lost so
much time getting to and from his automobile that the electronic
tube might have ended up as the primary component of the 12·
speed blender.

The problem with white lies is not so much their false infor
mation as their detriment to credibility. After you know that
Hoffenwald parked cars, who is to say where the deception will
end? The machine does not yet exist that can read text and
determine for certain when the pages are fibbing. Now, if there
was a way to get words to sweat and palpitate, perhaps a poly
graph could tell when the pages of a book were lying.

People sometimes lie. Books sometimes lie. The universe is
swirling whims of perception. It shimmies between the ethereal
heights of the mind and the proverbial pinch on the bottom.
Within the pages of this book you are seeing how a young ma
chine works. If you are looking for truth, try the late night
preacher selling carpets on UHF. Because machines, like people
and books, sometimes tell little white lies.

., I ... I < > +

§a .. - ; A«
)> + ! 0 - • &

f ... fl" s \ ~

Listing
18·1

CHAPTER

18

QuickdralN Goes
Inside the WindolN

WindowMaker recapsulated

The code of InsideStuff, listing 18· 1, draws the same window as the program
in the last chapter. But it also draws shapes and text within the window, as
shown in figure 18-1. You will see how screen locations are plotted within a
window using a local (as opposed to a global) coordinate map. The Tuolbox's
graphic traps (Quickdraw) do most of the work, requiring only that you
push the appropriate subject matter onto the stack.

161

INCLUDE 'Traps.a'

MAIN
PEA -4 (AS)
InitGraf

-InitFonts
-InitWindows
:InitCursor

SUBQ ll4,SP
CLR.L -(SP)
PEA WindowSize
PEA WindowName
ST -(SP)
CLR.W -(SP)
MOVE.L f-1,-(SP)
SF - (SP)
CLR.L -(SP)

NewWindow
:setPort

;Program InsideStuff

;define trap names

push pointer to Quickdraw globals
initialize Quickdraw
initialize font manager
initialize window manager
initialize cursor to arrow

make room for pointer result
allocate on heap
push pointer to rectangle
push pointer to name
yes, window is visible
use document window w/o size box
put window on top
no, window has no goAway box
NIL window refCon
make the window
make window current port

Listing
18·1
cont.

162

TryButton

Part Two

PEA CoinSize
FrameRect

;push pointer to rectangle
;draw rectangle frame

MOVE.L f$006E 007A,-(SP) ; specify integer coordinates
MoveTo

PEA CoinLetters
_Drawstring

SUBQ #2,SP
Button

TST.B (SP)+
BEQ.S TryButton

ExitToShell

;place Quickdraw pen at point
;push pointer to string
;draw string at pen location

;make room for boolean result
;see if button is pressed
;set z flag accordingly
;branch if Z is set (no press)

;return to Desktop/Shell

WindowSize DC.W
WindowName DC.B

80,60,290,450
'Inside Coin'

;window bounds (Top,Lft,Bot,Rgt)
;window title

CoinSize DC.W
CoinLetters DC.B

END

80,100,130,290 ;coin bounds (Top,Lft,Bot,Rgt)
'BlackHeads/WhiteTails' ;string in rectangle

;code end directive

Inside Coin

Bl ackHeads/Whi le Tai 1 s

.,

.. . . : : : : ~ :.: :: :: ::

Figure 18·1

All the code of last chapter's WindowMaker is contained in InsideStuff.
Once again, the INCLUDE and _lnit commands start the ball rolling. The list of
_lnit commands grows larger as you take advantage of more of the System
and Toolbox's predefined traps .

163 Chapter 18

When you edit text, manipulate menus, keyboard events, and dialog
boxes, and more, you add their respective _!nit commands to the front of
your code. Inside Stuff uses the same Quickdraw, Font, Window, and Cursor
managers. The new traps are all under the category of Quickdraw traps, the
largest of all managers. The _NewWindow and _SetPort traps create the win
dow and set up the current grafFort. The _NewWindow command received
the most attention in the last chapter because it required so much subject
matter. The _SetPort command simply took the result of _NewWindow (a
pointer to the new window), and set up the environment for all activity in
the window.

Of course, WindowMaker never performed any activity in the window.
Maybe you are wondering why WindowMaker used a _SetPort trap if there
was no activity. Or, more relevantly, what is a grafFort and why do you need
to set one up?

In the last chapter, there was no specific need for a grafFort. However,
the _SetPort trap performed an important task when it cleared the stack.
_SetPort removed from the stack the long word pointer left by _NewWindow.
Alternatively, you could have cleared or subtracted that long word address
from the stack (and in less computing time than it took _SetPort). But the
purpose of creating windows is to do things inside them, so it makes more
sense to use _SetPort, and ready yourself for action.

A grafFort is a Macintosh construct that corresponds to a working
window-like environment. (Pascal calls it a record; assembly uses a clump of
consecutive memory slots.) Every window has a unique grafFort that defines
the graphic activity within the window's boundaries. Whereas the window
manager keeps window structures distinct and operational, the grafFort
information of each window prescribes the graphic activity within.

You do not need to stipulate every characteristic of a grafFort to use
one. The default settings maintain order until you choose to override them.
Your _SetPort call augments only a fraction of the information that a grafFort
holds. Specifically, the _SetPort trap establishes _NewWindow's grafFort (the
pointer to the window was left on the stack by _NewWindow) as the current
port.

The first instance of new code in InsideStuff is a two-statement block
that draws a rectangle. The process should be familiar because creating a
rectangle is a simplified case of creating a window. Unlike windows, which
require numerous subjects including a size dimension, a rectangle requires
only a size dimension. This single subject is pushed onto the stack with the
statement PEA CoinSize.

In the same manner that the four integers of the constant SizeWindow
(the name has been changed to WindowSize in this chapter) define a rectangle
to serve as the window's boundaries, a second rectangle called CoinSize is
defined. Toward the bottom of the program code you will find the assem-

164 Part Two

bier directive that places the reference CoinSize and its four integers in
memory:

CoinSize DC.W 80, 100, 130,290

Rectangles can be defined by four integers, as mapped on a coordinate
plane, representing the rectangle's top, left, bottom, and right sides. Another
way of looking at the same information allows a rectangle to be defined as
two points, the opposing corners of the rectangle. In the case of CoinSize, the
top-left point (80,100) and the bottom-right point (130,290) define the same
rectangle as the four integers.

The rectangle is a primary Macintosh structure (called a type rect
record from Pascal) used as a parameter in many Tuolbox traps. Although
assembly, unlike Pascal, does not require types to be defined, the parameter
subjects of the traps (type rect and others) must be in the proper form (i.e.,
four integers to define a rectangle).

Because parameters must be presented exactly, a terminology using
structured types makes it easier to understand programming in assembly.
For example, when you read that the _FrameRect trap requires a type rect
parameter, a direct correlation exists between the shape drawing routine
and the shape subject. The correlation becomes fuzzier if you read that
_FrameRect requires four integer subjects.

In the dictionary in part 3, you will find that the Tuolbox and Operating
System traps are presented in a Pascal (or structured) format. The parenthe
sized parameters that follow each trap name represent, in order, the subject
matter that must be pushed onto the stack (or put into registers if so indi
cated).

Before you go to the next section, you might want to consider how the
_ FrameRect trap draws the outline of a rectangle in the current grafport of
the newly established window.

Look up _FrameRect in the dictionary in chapter 25, and you will see
that _FrameRect requires a single type rect parameter. A type rect parameter
can be put onto the stack by the PEA instruction (push effective address),
whose subject matter defines a rectangle.

The _FrameRect trap takes its parameter off the stack Oeaving the stack
in the same condition as before the PEA CoinSize command), and draws the
rectangle to the specified coordinates.

All graphic activity takes place in the current grafport. The _SetPort
trap establishes the new window's grafport (the content region of the new
window) as the current grafport. Therefore, the rectangle is drawn onto the
coordinate map of the window's grafPort (and not the global grafPort or
Macintosh screen).

The upper-left corner of the current grafport is set to the origin coordi
nates (0,0). You can see that the local coordinates of the current grafPort plot

~ I ... I < > +

165 Chapter 18

the rectangle in a different location than if the origin (0,0) was the upper-left
corner of the Macintosh screen. (Before the _SetPort trap, the upper-left
corner of the screen was the origin, and the window itself was mapped onto
this global grafFort.)

The concept of a unique coordinate map for each grafFort is crucial to
the understanding of graphics on the Macintosh. Not only does the origin of
each coordinate map set the spatial alignment of all the port's contents, but
the grafFort record maintains information on fill patterns, font displays,
draw-over modes, visibility commands, and more, including as yet unimple
mented color displays.

Move Bach to the strings, Guido

~~;~:~: --f-.f A$\;IO

The next block of code, consisting of four statements, draws text within the
framed rectangle. The first two statements move the Quickdraw pen to the
position of the first character. The third and fourth statements insert a
string at the current position of the pen. Both pairs of statements use a
68000 instruction to prepare the stack with subject parameters, then call
Toolbox traps to finish the job. As always, the programming task involves
determining the applicable Toolbox call and putting the proper subject
parameters on the stack.

In this book, you will use Toolbox and Operating System trap calls
constantly for the following reasons:

• The traps execute code that is in ROM (read-only memory) while your
program code resides in RAM (random-access memory). Executing code
in ROM is faster than executing code in RAM.

• You save RAM space by not duplicating code already in ROM.

• Best of all, the code is already written.

Later in your programming, you may sometimes choose to circumvent
Toolbox and Operating System trap calls. (You have seen already a crude
way of avoiding the Toolbox when you wrote directly to screen memory in
Fourplay.) But the efficient programmer will want to know, if only in an
overview, everything that ROM offers.

The _MoveTo trap moves the Quickdraw pen to a specified position on
the coordinate plane of the current grafFort. The Quickdraw pen is another
Macintosh construct that works as a programming tool to put inkdots on the
screen. The coordinate plane of the current grafFort has not changed since
the _SetPort command, so it's origin remains the upper-left corner of the
window.

The subject parameters of _Move To are two integers that specify the

166 Part Two

coordinates of where to move the Quickdraw pen. The MOVE.L instruction,
in one fell swoop, can move both of these integers onto the stack. The tricky
part is figuring out how the immediate hex number #$006E007 A translates
to a point on the coordinate map.

Here are some observations. #$006E007A apparently represents two
integers because _MoveTo requires two integer parameters, and this long
word number is the only subject being pushed onto the stack. If you split the
8 digits in the middle, you get two 4-digit hex numbers, #$006E and #$007A
(high-order and low-order words).

The decimal equivalent of #$006E is 110 (six 16s plus fourteen ls). The
decimal equivalent of #$007A is 122 (seven 16s plus ten ls). The coordinate
point must therefore be (110,122) or (122,110). But to know which is correct,
you need to know how MOVE.L writes to the stack and how _MoveTo reads
from the stack.

Like the oilwell drill, subjects are pushed down onto the stack, then
pulled back up so that the last subject in is the first one out. When
#$006E007A is pushed onto the stack, starting from the low-order right
side, the high-order word (#$006E) is the first word pulled back (read) from
the stack.

The dictionary in chapter 25 shows the trap's parameter list as:

MoveTo(h, v: INTEGER);

so you know that the first integer read is the horizontal coordinate, and the
second is the vertical. Thus, #$006E (110) is the horizontal coordinate, and
the _MoveTo trap moves the Quickdraw pen to the coordinate point (110,122).

You can try inserting a different long word subject into the MOVE.L
instruction, and see where the text ends up. Trial and error is part of every
programmer's repertoire. But when you get sick of repeatedly compiling
and linking, you'll see that it pays to figure out beforehand what the heck
you are doing.

Now that you have the Quickdraw pen placed at coordinate point
(110,122), you can use the _Drawstring trap to write text on the screen.
Procedure Drawstring (stringName) requires only that its single parameter be
pushed onto the stack. In InsideStuff, the subject for the _Drawstring trap is
the reference name Coinletters.

At the bottom of the program code, you can see that Coinletters is
defined as a constant by

Coinletters DC.B 'BlackHeads/WhiteTails'

You can look up the DC directive in the dictionary to learn more about its
format. But like WindowName, the correct number of characters (correspond-

167 Chapter 18

ing to the number of bytes) is defined implicitly simply by giving the string,
enclosed in single quotation marks, as the second subject.

The effective address of the reference name Coinletters is pushed onto
the stack by the statement

PEA Coin Letters

The _Drawstring trap uses this effective address to find the contents of its
string parameter, draw the string on the screen, and empty the stack.

String parameters, like all parameters, have bounds within which they
can be used. The dictionary will help you avoid using parameters outside
acceptable limits. For instance, the _Drawstring parameter is defined by the
Macintosh construct Str255, which is a string type from Oto 255 characters.
Using a string outside that range would cause problems.

That's about it for this section. You have drawn an object and text inside
a window-representing a large part of a computer's communication ability.
Mr. Moss has plans to write an interactive novel on the Macintosh. Although
hardly an original idea, no one yet has done it well. Imagine if your mouse
could sense the sweat on your palm as you are reading a hot and heavy
passage from a Jessica Lange/Sam Shepard diary, and went deeper and
deeper into detail based on your excitement. You're right, it's a crummy idea,
but the image is nice .

. there:isa ~ay f(l~ a manifutct a woman tolmow early upbn their

~~ting .~ tll~~)~fe df}~~~e~ to be co)Jlpatt"ble. The J!l~~hod I~
:~ple •cµi:d telli;t~le····Tlif:f~·~an.goes· .to·~is11oula, ··Mont'~a; the
wmnan goesto.$anta Fe;:New Mexico. The man walkstl:iehigh
\1/'~Y shoulder t~g 90 east, then 25 sou~. The woman',·itl Santa
·F~1walks northct>n 25. ~ the couple meet in front of Long's
~gstore in Caspar, W}fpming, without either having/to wait
~()re tll~fift... ~F!~~K()rtf,.eother,~ompatibility is~sure~.

••'\ ·The··Great H .•. • ·s Iriaran!! made this disoovery.long.~~xote the
Long's drugstore was built in 1956 beside the meeting site. The .
first manta recorcJtlleJ?henomellon was Thoma,s Graff Kafka, a,.
·tJ,-aveling. tonic · sa1(3smanfa exile from ··Denver f()r·. providing the
sheriff's Qa.ughter witll a.cacti derivative that caused her to recite

. Paf}try.t~7~bar9~fs~13~9~e.for·.s1;ic.houf1'·9n ~Pt\ugu~~i~gllt\~··
lS34, Kafka set camp a few hundred yards from a small settlij;~
ment of fur trappers. and traders on the present-day site of

168 Part Two

aspar.,.l!l'!Jay to sl~ep benea"tP: a starr~ sky, bis ~~-whe.~~
:t · aii~~f;J~w-Ieggeti\::ltlule ~J:tred to::a<:big ·rocJS~~tifok. mf,-~ .. :·

• prairie dti-t. · ·· . . · ·.·.,"
Shortly before sunrise, Kafka awoke· to thundering whoops,

~~:fl1Stm~~!Y,1 he boJte~ from .. ~~··~edc~oth, sweep'·. . ~·. per11~~.
•:i~l~Qmc fr(!)!'J/t\beneath;·~ewool~ topcoat that serve ·.· bis pfil~f
~~His eyes ~trainedicl focus in the predawn light.;· The act';h.e
;: witnessecfwould haye been a ~ange sight to a sober person, aµd

i;t' : erly: ''11 led> · · .. A ·.. • • · "Yi.th flo ; :1:>lack · ~ ·
rtY\ .•.. ~; tii:L ,. towa. . in a 'aelibe • .. ·: pace .··· 1 '• •

:even more transfiXing by the figure's howls and gtrtteral moani.
· • An ~stute man, pne geared for self-preservation; would h~

:d· .. I<: · " ~aite~;~Q~l N.s · :.PY eye~;.,c;iould s ~se o,!(,.
·dian:' beUl'>W'S'~ and err . lntensifieY:t .. Th~ .. . e ke~t

···ti>ace t~w.ards Kafk~. At close range, Kafka saw that the ·m~~
.. · ;pmed 1:>eyf>nd him i:md his t~ered P()Ssessiorn1,

1 ~ co~ed to.: ·1.:pace •. ~~ere : 1 ~ly .• :
.. < 'ides ·. 1 en th~ill befo ... e' spellb~Ond I< 'th0\11

.

] 00k southward· to ~ what ~t be. arousing the frenzy. ·
~· ... ~i: . S~~ · the ~~~ lqng ~ hair. Sh~ W;ore a ~~Jcet ...

:.·:·:~~~t;jagg~ Ji.o{c~!'l'··~er.. .:wereM~·She.~~·.st ·
· • '.:silently~ stepped;back . rrealizinghe was in.their p

: >collision. · ·

169 Chapter 18

less than ideally when a 77-year-old man, three miles short of
Caspar, was bitten by a diamondback coiled on the heat-retentive
asphalt of Highway 25. The man continued on, meeting his mate
punctually at the site of Kafka's tonic cart, but expired moments
after the ceremonial celebration, apparently from the bite.

~I ... I < > +
s a .. °"; 6. «
» + ! 0 - "' &
f...., t ~ $ \ ~

Listing
19·1

CHAPTER

19

The Mouse Makes
Cornered Co in
Colllplete

Trapped again

All the code of last chapter's InsideStuff is contained in CorneredCoin, listing
19-1. CorneredCoin's additional code reads the position of the mouse's cur
sor, and initiates a response if the cursor is detected within the framed
rectangle. As in all the previous programs, a click of the button ends the
program and returns you to the Shell. The screen display of CorneredCoin
is shown in figure 19-1.

171

INCLUDE 'Traps.a'

MAIN
PEA -4(A5)
InitGraf

-InitFonts
-InitWindows
:rnitCursor

SUBQ #4,SP
CLR.L -(SP)
PEA WindowSize
PEA WindowName
ST -(SP)
CLR.W -(SP)
MOVE.L #-1,-(SP)
SF -(SP)
CLR.L -(SP)

NewWindow
-SetPort

;Program CorneredCoin

;define trap names

push pointer to Quickdraw globals
initialize Quickdraw
initialize font manager
initialize window manager
initialize cursor to arrow

make room for pointer result
allocate on heap
push pointer to rectangle
push pointer to name
yes, window is visible
use document window
put window on top
no, window has no goAway box
NIL window refCon
make the window
make window current port

Listing
19·1
cont.

172

FlipCoin

TryButton

Part Two

PEA CoinSize
FrameRect

;push pointer to rectangle
;draw rectangle frame

MOVE.L #$006E007A,-(SP) ;specify integer coordinates
Move To

PEA CoinLetters
_Drawstring

SystemTask
SUBQ #4,SP
MOVE.L SP,-(SP)

GetMouse
MOVE.L (SP)+,D3

SUBQ #2,SP
MOVE.L D3,-(SP)
PEA CoinSize

PtinRect

TST.B
BEQ.S

(SP)+
'!!ryButton

PEA CoinSize
InverRect

SUBQ #2,SP
Button

TST.B (SP)+
BEQ.S FlipCoin

ExitToShell

;place Quickdraw pen at point
;push pointer to string
;draw string at pen location

;give screen time to resynch
;make room for point result
;push pointer to result space
;get cursor coordinate point
;store point in register

;make room for boolean result
;retrieve cursor point
;push pointer to rectangle
;see if point is in rectangle

;set z flag accordingly
;branch if Z is set (not in rect)

;push pointer to rectangle
;invert rectangle

;make room for boolean result
;see if button is pressed
;set z flag accordingly
;branch if z is set (no press)

;return to Desktop

WindowSize DC.W
WindowName DC.B

80,60,290,450 ;window bounds (Top,Lft,Bot,Rgt)
'Cornered Coin' ;window title

CoinSize DC.W
CoinLetters DC.B

END

80,100,130,290 ;rectangle bounds
'BlackHeads/WhiteTails' ;string in rectangle

;code end directive

You should be familiar enough with the use of trap calls to figure out
how the new code in this chapter works. The program's new capabilities are
performed by four trap calls and a handful of 68000 instructions that prepare
the stack with parameters. You can also see an example of programming
technique in an extra statement that gives you increased program speed.

The new code begins immediately after you have drawn the rectangle
with the words BlackHeads/WhiteTails inside. The _SystemTask command is
used here as a system delay device that synchronizes screen drawing with
code execution. Without this command, the coin inversion would not take
place in step with the Macintosh's ability to refresh the screen. (Assembly is
very fast.)

The Pascal and C programs in part 1 use the _SystemTask trap call for the
same purpose. _SystemTask is also used to detect and handle desk accessory
activity before reading an event, though desk accessories are not used in this
small application. Because your objective is to determine if the mouse's cursor
is pointing within the rectangle, your second trap gets the current coordinate
position of the mouse. Later, you will want to compare the mouse's coordi-

173 Chapter 19

,. .,

E:l:ic1 Head'.' '\·.'h1teTa1I:

... ""

Figure 19-1

nates with the set of points contained in the rectangle, and respond to the
boolean result (in rectangle or not in rectangle) of your inquiry.

The _GetMouse trap (in Pascal, the procedure is GetMouse(VAR Mouseloc:
Point);) reads the coordinate position of the mouse . Like the _Move To trap , the
parameter of _GetMouse specifies a point. But there is an important and
obvious difference . _GetMouse requires that you prepare the stack to receive
a point type, whereas _MoveTo requires that you prepare the stack by
providing a point.

Another difference is that _GetMouse uses a point type (a Macintosh
structure) to represent a point, and _Move To uses two integers to represent a
point. Of course, a point type is composed of two integers. So in assembly
(which doesn't distinguish type structures like Pascal) the treatment of the
data ought to be the same . But because the parameter list of _GetMouse
specifies a VAR parameter, you must prepare the stack to receive the struc
tured type through a pointer. (More on pointers to follow.)

In Pascal, Tuolbox routines are documented in the format of proce
dures, functions , and their parameters . In assembly, the same routines are
accessed through trap calls, and the parameters are usually taken from the
stack. The documentation, however, remains in the Pascal format, and cer
tain Pascal conventions, such as receiving variable parameters through
pointers, are followed.

174 Part Two

In case you are not familiar with Pascal, the parameter name Mouseloc
represents a variable parameter (thus the VAR prefix). A variable parameter
returns a value from the trap call. When using assembly, where will the
value be returned? Tu the stack.

Perhaps you have noticed the similarity between the _GetMouse trap and
the _Button trap. Both return a result to the stack in a space you have
reserved. _Button requires that 2 bytes of stack space be reserved to hold the
boolean result (yes the button has been pressed, or no it has not). The
statement preceding _Button:

SUBQ #2,SP

performs this task.
_GetMouse requires that 4 bytes of stack space be reserved to hold the

point type result (the two integers of a coordinate point that maps the
cursor's current position). The statement preceding _GetMouse (and a MOVE
instruction):

SUBQ #4,SP

performs this task.
Now that you have made stack space for _GetMouse by subtracting #4

from the stack pointer, you probably figure you can call the trap and find
the result sitting on the stack, just as you did with _Button. Tuugh luck
variable parameters are not so simple.

Variable parameters are referred to by pointers. A pointer is a long
word address slot that directs you to another slot (where something of
interest might be kept). You won't find a variable parameter directly, but you
will find a pointer that tells you where the variable parameter is located.

You have used pointers many times to refer to Macintosh structures. All
of the PEA instructions, which you used to push the effective address of a
rectangle or a string constant onto the stack before a Tuolbox call, used
pointers. The effective address worked as a pointer to a structure. You
pushed onto the stack a pointer to the rectangle or string constant.

With _GetMouse, you manipulate a pointer more explicitly. You not only
make room on the stack for the coordinate point result, you also put on the
stack a pointer that directs you to the result.

Crazy as it sounds, you are going to put on the stack a pointer that
directs you to the immediately preceding contents of the stack. Even though
you already know the location of the coordinate point result of _GetMouse,
the trap's variable parameter requires that you address the result through a
pointer. So after you make space on the stack for the long word result, you
must also put a pointer (another long word) to the result onto the stack.
Then, you are ready to call _GetMouse.

~ I ... I < > +

175 Chapter 19

The logic behind pointers might not be clear at this time, but their value
will become increasingly apparent. They offer fluidity to the inflexible
mechanics of memory slots. Pointers work somewhat like a telephone book,
providing a source of access to information of varied size and location. The
statement:

MOVE.L SP,-(SP)

moves a pointer onto the stack. The address of the pointer directs the
variable returned by _GetMouse to the result slot you reserved. Make sure
you understand the addressing modes involved before you go to the next
section.

SP is the stack pointer register, a long word slot that contains the
address of the tip (think oilwell) of the stack. Following the statement SUBQ
#4,SP, the tip of the stack points to (contains the effective address of) the
result slot.

MOVE.L SP,-(SP) moves onto the stack the current value of the
stack pointer. As soon as this value is placed onto the stack, it is no longer
current (because the tip moves down to accommodate the long word). But
the effective address of the reserved result slot remains on the stack.

Remember that the subject SP, without parentheses, represents a long
word address register. The subject -(SP) represents whatever contents the SP
register happens to be pointing to after the register is decremented.

Following execution of MOVE.L SP,-(SP), the tip of the stack (the current
SP) points to the old value of the stack (the effective address of the result
slot). This is exactly what _GetMouse requires: a pointer to where the coordi
nate point of the cursor can be returned.

Following execution of _GetMouse, the stack contains only the coordi
nate point of the cursor. The pointer has served its purpose, and has been
cleared.

The statement MOVE.L (SP)+ ,03 moves the coordinate point result into
data register D3, and clears the stack of the long word. (SP)+ indicates
indirect postincrement addressing. (You used the same addressing mode to
clear the stack of the _Button result.) After the long word contents of the
stack are transferred, the stack pointer is incremented by the instruction
size, which effectively pops off the stack's long word contents. The stack is
once again empty.

Point in rectangle: A boolean delight

!:~~:~: ------------~--~ f ..., • ~ s \ i&

Now that you have the coordinates of the cursor stored in D3, you are ready
to check if the coordinates are contained within the rectangle called CoinSize.

176 Part Two

If the integers of the coordinate point are within the range of the respective
horizontal and vertical coordinates of the rectangle's opposing corners, then
the point lies within the rectangle. A series of compare and branch state
ments could perform this check.

The Tuolbox, however, has a trap that does this work for you. You
simply provide the point and the rectangle as subject parameters, and the
trap returns a boolean result of true if the point is within the rectangle, or
false if it is not. The three statements preceding _PtlnRect prepare the stack
accordingly.

From your experience using other trap calls, you should recognize how
the stack is being prepared. SUBQ #2,SP reserves space on the stack for the
boolean result Oike you did for _Button). MOVE.L D3,-(SP) moves the coordi
nate point _GetMouse retrieved onto the stack. PEA CoinSize pushes the effec
tive address of the rectangle onto the stack Oike you did for _FrameRect).

The trap call _PtlnRect empties the stack of the point and rectangle
parameters, and leaves the boolean result in the 2-byte space you reserved.
The parameter list:

_ PtlnRect(pointName, rectName) : boolean

shows the subjects required to produce the boolean result.
The boolean result is interpreted in the same way as the result of the

_Button test. The statement TST.B (SP)+ tests the high-order byte (the signifi
cant byte for all boolean results), and sets the Z (zero) status flag accord
ingly.

Get ready. Understanding Z flags can be confusing. Study the following.
If the Z flag is set to 1, then a zero result has been produced, indicating that
the boolean result is false (the point is not within the rectangle). If the Z flag
is cleared to 0, then a nonzero result has been produced, indicating that the
boolean result is true (the point is within the rectangle).

The statement BEQ.S TryButton performs a conditional branch on the
basis of how the Z flag is set. If Z is set (zero result, point not in rectangle),
then a branch is executed and program flow continues at the statement
following the reference TryButton. Otherwise, Z is clear (nonzero result, point
in rectangle), no branch is executed, and program flow continues at the next
statement, which prepares the stack for a trap that inverts the rectangle
CoinSize.

Again, you should not be confused by the nefarious Z flag. The Z flag is
set to 1 when there is a zero result. The Z flag is cleared to 0 when there is a
nonzero result. The Z flag provides a true (1) response when its name (zero)
is true.

You should be able to follow the two courses of action that depend on
the result of _PtlnRect. When the cursor point is detected within the rectan-

177 Chapter 19

gle, the two statements PEA CoinSize and _lnverRect are performed. _lnverRect
works identically to _FrameRect, except the rectangle parameter is inverted
rather than framed. When the cursor point is detected outside the rectan
gle, the branch to TryButton jumps over the inverting code, and the button test
to end the program commences.

Notice that when the _Button test shows that the button has not been
pressed, the branch directs program flow back up to statements in the
_GetMouse block. The branch from BEQ.S FlipCoin to the reference name
FlipCoin allows the intervening code to be executed repeatedly, and very fast.
Thus, the current location of the cursor is constantly updated. Likewise, if
the cursor is within the rectangle, the rectangle inverts many times each
second.

This chapter is the last you will see of the rectangular coin flip. You no
longer need to scrounge in your pants pockets for a nickel to make life's
important decisions. Of course, if you enjoy reaching into your pants pock·
ets, don't let technology put a crimp in your fun.

>:o;:>:l};;-or-; ;--,,;";<('.;," _ , , ___ ~- -~ ___ _ --- ___ _ _,

Los Alamot;t;New ~i~;;'t~riri#4s.
~··•·•IJ:l<ln.•.thiJ). .. ·<l~ ~ Stif,!Kanned his ray.!lt the'~Pl.l~·

"l'm•gonna light you/'· he vowed. <!I'm gonna, gonna'.
He bar~ed in~g-uc~onS. to his associate, a de<tf

lips and pa1Jl1s• '.'D~;the]ights, Eio. We're gonna nee
we can get." The thin man cackled and Eio turned
hateq .the s~~}}t. of ·}}ifl emJ>loyer's cackle .. ··.. . •

'Iboey · Kafkatqok an .interest in science at an ··•
seven, he di~?over79 that a. salve . of paste, pencil sp.~tMUlgs,
chalk1applieqto tli~ ri'\l.ofhis. teacher's chair; cause·.
to itch the remainde.r of the day. Two years later;·
to. a f1pecial, schp~! .~~7.re teachers were preocc;l.l
violent. 'IboeyWafl:lefttO•tnSO~devic;c;:s. ·.er·

~t.·.age :t~n ·llc;:~as 1¥"en ~rmissi()n to go
librll~Y ear!~ aft7~q<;>l}~i~/Well.•f>ehayecl, . h~'.·<J..
among the dark, ~usty stacks. An arrangement

Misfl l:ltrincYi ~e V~f~~iil?~to .ch7fk on ~JP ati!Jtt3
she found }liID ·sit~crosstegged:'tln theJioor, ·aicpil ·

books beside ~m. > . . • .• . .·.··.. •. . ·. . .•. . .··

... Montll.s.;p(,lsse.~~·B7f9r7=Miss~uincy;P.()tice~~
ing himself farther'along tile stacks, edging his wa
De~y classjficatio~S· Toq~,Y was fqurt.~ and.~.µ

178 Part Two

science a.nd technology, when an alert library jfage, pondering
the boy's black tongue, discovered their bookworm was eating

. select P<lges from every book.
The library page chose not to squeal. Hardly anyone read

nonfiction. Only a few pages were missing from each boo~and no
one hadcomplained. The page, aJijgh school student, tooklfup~:q. ,,,
himselfto approach young Kakfa •and inform him that it wpuld.be '
best if he started playing baseball instead of coming to the library.
Tuoey Kafka shrugged a.Ild took the older boy's advice.

"'!'his shall be among our finer moments,• Ka:fka lectlired to
dead air while fidgetingwith dials, meters, gauges, and switches.
Eio had his bac;k turned. "Yes, my faithful and <t~bilitatedly shy
associate, whatwe are about to· do will reacl:l· :far. beyond our
own clown alley lives. Tuday we are going to give of ourselves.•

Kafka toyed with the flight control panel scavenged from a
DeHavilland that had wrecked on a Nacimiento lllOUrttafri .slope.
His other prizes littered the room: lacquered pine cones, a card
board. solder spool, a cerallliC f!J.lf:ld with smoky oil. PerC:l:led on,
tenpenrties, fruit crates, and s~dered·haseboard ·were.~~~asif·,•:i'
pipe fitting, a shadeless lamp, a cat's-eye marble, two baseball ··
gloves,a buckled coffee can, and a brown bag stuffed with goat
fur. Ei(), a broad-shouldered, baked-faced, full-bloQded lsleta, ab·
sorbed the lore and grit of a white loo;n come to play Edison
among .the pueblos.

"Eio ... Eiol ... Eeeeio!" Eiljl could not hear him,cmpd not
hear anything. Finally, Kafka picked up the cat's eye, and hurled it
across the drawn folding bed. "Confound it, man. What do you
think I am paying you •for?"

Eio turned, gave his employer a dirty look. He stayed put on
the bed. For four months, for lack of other accollllllodations, he
and Kafka had slept side by side. Kafka h<tdQnce~~acked newspa
pers to demarcate the laboratory from the living quarters, but
the papers had toppled and spread, yellow and brittle across the
floor .. Qne roomwith one bed in an abandonedstprefront-they
lived in the remnant of a candle factory gutted of all but a waxy
residue on ceiling, walls, and floor. Kafka's sole step at renovation
was to tack gunnysacks over thi::i single, streetside windq~. The
dimness alone would have hidden Eio's annoyance, though the
light hardly mattered. Thoey Kafka had bad eyes.

"Our work is coming to an. end, E.io. Can't pre~~ wha~
might happen. Could set off a chain reaction. Blow us cnit. Just
know we have to light her. Have to put everything into it. Give her

179 Chapter 19

our best. Light her hard and clean and honest. What do you say,
man? Let's light this girl now. Let's light her to the moon."

Eio stared stone-still. He lived with a madman. Off-season for
a carny mitt reader, Eio had been hungry when he answered the
classified: NEEDED-SHARP EYES AND A STRONG ARM. He
remembered how Kafka greeted him at the door, ushering him
in, taking his explanatory card, squinting at the too small print,
then chewing the card.

"When can you start?" Kafka had asked.
Hungry and excited, Eio accidently grunted.
"Excellent," said Kafka. "Hope you're right-handed." Eio nod

ded. Kafka went for the gloves. The two men went into the street
and played catch.

- I ON I < :> +
s a. - · 4"
» + ! 0 - • '
f-.. " $ \ ¢

Listing
20·1

CHAPTER

20

Molllentous Events

Remembering the Great Equate

Program GetRect, listing 20-1, introduces a formal event loop, an element of
nearly all Macintosh programs. In previous programs you used Tuolbox
commands to read the mouse button and coordinates. Here you use
_GetNextEvent, a general-purpose input reading command whose capabilities
include reading mouse events. Also, a new way of creating rectangles is
explained. The screen produced by running the GetRect program is shown
in figure 20-1.

what
mouseDown
patXor

181

INCLUDE 'Traps.a'

EQU
EQU
EQU

MAIN

0
1
10

PEA -4 (AS)
InitGraf

-InitFonts
-InitWindows
=InitCursor

SUBQ
CLR.L
PEA
PEA
ST
CLR.W
MOVE.L

#4,SP
-(SP)
WindowSize
WindowName
-(SP)
-(SP)
#-1,-(SP)

;Program GetRect

;define trap names

event off set
system constant
Quickdraw constant

push pointer to Quickdraw globals
initialize Quickdraw
initialize font manager
initialize window manager
initialize cursor to arrow

make room for pointer result
allocate on heap
push pointer to rectangle
push pointer to name
yes, window is visible
use document window
put window on top

Listing
20·1
cont.

182 Part Two

SF -(SP)
CLR.L -(SP)

NewWindow
=SetPort

MOVE.W #patxor,-(SP)
PenMode

no, window has no goAway box
NIL window refCon
make the window
make window current port

;push parameter constant
;give pen inverting ink

DoDraw

TryEvent

WindowSize
WindowName

MousePt
NewRect
EventRecord

PEA MousePt(A5)
GetMouse

;push pointer to storage
;get cursor coordinate point

LEA NewRect(A5),A0 ;put pointer to rect space in AO
MOVE.L AO,-(SP) ;push pointer (AO's contents)
CLR.L (AO)+ ;specify top-left point at pointer
MOVE.L MousePt(AS), (AO) ;bot-right at pointer+4
_FrameRect ;draw rectangle

SystemTask
SUBQ #2,SP
MOVE.W #$FFFF,-(SP)
PEA EventRecord(A5)

GetNextEvent
TST.B (SP)+
BEQ.S TryEvent

;give system time, check desk acc.
;make room for boolean result
;event mask for all events
;push space for record result
;ask for event
;see if any event occurred
;if z is set (no event), do again

MOVE.W
SUBQ
BNE.S

EventRecord+what(AS),DO ;get event number into DO
#mouseDown,DO ;check mouse, toggle z flag
DoDraw ;if z is clear (no press), repeat

_Exit ToShell

DC.W 80,60,290,450
DC.B 'Get Rect'

DS.L l
DS.L 2
DS.B 16

END

;return to Desktop/Shell

;window bounds (Top,Lft,B,R)
;window title

;space for point variable
;space for rectangle variable
;next event record

;code end directive

You will find the following new terms in GetRect:

EQU An assembler directive that equates a label with a
value. This use of labels makes programs easier to
read.

_PenMode A Tholbox command requiring a parameter constant
that gives the Quickdraw pen its draw-over quality.

_GetNextEvent A Tuolbox command that has many event recording
abilities, but is used here just to read if the mouse
button has been pressed.

DS An assembler directive, short for define storage, that
provides a specific amount of space for the program
mer to create variables.

The three equate definitions provide constant values that are used by
the Tuolbox commands _GetNextEvent and _PenMode. The names of these
constants (also called equates) are used instead of number values.

183 Chapter ZO

.,

1.. · . . . · ~

Figure 20-1

For example, the statement

MOVE.W #patXor,-(SP)

could be written as

MOVE.W #10,-(SP)

The use of the equate patXor, however, describes to the programmer which
Quickdraw pen draw-over mode the number 10 represents. The constant
value 10 is predefined to represent a pen ink that inverts the dot over which
the pen draws .

You might remember from the Fourplay programs that the INCLUDE
'SysEqu .a' directive defined the system equate ScrnBase. A similar directive
statement, INCLUDE 'Quick.a' could be used here in place of the EQU definition
that equates patXor with the value 10.

The files 'Quick.a', 'SysEqu .a', and 'Traps.a' are simply long lists of EQU
definitions. The assembler uses these lists to substitute values for whichever
constants it finds in the program code.

Ordinarily, you will want to use INCLUDE directives to provide your
definitions, assuming that the constant you want is actually part of the file.

0 I ... I < > +

184 Part Two

(For complete lists, print out the files or consult Inside Macintosh.) The EQU
definitions are used here to allow you to see the values such constants
represent.

The three blocks of code following the window definition set the pen
mode ink, read the mouse position, then draw a rectangle whose top
left corner is point (0,0) of the window and whose bottom-right corner is
the mouse's coordinates. Notice that the _PenMode block, which needs to
be executed only once, is placed outside the DoDraw drawing loop. Effi
cient programs are designed so that loops do not execute code unneces
sarily.

The method by which a pointer is given to the _ FrameRect command
differs from the method you used in previous programs. Before, you used
the PEA instruction to push the effective address of a constant that was
defined at the bottom of the program code with a DC (define constant)
directive. A new method is needed because the GetRect program allows the
program user, rather than the programmer, to determine the coordinates of
the rectangle to be drawn.

By reading the four statements before the _ FrameRect command, you
can see how the pointer is established so that _FrameRect can find its coordi
nate parameters. 'Remember, the parentheses around a register name indi
cate indirect addressing.

The NewRect variable's storage space, which is established by the DS
directive at the bottom of the program code, has its effective address loaded
into address register AO. This effective address serves as a pointer.

The pointer in AO is pushed onto the stack by the MOVE. L instruction.
The CLR.L instruction puts zero values into the long word space that

the pointer is pointing at. This fills half of NewRect's storage space with the
top-left coordinate point. The plus sign increments the effective address by a
long word.

The second MOVE.L instruction puts the mouse coordinate values into
the long word space adjacent to the zero values. This fills the second half of
NewRect's storage space with the bottom-left coordinate point.

The _FrameRect command uses the pointer in AO to find the NewRect
storage space and draw the rectangle with the given parameters.

Waiting for the big event

~ ~~~~~~= --! ' A s \ ~

The block of code following the label TryEvent forms the core of the event
loop. In previous programs you used the _Button command to determine
whether or not to exit the program. Here you use the _GetNextEvent com
mand to perform the same task.

185 Chapter 20

The _GetNextEvent command, though more complex to implement than
the _Button command, offers a more general method of reading user input.
Upcoming programs take advantage of some of its additional capabilities. But
for simplicity, only the button reading task is demonstrated in the GetRect
program.

The importance of the event loop derives from the idea that a running
computer program loops around and around, performing a set action until a
specific event is initiated. This event might be a user action such as a mouse
event, a keyboard event, or a disk insertion event. Other possible events
include those initiated by the Macintosh system that relate to window man
agement, device drivers, and networks. A null event occurs when there are
no other events to report.

Like most Tuolbox commands, the key to implementing _GetNextEvent is
pushing the appropriate parameters on the stack. Included in these parame
ters are a boolean result space, an event mask to filter out unwanted events,
and a pointer to a variable space (created with a OS directive like NewRect)
where an information record about an event can be stored. In Pascal,
_GetNextEvent is defined as

FUNCTION GetNextEvent (eventMask: INTEGER; VAR theEvent: EventRecord)
BOOLEAN;

After the command is called, a boolean result is popped off the stack. A
value of true (1) indicates an event has occurred; a value of false (0) indicates
a null event. For all non-null events, further information about the event is
obtained by evaluating values that _GetNextEvent stores in the event record.

The event block performs this task in the following manner:

1. The _SystemTask command gives the system time to synchronize
screen drawing with code execution. It also gives the system a
chance to check for and handle any desk accessory activity before
reading an event. If synchronization is a problem or if a program
implements desk accessories, _SystemTask should be called at frequent
intervals as part of the main event loop.

2. The SUBQ instruction makes room on the stack for the boolean result.

3. The event mask is moved onto the stack. The value #$FFFF is a
Tuolbox constant indicating that all events are to be reported.

4. A pointer to the variable eventRecord is pushed onto the stack with the
PEA instruction. (The OS directive at the bottom of the program code
defines a storage space of 16 bytes, the necessary amount for the
entire event record, even though you interpret only a part of this
record.)

186 Part Two

5. _GetNextEvent is called. This command leaves a boolean result on the
stack and stores the event record in variable eventReeord.

6. The TST.8 instruction sets the Z flag of the status register according
to the boolean result left by _GetNextEvent. The subject's plus sign
pops off the result, clearing the stack.

7. The BEQ.S instruction interprets the Z flag of the status register and,
if z is clear (null event), branches to label TryEvent to repeat the event
loop.

8. The next block of code is performed only when an event is detected
and the event loop is exited. A pointer to the record value indicating
which event has occurred is moved into register DO. The value of the
equate what is added to this pointer value so that only the appropriate
bytes of the event record are read.

The mouseDown equate value is subtracted from DO. If mouseOown and DO

have the same value, the Z flag is set (zero result). The BNE.S instruction
interprets the Z flag. On a nonzero result, the program branches back to the
graphic blocks. On a zero result (mouse is down), execution drops to the last
statement, _ExitToShell.

Tu use the event loop you need to understand three concepts. The first
concept is branching based on the Z flag. The TST and SUBQ instructions set
the Z flag. The BEQ and BNE instructions perform branches based on the
status of the Z flag. Because the Z flag is a simple binary digit (0 or 1), you
extract information about slots by performing tests or subtractions, then
use the zero or nonzero result to branch with any of the Bee instructions,
such as BEQ and BNE.

The second concept is predefined Toolbox values. You need to know
that the Tuolbox has predefined certain structures and constants. For exam
ple, _GetNextEvent returns an event record in which the first 2 bytes of
information indicate what event has occurred, the next 4 bytes provide a
message about the event, and so on. Likewise, to understand the informa·
tion inside the first 2 bytes of the event record, you need to know that a
mouse down event is a constant represented by the value 1. (Inside Macin·
tosh provides a reference on all Tuolbox structures and constants, though
often does not explain how to use them.)

The last concept you need to understand is using pointers to variables.
The OS directives create space for variables using a method in which vari·
ables are moved around in memory, but are always located with the re
served AS register. As a programmer, you rarely need to know A5's contents.
But the Toolbox requires you to reference all of its variable structures
greater than 4 bytes (and all VAR parameters) in this indirect manner. For
this reason, slots containing effective addresses are used to point to vari·
ables, and are your primary tool for manipulating these variables.

187 Chapter 20

Kafka sta~ted plaYfu~ baseball tpe day he stopp~~; goix)~ t6 w~
, libr;iry. ~ase"b~H:.b~~~we ;ip.pqr~~t .. IIis parent~.~efEl :f?Iea~.~P·

They bought him a })at, a ~llll' a.Jid a fielder's.mitt. 'rheU:son had
09~()~lli~·~9f?~< ... ·~~~·!~~~s.J1~~~alS} .• ·

.. ·. :Kaf'ka re~ritere .. py~lic sphoorifi theJlin

c?R!J>Iiq1:t,~~~c · ··8°.· . .:.r... ~ub.J .. ~:ct · ~gi········ if;li ·ab~uttl)'&re · e~ofthis~s Yi2lia
Ka~aha~~beef~ ~d.,~11 11~~i~~~· ...•...• ,;
'•/<After~oo~ch ul(i·•go t()'the.\'J)laygtO

r9~ber ... ~all ... a~~~t ~ll~ t~~s ~rckhc~d, tie
plate ontqthe·:~~ad:1~l~k·sixty heei.iJ;,ioe ·sl.eps;<. ·.·:··. fil~a awi;Y:\
Every day, tbJ:?l1gll. ·~F ~d storm, he wauld ~I'.?\V .}1[itil }liS
mot,her .. s\lmm~~ed·~~· to.;qinner,. her;:high-pitche~1•ca}L:crossj~g
fields, wjnding ~bou~.·?'ees and I'idges,, piercing str~et .no~ses ar?
pl;tygro9J1d• qr~~s;/~~~1.ving,,faint,unnti,s~akable. &()PJ1 e.~ .. ~~)v
hard and accurate, picking out corners, a sharp tllump on the
etched timber.

The ·only diversibn able to still his arm was th~ Irltlustrlal
Le~gue, .tfe · Wc:l\l~d ~i~P to, watct1 .. the .tpen •.. ix) ••t
uniforms exercise alllhe right mannerisms: die ·

an~11sin~.~e.9~t's s~rn e~~. to ~ockdirt.fl'fl~
when there was no '.dirt For their histrionics
be~J1 the yanke~s o.r 'e White S()X· Kaflta wa~n
that their jerseys re~ Mohawl(Lumber, Lihe
MaroneyTool"Wor~. He· watcheti from bell!nd .• ~.b~
sotl:)etimes frow the:~d }JaseliJ1e, ready to glo~~;~~:·fo • •·. "

Baseball gave K~fka his friends. He and the ~oy~ .g~at~~d
abcn1t themajorleagueteams they followed inthei;J.~vv;sp~J>ers:Qr
the one game they saw on last summer's trip to ~e cit~. They
wrangled about statistics, reminisced about biza~re Rl1:t,ys, a:~P
voted on the greatest home run hitters, base stealers, and strike-
out pitchers. / < :·.

Kafka had a mind for figures, often becoming a 1Dediator
when facts were in question. His reputation spre~~ "beypnd r;~s
friends. Older boys he hardly knew crone to him ~p set~e arge
ments, r~solve .~tum~~rs. As a n~w boy in ~cho,()l.~~ ~~ giy~~
uncommohly sudden;·•respect. At times Kafka feli!i~~o p~oµ(l':~~

thought he might bU[st. .·... · .. ··.... ·· .· · .. ·. : . : , • , ~
Baseball also gav~Kafka his. peace. Prone to n!Shtlilil,J!es a~·~

188 Part Two

boy, now he studied the sports pages, the bubble gum cards, the
year-end digests. He had a friend go to the library and take out
all the books on baseball. Kafka explained that he couldn't go
himself on account of some bad blood between him and Miss
Quincy-which wasn't really true. Miss Quincy never knew half
her books were damaged. Simply, Kafka was in awe of the boy
who gave him baseball.

Then in one swoop Kafka became the owner of a baseball
library. A neighbor-a friend of his father-called to him one
Saturday, and said he had something in his garage that might
interest him. Kafka hunched his shoulders and scuttled over.
Piled in two tub-sized cartons were baseball almanacs,
magazines, matted clippings-source references going back to
another century that one day would find their way to Coopers
town. Kafka made seven wagon trips to transfer the booty. On
shelves, in drawers, a closet full and more under the bed-he
filled his room. Young Kafka would sleep nights restfully, until
even baseball was not enough.

- 1- J < > +
s a- .. · A ..
» + ! 0 - • "
J.., ... $ \ -

Listing
.21·1

CHAPTER -§] W!ii#&M@Mi !!!
~ _,_
M!illij!!ll&l!1 21 Mtfify:eg \M¥W !!'A

;

¥±9H44
*MM

1@5

Structured
PrograIDDling
«'ith Blocks

Playing the fields

Program OvalTime, listing 21·1, expands the use of the event loop. The
output of the program has changed very little from GetRect-ovals are
drawn instead of rectangles. See figure 21·1. It has, however, been restruc
tured with a more modular design.

INCLUDE 'Traps.a'

what EQU 0
message EQU 2
when EQU 6
point EQU 10
modify EQU 14

mouseDown EQU l
pat Copy EQU 8

MAIN
PEA -4(A5)
InitGraf

-InitFonts -InitWindows
=InitCursor

SUBQ U,SP
CLR.L -(SP)
PEA WindowSize
PEA WindowName
ST -(SP)
CLR.W -(SP)

189

;Program OvalTime

;define trap names

;event offsets

;system constants

push pointer to Quickdraw globals
initialize Quickdraw
initialize font manager
initialize window manager
initialize cursor to arrow

make room for pointer result
allocate on heap
push pointer to rectangle
push pointer to name
yes, window is visible
use document window

Listing
.21-1
cont.

190 Part Two

TryEvent

Handle Event

DoDraw

MOVEQ i-1,DO
MOVE.L DO,-(SP)
ST -(SP)
CLR.L -(SP)

NewWindow
=SetPort

MOVE.W #patCopy,-(SP)
_PenMode

SystemTask
SUBQ #2,SP
MOVE.W #$FFFF,-(SP)
PEA EventRecord(AS)

GetNextEvent
TST.B (SP)+
BEQ.S TryEvent

BSR.S HandleEvent

TST.B DoneFlag(AS)
BEQ.S TryEvent

_ExitToShell

put window on top, step 1
put window on top, step 2
yes, window has goAway box
NIL window refCon
make the window
make window current port

;push parameter constant
;give pen solid ink

;give system time, check desk acc.
;make room for boolean result
;event mask for all events
;push space for record result
;ask for event
;see if any event occurred
;if Z is set (no event), do again

;event occurred, go to subroutine

;toggle Z according to DoneFlag
;if z is set, do again

;return to Desktop/Shell

MOVE.W
SUBQ
BNE.S

EventRecord+what(AS),DO ;get event number
imouseDown,DO ;check mouse, toggle z flag

MOVE.B
RTS

DoDraw ;if Z is clear, do drawing

imouseDown,DoneFlag(AS) ;else done, set DoneFlag
;return with z clear

PEA EventRecord+point(AS) ;put global point on stack
_GlobalToLocal ;convert to local coord.

LEA NewOval(AS),AO ;put pointer to rect space in AO
MOVE.L AO,-(SP) ;push pointer (AO's contents)
CLR.L (AO)+ ;specify top-left point at pointer
MOVE.L EventRecord+point(AS), (AO) ;bot-right at pointer+4
_FrameOval ;draw oval

CLR.B DoneFlag(AS)
RTS

;clear DoneFlag, not done
;return with Z set

WindowSize DC.W
WindowName DC.B

80,60,290,450
'Oval Time'

;window bounds (Top,Lft,B,R)
;window title

NewOval DS.L
DoneFlag DS.B
EventRecord DS.B

END

2
·2
16

;space for rect variable
;space for boolean
;next event record

;code end directive

One prominent change is the addition of four equate statements. These
equates fill out the remaining elements (called fields) of the event record.
The GetRect program used only the what field. The additional equates in
OvalTime provide name access to the other four fields of information re
turned by the _GetNextEvent command.

The OvalTime program uses only one of these additional fields. The
equate named point specifies where the coordinates of the mouse are re-

191 Chapter 21

,. .,

. · ~

Figure 21·1

corded in the event record. The point field supplies the same information as
the _ GetMouse command in program GetRect. Thus _GetMouse is eliminated
from the current program.

The field equate values represent an offset, measured in bytes, from
the beginning address of the EventRecord variable . As a result, when access to
the what field of the event record is needed, the correct pointer slot is
EventRecord +what. Access to the point field is obtained by specifying Event·
Record + point. The advantage of using offset names is that the programmer
does not need to know any exact address. The necessary information is the
number of bytes beyond the pointer address of the EventRecord variable .

The event record fields named message, when, and modify provide event
information , not used in OvalTime, about windows, time, and modifier keys.
Their equate statements are added to the code for the sake of completeness.
The program would work the same if the four statements had been omitted.

The core of the event loop, which begins with the label Try Event, is
identical to the one used in GetRect . The enhancements offered by Oval
Time , illustrated in the following block, are executed only when the
_ GetNextEvent command returns a non-null event.

In GetRect, a non-null event was handled by immediately evaluating the
what field of the event record to direct program flow to the graphic blocks or
the program exit . In OvalTime, the event is handled by branching to a

~ I ... I < > +

192 Part Two

subroutine that, in turn, directs program flow. The difference may seem
trivial, but the use of clearly defined subroutines becomes more beneficial
as the size of your programs increases.

Upon return from the event handling subroutine, a DoneFlag variable is
evaluated. The DoneFlag variable serves as a boolean flag to determine
whether a new· event should be sought (branch to TryEvent) or the program
should be exited (drop to _ExitToShell). The state of the DoneFlag variable is set
as part of the event handling routine. As in the event loop, the TST.B and
BEQ.S instructions set the status register's Z flag and branch accordingly.

Discovering your special points

!:~~:~; --! ..., # ~ s \ ;t

The remaining blocks of code, up to the DC and DS directives, contain the
subroutines performed for every non-null event returned by _GetNextEvent.
The block beginning with the label HandleEvent examines the what field of
EventRecord to see if a mouse down event has occurred. If the mouse has not
been pressed, the BNE.S branch directs program flow to the blocks following
DoDraw. The oval drawing graphics are executed up through the final RTS
instruction (return from subroutine).

If the mouse has been pressed, the BNE.S branch to DoDraw does not
occur. The MOVE.B instruction sets the DoneFlag with the value of #mouseDown
(1), and the RTS instruction returns from the subroutine back into the event
~· .

The graphic blocks following DoDraw differ from the blocks used to draw
the rectangles in the GetRect program. The difference derives from the
alternative method of reading the mouse's location coordinates. The
_GetMouse command is replaced with the point field of the event record. This
change must be accompanied by another Toolbox command called
_GlobalTolocal to correctly interpret the mouse's location.

The _GlobalTolocal call converts a point's coordinates from global dimen
sions (think of the Macintosh screen as a global port) to local dimensions
(think of your program's window as the local port). Because the point field of
the event record returns coordinates expressed as global coordinates, the
global-to-local conversion is necessary for using the mouse within the cur
rent window port. This conversion was not necessary when you used
_GetMouse because _GetMouse returned coordinates expressed in the dimen
sions of the current window port.

The command _GlobalTolocal requires a point parameter. This effective
address of the point is put on the stack with the PEA instruction. After
the command is called, all references to the point field are in local dimen
sions.

193 Chapter 21

The block of code that ends with _ FrameOval uses nearly the same
instructions as the code the GetRect program used to draw rectangles. The
variable NewRect is renamed NewOval, and the coordinates of MousePt are now
represented by EventRecord +point. _FrameOval works the same as _FrameRect,
except the graphic output consists of an oval drawn just within the rectan
gular boundaries of the given parameters.

After the graphic work is performed, the DoneFlag variable is cleared,
indicating another event is desired. When the RTS instruction returns pro
gram flow from the subroutine to the event loop, the zero value of DoneFlag
causes the Z flag to be set (by TST.B) and the execution of the branch to
TryEvent (by BEQ.S).

The modular design of OvalTime permits the addition of one or more
subroutines to the bottom of the program code. The important event loop is
placed at the top of the code. Whenever an event dictates that a certain type
of action be performed, the event loop can instigate a call to a subroutine for
event processing. When the subroutine is completed, program flow returns
to the event loop. The DoneFlag variable conveys completion status informa
tion from the subroutine to the event loop.

This organization becomes important when the length of assembly code
increases. Attempting to write code with a linear, drop-through approach
such as that used in GetRect becomes too convoluted because, ultimately,
most programs give the user the ability to direct program flow. By providing
modules that are task oriented, a program can follow the whims of the user,
always returning to the easy-to-find event loop when a new action might be
initiated.

Finally, the OvalTime program uses slightly different code in the win
dow creation block than its predecessors. A single line of code:

MOVE.L #-1,-(SP)

is replaced with the following two lines of code:

MOVEQ #-1,DO
MOVE.L DO,-(SP)

The change does not affect program operation-in both cases the parameter
-1 is put on the stack so that the window is the topmost window. But these

two statements together execute faster than the single statement they re
place. Thus the change marginally improves program performance.

As a beginning programmer, you are not expected to delve into 68000
manuals to discover that a MOVEQ and a register-based MOVE. L combined use
fewer processor cycles than a single, immediate MOVE.L instruction. But here

194 Part Two

is an example of code optimization that is available to experienced program
mers.

The :Los' Alamos Sluggers (part a of st
-~--------,IS.,• . .,.' ... !•-·.•-· -·--·-····-··--·.;.,,· -··.,···-···-• ._._.,_, ..,:'~-· ____ .. , ___ ICz._•"-··-
·~ 1

, .,;01 <!:.· ··..:(_:;"bf;! . ?, .,' ·,},, ·'f}.¥' ·r.'J:Y'· ./}1' v.o,· ;.,, ;.·.·· "> '·,;,.·. "'? :y~:
1110\V ltj:Ilg)lave we been, workillg tpgether,, Eips con Dios?" The
~oubg fhcfilm 'stared vadiimly illfo his smpiofer's 'craW-li:fig eyes:·•
't ~eeq;ts Ulte .:forever1~ doesnli it?" said .Kafka, :bQl,Jbillg in· aSt'ee.i;·
,gieqt W:ith;,himself. "We've WOI'.lf.ect ;\,'Ve~ tpgether~, li\f~vec\.acqpm~.
plit1l,ied.as mt,t(;b as c01~ld be t:lXP~cted from'tw(;> bljmps on a log.~
"it~ ·~o~e(f "Aiid~·that's exactty ~hat we afe, fuy1ruith dian~
·~betrattori~ o* the ash 1;reefTh~ Los Alaifips}Siµggers" Dust td
jgµ~~. a,fb~~ .. to,;ash(. ~a's gbo~e.:tul'.nect,,intp. ,a •cough·'• .· ·

.,, , .~: .~ ~'.rt:l~~bolP Y,g:U11$ ~t:ll1,t~ioiJ'~ b~~~.tll}!ty:fiv(f. 1'}1d);'09{.
though,•in face cou}d,pass fo~ my father, are yc:>Ullger still. Yet,
young''as ~ are(fuy'jabbei'fuouThetl fnehd,we'have certainly
;!JegUll :cnm se'!\imentary desoont" My eyes·;·dig•.deeper into •eon~ . ·
~.~:U~'8 ~a~s~! s~ar~ ~t:l.;,tPt:l;; ~~t,p(.,>fQlW wistf!ll peut: .•

. . ; .. 4fid;YC?U, W:ith stillbol'.(l a,9,tli~on, are J>l~~se,(l w,!th .JPl e"cape from
;·'.''.1th&:ifoi~ itms (if ~Y Iiir:YfiX Y: . ~:· ,. •·· ' · • " . ''·

,~· •.t;. ·~~Eitfwr,ote:onslate to'cor.mtltmicate~'but not thiS tifue~·Hecpuf•.
· .ltP.e;ip~ ~de,,;- l).is,li1» l~t ithlll,lg -~ ,~ cigar~e~He;p~ende<l

tb ~ioW a Sm~ ring, at Kafka. . ·..•. ·... . :. , . , .·
. , . . ''•s<ion/' Kafb. continued~ "oµr fine. co~aboi-atlon, merci{ull~

' . inful~· 'potetlt than'fue :sljm of'its'paris, ··Wnf.~nc1: We'll head to the'
.fµnteriands: You, no doubt, ·to Circus· squA'lor,~smittes aS•Imtian·
.Joe:cbi~f b,pttle washer aµd f?ig~ st~re;puU ~d,e~ ~r a·;J:n~{falq,
fiver y~u·Ifwr~te what s~aUcome ~pass nett 'I)lesday .. A m811
Wjtlf eyes .tt>r the fu~ ancf ears for decora~oll.~'rhe pitchihaii
ttbi~s:;\tJnt!lerstanu folks,iindfanJoe'can't tldk;"·Se'ei'lo.ttg irgo, 1as ·4''·
~Jlil.cl, bis tpn.gµe got burnt oµt whe1:ia 'Yhite .~ {9r(:(3..fed hipJ. a
foat,thlf m~rs~~o'Y. that ?'d f~ ~!o ~e flf8,~Wo~dp'tJ:iave
been, so bad except the white man hooked out· a ooal mstead of
lhe '.marsbfuallow;' · · · ·'

't<Atld Ii' sfuill exit' thiS seared dustpan bequeath~ a,' muSh"·
r,oqgi &~u~. Brief;. swollen, and grow& in .. the .. dark.Jb,,a,, pJtJ.ce,·
~ug~y·anciwet. Oh yes, we're gonna light lieriEio Meo i~:io Mo'.

t·we' goifa !Ight' bet. Sfle krloWs wh6' we al'e: 'We gotta llght:rlieP
:now, c;::'ome.• Kafka e\ictended ·his ~ms, then·'fellinto a yaWh~
~Help,~.e/pe ~ang, Ii&~ eY;f'S closed and Opt:lne<l;a.Qd c;l9s.~.
,. . He, shiJn.p~d futo .the· bayoneted relaxer, i,ts mattingpµffe(l

',.~, :; ; '~ • • ., • ', ·>· , > ',l\<, ·. ''(·' ,'""/; • < •.;?f':• ;';;'" , >?'o

195 Chapter 21

out of irreparable slashes. The room was dim in brown light,
warm with heavy air. Siesta time in the small town, no cars
passed, no voices carried . The desert drank slowly, invisibly. A
twig of a mesquite bush dropped from Kafka's grasp-his ray.

• I - I < > +
Sa .. - ; A«
» + ~ Q - * &

f....,. ~ $ \ ~

Listing
22-1

what
message
when
point
modify

CHAPTER

22
2±

The Key to Boarding
the Keyboard

Events oi many flavors

Program LotsOfOvals, listing 22-1, expands the use of the event loop to
include keyboard events. A press of any key exits the program. A press of
the mouse button provides the starting point to draw an oval; letting up the
mouse button provides the ending point. From the user's viewpoint, the
program draws ovals similar to the MacPaint program. Figure 22-1 is the
screen display produced by running the program.

;Program LotsOfOvals

INCLUDE 'Traps.a' ;define trap names

EQU 0 ;event offsets
EQU 2
EQU 6
EQU 10
EQU 14

mouseDown EQU 1 ;system constants
keyDown
patXor

EQU 3
EQU 10

MAIN
PEA -4 (AS)

InitGraf
-InitFonts
-InitWindows
-InitCursor
MOVE.L #$0000FFFF,DO
_FlushEvents

197

push pointer to Quickdraw globals
initialize Quickdraw
initialize font manager
initialize window manager
initialize cursor to arrow
set up to flush events
flush all events

Listing
22·1
cont.

198 Part Two

TryEvent

HandleEvent

NextEvent

YesDone

DoDraw

MouseCheck

SUBQ #4,SP
CLR.L -(SP)
PEA WindowSize
PEA WindowName
ST -(SP)
CLR.W -(SP)
MOVEQ #-1,DO
MOVE.L DO,-(SP)
ST -(SP)
CLR.L -(SP)

NewWindow
-SetPort

MOVE.W #patXor,-(SP)
_PenMode

SystemTask
SUBQ #2,SP
MOVE.W #$FFFF,-(SP)
PEA eventRecord(AS)

GetNextEvent
TST.B CSP)+
BEQ.S TryEvent

BSR.S

TST.B
BEQ.S

HandleEvent

DoneFlag(AS)
TryEvent

_ExitToShell

;make room for pointer result
;allocate on heap
;push pointer to rectangle
;push pointer to name
:yes, window is visible
:use document window
;put window on top, step 1
;put window on top,step 2
;yes, window has goAway box
;NIL window refCon
;make the window
;make window current port

;push parameter constant
;give pen inverting ink

;give system time, check desk acc.
;make room for boolean result
;event mask for all events
;push space for record result
;ask for event
:see if any event occurred
;if z is set (no event), try again

;event occurred, go to subroutine

;toggle z according to DoneFlag
;if z is set, do again

;return to Desktop/Shell

MOVE.W
CMP.W
BEQ.S
SUBQ
BEQ.S

EventRecord+what(AS),DO ;get event number
#keyDown,DO ;check keyboard, toggle z
YesDone ;if z is set, begin exit
#mquseDown,DO ;check mouse, toggle z
Do~raw ;if Z is set, read mouse

CLR.B
RTS

DoneFlag(AS) ;clear DoneFlag, not done
;return with z set

MOVE.B #keyDown,DoneFlag(AS) ;set DoneFlag, done
RTS ;return with z clear

PEA EventRecord+point(AS) ;put global point on stack
GlobalToLocal ;convert to local coord.

MOVE.L EventRecord+point(AS),DS ;store start point in register
MOVE.L DS,04 ;initialize temp register (D4)

SUBQ #2,SP
StillDown

TST.B (SP)+
BEQ.S NextEvent

SUBQ #4,SP
MOVE.L SP,-(SP)

GetMouse
MOVE.L (SP)+,D3

CMP
BEQ.S

D4,D3
MouseCheck

;make space for result
;check if button is down
: toggle z flag
;up, so get next event

;make room for point result
;push pointer to result space
;get cursor coordinate point
;store end point in register

;compare temp and new end points
;if same, get new end point

Listing
22-1
cont.

199 Chapter 22

LEA New0val(A5),A2
MOVE.L DS, (A2)
MOVE.L D4,4(A2)
MOVE.L A2,-(SP)

FrarneOval
MOVE.L D3,4(A2)
MOVE.L A2,-(SP)

Frarneoval

MOVE.L D3,D4
BRA.S MouseCheck

put pointer to rect space in A2
specify top-left point at pointer
specify bot-right at pointer+4
push pointer (A2's contents)
erase previous oval

;specify new bot-right at pointer+4
;push again for second Frarneoval
;draw oval -

;update old end point
;return for new end point

WindowSize DC.W
WindowNarne DC.B

80,60,290,450 ;window bounds (Top,Lft,B,R)
'Lots Of Ovals' ;window title

NewOval DS.L
DoneFlag DS.B
EventRecord DS.B

END

2
2
16

;space for rect variable
;space for boolean
;next event record

;code end directive

Lots Of Duals

.,

...... . ·~

Figure 22-1

The first new Tuolbox command resides in the initialization block. The
call to _FlushEvents requires a single long word parameter to be placed in
register DO prior to the call. The purpose of _FlushEvents is to clear prior
events the system might be retaining from before the start of the program.
The parameter to _FlushEvents can be used to specify that only particular
events be flushed from the system. However, the #$OOOOFFFF parameter is a
mask that removes all events.

The window building block and the event loop block are the same as

200 Part 1\vo

the blocks in OvalTime. The event loop in particular is a general -purpose
block of code that searches for user events of any kind, then branches to the
HandleEvent subroutine when an event occurs. Once again, the DoneFlag varia
ble provides the boolean condition that indicates when to exit the loop and
perform _ExitToShell.

The block of code beginning with the label HandleEvent is significantly
enhanced. After the what field of the event record is moved into DO, the
value of DO is checked for either of two events. In prior programs, DO was
checked only to see if a mouse down event occurred. Now you are also
checking to see if a key down event has occurred.

A new instruction is used to see if the value in DO equals the mouseDown
equate. CMP.W compares the values of its two subjects by subtracting the
first from the second. However, unlike the SUBQ instruction, the value of the
subtraction is not stored in the second subject. Both instructions affect the
status register, and the Z flag in particular, in the same way.

Here is the logic for this coding decision. The SUBQ instruction is faster
and requires less program space than the CMP.W instruction, so if both can
be used for the same effect, the SUBQ instruction is preferable.

The what field stored in DO has to be checked against two possible
events: key down and mouse down. If the check for key down altered the
value of DO, the second check for mouse down would no longer be valid.
The first check, for key down, uses the CMP.W instruction to set the Z flag
because it leaves the value of DO intact. The second check, for mouse down,
uses the SUBQ instruction to set the Z flag because you no longer care if DO
is altered and SUBQ is faster and smaller than CMP.W.

The keyDown equate uses the system constant value of 3 to represent key
down events. As you saw in previous programs, a mouse down event uses
the constant value of 1. Here is an equate list of the fifteen possible events
with their constant values:

nullEvent EQU 0 ;no event
mouse Down EQU ; button pressed
mouseUp EQU 2 ; button let up
key Down EQU 3 ; key pressed
key Up EQU 4 ;key let up
auto Key EQU 5 ;repeating key press
updateEvt EQU 6 ;window needs updating
diskEvt EQU 7 ;disk insertion
activateEvt EQU 8 ;window made active or deactive
networkEvt EQU 10 ;system network event
driverEvt EQU 11 ;system 1/0 driver event
app1 Evt EQU 12 ;open for application use
app2Evt EQU 13 ;open for application use

~ I I ..;: > +

§ d-""; ~ «

» + ! 0 ~ • &

f-d As\ ;i!

201

app3Evt
app4Evt

Chapter 22

EQU 14 ;open for application use
EQU 15 ;open for application use

When the HandleEvent block finds a key down or mouse down event, the
respective BEQ.S statement is executed, and program flow branches for
further event processing. In the case of a key down event, the DoneFlag
variable is given a nonzero value, then the subroutine is exited.

If you want to detect which key has been pressed, add a block of code
to interpret the message field of the event record. The low-order word of the
message field contains keyboard event information. A key code is repre
sented in the high-order byte; a character code is represented in the low
order byte. For most purposes, the ASCII character code of the low-order
byte is sufficient for identifying which key has been pressed or let up. (Key
codes might be useful when the standard alphanumerics of the keyboard
are altered.)

Fancier graphics through registers

In LotsOfOvals, the mouse down event initiates graphic activity. The follow
ing steps, beginning at the label DoDraw, are undertaken:

1. The point field of the event record is converted from global to local
coordinates .

.2. These local coordinates are stored in both register DS and register
D4.

3. The MouseCheck block uses the Tuolbox's _StillDown command.
_StillDown works like _Button except a true value is returned only if
the mouse button has not been let up since the last mouse down
event. When the boolean result of _StillDown tests true (nonzero
result), the Z flag is clear, and program execution drops through to
the oval drawing blocks. Otherwise, the button must have been let up
(zero result), so the branch to NextEvent occurs.

4. The oval drawing blocks begin by reading the mouse position again,
this time using _GetMouse. The new mouse position indicates whether
the mouse has been moved and an oval should be drawn using the
new position as the oval's end point. If the second mouse position
stored in D3 compares identically (the CMP instruction sets the Z flag)
with the first position in D4, a branch occurs to MouseCheck to get a
new end point. If the second mouse position in D3 is different than
the first position in D4, the new mouse position indicates that the
drawing routine should commence.

202 Part Two

Setting up the _ FrameOval parameters differs from previous programs
because _FrameOval is called twice-once to erase any previous oval, then a
second time to draw the new oval. Erasing the preceding oval ensures that,
when the mouse button is let up, only a single oval remains on the screen.

Tu call _FrameOval twice, the pointer to the NewOval rectangle space is
moved onto the stack twice. This accounts for the command MOVE.L A2,-(SP)
before each _ FrameOval.

Both ovals use the contents of D5 for their top-left point. The command
MOVE.L D5,(A2) puts the contents of D5 at the location pointed at by
the contents of AZ.

The original oval uses D4 for its bottom-right point, and the new oval
(whose end point was taken from _GetMouse) uses D3. Thus two MOVE.L
commands are used: MOVE.L D4,4(A2) for the first _FrameOval and MOVE.L
D3,4(A2) for the second. Notice that they both move their data register
subject to the location pointed at by 4(A2).

You have already seen this addressing mode, called address register
indirect with displacement, though in a slightly different fashion. A constant
precedes the address register to increment the pointer's effective address.
For example, when you push the effective address on the stack with PEA
EventRecord + point(A5), you specify an address that is a certain number of
bytes beyond the address pointed at by the contents of register AS. Here you
are explicitly stating that the effective address is 4 bytes beyond the location
pointed at by AZ.

This makes sense because the top-left point, which is expressed in the 4
bytes of a long word, is specified exactly by the address in AZ. Thus the
bottom-right point, which also requires 4 bytes, should be placed 4 bytes
beyond the address in AZ. As a result, the integers representing the two
points are consecutive and do not overlap.

By calling _FrameOval twice, you can erase the old oval, then redraw a
new one. Remember, because you are using the dot-inverting ink of pen
mode patXor, an oval drawn over an existing oval has the effect of erasing the
original oval.

If you need to be reminded of the contents of D3 and D4, look back to
the MOVE.Linstructions that assign their values. D4 is given the same value of
D5, the oval's starting point. The means the first execution of _FrameOval
neither draws nor erases an oval. The call to the second _FrameOval, using
the new D3 end point, draws an oval as long as the new end point is to the
bottom right of the starting point. You have ascertained already (using CMP)
that D3 differs from D4.

Any confusion you might have should be cleared by examining subse
quent repetitions of the loop beginning at the label MouseCheck. The final two
statements in the graphics routine provide the change that makes the subse
quent repetitions act differently than the first pass through the loop.

203 Chapter 22

The statement MOVE.L D3,D4 updates D4 so that, on the next pass
through the loop, the first _FrameOval erases the original oval, then the
second _FrameOval draws a new oval using _GetMouse's new end point. The
automatic branch to MouseCheck (BRA.S js not conditional upon any Z flag
value) checks the button and mouse location before program flow can again
reach the graphic drawing block of code.

~:'~~~k~~g,. ar1 hou.r,
UI'~~He woWd mumble

~~~ed, 111\lddleg, he'~ 
oat irl sei:trch of clues:, 

e ~~re holds, places to 
.y·~~e t~Wfd~r~iI~dian. 

~\le to brush a speck 
~.,;~iQ p~$!trie~tc:> talk 
~ecill further confused 
n of a . deaf man with 

.·h.to us." Rewrote: 
WtfMAN? Kafka 

.. ~.~?.w~e.: '.\fI;IY A~ 
ced~"and trembled.• The 



204 Part Two 

Eio wiped the slate, wrote another message, and left the 
board face up on the bed. Then he collected the few articles of 
clothing he had come with, put them in a paper sack, and 
checked his pants pocket for pad and pencil. Kafka turned from 
the window and Eio saw that his employer had returned to his 
raucous , exalted self. It was time to go. 

A woman lived in the house on the hill. She wore black 
dresses and black shoes and sometimes a black hat. She walked 
to the grocery store and would pass, on the far side of the street, 
the old candle factory. In the cafe one day, Eio saw the owner 
talking, saw the words widow and black dress and house on the 
hill. He saw husband of si?<. weeks and pilot and shot down by the 
Japs. 

Eio pointed toward the bed. Kafka looked over, read the 
slate : MUST CONSIDER MORAL IMPLICATIONS OF RAY PRO
JECT-CANNOT PROCEED WITH FULL HEART. Kafka shrugged. 
He picked up the baseball gloves, held one out to Eio. They found 
the softball in the corner and went outside. 

Kafka tried out for the baseball team in eleventh grade. The 
coach told him he was too small to play. Six years later Kafka 
pitched a four-hit shutout for the Philadelphia Athletics in the 
sixth and final game of the 1930 World Series. After the game, he 
told reporters what his high school coach had said. The next day 
reporters went to Kafka's high school and asked the coach if 
Kafka's story was true . "I made a mistake," the coach said . 

Kafka's professional career was brief and spectacular. He 
spent half a year in the minors, then four years with the Athlet
ics . His lifetime record was 64 wins and 19 losses, plus four 
World Series victories without a defeat. His earned run average 
was 1.84 with 690 strikeouts against 143 bases on balls . 

He is credited with inventing a pitch-the pit ball-that has 
never been effectively imitated. The pit ball, coined from Kafka's 
playing nickname, is thrown sidearm with three fingers on the 
ball and a 30-degree, off-center underspin. The ball rises hard, 
sometimes breaking, then dives over the plate . Kafka-mixing pit 
ball, palm ball, slider, and fastball-was considered a master of 
the change-of-speed delivery. 

At age twenty-four, Kafka was hit in the back of the neck by 
a pitched ball in his first bat appearance of what would have 
been his fifth major league season. The blow ended his baseball 
career, cracking vertebrae and, it was suspected, causing degen
erative cortical injury. 



205 Chapter 22 

In December 1944, Kafka was elected to baseball's Hall of 
Fame. He was not present for the inauguration. He could not be 
reached. No one who knew he was "Pit" Tuoey Kafka had seen 
him in years. Kafka himself was unaware of the honor awarded 
him. 



~ I ... I < > + 

§a .. ""'~" 
» + ! 0 - • & 

f -.o's\" 

Listing 
23-1 

CHAPTER 

23 

Menus: The Literature 
of Giants 

Garnering resources 

Program LitOfGiants, listing 23-1, adds a major dimension to Macintosh 
programming: resources. You'll write resource code (see figure 23-1) and 
compile the resource with the MPW application Rez so that it integrates 
with your main source code. The process adds a menu bar with a Quit 
option to your graphics program. The sceen display produced by running 
the program is shown in figure 23-2. 

;Program LitOfGiants 

INCLUDE 'Traps.a• ;define trap names 

what EQU 0 ;event offsets 
point EQU 10 

mouseDown EQU 1 ;system/toolbox constants 
key Down EQU 3 
patXor EQU 10 

inMenuBar EQU 1 
inContent EQU 3 

fileMenu EQU 129 

Here are the initializations and the window definition. 

207 

MAIN 
PEA -4(A5) 
InitGraf 

-InitFonts 
=InitCursor 

push pointer to Quickdraw globals 
initialize Quickdraw 
initialize font manager 
initialize cursor to arrow 



Listing 
23-1 
cont. 

208 Part Two 

InitWindows 
-InitMenus 
MOVE.L #$0000FFFF,DO 

FlushEvents 

SUBQ #4,SP 
CLR.L -(SP) 
PEA WindowSize 
PEA WindowName 
ST -(SP) 
CLR.W -(SP) 
MOVE.L #-1,-(SP) 
SF -(SP) 
CLR.L -(SP) 

NewWindow 
-SetPort 

MOVE.W #patXor,-(SP) 
PenMode 

initialize window manager 
initialize menu manager 
set up to flush events 
flush all events 

;make room for pointer result 
;allocate on heap 
;push pointer to rectangle 
;push pointer to name 
;yes, window is visible 
:use standard document window 
;put window on top 
;no, window has no goAway box 
;NIL window refCon 
;make the window 
;make window current port 

;set pen mode to patxor 
;give pen inverting ink 

Here you set up the menu bar by accessing the resource file. 

SUBQ #4,SP 
MOVE.W #fileMenu,-(SP) 

Get.RMenu 
CLR.W -(SP) 

InsertMenu 
-DrawMenuBar 

;make room for menu handle 
;provide menu resource ID 
;put handle to menu on stack 
;beforeID = 0 
;put menu on menu bar 
;draw bar on screen 

Here is the main event loop. 

TryEvent 
SystemTask 

SUBQ #2,SP 
MOVE.W #$FFFF,-(SP) 
PEA EventRecord(AS) 

GetNextEvent 
TST.B (SP)+ 
BEQ.S TryEvent 

BSR.S 

TST.B 
BEQ.S 

HandleEvent 

Done Flag (AS) 
TryEvent 

Exi tToShell 

;give system time, check desk acc. 
;make room for boolean result 
;event mask for all events 
;push space for record result 
;ask for event 
;see if any event occurred 
;if z is set (no event), try again 

;event occurred, go to subroutine 

;toggle z according to DoneFlag 
;if Z is set, do again 

;return to Desktop/Shell 

Here you handle any event recorded by GetNextEvent. 
If Quit is chosen, then RTS with DoneFlag set (non-zero). 

HandleEvent 

NextEvent 

MOVE.W 
SUBQ 
BEQ.S 

CLR.B 
RTS 

EventRecord+what(AS),DO ;get event number 
#mouseDown,DO ;check mouse, toggle z flag 
FindMouse ;if Z is set (yes down), read mouse 

DoneFlag (AS) ;clear DoneFlag, not done 
;return with Z set 

Here you check to see where the mouseDown event occurred. 

FindMouse 
SUBQ #2,SP ;make space for window result 
MOVE.L EventRecord+point(AS),-(SP) ;move point onto stack 
PEA WhichWindow(AS) ;move event window pointer on stack 

FindWindow ;determine where click occurred 
MOVE.W (SP)+,DO ;put result in register 
CMP #inContent,DO ;see if click was in content region 
BEQ.S DoDraw ;if so, begin graphics 
SUBQ #inMenuBar,DO :see if click was in menu bar 
BNE.S NextEvent ;neither, so get next event 



Listing 
.23-1 
cont. 

209 Chapter 23 

Here you handle the mouseOown event that occurred in the menu bar . 

MenuPick 
SUBQ #4,SP ;make space for menu result 
MOVE.L EventRecord+point(A5),-(SP) ;provide global point 

MenuSelect ;discover menu IO and item # 
MOVE.W (SP)+,01 ;menu IO in high order word 
MOVE.W (SPJ+,00 ;menu item # in low word (not used) 
TST.W 01 ;toggle z flag, check for menu IO 
BEQ.S NextEvent ;if Z is set (menu IO= 0), branch 
MOVE.B #mouseOown,OoneFlag(A5) ;else set OoneFlag, quit 
RTS ;return with Z clear 

Here you handle the mouseOown that occurred in the content region. 

oooraw 

MouseCheck 

PEA EyentRecord+point(A5) ;put global point on stack 
GlobalToLocal ;convert to local coord. 

MOVE.L EventRecord+point(A5),05 ;store start point 
MOVE.L 05,04 ;initialize temp register (04) 

SUBQ #2,SP 
StillOown 

TST.B (SP)+ 
BEQ.S NextEvent 

SUBQ #4,SP 
MOVE.L SP,-(SP) 

GetMouse 
MOVE.L (SP)+,03 

CMP 
BEQ.S 

04, 03 
MouseCheck 

LEA New0val(A5),A2 
MOVE.L 05, (A2) 
MOVE.L 04,4(A2) 
MOVE.L A2,-(SP) 
_FrarneOval 

MOVE.L D3,4(A2) 
MOVE.L A2,-(SP) 
_FrarneOval 

MOVE.L 03,04 
BRA.S MouseCheck 

;make space for result 
;check if button is down 
;toggle z flag 
;up, so get next event 

;make room for point result 
;push pointer to result space 
;get cursor coordinate point 
;store end point in register 

;compare temp and new end points 
;if same, get new end point 

;put pointer to rect space in A2 
;specify top-left point at pointer 
;specify bot-right at pointer+4 
;push pointer (A2's contents) 
;draw oval 

;specify new bot-right at pointer+4 
;push same pointer again 
;erase previous oval 

;update old end point 
;return for new end point 

Here are the definitions. 

WindowSize OC.W 
WindowNarne OC.B 

NewOval 
EventRecord 
OoneFlag 
WhichWindow 

OS.L 
OS.B 
OS.B 
OS.L 

ENO 

80,60,290,450 ;window bounds (Top,Lft,B,R) 
'Menus: Literature of Giants' ;window title 

2 
16 
2 
1 

;space for rect variable 
;next event record 
;space for boolean 
;space for window pointer 

;code end directive 

result 



210 Part Two 

Silky:MPW: 14Menu.r 
resource ' MENU' ( 129, "Fi le", pre load) { 

129, t.extMenuProc, al I Enabled, enabled, "Fi le" .. 
{ 

"Q,,i t" . 
no -, con 1 noKey, nof1ark, p I a i n 

} ; 

include "14Menu. code"; 

MP'w' Shell 

Figure 23-1 

,. 
File 

., 

Menus: Literature of Giants 

.... 

Figure 23·2 

The assembling and linking process is somewhat more complicated 
when using resources. An additional command, called rez, is used. You can 
read more about resource compilation in chapter 7. The illustrations in 
chapter 7 were produced using the sample program in this chapter. 

Resources are a type of programming code designed to simplify the 
process of program revision. Programs that use resources can change the 
resource aspects of the program without changing and recompiling the 
general program code. This flexibility makes language translations, attribute 
adjustments, and user customizations a surmountable task. 



211 Chapter 23 

From the programmer's standpoint, resources add a challenge that is 
rewarded by a superior end product. The implementation involves two parts: 

• Resources represent a "second program" that must be written and 
compiled with a special compiler (and "ultimate" linker) called Rez. The 
resource code must be written in a prescribed format that, sadly, is 
restrictive and nondescriptive. 

• Resource data is accessed by the program through specifically designed 
Toolbox commands. These commands return pointers-to-other-pointers 
(called handles) that interact with the primary code. 

Here are the instructions for writing and compiling resources: 

1. In an empty Worksheet, type the resource code exactly as you see it 
presented in figure 23-3. 

Silky;MPW;Worksheet 
resource 'MENU' < 129 , "Fi le" , pre load) { 

} ; 

129, tex tMenuProc, al !Enabled, enabled, "Fi le" , 
{ 

"Q<Ji t_ " ' 
nolcon, noKey, noMark, plain 

include " 14Menu.code"; 

MP\v'S~ll J21 

Figure 23-3 

i!il!i 

2. Save the code under the name 14Menu.r. You can use either the File 
menu or the MPW save command. 

3. Create a Worksheet command script as shown in figure 23-4. Notice 
that the -o option on the link command line has been added so that 
the output file is named 14Menu.code. Type the rez command line 
exactly as you see it below your asm and link commands . 

Silky;MPW;Worksheet 
asm 14Menu .a 

I ink 14Menu .a.o -o 14Menu . code 

rez : Rlncludes : Types . r 14Menu . r -o 14Menu 

14Menu 

MP\v'Shell JQJ 
Figure 23-4 



212 Part Two 

4. Execute asm, link, and rez by selecting the command lines and pressing 
Enter. 

The Rez compiler creates your final application. Notice that the final 
instruction within the resource source code: 

include "14Menu.code"; 

treats your link output as part of the resource input. In this Way, Rez 
becomes your ultimate linker. 

After running Bez, an icon for the standalone application sits on your 
desktop. The link output, 14Menu.code, also has an application icon, but it 
has yet to implement the menu feature. You can try running 14Menu.code to 
see how uncompiled resources run, but be prepared to restart the Macin
tosh to exit the program. 

Remember, the purpose of Rez is to create separate, and more easily 
altered, data units from your program code. These units are compiled by 
Rez (along with the .code resource that binds all other resources). Your 
program code accesses and integrates these units. You will see an example of 
this access and integration by studying the code in this chapter's program. 

The first block of code beneath the initialization, window, and pen 
blocks retrieves menu resource data from the resource file, inserts the data 
in a menu list, then constructs a menu bar on the screen. The process 
involves three Tuolbox commands along with three statements that provide 
additional parameters. 

The two statements preceding _GetRMenu make a long word space on 
the stack for the handle result and provide a menu resource ID constant. 
The menu resource ID matches the constant value written in the resource 
file. _GetRMenu reads resource information into memory, returning with the 
menu handle left on the stack. 

The menu handle is used by the next Tuolbox command, _lnsertMenu. 
_lnsertMenu puts a specified menu at a particular position on a menu list. The 
CLR.W instruction provides a beforelD value of O, indicating the given menu 
should be added to the list after any others. (With multiple menus, the 
beforeID parameter would insert the menu in the menu list before the menu 
whose menu ID matches beforeID.) 

The last command in the block, _DrawMenuBar, requires no parameters. 
It simply uses the current menu list in memory to draw a new menu bar on 
the screen. Only _DrawMenuBar performs the actual drawing. 



• I - I < > + - ~~~~~~= 
f....,' ~ $ \ ~ 

213 Chapter 23 

Waiter, there's a mouse in my menu 

The main event loop and the graphic routines of LitOfGiants have not been 
changed since the last program. All the remaining new code Uocated be
tween references HandleEvent and DoDraw) relates to finding the location of a 
mouse down event and responding if it's within the content region of the 
window or the menu bar. 

The block beginning with HandleEvent uses the what field of the event 
record to check for a mouse down~ Upon finding one, the branch to the 
FindMouse block determines if the mouse is located in the content region of 
the window, the menu bar, or neither. In each case, a different direction of 
execution results. 

The new Toolbox command _FindWindow helps determine in which 
desktop feature the mouse down occurred. _FindWindow uses the where field 
of the event record to return two results: an integer corresponding to a 
desktop feature constant and a window pointer indicating in which window, 
if any, the event occurred. 

Here is a list of desktop feature constants: 

in Desk EQU 0 ;in none of the following 
inMenuBar EQU ;in menu bar 
inSysWindow EQU 2 ;in system window 
inContent EOU 3 ;in content region 

;(but not grow, if active) 
in Drag EQU 4 ;in drag region 
inGrow EQU 5 ;in grow region 

;(of active window only) 
inGoAway EOU 6 ;in go-away region 

;(of active window only) 

Tu prepare for the Tuolbox call, the SUBQ instruction makes a word of 
space on the stack for the integer result. Then the point field, still in global 
coordinates, is moved onto the stack. Last, the PEA instruction pushes the 
effective address of the WhichWindow storage space onto the stack. If the 
mouse has been pressed inside a window, the pointer to that window is 
stored in the WhichWindow space. If the mouse is pressed in no window, the 
pointer is set to NIL (zero). 

After the _FindWindow call, the integer result is moved into register DO, 

then compared with two of the desktop feature constants to determine the 
proper path of execution. If the mouse down occurred in neither the con
tent region nor the menu bar, the last statement in the block, BNE.S NextEvent, 
returns program flow to the event loop. 

If the mouse down occurred in the menu bar, program flow drops 



214 Part Two 

through from the _FindMouse block to the block that enables the menu event 
to be further evaluated. The command _MenuSelect determines which menu 
option, if any, is selected. The stack parameters needed by _Menu Select are a 
long word space to hold the menu result and the point field of the event 
record. 

From the user's viewpoint, _MenuSelect takes control of the program 
from the moment the mouse is pressed in the menu bar until the mouse is 
released. In this period, _ MenuSelect tracks the cursor, pulling down menus 
as appropriate, and highlights enabled menu items beneath the cursor. 

When the mouse button is released, the high-order and low-order 
words of the long word result returned by _Menu Select provide separate 
information. The menu ID in the high-order word indicates which menu in 
the menu list is selected. The menu item number in the low-order word 
indicates the specific menu option from the chosen menu, though the low
order word is not needed in this program because the File menu has only 
one option. 

After the two result words are moved into registers 1 the high -order 
word, now in Dl, is tested with the TST.W instruction. This toggles the Z flag, 
whose status indicates if the menu choice Quit has been selected. If Z is set 
(Dl has a zero value), the branch to NextEvent occurs. If Z is clear, the DoneFlag 
is set before program flow returns to the event loop. 

Stan '' 
ji 'I\\r.i<?e a, 'li¥, 

paid. •·neclining s 
••'•:"' · the' ~list'·"ew d~J~' 

cafebcibtli~:Hli.d t. < .. · 1 ,, 

~/(')igg'er ', •.. > ... ··.· .· • . . . ... · 
··· ... •. ~t .• J\ltfkif.fes ··,·· ., ..... ,,. ·. ,.· .. L.· gtwo meals.aday~n 
,~~~n~i·.~er· .. ·a: ..• g~~rl)~e~~lette#;•l!l\rired •. ,~ 



215 Chapter 23 

allotment ran low, Kafka cut himself to lunches only. Eio thought 
of the days that he sat eating while Kafka sipped water. He had 
believed Kafka when he said he wasn't hungry. The end days of 
the last two months Eio claimed to have lost his appetite for 
suppers, also. The two men shared a bowl of chips and salsa . 

They tossed pop flies and grounders, fast balls and bloopers, 
till their arms grew weary, then sat on the stoop of their home. 
Eio wanted to leave before dark. He watched Kafka etching pic
tures in the sand. He wondered how Kafka made the softball do 
tricks in the air. He believed in a magic that enabled Kafka to 
catch a ball too blurred to find lying five feet away in the corner 
ofi the room. He wanted to leave with this feeling of power. Eio 
had been afraid his employer might cackle and ruin their part
ing. Now he saw the contrary, almost as painful. Kafka was sad. 

Tu make things worse, the woman in black happened to pass 
on her way up the hill. Kafka and Eio watched. Then she was 
gone. 

Eio brought out the slate. I AM GOING NOW. Kafka read the 
message, then drew more designs in the sand. Eio waited. There 
was nothing more . Eio got up to go. Kafka reached for his arm, 
held him. Kafka had never touched him before . 

A long moment passed. Kafka said to Eio, "Please stay until 
tomorrow." 

Eio sat down again. He took Kafka's arm from his own, 
squeezed the top of his hand, and let go. Eio rubbed the board 
clean, wrote: TONIGHT IS A GOOD NIGHT TO TRAVEL. 

"But the ray," pleaded Kafka. "We have to light her. We have 
to light her tonight." Kafka jumped up, ran inside, and came 
scrambling out shaking the mesquite twig. "We have to light her 
with everything we have. Everything. Please don't go now." 

Eio brushed the slate. I CANNOT LIGHT ANYONE-WITH A 
S'l'ICK OR OTHERWISE. 

Exasperated, Kafka's eyes grew wet, his hands drummed, 
and a quiver shook him. "Please, Eio. I know it's horrible. I know 
we are going to stun her. But we have to. We have to light her 
with everything. Don't you feel the urgency? Don't you see this 
wasted town is on the brink? We have to give her our heart and 
soul and guts and blood. We have to light her, Eio. We have to 
light her with everything we have. Now, Eio, now." 

Kafka aimed the mesquite twig at the house on the hill. He 
held the rounded end with both his hands, shut his eyes, and 



216 Part Two 

opened his mouth incredibly wide. Eio turned his head·, and saw 
a mongr~l·dog })locks awa;f stop .in i(s tr.acks ani;l dal;Jh off. Eio 
leapt up;~gralibed the ray, and wrenched it fro~ Kafka's grip. Eio 
snapped.~t in two, then fm,11', pieces.. . . · 

· The Mde circle :of 1<$a's mouth contracted. He looked in 
,,·~;,, Eio'shands at the bro~1:1 pl~ces\Hi~ eyes struggled to meet mo's .. x 

· ...... ·· .. ·. Kafka's lips spoke. "I•Rnewfr was just a stick." 

* * * 
He carried a paper sack, pai;l~ and pencil, the same as when 

he·:arriv~d. He tnad~:plans to s~ve money, so that next year he 
could buy Kafka lunches and suppers. Yeah, nextyear I'll buy his 
lqfi~tles ~pd sripper1t• Seven steps toward.the depot Eio kicked 
har.ffat the peJ>bles> and spun himself around, "Arrgghhi» he 
cried·• 8.Ioud, slrlrrihg .. the .sound~•:His head filled· with unvep.ted 
exclamations. He walked past . the candle . factory and began 
climbing the hill. He hated b~g thought so late. He hated 
having thoughfat alt · 

·;~t\it.her do~r·he; took out his p~d and .. pencil. I CANNOT 
SPEAK WELL SO I WRITE. And on a separate sheet he pµt: I 

. : . LIVE IN THE .BROKE~ .. BUljLPI!)J.§ AT THE FOOT OF THE HILL. 
Eio knocked. He hoped she woUld not aslc "who's there" from 

be.J!i*d th~ clo1;1¢ dof>r. More tbaµ a minute'.:pas~d. She will be 
frigntened of me, he thought. She could ~<:all from an upper 
wihdow. and Lwill 'be forced to squawk af he:P .. in my maimed 

· ~oic~. Another mim.ite. He knoc~~d again, harder. . · 
. .. . 'The door ~ovects}ightly asfii1;1 knuckle hit wood. He. stepped 

·· · back: The door was lilllatched: :Ne>. A line of her face appeared in 
thlf~~ack. She spied the length of him, th~ paper sack on the 
stoti~. Her lips were hidden. He·brought his hand forward with 
the fil!st message. She i::eacl. fri:>Il1•1.lis hand. The door stayed {)pen 

: orilYa slit. He showed her thesecbnd message. She did not pause 
to re~d. ~er hand c.ame out and took the paperJrom him. She 
raised on1ffinger?then closed the door. : · · 

·:ije waited, grew old. Time wavered the way rising heat 
· ; stratifi~s the air. The•:door <:>penetl, this tiil1e en~ugh to seeher 

.. full face; her clothing. He gripped th.8 pencil tightly. His chest 
<:;began to itche. Write, he foJtl hiliiselUBlank. paper stared up at 

him. Her 'tiand came /into his fieltl of vision; she tapped on his 
~:patl;; He fqllowed her liantl back to hE!f. body. 

"That's okay. I know who you are~· he saw her say .. " Just tell 
· · 'me what you have come <fQi::." 



217 Chapter 23 

Bravely, he watched her. She was covered in black, a bath
robe of velvety crushed cotton wrapped high about her neck. A 
swath of the same material across her waist held everything 
close, flowing down, river black, grazing the hardwood floor. Her 
hair was long and dark and full , awry strands clinging curled to 
the front of her robe . From afar, the sun and the darkness of her 
clothes deceived him . Eio had thought she was pale, but now he 
saw the Indian in her, tawny colors and almond eyes, moon sliver 
lines brushed on high cheeks. 

He almost talked . A gnarled sound dropped from his mouth. 
He caught himself, stilled the vibration in his throat. He looked to 
his pad. The words were gone. In her face he thought he saw 
someone he knew. 

I AM LEAVING NOW. MY FRIEND TOOEY WILL BE ALONE. 
HIS EYES ARE BAD . WOULD YOU PLEASE LOOK IN ON HIM. HE 
IS A GENTLE AND GENEROUS MAN. 

She stepped outside to read Eio's note, lit by the late day sun. 



Chapter 24 

PART THREE 

The MPW and 
Assembly 
Dictionaries 
The MPW Shell dictionary, chapter 24, contains all the commands and 
command options that make up the Shell programming environment (MPW 
version 2.0Bl). The assembly dictionary, chapter 25, contains the entire 
68000 instruction set plus all the assembly directives and Tuolbox traps used 
in parts 1 and 2. 

The MPW Shell Command Language 
AddMenu Add and display user-defined menus 
Adjust Adjust position of tex.t 
Alert Display message in an alert dialog box. 
Alias Define or display alias names 
Align Align position of tex.t 
Asm Assemble 68000 or 68020 source code 
Backup Generate file backup script 
Beep Create beep sound 
Begin ••• End Set begin and end of a command block 
Break Break ex.ecution of For or Loop command 
BuildCommands Write command script for build 
BuildMenu Display the menu for build 



Build.Program Perform the program build 
C Compile C source code 
Canon Copy using canonical spelling 
Catenate Concatenate files (join into one file) 
Clear Clear text without saving to Clipboard 
Close Close window 
Compare Display comparison of tel'-t files 
Confirm Display message in confirmation dialog 
Continue Continue at start of For or Loop command 
Copy Copy text onto Clipboard 
Count Display file's line and character count 
CreateMake Make build commands automatically 
Cut Cut te/(.t after copying to Clipboard 
CvtObj Convert object files, Lisa to MPW 
Date Display the clock's date and time 
Delete Delete disk files and directories 
DeleteMenu Delete user-defined menus 
DeRez Decompile resources 
Directory Set or display the default directory 
DirectoryMenu Display the menu for directory 
DumpCode Disassemble object code of resource fork 
DumpObj Disassemble object code of data fork 
Duplicate Duplicate disk files and directories 
Echo Echo (display) parameters 
Eject Eject disk volume 
Entab Change consecutive spaces into tabs 
Equal Display file and directory inequalities 
Erase Erase (initialize) disk volume 
ErrTuol Create te/(.t file of error messages 
Evaluate Evaluate list of words as an expression 
Ex.ecute Execute command file with global scope 
Ex.ists Find out if a file or directory exists 
Ex.it El'.it from command or command file 
Ex.port Ex.port variable names to commands 
FileDiv Divide file into files of specified length 
Files List contents of files and directories 
Find Find and select specified text 
Font Set font and f ant size 
For Execute command list for each parameter 
Help Display information in help file 
If Execute command if true expression 
Lib Create library of object files 
Link Link object files 
Loop Execute command list until Break 
Make Make new program version 
Mark Mark a selection of text 
Markers Display te/(.t selection markers 
MDSCvt Convert assembler source, MDS to MPW 
Mount Mount disk volumes 
Move Move contents of files and directories 
MoveWindow Move window to screen coordinates 
New Open new window and make active 
Newer Display newer file names 



ADDI Add Immediate 
ADDQ Add Quick 
ADDX Add with El(.tend 
AND AND Logical 
ANDI AND Immediate 
ANDI to CCR AND Immediate to the Condition Code Register 
ANDI to SR AND Immediate to the Status Register 
ASL Arithmetic Shift Left 
ASH Arithmetic Shift Right 
Bee Branch Conditionally 
BCHG Test a Bit and Change 
BCLR Test a Bit and Clear 
BRA Branch Always 
BSET Test a Bit and Set 
BSR Branch to Subroutine 
BTST Test a Bit 
_Button ROM Trap 
CHK Check Register Against Bounds 
CLR Clear a Subject 
CMP Compare 
CMPA Compare Address 
CMPI Compare Immediate 
CMPM Compare Memory 
DBee Test Condition, Decrement, and Branch 
DC Define Constant 
DCB Define Constant Block 
DIVS Signed Divide 
DIVU Unsigned Divide 
_DrawMenuBar ROM Trap 
_Drawstring ROM Trap 
DS Define Storage 
END End of Source 
EOR El(.clusive OR Logical 
EORI El(.clusive OR Immediate 
EORI to CCR El(.clusive OR Immediate to the Condition Code Register 
EORI to SR El(.clusive OR Immediate to the Status Register 
EQU Equate Permanent Y.Ilue 
EXG El(.change Registers 
_E;dtTuShell ROM Trap 
EXT Sign El(.tend 
_FindWindow ROM Trap 
_FlushEvents ROM Trap 
_FrameOval ROM Trap 
_FrameReet ROM Trap 
_GetMouse ROM Trap 
_ GetNe/lf.tEvent ROM Trap 
_GetRMenu ROM Trap 
_ GlobalToLoeal ROM Trap 
ILLEGAL Illegal Instruction 
INCLUDE Include Source File 
_lnitCursor ROM Trap 
_lnitFonts ROM Trap 
_lnitGraf ROM Trap 



_lnitMenus ROM Trap 
_lnitWindows ROM Trap 
_lnsertMenu ROM Trap 
_lnverRect ROM Trap 
JMP Jump 
JSR Jump to Subroutine 
LEA Load Effective Address 
LINK Link and Allocate 
LSL Logical Shift Left 
LSR Logical Shift Right 
MAIN Begin Main Program Code Module 
_MenuSelect ROM Trap 
MOVE Move Data from Source to Destination 
MOVE to CCR Move to the Condition Code Register 
MOVE to SR Move to the Status Register 
MOVE from SR Move from the Status Register 
MOVE USP Move User Stack Pointer 
MOVEA Move Address 
MOVEM Move Multiple Registers 
MOVEP Move Peripheral Data 
MOVEQ Move Quick 
_MoveTu ROM Trap 
MULS Signed Multiply 
MUW Unsigned Multiply 
NBCD Negate Decimal with Extend 
NEG Negate 
NEGX Negate with Extend 
_NewWindow ROM Trap 
NOP No Operation 
NOT Logical Complement 
OR Inclusive OR Logical 
ORI Inclusive OR Immediate 
ORI to CCR Inclusive OR Immediate to the Condition Code Register 
ORI to SR Inclusive OR Immediate to the Status Register 
PEA Push Effective Address 
_PenMode ROM Trap 
_PUnRect ROM Trap 
RESET Reset External Devices 
ROL Rotate Left 
ROR Rotate Right 
ROXL Rotate Left with Extend 
ROXR Rotate Right with Extend 
RTE Return from Exception 
RTR Return and Restore Condition Code Register 
HTS Return from Subroutine 
SBCD Subtract Decimal with Extend 
Sec Set According to Condition Codes 
_SefPort ROM Trap 
_Sh11Down ROM Trap 
STOP Load Status Register and Stop 
SUB Subtract Binary 
SUBA Subtract Address 
SUBJ Subtract Immediate 



Chapter 25 

NewFolder Open a new empty folder 
Open Open e}(.isting window and make active 
Parameters Display parameters 
Pascal Compile Pascal source code 
PasMat Format Pascal programs 
Pas Ref Cross-reference Pascal source code 
Paste Cut te}(.t and paste contents of Clipboard 
Per:f ormReport Create report on peiformance 
Print Print contents of te}(.t files 
ProcNames Display Pascal block names 
Quit Quit the MPW Shell 
Quote Display parameters in quotation marks 
Rename Rename disk files and directories 
Replace Find and replace te}(.t in window 
Request Display a request dialog bo}(. 
ResEqual Display comparison of resource files 
Revert Revert to file as last saved 
Rez Compile resources 
RezDet Detect resource problems 
Save Save window onto disk 
Search Search for te}(.t in files 
Select Select items from a dialog bo}(. 
Set Define or display variable names 
SetDirectory Set the def a ult directory and add to menu 
SetFile Set attributes of files 
SetPriv Set file server privileges 
SetVersion Set version and revision number 
Shift Shift number of positional parameters 
Shutdown Quit with shutdown or restart 
SizeWindow Set the window size in pi}(.els 
StackWindows Set windows to stack diagonally 
StdFile Select from standard file dialog bo}(. 
SysErr Display system error messages 
Tab Set tab positions of windows 
Target Set window as the target window 
TileWindows Set windows to tile position 
TLAConvert Convert assembler source, TLA to MPW 
Translate Translate character strings 
Unalias Make aliases undefined 
Undo Undo window's previous edit command 
Une1[port Make variable definition une}(.ported 
Unmark Delete file marker 
Unmount Unmount disk volumes 
Unset Make variable names undefined 
Volumes Display names of mounted disk volumes 
Which Find which pathname e}(.ecutes command 
Windows Display names of open windows 
Zoom Window Display window zoomed or back 

The 68000 Instruction Set with Directives and Toolbox Traps 
ABCD Add Decimal with E}(.tend 
ADD Add Binary 
ADDA Add Address 



SUBQ Subtract Quick 
SUBX Subtract with Extend 
SWAP Swap Register Halves 
_SysBeep ROM Trap 
_SystemTask ROM Trap 
TAS Test and Set a Subject 
TRAP Trap 
TRAPV Trap on Overflow 
TST Test a Subject 
UNLK Unlink 



CHAPTER 

24 

The MPW Shell 
Colllllland Language 

AddMenu Add and display user-defined menus 

AddMenu (menuName (itemName (commandlist))) 

Creates and displays new menus and menu items. If the parameter 
menuName is new, it is added to the menu bar along with any specified 
items. If menuName already exists, itemName is added to the bottom of 
menuName. The commandList parameter provides the course of action 
when a menu item is selected. 

The Apple, Format, and Window menus will not accept user-defined 
items, nor can itemName include semicolons. 

The metacharacters that define keyboard equivalents and other item 
characteristics can be included with itemName as long as the entire 
itemName expression is enclosed in quotation marks. Metacharacters 
include: 

/char 

!char 

char is the command key equivalent. 

char is to the left of the menu item. 

n is an item's icon number. 

Item is disabled and dimmed. 

< style style is one of the following letters: B 
U = underline, 0 = outline, S = shadow. 

225 

bold, I italic, 



226 Part Three 

Omitting commandList writes the itemName's command list to standard 
output. Omitting commandList and itemName writes all user-added items for 
menuName to standard output. Omitting all parameters writes all user
added items to standard output. 

Adjust Adjust position of text 

Adjust (-c count) (·I spaces) selection (window) 

Shifts the lateral position of a selection of lines without altering the 
relative indentation. The default adjustment is one space to the right. Adjust
ment is made to the target window unless otherwise specified by the win
dow parameter. 

Options 

-c count Command is performed count times. 

·I spaces Adjust the specified number of spaces to the right or left. 
A positive value shifts to the right. A negative value shifts to the left. 

Alert Display message in an alert dialog box 

Alert (-s) (message) 

Displays a dialog box containing the parameter message and an OK 
button. A message that contains a space or special character must be in 
quotation marks. Omitting the message parameter causes standard input to 
be read. 

Option 

-s Omit dialog box beep sound. 

Alias Define or display alias names 

Alias (name (wordlist)) 

Defines a name to work as a substitute for a list of command words. 
Global aliases are defined in the Startup file. Other aliases are local to where 



227 Chapter 24 

they are defined. Local names override global names. The command Unalias 
removes aliases. 

Omitting word.List writes any alias defined as name and its word list to 
standard output. Omitting word.List and name writes all aliases and their 
word lists to standard output. 

Align Align position of text 

Align (-c count) selection (window) 

Positions all the lines within a selection of lines the same number of 
spaces from the left margin as the selection's first line. Alignment is made to 
the target window unless otherwise specified by the window parameter. 

Option 

-c count Perform command count times. 

Asm Assemble 68000 or 68020 source code 

Asm (optionlist) (fi/elist) 

Assembles source code of the specified file according to the option 
settings. Source code files must end with the suffix .a (i.e., fileName.a). 
Completion of the assembly produces an object code file that ends with the 
suffix .a.o (i.e., fileName.a.o). When a listing option is included, the listing 
file ends with the suffix .a.1st (i.e., fileName.a.lst). 

More than one file can be specified for assembly-each file is assembled 
separately. Omitting the fileList parameter assembles standard input and 
creates the object file a.o. Files and options can be listed in any order, 
though the -case on option has special requirements. 

Options 

-addrsize size Display addresses in the listing in size digits. The pa
rameter must be in the range of 4 to 8; the default is 5. 

-blksize blocks Set the 1/0 buffers to blocks times 512 bytes, where 
the default is 16 and values from 6 to 62 are allowed. 

-case on Differentiate uppercase and lowercase letters in nonmacro 
names (macro names always ignore case). This option must precede 



228 Part Three 

the -define option in the parameter list to preserve the case of declared 
names. (The option's second word, on, is part of the option name, not a 
parameter.) 

-case obj(ect) Save the case of letters in module, EXPORT, IMPORT, 
and ENTRY names only in the generated object file. (The option's 
second word, obj(ect), is part of the option name, not a parameter.) 

-case off Ignore the case of letters. This is the assembler's default 
mode. The option turns off the other -case modes. (The option's second 
word, off, is part of the option name, not a parameter.) 

-c(heck) Examine syntax for errors without generating any object file. 

-d(efine) name(= value) (,name2( = value2)) Equate name with the specified 
decimal integer. Omitting = value causes a default value of 1. 

-d(efine) &name(= (value)) (, &name2( = (value2))) Equate the macro name 
with the specified decimal integer or string constant. Omitting = value 
causes a default value of 1. Omitting value causes a default of the null 
string. (The ampersand,&, must be part of the parameter name.) 

-e(rrlog) filename Write all errors and warnings to an error log file of 
the specified name. 

-f Turn off page ejects. 

-font fontname (,fontsize) Print -s and -I listings in the specified font 
and font size. The default listing is Monaco 7. Only monospaced fonts 
produce proper formatting. 

-h Turn off page headers. 

-i pathname (,pathname2) Search for files in the specified directories. 

-I Write a full listing to a listing file. 

-lo /istingname Causes -s and -I listing files to use the listingname 
pathname. Also, the listing scratch file uses the listingname directory. 

-o objname Generated object file uses the objname pathname. A colon 
following objname provides a directory pathname rather than a file 
name. 

-pagesize (/en) (, wid) Set the page size of -s and -I listings according 
to a length and width integer. Default values are len = 74 and wid = 
130 with Monaco 7. 

-print mode (,mode2) Set one of the following print directive modes: 
(NO)GEN, (NO)PAGE, (NO)WARN, (NO)MCALL, (NO)OBJ, (NO)DATA, (NO)MDIR, 
(NO)HDR, (NO)LITS, (NO)STAT, (NO)SYM. 

-p Write module names, error totals, warnings, and compilation time to the 
diagnostic file. 

-s The option -print NOOBJ makes a compact listing file. 



229 Chapter 24 

-t Display the assembly time and number of lines to the diagnostic file. 

-w Turn off warning messages. 

-wb Turn off branch warning messages. 

Backup Generate file backup script 

Backup (optionlist) -from folder -to folder (filelist) 

Writes to standard output a Shell command file consisting of Duplicate 
commands that, when executed, make backup copies of folder files accord
ing to the modification date. The folder parameter can be replaced with a 
drive number (1 or 2). 

Unless an option directs otherwise, a file on the from folder must also 
exist on the -to folder, both source and destination files must have the same 
type and creator, and the destination file must have a modification date that 
is older than that of the source file. 

Options 

·a Write a Duplicate command for all source files that do not exist in the 
destination. 

-alt Seek alternate drive numbers when additional disks are requested by 
the -m option. 

-c Write a Shell Newfolder command to output when a source folder name 
does not exist in the destination and the -a option is used. 

-check checkopt (,checkoptlist) Generate file existence reports based 
upon the checkopt parameter value of from, to, allfroms, alltos, folders, or 
newer (destination newer than source). 

-co filename Write the -check report to filename instead of to the di
agnostic file. 

-compare (only,' option List') I 'option list' Write Shell Compare commands to 
output for all type TEXT files that produce Duplicate commands. When 
only is included, Duplicate commands are omitted. 

-d Write Shell Delete commands to output for all destination folder files that 
don't exist in the source folder. 

-do (only,'commandlist') I 'commandList' Write a Shell command string to 
output for all files that produce Duplicate commands. When only is 
included, Duplicate commands are omitted. 

-e Write Shell Eject commands to output after Duplicate commands are gener-



230 Part Three 

ated, or eject a parameter drive (1 or 2) when there are no files to 
duplicate. 

-from folder I drive Search for source files from the specified folder or 
drive (1 or 2). A sequence of file name parameters can be substituted 
for the option. 

-I Write a listing of files in the source folder to output. 

-m Dialog box requests that additional disks be inserted for backup to more 
than one disk. The -n option, when used with the -r option, causes 
nested files to generate Duplicate commands with leading spaces. 

-p Write information about the backup to output. 

-r Commands operate recursively on subfolders and their nested files. 

-revert Files in the destination folder with newer modification dates than 
their counterparts in the source folder revert (generate Duplicate com
mands) to their older form. 

-since date (,time) I ,(time) I filename Write Duplicate commands when the 
modification date is newer than the date (mm/dd/yy) and time 
(hh,mm,ss) or modification date of the parameter filename. 

-sync Write duplication commands whenever one file version is newer than 
another regardless of the source or destination. 

-t type Limit duplication criteria to files of the parameter type. 

-to folder I drive Search for destination files from the specified folder 
or drive (1 or 2). A sequence of file name parameters can be substi
tuted for the option. 

-y Output Duplicate commands do not use, by default, the -y option. 

Beep Create beep sound 

Beep (note (,duration (,level))) 

Produces a tone on the Macintosh speaker according to the parameter 
values. Omitting all parameters generates a simple beep. 

The note parameter (A to G) can be preceded by an optional number 
(-3 to 3) for octaves below or above middle C, and followed by an optional 
sharp (#)or flat (b) sign. (Quote entire parameter if you use a sharp sign.) 
The note parameter can also be supplied as the count field of the sound 
driver's square wave generator. The duration integer is measured in sixtieths 
of a second (default = 15). The sound level integer must be in the range of 0 
to 255 (default = 128). 



231 Chapter 24 

Begin ... End Set begin and end of a command block 

Begin ; commandlist ; End 

Provides parenthetical bounding so that commands enclosed with Begin 
and End are treated as a single unit. The Shell's special command symbols for 
pipe, conditional, and 1/0 operations (see the MPW Reference Manual) affect 
the unit as a whole when inserted after End. The commandList must be 
bounded by semicolons or Return characters. 

Break Break execution of For or Loop command 

Break (If expression) 

Provides the endpoint for a For or Loop command. If you omit If expres
sion, a break always occurs. Otherwise, a break occurs only when expres
sion is true. 

BuildCommands Write command script for build 

BuildCommands (optionlist) program 

Writes to standard output the commands needed to build the parame
ter program. 

Option 

·e Write a complete set of Build commands regardless of the need to rebuild 
any particular file. 

BuildMenu Display the menu for build 

Build Menu 

Adds the Build menu to the menu bar. Menu items include Create Build 
Commands ... , Build ... , Full Build ... , Show Build Commands ... , and Show 
Full Build Commands ... . 



232 Part Three 

BuildProgram Perform the program build 

BuildProgram program (optionlist) 

Builds the parameter program and writes the build command script to 
standard output. 

Option 

-e Rebuild the program completely regardless of the need to rebuild any 
particular file. 

C Compile C source code 

C (optionlist) (filelist) 

Compiles C source code of the specified file according to the option 
settings. Source code files must end in the suffix .c (i.e.,fileName.c). Comple
tion of the compilation produces an object code file that ends with the suffix 
.c.o (i.e.,fileName.c.o). More than one file can be specified for compilation
each file is compiled separately. Omitting the fileList parameter compiles to 
standard input and creates the object file c.o. Files and options can be listed 
in any order, though the -case on option has special requirements. 

Options 

-c Include comments in the preprocessor output. 

-d name Equate name with the value 1 in the preprocessor. 

-d name= string Equate name with the value string in the preproces-
sor. 

-e Write the output of the preprocessor to standard output without compil
ing the program or producing an object file. 

-g Produce stack frame pointer in register AG for all functions. The proce
dure name is put into the object code. 

-ga Produce stack frame pointers in register AG for all functions. 

-i pathname (,pathname2) Search Include files in the specified directo-
ries. 

-o objname Compiled object file uses the objname pathname. A colon 
following objname provides a directory pathname rather than a file 
name. 



233 Chapter 24 

-p Write information about the progress of the command to the diagnostic 
file. 

-q Optimize speed at the possible expense of code size. 

-q2 Additional optimization used only when memory locations are changed 
by explicit stores. 

-s name Assign a name to an object code segment. 

-u name name is undefined in the preprocessor. 

-w Compiler warning messages do not occur. 

-x6 MOVE #0,x instructions replace CLR x instructions for non-stack 
addresses. 

-x55 Sign the bit fields of type int, short, and char. 

-z6 Enumerated data types are 32 bits in size. 

-z84 Use language anachronisms. 

Canon Copy using canonical spelling 

Canon (-a) (-c n) (-s) dictionary (filelist) 

Changes the spelling of a file's identifiers using a dictionary of canonical 
spelling. The file's data forks are copied to standard output. OmittingfileList 
causes standard input to be copied. 

The text file dictionary contains (first) the identifier to replace and 
(second) its canonical spelling. When a line of dictionary contains only a 
single identifier, all case forms of the identifier are replaced with the exact 
form shown. 

Options 

-a Read the characters @, $, and % as letters of an identifier. 

-c n Identifier look-up matches only the first n characters. 

-s Identifier look-up matches only when case is identical. 

Catenate Concatenate files tjoin into one file) 

Catenate (filelist) 

Joins files by reading their data forks in the order shown in fileList, 



234 Part Three 

then writing the result to standard output. Omitting the input file causes 
standard input to be read. 

Clear Clear text without saving to Clipboard 

Clear (-c count) selection (window) 

A selection of lines is removed without being copied to the Clipboard. 
Adjustment is made to the target window unless otherwise specified by the 
window parameter. 

Option 

-c count Perform the command count times. 

Close Close window 

Close (-a) (-n I -y) (windowlist) 

The specified window is closed. Unless an option directs otherwise, 
unsaved changes to a window produce a dialog box to confirm the action. 
Omitting the windowList parameter closes the target window (second from 
the top). 

Options 

-a Close all open Shell windows. 

-n Close the contents of windowList without a save, circumventing the 
dialog box. 

-y Save, then close, the contents of windowList, circumventing the dialog 
box. 

Compare Display comparison of text files 

Compare (optionlist) filet (fi/e2) 

The differences between two specified text files are written to standard 
output. Each line of text that does not match its sequential line in the other 



235 Chapter 24 

file is placed in a stack maintained for each file. The command attempts to 
resynchronize matching lines of text after a mismatch is found. Omitting the 
file2 parameter causes the standard input file to be compared to filel 

Options 

-b Remove trailing blanks and compress a series of blanks to one blank. 

-c co/1-co/2 (,co/1-co/2) Compare files only within the specified range of 
columns. The first range of columns applies to file1, the second range 
to file2. If the second range is omitted, both files use the first range. 
The default value of col1 is 1. The default value of col2 is 255. Tabs 
must be expanded for the -c option to work. 

-d depth Determine the largest value that the stack can grow before 
halting resynchronization. The value of the integer depth ranges from 
1 to 1000. The default, using dynamic grouping, is 1000. When the -s 
option is used for static grouping, the default is 25. 

-e context Show conte}(.t lines, using a parameter value of 1 to 100, 
surrounding the nonmatching lines. 

-g groupingfactor Help determine a mathematical factor for recognizing 
resynchronization (the number of lines that must match for two files 
to be considered resynchronized). The lower limit and default value is 
2 for dynamic grouping. 

-h width Show the two stacks of nonmatched lines horizontally. The 
total number of characters allowed in a line is given by the width 
parameter and must be in the range of 70 to 255. 

-I Do not recognize differences in uppercase and lowercase. 

-m Do not output nonmatching lines. 

-n Withhold messages to standard output when both files match. 

-p Include the command's version information in the diagnostic file. 

-s The grouping factor becomes static. 

-t Remove trailing spaces without space compression. 

-v Output file differences in a line-by-line format. 

-x Do not expand tabs into spaces. 

Confirm Display message in confirmation dialog 

Confirm (-t) (messagelist) 

Creates a dialog box that contains the parameter messageList with OK 



236 Part Three 

and Cancel buttons. The selection result is stored in the Status variable. OK 
returns O and Cancel returns 4. Omitting the messageList parameter causes 
standard input to be read. 

Option 

-t Produce a three-button dialog box that offers Yes, No, and Cancel. Yes 
returns O, No returns 4, and Cancel returns 5. 

Continue Continue at start of For or Loop command 

Continue (If expression) 

Provides for a return to the starting point of a For or Loop command. Or, 
in the case of the final iteration, continue beyond For or Loop. If you omit If 
expression, a continuation always occurs. Otherwise, a continuation occurs 
only when expression is true. 

Copy Copy text onto Clipboard 

Copy (-c count) selection (window) 

A selection of lines is reproduced onto the Clipboard. Adjustment is 
made to the target window unless otherwise specified by the window pa
rameter. 

Option 

-c count Perform the command count times. 

Count Display file's line and character count 

Count (-c I -I) (filelist) 

The number of lines and characters of an input file are tabulated, and 
the results are written to standard output. Each line of output contains the 
file name, line count, and character count, in that order. Separate totals for 



237 Chapter 24 

each file in fileList are produced as well as the grand totals of fileList. 
Omitting the fileList parameter causes standard input to be read. 

Options 

-c Display only character counts. 

-I Display only line counts. 

CreateMake Make build commands automatically 

CreateMake (-Application I -Tool I -DA) program filelist 

Creates a file (makefile) that contains the commands necessary to build 
the program parameter. The makefile's name is the program name with the 
suffix .make appended. MPW's standard library files are automatically 
linked with the program, and additional library files can be specified as 
parameters. Unlike makefiles created with the Make command, there are no 
dependencies on Include and Uses files. 

Cut Cut text after copying to Clipboard 

Cut (-c count) selection (window) 

A selection of lines is reproduced onto the Clipboard, then removed. 
Adjustment is made to the target window unless otherwise specified by the 
window parameter. 

Option 

-c count Perform the command count times. 

CvtObj Convert object files, Lisa to MPW 

CvtObj (-n namesFile) (-o outputFile) (-p) LisaObjFile 

Converts an object file that was created on a Lisa to the object file 
format of the Macintosh Programmer's Workshop. 



238 Part Three 

Options 

-n namesFile Name the conversion file namesFile. 

-o outputFile Name the output file outputFile. 

-p Write information about the command's progress to the diagnostic file. 

Date Display the clock's date and time 

Date (-a I -s) (-d I -t) 

Writes the date and time from the Macintosh clock to standard output. 

Options 

-a Shorten the date notation by using three-character abbreviations for the 
month and the day of the week. 

-d Write only date output. 

-s Shorten the date notation by using mm/dd/yy notation and not providing 
the day of the week. 

-t Write only time output. 

Delete Delete disk files and directories 

Delete (-c I -n I -y) (-i) (-p) name 

Removes the file name or, if name represents a directory, all files and 
subdirectories in the directory. Unless an option directs otherwise, the 
command produces a dialog box to confirm the removal of a directory. 

Options 

-c Cause a cancel response to any confirmation dialog box, halting the 
command when a directory is found. 

-i Do not print error messages and return a status value of zero, which 
represents no errors. 

-n Cause a no response to any confirmation dialog box, not deleting any 
directory that is found. 

-p Write information on the progress of the deletion to the diagnostic file. 



239 Chapter 24 

-y Cause a yes response to any confirmation dialog box, deleting any direc
tory that is found. 

DeleteMenu Delete user-defined menus 

DeleteMenu (menuName (itemName)) 

Removes the menus and menu items that are user-defined. User-de
fined menus are created with the command AddMenu. Omitting itemName 
deletes all user-added items for menuName. Omitting itemName and 
menuName deletes all user-added items. 

DeRez Decompile resources 

DeRez (optionlist) resourcefile (resourceDescriptionFi/elist) 

Translates the compiled code of the specified file's resources into a text 
description of the file. The description is written to standard output and is 
in the same format that the Rez (resource compiler) program uses for input. 

The parameter resourceDescriptionFileList specifies one or more files of 
formatted type declarations that enable the command to format resource 
data. Omitting resourceDescriptionFileList outputs resource data in hexa
decimal only. 

The file Types.r contains the common Macintosh resource declarations. 
The file SysTypes.r contains the system resource declarations. Both files are 
originally stored in the Rincludes folder. 

Options 

-d(efine) macro(= data) Equate the specified macro variable with the 
value data or, if data is omitted, the null string. 

-i Use one or more pathnames in searches for #include files. 

-m(axstringsize) n Limit output strings to n characters, where n ranges 
from 2 to 120. 

-only type Limit the command's scope to only resources of the speci
fied literal type. 

-only typeExpr ((ID1(:/D2)) I resourceName) Limit the command's scope to 
only resources of the specified type and, if specified, ID, range of IDs, 
or resourceName. The type may be given as an expression when 
proper quoting is used. 



240 Part Three 

-p Write information about the progress of the command to the diagnostic 
file. 

-rd Redeclared resource types do not write a warning message to output. 

-s(kip) type Limit the command's scope by omitting resources of the 
specified literal type. 

-s(kip) typeExpr ((ID1(:/D2)) I resourceName) Limit the command's scope by 
omitting resources of the specified type and, if specified, ID, range of 
IDs, or resourceName. The type may be given as an expression when 
proper quoting is used. 

-u(ndef) macro Undefine a macro variable. 

Directory Set or display the default directory (MPW version 1.0) 

Directory (-q) (directory) 

Establishes a new default directory when a parameter is given. Omit
ting the directory parameter writes the pathname of the current default 
directory to standard output. 

Option 

-q Write the special characters in displayed file names unquoted. 

DirectoryMenu Display the menu for directory 

DirectoryMenu (directorylist) 

Adds the Directory menu to the menu bar. Menu items include Show 
Directory and Set Directory. When a parameter list is given, the directories 
appear as menu items. When a new directory is set as the current directory, 
it is added as a menu item. 

DumpCode Disassemble object code of resource fork 

DumpCode (optionlist) resourceFile 

Translates the object code in a file's resource fork to formatted assem-



241 Chapter 24 

bly code. The formatted assembly code is written to standard output. Disas
sembled displays are in hexadecimal and ASCII. The object code in a file's 
data fork can be disassembled using the DumpObj command. 

Options 

·d Write CODE resource information to standard output without disassem-
bly and code display. 

·di Do not write the data initialization code to output. 

·h Do not write header information to output. 

·jt Do not format the jump table. 

·n Write only a resource's names to output. 

·p Write information about the progress of the disassembly to the diagnos
tic file. 

·r byte1 (,byteN) Disassemble only within the specified range of bytes. 
Omitting byteN causes disassembly through the end of the segment. 

-rt type(= ID) Disassemble only for the single resource of the speci
fied type and ID number. Omitting the ID number includes all re
sources of the type. 

-s name Disassemble only the single resource of the specified name. 

DumpObj Disassemble object code of data fork 

DumpObj (optionlist) objectFile 

Translates the object code in a file's data fork to formatted assembly 
code. The formatted records and code are written to standard output. The 
object code in a file's resource fork can be disassembled using the DumpCode 
command. 

Options 

·d Write object file information to standard output without disassembly 
and data display. 

·i Do not use the names of IDs in place of ID numbers. 

·h Do not write header information to output. 

·I Write the file placement of object records to output. 

-m name Disassemble and display the specified module. 

-n Write only names to output. 



242 Part Three 

-p Write information about the progress of the disassembly to the diagnos· 
tic file. 

-r byte1 {,byteN) Disassemble only within the specified range of bytes. 
Omitting byteN causes disassembly through the end of the segment. 

Duplicate Duplicate disk files and directories 

Duplicate (-c I -n I -y) (-d I -r) (-p) namelist destination 

Reproduces the specified file or directory. A duplicated file is given the 
name destination or, if destination is a directory, placed within destination. A 
duplicated directory has all its contents reproduced in destination. Unless an 
option directs otherwise, overwriting an existing file or directory produces 
a dialog box asking confirmation. 

Options 

-c Halt the command before an overwrite instance, circumventing the con
firmation dialog box. 

-d Reproduce only the data fork. 

-n Disallow overwrite instances, circumventing the confirmation dialog 
box. 

-p Write information on the progress of the duplication to the diagnostic 
file. 

-r Reproduce only the resource fork. 

-y Allow overwrite instances to occur directly, circumventing the confirma-
tion dialog box. 

Echo ~cho (display) parameters 

Echo (-n) (parameterlist) 

The parameter values are written to standard output, followed by a 
carriage return. 

Option 

-n The character insertion point immediately follows the last line of output 
by suppressing the closing carriage return. 



243 Chapter 24 

Eject Eject disk volume 

Eject (-m) volumelist 

The specified volume is taken off-line or, in the case of a floppy disk, 
ejected. A colon must follow the volume name unless volumeList is a disk 
drive number. 

Option 

-m The volume remains mounted. 

Entab Change consecutive spaces into tabs 

Entab (optionlist) (filelist) 

Converts a file's consecutive spaces to tabs, then writes the file to 
standard output. Unless an option directs otherwise, single quote (') and 
double quote (") characters function as left and right delimiters within 
which tabs are not placed. 

Options 

-d tabSetting Convert a file's tabs to consecutive spaces. The parame
ter value determines the tab stop setting. 

-I quotes A string of nonblank characters functions as an opening 
quote character, thus assuring that Entab will not place tabs within 
quoted strings. The -r quotes option must also be included. 

-n All quotes are susceptible to Entab's conversion. 

-p Write information about the progress of the conversion to standard 
output. 

-q quotes A string of nonblank characters functions as an opening 
or a closing quote character, thus assuring that Entab will not place tabs 
within quoted strings. 

-r quotes A string of nonblank characters functions as an opening 
quote character, thus assuring that Entab will not place tabs within 
quoted strings. The -I quotes option also must be included. 

-t tabSetting Convert consecutive spaces to tab characters in the 
detabbed input. The -d option, which causes a file to be detabbed, 



244 Part Three 

should be used prior to this option. The parameter value determines 
the tab stop setting. 

Equal Display file and directory inequalities 

Equal (optionList) nameList destination 

Checks for equality between the specified files or directories. The file, 
fork, and byte locations of any differences are written to standard output. 
The parameters must be both files, or both directories, or the file nameList 
and the directory destination. In the last case, nameList is checked for 
equality with a file of the same name within destination. 

Options 

-d Compare only the data fork. 

-i Do not output missing file differences when files in nameList are not in 
destination. 

-p Write information on the progress of the comparison to the diagnostic 
file. 

-q Do not write differences to standard output. Only status codes are 
affected. 

-r Compare only the resource fork. 

Erase Erase (initialize) disk volume 

Erase (-s) (-y) volumeList 

Deletes all previous contents by initializing the specified volume(s). A 
colon must follow the volume name unless volume is a disk drive number. 
Unless an option directs otherwise, erasing a volume produces a dialog box 
asking confirmation. 

Options 

-s Initialize the disk in the single-sided, 400K, non-HFS format. 

-y Initializations occur directly, circumventing the confirmation dialog box. 



245 Chapter 24 

Err'I'ool Create text file of error messages 

ErrTool (optionlist) (fi/elist) 

Creates a text file-from standard input or the parameter fileList-that 
contains the messages used when an error is encountered. 

Options 

-I Write error messages and their error numbers to standard output. 

-o objname The output file takes the given pathname or is inserted 
in the given directory name. 

-p Write information about the progress of the command to the diagnostic 
file. 

Evaluate Evaluate list of words as an expression 

Evaluate (wordlist) 

The specified words make up an expression whose result is written to 
standard output. Because spaces are used to separate each part of the 
expression, strings that use spaces need to be enclosed in quotation marks. 

Execute Execute command file with global scope 

Execute commandFile 

Runs a command file such that aliases, exports, and variable definitions 
remain defined after execution. Running a command file without using 
Execute causes such definitions to be recognized only with local scope, that is, 
within the command file. A command parameter that is not a file will run as 
if the command appeared by itself. 

Exists Find out if a file or directory exists 

Exists (-d I -f I -w) (-q) name list 



246 Part Three 

Writes to standard output the names of files or directories that exist 
and meet any option specifications. 

Options 

-d Output only a directory. 

-f Output only a file. 

-q Write pathnames unquoted. 

-w Output only a file that is not open or locked. 

Exit Exit from command or command file 

Exit (status) (If expression) 

Ends the execution of a previous command or, if part of a file, the file 
itself. The parameter status can be included to read the status value of the 
command file. Omitting If e]<.pression causes an exit to occur always. Other
wise, an exit occurs only when e]<.pression is true. 

Export Export variable names to commands 

Export (-r I -s I namelist) 

Allows the specified variable names to be used in command files and 
tools. Omitting the parameter writes the names of the current command 
file's local variables to standard output. Variables that are exported from the 
Startup file are available for use anywhere in the Shell environment. 

Options 

-r The output unexports variables. 

-s The output only lists exported variables. 

FileDiv Divide file into files of specified length 

FileDiv ( ·f) ( -n splitpoint) (-p) file (prefix) 

Splits a file into smaller files and provides the new files with numeric 



247 Chapter 24 

names. Unless an option directs otherwise, the input file is split into files 
that are 2,000 lines in length and use the input file name as a prefix in the 
manner prefi]<.01, prefi}<.02, and so on. 

Options 

-f The file break occurs only when there is a formfeed character (the first 
character of a line is ASCII $DC) beyond the point where the file would 
otherwise be split. This can be used with the -n splitpoint option. 

-n sp/itpoint The file break occurs at the point where each file has 
splitpoint number of lines. The -f option can be used to extend the size 
of a file beyond splitpoint lines. 

-p Write information about the progress of the file division to the diagnos
tic file. 

Files List contents of files and directories 

Files (optionlist) (namelist) 

Names and, if requested, other information about files and directories 
are written to standard output. Omitting the nameList parameter causes the 
current directory to be listed. 

Options 

-c creator Write only files with the specified creator field to output. 

-d List only subdirectories. 

-f List full pathnames. 

-i Treat directories as files. 

-I The output information includes name, type, creator, size, attributes, 
modification date, and creation date. The attribute information is 
given by the case of the attribute's first letter (except for inVisible, 
which is represented by V). Uppercase represents the value 1 and 
lowercase represents the value 0 for the following: Inited, (in)Visible, 
Bundle, System, Protected, Open, Changed, Locked, and Desktop. 

-m column Write output in multicolumn format. 

-n Do not output headers in long or extended format. 

-q Disable the quoting of special characters in displayed file names. 

-r Write subdirectories recursively. 

-s Do not write directory names to output. 



248 Part Three 

-t type Write only files with the specified type field to output. 

-x format Write output in extended format, where format is a string 
of one or more of the following characters: a (flag attributes), b (data 
fork byte size), c (file creator), d (creation date), g (group), k (both forks 
kilobyte size), m (modification date), o (owner), p (privileges), r (re
source fork byte size), or t (file type). 

Find Find and select specified text 

Find (-c count) selection (window) 

The selection parameter is located and made the current selection. The 
search is made in the target window unless otherwise specified by the 
window parameter. 

Option 

-c count The command finds the count occurrence of the selection. 

Font Set font and font size 

Font fontname fontsize (window) 

Replaces the current font settings with the parameter font and size. 
The change is made in the target window unless otherwise specified by the 
window parameter. 

For Execute command list for each parameter 

For name In wordlist ; commandlist ; End 

Performs a set of commands for each parameter. The loop performs the 
set of commands for each word in wordList, assigning the current word to 
the variable name for each repetition. A word list must begin with the word 
In. The For structure must end with the word End. The command list must be 
bounded by semicolons or Return characters. 



249 Chapter 24 

Help Display information in help file 

Help (-f he/pFile) (commandlist) 

Writes information about the specified commands to standard output. 
Omitting the commandList parameter produces information on all help file 
commands. 

Option 

-f he/pFile Seek information in the specified file instead of the de
fault file, MPW.Help. 

If Execute command if true expression 

If expression ; commandlist ; (Else If expression commandlist) (Else 
commandlist) ; End 

Performs a single set of commands upon evaluating an e']Cpression as 
true. Multiple Else If conditions are permitted as well as a final catchall Else 
condition. The If structure must end with End. The command list must be 
bounded by semicolons or Return characters. 

Lib Create library of object files 

Lib (optionlist) objFilelist 

Joins two or more object files into a single library file. Unless an option 
directs otherwise, a library output file is created with the name Lib.Out.a, 
representing a concatenation of the .o input files. 

Options 

-b A big Lib occurs so that larger input files do not cause a heap error. 

-bf A big file Lib occurs so that numerous files do not cause a file number 
error message. 

·bs nn A big size Lib occurs so that large files do not cause a 
memory error message. The parameter nn represents blocks of the 
buffer that can range in number from 2 to 64. The default buffer size 
is 16 blocks. 



250 Part Three 

-d Do not write to output warning messages about data and code names 
that appear in more than one file. 

-df deleteFile Delete external modules named in the text file deleteFile. 
The Linker's -uf option creates deleteFile. 

-dm name (, namelist) Delete from the library file each external module 
listed. Listing an entry name deletes its entire module. 

-dn name (,namelist) Delete from the library file each external name 
listed such that the scope of the name has only local scope. 

-mn oldName = newName Substitute a name for a module or entry point. 

-o name.o The library output file takes the name name.a. 

-p Write information about the progress of the command to the diagnostic 
file. 

-sg newSeg = oldSeg {,o/dSeg2List) Name a segment of code newSeg in
stead of the specified old segment names. 

-sn oldSeg = newSeg Name a segment of code newSeg instead of oldSeg. 
' -w Do not write warning messages to output. 

Link Link object files 

Link (optionlist) objFilelist 

Performs a link of object files to create an application, desk accessory, 
or driver. Unless an option directs otherwise, a linked output file is created 
with the name Link.Out, representing the link of the .o input files. The 
linked segments become CODE resources of the output file. 

Options 

-b A big link occurs, implementing both the bf and -bs 4 options. 

-bf A big file link occurs so that numerous files do not cause a file number 
error message. 

-bs blocks A big size link occurs so that large files do not cause a 
memory error message. The parameter blocks represents blocks of the 
buffer that can range in number from 2 to 64. The default buffer size 
is 16 blocks. 

-c creator Change the creator from the default value ???? to the 
specified creator. 

-d Do not write to output warning messages about data and code names 
that appear in more than one file. 



251 Chapter 24 

-da Output segment names take on desk accessory names. 

-I Include a location map in the linked file. 

-la Include anonymous symbols in the location map. 

-If Include symbol definition information in the location map. 

-m mainEntry Set the specified module or entry point name as the 
main entry point. 

-ma name=alias Allows a module or entry point name to be substi-
tuted with the name alias. 

-o outputFile The linked output file takes the name outputFile. 

-opt Optimize for Object Pascal. 

-p Write information about the progress of the command to the diagnostic 
file. 

-ra (seg) = nn Give a segment's resource flags the value nn. Omitting 
the name seg assigns all segments other than 0, 1, and 2 to the value nn. 

-rn Resource names do not take on the name of the segment. 

-rt type= ID Change a resource type from the default of CODE to 
the specifed type, and change the starting ID from the default of O to 
ID. 

-sg newSeg = oldSeg (,o/dSeg2List) Name a segment of code newSeg in
stead of the specified old segment name. 

-sn o/dSeg = newSeg Name a segment of code newSeg instead of oldSeg. 

-ss size Increase the maximum segment size from the default size of 
32, 760 bytes to the value of size. 

-t type Change the type from the default value APPL to the speci
fied type. 

-uf deleteFile Identify in the text file the deleteFile modules and entry 
points that are not used. The -df option of the Lib command can use this 
file as input. 

-w Do not write warning messages to output. 

-x crossRefFile Write a cross-reference listing of the link to output. 

Loop Execute command list until Break 

Loop ; commandlist ; End 

Performs the specified commands over and over until a Break command 



252 Part Three 

exits the structure. The Loop structure must end with End. The command list 
must be bounded by semicolons or Return characters. 

Make Make new program version 

Make (optionlist) (destinationFilelist) 

Reads a file that specifies dependency rules of program construction, 
then writes to standard output the series of Shell commands that, when 
executed, create a new version of the destination file(s). Unless an option 
directs otherwise, the rules of program execution are sought from a file 
named MakeFile. Omitting destinationFileList causes the first destination file 
listed in MakeFile to be created. 

Options 

-d name(= value) Define variable names and their values. 

-e Recreate destination files even if they do not need revision. 

-f makefile Read the rules of program construction from the parame-
ter makefile instead of the default file named MakeFile. 

-p Write information about the progress of the command to the diagnostic 
file. 

-r Write the dependency graph roots to standard output. 

-s Write a graphic representation of the dependency rules o! program 
construction to standard output. 

-t Update the dates of affected files, without otherwise recreating the files. 

-u Write the names of any unfound targets to the diagnostic file. 

-v Write additional information about targets to the diagnostic file. 

-w Do not write warning messages to output. 

Mark Mark a selection of text 

Mark (-n I -y) selection name window 

Provides a marker name to a selection of text in the given window. The 
marker name appears as a menu item in the Mark menu when the window 
is active. 



253 Chapter 24 

Options 

-n An old marker does not replace a new marker of the same name, 
circumventing the confirmation dialog box. 

-y An old marker replaces a new marker of the same name, circumventing 
the confirmation dialog box. 

Markers Display text selection markers 

Markers window 

Writes to standard output the names of all markers that have been 
assigned to the parameter window. 

MDSCvt Convert assembler source, MDS to MPW 

MDSCvt (optionlist) (filelist) 

Changes selected items in the assembly source code of files written for 
the Macintosh Development System so that the code can be compiled by the 
Macintosh Workshop Assembler. The output file name is the input name 
with the .a suffix. Omitting fileList causes standard input to be converted 
and written to standard output. 

Options 

-d The input file uses spaces in place of all tabs. 

-e The input file puts spaces in place of all tabs, then reinserts tabs in the 
output file according to the tab setting. Tabs can be set using the "t 
option. 

-f directivesFile Search the parameter file for uppercase and lowercase 
information. By default, directives are output in uppercase as specified 
in the file MDSCvt.Directives. 

-g globals The main program conversion reserves globals space below 
the AS pointer, where globals is a negative decimal or hexadecimal 
value. 

-i Modify for conversion of an Include file. 

-m The output does not contain Lisa Assembler compatibility directives. 

-main The conversion emulates main program code. 



254 Part Three 

-n Do not append the .a suffix to the output file name. 

-p Write information about the progress of the command to standard output. 

-pre(fix) string The output file name has the specified string attached 
in front of the input file name. 

-suf(fix) string The output file name has the specified string, instead 
of the default .a suffix, appended to the input file name. 

-t value The Shell tab setting takes a value in the range of 3 to 
255. By default, the tab setting is 8. 

-u c Resolve code name conflicts with MPW directives by appending 
the character c to the code name. By default, the character # is 
appended. 

-! identifier The main program's entry point is specified by identifier. 

Mount Mount disk volumes 

Mount drivelist 

Puts the volumes in the specified disk drives on -line so the Shell can 
locate their contents. 

Move Move contents of files and directories 

Move (-c I -n I -y) (-p) namelist destination 

The contents of the file or directory specified by nameList are placed in 
destination. If destination is a file, nameList replaces it. If a file or directory 
within destination already exists, a dialog box asks confirmation to overwrite 
objects of the same name. 

Options 

-c A same-name object conflict cancels the command, circumventing a 
confirmation dialog box. 

-n Same-name objects are not overwritten, circumventing a confirmation 
dialog box. 

-p Write information on the progress of the command to the diagnostic file. 

-y Same-name objects are overwritten directly, circumventing a confirma-
tion dialog box. 



255 Chapter 24 

MoveWindow Move window to screen coordinates 

MoveWindow h v (window) 

Positions the top-left corner of the window to the global coordinates h 
v, where 0 0 is the top left of the Macintosh screen. Omitting the window 
parameter causes the target window (second from the top) to be used. 

New Open new window and make active 

New (namelist) 

Creates a new window with the specified name or, if no name is given, 
the Shell assigns a number appended to the name Untitled-. 

Newer Display newer file names 

Newer (-c) (-e) (-q) namelist target 

Write to standard output the names of the specified parameter files 
whose modification dates are more recent than the target file. 

Options 

-c Output depends on creation dates instead of modification dates. 

-e Write files with the same modification date to output. 

-q Write pathnames unquoted. 

NewFolder Open a new empty folder 

NewFolder namelist 

Creates new subfolders of the current folder and assigns them the 
specified names. The command works only on HFS disks. 



256 Part Three 

Open Open existing window and make active 

Open (-n I -r) (-t) (namelist) 

Makes the specified window active and, therefore, topmost on the 
desktop. If a name is not given, the n option must be used. 

Options 

-n The new window takes a name assigned by the Shell. 

-r Open the specified window for read-only access. 

-t Open the specified window as the target window instead of the active 
window. 

Parameters Display parameters 

Parameters (parameterslist) 

Lists the specified parameters in standard output, beginning with (0), 
the name Parameters itself. 

Pascal Compile Pascal source code 

Pascal (optionlist) (filelist) 

Compiles Pascal source code of the specified file according to the option 
settings. Source code files must end in the suffix .p (i.e.,fileName.p). Comple
tion of the compilation produces an object code file that ends with the suffix 
.p.o (i.e.,fileName.p.o). More than one file can be specified for compilation
each file is compiled separately. Omitting the fileList parameter compiles 
standard input and creates the object file p.o. 

Options 

-align Align data items along long word boundaries. 

·b AS-relative references replace PC-relative references at procedure and 
function addresses. 



257 Chapter 24 

-c Check the source code for syntax errors without producing an object 
file. 

-d name= TRUE I FALSE The variable name, which represents compile 
time, takes a true or false value. 

-e errLogFi/e Write errors to errLogFile in addition to the diagnostic 
file. 

-h Do not write unsafe handle error messages to output. 

-i pathname {,pathname) Search for Include and Uses file names in the 
specified directories. 

-k prefixpath Include $LOAD files in the directory specified by the 
parameter. 

-mc68020 Optimize code for the 6802.0 processor. 

-mc68881 Optimize code for the 68881 coprocessor. 

-o objname Modify the pathname for the generated object file. A co-
lon following objname provides a directory pathname for the output 
file. 

-ov Report overflows. 

-p Write information about the progress of the command to the diagnostic 
file. 

-r Do not report range errors. 

-t Write compilation time to the diagnostic file. 

-u Initialize local and global data to the value $72.67. 

-w Do not use the peephole optimizer. 

-y pathname Store the intermediate files generated by the compiler in 
the specified directory. 

-z Do not include embedded procedure names in the object code. 

PasMat Format Pascal programs 

PasMat {optionlist) (inputfile (outputfi/e)) 

Displays Pascal source code according to the options selected. Omitting 
the input and output file parameters causes standard input and output, 
respectively, to be used. Most of the options are used to override the initial 
default settings of input file directives. The default settings can also be 
overridden by including the option's directive equivalent, shown in paren
theses, in the input file. 



258 Part Three 

Options 

-a Turn off CASE label bunching (a-). 

-b Turn on IF bunching (b + ). 
-body Align procedure blocks with their BEGIN and END brackets (body+). 

-c BEGIN does not start a new line (c + ). 
-d { } replace (* *)as comment delimiters (d + ). 
-e Display identifiers in capital letters (e + ). 
-entab Convert consecutive spaces to tabs as set by the tab stop value or tab 

directive. 

-f Turn off formatting (f-). 

-g Group assignment and call statements (g + ). 
-h Turn off FOR, WHILE, and WITH bunching (h-). 

-i pathname (,pathnamelist) Search for Include files in the directory 
pathname. 

-in Process Include files (in+). 

-k Indent statements between BEGIN and END brackets (k + ). 
-I Copy reserved words and identifiers literally (I+). 

-list /istingFl/e Write a formatted source listing to listingFile. 

-n Group formal parameters (n + ). 
-o width Output line width ranges up to 150 characters (default 

80). 

-p Write information about the progress of the command to the diagnostic 
file. 

-pattern = pattern = replacement= Include files are updated with new 
pathnames and remain structurally consistent with the input file. The 
sequence of characters specified by pattern are replaced by the string 
replacement. 

-q The ELSE IF structure indents IF on the next line after ELSE (q + ). 
-r Show reserved words in uppercase (r + ). 
-rec Indent a RECORD's file list under its identifier. 

-s renameFile Rename identifiers specified in the first column of 
renameFile to the contents of the file's second column. The old and new 
identifier names share the same line of renameFile, separated by 
spaces or a tab. 

-t tab The tabs of each indentation are tab spaces in length (default 
= 2). 



.259 Chapter 24 

-u Rename identifiers according to how they first appeared In the source 
code. 

-v THEN is written on a new line (v + ). 

-w Display identifiers in uppercase (w + ). 

-x Display operators without surrounding spaces (x + ). 

-y Display : = without surrounding spaces (y + ). 

-z Display commas without a subsequent space (z + ). 

Align colons in VAR declarations (: + ). 

-@ Write CASE tags on new lines (@ + ). 

"-#" Group assignment and call statements in input and output(#+). The 
option's quotation marks are required. 

-_ Remove underscore characters from identifiers (_ + ). 

PasRef Cross-reference Pascal source code 

PasRef (optionlist) (filelist) 

Writes to standard output a reference listing for the variables in the 
specified source code files. Each alphabetic entry contains the line numbers 
in the source where the variable occurs. 

Options 

-a Reference files and units each time they appear. 

-c Do not reference a used unit if its file name is part of fileList. 

-d Reference each specified file individually and separately. 

-i pathname (,pathnamelist) Search for Include and Uses file names in 
the specified directories. 

-I Write identifiers in lowercase letters. 

-ni I -noincludes Do not reference Include files. 

-nl I -nolisting Do not write the input source during referencing. 

-nolex Do not write lexical data to output. 

-nt I -nototal Do not write the line count totals to output. 

-nu I -nouses Do not reference Uses declarations. 

-o Permit Object Pascal code. 

-p Write information about the progress of the command to the diagnostic 
file. 



260 Part Three 

-s Do not write Uses and Include file data to output. 

-t Reference by total source line number. 

-u Write identifiers in uppercase letters. 

-w width The maximum width of a listing is a value of 40 to 255 
(default = 110). 

-x width The maximum width of an identifier is a value of 8 to 63 
(default = size of largest identifier). 

Paste Cut text and paste contents of Clipboard 

Paste (-c count) selection (window) 

A selection of lines is replaced by the contents of the Clipboard. Adjust
ment is made to the target window unless otherwise specified by the win
dow parameter. 

Option 

-c count Perform the command count times. 

PerformReport Create report on performance 

PerformReport (optionlist) 

Writes to standard output the relation of performance data and proce
dure names taken from the link map and performance data files. 

Options 

-a List all procedures. 

-I filename The filename is the input link map file. 

-m filename The filename is the input performance data file instead 
of perform.out, the default file. 

-n NN Display the top NN procedures instead of the default number 
of 50. 

-p Write information about the progress of the command to the diagnostic 
file. 



261 Chapter 24 

Print Print contents of text files 

Print (optionlist) (fi/elist) 

Sends the contents of the specified files to the on-line printer. Omitting 
fileList causes standard input to be printed. 

Options 

-b A round-rect border encompasses the printed page. 

-b2 A -b option border with the header on top of and outside or the border 
that encompasses the printed page. 

-c(opies) n Print n copies of the text files. 

-f(ont) name Use the specified font. Initial font is Monaco 9. 

-ff string A leading string acts like a formfeed character. 

-from n Begin printing at page n (default = 1). 

-h Print the name of the file, the time of printing, and the page number as 
the page header for each page. 

-hf(ont) name Use the specified header font (default = file font). 

-hs(ize) n Use the specified header font size (default = 10). 

-l(ines) n A linefeed spacing adjustment is made so that, font size 
permitting, n lines fill a full page. 

-Is n Lines are spaced according to n (default = 1, single space). 

-md The modification date appears in the header. 

-n Print line numbers along the left side of the text. 

-nw n The field width of the line numbers is n characters (default 
= 5). 

-p Write information about the progress of the command to diagnostic 
output. 

-page n Begin the numbering of pages with n. The default is 1. 

-q quality The ImageWriter prints at the given resolution, where qual-
ity is specified as high, standard, or draft. 

-r Print pages from last to first. 

-s(ize) n Use the specified font size (default font size in resource 
fork or, if unavailable, 9). 

-t(abs) n Use the specified tab setting (default = tab setting in re
source fork or, if unavailable, value of Tab variable). 

-title name Page headers use name as the title (default = filename). 



262 Part Three 

-to n Print to end at page n (default = file's last page). 

-tm n ; -bm n ; -Im n ; -rm n The top, bottom, left, and right page 
margins, respectively, are set to n, where n is the margin width in 
inches. The default value for all margins is o, except for the left 
margin, which has a default value of 0.2778. 

ProcNames Display Pascal block names 

ProcNames (optionlist) (filelist) 

Lists in an indented format all the procedure and function names of the 
input Pascal program or unit. 

Options 

-c Ignore a unit if the unit's $U interface file name is already listed. 

-d Each new file resets its line number count to 1. 

-e No formfeeds after each block listing. 

-f Output is compatible with the PasMat tool. 

-i pathname (, pathnamelist} Search for Include or Uses files in the 
specified directories. 

-n Do not output line number and level information. 

-o Treat the source file as an Object Pascal program. 

-p Write information about the progress of the command to the diagnostic 
file. 

-u Include Uses declarations as input. 

Quit Quit the MPW Shell 

Quit (-c I -n I -y) 

Exits the MPW Shell. 

Options 

-c Causes a cancel response to any confirmation dialog box. 

-n Causes a no response to any confirmation dialog box. 

-y Causes a yes response to any confirmation dialog box. 



263 Chapter 24 

Quote Display parameters in quotation marks 

Quote (-n) (parameterlist) 

Writes parameters to standard output in the same manner as the Echo 
command, except characters treated as special to the Shell are written in 
single quotation marks. 

Option 

-n Do not follow the last parameter with a Return. 

Rename Rename disk files and directories 

Rename (-c I -n I -y) name newname 

Changes the name of a file or directory from name to newname. If a file 
or directory using newname already exists, a dialog box asks confirmation to 
overwrite same-name objects. 

Options 

-c A same-name object conflict halts the command, circumventing a confir
mation dialog box. 

-n Do not overwrite same-name objects, circumventing a confirmation dia
log box. 

-y Overwrite same-name objects directly, circumventing a confirmation dia
log box. 

Replace Find and replace text in window 

Replace (-c count) selection replacement (window) 

The selection parameter is located and deleted, then the replacement 
parameter is inserted at that location. The search is performed in the target 
window unless otherwise specified by the window parameter. 



264 Part Three 

Option 

-c count Repeat the command count times. Using the symbol 0 as 
the value of count repeats the command for all occurrences in the 
direction searched. 

Request Display a request dialog box 

Request (-d default) (message) 

Creates a dialog box that contains the text of message and permits the 
user to type in a response. The response is written to standard output when 
the user selects the OK button. A Cancel button is also offered. Omitting the 
message parameter causes standard input to be read. 

Option 

-d The initial message def a ult appears in the dialog, allowing the user to 
accept or edit it. 

ResEqual Display comparison of resource files 

ResEqual (optionlist) file1 fi/e2 

The differences between two specified resource files are written to 
standard output. 

Option 

-p Write information about the progress of the command to the diagnostic 
file. 

Revert Revert to file as last saved 

Revert (-y) (windowlist) 

Returns the parameter windows to their state when last saved. If no 
windowList parameter is given, the target window (second from top) is used 
by default. 



265 Chapter 24 

Option 

-y The command circumvents the confirmation dialog box. 

Rez Compile resources 

Rez (optionList) (resourceDescriptionFileList) 

Translates a text description of a resource into compiled code. Tuxt 
description input is obtained from resourceDescriptionFileList or, if no file is 
given, standard input. The format for input is the same as the DeRez 
(resource decompiler) program's output. Unless an option directs otherwise, 
the compiled resource output is written to the file Rez.Out. The parameter 
resourceDescriptionFileList specifies a file of formatted type declarations. 
The file Types.r contains the common Macintosh resource declarations. The 
file SysTypes .r contains the system resource declarations. 

Options 

-align word Align resources along word boundaries. 

-align long word Align resources along long word boundaries. 

-a(ppend) Append the command's output to the output file. 

-c(reator) creatorExpr The output file has the creator value as given by 
the expression. By default, the creator is '????'. 

-d(efine) macro(= data) Equate the specified macro variable with the 
value data or, if data is omitted, the null string. 

-e(scape) Print escape characters as extended Macintosh characters. 

-i pathname(s) Search the specified pathname(s) for #include files. 

-o outputFile Give the output file the specified name rather than the 
default name Rez.Out. 

-ov Ignore the protected bit when appending resource output. 

-p(rogress) Write information about the progress of the command to the 
diagnostic file. 

-rd Redeclared resource types do not write a warning message to output. 

-ro The resource map implements mapReadOnly. 

-s pathname(s) Search the specified pathname(s) for resource Include 
files. 

-t(ype) typeExpr The output file takes the type value as given by the 
expression. By default, the type is 'APPL'. 

-u(ndef) macro Undefine a macro variable. 



266 Part Three 

RezDet Detect resource problems 

RezDet (-b) (-d I -I I -q I -r I -s) resourceFilelist 

Resources within each file of resourceFileList are inspected for 
problems. Information about any problems is written to standard output. 
Other than -b(ig), only one option may be implemented at a time. 

Options 

-b(ig) Read resources into memory individually to avoid out of memory 
errors. 

-d(ump) Write verbose individual resource information to standard output. 

-l(ist) Write the resource information to standard output in the format: 
'type' (ID, name, attributes) [size]. 

-q(uiet) Do not write error information to standard output. 

-r(awdump) Write data block contents (in addition to verbose individual re-
source information) to standard output. 

-s(how) Write individual resource information to standard output. 

Save Save window onto disk 

Save (-a I windowlist) 

Puts a copy of the specified window file onto disk. Omitting all parame
ters causes the target window to be saved. 

Option 

-a Save all open windows. 

Search Search for text in files 

Search (-f file) (-i I -s) (-1) (-q) (-r) I pattern/ (filelist) 

Looks for a sequence of characters within the lines of a file, then writes 
each line that contains the sequence to standard output. Omitting fileList 



267 Chapter 24 

causes standard input to be read. Slashes (/and /)enclose the pattern to be 
sought. 

Options 

-f file All lines not written to standard output are written to the 
specified file. 

-i The search is not case sensitive. 

-q Write only matching lines to output, without the file name and the line 
number. 

-r Write lines without matches to output. 

-s The search is case sensitive. 

Select Select items from a dialog box 

Select (optionlist) (itemlist) 

Uses the parameter items to create a dialog box, then waits for the user 
to select an item and click the OK button before writing the selected item 
name to standard output. Omitting the itemList parameter causes standard 
input to be read. 

Options 

-d item Insert item in the list so that it is preselected. 

-m message Display message on top of the item list. 

-q Write items in the list unquoted. 

-r rows Write the list with the specified number of rows if possible. 

-w width Write the list with the specified number of width pixels if 
possible. 

Set Define or display variable names 

Set (name (value)) 

Equates the variable name with the string value. Omitting value causes 
the variable and its current value to be written to standard output. Omitting 



268 Part Three 

both parameters causes all variables and their current values to be written 
to standard output. 

SetDirectory Set the default directory and add to menu 

SetDirectory directory 

Sets the parameter directory as the current default directory and, if 
new, inserts the directory as an item in the Directory menu. The Direc
toryMenu command displays the Directory menu. 

SetFile Set attributes of files 

SetFile (optionlist) filelist 

Provides attribute values for all the specified files according to the 
chosen options. 

Options 

-a attributes Causes settings for the following flags: Inited, (in)Visible, 
Bundle, System, Protected, Open, Changed, Locked, and Desktop. Each 
flag is represented by a single character (the first letter of the flag, 
except in Visible which is represented by V). If the parameter character. 
in attributes is uppercase, the flag is set to 1; if lowercase, the flag is 
set to 0. Characters that are not included in attributes cause the flag to 
go unchanged. 

-c creator Set a four-character creator. 

-d date Set a string representing the creation date and time in the 
format mm/dd/yy (hh:mm (:ss) (AM:PM)). If date is specified as a period 
(.),the current date and time are used. 

-I h, v Set the horizontal and vertical coordinates of the icon loca
tion, where point (0,0) is the top-left corner of the icon's window. 

-m date Set a string representing the modification date and time in 
the same format as the d option. 

-t type Set a four-character type. 



269 Chapter 24 

SetPriv Set file server privileges 

SetPriv (-c prv) (-d prv) (-f prv) (-g group) (-i) (-o owner) (-r) folderlist 

Sets file server access privileges for folders by using a three-character 
prv string (a-owner, g-group, e-everyone) in which an uppercase letter en
ables the privilege and a lowercase letter disables it. Omitting the character 
causes no change in privilege. 

Options 

-c prv Set privileges for changing files and folders. 

-d prv Set privileges for seeing folder and folder listings. 

-f prv Set privileges for seeing files within folders. 

-g newGroup Set the parameter as the group. 

-i Write access privilege information to standard output. 

-o newOwner Set the parameter as the owner. 

-r Folders are affected recursively. 

SetVersion Set version and revision number 

SetVersion (optionlist) file 

Sets an application's version and revision number in a resource or 
source code. 

Options 

-csource file Set the string constant in the specified C source code 
file. 

-d Write the latest version and revision number in the 'MPST' resource 
string to the diagnostic file. 

-fmt nf.mf Version and revision numbers use the specified format, 
where fis the letter D (for leading blanks) or Z (for leading zeros), and 
n and m are field width integers from 1 to 10. 

-i resid Set 'MPST' resource ID. 

-p Write the version number and 'MPST' contents to the diagnostic file. 

-prefix prefix Set the version prefix string. 



270 Part Three 

-psource file Set the string constant in the specified Pascal source 
code file. 

-r Increase the revision number by 1. 

-rezsource file Set the 'MPST' resource definition in the specified re-
source source code file. 

-sr revision Set the revision number to the parameter value. 

-suffix suffix Set the revision suffix string. 

-sv version Set the version number to the parameter value. 

-t type Use the resource of the parameter type in place of 'MPST'. 

-v Increase the version number by 1. 

-verid identifier Use the indentifier parameter in searches for Pascal 
and C constant searches. 

Shift Shift number of positional parameters 

Shift (number) 

The numbers of the Shell positional parameters, except parameter O, 
are reset by reducing their current value by number. The default value of 
number is 1. 

Shutdown Quit with shutdown or restart 

Shutdown (-c I -n I -y) (-r) 

Exits the MPW Shell and causes the Macintosh to shutdown or, if the -r 
option is used, restart. 

Options 

-c Causes a cancel response to any confirmation dialog box. 

-n Causes a no response to any confirmation dialog box. 

-r Restart the Macintosh. 

-y Causes a yes response to any confirmation dialog box. 



271 Chapter 24 

Size Window Set the window size in pixels 

SizeWindow h v (window) 

Sets the horizontal and vertical pixel size of the window. Omitting the 
window parameter causes the target window (second from the top) to be used. 

StackWindows Set windows to stack diagonally 

StackWindows 

Resizes and moves all open Shell windows to diagonally stacked posi
tions on the screen. 

StdFile Select from standard file dialog box 

StdFile (-b buttonTitle) (-d I -p I -t typelist) (-m message) (-q) (pathname) 

Creates a standard file dialog box, then waits for the user to select an 
item and click the OK button before writing the selected file name or 
pathname to standard output. Supplying a pathname parameter causes the 
standard file starting directory to be set. 

Options 

-b buttonTitle Set the title of the dialog box button. 

-d Display an SFGetFile dialog box. 

-m message Display message on top of the file list. 

-p Display an SFPutfile dialog box. 

-q Write files in the list unquoted. 

-t typelist Display the SFGetFile dialog box limited to files of up to 
four types. 

SysErr Display system error messages 

SysErr (-f filename I -s filename) (-n) (-p) errNum (,insertlist) (-i idNumlist) 



272 Part Three 

Displays the system error message for each error number parameter. 
The default system error message file is SysErrs.Err. When used with the -i 
option, displays information relating to the specified ID number in System 
Error Handler alert dialogs. Tuol error numbers may also be specified with 
inserts. 

Options 

-f filename Output error messages for the specified tool error file. 

-i idNumlist Output information relating to the System Error Handler 
ID number. 

-n Do not output error numbers with the messages. 

-p Write version information about the command to the diagnostic file. 

-s filename Output error messages for the specified system error file. 

Tab Set tab positions of windows 

Tab number (window) 

Establishes a tab setting of number. Adjustment is made to the target 
window unless otherwise specified by the window parameter. 

Target Set window as the target window 

Target name 

The file name is opened (if not already open) and set as the default 
target window file. The target window is the second window from the top. 

Tile Windows Set windows to tile position 

TileWindows 

Resizes and moves all open Shell windows to visible tile positions on the 
screen. 



273 Chapter 24 

TLAConvert Convert assembler source, TLA to MPW 

TLACvt (optionlist) (filelist) 

Changes selected items in the assembly source code of files written for 
the Lisa Assembler so that the code can be compiled by the Macintosh 
Workshop Assembler. The output file name is the input name with the suffix 
.a appended. Omitting fileList causes standard input to be converted and 
written to standard output. 

Options 

-d The input file uses spaces in place of all tabs. 

-e The input file puts spaces in place of all tabs, then reinserts tabs in the 
output file according to the tab setting. Tabs can be set using the -t 
option. 

-f directivesFi/e Search the parameter file for uppercase and lowercase 
information. By default, directives are output in uppercase as specified 
in the file TLACvt.Directives. 

-m The output does not contain Lisa Assembler compatibility directives. 

-n Do not append the .a suffix to the output file name. 

-p Write information about the progress of the command to standard out-
put. 

-pre(fix) string The output file name is the specified string attached 
in front of the input file name. 

-suf(fix) string The output file name is the specified string appended 
to the input file name instead of the default .a suffix. 

-t tabSetting The Shell tab setting is a value in the range of O to 
255 (default = input file tab setting or, if unavailable, 8). 

-u c Resolve code name conflicts with MPW directives by appending 
the character c to the code name (default = #). 

Translate Translate character strings 

Translate (-p) (-s) src (dst) 

Converts character strings in the src parameter to those in the dst 
parameter, then writes to standard output. Omitting the dst parameter 
causes src characters to be deleted. 



274 Part Three 

Options 

-p Write version information about the command to the diagnostic file. 

-s Retain font, font size, and tab settings from the src file. 

Unalias Make aliases undefined 

Unalias (namelist) 

Disassociates a command name and its substitute word(s) that were 
previously defined using the Alias command. Only the current command file 
is affected. Omitting nameList removes all aliases. 

Undo Undo window's previous edit command 

Undo (window) 

Reverses the action of the previous editing command that occurred in 
the specified window. Omitting the window parameter causes the target 
window (second from the top) to be used. 

Unexport Make variable definition unexported 

Unexport (-r I -s I namelist) 

Deletes the parameter variables from a command file's local list of 
exported variables. Omitting all parameters causes a list of all variables not 
exported to be written to standard output. 

Options 

-r Output Export commands for each variable not exported. 

-s Do not write the word Une-;<.port to output. 



275 Chapter 24 

Unmark Delete file marker 

Unmark namelist window 

Deletes a marker name that was assigned to a selection of text in the 
given window. The marker name no longer appears as a menu item in the 
window's Mark menu. 

Unmount Unmount disk volumes 

Unmount vo/umelist 

Puts the specified volumes off-line to make their contents unavailable to 
the Shell. A colon (:) must be appended to the volume name unless the 
volume specified is a disk drive number. 

Unset Make variable names undefined 

Unset (namelist) 

Disassociates a variable name and its definition that were previously 
equated using the Set command. Only the current command file is affected. 
Omitting nameList removes all variable definitions. 

Volumes Display names of mounted disk volumes 

Volume (-1) (-q) (volumelist) 

Writes the name and, if requested, other information about the speci· 
fied volumes to standard output. A colon (:)must be appended to the volume 
name unless the volume specified is a disk drive number. 

Options 

-I Write additional information about a volume's location, size, and contents 
to output. 

-q Disable the quoting of special characters in displayed file names. 



276 Part Three 

Which Find which pathname executes command 

Which {-a) {-p) (command) 

Searches for, and writes to standard output, the full pathname of a 
command, and allows the command to be executed by name alone (instead 
of requiring the full pathname). Omitting the command parameter outputs 
all pathnames of the startup {Commands} variable. 

Options 

-a Output all pathnames to the parameter. 

-p Output information about the progress of the command. 

Windows Display names of open windows 

Windows {-q) 

Writes the full pathname of each current window file to standard 
output. 

Option 

-q Disable the quoting of special characters in displayed file names. 

ZoomWindow Display window zoomed or back 

ZoomWindow {-s) (window) 

Resizes window to the full size of the Macintosh screen. Omitting the 
window parameter causes the target window (second from the top) to be 
used. 

Option 

-s The window zooms back to its original size. 



CHAPTER 
- !IEllllllll!Bilil'll'I! ~--~~~~-liM~MWN --- 25 -~ 
The 68000 Instruction 
Set urith Directives 
and Toolbox Traps 

ABCD Add Decimal with Extend 

Add the source subject plus the extend bit to the destination subject, and 
place the result in the destination slot. The subjects are added using binary 
coded decimal (BCD) arithmetic. 

Size: Byte 

ABCD D1,D2 

ABCD -(A 1), -(A2) 

Status flags 

Add data register 1 to data register 2. 

Add memory slot 1 to memory slot 2 using predecrement 
addressing. 

C Set by a decimal carry; cleared otherwise. 

V Undefined. 
Z Cleared by a nonzero result; unchanged otherwise. 

N Undefined. 
X Set by a decimal carry; cleared otherwise. 

ADD Add Binary 

Add the source subject to the destination subject, and place the result in the 
destination slot. 

277 



27'8 Part Three 

Size: Byte, Word, Long 

ADD ea,D1 Add effective address to data register. 

ADD D1,ea Add data register to effective address. 

Status nags 

C Set by a carry; cleared otherwise. 

V Set by an overflow; cleared otherwise. 

Z Set by a zero result; cleared otherwise. 

N Set by a negative result; cleared otherwise. 

X Set by a carry; cleared otherwise. 

ADDA Add Address 

Add the source subject to the destination address register, and place the 
result in the address register. 

Size: Word, Long 

ADD ea,A 1 Add effective address to address register. 

Status nags 

Unaffected. 

ADDI Add Immediate 

Add the immediate data to the destination subject, and place the result in 
the destination slot. 

Size: Byte, Word, Long 

ADDI #data.ea Add immediate data to effective address. 

Status nags 

C Set by a carry; cleared otherwise. 

V Set by an overflow; cleared otherwise. 

Z Set by a zero result; cleared otherwise. 

N Set by a negative result; cleared otherwise. 

X Set by a carry; cleared otherwise. 



279 Chapter 25 

ADDQ Add Quick 

Add the immediate data to the destination subject, and place the result in 
the destination slot. The immediate data must be an integer from 1 to 8. 

Size: Byte, Word, Long 

ADDO #data.ea Add immediate data (1-8) to effective address. 

Status flags 

C Set by a carry; cleared otherwise. 

V Set by an overflow; cleared otherwise. 

Z Set by a zero result; cleared otherwise. 

N Set by a negative result; cleared otherwise. 

X Set by a carry; cleared otherwise. 

ADDX Add with Extend 

Add the source subject plus the extend bit to the destination subject, and 
place the result in the destination slot. 

Size: Byte, Word, Long 

ADDX D1,D2 

ADDX -(A 1 ), -(A2) 

Status flags 

Add data register 1 to data register 2. 

Add memory slot 1 to memory slot 2 using predecrement 
addressing. 

C Set by a carry; cleared otherwise. 

V Set by an overflow; cleared otherwise. 

Z Cleared by a nonzero result; unchanged otherwise. 

N Set by a negative result; cleared otherwise. 

X Set by a carry; cleared otherwise. 

AND AND Logical 

AND the source subject to the destination subject, and place the result in the 
destination slot. 

Size: Byte, Word, Long 



280 Part Three 

AND ea,D1 AND effective address to data register. 

AND D1,ea AND data register to effective address. 

Status flags 

C Cleared always. 

V Cleared always. 

Z Set by a zero result; cleared otherwise. 

N Set by a result whose most significant bit is set; cleared otherwise. 

X Unaffected. 

ANDI AND Immediate 

AND the immediate data to the destination subject, and place the result in 
the destination slot. 

Size: Byte, Word, Long 

ANDI #data.ea AND immediate data to effective address. 

Status flags 

C Cleared always. 

V Cleared always. 

Z Set by a zero result; cleared otherwise. 

N Set by a result whose most significant bit is set; cleared otherwise. 

X Unaffected. 

ANDI to CCR AND Immediate to the Condition Code Register 

AND the immediate source subject with the status flags, and place the result 
in the low-order byte of the status register (condition code register). 

Size: Byte 

ANDI #xxx,CCR ANDI immediate subject to status flags. 

Status flags 

C Cleared if source's bit O is zero; unchanged otherwise. 

V Cleared if source's bit 1 is zero; unchanged otherwise. 

Z Cleared if source's bit Z is zero; unchanged otherwise. 



281 Chapter 25 

N Cleared if source's bit 3 is zero; unchanged otherwise. 

X Cleared if source's bit 4 is zero; unchanged otherwise. 

ANDI to SR AND Immediate to the Status Register 

AND the immediate source subject with the entire 16-bit status register, and 
place the result in the status register. 

Size: Word 

ANDI #xxx,SR AND immediate subject to status register. 

Status flags 

C Cleared if source's bit O is zero; unchanged otherwise. 

V Cleared if source's bit 1 is zero; unchanged otherwise. 

Z Cleared if source's bit 2 is zero; unchanged otherwise. 

N Cleared if source's bit 3 is zero; unchanged otherwise. 

X Cleared if source's bit 4 is zero; unchanged otherwise. 

ASL Arithmetic Shift Left 

Arithmetically shift to the left the bits of the destination subject by the 
specified amount. The last bit shifted out of the destination subject goes into 
both the carry and extend bits. Zeros replace the vacated bits. 

Size: Byte, Word, Long 

ASL 01, 02 Shift data register 2 by amount of data register 1. 

ASL #data,01 Shift data register 1 by immediate data. 

ASL ea Shift effective address by 1 bit only. Subject must be word 
size. 

Status flags 

C Set the same as the last bit shifted out of the subject; cleared for a zero 
shift count. 

V Set by any change in the most significant bit during the shift; cleared 
otherwise. 

Z Set by a zero result; cleared otherwise. 

N Set by a result whose most significant bit is set; cleared otherwise. 



28.2 Part Three 

X Set the same as the last bit 'shifted out of the subject; unaffected for a 
zero shift count. 

ASR Arithmetic Shift Right 

Arithmetically shift to the right the bits of the destination subject by the 
specified amount. The last bit shifted out of the destination subject goes into 
both the carry and extend bits. The sign bit replaces the vacated bits. 

Size: Byte, Word, Long 

ASR 01,02 Shift data register 2 by amount of data register 1. 

ASR #data,01 Shift data register 1 by immediate data. 

ASR ea Shift effective address by 1 bit only. Subject must be word 
size. 

Status flags 

C Set the same as the last bit shifted out of the subject; cleared for a zero 
shift count. 

V Set by any change in the most significant bit during the shift; cleared 
otherwise. 

Z Set by a zero result; cleared otherwise. 

N Set by a result whose most significant bit is set; cleared otherwise. 

X Set the same as the last bit shifted out of the subject; unaffected for a 
zero shift count. 

Bee Branch Conditionally 

Branch to the slot indicated by the subject if the specified condition (that 
substitutes for cc) is true. The subject determines the displacement from the 
original program counter to the slot where program execution resumes. 

Size: Byte, Word 

Bee reference Branch to reference if condition is true. 

Status flags 

Unaffected. Status flag conditions for each branch instruction: 

BCC Carry Clear. Branch if C is clear. 

BCS Carry Set. Branch if C is set. 



283 Chapter 25 

BEQ Equal. Branch if Z is set. 

BGE Greater or Equal. Branch if both N and V are set, or if both N and V 
are clear. 

BGT Greater Than. Branch if both N and V are set and Z is clear, or if N, V, 

and Z are all clear. 

BHI High. Branch if both C and Z are clear. 

BLE Less or Equal. Branch if Z is set, or if N is set and V is clear, or if N is 
clear and V is set. 

BLS Low or Same. Branch if C is set, or if Z is set. 

BLT Less Than. Branch if N is set and V is clear, or if N is clear and V is 
set. 

BMI Minus. Branch if N is set. 

BNE Not Equal. Branch if Z is clear. 

BPL Plus. Branch if N is clear. 

BVC Overflow Clear. Branch if V is clear. 

BVS Overflow Set. Branch if V is set. 

BCHG Test a Bit and Change 

Tust a bit in the destination subject, place the result of the test in the Z status 
flag, then change the tested bit in the destination. 

Size: Byte, Long 

BCHG 01,ea Tust and change bit number Dl of destination ea. 

BCHG #data,ea Tust and change bit number #data of destination ea. 

Status flags 

C Unaffected. 

V Unaffected. 

Z Set by a zero value of the tested bit; cleared otherwise. 

N Unaffected. 

X Unaffected. 

BCLR Test a Bit and Clear 

Tust a bit in the destination subject, place the result of the test in the Z 
condition code, then clear the tested bit in the destination. 



284 Part Three 

Size: Byte, Long 

BCLR 01,ea Tust and clear bit number Dl of destination ea. 

BCLR #data.ea Test and clear bit number #data of destination ea. 

Status flags 

C Unaffected. 

V Unaffected. 

Z Set by a zero value of the tested bit; cleared otherwise. 

N Unaffected. 

X Unaffected. 

BRA Branch Always 

Branch to the slot indicated by the subject. The subject determines the 
displacement from the original program counter to the slot where program 
execution resumes. 

Size: Byte, Word 

BRA reference Branch to reference. 

Status flags 

Unaffected. 

BSET Test a Bit and Set 

Tust a bit in the destination subject, place the result of the test in the Z 
condition code, then set the tested bit in the destination. 

Size: Byte, Long 

BCLR 01, ea Tust and set bit number Dl of destination ea. 

BCLR #data.ea Tust and set bit number #data of destination ea. 

Status flags 

C Unaffected. 

V Unaffected. 

Z Set by a zero value of the tested bit; cleared otherwise. 

N Unaffected. 

X Unaffected. 



285 Chapter 25 

BSR Branch to Subroutine 

BTST Test a Bit 

Branch to the subroutine slot indicated by the subject after leaving the long 
word return address (address of the instruction following the BSR instruc
tion) on the stack. The subject determines the displacement from the origi
nal program counter to the subroutine slot where program execution 
continues. 

Size: Byte, Word 

BSR reference Branch to subroutine reference. 

Status flags 

Unaffected. 

Tust a bit in the destination subject, and place the result of the test in the Z 
condition code. 

Size: Byte, Long 

BTST D1,ea Thst bit number Dl of destination ea. 

BTST #data, ea Tust bit number #data of destination ea. 

Status flags 

C Unaffected. 

V Unaffected. 

Z Set by a zero value of the tested bit; cleared otherwise. 

N Unaffected. 

X Unaffected. 

_Button ROM Trap 

FUNCTION Button : BOOLEAN; 

_Button evaluates the status of the Macintosh's mouse button, and re
turns a boolean value of true if the mouse button is currently being held 
down. A value of false indicates the mouse button is up at the moment the 
_Button trap is executed. No parameters are used. 



286 Part Three 

Tu prepare the stack for _Button: Subtract 2 bytes from the stack 
pointer to make space for the boolean result. 

On return: The boolean result is left in the high-order byte. A nonzero 
value indicates true. A zero value indicates false. 

CHK Check Register Against Bounds 

Check the content of the low-order word in the data register subject. lf the 
register value is less than zero or greater than the upper bound of the 
effective address subject, then execute a trap exception. 

Size: Word 

CHK ea,01 Check the low-order word of data register with upper bound of 
effective address. 

Status flags 

C Undefined. 

V Undefined. 

Z Undefined. 

N Set by Dl less than zero; cleared by Dl greater than ea; undefined 
otherwise. 

X Unaffected. 

CLR Clear a Subject 

Clear to zero all bits of the destination. 
Size: Byte, Word, Long 

CLR ea Clear to zero all bits of effective address. 

Status flags 

C Cleared always. 

V Cleared always. 

Z Set always. 

N Cleared always. 

X Unaffected. 



CMP Compare 

28'7 Chapter ZS 

Subtract the source subject from the destination subject, and use the result 
to set the status flags. The destination slot is not changed. 

Size: Byte, Word, Long 

CMP ea,01 Compare by subtracting effective address from data register. 

Status flags 

C Set by a borrow; cleared otherwise. 

V Set by an overflow; cleared otherwise. 

Z Set by a zero result; cleared otherwise. 

N Set by a negative result; cleared otherwise. 

X Unaffected. 

CMPA Compare Address 

Subtract the source subject from the destination address register, and use 
the result to set the status flags. The address register is not changed. 

Size: Word, Long 

CMPA ea,A1 Compare by subtracting effective address from address regis
ter. 

Status flags 

C Set by a borrow; cleared otherwise. 

V Set by an overflow; cleared otherwise. 

Z Set by a zero result; cleared otherwise. 

N Set by a negative result; cleared otherwise. 

X Unaffected. 

CMPI Compare Immediate 

Subtract the immediate data from the destination subject, and use the result 
to set the status flags. The destination slot is not changed. 

Size: Byte, Word, Long 



288 Part Three 

CMPI #data.ea Compare by subtracting the immediate data from the effec
tive address. 

Status flags 

C Set by a borrow; cleared otherwise. 

V Set by an overflow; cleared otherwise. 

Z Set by a zero result; cleared otherwise. 

N Set by a negative result; cleared otherwise. 

X Unaffected. 

CMPM Compare Memory 

Subtract the source subject from the destination subject, and use the result 
to set the status flags. The destination slot is not changed. The subjects must 
be address registers using the postincrement addressing mode. 

Size: Byte, Word, Long 

CMPM (A1) + ,(A2) + Compare address register contents by subtracting 
source from destination. 

Status flags 

C Set by a borrow; cleared otherwise. 

V Set by an overflow; cleared otherwise. 

Z Set by a zero result; cleared otherwise. 

N Set by a negative result; cleared otherwise. 

X Unaffected. 

DBcc Tust Condition, Decrement, and Branch 

If the specified conditon (that substitutes for cc) is false, decrement the data 
register subject. Then, if the result of the decrement is not equal to -1, 
branch to the slot indicated by the reference subject. The reference deter
mines the displacement from the original program counter to the slot where 
program execution continues. 

Size: Word 

DBcc D1,reference If condition is false, then decrement data register. Then, if 
data register is not equal to -1, branch to reference. 



289 Chapter 25 

Status fiags 

Unaffected. Status flag conditions for each branch instruction: 

DBCC Carry Clear. No branch if C is clear. 

DBCS Carry Set. No branch if C is set. 

DBEQ Equal. No branch if Z is set. 

DBF False. Branch always. 

DBGE Greater or Equal. No branch if both N and V are set, or if both N 
and V are clear. 

DBGT Greater Than. No branch if both N and V are set and Z is clear, or if 
N, v, and Z are all clear. 

DBHI High. No branch if both C and Z are clear. 

DBLE Less or Equal. No branch if Z is set, or if N is set and V is clear, or if 
N is clear and Vis set. 

DBLS Low or Same. No branch if C is set, or if Z is set. 

DBLT Less Than. No branch if N is set and V is clear, or if N is clear and V 
is set. 

DBMI Minus. No branch if N is set. 

DBNE Not Equal. No branch if Z is clear. 

DBPL Plus. No branch if N is clear. 

DBRA Branch. Branch always. 

DBT True.Branchneve~ 

DBVC Overflow Clear. No branch if V is clear. 

DBVS Overflow set. No branch if V is set. 

DC Define Constant (MPW Data Allocation Directive) 

Place the specified values into memory slots. The suffixes .B, .w; and .L 
indicate the slot length-byte, word, and long word-of each data incre
ment. References access the first aligned memory address of the defined 
area. 

DC.B values Define constant that is byte incremented. 

DC values Define constant that is word incremented. 

DC.W values Define constant that is word incremented. 

DC.L values Define constant that is long word incremented. 

The values are defined within the current code or data module. One or 



290 Part Three 

more directives define their own data module if placed outside a program's 
existing modules. The directive MAIN signifies the main code module used in 
the example programs. Define constant directives can use values that are 
expressions and strings in any mixture, separated by commas. The following 
are examples of two directives: 

RectBounds DC.W 20, 40, 200, 240 ;top, left, bottom, right 
RectName DC.B 'My Rectangle' ;string name 

DCB Define Constant Block (MPW Data Allocation Directive) 

Initialize a block of memory slots within the current code or data module. 
The subjects specify the length of the block and the initial value to be placed 
in each slot. The suffixes .B, .W, and .L indicate slot length, incrementing 
data by byte, word, and long word sizes. 

DCB.B length, values Define constant block that is byte incremented. 

DCB length, values Define constant block that is word incremented. 

DCB.W length.values Define constant block that is word incremented. 

DCB.L length.values Define constant block that is long word incremented. 

DIVS Signed Divide 

Using signed arithmetic, divide the long word destination subject by the 
word source subject, and place the result in the destination slot. The quo
tient is placed in the low word of the destination. The remainder is placed in 
the high word of the destination, with the sign of a nonzero remainder the 
same as the dividend. Division by zero creates a trap. An overflow affects 
the status flag, but leaves the subjects unchanged. 

Size: Word 

DIVS ea,D1 Divide data register by effective address. 

Status flags 

C Cleared always. 

V Set by attempted division overflow; cleared otherwise. 

Z Set by zero quotient; cleared by nonzero quotient; undefined by at
tempted overflow. 



291 Chapter 25 

N Set by negative quotient; cleared by non-negative quotient; undefined 
by attempted overflow. 

X Unaffected. 

DIVU Unsigned Divide 

Using unsigned arithmetic, divide the long word destination subject by the 
word source subject, and place the result in the destination slot. The quo
tient is placed in the low word of the destination. The remainder is placed in 
the high word of the destination. Division by zero creates a trap. An over
flow affects the status flag, but leaves the subjects unchanged. 

Size: Word 

DIVU ea,D1 Divide data register by effective address. 

Status flags 

C Cleared always. 

V Set by attempted division overflow; cleared otherwise. 

Z Set by zero quotient; cleared by nonzero quotient; undefined by at
tempted overflow. 

N Set by quotient whose most significant bit is set; cleared by quotient 
whose most significant bit is clear; undefined by attempted overflow. 

X Unaffected. 

_DrawMenuBar ROM Trap 

PROCEDURE DrawMenuBar; 

_ DrawMenuBar uses the current contents of the menu list to draw a menu 
bar. The trap should be used to redraw the menu whenever the menu list 
has been changed by any prior sequence of calls that insert, delete, clear, 
set, or otherwise alter a menu list. No parameters are used. 

_ lnsertMenu can be used to add a menu into the menu list at a specified 
position along the menu bar. _GetRMenu can be used to read a menu re
source and provide the handle parameter for _lnsertMenu. After such 
changes, _DrawMenuBar redraws the menu bar according to the current 
menu list. 



292 Part Three 

_Drawstring ROM Trap 

PROCEDURE Drawstring (s: Str255); 

_Drawstring places the parameter string into the current Grafl>ort to the 
right of the Quickdraw pen location. The variable s is of the predefined 
Quickdraw type str255, a string of not more than 255 characters. 

The current pen location moves to the right of each character as the 
string is drawn. _Drawstring performs no carriage returns, linefeeds, or text 
formatting. 

Tu prepare the stack for _Drawstring: Push a pointer to the string. 
On return: The stack is clear. 

DS Define Storage (MPW Data Allocation Directive) 

Reserve the specified number of uninitialized memory slots at a position 
relative to the A5 pointer. The suffixes .B, .W, and .L indicate slot length
byte, word, and long word-of each data increment. References access the 
first aligned memory address of the defined area. 

DS.B length Define storage that is byte incremented. 

DS length Define storage that is word incremented. 

DS.W length Define storage that is word incremented. 

DS.L length Define storage that is long word incremented. 

The storage area is allocated and defined within the current code 
module, data module, or template. One or more directives define their own 
data module if placed outside a program's existing modules. The directive 
MAIN signifies the main code module used in the example programs. The 
following are examples of two directives: 

RectSpace DS.L 2 ;space for rectangle coordinates 
Event Record DS. B 16 ;space for event record result 

END End of Source (MPW Module Control Directive) 

Indicates the end of a source code file. The assembler ignores any lines that 
follow the END directive. If END is omitted, the last line of code acts as the end 
of the source code. 



293 Chapter 25 

EOR Exclusive OR Logical 

Exclusive OR the source subject to the destination subject, and place the 
result in the destination slot. The source subject must be a data register. 

Size: Byte, Word, Long 

EOR D1,ea Exclusive OR the data register to effective address. 

Status flags 

C Cleared always. 

V Cleared always. 

Z Set by a zero result; cleared otherwise. 

N Set by a result whose most significant bit is set; cleared otherwise. 

X Unaffected. 

EORI Exclusive OR Immediate 

Exclusive OR the immediate data to the destination subject, and place the 
result in the destination slot. 

Size: Byte, Word, Long 

EORI #data.ea Exclusive OR immediate data to effective address. 

Status flags 

C Cleared always. 

V Cleared always. 

Z Set by a zero result; cleared otherwise. 

N Set by a result whose most significant bit is set; cleared otherwise. 

X Unaffected. 

EORI to CCR Exclusive OR Immediate to the Condition Code Register 

Exclusive OR the immediate source subject to the status flags, and place the 
result in the low-order byte of the status register (condition code register). 

Size: Byte 

EORI #xxx,CCR Exclusive OR immediate subject to status flags. 



294 Part Three 

Status flags 

C Changed if bit O of source is one; unchanged otherwise. 

V Changed if bit 1 of source is one; unchanged otherwise. 

Z Changed if bit 2 of source is one; unchanged otherwise. 

N Changed if bit 3 of source is one; unchanged otherwise. 

X Changed if bit 4 of source is one; unchanged otherwise. 

EORI to SR Exclusive OR Immediate to the Status Register 

Exclusive OR the immediate source subject to the entire 16-bit status regis
ter, and place the result in the status register. 

Size: Word 

EORI #xxx,SR Exclusive OR immediate subject to status register. 

Status flags 

C Changed if bit 0 of source is one; unchanged otherwise. 

V Changed if bit 1 of source is one; unchanged otherwise. 

Z Changed if bit 2 of source is one; unchanged otherwise. 

N Changed if bit 3 of source is one; unchanged otherwise. 

X Changed if bit 4 of source is one; unchanged otherwise. 

EQU Equate Permanent Value (MPW Symbol Definition Directive) 

Assign (equate) the subject to a reference name. The assignment cannot be 
changed within the program. Any kind of valid subject can be assigned a 
reference name, though only a single undefined subject can be used in an 
assignment. The use of reference names can increase the readability of 
source code. 

reference EQU subject Assign the subject the reference name. 

EXG Exchange Registers 

Exchange the long word contents of the two register subjects. 
Size: Long 



295 Chapter 25 

EXG R1,R2 Exchange contents of data and/or address registers. 

Status flags 

Unaffected. 

_ExitToShell ROM Trap 

PROCEDURE ExitToShell; 

_ExitToShell reads the global variable FinderName and executes the applica
tion whose name is stored in the variable. If the current application was 
executed from the MPW Shell, _ExitToShell returns to the MPW Shell. Other
wise, the default contents of FinderName direct _ExitToShell to return to the 
Finder. No parameters are used. 

EXT Sign Extend 

Extend the sign bit of the data register subject from a byte to a word, or 
from a word to a long word. When a byte is extended, bit 7 is copied into 
bits 8 through 15. When a word is extended, bit 15 is copied into bits 16 
through 32. 

Size: Word, Long 

EXT 01 Extend sign bit within data register. 

Status flags 

C Cleared always. 

V Cleared always. 

Z Set by a zero result; cleared otherwise. 

N Set by a negative result; cleared otherwise. 

X Unaffected. 

_FindWindow ROM Trap 

FUNCTION FindWindow (thePt: Point; VAR whichWindow: WindowPtr) : INTEGER; 

_FindWindow returns an integer representing the portion of a window or 



296 Part Three 

the desktop where the cursor resides at the moment of a mouse button 
press. The call to _FindWindow requires two parameters: the first provides 
the mouse coordinates, the second provides an address for a window 
pointer result to be stored. 

The mouse location should be provided in global coordinates as re
corded in the event record's where field. 

Tu prepare the stack for _FindWindow: Subtract 2 bytes from the stack 
pointer for the integer result. Push the cursor's point coordinates. Push a 
pointer to a space for the window pointer to be stored. 

On return: The integer result left on the stack corresponds to a window 
or desktop predefined constant. The which Window parameter contains the 
window pointer of the window where the press occurred, or is set to NIL if 
the press did not occur within a window. 

The integer result of _FindWindow corresponds to one of the following 
constant values: 

in Desk EQU 0 ;in none of the following 
inMenuBar EQU 1 ;in menu bar 
inSysWlndow EQU 2 ;in system window 
inContent EQU 3 ;in content region 

;(but not grow, if active) 
in Drag EQU 4 ;in drag region 
inGrow EQU 5 ;in grow region 

;(of an active window only) 
inGoAway EQU 6 ;in go-away region 

;(of an active window only) 

_FlushEvents ROM Trap 

PROCEDURE FlushEvents (eventMask,stopMask: INTEGER); 

_FlushEvents clears the event queue of all specified prior events. The call 
requires two parameters that are taken from the low-order and high-order 
words of register DO. 

Tu prepare register DO for _FlushEvents: Move a long word into DO. In 
the low-order word is eventMask, an integer representing the types of events 
to be removed. In the high-order word is stopMask, an integer representing 
the first event in eventMask to not be removed. 

On return: If all events are removed, DO contains O. Otherwise, DO 
contains the event code of the first event that was not removed. 

If stopMask is set to O, all events specified by eventMask are removed. 



_FrameOval 
_FrameRect 

297 Chapter 25 

The instruction MOVE.L #$0000FFFF,DO, preceding _FlushEvents, removes all 
events. 

Flushing the event queue as part of a program's initialization prevents 
leftover, unprocessed events of a previous program from affecting current 
program operation. 

ROM Trap 
ROM Trap 

PROCEDURE FrameOval (r: Rect); 
PROCEDURE FrameRect (r: Rect); 

_FrameOval draws an oval outline that fits within the rectangular dimen
sions set by its parameter. _FrameRect draws a rectangular outline within the 
dimensions set by its parameter. 

In both traps, r is a parameter of type rect that points to four integers 
representing the rectangle's boundary coordinates: top, left, bottom, and 
right, respectively. 

To prepare the stack for either _ FrameOval or _ FrameRect: Push a pointer 
to a rectangle. A rectangle is defined by four integers or two variables of 
type point. 

On return: The stack is clear. 
The frame drawn by each trap uses Quickdraw's currently selected pen 

mode, pattern, and size. The pen location is unaffected. See _PenMode for 
more information on the Quickdraw pen. 

QuickDraw also offers two closely related trap calls, _FrameArc and 
_ FrameRoundRect: 

PROCEDURE FrameArc ( r: Rect; startAngle, arcAng/e: INTEGER); 
PROCEDURE FrameRoundRect (r: Rect; ova/Width,ova/Height: INTEGER); 

_ FrameArc draws an arc of the oval that fits within the rectangular 
dimensions set by its rectangle parameter. The parameter startAngle is a 
degree value between 0 and 359 that works like the hand of a clock: 0 points 
to 12 o'clock, 90 points to 3 o'clock, 180 points to 6 o'clock, and so on. The 
parameter arcAngle is a degree value between -359 and 359 that sets the 
extent of the arc, positive angles extending clockwise, negative angles coun -
terclockwise. 

_FrameRoundRect draws a rounded-corner rectangular outline within the 
dimensions set by its rectangle parameter. The curvature of the rounded 



298 Part Three 

corners is set by two integers that specify the diameters of an oval shape 
suggested by the rounded corners. 

Similar sets of Quickdraw routines are available for drawing within the 
four shapes. Each shape is prefaced by a type of action. For example, in 
addition to _FrameRect, rectangle shapes are manipulated by _PaintRect, _ln
verRect, _EraseRect, and _FillRect. 

_GetMouse ROM Trap 

PROCEDURE GetMouse (VAR mouseloc: Point); 

_GetMouse returns a type point parameter corresponding to the two 
integer coordinates of the mouse cursor's current location. The single pa
rameter provides a pointer to where the result will be stored. 

Th prepare the stack for _GetMouse: Push a pointer to a space for the 
mouse coordinates to be stored. (In the example programs, the stack pointer, 
subtracted by 4 bytes, is used as the pointer.) 

On return: The mouseLoc parameter contains two integers. The hori
zontal coordinate is given in the high-order word; the vertical coordinate is 
given in the low-order word. (In the example programs, the mouseLoc 
parameter is left on the stack.) 

The coordinates (0,0) plot the upper-left corner of the current GrafFort 
(often the active window). This contrasts with the mouse location given in an 
event record's where field (read with _GetNextEvent), which is always stated in 
global coordinates. 

If the mouse is to the left of the current GrafFort when _GetMouse is 
called, the horizontal integer returns as negative. If the mouse is above the 
current Grafl>ort, the vertical coordinate returns as negative. 

_GetNextEvent ROM Trap 

FUNCTION GetNextEvent (eventMask: INTEGER; VAR theEvent: EventRecord) 
BOOLEAN; 

_GetNextEvent returns a boolean result indicating whether any event of 
the designated types has occurred. If an event occurs (a true result), a 
record of the event is returned through the parameter theEvent and the 
event is removed from the queue. (The queue is a Toolbox device for storing 
events until an application acts upon them.) 



299 Chapter 25 

The parameter eventMask is an integer that specifies which of the 
possible event types ought to be recognized. An eventMask value of #$FFFF 
recognizes all events. 

The parameter theEvent is a pointer to a defined space where the event 
record can be stored. 

Tu prepare the stack for _GetNextEvent: Subtract 2 bytes from the stack 
pointer for the boolean result. Push an integer (word length) event mask. 
Push a pointer to a space for the event record to be stored. 

On return: The boolean result is left on the stack in the high-order 
byte. The parameter theEvent contains a pointer to the record data. 

Event types include mouse events, keyboard events, window activate 
and update events, and disk-insertion events. Event information is formatted 
in an event record as follows: 

Event Record DS.B 16 ;define storage for 16 bytes 
what EQU 0 ; integer, event code 
message EQU 2 ;longint, event message 
when EQU 6 ;longint, ticks since startup 
where EQU 10 ;point, global mouse location 
modifiers EQU 14 ; integer, modifier flags 

;(special keys) 

The following predefined constants indicate the event returned by the 
what field of the eventRecord: 

null Event EQU 0 ;null, no event 
mouseDown EQU ;mouse is down 
mouse Up EQU 2 ;mouse is up 
keyDown EQU 3 ;key is down 
keyUp EQU 4 ;key is up 
auto Key EQU 5 ;auto-key is down 
updateEvt EQU 6 ;update window 
diskEvt EQU 7 ;disk is inserted 
activateEvt EQU 8 ;activate window 
networkEvt EQU 9 ; network response 
driverEvt EQU 10 ;device driver response 
app1Evt EQU 12 ;application defined response 
app2Evt EQU 13 ;application defined response 
app3Evt EQU 14 ;application defined response 
app4Evt EQU 15 ;application defined response 

The message field of eventRecord provides additional information about 
certain types of events. For example, keyboard events give character and 



300 Part Three 

key code messages, window events give a pointer to the window, and disk
insertion events give the drive number. 

The modifier field of eventRecord provides additional information indicat
ing if any modifier keys (option, caps, shift, or command) were pressed at 
the moment of the event. The modifier field also gives information on mouse 
and activate events. 

_GetRMenu ROM Trap 

FUNCTION GetMenu (resource/D: INTEGER) : MenuHandle; 

(Assembly uses _GetRMenu; Pascal uses GetMenu.) _GetRMenu returns a 
menu handle (pointer to a pointer) of the menu whose resource ID is 
specified as the parameter. The menu data is read from a resource file and 
stored in a menu record in memory. 

Tu prepare the stack for _GetRMenu: Subtract 4 bytes from the stack 
pointer to store the handle result. Push an integer value representing a 
menu resource ID. 

On return: The menu handle to a menu record is left on the stack. 
The menu data can be placed in the menu list by calling _lnsertMenu. 

_lnsertMenu uses the handle provided by _GetRMenu to find the menu data. 
Then, the current menu list can be drawn on the screen by calling 
_Draw Menu Bar. 

_GetMenu returns NIL if a menu cannot be read from a resource file. 
After _GetRMenu has been called for a particular menu and is in memory, 
you can use resource traps to get the handle or release the memory occu
pied by the menu data. 

_GlobalToLocal ROM Trap 

PROCEDURE GlobalTolocal (VAR pt: Point) ; 

_GlobalTolocal converts a point expressed in global coordinates-such as 
the Macintosh screen-to the local coordinates of the current GrafFort. For 
example, global coordinates from the where field of an event record can be 
converted to local coordinates of the active window. A pointer to the global 
coordinates is put on the stack, tfien the call to _GlobalTolocal converts the 
point to local coordinates. 



301 Chapter 25 

Tu prepare the stack for _GlobalToLocal: Push a pointer to a space for the 
point coordinates to be stored. 

On return: The pt parameter contains two integers. The horizontal 
coordinate is given in the high-order word; the vertical coordinate is given 
in the low-order word. 

A complementary trap, _LocalToGlobal, performs the opposite conver-
sion. 

ILLEGAL Illegal Instruction 

Generate an illegal instruction exception. 
Size: No size. 

ILLEGAL Always generate exception. No subject. 

Status flags 

Unaffected. 

INCLUDE Include Source File (MPW Module Control Directive) 

Use the file specified in the subject as the source file until an END occurs, 
then return to the file in which the INCLUDE was used. The effect is to 
combine two or more source files into a single assembly. Included files can 
also use INCLUDE to produce a nested assembly up to five levels deep. The file 
subjects may optionally state a volume (disk) name. 

INCLUDE Filename Include source code of Filename into the assembly. 

_InitCursor ROM Trap 
_InitFonts ROM Trap 
_lnitGraf ROM Trap 
_lnitMenus ROM Trap 
_lnitWindows ROM Trap 

Each of the following traps is an initialization of routines in a Tuolbox 
Manager. These initializations should be called once, and only once, before 
any other trap calls that use the relevant manager. 

Dependencies among the various Managers require that certain initial-



302 Part Three 

izations be called before others. Using the following order of initializations 
satisfies these dependencies: 

_ lnitGraf 
_lnitFonts 
_lnitWindows 
_lnitMenus 
_lnitCursor 

_lnitCursor works within QuickDraw to initialize the current cursor to 
the standard arrow and makes the cursor visible by setting the cursor level 
to 0. The cursor level works as a counter for calls to the cursor routines that 
hide and show the cursor. 

_lnitFonts initializes the Font Manager, making sure the system font has 
been read into memory. The call to _lnitFonts should follow the initialization 
of QuickDraw and precede the initialization of the Window Manager (win
dows require fonts). 

_lnitGraf initializes Quickdraw, the graphics manager that controls all 
screen activity. QuickDraw uses global variables that are allocated immedi
ately below the location pointed to by register AS. The call to _lnitGraf 
requires a parameter that points to the first QuickDraw global variable, 
thePort. Because thePort is 4 bytes, the effective address given by PEA-4(A5) 
provides the pointer parameter required by _lnitGraf. 

_lnitMenus initializes the Menu Manager, allocating space for the menu 
list and redrawing a blank, white menu bar. 

_lnitWindows initializes the Window Manager, allocating space for the 
Window Manager port, drawing the desktop (as a rounded-corner rectangle 
in the current desktop pattern) and a blank, white menu bar. 

To call any of the traps except _lnitGraf, use the trap name alone. Only 
_lnitGraf uses parameters. 

Tu prepare the stack for _lnitGraf: Push a pointer to QuickDraw globals 
at -4(A5). 

On return: The stack is clear. 

_lnsertMenu ROM Trap 

PROCEDURE lnsertMenu (theMenu: MenuHandle; betore/D: INTEGER); 

_lnsertMenu puts a menu into the menu list at a specified position along 
the menu bar. The parameter theMenu is a handle (pointer to a pointer) of 
the menu's data. The parameter beforeID is an integer equal to the menu ID 



303 Chapter 25 

of the menu that will follow the inserted one. A new menu will be inserted 
after all others if beforelD is O or does not match a current menu ID. 
_I nsertMenu is ignored if the menu list is full or if the menu already exists on 
the menu list. 

Tu prepare the stack for _lnsertMenu: Push a menu handle to a menu 
record. Push an integer representing a menu ID for positioning. 

On return: The stack is clear. 
_lnsertMenu affects the menu list, yet performs no drawing on the 

screen. Tu draw a menu bar, call _DrawMenuBar. _DrawMenuBar uses the cur· 
rent contents of the menu list to draw a menu bar. 

_GetRMenu can be used to read a menu resource and provide the handle 
parameter for _lnsertMenu. 

_lnverRect ROM Trap 

PROCEDURE lnvertRect (r: Rect); 

Note: Assembly uses _lnverRect; Pascal uses lnvertRect. _lnverRect inverts 
the dots enclosed in a rectangle whose dimensions are set by its parameter. 
Every black dot becomes white, and every white dot becomes black. 

The type rect parameter points to four integers representing the rec
tangle's boundary coordinates: top, left, bottom, and right, respectively. 

Tu prepare the stack for _lnverRect: Push a pointer to a rectangle. A 
rectangle is defined by four integers or two variables of type point. 

On return: The stack is clear. 
The Quickdraw pen's pattern and draw-over mode, as well as the back

ground pattern, are ignored. The pen location is unaffected. See _PenMode 
for more information on the Quickdraw pen. 

QuickDraw also offers three closely related trap calls: _lnvertOval, _In· 
vertArc, and _lnverRoundRect. 

PROCEDURE lnvertOval (r: Rect); 
PROCEDURE lnvertArc (r: Rect; startAng/e,arcAngle: INTEGER); 
PROCEDURE lnvertRoundRect (r: Rect; ova/Width,ova/Height: INTEGER); 

Note: Assembly uses _JnverRoundRect; Pascal uses lnvertRoundRect. 
_lnvertOval inverts the dots enclosed in an oval that fits within the 

rectangular dimensions set by its parameter. _JnvertArc inverts the dots 
enclosed in a wedge. The wedge is specified by the oval that fits within the 
rectangular dimensions set by its rectangle parameter. The parameter 
startAngle is a degree value between O and 359 that works like the hand of a 



JMP Jump 

304 Part Three 

clock: O points to 12 o'clock, 90 points to 3 o'clock, 180 points to 6 o'clock, 
and so on. The parameter arcAngle is a degree value between -359 and 359 
that sets the extent of the arc, positive angles extending clockwise, negative 
angles extending counterclockwise. 

_lnverRoundRect inverts the dots enclosed in a rounded-corner rectangle 
whose dimensions are set by its rectangle parameter. The curvature of the 
rounded corners is set by two integers that specify the diameters of an oval 
shape suggested by the rounded corners. 

Similar sets of Quickdraw routines are available for other types of 
drawing using the four shapes. Each shape is prefaced by a type of action. 
For example, in addition to _lnverRect, rectangle shapes are manipulated by 
_FrameRect, _PaintRect, _EraseRect, and _FillRect. 

Continue program execution at the subject's effective address. 
Size: No size. 

JMP ea Jump to effective address. 

Status flags 

Unaffected. 

JSR Jump to Subroutine 

After placing the long word return address (the address of the instruction 
that follows the JSR instruction) on the stack, continue program execution at 
the subroutine subject's effective address. 

Size: No size. 

JSR ea Jump to effective address of subroutine. 

Status flags 

Unaffected. 

LEA Load Effective Address 

Load the effective address of the source subject into the long word, address 
register destination. 



305 Chapter 25 

Size: Long 

LEA ea.A 1 Load effective address into the address register. 

Status flags 

Unaffected. 

LINK Link and Allocate 

First, the contents of the address register subject are pushed onto the stack. 
Second, the updated stack pointer is loaded into the address register, replac
ing the register's previous contents. Third, the 16-bit sign extended displace
ment subject is pushed onto the stack. 

Size: No size. 

LINK A1,#disp/acement Link contents of address register. 

Status flags 

Unaffected. 

LSL Logical Shift Left 

Shift to the left the bits of the destination subject by the specified amount. 
The last bit shifted out of the destination subject goes into both the carry 
and extend bits. Zeros replace the vacated bits. 

Size: Byte, Word, Long 

LSL D1,D2 Shift data register 2 by amount of data register 1. 

LSL #data,D1 Shift data register 1 by immediate data. 

LSL ea Shift effective address by 1 bit only. Subject must be word 
size. 

Status flags 

C Set the same as the last bit shifted out of the subject; cleared for a zero 
shift count. 

V Cleared always. 

Z Set by a zero result; cleared otherwise. 

N Set by a negative result; cleared otherwise. 



306 Part Three 

X Set the same as the last bit shifted out of the subject; unaffected for a 
zero shift count. 

LSR Logical Shift Right 

Shift to the right the bits of the destination subject by the specified amount. 
The last bit shifted out of the destination subject goes into both the carry 
and extend bits. Zeros replace the vacated bits. 

Size: Byte, Word, Long 

LSR D1,D2 Shift data register 2 by amount of data register 1. 

LSR #data,D1 Shift data register 1 by immediate data. 

LSR ea Shift effective address by 1 bit only. Subject must be word 
size. 

Status flags 

C Set the same as the last bit shifted out of the subject; cleared for a zero 
shift count. 

V Cleared always. 

Z Set by a zero result; cleared otherwise. 

N Set by a negative result; cleared otherwise. 

X Set the same as the last bit shifted out of the subject; unaffected for a 
zero shift count. 

MAIN Begin Main Program Code Module (MPW Module Control Directive) 

MAIN defines a unique code module that establishes where program execu· 
tion begins. Only one main program module is allowed, including programs 
that have multiple linked parts. 

The directive ENDMAIN establishes the end of the main code module. 
When a program uses only a main code module, ENDMAIN is not required. 

The short programs used in the program examples do not use multiple 
modules. The directives PROC, ENDPROC, FUNG, and ENDFUNC serve as delim
iters (code boundaries) for code modules. The directives RECORD and ENDR 
serve as delimiters for data modules. 

A data module can be inserted within a code module by using the 
directives DATA and CODE to indicate the switch from one to the other. 



307 Chapter 25 

_MenuSelect ROM Trap 

FUNCTION MenuSelect (startPt: Point) : LONGINT; 

_MenuSelect returns a long integer containing the menu ID (in the high
order word) and menu item number (in the low-order word) for any selec
tion from a pull-down menu. The trap uses a point parameter, expressed in 
global coordinates, that indicates where in the menu bar the mouse button 
was initially pressed. _MenuSelect should be called only when a mouse down 
event has occurred in the menu bar. 

To prepare the stack for _ MenuSelect: Subtract 4 bytes from the stack 
pointer for the long integer result. Push the global coordinates of the point 
where the button is pressed. 

On return: A long word result is left on the stack. The menu ID is in the 
high-order word (popped off first) and the menu item number is in the low
order word. 

When a mouse press is detected in the menu bar, _MenuSelect retains 
control until the mouse button is released. During this time, cursor tracking, 
the pull-down effect, and item highlighting are performed by the 
_MenuSelect procedure. 

After the button is released, the procedure returns its long integer 
result, leaving a selected menu title highlighted. The procedure HiliteMenu(O) 
removes the highlighting. When no enabled menu item is chosen, 
_MenuSelect returns a O value for the menu ID and an undefined value for 
the menu item number. 

The menu ID and menu item numbers are established in the code 
where menus are defined (usually a resource file). 

MOVE Move Data from Source to Destination 

Move the contents of the source subject into the destination slot. The con
tents of the source remain unchanged. 

Size: Byte, Word, Long 

MOVE ea,ea Move contents of first effective address to second 
effective address. 

Status flags 

C Cleared always. 

V Cleared always. 



308 Part Three 

Z Set by a zero result; cleared otherwise. 

N Set by a negative result; cleared otherwise. 

X Unaffected. 

MOVE to CCR Move to the Condition Code Register 

Move the low-order byte of the source subject into the low-order byte of the 
status register (condition code register). The source must be a word, though 
its high-order byte is not used. 

Size: Word 

MOVE ea,CC-R Move low-order byte of effective address to condition 
code register. 

Status flags 

C Set the same as bit O of the source. 

V Set the same as bit 1 of the source. 

Z Set the same as bit 2 of the source. 

N Set the same as bit 3 of the source. 

X Set the same as bit 4 of the source. 

MOVE to SR Move to the Status Register 

Move the contents of the source subject into the entire 16-bit status register. 
The source must be a word, and all bits are transferred to the status 
register. 

Size: Word 

MOVE ea.SR Move effective address to status register. 

Status flags 

C Set the same as bit O of the source. 

V Set the same as bit 1 of the source. 

Z Set the same as bit 2 of the source. 

N Set the same as bit 3 of the source. 

X Set the same as bit 4 of the source. 



309 Chapter 25 

MOVE from SR Move from the Status Register 

Move the contents of the status register into the destination slot. All bits 
from the word-length status register are transferred. 

Size: Word 

MOVE SR.ea Move status register to the effective address. 

Status flags 

Unaffected. 

MOVE USP Move User Stack Pointer 

Move the contents of the user stack pointer to or from the address register 
subject. All bits of the long word stack pointer are transferred. 

Size: Long 

MOVE USP,A1 

MOVE A1,USP 

Status flags 

Unaffected. 

MOVEA Move Address 

Move user stack pointer to address register. 

Move address register to user stack pointer. 

Move the contents of the source subject to the destination address register. 
If the source is word size, it is sign extended to a long word before the move. 

Size: Word, Long 

MOVEA ea,A1 Move effective address to address register. 

Status flags 

Unaffected. 

MOVEM Move Multiple Registers 

Move the register subjects to or from memory, beginning at the slot given by 
the effective address subject. When a register is being transferred, either 
the long word or the low-order byte can be moved. When a word-sized 



310 Part Three 

subject is being transferred to a register, the low-order word is sign ex
tended to a long word before the move. 

Size: Word, Long 

MOVEM registers.ea Move registers to memory at effective address. 

MOVEM ea.registers Move memory at effective address to registers. 

Status flags 

Unaffected. 

MOVEP Move Peripheral Data 

Move the data register subject to and from alternate bytes of memory 
(incrementing by two), beginning at the slot given by the address register 
subject in indirect plus displacement mode. Transfers from data registers 
occur high-order byte first. When the subject is an even memory address, 
transfers occur on the high-order half of the data bus; odd address transfers 
occur on the low-order half. 

Size: Word, Long 

MOVEP D1,2(A1) 

MOVEP 2(A1),D1 

Status flags 

Unaffected. 

MOVEQ Move Quick 

Move data register to address register slot with displace
ment. 

Move address register slot with displacement to data reg
ister. 

Move immediate data to a data register subject. The immediate data, limited 
to 8 bits, is sign extended to a long word before the move. 

Size: Long 

MOVEQ #data,D1 Move immediate data to data register. 

Status flags 

C Cleared always. 

V Cleared always. 



311 Chapter 25 

Z Set by a zero result; cleared otherwise. 

N Set by a negative result; cleared otherwise. 

X Unaffected. 

_MoveTo ROM Trap 

PROCEDURE MoveTo (h, v: INTEGER): 

_MoveTo moves the Quickdraw pen from the current pen location to the 
coordinate point specified by the parameters. The parameters of _MoveTo 
are the coordinates of the new pen location; they do not measure a distance. 

Tu call _MoveTo: Push a long word onto the stack in which the high
order word contains the horizontal coordinate integer and the low -order 
word contains the vertical coordinate integer. 

On return: The stack is clear. 
After the _MoveTo trap is completed, the current pen location becomes 

the endpoint coordinate (h, v). 

The trap call _Move works similarly. _Move(h, v) moves the Quickdraw 
pen from the current pen location to a distance that is h dots to the right or 
left, and v dots up or down. The parameters of _Move measure a distance; 
they are not the coordinates of the new pen location. 

Using _Move with positive parameters moves the pen to the right or 
down. This is consistent with the coordinate map of the current GrafFort 
whose origin, point (0, 0), is the upper-left corner of the port. 

After the _Move trap is completed, the current pen location becomes 
the endpoint. If the starting point is coordinate (l(., y), then the endpoint is (l(. 

+ h, y + v). 
_Move To and _Move do not perform drawing. Like lifting a pencil to 

draw elsewhere on a page, they only move the current Quickdraw pen 
location. 

_MoveTo(x, y) is equivalent to the _Move trap with parameters (l(. 

+ h, y + v). 
Two additional trap calls, _LineTo and _Line, operate in the same fashion 

as _MoveTo and _Move. _LineTo(h, v) draws a line starting from the current 
Quickdraw pen location to the coordinate point specified by the parameters. 
The parameters of _LineTo are the coordinates of the line's endpoint; they do 
not measure a distance. 

After the _LineTo trap is completed, the current pen location becomes 
the endpoint coordinate (h, v). 

_ Line(h, v) draws a line starting from the current Quickdraw 
pen location to a distance that is h dots to the right or left, and v dots up or 



312 Part Three 

down. The parameters of _Line measure a distance; they are not the coordi
nates of the line's endpoint. 

Positive parameters of _Line draw a line to the right or down. This is 
consistent with the coordinate map of the current GrafPort whose origin, 
point (0, 0), is the upper-left corner of the port. 

After the _Line trap is completed, the current pen location becomes the 
point at the end of the drawn line. If the starting point is coordinate (;<., y), 
then the endpoint is (;<. + h, y + v). 

The _Line trap with parameters(;<. + h, y + v) is equivalent to the trap 
_ LineTo(x, y). 

MULS Signed Multiply 

Multiply two signed word subjects to produce a signed long word result. 
Only the low-order word of the register subject is used as a multiplier. The 
entire long word is used as the destination. 

Size: Word 

MULS ea,01 Multiply effective address by data register. 

Status flags 

C Cleared always. 

V Cleared always. 

Z Set by a zero result; cleared otherwise. 

N Set by a negative result; cleared otherwise. 

X Unaffected. 

MULU Unsigned Multiply 

Multiply two unsigned word subjects to produce an unsigned long word 
result. Only the low-order word of the register subject is used as a multi
plier. The entire long word is used as the destination. 

Size: Word 

MULU ea,01 Multiply effective address by data register. 

Status flags 

C Cleared always. 

V Cleared always. 



313 Chapter 25 

Z Set by a zero result; cleared otherwise. 

N Set by a result whose most significant bit is set; cleared otherwise. 

X Unaffected. 

NBCD Negate Decimal with Extend 

NEG Negate 

Subtract the destination subject and the extend bit from 0, and place the 
result in the destination slot. The subtraction uses binary coded decimal 
(BCD) arithmetic. 

Size: Byte 

NCBD ea Subtract effective address plus extend bit from 0. 

Status flags 

C Set by a decimal borrow; cleared otherwise. 

V Undefined. 

Z Cleared by a nonzero result; unchanged otherwise. 

N Undefined. 

X Set by a decimal borrow; cleared otherwise. 

Subtract the destination subject from 0, and place the result in the destina
tion slot. 

Size: Byte, Word, Long 

NEG ea Subtract effective address from O. 

Status flags 

C Cleared by a zero result; set otherwise. 

V Set by an overflow; cleared otherwise. 

Z Set by a zero result; cleared otherwise. 

N Set by a negative result; cleared otherwise. 

X Cleared by a zero result; set otherwise. 



314 Part Three 

NEGX Negate with Extend 

Subtract the destination subject and the extend bit from O, and place the 
result in the destination slot. 

Size: Byte, Word, Long 

NEGX ea Subtract effective address plus extend bit from 0. 

Status flags 

C Set by a borrow; cleared otherwise. 

V Set by an overflow; cleared otherwise. 

Z Cleared by a nonzero result; unchanged otherwise. 

N Set by a negative result; cleared otherwise. 

X Set by a borrow; cleared otherwise. 

_NewWindow ROM Trap 

FUNCTION NewWindow (wStorage: Ptr; boundsRect: Rect; title: Str255; 
visible: BOOLEAN; proc/D: INTEGER; behind: WindowPtr; 
goAwayF/ag: BOOLEAN; refCon: LONGINT) : WindowPtr; 

_ NewWindow uses a list of parameters to create a new window on the 
window list, then returns a pointer to that window. 

To prepare the stack for _NewWindow: Subtract 4 bytes from the stack 
pointer for the window pointer result. Push a pointer to a space for the 
window record to be stored (a NIL value will allocate storage on the heap). 
Push a pointer to the boundary rectangle expressed in global coordinates. 
Push a pointer to the title string. Push a boolean value of true if the window 
is to be visible, false if not. Push an integer value indicating the window 
definition ID (standard window types are predefined). Push a pointer value 
of -1 for the window to be the front window, o for the window to be the 
back window, or equal to the pointer of the window behind which the new 
window is to be inserted. Push a boolean value of true if the window is to 
have a go-away flag, false if not. Push a long integer for a reference value for 
application use. 

Upon return: A pointer to the new window is left on the stack. 



315 Chapter 25 

NOP No Operation 

Perform no operation. Only the program counter increments as execution 
continues at the next instruction. 

Size: No size. 

NOP Perform no operation. 

Status flags 

Unaffected. 

NOT Logical Complement 

Perform the ones complement of the destination subject, and place the 
result in the destination slot. 

Size: Byte, Word, Long 

NOT ea Perform ones complement of effective address. 

Status flags 

C Cleared always. 

V Cleared always. 

Z Set by a zero result; cleared otherwise. 

N Set by a negative result; cleared otherwise. 

X Unaffected. 

OR Inclusive OR Logical 

Perform an inclusive OR of the source subject to the destination subject, and 
place the result in the destination slot. The operation cannot be performed 
on the contents of an address register. 

Size: Byte, Word, Long 

OR ea, D1 Inclusive OR effective address to data register. 

OR D1,ea Inclusive OR data register to effective address. 



316 Part Three 

Status flags 

C Cleared always. 

V Cleared always. 

Z Set by a zero result; cleared otherwise. 

N Set by a result whose most significant bit is set; cleared otherwise. 

X Unaffected. 

ORI Inclusive OR Immediate 

Perform an inclusive OR of the immediate data to the destination subject, 
and place the result in the destination slot. 

Size: Byte, Word, Long 

ORI #data,ea Inclusive OR immediate data to effective address. 

Status flags 

C Cleared always. 

V Cleared always. 

Z Set by a zero result; cleared otherwise. 

N Set by a result whose most significant bit is set; cleared otherwise. 

X Unaffected. 

ORI to CCR Inclusive OR Immediate to the Condition Code Register 

Perform an inclusive OR of the immediate source subject with the status 
flags, and place the result in the low-order byte of the status register 
(condition code register). 

Size: Byte 

ORI #xxx,CCR Inclusive OR immediate subject to status flags. 

Status flags 

C Set if source's bit O is one; cleared otherwise. 

V Set if source's bit 1 is one; cleared otherwise. 

Z Set if source's bit 2 is one; cleared otherwise. 

N Set if source's bit 3 is one; cleared otherwise. 

X Set if source's bit 4 is one; cleared otherwise. 



317 Chapter 25 

ORI to SR Inclusive OR Immediate to the Status Register 

Perform an inclusive OR of the immediate source subject with the entire 16-
bit status register, and place the result in the status register. 

Size: Word 

ORI #xxx,SR Inclusive OR immediate subject to status register. 

Status flags 

C Set if source's bit O is one; cleared otherwise. 

V Set if source's bit 1 is one; cleared otherwise. 

Z Set if source's bit 2 is one; cleared otherwise. 

N Set if source's bit 3 is one; cleared otherwise. 

X Set if source's bit 4 is one; cleared otherwise. 

PEA Push Effective Address 

Push the long word effective address of the subject onto the stack. 
Size: Long 

PEA ea Push effective address on the stack. 

Status flags 

Unaffected. 

_PenMode ROM Trap 

PROCEDURE PenMode (mode: INTEGER); 

_PenMode determines how the Quickdraw pen will draw over the ex
isting dot at a particular location on the Macintosh screen. The eight availa
ble modes cause the pen's inkdots to draw differently depending on the 
selected pen pattern, and whether the pen is drawing over a black dot or a 
white dot. 

Tu prepare the stack for _PenMode: Push an integer value corresponding 
to a predefined mode constant. 

On return: The stack is clear. 
Ordinarily, the pen draws in black dots, but the Quickdraw pen can 



318 Part Three 

also draw in white dots or in a thick line pattern made up of both black 
and white inkdots. The following shows the color dot each of the eight 
modes produce according to the pen's inkdot and the dot already on the 
screen: 

mode EQU value black inkdot white inkdot 

patCopy 8 always black always white 

patOr 9 always black unchanged 

patXor 10 invert unchanged 

patBic 11 always white unchanged 

notPatCopy 12 always white always black 

notPatOr 13 unchanged always black 

notPatXor 14 unchanged invert 

notPatBic 15 unchanged always white 

The initial setting of _Pen Mode is patCopy. In this mode, black ink always 
draws a black dot, no matter which dot it is drawing over, and white ink 
always draws a white dot. 

Three other QuickDraw traps affect the state of the pen. They are 
_PenNormal, _PenPat, and _PenSize. 

PROCEDURE PenNormal; 
PROCEDURE PenPat (pat: Pattern); 
PROCEDURE PenSize (width,height: INTEGER); 

_PenNormal resets the characteristics of the Quickdraw pen to the initial 
settings. _PenSize becomes (1,1), _PenMode becomes patCopy, _PenPattern be
comes black. The location of the pen does not change. 

_PenPat sets the ink pattern of the Quickdraw pen. Five patterns are 
predefined: black, white, gray, ltGray, and dkGray. The initial pen pattern is 
black. 

Custom patterns can be designed by declaring and assigning a variable 
of type Pattern, a predefined Quickdraw type. The type Pattern is a packed 
array [0 .. 7] of [0 .. 255]. 

_PenSize sets the thickness dimensions of the Quickdraw pen. All line 
drawings and framed shapes are drawn with a pen thickness as set by 
_PenSize. 

The initial setting of _PenSize is (1,1), its thinnest dimensions. If either 
parameter is set to 0 or a negative value, the pen will not draw anything. 

In addition to QuickDraw's pen routines, there are traps for manipulat
ing text. They include _ TextFace, _ TextFont, _ TextMode, and _ TextSize. 



319 Chapter 25 

PROCEDURE TextFace (face: Style); 
PROCEDURE TextFont (font: INTEGER); 
PROCEDURE TextMode (mode: INTEGER); 
PROCEDURE TextSize (size: INTEGER); 

_ TextFace sets the style for text. The seven predefined styles are: bold, 
italic, underline, outline, shadow, condense, and extend. More than one 
style can be implemented at the same time by including multiple parame
ters. 

_ TextFont sets the font for text. The system font, represented by 0, is the 
initial setting. Other fonts and their identifying numbers are found in re
sources on the system disk. 

_ TextMode determines how text will write over the current contents of 
the current Grafl>ort. The names for text modes are: srcOr, srcXor, and 
srcBic. The initial setting for _ TextMode is srcOr. 

_ TextSize sets the size of text. The integer parameter corresponds to the 
font's point size with one exception: a parameter of 0 selects the initial 
system font size of 12 points. Any size can be selected. If the system does not 
have the font in the selected size, however, the nearest size will be scaled. 
This could result in funny-looking letters. An even multiple of an available 
size for the font produces the best approximation. 

_PtlnRect ROM Trap 

FUNCTION PtlnRect (pt: Point; r: Rect) : BOOLEAN; 

_PtlnRect evaluates a point type and a rect type parameter, and returns 
the boolean result of true if the dot below and to the right of the coordinate 
point is enclosed in the given rectangle. Otherwise the trap returns a value 
of false. 

Tu call _PtlnRect: Subtract 2 bytes from the stack pointer for the boolean 
result. Push a long word containing a point's two integer coordinates. Push a 
pointer to the rectangle. 

On return: A boolean value of true is left on the stack if the point is in 
the rectangle, false if not. 

RESET Reset External Devices 

Reset all external devices by invoking the processor's reset line. Program 
execution continues at the next instruction. 



320 Part Three 

Size: No size. 

RESET Reset external devices. No subject needed. 

Status flags 

Unaffected. 

ROL Rotate Left 

Rotate to the left the bits of the destination subject by the specified amount. 
The last bit shifted out of the destination subject goes into both the carry bit 
and around into the vacated low-order bit. The extend bit does not change. 

Size: Byte, Word, Long 

ROL 01,02 Rotate data register 2 by amount of data register 1. 

ROL #data,01 Rotate data register 1 by immediate data. 

ROL ea Rotate effective address by 1 bit only. Subject must be word 
size. 

Status flags 

C Set the same as the last bit shifted out of the subject; cleared for a zero 
shift count. 

V Cleared always. 

Z Set by a zero result; cleared otherwise. 

N Set by a result whose most significant bit is set; cleared otherwise. 

X Unaffected. 

ROR Rotate Right 

Rotate to the right the bits of the destination subject by the specified 
amount. The last bit shifted out of the destination subject goes into both the 
carry bit and around into the vacated high-order bit. The extend bit does 
not change. 

Size: Byte, Word, Long 

ROR 01, 02 Rotate data register 2 by amount of data register 1. 

ROR #data,01 Rotate data register 1 by immediate data. 

ROR ea Rotate effective address by 1 bit only. Subject must be word 
size. 



321 Chapter 25 

Status flags 

C Set the same as the last bit shifted out of the subject; cleared for a zero 
shift count. 

V Cleared always. 

Z Set by a zero result; cleared otherwise. 

N Set by a result whose most significant bit is set; cleared otherwise. 

X Unaffected. 

ROXL Rotate Left with Extend 

Rotate to the left the bits of the destination subject by the specified amount, 
including the extend bit in the rotation. The last bit shifted out of the 
destination subject goes into both the carry and extend bits. The previous 
value of the extend bit goes into the vacated low-order bit. 

Size: Byte, Word, Long 

ROXL D1, D2 Rotate with extend data register 2 by amount of data regis
ter 1. 

ROXL #data,D1 Rotate with extend data register 1 by immediate data. 

ROXL ea Rotate with extend effective address by 1 bit only. Subject 
must be word size. 

Status flags 

C Set the same as the last bit shifted out of the subject; set the same as the 
extend bit for a zero shift count. 

V Cleared always. 

Z Set by a zero result; cleared otherwise. 

N Set by a result whose most significant bit is set; cleared otherwise. 

X Set the same as the last bit shifted out of the subject; unaffected for a 
zero shift count. 

ROXR Rotate Right with Extend 

Rotate to the right the bits of the destination subject by the specified 
amount, including the extend bit in the rotation. The last bit shifted out of 
the destination subject goes into both the carry and extend bits. The previ
ous value of the extend bit goes into the vacated high-order bit. 



322 Part Three 

Size: Byte, Word, Long 

ROXR 01,02 Rotate with extend data register 2 by amount of data regis· 
ter 1. 

ROXR #data,01 Rotate with extend data register 1 by immediate data. 

ROXR ea Rotate with extend effective address by 1 bit only. Subject 
must be word size. 

Status flags 

C Set the same as the last bit shifted out of the subject; set the same as the 
extend bit for a zero shift count. 

V Cleared always. 

Z Set by a zero result; cleared otherwise. 

N Set by a result whose most significant bit is set; cleared otherwise. 

X Set the same as the last bit shifted out of the subject; unaffected for a 
zero shift count. 

RTE Return from Exception 

Replace the status register and the program counter with values taken from 
the stack. 

Size: No size. 

RTE Return status register and program counter from stack. No subject 
needed. 

· Status flags 

Status flags are set by the values taken from the stack. 

RTR Return and Restore Condition· Code Register 

Replace the low-order word of the status register (condition code register) 
and the program counter with values taken from the stack. The operation 
has no effect on the high-order word of the status register. 

Size: No size. 

RTR Return status flags and program counter from stack. No subject 
needed. 



323 Chapter 25 

Status flags 

Status flags are set by the values taken from the stack. 

RTS -Return from Subroutine 

Replace the program counter with a value taken from the stack. 
Size: No size. 

RTS Return program counter from stack. No subject needed. 

Status flags 

Unaffected. 

SBCD Subtract Decimal with Extend 

Subtract the source subject plus the extend bit from the destination subject, 
and place the result in the destination slot. The subjects are subtracted using 
binary coded decimal (BCD) arithmetic. 

Size: Byte 

SBCO 01, 02 Subtract data register 1 plus extend bit from data register 
2. 

SBCO -(A1),-(A2) Subtract memory slot 1 plus extend bit from memory slot 
2 using predecrement addressing. 

Status flags 

C Set by a decimal borrow; cleared otherwise. 

V Undefined. 

Z Cleared by a nonzero result; unchanged otherwise. 

N Undefined. 

X Set by a decimal borrow; cleared otherwise. 

Sec Set According to Condition Codes 

If the specified condition (that substitutes for cc) is true, set all bits of the 
byte-sized subject to 1. If the specified condition is false, set all bits of the 
byte-sized subject to 0. 



324 Part Three 

Size: Byte 

Sec ea Evaluate condition codes, then set or clear bits of effective 
address accordingly. 

Status flags 

Unaffected. Status flag conditions for each set instruction: 

SCC Carry Clear. Set if C is clear. 

SCS Carry Set. Set if C is set. 

SEQ Equal. Set if Z is set. 

SF False. Set never. 

SGE Greater or Equal. Set if both N and V are set, or if both N and V are 
clear. 

SGT Greater Than. Set if both N and V are set and Z is clear, or if N, V, 
and Z are clear. 

SHI High. Set if both C and Z are clear. 

SLE Less or Equal. Set if Z is set, or if N is set and V is clear, or if N is 
clear and V is set. 

SLS Low or Same. Set if C is set, or if Z is set. 

SLT Less Than. Set if N is set and V is clear, or if N is clear and V is set. 

SMI Minus. Set if N is set. 

SNE Not Equal. Set if Z is clear. 

SPL Plus. Set if N is clear. 

ST True. Set always. 

SVC Overflow Clear. Set if V is clear. 

SVS Overflow Set. Set if Vis set. 

_SetPort ROM Trap 

PROCEDURE SetPort (port: GrafPtr); 

_SetPort establishes the parameter port as the current port. The param
eter is a pointer to a grafFort. Note: the terms port and grafPort can be used 
interchangeably, though grafFort usually refers to a specific port. 

Tu prepare the stack for _SetPort: Push a pointer to a grafFort onto the 
stack (_NewWindow provides such a pointer). 

On return: The stack is clear. 



325 Chapter 25 

The current port can be accessed through the global variable thePort. 
Quickdraw trap calls use the port's bit map, local coordinate system, and 
pen and text characteristics. 

A grafFort contains the specifications for the particular window envi
ronment. All graphic activity in Quickdraw occurs through the use of one or 
more grafForts, each with its own drawing characteristics. In addition to 
defining the window environment, grafForts support off-screen drawing 
and printing. 

_StillDown ROM Trap 

FUNCTION StillDown : BOOLEAN; 

_StillDown returns a boolean result indicating whether the mouse but
ton is still down from a mouse down event. A zero result indicates false. A 
nonzero result indicates true. 

Tu prepare the stack for _StillDown: Subtract 2 bytes from the stack 
pointer for the boolean result. 

On return: A boolean result is left on the stack in which the high-order 
byte contains the significant data. 

Unlike the _Button function, which returns true if the button is down at 
the moment the trap is called, _StillDown returns true only if the mouse is 
down and the event queue has no more mouse events. When the mouse 
button has been pressed, released, then pressed again, _Button returns true, 
whereas _StillDown returns false. 

STOP Load Status Register and Stop 

Move the immediate subject into the entire status register, and halt program 
execution with the program counter pointing at the next instruction. A 
trace, interrupt, or reset exception restarts program execution. 

Size: No size. 

STOP #xxx Stop with immediate subject in status register. 

Status flags 

Status flags set by bits of the immediate subject. 



326 Part Three 

SUB Subtract Binary 

Subtract the source subject from the destination subject, and place the 
result in the destination slot. 

Size: Byte, Word, Long 

SUB ea,D1 Subtract effective address from data register. 

SUB D1,ea Subtract data register from effective address. 

Status flags 

C Set by a borrow; cleared otherwise. 

V Set by an overflow; cleared otherwise. 

Z Set by a zero result; cleared otherwise. 

N Set by a negative result; cleared otherwise. 

X Set by a borrow; cleared otherwise. 

SUBA Subtract Address 

Subtract the source subject from the destination address register, and place 
the result in the address register. 

Size: Word, Long 

SUBA ea,A1 Subtract effective address from address register. 

Status flags 

Unaffected. 

SUBI Subtract Immediate 

Subtract the immediate data from the destination subject, and place the 
result in the destination slot. 

Size: Byte, Word, Long 

SUBJ #data.ea Subtract immediate data from effective address. 

C Set by a borrow; cleared otherwise. 

V Set by an overflow; cleared otherwise. 

Z Set by a zero result; cleared otherwise. 



327 Chapter 25 

N 

x 

SUBQ Subtract Quick 

Set by a negative result; cleared otherwise. 

Set by a borrow; cleared otherwise. 

Subtract the immediate data from the destination subject, and place the 
result in the destination slot. The immediate data must be an integer from 1 
to 8. 

Size: Byte, Word, Long 

SUBQ #data.ea Subtract immediate data (1-8) from effective address. 

Status flags 

C Set by a borrow; cleared otherwise. 

V Set by an overflow; cleared otherwise. 

Z Set by a zero result; cleared otherwise. 

N Set by a negative result; cleared otherwise. 

X Set by a borrow; cleared otherwise. 

SUBX Subtract with Extend 

Subtract the source subject plus the extend bit from the destination subject, 
and place the result in the destination slot. 

Size: Byte, Word, Long 

SUBX 01,02 

SUBX ·(A1),-(A2) 

Status flags 

Subtract data register 1 from data register 2. 

Subtract memory slot 1 from memory slot 2 using 
predecrement addressing. 

C Set by a carry; cleared otherwise. 

V Set by an overflow; cleared otherwise. 

Z Cleared by a nonzero result; unchanged otherwise. 

N Set by a negative result; cleared otherwise. 

X Set by a carry; cleared otherwise. 



328 Part Three 

SWAP Swap Register Halves 

Exchange the values of the high-order word and low-order word within the 
data register subject. 

Size: Word 

SWAP 01 Swap high-order and low-order words of data register. 

Status flags 

C Cleared always. 

V Cleared always. 

Z Set by a zero result (of all 32 bits); cleared otherwise. 

N Set by a result whose most significant bit (of all 32 bits) is zero; cleared 
otherwise. 

X Unaffected. 

_SysBeep ROM Trap 

PROCEDURE SysBeep (duration: INTEGER); 

_SysBeep produces a simple square-wave tone. The integer parameter 
determines the amount of time the tone lasts. 

To call _SysBeep: Push an integer value onto the stack. 
On return: The stack is clear. 
A duration integer value of 45 lasts approximately 1 second, as does 

each increment of 45. A value of 90 lasts about 2 seconds, and so on. The 
sound produced by a single call to _SysBeep fades within 5 to 6 seconds, so 
parameter values greater than 360 leave a silent gap. 

The square wave produced by _SysBeep is the same as the one pro
duced when the Macintosh is turned on. 

_SystemTask ROM Trap 

PROCEDURE SystemTask; 

_SystemTask transfers processor control to an active desk accessory for 
any needed periodic action. _SystemTask should be inserted as part of the 



3.29 Chapter 25 

main event loop, where it will be called at a minimum interval of one-sixtieth 
of a second. _SystemTask uses no parameters. 

TAS Test and Set a Subject 

TRAP Trap 

Tust and set the byte-sized subject. First, the N and Z flags are set according 
to the given value of the subject, then the subject's high-order bit is set to 1. 

Size: Byte 

TAS ea Test and set effective address. 

Status flags 

C Cleared always. 

V Cleared always. 

Z Set by a zero subject; cleared otherwise. 

N Set by a subject whose most significant bit is set; cleared otherwise. 

X Unaffected. 

Start exception processing. The vector number subject specifies which of 
the sixteen trap vectors will load the new program counter. 

Size: No size. 

TRAP #vector Trap exception vector. 

Status flags 

Unaffected. 

TRAPV Trap on Overflow 

Start exception processing only if the overflow condition (V flag) is set. 
Size: No size. 

TRAPV Trap overflow exception vector. 

Status flags 

Unaffected. 



330 Part Three 

TST Tust a Subject 

UNLK Unlink 

Tust the byte-sized subject. The N and Z flags are set according to the value 
of the subject. 

Size: Byte 

TST ea Tust effective address. 

Status flags 

C Cleared always. 

V Cleared always. 

Z Set by a zero subject; cleared otherwise. 

N Set by a negative subject; cleared otherwise. 

X Unaffected. 

Load the stack pointer with the address register subject, then pull a long 
word from the stack, and place the result in the address register. 

Size: No size. 

UNLK A1 Unlink address register. 

Status flags 

Status register unaffected. 



ABCD, 277 
Active window, 57 
ADD, 277-278 
ADDA, 278 
ADDI, 278 
AddM:enu, 61-62, 225-226 
ADDQ, 279 
Addresses, 96, 118-122, 138-139, 

142, 145-146, 156, 184, 202 
ADDX, 279 
Adjust, 226 
Alncludes folder, 8 

See also Include files 
Alert, 226 
Alias, 47-49, 226-227 
Align, 227 
AND, 279-280 
ANDI, 280 
ANDI to CCR, 280-281 
ANDI to SR, 281 
Applications, 55 
ASL, 281-282 
Asm, 26-27, 64, 227-229 
ASR, 282 

331 

Index 

Assembler, 109, 122, 126 
Assembly: 

disk configuration, 6-9 
instructions, 103-106, 122, 125, 

153, 155-156 
programming, 23, 26-28 

Backup, 229-230 
Bee, 104, 128-129, 176-177, 186, 

192, 214, 282-283 
BCHG, 283 
BCLR,283-284 
Beep, 230 
Begin ... End, 79-80, 231 
Binary file, 28, 41 

See also Object file 
Bit, 97, 136 
Block, 109 
BRA, 284 
Break, 80, 231 
BSET, 284 
BSR, 285 
BTST, 285 



332 Index 

Build menu, 23, 61, 75-79 
BuildCommands, 75, 231 
BuildMenu, 51, 231 
BuildProgram, 75, 232 
Built-in commands, 55-56 
_Button, 105, 128-129, 144-147, 

174, 201, 285-286 
Byte, 117-122, 135, 146-147, 186 

C: 
command, 232-233 
disk configuration, 31-35 
programming, 35-41 

Canon, 233 
Catenate, 233-234 
CHK, 286 
Clear, 23, 234 
Close, 234 
CLR, 156, 184, 286 
CMP, 200, 287 
CMPA, 287 
CMPI, 287-288 
CMPM, 288 
Coin program (CorneredCoin), 

24-25, 36-38, 171-177 
Colon, 14, 16-18 
Command file, 45-51, 55 
Command language, 13-16, 53-57, 

72, 79-82 
Command substitution, 82 
Commando, 20-22, 23, 54 
Comments, 24, 57, 65, 72, 106 
Compare, 234-235 
Confirm, 235-236 
Continue, 80, 236 
Copy, 58, 236 
CorneredCoin program (Coin), 

24-25, 36-38, 171-177 
Count, 236-237 
CreateMake, 75, 77, 237 
Cut, 237 
CvtObj, 237-238 

Data files, 44-45 
Date, 56, 238 
DBcc, 104, 111, 128, 139, 288-289 
DC, 155, 166-167, 289-290 
DCB, 290 
Debugging, 85-92 
Delete, 238-239 
DeleteMenu, 62, 239 
DeRez, 63-64, 67, 239-240 
Diagnostic output, 12, 81 
Directive, 105, 126, 183 
Directory: 

command, 15-16, 18, 25-27, 
240 

folder, 15-16, 43-44 
Directory menu, 18, 26, 60-61 
DirectoryMenu, 15, 51, 240 
DIVS, 290-291 
DIVU, 291 
Dollar sign, 125, 135 
_DrawMenuBar, 213, 291 
_Drawstring, 166-167, 292 
DS, 182, 184-185, 292 
DumpCode, 240-241 
DumpObj, 241-242 
Duplicate, 242 

Echo, 242 
Edit menu, 24, 59 
Eject, 243 
Ellipsis, 20-21 
END, 105, 112, 129, 292 
Entab, 243-244 
Enter key, 13, 15, 33 
EOR, 293 
EORI, 293 
EORI to CCR, 293-294 
EORI to SR, 294 
EQU, 182-184, 200-201, 294 
Equal, 244 
Erase, 244 
Errors, 25-27, 40 



333 

ErrTool, 245 
Evaluate, 245 

Index 

Event loop, 181, 185, 193, 200 
See also EventRecord, 

_GetNextEvent 
Event mask, 185 
EventRecord, 185, 190-192, 

200-202, 214 
Execute, 47-49, 245 
EXG, 294-295 
Exists, 245-246 
Exit, 80, 246 
_ExitTuShell, 105, 112, 129, 

295 
Export, 47-49, 246 
EXT, 295 

Fear and loathing: 
Wet feet on bit creek, 97-99 
Tu bore a cabbage to coleslaw, 

106-107 
The Moss Man revealed, 

112-115 
Letters and the Oakland bus 

stop, 122-124 
The depths and dips of 

science, 129-131 
Conversations on computer, 

140 
The publishing connection, 

148-149 
For the girls to see, 157-159 
Science and compatibility: 

Walking to Long's, 167-169 
The Los Alamos Sluggers, 

177-179, 187-188, 194-195, 
203-205, 215-218 

File menu, 23-25, 58-59 
FileDiv, 246-24 7 

Filename generation, 83 
Files, 17, 19-20, 33, 43-44, 

247-248 

Find, 248 
Find menu, 60 
_FindWindow, 214, 295-296 
_FlushEvents, 199, 296-297 
Font, 248 
For, 80, 248 
Fourplay program, 103-105, 

110-112, 126-129 
14Menu program (LitOfGiants), 64, 

67-69, 74-75, 207-215 
_FrameOval, 193, 202-203, 

297-298 
_FrameRect, 164, 184, 297-298 

_GetMouse, 173-175, 192, 
201-203, 298 

_GetNextEvent, 181, 184-186, 
190-192, 298-300 

GetR~ct program, 181-186 
_GetRMenu, 70, 213, 300 
_GlobalToLocal, 192, 300-301 
GrafFort, 163-165 

Handle, 212 
Help, 19-20, 54, 249 
Hertzfeld, Andy, 54-55 
HFS, 6, 43-44 
Hexadecimal, 95, 102-103, 117-122, 

125, 166 

If, 80, 249 
ILLEGAL, 301 
INCLUDE, 105, 111, 126, 213, 301 
Include files, 31, 39-40, 44-45, 111, 

126, 183 
_InitCursor, 152, 162, 301-302 
_InitFonts, 152, 162, 301-302 
_InitGraf, 152, 162, 301-302 
_InitMenus, 70, 301-302 
_InitWindows, 152, 162, 301-302 

I 



\ 

334 Index 

_InsertMenu, 213, 302-303 
InsideStuff program, 161-167 
Interface files, 31, 39-40, 44 
_InverRect, 177, 303-304 

JMP, 304 
JSR, 304 

LEA, 304-305 
Lib J 249-250 
Library files, 31, 39-40, 44 
LightsOut program, 133-140 
Link, 26-27, 40, 64, 67-69, 

250-251 
LINK, 305 
LitOfGiants program (14Menu), 64, 

67-69, 74-75, 207-215 
Long word, 117-122, 135, 147 
Loop, 80, 251-252 
LotsOfOvals program, 197-203 
LSL, 305-306 
LSR, 306 

MacApp, 3 
MacsBug, 85-92, 96 
MAIN, 105, 111, 127, 306 
Make (makefile), 72-79, 252 
Mark, 60, 252-253 
Mark menu, 60 
Markers, 60, 253 
MDSCvt, 253-254 
Menus, 57-62 
MenuSelect, 214-215, 307 
Minus sign options, 19-20, 40, 57 
Mount, 254 
Move, 104, 111, 127-128, 138-139, 

166, 175, 183, 193, 202, 254 
MOVE, 307-308 
MOVE to CCR, 308 

MOVE to SR, 308 
MOVE from SR, 309 
MOVE USP, 309 
MOVEA, 309 
MOVEM, 309-310 
MOVEP, 310 
MOVEQ, 310-311 
_MoveTu, 165-166, 173, 311-312 
MoveWindow, 255 
MPW: 

disk contents, 3-7, 53-55 
floppy disk configuration, 8-10 
hard disk configuration, 7-8 
minimum configuration, 4 
See also Assembly, C, 

Command language, Pascal, 
Shell 

MPWTypes.r, 67 
MULS, 312 
MULU I 312-313 

NBCD, 313 
NEG, 313 
NEGX, 314 
New, 23, 35, 57-58, 255 
Newer, 255 
NewFolder, 255 
_NewWindow, 153-155, 163, 314 
NOP, 315 
NOT, 315 
NotOverYet program, 141-148 
Number sign, 125, 134 

Object file, 39 
Open, 256 
OR, 315-316 
ORI, 316 
ORI to CCR, 316 
ORI to SR, 317 
OvalTime program, 189-194 



335 Index 

Parameters: 
assembly, 164, 167, 173-174, 

186 
command, 256 
MPW, 16, 18, 20, 72, 75 

Pascal: 
command, 256-257 
disk configuration, 31-35 
programming, 35-41 

PasMat, 257-259 
PasRef, 259-260 
Paste, 260 
Pathnames, 15-16, 27, 39-40, 

43-44, 49-51, 57 
PEA, 152, 156, 167, 214, 317 
_PenMode, 182-183, 317-319 
PerformReport, 260 
Point, 173, 190-192, 201, 214 
Pointer, 173-175, 184-186, 212, 214 
Print, 22, 29, 261-262 
ProcNames, 262 
Program counter, 96, 102 
Program execution, 109-110 
_PtlnRect, 176-177, 319 

Quick.a file, 183 
Quit, 262 
Quit file, 8, 47 
Quote, 263 
Quoting, 82 

Rectangle, 163-164 
Register, 96, 101-103, 118-121, 135, 

137, 152, 186, 202 
See also Program counter, 

Status register 
Rename, 56, 263 
Replace, 263-264 
Request, 264 
ResEdit, 64 
ResEqual, 264 

RESET, 319-320 
Resources, 63-70, 207-213 
Resource description file, 65-67 
Resume file, 8, 47 
Revert, 264-265 
Rez, 63-69, 207-213, 265 
RezDet, 266 
Rlncludes folder, 65, 67 
ROL, 320 
ROR, 320-321 
ROXL, 321 
ROXR, 321-322 
RTE, 322 
RTR, 322-323 
RTS, 323 

Save, 24, 266 
SBCD, 323 
Sec, 156, 323-324 
Screen memory, 136-139 
ScrnBase, 136-139 
Search, 266-267 
Select, 267 
Servant, 54-55 
Set, 44, 47-51, 267-268 
SetDirectory, 15, 18, 44, 61, 268 
SetFile, 268 
_SetPort, 153-155, 163, 324-325 
SetPriv, 269 
SetVersion, 269-270 
Shell, 9-12, 45, 51, 53-55, 71-72, 

81-82 
See also Command language 

Shift, 270 
Short branch, 135 
Shutdown, 270 
68000 processor, 6, 96, 101-102, 

126 
68020 processor, 6 
SizeWindow, 271 
Slots, 96, 101-103, 117-122, 137 
Source code, 28, 39, 41, 104 

/ 



336 Index 

Stack, 129, 143-145, 153-156, 166, 
174-176, 214 

StackWindows, 271 
Standard input, 12, 81 
Standard output, 12, 81 
Startup file, 8, 44, 47-51 
Status panel, 13, 15, 72 
Status register, 102, 129, 146-147, 

176, 186, 200 
Std.File, 2 71 
_StillDown, 201, 325 
Structured commands, 79-80 
STOP, 325 
SUB, 326 
SUBA, 326 
SUBI, 326-32 7 
SUBQ, 104, 128-129, 144, 174, 185, 

214, 327 
SUBX, 327 
Suffix, 25, 35, 40, 53, 135 
Suspend file, 8, 47 
SWAP, 328 
_SysBeep, 328 
SysEqu.a file, 44-45, 111, 126, 183 
SysErr, 271-272 
_SystemTask, 172, 185, 328-329 
SysTypes.r file, 67 

Tab, 272 
Target, 272 
Target window, 57 
TAS, 329 
TileWindows, 272 

TLAConvert, 2 73 
Toolbox, 105, 143, 152-153, 165, 

186 
Tuols, 45, 55 

See also Command language 
Translate, 273-274 
TRAP, 329 

Traps, 153, 165 
See also Toolbox 

Traps.a file, 44-45, 111, 126, 183 
TRAPV, 329 
TST, 114, 128-129, 145-147, 176, 

186, 330 
Types.r file, 65-67 

Unalias, 274 
Undo, 274 
Unexport, 274 
UNLK, 330 
Unmark, 275 
Unmount, 2 75 
Unset, 275 
UserStartup file, 8, 44, 47, 51, 59, 

61 

Variables: 
Assembly, 186 
Shell, 44, 49-51, 59, 72, 82 

Volumes, 13-14, 16, 19-20, 43-44, 
275 

Which, 276 
Window menu, 60 
WindowMaker program, 151-156 
Windows, 276 
Word, 117-122, 135, 147 
Worksheet, 9-12, 13, 46-47, 53-54, 

212 

Z flag, 146-147, 176, 186, 193, 200, 
215 

See also Status register 
ZoomWindows, 276 



To order a disk containing the source code of all the example programs in this 
book (plus additional fear and loathing sidetracks and software surprises) send a 
check or money order for $20 made out to "Scott Kronick." (No cash, please.) 

If you don't mind tearing a page out of a nice book, use this order form. 
Otherwise, photocopy this page. Send this form with your payment to: 

Kronick Disk Offer 
1442A Walnut Street, Suite 278 

Berkele~ CA 94709 

Howard W. Sams & Company assumes no liability with respect to the use or accuracy of the information 
contained in this disk. 

Diskette Order Form 

Kronick, MPW and Assembly Language Programming, #48409 

Place of book purchase---------------------

Number of sets ordered @ $20 Amount enclosed $ ---- -----
D Check number -------- D Money order number -----





MPWand 
Assembly Language Programming 

For the Macintosh® 
If you're a Macintush programmer, this book will help you d&over 
the potential of Macintosh Programmer's Workshop (MPW), 
the powerful new Macintush programming development system 
for assemb~ language, Pa5cal, and C 

MPW is the must sqihisticated microcomputer programming 
system in existence-developed and used by Apple Computer 
to create its Macinta;h software (for Macinta;h II as well). Now, 
with Scoo Kronick's frien~ guidance, you can master the system 
and learn assemb~ language painless~. 

MPW and Awnbly I.anguage Prtwamming is the first MPW 
book designed especially for 
beginning and intermediate 
programmers. This clear, concise 
introduction will help you under
stand how to develop assemb~, 
Pa5cal, and C prrygrams using this 
fascinating environment. Never 
before have the fundamentals 
of assemb~ programming been 

About the Author 
&ott Kronick is unique in the 
computer industry. He writes 
books that would not bore a 
cabiYage to coleslaw. 

His two previous fear and loathing works on Pascal for 
the Macintosh and Apple II have turned readers into fans. 
His recent Berkeley Macintosh Users Group Newsletter 
contribution prompted San Francisco illwninary Herb Caen 

#f 

explained as meticulous~ and thorou~. 
This book is written in a lively style. The assembly tutorial 

is filled with Mr. Kronick's famous fear and loathing musings, 
offering a refreshing perspective you won't find elsewhere. 
Step-by-step instruction is supplemented by comprehensive 
dictionaries of the MPW Shell command language and the 68rol 
instruction set with directives and Toolbox traps. 

In the pages of this entertaining workbook, you'll explore 
the massive MPW disk set ·and develop example applications 
in assembly, Pascal, and C. Soon you'll be writing assembly 

programs using the Macintosh 
Toolbox, including mouse 
events, windows, QuickDraw, 
and menus. 

You'll access and apply the 
power of Macintosh Pro
grammer's Workshop with MPW 
and Assembly Language 
Prtwamming 

to write: "One of the funniest 
pieces of stuff I ever read" 

Writer, artist, and pro
grammer Kronick lives in Northern California with his spaniel
lab, Silky. He has at least one advantage over other self
taught programmers: His friend since childhood, who checks 
over his assemb~ code, is Andy Hertzfelcl, original designer 
of the Macinta;h system softWJre. 

HAYDEN BOOKS 

$24.95/48409 
0-672-48409-9 

A Division of Howard W Sams & Company 

4300 West 62nd Street 

Indianapolis, Indiana 46268 USA 
0 81262 48409 8 


